Novel mutations define two types of bone tumour

Two related genes underlie the development of two rare bone tumours in nearly 100 per cent of patients

Novel mutations define two types of bone tumour

chondroblastoma.jpgDOI: 10.1038/ng.2814
Prevalence and distribution of histone H3.3 somatic alterations in different tumor types. The percentage of cases in each series harboring a specific histone H3.3 alteration is indicated

Scientists have made a rare discovery that allows them to attribute two types of tumour almost entirely to specific mutations that lie in two related genes.

These mutations are found in nearly 100 per cent of patients suffering from two rare bone tumours; chondroblastoma and giant cell tumour of the bone.

Chondroblastoma and giant cell tumour of bone are benign bone tumours that primarily affect adolescents and young adults, respectively. They can be extremely debilitating tumours and recur despite surgery. Occasionally, these tumours can be difficult to differentiate from highly malignant bone cancers. The mutations found in this study may be used for diagnosis of chondroblastoma and giant cell tumour. In addition, the mutations offer a starting point into research for a specific treatment against these tumours.

"This is an exceptional, if not a once in a lifetime discovery for the team. What we normally see is that the same mutations occur in many different types of tumour. These mutations, however, are highly specific to these tumours. Moreover, our findings suggest that these mutations are the key, if not the sole, driving force behind these tumours."

Dr Peter Campbell, co-lead author of the study from the Wellcome Trust Sanger Institute

The team sequenced the full genomes of six chondroblastoma tumours and found that all six tumours had mutations in one of two related genes, H3F3A and H3F3B, which produce an identical protein, called histone 3.3.

Extending the study to more chondroblastoma tumours and to other bone tumours, they were able to verify that this mutation was found in almost all cases of chondroblastoma. Interestingly, the team also observed that most cases of a different type of bone tumour, giant cell tumour of bone, have a mutation in the H3F3A gene, albeit in a different position in the gene. A pattern emerged where both tumour types, chondroblastoma and giant cell tumour of bone, are defined by specific histone 3.3 mutations.

The team pinpointed the specificity of these mutations to affecting a single amino acid residue on the histone 3.3 protein; G34W amino acid residue underlies giant cell tumour of the bone and K36M amino acid residue underlies chondroblastoma.

"The high prevalence of these mutations in each tumour type is striking, but what's most remarkable is the unprecedented specificity of these mutations. The specificity of the mutations not only informs us about how these tumours develop, but also points to some fundamental function of these genes in normal bone development."

Dr Sam Behjati, first author from the Wellcome trust Sanger Institute

"Our findings will be highly beneficial to clinicians as we now have a diagnostic marker to differentiate chondroblastoma and giant cell tumour of bones from other bone tumours. This study highlights the importance of continuing to sequence all types of human cancer. We are also extremely grateful to our patients and collaborators, without their help we would not have been able to study these extremely rare diseases."

Professor Adrienne Flanagan, co-lead author from the Royal National Orthopaedic Hospital, and UCL Cancer Institute

Notes to Editors
Publications
  • Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone.

    Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N et al.

    Nature genetics 2013;45;12;1479-82

The Skeletal Cancer Action Trust (Scat) is a small charity, based in the heart of the RNOH with the bone cancer (Sarcoma) team. Scat is unique in its offering of high performance limbs (C-limbs) to teenagers and young adults.

Website
Funding

This work was supported by funding the Wellcome Trust, and Skeletal Cancer Action Trust (SCAT), UK, and Rosetrees Trust UK.

Participating Centres
  • Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
  • Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, CB2 2XY
  • University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
  • Universitätsklinik für Orthopädie und Orthopädische Chirurgie, Medizinische Universität, Graz, Austria
  • Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
  • Human Genome Laboratory, Department of Human Genetics, VIB and KU Leuven, Herestraat 49 box 602, B-3000 Leuven, Belgium
  • Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital,
  • The Norwegian Radium Hospital, Oslo, Norway
  • Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, Basel, Switzerland
  • Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
  • Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 2XY
Selected Websites
Contact the Press Office

Emily Mobley, Media Manager

Tel +44 (0)1223 496 851

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Dr Matthew Midgley, Media Officer

Tel +44 (0)1223 494 856

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7748 379849

Recent News

Resurrection of over 50,000-year-old gene reveals how malaria parasite jumped from gorillas to humans
Discovery of molecular pathway is valuable example of how a pathogen can switch from one host species to another
Sanger Institute refutes allegations of misuse of African DNA data from partner institutions
Two investigations by two separate experts found that no wrongdoing took place
Jumping genes can cause rare developmental disorders in children
Diagnoses achieved for three more children in the Deciphering Developmental Disorders project