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Abstract

Malaria continues to pose a major public health burden in sub-Saharan Africa, where the
ecology, behaviour, and genetic structure of mosquito vectors govern transmission dynamics
and shape the effectiveness of control strategies. Traditional surveillance approaches,
constrained by morphology-based identification, narrow geographic scope, and limited
resolution, are insufficient to capture the complexity of vector populations and their

interactions with parasites and environments.

This thesis addresses these gaps by combining ecological surveys, species distribution
modelling, and genomic analyses to deliver a multi-dimensional view of malaria vectors in
Tanzania and their broader African context. Ecological surveys across 25 districts revealed
marked variation in Anopheles community composition, ecological niche partitioning, and
species co-occurrence, alongside the distribution of Plasmodium parasites in nine districts
where all four major human malaria species were detected. Use of the ANOSPP panel
substantially improved taxonomic resolution over morphology, enabling simultaneous
identification of multiple Anopheles vectors and their associated Plasmodium species, and

yielded the first report of Plasmodium caprae in An. arabiensis in Tanzania.

Species distribution models developed for An. arabiensis, An. gambiae s.s and An. funestus
s.s incorporated climate and land cover predictors at 1-km scale, producing high-resolution
habitat suitability maps that aligned with known transmission zones while identifying species-
specific ecological associations. These models provide a predictive framework to support

targeted surveillance and resource allocation in vector control programs.

Genomic analyses of Anopheles arabiensis populations from Tanzania revealed broad genetic
connectivity overall, but with significant isolation by distance. At a continental scale, three
clusters emerged: Eastern-Central Africa, Western Africa, and Madagascar, with patterns
reflecting isolation by distance, climatic differences, and resistance surfaces shaped by
ecological barriers, as confirmed using Mantel and partial Mantel tests alongside the
Maximum-Likelihood Population-Effects Model. Madagascar was clearly separated from the
mainland by the ocean, while the Central African rainforest delineated eastern and western
populations. Within West Africa, additional substructure was associated with climatic

gradients. These findings suggest that the broad genetic connectivity observed across



populations could facilitate the spread of adaptive alleles, such as those conferring insecticide
resistance, while localized genomic structuring likely reflects adaptation to ecological

conditions, all of which may influence vector control intervention outcomes.

By integrating ecological modelling, spatial, and genomic perspectives, this thesis provides
the first comprehensive overview of Anopheles mosquitoes distribution and genomic
overview of An. arabiensis in Tanzania while validating ANOSPP as a scalable tool for both
species’ identification and genetic surveillance. The results highlight both the opportunities
and risks posed by high connectivity and local adaptation, offering actionable insights for
malaria control and contributing to a broader shift from reactive, coarse-grained surveillance
toward predictive, multi-layered systems capable of strengthening national and regional

capacity for malaria elimination.
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Chapter One: Malaria Transmission in Context: Global Patterns, Biological

Complexities, and Tanzanian Challenges

1.1 Malaria Global Overview

Despite decades of investments in vector control, improved diagnostics, and antimalarial
treatments, malaria remains a major global health challenge. Caused by protozoan parasites of
the genus Plasmodium and transmitted exclusively by infected female Anopheles mosquitoes,
the disease continues to cause high morbidity and mortality, especially in low- and middle-
income countries. Clinically, it presents with fever, chills, headaches, and malaise, and can
escalate to severe complications such as cerebral malaria, metabolic acidosis, hypoglycaemia,
and multi-organ failure if untreated [1]. Vulnerable groups, particularly young children and
pregnant women, suffer disproportionately, facing chronic anaemia, miscarriage, low birth
weight, and impaired cognitive development [2—5]. Malaria’s global distribution spans tropical
and subtropical regions, forming a broad equatorial belt that includes vast portions of sub-
Saharan Africa, Southeast Asia, and Latin America (Figure 1). However the burden remains
starkly uneven: in 2023, the WHO African Region, primarily sub-Saharan Africa, accounted
for 94% of reported cases and 95% of malaria-related deaths, with children under five
comprising 76% of those fatalities [1]. While global efforts have made measurable progress,
stagnation in high-burden regions reveals the shortcomings of current approaches and

emphasizes the urgent need for more innovative, context-specific, and sustainable solutions.

Malaria Status
I Certified malaria free after 2000

Il One or more indigenous case

3 Zero indigenous cases in 2022 and 2023
3 Zero indigenous cases (> 3 years) in 2023
I No Malaria

[ Data not available

Figure 1. Global Malaria Status as of 2023. Data sourced from the World Health
Organization. (Disclaimer: This map was created using publicly available data downloaded

from the WHO website)



1.2 Strategies and Challenges in Malaria Control

Malaria control efforts currently adopt a dual strategy, targeting both the Plasmodium parasite
and the Anopheles mosquito vector. On the parasite side, artemisinin-based combination
therapies remain the first line of treatment. Preventive strategies such as intermittent preventive
treatment in pregnancy and infancy, along with seasonal malaria chemoprevention, are
employed in high-transmission settings [1]. However, the growing resistance of Plasmodium
spp. to many antimalarials, which is linked to mutations in genes such as kelchl3, pfcrt, pfimdrl,
dhps, and dhfr, threatens treatment efficacy [6—15]. Compounding this is the diagnostic
challenge posed by pfhrp2 and pfhrp3 gene deletions, which can cause false-negative Malaria
Rapid Diagnostic Test results and lead to misdiagnosis and hence continued transmission [16—

20].

Vector control remains a cornerstone of malaria prevention but is increasingly undermined by
the rise of insecticide resistance. Core interventions including insecticide-treated nets, indoor
residual spraying, and larval source management, are delivered under the Integrated Vector
Management framework, which combines chemical, biological, and environmental strategies
with community engagement [1]. However, resistance to pyrethroids, the primary insecticide
class used in insecticide-treated nets and indoor residual spraying, is now widespread, driven
by mechanisms such as metabolic detoxification, target-site mutations, and behavioural
avoidance [21-30]. In response, research is advancing innovative approaches, including
genetically modified mosquitoes with gene-drive constructs, symbiotic microbes like
Wolbachia and Microsporidia MB to block parasite development, autodissemination strategies
that exploit mosquito behaviour to deliver larvicides to cryptic breeding sites, the use of drones
for precision larviciding and high-resolution habitat mapping; partially protective vaccines
(e.g., RTS,S/AS01, R21/Matrix-M), and ecologically informed strategies integrated within the
integrated vector management framework [31-44]. While these emerging tools show promise,
many are still in experimental stages or have yet to demonstrate consistent efficacy in real-

world settings.

1.3 Taxonomic Complexity and Diagnostics in Malaria Vectors
The genus Anopheles consists of nearly 500 described species, which span more than 100
million years of evolution [45,46]. These species are categorized into several subgenera:

Anopheles (185 cosmopolitan species), Baimaia (1 Oriental species), Cellia Theobald (224 Old



World species), Kerteszia Theobald (12 Neotropical species), Lophopodomyia Antunes (6
Neotropical species), Nyssorhynchus Blanchard (39 Neotropical species), and Stethomyia
Theobald (5 Neotropical species) [45]. While only a subset of these species transmit human
malaria, this vectorial capacity is distributed throughout the phylogeny [47]. Many species also
belong to closely related complexes or groups that are morphologically indistinguishable and
exhibit substantial genetic similarity, largely due to their capacity to hybridize in regions of
sympatry [48]. These complexities challenge accurate species identification and, by extension,

effective vector surveillance.

Traditional morphological classification, while foundational, is often insufficient to
differentiate cryptic species, including between malaria vectors and non-vectors [49-51]. To
address this, molecular diagnostics have become essential. Polymerase chain reaction assays
(PCR) targeting the ITS2 region of ribosomal DNA are widely used, but have limitations,
including restricted taxonomic scope, inability to detect hybrids, and sensitivity to primer-
binding mutations [52—55]. Moreover, initial morphological misclassification can compromise
subsequent molecular results [56]. Current molecular approaches, even with tools like
mitochondrial COI/COII and nuclear ITS2, often fail to fully capture the evolutionary and
ecological diversity within Anopheles, particularly in resolving recently diverged taxa or
detecting gene flow [57-59]. This hinders accurate assessment of vectorial capacity and
insecticide resistance. While advanced multi-locus genotyping and genome-informed
strategies offer higher taxonomic resolution and can identify hybrid zones and track adaptive
traits [60,61], their widespread adoption in endemic regions is limited by cost, infrastructure,
and the need for specialized bioinformatics expertise. Therefore, scalable and field-adaptable
diagnostic platforms that combine molecular precision with logistical feasibility are urgently

required.

1. 4. Malaria in Tanzania: Context and Challenges

1.4.1 Epidemiology

Over the past 25 years, Tanzania has made significant progress in reducing malaria-related
deaths, primarily through the widespread deployment of vector control measures such as
insecticide-treated nets, indoor residual spraying, effective antimalarial therapies, and rapid

diagnostic tests [62]. Intermittent preventive treatment in pregnancy has provided additional



protection for vulnerable populations. Supported by international and domestic investments,
these efforts have lowered national malaria prevalence from 14.8% in 2015 to 8.1% in 2022
and reduced the death rate from 121.6 per 100,000 people in 2000 to 41.4 in 2021 (Figure. 2A)
[62]. Despite these gains, malaria control has recently plateaued, and the disease remains one
of the top two causes of mortality nationwide (Figure 2B) [1]. Moreover, national-level data
conceal considerable variation in malaria burden across regions, masking the spatial
heterogeneity that underlies the current transmission dynamics. In several councils within the
Northwestern and Southern zones, malaria prevalence among school-aged children has been
reported to exceed 50% [63]. Overall, an estimated 93% of the Tanzanian population remains
at risk, with higher transmission intensities reported in areas between 750 and 1,250 meters
above sea level, such as the Lake and Southern zones, whereas lower transmission levels are
observed in the Central and Southern Highlands (Figure 3) [62]. This marked regional variation
underscores the need to understand the ecological drivers of malaria transmission, as such
insights are essential for designing targeted, context-specific surveillance systems and

interventions.

1.4.2 Vectors, and Parasites of Tanzania

Human malaria transmission in Tanzania is driven by several Anopheles species. The principal
vectors belong to the Gambiae Complex (An. gambiae and An. arabiensis) and the An. funestus
Subgroup (4n. funestus) [64—66]. Secondary vectors, such as An. rivulorum, An. parensis, An.
leesoni, An. coustani, An. pharoensis, and An. squamosus have also been reported as
Plasmodium carriers in the country [64,66—69]. Furthermore, An. coustani, which was
historically considered a minor vector and is abundant in the country, is now frequently
detected harbouring human Plasmodium in multiple countries, including Cameroon, Kenya,
and Madagascar [70-73], prompting a reassessment of its role in transmission [74,75]. The
involvement of multiple vector species corresponds with the circulation of diverse Plasmodium
species. Recent surveys indicate that all major human Plasmodium species, except P. knowlesi,
are present in the country. A cross-sectional study of 3,456 schoolchildren reported infection
rates of 22% for P. falciparum, 24% for P. ovale spp., 4% for P. malariae, and 0.3% for P.
vivax [76]. Co-infections involving multiple Plasmodium species were also frequently

observed, underscoring the complexity of malaria transmission in the country.
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Tanzania since 2000, according to 2021 WHO data. (B). Top 10 causes of death in Tanzania
according to 2021 WHO data. (Disclaimer: This plot was created using publicly available data
downloaded from the WHO website)

1.4.3 Challenges of Malaria Control in Tanzania

Gaps in Vector Surveillance: Taxonomic Resolution and Spatial Coverage
Despite notable progress in malaria control over the past two decades, persistent biological,

ecological, and technological challenges continue to undermine elimination efforts in the



country. A major limitation lies in the inadequate resolution of malaria surveillance systems,
particularly the shortage of detailed, species-level information on Anopheles vector populations
across diverse ecological zones. Although approximately 50 Anopheles species have been
reported in the country [77], most identifications relied on morphological keys, an approach
with limited reliability for differentiating sibling species without molecular validation. This
uncertainty surrounding vector identity, abundance, and distribution hinders a comprehensive

understanding of malaria transmission dynamics.

To overcome limitations in traditional vector identification, molecular diagnostics, particularly
PCR based assays targeting the ITS2 region have become widely used. However, these tools
are not without limitations. Taxonomic resolution remains limited, especially for recently
diverged or hybridizing taxa, and primer-binding site mutations can compromise amplification
success. Moreover, PCR assays often depend on accurate initial morphological sorting,
meaning early-stage misidentification can propagate through molecular workflows, resulting
in misclassification or amplification failure [56]. Consequently, both morphological and PCR
based methods can introduce uncertainty into species identification, potentially distorting risk
assessments and misguiding intervention strategies. These diagnostic limitations are further
compounded by surveillance systems that often lack sufficient geographic and temporal
coverage, leaving critical data gaps. To address these challenges, Ecological Niche Models and
Species Distribution Models have emerged as valuable tools. By predicting habitat suitability
from species occurrence and environmental variables [78—81] these models offer an indirect
but scalable means to assess vector distributions and ecological preferences, particularly where
empirical data are sparse. However, their predictive accuracy is constrained by the absence of
high-resolution, species-specific, and up-to-date occurrence records. This limits their
effectiveness for fine-scale risk mapping, surveillance prioritization, and the design of

geographically targeted vector control strategies.

Non-falciparum Malaria Parasites in Vectors: A Surveillance Gap

Although multiple human malaria Plasmodium species have been reported in Tanzania [76,82],
surveillance and research have largely focused on P. falciparum, leaving the epidemiology and
the mosquito vectors of non-falciparum malaria poorly characterized. This underrepresentation
is concerning, not only because it limits understanding of transmission ecology, but also
because co-infections involving multiple Plasmodium species have been associated with

increased disease severity and mortality compared to single-species infections [83].



Compounding this, the global malaria landscape is becoming increasingly complex due to the
emergence of zoonotic Plasmodium species, particularly in regions where humans and non-
human primates share overlapping habitats [84]. Although such cases have not yet been
documented locally, these global trends underscore the potential risk of zoonotic spillover and
highlight the need to account for its implications in future malaria control and elimination
strategies. Furthermore, in mosquito-based surveillance, circumsporozoite protein enzyme-
linked immunosorbent assays, remains the standard for detecting Plasmodium infections, yet
it has limited sensitivity for low-density infections and is largely restricted to P. falciparum,

with poor capacity to detect non-falciparum species.

Fragmented Genomic Surveillance and Connectivity Data

Knowledge of the population structure, gene flow, and spatial dynamics of malaria vectors
remains incomplete. While recent genomic analyses of An. funestus [85], have provided
valuable national-scale insights, studies on An. gambiae and An. arabiensis have largely relied
on microsatellite data [86,87] or geographically restricted high-resolution whole genome
sequencing [88]. Consequently, these datasets offer only a fragmented view of connectivity,
dispersal, and genetic structure across the country. A comprehensive genomic surveillance
framework covering all major vector species is essential to monitor the spread of adaptive traits

such as insecticide resistance, and to inform genetic control strategies.

1.5 Theoretical Synthesis

Malaria vector surveillance remains fragmented. Diagnostic tools often miss cryptic mosquito
species or non-falciparum Plasmodium because they rely on morphological keys and low-
resolution assays, limiting taxonomic precision. Ecological niche models, while statistically
robust, rely mainly on correlative associations between occurrence records and environmental
variables, offering little insight into the physiological and ecological constraints that shape
mosquito distributions. Genetic studies have advanced knowledge of vector diversity but are
rarely integrated with the landscapes where populations persist and move, limiting their value
for surveillance and control. To address these gaps, this study proposes a techno-ecological
systems framework that links three constructs, molecular resolution, ecological suitability, and
genetic connectivity. This integration shifts surveillance from static, reactive monitoring to
dynamic, predictive systems that can guide proactive, context-specific interventions. The

framework rests on three interdependent pillars:



Enhanced Molecular Surveillance: This study applies ANOSPP (the Anopheles Species and
Plasmodium Panel), a multi-locus amplicon sequencing approach, to achieve high-resolution
identification of both mosquito vectors and malaria parasites. Unlike morphology-based
taxonomy, single-locus PCR assays, or circumsporozoite protein ELISAs, which often fail to
distinguish cryptic or emerging taxa, ANOSPP offers a more accurate and comprehensive
means of detecting mosquito and parasite diversity. By overcoming these diagnostic
limitations, molecular surveillance can more reliably detect species of epidemiological

importance and track changes in transmission dynamics with greater precision.

Ecological Niche and Species Distribution Modelling: This study integrates fine-scale
spatial and environmental data to model the ecological distribution of primary malaria vectors.
Unlike traditional approaches that rely mainly on statistical correlations between occurrence
records and environmental layers, the modelling framework here incorporates biological
knowledge of mosquito ecology derived from laboratory and field studies. Climatic variables
are used to delineate unsuitable areas, from which biologically informed pseudo-absence data
are generated. Combining these pseudo-absences with observed presence records allows the
models to move beyond purely correlative predictions and instead capture ecological
plausibility. In doing so, the models not only estimate habitat suitability and identify the
environmental drivers of vector occurrence but also achieve greater biological realism,

enabling finer-scale identification of areas at elevated risk of malaria transmission.

Population Genetic Structure and Connectivity: This component uses molecular data to
examine genetic diversity and population structure among malaria vector populations. By
characterizing patterns of local adaptation, genetic differentiation, and connectivity, it provides
critical insights into how mosquito populations are shaped across ecological landscapes. Such
information is essential for understanding spatial dynamics of transmission and for anticipating
the spread of adaptive traits, including insecticide resistance. It also offers an evidence base for

evaluating the potential effectiveness and risks of novel interventions such as gene drive.

Together, these pillars establish a unified paradigm that integrates molecular, ecological, and
genetic dimensions of surveillance. The framework generates actionable insights into where
vectors occur, how their populations are structured and connected, and which species or sites
are most relevant for intervention, supporting more precise and sustainable malaria control in

Tanzania and comparable settings.



1.6 Objectives

1.

To assess the composition, diversity, and spatial distribution of Anopheles mosquito
vectors, their associated Plasmodium parasites across Tanzania using the Anopheles

Species and Plasmodium Panel (ANOSPP).

To identify key environmental, climatic, and anthropogenic factors influencing malaria

vector diversity and geographic distribution.

To develop predictive species distribution models for primary malaria vectors to inform

surveillance and targeted vector control strategies in Tanzania.

To examine the population structure of Anopheles arabiensis in Tanzania using

ANOSPP generated data.



