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“The world is full of lies. Memory is 
fuzzy and unreliable. Words we say are 
often transformed and what ends up in 

the pages of history is an 
amalgamation of people’s perception 
of us through time. But science…man 

science is cool” 

Winston Churchill  
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Abstract 
 

Diet and lifestyle have changed dramatically in the last few decades, leading to an increase 

in prevalence of obesity, defined as a body mass index >30Kg/m2, dyslipidaemias (defined as 

abnormal lipid profiles) and type 2 diabetes (T2D). Together, these cardiometabolic traits 

and diseases, have contributed to the increased burden of cardiovascular disease, the 

leading cause of death in Western societies.  

Complex traits and diseases, such as cardiometabolic traits, arise as a result of the 

interaction between an individual’s predisposing genetic makeup and a permissive 

environment.  Since 2005, genome-wide association studies (GWAS) have been successfully 

applied to complex traits leading to the discovery of thousands of trait-associated variants. 

Nonetheless, much is still to be understood regarding the genetic architecture of these 

traits, as well as their underlying biology. This thesis aims to further explore the genetic 

architecture of cardiometabolic traits by using complementary approaches with greater 

genetic and phenotype resolution, ranging from studying clinically ascertained extreme 

phenotypes, deep molecular profiling, or sequence level data. 

In chapter 2, I investigated the genetic architecture of healthy human thinness (N=1,471) 

and contrasted it to that of severe early onset childhood obesity (N=1,456). I demonstrated 

that healthy human thinness, like severe obesity, is a heritable trait, with a polygenic 

component. I identified a novel BMI-associated locus at PKHD1, and found evidence of 

association at several loci that had only been discovered using large cohorts with >40,000 
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individuals demonstrating the power gains in studying clinically ascertained extreme 

phenotypes.  

In chapter 3, I coupled high-resolution nuclear magnetic resonance (NMR) measurements in 

healthy blood donors, with next-generation sequencing to establish the role of rare coding 

variation in circulating metabolic biomarker biology. In gene-based analysis, I identified 

ACSL1, MYCN, FBXO36 and B4GALNT3 as novel gene-trait associations (P<2.5x10-6).  I also 

found a novel link between loss-of-function mutations in the “regulation of the pyruvate 

dehydrogenase (PDH) complex” pathway and intermediate-density lipoprotein (IDL), low-

density lipoprotein (LDL) and circulating cholesterol measurements. In addition, I 

demonstrated that rare “protective” variation in lipoprotein metabolism genes was present 

in the lower tails of four measurements which are CVD risk factors in this healthy 

population, demonstrating a role for rare coding variation and the extremes of healthy 

phenotypes. 

In chapter 4, I performed a genome-wide association study of fructosamine, a measurement 

of total serum protein glycation which is useful to monitor rapid changes in glycaemic levels 

after treatment, as it reflects average glycaemia over 2-3 weeks. In contrast to HbA1c, which 

reflects average glucose concentration over the life-span of the erythrocyte (~3 months), 

fructosamine levels are not predicted to be influenced by factors affecting the erythrocyte. 

Surprisingly, I found that in this dataset fructosamine had low heritability (2% vs 20% for 

HbA1c), and was poorly correlated with HbA1c and other glycaemic traits.  Despite this, I 

found two loci previously associated with glycaemic or albumin traits, G6PC2 and FCGRT 

respectively (P<5x10-8), associated with fructosamine suggesting shared genetic influence.  
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Altogether my results demonstrate the utility of higher resolution genotype and phenotype 

data in further elucidating the genetic architecture of a range of cardiometabolic traits, and 

the power advantages of study designs that focus on individuals at the extremes of 

phenotype distribution. As large cohorts and national biobanks with sequencing and deep 

multi-dimensional phenotyping become more prevalent, we will be moving closer to 

understanding the multiple aetiological mechanisms leading to CVD, and subsequently 

improve diagnosis and treatment of these conditions. 
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1 Chapter 1: Introduction 
 

1.1 Complex traits 
 

Complex diseases and traits are phenotypes that, in contrast to simple Mendelian disorders, 

are not explained by the action of one single gene within any given person or family. 

Instead, complex diseases and traits arise from the action of independent genetic factors, 

environmental factors and gene-by-environment (GxE) interactions. The independent 

genetic factors often provide small contributions to the overall risk of a disease or to the 

variability of a continuous trait [1].   

Height and weight are two examples of human complex traits. Early studies looking at family 

resemblance suggest that these two traits have a strong genetic component and that there 

is no single major locus influencing these traits [2-4]. Welfare components such as 

nutritional quality and health also have a high impact on these traits [5, 6]. As such, 

individuals could have a strong genetic background of trait increasing alleles but never 

realize their genetic “potential” if not placed in a permissive environment. This is a key 

difference with traditional Mendelian disorders where a single mutation within a given 

family is considered necessary and/or sufficient to cause the phenotype.   

 

1.1.1 Cardiometabolic traits and impact on human health 
 

Cardiovascular diseases (CVDs) are a group of mostly complex diseases that affect the heart 

and blood vessels including: coronary heart disease (CHD), cerebrovascular disease, 
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peripheral arterial disease, rheumatic heart disease, congenital heart disease, deep vein 

thrombosis and pulmonary embolism [7]. CVDs account for most deaths globally [7] and it is 

estimated that 90% of these diseases are preventable [8].  

In recent years, CVDs have been increasing in prevalence in developing countries [9-11] 

which makes them a continuing global public health priority in the years to come. Risk 

factors for cardiovascular disease include: family history [12], age [13], sex [13], tobacco use 

[14], physical inactivity [14],  diet (e.g high trans-fat intake [15], high salt intake [16]), heavy 

alcohol consumption [17], high blood pressure [18], diabetes [18] , obesity [19] and excess 

circulating lipids (hyperlipidaemia) [20].   

Many of these risk factors are not completely independent of each other. Obesity, defined 

as a body mass index (BMI) greater than 30Kg/m2, often co-occurs with type 2 diabetes 

(T2D) and/or hyperlipidaemia and confers a ~3 fold increase in risk for coronary heart 

disease in men younger than 65 even after adjusting for other risk factors [21]. The 

increased risk is also observed in women but with a smaller relative risk [22]. Besides CVD, 

obesity is a risk factor for other medical conditions such as hypertension, osteoarthritis and 

certain cancers [23]. Furthermore, obesity has an overall adverse impact in quality of life as 

on top of some secondary physical factors arising from obesity, there is a social 

stigmatization of the condition that can result in discriminatory behaviours towards obese 

individuals [24]. More details about obesity are described in Chapter 2.   

Diabetes is a group of  disorders characterised by excess levels of sugar in a person’s blood 

over a long period of time. Over 90% of the cases of diabetes are T2D cases [25].  T2D arises 

as a result of insufficient insulin production from pancreatic beta cells when an individual 

develops insulin resistance, a condition characterised by the cells’ inability to respond 
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properly to insulin. Obesity is considered one of the most important factors leading to T2D 

as it is tightly linked to development of insulin resistance [26]. Given diabetes is a lifelong 

condition, chronic mismanagement of the condition leads to early mortality, and 

particularly, cardiovascular death. This risk is exacerbated by medical complications linked 

to the condition such as renal complications [27]. More details about diabetes are described 

in Chapter 4. 

Hyperlipidaemia encompasses conditions such as hypercholesterolaemia (excess levels of 

cholesterol) and hypertriglyceridaemia (excess levels of triglycerides). Cumulative exposure 

to hyperlipidaemia in young adulthood is associated with an increased risk of CHD in a dose-

dependent fashion after adjusting for other cardiac risk factors [20]. Hyperlipidaemia can be 

divided into primary or secondary. Primary hyperlipidaemias are also called familial 

hyperlipidaemias and are characterised by genetic alterations leading to abnormally high 

levels of lipids [28].  Secondary hyperlipidaemias, also known as acquired hyperlipidaemias, 

arise from underlying disorders leading to alterations in lipid levels. T2D is one of the most 

common causes of acquired hyperlipidaemias [29].  More details about circulating lipids are 

described in Chapter 3. 

 

1.1.2 Heritability 
 

Heritability is defined as the proportion of variance of a trait that can be explained due to 

genetic factors. This measurement captures the resemblance between parent and offspring. 

So traits with high heritability have high resemblance between parents and offspring 

whereas traits with a low heritability have low resemblance [30]. Heritability can be divided 

into broad sense heritability and narrow sense heritability. Broad sense heritability (H2) 
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reflects all genetic contributions to a phenotype including additive (average effects of alleles 

at a locus), dominant (interaction between alternative alleles at a single locus) and epistatic 

effects (interactions between different loci) and it is defined as H2=Var(G)/Var(P), where 

Var(G) is the variance of genotypic effects and Var(P) is the variance of the phenotype .  

Most of the genetic variance in populations is thought to be driven by additive effects [31]. 

Therefore another widely used estimate of heritability is that of narrow sense heritability 

(h2) which is defined as h2=Var(A)/Var(P) where Var(A) is the additive variance component 

of the genetic variance.  

To estimate heritability, studies in human populations have mostly focused on related 

individuals. Traditionally studies calculated heritability looking at correlations amongst 

family members (e.g parent-offspring, full siblings, twins) [30] or adoption studies [32]. 

Amongst these studies, the most common study design is a twin study design that looks at 

phenotypic correlation between monozygotic (MZ) twin pairs and dizygotic (DZ) twin pairs 

[33]. The rationale behind these studies is that differences in trait correlation between 

monozygotic twin pairs compared to dizygotic twin pairs are driven primarily via genetic 

effects since twins tend to share the same environments. These studies are also particularly 

helpful to disentangle shared and unique environmental effects. Shared environmental 

effects can be extracted by subtracting the heritability estimate contribution from the 

observed twin phenotypic correlation (rMZ-h2 in MZ twins where rMZ is phenotypic 

correlation in MZ twins and rDZ-(h2/2) in DZ twins where rDZ is phenotypic correlation in DZ 

twins), i.e the percentage of the observed correlation that is not explained by genetic 

effects.  Unique environmental effects are obtained by quantifying the observed difference 
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in MZ twins (1-rMZ), i.e, the degree to which the observed correlation in MZ twins differs 

from 1.  

One important feature about heritability is that it is not constant in time or space. The 

heritability of foetal length, for example, increases during later developmental stages [34]. 

Changes in environmental factors within a population can also affect heritability estimates 

as in the case of intelligence measurements [35]. Changes in allele frequency during 

selection or introduction of new alleles in a population via migration can also alter a trait’s 

heritability in a given population.  

Heritability is an important parameter as the power of most studies to discover loci 

associated with a trait is positively correlated with the heritability of the trait [36]. For 

Mendelian disorders, heritability is straightforward as the disorder only manifests itself if 

you have alterations in one gene (or in very few cases a small number) and discovery of this 

gene, or genes, can be assessed in families with affected individuals by observing the 

patterns of co- inheritance of the disease and genetic markers (described in more detail in 

Section 1.1.3). For complex traits, heritability estimates can be taken into account when 

selecting a population in which to study the genetic basis of a particular trait. For example, 

BMI is a trait where heritability is higher during childhood [37] so if one wants to boost 

power for locus discovery, one might opt to choose a population where environment has a 

lesser impact on the variance of the trait. With the development of improved technologies 

for human molecular phenotyping at scale, population studies of traits such as high 

resolution measurements of circulating lipid and lipoprotein subclasses have become 

feasible in genetic studies.  As the overall heritability of these traits is higher compared to 

traditionally measured lipid traits in the clinic (e.g. large-density lipoprotein (LDL) 
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cholesterol or triglycerides (TG)) they can be used for lipid metabolism locus discovery with 

smaller sample sizes and to shed light on more detailed biological aspects of lipid 

metabolism [38] (more details in Chapter 3). 

More recently, with the advent of genome-wide array technologies (described in more 

detail in Section 1.2), new methods have been developed to estimate heritability using 

genome-wide genotype data [39-43]. These are routinely used to both estimate the 

heritability of traits, and the proportion of this heritability that can be explained by mostly 

common genetic variants. These methods will not be discussed in further detail in this 

thesis. 

1.1.3 Genetic studies of complex traits 
 

Genetic studies of Mendelian disorders used linkage and candidate gene approaches to find 

the underlying genes with mutations causal of the disease in question.  Linkage of two loci 

occurs when these are transmitted together from parent to offspring more often than 

expected by chance under random assortment. A collection of loci along a chromosome 

region that are often inherited together is called a haplotype. Using linkage information one 

can identify genetic markers that co-occur with a disease in family pedigrees. After 

identifying co-inherited genetic markers, one uses this information to narrow down the 

region where the causal gene likely lies by finding the smallest haplotype that is co-inherited 

in affected individuals (Figure 1.1). Before high-throughput sequencing approaches were 

possible, once this interval was identified, selection of plausible candidate genes within the 

region was done based on biological knowledge. Candidate genes were then sequenced in 

patients to find the mutations associated with the trait. One of the first success stories for 
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linkage studies was the identification of the cystic fibrosis gene [44, 45] where a three base 

pair deletion accounts for 70% of all cystic fibrosis cases observed. Other genes successfully 

identified via linkage analysis were the Duchenne muscular dystrophy (DMD) gene [46], the 

Fanconi’s anaemia gene [47] and the Huntington disease gene [48, 49]. 
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Figure 1.1: Principles of linkage analysis. A family pedigree is shown from a typical linkage analysis study for a Mendelian 
dominant disorder. Square (males) and circles (females) in black indicate affected individuals whereas symbols with no fill 
indicate unaffected individuals. Rectangles next to the symbols represent a fraction of a chromosome with the haplotype 
containing the associated gene where black filled sections represent the same specific alleles at marker polymorphisms. 
Letters A, B and C represent genetic markers and the red star is the unknown causal mutation.  

Applying the principles of linkage analysis to complex traits has been a more difficult task 

and has led to many false positive results [50, 51]. As mentioned previously, complex traits 

are often the result of the action of many independent genes, each one contributing to a 

small degree to disease development/trait variability [1]. Other factors that made linkage 

studies for complex disease and traits difficult were the variable degree of expressivity, 
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incomplete penetrance and variable age of onset affecting a trait/disease, making it hard to 

properly define phenotype or choose the right population to study [52].  When applying 

linkage analysis to complex phenotypes, these factors combined result in linked regions with 

very wide 95% confidence intervals (CI) making the prioritisation of genes extremely difficult 

as intervals could encompass hundreds of genes.  Sample sizes required to reduce the 

standard error in the positional estimate were prohibitively large (>1,600 families) and 

denser marker maps could only provide marginal benefits towards identifying plausible 

causal genes. This is important since most linkage studies at the time (1990-2000) were 

done using very small sample sizes [53]. Significance thresholds were also very lenient at the 

time which contributed to the generation of false positive results [54]. When using more 

stringent significance threshold, it was found that 66.3% of the linkage studies on complex 

traits as of December 2000 showed no significant linkage [55].  For these reasons, genetic 

association studies were proposed as a better suited technique to analyse complex traits 

[56].  

1.2 GWAS of complex traits 
 

Genome-wide association studies (GWAS) have been crucial to our understanding of 

complex traits. The shift from family studies to population based studies was in great part 

motivated by the common disease/common variant (CD/CV) hypothesis that states that 

common disease in the population is mostly influenced by common genetic variation in the 

population [57].  Given that allele frequency of disease associated alleles and prevalence of 

disease are strongly correlated, the CD/CV hypothesis would suggest that most of the 

common variation associated with disease would have low penetrance. To find these 

common variants with low penetrance one would need to test a wide number of variants 
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across the human genome. To this end, GWAS makes use of linkage disequilibrium (LD).  The 

phenomenon of LD occurs when in a population, alleles at a number of loci co-occur more 

than expected by chance. The human genome can then be divided into blocks of haplotypes 

with differing degrees of LD [58, 59]. Population phenomena such as migration, bottlenecks 

and genetic drift can alter the patterns of LD in the genome and as such, one expects 

differences in LD block size across different populations. African populations for example, 

tend to have smaller LD blocks than European ones mainly due to the more recent arrival of 

humans in Europe allowing less time for recombination events to take place [60]. Therefore, 

instead of attempting to test all variation across the genome, one could just test 

polymorphic sites in a population that capture the majority of variation within an LD block. 

The most common polymorphism in the genome are single nucleotide polymorphisms 

(SNPs), and these became the preferred variant to test in genetic studies as they could be 

accurately genotyped with ease. SNPs that capture variation within an LD block are called 

tagging SNPs or tag SNPs, as they “tag” or capture information on that particular LD block. In 

GWAS, testing the causal allele for a phenotype is very unlikely and therefore testing for 

polymorphisms in LD with the causal allele can lead to identification of genomic regions 

associated with a trait (Figure 1.2) [61]. In a case-control study, a GWAS tests if an allele is 

observed more than expected by chance in individuals with a disease compared to a set of 

controls. For a quantitative trait, in the most basic scenario, a GWAS tests if the presence of 

a certain allele is a statistically significant predictor of the outcome variable (i.e. the 

quantitative trait) under a linear regression. 
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Figure 1.2: Indirect association. In a GWAS more often than not, the tested allele is not the causal allele. GWAS takes 
advantage of LD to identify regions of the genome associated with a phenotype by using SNPs in high LD with the causal 
allele. Figure extracted from Bush W.S and Moore J.H (2012) [62]. 

 

The International HapMap project  was a major milestone for association studies as it 

provided the first comprehensive collection of SNPs covering the human genome [63]. By 

capturing variation at millions of sites within the human genome, the HapMap project 

allowed the examination of the correlation of SNPs in different populations and the 

identification of tag SNPs. One important insight gained from the HapMap project is that in 

European and Asian populations, one can capture >80% of common variation (MAF >= 0.05) 

across the genome using only a subset of SNPs between 500,000 and 1,000,000 [64]. Before 

the HapMap project, technologies to simultaneously assay a few thousand SNPs in the 

genome had already started being developed [65]. The first decade after the development 

of the first genotyping array saw an increase in number of sites tested ranging from a few 

thousand in the first array to more than a million in the latest versions in great part thanks 

to the HapMap project [66] and later projects such as the 1000 genomes project (see 

Sections 1.2.1.1). 
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It was soon after the development of genotyping arrays querying hundreds of thousands of 

sites that the first GWAS was published in 2005 [67].  This GWAS was a case-control study 

looking at age-related macular degeneration (ARMD) and found two SNPs that were 

significantly associated with the condition. Two years after, the Wellcome Trust Case 

Control Consortium (WTCCC) demonstrated that one can use shared controls in GWAS to 

find associations at multiple common diseases [68].  

1.2.1 Meta-analysis  
 

Similar to linkage analysis, one of the key limiting factors to detect signals in association 

studies is sample size [69]. Combining different studies for a trait under a meta-analysis 

framework provides multiple advantages for association studies. Firstly, combining studies 

increases sample size, therefore increasing power to detect association, especially at 

variants on the lower frequency allelic spectrum (minor allele frequency (MAF) 1-5%) which 

normally can only be detected if there is a large effect size which is rare in polygenic 

conditions. Secondly, it helps reduce false positives by testing for evidence of association at 

the same locus in multiple independent datasets. One major development that made meta-

analysis of several different studies possible was genotype imputation. 

One of the drawbacks of meta-analysis is that between-study heterogeneity can arise due to 

study specific factors such as different LD structure in populations, different environmental 

exposures or phenotype classification. Identifying sources of heterogeneity though, can 

reveal some interesting biological features underlying the association results [70].   
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1.2.1.1   Imputation 
 

Imputation consists of mathematically inferring the most likely genotype at a given position 

given information of SNPs surrounding the position (Figure 1.3) [71]. LD information from 

populations of interest is used to maximise accuracy of these predictions. This technique 

allows comparison of genotypes at the same position in two studies that might have used 

different genotyping arrays and therefore might not have typed exactly the same variants. 

Imputation normally requires a “reference panel” which is a set of SNPs for which we know 

LD information in a given population. Besides the HapMap project, another initiative that 

provided a key boost to the field was the 1000 genomes project (1000G) [72]. The goal of 

this project was to sequence the genome of ~1000 individuals from diverse ethnic 

backgrounds using sequencing technologies that were developed during the time of the 

study. When used as a reference panel for imputation, 1000G project provides haplotype 

information for several million of variants across the human genome. 
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Figure 1.3: Genotype imputation process. A) Genotype data from individuals is collected with missingness at certain sites. 
B) Testing association only at directly genotyped sites may not lead to a significant signal. C) Samples are phased and 
haplotypes are modelled as mosaics of the haplotypes present in a reference panel. D) A reference panel is used to impute 
missing variants. E) After imputation, sites with missingness for which the reference panel has information are 
mathematically inferred. F) Testing association on the imputed dataset might boost signal. Figure extracted from Marchini J 
and Howie B (2010) [73]. 

Advances in imputation technologies facilitated the collaboration amongst many research 

groups to study complex traits and led to the creation of several consortia to perform large 

scale GWAS. Examples of these consortia focused on cardiometabolic traits are presented in 

Table 1.1.   

 

Consortium  Traits of interest  First publication 
GIANT  anthropometric traits (e.g height, BMI) Willer et al (2009) [74] 
DIAGRAM type 2 diabetes Zeggini et al (2008) [75] 
MAGIC  glycaemic traits (e.g fasting glucose, 

fasting insulin, two hour glucose, 
glycated haemoglobin (HbA1c), amongst 
others) 

Prokopenko et al (2009) [76] 

GLGC lipid traits (e.g HDL cholesterol, LDL 
cholesterol) 

Willer et al (2008) [77] 

CARDIoGRAMplusC4D coronary artery disease and myocardial 
infarction 

CARDIoGRAMplusC4D (2013) 
[78] 

Table 1.1:Examples of large cardiometablic GWAS consortia. 
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1.2.2 Insights gained from GWAS of complex traits 
 

In the past 13 years since the publication of the first GWAS, this study design has become 

the standard in the field of human genetics to study complex traits. The CD/CV hypothesis 

received early support from GWAS with most trait-associated loci being indexed by common 

variants (median allele frequency of 40%) with small to modest effect sizes (median odds 

ratio (OR)=1.19) [79]. Furthermore most associations found as of July 2018, have been 

associations in non-coding regions (~94.7%) [79].   

For traits like height and BMI, there are now >3000 and >900 established loci respectively 

[80]. These loci explain ~24.6% of the variance in height  [80] and~6% of the variance in BMI 

[80] which leaves much room to identify additional loci in the future explaining some of the 

remaining heritability. However, heritability estimates using genome-wide imputed data 

suggest that much of the remaining heritability for both traits  can be explained by common 

variation with smaller effects than those discovered  so far and therefore the rest of the 

associated loci will be uncovered by just increasing sample size [41, 81].   This also appears 

to be the case for T2D where large-scale sequencing studies support the hypothesis that 

most of the genetic predisposition to T2D arises from common variation [82]. For other 

glycaemic traits, association studies have highlighted potential differences in genetic 

architecture for these traits. Beta cell function by homeostasis model assessment (HOMA-B) 

and insulin resistance by homeostasis model assessment (HOMA-IR), for example, are two 

traits with similar heritability estimates (26% and 27% respectively) and despite only slight 

differences in sample sizes (NHOMAB=36,466, NHOMAIR=37,037), GWAS found more significant 

associations with HOMA-B (>12 associations) than for HOMA-IR (two associations) 

suggesting differences in effect sizes, allele frequency of variants, number of loci or 
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environmental modification between these traits [83]. For lipid traits, more than 250 loci 

have already been identified associated with high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and/or triglycerides (TG) 

[84]. The genetic architecture of some of these traits like TG features a complementary role 

of common variation with small effects and rare variation with large effects affecting the 

trait as evidenced by the enrichment of rare variation (MAF<1%) found in known GWAS 

genes associated with elevated levels of TG [85]. 

 Overlap of genes found in linkage studies of Mendelian forms of disease and GWAS 

performed on related cardiometabolic traits has been commonly observed in the field 

suggesting that many genes responsible for severe phenotypes also play an important role 

in complex traits [86-88].  For example, in studies of T2D, rare variation influencing disease 

risk, appears to be enriched in genes implicated in Mendelian forms of diabetes or altered 

glucose metabolism [82] providing evidence for genetic overlap between the more common 

and rarer forms of disease. Similarly to T2D, GWAS for lipid traits have found associations 

with common variants near genes involved in Mendelian forms of dyslipidemia such as 

APOB, LDLR, APOE, PCSK9 , CETP, LIPC and LCAT amongst others[89].  

Furthermore, evidence for low-frequency variants with effects larger than those found in 

common variants but lower than those found in Mendelian disorders (so called “Goldilocks” 

alleles)[90] so far have not been found for most complex traits except lipid traits [91] (Figure 

1.4).    
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Figure 1.4: Results from single point association analysis in UK10K for 31 core traits shared between TwinsUK and 
ASLPAC cohorts. Minor allele frequency of variants is plotted on the X axis and effect sizes are plotted on the Y axis. Known 
associations are coloured in dark blue whereas novel associations are coloured in light blue with error bars being 
proportional to the standard error of the beta. Red and orange lines indicate 80% power at experiment-wide significance 
level (p < 4.62x10-10)  for the maximum theoretical sample size for the WGS sample and WGS+GWA, respectively. The 
notable absence of loci in the middle part of the figure suggests “Goldilocks” alleles are a rare occurrence. Figure extracted 
from UK10K Consortium (2015) [91]. 

 

Results from GWAS have also led to novel insights into the biological pathways involved in 

the development of complex diseases. For genes near BMI associated loci, an enrichment in 

pathways related to synaptic plasticity and glutamate receptor activity has been observed 

which has highlighted the key role of central appetite control in the aetiology of common 

obesity [92]. Analysis focusing on low-frequency and rare variants have also implicated 

pathways related to insulin action and adipocyte/lipid metabolism [93]. For related 

measures of adiposity such as waist-to-hip ratio (WHR), there has been evidence of 

significant sexual dimorphism and an enrichment of genes expressed in adipose tissue 

depots [94]. Results from GWAS show that, as expected, T2D can arise due to alterations in 
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pathways affecting pancreatic beta cell formation and function or via pathways involved 

with regulation of fasting glucose as well as obesity [95, 96]. Some associations have also 

highlighted the role of genes involved in circadian rhythm pathways in glucose metabolism 

and T2D development such as MTNR1B [76, 97] and CRY2 [83]. Interestingly, subsequent 

work found that these associations were season-dependent [98]. Other unanticipated 

enriched pathways that have been highlighted by these approaches include pathways 

related to the CREBBP-related transcription factor activity, cell cycle regulation and 

adipocytokine signalling [96]. Results also show an enrichment of pancreatic islet enhancer 

clusters in T2D and fasting glucose (FG) associated loci showcasing how integration of 

genetic information with knowledge of regulatory features can help identify processes 

affecting traits and aid in fine-mapping and finding causal variants [99]. Integrative 

approaches looking at mechanisms underlying insulin resistance have also revealed a pivotal 

role of storage capacity of peripheral adipose tissue in insulin-resistant cardiometabolic 

disease [100].  Loci identified via GWAS have also highlighted novel regulatory pathways 

involved in lipoprotein metabolism like in the case of SORT1, a locus harbouring variants 

associated with LDL-C and myocardial infraction (MI), which was shown to modulate hepatic 

VLDL secretion in mouse [101].  

Our increased understanding of the biology behind many of these traits through GWAS has 

also led to clinically relevant applications. One important genetic tool in this context is the 

genetic risk score (GRS). For any given complex trait, GRS are often constructed by summing 

the number of risk alleles present in an individual and usually weighing this sum by the 

effect size of each one of these risk alleles. In cases like CVD, GRS can now outperform 

traditional risk factors for risk prediction which makes incorporation of genetic testing in the 
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clinic a valuable addition [102]. GRS for coeliac disease also show improvements in risk 

prediction over traditional methods [103].  With the increasing prevalence of obesity in 

younger individuals, GRS scores for T1D can be used to discriminate between T1D and T2D 

diagnosis as the genetic overlap between these two traits is very low [104]. In cases like 

obesity, traditional risk factors such as family history and childhood obesity are still 

outperforming GRS for risk prediction [105]. Nevertheless, obesity GRS has been helpful in 

Mendelian randomisation approaches to identify phenotypes where obesity is causal, 

therefore clarifying the relationship between obesity and many of its co-morbidities (Figure 

1.5) [106].  

 

Figure 1.5: Inferences of causality of obesity derived from Mendelian randomisation studies. Only phenotypes with most 
consistent evidence are shown. Phenotypes in green are those for which there is a positive causal association of obesity 
whereas phenotypes in red are those with a negative causal association. Phenotypes in black are those where mendelian 
randomisation approaches have shown no causal role of obesity.  Figure extracted from Goodarzi, M.O (2018) [106]. 
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Mendelian randomisation analysis is a method that uses genetic instruments to assess the 

causality of a modifiable exposure on an outcome of interest [107-110] (Figure 1.6).  In 

addition to ascertaining the causal role of obesity on its co-morbidities, this approach has 

also been used to identify the causal relationship between additional traits and disease. For 

example, it has demonstrated that the influence of lipid measurements such as LDL-C and 

HDL-C on T2D [84] and CVDs [111-114] risk is dependent on the particular pathway involved. 

That is, only some pathways that reduce LDL-C have an impact on T2D incidence [84] and 

only some genetic mechanisms that increase HDL-C have an impact on CVD risk [110, 112]  

(more details presented in Chapter 3).  

 

Figure 1.6:Comparison of conventional clinical trial with a Mendelian randomisation (MR) study. In a conventional trial, 
trait reducing treatment (in this case statins and LDL-C) is randomly allocated in a population and comparing the treated 
and untreated group allows you to assess if the trait (LDL-C) has an impact on the outcome (CV event). In a MR study, we 
look at the random allocation of alleles in a population at birth and use associated genetic variants as an instrument to 
assess the impact of the trait on the outcome. Extracted from Bennet D.A et al (2017) [115]. 

 

GWAS has also helped identify potential drug targets. Even though common variation near a 

gene identified via GWAS can have a very small effect on the trait, targeting the gene itself 

might lead to potential clinical benefits (e.g common variation near HMGRC has a small 

effect on LDL-C but its targeting via statins [116] had been previously shown to successfully  

treat hypercholesterolaemia). Loss-of-function (LoF) variants in APOC3 have been associated 
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with a favourable lipid profile and reduced CVD risk suggesting the gene is a good candidate 

for lipid lowering drugs [117].  Another gene where protective LoF variants have been 

identified is SLC30A8, where carriers of rare protein-truncating variants have 65% reduced 

T2D risk highlighting this gene as a potential T2D drug target as well [118]. Not only can 

GWAS help identify drug targets, it can also influence treatment choice for certain 

conditions. For example, response to treatment of T2D via sulfonylureas can be influenced 

by variants near TCF7L2 [119]. Another example is response to fenofibrate, a lipid lowering 

medication, which can be influenced by variants near APOA1 [120]. 

Finally, another way GWAS could be used in the clinical setting is by identifying alleles that 

can influence accuracy of disease diagnostics. One notable example is potential 

improvement in T2D diagnosis using HbA1c in individuals with African American ancestry. 

HbA1c is a measurement of protein glycation reflecting average glucose concentration in 

the blood during the lifespan of an erythrocyte (~ 3 months). Usage of HbA1c as a T2D 

diagnostic tool can sometimes be hampered by the fact that HbA1c levels can be affected 

via conditions altering lifespan of eyrthrocytes independent of blood glucose levels (more 

details in Chapter 4).  A GWAS on HbA1c has identified a variant with high prevalence in 

individuals with African American ancestry (MAF=11%) near G6PD that affects HbA1c levels 

by shortening the life span of red blood cells. It is estimated that screening for this variant 

would avoid 650,000 false negative T2D diagnoses in African Americans in the US [121]. 

1.2.3 Open questions/ unresolved issues: 
 

Despite greater understanding of the genetic architecture of many traits, the proportion of 

heritability explained remains below 10-15% for most, and causal variants for associated loci 

are mostly unknown [122]. Early on, one possible explanation for this “missing heritability” 
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was that a substantial proportion of the heritability of complex traits can be explained by 

rare variants with large effects that aren’t captured by standard genotyping platforms [123]. 

This is also known as the common disease / rare variant (CD/RV) hypothesis in contrast to 

the CD/CV hypothesis. At the time of this thesis though, data does not support this 

hypothesis and accumulating evidence suggests that for traits like height and BMI, most of 

the heritability will be explained by common variation (see Section 1.2.2). Another model 

that attempts to explain gaps in knowledge and suggest future directions for association 

studies is the “omnigenic model” that argues that a large number of loci will affect a given 

trait through indirect effects in regulatory networks affecting a core number of genes that 

affect the disease directly [124].  To address the “missing heritability” problem, several 

approaches have been proposed. Larger imputation reference panels such as combined 

UK10K [91] and 1000G Phase III [72] or the haplotype reference consortium (HRC) [125] 

have greatly increased imputation accuracy, especially for low-frequency and rare variants 

achieving good correlations (r2 >0.6) between imputed genotype dosages and masked 

genotypes for variants with a MAF as low as 0.5% in UK10K and 0.1% in HRC [126, 127].  

Denser genotyping arrays enriched for low-frequency variants in coding regions are also 

powerful approaches since variants in these regions normally have a high phenotypic impact 

and are therefore under selective pressure [91, 128, 129]. Some arrays like the UK Biobank 

Axiom Array [130] combine the “exome component” with a “GWAS component” designed 

to enhance genome-wide imputation of common and low-frequency variants in a specific 

population. Another way to analyse rare coding variation is by doing whole-exome 

sequencing (WES) which uses target-enrichment methods to selectively capture exonic 

regions during library preparation before sequencing. As next-generation sequencing 
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technologies costs continue to decrease, whole-genome sequence (WGS) becomes a viable 

alternative that allows us to explore noncoding variation at a higher resolution. An 

important finding highlighting the relevance of honing in on low-frequency and rare coding 

variation is that variants identified via these approaches are better than common coding 

variants at identifying enriched gene sets associated with traits such as BMI suggesting that 

we are more likely to find causal variants with these approaches [93].  Sequencing studies 

have found multiple rare variants in candidate genes such as variants in PCSK9 associated 

with LDL-C [131],  variants in ABCA1, APOA1 and LCAT associated with low HDL-C [132] or 

variants in  ANGPTL4 associated with reduced TG and high HDL-C [133] suggesting an 

important role of rare variants in the genetic architecture of these traits. These approaches 

have also helped increase the number of known effector transcripts associated with T2D 

[82].  

Population-scale studies coupled with these approaches allow increases in power especially 

when it comes to the analysis of rare variants. Several of these cohorts have already started 

appearing in different countries such as UK Biobank (UKBB) which consists of 500,000 

deeply phenotyped UK individuals with genotype data currently available and sequencing 

data in the near future [134]; the All of Us Research Program which aims to recruit 

1,000,000 United States individuals that will have genotype and whole genome sequencing 

data [135] or the China Kadoorie Biobank which has a similar sample size as the UK Biobank 

(~510,000 individuals) and has also been deeply phenotyped  and  genotyped on a custom 

array for Asian populations [136]. The availability of individual level genotype and deep 

phenotyping in these large datasets provides several advantages. Firstly, having a very large 

dataset instead of meta-analysing various small studies is more convenient in terms of 
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dealing with between-study heterogeneity [137, 138], or sample overlap [139]. Secondly, it 

enables multi-trait analyses across multiple potentially correlated traits, which is more 

powerful than combining results from univariate analysis even when genetic correlation of 

the traits is weak [140, 141]. It also provides extra information on the covariance of these 

traits that would be missed when comparing summary statistics from different studies 

[142].  The availability of linked medical health records facilitates the study of pleiotropy (i.e 

the influence of one locus across multiple phenotypes) of genetic variants using methods 

such as phenome wide association studies (PheWAS) [143-145]. PheWAS are studies where 

a variant or subset of variants (normally previously linked to a trait of interest) are tested 

against a wide number of phenotypes simultaneously to examine the pleiotropic effects of 

these variants.   Availability of linked medical health records also allows inferences to be 

made regarding the causality of traits in certain diseases. Finally, we can also evaluate GxE 

interactions by collecting multiple environmental data for these individuals [146, 147]. 

Recent work in UK Biobank, has been able to find predicted LoF variation protective against 

diseases such as T2D, asthma and coronary artery disease in the UK population bolstering 

the case for usage of large-scale population studies with dense genome-wide genetic data 

to identify potential drug targets [148]. Sequencing data in these large cohorts will provide 

new opportunities to explore the impact of rare variation in the aetiology of complex traits.  

 

Another area of on-going improvement is that of diversity in studied populations. To date, 

most association studies have been performed in individuals of European ascent. But there 

are several advantages to be gained by increasing diversity. Firstly, effect sizes can vary 

between populations due to differing environmental factors which is crucial if one wants to 

use genetic information in the clinic to assess disease risk in non-European individuals. As 
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highlighted also by trans-ethnic HbA1c work [121], allele frequency also can differ widely 

between populations and some prevalent variants in a specific population are of particular 

value in the diagnostic setting. These differences in allele frequency also have aided in 

identifying associations of different cardiometabolic traits such as T2D and 

cardiomyopathies with variants that are rare or monomorphic in European populations 

[149-151]. Population isolates in particular are helpful to study rare variation as population 

events such as bottlenecks, genetic drift and endogamy can lead to an enrichment of rare 

alleles[152, 153]. Finally, the differing LD structure between populations can be helpful in 

fine-mapping efforts to identify causal variants [154-157]. 

Structural variations, such as CNVs, have also been currently underexplored but several links 

of structural variation to complex traits have been found such as autism [158], 

schizophrenia [159], severe childhood obesity [160, 161], asthma and obesity [162],several 

anthropometric traits[163] and T2D [164]. Currently array-based comparative genomic 

hybridisation (aCGH) is considered the gold standard for CNV detection [165] although 

platform-dependent differences in sensitivity have been a source for concern [166]. Usage 

of sequencing as a viable alternative has been explored [167, 168] and as WES and WGS 

becomes more prevalent, long-read sequencing technology improves and algorithms to 

analyse such data continue being developed [169, 170], the number of studies exploring 

structural variant association with complex traits will likely increase significantly.  

Improvement in measurement resolution for many quantitative traits is also a promising 

avenue moving forward. GWAS studies using over 500 metabolites measured on the 

Metabolon platform or  high resolution nuclear magnetic resonance (NMR) measurements 

of lipoprotein and lipid traits have found associations with effect sizes that are unusually 
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large for GWAS and enrichment of druggable targets in metabolomics loci [38, 171-173].  In 

addition to this, proteomics platforms such as OLINK have been helpful to identify variants 

regulating proteins that have been previously implicated in cardiovascular disease [174].  

1.3 Thesis aims 
 

In this thesis, the overarching aim is to gain further insights into the genetic architecture of 

different cardiometabolic traits through a combination of approaches with greater 

genotypic and phenotypic resolution. The main aim for each of the three results chapters in 

this thesis is described below:  

1. In chapter 2, the aim is to characterise the genetic architecture of persistent and 

healthy thinness and contrast it to that of severe early onset obesity in two clinically 

ascertained cohorts. 

2. In chapter 3, the aim is to gain novel insights into metabolic biomarker biology by 

analysing the contribution of rare variants to high resolution metabolic 

measurements.  

3. In chapter 4, the aim is to characterise the genetic architecture of fructosamine, a 

measurement of total serum protein glycation, and explore the influence of 

previously established glycaemic loci on the trait.  
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2 Chapter 2: The Genetic Architecture of Human Thinness 
 

2.1 Introduction 
 

Obesity, defined as a body mass index (BMI) greater than 30kg/m2, is one of the leading 

causes of preventable death worldwide [175]. In recent years, the prevalence of obesity has 

risen and this has been linked to an increasingly “obesogenic” environment (i.e an 

environment promoting the consumption of high calorie foods and reduced levels of 

physical activity [176]). However, within a given environment, there is considerable 

variation in body weight; some people are particularly susceptible to severe obesity, whilst 

others remain thin [177, 178].  Indeed BMI heritability estimates from multiple family, twin 

and adoption studies range from 40% to 70% which suggests that genetic factors play a 

major role in the development of obesity [179]. To date, most studies aimed at 

understanding the aetiology of obesity have focused on BMI as a continuous trait, and have 

identified more than >900 common and low-frequency obesity-susceptibility loci [80, 93, 

180-184]. Additionally, studies of people at one extreme of the distribution (severe obesity) 

have led to the identification of rare, penetrant genetic variants that affect key molecular 

and neural pathways involved in human energy homeostasis[185-192]. These findings have 

provided a rationale for targeting these pathways for therapeutic benefit. One such example 

is the development of drugs targeting MC4R [193] which harbours both, rare highly 

penetrant variation [194, 195] and downstream common variation with modest effect size 

[93, 196].  In contrast, little is known about the specific genetic characteristics of 

persistently thin individuals (thinness defined using WHO criteria BMI<18kg/m2).  
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A small number of previous studies have found that thinness appears to be a trait that is at 

least as stable and heritable as obesity [197-200]. A large study of 7,078 UK children and 

adolescents, found that the strongest predictor of child/adolescent thinness was parental 

weight status. The prevalence of thinness was highest (16.2%) when both parents were thin 

and progressively lower when both parents were normal weight, overweight or obese [201].  

There is also some evidence for gene dosage playing a role in both tails of the BMI 

distribution. A deletion in 16p11.2 has been shown to associate with a highly penetrant 

form of obesity, whereas its reciprocal duplication is associated with underweight status 

[202]. Another copy number variant in 20q13.3 is associated with less severe forms of 

obesity and thinness, with deletions observed in obese, and duplications observed in thin 

probands (defined in this particular study as BMI <= 23 kg/m2) [203]. 

Despite evidence for genetic factors contributing to the phenotypic variance at both tails of 

the BMI distribution, at the time of this study, GWAS approaches that had included thin 

individuals had either used them exclusively as controls to contrast with extreme obesity 

[204], and/or they had not ascertained for healthy thinness [205]. Understanding the 

mechanisms underlying thinness/resistance to obesity may highlight novel anti-obesity 

targets for future drug development [206]. To do this there are two possible study designs,  

each with its own advantages and disadvantages. One approach uses a population-based 

cohort, where data for participants at the tails of the distribution are extracted, and each is 

compared to the other in a case-control analysis. This approach was used effectively by 

Berndt et al 2013 [207] who analysed the top and bottom 5% of each cohort that 

contributed to the original GIANT BMI meta-analysis [208]. One of the biggest advantages of 

this approach is that it is less susceptible to age, sex and other environmental effects 
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influencing observations. The disadvantage is that, by their very definition, such population 

based cohorts often contain a limited number of people at the “extremes” (i.e. severe 

obesity and thinness) [207]. For example, in the full UK Biobank release (N= 487,411), there 

are only 626 individuals with a comparable level of obesity as those present in children from 

the Severe Childhood Onset Obesity Project (SCOOP) cohort (BMI standard deviation score 

>3, age of onset <10yr) which has been previously used to identify novel loci associated with 

obesity [160]. The second approach is particularly useful for complex disorders where 

environmental exposure can have a strong influence on the development of the condition 

(e.g. asthma, type 2 diabetes and obesity). Here, one maximises genetic load in the cases by 

carefully selecting affected individuals that are less likely to have been exposed to 

environmental risk factors. For example, one might select individuals with early age of onset 

for the condition which lessens the amount of time they would have been exposed to 

environmental factors [160, 209].  To complement this approach to the selection of cases, 

controls are also selected to increase the chances that they do not have the disease or are 

unlikely to develop the disease later in life [204]. This is normally done by selecting 

contrasting controls, or “super-controls”. The advantages of this approach as a way to 

increase power have been shown in multiple studies [210-212] including the previously 

mentioned study performed by our group using the SCOOP cohort uncovering new loci that 

had been missed by conventional BMI GWAS at the time [160].  One of the limitations of 

this approach is that it is more susceptible to differential effects of age, sex and other 

environmental factors between cases and controls.   

In this chapter, I describe a genetic study that used this case-“super control” design to begin 

to dissect the genetic architecture of healthy human thinness. To do this our group 



29 
 

collaborated with Professor Sadaf Farooqi’s group who recruited a new cohort of healthy 

thin individuals from the UK (STudy Into Lean and Thin Subjects, STILTS cohort; mean BMI = 

17.6 kg/m2) and who had previously recruited the SCOOP cohort.  My work focused on all 

analytical elements of the study.  

2.2 Chapter aims 
 

The overall aim of this chapter is to contrast the genetic architecture of persistent healthy 

thinness with that of severe early onset obesity. In this chapter I use genome-wide directly 

genotyped and imputed data from two clinically ascertained cohorts (STILTS and SCOOP) 

and two population cohorts (the UK household longitudinal study (UKHLS) and UK Biobank 

(UKBB)) to: 

I. Assess the heritability of persistent healthy thinness. 

II. Identify the contribution of established BMI loci at the extremes of the phenotype 

distribution. 

III. Discover novel loci associated with either tail of the BMI distribution. 

 

2.3 Methods 

2.3.1 Cohorts 
 

SCOOP, STILTS and UKHLS cohorts were used for the heritability, genetic correlation, genetic 

risk score and association analyses with established BMI loci, as well as, used as a discovery 

cohort in the genome-wide association study (GWAS). UK Biobank samples were used for 

genetic correlation analysis and in the replication stages of the GWAS. ALSPAC was used to 

for sensitivity analyses in SCOOP vs UKHLS comparisons (Figure 2.1). 
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Figure 2.1: Overview of cohorts and analyses.  

 

2.3.1.1 STudy Into Lean and Thin Subjects (STILTS)  
 

Recruitment was performed by Professor Sadaf Farooqi’s group at  the Wellcome Trust-MRC 

Institute of Metabolic Science (IMS). The aim was to recruit a new cohort of UK European 

ancestry individuals who were thin (defined as a body mass index < 18kg/m2) and well. After 

ethical committee approval (12/EE/0172), they worked with the NIHR Primary Care 

Research Network (PCRN) to collaborate with 601 GP practices in England. Each practice 

searched their electronic health records using the inclusion criteria (age 18-65 years, 

BMI<18 kg/m2) and exclusion criteria (medical conditions that could potentially affect 

weight (chronic renal, liver, gastrointestinal problems, metabolic and psychiatric disease, 
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known eating disorders). The case notes of each potential participant were reviewed by the 

GP or a senior nurse with clinical knowledge of the participant to exclude other potential 

causes of low body weight in discussion with the study team. Through this approach, 25,000 

individuals were identified who fitted the inclusion criteria in the study. These individuals 

were invited to participate in the study; approximately 12% (2,900) replied consenting to 

take part. The team obtained a detailed medical and medication history, screened for eating 

disorders using a questionnaire (SCOFF) that has been validated against more formal clinical 

assessment [213] and excluded those who exercised vigorously (>6 metabolic equivalents 

(METs); http://www.who.int/dietphysicalactivity/physical_activity_intensity/en/). Prof 

Farooqi’s group also excluded people who were thin only at a certain point in their lives 

(often as young adults), to focus on those who were persistently thin/always thin 

throughout life as this group would likely be enriched for genetic factors contributing to 

their thinness. The participants were asked this specific question to identify persistently thin 

individuals: “have you always been thin?” Only those who answered positively were 

included. Questionnaires were manually checked by senior clinical staff for these 

parameters and for reported ethnicity (non-European ancestry excluded). A small number of 

individuals (N=43) with a BMI of 19 kg/m2 were included as they had a strong family history 

of thinness. 74% of the STILTS cohort have a family history of persistent thinness, suggesting 

there is an enrichment for genetically driven thinness. DNA was extracted from salivary 

samples obtained from these individuals using the Oragene 500 kit according to 

manufacturer’s instructions.   
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2.3.1.2 Severe Childhood Onset Obesity Project (SCOOP) 
 

The Severe Childhood Onset Obesity Project (SCOOP, N~4,800) cohort [160] is a sub-cohort 

of the Genetics Of Obesity Study (GOOS, N~7,000) [214] comprised of those individuals of 

British self-reported European ancestry. As for GOOS, all SCOOP participants recruited into 

the cohort have a BMI standard deviation score (SDS) > 3 and onset of obesity before the 

age of 10 years. SCOOP individuals likely to have congenital leptin deficiency were excluded 

by measurement of serum leptin, and individuals with mutations in the melanocortin 4 

receptor gene (MC4R) (the most common genetic form of penetrant obesity) were excluded 

by prior Sanger sequencing.  The cohort has ethical committee approval (MREC 97/5/21). 

2.3.1.3  UK household longitudinal study (UKHLS) 
 

United Kingdom Household Longitudinal Study (UKHLS) also known as Understanding 

Society (https://www.understandingsociety.ac.uk)  is a longitudinal household study 

designed to capture economic, social and health information from 40.000 UK households 

(England, Scotland, Wales and Northern Ireland) representative of the UK population [215]. 

A subset of 10,484 individuals was selected for genome-wide array genotyping. Genetic and 

phenotype data was obtained through The Understanding Society Data Access Committee 

(DAC) application system. The United Kingdom Household Longitudinal Study has been 

approved by the University of Essex Ethics Committee and informed consent was obtained 

from every participant. This cohort was used as a control dataset with SCOOP and STILTS 

cases. UKHLS data is available for download in EGA with accession code EGAS00001001232. 
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2.3.1.4 UK Biobank (UKBB) 
 

This study includes approximately 488,377 participants with genetic data released (including 

~50,000 from the UKBiLEVE cohort [216]) of the total 502,648 individuals from UK BioBank 

(UKBB).  UKBB samples were genotyped on the UK Biobank Axiom array at the Affymetrix 

Research Services Laboratory in Santa Clara, California, USA. The full release was imputed to 

the Haplotype Reference Consortium (HRC) [127]. UKBiLEVE samples were genotyped on 

the UK BiLEVE array which is a previous version of the UK Biobank Axiom array sharing over 

95% of the markers. At the time of this study, 487,411 samples with directly genotyped and 

imputed data were available and data was downloaded using tools provided by UK Biobank. 

Extensive data from health and lifestyle questionnaires is available as well as linked clinical 

records. BMI, as well as other physical measurements were taken on attendance of 

recruitment centre. Severely obese participants in the available data were defined as those 

with BMI ≥ 40 kg/m2 (N=9,706) and thin individuals were defined as those with BMI ≤ 19 

kg/m2 (N=4,538). For sensitivity analyses, to more closely match thin individuals in UKBB to 

the STILTS cohort, I also used ICD10 clinical records as well as self-reported medical data to 

exclude individuals whose low BMI could be explained by a medical condition 

(Supplementary Tables 12-13 of Riveros-Mckay et al 2018 [217] (Appendix A)). This 

resulted in a subset of 2,518 thin individuals who met the same health criteria as those in 

the STILTS cohort. Given that it has been previously shown that type I error rate for variants 

with a low minor allele count (MAC) is inadequately controlled for in very unbalanced case-

control scenarios [218], I randomly subsampled 35,000 individuals from the original 487,411 

genotyped individuals and removed those with BMI≤19 or BMI ≥30, to generate an 

independent control set. The 25,856 participants remaining after BMI exclusions from the 
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tails, generated a non-extreme set of individuals kept as putative controls. The other 

452,411 genotyped samples were kept as the BMI dataset for downstream analyses (Table 

2.1). An interim release consisting of a subset 152,249 individuals from UKBB was released 

in May 2015. This interim release was imputed to a combined UK10K and 1000G Phase 3 

reference panel and contains several variants which are not currently present in the HRC 

panel, as such it was used in some of the analyses described. 

  

  Thin 
(BMI ≤ 19) 

Obese 
(BMI ≥ 40) 

Controls 
(19 < BMI ≤ 

30) BMI Dataset 

Initial sample sets 4,538 9,706 35,000 452,411 

Final sample sets post 
QC 3,532 7,526 20,720 

(BMI range 19-30) 387,164 

Sex 

Male 719 (20%) 2,468 
(33%) 9,467 (46%) 178,029 (46%) 

Female 2,813 
(80%) 

5,058 
(67%) 11,253 (54%) 209,134 (54%) 

Table 2.1:Summary of UKBB sample sets 

2.3.1.5 Avon Longitudinal Study of Parents and Children  (ALSPAC) 
 

The Avon Longitudinal Study of Parents and Children (ALSPAC) [219, 220], also known as 

Children of the 90s, is a prospective population-based British birth cohort study.  Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 

Local Research Ethics Committees. The study website contains details of all the data that is 

available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). ALSPAC children 

were genotyped using the Illumina HumanHap550 quad chip genotyping platforms by 

23andme subcontracting the Wellcome  Sanger Institute (WSI), Cambridge, UK and the 

Laboratory Corporation of America, Burlington, NC, US. Genotypes were imputed against 
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the 1000G Phase 3 reference panel using IMPUTE V2.2.2 [221, 222]. In the current study, 

analysis was restricted to a subset of unrelated (identity-by-state < 0.05 [39]) children with 

genetic data and BMI measured between the age of 12 and 17 years (n=4,964, 48.5% male).  

The mean age of the children was 14 years and the mean BMI 20.5. 

 

2.3.2 Genotyping and quality control 

2.3.2.1 SCOOP, STILTS and UKHLS 
 

For the SCOOP cohort, DNA was extracted from whole blood as previously described [160]. 

For the STILTS cohort, DNA was extracted from saliva using the Oragene saliva DNA kits 

(online protocol) and quantified using Qubit. All samples from SCOOP, STILTS and UKHLS 

were typed across 30 SNPs on the Sequenom® platform (Sequenom® Inc. California, USA) 

for sample quality control by the Genotyping Facility at WSI. Of the 3,607 SCOOP and STILTS 

samples submitted for Sequenom genotyping, 3,280 passed quality controls filters which 

were i) degraded samples, ii) gender inference failure, iii) Sequenom failure or iv) low 

concentration (90.9% pass rate).  Of the 10,433 UKHLS samples, 9,965 passed Sequenom 

sample quality control (95.5% pass rate). Subsequently, UKHLS controls were genotyped on 

the Illumina HumanCoreExome-12v1-0 Beadchip. The 3,280 SCOOP and STILTS samples, and 

48 overlapping UKHLS samples (to test for possible array version effects) were genotyped on 

the Illumina HumanCoreExome-12v1-1 Beadchip by the Genotyping Facility at the WSI.  

Genotype calling was performed centrally for all batches at the WSI using GenCall. I 

excluded samples based on the following criteria: i) concordance against Sequenom 

genotypes <90%; ii) for each pair of sample duplicates, exclude one with highest 

missingness; iii) sex inferred from genetic data different from stated sex ; iv) sample call rate 
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<95%; v) sample autosome heterozygosity rate >3 SD from mean done separately for low 

(<1%) and high MAF(>1%) bins; vi) magnitude of intensity signal in both channels <90%; and 

vii) for each pair of related individuals (proportion of IBD (PI_HAT) >0.05), the individual 

with the lowest call rate was excluded.  I performed SNP QC using PLINK v1.07 [223]. Criteria 

for excluding SNPs was: i) Hardy-Weinberg equilibrium (HWE) p<1x10-6; ii) Call rate <95% for 

MAF≥5%, call rate <97% for 1% ≤MAF<5%, and call rate <99% for MAF <1%.  SMARTPCA 

v10210 [224] was used for principal component analysis (PCA). To verify the absence of 

array version effects I used PCA on the subset of shared controls genotyped on both 

versions of the array. Cutoffs for samples that diverged from the European cluster were 

chosen manually after inspecting the PCA plot. SNPs with discordant MAFs in the different 

versions of the array were excluded. After removal of non-European samples and 13 

samples due to cryptic relatedness, 1,456 SCOOP and 1,471 STILTS samples remained for 

analysis. For UKHLS, 82 samples were removed after applying a strict European filter and 

680 related samples were removed by Vanisha Mistry after applying a ‘3rd degree” kinship 

filter in KING [225]. A total of 9,203 samples remained, of which 6,460 had a BMI >19 and 

<30 (“non-extremes”).  

 

2.3.2.2 UK Biobank 
 

Sample QC was performed using all 487,411 samples using the sample QC file provided by 

UK Biobank. I used the following criteria to exclude samples: i) supplied and genetically 

inferred sex mismatches; ii) heterozygosity and missingness outliers; iii) not used in kinship 

estimation; iv) non-European British individuals; v) samples that withdrew consent and vi) 

for each pair of related individuals (KING kinship coefficient >=0.0442), I preferentially kept 
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cases (BMI ≥ 40 or BMI <=19), otherwise, I randomly selected one individual out of the pair.  

After sample QC, thirteen individuals with very extreme BMI values were also removed (BMI 

<14 or BMI >74). One of them had no genotype data, whereas the remaining twelve had 

underlying health conditions that could influence their BMI such as eating disorders, 

abnormal weight loss and COPD for eleven underweight individuals and hypothyroidism for 

one extremely obese individual. In the end, 7,526 obese (BMI ≥ 40), 3,532 thin (BMI ≤ 19) 

and 20,720 non-extreme controls (19 < BMI ≤ 30) remained for case-control analyses. In 

addition, 387,164 samples remained for analysis of BMI as a continuous trait. There was an 

overlap of 10,282 samples (~2.6% of the BMI dataset) with obese and thin cases (Figure 

2.2). The same procedure was performed on the interim release of 152,249 UKBB samples 

to produce a set of 2,799 obese, 1,212 thin, 8,193 controls and 127,672 individuals for the 

independent BMI dataset. All genome-wide association analyses on UKBB were also 

performed on this subset to query variants that are not currently available in the full UKBB 

release.  
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Figure 2.2: Summary of the UKBB sample sets after QC. Venn Diagram showing sample numbers and overlap between 
UKBB sample sets used in genetic correlation (BMI dataset) and GWAS replication (obese, controls, lean) analyses. 

