Insights into the genetic causes of coronary artery disease and heart attacks

Largest coronary artery disease study to date identifies many new genetic regions associated with risk of heart attacks

Insights into the genetic causes of coronary artery disease and heart attacks

coronarypath.jpgDoi: 10.1038/ng.2480
Schematic showing CAD risk genes involved in lipid metabolism and inflammation pathways

In the largest genetic study of Coronary Artery Disease (CAD) to date, researchers from the CARDIoGRAMplusC4D Consortium report the identification of 15 genetic regions newly associated with the disease, bringing to 46 the number of regions associated with CAD risk.

The team identified a further 104 independent genetic variants that are very likely to be associated with the disease, enhancing our knowledge of the genetic component that causes CAD.

They used their discoveries to identify biological pathways that underlie the disease and showed that lipid metabolism and inflammation play a significant role in CAD.

CAD and its main complication myocardial infarction (heart attack) are one of the most common causes of death in the world and approximately one in five men and one in seven women die from the disease in the UK. CAD has a strong inherited basis.

"Our research strengthens the argument that, for most of us, genetic risk to CAD is defined by many genetic variants, each of which has a modest effect. We went beyond traditional genetic association studies to explore likely genetic signals associated with the disease and to use the information to identify biological pathways underlying CAD."

"Our next step is to design new analyses to also test rarer variants to provide a full catalogue of disease associations that in the future, could identify individuals most at risk of a heart attack."

Dr Panos Deloukas, co-lead author from the Wellcome Trust Sanger Institute

The Consortium spanning over 180 researchers from countries across Europe (UK, Germany, Iceland, Sweden, Finland, the Netherlands, France, Italy, Greece), Lebanon, Pakistan, Korea, USA and Canada analysed DNA from over 60,000 CAD cases and 130,000 apparently unaffected people. The researchers integrated the genetic findings into a network analysis and found the metabolism of fats being the most prominent pathway linked to CAD. The second most prominent pathway, however, was inflammation which provides evidence at the molecular level for the link between inflammation and heart disease.

"The importance of the work is that while some of the genetic variants that we have identified work through known risk factors for CAD such as high blood pressure and cholesterol, many of the variants appear to work through unknown mechanisms. Understanding how these genetic variants affect CAD risk is the next goal and this could pave a way to developing new treatments for this important disease."

Professor Nilesh Samani, co-lead author from the University of Leicester

This study provides a useful framework for future projects to elucidate the biological processes underlying CAD and to investigate how genes work together to cause this disease.

"The number of genetic variations that contribute to heart disease continues to grow with the publication of each new study. This latest research further confirms that blood lipids and inflammation are at the heart of the development of atherosclerosis, the process that leads to heart attacks and strokes."

"These studies don't take us any closer to a genetic test to predict risk of heart disease, because this is determined by the subtle interplay between dozens, if not hundreds, of minor genetic variations. The real value of these results lies in the identification of biological pathways that lead to the development of heart disease. These pathways could be targets for the development of new drug treatments in the future."

Professor Peter Weissberg, Medical Director at the British Heart Foundation, which co-funded the research

Notes to Editors
Publications
  • Large-scale association analysis identifies new risk loci for coronary artery disease.

    CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C, Farrall M et al.

    Nature genetics 2013;45;1;25-33

Funding

A full list of funding can be found in the paper

Participating Centres

A full list of participating centres can be found in the paper

Selected Websites
Contact the Press Office

Emily Mobley, Media Manager

Tel +44 (0)1223 496 851

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Dr Matthew Midgley, Media Officer

Tel +44 (0)1223 494 856

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7748 379849

Recent News

Appointments and changes to the Genome Research Limited Board
At the GRL Board meeting on 2 December 2019, David Willetts announced his intention to step down as Chair because of his extensive commitments across the academic and science sectors. Wellcome's Director, Jeremy Farrar, will take over the Chair of GRL Board from 1 January 2020.
Researchers identify new possibilities for the treatment of inflammatory bowel disease
Two molecular pathways found to be integral to maintaining balance in the digestive system
Root of childhood kidney cancer discovered
Pre-cancerous signatures found in healthy tissue point the way towards new treatment options