Chapter Two. Methodological Framework

2.1 Research Design

This study primarily analysed entomological samples and data collected between December
2020 and December 2023 from 25 ecologically diverse districts across mainland Tanzania. As
a large country with a significant malaria burden, and substantial ecological variability from
coastal lowlands to the Great Rift Valley, Tanzania offers a representative landscape for
investigating malaria vector dynamics. The selected districts included Misenyi, Muleba, Ngara,
Sengerema, Bariadi, Magu, Moshi Urban, Kigoma Urban, Mpanda, Nkasi, Igunga, Singida
Urban, Babati, Muheza, Manyoni, Iringa Urban, Mpwapwa, Kilosa, Bagamoyo, Rufiji, Kilwa,
Ruangwa, Tandahimba, Tunduru, and Ludewa (Figure 3A). These sites were part of the
national malaria surveillance system coordinated by the National Malaria Control Programme
(NMCP) [65], chosen to reflect a range of ecological zones, intervention strategies, malaria

endemicity levels, and anthropological contexts.

The study employed a rolling cross-sectional surveillance design. Within each selected district,
one of the three NMCP-designated sentinel villages was randomly chosen. In each village,
three sub-villages were selected, and four households were enrolled per sub-village for
entomological monitoring. Each sub-village was surveyed three times during the study period,
with one night of mosquito sampling per visit. To enhance spatial coverage and minimize
pseudo-replication, new households were selected for each round. Seasonal variation was
addressed by ensuring that each village was sampled at least once during both wet and dry
seasons. To strengthen the species distribution modelling component, additional mosquito
occurrence records from published sources covering other parts of the country were integrated.
In addition, mosquito specimens collected from Ulanga District, including areas within Nyerere
National Park under a separate study by Deogratius Kavishe from Ifakara Health Institute, were

included in genomic analyses.
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Figure 3. Study Area. Geographic distribution of mosquito sampling sites (red stars) overlaid
on the Kdppen—Geiger climate classification map of Tanzania, with major water bodies shown
in cyan for spatial reference. In Tanzania, the tropical climates include Af (tropical rainforest),
Am (tropical monsoon), and Aw (tropical savanna); the arid and semiarid climates include BSh
(hot semi-arid steppe) and BWh (hot desert); the temperate climates include Cfa (humid
subtropical), Cwb (temperate oceanic with dry winters), and Cwc (subtropical highland with
dry winters); and finally, the polar climates are represented by EF (ice cap, top of mountain
Kilimanjaro) and ET (tundra-near top of mountain Kilimanjaro). (B). Malaria prevalence
across Tanzania based on the 2022 National Malaria Survey, where colour gradients indicate
varying prevalence levels (in percentage) as shown in the legend (right side bottom) and

highlight regional disparities in malaria burden.

2.2 Data Collection

2.2.1 Mosquito Collection

Mosquito collections were conducted in accordance with institutional and national ethical
approvals. At each site (defined as one sub-village per sampling night), we deployed the same
three complementary trapping methods with identical relative sampling effort: (i) Mosquito
Electrocuting Traps (METs) [89-91], one indoors (living room) and one outdoors (immediately
outside the house) at each of four households per site, operated from 18:00—07:00 (=13 h),
yielding 8 MET trap-nights per site per sampling night; (ii) Backpack aspirator collections [92]
, conducted the following morning for 1 hour per house (4 hours of aspiration effort per site);
and (ii1) Barrier Screen Interception Traps (BS) [93], two screens per site operated from 18:00—
07:00 (=13 h). This sampling design was applied uniformly at every site and in every sampling

round to ensure equal relative sampling effort and allow unbiased comparison of mosquito

11



abundance and community composition across the study area. To capture fine-scale
microclimatic variation, portable weather stations were installed near each sampled household

to record nightly temperature, wind speed, and humidity (18:00-07:00).

2.2.2 Morphological and Molecular Species Identification

After collection, mosquitoes were morphologically identified based on the protocols of Coetzee
et al. (2020) [49] and Gillies et al. (1987) [50] and stored individually in Eppendorf tubes filled
with silica gel. A subset of specimens belonging to the primary malaria vector species was
subjected to molecular analysis at the Ifakara Health Institute using species-specific
polymerase chain reaction assays [53,55]. The remaining samples, comprising most of the
dataset, were preserved in 100% ethanol in 96-well plates and shipped to the Wellcome Sanger
Institute in the UK for molecular analysis using the ANOSPP protocol. Transportation of
samples complied with the Nagoya Protocol on Access and Benefit-Sharing of Genetic
Resources [94], prior to shipment. For the ANOSPP dataset, DNA extraction was carried out
using a minimally morphologically destructive protocol by Korlevi¢ et al. (2021) [95], and all
samples were sequenced using the ANOSPP protocol, as developed by Makunin et al. (2020)
[96]. Species identification was done through the NNoVAE species assignment pipeline using

anospp_analysis v0.3.5 and reference datasets nnv2, gerefvl and plasmv1 [97,98].

2.2.3 ANOSPP Panel Design

The ANOSPP panel is a targeted amplicon-sequencing assay utilizing 64 primer pairs for
simultaneous Anopheles species identification and associated Plasmodium species detection.
The panel includes 62 single-copy nuclear targets distributed across all Anopheles chromosome
arms to maximise species-level resolution and ensure consistent amplification across divergent
taxa, and two conserved mitochondrial targets for Plasmodium species. Anopheles amplicons
are short (approximately ~100-250 bp) and cover highly variable regions phylogenetically
informative across the genus, conserved loci retained in outgroup alignments, and X-linked
loci particularly informative within the An. gambiae complex; targets span exonic, intron-
spanning, and intergenic regions to capture diverse evolutionary signals (see figure 4) [97,98].
Primer binding sites were selected from conserved flanking regions using progressive masking
strategies to avoid variable positions, incorporating degenerate bases where needed to maintain
binding robustness across taxa. Plasmodium targets (~170-220 bp) were selected from
mitochondrial rRNA-fragment regions aligned across major human malaria species, leveraging

the high mitochondrial copy number for sensitive parasite detection in mixed mosquito DNA
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extracts [97,98]. DNA extraction uses a non-destructive, high-throughput lysis method (figure
5)[95], enabling subsequent morphological confirmation when required. Library preparation
follows a two-step multiplex PCR workflow (pooled target amplification followed by dual-
index barcoding), and sequencing is performed on an [llumina MiSeq paired-end platform (see

figure 5).

Following sequencing, mosquito species identity is determined using the NNoVAE workflow,
beginning with a k-mer nearest-neighbour (NN) classifier against a curated reference database,
followed where necessary (e.g. within the An. gambiae complex) by refinement using a
variational autoencoder (VAE) trained on reference haplotypes to resolve closely related
taxa[97,98]. Plasmodium detection is based on the two mitochondrial amplicons, which are
aligned via BLAST against reference parasite genomes; a mosquito is considered Plasmodium-
positive, and parasite species assigned, when both loci consistently match the same reference
species [97,98]. All wet-lab steps and primer sets followed the original publications and were
completed prior to this thesis; my work begins at amplicon sequences and species identified

and covers all downstream bioinformatics, variant calling, data integration, and analyses.
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Figure 4. Genomic distribution of the 62 Anopheles nuclear amplicons targeted by the
ANOSPP panel across three reference genomes. Amplicon locations shown for Anopheles
albimanus (top), An. gambiae (middle), and An. funestus (bottom). Colours represent genomic

context based on the AgamP3 annotation: exonic (red), intron-spanning (yellow), and
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intergenic (blue) regions. No amplicons map to the An. albimanus X chromosome due to the

absence of homologous target regions in this species. Figure adopted from Makunin et al.

(2022)[97,98]
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Figure 5. Workflow for the ANOSPP targeted amplicon sequencing panel from DNA
extraction to Illumina sequencing. Overview of the laboratory steps used in the ANOSPP
assay, including non-destructive mosquito DNA extraction, multiplex PCR amplification, dual-
index barcoding, library pooling, and Illumina MiSeq sequencing. Figure courtesy of Dr. Petra

Korlevié.
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2.2.4 Plasmodium Species Identification and Tree Generation

Plasmodium detection and species identification were performed using the ANOSPP protocol,
which targets two short mitochondrial amplicons (hereafter P1 and P2; ~170-220 bp) for high-
throughput sequencing. Parasite presence was inferred from the recovery of Plasmodium reads
in these loci, and primary species assignment for Plasmodium-positive samples was obtained
using the ANOSPP species-assignment pipeline (anospp_analysis v0.3.5), which implements
a local BLAST-based workflow against the plasmv1 reference database [97,98] as detailed in
Section 2.2.2 and 2.2.3. To visualise sequence relationships and provide an additional layer of
confirmation for these BLAST-based calls, we constructed a local reference database of
complete Plasmodium mitochondrial genomes by downloading sequences from NCBI via a
custom Bash pipeline using E-utilities (efetch). The combined FASTA file was organised by
species and accession using a modified header format (>accession|species) and integrated into
R workflows for phylogenetic analysis. Per-target alignments (sample amplicons plus matched
reference segments) were generated with MAFFT using the L-INS-i algorithm[99], and
maximume-likelihood trees were inferred with IQ-TREE 3[100], employing ModelFinder for
model selection and UFBoot (1,000 replicates) together with SH-aLRT (1,000 replicates) for
branch support. Trees were rooted with Haemoproteus columbae as the outgroup and used
qualitatively to verify that sample tips clustered with the reference sequences corresponding to
their ANOSPP-assigned species (reported as Fig. 7A and Fig. 7B, respectively; species
assignments reported in the main analyses are those produced by the ANOSPP pipeline.

2.2.5 Environmental and Ecological Data Collection

To extract the habitat information of Anopheles mosquitoes across Tanzania, environmental
and ecological data was collected from publicly available sources. The bioclimatic variables
(including temperature, rainfall, humidity, and aridity index) were sourced from the CHELSA
database [101]. Land cover data essential for habitat delineation were obtained from the
Copernicus Global Land Service [102], while human population distribution layers were
sourced from WorldPop [103]. Livestock density data for cattle and goats, indicating potential
blood meal sources, were retrieved from the FAO [104]. Vegetation indices, notably the
Normalized Difference Vegetation Index (NDVI), were accessed from MODIS datasets for
raster data, and AppeeARS for point data [105,106]. Climate classification data for isolation-
by-environment (IBE) analysis were taken from the global Koppen-Geiger dataset [107].
Topographic metrics, including slope and the Topographic Wetness Index (TWI), were derived

from a high-resolution digital elevation model (DEM) of Tanzania, processed using the terra
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R package (v1.7-65)[108], with the DEM sourced from NASA Shuttle Radar Topography
Mission (SRTM) [109]. All spatial layers were standardized to a 1 km? resolution, optimizing
ecological relevance and computational feasibility, as this scale reflects the typical dispersal
range of Anopheles mosquitoes [110-113]. Data preprocessing, raster operations, and spatial
transformations were executed within the R studio environment (R version 4.4.0, RStudio
version 2025.05.1-513) using the terra (v1.7-65), raster (v3.6-23), and tidyverse (v2.0.0)
[108,114,115] packages, ensuring reproducibility, consistency, and transparency in the

analytical workflow.

2.3 Data Analysis Process

2.3.1 Spatiotemporal Analysis and Community Niche Partitioning

To evaluate environmental drivers of mosquito species richness and community structure, a
unified set of environmental predictors was applied across all analytical frameworks. These
included both short-term variables (sampling-period temperature and humidity) and longer-
term climatic factors (mean humidity, annual mean temperature, mean diurnal range of
temperature, and annual precipitation), as well as land cover variables (shrub cover, NDVI,
cropland, and built environment), and temporal livestock presence during data collection.
Determinants of species richness were modelled using a quasi-Poisson generalized linear
model. This model estimated the influence of environmental and land-use variables on richness

patterns collection sites.

To investigate species co-occurrence patterns, pairwise Fisher’s Exact tests were applied to
presence—absence data across confirmed Anopheles species. Significant associations were
classified as positive or negative based on the direction and magnitude of odds ratios, which
were then log-transformed and visualized as a symmetrical heatmap. This approach captured

species pairs exhibiting consistent co-occurrence or mutual exclusion across sites.

Multivariate species and environment relationships were explored using Canonical
Correspondence Analysis (CCA) (using vegan package [116]) on Hellinger-transformed
species abundance data. The first two constrained axes (CCA1 and CCA2) were extracted to
visualize community-level responses to environmental gradients. Cosine similarity analysis

was then applied to the first four significant axes to quantify alignment between individual
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species and environmental vectors, and the results were displayed in a clustered similarity
heatmap and later used to partition species into their community niches. All statistical analyses
and visualizations were conducted in R (v4.3.2) using a fully reproducible workflow. Spatial
layers were processed using the sf and terra packages ([108,117], with background maps
sourced from rnaturalearth [118], and visual outputs generated with ggplot2 [119] and
complexheatmap [120] packages.

2.3.2 Species Distribution Modelling

To estimate the spatial distributions of Anopheles arabiensis, An. gambiae s.s., and An. funestus
across Tanzania, a species distribution modelling (SDM) framework was implemented that
integrated ecologically informed pseudo-absence generation with environmental, climatic,
demographic, and topographic covariates (Table 4). Occurrence records were spatially
aggregated within a 1 km radius to minimize spatial autocorrelation, align with the resolution
of predictor rasters, and reflect realistic mosquito dispersal ranges [110—113]. Pseudo-absence
points were generated from environmentally unsuitable areas identified using forest-canopy
thresholds, aridity indices, and temperature-based suitability limits, defined according to
species-specific ecological tolerances (see Chapter 4, Section 4.2). Predictor variables were
standardized and screened for multicollinearity using Pearson correlation and Variance

Inflation Factor (VIF) analysis.

This study employed an advanced hybrid SDM framework that departs from both traditional
correlative models (e.g., MaxEnt[81]) and purely mechanistic approaches (e.g., temperature-
driven physiological suitability[121]). The distinguishing feature lies in the construction of the
model background: pseudo-absences were generated explicitly from biologically unsuitable
zones grounded in species-specific physiological and climatic thresholds. This physiology-
guided pseudo-absence selection anchors the model in ecological realism and minimizes bias
associated with random or environmentally accessible yet unsuitable background points [122].
Similar principles have been advocated to enhance predictive realism [123,124] and to integrate
mechanistic realism within correlative frameworks [125]. The resulting physiology-guided
pseudo-absence plus presence model framework bridges the mechanistic precision of studies
such as Ryan et al. (2015)[121] with the correlative flexibility of global mosquito-mapping
initiatives Sinka et al. (2010, 2012)[81,126]. To my knowledge, this represents the first
application of such a hybrid SDM configuration for Anopheles distribution mapping in

Tanzania, and likely one of the earliest if not the first within sub-Saharan Africa.
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Species—environment relationships were modelled using binomial Generalized Additive
Models (GAMs)[127] implemented in the mgcv package (R). Restricted maximum likelihood
(REML) estimation with penalized smoothing splines was used to capture nonlinear effects
while preventing overfitting. Although alternative algorithms such as Random Forests, Boosted
Regression Trees, ensemble frameworks, and Bayesian hierarchical methods (e.g., INLA) can
incorporate pseudo-absences, GAMs were selected for their optimal balance of flexibility,
interpretability, and diagnostic transparency. In contrast, presence-only methods such as
MaxEnt rely on background sampling and provide limited insight into residual structure or

model calibration.

Each model underwent a rigorous diagnostic and validation workflow. Model residuals were
evaluated using the DHARMa package[128] to detect overdispersion, zero inflation, and spatial
autocorrelation. Predictor refinement followed an AIC-guided backward elimination
procedure, ensuring that each retained term improved both model parsimony and diagnostic
behaviour. Model performance and generalizability were assessed via 10-fold spatial block
cross-validation [129] implemented in the blockCV package, thereby reducing spatial
dependence between training and test data and avoiding overestimation of predictive power.
Calibration accuracy was further evaluated using reliability curves and root mean square error
metrics[130]. The final modelling framework integrates ecological realism, statistical rigour,
and diagnostic transparency to produce spatially explicit habitat-suitability maps for
Tanzania’s three principal malaria vectors. These models capture complex, nonlinear
environmental responses while remaining interpretable and biologically grounded, thereby
providing a robust evidence base for geographically targeted, species-specific malaria vector

control and surveillance strategies across Tanzania.

2.3.3 Population Structure Analysis

To investigate population structure among Anopheles vector populations across Tanzania,
sequencing data from the ANOSPP panel, which targets 62 informative short-amplicon regions
optimized for species identification, was used [96]. Raw sequence reads underwent sample
inference and quality control using DADA2 [131], followed by extraction of corresponding
amplicon reference sequences from the An. arabiensis Dongola strain reference genome
(AaraD3, GCF _016920715.1) [132], which was downloaded from NCBI. For extraction of

reference amplicon for each target, the most frequently observed haplotype sequence was
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aligned to the An. arabiensis reference genome using locally installed BLASTn (BLAST+
v2.13.0). Genomic coordinates from the top hits were parsed and written into BED format via
a custom Bash script. Strand-aware reference amplicon sequences were then extracted using
bedtools getfasta (v2.30.0) [133]. To verify accuracy, each reference sequence was realigned
to the original query, and alignment reports were generated including coordinate ranges,
percent identity, and orientation. The genomic annotation of each target, such as chromosomal
location and whether the region fell within an exon, intron, or intergenic space, was retrieved
from the accompanied GFF file and included in the report for verification. Validated reference
sequences were renamed and prepended to the corresponding sample haplotypes, generating
one merged FASTA per target. These were subsequently aligned using MAFFT (v7.505) with
the --globalpair and --large settings [99].

Variant calling was performed on the aligned FASTA files using a custom R-based pipeline
designed to operate using ANOSPP data or any other multilocus sequence outputs. This
pipeline mimicked standard VCF logic [134] to detect SNPs, indels, and complex variants,
outputting a long-format CSV with detailed genotype information per specimen. Only biallelic
variants were retained for downstream analyses. Missing genotypes were imputed using a
nonparametric random forest approach implemented via the missForest package in R [135].
This method was selected for its ability to model complex multilocus genotype structures and
its robustness to missing data. Random forest imputation has demonstrated high accuracy in
genetic datasets, including under moderate missingness levels up to 20%, and performs
comparably to Hidden Markov Model-based approaches [136—138]. The resulting imputed

matrix was then used for subsequent downstream analyses.

Population structure was assessed using Principal Component Analysis (PCA) and
Discriminant Analysis of Principal Components (DAPC). PCA was performed in R using the
prcomp function to summarize major axes of genetic variation and to evaluate patterns such as
large-scale differentiation, potential chromosomal inversions, and noise or outlier signals in the
dataset. DAPC was conducted in the adegenet package (v2.1.10) [139], with districts (for
Tanzania) and countries (for continental analyses) specified as predefined groups. These
groupings were used as priors to guide the analysis but did not impose structure, as DAPC
identifies genetic clusters directly from allele frequency variation. The number of retained
principal components was determined through cross-validation and score optimization to

achieve the best balance between discrimination and avoid overfitting.
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To evaluate spatial and environmental drivers of genetic variation, Isolation by Distance (IBD),
Isolation by Resistance (IBR), and Isolation by Environment (IBE) using Mantel and partial
Mantel correlations, controlling for spatial autocorrelation among genetic, geographic, and
ecological distance matrices. These analyses were complemented by maximum-likelihood
population-effects (MLPE) models, which explicitly account for spatial autocorrelation and the
non-independence of pairwise genetic distances [140,141]. Pairwise FST values were
calculated following Weir and Cockerham [142] to quantify genetic differentiation among
populations. Together, these approaches provided a multilayered framework for characterizing
population structure and ecological differentiation across Tanzania using the amplicon-based

ANOSPP dataset.

