Hilary Browne | Staff Scientist

Browne, Hilary

The foundation of Hilary's work is based upon culturing of the strict anaerobic bacteria that comprise the majority of the human gut microbiota. Isolation of these bacteria yields whole genome sequences which enhances genomic and metagenomic analyses and also facilitates phenotypic studies leading to functional insights and a moxve towards establishing causation in different disease states.

We have developed techniques to culture the majority of the intestinal microbiota. This provides a valuable resource to understand the underlying biology of these health-promoting bacteria and also to study their role in different diseases. In addition, these bacteria can be used to develop therapeutics to treat diseases associated with the intestinal microbiota.

Hilary is particularly interested in the role of spore-forming bacteria in the human intestinal microbiota, their ecology and evolution, how they differ functionally from non-spore-forming bacteria and how spore-formation promotes transmission of anaerobic bacteria between individuals.

Publications

  • A human gut bacterial genome and culture collection for improved metagenomic analyses.

    Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al.

    Nature biotechnology 2019;37;2;186-192

  • Transmission of the gut microbiota: spreading of health.

    Browne HP, Neville BA, Forster SC and Lawley TD

    Nature reviews. Microbiology 2017;15;9;531-543

  • Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.

    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al.

    Nature 2016;533;7604;543-546

  • HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    Forster SC, Browne HP, Kumar N, Hunt M, Denise H et al.

    Nucleic acids research 2016;44;D1;D604-9

  • Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen.

    Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD et al.

    Cell host & microbe 2014;16;4;504-16

  • Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism.

    Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP et al.

    BMC genomics 2014;15;160

  • A human gut bacterial genome and culture collection for improved metagenomic analyses.

    Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E et al.

    Nature biotechnology 2019;37;2;186-192

  • Zoonotic Transfer of Clostridium difficile Harboring Antimicrobial Resistance between Farm Animals and Humans.

    Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP et al.

    Journal of clinical microbiology 2018;56;3

  • Transmission of the gut microbiota: spreading of health.

    Browne HP, Neville BA, Forster SC and Lawley TD

    Nature reviews. Microbiology 2017;15;9;531-543

  • Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification.

    Wagner J, Coupland P, Browne HP, Lawley TD, Francis SC and Parkhill J

    BMC microbiology 2016;16;1;274

  • Antibiotics, gut bugs and the young.

    Browne H

    Nature reviews. Microbiology 2016;14;6;336

  • Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation.

    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al.

    Nature 2016;533;7604;543-546

  • Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes.

    O Sheridan P, Martin JC, Lawley TD, Browne HP, Harris HMB et al.

    Microbial genomics 2016;2;2;e000043

  • HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes.

    Forster SC, Browne HP, Kumar N, Hunt M, Denise H et al.

    Nucleic acids research 2016;44;D1;D604-9

  • As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    Hargreaves KR, Otieno JR, Thanki A, Blades MJ, Millard AD et al.

    Genome biology and evolution 2015;7;7;1842-55

  • Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci.

    Couchman EC, Browne HP, Dunn M, Lawley TD, Songer JG et al.

    BMC genomics 2015;16;392

  • Distinct Commensals Induce Interleukin-1β via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury.

    Seo SU, Kamada N, Muñoz-Planillo R, Kim YG, Kim D et al.

    Immunity 2015;42;4;744-55

  • Complete genome sequence of the Clostridium difficile laboratory strain 630Δerm reveals differences from strain 630, including translocation of the mobile element CTn5.

    van Eijk E, Anvar SY, Browne HP, Leung WY, Frank J et al.

    BMC genomics 2015;16;31

  • Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916.

    Browne HP, Anvar SY, Frank J, Lawley TD, Roberts AP and Smits WK

    FEMS microbiology letters 2015;362;3;1-4

  • Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011.

    Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM et al.

    Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 2014;19;45;20954

  • Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen.

    Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD et al.

    Cell host & microbe 2014;16;4;504-16

  • Genomic analysis of the causative agents of coccidiosis in domestic chickens.

    Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP et al.

    Genome research 2014;24;10;1676-85

  • Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism.

    Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP et al.

    BMC genomics 2014;15;160

  • The agr locus regulates virulence and colonization genes in Clostridium difficile 027.

    Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L et al.

    Journal of bacteriology 2013;195;16;3672-81

  • Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species.

    Jackson AP, Berry A, Aslett M, Allison HC, Burton P et al.

    Proceedings of the National Academy of Sciences of the United States of America 2012;109;9;3416-21

Browne, Hilary
Hilary's Timeline
2019

Garnham Award recipient from London School of Hygiene and Tropical Medicine for outstanding research student completing a doctoral thesis in the area of basic or laboratory science

2018

PhD London School of Hygiene and Tropical Medicine

Staff Scientist- Lawley Lab

2013

Joined Lawley Lab as advanced research assistant

2010

Joined Sanger Institute as Computational Biologist