Marco Ranzani, Ph.D. | Postdoctoral Fellow

Ranzani, Marco

I am a biotechnologist interested in studying the mechanisms of resistance to therapy in melanoma. I perform drug sensitivity screenings and integrate them with –omics data and forward genetic screenings to identify new potential therapies for the treatment of melanoma.

The aim of my work is to develop new therapeutic regimens for the treatment of melanoma. Recently, I have been focussing my activity on BRAF/NRAS wild type melanomas, a subclass of the disease for which effective targeted therapies are not yet available. In collaboration with the groups of Mathew Garnett and Ultan McDermott, I am performing high-throughput drug screenings to identify new combinations of targeted therapies that efficiently kill melanoma cell lines. I am integrating drug sensitivity data with mutations, copy number variation, gene and microRNA expression and I am performing genome-wide CRISPR/Cas9 screenings and insertional mutagenesis screenings to identify the genetic culprits of drug resistance. The results of this project promise to help me to unravel some of the mechanisms of drug resistance and to identify markers of drug sensitivity. This approach may pave the way to develop new patient-tailored drug combinations for the effective eradication of melanoma.

I am currently planning to apply these technologies beyond the arena of targeted therapies.

During my Ph.D. at HSR-TIGET in Milan I developed a new insertional mutagenesis tool based on lentiviral vectors and used it for the identification of cancer genes in hepatocellular carcinoma and hematopoietic malignancies. I also used this tool to study drug resistance in breast cancer cell lines. At the Sanger Institute I am using lentiviral vector-based insertional mutagenesis in collaboration with Ultan McDermott to identify genes involved in drug resistance in different cancer types.

Publications

  • CopywriteR: DNA copy number detection from off-target sequence data.

    Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L et al.

    Genome biology 2015;16;49

  • Liver-directed lentiviral gene therapy in a dog model of hemophilia B.

    Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD et al.

    Science translational medicine 2015;7;277;277ra28

  • BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib.

    Ranzani M, Alifrangis C, Perna D, Dutton-Regester K, Pritchard A et al.

    Pigment cell & melanoma research 2015;28;1;117-9

  • Lentiviral vector-based insertional mutagenesis identifies genes involved in the resistance to targeted anticancer therapies.

    Ranzani M, Annunziato S, Calabria A, Brasca S, Benedicenti F et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2014;22;12;2056-68

  • Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo.

    Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2014;22;4;774-85

  • Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.

    Ranzani M, Cesana D, Bartholomae CC, Sanvito F, Pala M et al.

    Nature methods 2013;10;2;155-61

  • Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome.

    Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2013;21;1;175-84

  • Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia.

    Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M et al.

    The Journal of pathology 2012;226;5;713-22

  • Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection.

    Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P et al.

    Blood 2011;117;20;5332-9

  • The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy.

    Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC et al.

    The Journal of clinical investigation 2009;119;4;964-75

  • Liver-directed lentiviral gene therapy in a dog model of hemophilia B.

    Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD et al.

    Science translational medicine 2015;7;277;277ra28

  • CopywriteR: DNA copy number detection from off-target sequence data.

    Kuilman T, Velds A, Kemper K, Ranzani M, Bombardelli L et al.

    Genome biology 2015;16;49

  • BRAF/NRAS wild-type melanoma, NF1 status and sensitivity to trametinib.

    Ranzani M, Alifrangis C, Perna D, Dutton-Regester K, Pritchard A et al.

    Pigment cell & melanoma research 2015;28;1;117-9

  • Lentiviral vector-based insertional mutagenesis identifies genes involved in the resistance to targeted anticancer therapies.

    Ranzani M, Annunziato S, Calabria A, Brasca S, Benedicenti F et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2014;22;12;2056-68

  • Cancer gene discovery goes mobile.

    van der Weyden L, Ranzani M and Adams DJ

    Nature genetics 2014;46;9;928-9

  • One patient, two lesions, two oncogenic drivers of gastric cancer.

    Alsinet C, Ranzani M and Adams DJ

    Genome biology 2014;15;8;444

  • Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo.

    Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2014;22;4;774-85

  • Cancer gene discovery: exploiting insertional mutagenesis.

    Ranzani M, Annunziato S, Adams DJ and Montini E

    Molecular cancer research : MCR 2013;11;10;1141-58

  • Lentiviral vector-based insertional mutagenesis identifies genes associated with liver cancer.

    Ranzani M, Cesana D, Bartholomae CC, Sanvito F, Pala M et al.

    Nature methods 2013;10;2;155-61

  • Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome.

    Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M et al.

    Molecular therapy : the journal of the American Society of Gene Therapy 2013;21;1;175-84

  • Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia.

    Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M et al.

    The Journal of pathology 2012;226;5;713-22

  • Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection.

    Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P et al.

    Blood 2011;117;20;5332-9

  • The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy.

    Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC et al.

    The Journal of clinical investigation 2009;119;4;964-75

Ranzani, Marco
Marco's Links