2.4 Ethical Considerations

Full ethical approval for this study was obtained from the Ifakara Health Institute, Institutional
Review Board (IHI/IRB/No0:09-2020), the National Institute for Medical Research
(NIMR/HQ/R.8¢/Vol.1/1984), and the President’s Office — Regional Administration and Local
Government (AB.307/223/01). Additional permissions were secured from local government
authorities and community leaders in each sub-village where the research was conducted.
Written informed consent was obtained from all study participants, including heads of
households and mosquito collectors. For participants unable to read, the consent form was read
aloud and explained in Kiswabhili or the local language by trained field staff, in the presence of
a community witness. Upon agreeing to participate, the household head or their representative
provided a thumbprint on the consent form, which was then signed by the witness. All
participants were informed of their right to withdraw from the study at any time without
consequence. To ensure household privacy during overnight mosquito collections, only houses
with at least two bedrooms and a living room were selected. Priority for mosquito collection
roles was given to consenting members of the participating household; if no one consented,
volunteers were recruited from nearby households within the same sub-village. As the study
began during the COVID-19 pandemic in 2020, field activities were suspended in compliance
with national restrictions. Once the ban was lifted, data collection resumed with strict
adherence to WHO guidelines, including the use of face masks, regular handwashing, avoiding
handshakes, application of hand sanitizers, and maintaining social distance to protect both

researchers and participants.
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Chapter Three: Diversity, Community Niche Structure, and
Geographical Distribution of Anopheles Mosquitoes and Their

Associated Plasmodium Species in Tanzania

Chapter summary

This chapter presents a comprehensive analysis of the spatial distribution, diversity, and
ecological patterns of Anopheles mosquito species and their associated Plasmodium parasites
across 25 districts in Tanzania. The aim is to inform vector control strategies by identifying
spatial heterogeneity and co-occurrence patterns that can support locally tailored interventions.
Understanding species assemblages, co-occurrence frequencies, and the ecological drivers
behind them provides insights into interspecific interactions, potential competition, and the use
of signature species as indicators in surveillance. Through spatial mapping, statistical plots,
and tabular summaries, this chapter describes variation in species richness, abundance, species
composition and community structure, and regional distribution, and the ecological drivers
influencing these patterns. It also compares conventional morphological identification with
ANOSPP based identification, demonstrating substantial gains in taxonomic resolution and
identification accuracy. It also identifies Anopheles vector species linked to the transmission
of specific Plasmodium parasites and quantifies co-infections instances where single mosquito
specimens carry multiple Plasmodium species. Importantly, the chapter reports, for the first
time in Tanzania, the detection of Plasmodium caprae, a goat-specific Plasmodium species, in
Anopheles arabiensis. While not zoonotic, this finding broadens our understanding of host—

parasite—vector interactions and the ecological range of malaria vectors.

3.1 Mosquito Collection and Morphological Identification

Over a three-year surveillance period from December 2020 to December 2023, a total of 71,146
mosquitoes were collected across 25 sentinel districts. Morphological identification
categorized these into two primary groups: Culicines and Anophelines (Figure 6). The majority
of the collection, n=61,126 (86.0%), were Culicines. Within this group, species from the Culex
genus predominated, accounting for n=57,620 (80.99%) of the total collection. Other Culicine
genera identified included Coquillettidia at n=1,942 (2.73%), Mansonia at n=1,351 (1.90%),
and Aedes at n=213 (0.30%). The remaining n=10,020 (14.0%) consisted of Anopheles species.
Among these, An. gambiae s.I. was the most prevalent, representing n=4,168 (5.86%) of the
total collection. Other notable Anopheles species included An. pharoensis at n=2,005 (2.82%),
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An. coustani at n=1,574 (2.21%), and An. funestus s.l. at n=1,314 (1.85%). Additional
Anopheles species identified in smaller numbers were An. squamosus (n=905, 1.27%), An.
maculipalpis (n=18, 0.03%), An. ziemanni (n=18, 0.03%), An. rufipes (n=17, 0.02%), and An.
cinctus (n=1, 0.001%).

Species
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Figure 6. Distribution and relative abundance of mosquito taxa (identified by
morphological keys) across districts. The heatmap shows the number of specimens by taxon
(columns) and district (rows) collected during the study period. Cell colour intensity represents
specimen count, using a white-to-teal gradient capped at 500 (counts above 500 shown at
maximum saturation). Numeric values in each cell indicate the exact count per taxon—district

pair.
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3. 2 Molecular Identification of Anopheles Species
Molecular identification was performed using two methods: conventional PCR for a subset of

samples and ANOSPP for a larger collection.

3.2.1 PCR-based Identification

A total of 2,642 Anopheles mosquitoes, initially identified morphologically as members of the
An. gambiae s.1. or the An. funestus s.l., were submitted for PCR amplification. Of these, 248
samples failed to amplify, yielding 2,394 successfully amplified and confirmed specimens.
PCR-based identification revealed the following sibling species composition: An. arabiensis
(n=1,686; 70.43%), An. funestus s.s (n =405; 16.92%), An. gambiae s.s (n = 173; 7.23%), An.
quadriannulatus (n = 62; 2.59%), An. leesoni (n = 50; 2.09%), and An. rivulorum (n = 18;
0.75%). These specimens were not processed further using the ANOSPP panel but are retained
for complementary analyses in this and subsequent chapters, where species-level resolution

alone is sufficient. (See Tablel)

3.2.2 ANOSPP-based Identification

A total of 6,650 Anopheles mosquito specimens were submitted for ANOSPP sequencing. Of
these, 1,124 samples failed quality control due to insufficient amplicon recovery, likely
attributable to poor sample quality, and 28 mosquitoes was further filtered out dure to potential
contamination. The remaining 5498 samples were successfully identified at different levels of
taxonomic resolution. The taxonomic resolution achieved across these samples varied. A small
fraction (n = 10; 0.20%) were identified only at a coarse taxonomic level, either series or
subgenus, indicating incomplete resolution: Cellia series (n = 3), Christya series (n = 1), and
Myzomyia series (n = 6). An additional 1,032 samples (18.77%) were resolved at an
intermediate level, typically complex or group level, also reflecting partial resolution: A4n.
coustani group (n = 669), An. marshallii group (n =41), An. funestus group (n = 28), and A4n.
gambiae complex (n =279). Most samples (n =4,456; 81.05%) were successfully identified to
the fine or sibling species level. Among these, the species distribution was as follows: An.
pharoensis (n=1,573; 35.30%), An. arabiensis (n = 1,361; 30.54%), An. squamosus (n =671,
15.06%), An. funestus (n = 448; 10.05%), An. rivulorum (n = 170; 3.82%), An. ziemanni (n =
121; 2.72%), An. gambiae s.s (n = 70; 1.57%), An. quadriannulatus (n = 32; 0.72%), An.
pretoriensis (n = 18; 0.40%), An. rufipes (n = 4; 0.09%), and An. maculipalpis (n = 3; 0.07%).

The incomplete resolution observed (intermediate level resolution only) was primarily due to
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the absence of corresponding reference sequences in existing databases, contamination, and in
some cases, due to insufficient amplicon recovery that rendered samples inadequate for full
taxonomic resolution. Therefore, subsequent analyses will focus exclusively on fully resolved
species, apart from the An. marshallii and An. coustani groups, for which where necessary the
intermediate level will be used given representative species-level data are unavailable. (See

Tablel)

Table 1. Species composition summary across Anopheles species complexes identified in

this study

Series Species Species Vectorial Status PCR | ANOSPP | Total
Group/Complex
Pyretophorus | Gambiae An. gambiae Primary vector 173 70 244
An. arabiensis Primary vector 1686 1361 3050
An. Non-vector 62 32 94
quadriannulatus
Either member of - 0 279 279
Gambiae complex
Myzomyia Funestus An. funestus Primary vector 405 448 853
An. leesoni Secondary vector 50 0 50
An. rivulorum Secondary vector 18 170 189
Either member of - 0 28 28
Funestus group
Marshalii Either member of Some are 0 41 41
Marshalii group secondary vectors
while most are
non-vectors
- Either member of - 0 6 6
Myzomyia series
Cellia - An. pharoensis Secondary vectors 0 1573 1576
Squamosus An. squamosus Secondary vectors 0 671 673
- Either member of - 0 3 4
Cellia series
Christya - Either member of Non vectors 0 1 1
Christya series
Neocellia - An. maculipalpis Non vector 0 3 3
- An. pretoriensis Non vector 0 18 18
- An. rufipes Secondary vector 0 4 4
Myzorynchus | Coustani An. ziemanni Secondary vector 0 121 121
Either member of - 0 669 682
Coustani group
Grand Total 2394 5496 7890
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3.3 Plasmodium species detected in Anopheles Mosquitoes

Analysis of Plasmodium presence in Anopheles mosquitoes revealed circulation of multiple
parasite species across several mosquito species, including instances where more than one
species was detected in a single mosquito. An. arabiensis carried P. falciparum (n =5) and P.
caprae (n = 5), the latter representing the first report of this parasite in Tanzania. In An.
funestus, both single and multi-species detections were observed: P. falciparum (n = 14), P.
malariae (n = 1), and P. ovale (n = 3) occurred alone, while two multi-species detections were
recorded, P. vivax + P. malariae and P. falciparum + P. malariae. An. gambiae carried P.
falciparum (n = 4), while single detections of P. falciparum were also found in An. pharoensis

(n=1) and An. rivulorum (n = 1) (Table 2, Figure 7).

Table 1. Detection Status of Individual Anopheles Mosquitoes Harbouring Plasmodium

Parasites

Mosquitoes Plasmodium Plasmodium Species count Prevalence Prevalence
Species Status (Numbers) (Percent)

An. arabiensis  Single species  P. falciparum 5 5/1361 0.36
An. arabiensis  Single species  P. caprae 5 5/1361 0.44
An. funestus Two species P. vivax; P. malariae 1 1/448 0.22
An. funestus Two species P. falciparum; P. malariae 1 1/448 0.22
An. funestus Single species  P. falciparum 14 14/448 3.13
An. funestus Single species  P. malariae 1 1/448 0.22
An. funestus Single species P. ovale 3 3/448 0.67
An. gambiae Single species  P. falciparum 4 4/70 5.71
An. pharoensis ~ Single species  P. falciparum 1 1/869 0.12
An. rivulorum  Single species  P. falciparum 1 1/170 0.59
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Figure 7. Maximum-likelihood phylogenetic trees for Plasmodium species identification. Phylogenetic trees inferred from ANOSPP
mitochondrial amplicons P1 (A) and P2 (B). Trees were reconstructed in IQ-TREE 3 under the best-fit nucleotide substitution models selected by
ModelFinder. Node support values represent ultrafast bootstrap (UFBoot) and SH-aLRT estimates. Each tip corresponds to either a reference
mitochondrial genome (circles) or a study-derived haplotype (triangles). Major clades are colour-coded by species according to the key on the

right. Trees are rooted with Haemoproteus columbae as the outgroup, and branch lengths indicate substitutions per site.
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3.4 Comparison of Morphological and Molecular Identification

A total of 5,488 mosquito specimens with paired field-based morphological and ANOSPP
molecular identifications were included in the comparison. Morphological identifications were
conducted at species, group, or complex levels. Consequently, comparisons between
morphological and molecular identifications were limited to equivalent morphological

taxonomic resolution.

The ANOSPP assay substantially reduced species misidentification compared with
morphology alone. Of the 5,488 specimens examined, 338 were misclassified morphologically
when ANOSPP was used as the reference, corresponding to a 6.2% misidentification rate (95%
CI: 5.5-6.8%), which was significantly higher than the assumed 5% error threshold (binomial
test, p = 0.00014). Misidentification rates varied markedly among taxa. An. pharoensis showed
the lowest rate (9 of 1,556; 0.6%), whereas An. rufipes exhibited the highest (9 of 11; 81.8%).
High rates were also recorded for An. maculipalpis (7 of 9; 77.8%) and An. ziemanni (3 of 18;
16.7%) (Figure 4). Intermediate error rates occurred within the An. gambiae complex (120 of
1,832; 6.6%), An. funestus group (53 of 612; 8.7%), An. coustani group (111 of 766; 14.5%),
and An. squamosus (26 of 684; 3.8%). A chi-squared test on the contingency table of correct
versus incorrect identifications by taxon confirmed substantial heterogeneity in

misclassification rates across groups (%> = 381.8, p = 0.001, Monte Carlo simulation).

Binomial logistic regression using the An. coustani group as the reference category further
highlighted these contrasts. Taxa with significantly lower odds of misidentification included
An. pharoensis (OR = 0.03, p < 2x107'¢), An. squamosus (OR = 0.23, p = 9.3x107'"), 4n.
gambiae complex (OR = 0.41, p = 2.5x107'°), and An. funestus group (OR = 0.56, p = 0.001),
reflecting high morphological familiarity with major primary vectors. By contrast, An. rufipes
(OR = 26.6, p = 3.2x107°) and 4n. maculipalpis (OR = 20.7, p = 1.8x107*) had dramatically
elevated odds of misclassification, consistent with the very high failure rates observed for these
rarely targeted taxa. An. ziemanni showed a moderate failure rate (16.7%), but its odds ratio

did not differ significantly from the An. coustani group, likely due to the small sample size.

In addition to correcting misclassifications within morphologically recognised groups,
ANOSPP resolved species that were not detected by morphology at all. Notably, the assay
identified 41 specimens belonging to the An. marshallii group and 18 specimens of An.

pretoriensis, none of which had been distinguished as such in the original morphological
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sorting. These findings underscore how reliance on morphology alone can under-represent
morphologically challenging, or less prioritised taxa in routine surveillance, and illustrate the
added value of molecular diagnostics for capturing the full breadth of Anopheles diversity in

Tanzania.

Morphological Identification
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Figure 8. Heatmap of morphological versus ANOSPP identification. Each cell represents
the proportion (colour intensity) and absolute number (numeric label) of specimens within each
morphological group (columns) assigned to a given molecular confirmed group by ANOSPP
(rows). The proportion is calculated relative to the total number identified morphologically as
each taxon. Diagonal cells indicate congruent identifications for all species except An.
marshallii group, and An. pretoriensis, which were not detected morphologically; off-diagonal

cells reveal misclassification patterns.
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3.5 Spatial Distribution and Species Richness

Among the primary malaria vectors, An. arabiensis emerged as the most widely distributed
species, consistently present in large numbers across Tanzania. However, several high-
transmission districts, such as Ngara, Kilwa, Missenyi, and Magu as well as Ludewa (a low-
transmission area with a recognized hotspot in Manda ward), showed a different pattern. In
these areas, An. funestus was found in relatively high densities. Similarly, in Tandahimba
District, An. gambiae was notably more prevalent than other vector species. Although An.
gambiae s.s and An. funestus were generally less abundant than 4An. arabiensis, their consistent
presence in high-transmission zones underscores their strong association with elevated malaria
risk, indicating their higher transmission potential relative to other species. Several other
Anopheles species were also detected in considerable numbers and exhibited broad geographic
distributions, including An. pharoensis, An. squamosus, and members of the An. coustani
group. In contrast, species from the An. marshallii group appeared more localized, with
occurrences primarily in the northwestern districts of Missenyi, Ngara, and Muleba, as well as
in central Tanzania (Mpwapwa and Kilosa). An. pretoriensis was only recorded in Kilosa and
Mpwapwa (central Tanzania) and Ludewa (southern Tanzania). Species richness varied
markedly across the surveyed districts. Ludewa, Tunduru, and Kilosa exhibited the highest
species richness, each with nine or more distinct Anopheles species. In contrast, Moshi Urban

recorded very low richness, with only one species identified (see figure 9 & 10).

From a parasitological perspective, P. falciparum was the most detected species, found in
mosquito samples from nine of the twenty-five surveyed districts, confirming its widespread
distribution. Conversely, P. caprae was only identified in Kilosa District. Notably, districts
where multiple human-infecting Plasmodium species were detected in mosquitoes often
overlapped with areas of high malaria transmission. For example, Missenyi District showed
the presence of P. falciparum, P. malariae, and P. ovale; Ngara recorded P. falciparum, P.
vivax, and P. malariae; and Kilwa exhibited co-circulation of P. falciparum and P. ovale. While
the absolute counts of these infections were relatively low, the diversity of Plasmodium species
observed highlights ongoing transmission and the circulation of multiple malaria parasites

within vector populations in these high-burden regions (see figure 11).
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Figure 9. Spatial distribution of Anopheles species composition by district across
Tanzania. Pie charts represent the proportional distribution of mosquito species detected at
each site, with the size of each pie scaled to the total number of mosquitoes sampled per district
(larger pies indicate higher abundance). The left panel displays the composition of primary
malaria vectors (An. arabiensis, An. gambiae s.s, and An. funestus s.s), while the right panel

shows secondary vectors and other Anopheles species.
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Figure 10. Anopheles species richness and diversity across surveyed districts. The left
panel illustrates species richness (total number of distinct Anopheles species), while the right
panel shows the Shannon diversity index, reflecting both species abundance and evenness.
Higher values in both metrics indicate greater ecological complexity of mosquito populations

across regions.
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Figure 11. Spatial distribution of Plasmodium detected in mosquito vectors across
surveyed districts. Each district is represented by a pie chart showing the proportional
composition of Plasmodium species identified, including P. falciparum, P. malariae, P. ovale,
P. vivax, and P. caprae. The figure illustrates both the geographic spread and species diversity

of Plasmodium parasites circulating in vector populations.

3.6 Predictors of Species Richness

A quasi-Poisson generalized linear model (GLM) was employed to investigate the factors
influencing species richness at the hamlet level, accounting for under dispersion in the count
data as indicated by a dispersion parameter of 0.539. The model revealed that Shrubs land cover
(p<0.001) and presence of livestock (p<0.001) were highly significant positive predictors of
species richness, while mean diurnal temperature range was a significant negative predictor
(p=0.032). Statistical significance was assessed using robust (HC3) standard errors to account
for potential heteroskedasticity and confirmed by Type II analysis of deviance (ANOVA), as
model selection criteria such as AIC are not applicable to quasi-Poisson models due to the

absence of a true likelihood function. While other environmental and anthropogenic factors
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were included in the model, they did not demonstrate a statistically significant association with

species richness (Figure 12, Table 3). Diagnostic plots indicated a generally adequate model

fit, with residuals scattered around zero and no critically influential observations, suggesting

the model provides a reliable representation of the relationships between the predictors and

species richness.

