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Abstract 

Malaria continues to pose a major public health burden in sub-Saharan Africa, where the 

ecology, behaviour, and genetic structure of mosquito vectors govern transmission dynamics 

and shape the effectiveness of control strategies. Traditional surveillance approaches, 

constrained by morphology-based identification, narrow geographic scope, and limited 

resolution, are insufficient to capture the complexity of vector populations and their 

interactions with parasites and environments.  

 

This thesis addresses these gaps by combining ecological surveys, species distribution 

modelling, and genomic analyses to deliver a multi-dimensional view of malaria vectors in 

Tanzania and their broader African context. Ecological surveys across 25 districts revealed 

marked variation in Anopheles community composition, ecological niche partitioning, and 

species co-occurrence, alongside the distribution of Plasmodium parasites in nine districts 

where all four major human malaria species were detected. Use of the ANOSPP panel 

substantially improved taxonomic resolution over morphology, enabling simultaneous 

identification of multiple Anopheles vectors and their associated Plasmodium species, and 

yielded the first report of Plasmodium caprae in An. arabiensis in Tanzania.  

 

Species distribution models developed for An. arabiensis, An. gambiae s.s and An. funestus 

s.s incorporated climate and land cover predictors at 1-km scale, producing high-resolution 

habitat suitability maps that aligned with known transmission zones while identifying species-

specific ecological associations. These models provide a predictive framework to support 

targeted surveillance and resource allocation in vector control programs.  

 

Genomic analyses of Anopheles arabiensis populations from Tanzania revealed broad genetic 

connectivity overall, but with significant isolation by distance. At a continental scale, three 

clusters emerged: Eastern-Central Africa, Western Africa, and Madagascar, with patterns 

reflecting isolation by distance, climatic differences, and resistance surfaces shaped by 

ecological barriers, as confirmed using Mantel and partial Mantel tests alongside the 

Maximum-Likelihood Population-Effects Model. Madagascar was clearly separated from the 

mainland by the ocean, while the Central African rainforest delineated eastern and western 

populations. Within West Africa, additional substructure was associated with climatic 

gradients. These findings suggest that the broad genetic connectivity observed across 
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populations could facilitate the spread of adaptive alleles, such as those conferring insecticide 

resistance, while localized genomic structuring likely reflects adaptation to ecological 

conditions, all of which may influence vector control intervention outcomes.  

 

By integrating ecological modelling, spatial, and genomic perspectives, this thesis provides 

the first comprehensive overview of Anopheles mosquitoes distribution and genomic 

overview of An. arabiensis in Tanzania while validating ANOSPP as a scalable tool for both 

species’ identification and genetic surveillance. The results highlight both the opportunities 

and risks posed by high connectivity and local adaptation, offering actionable insights for 

malaria control and contributing to a broader shift from reactive, coarse-grained surveillance 

toward predictive, multi-layered systems capable of strengthening national and regional 

capacity for malaria elimination. 
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Chapter One: Malaria Transmission in Context: Global Patterns, Biological 

Complexities, and Tanzanian Challenges 

 

1.1 Malaria Global Overview 

Despite decades of investments in vector control, improved diagnostics, and antimalarial 

treatments, malaria remains a major global health challenge. Caused by protozoan parasites of 

the genus Plasmodium and transmitted exclusively by infected female Anopheles mosquitoes, 

the disease continues to cause high morbidity and mortality, especially in low- and middle-

income countries. Clinically, it presents with fever, chills, headaches, and malaise, and can 

escalate to severe complications such as cerebral malaria, metabolic acidosis, hypoglycaemia, 

and multi-organ failure if untreated [1]. Vulnerable groups, particularly young children and 

pregnant women, suffer disproportionately, facing chronic anaemia, miscarriage, low birth 

weight, and impaired cognitive development [2–5]. Malaria’s global distribution spans tropical 

and subtropical regions, forming a broad equatorial belt that includes vast portions of sub-

Saharan Africa, Southeast Asia, and Latin America (Figure 1). However the burden remains 

starkly uneven: in 2023, the WHO African Region, primarily sub-Saharan Africa, accounted 

for 94% of reported cases and 95% of malaria-related deaths, with children under five 

comprising 76% of those fatalities [1]. While global efforts have made measurable progress, 

stagnation in high-burden regions reveals the shortcomings of current approaches and 

emphasizes the urgent need for more innovative, context-specific, and sustainable solutions. 

 
Figure 1. Global Malaria Status as of 2023. Data sourced from the World Health 

Organization. (Disclaimer: This map was created using publicly available data downloaded 

from the WHO website) 



 2 

1.2 Strategies and Challenges in Malaria Control 

Malaria control efforts currently adopt a dual strategy, targeting both the Plasmodium parasite 

and the Anopheles mosquito vector. On the parasite side, artemisinin-based combination 

therapies remain the first line of treatment. Preventive strategies such as intermittent preventive 

treatment in pregnancy and infancy, along with seasonal malaria chemoprevention, are 

employed in high-transmission settings [1]. However, the growing resistance of Plasmodium 

spp. to many antimalarials, which is linked to mutations in genes such as kelch13, pfcrt, pfmdr1, 

dhps, and dhfr, threatens treatment efficacy [6–15]. Compounding this is the diagnostic 

challenge posed by pfhrp2 and pfhrp3 gene deletions, which can cause false-negative Malaria 

Rapid Diagnostic Test results and lead to misdiagnosis and hence continued transmission [16–

20].  

 

Vector control remains a cornerstone of malaria prevention but is increasingly undermined by 

the rise of insecticide resistance. Core interventions including insecticide-treated nets, indoor 

residual spraying, and larval source management, are delivered under the Integrated Vector 

Management framework, which combines chemical, biological, and environmental strategies 

with community engagement  [1]. However, resistance to pyrethroids, the primary insecticide 

class used in insecticide-treated nets and indoor residual spraying, is now widespread, driven 

by mechanisms such as metabolic detoxification, target-site mutations, and behavioural 

avoidance [21–30]. In response, research is advancing innovative approaches, including 

genetically modified mosquitoes with gene-drive constructs, symbiotic microbes like 

Wolbachia and Microsporidia MB to block parasite development, autodissemination strategies 

that exploit mosquito behaviour to deliver larvicides to cryptic breeding sites, the use of drones 

for precision larviciding and high-resolution habitat mapping; partially protective vaccines 

(e.g., RTS,S/AS01, R21/Matrix-M), and ecologically informed strategies integrated within the 

integrated vector management framework [31–44]. While these emerging tools show promise, 

many are still in experimental stages or have yet to demonstrate consistent efficacy in real-

world settings. 

 

1.3 Taxonomic Complexity and Diagnostics in Malaria Vectors 

The genus Anopheles consists of nearly 500 described species, which span more than 100 

million years of evolution [45,46]. These species are categorized into several subgenera: 

Anopheles (185 cosmopolitan species), Baimaia (1 Oriental species), Cellia Theobald (224 Old 
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World species), Kerteszia Theobald (12 Neotropical species), Lophopodomyia Antunes (6 

Neotropical species), Nyssorhynchus Blanchard (39 Neotropical species), and Stethomyia 

Theobald (5 Neotropical species) [45]. While only a subset of these species transmit human 

malaria, this vectorial capacity is distributed throughout the phylogeny [47]. Many species also 

belong to closely related complexes or groups that are morphologically indistinguishable and 

exhibit substantial genetic similarity, largely due to their capacity to hybridize in regions of 

sympatry [48]. These complexities challenge accurate species identification and, by extension, 

effective vector surveillance. 

 

Traditional morphological classification, while foundational, is often insufficient to 

differentiate cryptic species, including between malaria vectors and non-vectors [49–51]. To 

address this, molecular diagnostics have become essential. Polymerase chain reaction assays 

(PCR) targeting the ITS2 region of ribosomal DNA are widely used, but have limitations, 

including restricted taxonomic scope, inability to detect hybrids, and sensitivity to primer-

binding mutations [52–55]. Moreover, initial morphological misclassification can compromise 

subsequent molecular results [56]. Current molecular approaches, even with tools like 

mitochondrial COI/COII and nuclear ITS2, often fail to fully capture the evolutionary and 

ecological diversity within Anopheles, particularly in resolving recently diverged taxa or 

detecting gene flow [57–59]. This hinders accurate assessment of vectorial capacity and 

insecticide resistance. While advanced multi-locus genotyping and genome-informed 

strategies offer higher taxonomic resolution and can identify hybrid zones and track adaptive 

traits [60,61], their widespread adoption in endemic regions is limited by cost, infrastructure, 

and the need for specialized bioinformatics expertise. Therefore, scalable and field-adaptable 

diagnostic platforms that combine molecular precision with logistical feasibility are urgently 

required. 

 

1. 4. Malaria in Tanzania: Context and Challenges 

 

1.4.1 Epidemiology 

Over the past 25 years, Tanzania has made significant progress in reducing malaria-related 

deaths, primarily through the widespread deployment of vector control measures such as 

insecticide-treated nets, indoor residual spraying, effective antimalarial therapies, and rapid 

diagnostic tests [62]. Intermittent preventive treatment in pregnancy has provided additional 
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protection for vulnerable populations. Supported by international and domestic investments, 

these efforts have lowered national malaria prevalence from 14.8% in 2015 to 8.1% in 2022 

and reduced the death rate from 121.6 per 100,000 people in 2000 to 41.4 in 2021 (Figure. 2A) 

[62]. Despite these gains, malaria control has recently plateaued, and the disease remains one 

of the top two causes of mortality nationwide (Figure 2B) [1]. Moreover, national-level data 

conceal considerable variation in malaria burden across regions, masking the spatial 

heterogeneity that underlies the current transmission dynamics. In several councils within the 

Northwestern and Southern zones, malaria prevalence among school-aged children has been 

reported to exceed 50% [63]. Overall, an estimated 93% of the Tanzanian population remains 

at risk, with higher transmission intensities reported in areas between 750 and 1,250 meters 

above sea level, such as the Lake and Southern zones, whereas lower transmission levels are 

observed in the Central and Southern Highlands (Figure 3) [62]. This marked regional variation 

underscores the need to understand the ecological drivers of malaria transmission, as such 

insights are essential for designing targeted, context-specific surveillance systems and 

interventions. 

 

1.4.2 Vectors, and Parasites of Tanzania 

Human malaria transmission in Tanzania is driven by several Anopheles species. The principal 

vectors belong to the Gambiae Complex (An. gambiae and An. arabiensis) and the An. funestus 

Subgroup (An. funestus) [64–66]. Secondary vectors, such as An. rivulorum, An. parensis, An. 

leesoni, An. coustani, An. pharoensis, and An. squamosus have also been reported as 

Plasmodium carriers in the country [64,66–69]. Furthermore, An. coustani, which was 

historically considered a minor vector and is abundant in the country, is now frequently 

detected harbouring human Plasmodium in multiple countries, including Cameroon, Kenya, 

and Madagascar [70–73], prompting a reassessment of its role in transmission [74,75]. The 

involvement of multiple vector species corresponds with the circulation of diverse Plasmodium 

species. Recent surveys indicate that all major human Plasmodium species, except P. knowlesi, 

are present in the country. A cross-sectional study of 3,456 schoolchildren reported infection 

rates of 22% for P. falciparum, 24% for P. ovale spp., 4% for P. malariae, and 0.3% for P. 

vivax [76]. Co-infections involving multiple Plasmodium species were also frequently 

observed, underscoring the complexity of malaria transmission in the country.  
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Figure 2. Malaria Trends and Status in Tanzania. (A). Trends in malaria death rate in 

Tanzania since 2000, according to 2021 WHO data. (B). Top 10 causes of death in Tanzania 

according to 2021 WHO data. (Disclaimer: This plot was created using publicly available data 

downloaded from the WHO website)  

 

1.4.3 Challenges of Malaria Control in Tanzania 

 

Gaps in Vector Surveillance: Taxonomic Resolution and Spatial Coverage 

Despite notable progress in malaria control over the past two decades, persistent biological, 

ecological, and technological challenges continue to undermine elimination efforts in the 



 6 

country. A major limitation lies in the inadequate resolution of malaria surveillance systems, 

particularly the shortage of detailed, species-level information on Anopheles vector populations 

across diverse ecological zones. Although approximately 50 Anopheles species have been 

reported in the country [77], most identifications relied on morphological keys, an approach 

with limited reliability for differentiating sibling species without molecular validation. This 

uncertainty surrounding vector identity, abundance, and distribution hinders a comprehensive 

understanding of malaria transmission dynamics.  

 

To overcome limitations in traditional vector identification, molecular diagnostics, particularly 

PCR based assays targeting the ITS2 region have become widely used. However, these tools 

are not without limitations. Taxonomic resolution remains limited, especially for recently 

diverged or hybridizing taxa, and primer-binding site mutations can compromise amplification 

success. Moreover, PCR assays often depend on accurate initial morphological sorting, 

meaning early-stage misidentification can propagate through molecular workflows, resulting 

in misclassification or amplification failure [56]. Consequently, both morphological and PCR 

based methods can introduce uncertainty into species identification, potentially distorting risk 

assessments and misguiding intervention strategies. These diagnostic limitations are further 

compounded by surveillance systems that often lack sufficient geographic and temporal 

coverage, leaving critical data gaps. To address these challenges, Ecological Niche Models and 

Species Distribution Models have emerged as valuable tools. By predicting habitat suitability 

from species occurrence and environmental variables [78–81] these models offer an indirect 

but scalable means to assess vector distributions and ecological preferences, particularly where 

empirical data are sparse. However, their predictive accuracy is constrained by the absence of 

high-resolution, species-specific, and up-to-date occurrence records. This limits their 

effectiveness for fine-scale risk mapping, surveillance prioritization, and the design of 

geographically targeted vector control strategies. 

 

Non-falciparum Malaria Parasites in Vectors: A Surveillance Gap 

Although multiple human malaria Plasmodium species have been reported in Tanzania [76,82], 

surveillance and research have largely focused on P. falciparum, leaving the epidemiology and 

the mosquito vectors of non-falciparum malaria poorly characterized. This underrepresentation 

is concerning, not only because it limits understanding of transmission ecology, but also 

because co-infections involving multiple Plasmodium species have been associated with 

increased disease severity and mortality compared to single-species infections [83]. 
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Compounding this, the global malaria landscape is becoming increasingly complex due to the 

emergence of zoonotic Plasmodium species, particularly in regions where humans and non-

human primates share overlapping habitats [84]. Although such cases have not yet been 

documented locally, these global trends underscore the potential risk of zoonotic spillover and 

highlight the need to account for its implications in future malaria control and elimination 

strategies. Furthermore, in mosquito-based surveillance, circumsporozoite protein enzyme-

linked immunosorbent assays, remains the standard for detecting Plasmodium infections, yet 

it has limited sensitivity for low-density infections and is largely restricted to P. falciparum, 

with poor capacity to detect non-falciparum species.  

 

Fragmented Genomic Surveillance and Connectivity Data 

Knowledge of the population structure, gene flow, and spatial dynamics of malaria vectors 

remains incomplete. While recent genomic analyses of An. funestus [85], have provided 

valuable national-scale insights, studies on An. gambiae and An. arabiensis have largely relied 

on microsatellite data [86,87] or geographically restricted high-resolution whole genome 

sequencing [88]. Consequently, these datasets offer only a fragmented view of connectivity, 

dispersal, and genetic structure across the country. A comprehensive genomic surveillance 

framework covering all major vector species is essential to monitor the spread of adaptive traits 

such as insecticide resistance, and to inform genetic control strategies. 

 

1.5 Theoretical Synthesis 

Malaria vector surveillance remains fragmented. Diagnostic tools often miss cryptic mosquito 

species or non-falciparum Plasmodium because they rely on morphological keys and low-

resolution assays, limiting taxonomic precision. Ecological niche models, while statistically 

robust, rely mainly on correlative associations between occurrence records and environmental 

variables, offering little insight into the physiological and ecological constraints that shape 

mosquito distributions. Genetic studies have advanced knowledge of vector diversity but are 

rarely integrated with the landscapes where populations persist and move, limiting their value 

for surveillance and control. To address these gaps, this study proposes a techno-ecological 

systems framework that links three constructs, molecular resolution, ecological suitability, and 

genetic connectivity. This integration shifts surveillance from static, reactive monitoring to 

dynamic, predictive systems that can guide proactive, context-specific interventions. The 

framework rests on three interdependent pillars: 
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Enhanced Molecular Surveillance: This study applies ANOSPP (the Anopheles Species and 

Plasmodium Panel), a multi-locus amplicon sequencing approach, to achieve high-resolution 

identification of both mosquito vectors and malaria parasites. Unlike morphology-based 

taxonomy, single-locus PCR assays, or circumsporozoite protein ELISAs, which often fail to 

distinguish cryptic or emerging taxa, ANOSPP offers a more accurate and comprehensive 

means of detecting mosquito and parasite diversity. By overcoming these diagnostic 

limitations, molecular surveillance can more reliably detect species of epidemiological 

importance and track changes in transmission dynamics with greater precision. 

 

Ecological Niche and Species Distribution Modelling: This study integrates fine-scale 

spatial and environmental data to model the ecological distribution of primary malaria vectors. 

Unlike traditional approaches that rely mainly on statistical correlations between occurrence 

records and environmental layers, the modelling framework here incorporates biological 

knowledge of mosquito ecology derived from laboratory and field studies. Climatic variables 

are used to delineate unsuitable areas, from which biologically informed pseudo-absence data 

are generated. Combining these pseudo-absences with observed presence records allows the 

models to move beyond purely correlative predictions and instead capture ecological 

plausibility. In doing so, the models not only estimate habitat suitability and identify the 

environmental drivers of vector occurrence but also achieve greater biological realism, 

enabling finer-scale identification of areas at elevated risk of malaria transmission.  

 

Population Genetic Structure and Connectivity: This component uses molecular data to 

examine genetic diversity and population structure among malaria vector populations. By 

characterizing patterns of local adaptation, genetic differentiation, and connectivity, it provides 

critical insights into how mosquito populations are shaped across ecological landscapes. Such 

information is essential for understanding spatial dynamics of transmission and for anticipating 

the spread of adaptive traits, including insecticide resistance. It also offers an evidence base for 

evaluating the potential effectiveness and risks of novel interventions such as gene drive. 

 

Together, these pillars establish a unified paradigm that integrates molecular, ecological, and 

genetic dimensions of surveillance. The framework generates actionable insights into where 

vectors occur, how their populations are structured and connected, and which species or sites 

are most relevant for intervention, supporting more precise and sustainable malaria control in 

Tanzania and comparable settings. 
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1.6 Objectives 

1. To assess the composition, diversity, and spatial distribution of Anopheles mosquito 

vectors, their associated Plasmodium parasites across Tanzania using the Anopheles 

Species and Plasmodium Panel (ANOSPP). 

 

2. To identify key environmental, climatic, and anthropogenic factors influencing malaria 

vector diversity and geographic distribution. 

 

3. To develop predictive species distribution models for primary malaria vectors to inform 

surveillance and targeted vector control strategies in Tanzania. 

 

4. To examine the population structure of Anopheles arabiensis in Tanzania using 

ANOSPP generated data. 
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Chapter Two. Methodological Framework 

 

2.1 Research Design 

This study primarily analysed entomological samples and data collected between December 

2020 and December 2023 from 25 ecologically diverse districts across mainland Tanzania. As 

a large country with a significant malaria burden, and substantial ecological variability from 

coastal lowlands to the Great Rift Valley, Tanzania offers a representative landscape for 

investigating malaria vector dynamics. The selected districts included Misenyi, Muleba, Ngara, 

Sengerema, Bariadi, Magu, Moshi Urban, Kigoma Urban, Mpanda, Nkasi, Igunga, Singida 

Urban, Babati, Muheza, Manyoni, Iringa Urban, Mpwapwa, Kilosa, Bagamoyo, Rufiji, Kilwa, 

Ruangwa, Tandahimba, Tunduru, and Ludewa (Figure 3A). These sites were part of the 

national malaria surveillance system coordinated by the National Malaria Control Programme 

(NMCP) [65], chosen to reflect a range of ecological zones, intervention strategies, malaria 

endemicity levels, and anthropological contexts. 

 

The study employed a rolling cross-sectional surveillance design. Within each selected district, 

one of the three NMCP-designated sentinel villages was randomly chosen. In each village, 

three sub-villages were selected, and four households were enrolled per sub-village for 

entomological monitoring. Each sub-village was surveyed three times during the study period, 

with one night of mosquito sampling per visit. To enhance spatial coverage and minimize 

pseudo-replication, new households were selected for each round. Seasonal variation was 

addressed by ensuring that each village was sampled at least once during both wet and dry 

seasons. To strengthen the species distribution modelling component, additional mosquito 

occurrence records from published sources covering other parts of the country were integrated. 

In addition, mosquito specimens collected from Ulanga District, including areas within Nyerere 

National Park under a separate study by Deogratius Kavishe from Ifakara Health Institute, were 

included in genomic analyses. 
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Figure 3. Study Area. Geographic distribution of mosquito sampling sites (red stars) overlaid 

on the Köppen–Geiger climate classification map of Tanzania, with major water bodies shown 

in cyan for spatial reference. In Tanzania, the tropical climates include Af (tropical rainforest), 

Am (tropical monsoon), and Aw (tropical savanna); the arid and semiarid climates include BSh 

(hot semi-arid steppe) and BWh (hot desert); the temperate climates include Cfa (humid 

subtropical), Cwb (temperate oceanic with dry winters), and Cwc (subtropical highland with 

dry winters); and finally, the polar climates are represented by EF (ice cap, top of mountain 

Kilimanjaro) and ET (tundra-near top of mountain Kilimanjaro). (B). Malaria prevalence 

across Tanzania based on the 2022 National Malaria Survey, where colour gradients indicate 

varying prevalence levels (in percentage) as shown in the legend (right side bottom) and 

highlight regional disparities in malaria burden. 

 

2.2 Data Collection 

 

2.2.1 Mosquito Collection  

Mosquito collections were conducted in accordance with institutional and national ethical 

approvals. At each site (defined as one sub-village per sampling night), we deployed the same 

three complementary trapping methods with identical relative sampling effort: (i) Mosquito 

Electrocuting Traps (METs) [89–91], one indoors (living room) and one outdoors (immediately 

outside the house) at each of four households per site, operated from 18:00–07:00 (≈13 h), 

yielding 8 MET trap-nights per site per sampling night; (ii) Backpack aspirator collections [92] 

, conducted the following morning for 1 hour per house (4 hours of aspiration effort per site); 

and (iii) Barrier Screen Interception Traps (BS) [93],  two screens per site operated from 18:00–

07:00 (≈13 h). This sampling design was applied uniformly at every site and in every sampling 

round to ensure equal relative sampling effort and allow unbiased comparison of mosquito 
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abundance and community composition across the study area. To capture fine-scale 

microclimatic variation, portable weather stations were installed near each sampled household 

to record nightly temperature, wind speed, and humidity (18:00–07:00).  

 

2.2.2 Morphological and Molecular Species Identification 

After collection, mosquitoes were morphologically identified based on the protocols of Coetzee 

et al. (2020) [49] and Gillies et al. (1987) [50] and stored individually in Eppendorf tubes filled 

with silica gel. A subset of specimens belonging to the primary malaria vector species was 

subjected to molecular analysis at the Ifakara Health Institute using species-specific 

polymerase chain reaction assays [53,55]. The remaining samples, comprising most of the 

dataset, were preserved in 100% ethanol in 96-well plates and shipped to the Wellcome Sanger 

Institute in the UK for molecular analysis using the ANOSPP protocol. Transportation of 

samples complied with the Nagoya Protocol on Access and Benefit-Sharing of Genetic 

Resources [94], prior to shipment. For the ANOSPP dataset, DNA extraction was carried out 

using a minimally morphologically destructive protocol by Korlević et al. (2021) [95], and all 

samples were sequenced using the ANOSPP protocol, as developed by Makunin et al. (2020) 

[96]. Species identification was done through the NNoVAE species assignment pipeline using 

anospp_analysis v0.3.5 and reference datasets nnv2, gcrefv1 and plasmv1 [97,98]. 

 

2.2.3 ANOSPP Panel Design 

The ANOSPP panel is a targeted amplicon-sequencing assay utilizing 64 primer pairs for 

simultaneous Anopheles species identification and associated Plasmodium species detection. 

The panel includes 62 single-copy nuclear targets distributed across all Anopheles chromosome 

arms to maximise species-level resolution and ensure consistent amplification across divergent 

taxa, and two conserved mitochondrial targets for Plasmodium species. Anopheles amplicons 

are short (approximately ~100–250 bp) and cover highly variable regions phylogenetically 

informative across the genus, conserved loci retained in outgroup alignments, and X-linked 

loci particularly informative within the An. gambiae complex; targets span exonic, intron-

spanning, and intergenic regions to capture diverse evolutionary signals (see figure 4) [97,98]. 

Primer binding sites were selected from conserved flanking regions using progressive masking 

strategies to avoid variable positions, incorporating degenerate bases where needed to maintain 

binding robustness across taxa. Plasmodium targets (~170–220 bp) were selected from 

mitochondrial rRNA-fragment regions aligned across major human malaria species, leveraging 

the high mitochondrial copy number for sensitive parasite detection in mixed mosquito DNA 
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extracts [97,98]. DNA extraction uses a non-destructive, high-throughput lysis method (figure 

5)[95], enabling subsequent morphological confirmation when required. Library preparation 

follows a two-step multiplex PCR workflow (pooled target amplification followed by dual-

index barcoding), and sequencing is performed on an Illumina MiSeq paired-end platform (see 

figure 5). 

 

Following sequencing, mosquito species identity is determined using the NNoVAE workflow, 

beginning with a k-mer nearest-neighbour (NN) classifier against a curated reference database, 

followed where necessary (e.g. within the An. gambiae complex) by refinement using a 

variational autoencoder (VAE) trained on reference haplotypes to resolve closely related 

taxa[97,98]. Plasmodium detection is based on the two mitochondrial amplicons, which are 

aligned via BLAST against reference parasite genomes; a mosquito is considered Plasmodium-

positive, and parasite species assigned, when both loci consistently match the same reference 

species [97,98]. All wet-lab steps and primer sets followed the original publications and were 

completed prior to this thesis; my work begins at amplicon sequences and species identified 

and covers all downstream bioinformatics, variant calling, data integration, and analyses. 

 
Figure 4. Genomic distribution of the 62 Anopheles nuclear amplicons targeted by the 

ANOSPP panel across three reference genomes. Amplicon locations shown for Anopheles 

albimanus (top), An. gambiae (middle), and An. funestus (bottom). Colours represent genomic 

context based on the AgamP3 annotation: exonic (red), intron-spanning (yellow), and 
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intergenic (blue) regions. No amplicons map to the An. albimanus X chromosome due to the 

absence of homologous target regions in this species. Figure adopted from Makunin et al. 