 

2.3.3 Imputation and genome-wide association analyses 
 

2.3.3.1 SCOOP, STILTS and UKHLS association analysis 
 

Imputation and genome-wide association analyses for SCOOP, STILTS and UKHLS were 

performed by Vanisha Mistry. Genotypes from SCOOP, STILTS and UKHLS controls were 

phased together with SHAPEITv2, and subsequently imputed with IMPUTE2 [221, 222] to the 

merged UK10K and 1000G Phase 3 reference panel [126], containing ~91.3 million 

autosomal and chromosome X sites, from 6,285 samples. More than 98% of variants with 

MAF ≥0.5% had an imputation quality score of r2≥0.4, however variants with MAF <0.1% had 

a poor imputation quality with only 27% variants with r2≥0.4. First-pass single-variant 



39 
 

association tests were done for all variants irrespective of MAF, or imputation quality score 

(see below).  Analyses of 1,456 SCOOP, 1,471 STILTS and 6,460 controls (BMI range 19-30) of 

European ancestry were based on the frequentist association test, using the EM algorithm, 

as implemented in SNPTEST v2.5 [226], under an additive model and adjusting for six PCs 

and sex as covariates.  

2.3.3.2 UKBB BMI dataset single-variant association analysis 
 

For the BMI dataset, I used BOLT-LMM [227] to perform an association analysis with BMI 

using sex, age, 10 PCs and UKBB genotyping array as covariates.  

 

2.3.4 Heritability estimates and genetic correlation 
 

Summary statistics from the SCOOP vs. UKHLS, STILTS vs. UKHLS, UKBB obese vs controls, 

UKBB thin vs controls and UKBB BMI analyses were filtered and a subset of 1,197,969 of the 

1,217,312 HapMap3 SNPs was kept in each dataset since HapMap3 reference panel markers 

are common and normally well-imputed variants. Using LD score regression [228] I first 

calculated the heritability of severe childhood obesity (SCOOP vs UKHLS) and persistent 

thinness (STILTS vs UKHLS). For severe childhood obesity, I estimated a prevalence of 0.15% 

using the BMI centile equivalent to 3SDS in children [229]. In the case of persistent thinness 

(BMI<=19), I used a General Practice (GP) based cohort for our prevalence estimates: 

CALIBER [230].  The CALIBER database consists of 1,173,863 records derived from GP 

practices.  For the heritability analysis, I used a prevalence estimate of 2.8% for BMI<=19 

(Claudia Langenberg and Harry Hemingway, personal communication). I also used LD score 

regression to calculate the genetic correlation of SCOOP with STILTS, SCOOP with BMI and 
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STILTS with BMI. The genetic correlation between obesity and persistent thinness with 

anorexia was estimated using the summary statistics from SCOOP vs UKHLS and STILTS vs. 

UKHLS, and summary statistics available from the Genetic Consortium for Anorexia 

Nervosa (GCAN) in LD Hub [231].  The same analysis was repeated for UKBB obese vs 

controls and UKBB thin vs controls. Genetic correlation estimates for BMI vs Overweight, 

Obesity Class 1, Obesity Class 2 and Obesity Class 3 were also extracted from LD Hub 

(http://ldsc.broadinstitute.org/ldhub/). 

 

2.3.5 Comparison with established GIANT BMI associated loci 
 

I obtained the list of 97 established BMI associated loci from the latest publicly available 

data from the GIANT consortium at the time of this study [92]. I used this list as I wanted to 

focus on established common variation in Europeans with accurate effect sizes. In order to 

test whether there was evidence of enrichment of nominally significant signals with 

consistent direction of effect, I performed a binomial test using the subset of signals with 

nominal significance in the SCOOP vs UKHLS, and STILTS vs UKHLS analyses.  Variance 

explained was calculated using the rms package [232] v4.5.0 in R [233] and Nagelkerke’s R2 

is reported. Power calculations were performed using  Quanto [234].  

 

 

2.3.6 Analysis of potential age effects in SCOOP 
 

To investigate if differences in the observed OR from our SCOOP vs UKHLS analysis were 

influenced by age differences between cases (SCOOP, mean age ~ 11) and controls (UKHLS, 
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mean age ~52), I obtained BMI summary statistics from Nicholas Timpson and Laura Corbin 

for the ALSPAC cohort. To calculate ORs and SE from the ALSPAC BMI summary statistics I 

used genotype counts from SNPTEST output. I then used a z-test to test for significant 

differences between the OR calculated using genotype counts of SCOOP and ALSPAC against 

the SCOOP vs. UKHLS OR. 

 

2.3.7 Simulations under an additive model 
 

I created 10,000 simulations of 1 million individuals for the 97 GIANT BMI loci randomly 

sampling alleles based on the allele frequency from UKHLS using an R script. For each 

simulated genotype, phenotypes were simulated with DISSECT [235] using the effect size in 

GIANT and then removed all samples from the lower tail where the phenotype was <3SDS to 

better reproduce the actual BMI distribution. Afterwards I randomly sampled 1,471 

individuals from the bottom 1.6% and 1,456 from top 0.15% and compared against a 

random set of 6,460 controls from the equivalent percentiles to BMI 19-30 in UKHLS.  

Finally, for each of these loci, I calculated the absolute difference between our observed OR 

and the mean OR from the simulations and counted how many times an equal or larger 

absolute difference in the simulated data was observed and assigned a p-value. This was 

done separately for SCOOP vs UKHLS and STILTS vs UKHLS. The high accuracy of the 97 

GIANT BMI loci allowed me to assess significant differences between the observed and 

expected ORs. 
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2.3.8 Genetic Risk Score 
 

For this analysis, Vanisha Mistry calculated the GRS scores, Audrey Hendricks performed 

ordinal regression statistical analyses and I compared BMI category GRS scores with 

simulations. The R package GTX (https://CRAN.R-project.org/package=gtx) was used to 

transpose genotype probabilities into dosages, and a combined dosage score, weighted by 

the effect size from GIANT, for 97 BMI SNPs [92] was calculated and standardised.  An 

ordinal relationship between the genetic risk score and BMI category (i.e. thin, normal, or 

obese) was checked using ordinal logistic regression with the clm function in the ordinal R 

package. For each of the 10,000 simulations, a genetic risk score was created and an ordinal 

logistic regression was run. Audrey compared the observed test statistic testing whether the 

odds were the same by BMI category to the 10,000 simulation test statistics. Audrey 

calculated the p-value as the number of simulations with a test statistic larger than that 

observed in the real data. I also calculated a mean genetic risk score for each BMI category 

(obese, thin and controls) across the 10,000 simulations. I used a t-test to test whether the 

mean observed GRS score in each category was significantly different from the one 

estimated using the simulations.  

 

2.3.9 Discovery stage GWAS 
 

First pass single-variant association analyses results were used as discovery datasets for the 

GWAS. After association analysis performed by Vanisha Mistry, I removed variants with 

MAF<0.5%, an INFO score <0.4, and HWE p<1x10-6, as these highlighted regions of the 

genome that were problematic, including CNV regions with poor imputation quality. 
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Quantile-quantile plots indicated that the genomic inflation was well controlled for in 

SCOOP-UKHLS (λ=1.06) and STILTS-UKHLS (λ =1.04), and slightly higher for SCOOP-STILTS (λ 

=1.08). I used LD score regression [228] to correct for inflation not due to polygenicity. To 

identify distinct loci, I performed clumping as implemented in PLINK [223] using summary 

statistics from the association tests and LD information from the imputed data, clumping 

variants 250kb away from an index variant and with an r2>0.1.  In order to further identify a 

set of likely independent signals I performed conditional analysis of the lead SNPs in 

SNPTEST to take into account long-range LD. A total of 135 autosomal variants with p<1x10-5 

in any of the three case-control analyses were taken forward for replication in UKBB. All 

case-control results are reported with the lower BMI group as reference. 

 

2.3.10 UKBB association analysis 
 

I tested 72,355,667 SNPs for association under an additive model in SNPTEST using sex, age, 

10 PCs and UKBB genotyping array as covariates. Three comparisons were done: obese vs 

thin, obese vs controls and controls vs thin. Variants with an INFO score <0.4, HWE p<1x10-6 

were filtered out from the results. Inflation factors were calculated for variants with 

MAF>0.5%.  Inflation factors were calculated using HapMap3 reference panel markers. The 

LD score regression intercepts were 1.0074 in obese vs thin, 1.0057 in obese vs controls and 

1.009 in thin vs controls.  I used all thin individuals, regardless of health status, as a 

replication cohort to maximize power.  
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2.3.11 GIANT, EGG and SCOOP 2013 summary statistics 
 

Summary statistics for the GIANT Extremes obesity meta-analysis [207] were obtained from 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fil

es. Summary statistics for EGG [236] were obtained from http://egg-

consortium.org/childhood-obesity.html. I used summary statistics from our group’s previous 

study of 1,509 early-onset obesity SCOOP cases compared to 5,380 publicly available 

WTCCC2 controls (SCOOP 2013) [160]. Data for the SCOOP cases is available to download 

from the European Genome-Phenome Archive (EGA) using accession number 

EGAD00010000594. The control samples are available to download using accession 

numbers EGAD00000000021 and EGAD00000000023. These replication studies are largely 

non-overlapping with our discovery datasets and each-other. When a lead variant was not 

available in a replication cohort, a proxy (r2≥ 0.8) was used in the meta-analysis. 

 

2.3.12 Replication meta-analysis 
 

I meta-analysed summary statistics for the 135 variants reaching p<1x10-5 in SCOOP vs 

STILTS, SCOOP vs UKHLS, and UKHLS vs STILTS with the corresponding results from UKBB 

and study specific replication cohorts. For obese vs. thin and obese vs. controls comparisons 

I used fixed-effects meta-analysis correcting for unknown sample overlap in replication 

cohorts using METACARPA [237]. For thin vs. controls I used a fixed-effects meta-analysis in 

METAL [238].  Heterogeneity was assessed using Cochran’s Q-test heterogeneity p-value in 

METAL. A signal was considered to replicate if it met all of the following criteria: i) consistent 

direction of effect; ii) p<0.05 in at least one replication cohort; and iii) the meta-analysis p-

value reached standard genome-wide significance (p<5x10-8). Application of a more 
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stringent p-value cutoff of p≤1.17x10-8 which would take into account the  additional 

variants on the lower allele frequency spectrum (and hence increased number of 

independent tests) [239] only affected one previously established signal (SULT1A1, 

rs3760091, p=2.65x10-8) in the obese vs. controls analysis that fell just above this threshold 

(Table 2.6).  rs4440960 was later removed from final results (SCOOP vs UKHLS and STILTS vs 

UKHLS) after close examination revealed it was present in a CNV region with poor 

imputation quality. 

 

2.3.13 Comparison of newly established candidate loci and UKBB independent BMI 
dataset 

 

To evaluate whether the number of associated signals in SCOOP vs STILTS, SCOOP vs UKHLS 

and UKHLS vs STILTS that were directionally consistent and nominally significant in the 

independent UKBB BMI analysis were more than expected by chance, I performed a 

binomial test (Table 2.9).  

2.3.14 Lookup of previously identified obesity-related signals in our discovery datasets 
 

I took all signals reaching genome-wide significance, or identified for the first time in the 

GIANT Extremes obesity meta-analysis [207], with either the tails of BMI or obesity classes, 

and in childhood obesity studies [160, 236] and performed look-up of those signals in all 

three of our discovery analyses (SCOOP vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS) 

(Supplementary Table 10 of Riveros-Mckay et al 2018 [217] (Appendix A)).    
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2.4 Results 
 

2.4.1 Discovery cohorts characteristics 
 

The discovery cohorts consisted of genotype data for 1,622 persistently thin healthy 

individuals (STILTS), 1,985 severe childhood onset obesity cases (SCOOP) and 10,433 

population based individuals (UKHLS) used as a common set of control. A summary of 

cohort characteristics is presented in Table 2.2.  I tested for significant differences between 

discovery cohorts that could affect interpretation of association results. Using a Fisher’s test 

I determined that there’s a significant sex difference (p<0.001) in STILTS vs SCOOP and 

UKHLS reflecting a low prevalence of thinness in men as defined by our BMI threshold. I also 

found significant differences in the ages of all cohorts using a t-test (p<0.001). This 

difference was partly by design in SCOOP since ascertainment based on young age was done 

deliberately to minimize time of exposure to Western obesogenic environments. After 

sample and variant quality control, I retained 1,471 thin individuals, 1,456 obese individuals, 

6,460 control individuals in the BMI range 19-30 kg/m2 (non-extremes). 

 

 STILTS (thin) SCOOP (obese) UKHLS (controls) 

N total 1622 1985 10433 

  Female Male Female Male Female Male 

N 1325 (81.69%)* 297 (18.31%)* 1083 (54.56%) 902 (45.44%) 5837 (55.95%) 4596 
(44.05%) 

Age** 36.64 ± 14.33 
(mean ± SD) 

35.17 ± 14.50 
(mean ± SD) 

10.74 ± 7.44 
(mean ± SD) 

10.93 ± 7.09 
(mean ± SD) 

52.02 ± 16.73 
(mean ± SD) 

52.67 ± 17.31 
(mean ± SD) 

BMI 17.56 ± 0.93 
(mean ± SD) 

17.56 ± 1.06 
(mean ± SD) 

33.66 ± 9.47 
(mean ± SD) 

34.41 ± 10.61 
(mean ± SD) 

26.98 ± 7.94 
(mean ± SD) 

26.86 ± 7.83 
(mean ± SD) 

BMI sds 
(children) 

  3.70 ± 0.83 
 (mean ± SD) 

3.83 ± 0.87 
(mean ± SD) 

    

Table 2.2:Summary of discovery sample sets before QC. *Significantly different in STILTS compared to SCOOP and UKHLS 
p<0.001. **Significantly different across all cohorts p<0.001. 
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2.4.2 Heritability of persistent thinness and severe early onset obesity 
 

In my first analysis I contrasted the heritability of thinness to that of severe early onset 

childhood obesity. To this end genotypes for SCOOP, STILTS and UKHLS were imputed 

together to a combined UK10K+1000G reference panel by Vanisha Mistry and logistic 

regression results from SNPTEST for SCOOP vs UKHLS and STILTS vs UKHLS were used. I used 

LD score regression to estimate heritability explained by common variation (MAF >5%) using 

a subset of 1,197,969 HapMap3 markers (Methods 2.3.4). Using prevalence estimates 

previously described (Methods 2.3.4), I estimated that common variation accounted for 

32.33% (95% CI 23.75%-40.91%) of the phenotypic variance on the liability scale in severe 

early onset obesity, and 28.07% (95% CI 13.80%-42.34%) in persistent thinness, suggesting 

both traits are similarly heritable.  

 

2.4.3 Contribution of known BMI associated loci to thinness and severe early onset 
obesity  

 

To investigate the role of common variant European BMI-associated loci in persistent 

thinness vs severe early onset obesity, I focused on the 97 loci from GIANT [92] available at 

the start of this study.  Three-way association analyses were performed by Vanisha Mistry: 

SCCOP vs. STILTS, SCOOP vs UKHLS, UKHLS vs. STILTS (Methods 2.3.3.1). After quality 

control, 41,266,535 variants remained for association analyses in the three cohorts: SCOOP 

vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS.  

Of these 97 established BMI associated loci, I found that 40 were nominally significant 

(p<0.05) in SCOOP vs UKHLS and 15 in UKHLS vs STILTS (Table 2.3, Supplementary Table 2 of  

Riveros-Mckay et al 2018 [217] (Appendix A)). Direction of effect was consistent for all of 
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these loci, which was more than expected by chance (binomial p=9.09x10-13 and binomial 

p=3.05x10-5, respectively). Overall, the proportion of phenotypic variance explained by the 

97 established BMI associated loci was 10.67% in SCOOP vs UKHLS, and 4.33% in STILTS vs 

UKHLS (Methods 2.3.5). However, evaluation of association results in thin (STILTS) and 

obese (SCOOP) individuals, compared to the same controls (UKHLS), highlighted that the 

results are not a mirror image of each other (Figure 2.3).   

 

 

rsID Gene GIANT SCOOP vs. UKHLS UKHLS vs. STILTS 

EA EAF Beta P value EAF OR P value EAF OR P value 

rs1558902 FTO A 0.41 0.08 7.5X10-153 0.41 1.42 1.25X10-17 0.38 1.17 2.78X10-4 

rs6567160 MC4R C 0.23 0.05 3.93X10-53 0.24 1.30 7.91X10-9 0.22 1.25 1.38X10-5 

rs13021737 TMEM18 G 0.82 0.06 1.11X10-50 0.83 1.35 3.89X10-7 0.82 1.21 4.44X10-4 

rs10938397 GNPDA2 G 0.43 0.04 3.21X10-38 0.44 1.18 4.50X10-5 0.42 1.08 6.24X10-2 

rs543874 SEC16B G 0.19 0.04 2.62X10-35 0.21 1.20 2.22X10-4 0.20 1.17 3.11X10-3 

rs2207139 TFAP2B G 0.17 0.04 4.13X10-29 0.17 1.17 2.70X10-3 0.16 1.11 6.21X10-2 

rs11030104 BDNF A 0.79 0.04 5.56X10-28 0.79 1.14 1.27X10-2 0.79 1.12 2.43X10-2 

rs3101336 NEGR1 C 0.61 0.03 2.66X10-26 0.60 1.19 3.66X10-5 0.59 1.05 2.07X10-1 

rs7138803 BCDIN3D A 0.38 0.03 8.15X10-24 0.37 1.21 4.68X10-6 0.36 1.03 4.47X10-1 

rs10182181 ADCY3 G 0.46 0.03 8.78X10-24 0.49 1.20 9.30X10-6 0.48 1.18 6.81X10-5 

rs3888190 ATP2A1 A 0.40 0.03 3.14X10-23 0.40 1.12 3.87X10-3 0.39 1.03 4.34X10-1 

rs1516725 ETV5 C 0.87 0.04 1.89X10-22 0.86 1.15 1.89X10-2 0.85 1.18 5.03X10-3 

rs12446632 GPRC5B G 0.86 0.04 1.48X10-18 0.85 1.09 1.24X10-1 0.85 1.19 2.20X10-3 

rs16951275 MAP2K5 T 0.78 0.03 1.91X10-17 0.77 1.13 1.43X10-2 0.77 1.05 2.80X10-1 

rs3817334 MTCH2 T 0.40 0.02 5.15X10-17 0.41 1.09 3.52X10-2 0.40 1.09 3.29X10-2 

rs12566985 FPGT-TNNI3K G 0.44 0.02 3.28X10-15 0.43 1.20 1.04X10-5 0.42 1.03 3.96X10-1 

rs3810291 ZC3H4 A 0.66 0.02 4.81X10-15 0.67 1.13 4.69X10-3 0.66 1.07 1.15X10-1 

rs7141420 NRXN3 T 0.52 0.02 1.23X10-14 0.51 1.11 1.11X10-2 0.50 1.00 9.48X10-1 

rs13078960 CADM2 G 0.19 0.03 1.74X10-14 0.20 0.99 9.08X10-1 0.20 1.19 9.49X10-4 

rs17024393 GNAT2 C 0.04 0.06 7.03X10-14 0.02 1.56 1.26X10-4 0.02 1.09 5.20X10-1 

rs13107325 SLC39A8 T 0.07 0.04 1.83X10-12 0.08 1.28 4.84X10-4 0.07 1.20 2.89X10-2 

rs17405819 HNF4G T 0.70 0.02 2.07X10-11 0.70 1.12 1.19X10-2 0.69 1.08 6.30X10-2 

rs2365389 FHIT C 0.58 0.02 1.63X10-10 0.59 1.09 3.94X10-2 0.58 1.06 1.80X10-1 

rs205262 C6orf106 G 0.27 0.02 1.75X10-10 0.26 1.16 1.14X10-3 0.26 1.05 3.12X10-1 

rs2820292 NAV1 C 0.55 0.02 1.83X10-10 0.56 1.03 4.74X10-1 0.56 1.09 3.47X10-2 

rs9641123 CALCR C 0.42 0.01 2.08X10-10 0.41 1.09 3.19X10-2 0.40 1.03 4.09X10-1 
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rsID Gene GIANT SCOOP vs. UKHLS UKHLS vs. STILTS 

EA EAF Beta P value EAF OR P value EAF OR P value 

rs12016871 MTIF3 T 0.20 0.03 2.29X10-10 0.17 1.15 7.09X10-3 0.17 0.96 4.84X10-1 

rs16851483 RASA2 T 0.06 0.04 3.55X10-10 0.06 1.20 2.17X10-2 0.06 1.17 8.83X10-2 

rs1928295 TLR4 T 0.54 0.01 7.91X10-10 0.56 1.10 2.00X10-2 0.56 0.99 8.13X10-1 

rs2650492 SBK1 A 0.30 0.02 1.92X10-9 0.29 1.17 2.93X10-4 0.29 1.05 2.42X10-1 

rs12940622 RPTOR G 0.57 0.01 2.49X10-9 0.55 1.12 7.20X10-3 0.55 1.06 1.28X10-1 

rs11847697 PRKD1 T 0.04 0.04 3.99X10-9 0.04 1.25 1.72X10-2 0.04 1.24 5.05X10-2 

rs4740619 C9orf93 T 0.54 0.01 4.56X10-9 0.54 1.05 2.10X10-1 0.54 1.12 5.88X10-3 

rs11191560 NT5C2 C 0.08 0.03 8.45X10-9 0.07 1.23 4.23X10-3 0.07 1.00 9.98X10-1 

rs1000940 RABEP1 G 0.32 0.01 1.28X10-8 0.30 1.11 1.47X10-2 0.29 1.06 2.04X10-1 

rs2836754 ETS2 C 0.61 0.01 1.61X10-8 0.65 1.05 2.42X10-1 0.64 1.12 1.03X10-2 

rs9400239 FOXO3 C 0.68 0.01 1.61X10-8 0.70 1.11 1.84X10-2 0.70 1.09 4.31X10-2 

rs29941 KCTD15 G 0.66 0.01 2.41X10-8 0.67 1.13 5.77X10-3 0.66 1.02 5.56X10-1 

rs9374842 LOC285762 T 0.74 0.01 2.67X10-8 0.77 1.16 3.41X10-3 0.76 1.05 2.53X10-1 

rs6477694 EPB41L4B C 0.36 0.01 2.67X10-8 0.35 1.10 2.73X10-2 0.34 1.04 3.53X10-1 

rs7899106 GRID1 G 0.05 0.04 2.96X10-8 0.05 1.24 1.48X10-2 0.05 0.94 5.90X10-1 

rs2245368 PMS2L11 C 0.18 0.03 3.19X10-8 0.16 1.22 2.73X10-4 0.16 0.98 7.82X10-1 

rs17203016 CREB1 G 0.19 0.02 3.41X10-8 0.20 1.13 1.32X10-2 0.20 0.98 7.28X10-1 

rs17724992 PGPEP1 A 0.74 0.01 3.42X10-8 0.74 1.15 2.99X10-3 0.73 1.04 3.90X10-1 

rs9540493 MIR548X2 A 0.45 0.01 4.97X10-8 0.45 1.12 9.92X10-3 0.44 1.00 9.28X10-1 

Table 2.3: BMI-associated loci that were nominally significant in either. SCOOP vs UKHLS or UKHLS vs STILTS.EA= Effect 
allele (BMI increasing allele); EAF = Effect allele frequency. Only loci that are nominally significant (p<0.05) in at least one 
comparison are shown. Nominally significant loci (p<0.05) are highlighted in bold for each comparison 
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Figure 2.3: Odds ratio comparison for the 97 BMI associated loci. Odds ratios for SCOOP vs UKHLS (x-axis) and UKHLS vs 
STILTS (y-axis) comparisons are shown for the 97 known BMI loci from GIANT.  Colours of data points represent nominal 
significance in both analyses (red), only SCOOP vs. UKHLS (green), only STILTS vs UKHLS (blue) or in neither analysis 
(purple). Error bars represent 95% confidence intervals for the odds ratios for SCOOP vs UKHLS (x-axis) and for UKHLS vs 
STILTS (y-axis). A subset of data points with larger separation from the red diagonal line (x=y) are labelled. 

 

Notably, a striking difference was observed in association results in the FTO locus where the 

lead intronic obesity risk variant, rs1558902, showed a moderate effect size and modest 

evidence of association in controls compared to thin individuals (UKHLS vs 

STILTS)(p=0.00027, OR=1.17, 95% CI [1.08,1.28], EAF=0.39), despite having a large effect and 

being associated at genome-wide significance levels in obese compared to control 

individuals (SCOOP vs UKHLS) (p=1.25x10-17, OR=1.43, 95% CI [1.32,1.55], EAF=0.41) (Figure 

2.3, Table 2.3). GNAT2 also showed a larger effect and significance in the analysis of SCOOP 

vs UKHLS (p=1.26x10-4, OR=1.57, 95% CI [1.25, 1.97], EAF=0.03), than in UKHLS vs STILTS 

(p=0.52, OR=1.10, 95% CI [0.82, 1.47], EAF=0.02)  (Figure 2.3, Table 2.3). This discrepancy in 
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association strength and effect size was also seen at the opposite end of the BMI spectrum 

in CADM2 where the lead SNP, rs13078960, showed evidence of association in UKHLS vs 

STILTS (p= 9.48x10-4, OR=1.2, 95% CI [1.08, 1.33], EAF=0.20) but no association in SCOOP vs 

UKHLS (p>0.05). In contrast to results at the FTO and CADM2 loci, for MC4R the results are 

more comparable, with genome-wide significant association in SCOOP vs UKHLS (rs6567160, 

p=7.91x10-9, OR=1.31, 95% CI [1.19, 1.43], EAF=0.25) and highly significant association 

results in UKHLS vs STILTS(p=1.38x10-5, OR=1.26, 95% CI [1.13, 1.39], EAF=0.23). One 

possible explanation for these observed differences is that they arose as a result of 

randomly sampling a small subset of individuals at the two extremes of the distribution 

and/or by the different degree of extremeness of the phenotype. To formally test if these 

results were significantly different from those expected under a model where loci act 

additively across the BMI distribution, I simulated 10,000 different populations of 1 million 

individuals with genotypes for the 97 established BMI loci using allele frequencies in UKHLS, 

and then simulated a phenotype using the effect sizes in GIANT (Methods 2.3.7). These 

simulations detected fourteen loci with nominally significant deviation from an additive 

model, however none remained significant after correction for the number of tests 

(p=0.05/97*2 = ~0.0002, Table 2.4). However, CADM2 was nominally significant in both 

SCOOP vs UKHLS and STILTS vs UKHLS analyses, with slightly lower OR detected in SCOOP vs 

UKHLS compared to simulated data, and slightly higher OR detected in UKHLS vs STILTS 

compared to simulated data (Table 2.4). Since both SCOOP and STILTS are significantly 

younger than UKHLS, I used summary statistics from the ALSPAC cohort which consists of 

4,964 children aged 13-16 to test if the OR differences observed in SCOOP vs UKHLS were 

due to age effects. For the 97 GIANT loci overall there were no significant differences (z-test, 

p>0.05) except for rs2245368 (PMS2L11 locus, z-test p=3.81x105, Supplementary Table 4 of 
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Riveros-Mckay et al 2018 [217] (Appendix A)). In combination, these results suggest that 

the observed differences in ORs and p-values could have arisen because our severe obese 

cases are much more extreme (i.e. deviate more from the mean) than the healthy thin 

individuals. Results also suggest our obese and thin sample sizes gave us limited power to 

detect significant differences compared to the additive model given the wide confidence 

intervals observed in simulations.  

SCOOP 

Gene p-val observed OR mean simulation OR 

QPCTL 0.0471 1.02 1.14 

FPGT-TNNI3K 0.0161 1.21 1.09 

CADM2 0.0177 0.99 1.12 

STXBP6 0.0379 0.99 1.09 

HSD17B12 0.0113 0.96 1.08 

ZBTB10 0.0166 0.95 1.14 

STILTS 

Gene p-val observed OR mean simulation OR 

MC4R 0.0137 1.26 1.12 

ADCY3 0.0059 1.19 1.06 

CADM2 0.0148 1.20 1.06 

LINGO2 0.0436 0.96 1.05 

TCF7L2 0.0337 0.96 1.05 

C9orf93 0.0398 1.12 1.04 

SCARB2 0.0473 0.95 1.06 

ETS2 0.0479 1.12 1.03 

CLIP1 0.0311 0.93 1.06 

Table 2.4: Nominally significant loci for non-additive effect in extremes. 

In addition to analysing established BMI loci on an individual basis, I also looked at genetic 

risk scores (GRS) generated from the 97 BMI associated loci from GIANT [92] to analyse the 

contribution of these loci as a whole. To this end, Vanisha Mistry generated weighted GRS 

scores and Audrey Hendricks ran an ordinal logistic regression testing the association of the 

GRS scores on BMI category (i.e. thin (STILTS), normal (UKHLS), obese (SCOOP)). As 

expected, the standardised BMI genetic risk score was strongly associated with BMI 



53 
 

category (weighted score p=8.59x10-133). The effect of a one standard deviation increase in 

the standardised BMI genetic risk score was significantly larger for obese vs. (thin & normal) 

than for (obese & normal) vs. thin (p=7.48x10-11) with odds ratio and 95% confidence 

intervals of 1.94 (1.83, 2.07) and 1.50 (1.42, 1.59), respectively. However, using the 

simulations described above (Methods 2.3.7), confirmed that the larger OR for obese vs. 

(thin & normal) was not significantly different (p=0.41) than what we would expect given an 

additive genetic model, and the different degrees of “extremeness” in our thin and obese 

cases. A BMI genetic score excluding the FTO variant produced similar results (data not 

shown). I also tested whether the mean GRS in each BMI category was significantly different 

from that predicted via simulations and found no significant difference (Figure 2.4). As a 

sanity check, I also compared controls against simulations and no significant difference was 

observed (p=0.18). 
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Figure 2.4: Mean GRS for SCOOP, STILTS and UKHLS compared to simulations. Histogram represents mean GRS scores for 
each BMI category across 10,000 simulations. Vertical red line highlights the observed value in real data. 

 

 

2.4.4 Genetic correlation between persistent thinness, severe early onset childhood 
obesity and BMI 

 

Given the observed differences in association results from thin (STILTS) and obese (SCOOP) 

individuals, compared to the same set of control individuals (UKHLS), I next explored the 

genetic correlation of severe early onset obesity, persistent thinness and BMI using LD score 
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regression (Methods 2.3.4). For this, I used summary statistics from the SCOOP vs UKHLS, 

STILTS vs UKHLS and BMI data from participants in UK Biobank (UKBB). As expected from 

the association results, the genetic correlation of severe early onset obesity and BMI was 

high (r=0.86, 95% CI [0.74, 0.98], p=1.86x10-43). I also detected weaker negative correlation 

between persistent thinness and BMI (r=-0.63, 95% CI [-0.44,-0.82], p=3.54x10-11), and 

between persistent thinness and severe obesity (r=-0.49, 95% CI [-0.17,-0.82], p=0.003). In 

contrast with previously described obesity classes, severe early onset obesity and persistent 

thinness were not completely correlated with BMI (Figure 2.5). As an inverse genetic 

correlation between BMI, obesity and anorexia nervosa (a disorder that is characterised by 

thinness and complex behavioural manifestations) has been reported [228], I also tested for 

genetic correlation with anorexia nervosa, and found that neither severe early onset 

obesity, nor persistent thinness, were significantly correlated with anorexia nervosa  

(r=-0.05, 95% CI [-0.15,0.05], p=0.33 and r=0.13, 95% CI [-0.02,0.28], p=0.09,  respectively).   
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Figure 2.5: Genetic correlation of traits and BMI. Genetic correlation estimates and 95% CI for severe early-onset 
childhood obesity (SCOOP), healthy persistent thinness (STILTS), Obesity Class 3, Obesity Class 2, Obesity Class 1 and 
Overweight.  Dotted lines represent complete genetic correlation. 

 

2.4.5 Discovery of novel association signals for persistent thinness and severe early 
onset obesity 

 

After the initial association analysis, I sought evidence for novel signals associated with 

either end of the BMI distribution (persistent thinness or severe early onset obesity; 

Methods 2.3.9). In all three analyses, in addition to loci mapping to established BMI and 

obesity loci, I identified PIGZ and C3orf38, two novel loci in the thin vs control analysis, that 

reached conventional genome-wide significance (GWS) (p≤5x10-8) (Table 2.5, Figure 2.6).  

However, an additional 125 SNPs, in 118 distinct loci, reached the arbitrary threshold of 

 p ≤10-5 in at least one analysis, for which I sought replication to assess if promising signals 

are true signals or likely false-positives that could have arisen by confounding effects such as 



57 
 

genotyping batch effects (Supplementary Tables 5-7 of Riveros-Mckay et al 2018 [217] 

(Appendix A) ). 
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Figure 2.6: Miami plot of SCOOP vs. UKHLS and STILTS vs. UKHLS. Miami plot produced in EasyStrata [23], Red=SCOOP vs. UKHLS; Blue=STILTS vs. UKHLS. Red lines indicate genome-wide significance threshold at 
p=5x10-8. Orange lines indicate discovery significance threshold at p=1x10-5.  Black labels highlight known BMI/obesity loci that were taken forward for replication and yellow peaks indicate those that met genome-
wide significance after replication. Grey labels highlight novel loci that did not replicate. 
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Obese vs. thin 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Obese EAF Thin 

rs9930333 FTO G T 1.70(1.52,1.90) 2.30X10-20 49.59% 37.46% 

rs2168711 MC4R C T 1.66(1.45,1.89) 8.29X10-14 28.90% 19.95% 

rs6748821 TMEM18 G A 1.65(1.42,1.91) 9.45X10-11 86.69% 79.84% 

rs506589 SEC16B C T 1.46(1.27,1.67) 5.42X10-8 23.98% 18.07% 

rs6738433 ADCY3-DNAJC27 C G 1.43(1.28,1.60) 1.71X10-10 47.31% 43.92% 

rs62107261 FAM150B T C 2.37(1.75,3.20) 2.07X10-8 96.37% 93.38% 

Obese vs. controls 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Obese EAF Controls 

rs9928094 FTO G A 1.44(1.33,1.57) 1.42X10-18 49.50% 41.32% 

rs35614134 MC4R AC A 1.31(1.20,1.44) 6.27X10-9 29.01% 23.69% 

rs66906321 TMEM18 C T 1.40(1.24,1.57) 2.35X10-8 85.78% 81.35% 

Controls vs. thin 

rsID Nearest gene EA NEA OR  (95% CI) P value EAF Controls EAF Thin 

rs117638949 PIGZ T A 3.5 (2.27,5.4) 1.50X10-8 99.50% 98.55% 

rs75937976 C3orf38 G C 2.95 (2.02,4.32) 2.43X10-8 99.20% 98.25% 
Table 2.5: Genome-wide significant loci in discovery analysis. EA= Effect allele (BMI increasing allele); EAF = Effect allele 
frequency. 

As our obese and thin cases (SCOOP and STILTS) lie at the very extreme tails of the BMI 

distribution, there are few comparable replication datasets. I therefore used the UKBB 

dataset and selected individuals at the top (BMI>=40, N=7,526) and bottom end of the 

distribution (BMI≤19, N=3,532) to more closely match the BMI criteria of our clinically 

ascertained thin and obese individuals. I used 20,720 samples from the rest of the UKBB 

cohort as a control set (Methods 2.3.2.2, Figure 2.2).  As previously mentioned (Methods 

2.3.2.2), I used all thin individuals regardless of health status in this analysis. However, using 

ICD10 codes and self-reported illness data (Supplementary Tables 12-13 of Riveros-Mckay 

et al 2018 [217] (Appendix A)) to remove individuals who had a relevant medical diagnosis 

before date of attendance at UKBB recruitment centre, yielded materially equivalent results 

(Figure 2.7), so I have elected to keep the original results with all thin participants as my 

primary analysis. In cases where lead variants or proxies (r2>0.8) were not, at the time of 

this study, available in the full UKBB genetic release I used results from the interim release 



60 
 

using 2,799 individuals with BMI>=40, 1,212 with BMI<=19 and 8,193 controls (Methods 

2.3.2.2). There was a significant negative genetic correlation for the obese replication 

cohort with anorexia nervosa (r= -0.24, 95% CI [-0.37,-0.11], p=0.01) and a positive genetic 

correlation for the thin replication cohort (r=0.49, 95% CI [0.22-0.76] p=0.0003). The positive 

genetic correlation for the thin replication cohort was still observed after using ICD10 codes 

and self-reported illness data to clean the phenotype (r=0.62, 95% CI [0.30,0.92], p=0.0001).  

  

Figure 2.7: Quantile-quantile plots for UKBB case-control analysis with different exclusion criteria for thin individuals. Q-
Q plot using all thin individuals as cases (Full UKBB) and removing individuals based on ICD10 and self-reported data 
(ICD10+self-reported filter). Correlation for –log10 p-values is shown (r=0.7462). 

 

To further increase power, I took advantage of publicly available summary statistics from 

the GIANT Extremes obesity meta-analysis [207], the EGG childhood obesity study [236], 
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and our group’s previous study on non-overlapping SCOOP participants (SCOOP 2013) [160], 

as additional replication datasets. For SCOOP vs. STILTS I used the GIANT BMI tails meta-

analysis results [207] (up to 7,962 cases/8,106 controls from the upper/lower 5th 

percentiles of the BMI trait distribution). For SCOOP vs. UKHLS I used the GIANT obesity 

class III summary statistics [207] (up to 2,896 cases with BMI ≥40kg/m2 vs 47,468 controls 

with BMI <25 kg/m2), the EGG childhood obesity study [236] (children with BMI ≥95th 

percentile of BMI vs 8,318 children with BMI <50th percentile of BMI) and SCOOP 2013 

[160]. Fixed effect meta-analyses yielded genome-wide significant signals at well-known 

BMI associated loci in both the obese vs. thin, and obese vs. control analyses, and both the 

PIGZ and C3orf38 loci identified at the discovery stage failed to replicate when combined 

with additional data (Table 2.6, Supplementary Tables 5-7 of Riveros-Mckay et al 2018 

[217] (Appendix A). However, the SNRPC locus described here (rs75398113), though not 

independent from the previously described SNRPC/C6orf106 locus (rs205262, r2= 0.29) [92], 

appears to be driving the previously reported association at this locus (rs205262 

conditioned on rs75398113, pconditioned=0.7, Table 2.7). Both SNPs are eQTLs for C6or106 and 

UHRF1BP1 in multiple tissues including brain and colon tissues on GTEx however neither of 

these are obvious biological candidates linked to energy homeostasis.
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Obese vs.  thin           Discovery cohort Replication cohorts Combined analysis 

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR   
(95% CI) 

P value EAF Ob EAF Th Cohort OR  
 (95% CI) 

P value EAF Ob EAF Th OR  
 (95% CI) 

P value HetPVal 

rs9930333 FTO 16 53799977 G T 1.70 
(1.52,1.90) 

2.30X10-20 49.59% 37.46% UKBB 1.46 
(1.38,1.55) 

3.60X10-36 48.26% 38.93% 1.48 
(1.42,1.54) 

8.52X10-76 3.34X10-2 

          GIANT 1.43 
(1.34,1.54) 

8.10X10-25      

rs2168711 MC4R 18 57848531 C T 1.66 
(1.45,1.89) 

8.29X10-14 28.90% 19.95% UKBB 1.23 
(1.15,1.32) 

2.19X10-9 26.75% 22.90% 1.27 
(1.21,1.33) 

2.02X10-21 1.12X10-4 

          GIANT 1.20 
(1.10,1.30) 

1.80X10-5      

rs6748821 TMEM18a 2 629601 G A 1.65 
(1.42,1.91) 

9.45X10-11 86.69% 79.84% UKBB 1.27 
(1.18,1.37) 

1.31X10-9 85.00% 81.69% 1.32 
(1.24,1.39) 

7.76X10-21 2.81X10-3 

          GIANT 1.26 
(1.14,1.39) 

9.90X10-6      

rs506589 SEC16B 1 177894287 C T 1.46 
(1.27,1.67) 

5.42X10-8 23.98% 18.07% UKBB 1.25 
(1.17,1.35) 

5.44X10-10 23.11% 19.16% 1.28 
(1.21,1.35) 

3.14X10-20 1.21X10-1 

          GIANT 1.25 
(1.14,1.37) 

2.70X10-6      

rs6738433 ADCY7b 2 25159501 C G 1.43 
(1.28,1.60) 

1.71X10-10 47.31% 43.92% UKBB 1.21 
(1.14,1.28) 

2.74X10-10 50.70% 45.96% 1.19 
(1.14,1.24) 

3.19X10-17 6.25X10-3 

          GIANT 1.10 
(1.03,1.17) 

5.70X10-3      

rs7132908 FAIM2 12 50263148 A G 1.31 
(1.17,1.47) 

2.26X10-6 42.45% 36.27% UKBB 1.18 
(1.11,1.25) 

5.43X10-8 41.11% 37.39% 1.20 
(1.15,1.26) 

1.93X10-16 2.52X10-1 

          GIANT 1.20 
(1.10,1.30) 

6.60X10-6      

rs62107261 FAM150B 2 422144 T C 2.37 
(1.75,3.20) 

2.07X10-8 96.37% 93.38% UKBB 1.54 
(1.35,1.76) 

3.57X10-10 96.28% 94.36% 1.65 
(1.46,1.87) 

1.15X10-15 1.07X10-2 

rs12507026 GNPDA2c 4 45181334 T A 1.30 
(1.17,1.46) 

3.69X10-6 47.29% 40.92% UKBB 1.14 
(1.08,1.21) 

8.76X10-6 45.30% 41.98% 1.18 
(1.13,1.23) 

5.53X10-15 4.06X10-2 

          GIANT 1.20 
(1.12,1.28) 

3.10X10-7      

rs75398113 SNRPC 6 34728071 C A 1.53 
(1.27,1.85) 

8.91X10-6 11.95% 8.04% UKBB 1.24 
(1.12,1.37) 

2.07X10-5 10.47% 8.52% 1.30 
(1.19,1.42) 

5.19X10-9 5.56X10-2 

rs13135092 SLC39A8 4 103198082 G A 1.58 
(1.30,1.93) 

4.70X10-6 10.50% 7.24% UKBB 1.25 
(1.12,1.39) 

5.57X10-5 9.24% 7.52% 1.32 
(1.20,1.45) 

1.06X10-8 3.59X10-2 
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Obese vs. controls        Discovery cohort  Replication cohorts  Combined analysis  

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

rs9928094 FTO 16 53799905 G A 1.44 
(1.33,1.57) 

1.42X10-18 49.50% 41.32% UKBB 1.30 
(1.25,1.35) 

2.74X10-41 48.34% 41.91% 1.32 
(1.29,1.36) 

 5.94X10-101 4.41X10-5 

             SCOOP 2013 1.46 
(1.34,1.60) 

4.88X10-17        

             EGG 1.21 
(1.15,1.28) 

7.20X10-13        

             GIANT 1.43 
(1.34,1.54) 

6.60X10-25        

rs35614134 MC4Rd 18 57832856 AC A 1.31 
(1.20,1.44) 

6.27X10-9 29.01% 23.69% UKBB 1.22 
(1.16,1.27) 

1.25X10-18 26.72% 23.15%  1.23 
(1.20,1.27) 

 1.57X10-43 3.55X10-1 

             SCOOP 2013 1.32 
(1.19,1.46) 

1.22X10-7        

             EGG 1.22 
(1.15,1.30) 

1.27X10-10        

             GIANT 1.20 
(1.10,1.30) 

1.70X10-5        

rs66906321 TMEM18e 2 630070 C T 1.40 
(1.24,1.57) 

2.35X10-8 85.78% 81.35% UKBB 1.17 
(1.11,1.24) 

3.44X10-9 84.44% 82.20%  1.25 
(1.21,1.29) 

 9.72X10-35 1.33X10-2 

             SCOOP 2013 1.39 
(1.24,1.57) 

6.65X10-8        

             EGG 1.28 
(1.19,1.37) 

5.15X10-12        

             GIANT 1.27 
(1.15,1.40) 

3.40X10-6        

rs7132908 FAIM2f 12 50263148 A G 1.22 
(1.12,1.32) 

3.27X10-6 42.45% 37.82% UKBB 1.15 
(1.10,1.19) 

5.37X10-12 41.11% 37.71%  1.17 
(1.14,1.21) 

 2.38X10-31 4.86X10-1 

             SCOOP 2013 1.23 
(1.12,1.35) 

8.89X10-6        

             EGG 1.18 
(1.11,1.25) 

1.24X10-8        

             GIANT 1.20 
(1.10,1.30) 

6.60X10-6        

rs2384060 ADCY3g 2 25135438 G A 1.23 
(1.13,1.34) 

1.53X10-6 43.52% 38.90% UKBB 1.11 
(1.07,1.15) 

4.89X10-8 47.67% 44.93%  1.14 
(1.11,1.17) 

 9.39X10-23 1.13X10-1 

             SCOOP 2013 1.09 
(1.00,1.19) 

5.01XX10-2        
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Obese vs. controls      Discovery cohort Replication cohorts Combined analysis 

rsID Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

             EGG 1.18 
(1.12,1.24) 

1.02X10-9        

             GIANT 1.12 
(1.04,1.19) 

1.60X10-3        

rs11209947 NEGR1h 1 72808551 A T 1.30 
(1.17,1.44) 

8.51X10-7 76.58% 72.18% UKBB 1.11 
(1.05,1.16) 

4.53X10-5 81.18% 79.76% 1.17 
(1.13,1.21) 

5.17X10-20 7.26X10-5 

             SCOOP 2013 1.46 
(1.30,1.63) 

2.21X10-10        

             EGG 1.13 
(1.06,1.22) 

4.60X10-4        

             GIANT 1.22 
(1.11,1.35) 

5.60X10-5        

rs12735657 SEC16Bi 1 177809133 C T 1.24 
(1.13,1.37) 

9.72X10-6 24.26% 20.46% UKBB 1.12 
(1.07,1.17) 

1.48X10-6 22.87% 20.94% 1.15 
(1.12,1.19) 

 7.26X10-19 1.79X10-1 

             SCOOP 2013 1.20 
(1.07,1.33) 

1.18X10-3        

             EGG 1.14 
(1.06,1.21) 

1.52X10-4        

             GIANT 1.22 
(1.11,1.34) 

1.80X10-5        

rs13104545 GNPDA2 4 45184907 A G 1.27 
(1.15,1.40) 

1.61X10-6 27.41% 23.45% UKBB 1.07 
(1.02,1.11) 

5.35X10-3 24.36% 23.26%  1.13 
(1.09,1.17) 

 1.47X10-11 9.39X10-5 

             EGG 1.13 
(1.04,1.22) 

3.39X10-3        

             GIANT 1.34 
(1.20,1.49) 

1.20X10-7        

rs112446794 CEP120j 5 122665465 T C 1.23 
(1.13,1.35) 

2.08X10-6 33.15% 28.69% UKBB 1.07 
(1.02,1.11) 

2.55X10-3 29.47% 28.21%  1.09 
(1.06,1.13) 

 3.45X10-10 3.33X10-2 

             SCOOP 2013 1.08 
(0.98,1.19) 

1.38X10-1        

             EGG 1.12 
(1.06,1.18) 

1.22X10-4        

                    GIANT 1.05 
(0.97,1.13) 

2.40X10-1           
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Obese vs control 
 

     Discovery cohort Replication cohorts Combined analysis 

rsid Nearest  
gene 

Chr Position (bp) EA NEA OR  
 (95% CI) 

P value EAF Ob EAF Co Cohort OR  
 (95% CI) 

P value EAF Ob EAF Co OR 
  (95% CI) 

P value HetPVal 

rs3760091 SULT1A1 16 28620800 C G 1.24 
(1.14,1.35) 

1.56X10-6 64.89% 60.23% UKBB  1.09 
(1.04,1.14) 

1.19X10-4 63.49% 61.44% 1.12 
(1.07,1.16) 

2.65X10-8 8.49X10-3 

Table 2.6: GWAS results for SNPs meeting p<5x10-8 in all three analyses. EA= Effect allele (BMI increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval 
for the odds ratio; EAF = effect allele frequency. Positions mapped to hg19, Build 37. a rs12995480 used as proxy in GIANT. b rs2384054 used as proxy in GIANT. c rs12641981 used as proxy in 
GIANT. d rs663129 used as proxy in GIANT, EGG and SCOOP 2013. e rs13007080 used as proxy in GIANT, EGG and SCOOP 2013. f rs7138803 used as proxy in SCOOP 2013. g rs6722587 used as 
proxy in GIANT, EGG and SCOOP 2013. h rs4132288 used as proxy in GIANT, EGG and SCOOP 2013. I rs1460940 used as proxy in GIANT, EGG and SCOOP 2013. j rs1366333 used as proxy in 
GIANT, EGG and SCOOP 2013. 
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SNPID p-value OR conditioned p-value conditioned OR conditioned 
on 

rs75398113* 5.44X10-6 1.53 2.94X10-4 1.5 rs205262** 

rs205262** 5.59X10-3 1.19 7.09X10-1 1.03 rs75398113* 

Table 2.7: Reciprocal conditional analysis of rs75398113 (SNRPC)  and rs205262 (C6orf106) in  SCOOP vs STILTS analysis. 
r2=0.29. p-values and ORs are shown without any LD correction applied. *Top signal in this study. **Previously established 
locus. 

 

This is also the case for the CEP120 locus (rs112446794) in the obese vs. controls analysis 

where reciprocal conditional analysis reveals the locus described here is driving the 

association observed at the reported locus (rs4308481 conditioned on rs112446794, 

pconditioned=0.08,Table 2.8). 

 

SNPID p-value OR conditioned p-value conditioned OR conditioned on 

rs112446794* 1.94X10-6 1.23 6.39X10-3 1.16 rs4308481** 

rs4308481** 1.89X10-5 1.2 7.82X10-2 1.1 rs112446794* 

Table 2.8: Reciprocal analysis of rs112446794 (CEP120) and rs4308481 (PRDM6-CEP120) in SCOOP vs UKHLS analysis. 
r2=0.36. p-values and ORs are shown without any LD correction applied. . *Top signal in this study. **Previously 
established locus 

Finally, I used the independent BMI dataset from UKBB (Methods 2.3.2.2) to investigate 

whether any of the loci meeting our arbitrary p ≤10-5 in discovery efforts, were 

independently associated with BMI as a continuous trait.  This identified a novel BMI-

associated locus near PKHD1 (SCOOP vs. STILTS p=5.99x10-6, SCOOP vs. UKHLS p=2.13x10-6, 

BMI p=2.3x10-13, Table 2.9).  Furthermore, there was an excess of nominally significant and 

directionally consistent signals in variants taken for replication in the obese vs. thin, and 

obese vs. controls analyses, after removing known signals and PKHD1, when comparing 

against a GWAS performed on the BMI dataset from UKBB (binomial p=4.88x10-4, and 

binomial p=9.77x10-3, respectively, Methods, Table 2.9).  
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Despite the smaller sample size, the SCOOP vs STILTS comparison had increased power to 

detect some loci, including the locus FAM150B (Table 2.6), which did not meet our p<10-5 

threshold to be taken forward for replication in SCOOP vs UKHLS analysis (p=2.36x10-4).   

SCOOP vs. STILTS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF  

UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 

UKBB 

 
Binomial 
P value 

rs654240 CCND1 T C 0.41 0.05 0.01 1.50X10-5 4.88X10-4 

rs4447506 PIK3C3 G A 0.39 0.05 0.01 1.50X10-6  

rs2425853* CDH22 C G 0.69 0.06 0.01 8.30X10-7  

rs2836760 LOC400867 T G 0.09 0.05 0.02 8.70X10-3  

rs6711131** BAZ2B A G 0.63 0.06 0.02 1.80X10-3  

rs375252497** SEMA3B AAATAAT 
AATAAT 

A 0.67 0.10 0.02 1.80X10-6  

rs11792928 LMX1B T C 0.29 0.03 0.01 1.10X10-2  

rs516579 MTCL1 G T 0.80 0.03 0.01 2.30X10-2  

rs73145387 ABI3BP C G 0.97 0.07 0.03 2.90X10-2  

rs11185396 LOC100129138 C T 0.10 0.04 0.02 2.60X10-2  

rs599291 SLC44A5 T C 0.45 0.02 0.01 2.50X10-2  

rs2784243*** PKHD1 T C 0.58 0.07 0.01 2.70X10-11  

SCOOP vs. UKHLS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF 

 UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 

UKBB 

 
Binomial 
P value 

rs144435735 LINC00682 A G 0.02 0.09 0.04 1.20X10-2 9.77X10-3 

rs8096590 LINC01541 A G 0.31 0.04 0.01 7.90X10-4  

rs10944524 MIR4643 T C 0.15 0.03 0.02 2.80X10-2  

rs115474151 SLC7A14 A T 0.01 0.18 0.09 3.70X10-2  

rs11563327 HOXA1 C T 0.71 0.02 0.01 4.30X10-2  

rs1571570 PBX3 C G 0.07 0.05 0.02 1.90X10-2  

rs5873242** RANBP17 A T 0.32 0.08 0.02 7.80X10-5  

rs75809547**** PTBP2 C T 0.01 -0.15 0.06 1.30X10-2  

rs898708 PNOC C T 0.69 0.02 0.01 3.30X10-2  

rs2237402 POU6F2 G A 0.66 0.05 0.01 1.20X10-6  

rs10456655*** PKHD1 G C 0.17 0.10 0.01 2.30X10-13  

UKHLS vs. STILTS 
SNP 

 
Nearest Gene 

 
Effect 

 
Other 

 
EAF 

 UKBB 

 
Beta 
UKBB 

 
SE 

UKBB 

 
P value 
UKBB 

 
Binomial 
P value 

rs514529 LRP5 T A 0.53 0.03 0.01 5.10X10-3 3.75X10-1 

rs138251346 LOC101929452 A G 0.99 0.13 0.07 3.50X10-2  

rs553440779**** KCNJ3 T C 0.01 -0.16 0.07 2.20X10-2  

Table 2.9: Consistency of the direction of effect in candidate loci meeting p<1x10-5 in the discovery stages with BMI 
dataset GWAS. *Proxy for rs10546790. **Interim release used in UKBB for these signals. N=127,672. ***Novel signal – 
excluded from enrichment test. ****Opposite direction of effect. Effect=Effect allele (BMI increasing allele); Other=Other 
allele; Beta UKBB=Beta in UKBB BMI GWAS; SE UKBB=SE in UKBB BMI GWAS, P value UKBB=P value in UKBB BMI GWAS. 
Binomial P value=P value for binomial test). 



68 
 

 

2.5 Discussion 
 

In this chapter, I and others performed the largest, at the time of completion, GWAS on 

healthy individuals with persistent thinness, and provided the first insights into the genetic 

architecture of this trait. I first show, using genome-wide data, that persistent healthy 

thinness is a heritable trait (h2=28.07%) with a comparable heritability estimate to that of 

severe childhood obesity (h2=32.33%). I also show a negative and incomplete genetic 

correlation between persistent healthy thinness and severe childhood obesity (r=-0.49, 95% 

CI [-0.17,-0.82], p=0.003). The incomplete genetic overlap between the two clinically 

ascertained traits is highlighted by the fact that some established BMI loci are more strongly 

associated  at one end of the clinical BMI distribution compared to the other (e.g. FTO and 

CADM2), while others, appear to exert effects across the entire BMI spectrum (e.g. MC4R 

[184, 240, 241]). However, further exploration by simulation demonstrated some of these 

differences are likely to be due to the different degrees of “extremeness” of the two clinical 

cohorts (i.e. the difference in mean BMI between controls and obese individuals is larger 

than that of controls and thin individuals) and not due to a deviation from additive effects of 

the tested loci on BMI. It is worth noting that CADM2 was not detected even at nominal 

significance in the previous SCOOP effort (p=0.41, OR=1.04 [160]), nor is it detected in the 

EGG study of childhood obesity (p=0.06, OR=1.06 [236]) which suggests that in this case the 

departure from expected OR (Table 2.4) may reflect a true finding. Variants in CADM2 have 

also been associated with habitual physical activity [242]. GRS results also showed that 

overall genetic effects of the established loci do not deviate significantly from an additive 

model. This is in contrast with earlier studies which suggested larger effects at the higher 
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end of the BMI distribution [243, 244] but in agreement with more recent observations 

contrasting the bottom 5% and top 5% of the BMI tails where associated loci were also 

consistent with additive effects [207]. This is also in contrast with a previous study on 

height, where a deviation from additivity was found, but only for short individuals in the 

bottom 1.5% of the distribution [245], which suggests that analysis focused just on the most 

extreme individuals may be warranted.  

 Focusing on the 97 BMI associated loci [92] studied here, I show that the percentage of 

phenotypic variance explained by these loci is lower in persistently thin (4.33%) compared 

to obese individuals (10.67%) which is higher than previous estimates for BMI (~2.7% 

variance) using the same loci [92] and for severe obesity  based on a subset of 32 loci  (5.5% 

of the variance) [207]. Even though I partially addressed the possibility of age influencing 

these results by using data from the ASLPAC cohort, one cannot exclude the possibility that 

different effects of age and sex in our discovery cohorts (Table 2.2), and gene-by-

environment interactions, could be influencing some of the results observed.  For example, 

gene-by-environment interactions and age effects have been previously reported at the FTO 

locus [246-249] where a larger effect is detected in younger adults.  