Table 2. Ecologically Relevant Environmental and Climatic Variables Included in

Anopheles Species Richness (Quasi-Poisson) and Community Assembly Model (CCA)

Variable

Type

Rationale

Annual Mean
Humidity
(HumidityMean)
Temperature

Humidity

Annual Mean
Temperature
Annual Precipitation

Mean Diurnal Range
temperature (MDR,
Mean Diurnal
Range)

Shrubs

Normalized
Difference
Vegetation Index
(NDVI)
Cropland

Livestock

Built

Long-term climate

Short-term
meteorological
Short-term
meteorological
Long-term climate

Long-term climate

Long Term measure
of daily temperature
fluctuation

Land cover- shrub
covered areas
Vegetation across
the study period

Land cover - farm
lands

Presence of
livestock during
collection period
Land cover: Built
areas

Captures average background humidity influencing
adult mosquito survival.

Reflects immediate temperature conditions during
sampling; affects mosquito activity.

Measures real-time humidity during collection;
influences mosquito flight and host-seeking.
Represents baseline thermal regime shaping mosquito
distribution and species limits.

Provides context for rainfall-driven breeding site
availability and vector persistence.

Differentiates species adapted to stable vs. fluctuating
thermal conditions

Associated with transitional vegetation zones
influencing local microclimates.

Quantifies greenness and productivity, serving as a
general proxy for habitat suitability.

Represents agricultural disturbance, often linked to
habitat modification or irrigation.

Reflects alternative blood meal sources and possible
zoophilic mosquito attraction.

Indicates guilt areas villages, urban or peri-urban
environments; influences host availability and breeding
site availability due to land modification and hence
species composition.
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Figure 12. Forest plot of quasi-Poisson GLM predictors for mosquito species richness.
The plot show log-scale estimates (dots) with 95% robust Cls (lines). Orange dots indicate
p <0.05; purple dots p > 0.05.

3.7 Species Co-occurrence Patterns

Pairwise co-occurrence patterns among Anopheles species, including primary malaria vectors
such as An. arabiensis, An. gambiae, and An. funestus, were analysed using Fisher's exact tests
(Figure 13). This analysis revealed complex ecological interactions. Among the primary
vectors, An. arabiensis showed significant negative associations with both An. gambiae and
An. funestus. Conversely, An. gambiae and An. funestus exhibited a significant positive
association with each other. Associations involving An. arabiensis and secondary vectors
indicated negative associations with species like An. ziemanni, but frequent co-occurrence with

An. squamosus and An. quadriannulatus.

An. gambiae demonstrated a significant negative association with An. pharoensis. However,
An. gambiae showed a positive association with An. leesoni. For An. funestus, negative
associations were observed with An. pharoensis and An. quadriannulatus, while positive

associations with An. rivulorum and An. leesoni were detected. Among secondary vectors, An.
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pretoriensis displayed multiple strong positive associations with species such as An.
pharoensis, An. rivulorum, An. ziemanni, An. coustani group, and An. rufipes. Similarly, An.
pharoensis showed positive associations with several other secondary vectors, including An.
ziemanni, An. coustani group, An. squamosus, and An. rufipes. Overall, the co-occurrence
patterns suggest both habitat segregation and shared niche exploitation among diverse

Anopheles species

— :
== 1 ][]
whk -mm * - * An_squamosus
* % * An_coustani_group LOQSZOR

An_rivurolum

Fekk

An_rufipes 6
An_pharoensis L 14
An_pretoriensis
An_ziemanni 12
An_maculipalpis - 10
An_arabiensis L 1o
An_funestus

An_gambiae 4
An_quadriannulatus -6
An_marshallii_group 8

An_leesoni

Figure 13. Heatmap of pairwise co-occurrence patterns among Anopheles species. Red
and blue indicate positive and negative associations, based on scaled log. odds ratios
(log2(OR)) respectively, with colour intensity proportional to association strength. Asterisks
denote statistical significance (p-values are Bonferroni corrected) (p < 0.05 *, p <0.01 ** p<
0.001 ***), Hierarchical clustering groups species by similarity in co-occurrence patterns,

suggesting shared habitats or ecological interactions.
3.8 Ecological Niche Partitioning of Mosquito Communities

Canonical Correspondence Analysis (CCA) of Hellinger-transformed Anopheles abundance

data explained 14.1% of the total variance in species composition (> = 0.81, F = 6.43, p =
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0.001). The remaining 85.9% of variance was not explained by the model, likely due to
unmeasured environmental factors, biotic interactions, collection biases, or stochastic
processes. All eleven environmental predictors including short-term weather, long-term
climate, land cover, and livestock presence, were individually significant (p <0.001). The first
four constrained axes (CCA1-CCA4) together accounted for 87.8% of the constrained variance
and were all statistically significant (p < 0.001). The CCA biplot (Figure 14) illustrates the
distribution of species and environmental variables along the first two constrained axes,

highlighting the dominant ecological gradients.
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Figure 14. Canonical Correspondence Analysis (CCA) biplot. The plot shows mosquito
species (points) and significant environmental variables (arrows) along the first two canonical
axes. Arrow length reflects variable importance and direction indicates positive associations.
Species proximity and projection onto arrows indicate the strength and direction of ecological
associations. As described in the table Humidity is temporal humidity during data collection

while HumidityMean is climatic humidity recorded over a long period.
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To comprehensively quantify species—environment associations, cosine similarity analyses
were performed using the first four constrained axes (Figure 15). Species were grouped by
manual inspection of their cosine similarity patterns with key environmental variables,
particularly Humidity Mean, Annual Precipitation, and Mean Diurnal Range of Temperature
(MDR). 'Wet-Associated' species exhibited positive associations with humidity and
precipitation and negative associations with MDR, reflecting adaptation to moist, stable
environments. In contrast, 'Arid-Associated' species were characterized by positive
associations with MDR and negative associations with humidity and precipitation, indicating
adaptation to drier environments with greater daily temperature fluctuations. Species showing
neither extreme or mixed associations were classified as 'Moderate/Transitional.' NDVI and
Annual Mean Temperature served as additional interpretive variables, with association

thresholds based on the sign and magnitude of cosine similarity values.

To further explore ecological differentiation, additional variables, including short-term weather
conditions, vegetation cover, cropland, built environments, and livestock presence, were
examined to identify potential sub-groupings and assess species’ short-term environmental
responses. Group cohesion was supported by Fisher’s exact tests, which identified significant
positive within-group and negative between-group associations (e.g., An. arabiensis vs. An.
quadriannulatus, OR = Inf, p = 0.0026; An. arabiensis vs. An. gambiae, OR = 0.37, p <
0.00001).

3.8.1 Arid-Associated Group

The Arid-Associated Group, comprising An. arabiensis, An. squamosus, An. pharoensis, An.
pretoriensis, and An. quadriannulatus, consistently showed strong negative associations with
Mean Humidity (e.g., -0.81 for An. arabiensis, -0.61 for An. quadriannulatus), Annual
Precipitation (e.g., -0.84 for An. arabiensis, -0.58 for An. pharoensis), and NDVI (e.g., -0.95
for An. arabiensis, -0.82 for An. quadriannulatus). They also displayed positive associations
with MDR (e.g., 0.76 for An. pharoensis, 0.49 for An. pretoriensis), suggesting adaptation to

arid conditions with high temperature variability.

Association with Habitat related Variables: Positive associations with Cropland (e.g., 0.86 for An.
arabiensis, 0.95 for An. quadriannulatus, 0.55 for An. pharoensis) indicate these species may
be adapted to breeding in open, agricultural water bodies such as farm-field ponds. A4n.

pretoriensis (Cropland: 0.03, NDVI: -0.38) and 4n. squamosus (Cropland: 0.59, NDVI: -0.22)

37



showed weaker or moderate Cropland associations, suggesting potential breeding in open,

sunlit habitats with less dense vegetation.

Association with Host-Related Variables: Associations with host-related variables varied
within this group. An. squamosus (Livestock Presence: 0.94, Built: -0.03) and An. pharoensis
(Livestock Presence: 0.11, Built: -0.40) showed positive associations with Livestock Presence
and negative or near-zero associations with Built area, suggesting adaptation to feeding on
livestock. An. arabiensis (Livestock Presence: 0.24, Built: 0.42) and A4n. quadriannulatus
(Livestock Presence: 0.60, Built: 0.45) exhibited moderate positive associations with both
Livestock Presence and Built area, indicating potential generalist feeding behaviour on both
human and livestock hosts. An. pretoriensis (Livestock Presence: -0.79, Built: -0.02) showed
a strong negative association with Livestock Presence, suggesting adaptation to feeding on wild
hosts or in rural areas. Fisher’s positive association between An. pretoriensis and An.

pharoensis (OR =10.3, p = 0.02) supports their shared ecological niche.

Association with Temporal Variables: Temporal variable associations, based on instantaneous
Temperature and Humidity, varied across the group. An. squamosus (Temperature: -0.83;
Humidity: 0.95) exhibited a strong positive association with humidity and a negative
association with temperature, suggesting peak activity during cooler, humid conditions,
potentially corresponding to late-night or pre-dawn periods. An. pretoriensis (Temperature:
0.83; Humidity: -0.85) showed a strong positive association with temperature and a negative
association with humidity, suggesting increased activity under warmer, drier conditions. This
pattern aligns with its relatively high Mean Diurnal Range (0.49), potentially indicating
crepuscular or early evening feeding behaviour when temperatures remain elevated but
humidity declines. In contrast, An. quadriannulatus (Humidity: 0.37; Temperature: -0.07)
exhibited a moderate positive association with humidity and near-neutral association with
temperature, suggesting activity peaks during more humid periods, possibly at night or early
morning.  An. arabiensis (Temperature: 0.26; Humidity: 0.06) and An. pharoensis
(Temperature: -0.16; Humidity: 0.06) exhibited near-neutral associations with both
temperature and humidity, indicating temporal flexibility in activity patterns across varying
weather conditions. The high Mean Diurnal Range observed for An. pharoensis (0.76) further
supports its potential adaptation to environments characterized by substantial daily temperature

fluctuations.
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3.8.2 Wet-Humid Associated Group

The Wet-Associated Group, including An. funestus, An. gambiae, An. coustani Group, and An.
leesoni, consistently showed positive associations with Mean Humidity (e.g., 0.91 for An.
gambiae, 0.59 for An. funestus) and Annual Precipitation (e.g., 0.85 for An. gambiae, 0.7236
for An. coustani Group). They also displayed negative associations with Mean Diurnal Range
(e.g., -0.91 for An. gambiae, -0.48 for An. coustani Group), suggesting adaptation to humid

conditions with stable temperatures.

Association with Habitat related Variables: Positive associations with NDVI (e.g., 0.88 for 4n.
funestus, 0.53 for An. coustani Group) and Shrubs (e.g., 0.76 for An. funestus, 0.53 for An.
coustani Group), along with negative associations with Cropland (e.g., -0.96 for An. funestus),
indicate potential breeding in vegetated wetlands or shrubby areas. An. gambiae (NDVI: 0.38;
Shrubs: -0.06; Cropland: —0.56) and An. leesoni (NDVI: 0.04; Cropland: -0.26; Shrubs: -0.35)
exhibited weak associations with vegetation indices, suggesting adaptation to transitional
habitats such as sparsely vegetated zones or open sunlit pools. The moderately negative Mean
Diurnal Range for An. leesoni (-0.46) further supports its affinity for humid, thermally stable

environments.

Association with Host-Related Variables: Host-related associations varied within the Wet-
Associated Group. An. gambiae (Built: 0.52; Livestock Presence: -0.09) showed a strong
positive association with built areas, consistent with its well-documented anthropophilic
behaviour and preference for human-dominated environments. An. coustani Group (Livestock
Presence: 0.61; Built: -0.08) exhibited a positive association with livestock presence and a
weak negative association with built areas, suggesting a zoophilic inclination, likely favouring
peri-domestic livestock. An. funestus (Livestock Presence: -0.60; Built: -0.58) showed negative
associations with both livestock and built areas, potentially indicating a preference for
anthropophilic feeding in less disturbed, rural environments. An. leesoni (Built: 0.44; Livestock
Presence: -0.46) demonstrated a moderate positive association with built environments,
suggesting some degree of human host preference. These patterns are further supported by
significant positive co-occurrence from Fisher’s exact tests, for example, An. gambiae with An.
funestus (OR = 2.13, p = 0.0009) and An. gambiae with An. leesoni (OR = 3.97, p = 0.026),

indicating overlapping ecological niches within humid, anthropogenic habitats.
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Association with Temporal Variables: Temporal associations showed diversity. An. coustani
Group (Temperature: -0.755, Humidity: 0.68) had a negative association with Temperature and
a positive association with Humidity, suggesting activity in cooler, humid conditions,
consistent with its negative Mean Diurnal Range (-0.48). An. leesoni (Temperature: 0.67;
Humidity: -0.62) exhibited a positive association with temperature and a negative association
with humidity, suggesting increased activity during warmer, drier periods within otherwise
humid environments, potentially indicating evening or early night-time feeding behaviour. An.
funestus (Humidity: —0.36; Temperature: -0.002) also showed a negative association with
humidity, implying a preference for drier conditions despite its broader humid niche. In
contrast, An. gambiae (Temperature: 0.25; Humidity: -0.16) showed relatively neutral
associations, indicating temporal flexibility. The notably low Mean Diurnal Range for An.

gambiae (-0.91) further supports its adaptation to thermally stable environments.

3.8.3 Moderate/Transitional Group

The Moderate/Transitional Group, including An. marshallii Group, An. rivulorum, An. rufipes,
An. ziemanni, and An. maculipalpis, exhibited weak or mixed associations with climate
variables (e.g., Mean Humidity: 0.14 for An. marshallii Group, -0.18 for An. ziemanni; Annual
Precipitation: 0.42 for An. marshallii Group, 0.02 for An. rufipes). They also showed a variable
Mean Diurnal Range (e.g., 0.54 for An. ziemanni, -0.31 for An. maculipalpis), suggesting

adaptation to moderate conditions with variable temperature fluctuations.

Association with Habitat related Variables: Positive associations with shrub cover and NDVI,
such as An. rufipes (Shrubs: 0.77; NDVI: 0.44) and An. rivurolum (Shrubs: 0.69; NDVI: 0.54),
suggest that these species are likely to breed in vegetated or shrubby habitats. Concurrent
negative or near-zero associations with cropland (e.g., —0.48 for An. rivurolum, -0.054 for An.
marshallii Group) further supports a preference for more natural vegetation over open
agricultural landscapes. An. ziemanni (NDVI: 0.15; Shrubs: 0.26) and An. maculipalpis (NDVI:
0.063; Shrubs: 0.23) showed weaker associations with vegetation metrics, indicating
adaptation to less densely vegetated habitats, potentially including open, sunlit puddles. The
relatively high Mean Diurnal Range of An. ziemanni (0.54) suggests physiological tolerance to
temperature fluctuations, consistent with its broader habitat use. This is further supported by
its strong positive co-occurrence with An. rufipes (OR = 54.4, p = 0.004), implying shared

ecological preferences.
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Association with Host-Related Variables: Host-related associations within this group
generally leaned toward non-anthropogenic hosts. An. marshallii Group (Livestock Presence:
0.72, Built: -0.32) and An. maculipalpis (Livestock Presence: 0.77, Built: 0.12) showed strong
positive associations with Livestock Presence, suggesting adaptation to livestock feeding. An.
maculipalpis is classified as zoophilic (Built < 0.2 threshold) to align with Fisher’s positive
association with An. rufipes (OR = 96.4, p = 0.02). An. rivulorum (Built: -0.57), An. rufipes
(Built: -0.78), and An. ziemanni (Built: -0.57) showed negative associations with Built area,

indicating potential adaptation to feeding on wild hosts.

Association with Temporal Variables: Temporal associations were predominantly cool-active.
An. marshallii Group (Temperature: -0.97, Humidity: 0.87), An. rufipes (Temperature: -0.88,
Humidity: 0.59), and An. maculipalpis (Temperature: -0.71, Humidity: 0.86) showed negative
associations with Temperature and positive associations with Humidity, suggesting activity in
cooler, humid conditions, consistent with moderate Mean Diurnal Range values (e.g., 0.42 for
An. rufipes). An. rivulorum (Temperature: -0.44, Humidity: 0.22) had a negative association
with Temperature, indicating cool-active behaviour, while An. ziemanni (Temperature: -0.13,
Humidity: -0.14) showed neutral associations, supported by its high Mean Diurnal Range
(0.54) suggesting flexibility across temperature fluctuations and possible endurance in semi-

arid regions.
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Figure 15. Heatmap of cosine similarities between Anopheles species and environmental
variables from the first four CCA Axes. Red indicates strong positive associations, blue
indicates strong negative associations, and white/light colours indicate weaker associations.
Hierarchical clustering groups species by similarity in association patterns to the environment,

suggesting shared habitats or ecological interactions.

3.9 Discussion

For precise epidemiological inference and targeted species-specific control interventions, a
higher level of diagnostic accuracy is required. While widely used, conventional morphological
identification of Anopheles mosquitoes presents significant challenges, as highlighted by our
study's substantial 6.0% overall misclassification rate. Though more accurate than rates
reported in other regional studies, such as 15% in Zambia [143], and 10.8% in Kenya [144],
this level of precision still masks the underlying diversity within groups and remains
insufficient for effective surveillance. This is because this seemingly tolerable rate masks the
inherent inability of morphological keys to discriminate between species within

morphologically similar groups and complexes, such as 4An. gambiae s.l. (comprising nine
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species) and An. funestus s.l. (comprising 13 species) [56]. This leads to challenges in effective
control because, despite their morphological similarity, these species often exhibit distinct
behaviours and vectorial capacities, thereby requiring tailored intervention strategies [25,145].
Importantly, such morphological reliance also critically impacts downstream molecular
surveillance, because traditional PCR assays, dependent on accurate initial morphological
assignments, without which it can lead to non-amplification or costly re-testing if samples are

misidentified [56].

Our data specifically showed species like An. rufipes and An. maculipalpis were particularly
prone to misidentification, while An. pretoriensis, and species in the An. marshallii Group were
entirely missed by morphology. These inaccuracies largely stem from human factors such as
technician experience and the tediousness of identification in field settings. This is further
amplified by limitations in surveillance systems, which often restrict the range of species
detected by focusing primarily on the major malaria vectors, thereby masking the crucial and
increasingly important role of secondary vectors in transmission.

[64,71,72,74].

