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Abstract 

 

Title: The molecular landscape of cutaneous melanoma and its clinical implications 

Author: Roy Rabbie 

 

Cutaneous melanoma arises due to the uncontrolled proliferation of melanocytes. It is the 

deadliest form of skin cancer and its incidence, particularly in younger adults, is rapidly rising 

worldwide. Over the past decade, multiple large-scale sequencing studies have uncovered 

the molecular landscape of cutaneous melanoma. In particular, an improved understanding 

of the melanoma genome and regulation of the immune system have led to the development 

of effective targeted and immunotherapies that have revolutionised the treatment 

landscape. Nevertheless, only a subset of patients demonstrate durable responses to these 

therapies and identifying those patients most likely to benefit remains an important unmet 

ned. 

 

Melanoma is an aggressive malignancy that often metastasises beyond its primary site. It has 

a particular propensity to metastasise to the brain and the mechanisms underlying this 

devastating complication remain incompletely understood. Melanoma risk stratification has 

traditionally relied on the examination of clinical and pathological features, however it has 

become clear that traditional staging may fall short in accurately assessing an individual 

patients’ risk. There is therefore a need for robust prognostic biomarkers capable of 

identifying truly high-risk patients, or patients with biologically indolent tumours, which could 

be used as an adjunct to conventional clinicopathologic assessments, and would afford a 

unique insight into the underlying tumour cell biology. 

 

In this thesis, I explore the mutational landscape of cutaneous melanoma focussing on four 

key clinical cohorts; adolescent cutaneous melanoma, patients with brain metastases, 

widespread lethal metastatic disease and patients with high-risk primary melanoma. I use a 

range of high-throughput sequencing technologies to identify the tumour-specific somatic 

alterations characterising these cohorts and apply detailed multi-site phylogenetic analyses 

to uncover some of the key evolutionary changes. In the final chapter, I apply deep RNA 
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sequencing to primary melanomas embedded within a prospective phase III clinical trial, to 

define and validate a gene expression signature identifying primary melanoma patients at 

higher risk of adverse outcomes. 

 

Together, these studies demonstrate how detailed analyses of molecular sequencing can 

uncover novel biological insights. It is hoped that further prospective molecular analyses 

coupled with high-quality experimental validation will pave the way towards novel 

therapeutic strategies for these patient cohorts. 
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in 4 peer-reviewed primary research papers, including 3 as first-author (1-3) and one as 

senior/corresponding author (4). I have also published 2 further first-author comprehensive 

reviews (5, 6) and have made substantial contributions to a number of related research 
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of peer-reviewed research and, given the restricted academic time within my final PhD year, 

I applied to the University Degree Committee for permission to submit my PhD as a collection 

of published research papers (as described within the University ‘requirements for research 

degrees’ (11)). This application was fully supported by my PhD supervisors, clinical training 

programme director and the Committee of Graduate Studies (CoGS) at the Sanger Institute 

(supporting letters available on request). On the 7th December 2020, this was unanimously 

approved by the University Degree Committee (12). 

 

The thesis is structured according to the ‘requirements for research degrees’ guidelines (11). 
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placing this work in the context of the wider field of study as well as the extent to which these 
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figures for the first four peer-reviewed publications, summarised below (1-4). I have further 
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Introduction  

The cancer genome 

Somatic mutations give rise to cancer  

Cancer is characterised by uncontrolled cellular division and is caused by the accumulation of 

genetic alterations resulting from environmental exposures and/or endogenous mutagenesis. 

These processes confer a selective fitness advantage to a cell lineage that drives clonal 

expansion [1]. In the multistep process of tumorigenesis first proposed in 1958 [2], fixed 

mutations in individual cells are transmitted from one generation to another and it is the 

gradual accumulation of somatic mutations that eventually leads to an established cancer cell 

[3]. It is well recognised that tumours acquire thousands of mutations in their lifetime, 

however only a fraction of these mutations contribute to malignant initiation or progression 

[4]. In particular, it is the driver mutations that confer a clonal growth advantage and are 

positively selected during cancer evolution. The vast majority of driver mutations fall within 

the protein-coding region of the genome, although only around 600 of the <20,000 protein-

coding genes are considered driver mutations [5, 6].  

 

Identifying the driver mutations contributing to the development of cancer is a key step to 

understanding tumour biology and can include analyses of mutation frequency (comparing 

the observed mutation rate to the expected background rate [7]) as well as experimental 

approaches. Oncogenes are defined as driver genes for which the oncogenic function is 

activating resulting in a new function and these tend to be point mutations, amplifications or 

deletions and translocations. Tumour suppressor genes are inactivating driver genes, which 

tend to be focal deletions or nonsense, frameshift or splice-site mutations.  
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Next generation sequencing of cancer genomes 

Over the past two decades, advances in high-throughout (next generation) sequencing (NGS) 

technologies have allowed for genome-wide screening of genomic alterations, leading to a 

rich discovery of somatic alterations [8]. Sequencing of exomes (whole exome sequencing, 

WES) provides access to all protein-coding regions (approximately 1-2% of the entire genome 

[9]) at base-pair resolution (single base substitutions), while genome sequencing (whole 

genome sequencing, WGS) also yields mutations in non-coding regions, copy number and 

structural alterations.  

 

NGS follows a series of core steps (Figure 1). In the first step, genomic DNA is fragmented into 

numerous short segments, usually around 50-300 base-pairs in length. The segments are 

pulled out using probes complementary to each target region. In the library preparation 

stage, the DNA segments are then ligated with common adaptor sequences to each fragment 

end (these are primer recognition sequences - from which subsequent sequencing reactions 

are initiated). Adapter-ligated fragments are then amplified using PCR (in order to provide 

enough template copies for sequencer detection) and purified. The library is then loaded onto 

a flow cell, whereby fragments are hybridized onto a glass slide and captured onto surface-

bound complementary oligos. Finally, the unbound library DNA is washed away, and the 

captured regions are read base-by-base (sequencing can occur from one end only or from 

both ends, single- vs pair-end reads respectively). The newly characterised raw sequencing 

reads are then aligned onto a reference genome using bioinformatic software. Following 

alignment, the differences between the reference genome and the newly sequenced reads 

can be called, filtered and annotated to identify pathogenic variants. This ‘massively parallel’ 

approach to sequence data generation (sequencing across millions of fragments (reads) of 

DNA simultaneously [10]), dramatically decreases the time and cost of data generation and 

has fundamentally advanced our understanding of cancer biology [9]. 
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Figure 1. Next generation sequencing library preparation. Extracted DNA (or RNA) is 
fragmented. DNA fragments are then ligated by sequencing adaptors (which initiate the 
sequencing steps). The library is then amplified and sequenced. Figure taken from [11].  

 
Distinguishing somatic alterations from inherited variants is of critical importance. To do this, 

the same sequencing experiment should be performed on a matched non-malignant 

(germline) DNA sample from the same patient. The germline sample is typically obtained from 

peripheral blood, but could also be from skin, buccal swabs or adjacent normal tissue. The 

germline serves as the reference or control, from which the large number variants within the 

tumour can be subtracted to distinguish somatic mutations [12]. The analysis of the germline 

DNA can also reveal potentially important cancer susceptibility alterations. 

 

The ability to undertake NGS from a multitude of cancer patients at high resolution has had a 

profound impact on cancer biology. Importantly, one of the very first large-scale screening 

analyses across all genes in the mitogen-activated protein kinase (MAPK) pathway in the early 
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2000s first highlighted the immense potential of this approach, identifying BRAF as the mostly 

commonly mutated cancer driver gene in melanoma [13]. Whole-genome sequencing efforts 

have further lead to the discovery of recurrent non-exonic mutations in the regulatory region 

of the telomerase reverse transcriptase (TERT) promotor gene [14]. This gene, mutated in 

71% of melanomas [14], encodes the catalytic subunit of reverse transcriptase and is critical 

for the development of melanoma [15] and a number of other cancers [16].  

 

The availability of cost-effective NGS technologies have led to the emergence of large cancer 

sequencing consortia including The Cancer Genome Atlas (TCGA) [17], International Cancer 

Genome Consortium (ICGC) [18] and the Pan-Cancer Analysis of Whole Genome Consortium 

(PCAWG) [19]. These open-access publicly available databases have generated a massive 

amount of genomic sequencing data, of >50,000 tumours across >30 cancer types, as well as 

data on the transcriptome, methylome and proteome. There is no doubt that these data have 

massively propelled research efforts in cancer biology. 
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Mutational signatures  

With the ability to interrogate the full spectrum of somatic mutations, it is possible to unravel 

some of the processes generating these mutations. Each mutational process can leave a DNA 

damage imprint or mutational signature on the genome. Pan-cancer analyses of WES data 

demonstrate that melanoma and lung cancer, both carcinogen-exposed malignancies, have 

higher numbers of somatic mutations than many other common cancers [20]. The 

overwhelming majority of melanoma mutations are C>T/G>A substitutions, a direct 

consequence of ultraviolet (UV) mutagenesis [12]. Lung cancer harbours more mutations in 

unmethylated CpG dinucleotides, consistent with a smoking signature [12]. Similar 

mutational signatures may uncover deficient DNA damage repair processes or the exposure 

to certain carcinogens [20, 21]. Studies by Alexandrov et al introduced a novel computational 

framework to consider all 96 trinucleotide mutation contexts (6 classes of single base 

substitutions and 16 possible sequence contexts), thus far identifying > 30 distinctive 

mutational signatures (https://cancer.sanger.ac.uk/cosmic/signatures) (Figure 2) [20, 22].  

 

The biological mechanisms underpinning many of the mutational signatures have shed light 

on some of the exogenous and endogenous processes attributed to different cancers. 

However, obtaining evidence of the proposed aetiology of mutational signatures is not 

straightforward and many signatures remain unexplained [22]. There have recently been 

promising data showing that mutational signatures could aid in therapeutic decision-making. 

Prominent examples of this include the mismatch repair (MMR) signature and profound 

responses to immunotherapy [23, 24] and homologous recombination 

deficiency/dependency on other DNA repair pathways and sensitivity to PARP inhibition [25]. 

In summary, somatic mutational signatures in WGS data can help unravel the aetiological 

factors for some cancers and may be implicated in cancer therapeutics. Further studies from 

well-annotated datasets alongside functional perturbations in experimental models will 

further unravel their clinical and biologic significance [26]. 
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Figure 2. Mutational signatures and their associated causes. The profile of each signature is 
indicated using the six single base substitution subtypes (C>A, C>G, C>T, T>A, T>C and T>G) and 16 
possible sequence contexts, generating 96 possible trinucleotide mutation contexts. Figure taken 
from [27], under the terms of the Creative Commons Attribution‐NonCommercial License. 
 

9



Cancer heterogeneity 

An important outcome of large-scale genomic analyses has been the realisation that inter- 

(between individuals with the same tumour type) and intra-tumour (within a single tumour) 

heterogeneity characterises many cancers. Genomic heterogeneity results from Darwinian 

selection, whereby tumour cells better suited to their local microenvironment proliferate 

quicker in a process called clonal expansion [7]. This expansion of fitter tumour subclones acts 

as a substrate for tumour evolution. 

 

Somatic alterations detectable in every clone and tumour region are thought to arise early in 

the natural history of a tumour, so-called trunk mutations [28]. As the tumour develops it 

acquires more alterations leading to the expansion of clones only present in a subset of cells. 

These subclonal alterations make up the branches of the evolutionary tree and represent later 

stages of tumour evolution [29]. The assignment of variants to their respective clones is based 

on the cancer cell fraction (CCF). The CCF is estimated by correcting the variant allele 

frequency (the fraction of sequencing reads carrying an alteration) with tumour purity and 

copy number alteration (which also impact the allele frequency). The CCF gives a numerical 

estimation of the cellular prevalence of a mutation. Cells from the clonal cluster have CCF of 

1 indicating they are carried in 100% of the tumour cells and cells from the subclonal cluster 

have CCF <1 [30]. This information can then be used to identify the clonal makeup of a tumour 

and reconstruct its evolutionary trajectory [31-36]. These approaches have been formalised 

into algorithms which, when applied to a range of NGS data, can identify clonal lineages and 

infer the phylogenetic relationships between tumours [34, 36]. 

 

Following the pioneering discoveries of Allison and colleagues [37], antibodies that target 

immune checkpoint proteins (including CTLA-4, PD-1 and others), have shown remarkable 

activity across a range of malignancies [38]. These observations suggest that the endogenous 

T-cell repertoire can recognise epitopes within the tumour microenvironment resulting in the 

control of tumour growth. Research over the years have shown that these T cell epitopes arise 

as a consequence of somatic DNA alterations, generating new immunogenic peptides called 

neoantigens [39]. As a tumour grows, somatic mutations lead to new neoantigens that could 

trigger an immune response [39]. As would be expected, the neoantigen load is higher in 

tumours with a high mutational burden and there is some evidence suggesting that tumours 

10



with an elevated mutational load respond better to immunotherapy [40-42]. However, the 

correlation between neoantigen load and response to immunotherapy is imperfect and it 

cannot explain all responses [43]. By considering both neoantigen clonality and burden, 

McGranahan and colleagues have shown that non-small cell lung cancers with a high clonal 

neoantigen burden and low intra-tumoural heterogeneity have an improved response to 

immune checkpoint inhibitors [44] and longer disease-free survival [45]. However, the 

mechanisms linking intratumour heterogeneity with an anti-tumour immune response 

remain elusive. 
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Dissecting the tumour microenvironment  

It is increasingly clear that understanding alterations within tumour cells only represents part 

of the picture and that oncogenesis depends on the interactions between tumours and the 

(non-malignant) multicellular tumour microenvironment (TME) [46]. As such NGS 

technologies, originally focussing on tumour-centric analyses, are now increasingly being 

used to unravel the intercellular crosstalk between the tumour and its surrounding 

multicellular ecosystem.  

 

The characterization of the transcriptome using RNA sequencing (RNA-seq) can be particularly 

informative. Changes in transcriptional activity and regulation generally underlie cellular 

diversity and provide important insights into the organisation of immune cells in the TME. 

Specifically, RNA-seq data can be used to predict patient-specific neoantigens which might 

elicit an anti-tumour immune response [47]. It can also be used to profile different immune 

cell subtypes within the microenvironment, for example using either gene-set enrichment 

analyses [48] or deconvolution tools [49].  

 

Gene expression quantification from bulk-sequencing approaches however only represent 

average expression profiles of the constituent cells and are influenced by the particular 

transcriptional profiles, as well as the abundance, of a multitude of different cell types and 

states within the sample. This becomes particularly relevant when considering the detection 

limits that might preclude the identification of low-level subclones. Recent progress in single 

cell sequencing and spatial transcriptomics have allowed more detailed analyses of 

subpopulations of cells and their relationships within the tumour microenvironment [50], 

although are beyond the scope of this thesis.
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Clinical implications of genome sequencing technologies 

Because driver mutations are responsible for oncogenic addiction, targeted therapies 

directed towards the resulting protein have remarkable therapeutic activity [51]. The era of 

precision oncology (tailoring anti-cancer treatments to genomic alterations [52]) was born 

two decades ago, with the approval of imatinib to treat BCR-ABL-fusion positive CML [53] and 

trastuzumab to treat HER2-amplified metastatic breast cancer [54]. Because specific genetic 

variations are only typically present in small patient populations, basket trials (enrolling 

patients with different histologies harbouring the same genetic alteration), have allowed for 

broadened access to targeted therapies and molecular screening [55], although the results of 

many of these studies have thus far been disappointing [56]. Interestingly, NGS testing has 

also found value in characterising ‘exceptional responders’ [57] and programmes such as the 

National Cancer Institute exceptional responders initiative are helping to systematically 

characterise these cases [58].  

 

However, despite the initial successful application of targeted therapies, it is well recognised 

that only a minority of patients have tumours harbouring therapeutically actionable 

mutations. Many driver mutations remain incompletely characterised or may currently be 

considered ‘undruggable’. Critically, most patients commencing targeted therapies 

eventually develop acquired resistance [52]. Next generation sequencing technologies have 

helped uncover some of the molecular mechanisms rendering a tumour insensitive to 

inhibition. These can include; pre-existing or de novo secondary mutations [59, 60], the 

emergence of resistant subclones [61], the activation of downstream effectors leading to 

pathway reactivation or switching to alternative pathways [62] amongst others. Efforts to 

develop rational combination- or serial-therapies are underway, aiming to circumvent some 

of these resistance mechanisms. In addition to the known biomarkers predicting response to 

targeted therapies, more complex molecular predictors are emerging. Recently, the FDA have 

approved TRK fusions and microsatellite instability as histology-agnostic biomarkers for the 

use of Larotrectinib [63]/entrectinib [64] and pembrolizumab [23, 24] respectively. In 

conclusion, genomics-based assays are increasingly being used in patient stratification and 

treatment.  
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Ongoing challenges and limitations in NGS studies 

Despite the enormous progress in NGS technologies, a number of important challenges 

remain, particularly in the application of these technologies to clinical practice. Firstly, there 

are important technical challenges relating to the quantity and quality of tumour specimens. 

This is particularly pertinent to primary melanomas, which are often thin/small and may 

contain scarce tumour tissue for nucleic acid extraction [65]. Primary melanomas can also be 

infiltrated with a mixture of non-malignant cells (including keratinocytes, stromal cells, 

immune cells and others) and a reduced tumour purity could alter the sensitivity of variant 

detection [66]. The high number of (UV-induced) mutations with low-allelic frequency can 

also lead to decreased levels of detection sensitivity. This may account for the relative paucity 

of molecular sequencing data on primary relative to metastatic melanomas in TCGA and other 

consortia [67, 68] (the opposite picture to most cancers, where many more primaries have 

been sequenced relative to metastases). In addition, most primary and metastatic tumours 

are processed and stored as formalin-fixed paraffin-embedded (FFPE) blocks [65], which 

preserves the cellular architecture of the tumour. However formalin-fixing can lead to cross-

linking of the phosphodiester backbone of DNA resulting in fragmentation and the detection 

of false positive genomic alterations [69, 70]. Improvements in the preparation of nucleic 

acids for sequencing, including the ability to create NGS libraries from very-low DNA input 

[71], have helped broaden the NGS application.  

 

An important consideration when designing an NGS experiment is the balance between 

pursuing comprehensive approaches such as whole-genome sequencing versus more 

targeted hybrid-capture approaches (including whole-exome and targeted amplicon 

sequencing). Whole-genome approaches clearly have higher computational requirements, 

longer turnaround time and higher costs. On the other hand, targeted sequencing might 

afford deeper coverage (the number of DNA template strands at each given position), which 

could be particularly beneficial in polyclonal or low-purity samples. In light of these practical 

considerations, molecular analyses in primary melanomas have historically focussed on 

targeted gene panels of mutational hotspots [72-76], which only capture a tiny fraction of the 

genomic complexity. Similar trade-offs in breadth versus depth are also relevant for RNA 

sequencing [77]. In addition, the inclusion of patient-matched germline DNA is critical to 

distinguish somatic mutations from inherited germline variants. However this is not always 

14



clinically available and in the absence of germline DNA, tumoural variants must be filtered 

through large databases of common recurrent single nucleotide polymorphisms (SNPs) [78] 

which can sometimes be problematic, particularly in incurring additional false positive 

alterations [79]. 

 

With the increasing expansions in sequence outputs and the precipitous reduction in 

sequencing costs, the challenge increasingly lies in the bioinformatic analyses and their 

meaningful biological interpretation. Challenges also remain in harmonising genomic data 

attained from different sequencing platforms. This can be particularly problematic in low-

depth sequencing or across more complicated genomic regions [80]. The continued open 

exchange and sharing of data, expertise and technology will help drive further innovation.  
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Melanoma biology  

The origins of melanoma 

Melanocytes are neural crest-derived cells found primarily at the basal level of the epidermis 

where they produce the UV absorbing pigment melanin [81]. Melanoma is marked by the 

uncontrolled division of melanocytes and the main causative agent is ultraviolet (UV) 

radiation through its direct damage to DNA [82]. This thesis is on focussed cutaneous 

melanoma (CM) arising from the skin, much rarer melanoma subtypes include mucosal, acral 

lentiginous, uveal and conjunctival. We have reviewed the genomics of these subtypes 

elsewhere [83]. 

 

Epidemiology 

Melanoma comprises less than 5% of all cutaneous malignancies, yet it accounts for 75% of 

all skin cancer-related deaths [84]. The incidence of CM has been steadily rising since the 

1960’s and it is one of the few cancers that continues to rise in incidence worldwide (Figure 

3) [84]. This is of particular concern given the unusual age demographics. Melanoma 

disproportionately affects younger patients and is the commonest cause of cancer-related 

death in 15-30 year-olds [85]. The combination of a rapidly rising incidence and lethality 

highlights that CM still represents a serious public health concern. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. European age-standardised incidence rates in the UK, 1993-2007. Image from [86]. 
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The melanoma genome  

Genomic sequencing studies have illuminated the causative role of UV radiation in the 

pathogenesis of melanoma, identifying UV-induced mutations, including C>T and CC>TT 

substitutions, in nearly all CM [68].  

 

One of most commonly mutated pathways in melanoma is the mitogen-activated protein 

kinase (MAPK) pathway [87]. This regulates cell proliferation, apoptosis and survival, and 

amplification leads to cell cycle dysregulation and uninhibited cellular growth (Figure 4) [88]. 

BRAF is one of the key signalling kinases within the MAPK pathway [89]. Somatic mutations 

in BRAF are the commonest genetic alteration in CM, found in 34–41% of cases [13, 90]. The 

most common and well‐characterised BRAF mutation (representing >85% of alterations [13]) 

results from a missense mutation (transversion of T>A) at nucleotide 1799, which causes the 

substitution of valine (V) for glutamic acid (E) at codon position 600 [91]. Over 90% of 

activating BRAF mutations in melanomas are located in codon 600, less common mutations 

include V600K (8-20%), V600R (1%), V600M (0.3%) and V600D (0.1%) [92]. Epidemiological 

analyses have shown that V600E mutations are associated with younger patients and with 

melanomas on skin sites exposed to intermittent (rather than chronically) sun-induced 

damage, such as the extremities [93]. In contrast, melanomas lacking BRAFV600E mutations 

generally occur in older patients and are associated with skin sites exposed to chronic sun-

damage, such as the head and neck [94].  

 

NRAS is involved in the transduction of extracellular growth signals through the MAPK and 

the PI3K/AKT pathways, and is the second most frequently mutated gene in CM [67]. NRAS 

mutations occur in 5-15% of cases, usually missense mutations in codons 12, 13 and 61 [67]. 

Mutations in NRAS are generally independent of BRAF, though dual expression has been 

reported [95]. NRAS-mutant melanomas are associated with a nodular morphology and tend 

to occur on chronically sun-damaged skin and are correlate with a higher tumour stage as 

well as a more aggressive clinical behaviour [96].  

 

NF1 is a tumour suppressor gene mutated in 10-15% of CM [67, 68] and also more commonly 

found in melanomas associated with chronically sun-exposed skin [97]. Loss of function in 

NF1 leads to hyperactivation of the NRAS protein and up-regulated MAPK and PI3K signalling 
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[98]. Other commonly mutated driver mutations include; PTEN, KIT, TP53, TERT promoter, 

ARID2 and CDKN2A (Figure 4) [67, 68].  

 

 

 
 

Figure 4. Molecular representation of the mutations associated with the 
RAS/RAF/MEK/ERK pathways in melanoma, including the MITF signalling cascade. GPCR, G‐
protein coupled receptor; RTK, receptor tyrosine kinase. Figure reproduced with permission 
from [83]. 
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From melanocytes to melanoma 

Melanocytic naevi are benign proliferations of melanocytes and are both markers of 

melanoma risk as well as potential precursors of melanoma. In a landmark study, Shain et al 

performed targeted panel sequencing on melanomas and their adjacent precursor 

melanocytic lesions [76]. They demonstrated that (in these rare cases) BRAFV600E mutations 

were found in the majority of naevi. On the other hand, BRAF non-V600E and NRAS mutations 

were found more frequently in intermediate or ‘dysplastic’ naevi and loss of CDKN2A 

(encoding for p16INK4A) was only identified in established malignant lesions [76]. Based on 

this evidence, Shain et al have proposed a stepwise pathway to transform a naevus to 

melanoma, with the UV signature identified across all stages of progression (Figure 5) [99]. 

However, the majority of benign melanocytes never actually progress to melanoma and 

oncogenic BRAF mutations alone are not sufficient for melanoma development [100] and 

more recent data suggest that this may be an over-simplification [87].  

 

 
 

Figure 5. The evolution of melanocytic neoplasms. Showing the accumulation of mutations 
and copy number alterations. UV-induced mutagenesis was identified across all stages of 
tumour evolution. Image taken from [99]. 
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Principles of management 

Following the initial confirmatory biopsy, surgical excision comprising wide-local excision of 

the tumour and surrounding healthy tissue is the definitive treatment for the majority of 

early-stage tumours. Patients with higher-risk primary tumours also undergo a sentinel lymph 

node biopsy. If melanoma cells are found in a sentinel lymph node, the remaining lymph 

nodes are also often excised (although there remains considerable debate regarding the 

optimal management of patients with positive sentinel nodes) [101, 102]. However once 

metastases develop, surgical interventions alone are no longer curative and systemic 

therapies are indicated. For the majority of the past 50 years, the prognosis of metastatic 

melanoma has been poor with very limited effective systemic therapies. However, the 

treatment landscape fundamentally changed in 2011 with the approval of immune 

checkpoint inhibitors and BRAF-targeted therapies, and these two branches of therapy 

remain the mainstay of systemic therapy.  

 

Mitogen-activated protein kinase (MAPK) signalling pathway inhibitors targeting either BRAF 

or MEK kinases result in response rates exceeding 50% and have revolutionised the treatment 

of melanoma [103, 104]. However, the majority of patients inevitably develop acquired 

resistance during therapy [105]. Immune checkpoint inhibitors target the inactivation signals 

of the immune system leading to an uninhibited endogenous cytotoxic effector T-cell 

response [106]. There has been a rapid development of immunotherapeutics for the 

treatment of advanced melanoma and the main agents currently in widespread use target 

CTLA-4 or PD-1. In particular, anti-PD-1 monotherapy is currently considered the standard 

first-line therapy in advanced melanoma due to the durable responses, with a well-

established efficacy and toxicity profile [107]. Over the past decade, the approval of newer 

immune and targeted therapies have further improved outcomes for patients with advanced 

melanoma. These include single or combination immunotherapy agents as well as 

combinations with existing anti-cancer therapies [108].  

 

With this shift in outcome for advanced melanoma, similar results are seen when these 

therapies are applied in the adjuvant setting, and adjuvant therapy is now established in stage 

III and stage IV after complete tumour resection [109]. Adjuvant dabrafenib and trametinib is 

available for patients with BRAF-V600E/K mutations [110] and immunotherapy with 
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pembrolizumab [111] is available for stage III and with nivolumab [112] for stage III and 

resected stage IV disease. Studies investigating the role of immunotherapy in stage II disease 

have already been initiated [113].  

 

Despite these important successes, it is clear from both trial and real-world clinical data that 

durable long-term responses to both targeted and immune therapies are limited to only a 

small fraction of patients [114, 115]. A better understanding of the resistance mechanisms 

and the reasons why some patients don’t respond are needed. In particular, there remains 

an important need for prognostic and predictive biomarkers to better stratify patient risk and 

select those patients who will most likely achieve a favourable outcome. This is particularly 

relevant in the current era of effective adjuvant therapies. 
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Melanoma brain metastases 

Adjusting for cancer incidence, melanoma has the highest propensity to metastasise to the 

brain amongst all cancer types [116]. However the mechanism regulating this organotropism 

remains poorly understood. Although the true prevalence of brain metastases may be difficult 

to estimate, studies have shown that approximately 10% of patients with a history of invasive 

melanoma (across any stage) will ultimately develop clinically apparent brain metastases 

[117]. However melanoma brain metastases (MBM) complicate 44-50% of patients with stage 

IV disease [118] and up to 75% of melanoma patients have brain metastasis detected in 

autopsy series [119].  

 

The initial clinical presentation of MBM comprises headaches, seizures and neurological 

impairment or can be asymptomatic. They often present as multiple lesions and have a high 

tendency for haemorrhage. Left untreated, MBM progress rapidly with an average survival of 

approximately 3 months [120]. Although recent therapeutic developments with immune 

checkpoint inhibitors have dramatically improved the outcomes for MBM patients [121-123], 

the prognosis remains dismal. Treatment failure is common and the brain is often the major 

site of disease progression, even when extracranial disease is well controlled [116].  

 

Early detection of MBM is critical as smaller tumours may be more amenable to 

surgery/radiosurgery [124] and immunotherapies have demonstrated greatest efficacy in 

patients with small, asymptomatic brain metastases [123]. It therefore remains crucial to 

identify patients at an increased risk of brain metastasis. Previous studies examining the 

clinical factors predictive of MBM have shown an association with depth, ulceration and 

mitotic rate of the primary tumour as well as location on the head and neck [117, 125, 126]. 

However, the identification of genomic alterations specific to brain metastases represent an 

important area of unmet need. An important study undertook whole-exome sequencing of 

86 matched primary tumours and brain metastases [127]. The study, which predominantly 

included patients with breast, lung and renal cancer, reported that 53% of brain metastases 

had clinically actionable alterations that were not detected in the primary tumours. The 

identification of brain-specific mutations suggests that clones of metastatic cells growing 

within the brain may have evolved separately to those within the primary tumour. Further 

evolutionary analyses across multiple anatomically and temporally distinct brain metastases 
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proposed a divergent evolution at metastatic sites (branched evolution) [127]. However 

metastatic dissemination to the brain is a complex multistep process that includes the escape 

of malignant cells from the primary tumour, haematogenous dissemination through the 

vasculature, passage through the blood brain barrier and successful colonisation of the brain 

[128]. Once in the brain, in addition to tumoural factors, experimental models are increasingly 

highlighting the importance of molecular crosstalk between metastatic cells and the 

surrounding microenvironment [129]. Dissecting the interaction between melanoma brain 

metastasis and the brain microenvironment is beyond the scope of this thesis, but will be 

critical to furthering our understanding of the pathogenesis of this devastating complication.  
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Melanoma prognostic factors 

Clinical classification and staging 

For the past 40 years, risk stratification in cutaneous melanoma has been based on traditional 

clinical and pathological features [130]. This is based on the analysis of thousands of 

melanoma patients over many years and is formalised by the American Joint Committee on 

Cancer (AJCC) staging, classifying CM into four ordinal disease stages [131]. Staging combines 

clinical assessment with histological characteristics of the primary tumour.  The most 

powerful of these predictors is Breslow thickness, which stratifies risk based on the invasive 

depth of melanoma cells in the primary tumour (Figure 6). This can be further stratified by 

the presence of ulceration and the tumour mitotic rate. The most recent (8th) edition of the 

AJCC staging manual was published in 2017 and included some important refinements 

supported by the prognostic importance of a number of parameters only available after the 

7th edition of the manual was published [132].  

