- Group
Archived

Deloukas Group

Genetics of complex traits in humans

Archive Page

This page is maintained as a historical record and is no longer being updated.

This page is a historical record of the research led by Professor Panos Deloukas at the Institute and was last updated in 2013.

Please note: This page has not been update since 2013.

Panos is Professor of Cardiovascular Genomics at the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London. Panos led the Genetics of complex traits in humans group at the Wellcome Trust Sanger Institute from 1994 to 2013, investigating both the extent of sequence variation in human populations and the functional consequences of specific variants in their contribution to complex traits including common disease and response to external stimuli, for example drugs. In particular, his team focused on the genetic predisposition of traits affecting coronary artery disease and myocardial infarction.

Panos was one of the founding members of the Human Genetics groups at the Wellcome Trust Sanger Institute when he joined as a group leader to help build the genetic maps for the Human Genome Project. His team made contributions first to the Human Genome Project by assembling the sequence map of chromosomes 10 & 20 and then to the International HapMap project by building SNP maps for quarter of the genome in four populations. His current research interests and work can be found on the Queen Mary University London website.

The availability of resources like the HapMap with over 4 million mapped variants coupled with advances in array technology have enabled the conduct of large-scale association studies to identify disease genes. We have set up a high-throughput facility for genotyping and expression analysis undertaking genetic studies of common diseases such as type 2 diabetes, cardiovascular, obesity and malaria as well as pharmacogenetic studies of the anticoagulant drug warfarin.

Whole genome association studies in large, well-phenotyped collections are finding disease genes; we have reported several new loci as part of the Wellcome Trust Case Control Consortium. Population samples of healthy individuals on which multiple phenotypic measurements have been collected offer a unique resource to map quantitative traits. In that context gene expression can also be analysed providing a further link between genotype and measured trait. Research interests evolve around both the technical and analytical optimisation of such studies as well as the deployment of molecular tools to further characterise the genomic regions resulting from them; identification of the actual causative variant requires functional analysis.

The challenge in understanding the basis of complex traits includes finding the environmental factors and how they interact with the genetic factors.

The Wellcome Trust Case Control Consortium

The Wellcome Trust Case Control Consortium (WTCCC) was formed in 2004 with the aim to explore the utility, design, execution and analysis of genome-wide association (GWA) studies. It comprises over 50 UK research groups working on the genetics of common human diseases, and collectively covering the fields of clinical, genotyping, informatics and statistical analysis.

The Consortium has undertaken three experiments so far:

  1. GWA studies of 2000 cases and 3000 shared controls for seven complex human diseases of major public health importance: bipolar disorder (BD), coronary artery disease (CAD), Crohns disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D).
  2. A GWA study for tuberculosis in 1500 cases and 1500 controls, sampled from The Gambia.
  3. An association study of 1500 common controls with 1000 cases for each of breast cancer, multiple sclerosis, ankylosing spondylitis, and autoimmune thyroid disease, all typed at around 15,000 mainly non-synonymous SNPs.

By simultaneously studying seven diseases with differing aetiologies, we hoped to develop insights, not only into the specific genetic contributions to each of the diseases, but also into differences in allelic architecture across the diseases. A further major aim was to address important methodological issues of relevance to all GWA studies, such as quality control, design and analysis. In addition to our main association results, we address several of these issues below, including the choice of controls for genetic studies, the extent of population structure within the UK, sample sizes necessary to detect genetic effects of varying sizes, and improvements in genotype calling algorithms and analytical methods.

Genotyping

Genetic studies in both haploid and diploid organisms rely heavily on our ability to interrogate accurately polymorphic sites in the genome (single base positions or sequence segments in the genome that occur in two or more alleles in the population). Bi-allelic markers such as Single Nucleotide Polymorphisms (SNPs) and small insertion deletions (INDELS) have largely replaced microsatellites as they are amenable to automation and high level of multiplexing.

We set up a high-throughput facility with the aim to identify and implement a combination of robust genotyping platforms to undertake large-scale genetic analysis. In addition to accuracy, we select platforms on the basis of throughput, cost efficiency, and DNA consumption. The latter is very important in studies with irreplaceable clinical samples available in finite quantities. Research activities focus on issues surrounding sample quality and optimisation of calling algorithms, both of paramount importance since the advent of genome-wide genotyping based on array technology developed by Affymetrix and Illumina. Disease association studies aim to identify variants with differences in frequency between cases and controls which are often small. Thus any bias in genotype calling introduced by either DNA quality and / or the calling algorithm used can lead to false positive associations. Our informatics team is developing tools for automating data handling and quality control as well as data storage and visualisation.