 In studying thin individuals there are often concerns regarding the prevalence of eating 

disorders, notably anorexia nervosa, amongst participants. Prof Farooqi’s group sought to 

carefully exclude eating disorders at two phases of recruitment (by medical history and by 

questionnaire). Additionally, in this work I demonstrate that in our cohort of healthy thin 

individuals, anorexia nervosa is unlikely to be a confounder as the two traits do not exhibit 

significant genetic correlation (r=0.13, 95% CI [-0.02,0.28], p=0.09).   This was not the case 

for the UKBB replication cohort where a positive genetic correlation was observed (r= 0.49 
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95% CI [0.22-0.76] p=0.0003). The positive genetic correlation with anorexia was still 

observed after removing individuals with medical conditions that could explain their low 

BMI (r=0.62, 95% CI [0.30,0.92], p=0.0001). These results highlight the importance of the 

careful phenotyping performed in the recruitment phase and the utility of the STILTS cohort 

as a resource to study healthy and persistent thinness. 

In the genome-wide association analyses amongst the signals I took forward for replication, 

in addition to detecting established BMI-associated loci, I find a novel BMI-association at 

PKHD1 in the UKBB BMI dataset (rs10456655, beta=0.10, p=2.3x10-13, Table 2.9), where a 

proxy for this variant (rs2579994, r2=1 in 1000G Phase 3 CEU) has been previously nominally 

associated with waist and hip circumference (p=5.60x10-5 and p=4.40x10-4 respectively) 

[250].  In addition, I found associations at loci that had only recently been established at the 

time of this study, using very large sample sizes. FAM150B, was only suggestively associated 

at discovery stage in Tachmazidou et al (2017) [251] (N=47,476, p=2.57×10−5) whereas it 

reached genome-wide significance when contrasting SCOOP vs STILTS (N=2,927, 

 p=2.07x10-8, Table 2.6). Also, PRDM6-CEP120 [180] was discovered in a Japanese study with 

a sample size of 173,430 and had not been previously reported in a European population. In 

this study, a signal near the locus (rs112446794, r2=0.36) showed suggestive evidence of 

association in SCOOP vs UKHLS (p=2.08x10-6, Table 2.6) with a significantly smaller sample 

size. Conditional analysis revealed the lead SNP in this study drives the association of the 

previously established signal (Table 2.8).  CEP120 codes for centrosomal protein 120 and 

variants near this locus have been previously associated with height [252] and waist 

circumference in East Asians [253]. Missense variants in the gene itself have been associated 

with rare ciliopathies [254, 255].  Lastly, amongst the signals taken forward for replication 
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from our case-control analyses, and after removing known and newly established loci, an 

enrichment of directionally consistent and nominal associations in the analysis of BMI as a 

continuous trait is observed, suggesting that some of these results may warrant additional 

investigation, in particular in similarly ascertained thin and obese cohorts. One such 

example is rs4447506, near PIK3C3, which was not only nominally significant and consistent 

in the independent UKBB BMI analysis (p=1.5x10-6, Table 2.9), but also in the Locke et al. 

(2015) [92] BMI results (p= 0.01), and in the GIANT BMI tails analysis I used as replication 

(Supplementary Table 5 of Riveros-Mckay et al 2018 [217] (Appendix A)).  Despite not 

reaching genome-wide significance in our discovery cohorts, directionally consistent 

suggestive associations were observed at a number of loci previously associated with BMI 

tails and with different obesity classes [207] (Supplementary Table 10 of Riveros-Mckay et 

al 2018 [217] (Appendix A)).  One important limitation of this study design is that most 

replication cohorts are population derived and not clinically ascertained cohorts like our 

discovery dataset which could be a source for phenotype heterogeneity and subsequently 

reduced power to replicate signals.  

It is also worth noting that these clinically ascertained extremes display evidence of 

incomplete genetic correlation with BMI, in contrast to previously described obesity classes 

(Figure 2.5) which supports the hypothesis that additional loci might be uncovered by 

focusing on these clinical extremes. Altogether, these results highlight some power 

advantages of using clinically ascertained extremes of the phenotype distribution to detect 

associations. However, a consequence of their very specific clinical ascertainment is that the 

conclusions we draw here cannot be straightforwardly extrapolated to the general 

population. 
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In summary, analyses performed in this chapter suggest that further genetic studies focused 

on persistently thin individuals are warranted. The STILTS cohort is an excellent resource in 

which to conduct such additional genetic exploration. Further genetic and phenotypic 

studies focused on persistently thin individuals may provide new insights into the 

mechanisms regulating human energy balance, and may uncover potential anti-obesity drug 

targets. 

2.6 Future directions 
 

Some outstanding questions remain from the work presented in this chapter, which could 

be addressed with some additional analyses.  Namely, the possibility remains that the 

observed ORs in the UKHLS vs STILTS analysis could have been influenced by the significant 

age difference between the two cohorts. An analysis using only a subset of UKHLS samples 

with a similar age distribution to those in STILTS could provide a better estimate to explore 

differences in effect sizes on the tails of the BMI distribution.  

Additionally, it would be of interest to assess the genetic correlation of extreme obesity and 

healthy persistent thinness with additional diseases and traits.  These analyses would be 

feasible using summary statistics for >500 traits from UK Biobank participants recently made 

available (http://www.nealelab.is/uk-biobank/).  

Lastly, for future studies it would be of interest to explore multiple BMI cutoffs for obesity in 

adults from UK Biobank and calculate genetic correlation with SCOOP to find the optimal 

BMI cutoff for future replication studies in adults when pursuing findings originating from 

the SCOOP cohort. 
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3 Chapter 3: The Role of Rare Variation in Circulating Metabolic 
Biomarkers 

3.1 Introduction 
 

Metabolic measurements reflect an individual’s endogenous biochemical processes and 

environmental exposures [256, 257]. Many circulating lipids, lipoproteins and metabolites 

have been previously implicated in the development of cardiovascular disease (CVD) [258-

261] or used as biomarkers for disease diagnosis or prognosis [262, 263].  High circulating 

levels of total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol, for example, 

have been associated with increased risk of coronary heart disease (CHD)[264]. On the other 

hand, circulating levels of high-density lipoprotein (HDL) cholesterol have been regarded as 

protective factors against CHD [265]. Despite the observed association between low HDL 

levels and increased CHD risk, a causal role for HDL levels was more unclear before genetic 

studies, due to potential confounding by other CHD risk factors correlated with low HDL, like 

increased plasma triglycerides (TG) [266].  

In the diagnostic setting, metabolites like creatinine and  branched chain amino acids 

(valine, leucine and isoleucine) are helpful biomarkers for diseases such a kidney disease 

[267] , or hyperinsulinism [268-270]. Understanding the genetic influence on circulating 

levels of these metabolic biomarkers can help us gain insight into the biological processes 

regulating these traits, lead to improve aetiological understanding of CVD and identify novel 

potential therapeutic drug targets. Notable examples of candidate drug targets identified via 

genetic approaches are LDLR [271, 272], APOB [273, 274] and PCSK9 [275, 276]. 

Mipomersen, a commercially available APOB inhibitor, has already shown association with 

reduction in cardiovascular events in patients with hypercholesterolaemia [277] and two 



74 
 

PCSK9 inhibitors: alirocumab and evolocumab have been shown to reduce risk of myocardial 

infranction (MI) and stroke in clinical trials [278]. 

Genome-wide association studies (GWAS) focusing on traditionally measured lipid traits 

have greatly expanded our knowledge of lipid biology and to date 250 loci have been 

robustly associated with total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), 

low-density lipoprotein cholesterol (LDL-C), and/or triglycerides (TG) [84, 116, 279-285]. 

Through these studies it has been found that most loci identified in European populations 

contribute to the genetic architecture of lipid traits across global populations [116], that 

there are metabolic links between blood lipids and type 2 diabetes, blood pressure, waist-

hip-ratio and BMI [280], and more recently that  some mechanisms of lowering LDL-C 

increase type 2 diabetes  (T2D) risk [84].   Mendelian randomisation (MR) approaches have 

also used information gained through GWAS to examine the causal link between low HDL 

levels and CVD where findings suggest that low HDL levels are not causal for CVD since many 

studies report no association between CVD and genetically lowered levels of HDL [110-114].  

These MR approaches have also been used to identify a potential causal link between 

increased plasma urate levels and CVD [286], although other studies measuring serum urate 

levels have not found that link [287]. 

In addition to this, more detailed metabolic profiling using high resolution nuclear magnetic 

resonance (NMR) measurements, has proven helpful to find additional lipid and small 

molecule metabolism-associated loci with smaller sample sizes, and to assess pleiotropic 

effects of previously established loci [38, 173, 288]. An example of this, is a novel link 

between the LPA locus and very-low-density lipoprotein (VLDL) metabolism (measured by 

using high resolution NMR), with effect sizes twice as large as those found for traditionally 
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measured lipid traits like LDL-C and TC, suggesting these measurements are better at 

capturing the underlying biological processes in lipid metabolism than traditionally 

measured lipid traits. In this same study,  by constructing a genetic risk score using variants 

associated with Lp(a) levels and using a Mendelian randomisation approach the authors 

were able to demonstrate a causal link between increased Lp(a) levels and overall 

lipoprotein metabolism [173]. 

Despite the increased usage of exome arrays which have been used at scale to capture low-

frequency and rare coding variation contributing to lipid and amino acid metabolism [84, 

282-284, 288, 289], large-scale sequencing studies have the added value of assessing rare 

variation at single nucleotide resolution across the whole genome, or exome, including the 

detection of private variants which could have large effects on protein function.  These 

approaches enabled, for example, the discovery of inactivating variants in key proteins 

which are models for drug target antagonism such as ANGPTL4, where carriers of a 

missense E40K variant and other inactivating variants had reduced risk of CHD [290, 291]. 

Notwithstanding the progress made in recent years in understanding the genetic aetiology 

of a number of traditional lipid traits, at the time of this analysis, there were no studies 

coupling NMR measurements with sequencing data to explore the role of rare genetic 

variants in the metabolism of high resolution lipid, lipoprotein and metabolite traits.  In this 

chapter, I address this gap in knowledge by examining the contribution of rare variation 

(MAF <1%) to 226 serum metabolic measurements in the INTERVAL cohort which consist of 

healthy blood donors residing in the UK. This project was done in collaboration with Dr 

Adam Butterworth’s group at the University of Cambridge. My work involved QCing of 

sequencing and phenotype data as well as all analytical aspects of the study.  
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3.2 Chapter aims 
 

The overall aim of this chapter is to explore how coupling next generation sequencing (NGS) 

and high resolution metabolic measurements can help us gain new insights into metabolic 

biomarker biology through rare variant analyses. To do this, I took advantage of the 

INTERVAL cohort, which is comprised of healthy blood donors who have been deeply 

phenotyped and who also have genome-wide array data. In my project I used data from a 

subset of 7,142 participants with NMR measurements and NGS data to: 

I. Identify novel loci, genes and/or gene sets associated with metabolic biomarkers. 

II. Identify effector transcripts at established GWAS loci for traditionally measured lipid 

traits.  

III. Assess the contribution of genes known to be involved in lipoprotein metabolism to 

the tails of the phenotype distribution of lipoprotein and glyceride traits in a healthy 

population.  

 

3.3 Methods 

3.3.1 Participants  
 

The INTERVAL cohort consists of 47,393  predominantly healthy blood donors in the UK 

[292]. This study was the result of a collaboration between the Universities of Cambridge 

and Oxford and the NHS Blood and Transplant Unit. The study was set up to determine the 

optimum intervals between donations for men and women without affecting the overall 

health of blood donors. Individuals were asked to fill an online general questionnaire every 

six months containing basic lifestyle and health-related information. At the time of this 
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study, a different set of biomarker assays were performed on blood samples collected on 

the first visit and those collected on the 2 year follow-up visit. All individuals have been 

genotyped using the Affymetrix UK Biobank Axiom Array and imputed using a combined 

UK10K-1000G Phase III imputation panel [293]. A subset of 4,502 individuals was selected 

for whole-exome sequencing (WES) [294] and another subset of 3,762 was selected for 

whole-genome sequencing (WGS). There was an overlap of 54 individuals in both datasets.  

 

3.3.2 Sequencing and genotype calling  
 

WES and WGS were performed at the Wellcome Sanger Institute (WSI) sequencing facility, 

with read alignment and genotype calling performed by the Human Genetics Informatics 

(HGI) group at Sanger. For WES sheared DNA was prepared for Illumina paired-end 

sequencing and enriched for target regions using Agilent’s SureSelect Human All Exon V5 

capture technology (Agilent Technologies; Santa Clara, California, USA). The exome capture 

library preparation was sequenced using the Illumina HiSeq 2000 platform as paired-end 75 

bp reads. Reads were aligned to the GRCh37 human reference genome using BWA (v0.5.10) 

[295]. GATK HaplotypeCaller v3.4 [296] was used for variant calling and recalibration. For 

WGS sheared DNA was prepared for Illumina paired-end sequencing. Sequencing was 

performed using the Illumina HiSeq X platform as paired-end 75 bp reads. Reads were 

aligned to the GRCh38 human reference genome using mostly BWA (v.0.7.12) although a 

subset of samples was aligned with v.0.7.13 or v.0.7.15. GATK HaplotypeCaller v3.5 was 

used for variant calling and recalibration. I extracted coordinates from the VCF files that 

mapped to regions targeted in the WES. I then used custom scripts to transform coordinates 

of variants to GRCh37 human reference.  
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3.3.3 Sample QC  
 

I performed sample QC for WES using the same filters Tarjinder Singh used on a previous 

release of the INTERVAL WES dataset [294]. Sample QC for WGS was performed by Kousik 

Kundu, Klaudia Walter and I. For WES data I filtered out samples based on the following 

criteria: i) withdrawn consent; ii) estimated contamination >3% according to the software 

VerifyBamID [297]; iii) sex inferred from genetic data different from sex supplied ; iv) non-

European samples after manual inspection of clustering in 1000G principal components 

analysis (PCA) and choosing cutoffs on the first 2 PCs; v) heterozygosity outliers (samples +/- 

3 SD away from the mean number of heterozygous counts); vi) non-reference homozygosity 

outliers (samples +/- 3 SD away from the mean number of non-reference homozygous 

counts); vii) outlier Ti/TV rates (transition to transversion ratio +/- 3 SD away from the mean 

ratio); viii) excess singletons (number of singleton variants >3 SD from the cohort mean). 

After quality control 4,070 WES samples were kept for downstream analyses. For WGS data 

we filtered out samples based on the following criteria: i) estimated contamination >2% 

according to software VerifyBamID; ii) non-reference discordance (NRD) with genotype data 

on the same samples >4%; iii) European population outliers from PCA (PC1>0 and minimum 

PC2); iv) heterozygosity outliers (samples +/- 3 SD away from the mean number of 

heterozygous counts); v) number of third-degree relatives (proportion IBD (PI_HAT) >0.125) 

> 18, vi) overlap with WES. After quality control 3,670 WGS samples were kept for further 

analyses. 
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3.3.4 Variant QC  
 

For variants with MAF>1% I used the following thresholds to exclude variants: i) VQSR: 

99.90% tranche for WES and 99% tranche for WGS; ii) missingness >3%; iii) HWE p<1x10-5. 

For variants with MAF≤1% the following thresholds were used: i) VQSR: 99.90% tranche for 

WES, 99% tranche for WGS SNPs and 90% tranche for WGS indels; ii) GQ: <20 for SNPs and 

<60 for indels; iii) DP <2; iv) AB>15 & <80 for heterozygous variants. After genotype-level QC 

(GQ,DP,AB) only variants with <3% missingness were kept. 1,716,946 variants were kept in 

the final WES release and 1,724,250 in the final WGS release. 

 

3.3.5 Phenotype QC 
 

A total of 230 metabolic biomarkers were produced by the serum NMR metabolomics 

platform (Nightingale Health Ltd.) [298] on 46,097 blood samples from the INTERVAL cohort 

collected on the first visit. Phenotyping was performed by Antti J. Kangas (Nightingale 

Health Ltd.). I performed phenotype QC on the raw phenotypes. Glucose, lactose, pyruvate 

and acetate were excluded initially due to unreliable measurements according to platform 

provider. Conjugated linoleic acid and conjugated linoleic acid to total fatty acid ratio were 

set to missing for 3,585 samples showing signs of peroxidation. Creatinine levels were set to 

missing for 1,993 samples with isopropyl alcohol signals. Glutamine levels were set to 

missing for 347 samples that showed signs of glutamine to glutamate degradation. Samples 

with more than 30% missingness or identified as EDTA plasma were removed.  After this 

step, for each pair of related samples (PI_HAT>0.125) I kept only one, preferentially keeping 

samples with the lowest missingness in WES or lowest NRD in WGS. Phenotypes were rank-

based inverse normalised for all individuals. Clare Oliver-Williams assessed which technical 
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covariates influenced phenotype levels and determined centre, processing duration and 

month of donation were possible sources of batch effects.  I then separately performed 

linear regression for WES and WGS adjusting for age, gender, centre, processing duration, 

month of donation and 10 PCs.  Residuals from both WES and WGS linear regressions were 

used as the outcome variables in all subsequent analyses. After this final step I kept 3,741 

samples in the WES dataset and 3,420 samples in the WGS dataset for downstream 

analyses.  

3.3.6 Single point analyses 
 

Power calculations to define MAF threshold for single point analyses were done using 

Quanto [234]. I used the WES data as a discovery dataset and performed association 

analyses using SNPTEST v2.5.2 [226] under an additive model. Variants were taken forward 

for validation if p < 1x10-5. I then performed association analyses using SNPTEST on the WGS 

data which was used as a validation dataset. Results were subsequently meta-analysed 

using a fixed-effects model in METAL [238]. Genome-wide significance threshold was 

calculated as: 0.05/ (276,563*19)=9.52x10-9, where 276,563 is the number of tested variants 

with MAF>0.1%  and 19 is the number of PCs explaining >95% of the variance of 226 

metabolic biomarkers , an approach previously used in similar studies using the same NMR 

platform [38, 173]. A signal was considered to replicate if after meta-analysis it met the 

following criteria: i) it met the defined genome-wide significance threshold (9.52x10-9); and 

ii) it was nominally significant (p<0.05) in the validation dataset (WGS). After this step, to 

define loci, I performed clumping using PLINK [223] based on the lowest p for each variant 

on any trait-association using an r2 =0.2 and a window size of 1Mb.  
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3.3.7 Gene-based analyses  
 

I annotated coding variant consequences with VEP [50] using Ensembl gene set version 75 

for the hg19/GRCh37 human genome assembly. Loss-of–function (LoF) variants were 

annotated with a VEP plugin: LOFTEE (https://github.com/konradjk/loftee). This plugin uses 

distance to end of transcript and other in-frame splice sites, non-canonical splice site 

information and size of introns to remove LoF that are less likely to have a damaging impact 

on protein structure. I downloaded M-CAP scores and extracted all missense variants with 

AC>=1 in the WES or WGS datasets [51].  Two different nested tests were used to group rare 

variants into testable gene units: predicted to be high confidence LoF by LOFTEE in any 

transcript of the gene, and the same LoF variants plus rare (MAF <1%) missense variants, 

mapping to any transcript of the gene, predicted to be likely deleterious by M-CAP (M-CAP 

score >0.025) (MCAP+LoF).  M-CAP uses a machine learning algorithm integrating multiple 

annotations (e.g base-pair conservation, amino acid conservation, chemical properties of 

substituted amino acid, etc) to predict the pathogenicity of rare (MAF <1%) missense 

variants. 

I performed rare-variant aggregation tests as implemented in the SKAT-O R package [52, 

53]. For the LoF tests, I performed a burden test (rho=1) whereas for the MCAP+LoF tests I 

used the optimal unified approach (method=”optimal.adj”).  Genes were taken forward for 

validation if p<5x10-3. 

To increase power in my analyses I also implemented a strategy to incorporate information 

from the multiple phenotypes measured in our dataset, by adjusting for correlated 

phenotypes, which has been shown to increase power in single point association analyses 

[30].  To minimise chances of a false positive association I only adjusted for phenotypes as 
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covariates at the validation stage ensuring evidence of association in discovery stage was 

present without adjustment for covariates. In order for a metabolic biomarker to be 

selected as a covariate in the validation stage, the following conditions had to be met: i) no 

evidence of genetic correlation (p>0.05) with outcome using publicly available summary 

statistics from Kettunen et al. (2016) [25]; ii) phenotypic correlation in our dataset >10%; iii) 

not belonging to same metabolic biomarker supergroup as outcome (Table 3.1). This 

approach resulted in 99 eligible NMR traits for which other traits could be used as 

covariates. METASKAT [54] was used to perform meta-analysis using the same parameters 

as in discovery.  A signal was considered to replicate if: i) it met the Bonferroni corrected 

gene-level significance threshold (p < 1.32x10-7); ii) >2 variants were tested; iii) it was 

nominally significant in the unadjusted test for WGS (i.e without adjusting for correlated 

traits).  The Bonferroni corrected gene-level significance threshold was chosen after 

adjusting the standard gene-level significance threshold (2.5x10-6) for 19 PCs. To test if a 

single variant was driving an observed association, I performed leave-one-out analysis for all 

variants contributing to the test. An association was considered to be driven by a single 

variant if, after removing it, the test resulted in a non-significant association (p>0.05). 

Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

XXL-VLDL-P Concentration of chylomicrons and 
extremely large VLDL particles 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-L Total lipids in chylomicrons and extremely 
large VLDL 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-PL Phospholipids in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X  X 

XXL-VLDL-C Total cholesterol in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-CE Cholesterol esters in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-FC Free cholesterol in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-TG Triglycerides in chylomicrons and 
extremely large VLDL 

Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-P Concentration of very large VLDL particles Lipid and 
lipoprotein 

X X X  X 

XL-VLDL-L Total lipids in very large VLDL Lipid and 
lipoprotein 

X X X  X 

XL-VLDL-PL Phospholipids in very large VLDL Lipid and 
lipoprotein 

X X X  X 
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

XL-VLDL-C Total cholesterol in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-CE Cholesterol esters in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-FC Free cholesterol in very large VLDL Lipid and 
lipoprotein 

X X X X X 

XL-VLDL-TG Triglycerides in very large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-P Concentration of large VLDL particles Lipid and 
lipoprotein 

X X X  X 

L-VLDL-L Total lipids in large VLDL Lipid and 
lipoprotein 

X X X  X 

L-VLDL-PL Phospholipids in large VLDL Lipid and 
lipoprotein 

X X X  X 

L-VLDL-C Total cholesterol in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-CE Cholesterol esters in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-FC Free cholesterol in large VLDL Lipid and 
lipoprotein 

X X X X X 

L-VLDL-TG Triglycerides in large VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-P Concentration of medium VLDL particles Lipid and 
lipoprotein 

X X X  X 

M-VLDL-L Total lipids in medium VLDL Lipid and 
lipoprotein 

X X X  X 

M-VLDL-PL Phospholipids in medium VLDL Lipid and 
lipoprotein 

X X X  X 

M-VLDL-C Total cholesterol in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-CE Cholesterol esters in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-FC Free cholesterol in medium VLDL Lipid and 
lipoprotein 

X X X X X 

M-VLDL-TG Triglycerides in medium VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-P Concentration of small VLDL particles Lipid and 
lipoprotein 

X X X  X 

S-VLDL-L Total lipids in small VLDL Lipid and 
lipoprotein 

X X X  X 

S-VLDL-PL Phospholipids in small VLDL Lipid and 
lipoprotein 

X X X  X 

S-VLDL-C Total cholesterol in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-CE Cholesterol esters in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-FC Free cholesterol in small VLDL Lipid and 
lipoprotein 

X X X X X 

S-VLDL-TG Triglycerides in small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-P Concentration of very small VLDL particles Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-L Total lipids in very small VLDL Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-PL Phospholipids in very small VLDL Lipid and 
lipoprotein 

X X X  X 

XS-VLDL-C Total cholesterol in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-CE Cholesterol esters in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-FC Free cholesterol in very small VLDL Lipid and 
lipoprotein 

X X X X X 

XS-VLDL-TG Triglycerides in very small VLDL Lipid and 
lipoprotein 

X X X X X 

IDL-P Concentration of IDL particles Lipid and 
lipoprotein 

X X X   

IDL-L Total lipids in IDL Lipid and 
lipoprotein 

X X X   

IDL-PL Phospholipids in IDL Lipid and 
lipoprotein 

X X X   

IDL-C Total cholesterol in IDL Lipid and 
lipoprotein 

X X X X  

IDL-CE Cholesterol esters in IDL Lipid and X X X X  
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

lipoprotein 

IDL-FC Free cholesterol in IDL Lipid and 
lipoprotein 

X X X X  

IDL-TG Triglycerides in IDL Lipid and 
lipoprotein 

X X X X  

L-LDL-P Concentration of large LDL particles Lipid and 
lipoprotein 

X X X X X 

L-LDL-L Total lipids in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-PL Phospholipids in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-C Total cholesterol in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-CE Cholesterol esters in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-FC Free cholesterol in large LDL Lipid and 
lipoprotein 

X X X X X 

L-LDL-TG Triglycerides in large LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-P Concentration of medium LDL particles Lipid and 
lipoprotein 

X X X X X 

M-LDL-L Total lipids in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-PL Phospholipids in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-C Total cholesterol in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-CE Cholesterol esters in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-FC Free cholesterol in medium LDL Lipid and 
lipoprotein 

X X X X X 

M-LDL-TG Triglycerides in medium LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-P Concentration of small LDL particles Lipid and 
lipoprotein 

X X X X X 

S-LDL-L Total lipids in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-PL Phospholipids in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-C Total cholesterol in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-CE Cholesterol esters in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-FC Free cholesterol in small LDL Lipid and 
lipoprotein 

X X X X X 

S-LDL-TG Triglycerides in small LDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-P Concentration of very large HDL particles Lipid and 
lipoprotein 

X X X X X 

XL-HDL-L Total lipids in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-PL Phospholipids in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-C Total cholesterol in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-CE Cholesterol esters in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-FC Free cholesterol in very large HDL Lipid and 
lipoprotein 

X X X X X 

XL-HDL-TG Triglycerides in very large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-P Concentration of large HDL particles Lipid and 
lipoprotein 

X X X X X 

L-HDL-L Total lipids in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-PL Phospholipids in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-C Total cholesterol in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-CE Cholesterol esters in large HDL Lipid and 
lipoprotein 

X X X X X 

L-HDL-FC Free cholesterol in large HDL Lipid and 
lipoprotein 

X X X X X 
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

L-HDL-TG Triglycerides in large HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-P Concentration of medium HDL particles Lipid and 
lipoprotein 

X X X X X 

M-HDL-L Total lipids in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-PL Phospholipids in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-C Total cholesterol in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-CE Cholesterol esters in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-FC Free cholesterol in medium HDL Lipid and 
lipoprotein 

X X X X X 

M-HDL-TG Triglycerides in medium HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-P Concentration of small HDL particles Lipid and 
lipoprotein 

X X X X X 

S-HDL-L Total lipids in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-PL Phospholipids in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-C Total cholesterol in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-CE Cholesterol esters in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-FC Free cholesterol in small HDL Lipid and 
lipoprotein 

X X X X X 

S-HDL-TG Triglycerides in small HDL Lipid and 
lipoprotein 

X X X X X 

XXL-VLDL-PL_% Phospholipids to total lipds ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X   

XXL-VLDL-C_% Total cholesterol to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-CE_% Cholesterol esters to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-FC_% Free cholesterol to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XXL-VLDL-TG_% Triglycerides to total lipids ratio in 
chylomicrons and extremely large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-PL_% Phospholipids to total lipds ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X   

XL-VLDL-C_% Total cholesterol to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-CE_% Cholesterol esters to total lipids ratio in 
very large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-FC_% Free cholesterol to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

XL-VLDL-TG_% Triglycerides to total lipids ratio in very 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-PL_% Phospholipids to total lipds ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X   

L-VLDL-C_% Total cholesterol to total lipids ratio in 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-CE_% Cholesterol esters to total lipids ratio in 
large VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-FC_% Free cholesterol to total lipids ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X X  

L-VLDL-TG_% Triglycerides to total lipids ratio in large 
VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-PL_% Phospholipids to total lipds ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X   

M-VLDL-C_% Total cholesterol to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-CE_% Cholesterol esters to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-FC_% Free cholesterol to total lipids ratio in 
medium VLDL 

Lipid and 
lipoprotein 

X X X X  

M-VLDL-TG_% Triglycerides to total lipids ratio in medium 
VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-PL_% Phospholipids to total lipds ratio in small 
VLDL 

Lipid and 
lipoprotein 

X X X   

S-VLDL-C_% Total cholesterol to total lipids ratio in Lipid and X X X X  
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

small VLDL lipoprotein 

S-VLDL-CE_% Cholesterol esters to total lipids ratio in 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-FC_% Free cholesterol to total lipids ratio in 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

S-VLDL-TG_% Triglycerides to total lipids ratio in small 
VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-PL_% Phospholipids to total lipds ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X   

XS-VLDL-C_% Total cholesterol to total lipids ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-CE_% Cholesterol esters to total lipids ratio in 
very small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-FC_% Free cholesterol to total lipids ratio in very 
small VLDL 

Lipid and 
lipoprotein 

X X X X  

XS-VLDL-TG_% Triglycerides to total lipids ratio very small 
VLDL 

Lipid and 
lipoprotein 

X X X X  

IDL-PL_% Phospholipids to total lipds ratio in IDL Lipid and 
lipoprotein 

X X X   

IDL-C_% Total cholesterol to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

IDL-CE_% Cholesterol esters to total lipids ratio in 
IDL 

Lipid and 
lipoprotein 

X X X X  

IDL-FC_% Free cholesterol to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

IDL-TG_% Triglycerides to total lipids ratio in IDL Lipid and 
lipoprotein 

X X X X  

L-LDL-PL_% Phospholipids to total lipds ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-C_% Total cholesterol to total lipids ratio in 
large LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-CE_% Cholesterol esters to total lipids ratio in 
large LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-FC_% Free cholesterol to total lipids ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

L-LDL-TG_% Triglycerides to total lipids ratio in large 
LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-PL_% Phospholipids to total lipds ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-C_% Total cholesterol to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-CE_% Cholesterol esters to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-FC_% Free cholesterol to total lipids ratio in 
medium LDL 

Lipid and 
lipoprotein 

X X X X  

M-LDL-TG_% Triglycerides to total lipids ratio in medium 
LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-PL_% Phospholipids to total lipds ratio in small 
LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-C_% Total cholesterol to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-CE_% Cholesterol esters to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-FC_% Free cholesterol to total lipids ratio in 
small LDL 

Lipid and 
lipoprotein 

X X X X  

S-LDL-TG_% Triglycerides to total lipids ratio in small 
LDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-PL_% Phospholipids to total lipds ratio in  very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-C_% Total cholesterol to total lipids ratio in very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-CE_% Cholesterol esters to total lipids ratio in 
very large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-FC_% Free cholesterol to total lipids ratio in  very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

XL-HDL-TG_% Triglycerides to total lipids ratio in very 
large HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-PL_% Phospholipids to total lipds ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-C_% Total cholesterol to total lipids ratio in 
large HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-CE_% Cholesterol esters to total lipids ratio in 
large HDL 

Lipid and 
lipoprotein 

X X X X  



87 
 

Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

L-HDL-FC_% Free cholesterol to total lipids ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

L-HDL-TG_% Triglycerides to total lipids ratio in large 
HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-PL_% Phospholipids to total lipds ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-C_% Total cholesterol to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-CE_% Cholesterol esters to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-FC_% Free cholesterol to total lipids ratio in 
medium HDL 

Lipid and 
lipoprotein 

X X X X  

M-HDL-TG_% Triglycerides to total lipids ratio in medium 
HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-PL_% Phospholipids to total lipds ratio in small 
HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-C_% Total cholesterol to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-CE_% Cholesterol esters to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-FC_% Free cholesterol to total lipids ratio in 
small HDL 

Lipid and 
lipoprotein 

X X X X  

S-HDL-TG_% Triglycerides to total lipids ratio in small 
HDL 

Lipid and 
lipoprotein 

X X X X  

VLDL-D Mean diameter for VLDL particles Lipid and 
lipoprotein 

X X X   

LDL-D Mean diameter for LDL particles Lipid and 
lipoprotein 

X X X X X 

HDL-D Mean diameter for HDL particles Lipid and 
lipoprotein 

X X X X X 

Serum-C Serum total cholesterol Lipid and 
lipoprotein 

X X X X X 

VLDL-C Total cholesterol in VLDL Lipid and 
lipoprotein 

X X X X X 

Remnant-C Remnant cholesterol (non-HDL, non-LDL-
cholesterol) 

Lipid and 
lipoprotein 

X X X X X 

LDL-C Total cholesterol in LDL Lipid and 
lipoprotein 

X X X X X 

HDL-C Total cholesterol in HDL Lipid and 
lipoprotein 

X X X X X 

HDL2-C Total cholesterol in HDL2 Lipid and 
lipoprotein 

X X X X X 

HDL3-C Total cholesterol in HDL3 Lipid and 
lipoprotein 

X X X X X 

EstC Esterified cholesterol Lipid and 
lipoprotein 

X X X X X 

FreeC Free cholesterol Lipid and 
lipoprotein 

X X X X X 

Serum-TG Serum total triglycerides Lipid and 
lipoprotein 

X X X X X 

VLDL-TG Triglycerides in VLDL Lipid and 
lipoprotein 

X X X X X 

LDL-TG Triglycerides in LDL Lipid and 
lipoprotein 

X X X X X 

HDL-TG Triglycerides in HDL Lipid and 
lipoprotein 

X X X X X 

DAG Diacylglycerol Lipid and 
lipoprotein 

X X X   

DAG/TG Ratio of diacylglycerol to triglycerides Lipid and 
lipoprotein 

X X X X  

TotPG Total phosphoglycerides Lipid and 
lipoprotein 

X X X   

TG/PG Ratio of triglycerides to phosphoglycerides Lipid and 
lipoprotein 

X X X X  

PC Phosphatidylcholine and other cholines Lipid and 
lipoprotein 

X X X   

SM Sphingomyelins Lipid and 
lipoprotein 

X X X   

TotCho Total cholines Lipid and 
lipoprotein 

X X X   

ApoA1 Apolipoprotein A--I * Lipid and 
lipoprotein 

X X X   

ApoB Apolipoprotein B * Lipid and X X X   
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Traits   Description Supergroup Single 
point 
tests 

Gene 
tests 

Gene-set 
tests 

Enrichment 
near GWAS 
signals tests 

Tails 
tests 

lipoprotein 

ApoB/ApoA1 Ratio of apolipoprotein B to 
apolipoprotein A--I 

Lipid and 
lipoprotein 

X X X   

TotFA Total fatty acids Lipid and 
lipoprotein 

X X X   

FALen Estimated description of fatty acid chain 
length, not actual carbon number 

Lipid and 
lipoprotein 

X X X   

UnsatDeg Estimated degree of unsaturation Lipid and 
lipoprotein 

X X X   

DHA 22:6, docosahexaenoic acid Lipid and 
lipoprotein 

X X X   

LA 18:2, linoleic acid Lipid and 
lipoprotein 

X X X   

CLA Conjugated linoleic acid Lipid and 
lipoprotein 

X X X   

FAw3 Omega--3 fatty acids Lipid and 
lipoprotein 

X X X   

FAw6 Omega--6 fatty acids Lipid and 
lipoprotein 

X X X   

PUFA Polyunsaturated fatty acids Lipid and 
lipoprotein 

X X X   

MUFA Monounsaturated fatty acids; 16:1, 18:1 Lipid and 
lipoprotein 

X X X   

SFA Saturated fatty acids Lipid and 
lipoprotein 

X X X   

DHA/FA Ratio of 22:6 docosahexaenoic acid to total 
fatty acids 

Lipid and 
lipoprotein 

X X X   

LA/FA Ratio of 18:2 linoleic acid to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

CLA/FA Ratio of conjugated linoleic acid to total 
fatty acids 

Lipid and 
lipoprotein 

X X X   

FAw3/FA Ratio of omega--3 fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

FAw6/FA Ratio of omega--6 fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

PUFA/FA Ratio of polyunsaturated fatty acids to 
total fatty acids 

Lipid and 
lipoprotein 

X X X   

MUFA/FA Ratio of monounsaturated fatty acids to 
total fatty acids 

Lipid and 
lipoprotein 

X X X   

SFA/FA Ratio of saturated fatty acids to total fatty 
acids 

Lipid and 
lipoprotein 

X X X   

Ala Alanine Aminoacid X X X   

Gln Glutamine Aminoacid X X X   

Gly Glycine Aminoacid X X X   

His Histidine Aminoacid X X X   

Ile Isoleucine Aminoacid X X X   

Leu Leucine Aminoacid X X X   

Val Valine Aminoacid X X X   

Phe Phenylalanine Aminoacid X X X   

Tyr Tyrosine Aminoacid X X X   

AcAce Acetoacetate Ketone 
bodies 

X X X   

Crea Creatinine Fluid balance X X X   

Alb Albumin Fluid balance X X X   

Gp Glycoprotein acetyls, mainly a1-acid 
glycoprotein 

Inflammation X X X   

Table 3.1: List of traits and analyses where they were used 
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3.3.8 Gene-set analyses  
 

To perform gene set analysis I obtained a curated gene-disease list from DisGeNET [299, 

300] and gene lists of metabolic pathways from KEGG [301-303] and Reactome [304, 305]. 

The gene-disease list obtained from DisGeNET, combines expert curated gene-disease 

associations from the following databases: a) CTD (Comparative Toxicogenomics Database); 

b) UNIPROT; c) ORPHANET (an online rare disease and orphan drug data base);  d) 

PSYGENET (Psychiatric disorders Gene association NETwork); and e) HPO (Human 

Phenotype Ontology). I limited analysis to gene sets with more than three genes resulting in 

7,150 total gene sets to test. Finally, I extracted loss-of-function variants from genes in the 

gene sets and ran SKAT-O (method=”optimal.adj”) for each of the traits. Similarly to the 

gene-based analysis, I used WES data as discovery, and took signals forward for validation in 

WGS if p < 0.01. Covariate selection for correlated traits was performed as described in the 

gene-based analyses (Methods 3.3.7).  The gene-set-wide significance threshold was 

calculated by first estimating the effective number of gene sets tested given the high 

overlap amongst them. Using PCA I estimated that 1094 PCs explain > 95% of the variance in 

gene sets. The significance threshold was therefore calculated as: 0.05/(1094*19)=2.41x10-6 

where 19 corresponds to the effective number of phenotypes tested as described above. A 

signal was considered to replicate if after meta-analysis: i) it met the defined gene-set-wide 

significance threshold (pmeta < 2.41x10-6); ii) >2 variants were tested; iii) it was nominally 

significant (pvalidation<0.05) in the unadjusted test for WGS (i.e without adjusting for 

correlated traits).  
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3.3.9 Genes near GWAS signals 
 

GWAS catalog data files (release 27-09-2017) were downloaded from 

https://www.ebi.ac.uk/gwas/docs/file-downloads [79].  I focused on GWAS loci associated 

with HDL cholesterol, LDL cholesterol, total cholesterol and triglycerides. I extracted all 

reported genes for GWAS loci that were associated at genome-wide significance (p<5x10-8) 

excluding cases where the “REPORTED GENE” value was: i) NR (not reported); ii) intergenic; 

iii) APO(APOE) cluster; iv) HLA-area (Table 3.2). For this analysis, I ran SKAT-O using the 

optimal unified approach (method=”optimal.adj”) on the four gene sets (HDLC reported, 

LDLC reported, TC reported, TG reported, Table 3.2). The list of genes known to be involved 

in conditions leading to abnormal lipid levels was created extracting relevant genes from the 

DisGeNET and Reactome gene lists. Afterwards, I conducted a manual review of the 

published literature to remove genes where functional work in mouse or human has 

revealed a direct role of the gene in HDL metabolism (Table 3.2). The search terms used 

were “[gene name] loss of function HDL” and “[gene name] knockout HDL”.  Significance 

threshold (p < 0.005) was determined by correcting for 10 PCs explaining >95% of the 

variance of the traits used in this analysis.  

HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

ABCA1 ACAD11 ABCG5 ABCA1 AFF1 ABCA1 
ABCA8 ADH5 ABCG8 ABCB11 AKR1C4 ABCA8 
AC016735.2 ALDH1A2 ABO ABCG5 ALDH2 AC016735.2 
ACAD11 ANGPTL1 ACAD11 ABCG8 ANGPTL3 ANGPTL4 
ADH5 ATG7 ANGPTL3 ABO ANGPTL4 ANGPTL8 
ALDH1A2 CITED2 APOA1 ADAMTS3 APOA1 APOA1 
ANGPTL1 CMIP APOB ANGPTL3 APOA5 APOA5 
ANGPTL4 COBLL1 APOC1 APOA1 APOB APOB 
ANGPTL8 COPB1 APOE APOB APOC1 APOC3 
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

APOA1 CPS1 BRAP APOE APOE APOE 
APOA5 DAGLB BRCA2 ASAP3 BAI3 ARL15 
APOB FADS1 CELSR2 BRAP LMBRD1 C12orf51 
APOC3 FAM13A CETP C6orf106 CAPN3 C6orf106 
APOE GPAM CILP2 CELSR2 CCR6 CD300LG 
ARL15 GSK3B CMTM6 CETP CEP68 CD36 
ATG7 HAS1 CSNK1G3 CILP2 CETP CETP 
C12orf51 IKZF1 CYP7A1 CMTM6 CILP2 FTO 
C6orf106 KAT5 DLG4 CSNK1G3 CITED2 GALNT2 
CD300LG LACTB DNAH11 CYP7A1 COBLL1 HNF4A 
CD36 LRP4 EHBP1 DLG4 CTF1 IGHVII-33-1 
CETP LRRC29 FAM117B DNAH11 CYP26A1 IRS1 
CITED2 MADD FN1 DOCK7 DNAH17 KLF14 
CMIP MC4R FRK ERGIC3 DOCK7 LCAT 
COBLL1 MLXIPL GATA6 EVI5 ERGIC3 LILRA3 
COPB1 MVK GPAM FAM117B FADS1 LIPC 
CPS1 MYL2 HFE FN1 FRMD5 LIPG 
DAGLB OR4C46 HLA FRK FTO LOC100996634 
FADS1 PDE3A HLA-C GCKR GALNT2 LOC55908 
FAM13A PEPD HMGCR GPAM GCKR LPA 
FTO PGS1 HNF1A GPR146 GPR85 LPL 
GALNT2 RBM5 HPR HBS1L HLA LRP1 
GPAM RSPO3 IDOL HFE INSR MSL2L1 
GSK3B SBNO1 INSIG2 HLA IRS1 PABPC4 
HAS1 SEMA3C IRF2BP2 HLA-C JMJD1C PLTP 
HNF4A SETD2 LDLR HMGCR KLHL8 PPP1R3B 
IGHVII-33-1 SLC39A8 LDLRAP1 HNF1A LIPC PRKAG3 
IKZF1 SNX13 LOC84931 HNF4A LPA RMI2 
IRS1 STAB1 LPA HPR LPL RP-11-115 
KAT5 STARD3 LRPAP1 IDOL LRP1 SCARB1 
KLF14 TMEM176A MAFB INSIG2 LRPAP1 SIK3 
LACTB TRPS1 MIR148A IRF2BP2 MAP3K1 TRIB1 
LCAT UBASH3B MOSC1 KCNK17 MAU2 TTC39B 
LILRA3 ZNF648 MTHFD2L LDLR MET UBE2L3 
LIPC  MTMR3 LDLRAP1 MIR148A VEGFA 
LIPG  MYLIP LIPC MLXIPL ZNF664 
LOC100996634  NCAN LIPG MPP3   
LOC55908  NPC1L1 LPA MSL2L1   
LPA  OSBPL7 LRPAP1 NAT2   
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

LPL  PCSK9 MAFB PDXDC1   
LRP1  PFAS MAMSTR PEPD   
LRP4  PLEC1 MARCH8  PINX1   
LRRC29  PPARA MIR148A PLA2G6   
MADD  PPARG MOSC1 PLTP   
MC4R  PPP1R3B MTHFD2L PROX1   
MLXIPL  SMARCA4 MYLIP RSPO3   
MSL2L1  SNX5 NAT2 SIK3   
MVK  SORT1 NCAN TIMD4   
MYL2  SOX17 NPC1L1 TM4SF5   
OR4C46  SPTLC3 OSBPL7 TP53BP1   
PABPC4  ST3GAL4 PCSK9 TRIB1   
PDE3A  TIMD4 PHLDB1 TYW1B   
PEPD  TOP1 PLEC1 VEGFA   
PGS1  TRIB1 PPARA ZNF664   
PLTP  VLDLR PPARG    
PPP1R3B  ZNF274 PPP1R3B    
PRKAG3   PXK    
RBM5   RAB3GAP1    
RMI2   RAF1    
RP-11-115   RP11-115    
J16.1   J16.1    
RSPO3   SAMM50    
SBNO1   SNX5    
SCARB1   SORT1    
SEMA3C   SOX17    
SETD2   SPTY2D1    
SIK3   ST3GAL4    
SLC39A8   TIMD4    
SNX13   TMEM57    
STAB1   TOP1    
STARD3   TRIB1    
TMEM176A   TRPS1    
TRIB1   TTC39B    
TRPS1   UBASH3B    
TTC39B   UGT1A1    
UBASH3B   VLDLR    
UBE2L3       
VEGFA       
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HDLC 
reported* 

HDLC 
reported 
(known 
removed)** 

LDLC 
reported* 

TC 
reported* 

TG 
reported* 

Known genes 

ZNF648       
ZNF664       
Table 3.2: Gene sets used for enrichment of genes near GWAS signals analyses. HDL reported -Genes reported associated 
with "HDL cholesterol" unambiguously ; HDLC reported (known removed) - Genes reported associated with "HDL 
cholesterol" unambiguously but with known genes involved in HDL metabolism or lipid abnormalities removed; LDLC 
reported - Genes reported associated with "LDL cholesterol" unambiguously; TC reported - Genes reported associated with 
"Cholesterol, total" unambiguously; TG reported - Genes reported associated with "Triglycerides" unambiguously; Known 
genes - Genes removed for sensitivity analysis that are known to be involved in lipid abnormalities or HDL metabolism 
based on literature review; *Gene sets used in analyses running SKAT-O on gene sets.; **Gene sets used in sensitivity 
analyses. 

 

3.3.10 Analysis of tails of phenotype distribution  
 

For this analysis, I used all lipoprotein and lipid traits but excluded derived measures (lipid 

ratios) resulting in 106 traits (Table 3.1). I focused on likely deleterious missense and loss-of-

function variation in lipid metabolism and disease gene sets (Table 3.3) with an allele count 

<10 in each dataset. I chose an arbitrary cutoff of 10 individuals with the highest and lowest 

values for the traits to define tails for all 106 traits.   

Gene Set Source 
Abnormality_of_lipid_metabolism DisGeneNet 
Dyslipidaemias DisGeneNet 
HDL_assembly Reactome 
HDL_clearance Reactome 
HDL_remodeling Reactome 
Hyperlipidaemia DisGeneNet 
Hypertriglyceridaemia_CTD DisGeneNet 
Hypertriglyceridaemia_HPO DisGeneNet 
LDL_clearance Reactome 
LDL_remodeling Reactome 
Triglyceride_biosynthesis Reactome 
Triglyceride_catabolism Reactome 
Triglyceride_metabolism Reactome 
VLDL_assembly Reactome 
VLDL_clearance Reactome 
Table 3.3: List of gene sets used for tails analyses. 
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Given the high phenotypic correlation of these traits, there was a high overlap of individuals 

at the tails of the distributions so I removed traits that shared >=8 individuals with any other 

trait reducing the number of tested traits to 50. For each trait, total deleterious allele count 

from each gene set for upper and lower tails was obtained and an empirical p was 

calculated by performing 10,000 permutations extracting 10 random individuals from the 

phenotype distribution and counting the number of deleterious alleles from the gene set. 

The significance threshold (p = 0.00037) was chosen by correcting for 9 PCs explaining >95% 

of the traits variance and 15 pathways. Meta-analysis was done using Stouffer’s method 

[306] as implemented in the metap package [307] in R. 

3.4 Results 

3.4.1 Single point analyses 
 

I first explored whether I could recapitulate known associations with NMR traits, as well as, 

potentially identify novel associations with rarer variants not previously tested in GWAS 

arrays. To this end, I performed single-point association analysis for 226 NMR metabolic 

biomarkers using WES data from 3,741 healthy blood donors from the INTERVAL cohort as a 

discovery dataset (Methods 3.3.6).  Power calculations showed very limited power to detect 

associations for variants on the rare allele frequency spectrum with this sample size 

(power=4.6% to find an association with p<1x10-5 -threshold to take forward for validation- 

with beta=1 and variant with MAF=0.1%). I therefore focused on variants with MAF>=0.1%. 

After association analyses for all traits I took forward for validation 494 variants associated 

with at least one trait with p<1x10-5.   I performed validation using whole-genome sequence 

(WGS) data from 3,401 independent individuals from the same cohort. After meta-analysis, 
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34 unique loci were associated with at least one trait (Table 3.4). All of these associations 

had already been previously described [38, 173, 308]. 
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Rsid Gene most severe consequence top trait EA NEA discov p validation p meta-p beta se EAF n assoc traits 

rs1047891 CPS1 missense_variant (Thr1412Asn) Gly a c 1.48x10-68 4.47x10-54 2.09x10-125 0.42 0.02 32.47% 1 

rs1077834 LIPC,ALDH1A2 intron_variant L-HDL-TG t c 2.52x10-16 6.90x10-21 1.11x10-35 -0.25 0.02 21.41% 35 

rs11076176 CETP intron_variant M-HDL-TG t g 5.82x10-7 6.62x10-6 1.65x10-11 -0.15 0.02 16.92% 6 

rs11591147 PCSK9 missense_variant (Arg46Leu) IDL-FC t g 7.31x10-12 2.20x10-5 2.96x10-15 -0.48 0.06 1.73% 45 

rs116843064 ANGPTL4 missense_variant (Glu40Lys) S-VLDL-TG a g 7.81x10-7 2.67x10-6 9.11x10-12 -0.40 0.06 1.89% 17 

rs1184865 DOCK7 intron_variant M-HDL-TG a g 6.59x10-6 5.66x10-5 1.45x10-9 -0.10 0.02 36.13% 1 

rs12191266 SLC16A10 intron_variant Tyr t c 4.68x10-6 2.42x10-5 4.48x10-10 -0.15 0.02 14.43% 1 

rs1260326 GCKR missense_variant (Leu446Pro) MUFA t c 1.20x10-6 5.31x10-6 2.61x10-11 0.12 0.02 39.85% 17 

rs138326449 APOC3 splice_donor_variant (2nd exon) S-VLDL-TG a g 7.91x10-6 8.80x10-6 2.90x10-10 -1.10 0.17 0.23% 6 

rs17231506 CETP upstream_gene_variant HDL2-C t c 6.73x10-17 4.65x10-18 1.35x10-33 0.21 0.02 31.83% 38 

rs174476 RAB3IL1 intron_variant UnsatDeg t c 2.05x10-9 1.48x10-5 1.95x10-13 0.12 0.02 41.71% 1 

rs174547 FADS1,FADS2 intron_variant UnsatDeg t c 1.03x10-41 5.96x10-38 9.02x10-80 0.33 0.02 33.71% 8 

rs174602 FADS2 non_coding_transcript_exon_variant UnsatDeg t c 1.21x10-11 5.64x10-7 4.97x10-17 0.17 0.02 20.16% 2 

rs1912826 KLKB1 intron_variant His a g 7.80x10-11 5.54x10-9 2.04x10-18 0.15 0.02 48.89% 2 

rs2072560 APOA5 intron_variant XS-VLDL-TG_% t c 1.15x10-8 2.06x10-7 1.07x10-14 0.27 0.04 5.90% 30 

rs2228671 LDLR non_coding_transcript_exon_variant IDL-FC t c 2.04x10-7 6.27x10-7 5.55x10-13 -0.18 0.03 12.26% 38 

rs2295601 ELOVL2 synonymous_variant DHA/FA a g 1.54x10-10 6.61x10-9 4.69x10-18 -0.17 0.02 22.90% 2 

rs2575876 ABCA1 intron_variant HDL3-C a g 1.92x10-6 8.30x10-8 8.12x10-13 -0.14 0.02 24.65% 1 

rs2657879 GLS2 3_prime_UTR_variant Gln a g 1.16x10-11 1.72x10-15 1.50x10-25 0.23 0.02 18.07% 1 

rs283813 PVRL2 intron_variant S-LDL-C_% a t 3.08x10-8 1.20x10-5 2.20x10-12 -0.23 0.03 6.90% 22 

rs28399637 BCAM intron_variant S-LDL-CE_% a g 4.95x10-9 8.59x10-7 2.02x10-14 0.14 0.02 31.77% 25 

rs28399654 BCAM missense_variant (Val196Ile) S-LDL-C_% a g 1.38x10-11 8.80x10-8 8.29x10-18 -0.40 0.05 3.37% 34 

rs328 LPL stop_gained (Ser474Ter) TG/PG c g 1.08x10-8 1.44x10-7 7.00x10-15 0.22 0.03 10.09% 19 

rs3798220 LPA missense_variant (Ile1891Met) XL-VLDL-CE t c 3.04x10-6 4.55x10-13 6.15x10-17 0.55 0.07 1.76% 16 

rs386606006 APOB synonymous_variant ApoB a g 9.37x10-6 2.97x10-6 1.17x10-10 0.11 0.02 48.80% 1 
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Rsid Gene most severe consequence top trait EA NEA discov p validation p meta-p beta se EAF n assoc traits 

rs429358 APOE missense_variant (Cys130Arg) S-LDL-PL_% t c 9.37x10-17 1.20x10-17 4.69x10-33 0.27 0.02 15.07% 61 

rs435306 PLTP intron_variant L-HDL-PL_% t g 4.90x10-7 4.17x10-7 8.84x10-13 0.14 0.02 25.50% 1 

rs4804573 KANK2 3_prime_UTR_variant S-LDL-PL_% a g 1.49x10-7 6.26x10-5 4.66x10-11 0.11 0.02 47.05% 9 

rs5880 CETP missense_variant (Ala390Pro) HDL-C c g 7.97x10-7 3.05x10-8 1.17x10-13 -0.28 0.04 4.87% 8 

rs61937878 HAL missense_variant (Val549Met) His t c 7.41x10-14 3.75x10-8 2.01x10-20 0.95 0.10 0.66% 1 

rs693672 FADS3 intron_variant UnsatDeg t c 1.44x10-10 1.36x10-9 8.97x10-19 -0.19 0.02 16.76% 1 

rs7412 APOE missense_variant (Arg176Cys) S-LDL-CE_% t c 8.55x10-63 1.82x10-58 5.97x10-124 -0.71 0.03 7.80% 89 

rs76075198 CEACAM19 synonymous_variant S-LDL-CE_% t c 6.76x10-7 5.25x10-8 1.72x10-13 -0.41 0.06 2.20% 10 

rs7679 PCIF1 3_prime_UTR_variant L-HDL-PL_% t c 5.43x10-18 1.14x10-19 2.23x10-36 -0.27 0.02 18.05% 19 

Table 3.4: Single point association analyses results. Most severe consequence=most severe consequence predicted by VEP on CANONICAL transcript. top trait=trait with the lowest p-value. 
EA=effect allele. NEA=non-effect allele discov p=p-value for top trait in discovery cohort (WES). validation p=p-value for top trait in validation cohort (WGS). meta-p= p-value for top trait. 
beta=beta for top trait after meta-analysis. se=se for top trait after meta-analysis. EAF=effect allele frequency. n assoc traits=number of associated traits. 
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3.4.2 Gene-based analyses 
 

I next sought to discover new gene-trait associations using rare-variant aggregate tests. 

After running association tests using two nested approaches to group rare variants (LoF and 

MCAP+LoF, Methods 3.3.7), genes were taken forward for validation if they reached the 

arbitrary threshold of p <5x10-3 (Supplementary Tables 1-2 of Riveros-Mckay et al (in 

preparation, Appendix B)). A burden test was used when testing only LoF whereas the 

optimal unified approach was used when adding predicted deleterious missense variants 

(MCAP+LoF). This is because I expected most high confidence LoF variants to influence a 

trait with the same direction of effect and therefore the burden test should be better 

powered than the optimal unified approach to detect an association.  When including 

missense variants one could expect different directions of effect and therefore the optimal 

unified approach should be better powered. As previously suggested, to boost discovery 

power I adjusted for correlated metabolic biomarkers [309, 310]. However, to minimise the 

possible collider bias this could incur, I only did this at the validation stage. This was to 

ensure there was at least suggestive evidence for association in the discovery stage without 

adjusting for any metabolite (Methods 3.3.7). After meta-analysis, five genes (APOB, APOC3, 

PCSK9, PAH, HAL) associated with 92 different traits with p < 1.32x10-7, which is the 

stringent significance threshold after correcting for the effective number of tested 

phenotypes (Table 3.5, Methods 3.3.7). All five genes have been previously associated with 

their respective traits [38, 308, 311]. As expected, I found that there was a significant 

increase in the strength of association signal  for traits for which I used other correlated 

traits as covariates when compared to the unadjusted tests [309, 310], with the most 

notable example being a >30 order of magnitude increase in association strength for PAH 
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and phenylalanine (Table 3.5). In total, 32 of the 92 known gene-trait associations met the 

stringent significance threshold (p<1.32x10-7) only after adjusting for correlated traits 

(Supplementary Tables 1-2 of Riveros-Mckay et al (in preparation, Appendix B)). 

LoF 

Gene Top trait p-value 
(covs) 

p-value (raw) N WES N WGS N overlap N traits 
associated 

Driven by 
single 
variant? 

