Genetic study reveals possible new routes to treating osteoarthritis

Scientists discover new genes and biological pathways linked to osteoarthritis, which could help identify starting points for new medicines

Genetic study reveals possible new routes to treating osteoarthritis

Genetic study reveals possible new routes to treating osteoarthritisNational Institutes of Health
Replacement of the left hip joint after damage due to osteoarthritis.

In the largest genetic study of osteoarthritis to date, scientists have uncovered 52 new genetic changes linked to the disease, which doubles the number of genetic regions associated with the disabling condition.

Scientists at the Wellcome Sanger Institute, GSK and their collaborators analysed the genomes of over 77,000 people with osteoarthritis. Their findings, published today (21 January) in Nature Genetics, revealed new genes and biological pathways linked to osteoarthritis, which could help identify starting points for new medicines. Researchers also highlighted opportunities for existing medicines to be evaluated in osteoarthritis.

Almost ten million people in the UK suffer from osteoarthritis, a degenerative joint disease in which a person’s joints become damaged, stop moving freely and become painful. There is no disease-modifying treatment for osteoarthritis. The disease is managed with pain relief medications and often culminates in joint replacement surgery, which has variable outcomes.

Osteoarthritis is the most prevalent musculoskeletal disease and a leading cause of disability worldwide. In the UK, the disease indirectly costs the economy £14.8 billion each year*.

To uncover the genetics underpinning osteoarthritis, scientists from the Sanger Institute, GSK and their collaborators analysed the whole genomes of over 77,000 people with osteoarthritis and over 370,000 healthy people using patient data from the UK Biobank resource and the arcOGEN study**. The team studied many different types of osteoarthritis, including in knee and hip joints.

“Osteoarthritis is a very common, disabling disease with no cure. We have conducted the largest study of osteoarthritis to date, and found over 50 new genetic changes that increase the risk of developing osteoarthritis. This is a major step forward in developing treatments to help the millions of people suffering from the disease.”

Professor Eleftheria Zeggini, previously from the Wellcome Sanger Institute and now based at Helmholtz Zentrum München in Germany 

In order to discover which genes cause osteoarthritis, the team incorporated additional functional genomic data and analysed gene activity by measuring gene expression down to the protein level. The team integrated genetic and proteomic data on tissue taken from patients undergoing joint replacement surgery. By incorporating many different data sets, scientists were able to identify which genes were likely to be causal for osteoarthritis.

Ten of the genes were highlighted as targets of existing drugs, which are either in clinical development or approved for use against osteoarthritis and other diseases. These include the drugs INVOSSA, which is registered for knee osteoarthritis, and LCL-161, a drug in clinical development for the treatment of breast cancer, leukaemia and myeloma. The team suggest that the ten drugs highlighted would be good candidates for testing in osteoarthritis.

“Osteoarthritis affects over 8.5 million people across the UK. We know that the condition impacts people in different ways, meaning the treatment that works for one person doesn’t always work for someone else.

“This study represents a hugely important milestone towards understanding the complexity of osteoarthritis and finding new treatments and we are delighted that our support for the arcOGEN study has helped deliver this. In the long term, the research progresses us significantly on the journey to ending the pain, isolation and fatigue of those living with arthritis.”

Dr Stephen Simpson, Director of Research at Versus Arthritis, who supported the arcOGEN study

Notes to Editors

*Hiligsmann, M et al. Health economics in the field of osteoarthritis: an expert's consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 2013; 43: 303-13.

**UK Biobank is a national and international health resource with unparalleled research opportunities, open to all bona fide health researchers. https://www.ukbiobank.ac.uk/

arcOGEN was a study involving a UK-wide consortium funded by Arthritis Research UK. Its aim was to identify the genetic determinants of osteoarthritis (OA), the commonest form of arthritis, by carrying out a large-scale genome-wide association scan.

Publication:

Ioanna Tachmazidou et al. (2018) Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nature Genetics. DOI: 10.1038/s41588-018-0327-1

Funding:

This study was supported by Wellcome (206194).  

Selected Websites
Is arthritis due to DNA’s dark matter?Sanger ScienceIs arthritis due to DNA’s dark matter?
27 March 2013: Steven Witte explains how his fascination with the cause of autoimmune diseases such as arthritis has brought him to the Sanger Institute to study the effects of non-coding DNA [Imag…

Genome-wide association studiesStoriesGenome-wide association studies
Genome-wide association studies have led to the discovery of hundreds of genes with a role in common diseases. 

What is inheritance?FactsWhat is inheritance?
Inheritance is the process by which genetic information is passed on from parent to child. This is why members of the same family tend to have similar characteristics. 

Contact the Press Office

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Emily Mobley, Media Officer

Tel +44 (0)1223 496 851

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7900 607793

Recent News

Low doses of radiation promote cancer-capable cells
New research in mice helps to understand the risks around exposure to low doses of radiation, such as CT scans and x-rays
Chan Zuckerberg Initiative boosts Human Cell Atlas research at the Sanger Institute
Seed Networks projects will focus on specific tissues, such as the thymus, lung, liver, kidney and immune system
Widely-available antibiotics could be used in the treatment of ‘superbug’ MRSA
Genomic analysis shows that a significant number of strains are susceptible to penicillin combined with clavulanic acid