Our Facility runs multiple genotyping platforms including Illumina (Golden Gate and Infinium assays), Affymetrix (Gene Chip), Sequenom (iPLEX and homogeneous mass extend assays) and Taqman (ABI). We have made substantial contributions to major international projects such as those undertaken by The SNP Consortium and the HapMap consortium.

Genotyping quality control

This document outlines aspects of the process and quality control implemented in the genotyping pipeline. Many details are given, but it should be noted that these may vary depending on the nature of each project.

Core team

Photo of Dr Kaitlin Samocha

Dr Kaitlin Samocha

Postdoctoral Fellow

Photo of Dr Ruth Eberhardt

Dr Ruth Eberhardt

Senior Bioinformatician

Photo of Dr Leopold Parts

Dr Leopold Parts

Group Leader

Photo of Dr Yali Xue

Dr Yali Xue

Senior Staff Scientist

Photo of Arthur Gilly

Arthur Gilly

Principal Bioinformatician

Photo of Dr Carl Anderson

Dr Carl Anderson

Group Leader and Director of Graduate Studies

Photo of Dr Michal Szpak

Dr Michal Szpak

Postdoctoral Fellow

Photo of Dr Emmanouil Metzakopian, PhD

Dr Emmanouil Metzakopian, PhD

Career Development Fellow

Photo of Dr Emma Davenport

Dr Emma Davenport

Group Leader

Photo of Professor Nicole Soranzo

Professor Nicole Soranzo

Senior Group Leader

Photo of Nicola Corton

Nicola Corton

Head of Operations - Human Genetics

Photo of Mohamed Almarri

Mohamed Almarri

PhD Student

Photo of Dr Hilary Martin

Dr Hilary Martin

Group leader

Photo of Dr Sarah J Lindsay

Dr Sarah J Lindsay

Senior Staff Scientist

Photo of Joanna Kaplanis

Joanna Kaplanis

PhD Student

Photo of Eric Miska

Eric Miska

Associate Faculty/Group Leader

Photo of Dr Julia Foreman

Dr Julia Foreman

DECIPHER Project Manager

Photo of Dr Eugene Gardner

Dr Eugene Gardner

Postdoctoral Fellow

Photo of Dr Sebastian Gerety

Dr Sebastian Gerety

Senior Staff Scientist

Previous team members

Photo of Jeremy McRae

Jeremy McRae

Statistical Geneticist

Photo of Dr Jawahar Swaminathan

Dr Jawahar Swaminathan

Senior Scientific Manager (DECIPHER Project Manager)

Photo of Darren Logan, PhD

Darren Logan, PhD

Former CDF Group Leader

Photo of Liu He

Liu He

Postdoctoral Fellow

Photo of Manjinder Sandhu

Manjinder Sandhu

Former Senior Group Leader

Photo of Dr Gabriele Rinck

Dr Gabriele Rinck

Project Manager

Photo of Eleftheria Zeggini

Eleftheria Zeggini

Former Group Leader

Photo of Dr Joshua C. Randall

Dr Joshua C. Randall

Senior Scientific Manager

Photo of Dr Caroline Wright

Dr Caroline Wright

Senior Scientific Manager

Photo of Dr Chris Tyler-Smith

Dr Chris Tyler-Smith

Former Senior Group Leader

Photo of Dr Ro (Rosemary) Kelsell

Dr Ro (Rosemary) Kelsell

Project Administrator

Photo of Dr Giuseppe Gallone

Dr Giuseppe Gallone

Former Senior Computer Biologist at the Sanger Institute

Photo of Sophie Hackinger

Sophie Hackinger

PhD Student

Photo of Dr Helena Kilpinen

Dr Helena Kilpinen

Career Development Fellow

Photo of Dr Kalliope Panoutsopoulou

Dr Kalliope Panoutsopoulou

Career Development Fellow

Photo of Patrick Short

Patrick Short

PhD Student, Wellcome Trust PhD in Mathematical Genomics and Medicine

Photo of Colin Nolan

Colin Nolan

Former Group Leader (Acting)

 

Publications

Loading publications...