 

 

 

 

 

 

 

Figure 6. Primary tumour thickness (Breslow depth). This represents melanoma in-situ. T1 
<0.8mm thickness, T2 >1.0-2.0mm, T3 >2.0-4.0mm and T4 >4.0mm.  
 

Staging allows patients to be stratified into prognostic groups which inform the most 

appropriate management plans (Figure 7). However, due to the subjectivity of some of these 

visual observations, there remains high inter- and intra-observer variability [133]. In addition, 

due to the phenotypic and genetic heterogeneity of melanoma, conventional clinical 

characteristics are also somewhat limited in their ability to accurately predict individual 

outcomes. As an example, most patients present with early-stage disease and have an 

excellent prognosis. However, it is well recognised that around 20-30% of early-stage patients 

will develop a distant recurrence within 5 years (Figure 7) [132]. This indicates that there are 
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tumours with a biologic propensity to metastasise that may-not be currently identified 

through traditional staging. 

 

 

 

Figure 7. Melanoma-specific survival according to the 8th edition of AJCC. Left panel shows 
stages I-II and right panel stage III. Figure taken from [132].
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Prognostic biomarkers in early-stage disease 

Given that the majority of melanomas are diagnosed at an early-stage, it is now understood 

that around one-fifth of melanoma deaths are recorded in patients initially diagnosed with 

early-stage disease [134]. In fact, due in part to the high incidence (>70%) of thin primary 

melanomas (≤1.00 mm Breslow thickness), more patients die of thin melanoma than thick 

melanoma (>4.00 mm thickness) [134]. The early detection of recurrence or distant 

metastasis also has therapeutic relevance. Depending on the degree of tumour burden, some 

patients with oligometastatic disease can be treated with curative-intent surgery. In addition, 

several studies in stage IV disease have shown that contemporary melanoma therapies 

(including targeted and immunotherapies) elicit improved responses in patients with a lower 

tumour burden [121, 135, 136]. Following the approval of adjuvant therapy for high-risk 

primary melanoma, most patients with stage III (lymph node positive) disease are currently 

offered adjuvant systemic therapy. However, many of these patients have a favourable risk 

profile and will likely remain progression-free without therapy. Treatment with immune 

checkpoint inhibitors can be complicated by immune-mediated toxicity and may necessitate 

permanent discontinuation or lead to lifelong secondary conditions [137]. A further important 

area to consider is the wider financial impact associated with offering adjuvant therapy to all 

melanoma patients [138]. There is therefore a pressing need to identify and validate better 

prognostic biomarkers that could be used as an adjunct to conventional clinicopathologic 

assessments. Intensive surveillance can then be focussed on those patients with biologically 

aggressive tumours and those truly low-risk patients could potentially be spared the toxicities 

associated with adjuvant therapies. Such robust biomarkers might also offer an opportunity 

to better understand the relevant intrinsic tumour cell biology.  

 

There have been exciting developments in the study of predictive biomarkers guiding the 

administration of modern systemic therapies. Identifying biomarkers for immunotherapy in 

particular requires a comprehensive approach encompassing the complexity of the host 

immune system (age, gender, gut microbiome, genetic susceptibility to autoimmunity and 

possibly ethnicity), tumour biology (mutational load) and the tumour microenvironment (PD-

L1 expression, T cell infiltrate, dendritic cell activation) amongst other emerging factors [139]. 

This will require deep analyses of multi-omics datasets and we may ultimately find that no 
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single test has sufficient predictive value. This thesis is focussed primarily on prognostic 

biomarkers.  
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Types of prognostic biomarkers  

Early research efforts initially focussed on the discovery of protein-based prognostic 

biomarkers. In particular, serum lactate dehydrogenase (LDH) is well recognised as an 

important biomarker [140] and is incorporated in the AJCC staging for categorising metastasis 

[132]. However, its clinical utility is limited to advanced disease stages. Melanomas are among 

the most immunoreactive of malignancies and are typically infiltrated by a variety of immune 

cells [141]. A number of studies have shown that a high level of immune cell infiltration is 

associated with a favourable prognosis in both primary [142] and metastatic melanoma [143]. 

This has been further assessed using a variety of immunohistochemical markers to define and 

detect tumour-infiltrating lymphocytes including CD3, CD4, CD8 and FoxP3 [144]. Due to its 

central importance in predicting response to targeted therapy, BRAF mutation status remains 

the most important molecular biomarker. Although immunohistochemical analyses using the 

commercially available VE1 monoclonal antibody is highly sensitive and specific for the 

detection of BRAF-V600E melanoma [145], it is the only V600E mutation that can be detected 

using clinically-approved immunohistochemical methods and DNA-based methods are 

currently considered the gold standard approach [146]. 

 

Over the past decade, the advent of high-throughput sequencing has enabled discovery of 

numerous prognostic and predictive molecular biomarkers. In an important landmark study, 

Jonsson used gene expression data from a cohort of stage IV melanoma patients to identify 

four key molecular subtypes, and validated this in another cohort of stage III and IV patients 

[147, 148]. In this study, the immune-high subtype, characterised by the increased expression 

of immune related genes, associated with the best prognosis which was independent of AJCC 

stage.  

 

Gene expression technologies have also been used to define prognostic biomarkers in early-

stage disease. The most widely reported test in this setting is a 31-gene expression signature 

first developed by Gerami and colleagues [72]. This has since been formalised into a 

commercially available test (DecisionDx-Melanoma, Castle Biosciences). The test analyses 28 

prognostic genes and 3 control genes using RT-PCR technology. Thereby classifying patients 

with primary melanoma into tumours that are high- or low-risk for metastases, independent 

of traditional AJCC staging [72]. This test has been studied in a number of retrospective and 
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prospective cohort studies and has been proposed as a risk-stratification tool guiding follow-

up frequency and imaging intensity [149-151]. However, these studies have often suffered 

from small and biased gene panels, the lack of consideration to tumoural and host 

microenvironment heterogeneity, limited patient numbers and often a lack of long-term 

follow-up. At the present time, additional data are needed before molecular predictors can 

be advocated as part of formalised clinical guidelines [152, 153]. 
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The aims of this project 

In this thesis we explore the molecular landscape of CM and evaluate whether these data can 

improve patient stratification. Specifically, we apply a range of next-generation sequencing 

technologies to primary and metastatic melanomas, focussing our analyses on four key areas 

of clinical need, for which previous studies may have been confounded by smaller sample 

sizes and less robust sequencing technologies.  

 

Although melanoma accounts for >10% of all cancers in adolescents and young adults [85], 

there is little known about the molecular landscape in this population. In Chapter 1 we 

present a detailed analysis of germline and somatic sequencing in adolescent cutaneous 

melanomas. Brain metastases pose a particular challenge for genome sequencing studies, not 

least as obtaining tissue from the central nervous system is invasive and often difficult, 

particularly in patients who are poor surgical candidates or have tumours within inaccessible 

sites. In Chapter 2, we present one of the first studies analysing the molecular landscape of 

melanoma brain metastases. In these first two chapters, we make use of pooled sample 

collections coordinated through large international consortia, which vastly increased our 

detection power. Melanomas are known to carry a high mutational load, however they have 

previously been considered to lack subclonal heterogeneity [87, 154]. In Chapter 3, we apply 

genome-wide sequencing analyses across multiple temporally and spatially-separated 

treatment-resistant metastases, uncovering a previously unrecognised layer of genomic 

heterogeneity. Complementary to the analyses in DNA, tumoural RNA can reveal key 

important insights into the function of genomic alterations. However, RNA is more labile than 

DNA, requiring careful handling/quality control and additional computational complexities in 

the downstream analyses [155]. In Chapter 4 we analyse deep RNA sequencing data from 

primary and regional lymph node melanoma to study gene expression profiles in early-stage 

disease. Integrating these findings with clinical outcome data from a well-conducted 

prospective phase III clinical trial [156, 157], we were able to assess how the molecular 

architecture of the primary tumour could inform prognostic stratification. 

 

The availability of next-generation sequencing has revolutionised the understanding of cancer 

biology [158]. It is anticipated that similar studies integrating multi-omic analyses will 
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ultimately establish a central role for molecular-based technologies in understanding 

melanoma biology and in ultimately translating these findings for the benefit of patients.   
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Summary

Melanoma in young children is rare; however, its incidence in adolescents and young adults is rising. We

describe the clinical course of a 15-year-old female diagnosed with AJCC stage IB non-ulcerated primary

melanoma, who died from metastatic disease 4 years after diagnosis despite three lines of modern systemic

therapy. We also present the complete genomic profile of her tumour and compare this to a further series of 13

adolescent melanomas and 275 adult cutaneous melanomas. A somatic BRAFV600E mutation and a high

mutational load equivalent to that found in adult melanoma and composed primarily of C>T mutations were

observed. A germline genomic analysis alongside a series of 23 children and adolescents with melanoma

revealed no mutations in known germline melanoma-predisposing genes. Adolescent melanomas appear to

have genomes that are as complex as those arising in adulthood and their clinical course can, as with adults, be

unpredictable.

Significance

The survival from advanced melanoma in adults has been revolutionized by the introduction of immune

checkpoint inhibitors and molecular targeted therapies. However, children and adolescents younger than

18 years have had limited access to the registration clinical trials. We present a detailed genomic analysis of a

series of adolescentmelanomas and the clinical course of one such patient who died frommetastatic disease.

A high mutational load was observed and suggests that immune-based therapies may be relevant, but

response cannot be guaranteed. Germline mutations in established adult melanoma-predisposing genes

were not evident in an extended childhood and adolescent series. Given the complexities around diagnosis

and the paucity of prospective clinical studies for younger individuals,melanoma in this age group represents

a particular clinical challenge requiring specialist management by a dedicated multidisciplinary team.
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Introduction

Melanoma in children is rare accounting for only 2% of

all malignancies in patients younger than 20 years

(Howlader et al., 2016). Melanoma in infancy and early

childhood (1–10 years) comprises around 8% of newly

diagnosed cases in young people, whereas adolescents

(11–20 years) account for the majority (92%) of mela-

noma cases (Lorimer et al., 2016). Importantly, the

incidence of melanoma in the adolescent population is

rising at a rate of 2% per year (Austin et al., 2013).

Melanocytic lesions in children comprise a heteroge-

neous group of neoplasms that can be broadly divided

based on histology and age onset, and three major

subtypes have been described (Barnhill and Kerl, 2006).

Firstly, melanoma can arise in association with a pre-

existing, usually large, congenital melanocytic naevus

(CMN) (Guegan et al., 2016; Trozak et al., 1975). The

lifetime risk of malignant transformation from a CMN is

5–10% and 50% of these transformations are said to

occur in the first decade of life (Bett, 2005; Krengel et al.,

2006). The second type are termed spitzoid melanocytic

tumours, which comprise a wider spectrum of histolog-

ical variants including spitzoid melanoma and atypical

Spitz tumours. The vast majority of Spitz naevi occur in

individuals younger than 20 years and often arise on the

extremities and face (Reed et al., 2013). The third

subtype, generally occurring in adolescents, has been

termed ‘conventional’ melanoma, owing to its shared

clinical and histological features typical of adult mela-

noma. In contrast to infantile and childhood cases, post-

pubertal melanoma is most often sporadic, occurring as a

de-novo lesion in patients with fair-coloured skin and

substantial sun exposure (Wood, 2016).

Cutaneous melanoma in adults is characterised by a

high prevalence of somatic mutations and the muta-

tional pattern depicts a characteristic ultraviolet-light

(UV)-induced signature associated with frequent transi-

tions at dipyrimidine sites (Cancer Genome Atlas Net-

work, 2015). A recent comprehensive genomic analysis

found that melanomas from adolescents bear a remark-

ably similar mutational rate and spectrum to tumours

from adults, suggesting that sun protection practices are

important in early life (Anderson et al., 2009; Lu et al.,

2015). In addition to its rarity and the low clinical

suspicion for malignancy, there is recognition that

melanomas in young people are commonly amelanotic

and the clinico-pathologic features may overlap with

proliferative nodules and other benign skin lesions that

are generally more common in children than adults

(Cordoro et al., 2013; Moscarella et al., 2012). This can

lead to delays both in diagnosis and treatment (Neier

et al., 2012).

Several high-risk mutations have been identified in

melanoma-dense families, including mutations in the

cyclin-dependent kinase inhibitor 2A (CDKN2A) gene

(Cannon-Albright et al., 1992), the cyclin-dependent

kinase 4 (CDK4) gene (Zuo et al., 1996) and more recently

in the Breast cancer 1 (BRCA1)-associated protein 1

(BAP1) (Aoude et al., 2013; Wiesner et al., 2011) and

protection of telomeres 1 (POT1) genes (Robles-Espinoza

et al., 2014; Shi et al., 2014). However, the prevalence of

these predisposing mutations amongst younger patients

is largely unknown. A deeper understanding of the

molecular drivers of childhood and adolescent melanoma

would advance our understanding of its pathogenesis,

particularly the role of gene–environment interactions in

susceptible cases and could help define particular

high-risk subgroups that might benefit from specialist

screening and surveillance.

Results

In this study, we present a detailed clinical history of one

patient and an extensive genomic analysis of their

germline and tumour and that of a wider series of

adolescent and childhood melanomas.

Patient presentation

The 15-year-old female described had blonde hair, blue

eyes, skin phototype II on the Fitzpatrick Classification

Scale (Fitzpatrick, 1988) and a history of multiple (>50)
benign skin naevi. Her mother had a history of uveal

melanoma, and her maternal grandmother had pancreatic

adenocarcinoma (Figure 1A). She presented in February

2011 with an enlarging symmetric raised light brown

papule on the right lower posterior chest wall at the level

of the costal margin, which measured less than 1 cm in

diameter. The lesion was removed by shave excision at

her local hospital and was found to be a non-ulcerated

cutaneous malignant melanoma, Clark’s level IV, Breslow

thickness 0.9 mm and 6 mitoses/mm2 (Figure 1B). As the

lesion extended to the excision margins, wide local

excision was undertaken with subsequent clear margins.

Ultrasonography revealed no pathological regional lymph

nodes and she underwent active multimodality 6-monthly

surveillance. Two and a half years later in October 2013, a

0.8 mm pigmented lesion appeared in the centre of the

existing wide local excision scar (Figure 1C). Dermo-

scopic examination revealed a homogeneous pattern and

reflectance confocal microscopy showed atypical den-

dritic cells in the dermo-epidermal junction (Figure 1D).

This lesion was diagnosed as melanoma in situ, which

was completely excised. In March 2014, no abnormalities

were detected on surveillance clinical examination or

ultrasonography and serum s-100 levels were recorded as

normal at 0.13 lg/l (normal <0.15 lg/l). However,

2 months later, during a separate clinic consultation for

acne treatment, an enlarged lymph node was detected in

the right axilla and serum s-100 levels were now elevated

to 0.7 lg/l. A PET/CT scan revealed avid FDG uptake in

multiple liver and bone metastases as well as right axillary

lymph nodes (Figure 2A). A single asymptomatic parietal

lobe brain metastasis was also identified on imaging

308 ª 2017 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.
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Figure 1. Clinical timeline of the 15-year-old index patient (M_4180). (A) Family pedigree. The proband is indicated with an arrow, ages at

diagnosis are shown. (B) Timeline of diagnosis and treatment. (C) New pigmented melanoma in situ appearing in the centre of previous melanoma

wide local excision scar. Accompanied dermoscopic image of the in-situ melanoma prior to further wide local excision (beside). (D) Reflectance

confocal microscopy at the dermo-epidermal level, showing proliferation of dendritic atypical melanocytes. aVemurafenib starting dose 960 mg

twice a day. bDose reduction vemurafenib to 720 mg twice a day. cIpilimumab 3 mg/kg every 3 weeks. dWhole-brain radiotherapy 10 Gy in 10

fractions. eDabrafenib 150 mg twice a day, trametinib 2 mg once a day.
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Figure 2. Radiological evaluation through treatment. (A) 18F-FDG PET/CT alongside 3D colour reconstruction. Arrows indicate avid FDG tracer

uptake in the right axilla, left humeral head, left femoral neck and right iliac crest (blue) as well as widespread liver uptake (red). (B) Post-contrast

T1-weighted MR images showing tiny enhancing lesions in the left parietal lobe (July 2014) and right amygdala (September 2014). Axial post-

contrast MR images prior to whole-brain radiotherapy showing multiple and supra- and infratentorial lesions with no significant mass effect

(October 2014). (C) Cross-sectional CT images of the liver post-IV-contrast in the portal phase. Baseline images show hypodense focal lesions

corresponding to segment 1 in the left hepatic lobe (left upper) and the caudal segments of the right hepatic lobe (left lower). On the right, post-

treatment images indicate a partial response in all liver lesions (arrows).
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(Figure 2B). Three cutaneous metastases were evident,

one of which was excised. Molecular analysis of the

excised metastasis using PCR revealed a BRAFV600E

mutation. In July 2014, she was commenced on systemic

therapy with the BRAF kinase inhibitor, vemurafenib. Ten

days into therapy, she experienced arthralgia, blepharitis,

meibomian gland inflammation (presenting with suppura-

tion from the sebaceous gland at the rim of the eyelids

and treated with topical and oral antibiotics), as well as a

widespread cutaneous rash necessitating interruption of

treatment (Erfan et al., 2017; Figure S1). Treatment was

reintroduced 2 weeks later at a 25% dose reduction.

Repeat cross-sectional imaging 2 months later showed a

response in all the nodal and liver lesions (Figure 2C).

There was also response in the parietal lobe lesion, but a

new brain metastasis within the amygdala was now

evident (Figure 2B). Vemurafenib was therefore stopped

and, following a 3-week washout, immune checkpoint

inhibitor therapy with ipilimumab was commenced. Fol-

lowing the second cycle, she was admitted to hospital

with migraine and unsteadiness of gait and neuroimaging

revealed widespread multiple brain metastases (Fig-

ure 2B). Her symptoms improved with corticosteroids

and whole-brain radiotherapy. In December 2014, combi-

nation MAP kinase inhibitor therapy with dabrafenib and

trametinib was commenced. Treatment was associated

with pyrexia necessitating brief interruption of dabrafenib,

but subsequent resumption of the combination regimen.

At the end of March 2015, she was readmitted with a

sudden-onset severe headache. Imaging revealed bleed-

ing and perilesional oedema into two existing brain

metastasis and the appearance of a further new brain

metastasis. She died from progressive metastatic mela-

noma 2 months later.

Tumour genomic analyses

Whole-genome sequencing of a cutaneous metastasis

and matched germline DNA from the patient described

above revealed somatic mutations in melanoma driver

genes including a BRAFV600E mutation, and a truncating

CDKN2A mutation (Figure 3A). In total, we identified 133

mutations in the protein-coding region of the genome, of

which 89 were protein-altering and 44 were silent (non-

synonymous to silent mutation ratio = 2.022; Tables S4

and S5). 15,853 somatic mutations were identified

genome wide with a mutation frequency of 5.12 muta-

tions per megabase (Figure 3A, C). The tumour displayed

a disproportionately high level of cytidine to thymidine

(C>T) transitions accounting for >80% of all nucleotide

changes. The mutational spectrum bore closest resem-

blance to the UV-exposure signature (signature 7)

described by Alexandrov et al. (2013) (cosine similarity

test 0.63; Figure S2). We validated 42 randomly selected

loci via Sanger sequencing of tumour and germline DNA

and found 36 (86%) to be true somatic variants

(Table S7). A further 13 ‘conventional’ melanomas (so-

called due to their shared clinical and histological features

typical of adult cutaneous melanoma) were identified

from Lu et al. (2015). These patients had a median age of

16 years (13–20) and ranged from stage IB to IV disease

at initial diagnosis. The primary tumours were generally

from sun exposed sites (six from the head and neck,

three from the trunk, three from the extremities and one

unknown) and were mainly of common histological

subtypes (six nodular, five superficial spreading, one

acral and one unknown; Table S1). Pooling variants from

our patient with somatic variant calls from these 13

conventional melanomas revealed a median of 10.23

mutations per megabase (3.21–52.65; Figure 3A;

Table S6). We obtained further mutation data from 275

adult cutaneous melanomas from The Cancer Genome

Atlas (mean age 56.62 years). A Wilcoxon test comparing

these to the adolescent melanoma series did not reveal

any significant difference between the mutation rates of

adolescent vs adult cutaneous melanoma (P value =
0.2721).

Germline genomic analyses

We investigated this 15-year-old patient’s germline

genome for known melanoma-predisposing genes includ-

ing CDKN2A, CDK4 and BAP1 but failed to find any

rearrangements, copy number neutral changes, point

mutations or other alternations that may explain her

presentation. A wider analysis of 23 additional children

and adolescents, including five new cases with resected

primary melanoma that we whole-genome-sequenced for

this study and 18 children described in Lu et al. (2015),

also failed to identify variants in established melanoma-

predisposing genes. These five new cases had a median

age of 10 years (6–16), were all of the superficial

spreading histological subtype and had AJCC stage I

disease at first presentation, while the remaining 18

cases identified from Lu et al. had a median age of

15 years (9 months–20 years) and included a wider

spectrum of both stages and histological subtypes

(Table S1). We noted that our patient carried R142H and

V60L alleles in the melanocortin 1 receptor (MC1R) gene,

contributing to her pale complexion (Garcia-Borron et al.,

2014) (Figure S1). Other MC1R variants were also

discovered in the children and adolescents analysed in

our study (Table S3). In view of the emerging evidence

implicating telomere dysregulation in familial melanoma

(Robles-Espinoza et al., 2014; Shi et al., 2014), we further

searched for alterations in genes encoding the shelterin

protein complex that protect the ends of telomeres. In

particular, the protection of telomeres 1 (POT1) gene,

adrenocortical dysplasia homolog (ACD) gene and telom-

eric repeat binding factor 2 interacting protein (TERF2IP)

genes have been shown to be important in some

melanoma families (Aoude et al., 2015). We found 1 of

24 patients carried a missense mutation in TERF2IP (allele

frequency 0.00378 in The Exome Aggregation Consor-

tium (ExAC) (Table S3), although the pathogenicity of this

mutation is unknown.
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Figure 3. Somatic genomic analyses of adolescent melanoma. (A) Mutational landscape of adolescent melanoma. Driver mutations from the

patient described are shown in the first column on the left-hand side. Remaining cases are from Lu et al. (2015) and indicate the 13 conventional

adolescent melanoma patients described within this cohort and for whom genome sequencing data was available. Bar chart across the top panel

shows the mutation rate per megabase (Mb) while the right panel shows the mutational frequency in adult cutaneous melanoma found in The

Cancer Genome Altas (TCGA; Cancer Genome Atlas Network, 2015), straight line indicates the median number of mutations across all patients.

Genes were selected based on those most frequently mutated in The Cancer Genome Atlas (adult) and in Lu et al. (childhood and adolescent; Lu

et al., 2015), as well as the loss-of-function mutations detected in this 15-year-old patient. A number of commonly mutated genes identified in the

TCGA melanoma cohort are omitted owing to the absence of mutations of these genes in our adolescent data set (including NRAS, NF1,MAP2K1

and RB1). (B) Cluster plot of mutational frequency of adolescent versus adult cutaneous melanoma. The index patient described is circled in red.

(C) Circos plot of somatic changes in the 15-year-old patient described. The outermost track shows large copy number gains (red) and losses

(green) (Table S8). Middle track shows small insertions and deletions (Table S9). The inner most track shows mutations per Mb (regions marked in

red have mutation rates higher than 15 mutations/Mb). Interchromosomal translocations are shown in the centre and were seen in; t(12;6)(q21;

q2), t(12;15)(q14;q1), t(16;12)(q23;q2) and t(20;22)(q13;q32) (Table S10).
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Discussion

Metastatic spread of melanoma is relatively rare amongst

children; however, there are data that suggests that when

this occurs the prognosis is particularly poor (Strouse et al.,

2005). The adolescent described in this study presented

with a AJCC stage IB primary melanoma, which is

associated with a 95% 5-year survival (Balch et al., 2009).

Despite this, she developed extensivemetastases 3 years

after diagnosis and died of metastatic disease within

12 months despite three lines of modern systemic thera-

pies known to offer potential for survival gain.

Notably, and as reported previously (Lu et al., 2015),

we identified a preponderance of UV-induced mutations

across ‘conventional’ adolescent melanomas, which was

unexpected given the relatively limited exposure to UV

light compared to an adult population. This 15-year-old

patient had intermittent sun exposure amounting to

approximately 120 h/yr, yet was always appropriately

sun protected. We were unable to find germline predis-

posing alleles in an extended series of children and

adolescents, suggesting that established high-penetrance

predisposition genes do not explain most cases. How-

ever, many of these patients carried R variants of MC1R

associated with red hair, freckles and pale skin (Valverde

et al., 1995).

Given the variability in clinical behaviour, wide histolog-

ical variation and the rarity of melanoma in infancy and

early childhood, studies in this population are scarce.

Consequently, our understanding of the pathogenesis in

this younger cohort is more limited. Analysis of a recent

large national data set of over 350 000 melanoma

patients showed that children (1–10 years) and adoles-

cents (11–20 years) had differing survivals, suggesting

inherent differences in the biology of the disease (Lorimer

et al., 2016). The distinct clinical and histopathological

features of melanomas arising in a CMN and Spitzoid

tumours suggest that their molecular features are likely to

be very different from the ‘conventional’ adolescent

tumours described herein (Kinsler et al., 2013; Lu et al.,

2015; Shakhova et al., 2012). Additional studies on the

genomic evolution of these rarer subtypes could help

facilitate improved diagnostics and tailored therapies.

The reason for the rise in incidence of melanoma during

adolescence remains unclear; however, the finding of a

high mutational load driven by UV exposure supports the

need for education and behavioural modification as an

important preventative strategy starting in early life

(Green et al., 2011). The strong therapeutic effect of

immune checkpoint blockade in some patients has been

linked to the expression of neoantigens, mutant peptides

presented by MHC Class I. A higher overall mutational

burden would be expected to lead to the expression of

more neoantigens, with mutation number being associ-

ated with improved efficacy of immunotherapy (Snyder

et al., 2014; Van Allen et al., 2015). This adolescent

developed metastatic disease at 18 years and accessed a

range of modern treatments through clinical trials. It is

imperative that adolescents are given the opportunity to

participate in relevant clinical trials that include novel

therapies (Pappo, 2014).

Methods

Patient enrolment

We whole-genome-sequenced six patients as part of our study. Our

first patient (M_4180), whose treatment we detail, was a 15-year-old

female who attended the Department of Dermatology at the

University Hospital Cl�ınic of Barcelona, Spain. Five additional children

with resected primary melanoma were also identified from the

University Hospital Cl�ınic of Barcelona and from Leiden University

Medical Center, the Netherlands. The remaining cases were selected

from a cohort of paediatric melanomas identified and sequenced at

St Jude Children’s Hospital, Memphis, TN (Lu et al., 2015), as part of

the Paediatric Cancer Genome Project (Downing et al., 2012) study

accession through the European Genome-phenome Archive;

EGAS00001000901 (Table S1). Written informed consent was

obtained from the patients’ parents.

Dermoscopy, histopathology and imaging

Total body photography and digital dermoscopy were performed by

SP using MoleMaxTM HD (Derma Medical Systems, Vienna, Austria)

and DermLite� FOTO (Dermlite�, San Juan Capistrano, CA, USA).

Histopathological analyses were performed by an expert der-

matopathologist.

Sample processing

Tumour DNA extraction from the index 15-year-old patient (M_4180)

was performed using the Qiagen DNA Micro Kit. Germline DNA was

extracted from peripheral blood mononuclear cells using the salting

out method.

Tumour genomic analyses

DNA from a metastatic cutaneous deposit and whole blood DNA

from the index 15-year-old patient were genome sequenced on the

Illumina X10 platform (Table S2). Whole-genome-sequenced reads

were aligned against the human reference genome (GRCh37) using

the Burrows–Wheeler Aligner (Li and Durbin, 2009; Table S2). We

used a somatic caller merging approach to identify somatic variants

selecting only those detected using four or more algorithms for

further analysis (Rashid et al., 2013). These calls were further filtered

for germline polymorphic variants using the 1000 Genomes Project

(Auton et al., 2015), and other standard quality filters were also

applied (e.g. depth of coverage ≥10, read mapping quality ≥15). Small

insertions and deletions were identified using Scalpel (Narzisi et al.,

2014). Randomly selected candidate variants were validated by

capillary sequencing. Large somatic copy number aberrations were

detected using the Batternberg algorithm. Somatic variants from a

series of 13 ‘conventional’ paediatric melanomas described by Lu

et al. (2015) (so-called due to their shared clinical and histological

features typical of adult cutaneous melanoma) and for whom

genome sequencing data were available were used for a comparative

analysis. Exome sequencing data from a further 275 adult cutaneous

melanomas were downloaded from The Cancer Genome Atlas and

used for comparison with adult-onset disease (Table S6).

Germline genomic analyses

Germline DNA from the peripheral blood of five children with

resected primary melanoma was whole-genome-sequenced on the
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Illumina HiSeq2500 platform (Tables S1 and S2). These sequences,

and that of the index case, were combined with whole-genome and

whole-exome sequences from a collection of 18 children sequenced

at St Jude Children’s Hospital (Lu et al., 2015) comprising 13 children

from the ‘conventional’ melanoma cohort described above and five

from the other histological subgroups described therein (Table S3).

Germline variants were called using samtools mpileup (Li et al.,

2009) and bcftools (Narasimhan et al., 2016). These variants were

annotated for consequence using Ensembl Variant Effect Predictor

(McLaren et al., 2016) and filtered for non-synonymous variants.

They were then further restricted to those variants known to be rare

(allele frequency < 10�3) by comparison with the Exome Aggregation

Consortium (ExAc) data set (Lek et al., 2016) or that were private to a

single child.

Data accession IDs

M_4180_2728 EGAN00001232866 Tumour of patient M_4180

M_4180 EGAN00001195811 Germline of patient M_4180

M_509 EGAN00001197185 Germline of patient M_509

M_1064 EGAN00001197186 Germline of patient M_1064

M_3629 EGAN00001197187 Germline of patient M_3629

M_4117 EGAN00001197188 Germline of patient M_4117

D1_10_02707 EGAN00001197189 Germline of patient

D1_10_02707

For details, see Table S1.
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Supplementary	Figure	1	

Figure S1. Cutaneous toxicities associated with vemurafenib in this patient. From left upper; 
photosensitive rash of the hands, follicular hyperkeratosis of cheek, milia cysts of the upper eyelid 
and papillomatous tumours of the lower eyelid.
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Figure S2. Genome-wide mutational landscape of the 15-year old patient described, displayed 
according to the 96 substitution classification described by Alexandrov et al (2013).     
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BRIEF COMMUNICATION
Metastasis

The mutational landscape of melanoma brain metastases
presenting as the first visceral site of recurrence
Roy Rabbie1,2, Peter Ferguson3,4,5, Kim Wong 1, Dominique-Laurent Couturier 6, Una Moran7, Clinton Turner8, Patrick Emanuel9,
Kerstin Haas10, Jodi M. Saunus11,12, Morgan R. Davidson11,12, Sunil R. Lakhani11,12, Brindha Shivalingam3, Georgina V. Long3,4,13,
Christine Parkinson2, Iman Osman7, Richard A. Scolyer 3,4,5, Pippa Corrie 2 and David J. Adams 1

Brain metastases are a major cause of melanoma-related mortality and morbidity. We undertook whole-exome sequencing of 50
tumours from patients undergoing surgical resection of brain metastases presenting as the first site of visceral disease spread and
validated our findings in an independent dataset of 18 patients. Brain metastases had a similar driver mutational landscape to
cutaneous melanomas in TCGA. However, KRAS was the most significantly enriched driver gene, with 4/50 (8%) of brain metastases
harbouring non-synonymous mutations. Hotspot KRASmutations were mutually exclusive from BRAFV600, NRAS and HRASmutations
and were associated with a reduced overall survival from the resection of brain metastases (HR 10.01, p= 0.001). Mutations in KRAS
were clonal and concordant with extracranial disease, suggesting that these mutations are likely present within the primary. Our
analyses suggest that KRAS mutations could help identify patients with primary melanoma at higher risk of brain metastases who
may benefit from more intensive, protracted surveillance.