APOB  IDL-TG 3.20x10-13 1.72x10-10 6 5 0 45 (57) No 

APOC3 XS-VLDL-TG 6.10x10-13 3.58x10-12 3 2 2 46 (56) No 

PAH Phe 5.82x10-11 8.25x10-3 4 3 1 1 (1) Yes 

MCAP+LoF 

Gene Top trait p-value 
(covs) 

p-value (raw) N WES N WGS N overlap N traits 
associated 

Driven by 
single 
variant? 

PAH Phe 8.33x10-63 1.67x10-28 39 41 18 1 (1) No 

HAL His NA 3.72x10-42 48 37 22 1 (1) No 

APOC3 XS-VLDL-TG 5.46x10-11 2.15x10-10 6 6 3 26 (40) No 

PCSK9 IDL-FC 2.39x10-10 1.11x10-7 15 17 3 29 (34) No 

ACSL1 IDL-P 1.82x10-7 1.76x10-4 4 6 2 0 (1) Yes 

MYCN M-VLDL-L 6.20x10-7 3.97x10-6 8 8 3 0 (5) No 

ALDH1L1 Gly NA 4.56x10-7 39 38 19 0 (1) No 

SCARB1 XL-HDL-FC NA 6.93x10-7 25 18 10 0 (6) No 

FBXO36 IDL-CE_% NA 1.98x10-6 5 2 1 0 (1) Yes 

B4GALNT3 L-VLDL-FC_% NA 7.59x10-7 28 22 13 0 (1) No 

LIPC  XXL-VLDL-C_% NA 9.03x10-7 28 29 11 0 (2) No 

Table 3.5:Genes significantly associated (p<2.5x10-6) with at least one trait in gene-based analyses focusing on  loss-of-
function (LoF) or predicted deleterious missense by M-CAP plus loss-of-function (MCAP+LoF). Genes that meet gene-level 
significance after adjusting for multiple phenotypes (p<1.32x10-7) are highlighted in bold. Top trait: trait with the smallest 
p-value after meta-analysis adjusting for correlated metabolites. p-value (covs): p-value of meta-analysis after adjusting for 
correlated metabolites for top trait. If NA, this analysis was not performed for this trait due to no metabolic biomarkers 
meeting the criteria to be included as covariates in meta-analysis. p-value (raw): p-value of meta-analysis without adjusting 
for correlated metabolites for top trait. N WES: number of tested variants in WES. N WGS: number of tested variants in 
WGS. N overlap: number of variants present in both WES and WGS. N traits associated: number of traits that meet gene-
level significance after adjusting for multiple phenotypes (p<1.32x10-7), traits meeting standard gene-level significance 
(2.5x10-6) in parenthesis. Driven by single variant?: Yes if after conditioning on top associated variant the meta-analysis 
association disappears (p>0.05). IDL-TG: Triglycerides in IDL.  XS-VLDL-TG: Triglycerides in very small VLDL. Phe: 
Phenylalanine. His: Histidine. IDL-FC: Free cholesterol in IDL. IDL-P: Concentration of IDL particles.  M-VLDL-L: Total lipids in 
medium VLDL. Gly:Glycine. XL-HDL-FC: Free cholesterol in very large HDL. IDL-CE_%: Cholesterol esters to total lipids ratio 
in IDL. L-VLDL-FC%: Free cholesterol to total lipids ratio in large VLDL. XXL-VLDL-C_%: Total cholesterol to total lipids ratio in 
extremely large VLDL. 
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In addition to established genes, I found 15 gene-trait associations in seven genes meeting 

standard gene-level significance before adjusting for multiple traits (p< 2.5x10-6) which also 

had nominal evidence of association in the validation cohort (p< 0.05).  Nine of these were 

gene-trait associations in three established genes (ALDH1L1, SCARB1, LIPC, Table 3.5), 

suggesting that other results achieving this significance threshold may warrant being 

prioritised for additional follow-up to establish their validity. In particular amongst the 

remaining four genes, the association between IDL particle concentration (IDL-P) and ACSL1 

(p = 1.82x10-7), as well as, the associations of multiple very-low-density lipoprotein (VLDL) 

traits to MYCN (min p = 6.20x10-7) merit further exploration as both genes have been 

previously linked to lipid metabolism in mouse studies [312-314]. 

3.4.3 Gene set analyses 
 

 To find links between predicted loss-of-function rare variants and metabolic biomarker 

biology, I next explored associations of these variants in 7,150 gene sets.  To this end, I used 

two biological pathway databases (Reactome, KEGG) and one database that contains expert 

curated disease associated genes  (DisGeNET) (Methods3.3.8). Gene set analysis yielded 163 

gene-set-trait associations with 14 unique gene sets (Supplementary Table 4 of Riveros-

Mckay et al (in preparation, Appendix B)). Given that 143 gene-set-trait associations were 

with 13 gene sets that included two genes with a well-established role in lipid biology (APOB 

and APOC3), I repeated the test removing variants in these genes. After removal, there is 

residual evidence of association (p<0.05) in 102 of 143 gene-set-trait signals representing 12 

of 13 gene sets. Of the 163 gene-set-trait associations, the remaining 20 gene-set-trait 

associations (in gene sets not containing either APOB or APOC3) represent associations of 
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various lipoprotein related metabolic biomarkers with the “regulation of pyruvate 

dehydrogenase (PDH) complex” pathway in REACTOME (R-HSA-204174, min p= 7.85x10-7, 

trait=phospholipids in intermediate density lipoproteins (IDL-PL),  Table 3.6). These 

associations encompassed 12 LoF variants in WES and four in WGS (Figure 3.1). Upon 

further inspection, I found that most variants in this pathway were contributing to the 

association suggesting the signal was not driven by a single gene, in addition they all have 

the same direction of effect (i.e. the rho(ρ) value in the SKAT-O test was one in both the 

WES and the WGS analyses). Two variants were of particular interest as they were present 

in both WES and WGS datasets, rs113309941 in Pyruvate Dehydrogenase Complex 

Component X (PDHX), and rs201013643 in Pyruvate Dehydrogenase Phosphatase 

Regulatory Subunit (PDPR).  In PDHX, rs113309941 leads to a premature stop mutation 

(Gln248Ter), it has an allele count (AC) of one in each of WES and WGS, and is very rare in 

gnomAD1. rs201013643 in PDRP also leads to a premature stop (Arg714Ter) and is present 

in a single heterozygous individual in the WES dataset and two heterozygous in the WGS. 

This variant is also rare in  gnomAD2.  The five individuals with these two variants had higher 

than average values (upper percentile range from 44.1% to 0.03%) for measurements that 

are CVD risk factors such as cholesterol in intermediate-density lipoproteins (IDL-C) and low-

density lipoproteins (LDL-C) suggesting these variants may have a deleterious impact on lipid 

metabolism and cardiovascular risk. Notably, one of the carriers of the PDHX Gln248Ter 

variant was in the top 0.03% for LDL-C in INTERVAL  (4.086 mmol/l) and had no predicted 

deleterious missense mutations in known hypercholesterolaemia genes PCSK9, APOB or 

LDLR suggesting this novel protein truncating variant may be contributing to  their high LDL-

                                                           
1 AC (all gnomAD)=3, allele number (AN) (all gnomAD)=246,116, AC (Non-Finnish European (NFE))=2  
AN (NFE)=116,604. 
2 AC (all gnomAD)=141, AN (all gnomAD)=275,988, AC (NFE) =8, AN (NFE)=126,382. 
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C levels. The other carrier was in the top 19.3% percentile of the cohort. None of the genes 

in this pathway have been previously associated to these traits and therefore this study links 

these genes collectively to intermediate and low density lipoprotein metabolism and 

circulating cholesterol for the first time. 
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Gene set id Trait WES p N WES WGS p N WGS Meta-p  Description Source 
R-HSA-204174 IDL-PL 0.005939 12 0.000503 4 7.85x10-7 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-PL 0.002671 12 0.000594 4 1.01x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 EstC 0.004754 12 0.001175 4 1.09x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-P 0.003992 12 0.000593 4 1.17x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-P 0.004822 12 0.000258 4 1.20x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-PL 0.004853 12 0.000423 4 1.21x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-L 0.004313 12 0.000574 4 1.21x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 SerumC 0.005999 12 0.001071 4 1.24x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-L 0.005082 12 0.000275 4 1.35x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-C 0.00475 12 0.001019 4 1.40x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-FC 0.00681 12 0.0003 4 1.46x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-C 0.006489 12 0.000275 4 1.87x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-P 0.006409 12 0.000132 4 1.96x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 L-LDL-CE 0.006486 12 0.000277 4 2.01x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 S-LDL-L 0.006413 12 0.000115 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 S-LDL-P 0.005994 12 0.000113 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 M-LDL-L 0.006416 12 0.000164 4 2.13x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 LDL-C 0.007809 12 0.000177 4 2.17x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 ApoB 0.00504 12 0.000803 4 2.20x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
R-HSA-204174 IDL-FC 0.009798 12 0.000399 4 2.22x10-6 Regulation of pyruvate dehydrogenase (PDH) complex Reactome 
Table 3.6: Gene set analyses results. WES p = p-value in WES dataset. N WES = number of variants tested in WES dataset. WGS p = p-value in WGS dataset. N WGS = number of variants 
tested in WGS dataset. Meta-p = Meta-analysis p-value after removing APO genes from gene sets (APOB and APOC3). 
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Gene Consequence AC

Pyruvate dehydrogenase (PDH) complex

DLAT Splice acceptor (2nd exon) WES=1

DLD Frameshift (Val212SerfsTer32) WES=1

PDHA2 Stop gain (Tyr28Ter) WES=1

PDHA2 Frameshift (Val297GlnfsTer14) WES=1

PDHA2 Stop gain (Gln78Ter) WES=1

PDHA2 Frameshift (Lys83IlefsTer20) WES=1

PDHA2 Stop gain (Tyr80Ter) WES=1

PDHX Splice donor (2nd exon) WES=1

PDHX Stop gain (Gln248Ter) WES=1
WGS=1

Pyruvate dehydrogenase phosphatase (PDP)

PDP2 Frameshift (Asn33IlefsTer5) WES=1

PDP2 Stop gain (Gln352Ter) WES=1

PDPR Stop gain (Trp402Ter) WES=1

PDPR Stop gain (Arg714Ter) WES=1
WGS=2

Pyruvate dehydrogenase kinase (PDK)_

PDK1 Stop gain (Arg66Ter*) WGS=1

a)                                                                                                       b)

 

Figure 3.1: Loss-of-function (LoF) variants in regulation of pyruvate dehydrogenase (PDH) complex pathway. a) Figure adapted from REACTOME pathway browser 
(https://reactome.org/PathwayBrowser/) [315]. Highlighted in red are protein complexes that carry LoF variants in INTERVAL WES or WGS. b) List of genes, consequences and allele count 
(AC) of LoF variants in the different protein complexes in the pathway. 
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3.4.4 Enrichment of rare variant associations in genes near established GWAS signals in 
lipoprotein related metabolic biomarkers 

 

Next, I conducted analyses to investigate whether genes near GWAS index variants 

associated with traditional lipid traits (HDL-C, LDL-C, TC and TG) were enriched for rare 

variant associations computationally predicted to affect protein sequence and function with 

high resolution lipoprotein measurements, which could suggest enrichment of effector 

transcripts (i.e. transcripts/genes likely to be causal of the original association) in the gene 

set. Given that this was a hypothesis driven approach using established signals, to boost 

discovery power I pooled together both WES and WGS data into a single dataset of 7,179 

individuals. First, I extracted from the GWAS catalog (release 27-09-2017) the “reported 

genes” near signals that have been associated with HDL-C, LDL-C, TC or TG and created four 

gene sets (Table 3.2). I only focused on genes that were reported unambiguously (i.e where 

only one gene is reported) since for associations where more than one gene is reported, it is 

possible that only one will be the effector gene and rare variants from the non-effector 

genes will only add noise to the analysis and therefore reduce power. I grouped rare coding 

variants in the gene set using two nested approaches (LoF and MCAP+LoF) and ran SKAT-O 

on the gene sets for 157 lipoprotein and lipid traits.  Using this approach I found 

associations (p < 0.005, correcting for effective number of tests, Methods 3.3.9) for genes 

near HDL GWAS signals with 18 HDL-related traits (Table 3.7), the strongest association 

being with esterified cholesterol in extra-large HDL (XL-HDL-CE, p=2.83x10-5, MCAP+LoF). 

Associations (p < 0.005, Methods 3.3.9) in two extra-large HDL cholesterol related traits 

remained after removing variants in genes known to be involved in conditions leading to 

abnormal lipid levels or genes where functional work has shown an effect on HDL-C (Table 

3.7) suggesting there is a contribution to the phenotypic variance of these traits by rare 
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coding variants in genes, near GWAS signals, without a known role in HDL metabolism, 

which may represent novel effector transcripts.   

 

Trait GWAS signal 
gene set 

LoF p-value MCAP+LoF p-
value 

LoF p-value 
(known 
removed) 

MCAP+LoF p-
value (known 
removed) 

HDL2-C HDL-C 9.03x10-3 4.72x10-3 4.73x10-1 1.41x10-1 
HDL-D HDL-C 6.29x10-3 2.55x10-3 6.88x10-1 3.46x10-1 
L-HDL-C_% HDL-C 1.49x10-3 6.04x10-2 4.45x10-1 8.78x10-1 
L-HDL-FC_% HDL-C 1.67x10-4 5.40x10-4 1.40x10-1 3.52x10-1 
L-HDL-FC HDL-C 9.21x10-3 3.14x10-3 3.95x10-1 2.63x10-1 
L-HDL-TG_% HDL-C 2.27x10-3 1.30x10-1 3.40x10-1 7.25x10-1 
M-HDL-TG_% HDL-C 6.76x10-4 1.18x10-3 9.98x10-2 7.19x10-1 
S-HDL-TG_% HDL-C 4.68x10-3 4.37x10-3 4.37x10-1 7.76x10-1 
S-HDL-TG HDL-C 1.61x10-3 5.47x10-3 3.47x10-1 3.73x10-1 
XL-HDL-CE HDL-C 2.86x10-2 2.83x10-5 1.00 3.69x10-4 
XL-HDL-C HDL-C 1.85x10-2 4.43x10-5 8.48x10-1 9.03x10-4 
XL-HDL-FC HDL-C 6.41x10-3 2.44x10-4 7.43x10-1 1.11x10-2 
XL-HDL-L HDL-C 1.14x10-2 1.75x10-4 7.00x10-1 7.07x10-3 
XL-HDL-P HDL-C 1.17x10-2 1.91x10-4 6.92x10-1 7.56x10-3 
XL-HDL-PL HDL-C 8.07x10-3 9.94x10-4 5.12x10-1 1.11x10-1 
Table 3.7:Significant results (p<0.005) in SKAT-O analysis on gene sets built from lists of genes near established GWAS 
loci. LoF p-value: SKAT-O results for analysis focusing on loss-of-function variants in gene set. MCAP+LoF p-value: SKAT-O 
results for analysis focusing on rare missense variants (MAF <1%) predicted to be likely deleterious  (M-CAP score >0.025) 
and  loss-of-function variants in gene set. LoF p-value (known removed) = SKAT-O results for LoF approach after removing 
genes known to be involved in lipoprotein metabolism. MCAP+LoF p-value (known removed) = SKAT-O results for 
MCAP+LoF approach after removing genes known to be involved in lipoprotein metabolism. 

 

3.4.5 Enrichment of rare variation in tails of the phenotypic distribution of lipoprotein 
and glyceride related traits 

 

Finally, I aimed to investigate whether individuals at the extreme tail of the phenotype 

distribution for 106 lipoprotein and lipid traits harboured rare coding variants likely to be 

contributing to their phenotype.  I used the WES dataset as a discovery dataset and the 

WGS dataset as validation. An arbitrary cutoff of 10 individuals at each tail was used to 

define the tails for all of the 106 traits (Methods 3.3.10). After meta-analysis, I found an 

enrichment of predicted deleterious rare variation (p < 0.00037, Methods 3.3.10, Table 3.8, 
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Supplementary Table 9 of Riveros-Mckay et al (in preparation, Appendix B)) in 

hyperlipidaemia related genes on the lower tail of cholesterol in small VLDL (S-VLDL-C), 

esterified cholesterol in small VLDL (S-VLDL-CE) and concentration of extra small VLDL 

particles (XS-VLDL-P), and rare variation on HDL remodelling related genes on the lower tail 

of concentration of small HDL particles (S-HDL-P).  I still observed nominal evidence of 

association in the WES and WGS datasets for the S-VLDL-C and XS-VLDL-P results using a 

0.5% percentile cut-off for the tails but no evidence of association was found when using a 

1% percentile cut-off (Supplementary Table 10 of Riveros-Mckay et al (in preparation, 

Appendix B)).   This is likely due to the fact that by extending the number of individuals 

taken from the tails, we are decreasing the average distance to the mean and diluting signal 

coming from true extreme values.  

Upper tails 

Trait WES P WGS P Meta-P Gene Set 

S-VLDL-FC 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO 

XS-VLDL-C 3.3x10-2 2.37x10-2 3.45x10-3 Hypertriglyceridemia_HPO 

     
Lower tails 

Trait WES P WGS P Meta-P Gene Set 

S-VLDL-C 5.8x10-3 2.31x10-3 7.61x10-5 Hyperlipidaemia 

XS-VLDL-P 1.85x10-2 7x10-4 9.42x10-5 Hyperlipidaemia 

S-VLDL-CE 5.8x10-3 6.75x10-3  2.07x10-4 Hyperlipidaemia 

S-HDL-P 2.72x10-3 1.84x10-2 2.89x10-4 HDL_remodeling 

S-HDL-P 4.10x10-2 3.92x10-2 8.x24x10-3 Hypertriglyceridemia_CTD 

Table 3.8:Gene sets where there is a nominally significant enrichment of rare variation in the tails of a lipid or 
lipoprotein measurement (p<0.05) in both WES and WGS. Highlighted in bold are gene sets that are significant after meta-
analysis using Stouffer’s method [306] and after adjusting for multiple traits (p<=0.00037).  WES P: permutation p in WES. 
WGS P: permutation p in WGS. Meta-P: p after meta-analysis using Stouffer’s method. S-VLDL-FC: Free cholesterol in small 
VLDL. XS-VLDL-C : Cholesterol in very small VLDL. S-VLDL-C: Cholesterol in small VLDL. XS-VLDL-P: Concentration of very 
small VLDL particles. S-VLDL-CE: Cholesterol esters in small VLDL. S-HDL-P: Concentration of small HDL particles.  
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3.5 Discussion 
 

Exploring rare coding variation provides an opportunity to gain insights into biological 

processes regulating the circulating levels of metabolic biomarkers. Here I took advantage of 

the combination of sequencing data and high-resolution NMR measurements to elucidate 

how this variation influences multiple metabolic measurements in a healthy cohort of UK 

blood donors.  

To identify variants, genes and gene sets associated with metabolic biomarkers, I used a 

two-stage approach using WES data in discovery (Ndiscovery=3,741), and WGS data for 

validation (Nvalidation=3,401).  I first performed single-point association analysis to assess 

whether I was able to recapitulate established associations with metabolic biomarkers, and 

potentially identify novel associated rare variants. This yielded associations at 34 previously 

established loci. The lack of novel findings was expected given the smaller sample size 

compared to similar studies using the same NMR platform (INTERVAL N=7,142, Kettunen et 

al. (2016) [173] N=24,925) and the limited power to detect associations with rare variants. 

As an example, for 7,142 individuals, I only had 2.5% power to detect a significant 

association (p<9.51x10-9 in a combined analysis, Methods 3.3.6) with an effect size of 1 for 

variants with MAF 0.1%. This study was part of a collaboration with Dr Adam Butterworth’s 

group in the University of Cambridge. As such, array based genotype data for the full 

INTERVAL cohort was analysed by them and will form part of a large-scale meta-analysis 

collaborative effort. For this reason, I did not explore these results further. 
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 Rare-variant aggregation tests were used to identify genes harbouring multiple rare coding 

variants associated with metabolic biomarkers. To gain power at the validation stage I 

adjusted analyses for correlated traits, an approach previously described for single-point 

analysis [310]. This yielded significant power gains, namely at the known PAH association 

with phenylalanine levels, where adjusting for 71 phenotypically correlated traits resulted in 

a greater than 30-fold magnitude change in the statistical evidence of association after 

meta-analysis. This approach therefore can benefit similar studies with multiple phenotypes 

measured in the same individuals. And, in future efforts, use of association data from these 

traits in the INTERVAL cohort, instead of publicly available summary statistics, to determine 

which traits are not genetically correlated could also be used to increase power for many of 

the measurements that had no publicly available summary statistics, including all derived 

lipid ratios. Overall, this approach yielded 4,114 gene-trait associations taken forward for 

validation (pdiscovery<5x10-3).  After meta-analysis besides recapitulating previous associations 

in eight known genes (APOB, APOC3, PAH, HAL, PCSK9, ALDH1L1, SCARB1 and LIPC, Table 

3.5), this method also identified four genes (ACSL1, MYCN, B4GALNT3, FBXO36) that met 

standard gene-level significance (p<2.5x10-6, Table 3.5) in at least one gene-trait association 

test. Of these, ACSL1 and MYCN have been previously linked to lipid metabolism [312-314], 

suggesting that among the gene-level significant findings there may be additional true 

positives which will merit additional follow-up. 

ACSL1, which encodes long-chain-fatty-acid—CoA ligase 1, is the predominant isoform of 

ACSL in the liver. The gene was associated with concentration of IDL particles in this study (p 

= 6.20x10-7), and its deficiency in the liver has been shown to reduce synthesis of 

triglycerides and beta oxidation, and alter the fatty acid composition of major phospholipids 
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[316]. An intronic variant (rs60780116) in ACSL1 has been associated with T2D [317] and 

elevated expression of ACSL1 has been shown to be an independent risk factor for acute 

myocardial infraction [318]. 

MYCN encodes N-myc proto-oncogene protein and its amplification can lead to 

tumorigenesis [319, 320]. Previous animal studies have shown that inhibition of MYCN can 

lead to accumulation of intracellular lipid droplets in tumour cells [314]. Here I find 

association between MYCN and concentration of lipids, phospholipids and triglycerides in 

medium VLDL, total particle concentration of medium VLDL and triglycerides in small VLDL 

(min p = 6.20x10-7, Table 3.5, Supplementary Table 2 of Riveros-Mckay et al (in 

preparation, Appendix B)).  

The other two genes do not have any obvious link to lipid metabolism. B4GALNT3 encodes 

beta-1,4-N-acetyl-galactosaminyl transferase 3. This protein mediates the N,N'-

diacetyllactosediamine formation on gastric mucosa [321]. Mouse knockouts have been 

associated with abnormal tail movements, abnormal retinal pigmentation and increased 

circulating alkaline phosphatase levels [322] and variants near the gene have been 

associated with height and hip circumference adjusted for BMI in human GWAS [94, 323].   

FBXO36  is a member of the F-box protein family. F-box proteins are known to be involved in 

protein ubiquitination [324]. Replication of these signals in additional studies would 

represent a novel link between these genes and lipid metabolism.  

In gene set analysis, the “regulation of pyruvate dehydrogenase (PDH) complex” pathway 

was newly associated with 20 traits, mostly related to IDL and LDL lipoproteins. None of the 

genes in this pathway have been previously linked to any of these phenotypes, and this data 

suggests the signal arises from a cumulative effect of predicted loss-of-function variants in 
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different genes in the pathway (Figure 3.1), which represents a novel link between this 

pathway and lipoprotein metabolism. Of note, a carrier of a rare stop gain mutation 

(Gln248Ter) in PDHX had very high levels of LDL-C (4.086 mmol/l, top 0.03% of full INTERVAL 

cohort) with no other rare mutation in genes known to harbour rare mutations causative of   

hypercholesterolaemia (PCSK9, APOB, LDLR). The other carrier of this variant had slightly 

increased LDL-C levels but within normal clinical range (1.823 mmol/l, top 19.3% of the full 

INTERVAL cohort). Since we lack information on medication, specifically, lipid lowering 

medication, the degree to which this variant influences the observed LDL-C levels is difficult 

to assess. The PDH complex has been shown to be crucial for metabolic flexibility, i.e. the 

capacity to adjust fuel oxidation based on nutrient availability, which itself has been shown 

to play a role in cardiovascular disease [325].  

In analyses aiming at identifying effector transcripts at established GWAS loci associated 

with traditional lipid measurements (HDL-C, LDL-C, TC and TG), I established that reported 

genes mapping near HDL-C associated loci were enriched for rare coding variants associated 

with multiple HDL-related measurements. The results remained significant (p<0.005) after 

removing genes known to be directly involved in HDL metabolism, suggesting rare coding 

variants in this gene set contribute to variation in these traits, and that this gene set is 

potentially enriched for additional effector transcripts, though common variants in the same 

haplotype as these rare variants could also account for some of the signal we observe. One 

of the major limitations of this approach is that most of the times, the reported gene is the 

closest gene and we may miss the true causal gene if the GWAS signal is regulating a more 

distant gene. It is also important to note that an enrichment of rare variant associations 
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near reported genes does not necessarily mean that they solely explain the GWAS non-

coding association and other genes might also be contributing to the signal.  

Finally, I showed that one can detect enrichment of rare variation in genes involved in 

lipoprotein metabolism in phenotypic extremes of some of these NMR measurements. 

Specifically, I showed enrichment of rare variants in hyperlipidaemia related genes in 

individuals with very low levels of cholesterol and esterified cholesterol in small VLDL, total 

small VLDL particle concentration, and enrichment of rare variants in HDL remodelling genes 

in individuals with very low levels of small HDL particles. Given that high levels of small HDL 

particles have been previously associated with higher incidence of ischemic stroke (IS) [326] 

some of these variants could have protective effects. These results are in agreement with 

previous work on LDL-C  [285] and HDL-C [327] that show that common polygenic signals 

seem to have a higher impact on the higher extremes of lipid traits whereas there is 

evidence for a  higher prevalence of rare variation on the lower extremes [327]. This is also 

expected since the INTERVAL cohort consists predominantly of healthy blood donors and 

therefore the distribution of many of these traits might be truncated and depleted of 

individuals with rare “damaging” variants. Another factor that could contribute to the 

observed results is that each trait will have a different distribution and given the fact I am 

choosing an arbitrary number of participants at the top and bottom of the distribution, 

these participants will not represent equivalent “extremes”.  

A major limitation of rare variant association analyses to date is that, despite the advances 

in computational methods predicting the pathogenicity of rare variants, many of these 

predicted deleterious variants appear to exert little to no effect as evidenced by the non-

significant associations with known positive controls where one should be well powered to 



113 
 

detect association if most of these variants were sufficiently deleterious. Some reported 

gene-based associations may be due to a few population specific variants, making those 

findings hard to replicate. As an example, a study using the same NMR platform and 

performing gene-based analysis using exome-chip data found a significant association of 

LIPG with many HDL subclass traits (min p=3.8x10-17, all protein-truncating and missense 

variants, Nvariants=5 in a Finnish population [288] whereas in this study the same gene was 

only nominally significant in triglycerides in medium HDL (p=0.049) querying 19 missense 

and LoF variants predicted to be deleterious. Power in our study was ~ 82% to find an 

association at p < 0.001 if 50% of the variants included in the test were causal and had the 

same direction and maximum beta is 1.1, this dropped to ~75% power if 20% of those 

variants had opposite directions of effect. Upon further inspection, the burden in the 

original study is mostly driven by one LoF variant (rs200435657, p=4x10-6), and one 

missense variant (rs201922257, p=8.6x10-9) that are almost monomorphic in Non-Finnish 

Europeans (gnomAD AC=1 and 7 respectively, AN= 126,228 and 126,712) but have an 

increased AC in Finnish populations (gnomAD AC=43 and 44 respectively, AN= 25,782 and 

25,784).  Another missense variant contributing to the association (rs77960347, p=4.8x10-6) 

is low frequency in NFE (INTERVAL MAF=1.6%) and therefore was not included in our 

analysis, but it is worth noting that this variant is predicted to be tolerated by SIFT and only 

possible damaging by PolyPhen.   Another study using the same platform but focusing on 

amino acids [289] found a burden of rare variants in BCAT2 (p=7.4x10-7, all protein-

truncating and missense variants, Nvariants=3) affecting valine levels where one of the two 

variants driving the association (rs199999090, p=5.36x10-4) was monomorphic in our data 

and the other variant (rs117048185, p=4.12x10-4) was also similarly associated in my dataset 

(p=3.x89x10-3) but was not predicted to be deleterious by MCAP (or other similar algorithms 
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like PolyPhen and SIFT) and therefore was not included in the burden test that included 

eight variants (pburden=0.76).  Other examples of non-significant associations from 

traditionally measured lipid traits include a PNPLA5 association with LDL-C [328] and a 

TEAD2 association with HDL-C [284]. In the case of PNPLA5 we tested 10 predicted 

deleterious variants and found no association p=0.59. However, the reported association 

with PNPLA5, was driven by an African American signal [283]. In the case of TEAD2 the SNP 

driving the signal, rs142665148, is monomorphic in the European population and was found 

in a Chinese population, although unlike LIPG, BCAT2 and PNPLA5, this gene is not a known 

effector transcript and might represent a false positive.  

Further work on the INTERVAL cohort incorporating proteomics data could help better 

understand the potential functional consequences of rare coding variation and help bridge 

the gap between the rare variant analyses associations presented in this chapter and the 

observed consequences to circulating metabolic biomarkers.Altogether, my results showed 

that focusing on rare variation and deep metabolic phenotyping provides new insights into 

circulating metabolic biomarker biology.  This argues for the expansion of deeper molecular 

phenotyping as part of large cohort sequencing efforts to gain further understanding on the 

role of rare coding variation on circulating metabolic biomarkers which may potentially lead 

to novel drug target discovery and/or provide additional genetic validation for specific 

targets. 
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4 Chapter 4: The heritability of fructosamine and its genetic 
relationship to HbA1c. 

4.1 Introduction 
 

Hyperglycaemia (high blood glucose) is the defining characteristic of diabetes. Normal 

fasting glucose (FG) levels in the blood range between 4.0 to 5.4 mmol/L (72-99 mg/dL), 

while post-prandial levels range up to 7.8 mmol/L (140 mg/dL) two hours after eating (2hr 

glucose) [329]. The most common tests to diagnose diabetes are fasting glucose (FG) and 

2hr glucose after an oral glucose tolerance test (OGTT) (Fig 4.1). Both tests require a fasting 

period between 8 and 12 hours. OGTT involves taking a blood sample after the fasting 

period and then patients are given a very sweet drink containing 75g of glucose. Another 

blood sample is taken after two hours and this sample is the one used for diagnosis (2hr 

glucose post-OGTT). In some cases, blood samples are also taken at regular intervals 

between the intake of the sugar drink and the 2hr blood sample. Concordance between FG 

and 2hr glucose is not complete [330] and interestingly, individuals diagnosed using both 

criteria have higher cardiovascular disease risk than those only diagnosed using FG [331], 

and cardiovascular and all-cause mortality are increased in individuals diagnosed using 2hr 

glucose when compared to individuals diagnosed using FG [332]. 
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Figure 4.1: Diagnosis of type 2 diabetes. Blood glucose levels are shown for unaffected individuals (red line) and 
individuals with diabetes (green line) over a time course of 5 hours after glucose challenge. Fasting glucose (FG) test only 
measures glucose at the first time point. OGTT measures the first time point and the 2hr mark. Extracted from: 
https://themedicalbiochemistrypage.org/diabetes.php 

  

Timely diagnosis of diabetes is important as uncontrolled high blood glucose levels can lead 

to clinical complications such as retinopathy, kidney failure or heart disease [25]. 

Undiagnosed diabetes can lead to damage to tissues due to hyperglycaemia which occurs 

over time without individuals displaying any marked symptoms. The degree of 

hyperglycaemia, reflecting the amount of damage to either insulin secretion or insulin 

response mechanisms (Fig 4.2), has an impact on the action course for treatment of the 

condition. Individuals with elevated glucose levels, but below the established threshold for 

diabetes diagnosis (FG=5.5 to 6.9 mmol/l  (100 to 125 mg/dl), 2hr glucose=7.8 to 11.0 

mmol/l (140 to 199 mg/dl)), are referred to as having prediabetes and can often manage 

their glucose levels by a combination of weight loss, physical activity and in rare cases oral 

glucose reducing medication [333]. When insulin secretion systems are severely damaged, 

individuals require insulin injections. This is the case for type 1 diabetes patients, who suffer 

from complete destruction of their beta-cells due to autoimmunity. For T2D cases there are 
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a host of oral treatments (e.g. metformin, sulphonylureas, thiazolidinediones (TZDs), 

dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose transporterase (SLGT-2) 

inhibitors) [334-336] but eventually many patients require insulin treatment.  

 

Figure 4.2: Aetiology of T2D. Interplay between genetic and environmental factors determines an individual’s susceptibility 
to T2D. T2D arises from impaired beta-cell function and insulin resistance which occurs primarily in muscle, fat and liver 
tissues (i.e. insulin target organs). Under normal beta-cell function, in the setting of insulin resistance, insulin production is 
increased to increase the uptake of glucose by these tissues and glucose levels in the blood are kept within normal ranges. 
If this fails, glucose levels increase in the blood leading to impaired glucose tolerance (IGT). Individuals with untreated IGT 
have a high risk of developing T2D and cardiovascular disease. Image provided by Inês Barroso. 

 

Another measure of glucose levels in the blood is glycated haemoglobin (HbA1c), which is 

the proportion of haemoglobin in the blood that has been glycated, and reflects average 

glucose levels over the life-span of an erythrocyte (~3 months). HbA1c is widely used to 

assess glycaemic control in patients with diabetes [337, 338].  As a diagnostic tool, HbA1c 

has a lower sensitivity than FG, but its negative predictive value is high, suggesting that low 

HbA1c levels provide strong evidence to discard a diabetes diagnosis [339]. However, HbA1c 
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levels as a diagnostic tool can be influenced by conditions that affect the lifespan of 

erythrocytes such as sickle cell trait and anaemia [340, 341], or by ethnic differences [342] 

(Figure 4.3).  For example, ethnic minorities in the US such as Hispanics, Asians, American 

Indians and blacks have on average higher HbA1c levels than whites after adjusting for 

factors affecting glycaemia. This could affect the utility of HbA1c for T2D diagnosis, 

especially in populations of different ancestry  [343]. Twin studies have estimated that 

heritability for HbA1c is high ranging from 62% to 75% [344, 345]. Multiple GWAS of HbA1c 

have looked into the genetic component of this trait, with a total of 60 loci identified to date 

[121, 346-350]. Lookups of association results of HbA1c-associated loci, with publicly 

available summary statistics for additional glycaemic (FG, 2h glucose and fasting insulin) and 

blood cell traits, in addition to conditional analyses adjusting for glycaemic traits (FG, 2hr 

glucose) or blood cell traits (haemoglobin levels, mean corpuscular volume, mean 

corpuscular haemoglobin)  classified these loci as those mostly influencing HbA1c through 

glycaemic, erythrocytic, or unclassifiable pathways [121]. Understanding the pathway 

through which these variants affect HbA1c levels is important as it may influence their effect 

on T2D risk, diagnosis and treatment.  For example, in a recent study from the MAGIC 

investigators [121] the authors described a missense variant in G6PD that lowers HbA1c 

levels through non-glycaemic pathways. This means that the lower HbA1c levels in G6PD 

variant carriers no longer reflect ambient glycaemia and therefore individuals with this 

variant could remain undiagnosed for T2D if this information were not taken into account 

and if they were screened by a single HbA1c measurement (see Chapter 1, Section 1.2.2). 

Understanding HbA1c genetics, which is studied in healthy non diabetic individuals to avoid 

confounding by diabetes and its treatment, could therefore help improve T2D diagnosis in 

populations of different ancestry.  
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Figure 4.3: Advantages and disadvantages of HbA1c as a diagnostic tool. 

 

Fructosamine is a measurement of glycation of total serum proteins. Since the most 

abundant serum protein is albumin, fructosamine normally reflects glycation of albumin 

[351]. In contrast to HbA1c, fructosamine measures short-term glycaemic control (from two 

to three weeks) and has been suggested as a useful marker for monitoring quick changes in 

glycaemic levels after treatment in individuals with diabetes [352]. As it is independent of 

haemoglobin, fructosamine levels are not affected by blood disorders and therefore is less 

likely to be influenced by erythrocytic traits, making it a viable alternative to HbA1c in the 

presence of anaemia or other blood disorders to monitor glycaemic levels [353]. Despite its 

potential advantages, it is not widely used as a measure of glucose control and has not been 

as standardised as HbA1c [354]. This lack of standardisation is problematic if fructosamine is 



120 
 

to be implemented as a diagnostic tool as accurate cutoffs need to be defined making sure 

variability within and between different labs is due to individual differences and are not 

assay or laboratory dependent. Nevertheless, studies have found association of 

fructosamine levels with diabetes incidence [355], retinopathy and chronic kidney disease 

[356], independently of baseline fasting glucose and HbA1c. Furthermore, there is a high 

correlation of fructosamine levels with HbA1c levels in patients with diabetes (r=0.7-0.8; 

[356-359]). The discordance in individuals between HbA1c levels and those levels predicted 

by its regression on fructosamine has been termed “glycation gap (GG)” [360]. Differences 

in FG and HbA1c as T2D diagnostic tools can be influenced by the GG as shown in a study 

where individuals were classified into three groups based on GG tertiles: low, medium and 

high glycators. Individuals diagnosed with diabetes by FG/2hr glucose and diagnosed as 

normoglycaemic by HbA1c had a significant depletion of individuals in the upper tertile of 

the GG suggesting individuals with low propensity for haemoglobin glycation are less likely 

to be diagnosed as diabetic by HbA1c criteria. In fact, the optimal HbA1c cutoff (i.e, the 

value misclassifying fewest patients) for low glycators was lower than that of high glycators 

(5.75% vs 6.25%) and had reduced sensitivity (54% vs 70%) [361]. To date, only one small 

study has looked at heritability of fructosamine in twins (40 monozygotic and 46 dizygotic) 

concluding it was not significantly inherited although a model including additive genetic 

effects and unique environmental influences could not be excluded [362]. A recent 

fructosamine GWAS performed on 8,951 mostly normoglycaemic white individuals 

(Ndiscovery=7,647, Nreplication=1,304) found one single replicating association near RCN3 

(rs34459162, p=5.3x10-9) after meta-analysis. This study did not examine the heritability of 

fructosamine and there was no significant evidence of genetic correlation with FG or HbA1c 

although there was some evidence of association for three established FG and/or HbA1c loci 
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(TCF7L2, GCK and SLC2A2) [363]. Elucidating non-glycaemic genetic influences of 

measurements used in T2D diagnosis, such as HbA1c and fructosamine, can help improve 

the diagnostic accuracy of these tests as well as provide insights into the different 

mechanisms by which these traits increase risk of diabetes comorbidities such as 

cardiovascular disease or chronic kidney disease independently of other glycaemic traits.  

In this chapter, I performed a fructosamine GWAS to gain further insights into the genetic 

influences on fructosamine levels, and explore its genetic relationship with HbA1c and other 

glycaemic traits.  

 

 

4.2 Chapter aims 
 

The overall aim of this chapter is to explore the genetic basis of fructosamine. I use genome-

wide genetic data available on up to ~19M SNPs on 24,586 individuals from the INTERVAL 

cohort to: 

I. Assess the heritability of fructosamine. 

II. Find novel loci associated with fructosamine. 

III. Explore the genetic correlation of fructosamine with other glycaemic traits. 

IV. Explore the effects of established glycaemic loci on fructosamine. 

 

4.3 Methods 
 

4.3.1 Participants 
 

Work in this chapter was done using the INTERVAL cohort which consists of 47,394  

predominantly healthy blood donors in the UK (more details in Chapter 3 Methods 3.3.1). 
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4.3.2 Genotyping, variant quality control and imputation  
 

Genotyping, variant quality control and imputation on the INTERVAL cohort were performed 

by collaborators and full details can be found in Astle et al 2017 [293]. INTERVAL 

participants (Ntotal=48,813) were genotyped in ten batches on the UK Biobank Affymetrix 

Axiom Array. Standard QC procedures were implemented by Affymetrix during the genotype 

calling pipeline. Samples were excluded if signal intensity was poor (dish QC <0.82) or if call 

rate was low (<97%). Variants were excluded if a) call rate was low (<95%), b) there were 

more than three genotype clusters, c) cluster statistics (Fisher’s linear discriminant, 

heterozygous cluster strength, homozygote ratio offset) indicated poor quality or d) they 

were complicated multi-allelic variants . Extra QC steps were performed by Tao Jiang and 

Heather Elding. Variants from a batch were failed if: a) fewer than ten minor allele 

homozygotes were called, b) the cluster plot contained at least one sample with an intensity 

at least twice as far from the origin as the next most extreme sample, c) the outlying 

sample(s) had an extreme polar angle (< 15° or > 75°) in the direction of the minor allele. 

Next, duplicate and non-European samples were excluded. Non-Europeans were defined 

based on PC1 and PC2 score thresholds defined after visual inspection of a PCA with 1000G 

major ancestry populations. Within batch variant QC was then performed discarding 

variants based on deviation from HWE ( p < 5x10-6)  and a low call rate (<97%). If variants 

failed any of these last two filters or any of the Affymetrix filters in four out of ten batches, 

variants were discarded across all batches. After merging all batches, sample contamination 

was estimated using a contamination estimate based on allele frequency and probeset 

intensity [297]. Samples were excluded if this estimate was >10% or >3% if the sample also 

had more than ten first- or second-degree relatives (PI_HAT > 0.1875).  Samples were then 
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excluded if they were heterozygosity outliers (>3 SD from mean), they had missing 

phenotypic sex or if supplied sex mismatched genetically inferred sex. Variants were 

removed if they had a MAF range >0.05 across all batches, if they were monomorphic in one 

or more batches and MAF > 0.01 in another batch, or if they had differing minor allele 

between batches (for variants with max MAF <0.475).  An extra 69 across-batch duplicates 

were removed after merging batches. A global HWE filter (p < 5x10-6) and a stringent call 

rate filter (>99% on non-failed batches and >75% globally) were applied to select variants 

used for imputation.  Dataset was phased using SHAPEIT3 [364] and then imputed to a 

combined UK10K-1000G Phase III imputation reference panel using the Sanger Imputation 

Server [127].  

4.3.3 Phenotyping 
 

Phenotyping was performed by Star-SHL lab (http://www.star-shl.nl/). Fructosamine was 

measured using a colorimetric assay (Roche/Hitachi MODULAR P analyser system) and 

HbA1c was measured using a high performance liquid chromatography assay (Tosoh 

Automated Glycohemoglobin Analyser HLC-723G8 system) using serum collected on the 2 

year follow-up visit.  Fructosamine and HbA1c measurements as well as questionnaire data, 

technical variables and blood cell trait measurements were provided by the data 

administrator (University of Cambridge).  I performed phenotype quality control in R to 

prepare the data for association analysis. 

4.3.4 Association analysis, heritability and genetic correlation  
 

Residuals obtained after phenotype quality control (Results 4.4.1) for fructosamine and 

HbA1c were used in this analysis. BOLT-LMM [227] was used to run genome-wide 
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association analysis on 19,100,024 variants with MAF > 0.1% and INFO score >0.4. LD score 

regression [42] was used to establish the heritability and genetic correlation of both traits. 

LD score regression was also used to compute genetic correlation of fructosamine and 

HbA1c with blood cell traits.  A subset of 1,142,170 of the 1,217,312 HapMap3 SNPs with 

non-missing betas was kept in each dataset to perform these analyses. HbA1c summary 

statistics for European individuals from Wheeler et al 2017 [121] were obtained from the 

MAGIC consortium website (https://www.magicinvestigators.org/downloads/). Blood cell 

traits summary statistics were downloaded from http://www.bloodcellgenetics.org/. 

Genetic correlation analyses with glycaemic traits and albumin was performed using LD Hub 

[231].  

 

4.3.5 Fructosamine discovery GWAS 
 

LD score regression results showed no signs of inflation so no genomic correction was 

performed (LD intercept=1.01). I performed clumping as implemented in PLINK [223] to 

establish unique loci. Variants were clumped if they were 250kb away from the lead signal 

and if r2>0.1. Conditional analysis was also used to identify distinct signals within a locus 

after clumping. To compare effect sizes of the lead variant near RCN3 (rs34459162) found in 

a previous study [363], I reran normalisation on fructosamine matching the transformation 

done in that study and correcting for sex, donation centre, height, weight, processing date, 

number of donations and attendance date. SNPTEST v2.5.2 was used to rerun association 

analysis under an additive model and used for reciprocal conditional analyses. To estimate 

the significance of the difference in effect sizes I used a Z-test.  SNPTEST v2.5.2 was also 
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used to test for association of the lead signal near RCN3 in this study with serum albumin 

levels.   

4.3.6 Lookup of established glycaemic loci  
 

A list of established glycaemic loci was obtained from Eleanor Wheeler. This list was curated 

by Eleanor Wheeler and Gaëlle Marenne and last updated in March 2018. I first removed 

from the list chromosome X variants, variants monomorphic in the European population, 

and one variant not present in the INTERVAL data. To extract index variants per locus, I 

extracted LD information from European individuals in 1000G  using LDlink 

(https://ldlink.nci.nih.gov/) [365]. For variants that were not biallelic in 1000G, I calculated 

LD in the INTERVAL dataset. For each pair of variants with r2 > 0.1, I kept variants that had 

the lowest p-value in any of the association analysis with fasting glucose, 2 hr glucose, 

fasting insulin or HbA1c performed in European individuals in the latest trans-ethnic MAGIC 

unpublished analyses. Association data was provided by Ji Chen. The full list of index SNPs is 

presented in Table 4.1. Significance threshold for association was established by dividing 

0.05 by the number of loci tested (0.05/142 = 3.5x10-4). To assess if there was an 

enrichment of directionally consistent and nominally significant signals in fructosamine that 

have been previously associated with glycaemic traits I performed a binomial test. Of the set 

of variants previously associated with glycaemic traits that were nominally significant in 

fructosamine, signals near USP4 and ANK1 were removed in this test since their association 

status with HbA1c is through non-glycaemic pathways and I chose to focus only on those 

influencing HbA1c through glycaemic pathways [121].  I also removed rs9727115 and 

rs150781447 as these were only associated with proinsulin levels adjusted for fasting 

glucose and late-phase proinsulin levels and the expected relationship between directions 
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of effect of a variant affecting proinsulin and fructosamine is not obvious. Direction of effect 

was determined using the HbA1c raising allele as reference (i.e we expect HbA1c raising 

variants to also raise fructosamine). If the variant was not associated with HbA1c, I used FG 

as reference and for rs9884482, which was not associated with HbA1c or FG, I used FI.  

 

snp chr pos gene trait 

rs340874 1 214159256 PROX1-AS1 FG [83], FG_adjBMI [366] 

rs1886686 1 67390468 WDR78 FG_adjBMI * 

rs2820436 1 219640680 LYPLAL1 FI [367], FI_adjBMI [367] 

rs141203811 1 229772141 URB2 FI_adjBMI [368] 

rs2375278 1 25529038 SYF2 HbA1c [121] 

rs267738 1 150940625 CERS2 HbA1c [121], HbA1c_adjBMI * 

rs6684514 1 156255456 TMEM79 HbA1c [346] 

rs857725 1 158607935 SPTA1 HbA1c_adjBMI * 

rs9727115 1 99177253 SNX7 Proinsulin_adjFG [369] 

rs1260326 2 27730940 GCKR 2hG_adjBMI [370], FG_adjBMI [367], FI_adjBMI [367] 

rs895636 2 45188353 SIX3 FG [371], FG_adjBMI [372] 

rs1371614 2 27152874 DPYSL5 FG_adjBMI [366], FG_BMI30 [366] 

rs3736594 2 27995781 MRPL33 FG_adjBMI [366] 

rs35720761 2 43519977 THADA FG_adjBMI *, HbA1c_adjBMI * 

rs138726309 2 169763262 G6PC2 FG_adjBMI [368] 

rs2232323 2 169764141 G6PC2 FG_adjBMI *, HbA1c_adjBMI * 

rs146779637 2 169764368 G6PC2 FG_adjBMI *, HbA1c_adjBMI * 

rs552976 2 169791438 ABCB11 FG_adjBMI [367], HbA1c [367] 

rs733331 2 173546313 RAPGEF4-AS1 FG_adjBMI [372] 

rs1530559 2 135755629 MAP3K19 FI [367], FI_adjBMI [367] 

rs10195252 2 165513091 COBLL1 FI [367], FI_adjBMI [367] 

rs1983210 2 220421417 OBSL1 FI_adjBMI * 

rs2943645 2 227099180 LOC646736 FI_adjBMI [367] 

rs17509001 2 24021231 ATAD2B HbA1c [121] 

rs12621844 2 48414735 FOXN2 HbA1c [121] 

rs3755157 2 169792171 ABCB11 HbA1c [346] 

rs17256082 2 175292364 SCRN3 HbA1c [121] 

rs11708067 3 123065778 ADCY5 2hG_adjBMI [367], FG [83], FG_adjBMI [366], HbA1c [121] 

rs7651090 3 185513392 IGF2BP2 2hG_adjBMI [367], FG [367], FG_adjBMI [367] 

rs17036328 3 12390484 PPARG FI_adjBMI [367] 

rs7616006 3 12267648 SYN2 HbA1c [121] 

rs9818758 3 49382925 USP4 HbA1c [121] 

rs8192675 3 170724883 SLC2A2 HbA1c [121] 
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snp chr pos gene trait 

rs4894799 3 171795540 FNDC3B HbA1c [121] 

rs35726701 3 49740895 RNF123 HbA1c_adjBMI * 

rs9884482 4 106081636 TET2 FI [367], FI_adjBMI [367] 

rs3822072 4 89741269 FAM13A FI_adjBMI [367] 

rs6822892 4 157734675 PDGFC FI_adjBMI [367] 

rs17046216 4 166255704 MSMO1 FI_adjBMI [378], HOMA-IR [378] 

rs13134327 4 144659795 FREM3 HbA1c [121] 

rs2237051 4 110901198 EGF HbA1c_adjBMI * 

rs1019503 5 96254817 ERAP2 2hG [367], 2hG_adjBMI [367] 

rs146886108 5 14751305 ANKH FG_adjBMI * 

rs7708285 5 76425867 ZBED3-AS1 FG_adjBMI [367] 

rs7713317 5 95716722 PCSK1 FG_adjBMI [367] 

rs4865796 5 53272664 ARL15 FI [367], FI_adjBMI [367] 

rs6450057 5 51647364 PELO FI_adjBMI [373] 

rs459193 5 55806751 LOC101928448 FI_adjBMI [367] 

rs31244 5 75594743 SV2C HbA1c_adjBMI * 

rs35658696 5 102338811 PAM Insulinogenic index [374] 

rs10305492 6 39046794 GLP1R FG [375], FG_adjBMI [368] 

rs17762454 6 7213200 RREB1 FG_adjBMI [367] 

rs35742417 6 7247344 RREB1 FG_adjBMI [368], HbA1c_adjBMI * 

rs2745353 6 127452935 RSPO3 FI [367], FI_adjBMI [367] 

rs6912327 6 34764922 UHRF1BP1 FI_adjBMI [367] 

rs7756992 6 20679709 CDKAL1 HbA1c [121] 

rs1800562 6 26093141 HFE HbA1c [367], HbA1c_adjBMI * 

rs11964178 6 109562035 LOC100996634 HbA1c [121] 

rs9399137 6 135419018 HBS1L HbA1c [346] 

rs592423 6 139840693 LOC645434 HbA1c [121] 

rs1799945 6 26091179 HFE HbA1c_adjBMI * 

rs1799884 7 44229068 GCK 1hG [376], 2hG [376], FG [376], HbA1c [350] 

rs2191349 7 15064309 AGMO FG [83], FG_adjBMI [366], HbA1c [121] 

rs6943153 7 50791579 GRB10 FG [367], FG_adjBMI [367] 

rs6947345 7 101071933 COL26A1 FG [377] 

rs194524 7 89861832 STEAP2 FG_adjBMI * 

rs1167800 7 75176196 HIP1 FI [367], FI_adjBMI [367] 

rs35332062 7 73012042 MLXIPL HbA1c_adjBMI * 

rs11558471 8 118185733 SLC30A8 FG [367], FG_adjBMI [366], HbA1c [121], Proinsulin [369] 

rs4841132 8 9183596 LOC157273 FG_adjBMI [366], FG_BMI30 [366], 
 FI_adjBMI [366], FI_BMI30 [366] 

rs4737009 8 41630405 ANK1 HbA1c [367] 

rs6980507 8 42383084 SLC20A2 HbA1c [121] 

rs34664882 8 41543675 ANK1 HbA1c_adjBMI * 

rs7034200 9 4289050 GLIS3 FG [83], FG_adjBMI [366] 

rs10811661 9 22134094 CDKN2B-AS1 FG [367], FG_adjBMI [366] 
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snp chr pos gene trait 

rs16913693 9 111680359 IKBKAP FG [367], FG_adjBMI [367] 

rs651007 9 136153875 ABO FG [375] 

rs3829109 9 139256766 DNLZ FG [367], FG_adjBMI [367] 

rs7040409 9 91503236 C9orf47 HbA1c [121] 

rs1467311 9 110536932 KLF4 HbA1c [121] 

rs11557154 9 34107505 DCAF12 HbA1c_adjBMI * 

rs3824420 9 712766 KANK1 Proinsulin AUC 0-30 [374] 

rs7903146 10 114758349 TCF7L2 2hG [367], 2hG_adjBMI [367], FG [83],  
FG_adjBMI [366], FI [367], FI_adjBMI [366],  
HbA1c [367], Proinsulin [369] 

rs701865 10 95381773 PDE6C FG_adjBMI * 

rs11195502 10 113039667 ADRA2A FG_adjBMI [367] 

rs7077836 10 132751498 MIR378C FI_adjBMI [378], HOMA-IR [378] 

rs16926246 10 71093392 HK1 HbA1c [350] 

rs906220 10 71060610 HK1 HbA1c_adjBMI * 

rs11605924 11 45873091 CRY2 FG [83], FG_adjBMI [366] 

rs11603334 11 72432985 ARAP1 FG [367], FG_adjBMI [366], FG_BMI30 [366],  
HbA1c [121], Proinsulin [369] 

rs1387153 11 92673828 MTNR1B FG_adjBMI [367], HbA1c [367] 

rs3782123 11 205198 BET1L HbA1c [121] 

rs2237896 11 2858440 KCNQ1 HbA1c [121] 

rs174577 11 61604814 FADS2 HbA1c [121] 

rs11224302 11 100456604 ARHGAP42 HbA1c [121] 

rs415895 11 9769562 SWAP70 HbA1c_adjBMI * 

rs117706710 11 10508903 AMPD3 HbA1c_adjBMI * 

rs643788 11 118967758 DPAGT1 HbA1c_adjBMI * 

rs10501320 11 47293799 MADD Proinsulin [369] 

rs10838687 11 47312892 MADD Proinsulin [369] 

rs17331697 12 97868906 RMST FG [377] 

rs10747083 12 133041618 FBRSL1 FG [367], FG_adjBMI [367] 

rs2657879 12 56865338 GLS2 FG_adjBMI [367] 

rs145878042 12 48143315 RAPGEF3 FI_adjBMI * 

rs860598 12 102898446 IGF1 FI_adjBMI [367] 

rs2110073 12 7075882 PHB2 HbA1c [121] 

rs2408955 12 48499131 SENP1 HbA1c [121] 

rs3184504 12 111884608 SH2B3 HbA1c_adjBMI * 

rs2650000 12 121388962 HNF1A-AS1 Insulinogenic index [374] 

rs150781447 12 65224220 TBC1D30 Proinsulin AUC 30-120 [374] 

rs11619319 13 28487599 PDX1-AS1 FG [367], FG_adjBMI [367], HbA1c [121] 

rs576674 13 33554302 KL FG [367], FG_adjBMI [367], HbA1c [121] 

rs282587 13 113351662 ATP11A HbA1c [121] 

rs9604573 13 114542858 GAS6, GAS6-AS1 HbA1c [121] 

rs3783347 14 100839261 WARS FG [367], FG_adjBMI [367] 
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snp chr pos gene trait 

rs229587 14 65263300 SPTB HbA1c_adjBMI * 

rs4502156 15 62383155 C2CD4A 2hG_adjBMI [367], FG_adjBMI [367],  
Proinsulin [369] 

rs2018860 15 99258710 IGF1R FG_adjBMI [372] 

rs1549318 15 71109147 LARP6 Proinsulin [369] 

rs11248914 16 293562 ITFG3 HbA1c [121] 

rs1558902 16 53803574 FTO HbA1c [121] 

rs4783565 16 68750190 CDH3 HbA1c [121] 

rs837763 16 88853729 PIEZO1 HbA1c [121] 

rs3747481 16 30666367 PRR14 HbA1c_adjBMI * 

rs201226914 16 88798919 PIEZO1, LOC100289580 HbA1c_adjBMI * 

rs72839768 17 7129898 DVL2 2hG_adjBMI * 

rs61741902 17 2282779 SGSM2 Fasting proinsulin [374] 

rs9914988 17 27183104 ERAL1 HbA1c [121] 

rs12602486 17 42241929 C17orf53 HbA1c [346] 

rs2073285 17 76117361 TMC6 HbA1c [121] 

rs1046896 17 80685533 FN3KRP HbA1c [367] 

rs2748427 17 76121864 TMC6 HbA1c_adjBMI * 

rs7225887 17 80904844 B3GNTL1 HbA1c_adjBMI * 

rs4790333 17 2262703 SGSM2 Proinsulin [369] 

rs1800437 19 46181392 GIPR 2hG_adjBMI * 

rs731839 19 33899065 PEPD FI [367], FI_adjBMI [367] 

rs11667918 19 17232499 MYO9B HbA1c [346] 

rs17533903 19 17256523 MYO9B HbA1c [121] 

rs35413309 19 33167837 RGS9BP HbA1c_adjBMI * 

rs6113722 20 22557099 LINC00261 FG [367], FG_adjBMI [367] 

rs17265513 20 39832628 ZHX3 FG_adjBMI [368] 

rs855791 22 37462936 TMPRSS6 HbA1c [367], HbA1c_adjBMI * 

Table 4.1: Index variants for established glycaemic loci per trait. 1hG= 1 hr Glucose. 2hG_adjBMI= 2 hr glucose adjusted 
for BMI. FG=Fasting glucose. FG_adjBMI=Fasting glucose adjusted for BMI. FI=Fasting insulin. FI_adjBMI=Fasting insulin 
adjusted for BMI. HbA1c=Glycated haemoglobin. HbA1c_adjBMI=Glycated haemoglobin adjusted for BMI. HOMA-IR= 
Insulin resistance homeostasis model assessment. Proinsulin AUC 0-30= Early phase proinsulin. Proinsulin AUC 30-120= 
Late phase proinsulin. Proinsulin_adjFG=Proinsulin adjusted for fasting glucose. Sources=Publication where the index SNP 
in the table was first associated with its respective trait. *MAGIC unpublished: based on European results from meta-
analysis of data genotyped on the ExomeChip array. 