The ANOSPP panel [96] offers a transformative solution to these challenges, providing genus-
wide species resolution for Anopheles mosquitoes with only a simple initial morphological
identification to distinguish them from other genera [98]. This reduces the need for detailed
and often challenging morphological species or group-level pre-sorting, enabling the
identification of virtually any Anopheles mosquito to species level where reference sequence
data exists. In this study ANOSPP was able to identify 11 distinct Anopheles species and place
some in their group level, with the potential for full resolution upon obtaining additional
reference sequences in the databases. The panel also identified five Plasmodium species,
including P. falciparum, P. malariae, P. ovale, P. vivax, and P. caprae. This simultaneous,
multi-species Plasmodium detection capability is often overlooked in routine surveillance,
which predominantly focuses on P. falciparum. However, identifying the full spectrum of
circulating Plasmodium species is crucial, as co-infections can lead to more severe disease
outcomes [83], and the growing threat of zoonotic malaria [146—149] demands comprehensive
surveillance to truly understand transmission dynamics and safeguard against jeopardizing
current malaria control achievements. This capability, along with its potential to reduce
dependence on morphological keys, underscores ANOSPP's suitability for integration into

routine surveillance activities. However, like all sequence-based methods, the resolution power
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of ANOSPP ultimately depends on the breadth and completeness of its reference database. In
cases where a species lacks a reference sequence, taxonomic assignment may be limited to the
closest available group or, to the nearest series [97,98]. Nonetheless, this limitation is

progressively diminishing due to the ongoing expansion of the reference database [98].

It was revealed that shrubland coverage and the presence of livestock were positively
associated with higher mosquito species richness, whereas mean diurnal temperature range had
a negative correlation. The presence of livestock may increase olfactory cues in the
environment, thereby enhancing host detection and supporting a greater diversity of mosquito
species [150]. Similarly, shrubland may contribute to the formation of favourable
microclimates that enhance mosquito survival and breeding. On the other hand, the negative
impact of mean diurnal temperature range on species richness suggests that environments with
high temperature fluctuations, often indicative of arid conditions, may be less suitable for the
survival of a broad range of mosquito species. This is consistent with findings that show such

fluctuations adversely affect mosquito biology and survival [151].

The highest levels of species richness were recorded in Kilosa, an area characterized by year-
round agricultural activity and wetland habitats; in Ludewa, particularly Manda ward along the
shoreline of Lake Nyasa; and in Tunduru, which is also known for paddy cultivation. These
land-use patterns may contribute to increased breeding site availability and resource diversity.
Additionally, in both Kilosa, Ludewa and Tunduru, many mosquito species were collected
from cattle sheds, further supporting the role of livestock in sustaining higher species richness.
The very low species diversity observed in Moshi Urban likely reflects the significant impact
of urbanization, which leads to habitat homogenization and imposes strong selective pressures
favouring highly adaptable, generalist Anopheles species. These species can exploit the limited
and altered breeding habitats characteristic of built-up environments. This may explain why
only a single Anopheles species, An. arabiensis was detected in the area. This pattern aligns
with previous research indicating that diverse land use in agriculture can enhance mosquito

species richness [152].

Importantly, An. gambiae and An. funestus were more consistently found in high malaria
transmission zones, whereas An. arabiensis was widespread and detected across much of the
country. Notably, no Anopheles mosquitoes were recorded in Iringa Municipality. The co-

occurrence of An. gambiae and An. funestus with high transmission zones is consistent with
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their high vectorial capacity, while An. arabiensis appears to sustain residual transmission in
low-transmission settings [65]. Regarding parasite distribution, P. falciparum was found in all
nine districts where Plasmodium was detected. Moreover, districts such as Ngara, Misenyi, and
Kilwa identified as high-transmission areas [62] with elevated malaria prevalence and mortality
rates were also hotspots for Plasmodium species diversity. In these locations, multiple species
were detected, including P. falciparum, P. malariae, P. ovale, and P. vivax, a pattern that may

contribute to challenges in malaria case management due to mixed-species infections [83].

A particularly novel finding was the detection of P. caprae, a parasite typically associated with
goats, in An. arabiensis. Although P. caprae has previously been identified in mosquitoes such
as An. subpictus and An. aconitus [153], this is the first report of its presence in An. arabiensis.
Moreover, while P. caprae has been documented in both mosquitoes and goats in parts of Asia
and several African countries, this represents its first detection in Tanzania [153-155].
Although P. caprae has not been detected in humans and is considered restricted to non-human
hosts, its detection in a primary human malaria vector demonstrates the capacity of An.
arabiensis to harbour a broader range of parasites than previously recognized, with important
implications for understanding its transmission ecology. This finding may indicate interactions
at the livestock-human interface or demonstrate the vector's capacity to harbour non-human
Plasmodium species. While there is currently no direct evidence of zoonotic transmission, these
observations highlight the need for enhanced entomological and molecular surveillance.
Ultimately, the detection of P. caprae in this context reinforces the importance of adopting a
One Health surveillance framework that integrates data across human, animal, and vector
domains to better understand the ecology and transmission dynamics of malaria and related

parasites.

Using canonical correspondence analysis and pairwise chi-square co-occurrence analysis, we
were able to partition the sampled Anopheles species into potential ecological niche groups.
This classification was based on climatic and land cover variables derived from satellite remote
sensing data, as well as temporal data collected concurrently during field sampling. These
groups were defined as the Arid-Adapted Group, Humid-Adapted Group, and Ecologically
Flexible Group, further subdivided within each group based on habitat, potential host and
temporal weather variables which gave a glimpse of how their general activities are shaped by
instantaneous change in temperature and humidity. The Arid-Adapted Group, including An.

arabiensis, was associated with dry areas and agricultural zones characterized by marked
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temperature variability, as well as the presence of livestock and built environments. These
patterns confirm its generalist nature in host preference, as reported in previous studies [91].
This finding aligns with earlier reports from East Africa showing the species’ association with
irrigation systems and farm areas, which facilitate its survival in arid conditions [156,157], and
its predominantly zoophilic behaviour [158]. This understanding informs intervention design;
for instance, vector control in such contexts should emphasize LSM targeting agricultural water

bodies and the use of insecticide-treated livestock to intercept zoophilic vectors [159-161].

The Humid-Adapted Group including species such as An. gambiae, showed clear associations
with mean humidity and annual rainfall, and a negative association with mean diurnal
temperature range, conditions typical of more arid regions. This concurs with earlier studies
confirming its affinity for humid areas [157,162]. Its association with built environments also
supports its well-established anthropophilic behaviour. Similarly, An. funestus was associated
with vegetation-dominated land cover and negatively associated with built environments,
confirming prior reports of its preference in rural, vegetated habitats [163,164], its sensitivity

to temperature fluctuations [151] and its varying zoophilic and anthropophilic tendencies [165].

Meanwhile, species within the Ecologically Flexible Group, such as An. rufipes and the An.
marshallii group, exhibited broad environmental tolerance, occupying both natural and
anthropogenic habitats across diverse climatic zones. This adaptability may undermine the
effectiveness of static intervention strategies and underscores the need for localized seasonally
adaptive tools such as spatial repellents or community-driven larval surveillance. However, it
should be acknowledged that species associations with levels of aridity or humidity are context-
dependent within the Tanzanian landscape. Given that this study was limited to samples from
25 villages across 25 districts, it may not fully reflect the underlying ecological complexity.
Notably, even within a single village, different species may occupy distinct ecological niches

[166].

Nonetheless, our findings demonstrate that well-designed ecological modelling, supported by
robust data, can generate reliable insights for informing vector control. Additionally,
partitioning species into ecologically similar groups offers a practical advantage: a
representative "signature species" could serve as a proxy to infer the presence of other group
members, particularly in resource-limited surveillance settings. Although members of these

ecological groups may share general associations with humid or arid regions, they often differ
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significantly in their habitat and host-related variables. Consequently, interventions should be
tailored not on the group level but at the subgroup or species level depending on the pattern in
sharing characteristics as well articulated in the result section. For example, contrasting
associations with vegetation-related variables between An. gambiae (negative) and An. funestus
(positive), along with differences in temporal patterns, suggest distinct breeding site
preferences and weather-driven biting behaviours. These ecological nuances offer actionable

entry points for species-specific targeting within broader intervention frameworks.

Our classifications align with existing research for major vectors. An. gambiae and An. funestus
are well-documented in humid areas, with human-feeding behaviour, consistent with their
Humid-Adapted Group placement [167,168], and vegetated habitats subgroup placement for
funestus [164,165]. An. arabiensis is recognized in drier, agricultural areas with animal-feeding
tendencies, supporting its Arid-Adapted Group classification [91,157,158]. Notably, the An.
coustani group’s positive association with vegetated areas and its zoophilic nature aligns with
findings from northern Tanzania and southern Kenya, where An. coustani larvae were
predominantly found in short grass habitats (53.6%) and tall grass habitats (45.7%), compared
to only 0.7% in open sunlit pools [169]. For less-studied species such as An. leesoni and An.
rivulorum, our study provides novel ecological insights. An. leesoni showed a clear preference
for built, humid areas, a negative association with livestock presence, and increased activity
during warmer periods. These patterns suggest a possible tendency toward early evening biting
behaviour, and anthropophilic behaviour which warrants further investigation. Similarly, the
associations of An. rivulorum and An. rufipes with shrub-dominated landscapes and higher
NDVI values indicate a likely preference for vegetated microhabitats, particularly in humid
zones. These findings highlight potential breeding site characteristics and behavioural
adaptations that have not been well described in the literature, underscoring the need for
targeted ecological studies to inform surveillance and control strategies for these understudied

vector species.

This study is not without limitations. Mosquito sampling was evenly distributed across 25
districts, but logistical challenges, such as limited accessibility, weather conditions, and
resource constraints, may have introduced spatial and seasonal sampling biases. Although
species identification was validated using both morphological keys and molecular diagnostics
(ANOSPP panel), trap-based methods are inherently selective and may under-sample cryptic

taxa, microhabitat specialists, or species with divergent activity patterns. Furthermore,
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Detection of Plasmodium DNA using the ANOSPP assay confirmed parasite presence but does
not confirm actual transmission potential. DNA may reflect recent blood meals rather than
sporozoite presence in salivary glands, which is essential for transmission. Thus, parasite
detection alone does not confirm vector competence. In addition, some species such as An.
rufipes and An. maculipalpis were captured in very low numbers, and further targeted

surveillance will be needed to clarify their ecological niches and epidemiological relevance.

Despite these limitations, the study offers practical and policy-relevant insights by delineating
spatial patterns of vector distribution and Plasmodium presence across ecologically diverse
settings, providing a critical foundation for targeted surveillance, adaptive vector control, and

future investigations into transmission dynamics and ecological niche shifts.
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Chapter Four: Anopheles Species Distribution Modelling in Tanzania

Under Current Climatic Scenario

Chapter Summary

Traditional entomological surveillance for malaria vectors remains resource-intensive, time-
consuming, and spatially constrained, limiting the timely identification of high-risk areas for
targeted intervention. This challenge underscores the need for predictive, spatially explicit tools
to optimize vector control strategies. Species Distribution Models (SDMs) address this gap by
integrating limited occurrence data with environmental predictors to generate high-resolution,
spatially continuous estimates of vector habitat suitability. In this chapter, SDMs were
developed for the three primary malaria vectors, An. arabiensis, An. gambiae s.s, and An.
funestus s.s by combining occurrence records from this study, other research projects,
published literature, and WHO threat maps metadata. To improve model robustness,
ecologically informed pseudo-absence points were generated using temperature suitability
envelopes and forest canopy cover. Key environmental and bioclimatic variables, including
precipitation, temperature, and land cover, were incorporated at a 1 km spatial scale.
Generalized Additive Models (GAMs) were applied to capture smooth nonlinear responses,
and model performance was evaluated using standard diagnostic metrics. The resulting habitat
suitability maps align with known malaria transmission zones and reveal both overlapping and
species-specific environmental associations, providing actionable spatial insights to guide

targeted surveillance and resource allocation in Tanzania’s vector control programs.

4.1 Observed Species Presence Data and Spatial Distribution

Occurrence data for An. gambiae, An. funestus, and An. arabiensis were compiled from
different sources to maximize spatiotemporal coverage across the study area. This dataset
integrates records from different research projects, national surveillance efforts, and publicly
available databases. All unique data points were georeferenced and associated with a recorded
year of collection. The distribution of Anopheles species occurrence records (presence GPS
data) by their original source and year of collection is summarized in Supplementary Table Al.
In total, 1,040 raw occurrence records were compiled across the three species. An. arabiensis
data (579 records) spanned the longest period (2011-2024), with early contributions from WHO
Threat Maps metadata and more recent data from 25 districts for this project and Dhibiti

(control) Malaria project from Ifakara Health Institute (IHI) that was conducting insecticide
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resistance monitoring across 22 districts across the country. An. funestus (239 records) and An.
gambiae (222 records) datasets primarily consisted of more recent observations (2017-2024),
with significant contributions from this project for both species, and Dhibiti Malaria Project
for An. gambiae. Data from Deogratius Kavishe, Kavishe et al. 2025 [170], Edmond Bernad
(NIMR), Matowo et al. 2021 [162], and Nambunga et al. 2020 [164], along with other data
from Dr. Fedros Okumu (IHI) for An. funestus, provided additional recent records for various
species. National surveillance data contributed consistently across multiple years for all three
vectors [65]. Furthermore, data not linked to specific citations represent unpublished records
contributed directly by the respective institutions and project leads. The geographical
distribution of these diverse, compiled data points across the study area is illustrated in Figure
16. Following compilation, all records (presence data) were subjected to quality control by
removing duplicates and spatially thinning presence locations to one record per 1 km cluster
using the geosphere and igraph packages in R [171,172], resulting in 233 unique records for
An. arabiensis, 102 for An. gambiae, and 79 for An. funestus, with spatial resolution matching

that of environmental predictors

4.2 Pseudoabsence Data Generation and Spatial Distribution

Ecological suitability for An. gambiae, An. funestus, and An. arabiensis was quantified using a
Temperature Suitability Index (TSI) parameterized from established physiological and
ecological thresholds [81,121,151,173—181]. For each species, TSI rasters were constructed as
composite functions of coldest-quarter mean temperature, relative humidity, precipitation of
the driest quarter, mean diurnal range of temperature (MDR), and land cover characteristics
including cropland, built-up area, closed-canopy forest, and wetlands [164,165,182—184]. The
thermal response curves and associated penalties were species-specific, with ecological realism
ensured through the integration of modifiers for aridity, humidity, seasonality, anthropogenic

habitats, and refugial buffers, reflecting both empirical and recent field-based evidence.

For An. arabiensis, a TSI, was constructed based on its thermal, humidity, aridity, and
seasonality tolerances. Optimal suitability (TSI = 1) was assigned for mean coldest quarter
temperatures between 25-30°C, declining linearly to zero at 15°C and 38°C. Higher minimum
humidity extended tolerance to warmer temperatures. A penalty was applied by capping TSI at
0.2 in highly arid regions, defined as areas with a mean diurnal temperature range greater than

12 °C and precipitation in the driest quarter below 20 mm, as well as in locations with extreme
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temperature seasonality exceeding 155. The effect of this penalty was partially compensated
by the presence of cropland. The final unsuitability mask for An. arabiensis combined regions
where TSI was less than 0.2 with areas of dense closed forest (tree cover >0.9), due to its

preference in sunlit open habitats [121,182,185,186].

The pseudo-absence mask for An. gambiae utilized a more robust, multi-factorial TSI reflecting
its nuanced ecological preferences. Optimal thermal suitability (TSI = 1) occurred between 25—
28°C mean coldest quarter temperature, with non-linear transitions to zero at 16°C and 35°C.
This core thermal suitability was modulated by a logistic penalty for low minimum humidity
in warmer ranges, and a dynamic aridity penalty (for driest quarter precipitation <40 mm) that
was partially offset by the presence of cropland. Additional adjustments included a penalty for
extreme temperature seasonality, a +£0.5°C evolutionary adaptation buffer at thermal limits, and
a Gaussian-shaped suitability boost in peri-urban areas (8-30% built-up land). The final 4n.
gambiae unsuitability masks integrated areas where TSI was less than 0.2 and closed forest

(tree cover >0.9) [121,182,185,186].

For An. funestus, the unsuitability mask was derived from a TSI that emphasized its association
with stable aquatic habitats and sensitivity to environmental extremes. Its temperature
suitability based on the mean coldest quarter temperature was optimized between 25-28°C
(TSI = 1), with its upper limit of 35°C strongly dependent on minimum humidity. Additional
factors included an aridity penalty the same used to An. gambiae (adjusted by cropland
presence), a penalty for high mean diurnal temperature range, and a significant logistic decline
in suitability with increasing built-up land, reflecting its strong rural preference. Conversely, a
suitability boost was applied in wetlands. The final An. funestus unsuitability mask combined

areas with a TSI less than 0.2 and closed forest (tree cover >0.95) [121,164,165].

Pseudo-absence points were generated by overlaying TSI-based ecological suitability
thresholds (TSI < 0.2) with exclusion of closed-canopy forest, using species-specific
thresholds. Spatial binary masks were validated for congruence with environmental predictor
rasters, and random pseudo-absence points were sampled exclusively from unsuitable areas,
avoiding ambiguous or missing data regions. Specifically, 50 pseudo-absence points were
generated for An. gambiae, 50, for An. arabiensis, and 40 for An. funestus (see figure 16 for

spatial distribution). For each pseudo-absence, the full suite of environmental covariates was
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extracted to mirror the structure of the presence dataset, and each point was annotated with its

exclusion criterion (low TSI or closed forest) to facilitate downstream model validation.
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Figure 16. Spatial distribution of presence and pseudo-absence records used for species
distribution modelling. Map showing georeferenced input data used to train habitat suitability
models for malaria vectors in Tanzania. Blue points represent known presence locations
derived from entomological surveys or confirmed species records. Red points represent
pseudo-absence locations, selected using ecological exclusion criteria based on established
physiological and environmental constraints for each species. These points were used to

improve model discrimination and reduce sampling bias during Model fitting.

4.3 Environmental Covariate Patterns and Predictors Selection

Predictor selection began with the acquisition of environmental, climatic, and demographic
variables known or hypothesized, based on published literature, mosquito biology, and broader
insect ecology, to influence habitat suitability (Chapter 2, Section 2.2.5) [81,121,151,173-181].
The initial inclusion of these variables was therefore guided by established ecological
reasoning and data availability rather than subjective preference. However, all subsequent
screening and refinement steps followed a statistics-driven workflow, with ecological
interpretation reapplied only after objective statistical criteria had been satisfied (Figure 17).
During the first screening phase, multicollinearity was assessed using Pearson pairwise
correlation and Variance Inflation Factors (VIF). Variables exhibiting strong collinearity (|r| >
0.7 or VIF > 5) were excluded to enhance model stability and reduce redundancy. Within each
correlated pair, the variable deemed most ecologically relevant to Anopheles habitat
representation was provisionally retained. In certain cases, variables excluded at this stage were
later reintroduced if doing so demonstrably improved model performance, replacing earlier

alternatives where statistical support was stronger.
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After preliminary filtering, species-specific models were evaluated and, where necessary,
refined through a structured and fully objective backward elimination procedure. This step was
not applied arbitrarily but was undertaken only when diagnostic outcomes indicated the need
for further model optimization. Predictor inclusion or removal was governed entirely by
statistical evidence and diagnostic validity. Each iteration followed two sequential criteria.
First, variables were assessed for their statistical contribution by examining changes in the
Akaike Information Criterion (AIC); a variable was removed only if its exclusion reduced AIC,
thereby improving model parsimony without degrading fit. Second, the simplified model was
re-evaluated using the DHARMa package[128] to test for residual dispersion, zero-inflation,
and spatial autocorrelation (Section 4.4). Refinement proceeded only when diagnostic results
justified it, and a predictor was eliminated solely when both statistical and diagnostic
conditions were satisfied. This procedure occasionally led to the reinstatement of variables
previously discarded during collinearity screening, where their inclusion improved AIC or
resolved diagnostic issues introduced by their alternatives. Such reintroductions were justified
strictly by empirical model improvement. The elimination process continued until all

diagnostic assumptions were met.

