Dr Adam James Reid | Staff scientist

Reid, Adam James

I want to better understand how parasites are able to infect people and how they avoid being killed by the immune system. To do this I am taking advantage of the power of DNA sequencing technologies and computational analysis to identify the genes important for these interactions.

My primary interest is in identifying genes involved in host-parasite interactions. I am currently working on malaria and several species of nematode worm. The first goal in this process is to produce a high quality, annotated genome sequence for the parasite species of interest describing the layout of the genome and all the genes in the parasites arsenal. Once this is achieved, functional genomics approaches such as gene expression analysis can be used to determine genes of particular importance for host-parasite interactions (Reid et al., 2015; Reid & Berriman, 2013).

In collaboration with the Langhorne group at The Francis Crick Institute I am currently working on understanding how malaria parasites are able to establish chronic infections, increasing their chance of transmission (Brugat*, Reid* et al., in preparation). This has stemmed from work where I was involved in identifying a role for the pir gene family in virulence and the importance of mosquito transmission on controlling gene expression in the parasite (Spence et al., 2013).

The SIMS project is a multi-centre systems immunology collaboration (The Kenya Medical Research Institute, Oxford University, the Francis Crick Institute, University of Exeter) funded by the Medical Research Council to understand why some children are more susceptible to malaria than others. I am coordinating sequencing and analysis of the data for this project.

I have also lead projects to develop reference genome sequences for several distant relatives of the malaria parasite. In collaboration with Fiona Tomley and Damer Blake of the Royal Veterinary College, London and Arnab Pain at King Abdulla University of Saudi Arabia we sequenced the genomes of all seven chicken-infecting parasites of the genus Eimeria (Reid et al., 2014). Prior to that we generated a reference genome for the cattle parasite Neospora with Jonathan Wastling at University of Liverpool (Reid et al., 2012).

In collaboration with, amongst others, Mark Viney from University of Bristol and Taisei Kikuchi from University of Miyazaki, we have sequenced the genomes of several species of the parasitic nematode Strongyloides and identified genes involved in the transition from a free-living to a parasitic life style (Hunt*, Tsai*, Coghlan*, Reid* et al., 2016). I am also interested in how the host reacts to infection with parasites and based on previous work in collaboration with Richard Grencis at University of Manchester (Foth*, Tsai*, Reid*, Bancroft* et al., 2014) we are exploring the genes involved in chronic whipworm infection, collaborating also with the group of Gordan Dougan here at the Sanger Institute. Previously I have been involved in producing and analyzing reference genome sequences for the plant-infecting nematodes Bursephelenchus (Kikuchi et al., 2011) and Globodera (Cotton et al., 2014) and the sheep-infecting barber pole worm Haemonchus (Laing et al., 2013)

Publications

  • Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection.

    Brugat T, Reid AJ, Lin J, Cunningham D, Tumwine I et al.

    Nature microbiology 2017;2;16276

  • The genomic basis of parasitism in the Strongyloides clade of nematodes.

    Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N et al.

    Nature genetics 2016;48;3;299-307

  • Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa.

    Reid AJ

    Parasitology 2015;142 Suppl 1;S57-70

  • Genomic analysis of the causative agents of coccidiosis in domestic chickens.

    Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP et al.

    Genome research 2014;24;10;1676-85

  • Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.

    Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S et al.

    Nature genetics 2014;46;7;693-700

  • Vector transmission regulates immune control of Plasmodium virulence.

    Spence PJ, Jarra W, Lévy P, Reid AJ, Chappell L et al.

    Nature 2013;498;7453;228-31

  • Genes involved in host-parasite interactions can be revealed by their correlated expression.

    Reid AJ and Berriman M

    Nucleic acids research 2013;41;3;1508-18

  • Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy.

    Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA et al.

    PLoS pathogens 2012;8;3;e1002567

  • CODA: accurate detection of functional associations between proteins in eukaryotic genomes using domain fusion.

    Reid AJ, Ranea JA, Clegg AB and Orengo CA

    PloS one 2010;5;6;e10908

  • Comparative evolutionary analysis of protein complexes in E. coli and yeast.

    Reid AJ, Ranea JA and Orengo CA

    BMC genomics 2010;11;79

Career/Research Highlights

Reid, Adam James
Adam's Timeline
2014

Began working as a Staff Scientist at Wellcome Trust Sanger Institute

2009

Graduated from University College London with a PhD supervised by Prof. Christine Orengo

Began PostDoc with Matt Berriman at Wellcome Trust Sanger Institute

2003

Graduated from University of York with MRes in Bioinformatics

Began working at AstraZeneca as a bioinformatician

2002

Graduated from University of Sheffield with BSc in Genetics