31 October 2012

The fruit of 1000 genomes

1000 genomes study is 'guidebook' to how genes vary

The distribution of rare and common variants.

The distribution of rare and common variants. [10.1038/nature11632]

zoom

A landmark project that has sequenced 1,092 human genomes from individuals around the world will help researchers to interpret the genetic changes in people with disease.

The first study to break the '1000 genomes barrier' will enable scientists to begin to examine genetic variations at the scale of the populations of individual countries, as well as guiding them in their search for the rare genetic variations related to many diseases.

The vast majority of genetic variation is shared with populations around the world but it is thought that a lot of the contribution to disease may come from rare variants of genes, found in 1 in 100 people or fewer. Researchers need to find these rare variants to see who has them and work out how they might contribute to a range of conditions from multiple sclerosis to heart disease and cancer.

The international team behind the 1000 Genomes Project found that rare gene variants tend to be restricted to particular geographic regions, because they typically arise from more recent mutations since humans spread across the world. By, for the first time, drilling down to genetic variants occurring at the scale of 1 in 100 people this study will enable researchers to interpret an individual's genome in the context of the genetic variation found in their own national population: identifying differences between genomes from 14 countries from Europe (including the UK) the Americas, East Asia and Africa.

A report of the research is published this week in the journal Nature.

" Using our data you can now look to see if natural selection has been getting rid of such mutations - giving you a clue as to how harmful these variants might be. "

Dr Richard Durbin

"We are all walking natural experiments; some of our genes are switched off, some are active, whilst others are overactive," said Professor Gil McVean of Oxford University, the lead author for the study. "Our research has found that each apparently healthy person carries hundreds of rare variants of genes that have a significant impact on how genes work, and a handful (from two to five) of rare changes that have been identified as contributing to disease in other people.

The study has been designed so that, as well as the genome data, researchers have access to living cells (cell lines) from all 1,092 of the individuals whose genomes have been sequenced. Scientists can now study how differences in the biology of these cells correlate with genetic differences.

"There are variations that jump out from the data as looking 'a bit bad for you', for example mutations in regions that regulate genes are likely to be 'bad news' - possibly doing something dramatic to how cells behave," said Dr Richard Durbin from the Wellcome Trust Sanger Institute, co-chair of the 1000 Genomes Project. "Using our data you can now look to see if natural selection has been getting rid of such mutations - giving you a clue as to how harmful these variants might be."

The team's work is already being used to screen cancer genomes for mutations that might identify therapeutic pathways, to interpret the genomes of children with developmental disorders and to pin-point variation that leads to increased risk for complex diseases such as heart disease or multiple sclerosis.

Professor Gil McVean of Oxford University said: "Our research shows that you can take localism much further: for example, even just within the UK, Orkney islanders will have different variations from mainlanders, and will be different again from those from other nearby islands. In the future we would like to reach the scale of having a grid of individuals giving us a different genome every couple of square kilometres but there is a long way to go before we can make this a reality."

Sir Mark Walport, Director of the Wellcome Trust who part-funded the study, said: "It is quite remarkable that we have gone from completion of the first human genome sequence in 2003 to being able to sequence more than a 1000 human genomes for a single study in 2012. This study is an important contribution to our understanding of human genetic variation in health and disease and the DNA sequences are freely available for analysis and use by researchers."

Notes to Editors

Publication details

  • An integrated map of genetic variation from 1,092 human genomes.

    1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT and McVean GA

    Nature 2012;491;7422;56-65

Funding

This project was supported by many national and charitable organisations, including the Wellcome Trust the UK Medical Research Council, the US National Institutes of Health and Science Foundations of China.

Participating Centres

A full list of participating centres can be seen at the Nature website.
See also listing the 1000 Genomes Project Consortium.

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

Website

The Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Website

Contact the Press Office

Don Powell Media and Public Relations Manager
Wellcome Trust Sanger Institute, Hinxton, Cambs, CB10 1SA, UK

Tel +44 (0)1223 496 928
Mobile +44 (0)7753 775 397
Fax +44 (0)1223 494 919
Email press.office@sanger.ac.uk

University of Oxford Press Office

Pete Wilton
University of Oxford

Tel +44 (0)1865 283877
Email press.office@admin.ox.ac.uk

* quick link - http://q.sanger.ac.uk/jd4qdyfk