Single cell technology and organoids reveal every bowel tumour and bowel cancer cell have unique genetic fingerprints

Study could help researchers target cancer-specific processes for cancer prevention or to develop treatments

Single cell technology and organoids reveal every bowel tumour and bowel cancer cell have unique genetic fingerprints

Body_human colon organoid.jpg
Human colon organoid. Credit Anne Rios and Florijn Dekkers, Princess Maxima Center

New research on bowel cancer has shown that every tumour is different, and that every cell within the tumour is also genetically unique. In the first study of its kind, researchers from the Wellcome Sanger Institute, UK and Hubrecht Institute (KNAW) in Utrecht, The Netherlands used the latest single cell and organoid technologies to understand the mutational processes of the disease.

Reported in Nature, the study will help researchers understand mutational processes, and may allow them to target cancer-specific processes for prevention or treatment.

The team worked on tissue from three patients with colorectal cancer, taking normal bowel stem cells and cells from four different areas of the tumours. They then grew these into organoids - 3D ‘mini-guts’ – in the laboratory to amplify the single cells so they could be studied.

Colorectal cancer is the third most common type of cancer worldwide making up about 10 per cent of all cancer cases, in the UK alone, over 41 thousand people are diagnosed with the disease every year*.

It was known that colorectal tumours contain subclones that react differently to treatment; however, until now it has not been possible to study single cells from tumours and normal tissue to get an accurate picture.

"Organoids had not been used to study single cancer cells before. Nobuo Sasaki in my lab isolated multiple single cells from the tumors and grew them up as organoids. This enabled us to study each cell without the errors that standard single cell methods bring. For the first time ever, we could make a really comprehensive comparison of individual normal and tumour cells from the exact same type of tissue, taken at the same time, from the same person, and see how the cancer had developed.”

Prof Hans Clevers, from Hubrecht Institute in the Netherlands, joint corresponding author on the paper

The researchers discovered that the tumour cells had many more mutations than normal cells, and that not only was each bowel cancer genetically different, but each cell they had studied within that cancer was different.

“We found mutational processes in these cancer cells that are just not seen in normal cells, leading to a huge increase in mutation rate for tumours compared with normal cells. This then leads to remarkable genetic diversity within the tumours. We knew before that cancers contained subclones, but this is the first time that anyone has shown that each cell in a tumour is different.”

Dr Sophie Roerink, joint first author from the Wellcome Sanger Institute

The study discovered that the mutational processes in cancer cells are very different from those in healthy cells and that the increase in mutation rate seems to be a general feature of these colon cancers. Their study also suggests that the mutation rate starts to change many years before the cancer is diagnosed. This time window could provide diagnostic clues in the future if it were possible to identify the rise in mutation rate early in a cell.

“This study gives us fundamental knowledge on the way cancers arise. By studying the patterns of mutations from individual healthy and tumour cells, we can learn what mutational processes have occurred, and then look to see what has caused them. Extending our knowledge on the origin of these processes could help us discover new risk factors to reduce the incidence of cancer, and could also put us in a better position to create drugs to target cancer-specific mutational processes directly."

Prof Sir Mike Stratton, joint corresponding author on the paper from the Wellcome Sanger Institute

Notes to Editors
Publication:

Sophie F. Roerink, Nobuo Sasaki & Henry Lee-Six et al. 2018 Intra-tumour diversification in colorectal cancer at the single cell level. Nature. DOI: 10.1038/s41586-018-0024-3

*CRUK figures. http://www.cancerresearchuk.org/about-cancer/bowel-cancer/about-bowel-cancer

Funding:

This work was supported by funding from the Wellcome trust (098051), Stichting Vrienden van het Hubrecht and KWF (SU2C-AACR-DT1213 and HUBR KWF 2014-6917).

Selected Websites
What is colorectal cancer?FactsWhat is colorectal cancer?
Colorectal cancer, also known as bowel cancer, is a complex disease that is influenced by multiple genes and environmental factors.

Is cancer a genetic disease?FactsIs cancer a genetic disease?
Cancer is the most common human genetic disease. The transition from a normal cell to a malignant cancer is driven by changes to a cell’s DNA, also known as mutations.

Contact the Press Office

Dr Samantha Wynne, Media Officer

Tel +44 (0)1223 492 368

Emily Mobley, Media Officer

Tel +44 (0)1223 496 851

Wellcome Sanger Institute,
Hinxton,
Cambridgeshire,
CB10 1SA,
UK

Mobile +44 (0) 7900 607793

Recent News

Emma Davenport and Hilary Martin to lead research groups in the Human Genetics Programme

The faculty appointments, starting in Autumn 2018, will help the Sanger Institute establish foundational knowledge of how variation in DNA contributes to health and disease

New Sanger Institute Human Cell Atlas projects funded by the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation

Projects will build computational tools to support the global Human Cell Atlas initiative to map every cell type in the body

Advance access to data: Researchers post genetic profiles of human and mouse cells on Human Cell Atlas online portal before publication

Prior to publishing their results, researchers compile and make raw data openly accessible on the preview version of the HCA Data Coordination Platform