(2022)[97,98] 

 

 
Figure 5. Workflow for the ANOSPP targeted amplicon sequencing panel from DNA 

extraction to Illumina sequencing. Overview of the laboratory steps used in the ANOSPP 

assay, including non-destructive mosquito DNA extraction, multiplex PCR amplification, dual-

index barcoding, library pooling, and Illumina MiSeq sequencing. Figure courtesy of Dr. Petra 

Korlević. 
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2.2.4 Plasmodium Species Identification and Tree Generation 

Plasmodium detection and species identification were performed using the ANOSPP protocol, 

which targets two short mitochondrial amplicons (hereafter P1 and P2; ~170–220 bp) for high-

throughput sequencing. Parasite presence was inferred from the recovery of Plasmodium reads 

in these loci, and primary species assignment for Plasmodium-positive samples was obtained 

using the ANOSPP species-assignment pipeline (anospp_analysis v0.3.5), which implements 

a local BLAST-based workflow against the plasmv1 reference database [97,98] as detailed in 

Section 2.2.2 and 2.2.3. To visualise sequence relationships and provide an additional layer of 

confirmation for these BLAST-based calls, we constructed a local reference database of 

complete Plasmodium mitochondrial genomes by downloading sequences from NCBI via a 

custom Bash pipeline using E-utilities (efetch). The combined FASTA file was organised by 

species and accession using a modified header format (>accession|species) and integrated into 

R workflows for phylogenetic analysis. Per-target alignments (sample amplicons plus matched 

reference segments) were generated with MAFFT using the L-INS-i algorithm[99], and 

maximum-likelihood trees were inferred with IQ-TREE 3[100], employing ModelFinder for 

model selection and UFBoot (1,000 replicates) together with SH-aLRT (1,000 replicates) for 

branch support. Trees were rooted with Haemoproteus columbae as the outgroup and used 

qualitatively to verify that sample tips clustered with the reference sequences corresponding to 

their ANOSPP-assigned species (reported as Fig. 7A and Fig. 7B, respectively; species 

assignments reported in the main analyses are those produced by the ANOSPP pipeline. 

 

2.2.5 Environmental and Ecological Data Collection 

To extract the habitat information of Anopheles mosquitoes across Tanzania, environmental 

and ecological data was collected from publicly available sources. The bioclimatic variables 

(including temperature, rainfall, humidity, and aridity index) were sourced from the CHELSA 

database [101]. Land cover data essential for habitat delineation were obtained from the 

Copernicus Global Land Service [102], while human population distribution layers were 

sourced from WorldPop [103]. Livestock density data for cattle and goats, indicating potential 

blood meal sources, were retrieved from the FAO [104]. Vegetation indices, notably the 

Normalized Difference Vegetation Index (NDVI), were accessed from MODIS datasets for 

raster data, and AppeeARS for point data [105,106]. Climate classification data for isolation-

by-environment (IBE) analysis were taken from the global Köppen-Geiger dataset [107]. 

Topographic metrics, including slope and the Topographic Wetness Index (TWI), were derived 

from a high-resolution digital elevation model (DEM) of Tanzania, processed using the terra 
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R package (v1.7-65)[108], with the DEM sourced from NASA Shuttle Radar Topography 

Mission (SRTM) [109]. All spatial layers were standardized to a 1 km² resolution, optimizing 

ecological relevance and computational feasibility, as this scale reflects the typical dispersal 

range of Anopheles mosquitoes [110–113]. Data preprocessing, raster operations, and spatial 

transformations were executed within the R studio environment (R version 4.4.0, RStudio 

version 2025.05.1-513)  using the terra (v1.7-65), raster (v3.6-23), and tidyverse (v2.0.0) 

[108,114,115] packages, ensuring reproducibility, consistency, and transparency in the 

analytical workflow. 

 

2.3 Data Analysis Process 

 

2.3.1 Spatiotemporal Analysis and Community Niche Partitioning 

To evaluate environmental drivers of mosquito species richness and community structure, a 

unified set of environmental predictors was applied across all analytical frameworks. These 

included both short-term variables (sampling-period temperature and humidity) and longer-

term climatic factors (mean humidity, annual mean temperature, mean diurnal range of 

temperature, and annual precipitation), as well as land cover variables (shrub cover, NDVI, 

cropland, and built environment), and temporal livestock presence during data collection. 

Determinants of species richness were modelled using a quasi-Poisson generalized linear 

model. This model estimated the influence of environmental and land-use variables on richness 

patterns collection sites. 

 

To investigate species co-occurrence patterns, pairwise Fisher’s Exact tests were applied to 

presence–absence data across confirmed Anopheles species. Significant associations were 

classified as positive or negative based on the direction and magnitude of odds ratios, which 

were then log-transformed and visualized as a symmetrical heatmap. This approach captured 

species pairs exhibiting consistent co-occurrence or mutual exclusion across sites.  

 

Multivariate species and environment relationships were explored using Canonical 

Correspondence Analysis (CCA) (using vegan package [116]) on Hellinger-transformed 

species abundance data. The first two constrained axes (CCA1 and CCA2) were extracted to 

visualize community-level responses to environmental gradients. Cosine similarity analysis 

was then applied to the first four significant axes to quantify alignment between individual 
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species and environmental vectors, and the results were displayed in a clustered similarity 

heatmap and later used to partition species into their community niches. All statistical analyses 

and visualizations were conducted in R (v4.3.2) using a fully reproducible workflow. Spatial 

layers were processed using the sf and terra packages ([108,117], with background maps 

sourced from rnaturalearth [118], and visual outputs generated with ggplot2 [119] and 

complexheatmap [120] packages. 

 

2.3.2 Species Distribution Modelling  

To estimate the spatial distributions of Anopheles arabiensis, An. gambiae s.s., and An. funestus 

across Tanzania, a species distribution modelling (SDM) framework was implemented that 

integrated ecologically informed pseudo-absence generation with environmental, climatic, 

demographic, and topographic covariates (Table 4). Occurrence records were spatially 

aggregated within a 1 km radius to minimize spatial autocorrelation, align with the resolution 

of predictor rasters, and reflect realistic mosquito dispersal ranges [110–113]. Pseudo-absence 

points were generated from environmentally unsuitable areas identified using forest-canopy 

thresholds, aridity indices, and temperature-based suitability limits, defined according to 

species-specific ecological tolerances (see Chapter 4, Section 4.2). Predictor variables were 

standardized and screened for multicollinearity using Pearson correlation and Variance 

Inflation Factor (VIF) analysis.  

 

This study employed an advanced hybrid SDM framework that departs from both traditional 

correlative models (e.g., MaxEnt[81]) and purely mechanistic approaches (e.g., temperature-

driven physiological suitability[121]). The distinguishing feature lies in the construction of the 

model background: pseudo-absences were generated explicitly from biologically unsuitable 

zones grounded in species-specific physiological and climatic thresholds. This physiology-

guided pseudo-absence selection anchors the model in ecological realism and minimizes bias 

associated with random or environmentally accessible yet unsuitable background points [122]. 

Similar principles have been advocated to enhance predictive realism [123,124] and to integrate 

mechanistic realism within correlative frameworks [125].  The resulting physiology-guided 

pseudo-absence plus presence model framework bridges the mechanistic precision of studies 

such as Ryan et al. (2015)[121] with the correlative flexibility of global mosquito-mapping 

initiatives Sinka et al. (2010, 2012)[81,126]. To my knowledge, this represents the first 

application of such a hybrid SDM configuration for Anopheles distribution mapping in 

Tanzania, and likely one of the earliest if not the first within sub-Saharan Africa. 
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Species–environment relationships were modelled using binomial Generalized Additive 

Models (GAMs)[127] implemented in the mgcv package (R). Restricted maximum likelihood 

(REML) estimation with penalized smoothing splines was used to capture nonlinear effects 

while preventing overfitting. Although alternative algorithms such as Random Forests, Boosted 

Regression Trees, ensemble frameworks, and Bayesian hierarchical methods (e.g., INLA) can 

incorporate pseudo-absences, GAMs were selected for their optimal balance of flexibility, 

interpretability, and diagnostic transparency. In contrast, presence-only methods such as 

MaxEnt rely on background sampling and provide limited insight into residual structure or 

model calibration. 

 

Each model underwent a rigorous diagnostic and validation workflow. Model residuals were 

evaluated using the DHARMa package[128] to detect overdispersion, zero inflation, and spatial 

autocorrelation. Predictor refinement followed an AIC-guided backward elimination 

procedure, ensuring that each retained term improved both model parsimony and diagnostic 

behaviour. Model performance and generalizability were assessed via 10-fold spatial block 

cross-validation [129] implemented in the blockCV package, thereby reducing spatial 

dependence between training and test data and avoiding overestimation of predictive power. 

Calibration accuracy was further evaluated using reliability curves and root mean square error 

metrics[130]. The final modelling framework integrates ecological realism, statistical rigour, 

and diagnostic transparency to produce spatially explicit habitat-suitability maps for 

Tanzania’s three principal malaria vectors. These models capture complex, nonlinear 

environmental responses while remaining interpretable and biologically grounded, thereby 

providing a robust evidence base for geographically targeted, species-specific malaria vector 

control and surveillance strategies across Tanzania. 

 

2.3.3 Population Structure Analysis    

To investigate population structure among Anopheles vector populations across Tanzania, 

sequencing data from the ANOSPP panel, which targets 62 informative short-amplicon regions 

optimized for species identification, was used [96]. Raw sequence reads underwent sample 

inference and quality control using DADA2 [131], followed by extraction of corresponding 

amplicon reference sequences from the An. arabiensis Dongola strain reference genome 

(AaraD3, GCF_016920715.1) [132], which was downloaded from NCBI. For extraction of 

reference amplicon for each target, the most frequently observed haplotype sequence was 
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aligned to the An. arabiensis reference genome using locally installed BLASTn (BLAST+ 

v2.13.0). Genomic coordinates from the top hits were parsed and written into BED format via 

a custom Bash script. Strand-aware reference amplicon sequences were then extracted using 

bedtools getfasta (v2.30.0) [133]. To verify accuracy, each reference sequence was realigned 

to the original query, and alignment reports were generated including coordinate ranges, 

percent identity, and orientation. The genomic annotation of each target, such as chromosomal 

location and whether the region fell within an exon, intron, or intergenic space, was retrieved 

from the accompanied GFF file and included in the report for verification. Validated reference 

sequences were renamed and prepended to the corresponding sample haplotypes, generating 

one merged FASTA per target. These were subsequently aligned using MAFFT (v7.505) with 

the --globalpair and --large settings [99].  

 

Variant calling was performed on the aligned FASTA files using a custom R-based pipeline 

designed to operate using ANOSPP data or any other multilocus sequence outputs. This 

pipeline mimicked standard VCF logic [134] to detect SNPs, indels, and complex variants, 

outputting a long-format CSV with detailed genotype information per specimen. Only biallelic 

variants were retained for downstream analyses. Missing genotypes were imputed using a 

nonparametric random forest approach implemented via the missForest package in R [135]. 

This method was selected for its ability to model complex multilocus genotype structures and 

its robustness to missing data. Random forest imputation has demonstrated high accuracy in 

genetic datasets, including under moderate missingness levels up to 20%, and performs 

comparably to Hidden Markov Model–based approaches [136–138]. The resulting imputed 

matrix was then used for subsequent downstream analyses. 

 

Population structure was assessed using Principal Component Analysis (PCA) and 

Discriminant Analysis of Principal Components (DAPC). PCA was performed in R using the 

prcomp function to summarize major axes of genetic variation and to evaluate patterns such as 

large-scale differentiation, potential chromosomal inversions, and noise or outlier signals in the 

dataset. DAPC was conducted in the adegenet package (v2.1.10) [139], with districts (for 

Tanzania) and countries (for continental analyses) specified as predefined groups. These 

groupings were used as priors to guide the analysis but did not impose structure, as DAPC 

identifies genetic clusters directly from allele frequency variation. The number of retained 

principal components was determined through cross-validation and score optimization to 

achieve the best balance between discrimination and avoid overfitting.  
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To evaluate spatial and environmental drivers of genetic variation, Isolation by Distance (IBD), 

Isolation by Resistance (IBR), and Isolation by Environment (IBE) using Mantel and partial 

Mantel correlations, controlling for spatial autocorrelation among genetic, geographic, and 

ecological distance matrices. These analyses were complemented by maximum-likelihood 

population-effects (MLPE) models, which explicitly account for spatial autocorrelation and the 

non-independence of pairwise genetic distances [140,141]. Pairwise FST values were 

calculated following Weir and Cockerham [142] to quantify genetic differentiation among 

populations. Together, these approaches provided a multilayered framework for characterizing 

population structure and ecological differentiation across Tanzania using the amplicon-based 

ANOSPP dataset. 

 

2.4 Ethical Considerations 

Full ethical approval for this study was obtained from the Ifakara Health Institute, Institutional 

Review Board (IHI/IRB/No:09-2020), the National Institute for Medical Research 

(NIMR/HQ/R.8c/Vol.1/1984), and the President’s Office – Regional Administration and Local 

Government (AB.307/223/01). Additional permissions were secured from local government 

authorities and community leaders in each sub-village where the research was conducted. 

Written informed consent was obtained from all study participants, including heads of 

households and mosquito collectors. For participants unable to read, the consent form was read 

aloud and explained in Kiswahili or the local language by trained field staff, in the presence of 

a community witness. Upon agreeing to participate, the household head or their representative 

provided a thumbprint on the consent form, which was then signed by the witness. All 

participants were informed of their right to withdraw from the study at any time without 

consequence. To ensure household privacy during overnight mosquito collections, only houses 

with at least two bedrooms and a living room were selected. Priority for mosquito collection 

roles was given to consenting members of the participating household; if no one consented, 

volunteers were recruited from nearby households within the same sub-village. As the study 

began during the COVID-19 pandemic in 2020, field activities were suspended in compliance 

with national restrictions. Once the ban was lifted, data collection resumed with strict 

adherence to WHO guidelines, including the use of face masks, regular handwashing, avoiding 

handshakes, application of hand sanitizers, and maintaining social distance to protect both 

researchers and participants. 
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Chapter Three: Diversity, Community Niche Structure, and 

Geographical Distribution of Anopheles Mosquitoes and Their 

Associated Plasmodium Species in Tanzania 

 

Chapter summary 

This chapter presents a comprehensive analysis of the spatial distribution, diversity, and 

ecological patterns of Anopheles mosquito species and their associated Plasmodium parasites 

across 25 districts in Tanzania. The aim is to inform vector control strategies by identifying 

spatial heterogeneity and co-occurrence patterns that can support locally tailored interventions. 

Understanding species assemblages, co-occurrence frequencies, and the ecological drivers 

behind them provides insights into interspecific interactions, potential competition, and the use 

of signature species as indicators in surveillance. Through spatial mapping, statistical plots, 

and tabular summaries, this chapter describes variation in species richness, abundance, species 

composition and community structure, and regional distribution, and the ecological drivers 

influencing these patterns. It also compares conventional morphological identification with 

ANOSPP based identification, demonstrating substantial gains in taxonomic resolution and 

identification accuracy. It also identifies Anopheles vector species linked to the transmission 

of specific Plasmodium parasites and quantifies co-infections instances where single mosquito 

specimens carry multiple Plasmodium species. Importantly, the chapter reports, for the first 

time in Tanzania, the detection of Plasmodium caprae, a goat-specific Plasmodium species, in 

Anopheles arabiensis. While not zoonotic, this finding broadens our understanding of host–

parasite–vector interactions and the ecological range of malaria vectors. 

 

3.1 Mosquito Collection and Morphological Identification 

Over a three-year surveillance period from December 2020 to December 2023, a total of 71,146 

mosquitoes were collected across 25 sentinel districts. Morphological identification 

categorized these into two primary groups: Culicines and Anophelines (Figure 6). The majority 

of the collection, n=61,126 (86.0%), were Culicines. Within this group, species from the Culex 

genus predominated, accounting for n=57,620 (80.99%) of the total collection. Other Culicine 

genera identified included Coquillettidia at n=1,942 (2.73%), Mansonia at n=1,351 (1.90%), 

and Aedes at n=213 (0.30%). The remaining n=10,020 (14.0%) consisted of Anopheles species. 

Among these, An. gambiae s.l. was the most prevalent, representing n=4,168 (5.86%) of the 

total collection. Other notable Anopheles species included An. pharoensis at n=2,005 (2.82%), 
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An. coustani at n=1,574 (2.21%), and An. funestus s.l. at n=1,314 (1.85%). Additional 

Anopheles species identified in smaller numbers were An. squamosus (n=905, 1.27%), An. 

maculipalpis (n=18, 0.03%), An. ziemanni (n=18, 0.03%), An. rufipes (n=17, 0.02%), and An. 

cinctus (n=1, 0.001%). 

 
Figure 6. Distribution and relative abundance of mosquito taxa (identified by 

morphological keys) across districts. The heatmap shows the number of specimens by taxon 

(columns) and district (rows) collected during the study period. Cell colour intensity represents 

specimen count, using a white-to-teal gradient capped at 500 (counts above 500 shown at 

maximum saturation). Numeric values in each cell indicate the exact count per taxon–district 

pair. 
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3. 2 Molecular Identification of Anopheles Species 

Molecular identification was performed using two methods: conventional PCR for a subset of 

samples and ANOSPP for a larger collection. 

 

3.2.1 PCR-based Identification 

A total of 2,642 Anopheles mosquitoes, initially identified morphologically as members of the 

An. gambiae s.l. or the An. funestus s.l., were submitted for PCR amplification. Of these, 248 

samples failed to amplify, yielding 2,394 successfully amplified and confirmed specimens. 

PCR-based identification revealed the following sibling species composition: An. arabiensis 

(n = 1,686; 70.43%), An. funestus s.s (n = 405; 16.92%), An. gambiae s.s (n = 173; 7.23%), An. 

quadriannulatus (n = 62; 2.59%), An. leesoni (n = 50; 2.09%), and An. rivulorum (n = 18; 

0.75%). These specimens were not processed further using the ANOSPP panel but are retained 

for complementary analyses in this and subsequent chapters, where species-level resolution 

alone is sufficient. (See Table1) 

 

3.2.2 ANOSPP-based Identification 

A total of 6,650 Anopheles mosquito specimens were submitted for ANOSPP sequencing. Of 

these, 1,124 samples failed quality control due to insufficient amplicon recovery, likely 

attributable to poor sample quality, and 28 mosquitoes was further filtered out dure to potential 

contamination. The remaining 5498 samples were successfully identified at different levels of 

taxonomic resolution. The taxonomic resolution achieved across these samples varied. A small 

fraction (n = 10; 0.20%) were identified only at a coarse taxonomic level, either series or 

subgenus, indicating incomplete resolution: Cellia series (n = 3), Christya series (n = 1), and 

Myzomyia series (n = 6). An additional 1,032 samples (18.77%) were resolved at an 

intermediate level, typically complex or group level, also reflecting partial resolution: An. 

coustani group (n = 669), An. marshallii group (n = 41), An. funestus group (n = 28), and An. 

gambiae complex (n = 279). Most samples (n = 4,456; 81.05%) were successfully identified to 

the fine or sibling species level. Among these, the species distribution was as follows: An. 

pharoensis (n = 1,573; 35.30%), An. arabiensis (n = 1,361; 30.54%), An. squamosus (n = 671; 

15.06%), An. funestus (n = 448; 10.05%), An. rivulorum (n = 170; 3.82%), An. ziemanni (n = 

121; 2.72%), An. gambiae s.s (n = 70; 1.57%), An. quadriannulatus (n = 32; 0.72%), An. 

pretoriensis (n = 18; 0.40%), An. rufipes (n = 4; 0.09%), and An. maculipalpis (n = 3; 0.07%). 

The incomplete resolution observed (intermediate level resolution only) was primarily due to 
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the absence of corresponding reference sequences in existing databases, contamination, and in 

some cases, due to insufficient amplicon recovery that rendered samples inadequate for full 

taxonomic resolution. Therefore, subsequent analyses will focus exclusively on fully resolved 

species, apart from the An. marshallii and An. coustani groups, for which where necessary the 

intermediate level will be used given representative species-level data are unavailable. (See 

Table1) 

 

Table 1. Species composition summary across Anopheles species complexes identified in 

this study 

Series Species 

Group/Complex 

Species  Vectorial Status PCR ANOSPP Total  

Pyretophorus Gambiae  An. gambiae  Primary vector 173 70 244 

An. arabiensis Primary vector 1686 1361 3050 

An. 

quadriannulatus 

Non-vector 62 32 94 

Either member of 

Gambiae complex  

- 0 279 279 

Myzomyia Funestus  An. funestus Primary vector 405 448 853 

An. leesoni Secondary vector 50 0 50 

An. rivulorum Secondary vector 18 170 189 

Either member of 

Funestus group  

- 0 28 28 

Marshalii  Either member of 

Marshalii group 

Some are 

secondary vectors 

while most are 

non-vectors 

0 41 41 

- Either member of 

Myzomyia series 

- 0 6 6 

Cellia  - An. pharoensis Secondary vectors  0 1573 1576 

Squamosus  An. squamosus Secondary vectors  0 671 673 

- Either member of 

Cellia series 

- 0 3 4 

Christya   - Either member of 

Christya series 

Non vectors 0 1 1 

Neocellia - An. maculipalpis Non vector 0 3 3 

- An. pretoriensis Non vector 0 18 18 

- An. rufipes Secondary vector 0 4 4 

Myzorynchus Coustani  An. ziemanni Secondary vector 0 121 121 

Either member of 

Coustani group  

- 0 669 682 

 

Grand Total 

 

2394 

 

5496 

 

7890 
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3.3 Plasmodium species detected in Anopheles Mosquitoes 

Analysis of Plasmodium presence in Anopheles mosquitoes revealed circulation of multiple 

parasite species across several mosquito species, including instances where more than one 

species was detected in a single mosquito. An. arabiensis carried P. falciparum (n = 5) and P. 

caprae (n = 5), the latter representing the first report of this parasite in Tanzania. In An. 

funestus, both single and multi-species detections were observed: P. falciparum (n = 14), P. 

malariae (n = 1), and P. ovale (n = 3) occurred alone, while two multi-species detections were 

recorded, P. vivax + P. malariae and P. falciparum + P. malariae. An. gambiae carried P. 

falciparum (n = 4), while single detections of P. falciparum were also found in An. pharoensis 

(n = 1) and An. rivulorum (n = 1) (Table 2, Figure 7). 

 

Table 1. Detection Status of Individual Anopheles Mosquitoes Harbouring Plasmodium 

Parasites 

Mosquitoes 

Species 

Plasmodium 

Status 

Plasmodium Species count Prevalence 

(Numbers) 

Prevalence 

(Percent) 

An. arabiensis Single species P. falciparum 5 5/1361 0.36 

An. arabiensis Single species P. caprae 5 5/1361 0.44 

An. funestus Two species P. vivax; P. malariae 1 1/448 0.22 

An. funestus Two species P. falciparum; P. malariae 1 1/448 0.22 

An. funestus Single species P. falciparum 14 14/448 3.13 

An. funestus Single species P. malariae 1 1/448 0.22 

An. funestus Single species P. ovale 3 3/448 0.67 

An. gambiae Single species P. falciparum 4 4/70 5.71 

An. pharoensis Single species P. falciparum 1 1/869 0.12 

An. rivulorum Single species P. falciparum 1 1/170 0.59 
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Figure 7. Maximum-likelihood phylogenetic trees for Plasmodium species identification. Phylogenetic trees inferred from ANOSPP 

mitochondrial amplicons P1 (A) and P2 (B). Trees were reconstructed in IQ-TREE 3 under the best-fit nucleotide substitution models selected by 

ModelFinder. Node support values represent ultrafast bootstrap (UFBoot) and SH-aLRT estimates. Each tip corresponds to either a reference 

mitochondrial genome (circles) or a study-derived haplotype (triangles). Major clades are colour-coded by species according to the key on the 

right. Trees are rooted with Haemoproteus columbae as the outgroup, and branch lengths indicate substitutions per site.
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3.4 Comparison of Morphological and Molecular Identification 

A total of 5,488 mosquito specimens with paired field-based morphological and ANOSPP 

molecular identifications were included in the comparison. Morphological identifications were 

conducted at species, group, or complex levels. Consequently, comparisons between 

morphological and molecular identifications were limited to equivalent morphological 

taxonomic resolution. 

 

The ANOSPP assay substantially reduced species misidentification compared with 

morphology alone. Of the 5,488 specimens examined, 338 were misclassified morphologically 

when ANOSPP was used as the reference, corresponding to a 6.2% misidentification rate (95% 

CI: 5.5–6.8%), which was significantly higher than the assumed 5% error threshold (binomial 

test, p = 0.00014). Misidentification rates varied markedly among taxa. An. pharoensis showed 

the lowest rate (9 of 1,556; 0.6%), whereas An. rufipes exhibited the highest (9 of 11; 81.8%). 

High rates were also recorded for An. maculipalpis (7 of 9; 77.8%) and An. ziemanni (3 of 18; 

16.7%) (Figure 4). Intermediate error rates occurred within the An. gambiae complex (120 of 

1,832; 6.6%), An. funestus group (53 of 612; 8.7%), An. coustani group (111 of 766; 14.5%), 

and An. squamosus (26 of 684; 3.8%). A chi-squared test on the contingency table of correct 

versus incorrect identifications by taxon confirmed substantial heterogeneity in 

misclassification rates across groups (χ² = 381.8, p = 0.001, Monte Carlo simulation).  

 

Binomial logistic regression using the An. coustani group as the reference category further 

highlighted these contrasts. Taxa with significantly lower odds of misidentification included 

An. pharoensis (OR ≈ 0.03, p < 2×10⁻¹⁶), An. squamosus (OR ≈ 0.23, p = 9.3×10⁻¹¹), An. 

gambiae complex (OR ≈ 0.41, p = 2.5×10⁻¹⁰), and An. funestus group (OR ≈ 0.56, p = 0.001), 

reflecting high morphological familiarity with major primary vectors. By contrast, An. rufipes 

(OR ≈ 26.6, p = 3.2×10⁻⁵) and An. maculipalpis (OR ≈ 20.7, p = 1.8×10⁻⁴) had dramatically 

elevated odds of misclassification, consistent with the very high failure rates observed for these 

rarely targeted taxa. An. ziemanni showed a moderate failure rate (16.7%), but its odds ratio 

did not differ significantly from the An. coustani group, likely due to the small sample size.  

 

In addition to correcting misclassifications within morphologically recognised groups, 

ANOSPP resolved species that were not detected by morphology at all. Notably, the assay 

identified 41 specimens belonging to the An. marshallii group and 18 specimens of An. 

pretoriensis, none of which had been distinguished as such in the original morphological 
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sorting. These findings underscore how reliance on morphology alone can under-represent 

morphologically challenging, or less prioritised taxa in routine surveillance, and illustrate the 

added value of molecular diagnostics for capturing the full breadth of Anopheles diversity in 

Tanzania. 

 
Figure 8. Heatmap of morphological versus ANOSPP identification. Each cell represents 

the proportion (colour intensity) and absolute number (numeric label) of specimens within each 

morphological group (columns) assigned to a given molecular confirmed group by ANOSPP 

(rows). The proportion is calculated relative to the total number identified morphologically as 

each taxon. Diagonal cells indicate congruent identifications for all species except An. 

marshallii group, and An. pretoriensis, which were not detected morphologically; off-diagonal 

cells reveal misclassification patterns. 



 30 

3.5 Spatial Distribution and Species Richness 

Among the primary malaria vectors, An. arabiensis emerged as the most widely distributed 

species, consistently present in large numbers across Tanzania. However, several high-

transmission districts, such as Ngara, Kilwa, Missenyi, and Magu as well as Ludewa (a low-

transmission area with a recognized hotspot in Manda ward), showed a different pattern. In 

these areas, An. funestus was found in relatively high densities. Similarly, in Tandahimba 

District, An. gambiae was notably more prevalent than other vector species. Although An. 

gambiae s.s and An. funestus were generally less abundant than An. arabiensis, their consistent 

presence in high-transmission zones underscores their strong association with elevated malaria 

risk, indicating their higher transmission potential relative to other species. Several other 

Anopheles species were also detected in considerable numbers and exhibited broad geographic 

distributions, including An. pharoensis, An. squamosus, and members of the An. coustani 

group. In contrast, species from the An. marshallii group appeared more localized, with 

occurrences primarily in the northwestern districts of Missenyi, Ngara, and Muleba, as well as 

in central Tanzania (Mpwapwa and Kilosa). An. pretoriensis was only recorded in Kilosa and 

Mpwapwa (central Tanzania) and Ludewa (southern Tanzania). Species richness varied 

markedly across the surveyed districts. Ludewa, Tunduru, and Kilosa exhibited the highest 

species richness, each with nine or more distinct Anopheles species. In contrast, Moshi Urban 

recorded very low richness, with only one species identified (see figure 9 & 10). 