Ecological interpretation was reapplied only after the final models had been statistically
optimized, to verify that the retained predictors (based on response curves) were biologically
& ecologically coherent. This interpretive step did not influence model composition but
confirmed that the statistically supported variables aligned with established ecological
understanding. All retained predictors contributed to improved model performance and
diagnostics. Most were also statistically significant consistent with known ecological patterns.
For instance, livestock density was retained and statistically significant only in An. arabiensis
models, reflecting its zoophilic behaviour and association with livestock-rich habitats.
Similarly, isothermality was statistically significant in An. gambiae s.s. models, aligning with
its sensitivity to stable temperature regimes. In contrast, Mean Diurnal Temperature Range
(MDR) in An. funestus did not reach statistical significance but was retained because its
inclusion improved model performance and diagnostic outcomes, suggesting a plausible,
though weaker, influence of thermal variability on its distribution[151]. The final predictor sets
therefore represent statistically optimized models that are also ecologically interpretable. A
summary of all candidate variables retained predictors, and their ecological rationale is

presented in Table 4.
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Table 3. Environmental and anthropogenic predictors used in habitat suitability

modelling and their ecological rationale

Predictor An. An. An. Ecological Justification

Variable arabiensis gambiae  funestus

Annual Mean v v v Fundamental driver of mosquito physiology,

Temperature development rate, and geographic range [177]

Mean Diurnal v Captures daily temperature fluctuation; An.

Temperature funestus 1is sensitive to thermal variability

Range [151].

(MDR)

Isothermality v Reflects temperature stability [187]

Annual V4 N4 N4 Determines the availability and persistence of

Precipitation aquatic breeding habitats [81]

Mean v v v Influences adult longevity and host-seeking

Relative [179].

Humidity

Cattle v Indicates availability of zoophilic blood

Density sources; highly relevant for An. arabiensis
[91].

Cropland v v v Proxy for anthropogenic larval habitats,

Cover especially in irrigated/agricultural landscapes
[184,188].

Population v v Proxy for human host availability and intensity

Density of human settlement. Not retained for other
species due to  weaker  predictive
performance.[189]

Built Area v Captures the extent of physical habitat

Cover modification; relevant for species utilizing
peri-domestic structures for resting, breeding,
or shelter. Not retained for other species due to
weaker predictive performance.[190]

Tree Cover V4 V4 V4 Influences microclimate, shade, and habitat

structure; key for resting and larval sites [81].
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4.4 Model Fitting, Diagnostics, and Cross-Validation

Binomial Generalized additive models (GAMs) [191] were independently fitted for each
species to quantify relationships between species presence and environmental predictors.
Model fitting utilized the mgev package in R [127], employing restricted maximum likelihood
(REML) estimation and penalized smoothing splines to capture non-linear effects. Residual
diagnostics were performed using the DHARMa package [128], with formal tests for
dispersion, zero-inflation, and spatial autocorrelation (Moran’s I) conducted on simulated
residuals. The diagnostics revealed no significant overdispersion (dispersion statistic: An.
arabiensis = 0.643, p = 0.056; An. gambiae = 0.685, p =0.072; An. funestus = 0.685, p=0.064),
zero-inflation, or spatial autocorrelation in the residuals for any species. Final model formulas
included only predictors that passed multicollinearity thresholds, exhibited strong model fit in
diagnostic evaluations, demonstrated high predictive performance in cross-validation, and
showed good calibration. Visual assessment of spatial predictions was also used to confirm

ecological plausibility in the context of Tanzania’s known topography.

Model selection and validation were conducted using 10-fold spatial block cross-validation
implemented via the blockCV package [129]. For each fold, models were trained on spatially
separated data and evaluated on withheld blocks to reduce spatial autocorrelation between
training and test sets, thereby preventing overestimation of predictive performance. Predictive
performance was quantified using the area under the curve (AUC) and Brier score, with means
and standard deviations reported across folds. The models demonstrated strong discriminative
power: An. arabiensis (AUC = 0.962 + 0.042), An. gambiae (AUC = 0.924 £+ 0.065), and An.
funestus (AUC = 0.830 = 0.150). Corresponding Brier scores were low, indicating well-
calibrated predictions: An. arabiensis (0.039), An. gambiae (0.097), and An. funestus (0.160).
Calibration of predicted probabilities was assessed using bootstrap-corrected calibration curves
(B =1,000) implemented via the rms package [130], which showed close agreement between
predicted and observed probabilities for all species, with mean absolute errors of 0.017 (A4n.
arabiensis), 0.043 (An. gambiae), and 0.045 (An. funestus), confirming minimal deviation from

perfect calibration.
Threshold-dependent performance was assessed by calculating sensitivity, specificity, and the

True Skill Statistic (TSS) across probability thresholds ranging from 0.1 to 0.9 in 0.1

increments. At each threshold, predicted probabilities from the GAMs were binarized and

56



evaluated against observed presence—absence labels using confusion matrices. TSS was
computed as sensitivity + specificity — 1, with the highest TSS value indicating the optimal
discrimination threshold for each species. While final predictions were retained as continuous
probabilities, these threshold-based metrics served to evaluate each model’s classification
capacity. TSS values ranged from approximately 0.53 to 0.86 across species, with sensitivities
between 0.59 and 0.96 and specificities from 0.61 to 0.95, confirming that all models exhibited
strong potential for binary discrimination if required in applied contexts. Collectively, these
results indicate that the selected models are both statistically robust and ecologically

meaningful, providing well calibrated, interpretable predictions of malaria vector occurrence.

4.5 Environmental Drivers and Variable Importance

The final model for An. arabiensis (deviance explained = 78.3%, adjusted R?=0.849) revealed
distinct, linear and nonlinear responses to environmental gradients (Figure 18). Habitat
suitability increased nearly linearly with annual mean temperature across the observed range
up to 26°C (p <0.001), indicating a linear increase in suitability across the observed gradient.
Tree cover also had a significant effect (p < 0.001), with suitability highest below 30—-40%
canopy density and declining sharply beyond that threshold, suggesting a preference for open
landscapes with limited overhead vegetation. Cattle density was positively associated with
suitability (p = 0.024), particularly across the range of 0 to 500 cattle per km?, aligning with
known zoophilic feeding behaviour. Annual precipitation (p = 0.046) showed a unimodal
effect, with predicted suitability peaking around 1,500 to 1,700 mm/year, indicating an optimal
moisture window likely related to larval habitat availability. Although built area cover did not
reach conventional statistical significance (p = 0.089), it displayed a positive association with
suitability at low to moderate levels. This trend is ecologically plausible given the peri-
domestic habitat preferences of An. arabiensis, and it may reflect a true but underpowered
relationship due to sampling limitations. In contrast, cropland cover and mean relative humidity
were not significant predictors (p > 0.5) and exhibited flat response curves across their observed

ranges.
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Figure 18. Partial dependence plots for environmental predictors of habitat suitability
for Anopheles arabiensis. Each plot shows the partial effect of a single predictor on the
predicted habitat suitability of An. arabiensis as estimated by the Generalized Additive Model
(GAM). The solid line represents the smoothed effect (centred to a mean of zero), while the
dashed lines indicate +2 standard errors (confidence intervals). Rug marks along the x-axis
show the distribution of observed values for each predictor, indicating regions with strong

model support.

The final model for An. gambiae (deviance explained = 68.6%, adjusted R?=0.762) revealed
distinct, linear and nonlinear responses to environmental gradients (Figure. 19). Habitat
suitability increased nearly linearly with annual mean temperature across the observed range
up to 26 °C (p <0.001), indicating a linear increase in suitability across the observed gradient,
and showed a dome-shaped relationship with annual precipitation, peaking at intermediate
levels (~1,500-2,000 mm/year) before declining steeply above 2,500 mm (p<0.001).
Suitability was largely flat at low Isothermality values but increased sharply between ~0.65
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and 0.80, plateauing at higher values (p = 0.005), indicating a preference for environments with
moderate-to-high thermal stability. While mean relative humidity (50-70%) was not
statistically significant (p=0.213), a slight positive trend was observed. Population density
exhibited a weakly unimodal effect, with suitability increasing through moderate densities
(~10,000-20,000 persons/km?) and then declining gently at the highest values (p=0.014).
Suitability peaked at moderate tree cover (~20-30%), declining sharply above ~40%
(p=10.005), and was highest in landscapes with 60—70% cropland, dropping steeply beyond
this threshold (p =0.029). Collectively, these patterns indicate that An. gambiae is most likely
to occur in warm, moderately wet, thermally stable environments with a mosaic of cropland
and moderate tree cover landscapes typical of rural to peri-urban settlements and agro-

ecological transition zones.
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Figure 19. Partial dependence plots for environmental predictors of habitat suitability

for Anopheles gambiae. Each plot shows the partial effect of a single predictor on the predicted

59



habitat suitability of An. gambiae as estimated by the Generalized Additive Model (GAM). The
solid line represents the smoothed effect (centred to a mean of zero), while the dashed lines
indicate +2 standard errors (confidence intervals). Rug marks along the x-axis show the
distribution of observed values for each predictor, indicating regions with strong model

support.

The final model for An. funestus (deviance explained = 64.0%, adjusted R?=0.690) identified
five significant linear and nonlinear environmental predictors of species presence (Figure. 20).
Habitat suitability increased nearly linearly with annual mean temperature up to 26 °C
(p<0.001), indicating a strong preference for warmer conditions. Tree cover (p=0.0009)
exhibited a unimodal relationship, with suitability peaking at moderate cover (~0.3 fractional
cover) and declining sharply at higher levels, suggesting that dense vegetation may limit
occurrence. Annual precipitation (p = 0.0023) followed a dome-shaped pattern, with suitability
highest at intermediate rainfall levels and decreasing at both low and high extremes. Population
density (p=0.0067) showed a weak unimodal effect, with suitability increasing at low
densities, peaking around 2,000 persons/km?, and gradually declining thereafter. Mean relative
humidity (p =0.0398) also showed a hump-shaped association, with peak suitability near 60%
and lower suitability at both drier and more humid extremes. In contrast, cropland cover and
mean diurnal temperature range were not significant predictors (p > 0.6), suggesting limited
influence on broad-scale occurrence of An. funestus within the study area. Overall, these
findings indicate that An. funestus preferentially occupies warm, moderately wet environments
with intermediate humidity, moderate population densities, and landscapes characterized by

low to moderate tree cover.
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Figure 20. Partial dependence plots for environmental predictors of habitat suitability
for Anopheles funestus. Each plot shows the partial effect of a single predictor on the predicted
habitat suitability of An. funestus as estimated by the Generalized Additive Model (GAM). The
solid line represents the smoothed effect (cantered to a mean of zero), while the dashed lines
indicate +2 standard errors (confidence intervals). Rug marks along the x-axis show the
distribution of observed values for each predictor, indicating regions with strong model

support.

4.6 Predicted Species Distribution
The predicted distributions of An. funestus, An. gambiae, and An. arabiensis across Tanzania
exhibit distinct spatial patterns, closely reflecting each species' ecological preferences and

landscape-level constraints. The maps clearly delineate areas of high predicted probability of
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occurrence, demonstrating strong associations with major hydrological features, lowland
corridors, and anthropogenically modified environments. Notably, both large and smaller water
bodies including Lakes Victoria, Tanganyika, Nyasa, Rukwa, Eyasi, Natron, Sulunga,
Kitangiri, Nyagamoma, and Sagara as well as artificial reservoirs like Mtera Dam (represented
as white gaps on the maps), are consistently flanked by areas of high predicted mosquito
presence. This spatial pattern likely reflects their co-location in low-altitude zones and their
influence on surrounding environmental conditions such as increased humidity and the support
of irrigation schemes which in turn create favourable breeding habitats. Conversely, closed-
canopy forests, high-elevation mountain ranges, and regions characterized by temperate
Koppen climate zones (Cwa, Cwb, Cwc, and Csa) consistently correspond to areas of reduced

predicted presence across all three Anopheles species, as clearly depicted in the maps.

An. funestus shows a predicted distribution concentrated along the Indian Ocean coastal belt,
particularly from Tanga through Dar es Salaam to Lindi and Mtwara, while notably avoiding
densely populated urban zones such as the Dar es Salaam city center. Additional predicted
presence is observed in the Rufiji-Kilombero floodplain and along the edges of the Nyerere
(Selous) Reserve and along lakeshores, especially around Lake Victoria, Rukwa, Eyasi,
Natron, Sulunga, Tanganyika and the eastern shore of Lake Nyasa (from Ludewa to Mbamba
Bay). In contrast, central Tanzania, including Dodoma, Singida, and Tabora and regions
characterized by temperate Koppen climate zones (Cwa, Cwb, Cwc, and Csa) or arid steppe
climates (BSh and BSk) exhibit sparse or absent predicted presence. Dense forested reserves
such as Kigosi, Moyowosi and montane blocks like the Ngorongoro Crater and the East
Usambara Mountains also appear largely unoccupied, reflecting the species’ limited

distribution in cooler, high-altitude, and closed-canopy forest environments (see figure 21).
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Figure 21. Predicted habitat suitability for Anopheles funestus in Tanzania. Modelled
distribution of An. funestus with habitat suitability values scaled from low (dark purple) to high

(yellow) on the Viridis colour map.

The predicted distribution of An. gambiae was slightly broader than that of An. funestus, though
it generally followed the same spatial trends. It extended across the coastal lowlands, eastern
and southeastern Tanzania, and penetrated moderately into central regions. However, unlike
An. funestus, An. gambiae maintained a high predicted presence even in densely populated
urban areas, including the core of Dar es Salaam. Notable zones of high predicted presence
include the entire coastline, the eastern shore of Lake Nyasa (from Ludewa to Mbamba Bay),
areas surrounding Lake Victoria, Rukwa, Eyasi, Natron, Sulunga, Tanganyika and the Zanzibar
archipelago, while still avoiding rainforest regions. Like funestus, An. gambiae appears less
frequently and mostly in patches in parts of central Tanzania, particularly around localized
water bodies such as the Mtera Reservoir and Lake Sulunga. Generally, the predictions show

a clear decline in densely forested and mountainous areas, including the Uluguru and Usambara
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ranges and the Ngorongoro Highlands, indicating limited presence in closed-canopy systems.
Narrow but persistent predicted presence is also observed along cropland-dominated foothills
around Mount Kilimanjaro and Mount Meru. Similar to An. funestus, An. gambiae shows
avoidance of arid steppe zones (BSh and BSk) and temperate Képpen climate regions (Cwa,

Cwb, Cwc, and Csa) (see figure 22).
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Figure 22. Predicted habitat suitability for Anopheles gambiae in Tanzania. Modelled
distribution of An. gambiae with habitat suitability values scaled from low (dark purple) to

high (yellow) on the Viridis colour map.

In contrast, An. arabiensis demonstrates the widest predicted distribution footprint across the
country, occupying nearly all areas predicted for An. funestus and An. gambiae and extending
well beyond them. The model indicates extensive predicted presence across the semi-arid and
agriculturally dominated landscapes of central and northern Tanzania, including Dodoma,
Singida, Manyara, Tabora, and the entire Lake Victoria basin. High presence probabilities also
surround inland lakes and water-retaining landscapes such as Lakes Rukwa, Eyasi, and Natron,

as well as the Mtera Reservoir, and remain robust along the Lake Tanganyika shore and the
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Indian Ocean coastal plain. Compared to the other two species, An. arabiensis shows greater
spatial reach into drier and more anthropogenic environments, maintaining predicted
occurrence even in sparsely vegetated zones. However, like An. funestus and An. gambiae, it
consistently avoids dense forest blocks, high-elevation mountain ranges, and temperate
Koppen climate regions (Cwa, Cwb, Cwc, and Csa), aligning with its known ecological
intolerance to cool, shaded habitats. While 4An. arabiensis dominates across many arid regions,
the model also reveals a patchy distribution in some zones, with areas of lower predicted
probability interspersed among areas of high presence, suggesting local variability in habitat

suitability or vector adaptation (see Figure 23).
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Figure 23. Predicted habitat suitability for Anopheles arabiensis in Tanzania. Modelled
distribution of An. arabiensis with habitat suitability values scaled from low (dark purple) to

high (yellow) on the Viridis colour map.

Together, the three vectors reveal an ecologically stratified yet partially overlapping landscape

of malaria risk. Coastal lowlands, lake littorals, and floodplains form consistent hotspots for

65



all species, while the Southern Highlands, forested reserves, and crater highlands consistently
suppress suitability. An. funestus and An. gambiae concentrate in humid lowlands and cropland
peripheries, whereas An. arabiensis dominates open, semi-arid zones and thrives near water
bodies especially in low-canopy or anthropogenic landscapes, while avoiding densely forested

surroundings.

4.7 Discussion

This study revealed pronounced spatial heterogeneity in malaria vector distributions across
Tanzania. The three dominant species, An. arabiensis, An. gambiae, and An. funestus,
responded differently to climatic, ecological, and anthropogenic gradients, reflecting their
distinct ecological niches. The models highlighted fine-scale species-environment
relationships that define where each vector is most likely to persist and where their distributions

may overlap.

Among the modelled ecological predictors, annual mean temperature emerged as a dominant
factor for all three species, with suitability increasing linearly across the data ranges,
highlighting their adaptation to warm tropical climates [192]. Precipitation showed a unimodal
response, peaking at 1,500-2,500 mm/year for An. arabiensis, An. gambiae, and An. funestus,
indicating an optimal moisture range for larval habitats [193]. All three species were associated
with moderately vegetated areas, with peak suitability occurring at canopy cover around 20—
40%. Species-specific predictors further distinguished their niches: cattle density positively
influenced 4n. arabiensis, aligning with its zoophilic behaviour [158], while An. gambiae was
associated with cropland cover and population density, reflecting its anthropophilic tendencies
[194] in human-modified and agricultural landscapes [195]. An. funestus preferred moderate
humidity ~60% and low population density below ~2,000 persons/km?, consistent with its
reliance on stable, vegetated water bodies in rural areas [164,165]. These environmental
preferences not only reinforce established ecological traits for each species but also delineate

the distinct niche boundaries that govern their spatial segregation and potential overlap.