British Journal of Cancer (2021) 124:156–160; https://doi.org/10.1038/s41416-020-01090-2

BACKGROUND
Metastases to the central nervous system (CNS) are observed in
~60% of cutaneous melanoma patients developing disseminated
disease and up to 90% at autopsy.1 Early detection of intracerebral
recurrence remains critical, as isolated or oligometastatic brain
metastases may be more amenable to potentially curative
locoregional therapies and immunotherapies have demonstrated
greatest efficacy in patients with small, asymptomatic
metastases.1,2 Early predictors of brain metastases could therefore
help identify those patients most likely to benefit from closer
surveillance of the brain as well as inform early use of adjuvant
therapies. Importantly, epidemiological data suggest that patterns
of metastatic dissemination may be partially determined by the
clinical characteristics of the primary tumour.3

Interestingly, 15–20% of brain metastases present as the
isolated first visceral site of disease spread.4 Primary tumours in
these ‘early brain metastasis’ cases were reported as thinner and
of lower American Joint Committee of Cancer Stage when
compared to other visceral metastases, challenging the current
understanding of brain metastases as the final stage of tumour
progression, and suggesting that these tumours could harbour

distinct biological properties favouring early haematogenous
dissemination to the brain.4 Our analyses of the mutational
landscape of early brain metastasis highlights key molecular
features that could inform future prognostic, surveillance and
intervention strategies.

METHODS
Study population
Patients with available archival paraffin-embedded melanoma
brain metastases (in the absence of other sites of visceral disease,
confirmed by computed tomography or magnetic resonance
imaging prior to neurosurgery) were selected from prospectively
maintained databases at The Melanoma Institute of Australia (n=
34), The Wellington School of Medicine (n= 8), New York
University School of Medicine (n= 4) and Cambridge University
Hospitals (n= 4) (discovery cohort). Samples from patients
selected from The University of Queensland Australia and the
Auckland region New Zealand (n= 18 total) made up the external
validation cohort. All neuro-resections were undertaken between
2008 and 2018 at the respective academic neurosurgical centres
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as part of routine clinical care. All cases were ethically approved by
the local Institutional Review Boards, as well as by the Sanger
Institute’s human materials and data management committee. All
samples and clinical details are listed in Supplementary Table 1.
The clinical and mutation data from The Cancer Genome Atlas

(SKCM-TCGA)5 was downloaded from the cBioPortal. The mela-
noma cases from the Memorial Sloan Kettering MSK-IMPACT data
set (SKCM-MSK-IMPACT) were extracted from the publication by
Zehir et al.6 (Supplementary Methods and Supplementary Table 2).

DNA sequencing
Exome capture of the discovery cohort was performed using Agilent
SureSelect All Exon V5 baits. Paired-end sequencing was performed

using the Illumina HiSeq (Illumina, San Diego, CA, USA) platform at
the Wellcome Sanger Institute. MuTect (v1.1.7) and Sequenza (v2.1.2)
were used to call somatic single nucleotide variants (SNVs) and copy
number aberrations, respectively. Melanoma-driver SNVs called in
the whole-exome-sequenced discovery cohort were orthogonally
validated (with an aliquot of the same DNA) using a custom gene
panel designed to capture (n= 287) cancer-driver genes identified
from analysis of the TCGA and ICGC cohorts (Supplementary
Methods and Supplementary Table 3, ELID ID: 0822402). Panel
sequencing of the 18 samples in the external validation cohort was
performed using custom pull-down and sequencing of 549 key
melanoma and related cancer-driver genes (Supplementary Methods
and Supplementary Table 4, ELID ID: 3065404).
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Tests of equality of proportions. Wald t tests for logistic regression
parameters were used to test the equality of mutational
frequencies in the discovery cohort and the reference data sets.
Similar conclusions were obtained by means of Chi-square and
Fisher’s exact tests, see Supplementary Methods.

Survival analyses. Kaplan–Meier plots were used to compare
survival of KRAS mutations within the discovery cohort and
The Cancer Genome Atlas (SKCM-TCGA). Between-group differ-
ences in instantaneous risk were assessed by fitting univariate and
multivariate Cox proportional hazards regression models and
defining 95% confidence intervals (CIs) for relevant hazard ratios
(HRs). Multivariate models were controlled for further predictors
including sex, age, centre, BRAF and NRAS mutation status (as well
as primary tumour characteristics where relevant), see Supple-
mentary Methods for details.

RESULTS
Fifty patients who developed brain metastases as their first site of
visceral disease spread were enrolled as part of the discovery
cohort and were represented by a relatively high proportion of
thin (T1–T2) (n= 25, 50%) and non-ulcerated (n= 26, 52%)
primary melanomas (Supplementary Table 1).
Mutations in BRAF were detected in 21 (42%) tumours, of

which 15/21 (71%) were in the V600 hotspot (Fig. 1a, b). NRAS
mutations were identified in 14 (28%) tumours and were all in
hotspot positions on exons 2 (codons 12 and 13) and 3 (codon
61) and mutually exclusive from BRAFV600 mutations. Comparing
the mutational landscape of brain metastases to that of
cutaneous melanomas in the SKCM-TCGA dataset (see Supple-
mentary Methods), KRAS was the most significantly enriched
driver gene in our dataset, mutated in 8% (4/50) vs 2% (7/358) in
the entire SCKM-TCGA collection (p= 0.0227, logistic regression
Wald t test). Note that, although we identified 5 KRAS mutations
within the discovery cohort, the KRASG115R mutation (occurring in
association with a BRAFV600E-driver mutation in sample
PD42113a) is exceptionally rare7 and was not considered
pathogenic (Fig. 1b). The mutation frequency of KRAS was also
significantly enriched relative to the frequency of extracranial
melanoma metastases; 8% (4/50) in our dataset vs 2.1% (6/274) in
extracranial melanoma metastases in SKCM-TCGA (p= 0.0413,
logistic regression Wald t test, see Supplementary Methods).
Further, only 1.6% (3/186) of melanoma cases in the Memorial
Sloan Kettering MSK-IMPACT dataset were KRAS mutant, sig-
nificantly lower than in our early brain metastasis discovery
cohort (p= 0.0327, logistic regression Wald t test). The odds of
observing a KRAS mutation in a given sample within the early
brain metastases discovery cohort was approximately fourfold
higher than in these three reference datasets (Supplementary
Fig. 1). Mutations in KRAS had a high variant allele frequency
(median 0.77 (0.50–0.86), indicating that they likely represent
clonal (early) driver mutations (Supplementary Tables 5 and 6). Of
note, three extracranial metastases available for sequencing from
two patients with KRAS-mutant brain metastases also harboured
the same brain-metastatic KRAS mutations, suggesting that KRAS
mutations were concordant with extracranial metastases (see
Supplementary Methods). Notably, mutations in KRAS were in
hotspot codons 12 and 61 and mutually exclusive from other
mutations in the mitogen-activated protein kinase (MAPK)
signalling genes including BRAFV600, NRAS and HRAS, and this
pattern of mutually exclusivity was also observed in KRAS-mutant
melanomas within the SKCM-TCGA and SKCM-MSK datasets
(Fig. 1b and Supplementary Table 6).
We conducted a further custom pull-down validation experi-

ment on selected melanoma-driver mutations within the dis-
covery cohort and confirmed 56/60 (93%) to be somatic mutations
(see Supplementary Methods). We also conducted another

external validation experiment, analysing a further 18 early
metastases independently acquired from two different neurosur-
gical centres (see Supplementary Methods). This revealed that 1
brain metastasis (5.6%) harboured a KRASG13C mutation, which was
also mutually exclusive from mutations in the RAS signalling genes
(BRAF/NRAS/HRAS) (Supplementary Fig. 2 and Supplementary
Table 5). The copy number landscape of the early brain metastases
discovery cohort proved remarkably similar to that of SKCM-TCGA
cohort (Fig. 1c and Supplementary Fig. 3).
All patients with KRAS-mutant brain metastases succumbed to

disease, with a median overall survival from resection of brain
metastasis of only 3 months, compared to 12 months in patients
with resected KRAS wild-type brain metastases (HR 10.01, 95% CI
2.49–40.98, p= 0.0012, n= 43, covariate corrected Cox propor-
tional hazards model, Fig. 1d, e and Supplementary Fig. 4).
Melanoma patients with tumours harbouring KRAS mutations or
amplifications represented in the SCKM-TCGA dataset were also
associated with worse overall survival compared to KRAS wild-type
melanomas (HR 2.59, 95% CI 1.21–5.55, p= 0.015, n= 352,
univariate Cox regression), although this did not meet the
threshold for statistical significance after correction of clinical
covariates likely due to the limited sample size (HR 2.04, 95% CI
0.88–4.75, p= 0.098, n= 322, multivariate corrected Cox propor-
tional hazards regression, Supplementary Fig. 5 and Supplemen-
tary Table 2).

DISCUSSION
This analysis represents the largest survey of mutation profiles of
melanoma brain metastases. Consistent with the landmark
melanoma sequencing studies (primarily based on extracranial
metastases),5,6 early melanoma brain metastases were dominated
by a high mutational burden (with a predominance of C > T
nucleotide transitions at dipyrimidines) and a similar frequency of
the key driver mutations, including BRAF (42%), NRAS (28%), NF1
(22%) and TP53 (18%). This is the first study to show significant
enrichment of KRAS mutations in melanoma brain metastases as
well as an association of KRAS mutations with adverse outcomes.
The predominance of KRAS mutations in codons 12, 13 and 61 as
well as the mutual exclusivity with other key drivers of MAPK
signalling suggests that these likely represent important drivers in
this context.
The RAS family of GTPases consists of genes including NRAS,

KRAS and HRAS mutated in 25, 2 and 1% of melanomas,
respectively.5 NRAS-mutant melanomas are recognised to be
more aggressive and associated with poorer outcomes; however,
very little is known about KRAS-mutant melanoma.8 KRAS-mutant
early brain metastases in our study generally emanated from thin
and non-ulcerated primary melanomas (Supplementary Table 7).
Hence, KRAS detection might in future be used to ‘upstage’ a
subgroup of lower-risk patients not currently offered routine
surveillance and/or adjuvant therapy potentially avoiding the
devastating impact of brain metastases. Mutations in KRAS were
clonal and concordant with extracranial disease, which suggests
that these mutations are present within the primary tumour;
however, further studies will be required to confirm this.
The MAPK and phosphoinositide-3 kinase (PI3K) pathways are

the two key downstream signalling pathways through which
constitutively activated RAS exerts its pro-tumorigenic effects.
MAPK pathway activation and brain metastases are inextricably
connected and BRAF and NRAS mutations are associated with an
increased risk of brain metastasis.9 In the same way, the PI3K/AKT
pathway has been mechanistically linked with the development of
brain metastases and analyses of patient-matched pairs of brain
and extracranial metastases have revealed that brain metastases
have higher levels of activated AKT and lower expression of PTEN,
a finding also observed using immunohistochemistry.10 Hotpot
KRAS mutations are known to activate EGFR signalling pathways,
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which in-turn is associated with an increased risk of brain
metastases in non-small cell lung cancer.11

Transgenic mouse models have established that oncogenic Kras
can induce naevi and be a founder event in melanomagenesis.12

In one study, a KrasG12D allele was combined with alleles of p53 or
Lkb1 and with a melanocyte-specific Cre driver to generate a
model that developed melanoma with a penetrance of 100%.13 In
this study, metastases were identified in lymph node, lung, liver
and spleen but not in kidney or brain. It is therefore important to
consider that, while we observe an increased frequency of KRAS
mutations associated with early brain metastases, it is also
plausible that KRAS mutations may play a more general role in
metastases. Well-conducted in vivo studies will be needed to
further uncover the potential for site-specific metastatic tropism of
specific KRAS variants.

The retrospective nature of this analysis could feasibly introduce
a degree of selection bias, in particular by only identifying those
patients with operable early brain metastasis we might have
excluded a larger patient demographic with more widespread
disease. Emerging evidence indicates that metastatic outgrowth
may also depend on the interplay between cancer cells and the
host stroma; however, such tumour-cell extrinsic factors would not
be fully captured by this analysis. The identification of KRAS
mutations as a predictive biomarker for the development of early
brain metastases will ultimately require prospective validation in
larger cohorts employing multivariate models, particularly asses-
sing the predictive value of these mutations in relation to other
clinical covariates.3

In summary, our analyses indicate that the patterns of
melanoma recurrence may be at least partially determined by
the tumour mutational profile and that up to 8% of patients
developing early brain metastases may have tumours driven by
oncogenic KRAS mutations. This observation has implications for
deciphering the biology of site-specific metastatic pathogenesis
and, if validated in larger prospectively curated cohorts, might
influence prognosis, surveillance and interventions in patients
carrying these somatic alterations.
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Supplemental Methods 

 

Patient enrolment 

Patients with surgically resected brain metastases and no other visceral sites of metastatic 

disease (assessed prior to neurosurgery by CT or MRI imaging), were eligible for inclusion. 

Patients with available archival paraffin embedded melanoma brain metastases suitable for DNA 

extraction were selected from prospectively maintained databases from; The Melanoma 

Institute of Australia (n=34), The Wellington School of Medicine (n=8), New York University 

School of Medicine (n=4) and Cambridge University Hospitals (n=4) (total 50, discovery cohort). 

Samples from patients selected from the Auckland region and The University of Queensland 

Australia (9 and 9 cases respectively) made up the external validation cohort. Two additional 

patients (comprising 3 additional samples) from the discovery cohort with hotspot KRAS 

mutations who had available extracranial tumour tissue for molecular analysis were also 

sequenced for the presence of concordant extracranial KRAS-mutations (patient MBM_Disc_23 

sample PD42097c regional lymph node, and patient MBM_Dis_40 samples PD31211d/PD31211e 

both extracranial skin metastases, clinical details in Supplementary Table 1 and sequencing data 

in Supplementary Data). All neuro-resections were undertaken between 2008 and 2018 at the 

respective academic neurosurgical centres as part of routine clinical care. All cases were ethically 

approved by the local Institutional Review Boards (REC approval reference numbers; 

HREC/RPAH/444, 16/CEN/149, 10362, 11/NE/0312, HREC 2005/022 and 16/CEN/149 for the six 

centres outlined above respectively), as well as by the Sanger Institute’s human materials and 

data management committee. All samples and clinical details are listed in Supplementary Table 

1. 

 

Extraction of clinical details 

Patient demographics, primary tumour characteristics (date of primary diagnosis, Breslow 

thickness, ulceration, mitotic rate, N stage), date of diagnosis of brain metastasis, date of 

neurosurgical resection, sites of surgically resected brain metastases as well as date of last follow-

up or death, were extracted primarily from prospectively maintained clinical research databases 

and, if needed, through further review of the clinical record. None of the patients received 
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systemic therapies (included targeted and immunotherapies) prior to the resection of brain 

metastases.  

 

Extraction and quality assessment of DNA and RNA 

For each tumour, a hematoxylin and eosin-stained (H&E) section was reviewed by a consultant 

histopathologist (PF, RAS, CT and PE) for confirmation of the histopathological diagnosis and to 

identify appropriate regions for DNA extraction. All samples were obtained as either 1.0 mm 

diameter cores or 4um tissue sections micro-dissected from the original FFPE block. Germline 

DNA was extracted from micro-dissected adjacent normal tissue where available (n=36). 

Genomic DNA was extracted using the QIAamp FFPE Tissue kit from Qiagen according to 

manufacturer’s instructions.  

 

Whole exome-sequencing of the discovery cohort 

Exome capture was performed using the Agilent SureSelect Human All Exon V5 platform. Paired-

end sequencing was performed using the Illumina HiSeq (Illumina, San Diego, CA, USA) platform 

at the Wellcome Sanger Institute to generate 75 bp paired-end reads. Sequencing reads were 

aligned using BWA-MEM (v0.7.17-r1188)1 to the human reference genome hs37d5. PCR 

duplicates, secondary read alignments, and reads that failed Illumina chastity (purity) filtering 

were flagged and removed prior to running variant and copy number calling. For tumour samples 

(n=16) where no matching germline DNA was available, a panel of 39 FFPE-extracted normals 

was used to filter germline variants as well as artefacts. To ensure that tumour and matched 

normal samples had the best reciprocal genotype match, SAMtools mpileup, followed by 

BCFtools gtcheck were run to detect sample concordance, potential sample swaps and 

contamination. The resulting median sequencing coverage in the brain metastatic samples from 

the discovery cohort (excluding PCR duplicates) was 48x (range 11-134x) in the tumour samples 

and 47x (range 6-149x) in the germline samples.  

 

MuTect (v1.1.7)2 and Strelka (v2.9.2)3 were used to call somatic SNVs and indels, respectively. 

Prior to running Strelka, Manta (1.5.0)4 was run and candidate large indels were used as input to 

Strelka. The minimum base quality score for somatic and germline variant calling was set to Phred 

30. The Ensembl Variant Effect Predictor5 was used to predict the effect of variants on genes and 

proteins, relative to the gene build in Ensembl version 97. To remove artefacts, MuTect variant 
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calls were filtered using a tiered approach, such that only the SNVs that met the following criteria 

were reported (1) Lower coverage samples (<40x); Variant Allele Frequency (VAF) >0.1. (2) All 

other depth samples; requirement of at least 2 alternative bases on each strand, total depth >=5, 

and VAF>=0.1 Variant calls found in the gnomAD database6 were removed if the global 

population variant allele frequency was greater than or equal to 0.01. Mutational load was 

calculated as the number of non-synonymous mutations per Mb. The alignments for all reported 

variants in melanoma driver genes (Fig. 1a) were visually inspected using JBrowse and IGV.  

 

Of note extracranial tumour tissue was available and whole-exome sequenced for two hotpot 

KRAS mutant patients. Patient MBM_Disc_23 sample PD42097c - regional lymph node also 

carried a KRASQ61R mutation, and patient MBM_Dis_40 samples PD31211d/PD31211e - 

extracranial skin metastases also carried KRASG12D mutations, both concordant with the KRAS 

mutation in the matched brain metastases (raw data deposited in Supplementary Data).  

 

Copy number profiling of the discovery cohort 

Sequenza (v2.1.2)7 was used to estimate tumour cellularity and ploidy from 30 tumour-normal 

pairs in the discovery WES cohort (36/50 discovery cohort samples were paired with germline; 

minus 5 samples with coverage < 20x and one sample with a noisy CNV profile PD36788e), as well 

as to calculate allele-specific copy number profiles. For each sample, the default best-fit solution 

was used for the cellularity and ploidy estimates. To call copy number gain or loss in each sample, 

the neutral copy number was set as the weighted mean copy number of the segments, rounded 

to the nearest whole number.    

 

Targeted panel sequencing of the external validation cohort 

Panel sequencing of the 18 samples in the external validation was performed using custom pull-

down and sequencing of 549 key melanoma and related cancer driver genes (Supplementary 

Table 3). A custom capture probe was designed using Agilent Technologies’ online software ‘Sure 

Select Design Wizard’ (ELID Design ID: 3065404). DNA capture libraries were created using native 

DNA (paired-end, average insert size 150bp). Libraries were multiplex sequenced using the 

Illumina HiSeq platform, excluding reads from PCR duplicates. Only samples with an average 

depth of >10x (excluding PCR duplicates) across the entire bait were included. SAMtools mpileup 

was used to identify non-reference bases in: BRAF (10 loci covering hotspot SNVs in codons: 469, 
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586, 594, 599, 600, 601), NRAS (12 loci covering hotspot SNVs in codons: 12, 13, 59, 60, 61, 146), 

HRAS (7 loci covering hotspot SNVs in codons: 12, 13, 61) and KRAS (15 loci covering hotspot 

SNVs in codons: 11, 12, 13, 61, 117, 146). Thus, providing a total of 44 loci for interrogation in 

each of the 18 (tumour-only) samples. Only non-reference variants (with minimum based quality 

30 and mapping quality 10) supported by at least 2 alternate bases (from reads not marked as 

PCR duplicates) are reported. The median sequencing coverage (excluding PCR duplicate reads) 

across all these hotspot loci in the 18 external validation samples was 44x, with 700/792 (88%) 

of loci covered with ≥ 10 bases.  

 

Orthogonal validation of SNVs in the discovery cohort   

Melanoma driver single nucleotide variants (SNVs) called in the whole-exome sequenced 

discovery cohort were orthogonally validated (with an aliquot of the same DNA) using a custom 

gene panel designed to capture (n=287) cancer driver genes in solid tumours within TCGA and 

ICGC (Supplementary Table 4, ELID ID: 0822402). A variant called in the discovery cohort 

(through whole-exome sequencing) that was also present in the orthogonal validation custom 

panel (with minimum base quality 30 and mapping quality 10) and supported by at least 1 

alternate bases in the validation, is reported as validated somatic. With these criteria, 56/60 

(93%) of the substitutions were validated somatic (true positives) (Supplementary Data). The 

(n=4) SNVs called in the discovery cohort that were not validated in the orthogonal validation 

may represent subclonal mutations that require greater depth rather than false positive calls.  
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Comparison of the mutational profiles to cutaneous melanomas represented in TCGA and the 

MSK-IMPACT datasets 

In order to compare the mutational rates and frequencies to our dataset (represented by one 

sample per patient), the clinical and mutation data from The Cancer Genome Atlas (SKCM-

TCGA)8, were downloaded from the cBioPortal9,10. Samples were filtered to a single sample per 

patient giving a total of 358 samples from 358 patients, of which all samples had appropriate SNV 

data. The demographic characteristics of these 358 SKCM-TCGA patients were largely 

comparable to our cohort, whereby (n=220, 62%) were male and the median age was 57 years 

(95% CI 47-71 years) (Supplementary Table 2). The majority of these samples (n=283, 79%) were 

classified as ‘metastasis’, as opposed to ‘primary’ (n=75, 21%). The tumour sites were mainly 

from skin, subcutaneous or nodal metastatic sites, including 144 (40%) classified as from 

‘extremities’, 134 (37%) from ‘truncal’ locations, 26 (7%) from the ‘head and neck’, 23 (6%) were 

‘regional lymph nodes’ and the remainder were from other (less frequent) metastatic sites. Only 

5 tumour samples in SKCM-TCGA were classified as from the ‘brain’ and these were excluded 

when we subsetted to the ‘extracranial’ metastatic melanoma comparator (n=274).  

 

The MSK-IMPACT dataset was extracted from the publication by Zehir et al11. Samples were also 

filtered to a single sample per patient giving a total of 186 samples from 186 patients, all of which 

had appropriate SNV data. These samples were all labelled as ‘cutaneous melanomas’, and the 

majority (n=161, 87%) were classified as ‘metastasis’ as opposed to ‘primary’ (n=25, 13%). All 

primary tumours in this dataset (n=25) were classified as from ‘skin’ whereas the majority of 

metastatic samples were from ‘regional lymph node’ (n=25, 16%), ‘lung’ (n=24, 15%) and ‘in-

transit’ (n=17, 11%) and the remainder were from other (less frequent) metastatic sites.  

 

Both SKCM-TCGA and SKCM-MSK-IMPACT datasets included only cutaneous melanomas, in 

particular any melanomas within these datasets from acral, mucosal and other rarer sites were 

excluded. All SNVs reported from these datasets were non-synonymous mutations. We utilized 

the mutation calls provided by these resources and did not perform any additional filtering. The 

somatic mutational rate was calculated as the number of non-synonymous mutations divided by 

30Mb, assuming that an average exome has 30Mb in protein-coding genes with sufficient 

coverage. 
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Copy number profiling of the SKCM-TCGA cohort  

Copy number calls were generated from single nucleotide polymorphism (SNP data) within the 

SKCM-TCGA dataset using allele-specific copy number analysis (ASCAT version), as previously 

described.12   

 

Statistical methods  

All statistical analysis and graphics were generated using R version 3.5.3 (R Foundation for 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/).  

 

Tests of equality of proportions: Logistic regression Wald t-tests (function glm) were used to test 

the equality of mutational frequencies in our cohort and in the reference datasets. Similar 

conclusions were obtained when considering Chi-square tests (function chisq.test in R) and 

Fisher's exact tests (function fisher.test in R). Furthermore, Monte Carlo simulations and 

considering scenarios corresponding to the observed numbers of successes and failures and 

based on 25,000 samples showed that the type I error of the chosen statistical methods lies 

between 0.02 to 0.03 instead of 0.05, suggesting that the conclusions drawn in the results are 

conservative.  

 

Survival analyses: Overall survival from resection of brain metastasis was defined as the time 

from the date of resection of the brain metastasis to last follow-up (right-censored) or death from 

any cause. Overall survival from primary tumour was defined as the time from the date of 

resection of the primary tumour to last follow-up (right-censored) or death from any cause. 

Kaplan-Meier survival curves were estimated using the R function surv.fit (‘Survival’ package 

version 3.1-11). Univariate and multivariate hazard ratios (HR), 95% confidence intervals (95% CI) 

and corresponding p-values were obtained by fitting Cox proportional hazards regression models 

by means of the function coxph (‘Survival’ package version 2.4.2.). The multivariate analyses for 

overall survival from resection of brain metastases was controlled for sex, age at resection of 

brain metastasis, BRAF and NRAS mutation status as well as centre. Multivariate analyses for 

overall survival from primary tumour controlled for all the above, as well as primary tumour 

depth and ulceration. Multivariate analyses in TCGA dataset controlled for sex, age, BRAF and 

NRAS mutation status, Neoplasm disease stage as well as the number of non-synonymous 

mutations. Model check consist of proportional hazard chi-square tests by means of the function 
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cox.zph (‘Survival’ package), assessment of the c-statistics defined by means of the function 

concordance (‘Survival’ package), and deviance and Schoenfeld residual analyses obtained by 

means function ggcoxdiagnostics (‘survminer’ package, version 0.4.6). 

 

Supplementary data 

All the whole exome and targeted sequencing data (including raw sequencing files, variant calls 

and copy number calls) have been deposited at the European Genome-Phenome Archive 

(https://www.ebi.ac.uk/ega/ at the EBI) under study accession ID EGAS00001002107. Each 

individual dataset is available under the following dataset accession ID’s: 

 

Discovery cohort raw whole-exome sequencing files: EGAD00001005981  

Discovery cohort variant calls: EGAD00001005982 

Discovery cohort copy number calls: EGAD00001005983 

Orthogonal validation for discovery cohort, raw sequencing files: EGAD00001005984 

External validation cohort, raw sequencing files: EGAD00001005985 
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Supplemental Table Legends 

 

Supplementary Table 1. Demographic and clinical characteristics of all samples in the discovery 

cohort. The table also includes the matched germline samples, as well as the details from three 

extracranial samples relating to this cohort (the latter with concordant KRAS mutations). These 

are indicated in the column “Tissue type”. Cambridge: Cambridge University Hospitals, MIA: 

Melanoma Institute of Australia, Queensland: The University of Queensland Australia. SSM: 

Superficial spreading melanoma, NM: Nodular melanoma, LMM: Lentigo-maligna melanoma. 

 

Supplementary Table 2. Demographic and clinical characteristics of all samples in the SKCM-

TCGA cohort.  

 

Supplementary Table 3. List of cancer driver genes (n=549) included in the custom capture bait 

used on the (n=18) external validation samples.  

 

Supplementary Table 4. List of cancer driver genes (n=278) included in the custom capture bait 

used on the orthogonal validation of driver SNVs (n=60) from the discovery cohort.  

 

Supplementary Table 5. Clinical and mutational characteristics of the patients with hotspot 

KRAS mutations (including both patients from the discovery and validation cohorts). Of note all 

hotspot KRAS mutations were identified in patients with either thin (T1/T2) or no prior history of 

primary melanoma, and from primary tumours in chronically sun-exposed locations. Mutations 

in KRAS also had a high variant allele frequency, indicating that these likely represent clonal driver 

mutations, which is further supported by their concordance in extracranial metastases.  

 

Supplementary Table 6. Clinical and mutational characteristics of the patients with hotspot 

KRAS mutations in SKCM-TCGA (n=6) and SKCM-MSK-IMPACT (n=2). KRAS mutations were 

mutually exclusive to BRAF/NRAS/HRAS hotspot mutations in both these datasets.  