 

From a parasitological perspective, P. falciparum was the most detected species, found in 

mosquito samples from nine of the twenty-five surveyed districts, confirming its widespread 

distribution. Conversely, P. caprae was only identified in Kilosa District. Notably, districts 

where multiple human-infecting Plasmodium species were detected in mosquitoes often 

overlapped with areas of high malaria transmission. For example, Missenyi District showed 

the presence of P. falciparum, P. malariae, and P. ovale; Ngara recorded P. falciparum, P. 

vivax, and P. malariae; and Kilwa exhibited co-circulation of P. falciparum and P. ovale. While 

the absolute counts of these infections were relatively low, the diversity of Plasmodium species 

observed highlights ongoing transmission and the circulation of multiple malaria parasites 

within vector populations in these high-burden regions (see figure 11). 
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Figure 9. Spatial distribution of Anopheles species composition by district across 

Tanzania. Pie charts represent the proportional distribution of mosquito species detected at 

each site, with the size of each pie scaled to the total number of mosquitoes sampled per district 

(larger pies indicate higher abundance). The left panel displays the composition of primary 

malaria vectors (An. arabiensis, An. gambiae s.s, and An. funestus s.s), while the right panel 

shows secondary vectors and other Anopheles species. 

 

 
Figure 10. Anopheles species richness and diversity across surveyed districts. The left 

panel illustrates species richness (total number of distinct Anopheles species), while the right 

panel shows the Shannon diversity index, reflecting both species abundance and evenness. 

Higher values in both metrics indicate greater ecological complexity of mosquito populations 

across regions. 
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Figure 11. Spatial distribution of Plasmodium detected in mosquito vectors across 

surveyed districts. Each district is represented by a pie chart showing the proportional 

composition of Plasmodium species identified, including P. falciparum, P. malariae, P. ovale, 

P. vivax, and P. caprae. The figure illustrates both the geographic spread and species diversity 

of Plasmodium parasites circulating in vector populations. 

 

3.6 Predictors of Species Richness 

A quasi-Poisson generalized linear model (GLM) was employed to investigate the factors 

influencing species richness at the hamlet level, accounting for under dispersion in the count 

data as indicated by a dispersion parameter of 0.539. The model revealed that Shrubs land cover 

(p<0.001) and presence of livestock (p<0.001) were highly significant positive predictors of 

species richness, while mean diurnal temperature range was a significant negative predictor 

(p=0.032). Statistical significance was assessed using robust (HC3) standard errors to account 

for potential heteroskedasticity and confirmed by Type II analysis of deviance (ANOVA), as 

model selection criteria such as AIC are not applicable to quasi-Poisson models due to the 

absence of a true likelihood function. While other environmental and anthropogenic factors 
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were included in the model, they did not demonstrate a statistically significant association with 

species richness (Figure 12, Table 3). Diagnostic plots indicated a generally adequate model 

fit, with residuals scattered around zero and no critically influential observations, suggesting 

the model provides a reliable representation of the relationships between the predictors and 

species richness. 

 

Table 2. Ecologically Relevant Environmental and Climatic Variables Included in 

Anopheles Species Richness (Quasi-Poisson) and Community Assembly Model (CCA) 

Variable Type Rationale 

 

Annual Mean 

Humidity 

(HumidityMean)  

Long-term climate Captures average background humidity influencing 

adult mosquito survival. 

Temperature Short-term 

meteorological 

Reflects immediate temperature conditions during 

sampling; affects mosquito activity. 

Humidity Short-term 

meteorological 

Measures real-time humidity during collection; 

influences mosquito flight and host-seeking. 

Annual Mean 

Temperature 

Long-term climate Represents baseline thermal regime shaping mosquito 

distribution and species limits. 

Annual Precipitation Long-term climate Provides context for rainfall-driven breeding site 

availability and vector persistence. 

Mean Diurnal Range 

temperature (MDR, 

Mean Diurnal 

Range) 

Long Term measure 

of daily temperature 

fluctuation 

Differentiates species adapted to stable vs. fluctuating 

thermal conditions 

Shrubs Land cover- shrub 

covered areas 

Associated with transitional vegetation zones 

influencing local microclimates. 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

 Vegetation across 

the study period 

Quantifies greenness and productivity, serving as a 

general proxy for habitat suitability. 

Cropland Land cover - farm 

lands 

Represents agricultural disturbance, often linked to 

habitat modification or irrigation. 

Livestock Presence of 

livestock during 

collection period  

Reflects alternative blood meal sources and possible 

zoophilic mosquito attraction. 

Built Land cover:  Built 

areas 

Indicates guilt areas villages, urban or peri-urban 

environments; influences host availability and breeding 

site availability due to land modification and hence 

species composition. 
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Figure 12. Forest plot of quasi‑Poisson GLM predictors for mosquito species richness. 

The plot show log‑scale estimates (dots) with 95% robust CIs (lines). Orange dots indicate 

p ≤ 0.05; purple dots p > 0.05. 

 

3.7 Species Co-occurrence Patterns  

Pairwise co-occurrence patterns among Anopheles species, including primary malaria vectors 

such as An. arabiensis, An. gambiae, and An. funestus, were analysed using Fisher's exact tests 

(Figure 13). This analysis revealed complex ecological interactions. Among the primary 

vectors, An. arabiensis showed significant negative associations with both An. gambiae and 

An. funestus. Conversely, An. gambiae and An. funestus exhibited a significant positive 

association with each other. Associations involving An. arabiensis and secondary vectors 

indicated negative associations with species like An. ziemanni, but frequent co-occurrence with 

An. squamosus and An. quadriannulatus. 

 

An. gambiae demonstrated a significant negative association with An. pharoensis. However, 

An. gambiae showed a positive association with An. leesoni. For An. funestus, negative 

associations were observed with An. pharoensis and An. quadriannulatus, while positive 

associations with An. rivulorum and An. leesoni were detected. Among secondary vectors, An. 
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pretoriensis displayed multiple strong positive associations with species such as An. 

pharoensis, An. rivulorum, An. ziemanni, An. coustani group, and An. rufipes. Similarly, An. 

pharoensis showed positive associations with several other secondary vectors, including An. 

ziemanni, An. coustani group, An. squamosus, and An. rufipes. Overall, the co-occurrence 

patterns suggest both habitat segregation and shared niche exploitation among diverse 

Anopheles species 

 
Figure 13. Heatmap of pairwise co-occurrence patterns among Anopheles species. Red 

and blue indicate positive and negative associations, based on scaled log₂ odds ratios 

(log₂(OR)) respectively, with colour intensity proportional to association strength. Asterisks 

denote statistical significance (p-values are Bonferroni corrected) (p < 0.05 *, p < 0.01 **, p < 

0.001 ***). Hierarchical clustering groups species by similarity in co-occurrence patterns, 

suggesting shared habitats or ecological interactions. 

 

3.8 Ecological Niche Partitioning of Mosquito Communities  

Canonical Correspondence Analysis (CCA) of Hellinger-transformed Anopheles abundance 

data explained 14.1% of the total variance in species composition (χ² = 0.81, F = 6.43, p = 
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0.001). The remaining 85.9% of variance was not explained by the model, likely due to 

unmeasured environmental factors, biotic interactions, collection biases, or stochastic 

processes. All eleven environmental predictors including short-term weather, long-term 

climate, land cover, and livestock presence, were individually significant (p < 0.001). The first 

four constrained axes (CCA1–CCA4) together accounted for 87.8% of the constrained variance 

and were all statistically significant (p < 0.001). The CCA biplot (Figure 14) illustrates the 

distribution of species and environmental variables along the first two constrained axes, 

highlighting the dominant ecological gradients.  

 

 
 

Figure 14. Canonical Correspondence Analysis (CCA) biplot. The plot shows mosquito 

species (points) and significant environmental variables (arrows) along the first two canonical 

axes. Arrow length reflects variable importance and direction indicates positive associations. 

Species proximity and projection onto arrows indicate the strength and direction of ecological 

associations. As described in the table Humidity is temporal humidity during data collection 

while HumidityMean is climatic humidity recorded over a long period. 
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To comprehensively quantify species–environment associations, cosine similarity analyses 

were performed using the first four constrained axes (Figure 15). Species were grouped by 

manual inspection of their cosine similarity patterns with key environmental variables, 

particularly Humidity Mean, Annual Precipitation, and Mean Diurnal Range of Temperature 

(MDR). 'Wet-Associated' species exhibited positive associations with humidity and 

precipitation and negative associations with MDR, reflecting adaptation to moist, stable 

environments. In contrast, 'Arid-Associated' species were characterized by positive 

associations with MDR and negative associations with humidity and precipitation, indicating 

adaptation to drier environments with greater daily temperature fluctuations. Species showing 

neither extreme or mixed associations were classified as 'Moderate/Transitional.' NDVI and 

Annual Mean Temperature served as additional interpretive variables, with association 

thresholds based on the sign and magnitude of cosine similarity values. 

 

To further explore ecological differentiation, additional variables, including short-term weather 

conditions, vegetation cover, cropland, built environments, and livestock presence, were 

examined to identify potential sub-groupings and assess species’ short-term environmental 

responses. Group cohesion was supported by Fisher’s exact tests, which identified significant 

positive within-group and negative between-group associations (e.g., An. arabiensis vs. An. 

quadriannulatus, OR = Inf, p = 0.0026; An. arabiensis vs. An. gambiae, OR = 0.37, p < 

0.00001).  

 

3.8.1 Arid-Associated Group 

The Arid-Associated Group, comprising An. arabiensis, An. squamosus, An. pharoensis, An. 

pretoriensis, and An. quadriannulatus, consistently showed strong negative associations with 

Mean Humidity (e.g., -0.81 for An. arabiensis, -0.61 for An. quadriannulatus), Annual 

Precipitation (e.g., -0.84 for An. arabiensis, -0.58 for An. pharoensis), and NDVI (e.g., -0.95 

for An. arabiensis, -0.82 for An. quadriannulatus). They also displayed positive associations 

with MDR (e.g., 0.76 for An. pharoensis, 0.49 for An. pretoriensis), suggesting adaptation to 

arid conditions with high temperature variability.  

 

Association with Habitat related Variables: Positive associations with Cropland (e.g., 0.86 for An. 

arabiensis, 0.95 for An. quadriannulatus, 0.55 for An. pharoensis) indicate these species may 

be adapted to breeding in open, agricultural water bodies such as farm-field ponds. An. 

pretoriensis (Cropland: 0.03, NDVI: -0.38) and An. squamosus (Cropland: 0.59, NDVI: -0.22) 
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showed weaker or moderate Cropland associations, suggesting potential breeding in open, 

sunlit habitats with less dense vegetation. 

 

Association with Host-Related Variables: Associations with host-related variables varied 

within this group. An. squamosus (Livestock Presence: 0.94, Built: -0.03) and An. pharoensis 

(Livestock Presence: 0.11, Built: -0.40) showed positive associations with Livestock Presence 

and negative or near-zero associations with Built area, suggesting adaptation to feeding on 

livestock. An. arabiensis (Livestock Presence: 0.24, Built: 0.42) and An. quadriannulatus 

(Livestock Presence: 0.60, Built: 0.45) exhibited moderate positive associations with both 

Livestock Presence and Built area, indicating potential generalist feeding behaviour on both 

human and livestock hosts.  An. pretoriensis (Livestock Presence: -0.79, Built: -0.02) showed 

a strong negative association with Livestock Presence, suggesting adaptation to feeding on wild 

hosts or in rural areas. Fisher’s positive association between An. pretoriensis and An. 

pharoensis (OR = 10.3, p = 0.02) supports their shared ecological niche. 

 

Association with Temporal Variables: Temporal variable associations, based on instantaneous 

Temperature and Humidity, varied across the group. An. squamosus (Temperature: -0.83; 

Humidity: 0.95) exhibited a strong positive association with humidity and a negative 

association with temperature, suggesting peak activity during cooler, humid conditions, 

potentially corresponding to late-night or pre-dawn periods.  An. pretoriensis (Temperature: 

0.83; Humidity: -0.85) showed a strong positive association with temperature and a negative 

association with humidity, suggesting increased activity under warmer, drier conditions. This 

pattern aligns with its relatively high Mean Diurnal Range (0.49), potentially indicating 

crepuscular or early evening feeding behaviour when temperatures remain elevated but 

humidity declines. In contrast, An. quadriannulatus (Humidity: 0.37; Temperature: -0.07) 

exhibited a moderate positive association with humidity and near-neutral association with 

temperature, suggesting activity peaks during more humid periods, possibly at night or early 

morning.  An. arabiensis (Temperature: 0.26; Humidity: 0.06) and An. pharoensis 

(Temperature: -0.16; Humidity: 0.06) exhibited near-neutral associations with both 

temperature and humidity, indicating temporal flexibility in activity patterns across varying 

weather conditions. The high Mean Diurnal Range observed for An. pharoensis (0.76) further 

supports its potential adaptation to environments characterized by substantial daily temperature 

fluctuations. 
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3.8.2 Wet-Humid Associated Group 

The Wet-Associated Group, including An. funestus, An. gambiae, An. coustani Group, and An. 

leesoni, consistently showed positive associations with Mean Humidity (e.g., 0.91 for An. 

gambiae, 0.59 for An. funestus) and Annual Precipitation (e.g., 0.85 for An. gambiae, 0.7236 

for An. coustani Group). They also displayed negative associations with Mean Diurnal Range 

(e.g., -0.91 for An. gambiae, -0.48 for An. coustani Group), suggesting adaptation to humid 

conditions with stable temperatures.  

 

Association with Habitat related Variables: Positive associations with NDVI (e.g., 0.88 for An. 

funestus, 0.53 for An. coustani Group) and Shrubs (e.g., 0.76 for An. funestus, 0.53 for An. 

coustani Group), along with negative associations with Cropland (e.g., -0.96 for An. funestus), 

indicate potential breeding in vegetated wetlands or shrubby areas. An. gambiae (NDVI: 0.38; 

Shrubs: -0.06; Cropland: –0.56) and An. leesoni (NDVI: 0.04; Cropland: -0.26; Shrubs: -0.35) 

exhibited weak associations with vegetation indices, suggesting adaptation to transitional 

habitats such as sparsely vegetated zones or open sunlit pools. The moderately negative Mean 

Diurnal Range for An. leesoni (-0.46) further supports its affinity for humid, thermally stable 

environments. 

 

Association with Host-Related Variables: Host-related associations varied within the Wet-

Associated Group. An. gambiae (Built: 0.52; Livestock Presence: -0.09) showed a strong 

positive association with built areas, consistent with its well-documented anthropophilic 

behaviour and preference for human-dominated environments. An. coustani Group (Livestock 

Presence: 0.61; Built: -0.08) exhibited a positive association with livestock presence and a 

weak negative association with built areas, suggesting a zoophilic inclination, likely favouring 

peri-domestic livestock. An. funestus (Livestock Presence: -0.60; Built: -0.58) showed negative 

associations with both livestock and built areas, potentially indicating a preference for 

anthropophilic feeding in less disturbed, rural environments. An. leesoni (Built: 0.44; Livestock 

Presence: -0.46) demonstrated a moderate positive association with built environments, 

suggesting some degree of human host preference. These patterns are further supported by 

significant positive co-occurrence from Fisher’s exact tests, for example, An. gambiae with An. 

funestus (OR = 2.13, p = 0.0009) and An. gambiae with An. leesoni (OR = 3.97, p = 0.026), 

indicating overlapping ecological niches within humid, anthropogenic habitats. 
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Association with Temporal Variables: Temporal associations showed diversity. An. coustani 

Group (Temperature: -0.755, Humidity: 0.68) had a negative association with Temperature and 

a positive association with Humidity, suggesting activity in cooler, humid conditions, 

consistent with its negative Mean Diurnal Range (-0.48). An. leesoni (Temperature: 0.67; 

Humidity: -0.62) exhibited a positive association with temperature and a negative association 

with humidity, suggesting increased activity during warmer, drier periods within otherwise 

humid environments, potentially indicating evening or early night-time feeding behaviour. An. 

funestus (Humidity: –0.36; Temperature: -0.002) also showed a negative association with 

humidity, implying a preference for drier conditions despite its broader humid niche. In 

contrast, An. gambiae (Temperature: 0.25; Humidity: -0.16) showed relatively neutral 

associations, indicating temporal flexibility. The notably low Mean Diurnal Range for An. 

gambiae (-0.91) further supports its adaptation to thermally stable environments. 

 

3.8.3 Moderate/Transitional Group 

The Moderate/Transitional Group, including An. marshallii Group, An. rivulorum, An. rufipes, 

An. ziemanni, and An. maculipalpis, exhibited weak or mixed associations with climate 

variables (e.g., Mean Humidity: 0.14 for An. marshallii Group, -0.18 for An. ziemanni; Annual 

Precipitation: 0.42 for An. marshallii Group, 0.02 for An. rufipes). They also showed a variable 

Mean Diurnal Range (e.g., 0.54 for An. ziemanni, -0.31 for An. maculipalpis), suggesting 

adaptation to moderate conditions with variable temperature fluctuations.  

 

Association with Habitat related Variables: Positive associations with shrub cover and NDVI, 

such as An. rufipes (Shrubs: 0.77; NDVI: 0.44) and An. rivurolum (Shrubs: 0.69; NDVI: 0.54), 

suggest that these species are likely to breed in vegetated or shrubby habitats. Concurrent 

negative or near-zero associations with cropland (e.g., –0.48 for An. rivurolum, -0.054 for An. 

marshallii Group) further supports a preference for more natural vegetation over open 

agricultural landscapes. An. ziemanni (NDVI: 0.15; Shrubs: 0.26) and An. maculipalpis (NDVI: 

0.063; Shrubs: 0.23) showed weaker associations with vegetation metrics, indicating 

adaptation to less densely vegetated habitats, potentially including open, sunlit puddles. The 

relatively high Mean Diurnal Range of An. ziemanni (0.54) suggests physiological tolerance to 

temperature fluctuations, consistent with its broader habitat use. This is further supported by 

its strong positive co-occurrence with An. rufipes (OR = 54.4, p = 0.004), implying shared 

ecological preferences. 
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Association with Host-Related Variables: Host-related associations within this group 

generally leaned toward non-anthropogenic hosts. An. marshallii Group (Livestock Presence: 

0.72, Built: -0.32) and An. maculipalpis (Livestock Presence: 0.77, Built: 0.12) showed strong 

positive associations with Livestock Presence, suggesting adaptation to livestock feeding. An. 

maculipalpis is classified as zoophilic (Built < 0.2 threshold) to align with Fisher’s positive 

association with An. rufipes (OR = 96.4, p = 0.02). An. rivulorum (Built: -0.57), An. rufipes 

(Built: -0.78), and An. ziemanni (Built: -0.57) showed negative associations with Built area, 

indicating potential adaptation to feeding on wild hosts. 

 

Association with Temporal Variables: Temporal associations were predominantly cool-active. 

An. marshallii Group (Temperature: -0.97, Humidity: 0.87), An. rufipes (Temperature: -0.88, 

Humidity: 0.59), and An. maculipalpis (Temperature: -0.71, Humidity: 0.86) showed negative 

associations with Temperature and positive associations with Humidity, suggesting activity in 

cooler, humid conditions, consistent with moderate Mean Diurnal Range values (e.g., 0.42 for 

An. rufipes). An. rivulorum (Temperature: -0.44, Humidity: 0.22) had a negative association 

with Temperature, indicating cool-active behaviour, while An. ziemanni (Temperature: -0.13, 

Humidity: -0.14) showed neutral associations, supported by its high Mean Diurnal Range 

(0.54) suggesting flexibility across temperature fluctuations and possible endurance in semi-

arid regions. 
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Figure 15. Heatmap of cosine similarities between Anopheles species and environmental 

variables from the first four CCA Axes. Red indicates strong positive associations, blue 

indicates strong negative associations, and white/light colours indicate weaker associations. 

Hierarchical clustering groups species by similarity in association patterns to the environment, 

suggesting shared habitats or ecological interactions.  

 

3.9 Discussion 

For precise epidemiological inference and targeted species-specific control interventions, a 

higher level of diagnostic accuracy is required. While widely used, conventional morphological 

identification of Anopheles mosquitoes presents significant challenges, as highlighted by our 

study's substantial 6.0% overall misclassification rate. Though more accurate than rates 

reported in other regional studies, such as 15% in Zambia [143], and 10.8% in Kenya [144], 

this level of precision still masks the underlying diversity within groups and remains 

insufficient for effective surveillance. This is because this seemingly tolerable rate masks the 

inherent inability of morphological keys to discriminate between species within 

morphologically similar groups and complexes, such as An. gambiae s.l. (comprising nine 
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species) and An. funestus s.l. (comprising 13 species) [56]. This leads to challenges in effective 

control because, despite their morphological similarity, these species often exhibit distinct 

behaviours and vectorial capacities, thereby requiring tailored intervention strategies [25,145]. 

Importantly, such morphological reliance also critically impacts downstream molecular 

surveillance, because traditional PCR assays, dependent on accurate initial morphological 

assignments, without which it can lead to non-amplification or costly re-testing if samples are 

misidentified [56].  

 

Our data specifically showed species like An. rufipes and An. maculipalpis were particularly 

prone to misidentification, while An. pretoriensis, and species in the An. marshallii Group were 

entirely missed by morphology. These inaccuracies largely stem from human factors such as 

technician experience and the tediousness of identification in field settings. This is further 

amplified by limitations in surveillance systems, which often restrict the range of species 

detected by focusing primarily on the major malaria vectors, thereby masking the crucial and 

increasingly important role of secondary vectors in transmission. 

 [64,71,72,74].  

 

The ANOSPP panel [96] offers a transformative solution to these challenges, providing genus-

wide species resolution for Anopheles mosquitoes with only a simple initial morphological 

identification to distinguish them from other genera [98]. This reduces the need for detailed 

and often challenging morphological species or group-level pre-sorting, enabling the 

identification of virtually any Anopheles mosquito to species level where reference sequence 

data exists. In this study ANOSPP was able to identify 11 distinct Anopheles species and place 

some in their group level, with the potential for full resolution upon obtaining additional 

reference sequences in the databases. The panel also identified five Plasmodium species, 

including P. falciparum, P. malariae, P. ovale, P. vivax, and P. caprae. This simultaneous, 

multi-species Plasmodium detection capability is often overlooked in routine surveillance, 

which predominantly focuses on P. falciparum. However, identifying the full spectrum of 

circulating Plasmodium species is crucial, as co-infections can lead to more severe disease 

outcomes [83], and the growing threat of zoonotic malaria [146–149] demands comprehensive 

surveillance to truly understand transmission dynamics and safeguard against jeopardizing 

current malaria control achievements. This capability, along with its potential to reduce 

dependence on morphological keys, underscores ANOSPP's suitability for integration into 

routine surveillance activities. However, like all sequence-based methods, the resolution power 



 44 

of ANOSPP ultimately depends on the breadth and completeness of its reference database. In 

cases where a species lacks a reference sequence, taxonomic assignment may be limited to the 

closest available group or, to the nearest series [97,98]. Nonetheless, this limitation is 

progressively diminishing due to the ongoing expansion of the reference database [98].  

 

It was revealed that shrubland coverage and the presence of livestock were positively 

associated with higher mosquito species richness, whereas mean diurnal temperature range had 

a negative correlation. The presence of livestock may increase olfactory cues in the 

environment, thereby enhancing host detection and supporting a greater diversity of mosquito 

species [150]. Similarly, shrubland may contribute to the formation of favourable 

microclimates that enhance mosquito survival and breeding. On the other hand, the negative 

impact of mean diurnal temperature range on species richness suggests that environments with 

high temperature fluctuations, often indicative of arid conditions, may be less suitable for the 

survival of a broad range of mosquito species. This is consistent with findings that show such 

fluctuations adversely affect mosquito biology and survival [151].  

 

The highest levels of species richness were recorded in Kilosa, an area characterized by year-

round agricultural activity and wetland habitats; in Ludewa, particularly Manda ward along the 

shoreline of Lake Nyasa; and in Tunduru, which is also known for paddy cultivation. These 

land-use patterns may contribute to increased breeding site availability and resource diversity. 

Additionally, in both Kilosa, Ludewa and Tunduru, many mosquito species were collected 

from cattle sheds, further supporting the role of livestock in sustaining higher species richness. 

The very low species diversity observed in Moshi Urban likely reflects the significant impact 

of urbanization, which leads to habitat homogenization and imposes strong selective pressures 

favouring highly adaptable, generalist Anopheles species. These species can exploit the limited 

and altered breeding habitats characteristic of built-up environments. This may explain why 

only a single Anopheles species, An. arabiensis was detected in the area. This pattern aligns 

with previous research indicating that diverse land use in agriculture can enhance mosquito 

species richness [152].  

 

Importantly, An. gambiae and An. funestus were more consistently found in high malaria 

transmission zones, whereas An. arabiensis was widespread and detected across much of the 

country. Notably, no Anopheles mosquitoes were recorded in Iringa Municipality. The co-

occurrence of An. gambiae and An. funestus with high transmission zones is consistent with 
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their high vectorial capacity, while An. arabiensis appears to sustain residual transmission in 

low-transmission settings [65]. Regarding parasite distribution, P. falciparum was found in all 

nine districts where Plasmodium was detected. Moreover, districts such as Ngara, Misenyi, and 

Kilwa identified as high-transmission areas [62] with elevated malaria prevalence and mortality 

rates were also hotspots for Plasmodium species diversity. In these locations, multiple species 

were detected, including P. falciparum, P. malariae, P. ovale, and P. vivax, a pattern that may 

contribute to challenges in malaria case management due to mixed-species infections [83].  

 

A particularly novel finding was the detection of P. caprae, a parasite typically associated with 

goats, in An. arabiensis. Although P. caprae has previously been identified in mosquitoes such 

as An. subpictus and An. aconitus [153], this is the first report of its presence in An. arabiensis. 

Moreover, while P. caprae has been documented in both mosquitoes and goats in parts of Asia 

and several African countries, this represents its first detection in Tanzania [153–155]. 

Although P. caprae has not been detected in humans and is considered restricted to non-human 

hosts, its detection in a primary human malaria vector demonstrates the capacity of An. 

arabiensis to harbour a broader range of parasites than previously recognized, with important 

implications for understanding its transmission ecology. This finding may indicate interactions 

at the livestock-human interface or demonstrate the vector's capacity to harbour non-human 

Plasmodium species. While there is currently no direct evidence of zoonotic transmission, these 

observations highlight the need for enhanced entomological and molecular surveillance. 

Ultimately, the detection of P. caprae in this context reinforces the importance of adopting a 

One Health surveillance framework that integrates data across human, animal, and vector 

domains to better understand the ecology and transmission dynamics of malaria and related 

parasites. 

 

Using canonical correspondence analysis and pairwise chi-square co-occurrence analysis, we 

were able to partition the sampled Anopheles species into potential ecological niche groups. 

