15 June 2011

A knockout resource for mouse genetics

Mouse gene knockout resource will empower mammalian gene studies for a generation

Building a mouse genetics resource. The success of the mouse knockout programme is founded in improved cell and vector systems as well as automation, such as this embryonic stem cell colony robot.

Building a mouse genetics resource. The success of the mouse knockout programme is founded in improved cell and vector systems as well as automation, such as this embryonic stem cell colony robot. [Genome Research Limited]

zoom

An international consortium of researchers report today in Nature that they have knocked out almost 40 per cent of the genes in the mouse genome. The completed resource will power studies of gene activity in models of human disease.

The results are founded on a novel, efficient production line that is able to target each specific gene in turn. The consortium has cracked all the challenges of generating mutations of each gene in mouse embryonic stem cells, and has already knocked out 9,000 genes in the mouse genome as part of an international effort to knockout all 21,000. This developing resource will be essential in our understanding of the role of genes in all mammals - including humans.

The cells generated by this approach will allow researchers to ask and answer questions about the roles of genes at the scale of the whole mouse and human genome. The gold-standard method to uncover that role is to mutate a gene in mouse embryonic stem cells: the biochemical and developmental behaviour of the mutated cells can be studied in test tubes or in mice. Until this production system was developed, conducting gold-standard research on this scale was impossible.

The problem to be overcome was: how do you scale this approach to tackle the whole mouse genome?

"We have pioneered novel methods that enable us to deliver the most complex and accurate high-throughput functional genomics platform yet attempted," says Dr Bill Skarnes, Wellcome Trust Sanger Institute researcher and lead author of the study. "We believe that our work raises the standards of achievement and expectation for genome-scale programmes.

"It is an investment for the future: the genome-engineering technologies developed here for the mouse will drive future model systems, including work on human stem cells."

Genomics was transformed in the 1990s from individual-based research to large-scale commodity resources: an equivalent success was needed for mouse mutagenesis - to provide resources efficiently and consistently and to release them freely. Previously attempted strategies to develop mouse models on a large scale suffered the twin disadvantages of not producing precise genetic changes and favouring only the genes that were active during the experiment, leaving the remainder unaltered.

The present work solves these problems. The team exploited a system called homologous recombination within mouse embryonic stem cells, which can deliver very precise alteration of any gene in the genome. It is founded on choosing the correct recombinant DNA molecules (vectors) to target genes efficiently.

" This is investment for the future: the genome-engineering technologies developed here for the mouse will drive future model systems, including work on human stem cells. "

Dr Bill Skarnes

However, some genes are essential to life of the cell or organism: disruption of these might cause the cell to die and so the mutation would be 'lost' from the project. Crucially, to ensure that all genes can be disrupted, the team developed DNA vectors that create a mutation only when required: gene targeted by the mutation can be identified, but the mutation activated only when it is to be studied.

But in the essential step to realize its ambitions of a comprehensive, freely available resource, the team designed and delivered a 'pipeline' that systematically designs and constructs the vectors, and efficiently introduces the engineered DNA molecules into the mouse embryonic stem cell line developed specifically for these projects.

Finally, by employing a modular approach to the vector design, a number of other valuable resources are created en route to the generation of targeted ES cells: the paper reports that the consortium had produced vectors for more than half of the genes in the mouse genome. All of these outputs are being made available to the mouse research community through the consortium's web portal at http://www.knockoutmouse.org/

"We are producing mutations in embryonic stem cells with greater efficiency and speed than we predicted and at well above the historical average," says Allan Bradley, senior author of the study and Director Emeritus of the Wellcome Trust Sanger Institute. "We have taken careful steps to ensure we deliver quality resources of maximum utility that will stand the test of time. Indeed, we expect our systems will be increasingly adopted by researchers using human and other cells to seek advances in the understanding of disease."

The methods the team have developed will also accelerate studies on human stem cells - cells that have the potential to grow into many different types of adult tissue. Research into producing such induced pluripotent stem cells from adult tissues (forgoing the need for embryonic stem cells) is expected to be vital in understanding human disease and therapies. The systems developed for mouse stem cells are transferable to human cells and could drive research into mutation in the human genome and its biological and medical consequences.

"Biomedical research needs biological resources on a scale that match genomics resources," explains Colin Fletcher, Ph.D., Program Director of the Knock Out Mouse Program at the National Institutes of Health, a part of the international knockout effort. "Such knockout resources are the foundation for producing thousands of valuable mouse mutants for future large-scale international phenotyping programmes and will serve the biological and biomedical research community worldwide."

Notes to Editors

Publication details

  • A conditional knockout resource for the genome-wide study of mouse gene function.

    Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF and Bradley A

    Nature 2011;474;7351;337-42

Funding

This programme was funded by the Wellcome Trust Sanger Institute, the National Institutes of Health (KOMP, U01-HG004080) and the EU Sixth Framework Programme (EUCOMM).

Participating Centres

  • Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
  • Biotechnologisches Zentrum, TU Dresden, Dresden, Germany
  • Children's Hospital Oakland Research Institute, Oakland, California, USA

Selected websites

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease.

Websites

The Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

Website

Contact the Press Office

Don Powell Media and Public Relations Manager
Wellcome Trust Sanger Institute, Hinxton, Cambs, CB10 1SA, UK

Tel +44 (0)1223 496 928
Mobile +44 (0)7753 775 397
Fax +44 (0)1223 494 919
Email press.office@sanger.ac.uk

* quick link - http://q.sanger.ac.uk/o3qzxjc5