4.4 Results 
 

4.4.1 Phenotype quality control 
 

Biological measurements can be susceptible to technical variation. To prepare the data for 

association analysis I performed quality control to assess if there were any effects of 
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technical variables on the fructosamine and HbA1c measurements. Fructosamine was 

measured on 28,310 individuals of the INTERVAL cohort and HbA1c was measured on 5,811 

individuals out of which 5,420 had both measurements.  

First, I inspected if measured values were concordant with what is expected based on 

available literature on the subject. Median fructosamine levels were high (294 μmol/L) 

compared to the normal expected range in healthy individuals (202-285 μmol/L ) [379]. In 

contrast, HbA1c median levels were within range (median=35 mmol/mol, expected 

value=31-42 mmol/mol) [380]. Correlation between fructosamine and HbA1c was  lower 

than expected (r=0.11 (this study) vs r=0.61[360], Fig 4.4). 

 

Figure 4.4: Correlation between fructosamine and HbA1c levels. r=correlation between fructosamine and HbA1c. 
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Next, I performed linear regression to determine which biometric and technical variables 

were significantly associated with fructosamine and HbA1c measurements. I  determined 

sex, donation centre, use of glucose medication, height, weight, processing date and 

number of donations were significantly associated with both; while age, number of low 

haemoglobin deferrals, use of lipid lowering medication and use of blood pressure 

medication were associated with HbA1c exclusively and attendance date with fructosamine 

(Table 4.2).  Individuals that reported use of glucose medication were subsequently 

removed. 

 

 

Variable Fructosamine HbA1c 
Age  X 
Sex X X 
Height X X 
Weight X X 
Attendance date X  
Processing date X X 
Donation centre X X 
Number of donations X X 
Number of low haemoglobin 
deferrals 

 X 

Use of glucose medication X X 
Use of lipid medication  X 
Use of blood pressure 
medication 

 X 

Table 4.2: Variables significantly associated with fructosamine and HbA1c. An X marks variables significantly associated 
(p<0.05 in linear regression).    

 

After adjusting for relevant biometric and technical variables, residuals were extracted and 

inverse rank normalised. Correlation between fructosamine and HbA1c remained 

unchanged after adjusting for covariates (Fig 4.5).  
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Figure 4.5: Correlation between normalised fructosamine and HbA1c levels after adjusting for biometric and technical 
variables. r=correlation between fructosamine and HbA1c. 

 

 

4.4.2 Heritability of fructosamine and genetic correlation results 

 
After inverse rank normalisation, 24,586 individuals with fructosamine measurements and 

5,153 with HbA1c measurements were mapped to the genetic data. I used this data to run 

genetic association analyses with BOLT-LMM. LD score regression was used on association 

results to estimate common SNP (MAF>5%) heritability for both traits. The heritability 

estimate for fructosamine was very low (2% (95% CI -2%-5%)) which is in contrast to that for 

HbA1c (17% (95% CI 0%-35%)). No evidence of genetic correlation was observed between 

the two traits (Genetic correlation (RG)=0.40, SE=0.63, p=0.52).  Using LD Hub, I estimated 

genetic correlation with other glycaemic traits. Fructosamine was not significantly 
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correlated with any other glycaemic trait (p>0.05, Table 4.3). HbA1c was significantly 

correlated with T2D (RG=0.47, p=0.01) and FG (RG=0.45, p=3.6x10-3, Table 4.3). There was 

also significant and almost complete genetic correlation between HbA1c in this study and 

HbA1c results from previous MAGIC efforts [121] (RG=0.88, SE=0.20, p=1.34x10-5) 

supporting the reliability of HbA1c measurements in this study. I also calculated genetic 

correlation between fructosamine and serum albumin and found no evidence of genetic 

correlation. Finally, given the established role of HbA1c-associated variants with some blood 

cell traits [121],  I also calculated  genetic correlation with twelve blood cell traits (Table 

4.3). I found a positive genetic correlation of HbA1c with mean corpuscular haemoglobin 

concentration (MCHC, RG=0.37, SE=0.14, p=6.1x10-3), mean corpuscular volume (MCV, 

RG=0.21, SE=0.11,p=0.04) and mean corpuscular haemoglobin (MCH,RG=0.28, SE=0.11, 

p=0.01) and a negative  genetic correlation with red cell distribution width (RDW, RG=-0.24, 

SE=0.11, p=0.04). 

Trait Fructosamine  HbA1c  
RG SE P RG SE p 

T2D -0.04 0.19 0.88 0.47 0.18 0.01 
FG_adjBMI 0.60 0.35 0.09 0.45 0.15 3.6x10-3 
FI_adjBMI -0.43 0.32 0.17 -0.15 0.17 0.36 
Fasting proinsulin -0.10 0.37 0.78 -0.01 0.30 0.98 
2hG_adjBMI -0.76 0.49 0.12 0.05 0.28 0.87 
Albumin 0.49 0.49 0.32 0.18 0.30 0.55 
HCT 0.52 0.29 0.07 0.13 0.11 0.25 
HGP 0.45 0.26 0.08 0.22 0.12 0.07 
HLR 0.30 0.22 0.18 0.15 0.11 0.18 
HLR% 0.23 0.20 0.24 0.17 0.11 0.14 
IRF 0.30 0.24 0.21 0.01 0.12 0.90 
MCHC -0.18 0.21 0.41 0.37 0.14 6.1x10-3 
MCH -0.03 0.14 0.83 0.28 0.11 0.01 
MCV 0.04 0.14 0.75 0.21 0.11 0.04 
RBC 0.35 0.21 0.09 -0.07 0.11 0.54 
RDW -0.18 0.16 0.27 -0.24 0.11 0.04 
RET 0.25 0.19 0.20 0.19 0.12 0.10 
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Trait Fructosamine  HbA1c  
RG SE P RG SE p 

RET% 0.18 0.17 0.30 0.21 0.12 0.07 
Table 4.3: Genetic correlation results for fructosamine and HbA1c.RG=genetic correlation. SE=standard error. P=p-value 
FG_adjBMI=Fasting glucose adjusted by BMI, FI_adjBMI=Fasting insulin adjusted by BMI, 2hG_adjBMI=2hr glucose adjusted 
by BMI. HCT=Haematocrit. HGB=Haemoglobin concentration. HLR=High light scatter reticulocyte count. HLR%=High light 
scatter percentage of red cells. IRF=Immature fraction of reticulocytes. MCHC=Mean corpuscular haemoglobin 
concentration. MCH=Mean corpuscular haemoglobin. MCV=Mean corpuscular volume. RBC=Red blood cell count. 
RDW=Red cell distribution width. RET=Reticulocyte count. RET%=Reticulocyte fraction of red cells. Highlighted in yellow, 
significant genetic correlation estimates. Genetic correlation analyses with glycaemic traits and albumin was performed 
using LD Hub [231]. Blood cell traits summary statistics for genetic correlation obtained from Astle et al 2017 [291]. 

 

4.4.3 Discovery of novel loci associated with fructosamine 
 

Fructosamine association analysis yielded two associated loci at genome-wide significance 

(p<5x10-8). The first association signal was rs853777 near G6PC2 (beta=0.06, p=1.7x10-10). 

This locus is also associated with HbA1c and FG [83]. The lead SNP in Dupuis et al 2010 [83] 

is rs560887 (r2 with rs853777=0.63) with an effect size of 0.032 (%) for HbA1c and 0.075 

(mmol/L) for FG. The effect size for rs853777 on the untransformed fructosamine values 

was 2.54 μmol/L. The second association signal was rs111476047 near RCN3 (beta=0.09, 

p=4.8x10-14). This locus was also previously associated with fructosamine in Loomis et al 

2018 [363]. The lead signal in their study, rs34459162, is in moderate LD with my index 

variant (rs111476047 r2= 0.28), and has the same direction of effect. To compare effect 

sizes, I repeated the association analysis for rs34459162 transforming the fructosamine 

measurements using natural log transformation as done in the previous study instead of 

inverse rank normalisation. The effect size was smaller in this study but the difference was 

not significant (betaINTERVAL=0.015, betareported=0.02, pdiff=0.24).  Reciprocal conditional 

analysis suggested that the lead signal found in this study was more tightly linked to the true 

causal variant than the previously reported signal (Table 4.4).  
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rsid p-value beta conditioned p-value conditioned beta conditioned on 
rs111476047*+ 2.19x10-11 0.014 3.42x10-6 0.011 rs34459162** 
rs34459162**+ 2.08x10-7 0.015 5.35x10-2 0.007 rs111476047* 
rs111476047* 5.23x10-14 0.087 8.90x10-9 0.074 rs739347*** 
rs739347*** 7.61x10-8 0.079 2.09x10-2 0.038 rs111476047* 
rs111476047* 5.23x10-14 0.087 1.51x10-12 0.083 rs34010237**** 
rs34010237**** 1.75x10-4 0.047 6.24x10-3 0.034 rs111476047* 
Table 4.4: Reciprocal conditional analysis of lead variant near RCN3. r2=0.28.+Analysis was performed using log 
transformed fructosamine values. *Lead signal in this study. **Lead signal in Loomis et al 2018[363]. ***Lead signal for 
albumin GWAS in Franceschini et al (2012) [381]. ****Lead signal for albumin GWAS in Kanai et al 2018[382]. Numbers 
might differ slightly from main text due to difference in software use for association analysis (Methods 4.3.5). 

Two additional SNPs mapping near the RCN3 locus, rs739347 (r2=0.25  with rs111476047) 

and rs34010237 (r2=0.02 with rs111476047), have been previously associated with serum 

albumin levels in European [381] and Japanese individuals [382], respectively. Both 

rs739347 and rs34010237 variants were significantly associated with fructosamine levels in 

this study (p=6.9x10-8 and p=2.2x10-4, respectively) though reciprocal conditional analyses 

showed the rs739347 signal was heavily attenuated after conditioning on the lead signal in 

this study suggesting this association was mostly driven by the lead signal in this study 

(Table 4.4). Finally, to assess the effect of my index variant (rs111476047) on serum albumin 

levels, I used NMR measurements available from the first visit (Chapter 3 Methods 3.3.1 ), 

and found a significant and directionally consistent association with albumin levels in these 

data (beta=0.02, p=6.2x10-3). 

 

  

4.4.4  Evaluation of the effects of established glycaemic loci on fructosamine levels 
 

 

Finally, I explored the influence of established glycaemic loci on fructosamine levels. For this 

analysis I used a list curated by Eleanor Wheeler and Gaëlle Marenne (Table 4.1). In total, 
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142 unique SNPs associated with at least one glycaemic trait were extracted.  I found 

significant associations (Bonferroni-corrected p < 3.5x10-4, Methods 4.3.6, Table 4.5) in four 

loci: ADCY5, GCK, G6PC2 and MTNR1B.  

rsid Gene Chr Pos EA NEA EAF B SE P 
rs11708067 ADCY5 3 123065778 A G 0.76 0.04 0.01 1.5x10-4 
rs730497 GCK 7 44223721 T C 0.18 0.04 0.01 1.4x10-4 
rs1387153 MTNR1B 11 92673828 T C 0.29 0.04 0.01 1.9x10-4 
rs552976 G6PC2* 2 169791438 G A 0.64 0.06 0.01 8.3x10-9 

Table 4.5: Associations of established glycaemic loci on fructosamine. Chr=chromosome. Pos = position in GRCH37. 
EA=Effect allele. NEA=Non-effect allele. EAF=Effect allele frequency. B=effect size SE=standard error of effect. P=p-value. 
*Nearest gene is ABCB11, but G6PC2 is known to be the effector transcript at the locus [368]. 

I also found an enrichment of nominally significant and directionally consistent glycaemic 

signals in the fructosamine association results suggesting that these loci also have an effect 

on fructosamine (binomial p=5.6x10-3, Table 4.6).  

 

rsid Chr Pos EA-FR EAF B SE P Gene Trait EA-T 

rs10811661 9 22134094 T 0.83 0.04 0.01 1.9x10-3 CDKN2B-AS1 HbA1c T 

rs11603334 11 72432985 G 0.85 0.03 0.01 7.9x10-3 ARAP1 HbA1c G 

rs11708067 3 123065778 A 0.76 0.04 0.01 1.5x10-4 ADCY5 HbA1c A 

rs1387153 11 92673828 T 0.29 0.04 0.01 1.4x10-4 MTNR1B HbA1c T 

rs17265513 20 39832628 C 0.19 0.03 0.01 1.0x10-2 ZHX3 FG C 

rs1799884 7 44229068 T 0.18 0.04 0.01 1.4x10-5 GCK HbA1c T 

rs2232323 2 169764141 A 0.99 0.13 0.06 2.3x10-2 G6PC2 HbA1c A 

rs3829109 9 139256766 G 0.73 0.02 0.01 3.3x10-2 DNLZ HbA1c G 

rs552976 2 169791438 G 0.64 0.06 0.01 8.3x10-9 ABCB11 HbA1c G 

rs7651090 3 185513392 G 0.32 0.03 0.01 1.2x10-3 IGF2BP2 HbA1c G 

rs7708285 5 76425867 G 0.31 0.02 0.01 2.2x10-2 ZBED3-AS1 HbA1c G 

rs9884482 4 106081636 C 0.37 0.02 0.01 2.4x10-2 TET2 FI C 

Table 4.6: Nominally significant and directionally consistent established glycaemic loci. Table legend: Chr=chromosome. 
Pos=position in GRCH37. EA-FR=effect allele in fructosamine. B=effect size in fructosamine. SE=standard error of effect size 
in fructosamine. P=p-value in fructosamine. Gene=nearest gene. Trait=Trait where the association of the SNP was 
previously reported. EA-T=Effect allele of the associated trait. Binomial p=5.6x10-3. 
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4.5 Discussion 
 

In this chapter, as is standard for studies of glycaemic measures, I examined the genetic 

influences on fructosamine levels in a healthy population where one can explore these 

influences in a non-diabetic setting where measures are unaffected by disease and its 

treatment. Specifically, I sought to quantify the heritability of fructosamine, identify loci 

affecting the trait and explore its genetic relationship with other glycaemic traits. Overall, 

my results show that, in contrast with HbA1c, the heritability for fructosamine is low, 

despite some evidence for shared genetic aetiology. Results also highlight a variant 

potentially regulating fructosamine levels through pathways that also regulate circulating 

albumin.  

Firstly I established that, in agreement with previous twin studies [362], fructosamine 

appears to be a lowly heritable trait (2% (95% CI -2%-5%)) suggesting most of the variation 

of the trait in this population is due to environmental factors which is not surprising given 

the fact that this is a trait normally used to measure short term changes in glycaemia after 

treatment . Fructosamine also does not show evidence of significant genetic correlation 

with other glycaemic traits including HbA1c (p>0.05) which is somewhat surprising given the 

fact that both traits normally have a high phenotypic correlation (~0.61[360]) and reflect 

similar biological processes, namely, the glycation of serum proteins.  This lack of genetic 

correlation was also observed in Loomis et al 2018 [363]. The HbA1c heritability estimate in 

this study (17% (95% CI 0%-35%) was higher than those reported in LD Hub (7% (95% CI 4%-

9%))[231] and the one obtained using summary statistics from the latest published MAGIC 

effort [121] (6% (95% CI 5%-8%)) but this difference was not statistically significant due to 

the wide confidence intervals in this study. It is likely though, that the estimate from this 
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study is inflated and the actual heritability estimate is closer to the one obtained from the 

MAGIC HbA1c data as this dataset has a much larger sample size (>20 times as large) and 

therefore is better powered to obtain a more accurate estimate. HbA1c was genetically 

correlated with both glycaemic traits (FG and T2D) and erythrocytic traits (MCHC, MCH, 

MCV and RDW), which is consistent with what is known about the biology of HbA1c [121]. 

Despite the low heritability, I was able to detect two loci associated with fructosamine levels 

at genome-wide significance (p<5x10-8).  The first locus was rs853777, near G6PC2. G6PC2 

codes for Glucose-6-Phosphatase Catalytic Subunit 2 and it is a well-established locus in 

HbA1c and fasting glucose metabolism [83]. This protein is produced specifically in islet beta 

cells and is involved in regulation of insulin secretion [383].  A mouse  knockout of this gene  

exhibits mild metabolic phenotypes (reduction of blood glucose with no impact on 

cholesterol, glycerol, insulin and glucagon concentrations or body weight)  and enhanced 

islet responsiveness to blood glucose levels[384, 385], making it a feasible therapeutic 

target given that no deleterious consequences were observed after the knockout. 

Interestingly, this locus was only nominally associated with fructosamine levels in Loomis et 

al 2018 [363] (rs1402837, p=0.016, r2 with rs853777=0.17). This therefore represents a 

novel association of this locus with fructosamine levels.  

The other associated SNP was rs111476047 located downstream of RCN3. RCN3 codes for 

Reticulocalbin 3, which is an EF-hand calcium-binding protein of poorly understood function 

[386]. This locus was previously associated with fructosamine levels and conditional analysis 

shows that the locus found in this study is possible more tightly linked to the true causal 

variant (Table 4.4).  There was no expression information for the lead signal in GTEx but 

rs113886122, the second strongest SNP in this locus  (p=7.3x10-14 , r2 with 
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rs111476047=0.62) is an eQTL for FCGRT in tibial nerve, subcutaneous adipose, transverse 

colon, skin and transformed fibroblasts tissues [387]. FCGRT codes for Fc Fragment of IgG 

Receptor and Transporter which plays a role in maintenance of albumin levels protecting it 

from degradation [388]. In addition to this, mouse studies have shown that hepatic levels of 

this protein regulate albumin homeostasis and susceptibility to liver injury [389].  These 

results combined with the suggestive evidence of association with albumin levels  

(p=6.2x10-3) suggest that the locus found in this study could influence fructosamine levels 

through pathways that also regulate albumin. 

Finally, lookups of previously established glycaemic loci suggest that factors affecting other 

glycaemic traits such as HbA1c, fasting glucose and fasting insulin also influence 

fructosamine levels reflecting a shared genetic aetiology for these traits. As sample sizes 

increase, it is likely some of these signals will reach genome-wide significance.  

The results in this chapter need further exploration given a few limitations. Firstly, 

fructosamine levels were unusually high (median=294 μmol/L) compared to established 

reference ranges (202-285 μmol/L). Secondly, the correlation of fructosamine levels and 

HbA1c was unexpectedly low (r=0.1) and this discrepancy appears to not be driven by 

unreliability of HbA1c measurements as these fell within expected ranges and were 

supported by genetic correlation results. Phenotype quality control did not address either of 

these issues which suggests that there might be other factors influencing these observations 

such as machine calibration issues. Nevertheless, fructosamine measurements seem reliable 

enough to produce biologically plausible association results. 

Future studies on the genetic architecture of fructosamine will shed more light into the 

different glycaemic and non-glycaemic mechanisms that can affect fructosamine levels, and 
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potentially identify mechanisms that affect risk of comorbidities independently of  other 

glycaemic traits such as fasting glucose and HbA1c. Furthermore, increasing the number of 

individuals with both HbA1c and fructosamine measured could help identify variants 

associated with protein glycation by examining the genetic influences of the glycation gap. 

Screening for these variants could be potentially useful in the clinic when testing for T2D 

using HbA1c as a diagnostic tool.  

4.6 Future directions 
 

While working on this analysis, the first GWAS on fructosamine levels was published [363]. 

This presents an opportunity to use summary statistics from that study for meta-analysis 

with my data. To my knowledge, ARIC and CARDIA, the cohorts used in this previous study, 

are the only cohorts with available fructosamine and genetic data therefore the only other 

dataset that can be combined with mine.  

To further explore the influence of established glycaemic loci on fructosamine levels, I will 

build a GRS score for T2D, FG, albumin and HbA1c and test them on the fructosamine 

dataset for association. In addition to this, I can also explore whether there is an enrichment 

of rare variant associations in known glycaemic loci using the WES and WGS data in the 

INTERVAL cohort (NWES+WGS=5,874). 

Another possible avenue to explore is to perform multi-trait analysis with fructosamine and 

HbA1c, or T2D, to identify pleiotropic effects or to boost power in identification of loci 

affecting fructosamine levels exclusively. This can be achieved using a method that uses 

summary statistics as input such as MTAG [390] so I can combine summary statistics from 

this study with data from the MAGIC and DIAGRAM consortia.  
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5 Conclusions and future directions 
 

Genetic studies of complex traits have advanced our understanding of complex disease by 

revealing the polygenic architecture of most of these traits, uncovering biological 

mechanisms contributing to phenotypic variance, and in some cases highlighting novel 

potential therapeutic targets.  Most of these advances have been through the exploration of 

common variation in the population through array-based genotyping. As the field has 

moved forward, there has been an increasing interest in understanding the contribution of 

rare variation to common genetic traits and diseases, facilitated by improved imputation 

reference panels [127, 152, 392], and decreasing costs of sequencing. Parallel to this, the 

range of studied phenotypes has continued to expand by including higher resolution 

measurements (high dimensional molecular phenotypes), focusing on extremes of the 

phenotype distribution, and measuring various correlated traits in the same individuals to 

gain novel insights into the pathophysiology of disease.  

In this thesis, I have provided further knowledge on the genetic architecture of a distinct 

number of cardiometabolic traits (Chapters 2, 3 and 4) by combining a variety of approaches 

with diverse genotypic and phenotypic resolution. These ranged from analysis of rare coding 

variation (Chapter 3) to common variants (Chapters 2 and 4), as well as, different degrees of 

phenotypic resolution, including biomarkers of cardiovascular disease obtained from NMR 

measurements (Chapter 3), extremes of continuous phenotypes (BMI) clinically ascertained 

(Chapter 2), and exploration of a glycaemic biomarker hitherto little explored (Chapter 4). 

 I and others first explored the genetic architecture of persistently thin and healthy 

individuals using a clinically ascertained cohort: STILTS (Chapter 2). This allowed me to 
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establish the heritability of healthy thinness for the first time and show that this estimate is 

similar to that of early onset severe obesity.  I and others also performed a GWAS of 

persistent healthy thinness vs. severe obesity with a total sample size of 2,927. We were 

able to find evidence of association in loci that had only just been discovered at the time of 

this work, using large cohorts with >40,000 individuals highlighting the added value of a 

clinical extreme approach. Finally, results from this study also showed that thinness falls on 

the lower end of the polygenic BMI spectrum, although incomplete genetic correlation with 

BMI suggests it is plausible additional loci influencing thinness might be found by focusing 

on clinically ascertained persistent and healthy thinness, and further investigating  the rarer 

allele frequency spectrum. The work from this chapter provides a valuable resource for 

future studies into body mass index, where further studies on similarly ascertained clinical 

extremes can be combined with these datasets to increase power to detect novel loci 

and/or investigate non-additive effects of established loci at the extremes of the 

distribution. Loci exerting their effect mostly through the lower tail of the BMI distribution 

might highlight protective variation aiding the search for anti-obesity therapeutic targets.  

In the next two chapters I studied the genetics of circulating biomarkers in a population of 

healthy blood donors (INTERVAL). In Chapter 3, I studied the influence of rare variation on 

226 serum lipoproteins, lipids and amino acids measured on a subset of this population with 

WES and/or WGS data (Ntotal=7,142). Gene-based analyses recapitulated established 

associations in lipoprotein metabolism genes (APOB, APOC3, PCSK9, SCARB1 and LIPC) and 

amino acid metabolism genes (HAL, PAH, ALDH1L1) and highlighted four genes (ACSL1, 

MYCN, FBXO36 and B4GALNT3) potentially involved in lipoprotein metabolism that merit 

further replication in additional studies using similar high resolution measurements. 
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Expanding the analysis to gene sets, I found a novel association of rare loss-of-function 

variants in the regulation of pyruvate dehydrogenase (PDH) complex pathway with 

intermediate and low density lipoprotein metabolism. Finally, focusing on genes near GWAS 

signals for traditionally measured lipid traits, after removing loci where the effector 

transcript is known, I found an enrichment of rare variant associations in genes near HDL-C 

GWAS signals in esterified and total cholesterol in extra-large HDL suggesting this gene set is 

enriched for effector transcripts. Exploring the tails of the distribution of these 

measurements, I also found an enrichment of predicted deleterious variants in lipoprotein 

disorder and metabolism gene sets at the lower tails of four lipoprotein measurements. This 

finding demonstrates that rare “protective” variation with strong effects is a significant 

contributor to lipoprotein levels in a healthy population. Overall, I showed that the 

increased genotypic resolution gained by using sequencing data allowed us to unveil the 

contribution of rare variation to the extremes of the distribution of circulating biomarkers, 

the identification of a novel pathway influencing  these measurements, and to highlight the 

enrichment of effector transcripts near HDL GWAS signals, all findings which had not been 

addressed in previous work using array-based genotyping platforms on larger sample sizes 

on the same NMR platform (e.g Kettunen et al. (2016) [173] N=24,925). 

In my last project, I performed the largest GWAS to date on fructosamine levels on 24,586 

individuals from the INTERVAL cohort (Chapter 4). Here I characterised the heritability of 

the trait and found it to be very low (~2%), which is consistent with what would be expected 

from a trait measuring short term changes in glycaemia. In addition to this, I discovered one 

novel locus (G6PC2) associated with fructosamine that has been previously linked to other 

glycaemic traits [367], and another locus (RCN3) that had been previously linked to 
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fructosamine through non-glycaemic pathways [363]. I also found some shared genetic 

aetiology between fructosamine and other glycaemic traits such as glycated haemoglobin, 

fasting glucose and fasting insulin (binomial p=5.6x10-3 for enrichment of nominally 

significant signals with consistent direction of effect) but no evidence of genome-wide 

genetic correlation (p>0.05 for all estimates).  Fructosamine, as a glycaemic trait, has been 

understudied and only very recently the first genetic study was published [363]. Future work 

on this dataset will aim to provide more clarity into the genetic relationship of this trait with 

T2D, its comorbidities and other glycaemic traits. 

Altogether, the different approaches used in this thesis shed light on specific components of 

the genetic architecture of the studied cardiometabolic traits. Varying levels of genotypic 

resolution allowed me to explore the impact of variation across the allele frequency 

spectrum to the genetic architecture of these traits. Contribution of common variation was 

assessed via genome-wide imputed data (Chapters 2 and 4) whereas contribution of rare 

variation was assessed via sequencing data (Chapter 3). I also tested various levels of 

phenotypic detail to capture different aspects of cardiometabolic trait biology (more on this 

on Section 5.1). The diverse study designs employed in this thesis showcase the utility of 

combining datasets with different degrees of genotypic and phenotypic resolution to gain 

novel biological insights.  

 

5.1 Expanding the range of phenotypic measurements 
 

Cardiovascular disease can be impacted by a wide diversity of risk factors. Understanding 

the genetic bases of each can help us better recognise the causality networks leading to 
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disease and the heterogeneity in presentation of symptoms, comorbidities and outcomes.   

The choice of phenotype to focus on will lead to a different snapshot of these complex 

networks of interactions. In this thesis I have explored different resolutions of phenotypes 

from anthropometric measurements (extremes of BMI distribution), to measurement of a 

relatively unexplored glycaemic trait (fructosamine), to high resolution circulating biomarker 

measurements (NMR data). Each of these projects allowed me to understand different 

biological aspects of these traits tightly linked to cardiovascular disease.  

As demonstrated in previous efforts [38, 173, 288] and this thesis, higher resolution 

measurements of many circulating lipid, lipoprotein and amino acids can provide novel 

metabolic insights as many of these measurements are better at capturing underlying 

biology. Having a single large cohort with these measurements provides a huge advantage in 

avoiding between-study heterogeneity not due to biological variables.  In future, coupling 

high resolution measurements with sequence data and electronic health records (EHR) has 

the potential benefit of assessing in-silico effects of protein inactivation on circulating 

biomarker metabolism and unexpected (positive or negative) medical side-effects. This can 

be achieved by testing the effect of loss-of-function variants (mimicking drug targeting) on 

different circulating biomarkers and medical conditions through mediation analysis.   

Population cohorts such as the UK Biobank (and other large cohorts that may accrue 

relevant data) will provide a unique opportunity to explore these types of questions as they 

accrue sequencing data and high resolution NMR measurements [393, 394]. 

In parallel with the development of large national biobanks, studies of carefully selected 

clinical cases can add a powerful dimension to the study of the genetic architecture of 

common traits.  In particular carefully ascertained individuals on the extremes of the 
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phenotype distribution, especially as sample sizes increase and the genetic resolution 

increases to sequence based studies, may reveal additional rare variants of larger effect 

exerting effects on these traits and highlight possible new therapeutics. Studies in height 

and lipid traits have shown a higher polygenic component in the upper tail of the 

distribution and have suggested a role for rare variation in the lower tail [245, 327]. It is 

possible then, that WES data on the STILTS cohort might generate further insights into the 

genetic causes of persistent and healthy thinness.  

 

     

5.2 Assessing pleiotropy in complex disease  
 

Deep phenotyping (i.e, the simultaneous measurement of multiple detailed phenotypes) 

also allows exploration of biological questions involving multiple correlated traits. The 

correlation structure of phenotypes can aid genetic studies in two ways: increase power to 

detect associations by capturing noise due to environmental variation and identification of 

shared genetic effects between traits (pleiotropy). The former was discussed in Chapter 3 

and the latter is a feature of complex traits whose better understanding is key for the future 

of precision medicine.  

Pleiotropy occurs when a single gene affects more than one trait simultaneously. One way 

to assess pleiotropy is by testing a single variant against a wide number of phenotypes 

simultaneously in a phenome-wide association study (PheWAS) [144]. Another way to test 

for pleiotropy that does not pinpoint the associated loci but gives an overall sense of genetic 

relationship between two traits is through genome-wide genetic correlation analyses [228, 
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395]. Through these approaches, it has been shown that pleiotropic effects in the human 

phenome are pervasive.  

Studies of pleiotropy can reveal unknown molecular links between seemingly unrelated 

phenotypes such as multiple sclerosis and schizophrenia [396] or childhood obesity and 

ulcerative colitis [228]. Given that in complex disease, a risk factor can be regulated by 

several different genetic variants representing different pathways, understanding how these 

variants impact disease risk could potentially add a new dimension to patient risk 

stratification beyond the sole measurement of the risk factor. For lipid and glycaemic traits 

in particular, there has been an increasing amount of evidence showing how cardiovascular 

disease and T2D risk changes depending on the pathway through which risk factors are 

increased or decreased, for example, only some HDL-C raising genetic mechanisms have an 

effect  on CVD risk [110](see Chapter 1 Section 1.2.2).  My findings in Chapter 3 were 

consistent with what has been previously reported in literature [38, 311] of pleiotropic 

effects of genes such as APOB, APOC3 and PCSK9 that have been previously associated with 

traditionally measured lipid traits on multiple detailed measurements of lipoprotein 

metabolism. In Chapter 4, I show that similarly to what has been previously shown for 

HbA1c [121, 350], fructosamine levels can be increased via glycaemic or non-glycaemic 

pathways.  

Further pleiotropic studies on CVD risk factors are warranted to get a clearer picture on the 

influence of these traits on cardiovascular disease and T2D risk and potentially identify 

optimal drug targets (e.g targets without a detrimental impact on another trait).  
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5.3 Exploring the contribution of rare variation to cardiometabolic traits  
 

Rare variant analyses are currently underpowered to detect associations at gene-wide 

significance (2.5x10-6) with sample sizes similar to the ones in many current studies (~10,000 

samples), especially in case-control studies [397]. It is therefore not surprising that gene-

based tests in Chapter 3 did not yield novel associations that remained significant after 

correcting for multiple traits. As mentioned in the discussion of the aforementioned chapter 

(see Chapter 3 Discussion 3.5), pathogenicity scores are an important tool to help prioritise 

variants but still, these are not perfect. Integration of information from human interactome 

networks and techniques such as deep mutational scanning in the future, will potentially 

lead to improvement in prediction of deleteriousness of protein coding variants [398, 399]. 

In the end, the balance between stringency of filters used in variant selection for the 

analysis and the number of variants included in it determines the outcome of the test. Since 

this information is usually not known a priori, it is not uncommon to use various sets of 

filters in gene-based tests to maximise power [91, 288, 400]. Since high confidence loss-of-

function variants are rare, an approach that has been used before with success is testing 

gene sets instead of individual genes [401]. This approach was also successful in my own 

data. The downside to this approach is that it is harder to pinpoint causal genes.  

As whole-genome sequencing becomes more prevalent, it will become an even bigger 

challenge to develop scores to prioritise variants to be included in rare variant aggregation 

tests as consequences of non-coding variation are less well understood than those in coding 

variation where one can more easily interpret the impact on the affected protein sequence. 

Attempts at scoring non-coding variants have been shown to fail to differentiate neutral 

variation from highly deleterious variation [402]. Generation of epigenomic maps for 
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distinct cell types such as the ENCODE [403], ROADMAP EPIGENOME [404] and BLUEPRINT 

projects [405] will provide additional data to functionally categorise non-coding variation 

and refine these functional scoring algorithms that mostly rely on machine-learning 

approaches. Previous efforts to improve annotation of non-coding variants also include 

usage of expression data from the GTEx consortium to generate an algorithm that predicts 

regulatory effects of rare variants [406].  Another technique that should allow for 

improvements in identification of regulatory elements is massively parallel reporter assays 

[407]. These assays allow testing for activity of thousands of regulatory elements in a single 

experiment making it ideal for this endeavour.   

On-going improvement of pathogenicity scores for coding and non-coding variation will not 

only aid in the discovery of novel gene-trait associations but will also be crucial when 

incorporating sequencing data from patients in the clinic by differentiating likely causal 

mutations for a given phenotype from neutral variation, therefore influencing provision of 

diagnosis and in time influencing  treatment choice.  

5.4 Concluding remarks 
 

The field of complex disease genetics has been undergoing a major transformation with 

increasing sample sizes, establishment of large deeply phenotyped cohorts and decreasing 

costs of sequencing. GWAS studies have helped us get a better understanding of complex 

disease but there are still many gaps in the knowledge of the biological underpinnings of a 

wide number of traits. During my PhD I have addressed some of these gaps by focusing on 

understudied phenotypes, in particular, risk factors for T2D and cardiovascular disease and 

using a combination of imputed and sequencing data to study them. I provided the first 

evaluation of the genetic architecture of persistent and healthy thinness, insights into the 
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contribution of rare variants to circulating biomarkers levels and novel findings regarding 

the genetic architecture of fructosamine regulation. Nevertheless, many questions still 

remain that can only be addressed by increasing sample sizes (preferably with sequencing 

data), expanding studies to include more samples of non-European origin, exploring other 

forms of genetic variation that are currently understudied (e.g. structural variation), 

expanding the number of phenotypes tested and functional follow-up of associated loci. 

Some of the outstanding questions in the field include but are not limited to:  

 How many independent loci influence these risk factors? 

 What are the causal variants in associated loci? 

 What is the contribution of structural variation to trait heritability?  

 What proportion of these loci are shared between risk factors? 

 Can we identify protective rare variation in genes not highlighted in association 

studies that only occurs in the tails of the phenotype distribution?  

 Which genes represent ideal drug targets? 

 What is the biological consequence of associated non-coding loci? 

 How do genetic variants associated with disease or trait mechanistically impact 

pathophysiology/ physiology? 

Answering these questions is necessary if one aims to be able to use genetic data in 

standard clinical practice. Precision medicine will rely on these on-going advancements in 

the field to improve quality of patient care.  
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Abstract  19 

The variation in weight within a shared environment is largely attributable to genetic factors. Whilst 20 

many genes/loci confer susceptibility to obesity, little is known about the genetic architecture of 21 

healthy thinness. Here, we characterise the heritability of thinness which we found was comparable 22 

to that of severe obesity (h2=28.07 vs 32.33% respectively), although with incomplete genetic 23 

overlap (r=-0.49, 95% CI [-0.17, -0.82], p=0.003). In a genome-wide association analysis of thinness 24 

(n=1,471) vs severe obesity (n=1,456), we identified 10 loci previously associated with obesity, and 25 

demonstrate enrichment for established BMI-associated loci (pbinomial=3.05x10-5). Simulation 26 

analyses showed that different association results between the extremes were likely in agreement 27 

with additive effects across the BMI distribution, suggesting different effects on thinness and 28 

obesity could be due to their different degrees of extremeness. In further analyses, we detected a 29 

novel obesity and BMI-associated locus at PKHD1 (rs2784243, obese vs. thin p=5.99x10-6, obese vs. 30 

controls p=2.13x10-6 pBMI=2.3x10-13), associations at loci recently discovered with much larger 31 

sample sizes (e.g. FAM150B and PRDM6-CEP120), and novel variants driving associations at 32 

previously established signals (e.g. rs205262 at the SNRPC/C6orf106 locus and rs112446794 at the 33 

PRDM6-CEP120 locus). Our ability to  replicate loci found with much larger sample sizes 34 

demonstrates the value of clinical extremes and suggest that characterisation of the genetics of 35 

thinness may provide a more nuanced understanding of the genetic architecture of body weight 36 

regulation and may inform the identification of potential anti-obesity targets.  37 
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Author Summary 38 

Obesity-associated disorders are amongst the leading causes of morbidity and mortality 39 

worldwide. Most genome-wide association studies (GWAS) have focused on body mass index (BMI= 40 

weight in Kg divided by height squared (m2)) and obesity, but to date no genetic association study 41 

testing thin and healthy individuals has been performed. In this study, we recruited a first of its kind 42 

cohort of 1,471 clinically ascertained thin and healthy individuals and contrasted the genetic 43 

architecture of the trait with that of severe early onset obesity. We show that thinness, like obesity, 44 

is a heritable trait with a polygenic component. In a GWAS of persistent healthy thinness vs. severe 45 

obesity with a total sample size of 2,927, we are able to find evidence of association in loci that 46 

have only been recently discovered using large cohorts with >40,000 individuals. We also find a 47 

novel BMI-associated locus at PKHD1 in UK Biobank highlighted by our association study. This work 48 

illustrates the value and increased power brought upon by using clinically ascertained extremes to 49 

study complex traits and provides a valuable resource on which to study resistance to obesity in an 50 

increasingly obesogenic environment.   51 
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Introduction 52 

The rising prevalence of obesity is driven by changes in the environment including the consumption 53 

of high calorie foods and reduced levels of physical activity [1]. However, within a given 54 

environment, there is considerable variation in body weight; some people are particularly 55 

susceptible to severe obesity, whilst others remain thin [2,3]. Family, twin and adoption studies 56 

have consistently demonstrated that 40-70% of the variation in body weight can be attributed to 57 

heritable factors [4]. As a result, many studies have focused on the genetic basis of body mass index 58 

(BMI) and/or obesity. To date >250 common and low-frequency obesity-susceptibility loci have 59 

been identified [5-10]. Additionally, studies of people at one extreme of the distribution (severe 60 

obesity) have led to the identification of rare, penetrant genetic variants that affect key molecular 61 

and neural pathways involved in human energy homeostasis [11-14]. These findings have provided 62 

a rationale for targeting these pathways for therapeutic benefit. In contrast, little is known about 63 

the specific genetic characteristics of persistently thin individuals (thinness defined using WHO 64 

criteria BMI<18kg/m2). Understanding the mechanisms underlying thinness/resistance to obesity 65 

may highlight novel anti-obesity targets for future drug development. 66 

A small number of previous studies have found that thinness appears to be a trait that is at least as 67 

stable and heritable as obesity [15-18]. A large study of 7,078 UK children and adolescents, found 68 

that the strongest predictor of child/adolescent thinness was parental weight status. The 69 

prevalence of thinness was highest (16.2%) when both parents were thin and progressively lower 70 

when both parents were normal weight, overweight or obese [19].  71 
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One approach to studying thinness is to study individuals from a population-based cohort for a 72 

quantitative or continuous trait. For example, it is possible to generate a “case-control” study by 73 

taking the extremes of the population distribution for a continuous trait such as BMI, an approach 74 

used effectively by Berndt et al. 2013 [20] who analysed the top and bottom 5% in cohorts 75 

participating in the GIANT Consortium.  However, by their very definition, such population-based 76 

cohorts often contain a limited number of people at the “extremes” (i.e. severe obesity and 77 

thinness) [20]. To date, other GWAS approaches that included thin individuals have either used 78 

them exclusively as controls to contrast with extreme obesity [21], or have not ascertained for 79 

healthy thinness [22]. Here, we use a different study design, and one that has been used to 80 

increase power to detect genetic association, in particular for disorders where there is a large 81 

environmental component (e.g. asthma, type 2 diabetes and obesity), enriching our case series with 82 

affected individuals that may be more genetically loaded.  This selection is usually done by selecting 83 

individuals who may have a more extreme form of disease, are younger (less time for environment 84 

to impact their disease) and perhaps have family members also affected with the same condition. 85 

To complement this approach to the selection of cases, controls are also selected to increase the 86 

chances that they do not have the disease or are unlikely to develop the disease later in life [21]. 87 

This is normally done by selecting contrasting controls, or “super-controls”. However, the low 88 

prevalence of thinness in countries such as the UK and the fact that people who are well but 89 

constitutionally thin do not routinely come to medical attention, poses challenges to recruitment of 90 

a cohort of healthy thin individuals. We were able to take advantage of the UK National Health 91 

Service (NHS) research infrastructure to recruit from primary care (Methods) using body mass index 92 
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(BMI: weight in kg/height in metres2) criteria and personal review of individual case files to identify 93 

a cohort of approximately 2000 UK European descent thin adults (STudy Into Lean and Thin 94 

Subjects, STILTS cohort; mean BMI = 17.6 kg/m2) who are well, without medical conditions or eating 95 

disorders (Methods). 74% of the STILTS cohort have a family history of persistent thinness 96 

throughout life, suggesting we have enriched for genetically driven thinness.  97 

Here, we present a new, and the largest-to-date, GWAS focused on persistent healthy thinness and 98 

contrast the genetic architecture of this trait with that of severe early onset obesity ascertained in 99 

the clinic.  We explored whether the genetic loci influencing thinness are the same as those 100 

influencing obesity, i.e., are these two clinically ascertained traits reverse sides of the same “coin”, 101 

or whether there are important genetic differences between them.  We show that persistent 102 

thinness and severe early onset obesity are both heritable traits (h2=28.07% and h2=32.33%, 103 

respectively) that share a number of associated loci, and both are enriched for established BMI 104 

associated loci (binomial p=3.05x10-5 and 9.09x10-13, respectively).  Nonetheless, we also detected 105 

important differences, with some loci more strongly associated at the upper clinical end of the BMI 106 

distribution (e.g. FTO), some at the lower end (e.g. CADM2), whilst other loci are equivalently 107 

associated with both clinical ends of the BMI spectrum (e.g. MC4R). Simulation tests showed that 108 

these results did not significantly deviate from additive effects and most likely reflect the different 109 

degrees of extremeness present in our clinically ascertained cohorts, where severely obese 110 

individuals represent a more significant deviation from the mean than healthy thin individuals do 111 

(the same degree of thinness may not be compatible with healthy human life). These data support 112 

expansion of genetic studies of persistent thinness as an approach to gain further insights into the 113 
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biology underlying human energy homeostasis, and as an alternative approach to uncovering 114 

potential anti-obesity targets for drug development. 115 

 116 

Results 117 

Heritability of persistent thinness and severe early onset obesity 118 

To investigate the heritability of healthy thinness and contrast it with that of severe early onset 119 

childhood obesity we obtained genotype data for 1,622 persistently thin healthy individuals 120 

(STILTS), 1,985 severe childhood onset obesity cases (SCOOP; European ancestry individuals from 121 

the GOOS cohort) and 10,433 population-based individuals (UKHLS) used as a common set of 122 

controls (Methods, S1 Table). All participants were genotyped on the Illumina Core Exome array, 123 

including 551,839 markers. After sample and variant quality control, we retained 1,471 thin 124 

individuals, 1,456 obese individuals, 6,460 control individuals in the BMI range 19-30 kg/m2 (non-125 

extremes). 477,288 directly genotyped variants were included in the analysis (Methods); 54% 126 

common variants (minor allele frequency (MAF) ≥1% amongst controls) and 46% rare variants 127 

(MAF<1% amongst controls), of which most were protein-coding (96.8%). We then imputed 128 

genotypes to a combined UK10K+1000G reference panel and, using LD score regression, we 129 

estimated that a subset of 1,197,969 HapMap3 markers accounted for 32.33% (95% CI 23.75%-130 

40.91%) of the phenotypic variance on the liability scale in severe early onset obesity, and 28.07% 131 

(95% CI 13.80%-42.34%) in persistent thinness, suggesting both traits are similarly heritable 132 

(Methods). The heritability estimates reported here were used mainly to establish the fact that 133 
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thinness is a heritable trait; we expect our liability scale estimates to be mostly unbiased given the 134 

study design   [23]. However, given the low prevalence of the traits presented here, these estimates 135 

may represent upper bounds.   136 

 137 

Contribution of known BMI associated loci to thinness and severe early onset obesity  138 

To investigate the role of established common variant European BMI associated loci, we studied the 139 

97 loci from GIANT [24] in persistent thinness vs severe early onset obesity and performed three-140 

way association analyses: obese vs. thin, obese vs controls, controls vs. thin (Methods, S1 Table). 141 

After quality control, 41,266,535 variants remained for association analyses in the three cohorts: 142 

SCOOP vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS. Of the 97 established BMI associated loci 143 

from GIANT [24], we found that 40 were nominally significant (p<0.05) in SCOOP vs UKHLS and 15 in 144 

UKHLS vs STILTS (S2 Table). Direction of effect was consistent for all of these loci, which was more 145 

than expected by chance (binomial p=9.09x10-13 and binomial p=3.05x10-5, respectively). Overall, 146 

the proportion of phenotypic variance explained by the 97 established BMI associated loci was 147 

10.67% in SCOOP vs UKHLS, and 4.33% in STILTS vs UKHLS (Methods). Evaluation of association 148 

results in thin (STILTS) and obese (SCOOP) individuals, compared to the same controls (UKHLS), 149 

suggested that the results are not a mirror image of each other (Figs 1-2), however we found little 150 

evidence of non-additive effects at the loci explaining this discrepancy (see below).  We observed 151 

a striking difference in association results in the FTO locus where the lead intronic obesity risk 152 

variant, rs1558902, showed a moderate effect size and modest evidence of association in controls 153 
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compared to thin individuals from STILTS (p=0.00027, OR=1.17, 95% CI [1.08,1.28], EAF=0.39), 154 

despite having a large effect and being associated at genome-wide significance levels in SCOOP 155 

(p=1.25x10-17, OR=1.43, 95% CI [1.32,1.55], EAF=0.41), and GNAT2 also showed a larger effect and 156 

significance in the analysis of obese compared to control individuals (p=1.26x10-4, OR=1.57, 95% CI 157 

[1.25, 1.97], EAF=0.03), than in the thin analysis (p=0.52, OR=1.10, 95% CI [0.82, 1.47], EAF=0.02, 158 

Fig 1, S2 Table). This discrepancy in association strength and effect size was also seen at the 159 

opposite end of the BMI spectrum in CADM2 where the lead SNP, rs13078960, showed evidence of 160 

association in STILTS (p= 9.48x10-4, OR=1.2, 95% CI [1.08, 1.33], EAF=0.20) but no association in 161 

SCOOP (p>0.05). In contrast to results at the FTO and CADM2 loci, for MC4R the results are more 162 

comparable, with genome-wide significant association in obese individuals (rs6567160, p=7.91x10-9, 163 

OR=1.31, 95% CI [1.19, 1.43], EAF=0.25) and highly significant association results in thin individuals 164 

(p=1.38x10-5, OR=1.26, 95% CI [1.13, 1.39], EAF=0.23, S2 Table). To formally test if these results 165 

were significantly different from those expected under a model where loci act additively across the 166 

BMI distribution, we simulated 10,000 different populations of 1 million individuals with genotypes 167 

for the 97 established BMI loci using allele frequencies in the European population, and then 168 

simulated a phenotype using the effect sizes in GIANT (Methods). These simulations detected 169 

fourteen loci with nominally significant deviation from an additive model, however none remained 170 

significant after correction for the number of tests (p=0.05/97*2 = ~0.0002, S3 Table), though 171 

CADM2 was nominally significant in both SCOOP and STILTS analyses, with slightly lower OR 172 

detected in SCOOP compared to simulated data, and slightly higher OR detected in STILTS 173 

compared to simulated data (S3 Table). Recent work in mouse knockouts has shown CADM2 plays 174 
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an important role in systemic energy homeostasis [25] and variants near the gene have also been 175 

recently linked to habitual physical activity in humans [26].  Since SCOOP participants are 176 

significantly younger than UKHLS, we used summary statistics from a subset of the ALSPAC cohort 177 

[27] which consists of 4,964 children aged 13-16 to test if the observed OR differences in SCOOP vs 178 

UKHLS, compared to STILTS vs UKHLS, were due to age effects in SCOOP (Methods). For the 97 179 

GIANT loci overall there were no significant differences in the ORs when comparing SCOOP to 180 

UKHLS or SCOOP to ALSPAC (z-test, p>0.05) except for rs2245368 (PMS2L11 locus, z-test 181 

p=3.81x105, S4 Table).  In combination, these results suggest that the observed differences in ORs 182 

and p-values could have arisen because our severe obese cases are much more extreme (i.e. 183 

deviate more from the mean) than the healthy thin individuals, and that our obese and thin sample 184 

sizes gave us limited power to detect significant differences compared to the additive model.   185 

Fig 1. Odds ratio comparison for established BMI associated loci. Odds ratios for SCOOP vs UKHLS 186 

(x-axis) and UKHLS vs STILTS (y-axis) comparisons are shown for the 97 known BMI loci from GIANT 187 

[24].  Colours of data points represent nominal significance in both analyses (red), only SCOOP vs. 188 

UKHLS (green), only STILTS vs UKHLS (blue) or in neither analysis (purple). Error bars represent 95% 189 

confidence intervals for the odds ratios for SCOOP vs UKHLS (x-axis) and for UKHLS vs STILTS (y-190 

axis). A subset of data points with larger separation from the red diagonal line (x=y) are labelled. 191 

 192 

Next we investigated the association of a genetic risk score, generated from the 97 BMI associated 193 

loci from GIANT [24] on BMI category (i.e. thin, normal, obese) using an ordinal logistic regression 194 
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(Methods). As expected, the standardised BMI genetic risk score was strongly associated with BMI 195 

category (weighted score p=8.59x10-133). We found that the effect of a one standard deviation 196 

increase in the standardised BMI genetic risk score was significantly larger for obese vs. (thin & 197 

normal) than for (obese & normal) vs. thin (p=7.48x10-11, S1 Appendix) with odds ratio and 95% 198 

confidence intervals of 1.94 (1.83, 2.07) and 1.50 (1.42, 1.59) respectively.  However, using the 199 

simulations described above (Methods), we confirm that the larger OR for obese vs. (thin & normal) 200 

is not significantly different (p=0.41) than what we would expect given an additive genetic model, 201 

and the different degrees of extremeness in our thin and obese cases. Mean GRS in each BMI 202 

category was also not significantly different from that predicted via simulations (S1 Fig, Methods).  203 

 204 

Genetic Correlation between persistent thinness, severe early onset childhood obesity and BMI 205 

Given the observed differences in association results from thin and obese individuals, compared to 206 

the same set of control individuals, we next explored the genetic correlation of severe early onset 207 

obesity, persistent thinness and BMI using LD score regression (Methods). For this, we used 208 

summary statistics from the SCOOP vs UKHLS, STILTS vs UKHLS and BMI data from participants in 209 

UK Biobank (UKBB, Methods). As expected from the association results, the genetic correlation of 210 

severe early onset obesity and BMI was high (r=0.79, 95% CI [0.69, 0.89], p=1.14x10-52).  We also 211 

observed weaker negative correlation between persistent thinness and BMI (r=-0.69, 95% CI [-0.86, 212 

-0.51], p= 1.17x10-14), and between persistent thinness and severe obesity (r=-0.49, 95% CI [-0.17,     213 

-0.82], p=0.003).  As an inverse genetic correlation between BMI, obesity and anorexia nervosa (a 214 
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disorder that is characterised by thinness and complex behavioural manifestations) has recently 215 

been reported [28], we also tested for genetic correlation with anorexia nervosa, and found that 216 

neither severe early onset obesity, nor persistent thinness, were significantly correlated with 217 

anorexia nervosa (r=-0.05, 95% CI [-0.15,0.05], p=0.33 and r=0.13, 95% CI [-0.02,0.28], p=0.09,  218 

respectively; Methods).   219 

 220 

Association signals for persistent thinness and severe early onset obesity replicate established 221 

BMI associated loci 222 

Given available genome-wide directly genotyped and imputed data we sought evidence for novel 223 

signals associated with either end of the BMI distribution (persistent thinness or severe early onset 224 

obesity; Methods) but found no novel replicating loci (details below). In all three discovery 225 

analyses, in addition to loci mapping to established BMI and obesity loci, we identified PIGZ and 226 

C3orf38, two putative novel loci in the thin vs control analysis, that reached conventional genome-227 

wide significance (GWS) (p≤5x10-8) (Tables S5-S7, Fig 2).  However, an additional 125 SNPs, in 118 228 

distinct loci, reached the arbitrary threshold of p ≤10-5 in at least one analysis, for which we sought 229 

replication (Tables S5-S7).  230 

Fig 2. Miami plot of SCOOP vs. UKHLS and STILTS vs. UKHLS. Miami plot produced in EasyStrata 231 

[29], Red=SCOOP vs. UKHLS; Blue=STILTS vs. UKHLS. Red lines indicate genome-wide significance 232 

threshold at p=5x10-08. Orange lines indicate discovery significance threshold at p=1x10-05.  Black 233 

labels highlight known BMI/obesity loci that were taken forward for replication and yellow peaks 234 
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indicate those that met genome-wide significance after replication. Grey labels highlight novel loci 235 

with p<5x10-08 that did not replicate.  236 

 237 

As our obese and thin cases (SCOOP and STILTS) lie at the very extreme tails of the BMI distribution, 238 

there are few comparable replication datasets. We therefore used the UKBB dataset and selected 239 

individuals at the top (BMI>=40, N= 7,526) and bottom end of the distribution (BMI≤19, N= 3,532) 240 

to more closely match the BMI criteria of our clinically ascertained thin and obese individuals. We 241 

used 20,720 samples from the rest of the UKBB cohort as a control set (Methods, S2 Fig).  In cases 242 

where lead variants or proxies (r2>0.8) were not currently available in the full UKBB genetic release 243 

we used results from the interim release using 2,799 individuals with BMI>=40, 1,212 with BMI<=19 244 

and 8,193 controls (Methods). We noted a significant negative genetic correlation for our obese 245 

replication cohort with anorexia nervosa (r= -0.24, 95% CI [-0.37,-0.11], p=0.01) and a positive 246 

genetic correlation for our thin cohort (r=0.49, 95% CI [0.22-0.76] p=0.0003). We also observed 247 

significant genetic correlation between obesity in the discovery and replication cohorts (r=0.84, 248 

95% CI [0.65-1] p=5.05x10-17) and between thinness in the discovery and replication cohorts (r= 249 

0.62, 95% CI [0.20-1]  p=0.004). 250 

To further increase power, we took advantage of publicly available summary statistics from the 251 

GIANT Extremes obesity meta-analysis [20], the EGG childhood obesity study [30], and our own 252 

previous study on non-overlapping SCOOP participants (SCOOP 2013) [31], as additional replication 253 

datasets. For SCOOP vs. STILTS we used the GIANT BMI tails meta-analysis results [20] (up to 7,962 254 
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cases/8,106 controls from the upper/lower 5th percentiles of the BMI trait distribution). For SCOOP 255 

vs. UKHLS we used the GIANT obesity class III summary statistics [20] (up to 2,896 cases with BMI 256 

≥40kg/m2 vs 47,468 controls with BMI <25 kg/m2), the EGG childhood obesity study [30] (children 257 

with BMI ≥95th percentile of BMI vs 8,318 children with BMI <50th percentile of BMI) and SCOOP 258 

2013 [31]. Fixed effect meta-analyses yielded genome-wide significant signals at well-known BMI 259 

associated loci in both the obese vs. thin, and obese vs. control analyses, and both the PIGZ and 260 