This classification was based on climatic and land cover variables derived from satellite remote 

sensing data, as well as temporal data collected concurrently during field sampling. These 

groups were defined as the Arid-Adapted Group, Humid-Adapted Group, and Ecologically 

Flexible Group, further subdivided within each group based on habitat, potential host and 

temporal weather variables which gave a glimpse of how their general activities are shaped by 

instantaneous change in temperature and humidity. The Arid-Adapted Group, including An. 

arabiensis, was associated with dry areas and agricultural zones characterized by marked 
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temperature variability, as well as the presence of livestock and built environments. These 

patterns confirm its generalist nature in host preference, as reported in previous studies [91]. 

This finding aligns with earlier reports from East Africa showing the species’ association with 

irrigation systems and farm areas, which facilitate its survival in arid conditions [156,157], and 

its predominantly zoophilic behaviour [158]. This understanding informs intervention design; 

for instance, vector control in such contexts should emphasize LSM targeting agricultural water 

bodies and the use of insecticide-treated livestock to intercept zoophilic vectors [159–161].  

 

The Humid-Adapted Group including species such as An. gambiae, showed clear associations 

with mean humidity and annual rainfall, and a negative association with mean diurnal 

temperature range, conditions typical of more arid regions. This concurs with earlier studies 

confirming its affinity for humid areas [157,162]. Its association with built environments also 

supports its well-established anthropophilic behaviour. Similarly, An. funestus was associated 

with vegetation-dominated land cover and negatively associated with built environments, 

confirming prior reports of its preference in rural, vegetated habitats [163,164], its sensitivity 

to temperature fluctuations [151] and its varying zoophilic and anthropophilic tendencies [165].  

 

Meanwhile, species within the Ecologically Flexible Group, such as An. rufipes and the An. 

marshallii group, exhibited broad environmental tolerance, occupying both natural and 

anthropogenic habitats across diverse climatic zones. This adaptability may undermine the 

effectiveness of static intervention strategies and underscores the need for localized seasonally 

adaptive tools such as spatial repellents or community-driven larval surveillance. However, it 

should be acknowledged that species associations with levels of aridity or humidity are context-

dependent within the Tanzanian landscape. Given that this study was limited to samples from 

25 villages across 25 districts, it may not fully reflect the underlying ecological complexity. 

Notably, even within a single village, different species may occupy distinct ecological niches 

[166].  

 

Nonetheless, our findings demonstrate that well-designed ecological modelling, supported by 

robust data, can generate reliable insights for informing vector control. Additionally, 

partitioning species into ecologically similar groups offers a practical advantage: a 

representative "signature species" could serve as a proxy to infer the presence of other group 

members, particularly in resource-limited surveillance settings. Although members of these 

ecological groups may share general associations with humid or arid regions, they often differ 
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significantly in their habitat and host-related variables. Consequently, interventions should be 

tailored not on the group level but at the subgroup or species level depending on the pattern in 

sharing characteristics as well articulated in the result section. For example, contrasting 

associations with vegetation-related variables between An. gambiae (negative) and An. funestus 

(positive), along with differences in temporal patterns, suggest distinct breeding site 

preferences and weather-driven biting behaviours. These ecological nuances offer actionable 

entry points for species-specific targeting within broader intervention frameworks. 

 

Our classifications align with existing research for major vectors. An. gambiae and An. funestus 

are well-documented in humid areas, with human-feeding behaviour, consistent with their 

Humid-Adapted Group placement [167,168], and vegetated habitats subgroup placement for 

funestus [164,165]. An. arabiensis is recognized in drier, agricultural areas with animal-feeding 

tendencies, supporting its Arid-Adapted Group classification [91,157,158]. Notably, the An. 

coustani group’s positive association with vegetated areas and its zoophilic nature aligns with 

findings from northern Tanzania and southern Kenya, where An. coustani larvae were 

predominantly found in short grass habitats (53.6%) and tall grass habitats (45.7%), compared 

to only 0.7% in open sunlit pools [169]. For less-studied species such as An. leesoni and An. 

rivulorum, our study provides novel ecological insights. An. leesoni showed a clear preference 

for built, humid areas, a negative association with livestock presence, and increased activity 

during warmer periods. These patterns suggest a possible tendency toward early evening biting 

behaviour, and anthropophilic behaviour which warrants further investigation. Similarly, the 

associations of An. rivulorum and An. rufipes with shrub-dominated landscapes and higher 

NDVI values indicate a likely preference for vegetated microhabitats, particularly in humid 

zones. These findings highlight potential breeding site characteristics and behavioural 

adaptations that have not been well described in the literature, underscoring the need for 

targeted ecological studies to inform surveillance and control strategies for these understudied 

vector species. 

 

This study is not without limitations. Mosquito sampling was evenly distributed across 25 

districts, but logistical challenges, such as limited accessibility, weather conditions, and 

resource constraints, may have introduced spatial and seasonal sampling biases. Although 

species identification was validated using both morphological keys and molecular diagnostics 

(ANOSPP panel), trap-based methods are inherently selective and may under-sample cryptic 

taxa, microhabitat specialists, or species with divergent activity patterns. Furthermore, 
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Detection of Plasmodium DNA using the ANOSPP assay confirmed parasite presence but does 

not confirm actual transmission potential. DNA may reflect recent blood meals rather than 

sporozoite presence in salivary glands, which is essential for transmission. Thus, parasite 

detection alone does not confirm vector competence. In addition, some species such as An. 

rufipes and An. maculipalpis were captured in very low numbers, and further targeted 

surveillance will be needed to clarify their ecological niches and epidemiological relevance. 

 

Despite these limitations, the study offers practical and policy-relevant insights by delineating 

spatial patterns of vector distribution and Plasmodium presence across ecologically diverse 

settings, providing a critical foundation for targeted surveillance, adaptive vector control, and 

future investigations into transmission dynamics and ecological niche shifts. 
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Chapter Four: Anopheles Species Distribution Modelling in Tanzania 

Under Current Climatic Scenario 

 

Chapter Summary 

Traditional entomological surveillance for malaria vectors remains resource-intensive, time-

consuming, and spatially constrained, limiting the timely identification of high-risk areas for 

targeted intervention. This challenge underscores the need for predictive, spatially explicit tools 

to optimize vector control strategies. Species Distribution Models (SDMs) address this gap by 

integrating limited occurrence data with environmental predictors to generate high-resolution, 

spatially continuous estimates of vector habitat suitability. In this chapter, SDMs were 

developed for the three primary malaria vectors, An. arabiensis, An. gambiae s.s, and An. 

funestus s.s by combining occurrence records from this study, other research projects, 

published literature, and WHO threat maps metadata. To improve model robustness, 

ecologically informed pseudo-absence points were generated using temperature suitability 

envelopes and forest canopy cover. Key environmental and bioclimatic variables, including 

precipitation, temperature, and land cover, were incorporated at a 1 km spatial scale. 

Generalized Additive Models (GAMs) were applied to capture smooth nonlinear responses, 

and model performance was evaluated using standard diagnostic metrics. The resulting habitat 

suitability maps align with known malaria transmission zones and reveal both overlapping and 

species-specific environmental associations, providing actionable spatial insights to guide 

targeted surveillance and resource allocation in Tanzania’s vector control programs. 

 

4.1 Observed Species Presence Data and Spatial Distribution 

Occurrence data for An. gambiae, An. funestus, and An. arabiensis were compiled from 

different sources to maximize spatiotemporal coverage across the study area. This dataset 

integrates records from different research projects, national surveillance efforts, and publicly 

available databases. All unique data points were georeferenced and associated with a recorded 

year of collection. The distribution of Anopheles species occurrence records (presence GPS 

data) by their original source and year of collection is summarized in Supplementary Table A1. 

In total, 1,040 raw occurrence records were compiled across the three species. An. arabiensis 

data (579 records) spanned the longest period (2011-2024), with early contributions from WHO 

Threat Maps metadata and more recent data from 25 districts for this project and Dhibiti 

(control) Malaria project from Ifakara Health Institute (IHI) that was conducting insecticide 
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resistance monitoring across 22 districts across the country. An. funestus (239 records) and An. 

gambiae (222 records) datasets primarily consisted of more recent observations (2017-2024), 

with significant contributions from this project for both species, and Dhibiti Malaria Project 

for An. gambiae. Data from Deogratius Kavishe, Kavishe et al. 2025 [170], Edmond Bernad 

(NIMR), Matowo et al. 2021 [162], and Nambunga et al. 2020 [164], along with other data 

from Dr. Fedros Okumu (IHI) for An. funestus, provided additional recent records for various 

species. National surveillance data contributed consistently across multiple years for all three 

vectors [65]. Furthermore, data not linked to specific citations represent unpublished records 

contributed directly by the respective institutions and project leads. The geographical 

distribution of these diverse, compiled data points across the study area is illustrated in Figure 

16. Following compilation, all records (presence data) were subjected to quality control by 

removing duplicates and spatially thinning presence locations to one record per 1 km cluster 

using the geosphere and igraph packages in R [171,172], resulting in 233 unique records for 

An. arabiensis, 102 for An. gambiae, and 79 for An. funestus, with spatial resolution matching 

that of environmental predictors 

 

4.2 Pseudoabsence Data Generation and Spatial Distribution  

Ecological suitability for An. gambiae, An. funestus, and An. arabiensis was quantified using a 

Temperature Suitability Index (TSI) parameterized from established physiological and 

ecological thresholds [81,121,151,173–181]. For each species, TSI rasters were constructed as 

composite functions of coldest-quarter mean temperature, relative humidity, precipitation of 

the driest quarter, mean diurnal range of temperature (MDR), and land cover characteristics 

including cropland, built-up area, closed-canopy forest, and wetlands [164,165,182–184]. The 

thermal response curves and associated penalties were species-specific, with ecological realism 

ensured through the integration of modifiers for aridity, humidity, seasonality, anthropogenic 

habitats, and refugial buffers, reflecting both empirical and recent field-based evidence. 

 

For An. arabiensis, a TSI, was constructed based on its thermal, humidity, aridity, and 

seasonality tolerances. Optimal suitability (TSI = 1) was assigned for mean coldest quarter 

temperatures between 25–30°C, declining linearly to zero at 15°C and 38°C. Higher minimum 

humidity extended tolerance to warmer temperatures. A penalty was applied by capping TSI at 

0.2 in highly arid regions, defined as areas with a mean diurnal temperature range greater than 

12 °C and precipitation in the driest quarter below 20 mm, as well as in locations with extreme 
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temperature seasonality exceeding 155. The effect of this penalty was partially compensated 

by the presence of cropland. The final unsuitability mask for An. arabiensis combined regions 

where TSI was less than 0.2 with areas of dense closed forest (tree cover ≥0.9), due to its 

preference in sunlit open habitats [121,182,185,186]. 

 

The pseudo-absence mask for An. gambiae utilized a more robust, multi-factorial TSI reflecting 

its nuanced ecological preferences. Optimal thermal suitability (TSI = 1) occurred between 25–

28°C mean coldest quarter temperature, with non-linear transitions to zero at 16°C and 35°C. 

This core thermal suitability was modulated by a logistic penalty for low minimum humidity 

in warmer ranges, and a dynamic aridity penalty (for driest quarter precipitation <40 mm) that 

was partially offset by the presence of cropland. Additional adjustments included a penalty for 

extreme temperature seasonality, a ±0.5°C evolutionary adaptation buffer at thermal limits, and 

a Gaussian-shaped suitability boost in peri-urban areas (8–30% built-up land). The final An. 

gambiae unsuitability masks integrated areas where TSI was less than 0.2 and closed forest 

(tree cover ≥0.9) [121,182,185,186].  

 

For An. funestus, the unsuitability mask was derived from a TSI that emphasized its association 

with stable aquatic habitats and sensitivity to environmental extremes. Its temperature 

suitability based on the mean coldest quarter temperature was optimized between 25–28°C 

(TSI = 1), with its upper limit of 35°C strongly dependent on minimum humidity. Additional 

factors included an aridity penalty the same used to An. gambiae (adjusted by cropland 

presence), a penalty for high mean diurnal temperature range, and a significant logistic decline 

in suitability with increasing built-up land, reflecting its strong rural preference. Conversely, a 

suitability boost was applied in wetlands. The final An. funestus unsuitability mask combined 

areas with a TSI less than 0.2 and closed forest (tree cover ≥0.95) [121,164,165]. 

 

Pseudo-absence points were generated by overlaying TSI-based ecological suitability 

thresholds (TSI < 0.2) with exclusion of closed-canopy forest, using species-specific 

thresholds. Spatial binary masks were validated for congruence with environmental predictor 

rasters, and random pseudo-absence points were sampled exclusively from unsuitable areas, 

avoiding ambiguous or missing data regions. Specifically, 50 pseudo-absence points were 

generated for An. gambiae, 50, for An. arabiensis, and 40 for An. funestus (see figure 16 for 

spatial distribution). For each pseudo-absence, the full suite of environmental covariates was 
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extracted to mirror the structure of the presence dataset, and each point was annotated with its 

exclusion criterion (low TSI or closed forest) to facilitate downstream model validation.  

 
Figure 16. Spatial distribution of presence and pseudo-absence records used for species 

distribution modelling. Map showing georeferenced input data used to train habitat suitability 

models for malaria vectors in Tanzania. Blue points represent known presence locations 

derived from entomological surveys or confirmed species records. Red points represent 

pseudo-absence locations, selected using ecological exclusion criteria based on established 

physiological and environmental constraints for each species. These points were used to 

improve model discrimination and reduce sampling bias during Model fitting. 

 

4.3 Environmental Covariate Patterns and Predictors Selection 

Predictor selection began with the acquisition of environmental, climatic, and demographic 

variables known or hypothesized, based on published literature, mosquito biology, and broader 

insect ecology, to influence habitat suitability (Chapter 2, Section 2.2.5) [81,121,151,173–181]. 

The initial inclusion of these variables was therefore guided by established ecological 

reasoning and data availability rather than subjective preference. However, all subsequent 

screening and refinement steps followed a statistics-driven workflow, with ecological 

interpretation reapplied only after objective statistical criteria had been satisfied (Figure 17). 

During the first screening phase, multicollinearity was assessed using Pearson pairwise 

correlation and Variance Inflation Factors (VIF). Variables exhibiting strong collinearity (|r| > 

0.7 or VIF > 5) were excluded to enhance model stability and reduce redundancy. Within each 

correlated pair, the variable deemed most ecologically relevant to Anopheles habitat 

representation was provisionally retained. In certain cases, variables excluded at this stage were 

later reintroduced if doing so demonstrably improved model performance, replacing earlier 

alternatives where statistical support was stronger. 
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After preliminary filtering, species-specific models were evaluated and, where necessary, 

refined through a structured and fully objective backward elimination procedure. This step was 

not applied arbitrarily but was undertaken only when diagnostic outcomes indicated the need 

for further model optimization. Predictor inclusion or removal was governed entirely by 

statistical evidence and diagnostic validity. Each iteration followed two sequential criteria. 

First, variables were assessed for their statistical contribution by examining changes in the 

Akaike Information Criterion (AIC); a variable was removed only if its exclusion reduced AIC, 

thereby improving model parsimony without degrading fit. Second, the simplified model was 

re-evaluated using the DHARMa package[128] to test for residual dispersion, zero-inflation, 

and spatial autocorrelation (Section 4.4). Refinement proceeded only when diagnostic results 

justified it, and a predictor was eliminated solely when both statistical and diagnostic 

conditions were satisfied. This procedure occasionally led to the reinstatement of variables 

previously discarded during collinearity screening, where their inclusion improved AIC or 

resolved diagnostic issues introduced by their alternatives. Such reintroductions were justified 

strictly by empirical model improvement. The elimination process continued until all 

diagnostic assumptions were met. 

 

Ecological interpretation was reapplied only after the final models had been statistically 

optimized, to verify that the retained predictors (based on response curves) were biologically 

& ecologically coherent. This interpretive step did not influence model composition but 

confirmed that the statistically supported variables aligned with established ecological 

understanding. All retained predictors contributed to improved model performance and 

diagnostics. Most were also statistically significant consistent with known ecological patterns. 

For instance, livestock density was retained and statistically significant only in An. arabiensis 

models, reflecting its zoophilic behaviour and association with livestock-rich habitats. 

Similarly, isothermality was statistically significant in An. gambiae s.s. models, aligning with 

its sensitivity to stable temperature regimes. In contrast, Mean Diurnal Temperature Range 

(MDR) in An. funestus did not reach statistical significance but was retained because its 

inclusion improved model performance and diagnostic outcomes, suggesting a plausible, 

though weaker, influence of thermal variability on its distribution[151]. The final predictor sets 

therefore represent statistically optimized models that are also ecologically interpretable. A 

summary of all candidate variables retained predictors, and their ecological rationale is 

presented in Table 4. 
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Table 3. Environmental and anthropogenic predictors used in habitat suitability 

modelling and their ecological rationale 

Predictor 

Variable 

An. 

arabiensis 

An. 

gambiae 

An. 

funestus 

 Ecological Justification 

Annual Mean 

Temperature 

✓ ✓ ✓ Fundamental driver of mosquito physiology, 

development rate, and geographic range [177] 

Mean Diurnal 

Temperature 

Range 

(MDR) 

  ✓ Captures daily temperature fluctuation; An. 

funestus is sensitive to thermal variability 

[151]. 

Isothermality  ✓  Reflects temperature stability [187] 

Annual 

Precipitation 

✓ ✓ ✓ Determines the availability and persistence of 

aquatic breeding habitats [81] 

Mean 

Relative 

Humidity 

✓ ✓ ✓ Influences adult longevity and host-seeking 

[179]. 

Cattle 

Density 

✓   Indicates availability of zoophilic blood 

sources; highly relevant for An. arabiensis 

[91]. 

Cropland 

Cover 

✓ ✓ ✓ Proxy for anthropogenic larval habitats, 

especially in irrigated/agricultural landscapes 

[184,188]. 

Population 

Density 

 ✓ ✓ Proxy for human host availability and intensity 

of human settlement. Not retained for other 

species due to weaker predictive 

performance.[189] 

Built Area 

Cover 

✓   Captures the extent of physical habitat 

modification; relevant for species utilizing 

peri-domestic structures for resting, breeding, 

or shelter. Not retained for other species due to 

weaker predictive performance.[190] 

Tree Cover ✓ ✓ ✓ Influences microclimate, shade, and habitat 

structure; key for resting and larval sites [81]. 
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Figure 17.  Workflow for species distribution modelling of Anopheles mosquitoes. The 

diagram outlines the sequential steps from field and secondary data acquisition through 

environmental covariate preprocessing, pseudo-absence generation, model fitting, diagnostics, 

and predictive mapping. 
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4.4 Model Fitting, Diagnostics, and Cross-Validation 

Binomial Generalized additive models (GAMs) [191] were independently fitted for each 

species to quantify relationships between species presence and environmental predictors.  

Model fitting utilized the mgcv package in R [127], employing restricted maximum likelihood 

(REML) estimation and penalized smoothing splines to capture non-linear effects. Residual 

diagnostics were performed using the DHARMa package [128], with formal tests for 

dispersion, zero-inflation, and spatial autocorrelation (Moran’s I) conducted on simulated 

residuals. The diagnostics revealed no significant overdispersion (dispersion statistic: An. 

arabiensis = 0.643, p = 0.056; An. gambiae = 0.685, p =0.072; An. funestus = 0.685, p = 0.064), 

zero-inflation, or spatial autocorrelation in the residuals for any species. Final model formulas 

included only predictors that passed multicollinearity thresholds, exhibited strong model fit in 

diagnostic evaluations, demonstrated high predictive performance in cross-validation, and 

showed good calibration. Visual assessment of spatial predictions was also used to confirm 

ecological plausibility in the context of Tanzania’s known topography. 

 

Model selection and validation were conducted using 10-fold spatial block cross-validation 

implemented via the blockCV package [129]. For each fold, models were trained on spatially 

separated data and evaluated on withheld blocks to reduce spatial autocorrelation between 

training and test sets, thereby preventing overestimation of predictive performance. Predictive 

performance was quantified using the area under the curve (AUC) and Brier score, with means 

and standard deviations reported across folds. The models demonstrated strong discriminative 

power: An. arabiensis (AUC = 0.962 ± 0.042), An. gambiae (AUC = 0.924 ± 0.065), and An. 

funestus (AUC = 0.830 ± 0.150). Corresponding Brier scores were low, indicating well-

calibrated predictions: An. arabiensis (0.039), An. gambiae (0.097), and An. funestus (0.160). 

Calibration of predicted probabilities was assessed using bootstrap-corrected calibration curves 

(B = 1,000) implemented via the rms package [130], which showed close agreement between 

predicted and observed probabilities for all species, with mean absolute errors of 0.017 (An. 

arabiensis), 0.043 (An. gambiae), and 0.045 (An. funestus), confirming minimal deviation from 

perfect calibration.  

 

Threshold-dependent performance was assessed by calculating sensitivity, specificity, and the 

True Skill Statistic (TSS) across probability thresholds ranging from 0.1 to 0.9 in 0.1 

increments. At each threshold, predicted probabilities from the GAMs were binarized and 
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evaluated against observed presence–absence labels using confusion matrices. TSS was 

computed as sensitivity + specificity − 1, with the highest TSS value indicating the optimal 

discrimination threshold for each species. While final predictions were retained as continuous 

probabilities, these threshold-based metrics served to evaluate each model’s classification 

capacity. TSS values ranged from approximately 0.53 to 0.86 across species, with sensitivities 

between 0.59 and 0.96 and specificities from 0.61 to 0.95, confirming that all models exhibited 

strong potential for binary discrimination if required in applied contexts. Collectively, these 

results indicate that the selected models are both statistically robust and ecologically 

meaningful, providing well calibrated, interpretable predictions of malaria vector occurrence.  

 

4.5 Environmental Drivers and Variable Importance 

The final model for An. arabiensis (deviance explained = 78.3%, adjusted R² = 0.849) revealed 

distinct, linear and nonlinear responses to environmental gradients (Figure 18). Habitat 

suitability increased nearly linearly with annual mean temperature across the observed range 

up to 26°C (p < 0.001), indicating a linear increase in suitability across the observed gradient. 

Tree cover also had a significant effect (p < 0.001), with suitability highest below 30–40% 

canopy density and declining sharply beyond that threshold, suggesting a preference for open 

landscapes with limited overhead vegetation. Cattle density was positively associated with 

suitability (p = 0.024), particularly across the range of 0 to 500 cattle per km², aligning with 

known zoophilic feeding behaviour. Annual precipitation (p = 0.046) showed a unimodal 

effect, with predicted suitability peaking around 1,500 to 1,700 mm/year, indicating an optimal 

moisture window likely related to larval habitat availability. Although built area cover did not 

reach conventional statistical significance (p = 0.089), it displayed a positive association with 

suitability at low to moderate levels. This trend is ecologically plausible given the peri-

domestic habitat preferences of An. arabiensis, and it may reflect a true but underpowered 

relationship due to sampling limitations. In contrast, cropland cover and mean relative humidity 

were not significant predictors (p > 0.5) and exhibited flat response curves across their observed 

ranges. 
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Figure 18. Partial dependence plots for environmental predictors of habitat suitability 

for Anopheles arabiensis. Each plot shows the partial effect of a single predictor on the 

predicted habitat suitability of An. arabiensis as estimated by the Generalized Additive Model 

(GAM). The solid line represents the smoothed effect (centred to a mean of zero), while the 

dashed lines indicate ±2 standard errors (confidence intervals). Rug marks along the x-axis 

show the distribution of observed values for each predictor, indicating regions with strong 

model support.  

 

The final model for An. gambiae (deviance explained = 68.6%, adjusted R² = 0.762) revealed 

distinct, linear and nonlinear responses to environmental gradients (Figure. 19). Habitat 

suitability increased nearly linearly with annual mean temperature across the observed range 

up to 26 °C (p < 0.001), indicating a linear increase in suitability across the observed gradient, 

and showed a dome-shaped relationship with annual precipitation, peaking at intermediate 

levels (~1,500–2,000 mm/year) before declining steeply above 2,500 mm (p < 0.001). 

Suitability was largely flat at low Isothermality values but increased sharply between ~0.65 
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and 0.80, plateauing at higher values (p = 0.005), indicating a preference for environments with 

moderate-to-high thermal stability. While mean relative humidity (50–70%) was not 

statistically significant (p = 0.213), a slight positive trend was observed. Population density 

exhibited a weakly unimodal effect, with suitability increasing through moderate densities 

(~10,000–20,000 persons/km²) and then declining gently at the highest values (p = 0.014). 

Suitability peaked at moderate tree cover (~20–30%), declining sharply above ~40% 

(p = 0.005), and was highest in landscapes with 60–70% cropland, dropping steeply beyond 

this threshold (p = 0.029). Collectively, these patterns indicate that An. gambiae is most likely 

to occur in warm, moderately wet, thermally stable environments with a mosaic of cropland 

and moderate tree cover landscapes typical of rural to peri-urban settlements and agro-

ecological transition zones. 

 
Figure 19. Partial dependence plots for environmental predictors of habitat suitability 

for Anopheles gambiae. Each plot shows the partial effect of a single predictor on the predicted 
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habitat suitability of An. gambiae as estimated by the Generalized Additive Model (GAM). The 

solid line represents the smoothed effect (centred to a mean of zero), while the dashed lines 

indicate ±2 standard errors (confidence intervals). Rug marks along the x-axis show the 

distribution of observed values for each predictor, indicating regions with strong model 

support. 

 

The final model for An. funestus (deviance explained = 64.0%, adjusted R² = 0.690) identified 

five significant linear and nonlinear environmental predictors of species presence (Figure. 20). 

Habitat suitability increased nearly linearly with annual mean temperature up to 26 °C 

(p < 0.001), indicating a strong preference for warmer conditions. Tree cover (p = 0.0009) 

exhibited a unimodal relationship, with suitability peaking at moderate cover (~0.3 fractional 

cover) and declining sharply at higher levels, suggesting that dense vegetation may limit 

occurrence. Annual precipitation (p = 0.0023) followed a dome-shaped pattern, with suitability 

highest at intermediate rainfall levels and decreasing at both low and high extremes. Population 

density (p = 0.0067) showed a weak unimodal effect, with suitability increasing at low 

densities, peaking around 2,000 persons/km², and gradually declining thereafter. Mean relative 

humidity (p = 0.0398) also showed a hump-shaped association, with peak suitability near 60% 

and lower suitability at both drier and more humid extremes. In contrast, cropland cover and 

mean diurnal temperature range were not significant predictors (p > 0.6), suggesting limited 

influence on broad-scale occurrence of An. funestus within the study area. Overall, these 

findings indicate that An. funestus preferentially occupies warm, moderately wet environments 

with intermediate humidity, moderate population densities, and landscapes characterized by 

low to moderate tree cover. 
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Figure 20. Partial dependence plots for environmental predictors of habitat suitability 

for Anopheles funestus. Each plot shows the partial effect of a single predictor on the predicted 

habitat suitability of An. funestus as estimated by the Generalized Additive Model (GAM). The 

solid line represents the smoothed effect (cantered to a mean of zero), while the dashed lines 

indicate ±2 standard errors (confidence intervals). Rug marks along the x-axis show the 

distribution of observed values for each predictor, indicating regions with strong model 

support. 