 

Supplementary Table 7. Clinical characteristics of hotspot KRAS-mutant (n=4) vs KRAS-wild 

type (n=46) patient within the discovery cohort.  
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Supplementary Figure 1

Supplementary Fig. 1. Odds ratio plot showing the odds of observing a KRAS mutation in the three
reference datasets relative to the early brain metastases discovery cohort (baseline). Dots correspond to
logistic regression odd ratio estimates and range to the corresponding 95% confidence interval. The odds
of observing a KRAS mutation in a given sample within the discovery cohort was ~4-fold higher than in
these three reference datasets, this difference is significant.
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Supplementary Fig. 2. Tile plot of mutated positions within the RAS signalling genes in the external
validation cohort (n=18). The KRASG13C mutation was mutually exclusive from both BRAF and NRAS
hotspot mutations, in keeping with the findings from the discovery cohort (Fig. 1B).
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Supplementary Figure 3

A

B

Supplementary Fig. 3. Copy number profile of (A) Early melanoma brain metastases from the discovery
cohort (n=30) and (B) Cutaneous melanomas from The Cancer Genome Atlas (SKCM-TCGA, n=337).
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Supplementary Figure 4

C

D

A B

Supplementary Fig. 4. Survival plots of the early brain metastasis discovery cohort. A) Kaplan-Meier
survival plots showing, Black line: survival from primary disease (defined as the time from the resection of
the primary tumour to last follow-up (censored) or death from any cause, indicated in black) as a function
of time (median survival from primary disease 65.0 months, 95% CI 45.0-125.0 months). Survival data from
primary disease was only available on 42 patients (3 patients had no history of primary melanoma, 5
patients had no survival information). Orange line: survival from resection of brain metastasis, defined as
the time from the resection of brain metastasis to last follow-up (censored) or death from any cause as a
function of time. Median 12.0 months, 95% CI 6.0-62.0 months. Data from resection of brain metastasis
was available on 47 patients. Blue line: Time to progression from primary tumour to brain metastases. B)
Timeline summary for (n=40) patients. Patients are ordered according to the age at primary tumour
resection (y-axis). C) Impact of KRAS mutational status on overall survival from primary tumour as a
function of time. D) Forest plot comparing KRAS-mutant versus KRAS-wild-type overall survival from
primary tumour in univariate (HR 2.78, 95% CI 0.93-8.32, p=0.0675, n=42) and multivariate (HR 2.85, 95%
CI 0.30-26.97, p=0.3621, n=36) Cox proportional hazards regression models. Multivariate correction was
undertaken for gender, centre, age at primary tumour resection, T-stage and ulceration of primary tumour,
as well as BRAF and NRASmutation status.
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Supplementary Figure 5

C

A B

Supplementary Fig. 5. Impact of KRAS mutational status on overall survival in SKCM-TCGA. A) Kaplan-
Meier curves for overall survival in KRAS hotspot mutations or amplifications (n=10) versus KRAS-WT
(n=342) melanoma in SKCM-TCGA. B) Overall survival in KRAS hotspot mutation only (n=6) versus KRAS-WT
(n=346) melanoma in SKCM-TCGA. C) Forest plot showing KRAS-mutant survival in SKCM-TCGA (hotspot
mutations or amplifications) in univariate (HR 2.59, 95% CI 1.21-5.55, p=0.015, n=352) and multivariate
analyses (HR 2.04, 95% CI 0.88-4.75, p=0.098, n=322). As well KRAS-mutant survival in SKCM-TCGA
(hotspot mutations alone) in univariate (HR 1.37, 95% CI 0.44-4.31, p=0.587, n=352) and multivariate
analyses (HR 1.37, 95% CI 0.41-4.50, p=0.601, n=322). Generated using Cox proportional hazards regression
models. Multivariate correction was undertaken for stage, sex, age at diagnosis of primary, non-
synonymous mutation count as well for BRAF and NRASmutation status.
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ARTICLE

Multi-site clonality analysis uncovers pervasive
heterogeneity across melanoma metastases
Roy Rabbie 1,2,13, Naser Ansari-Pour3,13, Oliver Cast 4, Doreen Lau 5, Francis Scott5, Sarah J. Welsh2,

Christine Parkinson2, Leila Khoja6, Luiza Moore 7,8, Mark Tullett9, Kim Wong 1, Ingrid Ferreira 1,

Julia M. Martínez Gómez10, Mitchell Levesque10, Ferdia A. Gallagher 5, Alejandro Jiménez-Sánchez4,

Laura Riva1, Martin L. Miller 4, Kieren Allinson8, Peter J. Campbell 7, Pippa Corrie2,

David C. Wedge 3,11,12✉ & David J. Adams 1✉

Metastatic melanoma carries a poor prognosis despite modern systemic therapies. Under-

standing the evolution of the disease could help inform patient management. Through whole-

genome sequencing of 13 melanoma metastases sampled at autopsy from a treatment naïve

patient and by leveraging the analytical power of multi-sample analyses, we reveal evidence

of diversification among metastatic lineages. UV-induced mutations dominate the trunk,

whereas APOBEC-associated mutations are found in the branches of the evolutionary tree.

Multi-sample analyses from a further seven patients confirmed that lineage diversification

was pervasive, representing an important mode of melanoma dissemination. Our analyses

demonstrate that joint analysis of cancer cell fraction estimates across multiple metastases

can uncover previously unrecognised levels of tumour heterogeneity and highlight the lim-

itations of inferring heterogeneity from a single biopsy.
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Large-scale sequencing studies in cutaneous melanoma have
revealed the complex mutational landscape of the disease1–4.
However, few studies have explored the temporal and spatial

evolution of molecular alterations acquired during disease pro-
gression. Such findings may inform risk and our understanding of
the mode of metastatic spread, with implications for future
patient management. Current methods for reconstructing evolu-
tion from bulk sequencing data rely on computational approaches
to identify sets of mutations that are present in a similar pro-
portion of cells within the tumour4. For each set of mutations, the
fraction of cancer cells (cancer cell fraction, CCF) carrying them
may be estimated from their allele frequencies by adjusting for
purity and copy number. Recent studies have used these algo-
rithms to infer the evolutionary relationship between cell popu-
lations across multiple samples, correlating these insights with
changes in disease progression or therapy response. As neoplastic
cells proliferate, some of their daughter cells can acquire muta-
tions that convey a selective advantage, allowing them to become
precursors for new tumour cell lineages5. In the metastatic con-
text, dissemination of cells from multiple lineages may cause
admixtures of cell populations to spread between different
metastases, likely with different CCFs at each site. By clustering
mutations according to their CCFs across multiple samples
simultaneously, it is possible to identify cell populations from the
same lineage spread across multiple sites. Further, by comparing
these cell populations based on their CCFs across multiple sites
simultaneously, it is possible to derive their ancestral relationship.
For example, if one cell population is ancestral to another, its
CCF must be greater in at least one sample and greater than or
equal to the CCF of the descendant cell population in all other
samples, when assuming the infinite sites assumption6. It should
be noted that by constructing trees from clusters of mutations we
avoid potentially inaccurate inferences arising from the con-
struction of sample trees when samples are an admixture of cells
from multiple lineages7. Moreover, joint analysis of CCFs across
multiple samples enables the identification of complex inter-
mixtures of cell populations spread across multiple samples from
a primary tumour, as well as complex patterns of tumour cell
metastasis8–14. Other approaches harnessing sophisticated bio-
geographic models to reconstruct clonal relationships across
multiple samples have also provided detailed spatio-temporal
insights of tumoural evolution15.

Throughout this study, we refer to mutations (and mutation
clusters) observed in all tumour cells within a sample as ‘clonal’,
those found in a subset of tumour cells as ‘subclonal’ and those
found clonally in all samples from the same patient as ‘truncal’.
We note that the term ‘trunk’ is used here in the same sense as the
term ‘root branch’ in the phylogenetic literature. The term ‘intra-
tumour heterogeneity’ (ITH) has been previously used to refer to
heterogeneity identified from single or multi-sampling of tissue
from a primary tumour. In this paper we extend the definition of
ITH to ‘intra-patient tumour heterogeneity’, using it to refer to
the observation of variants within a tumour that are non-truncal,
including variants that may be clonal within some individual
samples.
The mutational load of melanoma is one of the highest among

all malignancies16 and, as somatic mutations provide an insight
into a cancer’s initiation and evolution, genome sequencing stu-
dies can provide valuable insights into the progression of the
disease. Using targeted panel sequencing of 263 cancer driver
genes across 12 primary melanomas matched with regional
metastases, Shain and colleagues17 demonstrated that whilst some
primary melanomas and matching regional metastases have
pathogenic mutations in just one branch of the phylogenetic tree,
there were no driver mutations exclusive to metastases (i.e., not
shared with the primaries)17. By further showing that most

somatic alterations (point mutations and copy number changes)
were shared, the authors concluded that primary melanomas and
melanoma metastases tend to select for the same set of pathogenic
mutations. One feature of such studies is that the clonal com-
position of each sample is determined using the presence or
absence of mutations in each sample. However, this type of
modelling also relies on the estimation of clone frequencies,
which is vital for the identification of two or more clones per
sample and for accurate phylogenetic reconstructions18. A recent
whole-exome sequencing (WES) study of 86 distant metastases
obtained from 53 patients used variant allele frequency (VAF,
proportion of reads supporting a mutant allele in parallel
sequencing data) of shared vs. private mutations in each lesion to
infer the likely clonal status of private mutations within each
sample19. Although many private mutations were subclonal, this
study found polyclonal seeding (defined as a sample harbouring
subclonal mutations from 2 or more clonal lineages each of
which is also found in another tumour site, thus representing
multiple seeding events by two or more genotypically distinct
cells8) to be a rare event19. A picture has therefore emerged
whereby the majority of mutations in melanoma metastases
are truncal and shared by all progeny. Leading up to the for-
mation of a primary melanoma, a stepwise model of progression
has been proposed, which includes selection for particular
advantageous molecular alterations (including copy number
aberrations), facilitating the sequential transition through suc-
cessive stages20,21. Although this model is well-established for the
progression of pre-malignant precursor lesions to invasive pri-
mary melanomas22 the evidence for its ubiquity in metastatic
progression is less conclusive.
Multi-site sequencing studies in melanoma have thus far been

based on a small number of single nucleotide variants (SNVs)
falling in coding exons, with gene panels focussed on SNVs in
known cancer genes17,19,23–26. While the high depth of sequen-
cing used in these studies enables the detection of rare variants,
the number of variants detected will be orders of magnitude lower
than that from whole genome sequencing (WGS) and some
clonal lineages may therefore go undetected. The VAF can also be
affected by contributions from alleles in stroma and infiltrating
immune cells, as well as the presence of both the mutated and
wildtype alleles in the tumour. Importantly, changes to the copy
number of a locus may also alter the VAF dramatically and, if not
accounted for, will result in inaccurate clonal frequency estimates,
giving a misleading picture of the clonal structure of a tumour18.
For example, a mutation that has occurred on a chromosome that
is subsequently duplicated is carried by two out of three chro-
mosomal copies, whereas a mutation that occurred after the gain
is carried by one out of three copies. Indeed, whole-genome
duplication and other copy number aberrations have been shown
to vary across melanoma metastases from the same patient,
evolutionary changes that may not be evident from the analysis of
SNVs alone19. Inferring clonality from allelic frequencies there-
fore requires an integrative approach harnessing the most sensi-
tive sequencing technologies, while considering measures of
tumour ploidy and purity.
In this study, we present a genome-wide analysis of multiple

melanoma metastases sampled at autopsy from a treatment-naïve
patient. Using multi-sample clonality analyses across 13 whole-
genome sequenced metastases from this patient, as well as multi-
site analyses of whole-exome sequenced metastases from a further
7 patients, we identify clusters of co-occurring truncal, clonal and
subclonal mutations across multiple samples, and uncover the
chronological order of genomic alterations. We show that
metastases in different organs may have distinct clonal lineages
and reveal that melanoma metastases harbour previously unrec-
ognised levels of ITH.
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Results
A clinical course characterised by multi-organ metastases. Our
index case was a 71-year-old male of European descent with no
relevant family history, who initially presented with a 1.2 mm
Breslow thickness non-ulcerated, Clark level 3 superficial
spreading melanoma which was resected from the anterior chest
wall with a wide local excision (Fig. 1a). The patient declined a
sentinel lymph node biopsy and staging scans were clear for
distant metastases. Five years later, the patient presented to the
emergency department with sudden onset receptive dysphasia
and dyspraxia. A contrast computerised tomography (CT) head
scan showed multiple enhancing lesions in both cerebral hemi-
spheres with adjacent vasogenic oedema consistent with metas-
tases (Fig. 1b). A staging contrast CT also showed multiple lung,
liver and retroperitoneal lymph node metastases (Fig. 1b). A
biopsy of one of the liver lesions confirmed metastatic melanoma.
Mutation-specific immunohistochemistry for BRAFV600E did not
detect the mutated protein, but subsequent targeted panel
sequencing identified an activating BRAFV600R mutation. How-
ever, in view of his poor overall performance status and on dis-
cussion with the patient and his family, he chose to be managed
with best supportive care. The patient consented to undergo a
research autopsy as part of the ethically-approved MelResist study
(see ‘Methods’ section). He received corticosteroids with marked
improvement in neurological symptoms and underwent whole-
brain radiotherapy 30 Gy in 10 fractions. A repeat staging CT
scan 2 weeks after completing radiotherapy revealed stable brain
metastases but widespread progression of the extracranial disease
(Fig. 1b and Supplementary Fig. 1). He died four weeks later.
During a research autopsy, metastases were identified macro-

scopically in the brain, lung, liver and retroperitoneum, as well as
the right atrium, the latter was identified as an 18 mm polypoid
lesion arising from the endocardial surface. The cause of death
was identified as a saddle pulmonary embolus. In total, 13
metastases were sampled at autopsy and a further 2 samples were
obtained from the archived anterior chest wall primary
melanoma for further molecular analyses (Fig. 1 and Supple-
mentary Table 1). Histopathological analyses of the metastases
confirmed metastatic melanoma. Morphological heterogeneity

was observed between metastases based on cellular features
(ranging from epithelioid to spindle cell), as well as in the degrees
of pigmentation and necrosis (Fig. 1c).

Melanomas are dominated by UV-induced clonal mutations.
Whole genome sequencing of the 13 metastatic tumours sampled
at autopsy, which were sequenced to a median depth of 38x,
revealed a union list of ~118,000 SNVs. We detected 1993
putative somatic indels, of which 10 were frameshifts and com-
mon to all metastases (see ‘Data availability' section). All 13
metastases carried an activating missense BRAFV600R mutation
(c.1798_1799delGTinAG), as well as mutations in the melanoma
driver genes PTENA43T and MAP2K1G128S (the latter has not
been previously reported in the COSMIC database27), and a
splice-site variant in ARID2, all of which were truncal across all
metastases. We further explored the clonal architecture using the
Cancer Cell Fraction (CCF), determined by adjusting the variant
allele frequencies of SNVs for copy number aberration (CNA)
status and the extent of normal cell contamination (i.e., purity)4.
Briefly, multidimensional Bayesian Dirichlet Process-based
mutation clustering (ndDPClust4,28) was used to identify trun-
cal, clonal and subclonal mutation clusters based on the CCF of
the union list of somatic SNVs across all 13 metastases. Given
that clustering analyses were initially undertaken on the meta-
static tumours, subsequent references to metastatic-truncal and
metastatic non-truncal mutation clusters apply only to those
identified in the metastases of the index autopsy case. Using this
approach, we found that >90% of all somatic variants in the
metastases were metastatic-truncal, with only one additional
cluster which represents at least 1% of the SNVs (N=1651,
1.35%). The large metastatic-truncal cluster was dominated by
C > T transitions at dipyrimidines (characteristic of UV-induced
mutational damage29) and was shared across all metastases,
implying that ITH was absent (Fig. 2a). We next filtered for
artefactual clusters and SNVs within regions of ambiguous copy
number status across all samples (see ‘Methods’ section) and
subtracted variants assigned to the major metastatic-truncal
cluster which uncovered a union list of 2247 unique non-truncal
variants (Fig. 2b). Overall, 22/2247 of these variants fell within the
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Fig. 1 Clinical presentation and sequalae of index autopsy case. a Sites of 13 metastases sampled during the autopsy and the anterior chest wall
cutaneous primary melanoma. b Axial CT imaging from the brain, chest and abdomen before (left) and after (right) whole brain radiotherapy (imaging
5 weeks apart). Brain CT images represent the following metastatic sites (from top to bottom); right superior frontal gyrus, right frontal pole, left superior
parietal, left posterior parietal and right brain vertex (the latter corresponding to the ‘right parietal’ sample labelled in the remainder of the text). Chest/
abdomen CT images represent the following metastatic sites (from top to bottom); right lobe of liver, peripancreatic/greater omentum (corresponding to
the ‘greater omentum’ sample labelled in the remainder of the text) and right lower lung. c Histological analyses (Hematoxylin-eosin images), from top left
to bottom right; primary melanoma from the anterior chest wall, distant metastasis from; the left upper lobe of the lung, right frontal gyrus of the brain and
right superior parietal lobe of the brain. Morphological appearances differ across the tumours, including varying cellular morphology and pigmentation. One
representative region from each tumour sample is shown. The thick white line represents 100 µm in 40-fold magnification.
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protein‐coding region of the genome of which 14 were protein‐
altering (all missense). None of these variants were in established
cancer driver genes listed in the Catalogue of Somatic Mutations
In Cancer (COSMIC)27. We undertook a validation experiment
by custom capture pull-down sequencing of protein-coding
metastatic-truncal SNVs present across all 13 metastases (selec-
ted as either cancer driver or loss-of-function SNVs, N= 652), as
well as all 2247 metastatic non-truncal SNVs. In this way, 99% of
metastatic-truncal SNVs and 92% of all the metastatic non-
truncal SNVs were observed to be true variants, instilling con-
fidence in the downstream phylogenetic reconstructions based on
these SNVs (see ‘Methods’ section).

Mutational cluster analyses reveal distinct clonal lineages.
Applying ndDPClust to the metastatic non-truncal variants from
the index autopsy case revealed 6 distinct mutation clusters with
variable distribution across all metastases (Fig. 2c). Assessing the
distribution of these clusters, as well as the CCF distribution
within each cluster across the metastases, we were able to
reconstruct a phylogenetic tree (see ‘Methods’ section for further
details). The mutation clusters showed clear lineage separation,
such that samples harbouring clusters from one lineage were

mutually exclusive from samples harbouring clusters in the
opposing lineage, supporting a clear bifurcation after the most
recent common ancestor (MRCA) (Fig. 2c). In particular, cluster
B (light green) was present (and clonal) in the first 7 samples
belonging to the first clonal lineage and absent in the latter
6 samples belonging to the second clonal lineage, which in-turn
were represented by cluster D (red). These mutually exclusive
clonal clusters at the first bifurcation suggest that alternative tree
solutions are very unlikely (Fig. 2d).
We next assessed the distribution of mutation clusters per

sample in order to reconstruct sample-level phylogenetic trees for
the metastases (Supplementary Fig. 2). Sample-level trees
represent subtrees of the overall phylogenetic tree including just
those clones seen within each metastasis, however, in doing this
we were able to segregate the samples based on their respective
clonal lineage. Analysis in this way revealed two clear lineages,
representing distinct waves of metastatic seeding. Interestingly,
the brain metastases were represented on both lineages suggesting
there were at least two waves of spread to the central nervous
system, whereas the lung metastases were derived from a single
lineage (Supplementary Fig. 2). In summary, we found that
mutation clusters from multiple distinct clones were present
across multiple metastatic tumours. This approach has revealed
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Fig. 2 Subtracting the clonal cluster revealed subclonal diversification in the index autopsy case. a Point estimates of the cancer cell fraction (CCF) are
represented here as black dots across two representative samples in a density plot (left super parietal (PD38258d) and right parietal brain metastases
(PD38258f), represented across the X and Y axes, respectively). We observed a large cluster of mutations at (1,1), corresponding to single nucleotide
variants (SNVs) present in all the cells in both sites (CCF= 1), indicating truncal variants. b After removing the metastatic truncal variants, the metastatic
non-truncal mutation clusters uncovered subclonal mutations. Although there are still a small number of SNVs at CCF 1, these did-not belong to the
metastatic truncal cluster of mutations, representing those mutations found clonally in all metastases. c The clusters of metastatic non-truncal mutations
are represented in a CCF distribution plot, wherein rows reflect samples and columns reflect alphabetically and colour-assigned mutation clusters (n= 6).
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have occurred before the most recent common ancestor (MRCA) are carried by all tumour cells and define the metastatic truncal cluster of mutations.
Truncal mutations in the melanoma driver genes BRAFV600R, PTENA34T, MAPK2K1G128S (the latter represents a mutation not previously reported in the
COSMIC database27) as well as an ARID2 splice-site variant are indicated on the trunk of the tree (the order of the driver mutations displayed on the trunk
is arbitrary). The primary tumour colour shading represents the mutation clusters detected in the primary (using targeted sequencing), whereby the blue
represents the subclonal mutation cluster within the primary (at average CCF of 0.27), which became fixed and truncal across all metastases.
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convincing evidence of polyclonal seeding in metastatic mela-
noma. This finding however could not have been otherwise
resolved had it not been for the removal of the dominant cluster
of truncal variants, which masked this complex phylogenetic
architecture.

Metastatic truncal mutations are subclonal in the primary. We
next analysed the representation of metastatic SNVs within two
tissue blocks from the original cutaneous primary of the index
case resected five years earlier, with the aim of tracing back the
ancestral clones. We used targeted panel sequencing with a
median coverage of 40×, to ascertain whether selected SNVs
identified in the genome-sequenced metastatic tumours were also
present in the primary, requiring at least 2 supporting reads
reporting the alternative allele to call an SNV in the primary (see
‘Methods’ section). We found that 573/652 (88%) of the selected
metastatic truncal variants could also be detected in the primary,
whereas only 1 of the metastatic non-truncal cluster variants was
identified in the primary at this depth (see ‘Methods’ section). By
selecting the 144/652 metastatic truncal SNVs present in diploid
regions, we were not only able to estimate purity of the two
primary samples based on VAF density of SNVs (see ‘Methods’
section), we were also able to run ndDPClust on both primary
tumour samples by assuming diploidy in SNVs within the pri-
mary tumours. In addition to the main clonal cluster, we further
identified that the two primary tumour samples harboured the
same subclone represented by 37 SNVs (at CCF 0.25 95% CI
0.22–0.37 and 0.29 95% CI 0.18–0.34 for samples PD38258u and
PD38258v, respectively). No known drivers were uniquely pre-
sent in this primary tumour subclone. However, we did identify a
nonsense variant in IL1R1, a gene which is thought to act as a
tumour suppressor30. This subclonal cluster within the primary
tumour might correspond to the lineage that originated the
metastases (Fig. 2d). However, the small number of evidential
variants warrants further studies in both primary and metastatic
melanomas.

Lineage diversification from analyses of 7 further patients. In
order to assess whether lineage diversification was detectable in
further cases, we undertook whole-exome sequencing (WES) of
19 melanoma metastases matched with germline blood samples
from an additional 7 patients with metastatic melanoma who had
consented to take part in the MelResist study. All samples were
obtained from clinically or radiologically progressing disease sites,
either at the time of first distant relapse, or following systemic
therapy with MAP-kinase directed therapies or immune check-
point inhibitors (Supplementary Table 2). We identified an
average of 598 (range of 108–2088) non-synonymous coding
variants (including missense, nonsense and splice-region muta-
tions), and 7 (range 2–15) frameshift variants per patient, both
totalled across all samples within each patient (see 'Data avail-
ability' section). Six out of 7 patients had metastases arising from
a cutaneous primary and 1 patient (MultiSite_WES_Patient1) had
an acral primary melanoma. Their metastases (Multi-
Site_WES_Patient1), as expected, carried a particularly low
number of SNVs (only 298 non-synonymous coding variants
totalled across metastases). All 7 patients had metastases har-
bouring an activating BRAFV600E driver mutation and, in accor-
dance with previous reports17,19, all melanoma drivers were
represented on the trunks (rather than the branches) of the
phylogenetic trees (except for a previously unreported TP53R141C

mutation in patient MultiSite_WES_Patient1) (Fig. 3). We again
used ndDPClust to cluster SNVs according to their respective
CCFs (see ‘Methods’ section). We identified 2–10 distinct clusters
per patient with clear evidence of lineage diversification across 6

out of 7 patients, evidenced by the presence of mutation clusters
in mutually exclusive subsets of samples (Supplementary Fig. 3).
By reconstructing sample-level phylogenetic trees, we identified
distinct clonal lineages within each patient and found evidence of
polyclonal seeding in two patients (Supplementary Fig. 4). Given
that lineage diversification was detected in 6 out of 7 cases
(including the acral melanoma patient) based on WES, which has
a much lower genomic resolution than WGS, and with as little as
two samples per patient in most cases (Supplementary Table 2),
we provide strong evidence that ITH is likely to be pervasive in
melanoma metastases.

Subclonal APOBEC signature mutations. We extracted muta-
tional signatures from the 13 whole-genome sequenced metas-
tases collected from the index case31. As expected, all samples
were dominated by signature 7 reflecting UV-induced mutagen-
esis (Supplementary Fig. 5). Within the pool of 2247 non-truncal
mutations, however, we found evidence of non-UV induced
mutational signatures, including signatures 2 and 13, which
represent the action of the APOBEC family of cytidine deami-
nases (which enzymatically modify single-stranded DNA)32

(Supplementary Fig. 6A). We found that whilst signature 7
dominated the truncal cluster, it was absent from the branches of
the evolutionary tree, which were characterised by the APOBEC
mutational signatures suggesting this process might be implicated
in later stages of clonal evolution (Supplementary Fig. 6B).
Interestingly skin cancer has been shown to have the fifth highest
APOBEC3B expression rank33. However, the dipyrimidine-
focused C-to-T mutation pattern of UV eclipses an APOBEC3B
deamination signature, which we have only uncovered here by
separating out the truncal mutations.

Gene expression analyses reveal clustering within organs. Gene
expression analyses of 11 metastases from the index autopsy case
further revealed differences between metastases found across dif-
ferent organs, with principal component analysis (PCA) separating
metastases sampled from the brain and lung (Fig. 4a, Supplemen-
tary Fig. 7A, B). Interestingly, metastases seeding within the brain
clustered together by PCA, despite phylogenetic inferences indi-
cating these likely emanated from differing lineages (Supplementary
Fig. 2). In order to identify the tumour-specific genes and biological
processes uniquely associated with brain metastases in this patient
and mitigate for any potential influence of cellular contamination
from the surrounding stromal/immune cells (Fig. 4a), of which
purity analyses from copy number calls suggested were <15% (see
Supplementary Table 1), we intersected the genes (Fig. 4b) and
pathways (Fig. 4c) differentially expressed between both brain
metastases (n= 5) vs. normal tissue (from the patients’ normal
brain and lung tissue) (Supplementary Fig. 7C), with those between
brain (n= 5) vs. lung metastases (n= 4) (Supplementary Fig. 7D).
The gene PLEKHA5 was significantly upregulated (log-fold change
4.5, FDR-adjusted p-value < 0.003) in brain vs. lung metastases, as
well as in brain metastases vs. normal tissues (log-fold change 5.3,
FDR-adjusted p-value < 0.004). This guanine nucleotide exchange
factor has previously been shown to be upregulated in a cell
line model of melanoma brain metastasis (cerebrotropic A375Br
cells vs. parental A375P cells) and silencing of PLEKHA5 expres-
sion decreased in-vitro potential of these cells to cross the blood-
brain barrier34. Gene set enrichment analyses also showed
significant enrichment of the oxidative phosphorylation KEGG
pathway in both brain vs. lung metastases (normalised enrichment
score 4.65, FDR-adjusted p-value < 0.0001) and in brain metastases
vs. normal tissues (normalised enrichment score 3.17, FDR-
adjusted p-value < 0.0001) (Fig. 4c). This is consistent with recent
analyses implicating the upregulation of oxidative phosphorylation
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in patient-matched brain vs. extracranial metastases, as well as
further functional studies demonstrating that inhibition of this
pathway resulted in increased survival in both implantation xeno-
grafts and spontaneous murine models of melanoma brain
metastases35.
Immune cell estimation of bulk tumoural mRNA from the

above mentioned 11 metastases (as previously described36),
further revealed evidence of distinct tumour-immune micro-
environments (Fig. 5). The brain metastases in particular had
relatively few immune cells compared to lung and other
extracranial metastases, which might corroborate studies suggest-
ing the brain represents a relatively immuno-privileged
organ35,37. Inflammatory macrometastases in the brain expressed
high levels of transcripts for activated M2 macrophages
(including significant upregulation of the macrophage marker
CD163 in brain vs. lung metastases, log-fold change 5.5, FDR-
adjusted p-value < 0.004) which have been described as having
anti-inflammatory or tumour supporting activities, including in
malignant brain tumours (although it is important to recognise
that it may be difficult to distinguish between microglia and

macrophages, both of monocyte lineage, using these methods)38.
In summary, therefore, despite having overall similar mutational
landscapes, we identified distinct tumour-immune microenviron-
ments by gene expression analyses, which likely reflects
differences in the tumour microenvironment ecosystem39.

Discussion
Although melanoma is associated with a large number of somatic
SNVs, the genomic diversity of melanoma metastases has pre-
viously been reported to be low, with most SNVs expected to be
shared across tumours17. Recently, the International Cancer
Genome Consortium Pan-Cancer Analysis of Whole Genomes
(PCAWG) initiative40 leveraged WGS data to infer evolutionary
relationships across multiple cancer types, further showing that
metastatic melanomas may be monophyletic, with a single clone
appearing to seed metastases and, when compared with other
cancers, may uniquely lack ITH41. In our study, analyses of clonal
structure from multi-site whole-genome sequenced melanoma
metastases provided a powerful method to detect mutation
clusters and a unique insight into clonal evolution. In agreement
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with previous literature, we identified a single cluster of truncal
variants ubiquitously represented across all metastases and
representing >90% of all somatic SNVs. Metastatic truncal var-
iants dominated downstream phylogenetic reconstruction ana-
lyses. Initial analyses therefore showed that ITH appeared to be
absent and that metastases were derived from a single parental
clone harbouring the majority of genetic alterations. However, by
subtracting this dominant cluster of variants, we were able to
identify non-truncal clones and subclones. Assessment of the
representation of these clones across the metastatic tumours
revealed the ancestral relationships between metastases and
uncovered a phylogenetic structure that reframes currently
accepted models of metastatic dissemination. In particular, these
patient-matched primary and metastatic tumours provided the
power to detect SNVs that were present only in a subset of
sequenced samples, thereby increasing the power of these
reconstruction approaches.
We found evidence of lineage diversification across metastatic

melanoma exomes from a further 6 out of 7 patients (including in
one case of metastases from an acral primary), indicating that,
even with a much lower sequencing breadth, and nearly two
orders of magnitude fewer SNVs (relative to whole-genome
sequencing), detailed clonal lineages could still be inferred, and
pervasive ITH was observed. The detection of ITH using lower-
resolution WES from archival formalin-fixed paraffin embedded
(FFPE)-derived samples is particularly relevant to clinical prac-
tice, where the majority of samples are still stored in paraffin, and
where custom pull-down is much more readily available than
whole-genome sequencing approaches42. It is therefore our
impression that previous studies suggesting that melanoma
metastases lack heterogeneity may have been confounded either
by the use of VAF as a surrogate for CCF43, or by the lack of
power to separate subclones through single sample analyses41

(rather than by the limits of resolution of targeted sequencing
approaches). Our analyses should therefore serve as a cautionary
tale in future phylogenetic analyses that still define trunk and
branch mutations by the presence or absence of shared variants
and that do not consider CCF calculations (adjusting somatic
VAFs with tumour purity and CNA status). In a previous single-
patient WGS study analysing a primary acral melanoma and its
concurrent ipsilateral inguinal lymph node, a wide spectrum of
SNVs and copy number alterations were found to be shared
between the primary and metastatic tumour, however, the phy-
logenetic architecture could not be fully reconstructed44. By
harnessing the power of CCF calculations across 6 metastases
from our acral melanoma patient, we identified divergent linea-
ges. A recent detailed multi-regional clonality analysis in uveal
melanomas has also found multiple driver mutations in the
branches of the phylogenetic trees, suggesting that these mela-
nomas also continue to evolve as they progress from primary to
metastatic disease45. Therefore, we postulate that multi-sample
analyses may reveal that ITH is characteristic of other melanoma
subtypes, although further studies in these rarer subtypes are
warranted.
Analysing skin/subcutaneous metastases in 8 patients with

cutaneous melanoma, Sanborn and colleagues previously showed
that locoregional relapses arose from different cellular sub-
populations of the primary tumour46. Our analyses support these
findings, and show that lineage diversification is associated with
both locoregional, as well as more distant metastatic spread. The
phylogenetic trees were dominated by long trunks, with smaller
branches representing subclonal diversification (palm tree
resemblance) (Fig. 2d). Driver mutations generally arose before
subclonal diversification and were found primarily on the long
trunks of the trees (Figs. 2d and 3). This contrasts with recent
reports in prostate cancer11, where branching generally occurred

throughout the tumours’ evolutionary trajectories, and with stu-
dies of various other tumour types reporting the frequent
occurrence of subclonal driver mutations, but is concordant with
previous studies of melanoma17,19. Interestingly, a single sub-
clonal mutation cluster (cluster F, shown in purple in Supple-
mentary Fig. 2) was found subclonally in brain metastases from
the index autopsy case. However, in keeping with previous
analyses19,46,47, polyclonal seeding was generally a rare event in
this cohort (Supplementary Figs. 2 and 4). Although the index
patient underwent whole-brain radiotherapy six weeks prior to
the autopsy, we did not detect differences in mutational sig-
natures between the brain and extracranial metastases31,48 (see
‘Data availability’ section), while the lack of prior systemic ther-
apy further supports the mutational processes being reflective of
evolutionary changes during dissemination, rather than the result
of treatment.
The catalogue of somatic mutations in cancer is the aggregate

outcome of exposure to one or more mutational processes. Each
process generates mutations characterised by a specific combi-
nation of nucleotide changes and nucleotide contexts, therefore
providing a signature that can be used for its identification31,49.
Studies by Shain and colleagues suggested that UV is the domi-
nant factor associated with the initiation of precursor lesions and
dominates every stage of tumour evolution, from the progression
of pre-malignant lesions to primary melanoma and to
metastases20,21. Interestingly however, other studies have repor-
ted a reduction of the proportion of mutations associated with the
UV-induced mutational signature in branch (non-truncal)
mutations, suggesting that mutations arising later in melanoma
progression may occur as a result of increased activity of other
mutational processes17,19. This is consistent with lung cancer
analyses, where subclonal lineages acquired mutations that lacked
the tobacco-smoking signature and were replaced with mutations
associated with APOBEC cytidine deaminase activity9. Consistent
with these analyses, we found that whilst the truncal cluster of
mutations in the autopsy index case was dominated by signature
7, this was absent in the subclonal mutation clusters which also
appeared to be replaced by APOBEC-associated mutations. Fur-
ther studies will be required to ascertain whether these observa-
tions can unravel new biological insights.
In summary, through leveraging the power of clonality analyses

across multiple whole-genomes we were able to identify rich
clonal architectures and uncover ITH of melanoma metastases
obtained at autopsy of a single patient, a structure which would
not have been evident through single-site reconstructions. Using
the same approach, we found further evidence of divergent
lineages in whole-exome sequenced metastases obtained from 6
out of 7 additional melanoma patients, one of which was an acral
melanoma, suggesting that this is independent of sequencing
breadth or depth. Our ability to detect distinct clonal lineages was
greatly enhanced by leveraging the power from multiple samples
and uncovers conclusive evidence of ITH in melanoma metas-
tases. Future large-scale studies incorporating clonal analyses
across multiple metastases will be required to further delineate
how these tumours evolve, and provide insights into whether
interrupting this process could contribute to patient management.