C3orf38 loci identified at the discovery stage failed to replicate when combined with additional data 261 

(Table 1, S7 Table). However, the SNRPC locus described here (rs75398113), though not 262 

independent from the previously described SNRPC/C6orf106 locus (rs205262, r2= 0.29) [24], 263 

appears to be driving the previously reported association at this locus (rs205262 conditioned on 264 

rs75398113, pconditioned=0.7, S8 Table). Both SNPs are eQTLs for C6or106 and UHRF1BP1 in multiple 265 

tissues including brain and colon tissues on GTEx however neither of these are obvious biological 266 

candidates linked to energy homeostasis.  267 

 268 

Table 1 - GWAS results for SNPs meeting p<5x10-8 in all three analyses.  EA= Effect allele (BMI 269 

increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval for the 270 

odds ratio; EAF = effect allele frequency. Positions mapped to hg19, Build 37. ars12995480 used as 271 

proxy in GIANT. brs2384054 used as proxy in GIANT. crs12641981 used as proxy in GIANT. drs663129 272 

used as proxy in GIANT, EGG and SCOOP 2013. ers13007080 used as proxy in GIANT, EGG and 273 

SCOOP 2013. frs7138803 used as proxy in SCOOP 2013. grs6722587 used as proxy in GIANT, EGG 274 

and SCOOP 2013. hrs4132288 used as proxy in GIANT, EGG and SCOOP 2013. irs1460940 used as 275 
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proxy in GIANT, EGG and SCOOP 2013. jrs1366333 used as proxy in GIANT, EGG and SCOOP 2013. 276 

kGIANT BMI tails [20]. lGIANT obesity class III [20]. 277 

 278 

Finally, we used the independent BMI dataset from UKBB (Methods) to investigate whether any of 279 

the loci meeting our arbitrary p ≤10-5 in discovery efforts, were independently associated with BMI 280 

as a continuous trait.  This identified a novel BMI-associated locus near PKHD1 (SCOOP vs. STILTS 281 

p=5.99x10-6, SCOOP vs. UKHLS p=2.13x10-6, BMI p=2.3x10-13, S9 Table).  Furthermore, we note that 282 

when comparing the signals we took for replication (based on case control analyses) with 283 

association results with BMI as a continuous trait derived from an independent set of samples from 284 

UKBB, there are more directionally consistent and nominally significant associations with BMI than 285 

expected by chance suggesting that amongst these loci, there may be additional real associations 286 

(binomial p=4.88x10-4, and binomial p=9.77x10-3, respectively, Methods, S9 Table).” 287 

Despite the smaller sample size, the obese vs thin comparison had increased power to detect some 288 

loci (S3 Fig), including a recently discovered variant near FAM150B [32] (rs62107261, MAF= ~5%), 289 

which did not meet our p<10-5 threshold to be taken forward for replication in obese vs controls 290 

analysis (p=2.36x10-4).   291 

 292 

Discussion 293 

Here we present results from the largest to-date GWAS performed on healthy individuals with 294 

persistent thinness and provide the first insights into the genetic architecture of this trait. To our 295 



Appendix A  
 

184 

 

knowledge, there are only two other studies using thin individuals with comparable mean BMIs 296 

[21,22]. The study by Hinney et al. [21] (N=442), was only able to detect FTO at genome-wide 297 

significance level with rs1121980 having a similar effect to that which we report (OR=1.66 vs OR= 298 

1.69 in our data).  In the Scannell Bryan et al. [22] study, Bangladeshi individuals were reportedly 299 

thin and malnourished, and a single suggestive association was found with an intronic variant in 300 

NRXN3 (rs12882679, p=9.57x10-7) which is not significant in our study (p=0.77). 301 

Using genome-wide genotype data we show that persistent healthy thinness, similar to severe 302 

obesity (h2=32.33%), is a heritable trait (h2=28.07%). Persistent healthy thinness and severe 303 

childhood obesity are negatively correlated (r=-0.49, 95% CI [-0.17, -0.82], p=0.003), and share a 304 

number of genetic risk loci. Nonetheless, the genetic overlap between the two clinically ascertained 305 

traits appears to be incomplete, as highlighted by some loci which were more strongly associated  306 

at one end of the BMI distribution (e.g. CADM2), while others, appeared to exert effects across the 307 

entire BMI spectrum (e.g. MC4R [9,33,34]).  Further exploration by simulation demonstrated that 308 

these differences are likely to be due to the different degrees of extremeness of the two clinical 309 

cohorts (i.e. a similar degree of thinness to that of the obese cohort may not be compatible with 310 

healthy human life) and not due to a deviation from additive effects of the tested loci on BMI, with 311 

the possible exception of CADM2 which deviated from expectation with nominal significance in 312 

both the obese and the thin analysis (S3 Table). This is in contrast with earlier studies which 313 

suggested larger effects at the higher end of the BMI distribution [35,36] but in agreement with 314 

more recent observations contrasting the bottom 5% and top 5% of the BMI tails where associated 315 

loci were also consistent with additive effects [20]. This is also in contrast with a previous study on 316 
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height, where a deviation from additivity was found, but only for short individuals in the bottom 317 

1.5% of the distribution [37], which suggests that analysis focused just on the most extreme 318 

individuals may be warranted.  319 

 320 

Focusing on the 97 previously established BMI associated loci [24], we show that the percentage of 321 

phenotypic variance explained by these loci is lower in persistently thin (4.33%) compared to obese 322 

individuals (10.67%), and that the effect of an increase/decrease in the BMI genetic risk score was 323 

much larger, on average, for obese individuals than for thin individuals (one standard deviation 324 

increase in the standardised BMI genetic risk score of 1.94, 95% CI (1.83, 2.07) and 1.50, 95% CI 325 

(1.42, 1.59), respectively) which is consistent with the difference in BMI units amongst categories.  326 

And, although our analysis using age-matched controls from ALSPAC suggested that the observed 327 

differences in ORs, comparing obese vs control individuals to controls vs thin individuals, was 328 

unlikely to be due to age effects, we cannot completely exclude the possibility that different effects 329 

of age and sex in our discovery cohorts (S1 Table), and gene-by-environment interactions, could be 330 

influencing some of the results we observe.  For example, gene-by-environment interactions and 331 

age effects have been previously reported at the FTO locus [38-41] where a larger effect is detected 332 

in younger adults. It is worth noting though that non-additive effects have also been observed in 333 

the FTO locus [42]. 334 

 335 
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In studying thin individuals there are often concerns regarding the prevalence of eating disorders, 336 

notably anorexia nervosa amongst participants. We sought to carefully exclude eating disorders at 337 

two phases of recruitment (by medical history and by questionnaire). Additionally, we demonstrate 338 

that in our cohort of healthy thin individuals, anorexia nervosa is unlikely to be a confounder as the 339 

two traits are genetically only weakly correlated (r=0.13, 95% CI [-0.02,0.28], p=0.09).  This was not 340 

the case for the UKBB replication cohort where a positive genetic correlation was observed (r= 0.49 341 

95% CI [0.22-0.76] p=0.0003). The positive genetic correlation with anorexia was still observed after 342 

removing individuals with medical conditions that could explain their low BMI (r=0.62, 95% CI 343 

[0.30,0.92], p=0.0001, Methods). These results highlight the importance of the careful phenotyping 344 

performed in the recruitment phase and the utility of the STILTS cohort as a resource to study 345 

healthy and persistent thinness. 346 

In the genome-wide association analyses amongst the signals we took forward for replication, in 347 

addition to detecting established BMI-associated loci, we find a novel BMI-association at PKHD1 in 348 

the UKBB BMI dataset (rs10456655, =0.10, p=2.3x10-13, S9 Table), where a proxy for this variant 349 

(rs2579994, r2=1 in 1000G Phase 3 CEU) has been previously nominally associated with waist and 350 

hip circumference (p=5.60x10-5 and p=4.40x10-4 respectively) [43].  In addition, we found 351 

associations at loci that have only recently been established using very large sample sizes. 352 

FAM150B, was only suggestively associated at discovery stage in Tachmazidou et al. (2017) [32] 353 

(n=47,476, p=2.57×10−5) whereas it reached genome-wide significance when contrasting SCOOP vs 354 

STILTS (n=2,927, p=2.07x10-8, S5 Table). Also, PRDM6-CEP120 [5] was recently discovered in a 355 

Japanese study with a sample size of 173,430 and has not been previously reported in a European 356 
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population. In our study, a signal near the locus (rs112446794, r2=0.36) showed suggestive evidence 357 

of association in SCOOP vs UKHLS (p=2.08x10-6, S6 Table) with a significantly smaller sample size. 358 

Conditional analysis reveals the lead SNP in this study drives the association of the previously 359 

established signal (S8 Table).  CEP120 codes for centrosomal protein 120. Variants near this locus 360 

have been previously associated with height [44] and waist circumference in East Asians [45]. 361 

Missense variants in the gene itself have been associated with rare ciliopathies [46,47].  Lastly, 362 

amongst the signals we took for replication, and after removing known and newly established loci, 363 

we still observe an enrichment of directionally consistent and nominal associations in the analysis 364 

of BMI as a continuous trait, suggesting that some of these results may warrant additional 365 

investigation, in particular in similarly ascertained thin and obese cohorts. One such example is 366 

rs4447506, near PIK3C3, which was not only nominally significant and consistent in the 367 

independent UKBB BMI analysis (p=1.5x10-6, S9 Table), but also in the Locke et al. (2015) [24] BMI 368 

results (p= 0.01), and in the GIANT BMI tails analysis we used as replication (S5 Table).  We also 369 

note, that despite not reaching genome-wide significance in our discovery cohorts, we observe 370 

directionally consistent suggestive associations at a number of loci previously associated with BMI 371 

tails and with different obesity classes [20] (S10 Table). Altogether, these results highlight some 372 

power advantages of using clinically ascertained extremes of the phenotype distribution to detect 373 

associations and suggest that healthy thinness falls at the lower end of the polygenic BMI spectrum. 374 

It is worth noting though that these clinically ascertained extremes display evidence of incomplete 375 

genetic correlation with BMI, in contrast to previously described obesity classes (S4 Fig), so it is 376 

plausible that additional loci might be uncovered by focusing on clinical extremes. 377 
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As our results were based on clinically ascertained participants which met very specific criteria, it is 378 

worth noting these conclusions cannot be straightforwardly extrapolated to the general population. 379 

Experiments in animals have identified loci/genes associated with thinness/decreased body weight 380 

due to reduced food intake/increased energy expenditure/resistance to high fat diet-induced 381 

obesity [48,49], mechanisms that we hypothesise may contribute to human thinness. The STILTS 382 

cohort, being uncorrelated to anorexia nervosa, is an excellent resource in which to conduct such 383 

additional genetic exploration. Further genetic and phenotypic studies focused on persistently thin 384 

individuals may provide new insights into the mechanisms regulating human energy balance and 385 

may uncover potential anti-obesity drug targets.  386 
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Methods 387 

ETHICS STATEMENT 388 

The study was reviewed and approved by the South Cambridgeshire Research Ethics Committee 389 

(12/EE/0172). All participants provided written informed consent prior to inclusion. 390 

COHORTS 391 

SCOOP, STILTS and UKHLS cohorts were used for the heritability, genetic correlation, genetic risk 392 

score and association analyses with established BMI loci, as well as, used as a discovery cohort in 393 

the genome-wide association study (GWAS) and gene-based tests. UK Biobank samples were used 394 

for genetic correlation analysis and in the replication stages of the GWAS and gene-based tests. 395 

ALSPAC was used as an additional control dataset to UKHLS for comparison against SCOOP in the 396 

established BMI loci analysis. 397 

 398 

STILTS  399 

The aim was to recruit a new cohort of UK European people who are thin (defined as a body mass 400 

index < 18kg/m2) and well. After ethical committee approval (12/EE/0172), we worked with the 401 

NIHR Primary Care Research Network (PCRN) to collaborate with 601 GP practices in England. Each 402 

practice searched their electronic health records using our inclusion criteria (age 18-65 years, 403 

BMI<18 kg/m2) and exclusion criteria (medical conditions that could potentially affect weight 404 

(chronic renal, liver, gastrointestinal problems, metabolic and psychiatric disease, known eating 405 

disorders). A small number of individuals (n=43) with a BMI of 19.0 kg/m2 were included as they 406 
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had a strong family history of thinness. The case notes of each potential participant were reviewed 407 

by the GP or a senior nurse with clinical knowledge of the participant to exclude other potential 408 

causes of low body weight in discussion with the study team. Through this approach we identified 409 

25,000 individuals who fitted our criteria for inclusion in the study. These individuals were invited 410 

to participate in the study; approximately 12% (2,900) replied consenting to take part. We obtained 411 

a detailed medical and medication history, screened for eating disorders using a questionnaire 412 

(SCOFF) that has been validated against more formal clinical assessment [50]. We excluded all 413 

participants who stated that they exercised every day/more than 3 times a week/whose reported 414 

activity exceeded 6 metabolic equivalents (METs) for any duration or frequency 415 

(http://www.who.int/dietphysicalactivity/physical_activity_intensity/en/). With these rather strict 416 

criteria for exercise, we sought to limit the contribution of exercise as a contributor to the thinness 417 

of participants in the STILTS cohort. We excluded people who were thin only at a certain point in 418 

their lives (often as young adults) to focus on those who were persistently thin/always thin 419 

throughout life as we hypothesised that this group would be enriched for genetic factors 420 

contributing to their thinness. We asked a specific question to identify these individuals: “have you 421 

always been thin?” Only those who answered positively were included. Questionnaires were 422 

manually checked by senior clinical staff for these parameters and for reported ethnicity (non-423 

European ancestry excluded). DNA was extracted from salivary samples obtained from these 424 

individuals using the Oragene 500 kit according to manufacturer’s instructions (S1 Table).   425 

 426 

SCOOP 427 
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With ethical committee approval (MREC 97/5/21), we have recruited 7,000 individuals with severe 428 

early-onset obesity (BMI standard deviation score (SDS) > 3; onset of obesity before the age of 10 429 

years) to the Genetics of Obesity Study (GOOS) [51]. The Severe Childhood Onset Obesity Project 430 

(SCOOP) cohort [31] is a sub-cohort of GOOS comprised of ~4,800 British individuals of European 431 

ancestry; S1 Table). SCOOP individuals likely to have congenital leptin deficiency, a treatable cause 432 

of severe obesity, were excluded by measurement of serum leptin, and individuals with mutations 433 

in the melanocortin 4 receptor gene (MC4R) (the most common genetic form of penetrant obesity) 434 

were excluded by prior Sanger sequencing.  435 

 436 

UKHLS 437 

Understanding Society (UKHLS) is a longitudinal household study designed to capture economic, 438 

social and health information from UK individuals[52]. A subset of 10,484 individuals was selected 439 

for genome-wide array genotyping. This cohort was used as a control dataset with SCOOP and 440 

STILTS cases (S1 Table). 441 

 442 

UK BIOBANK (UKBB) 443 

This study includes approximately 487,411 participants with genetic data released (including 444 

~50,000 from the UKBiLEVE cohort [53]) of the total 502,648 individuals from UK BioBank (UKBB).  445 

UKBB samples were genotyped on the UK Biobank Axiom array at the Affymetrix Research Services 446 

Laboratory in Santa Clara, California, USA and imputed to the Haplotype Reference Consortium 447 

(HRC) panel [54].  UKBiLEVE samples were genotyped on the UK BiLEVE array which is a previous 448 
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version of the UK Biobank Axiom array sharing over 95% of the markers. To date, 487,411 samples 449 

with directly genotyped and imputed data are available and data was downloaded using tools 450 

provided by UK Biobank. Extensive data from health and lifestyle questionnaires is currently 451 

available as well as linked clinical records. BMI, as well as other physical measurements were taken 452 

on attendance of recruitment centre. Severely obese participants in the available data were defined 453 

as those with BMI ≥ 40 kg/m2 (N=9,706) and thin individuals were defined as those with BMI ≤ 19 454 

kg/m2 (N=4,538).  Given that it has been previously shown that type I error rate for variants with a 455 

low minor allele count (MAC) is inadequately controlled for in very unbalanced case-control 456 

scenarios[55], we randomly subsampled 35,000 individuals from the original 487,411 genotyped 457 

individuals and removed those with BMI≤19 or BMI ≥30, to generate an independent control set. 458 

The 25,856 participants remaining after BMI exclusions from the tails, generated a non-extreme set 459 

of individuals kept as putative controls (S2 Fig). The other 452,411 genotyped samples were kept as 460 

the BMI dataset for downstream analyses (S11 Table, S2 Fig). An interim release consisting of a 461 

subset 152,249 individuals from UKBB was released in May 2015. This interim release was imputed 462 

to a combined UK10K and 1000G Phase 3 reference panel and contains several variants which are 463 

not currently present in the HRC panel, as such it was used in some of the analyses described.  464 

 465 

ALSPAC 466 

The Avon Longitudinal Study of Parents and Children (ALSPAC) [27,56], also known as Children of 467 

the 90s, is a prospective population-based British birth cohort study.  Ethical approval for the study 468 

was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 469 
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Committees. Please note that the study website contains details of all the data that is available 470 

through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-471 

access/data-dictionary/). Further information about this cohort, including details of the genotyping 472 

and imputation procedures, can be found in S2 Appendix.  This analysis was restricted to a subset 473 

of unrelated (identity-by-state < 0.05 [57]) children with genetic data and BMI measured between 474 

the age of 12 and 17 years (n=4,964, 48.5% male).  The mean age of the children was 14 years and 475 

the mean BMI 20.5. 476 

 477 

GENOTYPING AND QUALITY CONTROL 478 

SCOOP, STILTS and UKHLS 479 

For the SCOOP cohort, DNA was extracted from whole blood as previously described [31]. For the 480 

STILTS cohort, DNA was extracted from saliva using the Oragene saliva DNA kits (online protocol) 481 

and quantified using Qubit. All samples from SCOOP, STILTS and UKHLS were typed across 30 SNPs 482 

on the Sequenom platform (Sequenom Inc. California, USA) for sample quality control. Of the 3,607 483 

SCOOP and STILTS samples submitted for Sequenom genotyping, 3,280 passed quality controls 484 

filters (90.9% pass rate).  Of the 10,433 UKHLS samples, 9,965 passed Sequenom sample quality 485 

control (95.5% pass rate). Subsequently, UKHLS controls were genotyped on the Illumina 486 

HumanCoreExome-12v1-0 Beadchip. The 3,280 SCOOP and STILTS samples, and 48 overlapping 487 

UKHLS samples (to test for possible array version effects) were genotyped on the Illumina 488 

HumanCoreExome-12v1-1 Beadchip by the Genotyping Facility at the Wellcome Sanger Institute 489 

(WSI).  Genotype calling was performed centrally for all batches at the WSI using GenCall. Criteria 490 
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for excluding samples were as follows: i) concordance against Sequenom genotypes <90%; ii) for 491 

each pair of sample duplicates, exclude one with highest missingness; iii) sex inferred from genetic 492 

data different from stated sex ; iv) sample call rate <95%; v) sample autosome heterozygosity rate 493 

>3 SDS from mean done separately for low (<1%) and high MAF(>1%) bins; vi) magnitude of 494 

intensity signal in both channels <90%; and vii) for each pair of related individuals (proportion of 495 

IBD (PI_HAT) >0.05), the individual with the lowest call rate was excluded.  We performed SNP QC 496 

using PLINK v1.07[58]. Criteria for excluding SNPs was: i) Hardy-Weinberg equilibrium (HWE) 497 

p<1x10-6; ii) Call rate <95% for MAF≥5%, call rate <97% for 1% ≤MAF<5%, and call rate <99% for 498 

MAF <1%.  SMARTPCA v10210 [59] was used for principal component analysis (PCA). To verify the 499 

absence of array version effects we used PCA on the subset of shared controls genotyped on both 500 

versions of the array. Cut-offs for samples that diverged from the European cluster were chosen 501 

manually after inspecting the PCA plot. SNPs with discordant MAFs in the different versions of the 502 

array were excluded. After removal of non-European samples and 13 samples due to cryptic 503 

relatedness, 1,456 SCOOP and 1,471 STILTS samples remained for analysis. For UKHLS, 82 samples 504 

were removed after applying a strict European filter and 680 related samples were removed after 505 

applying a “3rd degree” kinship filter in KING[60]. A total of 9,203 samples remained, of which 6,460 506 

had a BMI >19 and <30 (“controls”).  507 

 508 

UK BIOBANK  509 

Sample QC was performed using all 487,411 samples. Criteria for excluding samples were as 510 

follows: i) supplied and genetically inferred sex mismatches; ii) heterozygosity and missingness 511 
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outliers according to centrally provided sample QC files; iii) samples not used in kinship estimation 512 

by UKBB; iv) individuals that did not identify as “white british” or did not cluster with other “white 513 

british” in PCA analysis ;  v) samples that withdrew consent and vi) for each pair of related 514 

individuals (KING kinship estimate>0.0442), we randomly selected an individual preferentially 515 

keeping cases if one related individual is a control.  After sample QC, thirteen individuals with 516 

underlying health conditions that could influence their BMI were also removed, twelve had BMI<14, 517 

and one had BMI>74.  In the end, 7,526 obese, 3,532 thin and 20,720 non-extreme controls 518 

remained for case-control analyses. In addition, 387,164 samples remained for analysis of BMI as a 519 

continuous trait. There is an overlap of 10, 282 samples (~2.6% of the BMI dataset) with obese and 520 

thin cases (S2 Fig). The same procedure was performed on the interim release of 152,249 UKBB 521 

samples to produce a set of 2,799 obese, 1,212 thin, 8,193 controls and 127,672 individuals for the 522 

independent BMI dataset. All subsequent analyses on UKBB were also performed on this subset to 523 

query variants that are not currently available in the full UKBB release.  524 

 525 

IMPUTATION AND GENOME-WIDE ASSOCIATION ANALYSES 526 

SCOOP, STILTS and UKHLS single-variant association analysis 527 

Genotypes from SCOOP, STILTS and UKHLS controls were phased together with SHAPEITv2 [61], and 528 

subsequently imputed with IMPUTE2 [62,63] to the merged UK10K and 1000G Phase 3 reference 529 

panel [64], containing ~91.3 million autosomal and chromosome X sites, from 6,285 samples. More 530 

than 98% of variants with MAF ≥0.5% had an imputation quality score of r2≥0.4, however variants 531 

with MAF <0.1% had a poor imputation quality with only 27% variants with r2≥0.4 (S5 Fig). First-532 
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pass single-variant association tests were done for all variants irrespective of MAF, or imputation 533 

quality score (see below).  Analyses of 1,456 SCOOP, 1,471 STILTS and 6,460 controls (BMI range 534 

19-30) of European ancestry were based on the frequentist association test, using the EM 535 

algorithm, as implemented in SNPTEST v2.5 [65], under an additive model and adjusting for six PCs 536 

and sex as covariates.  537 

 538 

UKBB BMI dataset single-variant association analysis 539 

For the BMI dataset, we used BOLT-LMM [66] to perform an association analysis with BMI using 540 

sex, age, 10 PCs and UKBB genotyping array as covariates.  541 

 542 

Heritability estimates and genetic correlation 543 

Summary statistics from the SCOOP vs. UKHLS, STILTS vs. UKHLS, UKBB obese vs controls, UKBB thin 544 

vs controls and UKBB BMI analyses were filtered and a subset of 1,197,969 HapMap3 SNPs was 545 

kept in each dataset. Using LD score regression [67] we first calculated the heritability of severe 546 

childhood obesity (SCOOP vs UKHLS) and persistent thinness (STILTS vs UKHLS). For severe 547 

childhood obesity, we estimated a prevalence of 0.15% using the BMI centile equivalent to 3SDS in 548 

children [68]. In the case of persistent thinness (BMI<=19), we used a GP based cohort for our 549 

prevalence estimates: CALIBER [69].  The CALIBER database consists of 1,173,863 records derived 550 

from GP practices.  For the heritability analysis, we used a prevalence estimate of 2.8% for BMI<=19 551 

(Claudia Langenberg and Harry Hemingway, personal communication). We also used LD score 552 
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regression to calculate the genetic correlation of SCOOP with STILTS, SCOOP with UKBB obese, 553 

SCOOP with BMI, STILTS with UKBB thin and STILTS with BMI. The genetic correlation between 554 

obesity and persistent thinness with anorexia was estimated using the summary statistics from 555 

SCOOP vs UKHLS and STILTS vs. UKHLS, and summary statistics available from the Genetic 556 

Consortium for Anorexia Nervosa (GCAN) in LD Hub [70]. The same analysis was repeated for UKBB 557 

obese vs controls and UKBB thin vs controls. Genetic correlation estimates for BMI vs Overweight, 558 

Obesity Class 1, Obesity Class 2 and Obesity Class 3 were also extracted from LD Hub (S4 Fig).   559 

 560 

Comparison with established GIANT BMI associated loci 561 

We obtained the list of 97 established BMI associated loci from the publicly available data from the 562 

GIANT consortium [24]. We used this list as we wanted to focus on established common variation in 563 

Europeans with accurate effect sizes for simulations. In order to test whether there is evidence of 564 

enrichment of nominally significant signals with consistent direction of effect, we performed a 565 

binomial test using the subset of signals with nominal significance in the SCOOP vs UKHLS, and 566 

STILTS vs UKHLS analyses.  Variance explained was calculated using the rms package [71] v4.5.0 in R 567 

[72] and Nagelkerke’s R2 is reported. Power calculations were performed using  Quanto [73]. To 568 

calculate ORs and SE from the ALSPAC BMI summary statistics we used genotype counts from 569 

SNPTEST output. We then used a z-test to test for significant differences between the OR calculated 570 

using genotype counts of SCOOP and ALSPAC against the SCOOP vs. UKHLS OR.  571 

 572 

Simulations under an additive model 573 
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We created 10,000 simulations of 1 million individuals for the 97 GIANT BMI loci randomly sampling 574 

alleles based on the allele frequency from the sex-combined European dataset reported in Locke et 575 

al. [24] using an R script. For each simulated genotype, we simulated phenotypes with DISSECT [74] 576 

using the effect size in GIANT and then removed all samples from the lower tail where the 577 

phenotype was <3SDs to better reproduce the actual BMI distribution. Afterwards we randomly 578 

sampled 1,471 individuals from the bottom 2.8% and 1,456 from top 0.15% and compared against a 579 

random set of 6,460 controls from the equivalent percentiles to BMI 19-30.  Finally, for each of 580 

these loci, we calculated the absolute difference between our observed OR and the mean OR from 581 

the simulations and counted how many times we saw an equal or larger absolute difference in the 582 

simulated data and assigned a p-value. This was done separately for SCOOP vs UKHLS and STILTS vs 583 

UKHLS.  584 

 585 

Genetic Risk Score 586 

The R package GTX ( https://cran.r-project.org/web/packages/gtx/index.html) was used to 587 

transpose genotype probabilities into dosages, and a combined dosage score, weighted by the 588 

effect size from GIANT, for 97 BMI SNPs [24] was calculated and standardised. We checked whether 589 

there was an ordinal relationship between the genetic risk score and BMI category (i.e. thin, 590 

normal, or obese) using ordinal logistic regression with the clm function in the ordinal R package. 591 

While the assumption of equal variance appears to hold (S6 Fig), the proportional odds assumption 592 

indicating equal odds between thin, normal, and obese groups is violated for the BMI genetic risk 593 

score and some of the principal component covariates (i.e., PC2, PC3, and PC6). As our primary 594 
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model, we ran a partial proportional odds model adjusting for PC1, PC4, and PC5 and allowing the 595 

BMI genetic score, PC2, PC3, and PC6 to vary between BMI category. To check for consistency, we 596 

ran a partial proportional odds model adjusting for the first six PCs and allowing only the BMI 597 

genetic score to vary between BMI group and a full proportional odds model allowing all six PCs and 598 

the BMI genetic score to vary between BMI group (S1 Appendix). Using ANOVA, we formally tested 599 

the proportional odds assumption for the BMI genetic risk score. A genetic risk score was created 600 

and an ordinal logistic regression was run for each of the 10,000 simulations. We compared the 601 

observed test statistic testing whether the odds were the same by BMI category to the 10,000 602 

simulation test statistics. We calculated the p-value as the number of simulations with a test 603 

statistic larger than that observed in the real data. A mean genetic risk score was also calculated for 604 

each BMI category (obese, thin and controls) across the 10,000 simulations. A t-test was used to 605 

test whether the mean observed GRS score in each category was significantly different from the 606 

one estimated using the simulations.  607 

 608 

Discovery stage GWAS 609 

First pass single-variant association analyses results were used as discovery datasets for the GWAS. 610 

After association analysis, we removed variants with MAF<0.5%, an INFO score <0.4, and HWE 611 

p<1x10-6, as these highlighted regions of the genome that were problematic, including CNV regions 612 

with poor imputation quality. Quantile-quantile plots indicated that the genomic inflation was well 613 

controlled for in SCOOP-UKHLS (λ=1.06) and STILTS-UKHLS (λ =1.04), and slightly higher for SCOOP-614 

STILTS (λ =1.08, S7 Fig). We used LD score regression [67] to correct for inflation not due to 615 
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polygenicity. To identify distinct loci, we performed clumping as implemented in PLINK [58] using 616 

summary statistics from the association tests and LD information from the imputed data, clumping 617 

variants 250kb away from an index variant and with an r2>0.1.  In order to further identify a set of 618 

likely independent signals we performed conditional analysis of the lead SNPs in SNPTEST to take 619 

into account long-range LD. A total of 135 autosomal variants with p<1x10-5 in any of the three 620 

case-control analyses were taken forward for replication in UKBB. All case-control results are 621 

reported with the lower BMI group as reference.  622 

 623 

UKBB association analysis 624 

We tested 1,208,692 SNPs for association under an additive model in SNPTEST using sex, age, 10 625 

PCs and UKBB genotyping array as covariates. Three comparisons were done: obese vs thin, obese 626 

vs controls and controls vs thin. Variants with an INFO score <0.4, HWE p<1x10-6 were filtered out 627 

from the results. Inflation factors were calculated using HapMap markers. The LD score regression 628 

intercepts were 1.0074 in obese vs thin, 1.0057 in obese vs controls and 1.009 in thin vs controls.  629 

We used all thin individuals, regardless of health status, as our replication cohort to maximize 630 

power. However, using ICD10 codes and self-reported illness data (Tables S12 and S13) to remove 631 

individuals who had a relevant medical diagnosis before date of attendance at UKBB recruitment 632 

centre, yielded 2,518 thin individuals and materially equivalent results (S8 Fig). 633 

 634 

GIANT, EGG and SCOOP 2013 summary statistics 635 
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We obtained summary statistics for the GIANT Extremes obesity meta-analysis [20] from 636 

http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files. 637 

Summary statistics for EGG [30] were obtained from http://egg-consortium.org/childhood-638 

obesity.html. We used summary statistics from our previous study of 1,509 early-onset obesity 639 

SCOOP cases compared to 5,380 publicly available WTCCC2 controls (SCOOP 2013) [31]. Data for 640 

the SCOOP cases is available to download from the European Genome-Phenome Archive (EGA) 641 

using accession number EGAD00010000594. The control samples are available to download using 642 

accession numbers EGAD00000000021 and EGAD00000000023. These replication studies are 643 

largely non-overlapping with our discovery datasets and each-other. When a lead variant was not 644 

available in a replication cohort, a proxy (r2≥ 0.8) was used in the meta-analysis. 645 

 646 

Replication meta-analysis 647 

We meta-analysed summary statistics for the 135 variants reaching p<1x10-5 in 648 

SCOOP/STILTS/UKHLS with the corresponding results from UKBB and study specific replication 649 

cohorts (Tables S5-S7). For obese vs. thin and obese vs. controls comparisons we used fixed-effects 650 

meta-analysis correcting for unknown sample overlap in replication cohorts using METACARPA [75]. 651 

For thin vs. controls we used a fixed-effects meta-analysis in METAL [76].  Heterogeneity was 652 

assessed using Cochran’s Q-test heterogeneity p-value in METAL. A signal was considered to 653 

replicate if it met all the following criteria: i) consistent direction of effect; ii) p<0.05 in at least one 654 

replication cohort; and iii) the meta-analysis p-value reached standard genome-wide significance 655 

(p<5x10-8). Given that we are querying additional variants on the lower allele frequency spectrum, 656 
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one could also use a more strict genome-wide significance threshold taking into account the 657 

increased number of tests (p≤1.17x10-8) [77]. In practice, this only affected one previously 658 

established signal (SULT1A1, rs3760091) in our obese vs. controls analysis that fell just below this 659 

threshold (S6 Table).  rs4440960 was later removed from final results (SCOOP vs UKHLS and STILTS 660 

vs UKHLS) after close examination revealed it was present in a CNV region with poor imputation 661 

quality. 662 

 663 

Comparison of newly established candidate loci and UKBB independent BMI dataset 664 

We identified eleven signals in SCOOP vs STILTS, nine in SCOOP vs UKHLS and two in UKHLS vs 665 

STILTS that were nominally significant in the UKBB BMI dataset GWAS, and directionally consistent. 666 

A binomial test was used to check for enrichment of signals with consistent direction of effect (S9 667 

Table).  668 

 669 

Lookup of previously identified obesity-related signals in our discovery datasets 670 

We took all signals reaching genome-wide significance, or identified for the first time in the GIANT 671 

Extremes obesity meta-analysis [20], with either the tails of BMI or obesity classes, and in childhood 672 

obesity studies [30,31] and performed look-up of those signals in all three of our discovery analyses 673 

(SCOOP vs STILTS, SCOOP vs UKHLS and UKHLS vs STILTS).  ORs and p-values from the previous 674 

studies and look-up results from our discovery datasets are reported in S10 Table. 675 

 676 
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Data availability  677 

Summary statistics for the discovery analyses will be available to download from EGA 678 

(EGAS00001002624). UKHLS data is available for download in EGA with accession code 679 

EGAS00001001232.  680 
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Table 1 

Obese vs. thin           Discovery cohort Replication cohorts Combined analysis 

rsID Nearest gene Chr. Position (bp) EA NEA OR  (95% CI) P value EAF Ob EAF Th Cohort OR  (95% CI) P value EAF Ob EAF Th OR  (95% CI) P value HetPVal 

rs9930333 FTO 16 53799977 G T 1.70(1.52,1.90) 2.30E-20 49.59% 37.46% UKBB  1.46(1.38,1.55) 3.60E-36 48.26% 38.93% 1.48(1.42,1.54) 8.52E-76 3.34E-02 

      GIANTk 1.43(1.34,1.54) 8.10E-25     

rs2168711 MC4R 18 57848531 C T 1.66(1.45,1.89) 8.29E-14 28.90% 19.95% UKBB  1.23(1.15,1.32) 2.19E-09 26.75% 22.90% 1.27(1.21,1.33) 2.02E-21 1.12E-04 

      GIANTk 1.20(1.10,1.30) 1.80E-05     

rs6748821 TMEM18a 2 629601 G A 1.65(1.42,1.91) 9.45E-11 86.69% 79.84% UKBB 1.27(1.18,1.37) 1.31E-09 85.00% 81.69% 1.32(1.24,1.39) 7.76E-21 2.81E-03 

      GIANTk 1.26(1.14,1.39) 9.90E-06     

rs506589 SEC16B 1 177894287 C T 1.46(1.27,1.67) 5.42E-08 23.98% 18.07% UKBB 1.25(1.17,1.35) 5.44E-10 23.11% 19.16% 1.28(1.21,1.35) 3.14E-20 1.21E-01 

      GIANTk 1.25(1.14,1.37) 2.70E-06     

rs6738433 ADCY3-DNAJC27b 2 25159501 C G 1.43(1.28,1.60) 1.71E-10 47.31% 43.92% UKBB 1.21(1.14,1.28) 2.74E-10 50.70% 45.96% 1.19(1.14,1.24) 3.19E-17 6.25E-03 

      GIANTk 1.10(1.03,1.17) 5.70E-03     

rs7132908 FAIM2 12 50263148 A G 1.31(1.17,1.47) 2.26E-06 42.45% 36.27% UKBB 1.18(1.11,1.25) 5.43E-08 41.11% 37.39% 1.20(1.15,1.26) 1.93E-16 2.52E-01 

      GIANTk 1.20(1.10,1.30) 6.60E-06     

rs62107261 FAM150B 2 422144 T C 2.37(1.75,3.20) 2.07E-08 96.37% 93.38% UKBB 1.54(1.35,1.76) 3.57E-10 96.28% 94.36% 1.65(1.46,1.87) 1.15E-15 1.07E-02 

rs12507026 GNPDA2c 4 45181334 T A 1.30(1.17,1.46) 
 

3.69E-06 47.29% 40.92% UKBB 1.14(1.08,1.21) 8.76E-06 45.30% 41.98% 1.18(1.13,1.23) 5.53E-15 4.06E-02 

      GIANTk 1.20(1.12,1.28) 3.10E-07     

rs75398113 SNRPC 6 34728071 C A  1.53(1.27,1.85) 8.91E-06 11.95% 8.04% UKBB  1.24(1.12,1.37)  2.07E-05 10.47% 8.52%  1.30(1.19,1.42) 5.19E-09 5.56E-02 

rs13135092 SLC39A8 4 103198082 G A  1.58(1.30,1.93) 4.70E-06 10.50% 7.24% UKBB  1.25(1.12,1.39) 5.57E-05 9.24% 7.52% 1.32(1.20,1.45) 1.06E-08 3.59E-02 

                  

Obese vs. controls         

rsID Nearest gene Chr. Position (bp) EA NEA OR  (95% CI) P value EAF Ob EAF Co Cohort OR  (95% CI) P value EAF Ob EAF Co OR  (95% CI) P value HetPVal 
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rs9928094 FTO 16 53799905 G A 1.44(1.33,1.57) 1.42E-18 49.50% 41.32% UKBB 1.30(1.25,1.35) 2.74E-41 48.34% 41.91% 1.32(1.29,1.36)  5.94E-101 4.41E-05 

      SCOOP 2013 1.46(1.34,1.60) 4.88E-17     

      EGG 1.21(1.15,1.28) 7.20E-13     

      GIANTl 1.43(1.34,1.54) 6.60E-25     

rs35614134 MC4Rd 18 57832856 AC A 1.31(1.20,1.44) 6.27E-09 29.01% 23.69% UKBB 1.22(1.16,1.27) 1.25E-18 26.72% 23.15%  1.23(1.20,1.27)  1.57E-43 3.55E-01 

      SCOOP 2013 1.32(1.19,1.46) 1.22E-07     

      EGG 1.22(1.15,1.30) 1.27E-10     

      GIANTl 1.20(1.10,1.30) 1.70E-05     

rs66906321 TMEM18e 2 630070 C T 1.40(1.24,1.57) 2.35E-08 85.78% 81.35% UKBB 1.17(1.11,1.24)  3.44E-09 84.44% 82.20%  1.25(1.21,1.29)  9.72E-35 1.33E-02 

      SCOOP 2013 1.39(1.24,1.57) 6.65E-08     

      EGG 1.28(1.19,1.37) 5.15E-12     

      GIANTl 1.27(1.15,1.40) 3.40E-06     

rs7132908 FAIM2f 12 50263148 A G 1.22(1.12,1.32) 3.27E-06 42.45% 37.82% UKBB 1.15(1.10,1.19)  5.37E-12 41.11% 37.71%  1.17(1.14,1.21)  2.38E-31 4.86E-01 

      SCOOP 2013 1.23(1.12,1.35) 8.89E-06     

      EGG 1.18(1.11,1.25) 1.24E-08     

      GIANTl 1.20(1.10,1.30) 6.60E-06     

rs2384060 ADCY3-DNAJC27g 2 25135438 G A 1.23(1.13,1.34) 1.53E-06 43.52% 38.90% UKBB 1.11(1.07,1.15)  4.89E-08 47.67% 44.93%  1.14(1.11,1.17)  9.39E-23 1.13E-01 

      SCOOP 2013 1.09(1.00,1.19) 5.01XE-02     

      EGG 1.18(1.12,1.24) 1.02E-09     

      GIANTl 1.12(1.04,1.19) 1.60E-03     

rs11209947 NEGR1h 1 72808551 A T 1.30(1.17,1.44) 8.51E-07 76.58% 72.18% UKBB 1.11(1.05,1.16) 4.53E-05 81.18% 79.76% 1.17(1.13,1.21) 5.17E-20 7.26E-05 

      SCOOP 2013 1.46(1.30,1.63) 2.21E-10     

      EGG 1.13(1.06,1.22) 4.60E-04     

      GIANTl 1.22(1.11,1.35) 5.60E-05     

rs12735657 SEC16Bi 1 177809133 C T 1.24(1.13,1.37) 9.72E-06 24.26% 20.46% UKBB 1.12(1.07,1.17) 1.48E-06 22.87% 20.94% 1.15(1.12,1.19)  7.26E-19 1.79E-01 
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      SCOOP 2013 1.20(1.07,1.33) 1.18E-03     

      EGG 1.14(1.06,1.21) 1.52E-04     

      GIANTl 1.22(1.11,1.34) 1.80E-05     

                  

                  

                  

                  

rs13104545 GNPDA2 4 45184907 A G 1.27(1.15,1.40) 1.61E-06 27.41% 23.45% UKBB 1.07(1.02,1.11) 5.35E-03 24.36% 23.26%  1.13(1.09,1.17)  1.47E-11 9.39E-05 

      EGG 1.13(1.04,1.22) 3.39E-03     

      GIANTl 1.34(1.20,1.49) 1.20E-07     

rs112446794 CEP120j 5 122665465 T C 1.23(1.13,1.35) 2.08E-06 33.15% 28.69% UKBB 1.07(1.02,1.11) 2.55E-03 29.47% 28.21%  1.09(1.06,1.13)  3.45E-10 3.33E-02 

      SCOOP 2013 1.08(0.98,1.19) 1.38E-01     

      EGG 1.12(1.06,1.18) 1.22E-04     

                    GIANTl 1.05(0.97,1.13) 2.40E-01           

rs3760091 SULT1A1 16 28620800 C G 1.24(1.14,1.35) 1.56E-06 64.89% 60.23% UKBB  1.09(1.04,1.14) 1.19E-04 63.49% 61.44% 1.12(1.07,1.16) 2.65E-08 8.49E-03 
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Supporting information captions 
 
S1 Appendix. Assessing equal vs. unequal effects for the genetic risk score. 
 
S2 Appendix. The Avon Longitudinal Study of Parents and Children. 
 
S1 Fig. Mean GRS for SCOOP and STILTS compared to simulations. Histogram represents mean GRS 
scores for each BMI category across 10,000 simulations. Vertical red line highlights the observed 
value in real data. p=p-value of difference. 
 
S2 Fig. Summary of the UKBB sample sets after QC. Venn Diagram showing sample numbers and 
overlap between UKBB sample sets used in genetic correlation (BMI dataset) and GWAS replication 
(obese, controls, thin) analyses. 
 
S3 Fig. Manhattan plot of SCOOP vs STILTS. Manhattan plot produced in EasyStrata, red line 
indicates genome-wide significance threshold at p=5x10-08. Orange line indicates discovery 
significance threshold at p=1x10-05.  Black labels highlight known BMI/obesity loci that were taken 
forward for replication and yellow peaks indicate those that met genome-wide significance after 
replication. 
 
S4 Fig. Genetic correlation of traits and BMI. Genetic correlation estimates and 95% CI for severe 
early-onset childhood obesity (SCOOP), healthy persistent thinness (STILTS), Obesity Class 3, 
Obesity Class 2, Obesity Class 1 and Overweight.  Dotted lines represent complete genetic 
correlation.  
 
S5 Fig. Quality of UK10K+1000G imputed genotypes. Percentage of variants with INFO score 
(r2)>0.4, as derived from the IMPUTE2 imputation algorithm, stratified by minor allele frequency 
across all samples (SCOOP, STILTS and UKHLS). 
 
S6 Fig. Box and density plots of risk score weighted by effect size for 97 BMI associated SNPs from 
GIANT.  A weighted genetic risk score for each individual was obtained by summing genotype 
dosages multiplied by the effect (beta) estimates from GIANT for each of the 97 SNPs. To check the 
equal variance assumption, we used a box plot (left) and density plot (right). Density plot: Green = 
STILTS; Blue = UKHLS; Red = SCOOP. 
 
S7 Fig. Quantile-quantile plots of three discovery analysis cohorts. Q-Q plots of LD Score 
Regression-corrected p-values for the three analysis cohorts used for the discovery analysis, 
produced in EasyStrata. Red=SCOOP vs. STILTS; Black=SCOOP vs. UKHLS, Blue=STILTS vs. UKHLS. 
Variants passing QC and with MAF >=0.5% are shown. LD Score regression intercept (λLD) values 
before correction are shown for each analysis. 
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S8 Fig. Quantile-quantile plots for UKBB case-control analysis with different exclusion criteria for 
thin individuals. Q-Q plot using all thin individuals as cases (Full UKBB) and removing individuals 
based on ICD10 and self-reported data (ICD10+self-reported filter). Correlation for –log10 p-values 
is shown (r=0.7462). 
 
S1 Table. Summary of discovery sample sets. 
 
S2 Table. 97 BMI SNPs from the GIANT consortium study and their summary statistics in our three 
analysis cohorts. 
 
S3 Table. Nominally significant loci for non-additive effect in extremes. 
 
S4 Table. Difference in SCOOP OR when using ALSPAC as control dataset vs. UKHLS. 
 
S5 Table. Discovery, replication and meta-analysis results for 32 SNPs meeting P<10-5 in 
discovery association results of SCOOP vs STILTS analysis. 
 
S6 Table. Discovery, replication and meta-analysis results for 66 SNPs meeting P<10-5 in 
discovery association results of SCOOP vs UKHLS analysis. 
 
S7 Table. Discovery, replication and meta-analysis results for 37 SNPs meeting P<10-5 in 
discovery association results of UKHLS vs STILTS analysis. 
 
S8 Table:  Reciprocal analysis of previously established signals and lead signals in this study.  
 
S9 Table. Consistency of the direction of effect in candidate loci meeting p<1x10-5 in the 
discovery stages with BMI dataset GWAS. 
 
S10 Table. Published loci from GIANT, EGG and SCOOP 2013 not reaching genome-wide 
significance in our study 
 
S11 Table. Summary of UKBB sample sets. 
 
S12 Table. ICD10 codes used to exclude thin individuals in UKBB 
 
S13 Table. Self-reported illness codes used to exclude thin individuals in UKBB 
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Effect Other EAF Beta SE P value Effect Other EAF OR 95% CI P value Direction Effect Other EAF OR 95% CI P value Direction Effect Other EAF OR 95% CI P value Direction
rs1558902 16 53803574 FTO A T 0.415 0.082 0.003 7.51E-153 A T 0.419 1.689 (1.509,1.89) 7.31E-20 + A T 0.410 1.429 (1.317,1.55) 1.25E-17 + A T 0.387 1.174 (1.077,1.28) 2.78E-04 +
rs6567160 18 57829135 MC4R C T 0.236 0.056 0.004 3.93E-53 C T 0.244 1.643 (1.44,1.875) 1.77E-13 + C T 0.246 1.308 (1.194,1.433) 7.91E-09 + C T 0.229 1.257 (1.134,1.394) 1.38E-05 +

rs13021737 2 632348 TMEM18 G A 0.828 0.060 0.004 1.113E-50 G A 0.832 1.586 (1.365,1.844) 1.81E-09 + G A 0.832 1.356 (1.206,1.526) 3.89E-07 + G A 0.820 1.211 (1.088,1.347) 4.44E-04 +
rs10938397 4 45182527 GNPDA2 G A 0.434 0.040 0.003 3.205E-38 G A 0.442 1.302 (1.164,1.457) 4.19E-06 + G A 0.440 1.186 (1.093,1.287) 4.50E-05 + G A 0.429 1.084 (0.996,1.179) 6.24E-02 +

rs543874 1 177889480 SEC16B G A 0.193 0.048 0.004 2.618E-35 G A 0.210 1.452 (1.267,1.664) 8.57E-08 + G A 0.213 1.201 (1.09,1.324) 2.22E-04 + G A 0.202 1.177 (1.056,1.311) 3.11E-03 +
rs2207139 6 50845490 TFAP2B G A 0.177 0.045 0.004 4.126E-29 G A 0.171 1.292 (1.116,1.496) 5.91E-04 + G A 0.170 1.175 (1.057,1.306) 2.70E-03 + G A 0.163 1.116 (0.994,1.253) 6.21E-02 +

rs11030104 11 27684517 BDNF A G 0.792 0.041 0.004 5.557E-28 A G 0.796 1.320 (1.151,1.513) 7.31E-05 + A G 0.799 1.143 (1.029,1.269) 1.27E-02 + A G 0.792 1.122 (1.015,1.24) 2.43E-02 +
rs3101336 1 72751185 NEGR1 C T 0.613 0.033 0.003 2.661E-26 C T 0.613 1.245 (1.111,1.395) 1.58E-04 + C T 0.605 1.195 (1.098,1.3) 3.66E-05 + C T 0.595 1.056 (0.97,1.15) 2.07E-01 +
rs7138803 12 50247468 BCDIN3D A G 0.384 0.032 0.003 8.153E-24 A G 0.379 1.286 (1.149,1.441) 1.31E-05 + A G 0.371 1.216 (1.118,1.322) 4.68E-06 + A G 0.360 1.035 (0.948,1.13) 4.47E-01 +

rs10182181 2 25150296 ADCY3 G A 0.462 0.031 0.003 8.777E-24 G A 0.490 1.415 (1.268,1.58) 6.34E-10 + G A 0.496 1.202 (1.108,1.304) 9.30E-06 + G A 0.480 1.186 (1.09,1.29) 6.81E-05 +
rs3888190 16 28889486 ATP2A1 A C 0.403 0.031 0.003 3.14E-23 A C 0.407 1.136 (1.017,1.271) 2.46E-02 + A C 0.401 1.129 (1.04,1.226) 3.87E-03 + A C 0.395 1.035 (0.95,1.126) 4.34E-01 +
rs1516725 3 185824004 ETV5 C T 0.872 0.045 0.005 1.886E-22 C T 0.859 1.303 (1.112,1.526) 1.05E-03 + C T 0.863 1.158 (1.024,1.309) 1.89E-02 + C T 0.856 1.180 (1.051,1.325) 5.03E-03 +

rs12446632 16 19935389 GPRC5B G A 0.865 0.040 0.005 1.477E-18 G A 0.849 1.279 (1.094,1.495) 2.03E-03 + G A 0.856 1.097 (0.975,1.235) 1.24E-01 + G A 0.850 1.194 (1.066,1.337) 2.20E-03 +
rs2287019 19 46202172 QPCTL C T 0.804 0.036 0.004 4.585E-18 C T 0.814 1.038 (0.898,1.2) 6.14E-01 + C T 0.816 1.024 (0.919,1.142) 6.61E-01 + C T 0.814 1.047 (0.939,1.168) 4.06E-01 +

rs16951275 15 68077168 MAP2K5 T C 0.784 0.031 0.004 1.911E-17 T C 0.779 1.173 (1.028,1.339) 1.79E-02 + T C 0.776 1.133 (1.025,1.251) 1.43E-02 + T C 0.770 1.056 (0.957,1.164) 2.80E-01 +
rs3817334 11 47650993 MTCH2 T C 0.407 0.026 0.003 5.145E-17 T C 0.408 1.202 (1.073,1.347) 1.46E-03 + T C 0.414 1.093 (1.006,1.187) 3.52E-02 + T C 0.405 1.098 (1.008,1.196) 3.29E-02 +
rs2112347 5 75015242 POC5 T G 0.629 0.026 0.003 6.191E-17 T G 0.633 1.087 (0.969,1.219) 1.55E-01 + T G 0.637 1.032 (0.949,1.124) 4.60E-01 + T G 0.634 1.065 (0.977,1.16) 1.51E-01 +

rs12566985 1 75002193 FPGT-TNNI3K G A 0.446 0.024 0.003 3.282E-15 G A 0.448 1.273 (1.138,1.424) 2.48E-05 + G A 0.439 1.206 (1.11,1.311) 1.04E-05 + G A 0.429 1.038 (0.952,1.132) 3.96E-01 +
rs3810291 19 47569003 ZC3H4 A G 0.666 0.028 0.004 4.812E-15 A G 0.670 1.198 (1.067,1.345) 2.19E-03 + A G 0.671 1.134 (1.039,1.237) 4.69E-03 + A G 0.663 1.072 (0.983,1.17) 1.15E-01 +
rs7141420 14 79899454 NRXN3 T C 0.527 0.024 0.003 1.23E-14 T C 0.518 1.151 (1.03,1.287) 1.33E-02 + T C 0.513 1.112 (1.025,1.208) 1.11E-02 + T C 0.507 1.003 (0.922,1.091) 9.48E-01 +

rs13078960 3 85807590 CADM2 G T 0.196 0.030 0.004 1.737E-14 G T 0.192 1.170 (1.018,1.344) 2.74E-02 + G T 0.206 0.994 (0.899,1.099) 9.08E-01 - G T 0.201 1.198 (1.076,1.334) 9.49E-04 +
rs10968576 9 28414339 LINGO2 G A 0.320 0.025 0.003 6.607E-14 G A 0.322 1.026 (0.91,1.155) 6.78E-01 + G A 0.316 1.049 (0.96,1.145) 2.88E-01 + G A 0.316 0.964 (0.881,1.055) 4.22E-01 -
rs17024393 1 110154688 GNAT2 C T 0.040 0.066 0.009 7.029E-14 C T 0.029 1.802 (1.284,2.529) 6.58E-04 + C T 0.026 1.568 (1.246,1.973) 1.26E-04 + C T 0.023 1.099 (0.824,1.465) 5.20E-01 +

rs657452 1 49589847 AGBL4 A G 0.394 0.023 0.003 5.482E-13 A G 0.381 1.103 (0.981,1.24) 1.01E-01 + A G 0.384 1.035 (0.95,1.126) 4.31E-01 + A G 0.380 1.037 (0.95,1.132) 4.14E-01 +
rs12429545 13 54102206 OLFM4 A G 0.133 0.033 0.005 1.094E-12 A G 0.134 1.076 (0.916,1.264) 3.72E-01 + A G 0.130 1.119 (0.992,1.261) 6.73E-02 + A G 0.127 0.982 (0.866,1.115) 7.82E-01 -
rs12286929 11 115022404 CADM1 G A 0.523 0.022 0.003 1.31E-12 G A 0.529 1.143 (1.024,1.276) 1.74E-02 + G A 0.530 1.069 (0.985,1.16) 1.11E-01 + G A 0.524 1.063 (0.978,1.155) 1.49E-01 +
rs13107325 4 103188709 SLC39A8 T C 0.072 0.048 0.007 1.825E-12 T C 0.081 1.605 (1.309,1.967) 5.14E-06 + T C 0.081 1.284 (1.116,1.477) 4.84E-04 + T C 0.075 1.203 (1.019,1.42) 2.89E-02 +
rs11165643 1 96924097 PTBP2 T C 0.583 0.022 0.003 2.07E-12 T C 0.588 1.022 (0.913,1.144) 7.03E-01 + T C 0.591 1.017 (0.936,1.105) 6.97E-01 + T C 0.589 1.030 (0.947,1.12) 4.94E-01 +
rs7903146 10 114758349 TCF7L2 C T 0.713 0.023 0.003 1.112E-11 C T 0.717 1.015 (0.899,1.147) 8.07E-01 + C T 0.712 1.049 (0.959,1.149) 2.94E-01 + C T 0.711 0.956 (0.872,1.048) 3.34E-01 -

rs10132280 14 25928179 STXBP6 C A 0.682 0.023 0.003 1.141E-11 C A 0.704 0.968 (0.855,1.095) 6.02E-01 - C A 0.703 0.991 (0.906,1.084) 8.48E-01 - C A 0.704 0.984 (0.897,1.079) 7.25E-01 -
rs17405819 8 76806584 HNF4G T C 0.700 0.022 0.003 2.07E-11 T C 0.705 1.269 (1.125,1.433) 1.09E-04 + T C 0.706 1.124 (1.026,1.23) 1.19E-02 + T C 0.699 1.089 (0.995,1.191) 6.30E-02 +
rs6091540 20 51087862 ZFP64 C T 0.723 0.019 0.004 2.154E-11 C T 0.711 1.145 (1.015,1.292) 2.76E-02 + C T 0.711 1.067 (0.975,1.168) 1.60E-01 + C T 0.707 1.035 (0.945,1.133) 4.62E-01 +
rs1016287 2 59305625 LINC01122 T C 0.287 0.023 0.003 2.253E-11 T C 0.311 1.007 (0.895,1.131) 9.13E-01 + T C 0.298 1.070 (0.98,1.168) 1.29E-01 + T C 0.298 0.928 (0.849,1.016) 1.05E-01 -
rs4256980 11 8673939 TRIM66 G C 0.646 0.021 0.003 2.9E-11 G C 0.650 1.031 (0.919,1.157) 6.04E-01 + G C 0.654 1.013 (0.93,1.104) 7.68E-01 + G C 0.652 1.039 (0.952,1.134) 3.94E-01 +