 

4.6 Predicted Species Distribution 

The predicted distributions of An. funestus, An. gambiae, and An. arabiensis across Tanzania 

exhibit distinct spatial patterns, closely reflecting each species' ecological preferences and 

landscape-level constraints. The maps clearly delineate areas of high predicted probability of 
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occurrence, demonstrating strong associations with major hydrological features, lowland 

corridors, and anthropogenically modified environments. Notably, both large and smaller water 

bodies including Lakes Victoria, Tanganyika, Nyasa, Rukwa, Eyasi, Natron, Sulunga, 

Kitangiri, Nyagamoma, and Sagara as well as artificial reservoirs like Mtera Dam (represented 

as white gaps on the maps), are consistently flanked by areas of high predicted mosquito 

presence. This spatial pattern likely reflects their co-location in low-altitude zones and their 

influence on surrounding environmental conditions such as increased humidity and the support 

of irrigation schemes which in turn create favourable breeding habitats. Conversely, closed-

canopy forests, high-elevation mountain ranges, and regions characterized by temperate 

Köppen climate zones (Cwa, Cwb, Cwc, and Csa) consistently correspond to areas of reduced 

predicted presence across all three Anopheles species, as clearly depicted in the maps. 

 

An. funestus shows a predicted distribution concentrated along the Indian Ocean coastal belt, 

particularly from Tanga through Dar es Salaam to Lindi and Mtwara, while notably avoiding 

densely populated urban zones such as the Dar es Salaam city center. Additional predicted 

presence is observed in the Rufiji-Kilombero floodplain and along the edges of the Nyerere 

(Selous) Reserve and along lakeshores, especially around Lake Victoria, Rukwa, Eyasi, 

Natron, Sulunga, Tanganyika and the eastern shore of Lake Nyasa (from Ludewa to Mbamba 

Bay). In contrast, central Tanzania, including Dodoma, Singida, and Tabora and regions 

characterized by temperate Köppen climate zones (Cwa, Cwb, Cwc, and Csa) or arid steppe 

climates (BSh and BSk) exhibit sparse or absent predicted presence. Dense forested reserves 

such as Kigosi, Moyowosi and montane blocks like the Ngorongoro Crater and the East 

Usambara Mountains also appear largely unoccupied, reflecting the species’ limited 

distribution in cooler, high-altitude, and closed-canopy forest environments (see figure 21). 
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Figure 21. Predicted habitat suitability for Anopheles funestus in Tanzania. Modelled 

distribution of An. funestus with habitat suitability values scaled from low (dark purple) to high 

(yellow) on the Viridis colour map.  

 

The predicted distribution of An. gambiae was slightly broader than that of An. funestus, though 

it generally followed the same spatial trends. It extended across the coastal lowlands, eastern 

and southeastern Tanzania, and penetrated moderately into central regions. However, unlike 

An. funestus, An. gambiae maintained a high predicted presence even in densely populated 

urban areas, including the core of Dar es Salaam. Notable zones of high predicted presence 

include the entire coastline, the eastern shore of Lake Nyasa (from Ludewa to Mbamba Bay), 

areas surrounding Lake Victoria, Rukwa, Eyasi, Natron, Sulunga, Tanganyika and the Zanzibar 

archipelago, while still avoiding rainforest regions. Like funestus, An. gambiae appears less 

frequently and mostly in patches in parts of central Tanzania, particularly around localized 

water bodies such as the Mtera Reservoir and Lake Sulunga. Generally, the predictions show 

a clear decline in densely forested and mountainous areas, including the Uluguru and Usambara 
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ranges and the Ngorongoro Highlands, indicating limited presence in closed-canopy systems. 

Narrow but persistent predicted presence is also observed along cropland-dominated foothills 

around Mount Kilimanjaro and Mount Meru. Similar to An. funestus, An. gambiae shows 

avoidance of arid steppe zones (BSh and BSk) and temperate Köppen climate regions (Cwa, 

Cwb, Cwc, and Csa) (see figure 22). 

 
Figure 22. Predicted habitat suitability for Anopheles gambiae in Tanzania. Modelled 

distribution of An. gambiae with habitat suitability values scaled from low (dark purple) to 

high (yellow) on the Viridis colour map.  

 

In contrast, An. arabiensis demonstrates the widest predicted distribution footprint across the 

country, occupying nearly all areas predicted for An. funestus and An. gambiae and extending 

well beyond them. The model indicates extensive predicted presence across the semi-arid and 

agriculturally dominated landscapes of central and northern Tanzania, including Dodoma, 

Singida, Manyara, Tabora, and the entire Lake Victoria basin. High presence probabilities also 

surround inland lakes and water-retaining landscapes such as Lakes Rukwa, Eyasi, and Natron, 

as well as the Mtera Reservoir, and remain robust along the Lake Tanganyika shore and the 
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Indian Ocean coastal plain. Compared to the other two species, An. arabiensis shows greater 

spatial reach into drier and more anthropogenic environments, maintaining predicted 

occurrence even in sparsely vegetated zones. However, like An. funestus and An. gambiae, it 

consistently avoids dense forest blocks, high-elevation mountain ranges, and temperate 

Köppen climate regions (Cwa, Cwb, Cwc, and Csa), aligning with its known ecological 

intolerance to cool, shaded habitats. While An. arabiensis dominates across many arid regions, 

the model also reveals a patchy distribution in some zones, with areas of lower predicted 

probability interspersed among areas of high presence, suggesting local variability in habitat 

suitability or vector adaptation (see Figure 23). 

 
Figure 23. Predicted habitat suitability for Anopheles arabiensis in Tanzania. Modelled 

distribution of An. arabiensis with habitat suitability values scaled from low (dark purple) to 

high (yellow) on the Viridis colour map. 

 

Together, the three vectors reveal an ecologically stratified yet partially overlapping landscape 

of malaria risk. Coastal lowlands, lake littorals, and floodplains form consistent hotspots for 
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all species, while the Southern Highlands, forested reserves, and crater highlands consistently 

suppress suitability. An. funestus and An. gambiae concentrate in humid lowlands and cropland 

peripheries, whereas An. arabiensis dominates open, semi-arid zones and thrives near water 

bodies especially in low-canopy or anthropogenic landscapes, while avoiding densely forested 

surroundings.  

 

4.7 Discussion  

This study revealed pronounced spatial heterogeneity in malaria vector distributions across 

Tanzania. The three dominant species, An. arabiensis, An. gambiae, and An. funestus, 

responded differently to climatic, ecological, and anthropogenic gradients, reflecting their 

distinct ecological niches. The models highlighted fine-scale species-environment 

relationships that define where each vector is most likely to persist and where their distributions 

may overlap.  

 

Among the modelled ecological predictors, annual mean temperature emerged as a dominant 

factor for all three species, with suitability increasing linearly across the data ranges, 

highlighting their adaptation to warm tropical climates [192]. Precipitation showed a unimodal 

response, peaking at 1,500–2,500 mm/year for An. arabiensis, An. gambiae, and An. funestus, 

indicating an optimal moisture range for larval habitats [193]. All three species were associated 

with moderately vegetated areas, with peak suitability occurring at canopy cover around 20–

40%. Species-specific predictors further distinguished their niches: cattle density positively 

influenced An. arabiensis, aligning with its zoophilic behaviour [158], while An. gambiae was 

associated with cropland cover and population density, reflecting its anthropophilic tendencies 

[194] in human-modified and agricultural landscapes [195]. An. funestus preferred moderate 

humidity ~60% and low population density below ~2,000 persons/km², consistent with its 

reliance on stable, vegetated water bodies in rural areas [164,165]. These environmental 

preferences not only reinforce established ecological traits for each species but also delineate 

the distinct niche boundaries that govern their spatial segregation and potential overlap.  

 

The spatial predictions revealed that An. funestus and An. gambiae share a strong preference 

for warm, humid lowland environments, with both species showing high predicted presence 

along Tanzania’s lakeshores, coastal belt, southern lowlands, and northwestern regions. Their 

distributions were closely associated with ecological zones featuring permanent or semi-
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permanent, water bodies, aligning with known breeding requirements and reflecting a shared 

physiological dependence on stable aquatic habitats and intolerance to desiccation stress [164]. 

Consequently, both species were consistently absent from arid steppe zones (Köppen BSh and 

BSk) and temperate highland regions (Cwa, Cwb, Cwc, and Csa), highlighting climatic 

thresholds that confine their distributions to low-to-mid elevation corridors [81]. However, An. 

gambiae exhibited notably higher predicted presence in densely populated urban centres such 

as Dar es Salaam, underscoring its greater adaptability to anthropogenic habitats compared to 

the more rural distribution of An. funestus, though such boundaries may shift under warming 

scenarios or land-use changes [189,196]. In contrast, An. arabiensis demonstrated the widest 

spatial footprint across the predicted space. It occupied nearly all regions suitable for An. 

funestus and An. gambiae, and extended further into semi-arid landscapes, particularly in 

central and northern regions of the country. The model suggested that An. arabiensis tolerated 

lower humidity and sparser vegetation than the other two vectors, consistent with its ecological 

generalism and ability to exploit ephemeral or man-made water bodies [157,195,197,198]. 

Despite its broad range, the species also showed exclusion from high-elevation zones, 

temperate and dense forested areas, likely due to its intolerance of cooler, shaded environments 

[81].  

 

These distributions delineate malaria risk zones that closely correspond with reports from the 

NMCP [62]. Notably, they reveal finer-scale hotspots such as areas surrounding water bodies 

like Mtera Dam, Lake Surunga, and the foothills of Njombe along the Lake Nyasa shoreline 

that are often overlooked when using regional averages to map malaria prevalence. 

Overlapping vector presence in the coastal belt, Great Lakes shores, and Rufiji–Kilombero 

valley corresponds to high-transmission hotspots, with high malaria prevalence in children in 

areas like the Lake Victoria basin [63]. Peri-urban areas, including Dar es Salaam, sustain 

transmission due to An. gambiae and An. arabiensis breeding in man-made sites [199]. 

Conversely, highlands and dense forests show low predicted occurrences, aligning with 

historically low or unstable transmission [200]. These patterns reflect the ecological limits of 

each species, with An. funestus tied to permanent waters, An. gambiae thriving in humid, 

human-modified areas, and An. arabiensis dominates drier, open landscapes. 

 

Our findings align with regional studies, validating the model’s robustness. The restriction of 

An. funestus to low elevations matches observations by Kulkarni et al. (2010) [201], who noted 

its absence above ~1,900 m. An. gambiae’s prevalence in coastal and lowland areas, with 
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patchy inland presence, concur with continental maps [81,196]. An. arabiensis’ extension into 

semi-arid zones reflects its documented resilience in dry environments [157,202]. Specific 

predictions, such as vector presence in the Kilombero Valley’s rice fields, align with surveys 

showing An. arabiensis and An. funestus breeding in distinct rice growth stages [195]. Recent 

studies, like Matowo et al. (2021) [162], confirm high An. funestus suitability along Lake 

Victoria, reinforcing our model’s accuracy. 

 

The spatial and ecological distinctions among An. funestus, An. gambiae, and An. arabiensis 

have direct implications for vector-specific interventions under Tanzania’s NMCP. In regions 

with high predicted co-occurrence particularly the northwestern lake zone and southeastern 

coastal belt an Integrated Vector Management framework is warranted to address the species-

specific ecological niches and behavioural differences that drive localized transmission 

dynamics [32,33,35]. For species that show high predicted occurrence in urban areas, scaling 

up insecticide-treated net coverage and improving drainage infrastructure are critical. These 

interventions address its anthropophilic behaviour and adaptability to man-made larval habitats 

such as domestic containers, necessitating sustained and consistent implementation [203]. In 

semi-arid and central regions where An. arabiensis dominates, the results support among others 

the use of endectocides through insecticide-treated livestock, given its positive association to 

high cattle density tendencies observed in  the model [161]. Furthermore seasonal larviciding 

in irrigation channels and temporary pools during peak rainfall periods may suppress its 

breeding in ephemeral habitats [158]. In low-risk highland districts like Iringa and Njombe, 

predictive maps suggest that malaria risk remains constrained by cooler temperatures, but 

warming trends could destabilize this balance. Surveillance systems triggered by temperature 

thresholds (e.g., >20°C during December–March rains) could offer early-warning capacity to 

prevent outbreaks [196]. 

 

The models also provide a basis for climate-informed planning. With projected temperature 

increases under climatic change scenarios, these vectors are likely to expand their range into 

highland regions such as Arusha and Njombe by 2040 [196]. Pre-emptive interventions, 

informed by consistent climate monitoring, and larval site surveillance may prevent the 

establishment of stable transmission zones. Moreover, low-risk forested areas like Udzungwa, 

Selous game reserves etc, could become ecologically permissive for vectors if deforestation 

continues to reduce canopy cover and create sunlit pools, potentially enabling these species to 

colonize the newly modified habitats [84]. Integrating vector suitability maps with climate and 
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land-use change projections will be critical for anticipating range shifts and optimizing the 

spatial targeting of NMCP interventions. 

 

These results are not without limitations. Ecological suitability does not necessarily imply 

realized presence, as local absences may arise from interspecific competition, predation, 

dispersal barriers, or suppression following vector control interventions such as larval source 

management or indoor residual spraying (IRS). Conversely, some areas predicted as suitable 

may remain unoccupied due to limited colonization, habitat fragmentation, or recent 

environmental change. 

 

Although the habitat suitability models exhibited strong predictive performance and ecological 

coherence, their interpretation warrants measured caution due to the potential for circularity in 

environmental modelling. Pseudo-absences were defined from areas considered 

environmentally unsuitable for Anopheles occurrence, based on climatic and ecological 

thresholds similar to those later used as predictors. This methodological overlap, while 

methodologically necessary, can introduce partial dependence between data generation and 

model fitting. 

 

The present framework, however, incorporated several safeguards to mitigate this risk. First, 

pseudo-absences were drawn from extreme environmental ranges, well beyond known 

physiological and ecological tolerance limits to minimize overlap with potential habitat 

conditions. Each pseudo-absence was further screened to ensure it was not spatially proximate 

to presence points or located within plausible dispersal ranges of Anopheles populations, 

thereby reducing the risk of environmental or geographic colocalization (Figure 17). Second, 

all predictors underwent rigorous collinearity screening, objective model selection, and 

comprehensive diagnostic validation to ensure that retained variables contributed genuine 

explanatory power rather than artefactual circularity. Third, model generalizability was tested 

using spatial block cross-validation, which evaluates predictive strength across geographically 

independent subsets. Collectively, these procedures strengthen the interpretive reliability of the 

results and limit the influence of circularity on model outcomes. 

 

Accordingly, while the models should not be interpreted as establishing direct causality, they 

provide robust evidence of biologically consistent associations between environmental 

gradients and Anopheles distributions. By combining physiologically defined pseudo-absences 
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with true presence data, this integrative framework advances beyond single-method 

approaches, bridging the mechanistic precision of physiological mapping with the flexibility 

of correlative modelling. The models thus maintain strong inferential validity while 

transparently acknowledging the methodological constraints inherent to ecological prediction. 

Despite these caveats, the framework demonstrated high internal consistency and ecological 

realism, aligning with known vector bionomics, observed spatial distributions, and malaria 

prevalence patterns across Tanzania. It therefore represents a robust and scalable decision-

support tool for malaria control, particularly suited to regional and national planning where 

fine-resolution risk stratification is essential for targeted intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71 

Chapter Five: Population Structure of Anopheles arabiensis in 

Tanzania: The Implication of Using ANOSPP in Malaria Vectors 

Surveillance 

 

Chapter summary 

Understanding the population structure and regional connectivity of malaria vectors is crucial 

for tracking the spread of traits like insecticide resistance and for predicting how genetically 

engineered mosquitoes will spread. Despite this importance, detailed genetic insights across 

Tanzania remain limited. This chapter addresses that gap by analysing Anopheles arabiensis 

population structure across the country and beyond using short amplicon sequences generated 

by the ANOSPP amplicon sequencing platform. Samples were collected from 21 Tanzania 

districts with An. arabiensis presence. Genetic differentiation among districts was generally 

low, but with significant isolation by distance patterns in the country. To place these findings 

in a broader continental context, Tanzanian data were combined with samples from seven other 

African countries, revealing three major genetic clusters: (i) Tanzania, Uganda, and eastern 

Democratic Republic of Congo; (ii) Madagascar; and (iii) West Africa, with further 

substructure within Nigeria. These results validate the ANOSPP platform for scalable 

population genetics and offer initial insights into gene flow and vector connectivity, supporting 

more spatially informed malaria control strategies. 

 

5.1 Background on Population Dynamics of Anopheles arabiensis 

Compared to the other major African malaria vectors, An. gambiae and An. funestus, An. 

arabiensis typically exhibits lower chromosomal inversion diversity, yet demonstrates 

remarkable ecological versatility and behavioural flexibility[204–206]. These traits are likely 

shaped by a combination of recent selective sweeps and historical demographic expansions 

[207]. This adaptive plasticity is mirrored in genetic studies that reveal extensive gene flow 

and large effective population sizes (Ne) across broad spatial scales. For instance, Donnelly et 

al. (1999) [208] reported low levels of genetic differentiation between Tanzania and 

Mozambique An. arabiensis populations, suggesting recent range expansion and consistently 

high Ne. Supporting this, Kent et al. (2007) [209] analysed populations in southern Zambia 

over three transmission seasons, including one characterized by severe drought, and found no 

evidence of genetic bottlenecks, significant allele frequency shifts, or reductions in 

heterozygosity. The populations remained effectively panmictic across 2,000 km², with 
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negligible differentiation even between sites 80 km apart, indicative of large, interconnected 

demes resilient to temporal environmental fluctuations. 

 

However, this broad-scale genetic homogeneity often masks subtle but meaningful patterns of 

cryptic population structure at finer spatial resolutions. In Tanzania, Maliti et al. (2014) [87] 

examined populations from five coastal districts, the Kilombero Valley, and the islands of 

Zanzibar (Unguja and Pemba). The study reported overall low genetic differentiation (mean 

FST ≈ 0.015), consistent with high levels of gene flow. However, a significant isolation-by-

distance pattern was detected (Mantel test r = 0.46, p = 0.0008), indicating a spatial genetic 

gradient not evident from regional differentiation estimates alone. Temporal consistency of this 

structure suggests stable, underlying patterns of limited dispersal. Further fine-scale studies in 

southern Tanzania’s Kilombero Valley highlight even deeper microgeographic structuring. 

Ng’habi et al. (2011) [86] detected at least two genetically distinct An. arabiensis clusters 

coexisting within the same villages. These subpopulations, while sympatric, exhibited 

restricted gene flow likely driven by fine-scale ecological heterogeneity or behavioural 

divergence, rather than overt physical barriers. Expanding on these regional patterns, recent 

analyses reinforce the findings of broad connectivity across much of Tanzania, while also 

acknowledging the influence of geographic and topographic barriers. Mwinyi et al. (2025) [88] 

report sustained gene flow across diverse ecological zones, indicative of demographic stability. 

However, the presence of topographic barriers such as the Rift Valley in East Africa contributes 

to regional genetic subdivision [210], while geographic isolation by large water bodies between 

West Africa and surrounding islands (e.g., Madagascar, Reunion, Mauritius) promotes more 

pronounced genetic differentiation [211]. 

 

Understanding the population structure of An. arabiensis is critical not only for evolutionary 

biology but also for malaria control planning. Patterns of gene flow influence how interventions 

in one region may affect populations elsewhere. Genomic data can be used to identify loci 

under selection, inform resistance spread, and predict the spread of gene drive. However, the 

presence of structural variants like chromosomal inversions can limit the uniform effectiveness 

of such interventions, necessitating population-specific designs [212]. Genomic surveillance 

also offers early detection of resistance evolution potentially before phenotypic failure is 

observed. For instance, Seck et al. (2025) [213] documented significant population structure 

and reduced genetic diversity in vector competence loci in An. gambiae s.l, across 19 countries, 

highlighting the need for context-sensitive, genomically informed vector control strategies. As 
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An. arabiensis continues to expand across ecologically diverse landscapes, integrating 

population genetic insights with ecological surveillance will be essential for designing 

sustainable, precision-targeted vector control strategies that remain robust in the face of 

environmental change and evolutionary adaptation. 

 

5. 2 Results 

 

5.2.1 Variant Calling, Filtering, and Genotype Imputation 

After quality control, 59 of the 62 ANOSPP amplicon targets were retained, excluding three 

that were consistently missing or poorly amplified across specimens. Across these 59 targets, 

the concatenated callable base-pair sites comprised 9,473 base-pair sites for all 1,425 

specimens. Within this sequence, 1,394 sites (14.7%) were polymorphic, the majority of which 

(1,362; 97.7%) were biallelic, while 32 sites (2.3%) exhibited more than two alleles. To enable 

population-genomic analyses, a biallelic genotype matrix was constructed from the filtered 

variant dataset. This ensured a standardized representation of genetic variation across samples 

and reduced noise from poorly resolved sites. A ≤10% per-site missingness filter was applied, 

retaining 8,796 positions and reducing overall missingness to 0.66%. Monomorphic sites 

(invariant sites across the specimens) were subsequently excluded, producing 1,271 biallelic 

polymorphic loci in the final dataset. Remaining missing genotypes were imputed using the 

MissForest [135] random-forest algorithm (out-of-bag NRMSE = 0.38), yielding a complete 

1,425 × 1,271 genotype matrix. This matrix served as the foundation for downstream analyses 

including PCA, DAPC, FST estimation, and spatial-genetic modelling. 

 

5.2.2 Genetic Clustering and Population Structure at the Country Level 

 

5.2.2.1 PCA and DAPC at the Country Level 

Principal component analysis (PCA) revealed no geographic population structure across 

Tanzania. Along PC1 (6% variance explained), the only visible pattern was the presence of 

three parallel bands, a configuration that is characteristic of segregating chromosomal 

inversions, rather than discrete population clusters. PC2 (3.87%) showed no spatial separation 

among districts (Figure 24A). To identify the genomic basis of this signal, loci were ranked by 

their squared loadings on PC1. A single amplicon, target 17, accounted for >90% of the 

variance. Because target 17 lies within the well-characterized 2Rb inversion region in An. 
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arabiensis and is adjacent to target 18 (also within 2Rb), both targets were removed. After their 

exclusion, the banded pattern persisted (Figure 24C). 

 

A second loading screen revealed that targets 11 and 46 now contributed >90% of the 

remaining signal. Target 46 lies within the 3Ra inversion region; therefore, all 3Ra-associated 

amplicons (targets 46–50) were removed to test whether this inversion alone explained the 

structure. However, the PCA pattern still remained as in in figure Figure 24C. At this point, 

target 11 emerged as the dominant contributor (>90%) to the signal. When target 11 was 

removed, together with all 2Rb and 3Ra loci, the banding collapsed entirely, and no structure 

remained (Figure 24E).  

 

When examined in isolation, the 3Ra-linked targets produced only a weak and diffuse pattern, 

consistent with the low frequency of the 3Ra inversion previously documented in Tanzanian 

An. arabiensis populations, about 2% in the cytogenetic survey of Mnzava & Di Deco (1990) 

conducted across several locations [214] and 8–17% in the Kilombero Valley reported by Main 

et al. (2016) (~8–17%)[215]. In contrast, 2Rb-linked targets generated a strong signal, in line 

with the consistently high frequencies of the 2Rb inversion reported in the same studies (~55% 

across several Tanzanian locations and >80% in the Kilombero Valley)[214,215].  

 

Target 11 lies upstream of, but not within the 2La inversion, which is fixed in An. arabiensis. 

The strong loading of target 11 remains unexplained; it may reflect either residual influence 

from the nearby 2La region (which is unexpected) or a previously uncharacterized local 

structural polymorphism. Resolving this would require higher-resolution approaches and is 

beyond the scope of the present study. 

 

This absence of geographic structure was confirmed using a supervised method. Discriminant 

Analysis of Principal Components (DAPC), using district as a grouping factor and retaining 45 

PCs (selected via cross-validation and a-score optimization), also showed no evidence of 

clustering (Figure 24B, D, F). 

 

Together, these results indicate high genetic connectivity and weak spatial differentiation of 

An. arabiensis across Tanzania, in agreement with previous findings from Tanzania[87,88].  
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Figure 24. Population structure of Anopheles arabiensis across Tanzania inferred from 

PCA and DAPC. (A) PCA of all polymorphic biallelic sites shows three parallel bands along 

PC1, a pattern characteristic of segregating chromosomal inversions rather than discrete 

population clusters. (B) DAPC using district as the grouping factor shows no evidence of 

geographic clustering. (C) PCA after removing 2Rb-associated targets 17 and 18 retains the 

same banded pattern observed in (A). (D) The corresponding DAPC still shows no clustering 

by district. (E) PCA after additionally removing target 11 and all 3Ra and 2Rb associated 

targets causes the banding pattern to collapse, leaving no residual structure. (F) DAPC on this 

final filtered dataset likewise shows no detectable clustering, consistent with very weak 

population structure across Tanzania. 
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5.2.3 Genetic Differentiation at the Country Level 

Generally, the genetic differentiation was relatively low across all sampled areas. Overall 

genetic differentiation across districts was low (FST, 0.0049). Pairwise FST values were 

generally low (0 to 0.016), with most comparisons showing non-significant differentiation after 

bootstrapping (Figure 25).  

 
Figure 25. District-level pairwise FST heatmap. District colours on the map denote 

administrative zones. The heatmap shows uniformly low genetic differentiation among 

Anopheles arabiensis populations (FST = 0–0.016; white to dark blue). Hierarchical clustering 

reveals no strong district-level structure, consistent with high gene flow and weak population 

differentiation across Tanzania. 

 

5.2.4 Isolation by Distance at the Country Level  

To examine isolation by distance (IBD), Rousset’s genetic distance (a = FST/(1–FST)) was used 

with local populations defined at a 1 km radius, consistent with the typical reported dispersal 

range of An. arabiensis [110,216]. Because the IBD relationship is known to be reliable only 

within an intermediate spatial band and becomes diluted by broad-scale heterogeneity and rare 

long-distance migration, we restricted analyses to pairs separated by ≤100 km. This distance 

represents a biologically coherent scale: it is above the species’ average flight range (<1 km) 

yet avoids the confounding influence of broad-scale heterogeneity and windborne migration 

events documented over hundreds of kilometres [217]. Including more distant pairs reduced 

the correlation between genetic and geographic distance, consistent with previous work 

showing that large-scale heterogeneity flattens or obscures local IBD signals [218,219]. Within 

this ≤100 km window, a clear signal of IBD across all samples was found (masked Mantel r = 

0.377, p = 0.003; Figure 26). Ordinary least squares regression of Rousset’s a on log-
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transformed geographic distance gave a slope of 0.0295 (95% CI 0.0225–0.0365), while a 

mixed-effects MLPE model accounting for non-independence of population pairs yielded a 

standardized slope of 0.157 (95% CI 0.070–0.244). Back-transformation to the original scale 

corresponded to an increase of ~0.0123 (95% CI 0.0055 – 0.0191) per unit of log-distance, 

consistent with weak but significant isolation by distance over short to intermediate scales. 

 

 
Figure 26. Isolation by distance pattern in Anopheles arabiensis. Genetic distance 

(Rousset’s a) plotted against log-transformed geographic distance for all sample pairs, with 

populations defined at a 1 km radius. 

 

5.2.5 Continental Patterns of Genetic Structure: Tanzania in Context 

To assess the position of Tanzanian populations of An. arabiensis within the broader 

continental genetic landscape of Africa, ANOSPP datasets from 2,367 specimens collected 

across multiple African countries (representing West, East, and Central Africa, as well as 

Madagascar) were also analysed. The same data processing procedures and analytical methods 

applied to the Tanzanian data (as articulated in section 5.2.1) were used here.  
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5.2.5.1 PCA at the Continental Level 

Principal component analysis (PCA) of the ANOSPP-derived dataset revealed an elongated, 

continuous distribution of genetic variation across the first two axes (Figure 27). No abrupt 

separations were evident among countries or regions. Tanzanian samples overlapped 

extensively with those from Uganda and the Democratic Republic of Congo (DRC), whereas 

Madagascar and West African populations were positioned toward opposite extremes of the 

primary axis of variation.  