The spatial predictions revealed that An. funestus and An. gambiae share a strong preference
for warm, humid lowland environments, with both species showing high predicted presence
along Tanzania’s lakeshores, coastal belt, southern lowlands, and northwestern regions. Their

distributions were closely associated with ecological zones featuring permanent or semi-
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permanent, water bodies, aligning with known breeding requirements and reflecting a shared
physiological dependence on stable aquatic habitats and intolerance to desiccation stress [164].
Consequently, both species were consistently absent from arid steppe zones (Koppen BSh and
BSk) and temperate highland regions (Cwa, Cwb, Cwc, and Csa), highlighting climatic
thresholds that confine their distributions to low-to-mid elevation corridors [81]. However, 4n.
gambiae exhibited notably higher predicted presence in densely populated urban centres such
as Dar es Salaam, underscoring its greater adaptability to anthropogenic habitats compared to
the more rural distribution of An. funestus, though such boundaries may shift under warming
scenarios or land-use changes [189,196]. In contrast, An. arabiensis demonstrated the widest
spatial footprint across the predicted space. It occupied nearly all regions suitable for An.
funestus and An. gambiae, and extended further into semi-arid landscapes, particularly in
central and northern regions of the country. The model suggested that An. arabiensis tolerated
lower humidity and sparser vegetation than the other two vectors, consistent with its ecological
generalism and ability to exploit ephemeral or man-made water bodies [157,195,197,198].
Despite its broad range, the species also showed exclusion from high-elevation zones,
temperate and dense forested areas, likely due to its intolerance of cooler, shaded environments

[81].

These distributions delineate malaria risk zones that closely correspond with reports from the
NMCP [62]. Notably, they reveal finer-scale hotspots such as areas surrounding water bodies
like Mtera Dam, Lake Surunga, and the foothills of Njombe along the Lake Nyasa shoreline
that are often overlooked when using regional averages to map malaria prevalence.
Overlapping vector presence in the coastal belt, Great Lakes shores, and Rufiji—Kilombero
valley corresponds to high-transmission hotspots, with high malaria prevalence in children in
areas like the Lake Victoria basin [63]. Peri-urban areas, including Dar es Salaam, sustain
transmission due to An. gambiae and An. arabiensis breeding in man-made sites [199].
Conversely, highlands and dense forests show low predicted occurrences, aligning with
historically low or unstable transmission [200]. These patterns reflect the ecological limits of
each species, with An. funestus tied to permanent waters, An. gambiae thriving in humid,

human-modified areas, and An. arabiensis dominates drier, open landscapes.

Our findings align with regional studies, validating the model’s robustness. The restriction of
An. funestus to low elevations matches observations by Kulkarni et al. (2010) [201], who noted

its absence above ~1,900 m. An. gambiae’s prevalence in coastal and lowland areas, with
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patchy inland presence, concur with continental maps [81,196]. An. arabiensis’ extension into
semi-arid zones reflects its documented resilience in dry environments [157,202]. Specific
predictions, such as vector presence in the Kilombero Valley’s rice fields, align with surveys
showing An. arabiensis and An. funestus breeding in distinct rice growth stages [195]. Recent
studies, like Matowo et al. (2021) [162], confirm high An. funestus suitability along Lake

Victoria, reinforcing our model’s accuracy.

The spatial and ecological distinctions among An. funestus, An. gambiae, and An. arabiensis
have direct implications for vector-specific interventions under Tanzania’s NMCP. In regions
with high predicted co-occurrence particularly the northwestern lake zone and southeastern
coastal belt an Integrated Vector Management framework is warranted to address the species-
specific ecological niches and behavioural differences that drive localized transmission
dynamics [32,33,35]. For species that show high predicted occurrence in urban areas, scaling
up insecticide-treated net coverage and improving drainage infrastructure are critical. These
interventions address its anthropophilic behaviour and adaptability to man-made larval habitats
such as domestic containers, necessitating sustained and consistent implementation [203]. In
semi-arid and central regions where An. arabiensis dominates, the results support among others
the use of endectocides through insecticide-treated livestock, given its positive association to
high cattle density tendencies observed in the model [161]. Furthermore seasonal larviciding
in irrigation channels and temporary pools during peak rainfall periods may suppress its
breeding in ephemeral habitats [158]. In low-risk highland districts like Iringa and Njombe,
predictive maps suggest that malaria risk remains constrained by cooler temperatures, but
warming trends could destabilize this balance. Surveillance systems triggered by temperature
thresholds (e.g., >20°C during December—March rains) could offer early-warning capacity to

prevent outbreaks [196].

The models also provide a basis for climate-informed planning. With projected temperature
increases under climatic change scenarios, these vectors are likely to expand their range into
highland regions such as Arusha and Njombe by 2040 [196]. Pre-emptive interventions,
informed by consistent climate monitoring, and larval site surveillance may prevent the
establishment of stable transmission zones. Moreover, low-risk forested areas like Udzungwa,
Selous game reserves etc, could become ecologically permissive for vectors if deforestation
continues to reduce canopy cover and create sunlit pools, potentially enabling these species to

colonize the newly modified habitats [84]. Integrating vector suitability maps with climate and
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land-use change projections will be critical for anticipating range shifts and optimizing the

spatial targeting of NMCP interventions.

These results are not without limitations. Ecological suitability does not necessarily imply
realized presence, as local absences may arise from interspecific competition, predation,
dispersal barriers, or suppression following vector control interventions such as larval source
management or indoor residual spraying (IRS). Conversely, some areas predicted as suitable
may remain unoccupied due to limited colonization, habitat fragmentation, or recent

environmental change.

Although the habitat suitability models exhibited strong predictive performance and ecological
coherence, their interpretation warrants measured caution due to the potential for circularity in
environmental modelling. Pseudo-absences were defined from areas considered
environmentally unsuitable for Anopheles occurrence, based on climatic and ecological
thresholds similar to those later used as predictors. This methodological overlap, while
methodologically necessary, can introduce partial dependence between data generation and

model fitting.

The present framework, however, incorporated several safeguards to mitigate this risk. First,
pseudo-absences were drawn from extreme environmental ranges, well beyond known
physiological and ecological tolerance limits to minimize overlap with potential habitat
conditions. Each pseudo-absence was further screened to ensure it was not spatially proximate
to presence points or located within plausible dispersal ranges of Anopheles populations,
thereby reducing the risk of environmental or geographic colocalization (Figure 17). Second,
all predictors underwent rigorous collinearity screening, objective model selection, and
comprehensive diagnostic validation to ensure that retained variables contributed genuine
explanatory power rather than artefactual circularity. Third, model generalizability was tested
using spatial block cross-validation, which evaluates predictive strength across geographically
independent subsets. Collectively, these procedures strengthen the interpretive reliability of the

results and limit the influence of circularity on model outcomes.

Accordingly, while the models should not be interpreted as establishing direct causality, they
provide robust evidence of biologically consistent associations between environmental

gradients and Anopheles distributions. By combining physiologically defined pseudo-absences
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with true presence data, this integrative framework advances beyond single-method
approaches, bridging the mechanistic precision of physiological mapping with the flexibility
of correlative modelling. The models thus maintain strong inferential validity while
transparently acknowledging the methodological constraints inherent to ecological prediction.
Despite these caveats, the framework demonstrated high internal consistency and ecological
realism, aligning with known vector bionomics, observed spatial distributions, and malaria
prevalence patterns across Tanzania. It therefore represents a robust and scalable decision-
support tool for malaria control, particularly suited to regional and national planning where

fine-resolution risk stratification is essential for targeted intervention.
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Chapter Five: Population Structure of Anopheles arabiensis in
Tanzania: The Implication of Using ANOSPP in Malaria Vectors

Surveillance

Chapter summary

Understanding the population structure and regional connectivity of malaria vectors is crucial
for tracking the spread of traits like insecticide resistance and for predicting how genetically
engineered mosquitoes will spread. Despite this importance, detailed genetic insights across
Tanzania remain limited. This chapter addresses that gap by analysing Anopheles arabiensis
population structure across the country and beyond using short amplicon sequences generated
by the ANOSPP amplicon sequencing platform. Samples were collected from 21 Tanzania
districts with An. arabiensis presence. Genetic differentiation among districts was generally
low, but with significant isolation by distance patterns in the country. To place these findings
in a broader continental context, Tanzanian data were combined with samples from seven other
African countries, revealing three major genetic clusters: (i) Tanzania, Uganda, and eastern
Democratic Republic of Congo; (ii)) Madagascar; and (ii1)) West Africa, with further
substructure within Nigeria. These results validate the ANOSPP platform for scalable
population genetics and offer initial insights into gene flow and vector connectivity, supporting

more spatially informed malaria control strategies.

5.1 Background on Population Dynamics of Anopheles arabiensis

Compared to the other major African malaria vectors, An. gambiae and An. funestus, An.
arabiensis typically exhibits lower chromosomal inversion diversity, yet demonstrates
remarkable ecological versatility and behavioural flexibility[204—206]. These traits are likely
shaped by a combination of recent selective sweeps and historical demographic expansions
[207]. This adaptive plasticity is mirrored in genetic studies that reveal extensive gene flow
and large effective population sizes (Ne) across broad spatial scales. For instance, Donnelly et
al. (1999) [208] reported low levels of genetic differentiation between Tanzania and
Mozambique An. arabiensis populations, suggesting recent range expansion and consistently
high Ne. Supporting this, Kent et al. (2007) [209] analysed populations in southern Zambia
over three transmission seasons, including one characterized by severe drought, and found no
evidence of genetic bottlenecks, significant allele frequency shifts, or reductions in

heterozygosity. The populations remained effectively panmictic across 2,000 km?, with
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negligible differentiation even between sites 80 km apart, indicative of large, interconnected

demes resilient to temporal environmental fluctuations.

However, this broad-scale genetic homogeneity often masks subtle but meaningful patterns of
cryptic population structure at finer spatial resolutions. In Tanzania, Maliti et al. (2014) [87]
examined populations from five coastal districts, the Kilombero Valley, and the islands of
Zanzibar (Unguja and Pemba). The study reported overall low genetic differentiation (mean
FST = 0.015), consistent with high levels of gene flow. However, a significant isolation-by-
distance pattern was detected (Mantel test r = 0.46, p = 0.0008), indicating a spatial genetic
gradient not evident from regional differentiation estimates alone. Temporal consistency of this
structure suggests stable, underlying patterns of limited dispersal. Further fine-scale studies in
southern Tanzania’s Kilombero Valley highlight even deeper microgeographic structuring.
Ng’habi et al. (2011) [86] detected at least two genetically distinct An. arabiensis clusters
coexisting within the same villages. These subpopulations, while sympatric, exhibited
restricted gene flow likely driven by fine-scale ecological heterogeneity or behavioural
divergence, rather than overt physical barriers. Expanding on these regional patterns, recent
analyses reinforce the findings of broad connectivity across much of Tanzania, while also
acknowledging the influence of geographic and topographic barriers. Mwinyi et al. (2025) [88]
report sustained gene flow across diverse ecological zones, indicative of demographic stability.
However, the presence of topographic barriers such as the Rift Valley in East Africa contributes
to regional genetic subdivision [210], while geographic isolation by large water bodies between
West Africa and surrounding islands (e.g., Madagascar, Reunion, Mauritius) promotes more

pronounced genetic differentiation [211].

Understanding the population structure of An. arabiensis is critical not only for evolutionary
biology but also for malaria control planning. Patterns of gene flow influence how interventions
in one region may affect populations elsewhere. Genomic data can be used to identify loci
under selection, inform resistance spread, and predict the spread of gene drive. However, the
presence of structural variants like chromosomal inversions can limit the uniform effectiveness
of such interventions, necessitating population-specific designs [212]. Genomic surveillance
also offers early detection of resistance evolution potentially before phenotypic failure is
observed. For instance, Seck et al. (2025) [213] documented significant population structure
and reduced genetic diversity in vector competence loci in An. gambiae 5.1, across 19 countries,

highlighting the need for context-sensitive, genomically informed vector control strategies. As
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An. arabiensis continues to expand across ecologically diverse landscapes, integrating
population genetic insights with ecological surveillance will be essential for designing
sustainable, precision-targeted vector control strategies that remain robust in the face of

environmental change and evolutionary adaptation.

5. 2 Results

5.2.1 Variant Calling, Filtering, and Genotype Imputation

After quality control, 59 of the 62 ANOSPP amplicon targets were retained, excluding three
that were consistently missing or poorly amplified across specimens. Across these 59 targets,
the concatenated callable base-pair sites comprised 9,473 base-pair sites for all 1,425
specimens. Within this sequence, 1,394 sites (14.7%) were polymorphic, the majority of which
(1,362; 97.7%) were biallelic, while 32 sites (2.3%) exhibited more than two alleles. To enable
population-genomic analyses, a biallelic genotype matrix was constructed from the filtered
variant dataset. This ensured a standardized representation of genetic variation across samples
and reduced noise from poorly resolved sites. A <10% per-site missingness filter was applied,
retaining 8,796 positions and reducing overall missingness to 0.66%. Monomorphic sites
(invariant sites across the specimens) were subsequently excluded, producing 1,271 biallelic
polymorphic loci in the final dataset. Remaining missing genotypes were imputed using the
MissForest [135] random-forest algorithm (out-of-bag NRMSE = 0.38), yielding a complete
1,425 x 1,271 genotype matrix. This matrix served as the foundation for downstream analyses

including PCA, DAPC, FST estimation, and spatial-genetic modelling.

5.2.2 Genetic Clustering and Population Structure at the Country Level

5.2.2.1 PCA and DAPC at the Country Level

Principal component analysis (PCA) revealed no geographic population structure across
Tanzania. Along PC1 (6% variance explained), the only visible pattern was the presence of
three parallel bands, a configuration that is characteristic of segregating chromosomal
inversions, rather than discrete population clusters. PC2 (3.87%) showed no spatial separation
among districts (Figure 24A). To identify the genomic basis of this signal, loci were ranked by
their squared loadings on PC1. A single amplicon, target 17, accounted for >90% of the

variance. Because target 17 lies within the well-characterized 2Rb inversion region in A4n.
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arabiensis and is adjacent to target 18 (also within 2Rb), both targets were removed. After their

exclusion, the banded pattern persisted (Figure 24C).

A second loading screen revealed that targets 11 and 46 now contributed >90% of the
remaining signal. Target 46 lies within the 3Ra inversion region; therefore, all 3Ra-associated
amplicons (targets 46—50) were removed to test whether this inversion alone explained the
structure. However, the PCA pattern still remained as in in figure Figure 24C. At this point,
target 11 emerged as the dominant contributor (>90%) to the signal. When target 11 was
removed, together with all 2Rb and 3Ra loci, the banding collapsed entirely, and no structure

remained (Figure 24E).

When examined in isolation, the 3Ra-linked targets produced only a weak and diffuse pattern,
consistent with the low frequency of the 3Ra inversion previously documented in Tanzanian
An. arabiensis populations, about 2% in the cytogenetic survey of Mnzava & Di Deco (1990)
conducted across several locations [214] and 8-17% in the Kilombero Valley reported by Main
et al. (2016) (~8-17%)[215]. In contrast, 2Rb-linked targets generated a strong signal, in line
with the consistently high frequencies of the 2Rb inversion reported in the same studies (~55%

across several Tanzanian locations and >80% in the Kilombero Valley)[214,215].

Target 11 lies upstream of, but not within the 2La inversion, which is fixed in An. arabiensis.
The strong loading of target 11 remains unexplained; it may reflect either residual influence
from the nearby 2La region (which is unexpected) or a previously uncharacterized local
structural polymorphism. Resolving this would require higher-resolution approaches and is

beyond the scope of the present study.

This absence of geographic structure was confirmed using a supervised method. Discriminant
Analysis of Principal Components (DAPC), using district as a grouping factor and retaining 45
PCs (selected via cross-validation and a-score optimization), also showed no evidence of

clustering (Figure 24B, D, F).

Together, these results indicate high genetic connectivity and weak spatial differentiation of

An. arabiensis across Tanzania, in agreement with previous findings from Tanzania[87,88].
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Figure 24. Population structure of Anopheles arabiensis across Tanzania inferred from
PCA and DAPC. (A) PCA of all polymorphic biallelic sites shows three parallel bands along
PC1, a pattern characteristic of segregating chromosomal inversions rather than discrete
population clusters. (B) DAPC using district as the grouping factor shows no evidence of
geographic clustering. (C) PCA after removing 2Rb-associated targets 17 and 18 retains the
same banded pattern observed in (A). (D) The corresponding DAPC still shows no clustering
by district. (E) PCA after additionally removing target 11 and all 3Ra and 2Rb associated
targets causes the banding pattern to collapse, leaving no residual structure. (F) DAPC on this
final filtered dataset likewise shows no detectable clustering, consistent with very weak

population structure across Tanzania.
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5.2.3 Genetic Differentiation at the Country Level

Generally, the genetic differentiation was relatively low across all sampled areas. Overall
genetic differentiation across districts was low (FST, 0.0049). Pairwise FST values were
generally low (0 to 0.016), with most comparisons showing non-significant differentiation after

bootstrapping (Figure 25).
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Figure 25. District-level pairwise FST heatmap. District colours on the map denote
administrative zones. The heatmap shows uniformly low genetic differentiation among
Anopheles arabiensis populations (FST = 0-0.016; white to dark blue). Hierarchical clustering
reveals no strong district-level structure, consistent with high gene flow and weak population

differentiation across Tanzania.

5.2.4 Isolation by Distance at the Country Level

To examine isolation by distance (IBD), Rousset’s genetic distance (a = Fst/(1-Fsr)) was used
with local populations defined at a 1 km radius, consistent with the typical reported dispersal
range of An. arabiensis [110,216]. Because the IBD relationship is known to be reliable only
within an intermediate spatial band and becomes diluted by broad-scale heterogeneity and rare
long-distance migration, we restricted analyses to pairs separated by <100 km. This distance
represents a biologically coherent scale: it is above the species’ average flight range (<1 km)
yet avoids the confounding influence of broad-scale heterogeneity and windborne migration
events documented over hundreds of kilometres [217]. Including more distant pairs reduced
the correlation between genetic and geographic distance, consistent with previous work
showing that large-scale heterogeneity flattens or obscures local IBD signals [218,219]. Within
this <100 km window, a clear signal of IBD across all samples was found (masked Mantel r =

0.377, p = 0.003; Figure 26). Ordinary least squares regression of Rousset’s a on log-
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transformed geographic distance gave a slope of 0.0295 (95% CI 0.0225-0.0365), while a
mixed-effects MLPE model accounting for non-independence of population pairs yielded a
standardized slope of 0.157 (95% CI 0.070—0.244). Back-transformation to the original scale
corresponded to an increase of ~0.0123 (95% CI 0.0055 — 0.0191) per unit of log-distance,

consistent with weak but significant isolation by distance over short to intermediate scales.
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Figure 26. Isolation by distance pattern in Anopheles arabiensis. Genetic distance

(Rousset’s a) plotted against log-transformed geographic distance for all sample pairs, with

populations defined at a 1 km radius.