rs17094222 10 102395440 HIF1AN C T 0.211 0.025 0.004 5.942E-11 C T 0.210 1.133 (0.985,1.303) 8.06E-02 + C T 0.212 1.043 (0.942,1.155) 4.15E-01 + C T 0.209 1.045 (0.939,1.163) 4.25E-01 +
rs12401738 1 78446761 FUBP1 A G 0.352 0.021 0.003 1.145E-10 A G 0.378 0.988 (0.881,1.106) 8.30E-01 - A G 0.377 1.007 (0.925,1.096) 8.75E-01 + A G 0.377 0.998 (0.916,1.089) 9.71E-01 -
rs7599312 2 213413231 ERBB4 G A 0.724 0.022 0.003 1.173E-10 G A 0.732 1.083 (0.957,1.225) 2.08E-01 + G A 0.731 1.047 (0.955,1.148) 3.32E-01 + G A 0.729 0.985 (0.897,1.081) 7.45E-01 -
rs2365389 3 61236462 FHIT C T 0.582 0.020 0.003 1.629E-10 C T 0.595 1.185 (1.058,1.328) 3.43E-03 + C T 0.594 1.092 (1.004,1.187) 3.94E-02 + C T 0.589 1.060 (0.973,1.154) 1.80E-01 +
rs205262 6 34563164 C6orf106 G A 0.273 0.022 0.004 1.753E-10 G A 0.275 1.186 (1.049,1.341) 6.38E-03 + G A 0.269 1.163 (1.062,1.274) 1.14E-03 + G A 0.262 1.051 (0.955,1.156) 3.12E-01 +

rs2820292 1 201784287 NAV1 C A 0.555 0.020 0.003 1.834E-10 C A 0.562 1.084 (0.969,1.212) 1.57E-01 + C A 0.567 1.031 (0.949,1.119) 4.74E-01 + C A 0.563 1.095 (1.007,1.191) 3.47E-02 +
rs12885454 14 29736838 PRKD1 C A 0.642 0.021 0.003 1.943E-10 C A 0.631 1.084 (0.967,1.214) 1.65E-01 + C A 0.633 1.034 (0.95,1.126) 4.35E-01 + C A 0.630 1.033 (0.948,1.125) 4.61E-01 +
rs9641123 7 93197732 CALCR C G 0.429 0.019 0.004 2.077E-10 C G 0.411 1.161 (1.036,1.302) 1.03E-02 + C G 0.410 1.096 (1.008,1.193) 3.19E-02 + C G 0.404 1.037 (0.951,1.131) 4.09E-01 +

rs12016871 13 28017782 MTIF3 T C 0.203 0.030 0.005 2.291E-10 T C 0.188 1.089 (0.947,1.252) 2.32E-01 + T C 0.179 1.152 (1.039,1.278) 7.09E-03 + T C 0.176 0.962 (0.862,1.073) 4.84E-01 -
rs16851483 3 141275436 RASA2 T G 0.066 0.048 0.008 3.548E-10 T G 0.066 1.428 (1.137,1.795) 2.23E-03 + T G 0.067 1.202 (1.027,1.406) 2.17E-02 + T G 0.064 1.170 (0.977,1.403) 8.83E-02 +
rs1167827 7 75163169 HIP1 G A 0.553 0.020 0.003 6.333E-10 G A 0.569 1.167 (1.046,1.302) 5.65E-03 + G A 0.572 1.075 (0.99,1.167) 8.67E-02 + G A 0.566 1.075 (0.989,1.169) 8.89E-02 +
rs758747 16 3627358 NLRC3 T C 0.265 0.023 0.004 7.473E-10 T C 0.270 1.138 (1.007,1.287) 3.88E-02 + T C 0.280 1.010 (0.923,1.106) 8.29E-01 + T C 0.275 1.089 (0.991,1.197) 7.65E-02 +

rs1928295 9 120378483 TLR4 T C 0.548 0.019 0.003 7.91E-10 T C 0.576 1.116 (0.998,1.249) 5.38E-02 + T C 0.568 1.103 (1.015,1.197) 2.00E-02 + T C 0.563 0.990 (0.911,1.076) 8.13E-01 -
rs9925964 16 31129895 KAT8 A G 0.620 0.019 0.003 8.108E-10 A G 0.642 1.036 (0.924,1.161) 5.47E-01 + A G 0.646 1.010 (0.927,1.1) 8.27E-01 + A G 0.644 1.025 (0.939,1.119) 5.77E-01 +

rs11126666 2 26928811 KCNK3 A G 0.283 0.021 0.003 1.332E-09 A G 0.255 1.001 (0.883,1.134) 9.89E-01 + A G 0.254 0.992 (0.903,1.089) 8.60E-01 - A G 0.255 1.004 (0.913,1.104) 9.33E-01 +
rs2650492 16 28333411 SBK1 A G 0.303 0.021 0.004 1.915E-09 A G 0.306 1.211 (1.076,1.363) 1.48E-03 + A G 0.299 1.175 (1.077,1.281) 2.93E-04 + A G 0.292 1.056 (0.964,1.158) 2.42E-01 +
rs6804842 3 25106437 RARB G A 0.575 0.019 0.003 2.476E-09 G A 0.580 1.118 (1,1.25) 4.99E-02 + G A 0.580 1.083 (0.996,1.177) 6.17E-02 + G A 0.574 1.037 (0.953,1.128) 3.96E-01 +

rs12940622 17 78615571 RPTOR G A 0.575 0.018 0.003 2.494E-09 G A 0.560 1.185 (1.061,1.324) 2.62E-03 + G A 0.559 1.121 (1.031,1.218) 7.20E-03 + G A 0.551 1.068 (0.981,1.161) 1.28E-01 +
rs7164727 15 73093991 LOC100287559 T C 0.686 0.018 0.003 3.915E-09 T C 0.676 0.940 (0.835,1.058) 3.04E-01 - T C 0.669 0.992 (0.909,1.082) 8.56E-01 - T C 0.672 0.949 (0.867,1.04) 2.61E-01 -

rs11847697 14 30515112 PRKD1 T C 0.042 0.049 0.008 3.99E-09 T C 0.045 1.420 (1.093,1.846) 8.68E-03 + T C 0.045 1.252 (1.041,1.507) 1.72E-02 + T C 0.042 1.244 (1,1.548) 5.05E-02 +
rs4740619 9 15634326 C9orf93 T C 0.542 0.018 0.003 4.564E-09 T C 0.537 1.183 (1.059,1.321) 2.94E-03 + T C 0.548 1.054 (0.971,1.143) 2.10E-01 + T C 0.540 1.124 (1.034,1.221) 5.88E-03 +
rs492400 2 219349752 USP37 C T 0.423 0.016 0.003 6.784E-09 C T 0.426 1.097 (0.983,1.225) 9.79E-02 + C T 0.431 1.033 (0.951,1.121) 4.42E-01 + C T 0.426 1.063 (0.976,1.158) 1.58E-01 +

rs13191362 6 163033350 PARK2 A G 0.879 0.028 0.005 7.339E-09 A G 0.878 1.164 (0.981,1.38) 8.18E-02 + A G 0.878 1.073 (0.945,1.219) 2.78E-01 + A G 0.876 1.069 (0.943,1.211) 2.98E-01 +
rs3736485 15 51748610 DMXL2 A G 0.454 0.018 0.003 7.412E-09 A G 0.472 1.021 (0.914,1.14) 7.18E-01 + A G 0.460 1.084 (0.998,1.177) 5.48E-02 + A G 0.458 0.961 (0.884,1.045) 3.54E-01 -

rs17001654 4 77129568 SCARB2 G C 0.153 0.031 0.005 7.76E-09 G C 0.153 0.991 (0.849,1.158) 9.12E-01 - G C 0.149 1.012 (0.901,1.137) 8.37E-01 + G C 0.150 0.950 (0.844,1.069) 3.94E-01 -
rs11191560 10 104869038 NT5C2 C T 0.089 0.031 0.005 8.446E-09 C T 0.082 1.255 (1.025,1.538) 2.83E-02 + C T 0.076 1.236 (1.069,1.429) 4.23E-03 + C T 0.073 1.000 (0.852,1.174) 9.98E-01 +
rs2080454 16 49062590 CBLN1 C A 0.405 0.017 0.003 8.604E-09 C A 0.385 1.011 (0.903,1.131) 8.50E-01 + C A 0.386 0.989 (0.91,1.075) 7.96E-01 - C A 0.387 0.998 (0.917,1.087) 9.70E-01 -
rs7715256 5 153537893 GALNT10 G T 0.421 0.016 0.003 8.851E-09 G T 0.423 1.180 (1.055,1.318) 3.60E-03 + G T 0.428 1.067 (0.982,1.158) 1.26E-01 + G T 0.421 1.087 (0.998,1.185) 5.56E-02 +
rs2176040 2 227092802 LOC646736 A G 0.365 0.014 0.003 9.989E-09 A G 0.364 1.025 (0.913,1.151) 6.75E-01 + A G 0.350 1.080 (0.993,1.175) 7.37E-02 + A G 0.350 0.930 (0.853,1.013) 9.77E-02 -
rs1528435 2 181550962 UBE2E3 T C 0.631 0.018 0.003 1.196E-08 T C 0.636 1.013 (0.904,1.136) 8.21E-01 + T C 0.624 1.087 (0.999,1.183) 5.27E-02 + T C 0.622 0.944 (0.866,1.029) 1.90E-01 -
rs2075650 19 45395619 TOMM40 A G 0.848 0.026 0.005 1.247E-08 G A 0.147 0.968 (0.828,1.131) 6.82E-01 - A G 0.853 1.002 (0.893,1.123) 9.77E-01 + A G 0.853 1.007 (0.896,1.132) 9.04E-01 +
rs1000940 17 5283252 RABEP1 G A 0.320 0.019 0.003 1.284E-08 G A 0.307 1.155 (1.026,1.302) 1.75E-02 + G A 0.304 1.115 (1.022,1.218) 1.47E-02 + G A 0.298 1.061 (0.968,1.164) 2.04E-01 +

rs11583200 1 50559820 ELAVL4 C T 0.396 0.018 0.003 1.479E-08 C T 0.376 1.083 (0.965,1.214) 1.75E-01 + C T 0.381 1.024 (0.943,1.113) 5.70E-01 + C T 0.377 1.058 (0.971,1.153) 2.01E-01 +
rs7239883 18 40147671 LOC284260 G A 0.393 0.016 0.003 1.511E-08 G A 0.380 1.029 (0.917,1.154) 6.25E-01 + G A 0.377 1.029 (0.946,1.119) 5.08E-01 + G A 0.376 1.004 (0.921,1.093) 9.33E-01 +
rs2836754 21 40291740 ETS2 C T 0.612 0.016 0.003 1.605E-08 C T 0.643 1.134 (1.011,1.272) 3.22E-02 + C T 0.651 1.053 (0.966,1.147) 2.42E-01 + C T 0.645 1.120 (1.027,1.221) 1.03E-02 +
rs9400239 6 108977663 FOXO3 C T 0.688 0.019 0.003 1.613E-08 C T 0.706 1.214 (1.074,1.371) 1.85E-03 + C T 0.709 1.118 (1.019,1.226) 1.84E-02 + C T 0.702 1.099 (1.003,1.205) 4.31E-02 +

rs10733682 9 129460914 LMX1B A G 0.478 0.017 0.003 1.83E-08 A G 0.479 1.084 (0.968,1.212) 1.61E-01 + A G 0.475 1.071 (0.986,1.165) 1.06E-01 + A G 0.471 1.014 (0.93,1.105) 7.55E-01 +
rs11688816 2 63053048 EHBP1 G A 0.525 0.017 0.003 1.893E-08 G A 0.542 1.033 (0.924,1.154) 5.69E-01 + G A 0.544 0.988 (0.91,1.074) 7.83E-01 - G A 0.544 1.001 (0.92,1.09) 9.76E-01 +
rs11057405 12 122781897 CLIP1 G A 0.901 0.031 0.006 2.019E-08 G A 0.898 1.070 (0.892,1.284) 4.67E-01 + G A 0.891 1.129 (0.985,1.293) 8.09E-02 + G A 0.890 0.929 (0.81,1.065) 2.89E-01 -
rs9914578 17 2005136 SMG6 G C 0.211 0.020 0.004 2.072E-08 G C 0.208 1.044 (0.91,1.197) 5.39E-01 + G C 0.207 1.042 (0.943,1.152) 4.17E-01 + G C 0.205 1.030 (0.929,1.143) 5.74E-01 +
rs977747 1 47684677 TAL1 T G 0.391 0.017 0.003 2.182E-08 T G 0.412 1.099 (0.983,1.23) 9.84E-02 + T G 0.416 1.043 (0.961,1.133) 3.13E-01 + T G 0.411 1.050 (0.965,1.143) 2.54E-01 +
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rs2121279 2 143043285 LRP1B T C 0.152 0.025 0.004 2.313E-08 T C 0.133 1.063 (0.904,1.252) 4.59E-01 + T C 0.127 1.118 (0.991,1.26) 6.99E-02 + T C 0.126 0.958 (0.845,1.085) 4.99E-01 -
rs29941 19 34309532 KCTD15 G A 0.669 0.018 0.003 2.407E-08 G A 0.677 1.187 (1.055,1.336) 4.37E-03 + G A 0.671 1.132 (1.037,1.236) 5.77E-03 + G A 0.665 1.027 (0.94,1.123) 5.56E-01 +

rs11727676 4 145659064 HHIP T C 0.910 0.036 0.006 2.55E-08 C T 0.092 0.999 (0.813,1.228) 9.94E-01 - T C 0.904 1.056 (0.907,1.23) 4.80E-01 + T C 0.905 0.899 (0.766,1.054) 1.90E-01 -
rs3849570 3 81792112 GBE1 A C 0.359 0.019 0.003 2.601E-08 A C 0.348 1.040 (0.926,1.169) 5.05E-01 + A C 0.346 1.021 (0.937,1.113) 6.37E-01 + A C 0.346 0.988 (0.905,1.078) 7.80E-01 -
rs9374842 6 120185665 LOC285762 T C 0.748 0.019 0.004 2.673E-08 T C 0.775 1.222 (1.073,1.393) 2.54E-03 + T C 0.772 1.160 (1.05,1.281) 3.41E-03 + T C 0.766 1.058 (0.96,1.166) 2.53E-01 +
rs6477694 9 111932342 EPB41L4B C T 0.365 0.017 0.003 2.673E-08 C T 0.356 1.161 (1.035,1.303) 1.07E-02 + C T 0.353 1.101 (1.011,1.198) 2.73E-02 + C T 0.347 1.043 (0.955,1.139) 3.53E-01 +
rs4787491 16 30015337 INO80E G A 0.509 0.016 0.003 2.696E-08 G A 0.538 1.014 (0.908,1.132) 8.08E-01 + G A 0.536 1.006 (0.927,1.092) 8.87E-01 + G A 0.537 0.981 (0.902,1.067) 6.56E-01 -
rs1441264 13 79580919 MIR548A2 A G 0.609 0.018 0.003 2.959E-08 A G 0.590 1.082 (0.963,1.215) 1.86E-01 + A G 0.590 1.051 (0.963,1.146) 2.68E-01 + A G 0.587 1.049 (0.961,1.146) 2.86E-01 +
rs7899106 10 87410904 GRID1 G A 0.052 0.040 0.007 2.96E-08 G A 0.056 1.269 (0.998,1.613) 5.17E-02 + G A 0.051 1.240 (1.043,1.475) 1.48E-02 + G A 0.050 0.949 (0.786,1.147) 5.90E-01 -
rs2176598 11 43864278 HSD17B12 T C 0.251 0.020 0.004 2.971E-08 T C 0.237 1.055 (0.926,1.201) 4.19E-01 + T C 0.247 0.957 (0.871,1.053) 3.68E-01 - T C 0.246 1.076 (0.976,1.187) 1.41E-01 +
rs2245368 7 76608143 PMS2L11 C T 0.180 0.032 0.006 3.187E-08 C T 0.178 1.190 (1.025,1.382) 2.27E-02 + C T 0.167 1.225 (1.098,1.366) 2.73E-04 + C T 0.162 0.984 (0.875,1.105) 7.82E-01 -

rs17203016 2 208255518 CREB1 G A 0.197 0.021 0.004 3.406E-08 G A 0.213 1.128 (0.987,1.289) 7.77E-02 + G A 0.206 1.133 (1.026,1.25) 1.32E-02 + G A 0.202 0.982 (0.886,1.088) 7.28E-01 -
rs17724992 19 18454825 PGPEP1 A G 0.746 0.019 0.004 3.415E-08 A G 0.744 1.196 (1.055,1.356) 5.09E-03 + A G 0.741 1.155 (1.05,1.271) 2.99E-03 + A G 0.734 1.042 (0.949,1.144) 3.90E-01 +
rs7243357 18 56883319 GRP T G 0.812 0.022 0.004 3.857E-08 T G 0.825 1.182 (1.02,1.368) 2.56E-02 + T G 0.826 1.106 (0.989,1.236) 7.66E-02 + T G 0.821 1.090 (0.978,1.214) 1.19E-01 +

rs16907751 8 81375457 ZBTB10 C T 0.916 0.035 0.007 3.888E-08 C T 0.906 0.966 (0.797,1.171) 7.28E-01 - C T 0.908 0.953 (0.828,1.097) 5.01E-01 - C T 0.909 1.013 (0.876,1.171) 8.63E-01 +
rs1808579 18 21104888 C18orf8 C T 0.534 0.017 0.003 4.169E-08 C T 0.522 1.096 (0.981,1.224) 1.05E-01 + C T 0.517 1.079 (0.994,1.172) 6.90E-02 + C T 0.513 1.026 (0.943,1.115) 5.53E-01 +

rs13201877 6 137675541 IFNGR1 G A 0.142 0.023 0.005 4.285E-08 G A 0.141 1.181 (1.006,1.385) 4.18E-02 + G A 0.141 1.091 (0.971,1.225) 1.43E-01 + G A 0.138 1.056 (0.932,1.196) 3.95E-01 +
rs2033732 8 85079709 RALYL C T 0.747 0.019 0.004 4.889E-08 C T 0.743 1.008 (0.89,1.142) 8.95E-01 + C T 0.744 0.982 (0.895,1.078) 7.08E-01 - C T 0.744 1.015 (0.923,1.117) 7.62E-01 +
rs9540493 13 66205704 MIR548X2 A G 0.456 0.017 0.003 4.971E-08 A G 0.460 1.130 (1.005,1.27) 4.13E-02 + A G 0.454 1.120 (1.028,1.222) 9.92E-03 + A G 0.449 1.004 (0.92,1.096) 9.28E-01 +
rs1460676 2 164567689 FIGN C T 0.173 0.020 0.004 4.978E-08 C T 0.158 1.022 (0.879,1.187) 7.81E-01 + C T 0.155 1.044 (0.934,1.168) 4.46E-01 + C T 0.154 0.983 (0.876,1.103) 7.66E-01 -
rs6465468 7 95169514 ASB4 T G 0.304 0.017 0.004 4.98E-08 T G 0.308 1.005 (0.887,1.139) 9.36E-01 + T G 0.301 1.047 (0.955,1.149) 3.24E-01 + T G 0.301 0.955 (0.868,1.049) 3.36E-01 -

rs751414** 6 40350030 TDRG1 T G 0.258 0.018 0.004 1.58E-05 T G 0.283 1.16813 (1.033,1.32) 1.29E-02 + T G 0.287 1.04676 (0.957,1.145) 3.18E-01 + T G 0.283 1.08231 (0.986,1.188) 9.67E-02 +

*GRCh37/hg19 coordinates
**Proxy for rs2033529
Effect = Effect allele (BMI increasing allele); Other = Other allele; EAF = Effect allele frequency
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S4 Table. Difference in SCOOP OR when using ALSPAC as control dataset vs. UKHLS 

SNP Locus OR.UKHLS OR.ALSPAC P.Diff
rs1558902 FTO 1.4287329 1.3427721 2.94E-01
rs6567160 MC4R 1.3080991 1.3604779 5.52E-01
rs13021737 TMEM18 1.3563998 1.2974696 6.00E-01
rs10938397 GNPDA2 1.1857281 1.1860919 9.96E-01
rs543874 SEC16B 1.2010834 1.2045657 9.67E-01
rs2207139 TFAP2B 1.1750903 1.1546588 8.18E-01
rs11030104 BDNF 1.1428476 1.1088972 6.90E-01
rs3101336 NEGR1 1.1948946 1.2385984 5.57E-01
rs7138803 BCDIN3D 1.215858 1.2146898 9.87E-01
rs10182181 ADCY3 1.2020002 1.2265576 7.31E-01
rs3888190 ATP2A1 1.1293237 1.0144525 7.22E-02
rs1516725 ETV5 1.158149 1.026153 1.74E-01
rs12446632 GPRC5B 1.0971063 1.0185721 3.86E-01
rs2287019 QPCTL 1.0244956 1.0421619 8.25E-01
rs16951275 MAP2K5 1.1325514 1.092782 6.20E-01
rs3817334 MTCH2 1.0927407 1.1358904 5.16E-01
rs2112347 POC5 1.0324305 1.004322 6.53E-01
rs12566985 FPGT-TNNI3K 1.2061603 1.1713434 6.23E-01
rs3810291 ZC3H4 1.1339907 1.0873902 5.08E-01
rs7141420 NRXN3 1.1124525 1.1058898 9.20E-01
rs13078960 CADM2 0.99411 1.031164 6.16E-01
rs10968576 LINGO2 1.048838 1.0523973 9.57E-01
rs17024393 GNAT2 1.5681554 1.5545372 9.58E-01
rs657452 AGBL4 1.0346724 1.0741845 5.39E-01
rs12429545 OLFM4 1.1186482 1.1316867 8.93E-01
rs12286929 CADM1 1.0687761 1.0658373 9.63E-01
rs13107325 SLC39A8 1.2837186 1.3563332 5.90E-01
rs11165643 PTBP2 1.0166116 1.0013239 8.01E-01
rs7903146 TCF7L2 1.049512 1.1068024 4.16E-01
rs10132280 STXBP6 0.9912485 0.9586591 6.05E-01
rs17405819 HNF4G 1.1236114 1.0863413 6.08E-01
rs6091540 ZFP64 1.067074 1.1034806 6.08E-01
rs1016287 LINC01122 1.0702148 1.0895905 7.78E-01
rs4256980 TRIM66 1.0129686 0.9606069 3.92E-01
rs17094222 HIF1AN 1.0431979 1.0554176 8.73E-01
rs12401738 FUBP1 1.0068534 0.9709964 5.52E-01
rs7599312 ERBB4 1.0466985 0.9901823 4.06E-01
rs2365389 FHIT 1.0918292 1.1451163 4.30E-01
rs205262 C6orf106 1.1634375 1.0784589 2.46E-01
rs2820292 NAV1 1.0305774 0.9731171 3.36E-01
rs12885454 PRKD1 1.0343118 0.9851811 4.27E-01
rs9641123 CALCR 1.0963951 1.0743197 7.35E-01
rs9581854 MTIF3 1.1523104 1.0643572 2.87E-01
rs16851483 RASA2 1.2018139 1.2290979 8.43E-01
rs1167827 HIP1 1.0745054 1.0968666 7.30E-01
rs758747 NLRC3 1.0100159 1.0528825 5.26E-01
rs1928295 TLR4 1.1026364 1.0470854 3.86E-01
rs9925964 KAT8 1.009594 1.0531275 4.94E-01
rs11126666 KCNK3 0.9916191 1.0011154 8.88E-01
rs2650492 SBK1 1.1745464 1.1002881 3.00E-01
rs6804842 RARB 1.0826074 1.0744722 9.00E-01
rs12940622 RPTOR 1.1210032 1.0859058 5.96E-01
rs7164727 LOC100287559 0.9919261 0.9667406 6.83E-01
rs11847697 PRKD1 1.2522288 1.1977594 7.40E-01
rs4740619 C9orf93 1.053687 1.0122709 4.98E-01
rs492400 USP37 1.0326143 1.0502736 7.75E-01
rs13191362 PARK2 1.0730103 1.1335706 5.49E-01
rs3736485 DMXL2 1.0839278 1.0843441 9.95E-01
rs17001654 SCARB2 1.0123387 0.9533294 4.70E-01
rs11191560 NT5C2 1.2358896 1.1978983 7.66E-01
rs2080454 CBLN1 0.9890632 0.9957939 9.11E-01
rs7715256 GALNT10 1.0667076 1.0659983 9.91E-01
rs2176040 LOC646736 1.0800962 1.0561891 7.15E-01
rs1528435 UBE2E3 1.0871075 1.0592421 6.71E-01
rs2075650 TOMM40 1.0017207 0.9436388 4.72E-01
rs1000940 RABEP1 1.1155025 1.1561709 5.73E-01
rs11583200 ELAVL4 1.0244068 1.0473277 7.14E-01
rs7239883 LOC284260 1.0288501 0.9941999 5.73E-01
rs2836754 ETS2 1.0526894 1.0507287 9.76E-01
rs9400239 FOXO3 1.1176888 1.0694002 5.06E-01
rs10733682 LMX1B 1.0712934 1.0545872 7.92E-01
rs11688816 EHBP1 0.988461 0.9758464 8.29E-01
rs11057405 CLIP1 1.1285696 1.0499994 4.62E-01
rs9914578 SMG6 1.0423268 1.0775537 6.46E-01
rs977747 TAL1 1.0432587 1.0166069 6.64E-01
rs2121279 LRP1B 1.1174631 1.0960597 8.23E-01
rs29941 KCTD15 1.1320951 1.0502216 2.39E-01
rs11727676 HHIP 1.0563982 1.0477135 9.38E-01
rs3849570 GBE1 1.0208987 0.9989013 7.25E-01
rs9374842 LOC285762 1.159775 1.1754326 8.52E-01
rs6477694 EPB41L4B 1.100504 1.0672617 6.17E-01
rs4787491 INO80E 1.0059218 1.0361099 6.17E-01
rs1441264 MIR548A2 1.0505803 1.0275484 7.19E-01
rs7899106 GRID1 1.240441 1.3269198 5.94E-01
rs2176598 HSD17B12 0.9573421 0.9531657 9.49E-01
rs2245368 PMS2L11 1.2247062 0.8928163 3.81E-05
rs17203016 CREB1 1.1327383 1.1718323 6.35E-01
rs17724992 PGPEP1 1.1553103 1.156706 9.86E-01
rs7243357 GRP 1.1056075 1.0651079 6.41E-01
rs16907751 ZBTB10 0.9527799 1.0182715 5.11E-01
rs1808579 C18orf8 1.0793057 1.0641407 8.11E-01
rs13201877 IFNGR1 1.0907763 1.0761121 8.71E-01
rs2033732 RALYL 0.9823586 0.9258369 3.80E-01
rs9540493 MIR548X2 1.1204384 1.0826008 5.72E-01
rs1460676 FIGN 1.0443083 1.0803401 6.74E-01
rs6465468 ASB4 1.0475326 0.949917 1.33E-01
rs2033529 TDRG1 0.9553109 0.9790073 7.05E-01

OR.UKHLS= OR when using UKHLS as control group
OR.ALSPAC= OR when using age-matched ALSPAC as control group
P.Diff=p value for difference
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rsID Nearest gene Chr. Position (bp) EA NEA OR  (95% CI) P value EAF Obese EAF Thin proxy rsID OR  (95% CI) P value EAF Obese EAF Thin proxy rsID r2 OR  (95% CI) P value OR  (95% CI) P value HetPVal
rs9930333 FTO 16 53799977 G T 1.70(1.52,1.90) 2.30E-20 49.59% 37.46% 1.46(1.38,1.55) 3.60E-36 48.26% 38.93% 1.43(1.34,1.54) 8.10E-25 1.48(1.42,1.54) 8.52E-76 3.34E-02
rs2168711 MC4R 18 57848531 C T 1.66(1.45,1.89) 8.29E-14 28.90% 19.95% 1.23(1.15,1.32) 2.19E-09 26.75% 22.90% 1.20(1.10,1.30) 1.80E-05 1.27(1.21,1.33) 2.02E-21 1.12E-04
rs6748821 TMEM18 2 629601 G A 1.65(1.42,1.91) 9.45E-11 86.69% 79.84% 1.27(1.18,1.37) 1.31E-09 85.00% 81.69% rs12995480 0.998 1.26(1.14,1.39) 9.90E-06 1.32(1.24,1.39) 7.76E-21 2.81E-03
rs506589 SEC16B 1 177894287 C T 1.46(1.27,1.67) 5.42E-08 23.98% 18.07% 1.25(1.17,1.35) 5.44E-10 23.11% 19.16% 1.25(1.14,1.37) 2.70E-06 1.28(1.21,1.35) 3.14E-20 1.21E-01

rs6738433 ADCY3-DNAJC27 2 25159501 C G 1.43(1.28,1.60) 1.71E-10 47.31% 43.92% 1.21(1.14,1.28) 2.74E-10 50.70% 45.96% rs2384054 0.968 1.10(1.03,1.17) 5.70E-03 1.19(1.14,1.24) 3.19E-17 6.25E-03
rs7132908 FAIM2 12 50263148 A G 1.31(1.17,1.47) 2.26E-06 42.45% 36.27% 1.18(1.11,1.25) 5.43E-08 41.11% 37.39% 1.20(1.10,1.30) 6.60E-06 1.20(1.15,1.26) 1.93E-16 2.52E-01

rs62107261 FAM150B 2 422144 T C 2.37(1.75,3.20) 2.07E-08 96.37% 93.38% 1.54(1.35,1.76) 3.57E-10 96.28% 94.36% NA NA NA NA 1.65(1.46,1.87) 1.15E-15 1.07E-02
rs12507026 GNPDA2 4 45181334 T A 1.30(1.17,1.46) 3.69E-06 47.29% 40.92% 1.14(1.08,1.21) 8.76E-06 45.30% 41.98% rs12641981 0.998 1.20(1.12,1.28) 3.10E-07 1.18(1.13,1.23) 5.53E-15 4.06E-02
rs75398113 SNRPC 6 34728071 C G 1.53(1.27,1.85) 8.91E-06 11.95% 8.04% 1.24(1.12,1.37) 2.07E-05 10.47% 8.52% NA NA NA NA 1.30(1.19,1.42) 5.19E-09 5.56E-02
rs13135092 SLC39A8 4 103198082 G A 1.58(1.30,1.93) 4.70E-06 10.50% 7.24% 1.25(1.12,1.39) 5.57E-05 9.24% 7.52% NA NA NA NA 1.32(1.20,1.45) 1.06E-08 3.59E-02
rs57988840 TFAP2B 6 50817748 T A 1.69(1.39,2.05) 1.27E-07 92.53% 88.81% 1.13(1.02,1.24) 1.65E-02 91.05% 90.04% rs7769978 1 1.20(1.03,1.39) 1.90E-02 1.22(1.13,1.31) 3.86E-07 2.87E-04
rs4447506 PIK3C3 18 39510074 G A 1.32(1.17,1.48) 4.21E-06 41.83% 36.39% 1.07(1.01,1.14) 2.60E-02 39.34% 37.71% 1.10(1.02,1.18) 7.80E-03 1.11(1.06,1.16) 1.46E-06 7.85E-03

rs375252497* SEMA3B 3 50310286 AAATAATAATAAT A 1.35(1.20,1.53) 1.74E-06 37.22% 31.78% 1.13(1.02,1.26) 2.50E-02 34.30% 31.95% NA NA NA NA 1.22(1.13,1.32) 1.49E-06 3.05E-02
rs7927262 HIPK3 11 33384447 C T 1.41(1.24,1.60) 1.81E-07 41.78% 35.78% 1.08(0.89,1.32) 4.43E-01 97.52% 97.37% NA NA NA NA 1.31(1.17,1.45) 1.58E-06 2.87E-02
rs654240 CCND1 11 69448373 T C 1.35(1.21,1.52) 2.99E-07 43.85% 37.39% 1.05(0.99,1.12) 9.25E-02 41.43% 40.23% 1.08(1.00,1.16) 5.30E-02 1.10(1.05,1.15) 2.10E-05 6.81E-04

rs35403928* PRDM6 5 122416569 GT G 1.39(1.23,1.56) 6.79E-08 39.85% 32.94% 1.05(0.95,1.16) 3.61E-01 37.64% 36.49% NA NA NA NA 1.18(1.09,1.28) 2.46E-05 4.77E-04
rs516579 MTCL1 18 8801634 G T 1.40(1.22,1.61) 2.07E-06 82.14% 77.25% 1.03(0.96,1.11) 4.52E-01 80.35% 80.05% rs518561 0.998 1.15(1.04,1.27) 6.40E-03 1.11(1.05,1.18) 9.70E-05 1.11E-04

rs397859802* FLJ26850 19 50556007 C CA 1.92(1.45,2.53) 4.49E-06 6.02% 3.44% 1.11(0.86,1.44) 4.28E-01 4.25% 3.78% NA NA NA NA 1.43(1.18,1.73) 2.12E-04 4.77E-03
rs2784243 PKHD1 6 51454640 T C 1.30(1.16,1.45) 5.99E-06 61.89% 56.06% 1.07(1.01,1.13) 2.90E-02 58.99% 57.34% rs2784187 0.988 1.02(0.95,1.10) 5.40E-01 1.08(1.04,1.13) 3.14E-04 2.55E-03

rs11792928 LMX1B 9 129401550 T C 1.36(1.20,1.53) 1.32E-06 32.13% 26.91% 1.05(0.99,1.12) 1.17E-01 29.94% 29.01% 1.03(0.95,1.11) 5.00E-01 1.08(1.03,1.13) 8.05E-04 5.19E-04
rs6711131* BAZ2B 2 160407777 A G 1.31(1.17,1.47) 4.30E-06 65.12% 58.62% 1.02(0.92,1.13) 6.81E-01 63.33% 63.04% NA NA NA NA 1.14(1.05,1.23) 8.90E-04 1.33E-03
rs73145387 ABI3BP 3 100813661 C G 2.48(1.67,3.69) 7.36E-06 98.00% 96.42% 1.15(0.96,1.37) 1.29E-01 97.55% 97.19% NA NA NA NA 1.31(1.11,1.54) 1.29E-03 5.19E-04

rs599291 SLC44A5 1 75691616 T C 1.31(1.17,1.47) 2.35E-06 47.71% 41.63% 1.02(0.96,1.08) 4.95E-01 44.55% 44.01% 1.04(0.97,1.11) 2.20E-01 1.06(1.02,1.11) 3.44E-03 4.01E-04
rs11185396 LOC100129138 1 104754536 C T 1.50(1.26,1.80) 8.13E-06 12.78% 9.21% 1.06(0.97,1.17) 2.13E-01 10.37% 9.65% 1.01(0.89,1.14) 9.20E-01 1.10(1.03,1.18) 6.95E-03 8.13E-04
rs2836760 LOC400867 21 40300052 T G 1.65(1.33,2.03) 3.28E-06 10.33% 7.12% 1.03(0.93,1.14) 5.92E-01 9.14% 8.91% 1.07(0.93,1.23) 3.50E-01 1.11(1.03,1.20) 9.44E-03 3.30E-04

rs11159277 SPTLC2 14 78032957 A T 1.35(1.20,1.53) 1.56E-06 71.04% 66.32% 1.01(0.95,1.08) 6.53E-01 68.83% 68.55% NA NA NA NA 1.08(1.02,1.14) 9.74E-03 4.58E-05
rs10546790 CDH22 20 44910100 C CAT 1.34(1.19,1.52) 1.91E-06 72.94% 66.87% rs2425853 1.03(0.97,1.10) 3.42E-01 70.11% 69.59% rs2425853 0.998 1.00(0.93,1.08) 9.90E-01 1.06(1.01,1.11) 1.35E-02 1.57E-04

rs11319985* CNTN6 3 1377810 T TA 1.29(1.15,1.45) 9.85E-06 61.56% 56.63% 0.97(0.88,1.07) 5.75E-01 57.91% 58.39% NA NA NA NA 1.10(1.02,1.18) 1.38E-02 2.03E-04
rs4790399 RAP1GAP2 17 2883199 C T 1.33(1.18,1.51) 6.95E-06 74.28% 69.50% 1.02(0.96,1.09) 5.43E-01 71.22% 70.85% 0.99(0.91,1.08) 8.30E-01 1.05(1.00,1.10) 4.40E-02 2.50E-04
rs536093 PDE10A 6 165945641 T C 1.38(1.22,1.58) 1.01E-06 27.05% 21.65% 0.97(0.90,1.03) 3.17E-01 24.39% 25.03% 1.06(0.97,1.15) 2.00E-01 1.05(1.00,1.10) 6.84E-02 9.29E-06
rs936249 CACNA1B 9 140971315 T C 2.41(1.66,3.49) 3.81E-06 6.31% 4.63% 1.01(0.88,1.15) 9.30E-01 4.78% 4.77% NA NA NA NA 1.11(0.98,1.27) 9.53E-02 1.62E-05

rs1692144 GJA5 1 147281349 C T 1.37(1.19,1.57) 8.19E-06 81.52% 77.06% 1.04(0.97,1.12) 2.90E-01 79.54% 79.06% 0.92(0.84,1.01) 7.00E-02 1.04(0.99,1.10) 1.29E-01 1.68E-05

*Interim release used in UKBB for these signals. Nobese=2,799. Nthin=1,212
EA= Effect allele (BMI increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval for the odds ratio; EAF = effect allele frequency. HetPVal= Heterozygosity p-value
Positions mapped to hg19
 Blue line: Conventional genome-wide significant threshold (p<5E-08) in combined analysis.

SCOOP UKBB GIANT BMI Tails Combined analysis
S5 Table. Discovery, replication and meta-analysis results for 32 SNPs meeting P<10-5 in discovery association results of SCOOP vs STILTS analysis.
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rsID Nearest gene Chr. Position (bp) EA NEA OR  (95% CI) P value EAF Obese EAF Non-extremes proxy rsID OR  (95% CI) P value EAF Obese EAF Non-extremes proxy rsID r2 OR  (95% CI) P value proxy rsID r2 OR  (95% CI) P value proxy rsID r2 OR  (95% CI) P value OR  (95% CI) P value HetPVal
rs9928094 FTO 16 53799905 G A 1.44(1.33,1.57) 1.42E-18 49.50% 41.32% 1.30(1.25,1.35) 2.74E-41 48.34% 41.91% 1.46(1.34,1.60) 4.88E-17 1.21(1.15,1.28) 7.20E-13 1.43(1.34,1.54) 6.60E-25 1.32(1.29,1.36) 5.94E-101 4.41E-05

rs35614134 MC4R 18 57832856 AC A 1.31(1.20,1.44) 6.27E-09 29.01% 23.69% rs663129 1.22(1.16,1.27) 1.25E-18 26.72% 23.15% rs663129 0.99814 1.32(1.19,1.46) 1.22E-07 rs663129 0.99814 1.22(1.15,1.30) 1.27E-10 rs663129 0.99814 1.20(1.10,1.30) 1.70E-05 1.23(1.20,1.27) 1.57E-43 3.55E-01
rs66906321 TMEM18 2 630070 C T 1.40(1.24,1.57) 2.35E-08 85.78% 81.35% 1.17(1.11,1.24) 3.44E-09 84.44% 82.20% rs13007080 0.95655 1.39(1.24,1.57) 6.65E-08 rs13007080 0.956548 1.28(1.19,1.37) 5.15E-12 rs13007080 0.956548 1.27(1.15,1.40) 3.40E-06 1.25(1.21,1.29) 9.72E-35 1.33E-02
rs7132908 FAIM2 12 50263148 A G 1.22(1.12,1.32) 3.27E-06 42.45% 37.82% 1.15(1.10,1.19) 5.37E-12 41.11% 37.71% rs7138803 0.90165 1.23(1.12,1.35) 8.89E-06 1.18(1.11,1.25) 1.24E-08 1.20(1.10,1.30) 6.60E-06 1.17(1.14,1.21) 2.38E-31 4.86E-01
rs2384060 ADCY3-DNAJC27 2 25135438 G A 1.23(1.13,1.34) 1.53E-06 43.52% 38.90% rs6722587 1.11(1.07,1.15) 4.89E-08 47.67% 44.93% rs6722587 0.90829 1.09(1.00,1.19) 5.01E-02 rs6722587 0.908287 1.18(1.12,1.24) 1.02E-09 rs6722587 0.908287 1.12(1.04,1.19) 1.60E-03 1.14(1.11,1.17) 9.39E-23 1.13E-01

rs11209947 NEGR1 1 72808551 A T 1.30(1.17,1.44) 8.51E-07 76.58% 72.18% rs1460940 1.11(1.05,1.16) 4.53E-05 81.18% 79.76% rs1460940 0.80203 1.46(1.30,1.63) 2.21E-10 rs1460940 0.802029 1.13(1.06,1.22) 4.60E-04 rs1460940 0.802029 1.22(1.11,1.35) 5.60E-05 1.17(1.13,1.21) 5.17E-20 7.26E-05
rs12735657 SEC16B 1 177809133 C T 1.24(1.13,1.37) 9.72E-06 24.26% 20.46% 1.12(1.07,1.17) 1.48E-06 22.87% 20.94% rs4132288 0.9914 1.20(1.07,1.33) 1.18E-03 rs4132288 0.991399 1.14(1.06,1.21) 1.52E-04 rs4132288 0.991399 1.22(1.11,1.34) 1.80E-05 1.15(1.12,1.19) 7.26E-19 1.79E-01
rs13104545 GNPDA2 4 45184907 A G 1.27(1.15,1.40) 1.61E-06 27.41% 23.45% 1.07(1.02,1.11) 5.35E-03 24.36% 23.26% NA NA NA NA 1.13(1.04,1.22) 3.39E-03 1.34(1.20,1.49) 1.20E-07 1.13(1.09,1.17) 1.47E-11 9.39E-05

rs112446794 CEP120 5 122665465 T C 1.23(1.13,1.35) 2.08E-06 33.15% 28.69% 1.07(1.02,1.11) 2.55E-03 29.47% 28.21% rs1366333 0.95876 1.08(0.98,1.19) 1.38E-01 rs1366333 0.958762 1.12(1.06,1.18) 1.22E-04 rs1366333 0.958762 1.05(0.97,1.13) 2.40E-01 1.09(1.06,1.13) 3.45E-10 3.33E-02
rs3760091 SULT1A1 16 28620800 C G 1.24(1.14,1.35) 1.56E-06 64.89% 60.23% 1.09(1.04,1.14) 1.19E-04 63.49% 61.44% NA NA NA NA NA NA NA NA NA NA NA NA 1.12(1.07,1.16) 2.65E-08 8.49E-03

rs115474151 SLC7A14 3 170272967 A T 1.36(1.20,1.55) 2.63E-06 12.44% 9.53% 1.27(0.86,1.87) 2.36E-01 0.26% 0.20% NA NA NA NA NA NA NA NA NA NA NA NA 1.35(1.20,1.53) 1.40E-06 7.24E-01
rs8096590 LINC01541 18 69231235 A G 1.24(1.14,1.35) 1.26E-06 34.39% 29.80% 1.03(0.99,1.07) 1.68E-01 31.28% 30.75% rs7228473 0.98094 1.08(0.99,1.19) 9.70E-02 rs7228473 0.980939 1.02(0.97,1.08) 4.30E-01 rs7228473 0.980939 1.14(1.05,1.23) 1.40E-03 1.07(1.04,1.10) 7.38E-06 7.32E-04

rs201388971* CDKAL1 6 20514945 T TTG 1.33(1.17,1.50) 7.17E-06 85.90% 82.52% 1.10(1.01,1.20) 3.58E-02 84.15% 82.90% NA NA NA NA NA NA NA NA NA NA NA NA 1.17(1.09,1.25) 1.77E-05 1.36E-02
rs141442356 FAT1 4 187723286 T TG 1.23(1.13,1.35) 6.26E-06 42.33% 38.18% 0.97(0.76,1.24) 8.27E-01 99.39% 99.42% NA NA NA NA NA NA NA NA NA NA NA NA 1.20(1.10,1.31) 2.98E-05 7.57E-02
rs10456655 PKHD1 6 51817204 G C 1.30(1.16,1.44) 2.13E-06 20.35% 16.84% 1.06(1.01,1.12) 2.00E-02 17.45% 16.53% NA NA NA NA NA NA NA NA NA NA NA NA 1.10(1.05,1.16) 3.34E-05 1.10E-03
rs7752955 TFAP2D 6 50402660 T C 1.28(1.16,1.40) 6.46E-07 76.66% 72.16% 1.04(1.00,1.09) 6.33E-02 73.38% 72.61% 1.07(0.97,1.18) 1.89E-01 1.06(1.00,1.12) 6.05E-02 1.00(0.92,1.09) 9.50E-01 1.06(1.03,1.10) 3.90E-05 2.37E-03
rs898708 PNOC 8 28119194 C T 1.26(1.15,1.38) 9.94E-07 73.10% 68.50% 1.02(0.98,1.07) 2.77E-01 69.52% 69.11% 1.06(0.96,1.17) 2.51E-01 1.04(0.98,1.10) 1.53E-01 1.08(0.99,1.16) 7.10E-02 1.06(1.03,1.09) 9.27E-05 2.38E-03

rs34208875 CASC17 17 69195603 C T 2.95(1.90,4.59) 1.55E-06 1.33% 0.59% 1.18(0.90,1.55) 2.29E-01 0.52% 0.43% NA NA NA NA NA NA NA NA NA NA NA NA 1.53(1.21,1.93) 3.78E-04 5.57E-04
rs540249707 METTL7B 12 56072632 G A 3.60(2.13,6.08) 1.77E-06 1.03% 0.41% 1.17(0.78,1.75) 4.46E-01 0.23% 0.21% NA NA NA NA NA NA NA NA NA NA NA NA 1.78(1.29,2.46) 4.25E-04 9.06E-04
rs10944524 MIR4643 6 91898609 T C 1.28(1.15,1.43) 5.88E-06 18.12% 14.73% 1.05(0.99,1.10) 9.69E-02 15.62% 15.13% NA NA NA NA NA NA NA NA NA NA NA NA 1.09(1.04,1.14) 4.94E-04 8.25E-04
rs60581051 ANKS1B 12 100147984 T C 1.30(1.16,1.45) 7.81E-06 16.53% 13.40% 1.05(0.99,1.11) 8.71E-02 14.04% 13.55% NA NA NA NA NA NA NA NA NA NA NA NA 1.09(1.04,1.15) 5.02E-04 1.01E-03

rs147725108 LINC00354 13 112579895 C G 1.89(1.44,2.48) 4.66E-06 3.10% 1.92% 1.11(0.93,1.32) 2.61E-01 1.20% 1.07% NA NA NA NA NA NA NA NA NA NA NA NA 1.30(1.12,1.51) 5.74E-04 1.27E-03
rs142450848 CARD18 11 105111566 C T 2.34(1.69,3.25) 3.54E-07 2.08% 0.97% 1.10(0.92,1.33) 3.00E-01 1.07% 0.96% NA NA NA NA NA NA NA NA NA NA NA NA 1.33(1.13,1.57) 5.89E-04 9.62E-05
rs5873242* RANBP17 5 170321490 A T 1.25(1.14,1.38) 2.73E-06 72.23% 67.87% 1.03(0.96,1.10) 4.25E-01 68.78% 68.25% NA NA NA NA NA NA NA NA NA NA NA NA 1.10(1.04,1.17) 6.63E-04 8.90E-04

rs67529790* LINC00977 8 130055514 AT A 1.26(1.14,1.39) 2.78E-06 42.00% 37.87% 1.02(0.95,1.10) 5.13E-01 38.60% 38.10% NA NA NA NA NA NA NA NA NA NA NA NA 1.10(1.04,1.17) 8.05E-04 8.21E-04
rs138019013 ALS2CL 3 46737713 T G 3.92(2.29,6.69) 5.75E-07 1.01% 0.40% 0.97(0.58,1.60) 8.90E-01 0.14% 0.14% NA NA NA NA NA NA NA NA NA NA NA NA 1.87(1.29,2.70) 8.55E-04 1.86E-04
rs28581396* SLC38A11 2 165876796 C T 2.14(1.54,2.98) 6.32E-06 2.01% 1.06% 1.07(0.80,1.42) 6.50E-01 1.42% 1.34% NA NA NA NA NA NA NA NA NA NA NA NA 1.44(1.16,1.79) 9.60E-04 1.84E-03
rs144209184 SCD5 4 83646583 C T 2.40(1.64,3.51) 7.09E-06 1.70% 0.88% 1.14(0.90,1.44) 2.74E-01 0.68% 0.59% NA NA NA NA NA NA NA NA NA NA NA NA 1.40(1.15,1.71) 1.01E-03 1.15E-03
rs116931808* CSMD1 8 4035481 C G 2.29(1.59,3.29) 7.45E-06 1.60% 0.73% 1.01(0.70,1.47) 9.45E-01 0.72% 0.72% NA NA NA NA NA NA NA NA NA NA NA NA 1.54(1.19,2.00) 1.10E-03 2.13E-03

rs11563327 HOXA1 7 27071888 C T 1.24(1.13,1.36) 9.41E-06 74.64% 70.42% 1.03(0.99,1.08) 1.16E-01 71.80% 71.12% NA NA NA NA 1.03(0.97,1.09) 3.30E-01 1.03(0.95,1.11) 5.30E-01 1.05(1.02,1.08) 1.21E-03 4.77E-03
rs540119135 PTPRR 12 71094332 G A 3.17(2.03,4.95) 4.21E-07 1.24% 0.45% 1.05(0.75,1.46) 7.90E-01 0.33% 0.33% NA NA NA NA NA NA NA NA NA NA NA NA 1.55(1.19,2.03) 1.22E-03 9.42E-05
rs66671632 ARC 8 143680772 T C 1.31(1.17,1.47) 2.62E-06 16.48% 13.14% 1.04(0.98,1.10) 2.32E-01 12.61% 12.26% NA NA NA NA NA NA NA NA NA NA NA NA 1.09(1.03,1.15) 1.35E-03 2.70E-04

rs141214244* RAB11FIP2 10 119652851 T TGTGTG 1.32(1.18,1.49) 3.45E-06 21.01% 17.88% 1.02(0.94,1.12) 5.92E-01 19.37% 18.93% NA NA NA NA NA NA NA NA NA NA NA NA 1.12(1.04,1.20) 1.51E-03 5.94E-04
rs2237402 POU6F2 7 39449768 G A 1.23(1.12,1.34) 6.31E-06 69.78% 65.38% 1.04(1.00,1.08) 7.72E-02 66.68% 65.95% rs2237403 0.99506 1.02(0.93,1.12) 7.31E-01 rs2237403 0.995062 1.01(0.95,1.06) 7.75E-01 rs2237403 0.995062 1.04(0.96,1.11) 3.30E-01 1.04(1.02,1.07) 1.78E-03 5.14E-03

rs147345620 GPC6 13 94017255 G A 3.02(1.89,4.82) 3.46E-06 1.25% 0.60% 1.12(0.85,1.47) 4.20E-01 0.51% 0.45% NA NA NA NA NA NA NA NA NA NA NA NA 1.44(1.14,1.83) 2.37E-03 3.17E-04
rs11589523 FAM46C 1 118270980 T C 1.22(1.12,1.32) 6.46E-06 36.66% 32.31% 1.02(0.98,1.07) 2.64E-01 33.42% 32.89% NA NA NA NA NA NA NA NA NA NA NA NA 1.06(1.02,1.10) 3.26E-03 3.27E-04

rs556954774* LOC100130992 10 22549699 C CT 1.33(1.17,1.51) 9.52E-06 16.87% 14.13% 1.01(0.91,1.12) 8.35E-01 14.57% 14.53% NA NA NA NA NA NA NA NA NA NA NA NA 1.12(1.04,1.22) 3.54E-03 8.29E-04
rs34515326* MIR99AHG 21 17987843 CA C 1.95(1.46,2.60) 6.33E-06 3.12% 2.02% 1.00(0.79,1.26) 9.72E-01 2.17% 2.16% NA NA NA NA NA NA NA NA NA NA NA NA 1.30(1.09,1.57) 4.58E-03 4.39E-04
rs139198909 ZFHX3 16 72929809 C A 2.50(1.68,3.73) 7.18E-06 1.50% 0.74% 1.08(0.85,1.36) 5.37E-01 0.68% 0.64% NA NA NA NA NA NA NA NA NA NA NA NA 1.34(1.09,1.64) 5.10E-03 3.66E-04
rs191312158* CCNY 10 35871176 C T 2.76(1.80,4.23) 3.30E-06 1.42% 0.74% 0.96(0.69,1.35) 8.27E-01 0.98% 1.04% NA NA NA NA NA NA NA NA NA NA NA NA 1.44(1.11,1.88) 6.68E-03 1.54E-04

6:153400217_AT_A RGS17 6 153400217 AT A 1.24(1.13,1.36) 6.04E-06 62.00% 57.94% 1.02(0.97,1.07) 4.13E-01 74.18% 73.83% NA NA NA NA NA NA NA NA NA NA NA NA 1.06(1.02,1.10) 6.69E-03 1.98E-04
rs191634319 SOS1 2 39318135 C G 3.54(2.13,5.88) 1.09E-06 1.04% 0.41% 1.05(0.78,1.40) 7.66E-01 0.43% 0.43% NA NA NA NA NA NA NA NA NA NA NA NA 1.42(1.10,1.83) 7.11E-03 4.52E-05
rs62179502 SPATS2L 2 201146942 G A 2.03(1.51,2.73) 2.31E-06 98.06% 96.28% 1.06(0.95,1.19) 3.12E-01 97.12% 96.98% NA NA NA NA NA NA NA NA NA NA NA NA 1.15(1.04,1.28) 8.37E-03 5.18E-05

rs543354609 MDS2 1 23930694 C T 2.79(1.78,4.37) 7.11E-06 1.20% 0.52% 1.04(0.80,1.36) 7.73E-01 0.51% 0.50% NA NA NA NA NA NA NA NA NA NA NA NA 1.35(1.07,1.70) 1.04E-02 2.15E-04
rs144759478 PTH2R 2 209323283 T C 1.64(1.34,2.02) 2.06E-06 5.13% 3.42% 1.02(0.92,1.14) 7.04E-01 3.29% 3.23% NA NA NA NA NA NA NA NA NA NA NA NA 1.13(1.03,1.25) 1.10E-02 5.66E-05

rs6496033 LOC440311 15 95245915 A C 1.47(1.25,1.73) 4.82E-06 8.81% 6.65% 1.00(0.93,1.08) 9.73E-01 7.37% 7.35% NA NA NA NA 1.07(0.96,1.19) 2.48E-01 1.19(0.96,1.47) 1.10E-01 1.07(1.02,1.13) 1.16E-02 3.80E-04
rs1571570 PBX3 9 128748249 C G 1.41(1.22,1.63) 3.08E-06 9.45% 6.91% 1.08(1.00,1.16) 4.00E-02 7.33% 6.82% NA NA NA NA 0.97(0.89,1.06) 5.17E-01 0.96(0.83,1.12) 6.30E-01 1.07(1.01,1.12) 1.28E-02 1.40E-04

rs28700201* TP53TG3D 16 32275881 A G 1.33(1.18,1.50) 2.04E-06 49.33% 45.88% 0.96(0.88,1.06) 4.72E-01 54.34% 54.74% NA NA NA NA NA NA NA NA NA NA NA NA 1.10(1.02,1.18) 1.36E-02 3.76E-05
rs571984391* LMX1B 9 129414279 TG T 1.22(1.12,1.33) 6.58E-06 44.94% 40.48% 0.99(0.93,1.06) 7.89E-01 42.42% 42.68% NA NA NA NA NA NA NA NA NA NA NA NA 1.07(1.01,1.12) 1.54E-02 1.39E-04

rs524349 UNC13C 15 54689366 A G 1.29(1.17,1.41) 8.01E-08 73.26% 67.99% 1.01(0.97,1.05) 7.10E-01 69.42% 69.20% rs563881 0.9026 1.00(0.91,1.11) 9.41E-01 rs563881 0.902595 1.02(0.96,1.08) 5.48E-01 rs563881 0.902595 1.02(0.95,1.11) 5.80E-01 1.04(1.01,1.07) 1.64E-02 8.42E-05
rs144435735 LINC00682 4 41881253 A G 1.98(1.49,2.61) 1.96E-06 3.26% 2.06% 0.95(0.80,1.13) 5.51E-01 1.25% 1.33% NA NA NA NA NA NA NA NA NA NA NA NA 1.16(1.00,1.34) 4.81E-02 1.23E-05
rs73676140 NXPH1 7 8729124 G A 1.59(1.29,1.95) 9.74E-06 4.75% 3.16% 0.99(0.88,1.10) 7.95E-01 3.07% 3.12% NA NA NA NA NA NA NA NA NA NA NA NA 1.10(1.00,1.21) 6.06E-02 5.89E-05

rs139813768 SNX5 20 17828396 A G 2.47(1.66,3.67) 8.32E-06 1.57% 0.83% 0.94(0.75,1.19) 6.21E-01 0.65% 0.68% NA NA NA NA NA NA NA NA NA NA NA NA 1.21(0.99,1.48) 6.46E-02 4.32E-05
rs6806545 LOC647323 3 193660056 T C 1.21(1.11,1.32) 9.08E-06 41.15% 36.68% 0.99(0.95,1.03) 6.64E-01 37.72% 37.84% NA NA NA NA 1.03(0.98,1.09) 2.74E-01 1.00(0.94,1.07) 9.20E-01 1.02(1.00,1.05) 8.16E-02 4.24E-04

rs146883791 DCHS2 4 155121474 A ATAAG 1.74(1.37,2.21) 5.48E-06 3.42% 2.02% rs7680244 0.94(0.83,1.07) 3.43E-01 2.26% 2.41% rs7680244 0.99439 1.43(1.04,1.96) 2.95E-02 rs7680244 0.994386 0.99(0.80,1.23) 9.25E-01 NA NA NA NA 1.09(0.99,1.20) 8.79E-02 3.30E-05
rs9863931 ADAMTS9-AS2 3 65014778 T C 1.31(1.17,1.47) 3.89E-06 15.79% 12.47% 1.01(0.96,1.07) 6.52E-01 12.40% 12.17% NA NA NA NA 0.98(0.91,1.06) 6.73E-01 0.99(0.88,1.12) 9.20E-01 1.04(0.99,1.08) 9.31E-02 2.84E-04
rs7069309 CAMK1D 10 12351089 T C 1.20(1.11,1.30) 5.59E-06 49.24% 45.94% 1.01(0.97,1.05) 5.94E-01 50.11% 49.66% NA NA NA NA 0.99(0.94,1.05) 7.17E-01 0.99(0.92,1.07) 8.10E-01 1.02(1.00,1.05) 9.91E-02 3.72E-04

rs79325679 LARGE 22 33929898 T C 2.07(1.55,2.76) 7.71E-07 2.50% 1.26% 0.93(0.80,1.09) 3.70E-01 1.47% 1.59% NA NA NA NA NA NA NA NA NA NA NA NA 1.12(0.97,1.28) 1.16E-01 1.79E-06
rs11872477 18 2037477 T C 1.26(1.14,1.39) 5.92E-06 37.93% 34.04% 0.99(0.94,1.03) 6.07E-01 32.52% 32.80% NA NA NA NA NA NA NA NA NA NA NA NA 1.03(0.99,1.08) 1.44E-01 1.55E-05

rs190999252 CCSER1 4 92847036 A G 2.07(1.51,2.84) 7.12E-06 2.25% 1.27% 0.93(0.79,1.11) 4.34E-01 1.26% 1.34% NA NA NA NA NA NA NA NA NA NA NA NA 1.12(0.96,1.30) 1.52E-01 1.49E-05
rs75809547 PTBP2 1 97331151 C T 2.61(1.74,3.93) 3.85E-06 1.46% 0.65% 0.86(0.68,1.09) 2.21E-01 0.62% 0.72% NA NA NA NA NA NA NA NA NA NA NA NA 1.14(0.93,1.41) 2.00E-01 4.10E-06

rs147842378 AGO4 1 36276202 C G 2.01(1.49,2.71) 5.08E-06 3.16% 2.10% 0.91(0.78,1.07) 2.67E-01 1.48% 1.63% NA NA NA NA NA NA NA NA NA NA NA NA 1.08(0.94,1.25) 2.54E-01 5.19E-06
11:23234822_ATGG_A MIR8054 11 23234822 ATGG A 1.22(1.13,1.33) 2.68E-06 43.06% 38.46% rs2403819 0.99(0.96,1.03) 7.41E-01 39.17% 39.33% rs2403819 0.97568 1.01(0.92,1.11) 8.49E-01 rs2403819 0.975677 0.96(0.91,1.01) 1.04E-01 rs2403819 0.975677 1.03(0.96,1.10) 4.00E-01 1.01(0.98,1.04) 4.19E-01 5.19E-05

rs12261064 GPR26 10 125429706 A G 1.55(1.30,1.86) 1.48E-06 6.21% 4.14% 0.90(0.82,0.99) 2.71E-02 4.32% 4.72% 0.86(0.69,1.05) 1.44E-01 0.92(0.82,1.04) 2.00E-01 1.05(0.86,1.28) 6.20E-01 1.02(0.96,1.09) 4.68E-01 2.40E-06
rs1188854 ECT2L 6 139196524 G A 1.39(1.21,1.61) 6.57E-06 10.13% 7.69% 0.97(0.90,1.03) 3.14E-01 8.20% 8.43% NA NA NA NA 1.00(0.91,1.10) 9.58E-01 0.94(0.81,1.11) 4.80E-01 1.02(0.97,1.07) 5.48E-01 8.42E-05
rs3104056 COL13A1 10 71510039 A G 1.53(1.27,1.84) 6.31E-06 5.64% 3.78% 0.85(0.76,0.94) 1.16E-03 3.55% 4.09% 1.05(0.83,1.32) 6.83E-01 0.98(0.84,1.14) 8.09E-01 1.20(0.93,1.54) 1.60E-01 1.00(0.94,1.08) 9.08E-01 1.17E-06