 
Figure 27. Population structure of An. arabiensis using PCA across sub-Saharan Africa. 

(A) PCA scores for PC1 vs PC2; each point is an individual colour by country. Percent variance 

explained is indicated on the axes. (B) Sampling map showing collection locations; symbols 

are coloured by country to match panel A. 
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5.2.5.2 DAPC at the Continental Level  

A supervised Discriminant Analysis of Principal Components (DAPC) was performed using 

the adegenet package in R [139], with countries predefined as populations. Seventy principal 

components were retained based on cross-validation, selected to minimize root mean squared 

error and optimize the α-score to prevent overfitting. The analysis revealed three major genetic 

clusters (Figure 28A-B): one corresponding to Madagascar, a second to Eastern Africa 

(Tanzania, Uganda, and the Democratic Republic of Congo), and a third to Western Africa 

(Nigeria, Ghana, Burkina Faso, and Senegal). Visualization of the first three linear 

discriminants in three-dimensional space uncovered additional substructure within Nigeria, 

where a subset of individuals diverged from the broader Western African cluster. Therefore, a 

further focused DAPC restricted to Western Africa confirmed the presence of two genetically 

distinct Nigerian subclusters. The first cluster (West–C1) comprised all populations from 

southern Nigeria along with two northern populations located along major roads. The second 

cluster (West–C2) included the remaining northern Nigerian populations, which grouped with 

individuals from other West African countries (Figure 28C–D). 

 
Figure 28. Population structure of An. arabiensis using DAPC Across Sub-Saharan 

Africa. (A) a DAPC plot showing three major genetic clusters (West African, East African, 

and Madagascar), colour representing the country. (B) A map of Africa depicting the 

geographic locations of these three main clusters where the block colour represents the country, 
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and the dots colour represent the cluster (Main Clusters in legend). (C) A focused DAPC on 

the Western African samples identified two sub-clusters, West–C1(dark blue) and West–C2 

(dark orange). (D) A map showing the geographic distribution of the two western sub-clusters 

(West–C1 and West–C2). 

 

5.2.5.3 Genetic Differentiation at Continental Level 

Pairwise Weir and Cockerham’s FST values indicated generally low genetic differentiation 

across the continent (Figure 29). The highest relative differentiation was observed between 

Madagascar and mainland populations, with FST values reaching up to 0.057. This was 

followed by differentiation between western and eastern African populations. In contrast, 

eastern African populations showed minimal genetic differentiation (FST ≤ 0.013), suggesting 

high levels of gene flow and connectivity within the region. Similarly, western African 

populations exhibited low levels of differentiation, with the lowest observed between Ghana 

and Burkina Faso (FST = 0.002), highlighting substantial genetic homogeneity across this 

subregion. 

 
Figure 29. Pairwise Genetic Differentiation (FST) across Sub-Saharan Africa 

populations. Genetic differentiation was generally low, with the highest values between 

Madagascar and mainland populations (up to 0.057). Minimal differentiation was observed 
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within eastern and western Africa, particularly between Ghana and Burkina Faso (FST = 

0.002). 

 

5.2.5.4 Isolation by Distance at Continental Level  

Given the continuous genetic patterns observed in the PCA, isolation by distance (IBD) was 

evaluated at the continental scale using two complementary approaches. First, individual-level 

structure was assessed using Euclidean distances in DAPC space, showing a strong correlation 

with geographic distance (Mantel r = 0.767, p = 0.0013; Figure 30A). Second, pairwise FST 

values were transformed into Rousset’s a (FST / (1 - FST)), a linearized measure of genetic 

differentiation expected to increase with geographic distance under stepping-stone IBD 

models, which likewise revealed a strong positive correlation between genetic and geographic 

distances (Mantel r = 0.679, p = 0.0061; Figure 30B).Together, these results demonstrate that 

genetic similarity decreases with increasing geographic separation, consistent with a stepping-

stone model of isolation by distance operating across both population and individual scales. 

 

 
 

Figure 30. Isolation by distance across populations. (A) Euclidean genetic distances in 

DAPC space and (B) Rousset’s genetic distance both show significant positive correlations 

with log-transformed geographic distance.  
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5.2.5.5 Isolation by Resistance at Continental Level (Effect of Natural Barrier to Gene 

Flow) 

Given that Madagascar exhibited a relatively high FST compared to other countries, isolation 

by resistance using the ocean as a resistance surface (barrier to gene flow) was tested, while 

controlling for geographic distance. The analysis revealed that oceanic separation was strongly 

associated with Rousset’s genetic distance (Mantel r = 0.689, p = 0.001), and this relationship 

remained significant after controlling for geographic distance (partial Mantel r = 0.443, p = 

0.001). MLPE models supported the influence of oceanic resistance, both without (β = 1.093 

± 0.001, t = 1141.1) and with geographic distance included (β = 1.061 ± 0.001, t = 1222.5), 

explaining a large portion of the variation (marginal R² = 0.598; conditional R² = 0.635). These 

findings indicate that the ocean acts as a major barrier to gene flow between Madagascar and 

the mainland. In continental Africa, the Central African rainforest was evaluated as a potential 

resistance surface. The initial Mantel test showed a positive correlation with genetic distance 

(Mantel r = 0.656, p = 0.011), but this effect decreased and was not statistically significant 

after accounting for geographic distance (partial Mantel r = 0.307, p = 0.172), suggesting 

overlap with spatial structure. In contrast, MLPE models identified separate effects of both 

rainforest resistance (β = 0.897 ± 0.001, t = 1023.3) and geographic distance (β = 1.213 ± 0.001, 

t = 1462.6), together explaining a notable share of genetic variation (marginal R² = 0.573; 

conditional R² = 0.618). This suggests that, although related to spatial distance, rainforest 

resistance independently limits gene flow. 

 

5.2.5.6 Isolation by Environment (Effect of Climate/Environmental Condition to Gene 

Flow) 

Within West Africa, where DAPC revealed population sub-structuring, genetic differentiation 

was low within clusters (FST = 0.0154 in West–C1 and 0.0049 in West–C2) but higher between 

clusters (pairwise FST = 0.0565). Overall genetic differentiation across the region was 0.0167. 

Across the region, genetic distance correlated with geographic distance (Mantel r = 0.452, p = 

0.001), mean diurnal temperature range (MDR) (Mantel r = 0.385, p = 0.001), and precipitation 

(Mantel r = 0.258, p = 0.001). After controlling for geographic distance, both precipitation 

(partial Mantel r = 0.139, p = 0.001) and MDR (partial Mantel r = 0.265, p = 0.001) remained 

significant. MLPE models confirmed independent positive effects of precipitation (β = 0.0158 

± 0.0012, t = 12.69), MDR (β = 0.4514 ± 0.0013, t = 339.25), and geographic distance (β = 

0.4459 ± 0.0012, t = 387.22), explaining a moderate proportion of genetic variation (marginal 

R² = 0.294; conditional R² = 0.359). These results indicate that both precipitation patterns and 
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temperature variability, which are the potent measure of climate, contribute to genetic 

structuring in addition to isolation by distance. 

 

5.6 Discussion 

This study demonstrates that Anopheles arabiensis populations across Tanzania exhibit high 

genetic connectivity, with very weak differentiation among districts. The absence of discrete 

genetic clusters in both PCA and DAPC analyses indicates that populations form a largely 

continuous gene pool, consistent with extensive gene flow across the country. Although overall 

structure was minimal, a scale-dependent isolation-by-distance (IBD) pattern observed: genetic 

distance increased with geographic distance for population pairs separated by up to 100 km, 

but this relationship weakened when more distant pairs were included. Such attenuation is 

expected in heterogeneous landscapes where occasional long-distance dispersal or passive 

movement disrupts fine-scale spatial patterns[217–219]. This pattern aligns with findings from 

Maliti et al. (2014)[87], who similarly reported low overall differentiation in An. arabiensis 

but a detectable IBD signal at local spatial scales. Together, these results support a stepping-

stone model of spatial connectivity, rather than strict panmixia, whereby gene flow is highest 

among neighbouring populations but remains sufficient across broader regions to maintain 

country-wide genetic homogeneity. 

 

At the continental scale, genetic differentiation followed a generally continuous rather than 

fragmented pattern: similarity declined gradually with distance, consistent with isolation by 

distance under a stepping-stone model [87,210]. Superimposed on this background, ecological 

barriers and environmental conditions further structured populations. Oceanic separation 

produced the clearest resistance signal, with Madagascar consistently distinct from mainland 

populations, reflecting the rarity of transoceanic dispersal [211]. The Central African rainforest 

also acted as a resistance barrier, dividing western and eastern populations; while partially 

correlated with distance, mixed-effects models supported an independent contribution [220]. 

In West Africa, differentiation was generally low, but two Nigerian clusters emerged, with 

southern populations diverging from northern Nigeria and neighbouring countries. Climatic 

variables, especially climatic mean diurnal temperature range (MDR) and precipitation, 

remained significantly associated with genetic distance even after controlling for geographical 

distance, implicating isolation by environment [221,222]. By contrast, the East African Rift 

showed no excess differentiation, consistent with An. arabiensis ecology, which favours 
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movement along river valleys, tolerance of varied climates, and human-mediated dispersal 

[87]. 

 

These results align with previous findings that An. arabiensis maintains large effective 

population sizes, broad ecological adaptability, and relatively low regional differentiation 

across southern and eastern Africa, permitting extensive gene flow [87,88,208,209]. Within 

Tanzania, low mean FST values and significant isolation by distance parallel earlier 

observations [87,88]. The present findings, quantify rainforest and oceanic resistance alongside 

distance in a unified framework, and demonstrate that climatic temperature fluctuations and 

rainfall, which are potent measures of climate, independently influence West African 

population structure. Collectively, the evidence suggests that hard barriers such as oceans and 

dense rainforest shape gene flow in some regions, while climatic variation filters genetic 

connectivity in others [88,223]. 

 

The low genetic differentiation observed across much of Africa highlights extensive 

connectivity among An. arabiensis populations, implying that adaptive alleles, such as those 

linked to insecticide resistance or host-seeking behaviour, can spread readily across regions. 

This underscores the need for regional coordination in surveillance and intervention planning. 

At the same time, isolation-by-resistance signals, such as the ocean around Madagascar and 

the Central African rainforest, demonstrate that ecological barriers can constrain gene flow, 

creating potential refugia for susceptible populations or limiting the spread of adaptive variants. 

For malaria control, this means large-scale programs must anticipate the rapid dissemination 

of adaptive traits, while fine-scale genomic architecture and ecological barriers may modulate 

intervention effectiveness, including, but not limited to the use of genetically modified 

mosquitoes. 

 

The results presented here highlight the broader value of the ANOSPP panel beyond its initial 

role in mosquito species identification [96–98]. By revealing both continental-scale 

connectivity and local genomic structuring in An. arabiensis, the panel demonstrates sufficient 

resolution to capture processes that are central to malaria control, such as the potential for 

spread of adaptive alleles, ecological barriers to gene flow, and signatures of inversions. 

Importantly, this was achieved at much lower cost compared to whole-genome sequencing, 

making ANOSPP a practical option for national programs and cross-border surveillance 

efforts. Adoption of the ANOSPP panel could therefore accelerate the integration of genomic 
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data into malaria vector control strategies, enabling public health stakeholders to monitor 

species distribution, assess the potential impact of ecological barriers, and evaluate the 

population-genetic context for emerging interventions such as genetically modified 

mosquitoes. In addition to its utility for routine surveillance, the ANOSPP panel can act as a 

genomic “search engine,” highlighting populations or genomic regions where deeper 

investigation is warranted. For example, localized signals of isolation by environment, or 

elevated differentiation between island and mainland populations can flag candidate targets for 

follow-up using whole-genome sequencing or ecological and behavioural assays. This tiered 

approach allows malaria control programs and researchers to allocate resources efficiently 

using ANOSPP to scan broadly for signals of divergence, then focusing advanced methods on 

the most biologically and operationally relevant cases. 

 

This study is not without limitations. Although missing data were minimized through stringent 

site filtering, some genotypes required imputation to ensure full specimen representation across 

loci. Comparative evaluation of zero, mean, and random-forest (missForest)[135] imputation 

methods showed consistent clustering and ordination structures, indicating that imputation did 

not introduce artificial genetic patterns. Instead, missForest [135] enhanced within-cluster 

coherence and clarified existing population boundaries without altering the underlying 

topology, confirming that the results are robust to the imputation process. 

 

Beyond data completeness, the inherent genomic scope of the amplicon panel also imposes 

limitations. Amplicon-based assays survey only a small fraction of the genome, leaving 

uncharacterized adaptive variants in unlinked regions, soft sweeps, and structural variants 

undetected. Spatial and temporal sampling was uneven, which may constrain our ability to 

quantify barrier strengths or detect subtle temporal shifts, while seasonal variation could bias 

apparent population structure.  
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Chapter Six: Conclusions and Future Work 

 

This thesis provides the first comprehensive genomic and ecological overview of Anopheles 

mosquitos across Tanzania, placing these findings within a wider African context to inform 

malaria control and surveillance. Ecological surveys revealed substantial heterogeneity in 

mosquito community composition, abundance, co-occurrence patterns and parasite 

distributions across districts, underscoring the complexity of transmission dynamics. By 

applying the ANOSPP molecular platform alongside traditional morphology, the study 

demonstrated clear gains in taxonomic resolution, and for the first time in Tanzania, 

Plasmodium caprae in An. arabiensis. These results refine the ecological baseline necessary 

for surveillance and highlight the multifaceted nature of vector–parasite interactions.  

 

Building on these observations, species distribution models integrated climatic and land-cover 

variables to generate high-resolution predictions of habitat suitability for Tanzania’s three 

primary malaria vectors. The resulting maps aligned with known transmission zones while 

revealing species-specific ecological preferences, providing a practical decision-support tool 

for prioritizing interventions. These models demonstrate the value of incorporating ecological 

and environmental data into surveillance, advancing malaria control from coarse, reactive 

approaches to spatially precise and predictive systems. 

 

At the population-genomic level, An. arabiensis in Tanzania showed strong overall 

connectivity with significant isolation by distance at the country scale, reflecting widespread 

gene flow over tens of kilometres. When extended to the continental scale, patterns reflected 

both geographic and ecological barriers: Madagascar was sharply separated from the mainland 

by oceanic isolation, while the Central African rainforest divided eastern and western 

populations, with additional substructure in West Africa associated with climatic gradients. 

These results reveal a layered reality in which broad connectivity facilitates cohesion across 

landscapes, while localized genomic architecture preserves ecological adaptation. 

 

The implications for malaria control are significant. Extensive connectivity suggests that 

adaptive alleles such as those linked to insecticide resistance could spread rapidly across 

regions, underscoring the need for coordinated, cross-border surveillance and intervention 

planning. Looking to the future, the same connectivity that allows natural adaptive alleles to 
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spread could also accelerate the dispersal of engineered constructs, such as gene drive, should 

genetically modified mosquitoes be released, highlighting the necessity of regional governance 

and monitoring frameworks. This study also demonstrates the value of ANOSPP as a scalable 

genomic surveillance tool. Beyond species identification, the platform can function as a “search 

engine,” pinpointing populations, genomic regions, or ecological contexts that warrant deeper 

exploration with whole-genome sequencing or functional assays. Its cost-effectiveness and 

ability to capture both ecological and genetic signals make it a strong candidate for routine 

surveillance programs. 

 

Limitations of this study should be acknowledged. The data represent a temporal snapshot, 

limiting inference about seasonal turnover and long-term dynamics. The ANOSPP amplicon 

panel, while efficient, provides extremely limited genomic coverage compared to whole-

genome approaches, restricting resolution of signals. Sampling gaps, particularly in West 

Africa, constrain the generalizability of continental patterns. Species distribution models also 

carry inherent uncertainties due to environmental predictor resolution and model assumptions. 

These constraints shape interpretation and inform priorities for future research. Future work 

should therefore prioritize increasing temporal resolution to capture seasonal and interannual 

dynamics of connectivity, adaptation, and turnover. Long-read sequencing and targeted assays 

will be crucial for mapping inversion breakpoints and monitoring their field frequencies. 

Denser sampling across ecological transitions, would help disentangle demographic from 

environmental drivers of structure. Integration of genomic data with ecological surveys and 

movement networks offers a powerful pathway to forecast resistance spread and optimize 

sentinel site placement, ensuring surveillance systems are adaptive and anticipatory. 

 

By integrating ecological surveys, predictive spatial modelling, and genomic analysis, this 

thesis advances a multi-layered framework for malaria vector surveillance in Tanzania and 

beyond. It shows that ANOSPP can replicate and extend established insights into An. 

arabiensis while uncovering new dimensions of connectivity, local structuring, and parasite 

associations. The findings emphasize that effective malaria control requires attention to both 

broad-scale connectivity and fine-scale variation, moving surveillance from reactive 

monitoring to predictive, integrated systems. This contribution strengthens the scientific 

foundation for precise, efficient, and adaptive vector control, supporting the long-term goal of 

malaria elimination. 

 



 88 

References 

 

1. World Health Organization. World malaria report 2023 [Internet]. Geneva, Switzerland: 

World Health Organization; 2023 Nov. Available from: https://cdn.who.int/media/docs 

/default-source/malaria/world-malaria-reports/world-malaria-report-2023.pdf 

 

2. Bakken L, Iversen PO. The impact of malaria during pregnancy on low birth weight in East-

Africa: a topical review. Malaria Journal [Internet]. 2021;20:1–9. Available from: 

https://doi.org/10.1186/s12936-021-03883-z 

 

3. Chua CLL, Khoo SKM, Ong JLE, Ramireddi GK, Yeo TW, Teo A. Malaria in pregnancy: 

From placental infection to its abnormal development and damage. Front Microbiol [Internet]. 

2021;12:777343. Available from: http://dx.doi.org/10.3389/fmicb.2021.777343 

 

4. Garrison A, Boivin MJ, Fiévet N, Zoumenou R, Alao JM, Massougbodji A, et al. The effects 

of malaria in pregnancy on neurocognitive development in children at 1 and 6 years of age in 

Benin: A prospective mother-child cohort. Clin Infect Dis [Internet]. 2022;74:766–75. 

Available from: https://pubmed.ncbi.nlm.nih.gov/34297062/ 

 

5. Schantz-Dunn J, Nour NM. Malaria and pregnancy: a global health perspective. Rev Obstet 

Gynecol [Internet]. 2009;2:186–92. Available from: https://pmc.ncbi.nlm.nih.gov 

/articles/PMC2760896/ 

 

6. Ashley EA, Phyo AP. Drugs in development for malaria. Drugs [Internet]. 2018;78:861–79. 

Available from: http://dx.doi.org/10.1007/s40265-018-0911-9 

 

7. Flegg JA, Kandanaarachchi S, Guerin PJ, Dondorp AM, Nosten FH, Otienoburu SD, et al. 

Spatio-temporal spread of artemisinin resistance in Southeast Asia. PLoS Comput Biol 

[Internet]. 2024;20:e1012017. Available from: https://scholar.google.com/citations? 

view_op=view_citation&hl=en&citation_for_view=peoal7wAAAAJ:yaBp1wUtcLsC 

 

8. Plewes K, Leopold SJ, Kingston HWF, Dondorp AM. Malaria: What’s new in the 

management of malaria? Infect Dis Clin North Am [Internet]. 2019;33:39–60. Available from: 



 89 

https://www.sciencedirect.com/science/article/pii/S0891552018300898 

 

9. Uwimana A, Umulisa N, Venkatesan M, Svigel SS, Zhou Z, Munyaneza T, et al. Association 

of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in 

Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect Dis 

[Internet]. 2021;21:1120–8. Available from: http://dx.doi.org/10.1016/S1473-3099(21)00142-

0 

 

10. Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of 

the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic 

study. Lancet Infect Dis [Internet]. 2018;18:337–45. Available from: https://www. 

thelancet.com/journals/laninf/article/PIIS1473-3099(18)30068-9/fulltext 

 

11. Amato A, Miotto O, Woodrow C, Almagro-Garcia J, Sinha I, Campino S, et al. Genomic 

epidemiology of artemisinin resistant malaria. Elife [Internet]. 2016;5. Available from: 

https://riip.hal.science/pasteur-01971950/ 

 

12. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular 

marker of artemisinin-resistant Plasmodium falciparum malaria. Nature [Internet]. 

2014;505:50–5. Available from: http://dx.doi.org/10.1038/nature12876 

 

13. Ariey F. Relevance of K13 mutations for malaria control and elimination program. Malar 

J [Internet]. 2014;13:O40. Available from: http://dx.doi.org/10.1186/1475-2875-13-s1-o40 

 

14. Hodoameda P, Duah-Quashie NO, Quashie NB. Assessing the roles of molecular markers 

of antimalarial drug resistance and the host pharmacogenetics in drug-resistant malaria. J Trop 

Med [Internet]. 2022;2022:3492696. Available from: http://dx.doi.org/10.1155/2022/3492696 

 

15. Hodoameda P. P. Falciparum and its molecular markers of resistance to antimalarial drugs. 

In: Tyagi RK, editor. Plasmodium Species and Drug Resistance [Internet]. IntechOpen; 2021. 

Available from: https://www.intechopen.com/chapters/77461 

 

16. Mihreteab S, Anderson K, Pasay C, Smith D, Gatton ML, Cunningham J, et al. 

Epidemiology of mutant Plasmodium falciparum parasites lacking histidine-rich protein 2/3 



 90 

genes in Eritrea 2 years after switching from HRP2-based RDTs. Sci Rep [Internet]. 

2021;11:21082. Available from: https://www.nature.com/articles/s41598-021-00714-8 

 

17. Kong A, Wilson SA, Ah Y, Nace D, Rogier E, Aidoo M. HRP2 and HRP3 cross-reactivity 

and implications for HRP2-based RDT use in regions with Plasmodium falciparum hrp2 gene 

deletions. Malar J [Internet]. 2021;20:207. Available from: http://dx.doi.org/10.1186/s12936-

021-03739-6 

 

18. Gatton ML, Smith D, Pasay C, Anderson K, Mihreteab S, Valdivia HO, et al. Comparison 

of prevalence estimates of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum determined 

by conventional PCR and multiplex qPCR and implications for surveillance and monitoring. 

Int J Infect Dis [Internet]. 2024;144:107061. Available from: https://www.sciencedirect.com/ 

science/article/pii/S1201971224001322 

 

19. Rogier E, Battle N, Bakari C, Seth M, Nace D, Herman C, et al. Plasmodium falciparum 

pfhrp2 and pfhrp3 gene deletions among patients enrolled at 100 health facilities throughout 

Tanzania: February to July 2021. Scientific Reports [Internet]. 2023;14. Available from: 

https://www.nature.com/articles/s41598-024-58455-3 

 

20. Ngasala B, Chacky F, Mohamed A, Molteni F, Nyinondi S, Kabula B, et al. Evaluation of 

malaria rapid diagnostic test performance and pfhrp2 deletion in Tanzania school surveys, 

2017. Am J Trop Med Hyg [Internet]. 2024;110:887–91. Available from: https://pmc. 

ncbi.nlm.nih.gov/articles/PMC11066367/ 

 

21. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid 

resistance on the efficacy and effectiveness of bednets for malaria control in Africa. Elife 

[Internet]. 2016;5:1–26. Available from: http://dx.doi.org/10.7554/eLife.16090 

 

22. Ranson H, Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A 

Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol 

[Internet]. 2016;32:187–96. Available from: http://dx.doi.org/10.1016/j.pt.2015.11.010 

 

23. Corbel V, N’Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, et al. Multiple 

insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from 



 91 

Benin, West Africa. Acta Tropica [Internet]. 2007;101:207–16. Available from: 

http://dx.doi.org/10.1016/j.actatropica.2007.01.005 

 

24. Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WC IV. Does 

kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends in Parasitology 

[Internet]. 2009;25:213–9. Available from: http://dx.doi.org/10.1016/j.pt.2009.02.007 

 

25. Govella NJ, Chaki PP, Killeen GF. Entomological surveillance of behavioural resilience 

and resistance in residual malaria vector populations. Malar J [Internet]. 2013;12:1–9. 

Available from: http://dx.doi.org/10.1186/1475-2875-12-124 

 

26. Govella NJ, Ferguson H. Why use of interventions targeting outdoor biting mosquitoes will 

be necessary to achieve malaria elimination. Front Physiol [Internet]. 2012;3 JUN:1–5. 

Available from: http://dx.doi.org/10.3389/fphys.2012.00199 

 

27. Ibrahim SS, Ndula M, Riveron JM, Irving H, Wondji CS. The P450 CYP6Z1 confers 

carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel 

carbamate-insensitive N485I acetylcholinesterase-1 mutation. Molecular ecology [Internet]. 

2016;25:3436–52. Available from: http://dx.doi.org/10.1111/mec.13673 

 

28. Ibrahim SS, Muhammad A, Hearn J, Weedall GD, Nagi SC, Mukhtar MM, et al. Molecular 

drivers of insecticide resistance in the Sahelo ‑ Sudanian populations of a major malaria vector 

Anopheles coluzzii. BMC Biol [Internet]. 2023;1–24. Available from: https://doi.org 

/10.1186/s12915-023-01610-5 

 

29. Ingham VA, Wagstaff S, Ranson H. Transcriptomic meta-signatures identified in 

Anopheles gambiae populations reveal previously undetected insecticide resistance 

mechanisms. Nat Commun [Internet]. 2018;9. Available from: http://dx.doi.org/ 

10.1038/s41467-018-07615-x 

 

30. Liu N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. 

Annual Review of Entomology [Internet]. 2015. p. 537–59. Available from: 

http://dx.doi.org/10.1146/annurev-ento-010814-020828 

 



 92 

31. Mmbaga AT, Lwetoijera DW. Current and future opportunities of autodissemination of 

pyriproxyfen approach for malaria vector control in urban and rural Africa. Wellcome Open 

Res [Internet]. 2023;8:119. Available from: http://dx.doi.org/10.12688/well comeopenres. 

19131.2 

 

32. Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, et al. 

Ecology: a prerequisite for malaria elimination and eradication. PLoS Med [Internet]. 

2010;7:e1000303. Available from: https://journals.plos.org/plosmedicine/article? id=10.1371/ 

journal.pmed.1000303 

 

33. World Health Organisation. Handbook for Integrated Vector Management [Internet]. 

World Health Organisation; 2012. Available from: https://www.ivcc.com/wp-content/uploads 

/2019/07/Handbook-for-Integrated-Vector-Management.pdf 

 

34. Coulibaly MB, Traoré SF, Touré YT. Considerations for Disrupting Malaria Transmission 

in Africa Using Genetically Modified Mosquitoes, Ecology of Anopheline Disease Vectors, 

and Current Methods of Control. Genetic Control of Malaria and Dengue [Internet]. 2016;55–

67. Available from: http://dx.doi.org/10.1016/B978-0-12-800246-9.00003-X 

 

35. Okumu F, Gyapong M, Casamitjana N, Castro MC, Itoe MA, Okonofua F, et al. What 

Africa can do to accelerate and sustain progress against malaria. PLOS Glob Public Health 

[Internet]. 2022;2:e0000262. Available from: http://dx.doi.org/10.1371/journal.pgph.0000262 

 

36. Stanton MC, Kalonde P, Zembere K, Hoek Spaans R, Jones CM. The application of drones 

for mosquito larval habitat identification in rural environments: a practical approach for malaria 

control? Malar J [Internet]. 2021;20:244. Available from: http://dx.doi.org/10.1186/s12936-

021-03759-2 

 

37. Hardy A, Haji K, Abbas F, Hassan J, Ali A, Yussuf Y, et al. Cost and quality of operational 

larviciding using drones and smartphone technology. Malar J [Internet]. 2023 [cited 2025 July 

31];22:286. Available from: http://dx.doi.org/10.1186/s12936-023-04713-0 

 

38. Carrasco-Escobar G, Manrique E, Ruiz-Cabrejos J, Saavedra M, Alava F, Bickersmith S, 

et al. High-accuracy detection of malaria vector larval habitats using drone-based multispectral 



 93 

imagery. PLoS Negl Trop Dis [Internet]. 2019;13:e0007105. Available from: 

https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007105 

 

39. Hardy A, Oakes G, Hassan J, Yussuf Y. Improved use of drone imagery for malaria vector 

control through Technology-assisted digitizing (TAD). Remote Sens (Basel) [Internet]. 

