Adapted from Nature Immunology DOI: 10.1038/s41590-020-0800-8

Novel map reveals how immune cells fight and remember infections

Mouse immune study gives pointers for development of vaccines and immune therapies

Researchers have charted the activity of tens of thousands of genes in mouse immune cells over the course of an infection. The study from the University of Melbourne, Australia, the Wellcome Sanger Institute, and their collaborators created the first full dynamic map of how cells learn to fight microbes and then preserve a memory of this for future infections.

The findings, published in the journal Nature Immunology, could help scientists develop new vaccines and therapeutics for a range of diseases by guiding their research into a particular set of immune cells, known as CD4+ T cells, that are essential for generating immunity.

The international research team studied the CD4+ T cells during an experimental infection of mice with malaria-causing parasites, which invade and multiply inside red blood cells. With the aid of machine learning techniques, the research team combined the gene activity data over four weeks of infection to generate a comprehensive map of the developmental journeys taken by CD4+ T cells.

“We traced thousands of individual genes to generate a map from initial infection to periods when cells firstly ‘decide’ between various immune roles for fighting the infection, and secondly preserve memories of that encounter. Our map revealed several novel genes that were active – in particular, in a type of CD4+ T cells called T follicular helper cells. These are essential for making antibodies that protect against malaria but have not yet been well studied.”

Dr Ashraful Haque, co-lead author from the University of Melbourne’s Doherty Institute

The scientists have shared their data through a freely available digital resource. This map allows immunology researchers worldwide to track the response of individual genes after infection.

“Importantly, while our map was generated using an experimental model of malaria, it will be useful for studying T cell responses in almost any infectious or non-infectious disease, or treatment in which T cells are involved. Further investigations are needed to confirm that human cells have a similar map to mouse CD4+ T cells. However, we hope this discovery can point researchers in the right direction towards developing new vaccines for infectious diseases, new immune-therapies for certain cancers, and novel ways to prevent auto-immune conditions.”

Dr Sarah Teichmann, co-lead author from the Wellcome Sanger Institute

Press Contacts

If you need help or have any queries, please contact us.

Emily Mobley
Media Manager
Tel +44 (0)1223 496 851
Email: emily.mobley@sanger.ac.uk

 

Dr Matthew Midgley
Media Officer
Tel +44 (0)1223 494 856
Email: matthew.midgley@sanger.ac.uk

 

Dr Samantha Wynne
Media Officer
Tel +44 (0)1223 492 368
Email: samantha.wynne@sanger.ac.uk

 

Press office
Wellcome Sanger Institute, Hinxton,
Cambridgeshire, CB10 1SA, UK
Tel +44 (0) 7748 379849
Email: press.office@sanger.ac.uk

 

Notes to Editors

Publication:

Megan S. F. Soon, Hyun Jae Lee and Jessica A. Engel et al. (2020). Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology DOI: 10.1038/s41590-020-0800-8

Selected websites

  • About the Peter Doherty Institute for Infection and Immunity

    Finding solutions to prevent, treat and cure infectious diseases and understanding the complexities of the immune system requires innovative approaches and concentrated effort. This is why The University of Melbourne – a world leader in education, teaching and research excellence – and The Royal Melbourne Hospital – an internationally renowned institution providing outstanding care, treatment and medical research – have partnered to create the Peter Doherty Institute for Infection and Immunity (Doherty Institute); a centre of excellence where leading scientists and clinicians collaborate to improve human health globally.

    Website: doherty.edu.au/
    Facebook: /DohertyInstitute
    Twitter: @TheDohertyInst  #DohertyInstitute

  • The Wellcome Sanger Institute

    The Wellcome Sanger Institute is a world leading genomics research centre. We undertake large-scale research that forms the foundations of knowledge in biology and medicine. We are open and collaborative; our data, results, tools and technologies are shared across the globe to advance science. Our ambition is vast – we take on projects that are not possible anywhere else. We use the power of genome sequencing to understand and harness the information in DNA. Funded by Wellcome, we have the freedom and support to push the boundaries of genomics. Our findings are used to improve health and to understand life on Earth.

    Find out more at www.sanger.ac.uk or follow us on Twitter, Facebook, LinkedIn and on our Blog.

  • About Wellcome

    Wellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation. https://wellcome.org/