Methods
Patient enrolment. All patients were recruited to the MelResisist prospective non-
interventional study sponsored by Cambridge University Hospitals NHS Foun-
dation Trust. The study was approved by the National Research Ethics Committee
(NREC) North East on the 17th October 2011 IRAS project ID 66161 and REC
reference 11/NE/0312. All patients provided written informed consent to take part.
All cases were also ethically approved by the Sanger Institute’s human materials
and data management committee. The research autopsy was conducted 48 h after
the patient’s death, during which time the body had been stored at 4 °C. Sixteen
1cm-diameter core biopsies were sampled from the centre of each metastatic
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tumour and snap frozen in liquid nitrogen at −80 °C. These were used for the
extraction of bulk DNA and RNA, as well as for the creation of stained H&E slides
for direct histopathological assessment of the sequenced regions. The remaining
multi-site exome-sequenced cases were also identified from the prospective Mel-
Resist trial, and were selected based on their availability of banked multi-site
metastases for molecular interrogation. A total of 7 patients with 21 metastases
(median 2, range 2–6 metastases per patient) were identified for this analysis. All
samples and clinical details are listed in the Supplementary Tables 1 and 2.

Extraction and quality assessment of DNA and RNA. Histopathological
assessments were performed by two consultant histopathologists (KA and MT),
who confirmed that all tumours were composed of >90% neoplastic cells. Macro-
dissection of fresh tumour cores from the autopsy case was performed with a sterile
scalpel. DNA and RNA were extracted from the fresh tumour cores using the
AllPrep combined DNA/RNA Mini Kit (Qiagen Ltd.) according to manufacturer’s
recommendations. All the multi-site exome-sequenced cases were obtained as 1.0
mm diameter cores micro-dissected from the original FFPE block. Genomic DNA
was extracted from the FFPE cores using the QIAamp FFPE Tissue kit from Qiagen
according to manufacturer’s instructions. Germline DNA was extracted from
peripheral blood mononuclear cells collected before death from all cases, using the
DNeasy Blood and Tissue Kit (Qiagen). To confirm that the tumours and germline
DNA were derived from the same patient Fluidigm genotyping was performed. All
DNA samples were quantified using the PicoGreen dsDNA Quantification Reagent
according to manufacturer’s recommendations (Invitrogen). The structural integ-
rity of DNA was checked by gel electrophoresis. RNA quantity and quality were
assessed using Agilent’s 2100 bioanalyzer.

Laser capture microdissection of the cutaneous primary from the autopsy
case. Two FFPE tissue blocks from the index autopsy patient’s archival primary
tumour (cutaneous melanoma from the anterior chest wall, samples PD38258u and
PD38258v) were processed into 5 µm histology sections, deparaffinised with
ethanol thrice and stained with Gill’s haematoxylin for 20 s. Malignant melanocytes
from each section were isolated by a histopathologist (LM) using laser capture
microdissection and collected in separate Eppendorf tubes. These were then lysed
with lysis buffer ATL and digested with proteinase k (Qiagen Ltd.). Extraction of
nucleic acids was performed using the QIamp DNA FFPE extraction kit (Qiagen
Ltd.) according to manufacturer’s recommendation.

Whole genome sequencing and somatic variant detection. Paired-end
sequencing of the metastatic tumours and matched normal was performed on the
Illumina X10 platform at the Wellcome Trust Sanger Institute to generate 150
base-pair reads. Sequencing reads were aligned using BWA-MEM (v0.7.12)50 to the
human reference genome (NCBI build GRCh37). The resulting sequencing cov-
erage ranged from 33-fold to 43-fold (median 38-fold). Caveman (v1.11.2)51 and
Pindel (v2.2.4)52 were used to call somatic SNVs and indels, respectively. The
minimum base quality score for somatic variant calling was set to Phred 30.
ANNOVAR53 was used to predict the effect of variants on genes and to assign
rsIDs for known variants based on dbSNP Human Build 150. The alignments for
all variants are reported in the ‘Data availability' section. To call rearrangements we
applied the BRASS (breakpoint via assembly) algorithm, which identifies rear-
rangements by grouping discordant read pairs that point to the same breakpoint
event (github.com/cancerit/BRASS). BRASS rearrangements were used to search
for balanced inversions, which have been previously associated with radiation-
induced mutagenesis48, and were particularly relevant to explore in the
radiotherapy-treated brain metastases from the index case.

Whole exome-sequencing of multi-site metastases cases. Exome capture was
performed using Agilent’s SureSelect bait. Paired-end sequencing was performed
using the Illumina HiSeq platform at the Wellcome Trust Sanger Institute to
generate 75 bp reads. Sequencing reads were aligned using BWA-MEM (v0.7.12)50

to the human reference genome GRCh37. PCR duplicates, secondary read align-
ments, and reads that failed Illumina chastity (purity) filtering were flagged and
removed prior to running variant and copy number calling. The resulting
sequencing coverage after filtering ranged from 33-fold to 95-fold (median 52-fold)
in the tumoural samples and median 54-fold across the germline blood samples.
Caveman (v1.11.2)51 and PINDEL (v2.2.4)52 were used to call somatic SNVs and
indels, respectively. The minimum base quality score for somatic and germline
variant calling was set to Phred 30. ANNOVAR53 was used to annotate SNVs
(based on Caveman) and indels (based on PINDEL) for functional classification
and to assign rsIDs for known variants based on dbSNP Human Build 150 (see
‘Data availability' section).

Copy number aberration (CNA) profiling. Segmental copy number information
was derived for each of the 13 metastatic tumours using the Battenberg algorithm
(v3.2.2)10. This was also used to estimate tumour cellularity and ploidy, and cal-
culate allele-specific copy number profiles12. Sequenza (v2.1.2)54 was used to
estimate tumour cellularity and ploidy from the tumour-normal pairs in the multi-
site FFPE-extracted exome sequenced cohort, as well as to calculate allele-specific
copy number profiles (see ‘Data availability' section). For each sample, the best

Sequenza solution was chosen after visual inspection of both the best-fit solution
(with the maximum log posterior probability) and alternative solutions.

Validation of metastatic truncal and non-truncal SNVs from the index whole-
genome sequencing case. Validation was performed using custom pull-down and
sequencing of the key mutations identified across the 13 metastases from WGS
analysis. The validation experiment was enriched to cover all 2247 metastatic non-
truncal variant positions, 652 manually selected metastatic truncal variant positions
(identified as either cancer driver mutations or with loss-of-function mutations
from the truncal cluster). A 340kbp custom capture probe was designed using
Agilent Technologies’ online software Sure Select Design Wizard. The highest-
stringency repeat masking was used (where possible), as well as a tiling density of
2× and maximum performance boosting (replicating any orphan or GC-rich baits
by a higher factor). Agilent ELID ID: 3184291. DNA capture (paired-end, average
DNA fragment size 158 bp) libraries were created using native DNA, testing DNA
from all 13 whole-genome sequenced metastatic tumours. Libraries were multiplex
sequenced to a median depth of 40× on the Illumina MiSeq platform. A variant
called in the WGS experiment that was also present in the validation study and
supported by at least 2 alternate bases in the validation, is reported as validated
somatic.

With these criteria, 7429/7502 (99%) of the metastatic truncal substitutions and
6223/6750 (92%) of the metastatic non-truncal substitutions were validated
somatic (the denominator represents the sum of all the SNVs called across all of the
13 samples in the WGS data, excluding those SNVs where coverage in the
validation experiment was <30×, see ‘Data availability' section). Only 7/7502 of the
metastatic truncal mutation calls made in the WGS were not detected in the
validation experiment, and 104/6750 (1.5%) of the metastatic non-truncal mutation
calls were not detected in the validation experiment. Subsetting only to the
metastatic non-truncal substitutions included in the six mutation clusters which
passed QC and on which the phylogenetic tree was based (Fig. 2c, d), we found
2127/2231 (95%) SNVs across all 13 metastases were validated (as above, the
denominator represents the sum of all the SNVs called across all of the 13
metastases in the WGS data, excluding those SNVs where coverage in the
validation experiment was <30×). The breakdown of the validation rate per cluster;
Cluster A: 158/192 (82%), Cluster B: 820/837 (98%), Cluster C: 21/24 (88%),
Cluster D: 694/720 (96%), Cluster E: 261/276 (95%), Cluster F: 173/182 (95%).

Targeted sequencing of the archival primary. The same baits and custom pull-
down experiment described above were used to sequence the validation set SNVs
within the index autopsy case’s primary tumour. DNA was extracted from the two
tumour blocks from the same chest wall primary and variants supported by at least
2 alternate bases were called in the primary (samples PD38258u and PD38258v).

Gene expression analyses. RNA expression of metastatic tumours from the index
autopsy case was determined using the human Affymetrix Clariom D Pico assay
(see ‘Data and software availability' section). Arrays were analysed using the SST-
RMA algorithm on the Affymetrix Expression Console Software. Expression was
determined using the Affymetrix Transcriptome Analysis Console. Median abso-
lute deviation normalisation (of probe-level data) was implemented. The Tissue-
specific Gene Expression and Regulation (TiGER) database was used to filter out
600 tissue-specific genes55. Differential expression was performed using the R
package limma (v3.36.1)56. Preranked GSEA (GSEA-P) was implemented using the
GenePattern module GSEAPreranked (v6.0.10)57. Hallmark gene sets were down-
loaded from the MSigDB database58. Rank metric was calculated as the sign of
log2-FCs calculated using the limma pipeline. The pipeline calculates an enrich-
ment score (ES) that reflects the degree to which a gene set is overrepresented at the
extremes (top or bottom) of the entire ranked list. The score is calculated by
walking down the list, increasing a running-sum statistic when a gene in the set is
encountered and decreasing it when a gene not in the set is encountered. The
enrichment score is the maximum deviation from zero encountered in the walk
and corresponds to a weighted Kolmogorov–Smirnov-like statistic57. The sig-
nificance of an observed enrichment score (ES) is assessed by comparing the
enrichment score with a set of scores computed with randomly assigned pheno-
types, which generates a histogram of the corresponding null enrichment scores.
The nominal P value is then calculated by using the positive (or negative) portion
of the distribution corresponding to the sign of the observed enrichment score. To
calculate the false discovery rate, the ES is normalised to account for the size of the
gene set yielding a normalised enrichment score. The proportion of false positives
is then calculated using the false discovery rate (FDR)59 corresponding to each
normalised enrichment score (NES). The FDR is the estimated probability that a
set with a given NES represents a false positive finding; it is computed by com-
paring the tails of the observed and null distributions for the NES57. In order to
mitigate the influence of cellular contamination from the surrounding stromal cells
in identifying particular genes and biological processes uniquely associated with
brain metastases in this patient, we intersected the genes (FDR-adjusted P-value <
0.005 and −1<log fold-change>1) and pathways (FDR-adjusted p-value < 0.01)
significantly differentially expressed between both brain metastases (n= 5)
and normal tissue (normal samples extracted from the brain and lung, n= 2)
(Supplementary Fig. 7C), and also between the brain (n= 5) and lung metastases

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18060-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4306 | https://doi.org/10.1038/s41467-020-18060-0 | www.nature.com/naturecommunications 988

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(n= 4) (Supplementary Fig. 7D). Single sample gene set enrichment analysis
(ssGSEA) was employed using the GSVA R package (v1.32.0) to determine the
relative enrichment of each of the HALLMARK pathways across samples60.

Immune cell deconvolution. A consensus approach, ConsensusTME was used to
generate cell-type specific estimates of immune cell infiltration from bulk tumour
RNA gene expression profiles. This leverages information from multiple gene sets
and immune cell expression matrices to build a compendium of robust gene sets for
each immune cell type36. These genes were further filtered to ensure each has a
negative correlation with tumour purity within The Cancer Genome Atlas. Gene
sets specific for human skin cutaneous melanoma (SKCM) were used. Finally, single
sample gene set enrichment analysis was applied to our ConsensusTME gene sets to
generate normalised enrichment scores for each cell type in each sample. This
method has previously been thoroughly benchmarked in a pan-cancer setting36.

Extraction of mutational signatures. SigProfilerMatrixGenerator python packa-
ges61 was used to extract mutational signatures, generating 96 possible mutation types
and used to plot mutational profiles. The sigproSS python package (v0.0.0.26)62

was used to determine the proportion of mutations in each sample attributable to
specific COSMIC signatures identified by Alexandrov et al.31. sigproSS was also run
on the non-truncal mutation clusters defined in the phylogenetic tree (Supplementary
Fig. 5).

Computerised tomography analysis of tumour volume. Regions of interest were
outlined over the entire area of visible tumours on post-contrast CT scans (2 mm
thin sections) by a radiologist (FS) using the OsiriX medical imaging software
(Pixmeo SARL, Switzerland). Tumour volume was calculated by multiplying the
area of tumour outlined on each CT image by the slice thickness.

Immunohistochemistry. IHC staining was performed on 5 µm FFPE sections,
extracted from the same frozen sections from which DNA and RNA were
extracted. Slides were deparaffinised in series of xylene and hydrated in a series of
descending ethanol. Heat-induced antigen retrieval was performed using TRIS-
EDTA (pH= 9), followed by immunostaining performed on the Leica Bond III
autostainer (Leica Biosystems). Antibodies used included mouse monoclonal anti-
human CD3 (DAKO, clone F7.2.38, dilution 1:50) and mouse monoclonal anti-
human CD8 (DAKO, clone C8/144B, dilution 1:25) at 1 h RT. DAKO REALTME

alkaline phosphatase and chromogen red detection system was used for secondary
detection of positive staining. Stained slides were counter-stained with haema-
toxylin and cover-slipped for review. Image acquisition was performed on the
Hamamatsu whole slide scanner at 40-fold magnification.

Statistical analysis and informatics approaches. All statistical analysis and
graphics were generated using R version 3.0.1 (R Foundation for Statistical
Computing, Vienna, Austria. URL http://www.R-project.org/). Alignment viewing
was performed using Jbrowse and IGV.

Analysis of Intra-patient tumour heterogeneity (ITH) and phylogenetic tree
reconstruction. To model the clonal structure across all multi-site tumour samples
per patient (at WGS, WES and targeted sequencing levels), we used a previously
described computational framework63. This approach is an SNV-centric ITH
analysis which is described below. In the first step, CCF is estimated for each SNV.
By taking into account VAF, CNA status of the SNV locus and purity of the
tumour sample under analysis, mutation copy number63, which is the product of
CCF and number of SNV-bearing chromosomal segments, was calculated. CCF is
then estimated from mutation copy number by adjusting for the number of SNV-
bearing chromosomes, as assessed by a binomial distribution maximum likelihood
test63. The CCF represents the fraction of tumour cells carrying a mutation, and
accounts for differences in tumour purity and copy number4. SNVs were removed
from further analysis if loss of heterozygosity or any other altered CNA status
could explain the complete loss of SNV or its differential VAF in other samples.
This filtering is essential to eliminate pseudo-heterogeneity being called among the
multiple related samples. The second step is to cluster SNVs based on their CCF by
using the Bayesian Dirichlet process-based clustering in a multidimensional mode
(ndDPClust (https://github.com/Wedge-Oxford/dpclust)4) implemented based on
DPClust v2.2.8 (https://github.com/Wedge-Oxford/dpclust) to identify clonal and
subclonal clusters across multiple samples of the same patient. Other algorithms
including that developed by El-Kebir et al.64 could also be used to infer the evo-
lutionary history of multiple metastatic tumours (see Alves et al.15). However, this
requires equivalent data from the matched primary tumour, which was not feasible
in this case. The DP clusters (identified as local peaks in the posterior mutation
density) are then defined as clonal and subclonal according to their CCF peaks
(with an expectation of one cluster at CCF of 1 representing clonal variants).
Within individual samples, SNVs are annotated as clonal if they are assigned to the
cluster with CCF of 1 and subclonal if assigned to a cluster with lower CCF. SNVs
are annotated as truncal when they are clonal across all samples from a patient.

The third step is to reconstruct patient-level phylogenetic trees based on all
samples. To determine the most likely phylogenetic tree solution, we applied a

previously described mathematical framework4,10. Specifically, we applied the
previously reported sum and crossing rules65. Briefly, the sum rule operates upon
the premise that if the CCFs of 2 mutation clusters in any sample add up to more
than the CCF of their shared ancestral cluster, they must be collinear. The crossing
rule states that if 2 mutation clusters B and C are descendants of mutation cluster
A, and if cluster B has higher CCF than cluster C in one sample and cluster C has
higher CCF than cluster B in another sample, clusters B and C must be branching.
Any mutation cluster that violates these two principles is likely to be an artefact
and thus removed from tree reconstruction. It should be noted that the sum rule
and crossing rule only strictly apply when the infinite sites assumption is assumed.
The model states that each mutation only occurs once during the lifetime of a
tumour and never reverts to normal6.

Given that all metastatic samples were clonally related, only one phylogenetic
tree was constructed for each patient. Individual sample trees are subtrees of the
overall phylogenetic tree, which include just those clones observed within a single
sample. One of the strengths of multi-region sampling is that it exerts a greater
inferential restriction on possible phylogenies, since the above stated principles
must be simultaneously obeyed across all samples from a patient. We reconstructed
the phylogenetic trees for all WGS-based and WES-based patients using clusters
representing at least 1% of the clustered SNVs. In tree visualisation, the relative
branch lengths were made proportional to the fraction of all SNVs assigned to a
cluster and the width of each branch was made proportional to the mean CCF of
that cluster across all samples of the patient.

Simulations of phylogenetic trees with variable subclonal heterogeneity. In
order to further validate the lineage divergence observed in the index autopsy case,
six simulations were undertaken. Briefly, we simulated trees with a trunk of 100,000
SNVs along with a variable set of non-truncal SNVs across four metastases. We
used the same genome-wide coverage distribution (Poisson distribution; lambda=
34) and a similar range of purity as those observed in our WGS dataset for the four
tumours (0.7–0.95). Sequencing coverage at each locus was sampled from the
Poisson distribution and VAF was simulated by sampling the number of mutant
reads from a binomial distribution based on the simulated coverage and success
rate adjusted by purity and ploidy to give the desired CCF distributions (clonal and
subclonal). Three bifurcations were simulated with equal SNV burden on each
branch with the first bifurcation represented by two mutually exclusive clonal
clusters (see Supplementary Fig. 8). In addition, two second-step branches were
assigned as subclonal with different mean CCFs (0.7 vs. 0.3). The first simulation
involved only the truncal cluster with no branching clusters (total SNV= 100,000)
while the other five simulations included all the other six clusters but with varying
SNV burden on each branch, ranging from low to high SNV burden (i.e., 50, 100,
150, 200, and 500 SNVs). This resulted in the total SNV count to range from
100,300 to 103,000 from simulation two to six.

ndDPClust was not only able to detect all clonal and subclonal clusters at all
SNV burden levels (including, for instance, distinguishing 50 variants with mean
CCF of 0.7 unique to one sample from 50 clonal variants shared between two
samples), but it also did not assign any of the non-truncal variants to the truncal
cluster. Moreover, in the truncal-only simulation, ndDPClust did not call any non-
truncal clusters from the noise incorporated in generating the truncal cluster
(especially at this relatively low WGS coverage). This analysis demonstrates that
the non-truncal signals detected in our WGS dataset are detectable by this method
and unlikely to be a result of noise in the data.

Analysis of intra-patient tumour heterogeneity in the primary tumour of the
index autopsy case. As we only had targeted sequencing data on the two FFPE-
based thin primary samples, and not WGS, we could not confidently call CNAs in
these samples. To estimate CCF, we used the protein altering truncal SNVs (N=
652) restricted to those that were in regions of the genome that were diploid in all
metastatic samples (N= 144, 22.2%; closely matching the global proportion of
SNVs in diploid regions in all metastatic samples i.e., 24.6%) and diploidy was
assumed in the primary samples for those loci. The density distribution of VAF was
obtained for both primary samples and the peak with the highest VAF was inferred
as the clonal set of variants. Purity was then estimated as twice the VAF of the
clonal peak. With inferred CNA status and estimated purity, CCF for each SNV
was estimated and ndDPClust was run on both primary samples to detect ITH.

Driver mutation analyses. Melanoma drivers were identified as the 20 defined
genes with relevant biological evidence outlined in a recently published seminal
study2. Based on ndDPClust results, driver mutations present in the truncal cluster
were assigned as truncal and those present in a non-MRCA cluster which formed a
branch were assigned to that branch.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The targeted, whole genome and Affymetrix raw sequencing data have been deposited at
the European Genome-Phenome Archive (EGA) (https://www.ega-archive.org at the
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European Bioinformatics Institute). Data on all somatic SNVs, indels, inversions and
copy number calls for both the index WGS autopsy case and the multi-site WES cases
have also been deposited at the EGA under the following accession ID’s: EGA Study ID:
EGAS00001001348 [ega-archive.org]. Index_autopsy_case: Tumour/normal BAM files
for all WGS data. EGAD00001005072. Index_autopsy_case: Caveman, pindel, battenberg
and brass calls. EGAD00001005483. Index_autopsy_case: Affymetrix gene expression
data. EGAD00010001717. MultiSite_WES_Patients1-7: Tumour/normal BAM files for all
WES data. EGAD00001005421. MultiSite_WES_Patients1-7: Caveman, pindel and
sequenza calls for all WES data. EGAD00001005487. EGA Study ID: EGAS00001003531
[ega-archive.org]. Index_autopsy_case: Targeted pulldown validation in support of the
WGS analysis and targeted pulldown of the primary tumour. EGAD00001005073. The
remaining data are available in the Article, Supplementary Information or available from
the authors upon request.
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Supplementary Figure 1

Supplementary Fig 1. Representative clinical timeline of the index autopsy case, demonstrating rapid
progression from the first appearance of metastatic disease. The volume changes of target lesions
between interval CTs performed 5 weeks apart are shown, with the follow-up imaging taken two weeks
after the completion of whole-brain radiotherapy. This showed only minimal intracranial, but extensive
extracranial disease progression.
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Supplementary Figure 2

Supplementary Fig 2. Sample-level phylogenetic tree for the index autopsy case. Each tree represents a
subtree of the overall phylogenetic tree (Fig. 2D) including just those subclones seen within that particular
sample. However in doing this we were able to segregate the samples based on their respective clonal
lineages. We observed two clear lineages, representing distinct waves of metastatic seeding depicted here
as the lineage 1 and 2 emanating from clusters B (light green) and clusters D (red) respectively. Dotted ovals
represent evidence for polyclonal seeding. Subclones within each oval are found with differing CCFs in 2 or
more samples.
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MultiSite_WES_Patient1

Supplementary Figure 3

Supplementary Fig 3. CCF distribution plot for whole-exome sequenced patient
MultiSite_WES_Patient1. Rows reflect samples and columns reflect alphabetically and
colour-coded mutation clusters (number of SNVs within each cluster is indicated at the top).
This shows that clusters B (yellow) and F (green) were clonal in mutually exclusive samples
and represent mutually exclusive clonal phylogenies at the first bifurcation of the
phylogenetic tree.
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Supplementary Figure 4

Supplementary Fig 4. Sample-level phylogenetic tree for multi-site whole-exome sequenced cases. The
respective branched lineages are depicted for each patient. Dotted ovals represent evidence for polyclonal
seeding. Subclones within each oval are found with differing CCFs in 2 or more samples. Only two patients
(MultiSite_WES_Patient3 and MultiSite_WES_Patient4) displayed polyclonal seeding.
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Supplementary Figure 5

Supplementary Fig 5. Mutational signatures for all SNVs from the index autopsy case. Shows the
mutational profile using the conventional 96 mutation type classification as described by Alexandrov and
colleagues31,49. This classification is based on the six substitution subtypes: C>A, C>G, C>T, T>A, T>C, and
T>G. Further, each of the substitutions is examined by incorporating information on the bases immediately
5’ and 3’ to each mutated base generating 96 possible mutation types. Here we show the signature profiles
including all SNVs from all 13 WGS metastases which as expected, were dominated by signature 7.
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Supplementary Figure 6

Supplementary Fig 6. Mutational signatures from the index autopsy case. A) Here we show the mutational
profiles including; all truncal SNVs in the tree (n~107,000 SNVs) and all non-truncal SNVs (from the six
mutation clusters B-F) in the tree (n=622 SNVs). B) The Global NMF signatures shown represent the ‘best fit’
signatures across all SNVs and the individual percentages for each signature is the proportion which that
signature represents. The cosine similarity reports how closely these signatures together mirror the context
of all SNVs within that cluster group. As expected, the mutational signature for all truncal SNVs is dominated
by signature 7 (90% of SNVs are represented by this signature) whilst this is entirely absent from the non-
truncal clones, which are represented by the APOBEC mutational signatures (2 & 13). The non-highlighted
signatures (1, 5 and 40) shown in black represent relatively featureless (“flat”) oncogenic signatures found in
most cancer types and do-not as yet define any distinguishing biological processes49.
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Supplementary Figure 7

Supplementary Fig 7. Differential expression and principal component analyses from the index autopsy
case. A) Principal component analysis (PCA) of single sample gene-set enrichment (ssGSEA) using the
hallmark gene sets (see Methods)51. A similar pattern of regional separation (represented in Fig. 4A) was
observed between the brain and lung metastases, which again are separated from the corresponding
patient-matched normal organ control samples. Samples are circled using a kernel density estimation. B)
Principal component feature loadings (magnitude and direction) of (A) are shown in the variables factor
map. Each co-ordinate in (B) reflects the correlation coefficient of the biological process to principal
components 1 (x-axis) and 2 (y-axis) from (A). Vectors are coloured according to the major biological
classification of Hallmark gene sets. This revealed that PC2 (on the y-axis), explaining the variation between
the tumour and normal samples (represented by circles and triangles in (A) respectively), is primarily
represented by the up-regulation of oncogenic processes highlighted with a red arrow pointing
(downwards) towards the tumour samples. C) Volcano plot of the genes differentially expressed between
the brain metastases (n=5) versus the patient-matched normal tissue (one sample from brain and lung
respectively, n=2). Each dot represents one gene, dots above the dotted line are considered statistically
significant (FDR-adjusted p-value <0.005 calculated in limma, see methods) and are shaded according to
fold-change cut-offs (log fold-change < -1 coloured in red, and log fold-change >1 in blue). D) Volcano plot of
the genes differentially expressed between the brain (n=5) versus lung metastases (n=4). Dots represent
genes, coloured in the same format as (C). FDR-corrected p-values are calculated in limma, see methods.
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Supplementary Figure 8

Supplementary Fig 8. Simulations of phylogenetic tree reconstructions from the index autopsy case
with variable subclonal heterogeneity.
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Supplementary Table 1. Summary of key clinical and sample details relating to the index autopsy case. The raw sequencing files and variant/CNV calls are all deposited in data availability.