2022;14:317. Available from: https://www.mdpi.com/2072-4292/14/2/317 

 

40. Herren JK, Mbaisi L, Mararo E, Makhulu EE, Mobegi VA, Butungi H, et al. A 

microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis 

mosquitoes. Nat Commun [Internet]. 2020;11:2187. Available from: https://www.nature.com 

/articles/s41467-020-16121-y 

 

41. Bukhari T, Pevsner R, Herren JK. Microsporidia: a promising vector control tool for 

residual malaria transmission. Front Trop Dis [Internet]. 2022;3. Available from: 

http://dx.doi.org/10.3389/fitd.2022.957109 

 

42. Jain H, Sinha AK. Modeling the effect of Wolbachia to control malaria transmission. Expert 

Syst Appl [Internet]. 2023;221:119769. Available from: https://www.sciencedirect. com 

/science/article/pii/S0957417423002701 

 

43. Vandana V, Dong S, Sheth T, Sun Q, Wen H, Maldonado A, et al. Wolbachia infection-

responsive immune genes suppress Plasmodium falciparum infection in Anopheles stephensi. 

PLoS Pathog [Internet]. 2024;20:e1012145. Available from: https://journals.plos.org/ 

plospathogens/article?id=10.1371/journal.ppat.1012145 

 

44. Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and 

mosquito vectorial capacity: rich potential for discovery and translation. Microbiome 

[Internet]. 2021;9:111. Available from: http://dx.doi.org/10.1186/s40168-021-01073-2 

 

45. Harbach RE, Kitching IJ. The phylogeny of Anophelinae revisited: inferences about the 

origin and classification of Anopheles (Diptera: Culicidae). Zool Scr [Internet]. 2016;45:34–

47. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/zsc.12137 

 

46. Marinotti O, Cerqueira GC, de Almeida LGP, Ferro MIT, Loreto EL da S, Zaha A, et al. 



 94 

The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 

[Internet]. 2013;41:7387–400. Available from: http://dx.doi.org/10.1093/nar/gkt484 

 

47. Anopheles gambiae 1000 Genomes Consortium. Genetic diversity of the African malaria 

vector Anopheles gambiae. Nature [Internet]. 2017;552:96–100. Available from: https:// 

www.nature.com/articles/nature24995 

 

48. White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez M-G, Ghani AC. Modelling 

the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit 

Vectors [Internet]. 2011;4:153. Available from: http://dx.doi.org/10.1186/1756-3305-4-153 

 

49. Coetzee M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). 

Malar J [Internet]. 2020;19:70. Available from: http://dx.doi.org/10.1186/s12936-020-3144-9 

 

50. Gillies. M, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara 

(Afrotropical Region). 1987 

 

51. Rattanarithikul R, Panthusiri P. Illustrated keys to the medically important mosquitos of 

Thailand. Southeast Asian J Trop Med Public Health [Internet]. 1994;25 Suppl 1:1–66. 

Available from: https://www.ncbi.nlm.nih.gov/pubmed/7831585 

 

52. Cohuet A, Simard F, Toto J-C, Kengne P, Coetzee M, Fontenille D. Species identification 

within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new 

species. Am J Trop Med Hyg [Internet]. 2003;69:200–5. Available from: http:// 

dx.doi.org/10.4269/ajtmh.2003.69.200 

 

53. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles 

gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg [Internet]. 

1993;49:520–9. Available from: http://dx.doi.org/10.4269/ajtmh.1993.49.520 

 

54. Fanello C, Santolamazza F, della Torre A. Simultaneous identification of species and 

molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol 

[Internet]. 2002;16:461–4. Available from: http://dx.doi.org/10.1046/j.1365-2915.2002 

.00393.x 



 95 

55. Wilkins EE, Howell PI, Benedict MQ. IMP PCR primers detect single nucleotide 

polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, 

and resistance to dieldrin in Anopheles arabiensis. Malar J [Internet]. 2006;5:125. Available 

from: http://dx.doi.org/10.1186/1475-2875-5-125 

 

56. Erlank E, Koekemoer LL, Coetzee M. The importance of morphological identification of 

African anopheline mosquitoes (Diptera: Culicidae) for malaria control programmes. Malar J 

[Internet]. 2018;17:43. Available from: http://dx.doi.org/10.1186/s12936-018-2189-5 

 

57. Ayala D, Goff GL, Robert V, de Jong P, Takken W. Population structure of the malaria 

vector Anopheles funestus (Diptera: Culicidae) in Madagascar and Comoros. Acta Trop 

[Internet]. 2006;97:292–300. Available from: http://dx.doi.org/10.1016/j. actatropica. 

2005.12.002 

 

58. Sallum MAM, Bergo ES, Flores DC, Forattini OP. Systematic studies on Anopheles 

galvaoi Causey, Deane & Deane from the subgenus Nysssorhynchus blanchard (Diptera: 

Culicidae). Mem Inst Oswaldo Cruz [Internet]. 2002;97:1177–89. Available from: 

http://dx.doi.org/10.1590/s0074-02762002000800020 

 

59. Stevenson J, St Laurent B, Lobo NF, Cooke MK, Kahindi SC, Oriango RM, et al. Novel 

vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis [Internet]. 

2012;18:1547–9. Available from: http://dx.doi.org/10.3201/eid1809.120283 

 

60. Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, et al. 

Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: 

evidence from multilocus DNA sequence variation. Proc Natl Acad Sci U S A [Internet]. 

2003;100:10818–23. Available from: http://dx.doi.org/10.1073/pnas.1434337100 

 

61. Lemmon AR, Emme SA, Lemmon EM. Anchored hybrid enrichment for massively high-

throughput phylogenomics. Syst Biol [Internet]. 2012;61:727–44. Available from: 

http://dx.doi.org/10.1093/sysbio/sys049 

 

62. Ministry of Health (MoH) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], 

National Bureau of Statistics (NBS), Office of the Chief Government Statistician (OCGS), and 



 96 

ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey 2022 Key 

Indicators Report. 2022. Report No.: 1. 

 

63. NATIONAL MALARIA CONTROL PROGRAMME. The 2021 School Malaria and 

Nutrition Survey (SMNS) Report. MINISTRY OF HEALTH; 2022 July. Report No.: 1. 

 

64. Mapua SA, Samb B, Nambunga IH, Mkandawile G, Bwanaly H, Kaindoa EW, et al. 

Entomological survey of sibling species in the Anopheles funestus group in Tanzania confirms 

the role of Anopheles parensis as a secondary malaria vector. Parasit Vectors [Internet]. 

2024;17:261. Available from: http://dx.doi.org/10.1186/s13071-024-06348-9 

 

65. Mwalimu CD, Kiware S, Nshama R, Derua Y, Machafuko P, Gitanya P, et al. Dynamics 

of malaria vector composition and Plasmodium falciparum infection in mainland Tanzania: 

2017-2021 data from the national malaria vector entomological surveillance. Malar J [Internet]. 

2024;23:29. Available from: http://dx.doi.org/10.1186/s12936-024-04849-7 

 

66. Wilkes TJ, Matola YG, Charlwood JD. Anopheles rivulorum, a vector of human malaria in 

Africa. Med Vet Entomol [Internet]. 1996;10:108–10. Available from: http://dx.doi.org/ 

10.1111/j.1365-2915.1996.tb00092.x 

 

67. Gillies MT. The role of secondary vectors of malaria in North-East Tanganyika. Trans R 

Soc Trop Med Hyg [Internet]. 1964;58:154–8. Available from: https://academic.oup.com 

/trstmh/article-lookup/doi/10.1016/0035-9203(64)90004-5 

 

68. Temu EA, Minjas JN, Tuno N, Kawada H, Takagi M. Identification of four members of 

the Anopheles funestus (Diptera: Culicidae) group and their role in Plasmodium falciparum 

transmission in Bagamoyo coastal Tanzania. Acta Trop [Internet]. 2007 [cited 2025 May 

30];102:119–25. Available from: http://dx.doi.org/10.1016/j.actatropica.2007.04.009 

 

69. Kopya E, Ndo C, Djamouko-Djonkam L, Nkahe L, Awono-Ambene P, Njiokou F, et al. 

Anopheles leesoni Evans 1931, a Member of the Anopheles funestus Group, Is a Potential 

Malaria Vector in Cameroon. Adv Entomol [Internet]. 2022;10:99–109. Available from: 

http://dx.doi.org/10.4236/ae.2022.101008 

 



 97 

70. Antonio-Nkondjio C, Kerah CH, Simard F, Awono-Ambene P, Chouaibou M, Tchuinkam 

T, et al. Complexity malaria vector- ial system Cameroon: contribution secondary vectors 

malaria transmission. J Med Entomol. 2006;43:1215–21. 

 

71. Mwangangi JM, Muturi EJ, Muriu SM, Nzovu J, Midega JT, Mbogo C. The role of 

Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in 

Taveta District, Kenya. Parasit Vectors [Internet]. 2013;6:114. Available from: 

http://dx.doi.org/10.1186/1756-3305-6-114 

 

72. Nepomichene TNJJ, Tata E, Boyer S. Malaria case in Madagascar, probable implication of 

a new vector, Anopheles coustani. Malar J [Internet]. 2015;14:475. Available from: 

http://dx.doi.org/10.1186/s12936-015-1004-9 

 

73. Tedrow RE, Rakotomanga T, Nepomichene T, Howes RE, Ratovonjato J, Ratsimbasoa 

AC, et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding 

behavior and Plasmodium infection. PLoS Negl Trop Dis [Internet]. 2019;13:1–21. Available 

from: http://dx.doi.org/10.1371/journal.pntd.0007176 

 

74. Andrianinarivomanana TM, Randrianaivo FT, Andriamiarimanana MR, Razafimamonjy 

MR, Velonirina HJS, Puchot N, et al. Colonization of Anopheles coustani, a neglected malaria 

vector in Madagascar. Parasite [Internet]. 2024;31:31. Available from: https://pmc.ncbi 

.nlm.nih.gov/articles/PMC11186460/ 

 

75. Goupeyou-Youmsi J, Rakotondranaivo T, Puchot N, Peterson I, Girod R, Vigan-Womas I, 

et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the 

transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages 

of Madagascar. Parasit Vectors [Internet]. 2020;13:430. Available from: https://parasites 

andvectors.biomedcentral.com/articles/10.1186/s13071-020-04282-0 

 

76. Sendor R, Mitchell CL, Chacky F, Mohamed A, Mhamilawa LE, Molteni F, et al. Similar 

Prevalence of Plasmodium falciparum and Non–P. falciparum Malaria Infections among 

Schoolchildren, Tanzania. Emerging Infectious Diseases [Internet]. 2023;29:1143–53. 

Available from: https://doi.org/10.3201/eid2906.221016 

 



 98 

77. Walter Reed Biosystematics Unit (WRBU) | Smithsonian Institution. Mosquitoes 

[Internet]. Walter Reed Biosystematics Unit (WRBU) | Smithsonian Institution. 2021 [cited 

2024 Oct 30]. Available from: https://tinyurl.com/yzvfp76e 

 

78. Takola E, Schielzeth H. Hutchinson’s ecological niche for individuals. Biol Philos 

[Internet]. 2022;37. Available from: http://dx.doi.org/10.1007/s10539-022-09849-y 

 

79. Chase JM. Ecological niche theory. 2011; Available from: http://dx.doi.org/10.7208 

/9780226736877-006 

 

80. Morrow KH. Niches and niche models. Br J Philos Sci [Internet]. 2024; Available from: 

http://dx.doi.org/10.1086/730329 

 

81. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al. The 

dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: 

occurrence data, distribution maps and bionomic précis. Parasit Vectors [Internet]. 2010;3:117. 

Available from: http://dx.doi.org/10.1186/1756-3305-3-117 

 

82. Sendor R, Mitchell C, Chacky F, Mohamed A, Mhamilawa LE, Molteni F, et al. LOW 

PREVALENCE OF PLASMODIUM MALARIAE AND P. VIVAX, AND HIGH 

PREVALENCE OF P. OVALE DETECTED AMONG TANZANIAN SCHOOL CHILDREN 

WITHIN THE 2017 SCHOOL MALARIA PARASITEMIA SURVEY …. 2021;105:73–73. 

Available from: https://scholar.google.com/citations?view_op=view_citation&hl=en&citation 

_for_view=qLxBXeoAAAAJ:e5wmG9Sq2KIC 

 

83. Kotepui M, Kotepui KU, De Jesus Milanez G, Masangkay FR. Plasmodium spp. mixed 

infection leading to severe malaria: a systematic review and meta-analysis. Sci Rep [Internet]. 

2020;10:11068. Available from: http://dx.doi.org/10.1038/s41598-020-68082-3 

 

84. Vythilingam I, Jeyaprakasam NK. Deforestation and non-human primate malarias will be 

a threat to malaria elimination in the future: Insights from Southeast Asia. Acta Trop [Internet]. 

2024;257:107280. Available from: http://dx.doi.org/10.1016/j.actatropica.2024.107280 

 

85. Odero JO, Nambunga IH, Bwanary H, Mkandawile G, Paliga JM, Mapua SA, et al. Distinct 



 99 

genetic populations and resistance backgrounds of the malaria vectoranopheles funestus in 

Tanzania [Internet]. bioRxiv. 2025. p. 2025.01. 21.634154. Available from: 

https://www.biorxiv.org/content/10.1101/2025.01.21.634154.abstract 

 

86. Ng’habi KR, Knols BGJ, Lee Y, Ferguson HM, Lanzaro GC. Population genetic structure 

of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern 

Tanzania. Malar J [Internet]. 2011;10:289. Available from: http://dx.doi.org/10.1186/1475-

2875-10-289 

 

87. Maliti D, Ranson H, Magesa S, Kisinza W, Mcha J, Haji K, et al. Islands and stepping-

stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles 

arabiensis in Tanzania and implications for the spread of insecticide resistance. PLoS One 

[Internet]. 2014;9:e110910. Available from: https://journals.plos.org/plosone/article? 

id=10.1371/journal.pone.0110910 

 

88. Mwinyi SH, Bennett KL, Nagi SC, Kabula B, Matowo J, Weetman D, et al. Genomic 

analysis reveals a new cryptic taxon within the Anopheles gambiae complex with a distinct 

insecticide resistance profile in the coast of east Africa. Mol Ecol [Internet]. 2025;e17762. 

Available from: http://dx.doi.org/10.1111/mec.17762 

 

89. Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PCD, Kreppel K, et al. Development 

and evaluation of mosquito-electrocuting traps as alternatives to the human landing catch 

technique for sampling host-seeking malaria vectors. Malar J [Internet]. 2015;14:1–15. 

Available from: http://dx.doi.org/10.1186/s12936-015-1025-4 

 

90. Githu V, Baravuga ME, Mbarawa A, Msuya HM, Mlacha YP, Chaki PP, et al. Comparative 

evaluation of different versions of exposure ‑ free mosquito electrocuting traps and barrier 

screen trap for monitoring outdoor densities and biting time phenotypes by malaria and 

filariasis vectors in Tanzania. Parasit Vectors [Internet]. 2022;15:1–8. Available from: 

https://doi.org/10.1186/s13071-022-05549-4 

 

91. Meza FC, Kreppel KS, Maliti DF, Mlwale AT, Mirzai N, Killeen GF, et al. Mosquito 

electrocuting traps for directly measuring biting rates and host-preferences of Anopheles 

arabiensis and Anopheles funestus outdoors. Malar J [Internet]. 2019;18:1–11. Available from: 



 100 

https://doi.org/10.1186/s12936-019-2726-x 

 

92. Maia MF, Robinson A, John A, Mgando J, Simfukwe E, Moore SJ. Comparison of the 

CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting 

mosquitoes in southern Tanzania. Parasit Vectors [Internet]. 2011;4:124. Available from: 

http://dx.doi.org/10.1186/1756-3305-4-124 

 

93. T.r. B, T.l. R, L.j. R, H. B, N.w. B, R.d. C, et al. Barrier screens: A method to sample blood-

fed and host-seeking exophilic mosquitoes. Malar J [Internet]. 2013;12:1–9. Available from: 

http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NEWS=N&AN=

2013115588 

 

94. Convention on Biological Diversity United Nation. Nagoya protocol on access to genetic 

resources and the fair and equitable sharing of benefits arising from their utilization to the 

convention on biological diversity [Internet]. Convention on Biological Diversity. 2011 [cited 

2024 Oct 30]. Available from: https://www.cbd.int/abs/text 

 

95. Korlevi P, Mcalister E, Lawniczak MKN, Mayho M, Makunin A, Flicek P. GBE A 

Minimally Morphologically Destructive Approach for DNA Retrieval and Whole-Genome 

Shotgun Sequencing of Pinned. 2021;13:1–13. Available from: http://dx.doi.org/10.1093/gbe 

/evab226 

 

96. Makunin A, Korlević P, Park N, Goodwin S, Waterhouse RM, Wyschetzki KV, et al. A 

targeted amplicon sequencing panel to simultaneously identify mosquito species and 

Plasmodium presence across the entire Anopheles genus. 2022;28–44. Available from: 

http://dx.doi.org/10.1111/1755-0998.13436 

 

97. Boddé M, Makunin A, Ayala D, Bouafou L, Diabaté A, Ekpo UF, et al. High- resolution 

species assignment of Anopheles mosquitoes using k- mer distances on targeted sequences. 

eLife [Internet]. 2022;11:1–40. Available from: http://dx.doi.org/10.7554/eLife.78775 

 

98. Boddé M, Makunin A, Teltscher F, Akorli J, Andoh NE, Bei A, et al. Improved species 

assignments across the entire Anopheles genus using targeted sequencing. Front Genet 

[Internet]. 2024;15:1456644. Available from: http://dx.doi.org/10.3389/fgene.2024.1456644 



 101 

99. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: 

improvements in performance and usability. Mol Biol Evol [Internet]. 2013;30:772–80. 

Available from: http://dx.doi.org/10.1093/molbev/mst010 

 

100. Wong TKF, Ly-Trong N, Ren H, Baños H, Roger AJ. IQ-TREE 3: Phylogenomic 

Inference Software using Complex Evolutionary Models. 2025; Available from: 

https://ecoevorxiv.org/repository/view/8916/ 

 

101. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, et al. Climatologies 

at high resolution for the earth’s land surface areas. Sci Data [Internet]. 2017;4:170122. 

Available from: http://dx.doi.org/10.1038/sdata.2017.122 

 

102. Buchhorn M, Lesiv M, Tsendbazar N-E, Herold M, Bertels L, Smets B. Copernicus Global 

Land Cover layers—collection 2. Remote Sens (Basel) [Internet]. 2020;12:1044. Available 

from: http://dx.doi.org/10.3390/rs12061044 

 

103. WorldPop, Bondarenko M. Individual countries 1km population density (2000-2020) 

[Internet]. University of Southampton; 2020. Available from: http://dx.doi 

.org/10.5258/SOTON/WP00674 

 

104. Gilbert M, Nicolas G, Cinardi G, Van Boeckel TP, Vanwambeke SO, Wint GRW, et al. 

Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 

2010. Sci Data [Internet]. 2018;5:180227. Available from: http://dx. doi.org/10. 

1038/sdata.2018.227 

 

105. Didan K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V061 

[Internet]. NASA Land Processes Distributed Active Archive Center; 2021. Available from: 

http://dx.doi.org/10.5067/MODIS/MOD13A3.061 

 

106. USGS-U.S. Geological Survey, LP DAAC-Land Processes Distributed Active Archive 

Center. AppEEARS [Internet]. [cited 2025 July 9]. Available from: 

https://appeears.earthdatacloud.nasa.gov 

 

107. Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and 



 102 

future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data [Internet]. 

2018;5:180214. Available from: https://www.nature.com/articles/sdata2018214 

 

108. Hijmans RJ. terra: Spatial Data Analysis [Internet]. 2023. Available from: 

https://CRAN.R-project.org/package=terra 

 

109. Mission NSR. Shuttle Radar Topography Mission (SRTM) Global [Internet]. 

OpenTopography. OpenTopography; 2013 [cited 2025 July 14]. Available from: 

http://dx.doi.org/10.5069/G9445JDF 

 

110. Takken W, Charlwood JD, Billingsley PF, Gort G. Dispersal and survival of Anopheles 

funestus and A. gambiae s.l. (Diptera: Culicidae) during the rainy season in southeast Tanzania. 

Bull Entomol Res [Internet]. 1998;88:561–6. Available from: https://www.cambridge.org/core 

/journals/bulletin-of-entomologicalresearch/article/dispersal-and-survival-of-anopheles-

funestus-and-a-gambiae-sl-diptera-culicidae-during-the-rainy-season-in-southeast-

tanzania/7CA1C2409629A551BFD3654756686406 

 

111. Thomson MC, Connor SJ, Quiñones ML, Jawara M, Todd J, Greenwood BM. Movement 

of Anopheles gambiae s.l. malaria vectors between villages in The Gambia. Med Vet Entomol 

[Internet]. 1995;9:413–9. Available from: https://pubmed.ncbi.nlm.nih.gov/8541594/ 

 

112. Midega JT, Mbogo CM, Mwnambi H, Wilson MD, Ojwang G, Mwangangi JM, et al. 

Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the 

Kenyan coast by using mark-release-recapture methods. J Med Entomol [Internet]. 

2007;44:923–9. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2705338/ 

 

113. Charlwood JD, Graves PM, Birley MH. Capture-recapture studies with mosquitoes of the 

group of Anopheles punctulatus Dönitz (Diptera: Culicidae) from Papua New Guinea. Bull 

Entomol Res [Internet]. 1986;76:211–27. Available from: https://www.cambridge.org 

/core/journals/bulletin-of-entomological-research/article/capturerecapture-studies-with-

mosquitoes-of-the-group-of-anopheles-punctulatus-donitz-diptera-culicidae-from-papua-new-

guinea/7919EA893FD4DE371F4CECD104BFDC6C 

 

114. Hijmans RJ. raster: Geographic Data Analysis and Modeling [Internet]. 2023. Available 



 103 

from: https://CRAN.R-project.org/package=raster 

 

115. Wickham H, Henry L, Hester J, Bryan J, Woo K, Yutani H, et al. tidyverse: Easily Install 

and Load the Tidyverse [Internet]. 2023. Available from: https://CRAN.R-

project.org/package=tidyverse 

 

116. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara B, Simpson GL, et al. Package 

‘vegan’: Community ecology package. R package version 2 0-10 [Internet]. 2013; Available 

from: https://cran.r-project.org/package=vegan 

 

117. Pebesma E. Simple features for R: Standardized support for spatial vector data. R J 

[Internet]. 2018;10:439. Available from: http://dx.doi.org/10.32614/rj-2018-009 

 

118. South A. rnaturalearth: World Map Data from Natural Earth [Internet]. 2017. Available 

from: https://github.com/ropensci/rnaturalearth 

 

119. Wickham H. Ggplot2: Elegant graphics for data analysis [Internet]. 2nd edn. Cham, 

Switzerland: Springer International Publishing; 2016. Available from: 

https://link.springer.com/book/10.1007/978-3-319-24277-4 

 

120. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in 

multidimensional genomic data. Bioinformatics [Internet]. 2016;32:2847–9. Available from: 

https://doi.org/10.1093/bioinformatics/btw313 

 

121. Ryan SJ, McNally A, Johnson LR, Mordecai EA, Ben-Horin T, Paaijmans K, et al. 

Mapping physiological suitability limits for malaria in Africa under climate change. Vector 

Borne Zoonotic Dis [Internet]. 2015 [cited 2025 July 25];15:718–25. Available from: 

http://dx.doi.org/10.1089/vbz.2015.1822 

 

122. Chapman D, Pescott OL, Roy HE, Tanner R. Improving species distribution models for 

invasive non‐native species with biologically informed pseudo‐absence selection. J Biogeogr 

[Internet]. 2019;46:1029–40. Available from: http://dx.doi.org/10.1111/jbi.13555 

 

123. Marcelino VR, Verbruggen H. Ecological niche models of invasive seaweeds. J Phycol 



 104 

[Internet]. 2015;51:606–20. Available from: https://pubmed.ncbi.nlm.nih.gov/26986785/ 

 

124. Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial 

data to predict species’ ranges. Ecol Lett [Internet]. 2009;12:334–50. Available from: 

http://dx.doi.org/10.1111/j.1461-0248.2008.01277.x 

 

125. Gamliel I, Buba Y, Guy-Haim T, Garval T, Willette D, Rilov G, et al. Incorporating 

physiology into species distribution models moderates the projected impact of warming on 

selected Mediterranean marine species. Ecography (Cop) [Internet]. 2020;43:1090–106. 

Available from: http://dx.doi.org/10.1111/ecog.04423 

 

126. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. 

A global map of dominant malaria vectors. Parasit Vectors [Internet]. 2012;5:69. Available 

from: http://dx.doi.org/10.1186/1756-3305-5-69 

 

127. Wood SN. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness 

Estimation. 2025. 

 

128. Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression 

models. CRAN: Contributed Packages [Internet]. 2016; Available from: 

https://cir.nii.ac.jp/crid/1360583646752175744 

 

129. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: an R package for 

generating spatially or environmentally separated folds for k-fold cross-validation of species 

distribution models [Internet]. bioRxiv. bioRxiv; 2018. Available from: 

http://dx.doi.org/10.1101/357798 

 

130. Harrell FE Jr. rms: Regression Modeling Strategies. R package version 6.2-0. 2021. 2023 

 

131. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: 

High-resolution sample inference from Illumina amplicon data. Nat Methods [Internet]. 

2016;13:581–3. Available from: http://dx.doi.org/10.1038/nmeth.3869 

 

132. Zamyatin A, Avdeyev P, Liang J, Sharma A, Chen C, Lukyanchikova V, et al. 



 105 

Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and 

Anopheles arabiensis. Gigascience [Internet]. 2021;10:giab017. Available from: 

https://academic.oup.com/gigascience/article/10/3/giab017/6170950 

 

133. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics [Internet]. 2010;26:841–2. Available from: http://dx.doi.org/10. 

1093/bioinformatics/btq033 

 

134. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant 

call format and VCFtools. Bioinformatics [Internet]. 2011;27:2156–8. Available from: 

http://dx.doi.org/10.1093/bioinformatics/btr330 

 

135. Stekhoven DJ, Bühlmann P. MissForest--non-parametric missing value imputation for 

mixed-type data. Bioinformatics [Internet]. 2012;28:112–8. Available from: 

https://academic.oup.com/bioinformatics/article-abstract/28/1/112/219101 

 

136. Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic Selection 

in Wheat Breeding using Genotyping‐by‐Sequencing. Plant Genome [Internet]. 2012;5:103–

13. Available from: http://dx.doi.org/10.3835/plantgenome2012.06.0006 

 

137. Poland JA, Rife TW. Genotyping‐by‐sequencing for plant breeding and genetics. Plant 

Genome [Internet]. 2012;5:92–102. Available from: http://dx.doi.org/10.3835/ 

plantgenome2012.05.0005 

 

138. Xavier A, Muir WM, Rainey KM. Impact of imputation methods on the amount of genetic 

variation captured by a single-nucleotide polymorphism panel in soybeans. BMC 

Bioinformatics [Internet]. 2016;17:55. Available from: http://dx.doi.org/10.1186/s12859-016-

0899-7 

 

139. Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. 