5.2.5 Continental Patterns of Genetic Structure: Tanzania in Context

To assess the position of Tanzanian populations of An. arabiensis within the broader
continental genetic landscape of Africa, ANOSPP datasets from 2,367 specimens collected
across multiple African countries (representing West, East, and Central Africa, as well as
Madagascar) were also analysed. The same data processing procedures and analytical methods

applied to the Tanzanian data (as articulated in section 5.2.1) were used here.
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5.2.5.1 PCA at the Continental Level

Principal component analysis (PCA) of the ANOSPP-derived dataset revealed an elongated,
continuous distribution of genetic variation across the first two axes (Figure 27). No abrupt
separations were evident among countries or regions. Tanzanian samples overlapped
extensively with those from Uganda and the Democratic Republic of Congo (DRC), whereas
Madagascar and West African populations were positioned toward opposite extremes of the

primary axis of variation.
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Figure 27. Population structure of An. arabiensis using PCA across sub-Saharan Africa.
(A) PCA scores for PC1 vs PC2; each point is an individual colour by country. Percent variance
explained is indicated on the axes. (B) Sampling map showing collection locations; symbols

are coloured by country to match panel A.
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5.2.5.2 DAPC at the Continental Level

A supervised Discriminant Analysis of Principal Components (DAPC) was performed using
the adegenet package in R [139], with countries predefined as populations. Seventy principal
components were retained based on cross-validation, selected to minimize root mean squared
error and optimize the a-score to prevent overfitting. The analysis revealed three major genetic
clusters (Figure 28A-B): one corresponding to Madagascar, a second to Eastern Africa
(Tanzania, Uganda, and the Democratic Republic of Congo), and a third to Western Africa
(Nigeria, Ghana, Burkina Faso, and Senegal). Visualization of the first three linear
discriminants in three-dimensional space uncovered additional substructure within Nigeria,
where a subset of individuals diverged from the broader Western African cluster. Therefore, a
further focused DAPC restricted to Western Africa confirmed the presence of two genetically
distinct Nigerian subclusters. The first cluster (West—C1) comprised all populations from
southern Nigeria along with two northern populations located along major roads. The second
cluster (West—C2) included the remaining northern Nigerian populations, which grouped with

individuals from other West African countries (Figure 28C-D).
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Figure 28. Population structure of An. arabiensis using DAPC Across Sub-Saharan
Africa. (A) a DAPC plot showing three major genetic clusters (West African, East African,
and Madagascar), colour representing the country. (B) A map of Africa depicting the

geographic locations of these three main clusters where the block colour represents the country,
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and the dots colour represent the cluster (Main Clusters in legend). (C) A focused DAPC on
the Western African samples identified two sub-clusters, West—C1(dark blue) and West—C2
(dark orange). (D) A map showing the geographic distribution of the two western sub-clusters
(West—C1 and West—C2).

5.2.5.3 Genetic Differentiation at Continental Level

Pairwise Weir and Cockerham’s FST values indicated generally low genetic differentiation
across the continent (Figure 29). The highest relative differentiation was observed between
Madagascar and mainland populations, with FST values reaching up to 0.057. This was
followed by differentiation between western and eastern African populations. In contrast,
eastern African populations showed minimal genetic differentiation (FST < 0.013), suggesting
high levels of gene flow and connectivity within the region. Similarly, western African
populations exhibited low levels of differentiation, with the lowest observed between Ghana

and Burkina Faso (FST = 0.002), highlighting substantial genetic homogeneity across this

subregion.
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Figure 29. Pairwise Genetic Differentiation (FST) across Sub-Saharan Africa
populations. Genetic differentiation was generally low, with the highest values between

Madagascar and mainland populations (up to 0.057). Minimal differentiation was observed

80



within eastern and western Africa, particularly between Ghana and Burkina Faso (FST =

0.002).

5.2.5.4 Isolation by Distance at Continental Level

Given the continuous genetic patterns observed in the PCA, isolation by distance (IBD) was
evaluated at the continental scale using two complementary approaches. First, individual-level
structure was assessed using Euclidean distances in DAPC space, showing a strong correlation
with geographic distance (Mantel r = 0.767, p = 0.0013; Figure 30A). Second, pairwise FST
values were transformed into Rousset’s a (FST / (1 - FST)), a linearized measure of genetic
differentiation expected to increase with geographic distance under stepping-stone IBD
models, which likewise revealed a strong positive correlation between genetic and geographic
distances (Mantel r = 0.679, p = 0.0061; Figure 30B).Together, these results demonstrate that
genetic similarity decreases with increasing geographic separation, consistent with a stepping-

stone model of isolation by distance operating across both population and individual scales.
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Figure 30. Isolation by distance across populations. (A) Euclidean genetic distances in
DAPC space and (B) Rousset’s genetic distance both show significant positive correlations

with log-transformed geographic distance.
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5.2.5.5 Isolation by Resistance at Continental Level (Effect of Natural Barrier to Gene
Flow)

Given that Madagascar exhibited a relatively high FST compared to other countries, isolation
by resistance using the ocean as a resistance surface (barrier to gene flow) was tested, while
controlling for geographic distance. The analysis revealed that oceanic separation was strongly
associated with Rousset’s genetic distance (Mantel » = 0.689, p = 0.001), and this relationship
remained significant after controlling for geographic distance (partial Mantel » = 0.443, p =
0.001). MLPE models supported the influence of oceanic resistance, both without (f = 1.093
+ 0.001, r = 1141.1) and with geographic distance included (f = 1.061 + 0.001, ¢ = 1222.5),
explaining a large portion of the variation (marginal R? = 0.598; conditional R?= 0.635). These
findings indicate that the ocean acts as a major barrier to gene flow between Madagascar and
the mainland. In continental Africa, the Central African rainforest was evaluated as a potential
resistance surface. The initial Mantel test showed a positive correlation with genetic distance
(Mantel » = 0.656, p = 0.011), but this effect decreased and was not statistically significant
after accounting for geographic distance (partial Mantel » = 0.307, p = 0.172), suggesting
overlap with spatial structure. In contrast, MLPE models identified separate effects of both
rainforest resistance (f=0.897 +0.001, = 1023.3) and geographic distance (B =1.213 £ 0.001,
t = 1462.6), together explaining a notable share of genetic variation (marginal R? = 0.573;
conditional R? = 0.618). This suggests that, although related to spatial distance, rainforest

resistance independently limits gene flow.

5.2.5.6 Isolation by Environment (Effect of Climate/Environmental Condition to Gene
Flow)

Within West Africa, where DAPC revealed population sub-structuring, genetic differentiation
was low within clusters (FST =0.0154 in West—C1 and 0.0049 in West—C2) but higher between
clusters (pairwise FST = 0.0565). Overall genetic differentiation across the region was 0.0167.
Across the region, genetic distance correlated with geographic distance (Mantel r = 0.452, p =
0.001), mean diurnal temperature range (MDR) (Mantel r = 0.385, p=0.001), and precipitation
(Mantel r = 0.258, p = 0.001). After controlling for geographic distance, both precipitation
(partial Mantel r = 0.139, p = 0.001) and MDR (partial Mantel r = 0.265, p = 0.001) remained
significant. MLPE models confirmed independent positive effects of precipitation (f = 0.0158
+0.0012, t = 12.69), MDR (B = 0.4514 £ 0.0013, t = 339.25), and geographic distance ( =
0.4459 + 0.0012, t = 387.22), explaining a moderate proportion of genetic variation (marginal
R?=0.294; conditional R? = 0.359). These results indicate that both precipitation patterns and
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temperature variability, which are the potent measure of climate, contribute to genetic

structuring in addition to isolation by distance.

5.6 Discussion

This study demonstrates that Anopheles arabiensis populations across Tanzania exhibit high
genetic connectivity, with very weak differentiation among districts. The absence of discrete
genetic clusters in both PCA and DAPC analyses indicates that populations form a largely
continuous gene pool, consistent with extensive gene flow across the country. Although overall
structure was minimal, a scale-dependent isolation-by-distance (IBD) pattern observed: genetic
distance increased with geographic distance for population pairs separated by up to 100 km,
but this relationship weakened when more distant pairs were included. Such attenuation is
expected in heterogeneous landscapes where occasional long-distance dispersal or passive
movement disrupts fine-scale spatial patterns[217-219]. This pattern aligns with findings from
Maliti et al. (2014)[87], who similarly reported low overall differentiation in An. arabiensis
but a detectable IBD signal at local spatial scales. Together, these results support a stepping-
stone model of spatial connectivity, rather than strict panmixia, whereby gene flow is highest
among neighbouring populations but remains sufficient across broader regions to maintain

country-wide genetic homogeneity.

At the continental scale, genetic differentiation followed a generally continuous rather than
fragmented pattern: similarity declined gradually with distance, consistent with isolation by
distance under a stepping-stone model [87,210]. Superimposed on this background, ecological
barriers and environmental conditions further structured populations. Oceanic separation
produced the clearest resistance signal, with Madagascar consistently distinct from mainland
populations, reflecting the rarity of transoceanic dispersal [211]. The Central African rainforest
also acted as a resistance barrier, dividing western and eastern populations; while partially
correlated with distance, mixed-effects models supported an independent contribution [220].
In West Africa, differentiation was generally low, but two Nigerian clusters emerged, with
southern populations diverging from northern Nigeria and neighbouring countries. Climatic
variables, especially climatic mean diurnal temperature range (MDR) and precipitation,
remained significantly associated with genetic distance even after controlling for geographical
distance, implicating isolation by environment [221,222]. By contrast, the East African Rift

showed no excess differentiation, consistent with An. arabiensis ecology, which favours
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movement along river valleys, tolerance of varied climates, and human-mediated dispersal

[87].

These results align with previous findings that An. arabiensis maintains large effective
population sizes, broad ecological adaptability, and relatively low regional differentiation
across southern and eastern Africa, permitting extensive gene flow [87,88,208,209]. Within
Tanzania, low mean FST values and significant isolation by distance parallel earlier
observations [87,88]. The present findings, quantify rainforest and oceanic resistance alongside
distance in a unified framework, and demonstrate that climatic temperature fluctuations and
rainfall, which are potent measures of climate, independently influence West African
population structure. Collectively, the evidence suggests that hard barriers such as oceans and
dense rainforest shape gene flow in some regions, while climatic variation filters genetic

connectivity in others [88,223].

The low genetic differentiation observed across much of Africa highlights extensive
connectivity among An. arabiensis populations, implying that adaptive alleles, such as those
linked to insecticide resistance or host-seeking behaviour, can spread readily across regions.
This underscores the need for regional coordination in surveillance and intervention planning.
At the same time, isolation-by-resistance signals, such as the ocean around Madagascar and
the Central African rainforest, demonstrate that ecological barriers can constrain gene flow,
creating potential refugia for susceptible populations or limiting the spread of adaptive variants.
For malaria control, this means large-scale programs must anticipate the rapid dissemination
of adaptive traits, while fine-scale genomic architecture and ecological barriers may modulate
intervention effectiveness, including, but not limited to the use of genetically modified

mosquitoes.

The results presented here highlight the broader value of the ANOSPP panel beyond its initial
role in mosquito species identification [96-98]. By revealing both continental-scale
connectivity and local genomic structuring in An. arabiensis, the panel demonstrates sufficient
resolution to capture processes that are central to malaria control, such as the potential for
spread of adaptive alleles, ecological barriers to gene flow, and signatures of inversions.
Importantly, this was achieved at much lower cost compared to whole-genome sequencing,
making ANOSPP a practical option for national programs and cross-border surveillance

efforts. Adoption of the ANOSPP panel could therefore accelerate the integration of genomic
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data into malaria vector control strategies, enabling public health stakeholders to monitor
species distribution, assess the potential impact of ecological barriers, and evaluate the
population-genetic context for emerging interventions such as genetically modified
mosquitoes. In addition to its utility for routine surveillance, the ANOSPP panel can act as a
genomic ‘“‘search engine,” highlighting populations or genomic regions where deeper
investigation is warranted. For example, localized signals of isolation by environment, or
elevated differentiation between island and mainland populations can flag candidate targets for
follow-up using whole-genome sequencing or ecological and behavioural assays. This tiered
approach allows malaria control programs and researchers to allocate resources efficiently
using ANOSPP to scan broadly for signals of divergence, then focusing advanced methods on

the most biologically and operationally relevant cases.

This study is not without limitations. Although missing data were minimized through stringent
site filtering, some genotypes required imputation to ensure full specimen representation across
loci. Comparative evaluation of zero, mean, and random-forest (missForest)[135] imputation
methods showed consistent clustering and ordination structures, indicating that imputation did
not introduce artificial genetic patterns. Instead, missForest [135] enhanced within-cluster
coherence and clarified existing population boundaries without altering the underlying

topology, confirming that the results are robust to the imputation process.

Beyond data completeness, the inherent genomic scope of the amplicon panel also imposes
limitations. Amplicon-based assays survey only a small fraction of the genome, leaving
uncharacterized adaptive variants in unlinked regions, soft sweeps, and structural variants
undetected. Spatial and temporal sampling was uneven, which may constrain our ability to
quantify barrier strengths or detect subtle temporal shifts, while seasonal variation could bias

apparent population structure.
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Chapter Six: Conclusions and Future Work

This thesis provides the first comprehensive genomic and ecological overview of Anopheles
mosquitos across Tanzania, placing these findings within a wider African context to inform
malaria control and surveillance. Ecological surveys revealed substantial heterogeneity in
mosquito community composition, abundance, co-occurrence patterns and parasite
distributions across districts, underscoring the complexity of transmission dynamics. By
applying the ANOSPP molecular platform alongside traditional morphology, the study
demonstrated clear gains in taxonomic resolution, and for the first time in Tanzania,
Plasmodium caprae in An. arabiensis. These results refine the ecological baseline necessary

for surveillance and highlight the multifaceted nature of vector—parasite interactions.

Building on these observations, species distribution models integrated climatic and land-cover
variables to generate high-resolution predictions of habitat suitability for Tanzania’s three
primary malaria vectors. The resulting maps aligned with known transmission zones while
revealing species-specific ecological preferences, providing a practical decision-support tool
for prioritizing interventions. These models demonstrate the value of incorporating ecological
and environmental data into surveillance, advancing malaria control from coarse, reactive

approaches to spatially precise and predictive systems.

At the population-genomic level, An. arabiensis in Tanzania showed strong overall
connectivity with significant isolation by distance at the country scale, reflecting widespread
gene flow over tens of kilometres. When extended to the continental scale, patterns reflected
both geographic and ecological barriers: Madagascar was sharply separated from the mainland
by oceanic isolation, while the Central African rainforest divided eastern and western
populations, with additional substructure in West Africa associated with climatic gradients.
These results reveal a layered reality in which broad connectivity facilitates cohesion across

landscapes, while localized genomic architecture preserves ecological adaptation.

The implications for malaria control are significant. Extensive connectivity suggests that
adaptive alleles such as those linked to insecticide resistance could spread rapidly across
regions, underscoring the need for coordinated, cross-border surveillance and intervention

planning. Looking to the future, the same connectivity that allows natural adaptive alleles to
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spread could also accelerate the dispersal of engineered constructs, such as gene drive, should
genetically modified mosquitoes be released, highlighting the necessity of regional governance
and monitoring frameworks. This study also demonstrates the value of ANOSPP as a scalable
genomic surveillance tool. Beyond species identification, the platform can function as a “search
engine,” pinpointing populations, genomic regions, or ecological contexts that warrant deeper
exploration with whole-genome sequencing or functional assays. Its cost-effectiveness and
ability to capture both ecological and genetic signals make it a strong candidate for routine

surveillance programs.

Limitations of this study should be acknowledged. The data represent a temporal snapshot,
limiting inference about seasonal turnover and long-term dynamics. The ANOSPP amplicon
panel, while efficient, provides extremely limited genomic coverage compared to whole-
genome approaches, restricting resolution of signals. Sampling gaps, particularly in West
Africa, constrain the generalizability of continental patterns. Species distribution models also
carry inherent uncertainties due to environmental predictor resolution and model assumptions.
These constraints shape interpretation and inform priorities for future research. Future work
should therefore prioritize increasing temporal resolution to capture seasonal and interannual
dynamics of connectivity, adaptation, and turnover. Long-read sequencing and targeted assays
will be crucial for mapping inversion breakpoints and monitoring their field frequencies.
Denser sampling across ecological transitions, would help disentangle demographic from
environmental drivers of structure. Integration of genomic data with ecological surveys and
movement networks offers a powerful pathway to forecast resistance spread and optimize

sentinel site placement, ensuring surveillance systems are adaptive and anticipatory.

By integrating ecological surveys, predictive spatial modelling, and genomic analysis, this
thesis advances a multi-layered framework for malaria vector surveillance in Tanzania and
beyond. It shows that ANOSPP can replicate and extend established insights into An.
arabiensis while uncovering new dimensions of connectivity, local structuring, and parasite
associations. The findings emphasize that effective malaria control requires attention to both
broad-scale connectivity and fine-scale variation, moving surveillance from reactive
monitoring to predictive, integrated systems. This contribution strengthens the scientific
foundation for precise, efficient, and adaptive vector control, supporting the long-term goal of

malaria elimination.
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Appendix A. Supplementary Table

Supplementary Table Al. Presence-only, georeferenced occurrence records of An. arabiensis, An. funestus, and An. gambiae by data source and year (2011—

2024) used in SDM for Tanzania; totals by species and overall are shown.

Data Source Species 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 Source/Species
Total
Deogratius Kavishe  An. arabiensis 27 41 68
(THI) [170],
An. funestus 2 2
An. gambiae 1 1
Dhibiti Malaria  An. arabiensis 23 82 105
Project (IHI)
An. gambiae 20 41 61
Mr. Edmond Bernad ~ A4n. arabiensis 2 2
(NIMR) _
An. funestus 5 5
An. gambiae 5 5
Dr. Fedros Okumu An. funestus 1 23 24
(IHD
Data from this study  A4n. arabiensis 21 128 72 65 286
An. funestus 10 64 59 41 174
An. gambiae 7 57 25 17 106
Matowo et al 2021  An. arabiensis 1 1
[162]
An. funestus 2 2
An. gambiae 1 1
Mwalimu et al 2024 An. arabiensis 4 12 3 7 12 5 1 44
[65]
(NMCP_MVES) An. funestus 1 8 4 6 3 6 2 30
An. gambiae 2 6 2 6 2 6 4 20
Nambunga et al. An. funestus 2 2
2020 [164]
An. arabiensis 27 8 20 1 6 4 5 1 1 73
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