Patient MelResist_PatientID Sex Melanoma subtype
Date of initial 

melanoma 
diagnosis

TSTAGE (at 
initial 

melanoma 
diagnosis)

NSTAGE (at 
initial 

melanoma 
diagnosis)

MSTAGE (at 
initial 

melanoma 
diagnosis)

Date of trial 
registration

Number of lines 
of therapy

Treatment 
name

Treatment start 
date

Treatment end 
date

WGS_SampleID AffySampleID Tumour/Normal Sample_resection_date Sample_type Site Depth Purity_Estimate

Index_autopsy_case 01_123 Male Cutaneous 07/2012 T2a N0 M0 10/2017 1 Whole-brain RT 07/2017 '07/2017 PD38258a PR38258a Tumour 09/2017 Brain Brain_right_superior_frontal_gyrus 33.5134 0.94

Index_autopsy_case 01_123 Male Cutaneous PD38258b NA Normal NA Buffy coat Germline_buffy_coat 37.9218 NA

Index_autopsy_case 01_123 Male Cutaneous PD38258c PR38258c Tumour 09/2017 Brain Brain_right_frontal 36.21725 0.728

Index_autopsy_case 01_123 Male Cutaneous PD38258d PR38258d Tumour 09/2017 Brain Brain_left_superior_parietal 37.81692 0.856

Index_autopsy_case 01_123 Male Cutaneous PD38258e PR38258e Tumour 09/2017 Brain Brain_left_posterior_parietal 36.1521 0.821

Index_autopsy_case 01_123 Male Cutaneous PD38258f PR38258f Tumour 09/2017 Brain Brain_right_parietal 41.0643 0.857

Index_autopsy_case 01_123 Male Cutaneous PD38258h PR38258h Tumour 09/2017 Lung Lung_right_lower_lobe 43.87209 0.511

Index_autopsy_case 01_123 Male Cutaneous PD38258i PR38258i Tumour 09/2017 Lung Lung_left_lower_lobe 41.63439 0.89

Index_autopsy_case 01_123 Male Cutaneous PD38258j PR38258j Tumour 09/2017 Lung Lung_left_upper_lobe1 33.03544 0.883

Index_autopsy_case 01_123 Male Cutaneous PD38258k PR38258k Tumour 09/2017 Lung Lung_left_upper_lobe2 39.93535 0.709

Index_autopsy_case 01_123 Male Cutaneous PD38258m PR38258m Tumour 09/2017 Liver Liver_right_lobe 36.84432 0.884

Index_autopsy_case 01_123 Male Cutaneous PD38258o NA Tumour 09/2017 L hilar lymph node LN_left_hilar 39.42053 0.422

Index_autopsy_case 01_123 Male Cutaneous PD38258r NA Tumour 09/2017 Stomach Stomach_greater_omentum 38.36801 0.586

Index_autopsy_case 01_123 Male Cutaneous PD38258t PR38258t Tumour 09/2017 Heart Heart_right_atrium 40.30025 0.823

Index_autopsy_case 01_123 Male Cutaneous PD38258u NA Tumour 07/2012 Primary Primary_anterior_chest_wall1 NA NA

Index_autopsy_case 01_123 Male Cutaneous PD38258v NA Tumour 07/2012 Primary Primary_anterior_chest_wall2 NA NA
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Supplementary Table 2. Summary of key clinical and sample details relating to the multisite whole-exome sequenced cases. The raw sequencing files and variant/CNV calls are all deposited in data availability.

Patient MelResist_PatientID Sex Melanoma subtype
Date of initial 

melanoma 
diagnosis

TSTAGE (at initial 
melanoma 
diagnosis)

NSTAGE (at initial 
melanoma 
diagnosis)

MSTAGE (at initial 
melanoma 
diagnosis)

Date of trial registration
Number of lines 

of therapy
Treatment name Treatment start date Treatment end date WES_SampleID Tumour/Normal Sample_resection_date Sample_type Site

Target_Region_Coverage_AfterPC
RDupRemoval

MultiSite_WES_Patient1 MR01_034 Female Acral 12/2003 T4b N0 M0 03/2014 2 Roche/RAF/MEK 
Inhibitor

07/2010 09/2011 PD21941i Tumour 06/2015 Distant skin/subcutanoues Subcutaneous nodule left 
inframammary fold

34.5

MultiSite_WES_Patient1 MR01_034 Female Acral Ipilimumab 10/2011 12/2011 PD21941f Tumour 04/2015 Distant skin/subcutanoues Right labia deposit 37.4

MultiSite_WES_Patient1 MR01_034 Female Acral PD21941d Tumour 09/2014 Distant lymph node Left groin node 39.3

MultiSite_WES_Patient1 MR01_034 Female Acral PD21941e Tumour 04/2015 Distant skin/subcutanoues Right shoulder deposit 53.7

MultiSite_WES_Patient1 MR01_034 Female Acral PD21941h Tumour 04/2015 Distant lymph node Right axilla 61.8

MultiSite_WES_Patient1 MR01_034 Female Acral PD21941a Tumour 03/2014 Distant skin/subcutanoues Left Lower limb 67.8

MultiSite_WES_Patient1 MR01_034 Female Acral PD31210b Normal NA Normal Normal 107.5

MultiSite_WES_Patient2 MR01_014 Male Cutaenous 07/2012 T1b 11/2014 0 None PD13325b Normal 11/2012 Normal Normal 63.2

MultiSite_WES_Patient2 MR01_014 Male Cutaenous PD13325a Tumour 11/2012 Primary Right forearm 54

MultiSite_WES_Patient2 MR01_014 Male Cutaenous PD13325c Tumour 08/2014 Distant skin/subcutanoues Right head 94.7

MultiSite_WES_Patient3 MR01_020 Male Cutaenous 07/2012 T4b N0 M0 03/2013 3 Vemurafenib 03/2013 05/2013 PD15682b Normal NA Normal Normal 74.2

MultiSite_WES_Patient3 MR01_020 Male Cutaenous Ipilimumab 05/2013 '08/2013 PD15682c Tumour 05/2013 Regional lymph node  Axillary lymph node 64.8

MultiSite_WES_Patient3 MR01_020 Male Cutaenous Dacarbazine, Cisplatin, 
Vinblastine

11/2008 12/2009 PD15682a Tumour 03/2013 Regional lymph node Left axilla lymph node 68.7

MultiSite_WES_Patient4 MR01_003 Male Cutaenous 03/2004 T4a N1b M1a 02/2012 4 Dacarbazine 04/2004 07/2004 PD13315b Normal NA Normal Normal 71.9

MultiSite_WES_Patient4 MR01_003 Male Cutaenous Ipilimumab 09/2011 11/2011 PD13315c Tumour 02/2012 Distant skin/subcutanoues Left back 42.2

MultiSite_WES_Patient4 MR01_003 Male Cutaenous Vemurafenib 02/2012 11/2013 PD13315a Tumour 02/2012 Distant skin/subcutanoues Right chest 44.5

MultiSite_WES_Patient4 MR01_003 Male Cutaenous Nivolumab 12/2013 05/2016

MultiSite_WES_Patient5 MR01_010 Male Cutaenous 10/2004 T2b N0 M0 07/2012 3 Post-op RT 04/2010 04/2010 PD13615a2 Tumour 07/2012 Regional skin/subcutaneous Skin unspecified 33.3

MultiSite_WES_Patient5 MR01_010 Male Cutaenous Vemurafenib 07/2012 01/2013 PD13615b Normal NA Normal Normal 35.1

MultiSite_WES_Patient5 MR01_010 Male Cutaenous Ipilimumab 01/2013 02/2013 PD13615d Tumour 01/2013 Regional skin/subcutaneous Left lower back 48.9

MultiSite_WES_Patient6 MR01_012 Male Cutaenous 01/2010 TX N0 11/2012 1 Dabrafenib + trametinib 10/2012 06/2013 PD13323d Tumour 10/2012 Distant lymph node Left groin node 46

MultiSite_WES_Patient6 MR01_012 Male Cutaenous PD13323b Normal NA Normal Normal 79.8

MultiSite_WES_Patient6 MR01_012 Male Cutaenous PD13323e Tumour 04/2013 Distant lymph node Left inguinal node 51.3

MultiSite_WES_Patient7 MR01_004 Male Cutaenous 10/2010 T3b N3 M0 04/2012 5 RT (40Gy/20#) 05/2011 06/2011 PD13316b Normal NA Normal Normal 74.9

MultiSite_WES_Patient7 MR01_004 Male Cutaenous Vemurafenib 04/2012 01/2013 PD13316a Tumour 04/2012 Distant skin/subcutanoues Left posterior ear 42.4

MultiSite_WES_Patient7 MR01_004 Male Cutaenous Ipilimumab 01/2013 03/2013 PD13316d Tumour 05/2013 Distant skin/subcutanoues Left supraclavicular fossa 52.2

MultiSite_WES_Patient7 MR01_004 Male Cutaenous Pazopanib 07/2013 09/2013 PD13316e Tumour 11/2013 Regional skin/subcutaneous Left scalp 63.6

MultiSite_WES_Patient7 MR01_004 Male Cutaenous Dabrafenib + trametinib 11/2013 02/2014
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Supplementary tables key

Header Code Explanation

Patient Patient Patient identifier as labelled in this study
MelResist_PatientID MelResist_PatientID Patient code within the clinical trial (Melresist)
Sex Male Male
Sex Female Female
Melanoma subtype Cutaneous Cutaneous/acral primary melanoma subtype
Melanoma subtype Acral
Date of initial melanoma diagnosis Date of initial melanoma diagnosis Date of initial melanoma diagnosis
TSTAGE (at initial melanoma diagnosis) TX Primary tumour cannot be assessed
TSTAGE (at initial melanoma diagnosis) T0 No evidence of primary tumour
TSTAGE (at initial melanoma diagnosis) Tis Melanoma in situ

TSTAGE (at initial melanoma diagnosis)
T1a Melanomas 1.0mm or less without ulceration & mitosis

TSTAGE (at initial melanoma diagnosis)
T1b Melanomas 1.0mm or less with ulceration & mitosis

TSTAGE (at initial melanoma diagnosis) T2a Melanomas 1.01 - 2.0mm without ulceration
TSTAGE (at initial melanoma diagnosis) T2b Melanomas 1.01 - 2.0mm with ulceration
TSTAGE (at initial melanoma diagnosis) T3a Melanomas 2.01 - 4.0mm without ulceration
TSTAGE (at initial melanoma diagnosis) T3b Melanomas 2.01 - 4.0mm with ulceration
TSTAGE (at initial melanoma diagnosis) T4a Melanomas more than 4.0mm without ulceration
TSTAGE (at initial melanoma diagnosis) T4b Melanomas more than 4.0mm with ulceration

NSTAGE (at initial melanoma diagnosis)
NX Patients in whom the regional lymph nodes cannot be assessed

NSTAGE (at initial melanoma diagnosis) N0 No regional lymph node metastasis detected

NSTAGE (at initial melanoma diagnosis)
N1a Melanoma cells in one lymph node with micrometastasis

NSTAGE (at initial melanoma diagnosis)
N1b Melanoma cells in one lymph node with macrometastasis

NSTAGE (at initial melanoma diagnosis)
N2a Melanoma cells in 2 or 3 lymph nodes with micrometastasis

NSTAGE (at initial melanoma diagnosis)
N2b Melanoma cells in 2 or 3 lymph nodes with macrometastasis

NSTAGE (at initial melanoma diagnosis)
N2c

Melanoma cells in 2 or 3 lymph nodes with intransit met(s)/ satellite(s) 
without metastatic nodes

NSTAGE (at initial melanoma diagnosis)
N3

Four or more metastatic lymph nodes, or intransit met(s)/ satellite(s) with 
metastatic nodes

MSTAGE (at initial melanoma diagnosis) M0 No detectable evidence of distant metastasis

MSTAGE (at initial melanoma diagnosis)
M1a Metastasis to skin, subcutaneous, or distant lymph nodes with normal LDH

MSTAGE (at initial melanoma diagnosis) M1b Metastasis to lung with normal LDH

MSTAGE (at initial melanoma diagnosis)
M1c

Metastasis to all other visceral sites with normal LDH or Any distant 
metastasis to any site with elevated LDH

Date of trial registration Date of trial registration Date of trial registration

Number of lines of therapy Number of lines of therapy Number of lines of therapy (up to data extract 15.11.19)

Treatment name Treatment name Treatment name
Treatment start date Treatment start date Treatment start date
Treatment end date Treatment end date Treatment end date

WGS_SampleID WGS_SampleID
Sample IDs for whole-genome sequencing data (index autopsy case only, 
though the two samples from primary tumour were sequenced with custom 
capture pull-down)

WES_SampleID WES_SampleID Sample IDs for whole-exome sequencing data 
AffySampleID AffySampleID Affymetrix sample IDs (index autopsy case only)
Tumour/Normal Tumour Sample is a tumour
Tumour/Normal Normal Sample is normal (germline)
Sample_resection_date Sample_resection_date Date tumour sample was resected from patient
Sample_type Sample_type Type of sample
Site Site Anatomical site of sample

Depth Depth Average depth across the entire whole genome (index autopsy case only)

Purity_Estimate Purity_Estimate
Estimate of tumour purity from copy number call (Battenberg, index autopsy 
case only)

Target_Region_Coverage_AfterPCRDupRem
oval

Target_Region_Coverage_AfterPCRD
upRemoval

Depth after excluding PCR dups, QC failed reads, supplementary and 
secondary read alignments
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Adjuvant systemic therapies are now routinely used following resection of stage III mela-

noma, however accurate prognostic information is needed to better stratify patients. We use

differential expression analyses of primary tumours from 204 RNA-sequenced melanomas

within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This

signature strongly associated with progression-free (HR= 1.63, p= 5.24 × 10−5) and overall

survival (HR= 1.61, p= 1.67 × 10−4), was validated in 175 regional lymph nodes metastasis

as well as two externally ascertained datasets. The machine learning classification models

trained using the signature genes performed significantly better in predicting metastases than

models trained with clinical covariates (pAUROC = 7.03 × 10−4), or published prognostic

signatures (pAUROC < 0.05). The signature score negatively correlated with measures of

immune cell infiltration (ρ=−0.75, p < 2.2 × 10−16), with a higher score representing

reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our

expression signature identifies melanoma patients at higher risk of metastases and warrants

further evaluation in adjuvant clinical trials.
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Cutaneous melanoma (CM) accounts for 75% of skin
cancer-related deaths, and the incidence has been
increasing worldwide1. Most patients present with pri-

mary tumours and the majority will be cured by local surgery.
Outcomes for patients with metastatic melanoma have improved
radically over the past 10 years with the introduction of new
systemic therapies2, although median survival of patients has
remained at ~3 years. Importantly, of those patients who ulti-
mately die of melanoma a significant proportion originally pre-
sented with early-stage disease3, suggesting that there is a
subgroup of these patients who have aggressive tumours. Thus,
optimal management of early melanoma is key to improving
outcomes.
Patients with resected AJCC stage III melanoma are now eli-

gible for adjuvant immune checkpoint inhibitors, as well as
BRAF-targeted therapies, based on randomised trials confirming
a reduction in the risk of relapse and improved overall survival
(OS)4–7. Clinical trials are underway to evaluate similar therapies
in resected stage IIB/C patients8, whose outcomes reflect that of
untreated stage IIIA/B melanoma9. As such, the number of
patients eligible for the treatment with adjuvant therapies over the
coming years is expected to increase substantially. These modern
anti-cancer drugs are high cost and carry a risk of both life-
changing and life-threatening toxicities, so there is a growing
desire to more accurately predict those patients at high risk of
recurrence in whom intervention is expected to be beneficial so-
as-to avoid over-treating patients likely to have been cured of
their disease by surgery alone.
Gene expression signatures have the potential to improve the

prediction of the biological behaviour of melanoma by objectively
defining “high risk” on a molecular level10. Previous tran-
scriptomic analyses of CM identified patterns of gene expression
associated with survival independent of AJCC stage11. Building
on these data, Gerami et al. first reported a proprietary prognostic
gene expression profile (GEP) test utilising a 31-gene panel (28
discriminating and 3 control genes) for use in patients with CM
(Decision-Dx MelanomaTM)12. The test uses quantitative reverse
transcriptase polymerase chain reaction technology to measure
the expression of individual genes from formalin-fixed paraffin-
embedded (FFPE) primary melanomas to provide a binary clas-
sification of low (class 1) or high (class 2) risk for developing
metastases within 5 years of diagnosis (with A and B subclasses to
further stratify risk)13. The signature’s performance has since
been evaluated in a number of retrospective clinical studies
evaluating recurrence-free survival14,15. A further recent unsu-
pervised clustering analysis based on 677 primary melanoma
transcriptomes (generated using the Illumina DASL array plat-
form) embedded within a population-controlled cohort study
from the Leeds Melanoma Cohort (LMC) identified a six-class
150 gene prognostic signature (herein referred to as LMC_150)16.
The signature uniquely demonstrated prognostic relevance
(melanoma-specific survival; MSS) in patients with stage I pri-
mary melanoma and further predicted poor outcomes in patients
undergoing immunotherapy16. Heterogeneity in key aspects of
the aforementioned studies (including varying trial design, sam-
ple type, sequencing platforms and primary outcome measures)
may partially explain the small number of overlapping genes
(n= 4) between both sets of signatures. Furthermore, owing to a
lack of prospective data proving the clinical utility of such
prognostic molecular tools17, there are currently no established
prognostic biomarkers able to accurately identify truly high-risk
patients.
Using patient samples and long-term clinical outcome data

from one of the largest adjuvant melanoma trials18,19, we
undertook RNA sequencing of the primary tumour matched with
robust prospective clinical data to uncover a molecular signature

that could be used to predict patient outcomes. This was then
validated in two externally ascertained datasets.

Results
Prognostic signature generated using covariate-corrected dif-
ferential expression. The structure of the datasets and analyses
are depicted in Supplementary Fig. S1. Principal component
analysis (PCA) showed that primary CMs (n= 204) and mela-
noma spread to local lymph nodes (LNs; n= 175) clustered
separately, suggesting an impact of the microenvironment on
tumour gene expression (Supplementary Fig. S2; see “Methods”
section “Visualization of inherent distribution of samples”). We
therefore decided to treat these as separate datasets, focussing our
analyses on the primary melanoma samples followed by a vali-
dation of our results in the regional LN metastases from this
dataset. We conducted a differential expression analysis, identi-
fying differences in gene expression levels in primary tumours
between those patients with and without distant metastasis over a
minimum of 6 years follow up, while controlling for a key set of
variables that were independently associated with distant metas-
tases, including Stage (AJCC 7th edition20, herein referred to as
“stage”), Breslow thickness, ECOG; Eastern Cooperative Oncol-
ogy Group Performance Status and the experimental adjuvant
therapy (Supplementary Fig. S3a and Supplementary Table S1;
see “Methods” sections “Clinical covariate selection” and “Dif-
ferential expression analysis”). Our analyses revealed 197 sig-
nificantly differentially expressed genes (DEGs, FDR-adjusted p
value <0.1) associated with metastases (Supplementary Figs. S1
and S3b). These DEGs were further filtered to remove pseudo-
genes (n= 39) and those genes not identified within the LMC
DASL array (n= 37)16 to enable external validation of our sig-
nature (Supplementary Fig. S1). We were therefore left with 121
DEGs, which made up our core prognostic signature herein
referred to as “Cam_121” (Supplementary Data 1).

Signature added incremental prognostic value when combined
with conventional clinical staging. In order to explore the
relationship between Cam_121 gene expression and prognosis,
we first performed univariate Cox regression using the weighted
Cam_121 expression score (see “Methods” section “Survival
analyses”) as a predictor. We found that the Cam_121 signature
significantly associated with both OS (hazard ratio (HR)= 1.64
(95% CI 1.30–2.07), p= 3.56 × 10−5) and progression-free sur-
vival (PFS; HR= 1.63 (95% CI 1.31–2.02), p= 8.92 × 10−6;
Fig. 1). In order to evaluate whether the signature score con-
tributed independent prognostic information while controlling
for conventional clinical covariates, multivariate Cox regression
analyses were performed (Fig. 1c). The signature score was sig-
nificantly associated with both OS (HR= 1.61 (95% CI
1.26–2.07), p= 0.000167) and PFS (HR= 1.63 (95% CI
1.29–2.07), p= 5.24 × 10−5) in multivariate Cox regression
models.
In order to avoid the risk of overfitting, we further tested the

performance of Cam_121 in an (entirely separate) set of samples
from regional LN metastasis embedded within this dataset (n=
143). We found that the weighted signature score was also
significantly associated with both OS (HR= 1.72 (95% CI
1.37–2.14), p= 1.53 × 10−6) and PFS (HR= 1.75 (95% CI
1.43–2.16), p= 1.10 × 10−7) in multivariate Cox regression
models (Fig. 2a–c). Thereby indicating that Cam_121 could also
be relevant as a prognostic tool after the resection of stage III
(regional LN positive) melanoma.
We further tested the signatures’ prognostic power in four

externally acquired independent validation datasets from; (i) the
LMC (n= 677)16; (ii) The Cancer Genome Atlas (TCGA-
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SKCM21; skin= 159 and LN= 216); (iii) the Lund Primary
Melanoma Cohort22 (n= 223) and (iv) the Australian Melanoma
Genome Project23. Validation within the LMC confirmed that
Cam_121 was associated with melanoma-specific survival in both
univariate (HR= 1.49 (95% CI 1.27–1.74), p= 5 × 10−7) and
multivariate Cox regression models (HR= 1.7 (95% CI), p=
0.001, Fig. 2d, e). Owing to a lack of power when considering true
primary melanomas within TCGA-SKCM dataset (n= 87),
samples from primary tumours were considered together with
regional cutaneous relapsed tumours (defined herein as “Skin
TCGA-SKCM” (n= 159)) and were tested separately from the

regional LN samples (n= 216). Cam_121 was associated with OS
in both univariate (skin: HR= 1.50, 95% CI= (1.15, 1.96), p=
0.00273; LN: HR= 1.28, 95% CI= (1.06, 1.56), p= 0.0109) and
multivariate survival analyses (skin: HR= 1.59, 95% CI= (1.17,
2.17), p= 0.00348; LN: HR= 1.28, 95% CI= (1.03, 1.59), p=
0.0256) in these two external datasets (Fig. 2f–i). A third external
validation was attempted using the Lund Primary Melanoma
Cohort22 (n= 223); however (owing to the use of less sensitive
sequencing technologies within the study), only 24 of the
Cam_121 genes were identified within this dataset (Supplemen-
tary Fig. S5b). Nonetheless, this 24-gene signature was

Fig. 1 The Cam_121 gene expression signature is strongly associated with survival in uni- and multivariate Cox regression analyses (AVAST-M
primary melanoma cohort; n= 194). Kaplan–Meier survival plots comparing the survival probabilities (y-axes) as a function of time in years (x-axes) of
groups with high and low “Cam_121” (quantile 0.33 split) for outcomes a overall survival (OS) and b progression-free survival (PFS). The p value of a two-
sided logrank test comparing the survival distributions of both groups are indicated. c Forest plot indicating the hazard ratio (HR) estimates relating to the
Cam_121 signature when predicting OS (green) and PFS (orange) by means of Cox proportional hazard models controlling for different (sets of) clinical
variables (y-axis). The HR estimates are indicated by the dots at the centre of the error bars; the horizontal error bars correspond to the 95% confidence
intervals of the HR. The two-sided Wald t test p values corresponding to the signature “Cam_121” parameter are indicated for each model and outcome.
ECOG Eastern Cooperative Oncology Group Performance Status. TIL count Tumour-infiltrating lymphocyte count.
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Fig. 2 Validation of the Cam_121 in further datasets. We explored the Cam_121 signature in the entirely separate lymph node (LN) samples from the
AVAST-M Cohort (a–c; n= 143), as well as in three independently acquired external datasets including the Leeds Melanoma Cohort (d, e; n= 677),
TCGA-SKCM LN (f, g; n= 212) and TCGA-SKCM Skin (h, i; n= 156). AVAST-M LN Cohort: Kaplan–Meier (K–M) survival plots comparing the survival
probabilities (y-axes) as a function of time in years (x-axes) of groups with high and low “Cam_121” (quantile 0.33 split) for outcomes a overall survival
(OS) and b progression-free survival (PFS). The p value of a logrank test comparing the survival distributions of both groups is indicated on each curve.
c Forest plot indicating the hazard ratio (HR) estimates (dots at the centre of the error bars) and corresponding 95% confidence intervals (horizontal error
bars) related to the Cam_121 signature when predicting OS (green) and PFS (orange) by means of Cox proportional hazard models when controlling for
different (sets of) clinical variables (y-axis). The two-sided Wald t test p values corresponding to the signature “Cam_121” parameter are indicated for each
model and outcome. ECOG Eastern Cooperative Oncology Group Performance Status. Leeds Melanoma Cohort: d K–M curve comparing the melanoma-
specific survival probabilities (y-axis) of groups with high and low “Cam_121” (quantile 0.33 split) through time in years (x-axis) and p value of a two-sided
logrank test comparing the survival distributions. e Forest plot showing the HR estimates (dots at the centre of the error bars) and 95% confidence
intervals (horizontal error bars) of the HR estimates corresponding to the continuous signature “Cam_121” parameter when predicting melanoma-specific
survival by means of different Cox proportional hazard models (y-axis). Multivariate correction was undertaken for sex, age, Breslow thickness, ulceration,
mitotic count, as well as BRAF and NRASmutation status and (in the final row), correction was also undertaken for the tumour-infiltrating lymphocyte (TIL)
score. TCGA-SKCM Cohort: f, h K–M curves comparing the overall survival probabilities of groups with high and low “Cam_121” (quantile 0.33 split) and p
value of a two-sided logrank test comparing the survival distributions in TCGA-SKCM LN and TCGA-SKCM Skin datasets, respectively. TCGA-SKCM
Cohort: g, i Forest plot showing the HR estimates (dots at the centre of the error bars) and 95% confidence intervals (horizontal error bars) corresponding
to the of related to the continuous signature “Cam_121” parameter when controlling for different (sets of) clinical variables (y-axes) in the TCGA-SKCM LN
and TCGA-SKCM Skin datasets, respectively. Multivariate correction was undertaken for sex, age, stage and Breslow thickness. The p values of two-sided
Wald t tests corresponding to the signature “Cam_121” parameter are indicated for each model and outcome (no multiplicity correction used).
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significantly correlated with PFS (HR= 1.67 (95% CI 1.06–2.62),
p= 0.03 univariate Cox regression analyses), but not with OS
(p= 0.32) (Supplementary Fig. S5a). A final validation was
attempted using the Australia Melanoma Genome Project
dataset23, in which only 55 samples from a mixture of tissue
sites (including primary tumours, regional LNs, distant metas-
tases, in-transit metastases and others) were available for analysis.
Cox regression parameter estimates showed the same trend as
observed above when comparing the “high”/”low” risk Cam_121
cohorts in this dataset (Supplementary Fig. S4a), however,
significance was not achieved. Our power calculations revealed
that the sample size was too small to statistically detect the effect
of interest with a high probability (Supplementary Fig. S4b; see
power analysis in “Methods” section “Power calculation for the
external validation datasets”).

The published signature from Gerami et al.12 (Decision-Dx
MelanomaTM; n= 27 genes) was not associated with OS in
multivariate models in the AVAST-M primary melanoma dataset.
The signature from Thakur et al.16 (LMC_150; n= 150 genes)
was associated with both OS and PFS, though the wide confidence
intervals may in part be reflective of a higher proportion of stage
III patients in the AVAST-M dataset (Supplementary Fig. S6).

Cam_121 predicts metastasis better than both clinical covari-
ates and published prognostic signatures. We further sought to
determine whether the Cam_121 gene expression signature out-
performs key clinical covariates in predicting whether a primary
melanoma would ultimately metastasise to distant body sites or not.
For this, we developed separate machine learning (ML) classifica-
tion models using the Cam_121 gene expression values as features,
as well as using clinical covariates as features, with the aim of
maximising the area under the sensitivity vs (1-specificity) curve
(herein referred to as “AUROC” (area under the receiver operating
characteristic curve)) as both the metrics are important in this case
(see “Methods” section “Machine learning analysis”; Supplementary
Fig. S15). Note that these clinical covariates were selected inde-
pendently based on their level of association with distant metastases
(Supplementary Table S1a). We found that models trained with the
Cam_121 gene expression signature as features significantly out-
performed the models trained with the clinical covariates as features
(pAUROC= 2.27 × 10−3, psensitivity= 1.79 × 10−3, pspecificity= 0.46;
Supplementary Table S2a), and this remained consistent across all
ML classifiers (Fig. 3a, Supplementary Figs. S7 and S8, and Sup-
plementary Table S2a). The classifier giving the highest AUROC
with the prognostic signature gave better results across all three
performance metrics than the classifier giving the highest AUROC
with the clinical covariates alone: AUROC (0.67 ± 0.12 with the
clinical covariates alone vs 0.83 ± 0.09 with the Cam_121 alone),
sensitivity (0.58 ± 0.16 vs 0.75 ± 0.13) and specificity (0.71 ± 0.16 vs
0.73 ± 0.14; Fig. 3a and Supplementary Fig. S8).
In order to reduce the risk of bias that might result from

feature selection (of both Cam_121 and clinical covariates) and
training/testing from the same dataset, we went on to validate our
findings in an entirely independent dataset represented by the
regional LN samples from within the AVAST-M dataset (n=
143). In this model, the classifiers giving the highest AUROC for
each set of features on the training data (AVAST-M primary
melanoma data) were selected for further validation within
regional LN samples. We found that the classification model
developed using the Cam_121 gene expression signature as
features (AUROC= 0.67) significantly outperformed the classi-
fication model developed using the clinical covariates alone
(AUROC= 0.54; DeLong’s test p value= 0.02, z= 2.05; Fig. 3b
and Supplementary Table S2b). In particular, adding the
signature to the clinical covariates (Cam_121+ clinical

covariates) correctly predicted an additional three overlapping
cases that were missed out by the model trained on the signature
alone (49 overlapping cases in Fig. 3c vs 46 overlapping cases in
Fig. 3d).
In order to test the performance of the published prognostic

signatures from Gerami et al.12 (Decision-Dx MelanomaTM; n=
27 genes) and Thakur et al.16 (LMC_150; n= 150 genes) in
predicting metastases in an unbiased way, we repeated the
training and testing of classification models in the entirely
independent AVAST-M LN dataset (n= 143) from which no
feature selection has been undertaken. We found that
Cam_121 significantly outperformed the baseline clinical covari-
ates (Cam_121 vs clinical covariates: pAUROC= 7.03 × 10−4,
zAUROC= 4.44), as well as these two published signatures at the
5% significance level (Cam_121 vs LMC_150: pAUROC= 0.02,
zAUROC= 2.30; Cam_121 vs Decision-Dx Melanoma: pAUROC=
0.012, zAUROC= 2.45; Fig. 3e and Supplementary Table S2c, d).

Cam_121 gene signature score performed significantly better
than genes selected at random in predicting overall and
progression-free survival. In light of reports suggesting that
randomly selected genes may perform equally well in predicting
prognosis as published signatures24, we further tested the per-
formance of Cam_121 against a signature of 121 randomly
selected genes (from a pool of 19,434 protein-coding genes in our
dataset and repeated 1000 times; see “Methods” section “Testing
signature performance against randomly selected genes”).
Cam_121 significantly outperformed random signatures across all
measures of clinical efficacy including: OS (p= 0.001) and PFS
(p= 0.001) in multivariate Cox regression models (Supplemen-
tary Fig. S9).

Stage II patients with a “high-risk” signature demonstrated a
33% risk of death at 5 years, a threshold for which adjuvant
therapy could be considered. We envisage that one of the central
clinical applications of a prognostic GEP might be to identify
those patients with stage II melanoma who may be at higher risk
of relapse or death and for whom adjuvant systemic therapies
may be considered. In order to compare our data with the
registration adjuvant melanoma trials4–7, we measured the
absolute risk of death at 5 years (calculated as the proportion of
patients who died due to melanoma within 5 years from diag-
nosis; see “Methods” section “Determination of the weighted
expression score cut-off to define “high” and “low” absolute risk
of death at 5 years”).
Analyses within the LMC cohort (where there was a higher

preponderance of early-stage patients) revealed that stage II
patients had a 27% (76/279) baseline absolute risk of death at 5
years. This risk rose to 33% (64/192) in those stage II patients
with a high-risk-weighted Cam_121 expression score profile
and dropped to 14% (12/87) in those stage II patients with a low-
risk profile (Table 1). The stratification of high/low-risk cohorts
in this context was based on a 0.33 quantile cut off of the
weighted Cam_121 expression score and subsequent references to
high/low Cam_121 risk groups refer to these weighted expression
groups.

