Global Strep A vaccine one step closer

Streptococcus genomes reveal potential vaccine targets present in over 20 countries worldwide

Global Strep A vaccine one step closer

Currently there is no global vaccine for Group A streptococcal bacteria
Currently there is no global vaccine for Group A streptococcal bacteria. Image credit: CDC/PHIL

The search for a global Strep A vaccine has narrowed after researchers sequenced the DNA of more than 2,000 Group A Streptococcus samples from around the world. Researchers from the Wellcome Sanger Institute, the University of Cambridge, the Peter Doherty Institute for Infection and Immunity (Doherty Institute) in Australia, and the University of Queensland, Australia, revealed the differences between strains from more than 20 countries, and identified potential vaccine targets present across most strains.

Published today (27 May) in Nature Genetics, the 10-year project found there were some molecular targets present in bacterial strains from all 20 countries, including the UK, Australia and India, which point to the possibility of developing an effective global vaccine against Strep A.

Group A Streptococcus bacteria, commonly known as Strep A, is one of the top 10 causes of death from infectious diseases worldwide. It is estimated to cause more than half a million deaths per year*, mainly in low-income regions of the world. It can cause many different infections, ranging from Strep throat, which is widely seen in the developed world, to scarlet fever and rheumatic heart disease, which are constantly present and considered endemic in lower-income areas of the globe. 

There is no effective vaccine yet for Strep A, and the search for a vaccine is hampered by the variety of Strep A strains. Until now, most of the information has come from high-income areas such as the UK and US, however, very little is known about Strep A in the low-income areas of the world where it causes the most problems. This means that current vaccine candidates may not be effective in all areas.

To remedy this, the researchers collected more than 2,000 samples of Strep A from 22 countries around the world, including countries in Africa and the Pacific, New Zealand and Australian Aboriginal communities. By sequencing and analysing the DNA of each sample, they were able to determine the genes present in each strain, and see the variety in strains across the world. 

The project found that current leading Strep A vaccine candidates would have limited coverage in the low-income areas where Strep A is endemic and the vaccine is most needed.

“Using large-scale genomic sequencing, we identified the existence of more than 290 genetically different lineages of clinically important Strep A, highlighting the challenges of designing an effective global vaccine. However, using all the data we collected, we narrowed down common genes in almost all strains of Strep A globally.  This is a tremendous step forward in identifying what may work as a global vaccine candidate.”

Dr Mark Davies, lead author from the Wellcome Sanger Institute and University of Melbourne’s Doherty Institute 

“Millions of people around the world are affected by Strep A. It can cause a range of conditions, from sore throats and outbreaks of scarlet fever in the UK, to infections leading to rheumatic heart disease in populations such as the Australian Aboriginal population. In addition to aiding research into a vaccine, genomic data from our study will help researchers understand how Strep A causes disease and why it is different in high-income areas to endemic regions.”

Prof Gordon Dougan, an author from the Wellcome Sanger Institute and University of Cambridge 

“This research has the potential to fast track a much-needed Strep A vaccine as developers and the wider scientific community can now use our database to identify the most common genes as vaccine targets. I believe a global vaccine is possible and these research findings, in addition to increased funding commitments, will renew the momentum towards the search for a global vaccine.”

Professor Mark Walker, a senior author on the paper and Director of Australian Infectious Diseases Research Centre, from the University of Queensland

Notes to Editors
Publication:

Mark R Davies et al. (2019) Atlas of group A streptococcal vaccine candidates compiled using large scale comparative genomics. Nature Genetics. DOI: 10.1038/s41588-019-0417-8

*Statistics on the burden of group A streptococcal diseases from: Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005; 5(11): 685–94.

Funding:

This work was supported by Wellcome, the National Health and Medical Research Council (NHMRC),
the Coalition to Accelerate New Vaccines Against Streptococcus (CANVAS), and European Union's Seventh Framework Programme.

Selected Websites
Being part of the herd saves livesInfluencing PolicyBeing part of the herd saves lives
13.04.15 Stopping the leading cause of child death starts with you. Rebecca Gladstone explains how widespread vaccination protects the vulnerable

What are Streptococcal infections?FactsWhat are Streptococcal infections?
Streptococcal infections are any type of infection caused by the group of bacteria Streptococcus.

Contact the Press Office

Emily Mobley, Media Manager

Tel +44 (0)1223 496 851

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Dr Matthew Midgley, Media Officer

Tel +44 (0)1223 494 856

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7748 379849

Recent News

Uncovering the pathway to colon cancer
Scientists identify patterns of genetic changes in healthy colon tissue, giving insight into the very earliest stages of cancer
Accumulation of DNA mutations found in healthy liver leads to disease
Largest study of its kind seeks to better understand how liver disease and hepatocellular carcinoma develop
Resurrection of over 50,000-year-old gene reveals how malaria parasite jumped from gorillas to humans
Discovery of molecular pathway is valuable example of how a pathogen can switch from one host species to another