Bioinformatics [Internet]. 2008;24:1403–5. Available from: http://dx.doi.org/10.1093 

/bioinformatics/btn129 

 

140. Smouse PE, Long JC, Sokal RR. Multiple regression and correlation extensions of the 



 106 

mantel test of matrix correspondence. Syst Zool [Internet]. 1986;35:627. Available from: 

http://dx.doi.org/10.2307/2413122 

 

141. Wang L. A method for key updating of IBE with wildcards. Adv Mat Res [Internet]. 

2013;765–767:1003–6. Available from: http://dx.doi.org/10.4028/www.scientific.net 

/amr.765-767.1003 

 

142. Weir BS, Cockerham CC. Estimating f-statistics for the analysis of population structure. 

Evolution [Internet]. 1984;38:1358–70. Available from: https://pubmed.ncbi.nlm.nih.gov 

/28563791/ 

 

143. Lobo NF, St. Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, et al. Unexpected 

diversity of Anopheles species in Eastern Zambia: Implications for evaluating vector behavior 

and interventions using molecular tools. Sci Rep [Internet]. 2015;5:1–10. Available from: 

http://dx.doi.org/10.1038/srep17952 

 

144. Laurent BS, Cooke M, Krishnankutty SM, Asih P, Mueller JD, Kahindi S, et al. Molecular 

characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. 

Am J Trop Med Hyg [Internet]. 2016;94:327–35. Available from: 

http://dx.doi.org/10.4269/ajtmh.15-0562 

 

145. Killeen GF, Marshall JM, Kiware SS. Measuring, manipulating exploiting behaviours 

adult mosquitoes optimize malaria vector control impact BMJ. BMJ Global Health. 2017;2. 

 

146. Yap NJ, Hossain H, Nada-Raja T, Ngui R, Muslim A, Hoh B-P, et al. Natural Human 

Infections with Plasmodium cynomolgi, P. inui, and 4 other Simian Malaria Parasites, 

Malaysia. Emerg Infect Dis [Internet]. 2021;27:2187–91. Available from: 

http://dx.doi.org/10.3201/eid2708.204502 

 

147. Putaporntip C, Kuamsab N, Seethamchai S, Pattanawong U, Rojrung R, Yanmanee S, et 

al. Cryptic Plasmodium inui and Plasmodium fieldi Infections Among Symptomatic Malaria 

Patients in Thailand. Clin Infect Dis [Internet]. 2022 [cited 2025 May 28];75:805–12. Available 

from: http://dx.doi.org/10.1093/cid/ciab1060 

 



 107 

148. Raja TN, Hu TH, Kadir KA, Mohamad DSA, Rosli N, Wong LL, et al. Naturally Acquired 

Human Plasmodium cynomolgi and P. knowlesi Infections, Malaysian Borneo. Emerg Infect 

Dis [Internet]. 2020;26:1801–9. Available from: http://dx.doi.org/10.3201/eid2608.200343 

 

149. Mewara A, Sreenivasan P, Khurana S. Primate malaria of human importance. Trop 

Parasitol [Internet]. 2023;13:73–83. Available from: http://dx.doi.org/10.4103/tp.tp_79_22 

 

150. Mayagaya VS, Nkwengulila G, Lyimo IN, Kihonda J, Mtambala H, Ngonyani H, et al. 

The impact of livestock on the abundance, resting behaviour and sporozoite rate of malaria 

vectors in southern Tanzania. Malar J [Internet]. 2015;14:17. Available from: 

http://dx.doi.org/10.1186/s12936-014-0536-8 

 

151. Lyons CL, Coetzee M, Chown SL. Stable and fluctuating temperature effects on the 

development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles 

funestus. Parasit Vectors [Internet]. 2013;6:104. Available from: http://dx.doi.org 

/10.1186/1756-3305-6-104 

 

152. Klinkenberg E, McCall P, Wilson MD, Amerasinghe FP, Donnelly MJ. Impact of urban 

agriculture on malaria vectors in Accra, Ghana. Malar J [Internet]. 2008;7:151. Available from: 

http://dx.doi.org/10.1186/1475-2875-7-151 

 

153. Nguyen AHL, Pattaradilokrat S, Kaewlamun W, Kaneko O, Asada M, Kaewthamasorn 

M. Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of 

the goat malaria parasite Plasmodium caprae in Thailand. Sci Rep [Internet]. 2023;13:145. 

Available from: http://dx.doi.org/10.1038/s41598-022-26833-4 

 

154. Tu HLC, Nugraheni YR, Tiawsirisup S, Saiwichai T, Thiptara A, Kaewthamasorn M. 

Development of a novel multiplex PCR assay for the detection and differentiation of 

Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Trop [Internet]. 

2021;220:105957. Available from: http://dx.doi.org/10.1016/j.actatropica.2021.105957 

 

155. Kaewthamasorn M, Takeda M, Saiwichai T, Gitaka JN, Tiawsirisup S, Imasato Y, et al. 

Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with 

domestic goat host. Sci Rep [Internet]. 2018;8:5827. Available from: 



 108 

http://dx.doi.org/10.1038/s41598-018-24048-0 

 

156. Hamza AM, El Rayah EA. A qualitative evidence of the breeding sites of anopheles 

arabiensis Patton (Diptera: Culicidae) in and around Kassala town, eastern Sudan. Int J Insect 

Sci [Internet]. 2016;8:65–70. Available from: https://pmc.ncbi.nlm.nih.gov/ 

articles/PMC4982522/ 

 

157. Lindsay SW, Parson L, Thomas CJ. Mapping the ranges and relative abundance of the 

two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, 

using climate data. Proc Biol Sci [Internet]. 1998;265:847–54. Available from: 

http://dx.doi.org/10.1098/rspb.1998.0369 

 

158. Mahande A, Mosha F, Mahande J, Kweka E. Feeding and resting behaviour of malaria 

vector, Anopheles arabiensis with reference to zooprophylaxis. Malar J [Internet]. 2007;6:100. 

Available from: http://dx.doi.org/10.1186/1475-2875-6-100 

 

159. Killeen GF, Smith TA. Exploring the contributions of bed nets, cattle, insecticides and 

excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour 

and mortality. Trans R Soc Trop Med Hyg [Internet]. 2007;101:867–80. Available from: 

http://dx.doi.org/10.1016/j.trstmh.2007.04.022 

 

160. Pathak AK, Shiau JC, Freitas RCS, Kyle DE. Blood meals from ‘dead-end’ vertebrate 

hosts enhance transmission potential of malaria-infected mosquitoes. One Health [Internet]. 

2023;17:100582. Available from: https://pubmed.ncbi.nlm.nih.gov/38024285/ 

 

161. Lynch CM, Churcher TS. Endectocides as a complementary intervention in the malaria 

control program: a systematic review. Parasites & Vectors. 2021;14. 

 

162. Matowo NS, Martin J, Kulkarni MA, Mosha JF, Lukole E, Isaya G, et al. An increasing 

role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone, 

Tanzania. Sci Rep [Internet]. 2021;11:13457. Available from: http://dx.doi.org 

/10.1038/s41598-021-92741-8 

 

163. Debrah I, Afrane YA, Amoah L, Ochwedo KO, Mukabana WR, Zhong D, et al. Larval 



 109 

ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya 

[Internet]. bioRxiv. bioRxiv; 2021. Available from: http://dx.doi.org/10.1101 

/2021.08.04.455104 

 

164. Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. 

Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. 

Malar J [Internet]. 2020;19:219. Available from: http://dx.doi.org/10.1186/s12936-020-03295-

5 

 

165. Kahamba NF, Finda M, Ngowo HS, Msugupakulya BJ, Baldini F, Koekemoer LL, et al. 

Using ecological observations to improve malaria control in areas where Anopheles funestus 

is the dominant vector. Malar J [Internet]. 2022;21:1–15. Available from: 

https://doi.org/10.1186/s12936-022-04198-3 

 

166. Bouafou L, Makanga BK, Rahola N, Boddé M, Ngangué MF, Daron J, et al. Host 

preference patterns in domestic and wild settings: Insights into Anopheles feeding behavior. 

Evol Appl [Internet]. 2024;17:e13693. Available from: http://dx.doi.org/10.1111/eva.13693 

167. Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, et al. Developing 

global maps of the dominant anopheles vectors of human malaria. PLoS Med [Internet]. 

2010;7:e1000209. Available from: https://journals.plos.org/plosmedicine/article? id=10.1371/ 

journal.pmed.1000209 

 

168. Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor J-P, et al. 

Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J 

[Internet]. 2009;8:307. Available from: http://dx.doi.org/10.1186/1475-2875-8-307 

 

169. Dida GO, Anyona DN, Abuom PO, Akoko D, Adoka SO, Matano A-S, et al. Spatial 

distribution and habitat characterization of mosquito species during the dry season along the 

Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty [Internet]. 2018;7:2. 

Available from: http://dx.doi.org/10.1186/s40249-017-0385-0 

 

170. Kavishe DR, Walsh KA, Msoffe RV, Duggan LM, Tarimo LJ, Butler F, et al. Comparative 

attrraction of Anopheles quadriannulatus and Anopheles arabiensis to humans estimated by 

comparing their relative abundance in samples of mosquito larvae and adults collected across 



 110 

an ecologically heterogeneous landscape in southern Tanzania. Med Vet Entomol [Internet]. 

2025; Available from: https://scholar.google.com/citations?view_op=view_citation& 

hl=en&citation_for_view=aG1a5W0AAAAJ:LkGwnXOMwfcC 

 

171. Csardi G, Nepusz T. The igraph software package for complex network research. 

InterJournal, Complex Systems [Internet]. 2006;1695. Available from: https://igraph.org 

 

172. Hijmans RJ, Williams E, Vennes C. geosphere: Spherical Trigonometry [Internet]. 2019. 

Available from: https://CRAN.R-project.org/package=geosphere 

 

173. Bayoh MN, Lindsay SW. Temperature-related duration of aquatic stages of the 

Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 

[Internet]. 2004;18:174–9. Available from: http://dx.doi.org/10.1111/j.0269-

283x.2004.00495.x 

 

174. Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages 

of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res [Internet]. 

2003;93:375–81. Available from: http://dx.doi.org/10.1079/ber2003259 

 

175. Charlwood JD. Some like it hot: a differential response to changing temperatures by the 

malaria vectors Anopheles funestus and An. gambiae s.l. PeerJ [Internet]. 2017;5:e3099. 

Available from: http://dx.doi.org/10.7717/peerj.3099 

 

176. Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, et al. Effects 

of Elevated Temperatures on the Growth and Development of Adult Anopheles gambiae (s.l.) 

(Diptera: Culicidae) Mosquitoes. J Med Entomol [Internet]. 2022;59:1413–20. Available from: 

https://academic.oup.com/jme/article-abstract/59/4/1413/6572592 

 

177. Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A 

systematic review of the effects of temperature on Anopheles mosquito development and 

survival: Implications for malaria control in a future warmer climate. Int J Environ Res Public 

Health [Internet]. 2021;18:7255. Available from: https://www.mdpi.com/1660-

4601/18/14/7255 

 



 111 

178. Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez M-G. Temperature 

during larval development and adult maintenance influences the survival of Anopheles 

gambiae s.s. Parasit Vectors [Internet]. 2014;7:489. Available from: 

http://dx.doi.org/10.1186/s13071-014-0489-3 

 

179. Yamana TK, Eltahir EAB. Incorporating the effects of humidity in a mechanistic model 

of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa. Parasit 

Vectors [Internet]. 2013;6:235. Available from: http://dx.doi.org/10.1186/1756-3305-6-235 

 

180. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, et al. 

Optimal temperature for malaria transmission is dramatically lower than previously predicted. 

Ecol Lett [Internet]. 2013;16:22–30. Available from: http://dx.doi.org/10.1111/ele.12015 

 

181. Beck-Johnson LM, Nelson WA, Paaijmans KP, Read AF, Thomas MB, Bjørnstad ON. 

The effect of temperature on Anopheles mosquito population dynamics and the potential for 

malaria transmission. PLoS One [Internet]. 2013;8:e79276. Available from: 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079276 

 

182. Hinne IA, Attah SK, Mensah BA, Forson AO, Afrane YA. Larval habitat diversity and 

Anopheles mosquito species distribution in different ecological zones in Ghana. Parasit 

Vectors [Internet]. 2021;14:193. Available from: http://dx.doi.org/10.1186/s13071-021-

04701-w 

 

183. Mangani C, Frake AN, Chipula G, Mkwaila W, Kakota T, Mambo I, et al. Proximity of 

residence to irrigation determines malaria risk and Anopheles abundance at an irrigated 

agroecosystem in Malawi. Am J Trop Med Hyg [Internet]. 2021;106:283–92. Available from: 

http://dx.doi.org/10.1061/(ASCE)HE.19435584.0001436 

 

184. Keiser J, De Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, et al. Effect of 

irrigation and large dams on the burden of malaria on a global and regional scale. Am J Trop 

Med Hyg [Internet]. 2005;72:392–406. Available from: https://pubmed.ncbi.nlm.nih. 

gov/15827275/ 

 

185. Getachew D, Balkew M, Tekie H. Anopheles larval species composition and 



 112 

characterization of breeding habitats in two localities in the Ghibe River Basin, southwestern 

Ethiopia. Malar J [Internet]. 2020;19:65. Available from: http://dx.doi.org/10.1186/s12936-

020-3145-8 

 

186. Nyasvisvo DS, Nhiwatiwa T, Sithole R, Sande S. Characterization of Anopheles mosquito 

breeding habitats for malaria vector control in Mazowe and Shamva districts, Zimbabwe. J 

Vector Borne Dis [Internet]. 2025 [cited 2025 July 14];62:154–64. Available from: 

http://dx.doi.org/10.4103/JVBD.JVBD_85_24 

 

187. Adoha CJ, Sovi A, Padonou GG, Yovogan B, Akinro B, Accrombessi M, et al. Diversity 

and ecological niche model of malaria vector and non-vector mosquito species in Covè, Ouinhi, 

and Zangnanado, Southern Benin. Sci Rep [Internet]. 2024;14:16944. Available from: 

https://www.nature.com/articles/s41598-024-67919-5 

 

188. Mathenge EM, Misiani GO, Oulo DO, Irungu LW, Ndegwa PN, Smith TA, et al. 

Comparative performance of the Mbita trap, CDC light trap and the human landing catch in 

the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in 

western Kenya. Malar J [Internet]. 2005;4:1–6. Available from: 

http://dx.doi.org/10.1186/1475-2875-4-7 

 

189. Kulkarni MA, Desrochers RE, Kajeguka DC, Kaaya RD, Tomayer A, Kweka EJ, et al. 10 

years of environmental change on the slopes of Mount Kilimanjaro and its associated shift in 

malaria vector distributions. Front Public Health [Internet]. 2016;4:281. Available from: 

https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2016.00281/full 

 

190. Akpan GE, Adepoju KA, Oladosu OR, Adelabu SA. Dominant malaria vector species in 

Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with 

MaxEnt. PLoS One [Internet]. 2018;13:e0204233. Available from: https://journals.plos.org/ 

plosone/article?id=10.1371/journal.pone.0204233 

 

191. Wood SN. Generalized additive models: An introduction with R [Internet]. Chapman and 

Hall/CRC; 2017. Available from: http://dx.doi.org/10.1201/9781315370279 

 

192. Lindsay SW, Martens WJ. Malaria in the African highlands: past, present and future. Bull 



 113 

World Health Organ [Internet]. 1998;76:33–45. Available from: https://pmc.ncbi.nlm. 

nih.gov/articles/PMC2305628/ 

 

193. Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of 

Anopheles gambiae larvae due to rainfall. PLoS One [Internet]. 2007;2:e1146. Available from: 

http://dx.doi.org/10.1371/journal.pone.0001146 

 

194. Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev 

Entomol [Internet]. 2013;58:433–53. Available from: https://www.researchgate.net/ 

publication/231610434_Host_Preferences_of_Blood-Feeding_Mosquitoes 

 

195. Mutero CM, Blank H, Konradsen F, van der Hoek W. Water management for controlling 

the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop 

[Internet]. 2000;76:253–63. Available from: https://pubmed.ncbi.nlm.nih.gov/10974166/ 

 

196. Tonnang HEZ, Kangalawe RYM, Yanda PZ. Predicting and mapping malaria under 

climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J 

[Internet]. 2010;9:111. Available from: http://dx.doi.org/10.1186/1475-2875-9-111 

 

197. Kibret S, McCartney M, Lautze J, Nhamo L, Yan G. The impact of large and small dams 

on malaria transmission in four basins in Africa. Sci Rep [Internet]. 2021;11:13355. Available 

from: https://www.nature.com/articles/s41598-021-92924-3 

 

198. Kibret S, Lautze J, McCartney M, Nhamo L, Wilson GG. Malaria and large dams in sub-

Saharan Africa: future impacts in a changing climate. Malar J [Internet]. 2016;15:448. 

Available from: http://dx.doi.org/10.1186/s12936-016-1498-9 

 

199. Geissbühler Y, Kannady K, Chaki PP, Emidi B, Govella NJ, Mayagaya V, et al. Microbial 

larvicide application by a large-scale, community-based program reduces malaria infection 

prevalence in urban Dar es Salaam, Tanzania. PLoS One [Internet]. 2009;4:e5107. Available 

from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0005107 

 

200. Bødker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM, et al. Relationship 

between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania. 



 114 

J Med Entomol [Internet]. 2003;40:706–17. Available from: https://academic.oup.com/ 

jme/article-abstract/40/5/706/864875 

 

201. Kulkarni MA, Desrochers RE, Kerr JT. High resolution niche models of malaria vectors 

in northern Tanzania: a new capacity to predict malaria risk? PLoS One [Internet]. 

2010;5:e9396. Available from: https://journals.plos.org/plosone/article?id=10.1371 

/journal.pone.0009396 

 

202. Kelly-Hope LA, Hemingway J, McKenzie FE. Environmental factors associated with the 

malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J [Internet]. 

2009;8:268. Available from: http://dx.doi.org/10.1186/1475-2875-8-268 

 

203. Mathania MM, Munisi DZ, Silayo RS. Spatial and temporal distribution of Anopheles 

mosquito’s larvae and its determinants in two urban sites in Tanzania with different malaria 

transmission levels. Parasite Epidemiol Control [Internet]. 2020;11:e00179. Available from: 

https://www.sciencedirect.com/science/article/pii/S2405673120300489 

 

204. Marsden CD, Lee Y, Kreppel K, Weakley A, Cornel A, Ferguson HM, et al. Diversity, 

differentiation, and linkage disequilibrium: prospects for association mapping in the malaria 

vector Anopheles arabiensis. G3 (Bethesda) [Internet]. 2014;4:121–31. Available from: 

http://dx.doi.org/10.1534/g3.113.008326 

 

205. Hemming-Schroeder E, Zhong D, Machani M, Nguyen H, Thong S, Kahindi S, et al. 

Ecological drivers of genetic connectivity for African malaria vectors Anopheles gambiae and 

An. arabiensis. Sci Rep [Internet]. 2020;10:19946. Available from: 

https://www.nature.com/articles/s41598-020-76248-2 

 

206. Ayala D, Ullastres A, González J. Adaptation through chromosomal inversions in 

Anopheles. Front Genet [Internet]. 2014;5:129. Available from: http://dx.doi.org/10.3389 

/fgene.2014.00129 

 

207. Crawford JE, Riehle MM, Guelbeogo WM, Gneme A, Sagnon N, Vernick KD, et al. 

Reticulate speciation and barriers to introgression in the Anopheles gambiae species complex. 

Genome Biol Evol [Internet]. 2015;7:3116–31. Available from: https://pubmed. 



 115 

ncbi.nlm.nih.gov/26615027/ 

 

208. Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H. Population structure 

in the malaria vector, Anopheles arabiensis patton, in East Africa. Heredity (Edinb) [Internet]. 

1999;83 ( Pt 4):408–17. Available from: http://dx.doi.org/10.1038/sj.hdy.6885930 

 

209. Kent RJ, Mharakurwa S, Norris DE. Spatial and temporal genetic structure of Anopheles 

arabiensis in Southern Zambia over consecutive wet and drought years. Am J Trop Med Hyg 

[Internet]. 2007;77:316–23. Available from: http://dx.doi.org/10.4269/ajtmh.2007.77.316 

 

210. Donnelly MJ, Townson H. Evidence for extensive genetic differentiation among 

populations of the malaria vector Anopheles arabiensis in Eastern Africa. Insect Mol Biol 

[Internet]. 2000;9:357–67. Available from: http://dx.doi.org/10.1046/j.1365-2583. 

2000.00197.x 

 

211. Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R, et al. High amounts of 

genetic differentiation between populations of the malaria vector Anopheles arabiensis from 

West Africa and eastern outer islands. The American journal of tropical medicine and hygiene 

[Internet]. 1999;60:1000–9. Available from: https://www.researchgate.net/profile/Romain-

Girod/publication/12896661_High_amounts_of_genetic_differentiation_between_population

s_of_the_malaria_vector_Anopheles_arabiensis_from_West_Africa_and_Eastern_outer_isla

nds/links/004635175aaed950fa000000/High-amounts-of-genetic-differentiation-between-

populations-of-the-malaria-vector-Anopheles-arabiensis-from-West-Africa-and-Eastern-

outer-islands.pdf 

 

212. Barnes KG, Irving H, Chiumia M, Mzilahowa T, Coleman M, Hemingway J, et al. 

Restriction to gene flow is associated with changes in the molecular basis of pyrethroid 

resistance in the malaria vector Anopheles funestus. Proc Natl Acad Sci U S A [Internet]. 

2017;114:286–91. Available from: http://dx.doi.org/10.1073/pnas.1615458114 

 

213. Seck F, Diop MF, Mané K, Diallo A, Dieng I, Namountougou M, et al. Reduced genetic 

diversity of key fertility and vector competency related genes in Anopheles gambiae s.L. 

Across sub-Saharan Africa. Genes (Basel) [Internet]. 2025;16. Available from: 

http://dx.doi.org/10.3390/genes16050543 



 116 

214. Mnzava AEP, Deco MAD. Chromosomal inversion polymorphism in anopheles gambiae 

and anopheles arabiensis in Tanzania. Int J Trop Insect Sci [Internet]. 1990;11:861–3. 

Available from: https://www.cambridge.org/core/journals/international-journal-of-tropical-

insect-science/article/chromosomal-inversion-polymorphism-in-anopheles-gambiae-and-

anopheles-arabiensis-in-tanzania/0D9339CA01CBA98FF43E6C28E497E6C0 

 

215. Main BJ, Lee Y, Ferguson HM, Kreppel KS, Kihonda A, Govella NJ, et al. The genetic 

basis of host preference and resting behavior in the major African malaria vector, Anopheles 

arabiensis. PLoS Genet [Internet]. 2016;12:e1006303. Available from: 

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006303 

 

216. Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE. Density, survival 

and dispersal of Anopheles gambiae complex mosquitoes in a west African Sudan savanna 

village. Med Vet Entomol [Internet]. 1996 [cited 2025 June 25];10:203–19. Available from: 

http://dx.doi.org/10.1111/j.1365-2915.1996.tb00733.x 

 

217. Huestis DL, Dao A, Diallo M, Sanogo ZL, Samake D, Yaro AS, et al. Windborne long-

distance migration of malaria mosquitoes in the Sahel. Nature [Internet]. 2019;574:404–8. 

Available from: https://pubmed.ncbi.nlm.nih.gov/31578527/ 

 

218. Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, et al. Gene flow among 

populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics 

[Internet]. 2001;157:743–50. Available from: https://academic.oup.com/genetics/article-

abstract/157/2/743/6048215 

 

219. Lehmann T, Licht M, Elissa N, Maega BTA, Chimumbwa JM, Watsenga FT, et al. 

Population structure of Anopheles gambiae in Africa. J Hered [Internet]. 2003;94:133–47. 

Available from: http://dx.doi.org/10.1093/jhered/esg024 

 

220. Pinto J, Egyir-Yawson A, Vicente J, Gomes B, Santolamazza F, Moreno M, et al. 

Geographic population structure of the African malaria vector Anopheles gambiae suggests a 

role for the forest-savannah biome transition as a barrier to gene flow. Evol Appl [Internet]. 

2013 [cited 2025 May 23];6:910–24. Available from: http://dx.doi.org/10.1111/eva.12075 

 



 117 

221. Sougoufara S, Doucouré S, Backé Sembéne PM, Harry M, Sokhna C. Challenges for 

malaria vector control in sub-Saharan Africa: Resistance and behavioral adaptations in 

Anopheles populations. J Vector Borne Dis [Internet]. 2017;54:4–15. Available from: 

http://dx.doi.org/10.4103/0972-9062.203156 

 

222. Kamdem C, Tene Fossog B, Simard F, Etouna J, Ndo C, Kengne P, et al. Anthropogenic 

habitat disturbance and ecological divergence between incipient species of the malaria 

mosquito Anopheles gambiae. PLoS One [Internet]. 2012 [cited 2025 Aug 17];7:e39453. 

Available from: http://dx.doi.org/10.1371/journal.pone.0039453 

 

223. McCann RS, Courneya J-P, Donnelly M, Laufer MK, Mzilahowa T, Stewart K, et al. 

Variation in spatial population structure in the Anopheles gambiae species complex [Internet]. 

bioRxiv. 2024. Available from: http://dx.doi.org/10.1101/2024.05.26.595955 

 

  



 118 

Appendix A.  Supplementary Table 

Supplementary Table A1. Presence-only, georeferenced occurrence records of An. arabiensis, An. funestus, and An. gambiae by data source and year (2011–

2024) used in SDM for Tanzania; totals by species and overall are shown. 

Data Source Species 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Source/Species 

Total 

Deogratius Kavishe 

(IHI) [170], 

An. arabiensis           27 41   68 

An. funestus            2   2 

An. gambiae            1   1 

Dhibiti Malaria 

Project (IHI) 

An. arabiensis             23 82 105 

An. gambiae             20 41 61 

Mr. Edmond Bernad 

(NIMR) 

An. arabiensis            2   2 

An. funestus            5   5 

An. gambiae             5  5 

Dr. Fedros Okumu 

(IHI) 

An. funestus        1 23      24 

Data from this study An. arabiensis         21 128 72 65   286 

An. funestus         10 64 59 41   174 

An. gambiae          7 57 25 17  106 

Matowo et al 2021 

[162] 

An. arabiensis        1       1 

An. funestus           2    2 

An. gambiae           1    1 

Mwalimu et al 2024 

[65] 

(NMCP_MVES) 

An. arabiensis       4 12 3 7 12 5 1  44 

An. funestus       1 8 4 6 3 6 2  30 

An. gambiae    2 6  2 6  2 6 4   20 

Nambunga et al. 

2020 [164] 

An. funestus            2   2 

An. arabiensis 27 8 20 1 6 4 5 1 1      73 
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WHO Threat Map 

Metadata 

An. gambiae 17 5 4    1 1       28 

Total by Species An. arabiensis 27 8 20 1 6 4 9 14 25 135 111 113 24 82 579 

An. funestus 0 0 0 0 0 0 1 9 37 70 64 56 2 0 239 

An. gambiae 17 5 4 2 6 0 3 7 0 9 64 30 42 41 222 

Overall Grand Total 44 13 24 3 12 4 13 30 62 214 239 199 68 123 1040 
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