Per-gene analyses. In order to determine the relative influence of
each gene and each baseline clinical covariate within the ML
model, we analysed their feature importance scores and found
that no single feature dominated the performance of the model
(Supplementary Fig. S10), suggesting that it is the combination of
all the features that yielded improved performance over the
baseline clinical covariates (Fig. 3a, and Supplementary Figs. S7
and S8). In keeping with this, none of the Cam_121 genes proved
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significant in the per-gene multivariate survival analyses after
correcting for multiple testing (p value <0.05), further confirming
that it is the combination of all the Cam_121 signature genes that
provide the improved performance in predicting OS and PFS
(Supplementary Figs. S11 and S12).

We undertook further multivariate Cox regression analyses for
all protein-coding genes in this dataset (n= 19,427) and found no
single gene was significantly associated with either PFS or
OS after correcting for multiple testing (p value < 0.05) (Supple-
mentary Data 2 and Supplementary Data 3).

Fig. 3 The Cam_121 gene expression signature is predictive of metastases across multiple machine learning classification models and in an internal
validation dataset (n= 143). a Plot showing the mean ± standard deviation of area under the ROC curve (AUROC) predicted by different classification models
when trained using tenfold cross validation (CV; repeats= 1000) on the AVAST-M primary melanoma dataset (n= 194). The features used for training each
classification model are indicated on the top grey panel. Within each panel, seven different machine learning classifiers were trained to predict metastases.
Statistical comparison using one-sided two-sample Welch t tests are indicated (see also Supplementary Table S2a). b Area under the ROC curve plots, showing,
for the best performing classification model selected in each panel of a, its performance on an entirely separate AVAST-M lymph node validation dataset (n=
143). The one-sided DeLong’s test p value is reported for each comparison (see also Supplementary Table S2b). c, d Venn diagrams comparing the number of
correctly predicted relapse outcomes (yes/no) of 143 patients from the models described in b. c Venn diagram showing the number of correctly predicted
relapse outcomes specific to or common between “Cam_121+ clinical covariates” (blue) vs “Clinical covariates” (pink). d Venn diagram showing the number of
correctly predicted relapse outcomes specific to or common between “Cam_121”(blue) and “clinical covariates” alone (pink). Out of a total of 143 patients, 30
were wrongly predicted by both the models in c and 36 were wrongly predicted by both the models in d. e Plot showing the performance of different
classification models in predicting metastases in terms of AUROC (mean ± standard deviation) when trained on the AVAST-M lymph node dataset (n= 143).
Within each panel, 14 different machine learning classifiers were trained to predict metastases: seven using tenfold CV (repeats= 1000) and seven using
bootstrap resampling method (repeats= 1000). The two horizontal lines indicated within each panel denote the median AUROC of these seven classifiers,
respectively. Statistical comparison using one-sided two-sample Welch t tests are indicated (bootstrap in green and tenfold CV in orange), see also
Supplementary Tables S2c-d. Decision-Dx Melanoma: Decision-Dx MelanomaTM, LMC_150: Leeds Melanoma Cohort 150 gene signature. See “Methods”
section “Machine learning analysis“ for details about the classification algorithms. Source data are provided as a Source data file.
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A high weighted Cam_121 score reflected a lymphocyte
depleted tumour with worse clinical outcomes. In order to
identify the biological processes reflected by the signature, we ran
pre-ranked gene set enrichment analyses on genes ordered by
their shrunken log-fold change from the covariate-corrected dif-
ferential expression analysis (see “Methods” section “Gene set
enrichment analyses”). In doing this, we found that the top five
significantly (FDR-corrected p value <0.05) downregulated hall-
mark gene sets resulting from this analysis included interferon
(IFN) gamma response, IFN alpha response, allograft rejection,
inflammatory response and IL6-JAK-STAT3 signalling (Supple-
mentary Fig. S13). Interestingly, when we ran gene set enrich-
ment on DEGs derived from the (entirely separate) LN samples
(n= 143; Supplementary Fig. S14), we observed significant (FDR-
corrected p value <0.01) downregulation of the exact same
immune-related processes (Supplementary Fig. S14c). Therefore,
indicating that the differential expression analyses (with a pre-
dominance of downregulated genes in both the primary mela-
noma and regional LN datasets) also reflect a significant
downregulation of key immune-mediated processes in the sam-
ples from patients that developed metastases (Supplementary
Figs. S3b, S13a and S14c).
We next used the Angelova dataset25 to deconvolute the

expression of immune cell subtypes within each sample
(see “Methods” section “Immune cell correlation analysis”). We
found a negative correlation between the weighted signature score
and multiple immune cell types (with the highest correlation
found with activated B cells (ρDistant-Metastases=No=−0.8, exact
two-sided pDistant-Metastases=No < 2.2 × 10−16; Fig. 4a), T cells
(ρDistant-Metastases=No=−0.73, pDistant-Metastases=No < 2.2 × 10−16;
Fig. 4c), as well the overall immune cell expression score
(ρDistant-Metastases=No=−0.75, pDistant-Metastases=No < 2.2 × 10−16;
Fig. 4e). We also found that samples with a high weighted
Cam_121 expression score were more likely to develop metastases
than samples with a low weighted Cam_121 expression score
(Fig. 4b, d, f and Supplementary Table S3). Although nine of the
Cam_121 signature genes were common with the Angelova
immune marker genes (TUBB, AIM2, CASQ1, NTRK1, FASLG,
CCR3, P2RY14, PRF1 and CCR5), we were able to demonstrate
that samples segregated based on overall immune cell score, with
low immune cell expression clustering with high weighted
Cam_121 gene expression scores (Fig. 4g), using PCA.

We further explored the relationship between the weighted
Cam_121 gene expression score and histopathologically assessed
tumour-infiltrating lymphocyte (TIL) scores (applying indepen-
dent scoring criteria with both the Clark26 and Melanoma
Institute Australia (MIA) scores27, see “Methods” section
“Tumour infiltrating lymphocyte analysis”). This further

confirmed a significant negative correlation between the
Cam_121 signature and TIL scores, such that a higher signature
score equated to a relatively immune-deprived tumour with
consequent worse clinical outcomes (Fig. 5). It is nonetheless
important to point out that the Cam_121 signature retained its
prognostic influence even following correction for pathologically
assessed TIL scores, and this remained consistent both within the
AVAST-M and the external validation dataset from the LMC
(Figs. 1c and 2e, respectively).

Discussion. The ability to identify primary melanoma patients at
risk for disease recurrence is an important unmet need and effective
prognostic biomarkers that could serve to guide adjuvant therapy
are lacking. The 31-GEP assay (Decision-Dx MelanomaTM, Castle
Biosciences) has been developed in an attempt to address this
clinical dilemma, however, the majority of published studies eval-
uating its performance have been retrospective or prospective
cohort studies without a comparator group28, and its use has not
been advocated in established clinical guidelines17. We sought to
identify whether the expression of genes in a primary melanoma
tumour could predict for distant metastasis and survival, analysing
data acquired from one of the largest phase III prospective adjuvant
melanoma clinical trials associated with long-term patient outcome
data19. We used covariate-corrected differential expression analyses
to identify 121 genes significantly associated with distant metas-
tases, which made up our signature, and found that this added
prognostic value in both the prediction of metastasis and survival.
The prognostic relevance was further confirmed in two independent
external validation cohorts. Immune cell deconvolution analyses
revealed that the weighted Cam_121 expression score negatively
correlated with multiple measures of lymphocyte infiltration, with a
high weighted signature score reflecting a relatively cold tumour
immune microenvironment with worse long-term prognosis. These
findings were cross-validated using pathologically assessed TIL
scores, as well as gene set enrichment analyses, the latter showing
that differential expression analyses in both primary melanoma
(n= 194) and LN (n= 143) datasets reflected downregulation of
the same key immune-mediated processes in association with
metastases. That this conclusion was reached using unbiased dif-
ferential expression, reaffirms the central importance of the
immune system in this context.
The melanoma microenvironment consists of multiple

immune and stromal cells, which play a critical role in regulating
both the initiation and development of disease. Several studies
have demonstrated the association of lymphocyte infiltration with
longer survival29–31, as well as an inverse relationship between
TIL grade and the presence of LN metastases27,32, implying that
evaluating the tumour microenvironment landscape may hold
promise for prognostic biomarkers. However, only a limited
number of studies have investigated the immune landscape in
primary melanomas. A transcriptomic analysis of primary
melanomas identified six distinct subgroups based on their
expression of immune-related, keratin and beta-catenin pathway
genes33. In this study, patients with low immune but high beta-
catenin score (CIC4) had the poorest OS33. A recent study
utilising high-throughput sequencing of T-cell receptor beta-
chain in T2–T4 primary melanomas (n= 199) indicated that the
T-cell fraction accurately predicted PFS and was independent of
other key clinico-pathologic covariates34. Although in our study it
was difficult to discern specific immune cell subtypes using bulk
RNA sequencing, given that the weighted Cam_121 score was
strongly negatively correlated with B cells, T cells and all immune
cells (ρDistant-Metastases=No=−0.8, −0.73 and −0.75, respectively,
with exact two-sided pDistant-Metastases=No < 2.2 × 10−16) and that
IFN pathways dominated gene set enrichment, we regard this as

Table 1 Clinical utility of GEP test 5-year melanoma-specific
survival (Leeds Melanoma Cohort Data).

AJCC stage GEP_class Death Total Proportion

1 All 17 194 0.09
1 High 11 118 0.09
1 Low 6 76 0.08
2 All 76 279 0.27
2 High 64 192 0.33
2 Low 12 87 0.14
3 All 44 76 0.58
3 High 35 58 0.60
3 Low 9 18 0.50

Number and proportion of deaths per combination of AJCC stage and Cam_121 risk level
estimates (based on 0.33 quantile cut off on weighted Cam_121 gene expression score
expression of all 121 genes). Source data are provided as a Source data file.
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further evidence that a successful immune-mediated cytotoxic
anti-tumour response exists in primary melanoma. Critically, we
found that the signature retained its prognostic power even after
correcting for TIL score, and it is our opinion that quantifying the
expression of these key immune-mediated genes could potentially
provide a more standardised and reproducible measure of
immune activity. Furthermore, the prognostic relevance in both
primary melanoma and LN datasets attests to the signatures’

robustness. The challenge over the coming years will be to
identify and validate a clinically relevant measure of lymphocytic
abundance of relevance to primary CM, that can be easily
implemented in real-life clinical practice. These studies will also
need to consider aspects of cost-effectiveness, which have not
been explored in this analysis.
Interrogating the LMC, we found that the GEP-designated

high/low risk could be used to separate patients with ≥33% risk of

Fig. 4 Weighted Cam_121 score negatively correlates with immune cell expression scores, indicating that a lower weighted signature expression score
is associated with a richer immune microenvironment and better prognosis. Scatterplots and density plots showing the relationship between the
standardised weighted Cam_121 score (x-axes) and a, b, the median activated B-cell gene expression (y-axes), c, d the median T-cell gene expression (y-
axes) and e, f the total immune score (median gene expression of all cell types derived from Angelova et al.25, (y axes). Observations and lines of best fit
are colour-coded according to their metastatic status, with red indicating relapse and blue indicating no relapse. The shaded region in the scatter plots of
a, c and e corresponds to the 95% confidence interval of the line of best fit. The two-sided p values from the Pearson correlation coefficients are indicated
for scatter plots. g Scatterplot of the scores of the observations on the two-first dimensions of a PCA analysis on the overall immune cell expression data.
Observations are colour-coded according to their weighted Cam_121 expression score (“high”/”low” classification based on a quantile 0.33 split, indicated
in red/yellow, respectively). Different symbols are used for observations with “high” (circles) and “low” (triangles) immune cell expression levels based on
a median split. Source data are provided as a Source data file.
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death at 5 years; a risk threshold for which we believe adjuvant
systemic therapies could be considered. Conversely, it is
envisaged that “low-risk” GEP profiles could also be used to
“downstage” stage III patients for whom treatment might be
unnecessary. There is substantial evidence supporting the
importance of pre-treatment immune cell infiltration in eliciting
anti-tumour responses with immunotherapy35, however, it
remains to be seen whether Cam_121 expression can predict
therapeutic responses in this setting. Future well-designed
prospective clinical trials will ultimately be required to examine
whether Cam_121 can be used to better tailor adjuvant therapy
for early-stage melanoma patients.
The present study has a number of advantages over previous

analyses. First, the large sample size linked to a well-conducted
prospective clinical trial enabled an objective assessment of the
risk of distant metastases, in addition to the key survival measures
of interest. Furthermore, the long duration of follow up
(minimum of 6 years) in a cohort of patients predating modern
approved adjuvant systemic therapies provided a unique insight
into the “natural history” of primary CM. Finally, to our
knowledge, this is the first large-scale biomarker analysis in
primary melanoma to make use of data from comprehensive

RNA sequencing. That such unbiased genome-wide assessment
uncovered the dominance of immune-mediated genes reaffirms
the central role of the host immune system’s ability to respond to
the tumour, resulting in immune editing or in some immune
control.
It is important to point out that high-quality evidence guiding

the best practice use of gene expression predictors, particularly in
the context of early-stage CM are lacking. Future trials evaluating
adjuvant therapies should examine both primary and locoregional
melanoma samples using full RNA-sequencing technologies, to
better characterise a molecular subtype/signature that could
ultimately be used in conjunction with existing CM staging
parameters and tailor future interventions more specifically to the
individual. We believe that measures of lymphocytic infiltration
should also be assessed. Ultimately such studies will need to show
that randomising early-stage melanoma patients based on a high-
risk Cam_121 GEP to an intervention (or a change in
surveillance) leads to improved outcomes36.

Our results indicate that the Cam_121 signature score
complements conventional melanoma staging by contributing
prognostically relevant information and could potentially be used
to select early-stage melanoma patients at higher risk of relapse or
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Fig. 5 Cam_121 negatively correlates with tumour-infiltrating lymphocyte counts. Violin plots showing the weighted (standardised) Cam_121 scores (y-
axis) by levels of the TIL scores (x-axes) in the a AVAST-M primary melanoma dataset (n= 137) using Clark et al.26 TIL scores, b Leeds Melanoma Cohort
dataset (n= 499) using Clark et al. TIL scores and c AVAST-M primary melanoma dataset (n= 139) using MIA27 TIL scores. The overall p values per plot
are calculated using Fisher’s ANOVA, and pairwise comparison p values were defined using two-sided Student’s t test. The grey dotted line represents the
33% quantile cut off for the gene expression signature in each dataset. Source data are provided within the Source data file.
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death. Further carefully designed prospective clinical trials will
help guide how molecular features can be incorporated with
traditional clinico-pathologic features to best estimate individual
risk and guide the optimal clinical use of molecular biomarkers.

Methods
AVAST-M melanoma cohort. This study made use of individual patient-level and
transcriptomic data from the phase III adjuvant AVAST-M study, investigating the
role of the angiogenesis inhibitor bevacizumab vs placebo in high-risk primary
CM18,19. One thousand three hundred forty-three stage American Joint Committee
on Cancer stage IIB (T3bN0M0 and T4aN0M0), IIC (T4bN0M0) and III
(TxN1–3M0) cutaneous melanoma (seventh edition AJCC20) were recruited to the
study over the period July 18, 2007–March 29, 2012, as previously described. The
study (including the collection of DNA and RNA) was ethically approved in
accordance with the Declaration of Helsinki (REC reference number 07/Q1606/15,
16th March 2007). Participants provided written informed consent to sampling of
their tumour blocks during study recruitment (and prior to the investigational
systemic therapy).

All study participants underwent a sentinel LN node biopsy, and if positive
proceeded to a completion LN clearance as per the study protocol. Demographic
(including gender, age, centre, as well as pathologic data (site of primary, Breslow
depth, ulceration, LN involvement and BRAF/NRAS mutation by pyrosequencing))
was collected at the time of randomisation. Data were also collected on the timing,
presence/absence and site/s of distant metastases (according to the findings from
CT scanning). Data on overall and progression-free survival were collected with a
minimum of 6 years follow up.

RNA-sequencing data was available on 204 primary melanoma samples of
which 10 samples were removed from the downstream analyses owing to lack of
data on all the clinical covariates, and 175 regional LN samples of which 32 samples
removed from the downstream analyses owing to a lack of data on all clinical
covariates (Supplementary Fig. S1).

Leeds Melanoma Cohort. A primary melanoma transcriptomic dataset from the
LMC study (LMC DASL array) was used as independent replication. This repre-
sents a population-controlled cohort study, as previously described16. This study
recorded data on MSS in 677 patients, calculated from the time of diagnosis to the
time of last follow up or time of death from melanoma, whichever occurred first.
The regression coefficient (beta) for each gene (reflecting differential expression in
AVAST-M dataset) was used to generate a weighted signature score in the new
dataset. Hence for further analysis, a per-sample weighted gene expression score for
our Cam_121 gene signature was calculated by multiplying the expression value of
each gene by its corresponding beta coefficient (Eq. 1) followed by z-score nor-
malisation (zero mean–unit variance).

Weighted signature score ¼
Xn

i¼1

βi ´ genei ð1Þ

where i ranges from 1 to number of genes in the signature and β corresponds to the
beta coefficient of the respective gene obtained from DESeq2 analysis on AVAST-
M melanoma cohort.

Lund Melanoma Cohort. Gene expression data on 223 primary tumours was
generated using the Illumina DASL platform, as previously described22. Data on
relapse-free survival as well as OS were collected. The DASL platform analysed
7752 genes and only 24 of the Cam_121 genes were present. Validation was
undertaken using weighted signature scores as outlined above (Eq. 1).

The Cancer Genome Atlas-SKCM Cohort. The clinical and gene expression data
from TCGA-SKCM21, was downloaded from the cBioPortal37. The TCGA-SKCM
dataset included only CMs, in particular any melanomas within these datasets from
acral, mucosal and other rarer sites were excluded. Samples were filtered to a single
sample per patient giving a total of 375 samples from 375 patients (including 87
primaries, 72 cutaneous relapses and 216 regional LNs).

Australia Melanoma Genome Project Cohort. All fresh frozen and FFPE samples
were obtained in a method that was compliant with the relevant ethical regulations
for work with human participants. The fresh-frozen tissue from the biospecimen
bank of MIA23. All tissues and bloods form part of prospective collections of fresh-
frozen samples accrued with written informed patient consent. The study was
approved by the Sydney Local Health District RPAH zone ethics committee
(Protocol No. X15-0454—previously X11-0289 and HREC/11/RPAH/444; Protocol
No X17-0312—previously X11-0023 and HREC/11/RPAH/32; and Protocol No
X15-0311—previously X10-0300 and HREC/10/RPAH/530). All samples were
independently reviewed by expert melanoma pathologists to confirm the origin of
each tumour from cutaneous skin.

Total RNA was extracted from fresh-frozen tissue using a mirVana miRNA
Isolation Kit (Applied Biosystems, AM1560). RNA quality and presence of a small
RNA fraction were measured using the Agilent 2100 RNA 6000 Nano and small

RNA kits. RNA sequencing was performed using 1 μg of total RNA, which was
converted into messenger RNA libraries using an Illumina mRNA TruSeq kit. RNA
sequencing was performed using 2 × 75 bp paired-end reads on an Illumina
Hiseq2000. Small RNA sequencing was performed using 1 μg of total RNA, which
was converted into a small RNA libraries, size selection range 145–160 bp (RNA of
18–33 nucleotides) using Illumina’s TruSeq Small RNA Library Preparation Kit
and sequenced on an Illumina Hiseq2000 using 50 bp single-read sequencing with
1% control spiked in. RNA sequence reads were aligned to transcripts
corresponding to ensemble 70 annotations using RSEM, raw sequences are
available under study accession EGAS00001001552. Data from 55 samples from a
mixture of tissue sites (including primary tumours, regional LNs, distant
metastases, in-transit metastases and others) were available for this analysis.

mRNA extraction. Histopathological assessments of hematoxylin and eosin (H&E)
stained slides were used to facilitate tumour sampling. Samples were consistently
extracted from the least inflamed, least stromal regions of the invasive front of the
tumour. RNA was extracted using the Roche High Pure FFPE RNA Micro Kit (cat#
04823125001; Genentech Biosciences) according to the manufacturer’s recom-
mendations. RNA quantity and quality were assessed using Agilent’s 2100
bioanalyzer.

Expression data generation. Extracted RNA was sequenced on the Illumina
exome-capture sequencing platform, using 50 base-pair paired-end sequencing.
Quality control (QC) was performed using fastq_utils (https://github.com/
nunofonseca/fastq_utils; v0.14.7) and FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/; v0.11.7). The reads that passed QC were aligned
to the reference genome (GRCh38) using TopHat2 (ref. 38). Aligned reads were
quantified using HTSeq39. Only those genes with more than five reads, as reported
by HTSeq, in at least one sample were selected for further analysis. The sequencing
data was of good quality with a median of ~50 million read-pairs/sample. A total of
446 tumour transcriptomes were profiled which included samples from: primary
tumour (n= 204); LN (n= 175); local/distant relapse (n= 58) and uncategorised
samples (n= 9). However, due to the clinical value of primary tumours in facil-
itating stratification at the earliest disease timepoint, we chose to focus our analyses
on samples from cutaneous primaries (n= 204) and used the LN samples as an
internal validation.

Clinical covariate selection. Firstly, the association between distant relapse (yes/
no) and clinical covariates was studied both with or without controlling for length
of follow up (defined as the time from diagnosis to last follow up) and for treat-
ment (yes/no). When ignoring length of follow up and treatment, generalised
Cochran-Mantel-Haenszel tests (R-package coin40 v1.3-1) were used for nominal
clinical predictors as they have the Pearson’s Chi-square tests and Cochran-
Armitage trend tests as special cases, when respectively considering the clinical
covariate of interest as categorical or ordinal. For ordinal clinical covariates, we
reported the “nominal/nominal” association results when the “nominal/ordinal”
one was found less significant (as it is likely a sign that the assumption of linearity
required by the ordinal test was not met). Mann–Whitney–Wilcoxon tests were
used for continuous clinical covariates. When controlling for length of follow up
and treatment, likelihood ratio tests comparing the fits of logistic regression models
with and without the clinical predictor of interest were used. The p values were
corrected for multiple testing using the Holm–Bonferroni method (Supplementary
Table S1a). Note that, as the five-level stage variable was highly related to Nclass
(Spearman correlation coefficient over 0.85), we picked the one with the lowest
number of levels.

The variables two-level Breslow staging and two-level ECOG were significantly
associated with relapse. The variable two-level treatment was found to be related to
relapse, but is kept as control and the two-level EventMet was the variable of
interest indicating whether the patient relapsed or not. Therefore, the covariates
Stage, Breslow thickness, ECOG and treatment were accounted for in the design
formula of DESeq2 (ref. 41) without interactions and for further downstream
analysis.

Secondly, the association between clinical covariates and OS (calculated from
the time of diagnosis to the time of last follow up or death) and PFS (calculated
from the time of diagnosis to the time of last follow up or death/progression to
metastatic disease, whichever occurred first) was assessed by means of Cox
proportional hazard models (R-package survival42). Both outcomes were
considered as left-truncated due to delayed patient enrolment and right-censored
due to loss of follow up or alive at the time of the end of the study. Six years was
chosen as the minimum cut off for these analyses based on the original trial design.

Stage, sex, age and Nclass were significantly associated with both OS and PFS
(p < 0.05; Supplementary Table S1b, c). The state of distant relapse (“EventMet”)
was the most important variable but was not of our interest, hence dropped. ECOG
is a good predictor. Treatment was not significant (p > 0.05), but was kept in the
analysis. Also for PFS, ulceration (Ulc) was borderline at 5% level and was dropped
from further analysis. Therefore, stage, sex, age, Nclass, ECOG and treatment were
corrected for in subsequent gene-level survival analyses. The AVAST-M primary
melanoma dataset was also corrected for TIL counts (Clark Score, see also section
“Tumour-infiltrating lymphocyte analysis”).
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Differential expression analysis. Differential expression analysis between pri-
mary tumours that became metastatic vs those that remained non-metastatic over
the 6-year study period was performed using the package DESeq2 (ref. 41; v1.18; R
v3.6.1). The negative binomial models we considered controlled for the clinical
covariates Stage, Breslow thickness, ECOG and treatment, as well as for the library
size (offset). Raw read counts were provided as the input, with each column
representing a sample and each row representing a gene, along with the categorical
clinical information about each sample as colData. Samples with missing infor-
mation for any of these four covariates were removed from the analysis, leaving
194 samples in total. The adjusted p value cut off (FDR) was set to 0.1 using the
alpha parameter in DESeq2 results function and genes with FDR <0.1 were con-
sidered significantly differentially expressed.

Log-fold change shrinkage was applied using the lfcshrink function with apeglm
method from the apeglm package43 (v1.6.0; R v3.6). For visualisation and other
downstream analysis, variance stabilising transformation (vst) was used by means
of the DESeq2’s varianceStabilizingTransformation function with option blind=
FALSE.

Machine learning analysis. This section explains the steps followed to develop a
ML classifier for each signature and to evaluate their performance in predicting
relapse (yes/no). A summary of the pipeline is outlined in Supplementary Fig. S15.
The following steps were conducted using the following packages; caret44 v6.0-86,
DESeq2 v1.28.1; R v4.0.2, snakemake45 v5.17.0. The AVAST-M primary melanoma
dataset (n= 194) was used for classification model development and the AVAST-
M LN dataset (n= 143) was used to test the performance of the final model
(internal validation). In an independent analysis, we used only the AVAST-M LN
dataset for both training/testing (“Methods” section “Model development and
selection”).

Dataset preparation and pre-processing. The AVAST-M primary melanoma
(training) dataset was prepared such that each column/feature contained infor-
mation about all the patients/samples. These features could either be the expression
values of the genes within the signature and/or the categorical clinical covariate
metadata. In the latter case, the categorical clinical covariates were converted to
numeric dummy variables using one-hot encoding. The clinical outcome data
(relapse vs non-relapse) were used as labels for the analyses. The AVAST-M LN
dataset (testing) dataset was pre-processed in the same way, such that the order of
the features was preserved as in the training dataset and in case where the clinical
covariates were used as features, they were converted to dummy variables from the
train clinical covariates using the predict function in R.

In case of the gene expression data, vst transformation was applied to both
training and testing dataset. To apply vst transformation on the testing dataset,
mean-dispersion estimates learnt on the training dataset were used.

Next, the features corresponding to near-zero variance were removed using the
default parameters of the trainControl function (R-package caret; i.e., freqCut=
95/5, uniqueCut= 10). The same feature(s) were removed from the testing dataset
before evaluating the performance of the fully trained model.

Model development and selection. The aim of this analysis was to critically assess
whether the Cam_121 gene expression signature (with or without clinical covari-
ates as features) could outperform clinical covariates alone in predicting relapse
(yes/no). We also compared this to the predictive power of two published prog-
nostic signatures (LMC_150 (ref. 16) and Decision-Dx Melanoma12) in an inde-
pendent analysis. In this model, the training/testing was carried out on the
AVAST-M LN dataset instead of AVAST-M primary melanoma dataset on which
feature selection was performed for Cam_121 and clinical covariates. This was
undertaken to reduce the risk of over-optimistic results that might arise from
feature selection and testing from the same dataset. In developing a classification
model for each of these five signatures of interest, seven different ML classifiers
were considered, including; Bayesian generalised linear model46 (bayesglm), Lasso
and elastic-net regularised generalised linear model47 (glmnet), k-nearest neigh-
bour48 (knn), linear discriminant analysis49 (lda), random forest50 (rf) and support
vector machine51 with linear (svmLinear) and radial kernel (svmRadial).

To avoid overfitting, repeated tenfold cross validation (repeats= 1000) was
performed for model development and evaluation. Leave-one-out cross validation
method (Supplementary Fig. S15) and bootstrap resampling method (Fig. 3e;
repeats = 1000) were also tested to see if the choice of resampling method altered
our results. This was implemented using the trainControl function (R-package
caret).

At each training step, a random search was performed using 100 random
(combinations of) hyperparameter(s) and the set of hyperparameter(s) leading to
the largest maximum AUROC estimate on the training dataset was selected. Using
this approach, we obtained 14 different classification models (7 classifiers × 2
resampling methods) for each of the five different signatures. To select the final
best performing classification model for each signature, the model giving the
highest AUROC value was selected for testing on the AVAST-M LN dataset.

When training the random forest classifier on the feature set Cam_121 with
clinical covariates, we estimated the average feature importance score based on
repeated tenfold CV and displayed them by means of boxplots using geom_boxplot
function in R.

Gene expression vs covariate performance comparison per patient. In order to
compare the performance of the signatures: “Cam_121+ clinical covariates”,
“Cam_121” and “clinical covariates” on the AVAST-M LN dataset (n= 143) on a
per-patient basis, the labels predicted by their respective best performing classifiers
were extracted (tenfold CV+ svmRadial, tenfold CV+ svmRadial and tenfold CV
+ svmLinear respectively). Venn diagrams obtained by means of the venn.diagram
function from the VennDiagram package52 (v1.6.20) in R were used to visualise
overlaps.

Statistical analyses. To check whether the Cam_121 gene expression signature
performed better in predicting relapse (yes/no) than models built on clinical cov-
ariates alone across multiple (n= 7) classifiers, Welch Two Sample t tests were used
(R function t.test with option var.equal= FALSE, paired= FALSE and alternative
= “greater”) for each performance metric and each combination of signature and
clinical covariate at the 5% level. The null hypothesis was that the true difference in
mean performance across seven classifiers between both conditions (“clinical cov-
ariates alone” vs “signature with/without clinical covariates”) equals 0, while the
alternative hypothesis was that the true difference in means is >0.

To compare the AUROC obtained on the testing dataset, DeLong’s tests53 were
used using the roc.test function with alternative “greater” from the pROC
package52 v1.16.2 in R, where the null hypothesis is two AUROC obtained from the
model trained on gene expression as features and the model trained on clinical
covariates as features are equal, while the alternate hypothesis is that the model
trained on gene expression as features performs better than the model trained on
clinical covariates as features. The p values and the z decision threshold values from
the test were reported.

Determination of the weighted expression score cut-off to define “high” and
“low” absolute risk of death at 5 years. Data from the LMC were used to
calculate the absolute risk of death at 5 years (this dataset was chosen for this
analysis due to the preponderance of early-stage patients; stage I= 194 samples;
stage II= 279 samples; stage III= 76 samples). Five-year MSS was calculated such
that those patients who died due to melanoma within 5 years of follow up were
assigned event= “Yes” and those that did not were assigned event= “No”. Those
patients who did not yet die and were followed up for <5 years were removed from
the analysis due to inadequate follow up.

The quantile cut offs 0.25, 0.33 and 0.5 were used to divide patients into high/
low groups based on their corresponding weighted Cam_121 expression score.
Absolute risk of death at 5 years was calculated as the ratio of patients where event
= “Yes” to the total number of patients within each stage (I–III). The cut off giving
the maximal separation (of absolute risk of death) between high/low groups was
selected. This was achieved using a 0.33 quantile cut off of the weighed Cam_121
expression score and subsequent references to high/low Cam_121 risk groups refer
to these high/low weighted stratification cohorts.

Survival analyses. For each sample, a vector of weighted signature expression
scores was calculated by using Eq. 1 on the vst normalised gene expression data.
The standardised scores were then used as a continuous predictor in Cox regres-
sion models fitted by means of the coxph function of the survival package42 (v3.1-
12) in R (v3.6.3). The HR (95% CI) and p values corresponding to the signature
were reported in both univariate and multivariate analyses. Note that in case of the
two published signatures, median gene expression scores were used instead of the
weighted gene expression scores.

In order to display Kaplan–Meier (K–M) survival curves, samples were divided
into “high”/“low” signature expression groups based on the 0.33 quantile cut off
which we obtained from the absolute 5-year risk assessment in “Methods” section
“Determination of the weighted expression score cut off to define “high” and “low”
absolute risk of death at 5 years”. Samples with weighted signature expression score
greater than this cut off were assigned to the “high” group and those with weighted
signature expression score lower than this cut off were assigned to the “low” group.
Of note, we found that the 0.33 quantile cut off of the weighted gene expression
scores were remarkably consistent across all the external datasets (data not shown).
The survival distribution of both groups was finally compared by means of logrank
tests using survfit function from the survival package (v3.1-12) in R (v3.6.3). The
parallel processing was conducted using snakemake45 v5.17.0. The K–M curves
were plotted using plot function from the R-package graphics54 v3.6.3 and
ggsurvplot function from R-package survminer55 v0.4.7.

Tumour immune microenvironment analysis. Sample-level gene expression data
from the AVAST-M primary melanoma cohort was deconvoluted into infiltrating
immune cell scores using the Angelova dataset25. This dataset reports 812 marker
genes corresponding to 31 immune cell subtypes. Out of these 812 genes, 53 genes
were missing from our 38,690 gene list. Therefore, two immune cell subtypes
MDSC (myeloid-derived suppressor cells) and NK56_bright (natural-killer
CD56bright cells), with >1% of missing marker genes were removed from further
analysis, leaving 719 marker genes corresponding to 29 cell types.

Immune cell correlation analysis. To perform correlation analysis for each cell type,
the median of the corresponding marker genes’ expression for each sample (y-axis)
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was plotted against the weighted Cam_121 expression score for that sample (x-
axis). To calculate the overall immune score, the median of all 719 marker genes
was used for the analysis.

A regression line was fitted through these points using the geom_smooth
function (method= “lm”) of the ggplot2 package56 (v3.3.0) in R (v3.6.2). The
Pearson’s correlation coefficient (ρ) between the immune cell score and the
signature, as well as the p value of the corresponding test of association were
estimated by means of the function stat_cor of the ggpubr package57 (v0.2.5) in R
(v3.6.2). Samples were coloured according to their metastatic status. With red
points indicating the samples obtained from patients who later metastasised (Yes)
and blue points indicating the samples obtained from patients who didn’t (No).
The density plots were made using the geom_density_2d function of R-package
ggplot2 (ref. 51; v 3.3.0).

To confirm the relationship between the signature and immune cells, a PCA
analysis was performed. For each cell type, the corresponding marker genes’
expression was projected into the principal component space and the first two
principal components explaining the maximum variance were plotted against each
other. These samples were then coloured by the “high”/”low” weighted Cam_121
expression score groups obtained during the survival analysis and shaped by the
“high”/”low” groups based on marker genes’ median expression corresponding to
that particular cell type. Here, to divide the samples into two independent
categories based on their marker genes’ expression, the median cut off was used,
where the sample with marker genes’ median expression value above its overall
median value was assigned to the “high” group and that with marker genes’median
expression value below its overall median value was assigned to the “low” group.

Gene set enrichment analyses. Preranked GSEA (GSEA-P) was implemented using
the GSEAPreranked tool of the GSEA software from Broad Institute58,59 (v4.0.2).
Hallmark gene sets were downloaded from the MSigDB database60 (v6.2.0). The
genes were preranked according to their shrinked log-fold change values obtained
in the differential expression analysis and the GSEAPreranked tool was run with
default parameters with the enrichment statistic set to “classic”.

Tumour-infiltrating lymphocyte analysis. H&E slides corresponding to each of the
194 samples were digitally scanned to 40× magnification using the Vectra Polaris
scanner from AKOYA biosciences. TIL scores were double blindly evaluated by
two experienced pathologists. Two different scoring methods were used including;
(i) the Clark scoring26 and (ii) the MIA system27. This resulted in an agreement of
56% and 40%, respectively. This lack of consistency in scoring (particularly within
the “non-brisk” group) has been previously noted in the literature61,62. We used a
third independent expert pathologist to assess those slides where the two pathol-
ogists failed to agree. After removing the slides with poor scan quality, we had
Clark TIL scores for 133 primary tumours and MIA TIL scores for 135 primary
tumours.

Once the scores were obtained, a violin plot was plotted between the scores and
the standardised weighted Cam_121 score using the geom_violin function of
ggplot2 package. The p values for pairwise comparisons were obtained using t test
and the global p value was computed using ANOVA. This was implemented using
the stat_compare_means function from the R-package ggpubr (v0.2.5)57.

Visualisation of inherent distribution of samples. To visualise if the samples
cluster by their metastatic status, PCA was performed on the primary melanoma
samples (n= 204) and LN samples (n= 175) using 1000 most variable genes. This
analysis was performed using the prcomp function from R-package stats54 (v3.6.2),
plotted using the qplot function from ggplot2 package56 (v 3.2.1) and the scree plot
was generated using the screeplot function, also using the R-package stats54

(v3.6.2). The samples were further coloured by whether they metastasised or not
and shaped by their tissue of origin.

Testing signature performance against randomly selected genes. In order to
test the performance of our signature against randomly selected genes, random
genes of the 121 gene length were selected from 19,434 protein-coding genes. The
analysis was repeated using the exact same pipeline to compare its performance
against our signature. This process was repeated 1000 times without replacement
using 1000 different seeds and the p value testing the significance of our signature
was defined as a left-tailed event for predicting OS/PFS survival. This analysis was
inspired from the SigCheck package63 (v2.14.0) in R (v3.5.1), whereby the plotting
function sigCheckPlotSurvival was modified to accept scores generated from our
analysis.

Power calculation for the external validation datasets. To assess whether sig-
nificant validation of our signature was likely in the external validation datasets, we
performed a simulation-based power analysis considering R= 2500 Monte Carlo
samples. Simulation parameters, like the proportion of events for both outcomes,
the hazard ratios and the predictor and right-censored time-to-event distributions,
were based on the AVAST-M study. The log-normal and exponential distributions
were respectively chosen to model time-to-relapse and time-to-death from time-to-
relapse. The normal distribution was selected to model censoring for both
outcomes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw RNA-sequencing data (forward and reverse fastq files) has been made available
at the European Genome-Phenome Archive at the EBI under the following dataset
accession ID: EGAD00001006401. The source data underlying this paper are also
available through the GitHub repository: Manikgarg/MelanomaTranscriptomics [https://
github.com/Manikgarg/MelanomaTranscriptomics/tree/master/Source_Data)64. The
clinical and gene expression data from The Cancer Genome Atlas (TCGA-SKCM), can
be downloaded from the cBioPortal37. Data from the Leeds Melanoma Cohort16, Lund
Melanoma Cohort22 and the Australia Melanoma Genome Project23 are available from
the source publications.The MSigDB database60 gene set collections are available for
download from http://www.gsea-msigdb.org/gsea/downloads.jsp#msigdb. Source data
are provided with this paper.

Code availability
The code to reproduce the results is available at the GitHub repository: Manikgarg/
MelanomaTranscriptomics (https://github.com/Manikgarg/MelanomaTranscriptomics/
tree/master/scripts)64.
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Supplementary Figure S1. Flow chart of the analysis. The figures corresponding to each specified analysis are 
indicated. OS: Overall survival; PFS: progression-free survival; MSS: melanoma-specific survival; LN: lymph node.
ECOG: Eastern Cooperative Oncology Group Performance Status.

AVAST-M Expression 
Dataset (n=446 samples)

Primary melanoma dataset 
(n=204 samples) 

Non-primary samples removed:
-Lymph node (n=175 samples)
-Local/distant relapse (n=58 samples)
-Uncategorised (n=9 samples)

Stages:
-IIB (n=47 samples)
-IIC (n=45 samples)
-IIIA (n=29 samples)
-IIIB (n=57 samples)
-IIIC (n=26 samples)

Differential expression; 
Patients with distant relapse (n=89) vs no distant-
relapse (n=105) (covariate corrected, adjusted p-

value <0.1) (n=197 genes) 
(Supplementary Figure S3)

Filter-out:
Pseudogenes (n=39 genes) 

158 gene
signature

Removed 10 samples with no data on 
the corrected covariates (Stage, 
Breslow thickness, ECOG PS, 
treatment) 

Predictive of survival (OS and PFS)
(Figure 1)

Fitted Cox-proportional 
hazards regression model

Leeds Melanoma Cohort (n=677 
samples)

Predictive of MSS
(Figure 2d-e)

Filter-out:
Genes not in LMC DASL array 
(n=37 genes) 

Cam_121 (gene signature)

Predictive of metastases
(Figure 3a; Supplementary Figure S7, S8)

Trained multiple machine 
learning models

TCGA-SKCM data 
(LN: n=216 samples, 
Skin: n=159 samples)

Predictive of OS
(Figure 2f-i)

AVAST-M LN data 
(n=143 samples)

Validation

AVAST-M LN data 
(n=143 samples)

Predictive of OS and PFS
(Figure 2a-c)

Predictive of metastases
(Figures 3b, 3e)
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Supplementary Figure S2. PCA of the 1000 most variable genes, showing that samples separated by their tissue site
of origin. a) Scree-plot showing the variance of the data (y-axis) explained by each of the 10 first principal components
(x-axis). b) Biplot of the scores of the observations on the two first dimensions of a PCA analysis on the 1000 most
variable genes. The samples are colour-coded according to their relapse status (yes in red, no in blue) and shaped
according to their tissue of origin (primary melanoma samples in triangles, lymph nodes in circles). The x-axis of the
biplot, accounting 40.3% of the total variance, shows that samples are clustered primarily based on the tissue site of
origin. Source data are provided as a Source Data file.
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Supplementary Figure S3. Covariate-corrected differential expression analysis for primary melanoma samples
(comparing metastases vs non-metastases). a) Schematic flowchart indicating the number of samples considered in
the differential expression analysis. b) Volcano plot showing, for each gene, the -log 10 FDR corrected p-value (y-axis)
and the corresponding log-fold change estimate within the differential expression analysis (x-axis). The (predominant)
downregulated (144/197, 73.1%) and upregulated (53/197, 26.9%) DEGs are respectively coloured in red and blue for
genes with a p-value < 0.1 after Benjamini and Hochberg multiplicity correction (this p-value cut-off is represented by
the dashed horizontal grey line). Source data are provided as a Source Data file.

Up-regulated 
Down-regulated

Trial entry

Skin primaries, 194

Distant 
recurrence, 89

No distant 
recurrence, 89
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Supplementary Figure S4: Validation of Cam_121 within a third independently acquired external dataset (Australia
Melanoma Genome Project, n=55). a) Kaplan-Meier curve comparing the melanoma specific survival probabilities (y-
axis) of groups with high and low “Cam_121” (quantile 0.33 split) as a function of follow-up time in years (x-axis). Note
that this dataset contains samples (n=55) from a variety of tissue sites (including primary tumours, regional lymph
nodes, distant metastases, in-transit metastases and others) The p-value of a two-sided logrank test comparing the
survival distributions of both groups is indicated. b) Simulation-based power analysis based on the AVAST-M study
considering R=2500 Monte Carlo samples. The plot shows the power (y-axis) as a function of the sample size (x-axis)
when modelling two survival outcomes, the time to relapse (green lines) and time to death from any cause (red lines),
as a function of our signature, both considered as a dichotomous (solid line) and continuous (dashed line) predictor. A
sample size greater than n=115 would be required to obtain a power greater than 80% in all cases.
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Supplementary Figure S5. Partial validation of Cam_121 within a fourth independently acquired external dataset
(Lund Melanoma Cohort, n=223). a) Kaplan-Meier plot comparing the progression free survival probabilities (y-axis) of
groups with high and low “Cam_121” (quantile 0.33 split) as a function of time in years (x-axis) within the Lund
Melanoma Cohort (n=223) and p-value of a two-sided logrank test comparing the survival distributions. Note that only
24 genes out of 121 were identified within the Lund dataset. The Wald t-test p-values corresponding to the signature
“Cam_121” is indicated. b) Violin plots showing the median gene expression values (normalized using variance
stabilizing transformation (vst)) of the genes (y-axes) in each signature (x-axes). Note that for the signature
“Lund_DASL” (pink), all the 7739 genes present in the Lund Melanoma Cohort were used for calculating the median
expression value in each dataset. Left panel: median expression within the AVAST-M primary melanoma dataset
(n=194), right panel: median expression within TCGA-SKCM Skin dataset (n=159). The median (vst normalized)
expression values for each signature were plotted using the geom_violin and geom_boxplot function of the R-package
ggplot2. The center of the box-plot denotes the median value; the bounds of the box denote the 25th percentile and
the 75th percentile values; the dots denote the outliers lying ± 1.5 times beyond the interquartile range from the
bounds of the box (shown by the minima and maxima of the box-plot).
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Supplementary Figure S6. Forest plot of univariate and multivariate survival analysis for the two previously
published signatures (Gerami and LMC_150). Forest plot indicating the hazard ratio (HR) estimates (dots at the centre
of error bars), corresponding to 95% confidence intervals of the HR estimates (horizontal error bars) and two-sided
Wald t-test p-values related to the signature parameter when considering the signature definitions of a) Gerami and b)
LMC_150 when predicting overall survival (green) and progression free survival (orange) by means of Cox proportional
hazard models when controlling for different (sets of) clinical variables (y-axes). No multiplicity correction were used.
ECOG: Eastern Cooperative Oncology Group Performance Status. TIL count; Tumour-infiltrating lymphocyte count.

a

b
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Supplementary Figure S7. Comparison of 10-Fold and Leave-one out cross validation within the machine learning
model (training). Plot showing, for each set of predictors (panels) and 7 different classification models (x-axis), the
mean ± sd AUROC obtained from 10-Fold cross validation in green (repeats = 1000) and the AUROC estimates from
leave-one-out cross-validation in orange. The final classification remained consistent across both cross-validation
approaches. The p-values of statistical comparisons using one-sided two-sample Welch t-tests are indicated (see also
supplementary table S2a). See methods section 10 for details about the classification algorithms. Source data are
provided as a Source Data file.

p=1.34x10-7 p=0.02
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Supplementary Figure S8. Machine learning results across multiple classifiers, showing that Cam_121 outperforms
clinical covariates using 10-Fold CV (repeats = 1000). Plots showing, for each set of predictors (columns), the mean ±
sd scores of a) sensitivity b) and specificity (y-axes) of the 7 selected classifiers (x-axes). The p-values of statistical
comparisons using one-sided two-sample Welch t-tests are indicated (see also supplementary table S2a). See methods
section 10 for details about the classification algorithms. Source data are provided as a Source Data file.

p=4.87x10-7 p=0.02

p=0.41 p=0.46
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Supplementary Figure S9. The Cam_121 signature significantly outperforms 1000 sets of 121 randomly selected
protein-coding genes. Plots showing the densities of the p-values corresponding to the Cam_121 gene signature when
considering random signatures (smoothed densities) in terms of a) OS and b) PFS in multivariate Cox regression
models. The one-sided p-values obtained with the Cam_121 signature appear as red vertical lines. The p-values are
defined as the fraction of scores of random signatures which are greater than those observed using the (real) Cam_121
gene signature. The dotted red vertical lines correspond to -log10(0.05), i.e., to the 5% cutoff meaning that only 5% of
the p-values (on the -log10 scale) corresponding to random signatures would be beyond this point if random
signatures had no predictive effect. In a) and b) No multiplicity corrections were used to define the p-values indicated
in the legend.
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Supplementary Figure S10. Feature importance score (FIC) for each gene in Cam_121 showing similar scores across
all genes within the random forest machine learning model suggesting that, rather than the dominance of any single
gene, it is a composite analysis of all genes that contribute to the signatures’ prognostic power. Genes are ranked in
decreasing FIC order. The clinical covariates are indicated on the top for comparison. Source data are provided as a
Source Data file.
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Supplementary Figure S11. Multivariate survival analysis (OS) for each Cam_121 signature gene. Forest plot
indicating the hazard ratio (HR) estimates (vertical lines at the centre of error bars) and horizontal error bars
corresponding to 95% confidence intervals of the HR estimates for each Cam_121 gene ranked in increasing order of
HR. The corresponding two-sided Wald t-test p-values (before FDR correction) are indicated on the right. No single
gene proved significant after correction for multiple testing (FDR corrected p-value<0.05). This therefore suggests that
it is a composite analysis of all genes that contribute to the signatures’ prognostic power rather than the dominance of
any single gene. No multiplicity correction were used.
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Supplementary Figure S12. Multivariate survival analysis (PFS) for each Cam_121 signature gene. Forest plot
indicating the hazard ratio (HR) estimates (verrical lines at the centre of error bars) and horizontal error bars
corresponding to 95% confidence intervals of the HR estimates for each Cam_121 gene ranked in increasing order of
HR. The corresponding two-sided Wald t-test p-values (before FDR correction) are indicated on the right. No single
gene proved significant after correction for multiple testing (FDR corrected p-value<0.05). This therefore suggests that
it is a composite analysis of all genes that contribute to the signatures’ prognostic power rather than the dominance of
any single gene. No multiplicity correction were used.
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Supplementary Figure S13. Results of gene set enrichment analysis showing downregulation of key immune-related
pathways in primary melanoma samples destined for metastases. a) Barchart of the top five most significant down-
regulated Hallmark gene sets (p<0.01 for all gene sets). b-f) The corresponding enrichment plots from (a). The top
portion of the plot shows the running enrichment score for the gene set as the analysis walks down the ranked list.
The middle portion of the plot shows where the members of the gene set appear in the ranked list of genes and the
bottom portion of the plot shows the value of the ranking metric as one moves down the list of ranked genes. Source
data are provided as a Source Data file.
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Supplementary Figure S14. Results of differential expression and gene-set enrichment analysis comparing
metastases vs non-metastases in lymph node samples (n=143), uncovering the same results as those obtained from
primary melanoma samples. a) A schematic of the number of samples in the covariate corrected differential
expression analysis. b) Volcano plot showing, for each gene, the -log 10 FDR corrected p-value (y-axis, FDR<0.1) and
the corresponding log-fold change estimate within the differential expression analysis (x-axis). The (predominant)
downregulated (1967/3022 (65.1%)) and up upregulated DEGs (1055/3022 (34.9%)) are respectively colour-coded in
red and blue for genes showing a p-value < 0.1 after Benjamini and Hochberg multiplicity correction. c) Barplot
showing downregulation of the same top five immune-related pathways as those identified in primary melanoma
sample analyses (FDR corrected p-value<0.01 for all gene sets) (Supplementary Figure S13A). Source data are provided
as a Source Data file.
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Supplementary Figure S15. Schematic outline of the machine learning analysis. The AVAST-M primary melanoma
dataset was used for training the machine learning and the AVAST-M lymph node dataset was used for testing the final
model. Three different sets of features were considered for comparison: (i) considering the Cam_121 gene expression
values only as features, (ii) one-hot encoded clinical covariates only as features, (iii) Cam_121 gene expression values
as well as one-hot encoded clinical covariates as features. For each set of features, 7 different classifiers were trained
using 10-Fold cross-validation (CV repeats = 1000) or leave-one-out cross validation (LOOCV) and the classifier giving
the highest mean area under the ROC curve (AUROC) value was selected as the final model (see methods section 10).
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Supplementary Table S1a: Analyses of the clinical covariates associated with metastases: relapsed (n=590) vs non-
relapsed (n=753). Corrected for the length of follow-up and treatment. The likelihood ratio test p-values were
calculated and corrected for multiple testing using Holm-Bonferroni method (see Methods section 8).

Clinical Covariate p-value Adjusted p-value

Stage 1.01x10-25 1.11x10-24

Nclass 1.07x10-21 1.07x10-20

ECOG 0.0036 0.03

Treatment 0.045 0.36

Age 0.076 0.53

BRAF 0.1 0.6

Sex 0.56 1

Site 0.79 1

Breslow thickness 0.22 1

Ulceration 0.68 1

NRAS 0.21 1

Supplementary Table S1b: Analyses of the clinical covariates associated with overall survival. The p-values from the
partial-likelihood-ratio tests performed on the coxph model objects are reported.

Clinical Covariate Pr(>|Chi|)

EventMet 4.90x10-157

Sex 4.61x10-3

Age 3.20x10-3

I(Age^2) 3.04x10-1

as.numeric(Nclass) 1.42x10-2

Stage 8.78x10-2

Site 7.70x10-1

Breslow thickness 6.43x10-1

Ulceration 8.40x10-1

Treatment 4.80x10-1

ECOG 2.14x10-2
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Supplementary Table S1c: Analyses of the clinical covariates associated with progression-free survival. The p-values
from the partial-likelihood-ratio tests performed on the coxph model objects are reported.

Clinical Covariate Pr(>|Chi|)

EventMet 1.73x10-278

Sex 1.55x10-1

Age 1.03x10-1

I(Age^2) 6.61x10-1

as.numeric(Nclass) 5.81x10-3

Stage 1.76x10-3

Site 4.28x10-1

Breslow thickness 3.72x10-2

Ulceration 4.51x10-1

Treatment 8.68x10-1

ECOG 7.22x10-1
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Supplementary Table S2a: Statistical analysis of mean classifier results shown in Figure 3a and Supplementary Figure
S8. The mean performances of 7 classifiers for signatures were compared in a pairwise manner using one-sided two-
sample Welch t-tests implemented in R by the function t.test() with parameters (var.equal = FALSE, paired = FALSE,
alternative = "greater"). No multiplicity correction were used.

Signature > Clinical covariates

ROC (p-value) Sensitivity (p-value) Specificity (p-value)

p-value z-statistic p-value z-statistic p-value z-statistic

Cam_121 + Clinical Covariates 

> Clinical Covariates 1.34E-07 8.05E+00 4.87E-07 6.5796 0.4079 0.2353

Cam_121 > Clinical Covariates 0.0023 4.2749 0.0018 3.8075 0.4634 0.0937

Supplementary Table S2b: Statistical analysis of ROC curves shown in Figure 3b. The ROC curves were compared
using the roc.test() function in R with parameters (method="delong", paired=FALSE, alternative = "greater"). The one-
sided DeLong’s p-values and the test statistic for each comparison are reported. No multiplicity correction were used.

Signature > Clinical covariates DeLong's p-value DeLong's Z-statistic

Cam_121 + Clinical Covariates > 

Clinical Covariates 0.0136 2.2098

Cam_121 > Clinical Covariates 0.0202 2.0502

Supplementary Table S2c: Statistical analysis of mean classifier results shown in Figure 3e (bootstrap). The mean
performances of 7 classifiers for signatures were compared in a pairwise manner using one-sided two-sample Welch t-
tests implemented in R by the function t.test() with parameters (var.equal = FALSE, paired = FALSE, alternative =
"greater"). No multiplicity correction were used.

Signature1 > Signature2

ROC Sensitivity Specificity

p-value z-statistic p-value z-statistic p-value z-statistic

Cam_121 + Clinical 

Covariates > Clinical 

Covariates 0.000387 4.07E+00 3.47E-04 3.8534 0.6684 -0.4411

Cam_121 > Clinical 

Covariates 0.000703 4.4371 0.0283 2.1533 0.3698 0.3419

LMC_150 > Clinical 

Covariates 0.109007 1.3209 0.2835 0.5928 0.2565 0.6755

Decision-Dx Melanoma > 

Clinical covariates 0.105969 1.3439 0.1579 1.0642 0.4710 0.0749

Cam_121 > LMC_150 0.015221 2.4532 0.1208 1.2322 0.5786 -0.2030

Cam_121 > Decision-Dx 

Melanoma 0.020351 2.2962 0.2679 0.6385 0.4215 0.2023
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Supplementary Table S2d: Statistical analysis of mean classifier results shown in Figure 3e (10-Fold cross validation).
The mean performances of 7 classifiers for signatures were compared in a pairwise manner using one-sided Welch
Two Sample t-tests implemented in R by the function t.test() with parameters (var.equal = FALSE, paired = FALSE,
alternative = "greater")

Signature1 > Signature2

ROC Sensitivity Specificity

p-value z-statistic p-value z-statistic p-value z-statistic

Cam_121 + Clinical 

Covariates > Clinical 

Covariates 3.87E-04 4.07E+00 3.47E-04 3.85E+00 6.68E-01 -4.41E-01

Cam_121 > Clinical 

Covariates 5.43E-02 1.83E+00 1.34E-02 2.53E+00 8.08E-01 -9.22E-01

LMC_150 > Clinical 

Covariates 4.86E-01 3.73E-02 9.52E-02 1.39E+00 8.06E-01 -9.16E-01

Decision-Dx Melanoma > 

Clinical covariates 1.71E-01 9.95E-01 1.07E-01 1.31E+00 7.28E-01 -6.26E-01

Cam_121 > LMC_150 8.71E-02 1.45E+00 2.55E-01 6.83E-01 4.88E-01 3.13E-02

Cam_121 > Decision-Dx 

Melanoma 1.35E-01 1.18E+00 1.38E-01 1.14E+00 6.93E-01 -5.22E-01
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Supplementary Table S3: Distribution of clinical covariates across the high versus low risk signature groups. Please
note that the corresponding two-sided statistical test used to obtain the p-values is indicated in the last column of the
table. No multiplicity correction were used.

Variable Levels Statistics Overall

Signature -

high

Signature -

low P-value Statistical test

Full dataset n 194 130 64

Sex

Male n (%) 123 (63.4%) 83 (63.8%) 40 (62.5%)

0.9804 Chi-square test

Female n (%) 71 (36.6%) 47 (36.2%) 24 (37.5%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

Age Median (IQR)

57.0 (44.0-

66.0)

57.5 (44.0-

66.0)

56.0 (43.5-

65.2) 0.9375 Welch's test

Site

Head and 

neck n (%) 39 (20.1%) 25 (19.2%) 14 (21.9%)

0.4741 Chi-square test

Lower limbs n (%) 55 (28.4%) 41 (31.5%) 14 (21.9%)

Trunk n (%) 71 (36.6%) 47 (36.2%) 24 (37.5%)

Upper limbs n (%) 29 (14.9%) 17 (13.1%) 12 (18.8%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

Bres

<= 2.0 mm n (%) 31 (16.0%) 22 (16.9%) 9 (14.1%)

0.7347 Chi-square test

>2-4mm n (%) 63 (32.5%) 40 (30.8%) 23 (35.9%)

>4.0mm n (%) 100 (51.5%) 68 (52.3%) 32 (50.0%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

Ulc

Present n (%) 104 (53.6%) 66 (50.8%) 38 (59.4%)

0.5543 Chi-square test

Absent n (%) 83 (42.8%) 57 (43.8%) 26 (40.6%)

Missing n (%) 7 ( 3.6%) 7 ( 5.4%) 0 ( 0.0%)

Nclass

N0 n (%) 80 (41.2%) 44 (33.8%) 36 (56.2%)

0.0115 Fisher's test

N1a n (%) 32 (16.5%) 25 (19.2%) 7 (10.9%)

N1b n (%) 17 ( 8.8%) 11 ( 8.5%) 6 ( 9.4%)

N2a n (%) 19 ( 9.8%) 17 (13.1%) 2 ( 3.1%)

N2b n (%) 5 ( 2.6%) 3 ( 2.3%) 2 ( 3.1%)

N2c n (%) 13 ( 6.7%) 7 ( 5.4%) 6 ( 9.4%)
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Supplementary Table S3: Distribution of clinical covariates across the high versus low risk signature groups
(continued)

Variable Levels Statistics Overall

Signature -

high

Signature -

low P-value Statistical test

N3 n (%) 18 ( 9.3%) 16 (12.3%) 2 ( 3.1%)

Missing n (%) 10 ( 5.2%) 7 ( 5.4%) 3 ( 4.7%)

Nclass_binar

y

Positive n (%) 104 (53.6%) 79 (60.8%) 25 (39.1%)

0.0046 Chi-square test

Negative n (%) 80 (41.2%) 44 (33.8%) 36 (56.2%)

Missing n (%) 10 ( 5.2%) 7 ( 5.4%) 3 ( 4.7%)

Stage

IIB n (%) 45 (23.2%) 21 (16.2%) 24 (37.5%)

0.0145 Fisher's test

IIC n (%) 45 (23.2%) 30 (23.1%) 15 (23.4%)

IIIA n (%) 29 (14.9%) 23 (17.7%) 6 ( 9.4%)

IIIB n (%) 51 (26.3%) 37 (28.5%) 14 (21.9%)

IIIC n (%) 24 (12.4%) 19 (14.6%) 5 ( 7.8%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

Stage_binary

II n (%) 90 (46.4%) 51 (39.2%) 39 (60.9%)

0.007 Chi-square test

III n (%) 104 (53.6%) 79 (60.8%) 25 (39.1%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

BRAF

V600E n (%) 75 (38.7%) 50 (38.5%) 25 (39.1%)

1 Chi-square test

WT n (%) 104 (53.6%) 69 (53.1%) 35 (54.7%)

Missing n (%) 15 ( 7.7%) 11 ( 8.5%) 4 ( 6.2%)

NRAS

Mutant n (%) 35 (18.0%) 23 (17.7%) 12 (18.8%)

1 Chi-square test

WT n (%) 63 (32.5%) 40 (30.8%) 23 (35.9%)

Missing n (%) 96 (49.5%) 67 (51.5%) 29 (45.3%)

BRAF_NRAS_

WT

Yes n (%) 70 (36.1%) 47 (36.2%) 23 (35.9%)

1 Chi-square test

No n (%) 109 (56.2%) 72 (55.4%) 37 (57.8%)

Missing n (%) 15 ( 7.7%) 11 ( 8.5%) 4 ( 6.2%)
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Supplementary Table S3: Distribution of clinical covariates across the high versus low risk signature groups
(continued)

Variable Levels Statistics Overall

Signature -

high

Signature -

low P-value Statistical test

treatment

Bevacizumab n (%) 100 (51.5%) 68 (52.3%) 32 (50.0%)

0.8811 Chi-square test

Observation n (%) 94 (48.5%) 62 (47.7%) 32 (50.0%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

ECOG

Symptomatic n (%) 16 ( 8.2%) 13 (10.0%) 3 ( 4.7%)

0.2725 Fisher's test

Asymptomat

ic n (%) 178 (91.8%) 117 (90.0%) 61 (95.3%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)

EventMet

Yes n (%) 89 (45.9%) 71 (54.6%) 18 (28.1%)

0.0009 Chi-square test

No n (%) 105 (54.1%) 59 (45.4%) 46 (71.9%)

Missing n (%) 0 ( 0.0%) 0 ( 0.0%) 0 ( 0.0%)
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