*Interim release used in UKBB for these signals. Nobese=2,799. Ncontrols=8,193
EA= Effect allele (BMI increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval for the odds ratio; EAF = effect allele frequency. HetPVal= Heterozygosity p-value
Positions mapped to hg19

Combined analysis
S6 Table. Discovery, replication and meta-analysis results for 66 SNPs meeting P<10-5 in discovery association results of SCOOP vs UKHLS analysis.
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Appendix A

rsID Nearest gene Chr. Position (bp) EA NEA OR  (95% CI) P value EAF Non-extremes EAF Thin OR  (95% CI) P value EAF Non-extremes EAF Thin OR  (95% CI) P value HetPVal
rs13262703 PI15 8 75819902 A T 4.15 (2.42,7.11) 2.32E-07 99.62% 98.88% 1.69(0.98,2.91) 5.68E-02 99.84% 99.74% 2.66(1.81,3.89) 5.46E-07 2.15E-02

rs558258836* LOC102724874 8 78716821 T A 4.04 (2.25,7.26) 3.07E-06 99.60% 99.04% 1.69 (0.89,3.2) 1.07E-01 99.50% 99.28% 2.71 (1.76,4.18) 5.99E-06 4.90E-02
rs2123163 CADM2 3 85243797 T G 1.68 (1.35,2.1) 4.90E-06 6.40% 4.20% 1.14(1.00,1.29) 4.22E-02 5.12% 4.60% 1.25(1.12,1.39) 6.18E-05 2.76E-03

rs150756788 SLC2A7 1 9050295 G T 2.09 (1.52,2.87) 4.96E-06 98.21% 97.25% 1.20(0.91,1.60) 2.00E-01 99.26% 99.11% 1.54(1.25,1.90) 6.41E-05 1.07E-02
rs545797179* FOXN2 2 48546924 AT A 2.79 (1.8,4.32) 4.31E-06 99.24% 98.48% 1.15 (0.65,2.05) 6.23E-01 99.18% 99.07% 2.02 (1.42,2.86) 7.77E-05 1.65E-02
rs117638949* PIGZ 3 196692722 T A 3.5 (2.27,5.4) 1.50E-08 99.50% 98.55% 0.54 (0.27,1.09) 8.60E-02 99.30% 99.62% 2.09 (1.44,3.02) 9.25E-05 8.97E-06
rs576762972* CACNA1C 12 2244717 T C 2.17 (1.55,3.05) 7.23E-06 98.99% 98.03% 1.16 (0.78,1.72) 4.69E-01 98.87% 98.73% 1.66 (1.29,2.15) 1.05E-04 1.79E-02
rs138454709* COL8A2 1 36592131 A G 2.58 (1.72,3.88) 5.29E-06 99.03% 98.33% 1.11 (0.65,1.9) 7.04E-01 99.04% 99.00% 1.89 (1.37,2.62) 1.17E-04 1.41E-02

rs75937976 C3orf38 3 88321976 G C 2.95 (2.02,4.32) 2.43E-08 99.20% 98.25% 1.10(0.84,1.44) 4.96E-01 99.13% 99.05% 1.53(1.23,1.91) 1.52E-04 3.33E-05
rs190051670 PHF2 9 96460947 C T 2.55 (1.73,3.76) 2.11E-06 99.25% 98.35% 1.19(0.91,1.56) 2.00E-01 99.18% 99.05% 1.53(1.23,1.91) 1.68E-04 1.59E-03
rs56152157 EDIL3 5 83171742 G A 1.21 (1.11,1.31) 6.91E-06 47.95% 42.99% 1.04(0.99,1.10) 1.21E-01 47.37% 46.44% 1.09(1.04,1.14) 2.11E-04 2.85E-03

rs139226692* ASAH1 8 17928720 C CA 2.82 (1.78,4.46) 9.46E-06 99.56% 98.81% 1.11 (0.63,1.92) 7.24E-01 99.37% 99.34% 1.93 (1.35,2.75) 2.73E-04 1.08E-02
rs112958625* KNDC1 10 134969737 G A 2.8 (1.81,4.33) 3.61E-06 99.00% 98.39% 1.01 (0.59,1.72) 9.73E-01 98.93% 98.94% 1.86 (1.33,2.62) 3.02E-04 3.75E-03
rs68090520* ZMAT3 3 178717361 C A 1.24 (1.13,1.36) 4.04E-06 54.37% 50.43% 1.02 (0.93,1.11) 7.45E-01 53.49% 53.13% 1.12 (1.05,1.2) 4.39E-04 2.72E-03
rs17544568 ONECUT1 15 53321119 G A 2.04 (1.54,2.7) 6.53E-07 97.94% 96.67% 1.09(0.93,1.29) 2.78E-01 97.58% 97.40% 1.28(1.11,1.47) 5.80E-04 1.74E-04

rs143866745* LOC101927495 11 61356693 C T 1.31 (1.17,1.46) 1.26E-06 60.23% 56.57% 0.89 (0.51,1.55) 6.88E-01 99.16% 99.21% 1.84 (1.29,2.61) 6.65E-04 9.33E-04
rs184273748* PTPRU 1 29562801 G A 2.53 (1.71,3.73) 3.04E-06 99.12% 98.24% 0.65 (0.33,1.26) 2.00E-01 99.17% 99.35% 1.79 (1.28,2.5) 7.11E-04 5.41E-04
rs115861768 MIR4426 16 60885992 C T 3.27 (1.93,5.52) 9.57E-06 99.53% 98.98% 1.14(0.73,1.76) 5.68E-01 99.65% 99.64% 1.76(1.25,2.46) 1.04E-03 2.46E-03

rs191980904* UQCRC2 16 21946517 C T 2.98 (1.85,4.79) 6.69E-06 99.56% 98.93% 0.84 (0.46,1.55) 5.84E-01 99.36% 99.44% 1.85 (1.27,2.7) 1.28E-03 1.39E-03
rs11665052 MC4R 18 57908675 G A 1.31 (1.18,1.44) 1.40E-07 27.11% 22.61% 1.02(0.96,1.08) 5.63E-01 26.22% 25.78% 1.09(1.03,1.14) 1.48E-03 2.22E-05

2:25411587_C_CT** POMC 2 25411587 C CT 1.36 (1.21,1.51) 6.52E-08 83.75% 79.76% 1.01(0.95,1.08) 7.22E-01 82.18% 82.10% 1.10(1.04,1.16) 1.76E-03 9.91E-06
rs137887309 CDH23 10 73211425 G A 2.66 (1.74,4.07) 6.24E-06 99.48% 98.66% 1.03(0.71,1.50) 8.67E-01 99.54% 99.50% 1.56(1.18,2.06) 1.94E-03 9.94E-04
rs11757467 EYA4 6 133808153 A T 1.71 (1.35,2.17) 8.55E-06 97.57% 96.11% 1.05(0.90,1.24) 5.26E-01 97.48% 97.33% 1.23(1.08,1.40) 2.43E-03 9.08E-04

rs148209625 ZNF664-FAM101A 12 124681051 C T 2.2 (1.58,3.07) 2.97E-06 99.02% 97.95% 1.04(0.82,1.32) 7.63E-01 98.89% 98.85% 1.35(1.11,1.64) 2.74E-03 3.19E-04
rs71515311* TMEM72-AS1 10 45116672 A ATAT 1.25 (1.13,1.38) 8.55E-06 70.65% 66.71% 0.99 (0.89,1.09) 7.72E-01 69.59% 70.05% 1.11 (1.04,1.19) 2.84E-03 9.00E-04
rs11557769 ACTN1 14 69341653 T A 1.95 (1.5,2.55) 8.61E-07 98.33% 96.94% 0.91(0.70,1.17) 4.48E-01 98.83% 98.98% 1.31(1.09,1.57) 4.41E-03 4.45E-05

rs142441937 KLF15 3 126030681 G A 2.53 (1.69,3.79) 6.78E-06 99.16% 98.44% 1.02(0.78,1.34) 8.75E-01 99.08% 99.11% 1.36(1.08,1.70) 8.09E-03 2.71E-04
rs117944743 ZNF93 19 20060211 C G 2.06 (1.5,2.82) 7.33E-06 98.81% 97.84% 1.01(0.82,1.25) 9.34E-01 98.49% 98.47% 1.26(1.05,1.50) 1.06E-02 2.28E-04
rs142425331 CHCHD3 7 132583478 G A 1.6 (1.31,1.96) 4.36E-06 96.58% 94.82% 0.98(0.84,1.13) 7.44E-01 96.61% 96.71% 1.16(1.03,1.30) 1.59E-02 8.80E-05
rs138251346 LOC101929452 2 7279064 A G 2.99 (1.9,4.7) 2.23E-06 99.27% 98.62% 0.77(0.50,1.19) 2.42E-01 99.53% 99.64% 1.46(1.07,2.00) 1.66E-02 2.20E-05

rs1435711 ADAMTS20 12 43429113 G A 1.32 (1.18,1.49) 2.11E-06 86.34% 83.30% 0.99(0.92,1.07) 8.17E-01 85.74% 85.93% 1.08(1.01,1.15) 1.76E-02 3.92E-05
rs553440779 KCNJ3 2 155835504 T C 2.67 (1.74,4.09) 6.98E-06 99.27% 98.53% 0.72(0.45,1.15) 1.66E-01 99.61% 99.70% 1.46(1.07,2.00) 1.78E-02 4.88E-05
rs77709566 INTU 4 128466995 A G 2 (1.5,2.66) 2.01E-06 98.42% 97.20% 0.97(0.81,1.17) 7.51E-01 97.98% 98.03% 1.20(1.03,1.40) 2.02E-02 3.20E-05

rs514529 LRP5 11 68090836 T A 1.23 (1.13,1.34) 1.09E-06 53.61% 51.60% 0.99(0.94,1.05) 7.62E-01 52.12% 52.27% 1.05(1.01,1.10) 2.04E-02 1.68E-05
rs200275909* ADAMTS20 12 43954570 A AT 3.21 (1.93,5.35) 7.29E-06 99.42% 98.76% 0.88 (0.78,1) 5.84E-02 85.23% 86.54% 1.1 (1.01,1.2) 2.38E-02 4.69E-06

rs73085383 ZNF343 20 2503465 C T 2.13 (1.56,2.92) 2.05E-06 98.63% 97.60% 0.85(0.66,1.10) 2.28E-01 98.79% 98.97% 1.23(1.01,1.50) 3.92E-02 8.79E-06
rs527595266 ADAMTS16 5 5341419 C G 2.91 (1.81,4.68) 9.95E-06 99.42% 98.79% 0.93(0.68,1.27) 6.52E-01 99.30% 99.30% 1.31(1.01,1.71) 4.00E-02 8.21E-05

*Interim release used in UKBB for these signals.  Nthin=1,212. Ncontrols=8,193
**rs4665779 was used as a proxy in UKBB
EA= Effect allele (BMI increasing allele); NEA= Non-effect allele; OR = Odds ratio; 95% CI = 95% confidence interval for the odds ratio; EAF = effect allele frequency. HetPVal= Heterozygosity p-value
Positions mapped to hg19
Red line: Strict genome-wide significant threshold (p<1.17E-08) in combined analysis. Blue line: Conventional genome-wide significant threshold (p<5E-08) in combined analysis.

STILTS UKBB

S7 Table. Discovery, replication and meta-analysis results for 37 SNPs meeting P<10-5 in discovery association results of UKHLS vs STILTS analysis.

Combined analysis
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S10 Table. Published loci from GIANT, EGG and SCOOP 2013 not reaching genome-wide significance in our study

rsID Gene OR GIANT BMI tails Stage 1 P GIANT BMI tails Stage 1 OR SCOOP/STILTS P SCOOP/STILTS OR SCOOP/UKHLS P SCOOP/UKHLS OR UKHLS/STILTS P UKHLS/STILTS
rs2568958 NEGR1 1.17 (1.12,1.23) 6.80E-10 1.25 (1.11,1.39) 1.00E-04 1.19(1.09,1.29) 5.65E-05 1.06(0.97,1.16) 1.73E-01
rs987237 TFAP2B 1.20 (1.12,1.28) 4.30E-07 1.31 (1.14,1.50) 2.00E-04 1.17(1.05,1.29) 3.25E-03 1.14(1.01,1.27) 2.72E-02

rs2030323 BDNF 1.21 (1.13,1.30) 5.20E-08 1.31 (1.13,1.50) 7.46E-05 1.15(1.03,1.27) 1.03E-02 1.10(1.00,1.22) 4.92E-02
rs1516725 ETV5 1.30 (1.19, 1.42) 2.10E-08 1.30 (1.11,1.52) 8.00E-04 1.16(1.02,1.31) 1.89E-02 1.18(1.05,1.33) 5.03E-03

rsID Gene OR GIANT Stage 1 P GIANT Stage 1 OR SCOOP/STILTS P SCOOP/STILTS OR SCOOP/UKHLS P SCOOP/UKHLS OR UKHLS/STILTS P UKHLS/STILTS Reported Trait
rs7989336 HS6ST3 1.12 5.88E-09 1.13(1.01,1.26) 3.17E-02 1.03(0.95,1.12) 4.42E-01 1.09(1.00,1.19) 4.15E-02 Obesity class 2

rs17381664 ZZZ3 1.11 7.61E-08 1.00(0.89,1.12) 9.86E-01 0.98(0.91,1.07) 6.99E-01 1.03(0.95,1.12) 4.82E-01 Obesity class 2
rs17024258 GNAT2 1.23 1.41E-06 1.80(1.29,2.53) 6.27E-04 1.57(1.25,1.97) 1.18E-04 1.10(0.82,1.46) 5.32E-01 Obesity class 1
rs4735692 HNF4G 1.07 5.03E-08 1.08(0.97,1.21) 1.57E-01 1.00(0.92,1.09) 9.87E-01 1.07(0.98,1.16) 1.27E-01 Obesity class 1

rs13041126 MRPS33P4 1.07 3.05E-07 1.14(1.01,1.28) 3.88E-02 1.07(0.97,1.17) 1.71E-01 1.03(0.94,1.13) 5.43E-01 Obesity class 1
rs2531995 ADCY9 1.06 3.17E-06 1.14(1.01,1.28) 3.22E-02 1.06(0.97,1.16) 2.06E-01 1.08(0.98,1.18) 1.04E-01 Obesity class 1
rs4735692 HNF4G 1.05 6.13E-09 1.08(0.97,1.21) 1.57E-01 1.00(0.92,1.09) 9.87E-01 1.07(0.98,1.16) 1.27E-01 Overweight
rs7503807 RPTOR 1.04 4.20E-06 1.18(1.06,1.32) 2.90E-03 1.11(1.03,1.21) 1.04E-02 1.07(0.98,1.16) 1.24E-01 Overweight

rsID Gene OR EGG Stage 1 P EGG Stage 1 OR SCOOP/STILTS P SCOOP/STILTS OR SCOOP/UKHLS P SCOOP/UKHLS OR UKHLS/STILTS P UKHLS/STILTS
rs9568856 OLFM4 1.21 6.58E−7 1.09(0.93,1.28) 2.71E-01 1.14(1.01,1.28) 2.99E-02 0.97(0.86,1.10) 6.41E-01

rs9299 HOXB5 1.14 9.12E−7 1.18(1.05,1.32) 6.46E-03 1.03(0.94,1.12) 5.68E-01 1.09(1.00,1.19) 5.34E-02

rsID Gene OR SCOOP 2013 Stage 1 P SCOOP 2013 Stage 1 OR SCOOP/STILTS P SCOOP/STILTS OR SCOOP/UKHLS P SCOOP/UKHLS OR UKHLS/STILTS P UKHLS/STILTS

rs1993709 NEGR1 1.46 1.98E-12 1.30(1.13,1.50) 2.54E-04 1.29(1.16,1.44) 4.45E-06 1.03(0.93,1.14) 6.16E-01
rs1957894 PRKCH 1.64 1.01E-08 1.25(1.03,1.51) 2.61E-02 1.17(1.02,1.35) 2.40E-02 1.01(0.87,1.18) 8.79E-01

rs11208659 LEPR 1.63 1.16E-10 1.22(1.01,1.48) 4.33E-02 1.28(1.12,1.48) 4.35E-04 0.95(0.81,1.10) 4.90E-01
rs564343 PACS1 1.25 5.81E-08 1.01(0.90,1.13) 9.18E-01 1.04(0.95,1.13) 4.12E-01 0.96(0.89,1.05) 4.12E-01

rs11109072 RMST 1.79 1.48E-07 0.87(0.63,1.20) 3.83E-01 0.95(0.74,1.21) 6.74E-01 0.97(0.76,1.24) 8.13E-01

Loci identified in E. Wheeler, et al. (2013)

Known BMI loci with meta p <5E-8 in GIANT BMI tails study but not in this study (obese vs thin)

Loci identified in S.I. Berndt, et al. (2013)

Loci indentified in J.P. Bradfield, H.R. Taal, et al. (2012)



Appendix A

S12 Table. ICD10 codes used to exclude thin individuals in UKBB
Code Description
A071 A07.1 Giardiasis [lambliasis]
A150 A15.0 Tuberculosis of lung, confirmed by sputum microscopy with or without culture
A151 A15.1 Tuberculosis of lung, confirmed by culture only
A152 A15.2 Tuberculosis of lung, confirmed histologically
A159 A15.9 Respiratory tuberculosis unspecified, confirmed bacteriologically and histologically
A162 A16.2 Tuberculosis of lung, without mention of bacteriological or histological confirmation
A169 A16.9 Respiratory tuberculosis unspecified, without mention of bacteriological or histological confirmation
B181 B18.1 Chronic viral hepatitis B without delta-agent
B182 B18.2 Chronic viral hepatitis C
B203 B20.3 HIV disease resulting in other viral infections
B204 B20.4 HIV disease resulting in candidiasis
B238 B23.8 HIV disease resulting in other specified conditions
B24 B24 Unspecified human immunodeficiency virus [HIV] disease
C01 C01 Malignant neoplasm of base of tongue
C099 C09.9 Tonsil, unspecified
C108 C10.8 Overlapping lesion of oropharynx
C109 C10.9 Oropharynx, unspecified
C155 C15.5 Lower third of oesophagus
C159 C15.9 Oesophagus, unspecified
C169 C16.9 Stomach, unspecified
C172 C17.2 Ileum
C180 C18.0 Caecum
C182 C18.2 Ascending colon
C184 C18.4 Transverse colon
C187 C18.7 Sigmoid colon
C189 C18.9 Colon, unspecified
C20 C20 Malignant neoplasm of rectum
C210 C21.0 Anus, unspecified
C211 C21.1 Anal canal
C220 C22.0 Liver cell carcinoma
C221 C22.1 Intrahepatic bile duct carcinoma
C250 C25.0 Head of pancreas
C258 C25.8 Overlapping lesion of pancreas
C259 C25.9 Pancreas, unspecified
C341 C34.1 Upper lobe, bronchus or lung
C342 C34.2 Middle lobe, bronchus or lung
C343 C34.3 Lower lobe, bronchus or lung
C349 C34.9 Bronchus or lung, unspecified
C411 C41.1 Mandible
C435 C43.5 Malignant melanoma of trunk
C436 C43.6 Malignant melanoma of upper limb, including shoulder
C437 C43.7 Malignant melanoma of lower limb, including hip
C439 C43.9 Malignant melanoma of skin, unspecified
C441 C44.1 Skin of eyelid, including canthus
C442 C44.2 Skin of ear and external auricular canal
C443 C44.3 Skin of other and unspecified parts of face
C444 C44.4 Skin of scalp and neck
C445 C44.5 Skin of trunk
C446 C44.6 Skin of upper limb, including shoulder
C447 C44.7 Skin of lower limb, including hip
C482 C48.2 Peritoneum, unspecified
C503 C50.3 Lower-inner quadrant of breast
C504 C50.4 Upper-outer quadrant of breast
C505 C50.5 Lower-outer quadrant of breast
C509 C50.9 Breast, unspecified
C541 C54.1 Endometrium
C56 C56 Malignant neoplasm of ovary
C61 C61 Malignant neoplasm of prostate
C64 C64 Malignant neoplasm of kidney, except renal pelvis
C66 C66 Malignant neoplasm of ureter
C679 C67.9 Bladder, unspecified
C719 C71.9 Brain, unspecified
C73 C73 Malignant neoplasm of thyroid gland
C770 C77.0 Lymph nodes of head, face and neck
C771 C77.1 Intrathoracic lymph nodes
C772 C77.2 Intra-abdominal lymph nodes
C773 C77.3 Axillary and upper limb lymph nodes
C779 C77.9 Lymph node, unspecified
C780 C78.0 Secondary malignant neoplasm of lung
C786 C78.6 Secondary malignant neoplasm of retroperitoneum and peritoneum
C787 C78.7 Secondary malignant neoplasm of liver
C788 C78.8 Secondary malignant neoplasm of other and unspecified digestive organs
C793 C79.3 Secondary malignant neoplasm of brain and cerebral meninges
C795 C79.5 Secondary malignant neoplasm of bone and bone marrow
C80 C80 Malignant neoplasm without specification of site
C829 C82.9 Follicular non-Hodgkin's lymphoma, unspecified
C844 C84.4 Peripheral T-cell lymphoma
C859 C85.9 Non-Hodgkin's lymphoma, unspecified type
C880 C88.0 Waldenstr¸m's macroglobulinaemia
C910 C91.0 Acute lymphoblastic leukaemia
C920 C92.0 Acute myeloid leukaemia
D001 D00.1 Oesophagus
D013 D01.3 Anus and anal canal
D033 D03.3 Melanoma in situ of other and unspecified parts of face
D371 D37.1 Stomach
D374 D37.4 Colon
D375 D37.5 Rectum
D377 D37.7 Other digestive organs
D381 D38.1 Trachea, bronchus and lung
D391 D39.1 Ovary
D400 D40.0 Prostate
D430 D43.0 Brain, supratentorial
D432 D43.2 Brain, unspecified
D443 D44.3 Pituitary gland
D45 D45 Polycythaemia vera
D469 D46.9 Myelodysplastic syndrome, unspecified
D471 D47.1 Chronic myeloproliferative disease
D477 D47.7 Other specified neoplasms of uncertain or unknown behaviour of lymphoid, haematopoietic and related tissue
D481 D48.1 Connective and other soft tissue
D485 D48.5 Skin
D486 D48.6 Breast
D500 D50.0 Iron deficiency anaemia secondary to blood loss (chronic)
D508 D50.8 Other iron deficiency anaemias
D509 D50.9 Iron deficiency anaemia, unspecified
D510 D51.0 Vitamin B12 deficiency anaemia due to intrinsic factor deficiency
D519 D51.9 Vitamin B12 deficiency anaemia, unspecified
D529 D52.9 Folate deficiency anaemia, unspecified
D539 D53.9 Nutritional anaemia, unspecified
E039 E03.9 Hypothyroidism, unspecified
E041 E04.1 Non-toxic single thyroid nodule
E042 E04.2 Non-toxic multinodular goitre
E049 E04.9 Non-toxic goitre, unspecified
E050 E05.0 Thyrotoxicosis with diffuse goitre
E052 E05.2 Thyrotoxicosis with toxic multinodular goitre
E059 E05.9 Thyrotoxicosis, unspecified
E063 E06.3 Autoimmune thyroiditis
E079 E07.9 Disorder of thyroid, unspecified
E101 E10.1 With ketoacidosis
E103 E10.3 With ophthalmic complications
E104 E10.4 With neurological complications
E105 E10.5 With peripheral circulatory complications
E109 E10.9 Without complications
E110 E11.0 With coma
E112 E11.2 With renal complications
E113 E11.3 With ophthalmic complications
E114 E11.4 With neurological complications
E115 E11.5 With peripheral circulatory complications
E118 E11.8 With unspecified complications
E162 E16.2 Hypoglycaemia, unspecified
E210 E21.0 Primary hyperparathyroidism
E211 E21.1 Secondary hyperparathyroidism, not elsewhere classified
E212 E21.2 Other hyperparathyroidism
E213 E21.3 Hyperparathyroidism, unspecified
E222 E22.2 Syndrome of inappropriate secretion of antidiuretic hormone
E229 E22.9 Hyperfunction of pituitary gland, unspecified
E230 E23.0 Hypopituitarism
E232 E23.2 Diabetes insipidus
E236 E23.6 Other disorders of pituitary gland
E237 E23.7 Disorder of pituitary gland, unspecified
E271 E27.1 Primary adrenocortical insufficiency
E272 E27.2 Addisonian crisis
E274 E27.4 Other and unspecified adrenocortical insufficiency
E279 E27.9 Disorder of adrenal gland, unspecified
E348 E34.8 Other specified endocrine disorders
E349 E34.9 Endocrine disorder, unspecified
E46 E46 Unspecified protein-energy malnutrition
E538 E53.8 Deficiency of other specified B group vitamins
E559 E55.9 Vitamin D deficiency, unspecified
E804 E80.4 Gilbert's syndrome
E831 E83.1 Disorders of iron metabolism
E833 E83.3 Disorders of phosphorus metabolism
E834 E83.4 Disorders of magnesium metabolism
E835 E83.5 Disorders of calcium metabolism
E853 E85.3 Secondary systemic amyloidosis
E854 E85.4 Organ-limited amyloidosis
E859 E85.9 Amyloidosis, unspecified
E86 E86 Volume depletion
E870 E87.0 Hyperosmolality and hypernatraemia
E871 E87.1 Hypo-osmolality and hyponatraemia
E872 E87.2 Acidosis
E873 E87.3 Alkalosis
E875 E87.5 Hyperkalaemia
E876 E87.6 Hypokalaemia
E878 E87.8 Other disorders of electrolyte and fluid balance, not elsewhere classified
E880 E88.0 Disorders of plasma-protein metabolism, not elsewhere classified
E881 E88.1 Lipodystrophy, not elsewhere classified
E890 E89.0 Postprocedural hypothyroidism
E891 E89.1 Postprocedural hypoinsulinaemia
F009 F00.9 Dementia in Alzheimer's disease, unspecified
F019 F01.9 Vascular dementia, unspecified
F03 F03 Unspecified dementia
F059 F05.9 Delirium, unspecified
F067 F06.7 Mild cognitive disorder
F069 F06.9 Unspecified mental disorder due to brain damage and dysfunction and to physical disease
F072 F07.2 Postconcussional syndrome
F09 F09 Unspecified organic or symptomatic mental disorder
F100 F10.0 Acute intoxication
F101 F10.1 Harmful use
F102 F10.2 Dependence syndrome
F103 F10.3 Withdrawal state
F104 F10.4 Withdrawal state with delirium
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F105 F10.5 Psychotic disorder
F106 F10.6 Amnesic syndrome
F109 F10.9 Unspecified mental and behavioural disorder
F110 F11.0 Acute intoxication
F111 F11.1 Harmful use
F112 F11.2 Dependence syndrome
F115 F11.5 Psychotic disorder
F121 F12.1 Harmful use
F122 F12.2 Dependence syndrome
F170 F17.0 Acute intoxication
F171 F17.1 Harmful use
F172 F17.2 Dependence syndrome
F173 F17.3 Withdrawal state
F191 F19.1 Harmful use
F193 F19.3 Withdrawal state
F200 F20.0 Paranoid schizophrenia
F206 F20.6 Simple schizophrenia
F208 F20.8 Other schizophrenia
F209 F20.9 Schizophrenia, unspecified
F220 F22.0 Delusional disorder
F230 F23.0 Acute polymorphic psychotic disorder without symptoms of schizophrenia
F231 F23.1 Acute polymorphic psychotic disorder with symptoms of schizophrenia
F239 F23.9 Acute and transient psychotic disorder, unspecified
F258 F25.8 Other schizoaffective disorders
F29 F29 Unspecified nonorganic psychosis
F300 F30.0 Hypomania
F309 F30.9 Manic episode, unspecified
F310 F31.0 Bipolar affective disorder, current episode hypomanic
F312 F31.2 Bipolar affective disorder, current episode manic with psychotic symptoms
F315 F31.5 Bipolar affective disorder, current episode severe depression with psychotic symptoms
F317 F31.7 Bipolar affective disorder, currently in remission
F319 F31.9 Bipolar affective disorder, unspecified
F320 F32.0 Mild depressive episode
F321 F32.1 Moderate depressive episode
F322 F32.2 Severe depressive episode without psychotic symptoms
F323 F32.3 Severe depressive episode with psychotic symptoms
F328 F32.8 Other depressive episodes
F329 F32.9 Depressive episode, unspecified
F330 F33.0 Recurrent depressive disorder, current episode mild
F331 F33.1 Recurrent depressive disorder, current episode moderate
F332 F33.2 Recurrent depressive disorder, current episode severe without psychotic symptoms
F333 F33.3 Recurrent depressive disorder, current episode severe with psychotic symptoms
F334 F33.4 Recurrent depressive disorder, currently in remission
F339 F33.9 Recurrent depressive disorder, unspecified
F341 F34.1 Dysthymia
F380 F38.0 Other single mood [affective] disorders
F402 F40.2 Specific (isolated) phobias
F410 F41.0 Panic disorder [episodic paroxysmal anxiety]
F411 F41.1 Generalised anxiety disorder
F412 F41.2 Mixed anxiety and depressive disorder
F419 F41.9 Anxiety disorder, unspecified
F420 F42.0 Predominantly obsessional thoughts or ruminations
F428 F42.8 Other obsessive-compulsive disorders
F429 F42.9 Obsessive-compulsive disorder, unspecified
F430 F43.0 Acute stress reaction
F431 F43.1 Posttraumatic stress disorder
F432 F43.2 Adjustment disorders
F439 F43.9 Reaction to severe stress, unspecified
F458 F45.8 Other somatoform disorders
F500 F50.0 Anorexia nervosa
F501 F50.1 Atypical anorexia nervosa
F502 F50.2 Bulimia nervosa
F508 F50.8 Other eating disorders
F509 F50.9 Eating disorder, unspecified
F522 F52.2 Failure of genital response
F530 F53.0 Mild mental and behavioural disorders associated with the puerperium, not elsewhere classified
F55 F55 Abuse of non-dependence-producing substances
F603 F60.3 Emotionally unstable personality disorder
F605 F60.5 Anankastic personality disorder
F606 F60.6 Anxious [avoidant] personality disorder
F607 F60.7 Dependent personality disorder
F609 F60.9 Personality disorder, unspecified
F633 F63.3 Trichotillomania
F640 F64.0 Transsexualism
F801 F80.1 Expressive language disorder
F819 F81.9 Developmental disorder of scholastic skills, unspecified
F911 F91.1 Unsocialised conduct disorder
F99 F99 Mental disorder, not otherwise specified
G309 G30.9 Alzheimer's disease, unspecified
G35 G35 Multiple sclerosis
J440 J44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection
J441 J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified
J448 J44.8 Other specified chronic obstructive pulmonary disease
J449 J44.9 Chronic obstructive pulmonary disease, unspecified
K500 K50.0 Crohn's disease of small intestine
K501 K50.1 Crohn's disease of large intestine
K508 K50.8 Other Crohn's disease
K509 K50.9 Crohn's disease, unspecified
K510 K51.0 Ulcerative (chronic) enterocolitis
K512 K51.2 Ulcerative (chronic) proctitis
K513 K51.3 Ulcerative (chronic) rectosigmoiditis
K518 K51.8 Other ulcerative colitis
K519 K51.9 Ulcerative colitis, unspecified
K521 K52.1 Toxic gastro-enteritis and colitis
K528 K52.8 Other specified non-infective gastro-enteritis and colitis
K529 K52.9 Non-infective gastro-enteritis and colitis, unspecified
K580 K58.0 Irritable bowel syndrome with diarrhoea
K589 K58.9 Irritable bowel syndrome without diarrhoea
K700 K70.0 Alcoholic fatty liver
K703 K70.3 Alcoholic cirrhosis of liver
K709 K70.9 Alcoholic liver disease, unspecified
K720 K72.0 Acute and subacute hepatic failure
K729 K72.9 Hepatic failure, unspecified
K740 K74.0 Hepatic fibrosis
K743 K74.3 Primary biliary cirrhosis
K744 K74.4 Secondary biliary cirrhosis
K745 K74.5 Biliary cirrhosis, unspecified
K746 K74.6 Other and unspecified cirrhosis of liver
K750 K75.0 Abscess of liver
K760 K76.0 Fatty (change of) liver, not elsewhere classified
K766 K76.6 Portal hypertension
K767 K76.7 Hepatorenal syndrome
K768 K76.8 Other specified diseases of liver
K769 K76.9 Liver disease, unspecified
K770 K77.0 Liver disorders in infectious and parasitic diseases classified elsewhere
K900 K90.0 Coeliac disease
K904 K90.4 Malabsorption due to intolerance, not elsewhere classified
K909 K90.9 Intestinal malabsorption, unspecified
K910 K91.0 Vomiting following gastro-intestinal surgery
K911 K91.1 Postgastric surgery syndromes
K912 K91.2 Postsurgical malabsorption, not elsewhere classified
K913 K91.3 Postoperative intestinal obstruction
K914 K91.4 Colostomy and enterostomy malfunction
K918 K91.8 Other postprocedural disorders of digestive system, not elsewhere classified
K920 K92.0 Haematemesis
K921 K92.1 Melaena
K922 K92.2 Gastro-intestinal haemorrhage, unspecified
K928 K92.8 Other specified diseases of digestive system
K929 K92.9 Disease of digestive system, unspecified
N180 N18.0 End-stage renal disease
N185 N18.5 Chronic kidney disease, stage 5
N188 N18.8 Other chronic renal failure
N189 N18.9 Chronic renal failure, unspecified
N19 N19 Unspecified renal failure
Q02 Q02 Microcephaly
Q874 Q87.4 Marfan's syndrome
R630 R63.0 Anorexia
R633 R63.3 Feeding difficulties and mismanagement
R634 R63.4 Abnormal weight loss
R64 R64 Cachexia
Y835 Y83.5 Amputation of limb(s)
Z511 Z51.1 Chemotherapy session for neoplasm
Z512 Z51.2 Other chemotherapy
Z800 Z80.0 Family history of malignant neoplasm of digestive organs
Z850 Z85.0 Personal history of malignant neoplasm of digestive organs
Z851 Z85.1 Personal history of malignant neoplasm of trachea, bronchus and lung
Z853 Z85.3 Personal history of malignant neoplasm of breast
Z854 Z85.4 Personal history of malignant neoplasm of genital organs
Z855 Z85.5 Personal history of malignant neoplasm of urinary tract
Z856 Z85.6 Personal history of leukaemia
Z857 Z85.7 Personal history of other malignant neoplasms of lymphoid, haematopoietic and related tissues
Z858 Z85.8 Personal history of malignant neoplasms of other organs and systems
Z860 Z86.0 Personal history of other neoplasms
Z864 Z86.4 Personal history of psychoactive substance abuse
Z865 Z86.5 Personal history of other mental and behavioural disorders
Z895 Z89.5 Acquired absence of leg at or below knee
Z896 Z89.6 Acquired absence of leg above knee
Z899 Z89.9 Acquired absence of limb, unspecified
Z901 Z90.1 Acquired absence of breast(s)
Z902 Z90.2 Acquired absence of lung [part of]
Z903 Z90.3 Acquired absence of part of stomach
Z904 Z90.4 Acquired absence of other parts of digestive tract
Z905 Z90.5 Acquired absence of kidney
Z906 Z90.6 Acquired absence of other parts of urinary tract
Z907 Z90.7 Acquired absence of genital organ(s)
Z992 Z99.2 Dependence on renal dialysis
Z993 Z99.3 Dependence on wheelchair



Appendix A

S13 Table. Self-reported illness codes used to exclude thin individuals in UKBB
Psychiatric

1286 depression
1287 anxiety/panic attacks
1288 nervous breakdown
1289 schizophrenia
1290 deliberate self-harm/suicide attempt
1291 mania/bipolar disorder/manic depression
1469 post-traumatic stress disorder
1470 anorexia/bulimia/other eating disorder
1614 stress
1615 obsessive compulsive disorder (ocd)
1616 insomnia
1408 alcohol dependency
1409 opioid dependency
1410 other substance abuse/dependency
1531  post-natal depression

Liver
1136 liver/biliary/pancreas problem
1155 hepatitis
1158 liver failure/cirrhosis
1159 bile duct disease
1161 gall bladder disease
1164 pancreatic disease
1507 haemochromatosis
1508 jaundice (unknown cause)
1156 infective/viral hepatitis
1157 non-infective hepatitis
1578 hepatitis a
1579 hepatitis b
1580 hepatitis c
1581 hepatitis d
1582 hepatitis e
1506 primary biliary cirrhosis
1604 alcoholic liver disease / alcoholic cirrhosis
1160 bile duct obstruction/ascending cholangitis
1475 sclerosing cholangitis
1165 pancreatitis

Cardiac
1076 heart failure/pulmonary odema

Renal
1192 renal/kidney failure
1193 renal failure requiring dialysis
1194 renal failure not requiring dialysis
1405 other renal/kidney problem
1196 urinary tract infection/kidney infection
1515 pyelonephritis
1427 polycystic kidney
1519 kidney nephropathy
1608 nephritis 
1520 iga nephropathy
1607 diabetic nephropathy
1609 glomerulnephritis

Gut
1154 irritable bowel syndrome
1456 malabsorption/coeliac disease
1457 duodenal ulcer
1459 colitis/not chrons or ulcerative colitis
1461 inflammatory bowel disease
1502 appendicitis
1503 anal problem
1599 constipation
1600 bowel / intestinal perforation
1601 bowel / intestinal infarction
1602 bowel / intestinal obstruction
1603 rectal prolapse
1462 crohns disease
1463 ulcerative colitis

Abdominal
1400 peptic ulcer

Endocrine
1224 thyroid problem (not cancer)
1229 parathyroid gland problem (not cancer)
1232 disorder of adrenal gland
1237 disorder of pituitary gland
1239 cushings syndrome
1432 carcinoid syndrome
1682 benign insulinoma
1221 gestational diabetes
1222 type 1 diabetes
1225 hyperthyroidism/thyrotoxicosis
1226 hypothyroidism/myxoedema
1228 thyroid radioablation therapy
1428 thyroiditis
1522 grave's disease
1610 thyroid goitre
1230 parathyroid hyperplasia/adenoma
1611 hyperparathyroidism
1233 adrenal tumour
1234 adrenocortical insufficiency/addison's disease
1235 hyperaldosteronism/conn's syndrome
1236 phaeochromocytoma
1238 pituitary adenoma/tumour
1429 acromegaly
1430 hypopituitarism
1431 hyperprolactinaemia

COPD
1112 COPD

Infections
1439 hiv/aids
1567 infectious mononucleosis / glandular fever / epstein barr virus (ebv)
1440 tuberculosis (tb)
1575 herpes simplex

Cancer (responded yes to "Have you ever been diagnosed with cancer?")
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Supplementary Table 1 
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Supplementary Table 2 
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Supplementary Table 4: Gene set analyses results
Gene set id Trait Meta-p Meta-p (no APO) WES p N WES WGS p N WGS Description Source
C0020445 lhdlfc_ 2.31E-10 0.02813214 1.01E-05 35 7.62E-06 21 Hypercholesterolemia Familial DisGeneNet
C0020476 lhdlfc_ 1.58E-11 0.000932652 2.39E-06 14 7.77E-07 7 Hyperlipoproteinemias DisGeneNet
C0020476 hdld 1.81E-10 0.000279994 0.000496 14 1.80E-08 7 Hyperlipoproteinemias DisGeneNet
C0020476 lhdlc_ 2.90E-08 0.00385449 2.23E-05 14 0.000201 7 Hyperlipoproteinemias DisGeneNet
C0020476 lhdlpl_ 2.15E-06 0.002200132 0.000977 14 0.000793 7 Hyperlipoproteinemias DisGeneNet
C0342881 idltg 2.02E-11 0.015485781 2.03E-09 11 0.002838 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 xsvldlp 3.79E-10 0.014275635 4.03E-07 11 0.00085 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 ldltg 7.64E-10 0.006844523 9.76E-09 11 0.004302 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 xsvldltg 1.08E-09 0.023413237 1.84E-07 11 0.006007 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldltg 3.58E-09 0.005062039 8.20E-08 11 0.003857 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 apob 7.72E-09 0.005089742 2.38E-07 11 0.002934 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 svldlfc 3.18E-08 0.012250296 2.71E-05 11 0.002389 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mldltg 7.07E-08 0.013478956 5.24E-08 11 0.029378 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 sldltg 8.59E-08 0.016697804 5.88E-08 11 0.026173 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mufa 1.10E-07 0.018070242 0.00013 11 0.007047 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 idll 1.75E-07 0.010999563 3.69E-06 11 0.003782 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 apobapoa1 2.15E-07 0.004237918 1.04E-06 11 0.00795 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldlp 2.43E-07 0.009922028 4.65E-07 11 0.012224 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 svldlpl 2.48E-07 0.0089107 4.13E-05 11 0.002879 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldll 2.84E-07 0.010485712 8.43E-07 11 0.013297 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 xsvldlpl 3.71E-07 0.03201298 1.63E-07 11 0.004467 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 idlp 3.89E-07 0.009724476 1.56E-06 11 0.002886 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 idlpl 4.91E-07 0.012464279 3.13E-06 11 0.008312 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 ldlc 6.95E-07 0.013848465 1.34E-06 11 0.026768 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldlpl 7.04E-07 0.013332371 3.51E-06 11 0.018528 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldlce 7.20E-07 0.01120345 2.29E-06 11 0.018631 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mldlpl 7.91E-07 0.012623335 1.12E-06 11 0.030335 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 totfa 9.12E-07 0.020070097 2.66E-05 11 0.006704 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 lldlc 9.44E-07 0.01233823 3.16E-06 11 0.018568 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mldlp 9.49E-07 0.012045521 2.99E-07 11 0.043184 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mldll 1.10E-06 0.011701482 4.54E-07 11 0.047026 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342881 mldlfc 1.64E-06 0.03871723 2.76E-06 11 0.044593 8 Familial hypercholesterolemia - homozygous DisGeneNet
C0342883 lhdlfc_ 9.97E-14 0.001782186 6.12E-07 9 1.04E-09 4 Cholesteryl Ester Transfer Protein Deficiency DisGeneNet
C0342883 tgpg 9.85E-10 0.016207152 5.21E-05 9 2.13E-06 4 Cholesteryl Ester Transfer Protein Deficiency DisGeneNet
C0542037 lhdlfc_ 3.57E-13 0.003632137 6.12E-07 9 1.74E-09 3 Hypotriglyceridaemia DisGeneNet
C0542037 tgpg 3.23E-09 0.01845352 5.21E-05 9 2.21E-06 3 Hypotriglyceridaemia DisGeneNet
C0745103 idltg 1.90E-10 0.008406138 1.83E-08 21 0.010046 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 xsvldltg 2.03E-10 0.001916666 3.13E-07 21 0.008834 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 svldlfc 1.22E-09 0.001385636 3.49E-05 21 0.001432 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 xsvldlp 3.75E-09 0.014609129 3.02E-06 21 0.00142 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 svldlpl 4.15E-09 0.000606073 3.76E-05 21 0.001927 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 svldll 1.06E-08 0.001568385 7.76E-05 21 0.002428 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 svldlp 1.49E-08 0.001319162 8.22E-05 21 0.003239 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 mufa 1.26E-07 0.00369098 0.000211 21 0.003996 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 ldltg 2.00E-07 0.020495788 2.63E-07 21 0.013265 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 lldltg 4.58E-07 0.020209296 1.50E-06 21 0.01609 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 sldltg 5.19E-07 0.01743014 2.02E-06 21 0.032317 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 apob 1.19E-06 0.006937804 2.87E-06 21 0.001865 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 apobapoa1 1.34E-06 0.004883344 1.88E-05 21 0.010105 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 mvldlfc 1.68E-06 0.000836725 0.000477 21 0.019124 17 Hyperlipoproteinemia Type IIa DisGeneNet
C0745103 totfa 1.71E-06 0.006830084 6.15E-05 21 0.006047 17 Hyperlipoproteinemia Type IIa DisGeneNet
C1848486 xsvldlpl 5.53E-08 0.004265067 6.53E-07 11 0.005985 9 Premature arteriosclerosis DisGeneNet
C1848486 sldltg 2.10E-07 0.026356402 9.08E-08 11 0.036179 9 Premature arteriosclerosis DisGeneNet
C1848486 mldltg 8.28E-07 0.02980488 2.03E-07 11 0.044683 9 Premature arteriosclerosis DisGeneNet
C4280503 xsvldlpl 5.53E-08 0.004265067 6.53E-07 11 0.005985 9 Premature hardening of arteries DisGeneNet
C4280503 sldltg 2.10E-07 0.026356402 9.08E-08 11 0.036179 9 Premature hardening of arteries DisGeneNet
C4280503 mldltg 8.28E-07 0.02980488 2.03E-07 11 0.044683 9 Premature hardening of arteries DisGeneNet
R-HSA-204174 idlpl 7.85E-07 7.85E-07 0.005939 12 0.000503 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 mldlpl 1.01E-06 1.01E-06 0.002671 12 0.000594 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 estc 1.09E-06 1.09E-06 0.004754 12 0.001175 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 idlp 1.17E-06 1.17E-06 0.003992 12 0.000593 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldlp 1.20E-06 1.20E-06 0.004822 12 0.000258 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldlpl 1.21E-06 1.21E-06 0.004853 12 0.000423 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 idll 1.21E-06 1.21E-06 0.004313 12 0.000574 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 serumc 1.24E-06 1.24E-06 0.005999 12 0.001071 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldll 1.35E-06 1.35E-06 0.005082 12 0.000275 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 idlc 1.40E-06 1.40E-06 0.00475 12 0.001019 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldlfc 1.46E-06 1.46E-06 0.00681 12 0.0003 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldlc 1.87E-06 1.87E-06 0.006489 12 0.000275 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 mldlp 1.96E-06 1.96E-06 0.006409 12 0.000132 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 lldlce 2.01E-06 2.01E-06 0.006486 12 0.000277 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 sldll 2.13E-06 2.13E-06 0.006413 12 0.000115 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 sldlp 2.13E-06 2.13E-06 0.005994 12 0.000113 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 mldll 2.13E-06 2.13E-06 0.006416 12 0.000164 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 ldlc 2.17E-06 2.17E-06 0.007809 12 0.000177 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 apob 2.20E-06 2.20E-06 0.00504 12 0.000803 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-204174 idlfc 2.22E-06 2.22E-06 0.009798 12 0.000399 4 Regulation of pyruvate dehydrogenase (PDH) complex Reactome
R-HSA-8866423 xsvldlp 1.49E-12 0.027026999 2.06E-09 8 0.000246 7 VLDL assembly Reactome
R-HSA-8866423 xsvldll 6.57E-12 0.029658511 3.13E-09 8 0.000254 7 VLDL assembly Reactome
R-HSA-8866423 xsvldlpl 3.27E-10 0.047296943 4.87E-10 8 0.000529 7 VLDL assembly Reactome
R-HSA-8866423 idlp 5.94E-10 0.012821521 2.79E-09 8 0.000385 7 VLDL assembly Reactome
R-HSA-8866423 apob 9.00E-10 0.035805827 1.23E-09 8 0.001105 7 VLDL assembly Reactome
R-HSA-8866423 lldlpl_ 1.21E-09 0.003361758 2.31E-11 8 0.006697 7 VLDL assembly Reactome
R-HSA-8866423 idll 2.82E-09 0.014169646 1.95E-08 8 0.000547 7 VLDL assembly Reactome
R-HSA-8866423 ldlc 2.02E-08 0.015814492 6.36E-09 8 0.003754 7 VLDL assembly Reactome
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R-HSA-8866423 lldlp 2.09E-08 0.010925413 1.78E-09 8 0.001674 7 VLDL assembly Reactome
R-HSA-8866423 remnantc 6.95E-08 0.005468158 4.44E-09 8 0.00083 7 VLDL assembly Reactome
R-HSA-8866423 lldlfc 1.75E-07 0.012845409 7.16E-08 8 0.002439 7 VLDL assembly Reactome
R-HSA-8866423 idlpl 1.84E-07 0.011330913 2.70E-08 8 0.000806 7 VLDL assembly Reactome
R-HSA-8866423 xsvldlfc 1.96E-07 0.037068974 1.64E-07 8 0.002008 7 VLDL assembly Reactome
R-HSA-8866423 lldlpl 2.05E-07 0.009682997 1.12E-08 8 0.00295 7 VLDL assembly Reactome
R-HSA-8866423 lldlce 2.22E-07 0.012777309 8.81E-09 8 0.002613 7 VLDL assembly Reactome
R-HSA-8866423 lldlc 2.28E-07 0.012348304 1.40E-08 8 0.002473 7 VLDL assembly Reactome
R-HSA-8866423 lldll 2.53E-07 0.010991255 3.93E-09 8 0.00178 7 VLDL assembly Reactome
R-HSA-8866423 idlfc 2.64E-07 0.020705061 2.07E-07 8 0.001976 7 VLDL assembly Reactome
R-HSA-8866423 xsvldlc 2.81E-07 0.010931813 7.53E-06 8 0.000766 7 VLDL assembly Reactome
R-HSA-8866423 idlc 3.52E-07 0.018406604 6.83E-07 8 0.001729 7 VLDL assembly Reactome
R-HSA-8866423 serumc 4.74E-07 0.023383675 6.02E-07 8 0.008607 7 VLDL assembly Reactome
R-HSA-8866423 idlce 5.22E-07 0.00201215 1.58E-06 8 0.001804 7 VLDL assembly Reactome
R-HSA-8866423 mldlp 5.32E-07 0.019315992 6.25E-09 8 0.008059 7 VLDL assembly Reactome
R-HSA-8866423 mldll 5.50E-07 0.017018952 9.19E-09 8 0.008598 7 VLDL assembly Reactome
R-HSA-8866423 estc 5.80E-07 0.024024992 4.43E-07 8 0.012954 7 VLDL assembly Reactome
R-HSA-8866423 freec 6.04E-07 0.027416347 6.56E-06 8 0.004008 7 VLDL assembly Reactome
R-HSA-8866423 idlpl_ 6.58E-07 0.039687097 7.17E-07 8 0.01239 7 VLDL assembly Reactome
R-HSA-8866423 mldlpl 7.13E-07 0.015426761 1.99E-08 8 0.010748 7 VLDL assembly Reactome
R-HSA-8866423 xsvldlce 7.44E-07 0.009844208 4.89E-05 8 0.000835 7 VLDL assembly Reactome
R-HSA-8866423 sldlc 7.51E-07 0.024307244 4.84E-09 8 0.017042 7 VLDL assembly Reactome
R-HSA-8866423 sldlp 7.67E-07 0.027289638 2.54E-09 8 0.015185 7 VLDL assembly Reactome
R-HSA-8866423 pufa 7.71E-07 0.08454695 1.50E-06 8 0.008925 7 VLDL assembly Reactome
R-HSA-8866423 vldlc 8.93E-07 0.052364901 1.41E-05 8 0.002975 7 VLDL assembly Reactome
R-HSA-8866423 sldlce 9.02E-07 0.007812149 2.95E-09 8 0.01715 7 VLDL assembly Reactome
R-HSA-8866423 sldll 9.22E-07 0.027649486 1.60E-09 8 0.015745 7 VLDL assembly Reactome
R-HSA-8866423 mldlc 1.18E-06 0.019562719 3.67E-08 8 0.012777 7 VLDL assembly Reactome
R-HSA-8866423 mldlce 1.27E-06 0.021261762 4.76E-08 8 0.012747 7 VLDL assembly Reactome
R-HSA-8866423 svldlce 1.44E-06 0.024795814 8.30E-05 8 0.001773 7 VLDL assembly Reactome
R-HSA-8866423 mldlfc 2.02E-06 0.005231542 3.73E-08 8 0.016205 7 VLDL assembly Reactome
R-HSA-8866423 sldlfc 2.14E-06 0.015190169 6.26E-09 8 0.027399 7 VLDL assembly Reactome
R-HSA-8963888 xsvldlp 2.49E-14 0.206996778 2.15E-10 10 2.02E-05 11 Chylomicron assembly Reactome
R-HSA-8963888 svldlc 3.38E-14 0.378917505 1.71E-09 10 2.65E-05 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldll 2.89E-13 0.204758667 3.87E-10 10 5.27E-05 11 Chylomicron assembly Reactome
R-HSA-8963888 apobapoa1 8.43E-13 0.167387417 1.72E-09 10 3.83E-06 11 Chylomicron assembly Reactome
R-HSA-8963888 vldlc 2.12E-11 0.280931433 3.23E-09 10 4.19E-05 11 Chylomicron assembly Reactome
R-HSA-8963888 lldlfc_ 7.49E-11 0.195504351 2.15E-10 10 0.000573 11 Chylomicron assembly Reactome
R-HSA-8963888 svldlce 2.15E-10 0.147784098 1.40E-08 10 0.000173 11 Chylomicron assembly Reactome
R-HSA-8963888 mvldlce 2.15E-10 0.281624878 1.40E-07 10 0.000117 11 Chylomicron assembly Reactome
R-HSA-8963888 remnantc 5.86E-10 0.085210798 2.92E-08 10 0.000799 11 Chylomicron assembly Reactome
R-HSA-8963888 ldltg 9.59E-10 0.396710914 6.92E-08 10 0.000441 11 Chylomicron assembly Reactome
R-HSA-8963888 lldltg 3.23E-09 0.294471306 3.09E-07 10 0.000602 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldlfc 3.29E-09 0.081395683 2.97E-08 10 0.002742 11 Chylomicron assembly Reactome
R-HSA-8963888 mufa 2.93E-08 0.388099899 7.78E-06 10 0.002762 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldlce 2.94E-08 0.069144815 2.02E-06 10 0.001391 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldlc 3.01E-08 0.06186095 4.02E-07 10 0.001125 11 Chylomicron assembly Reactome
R-HSA-8963888 idlpl_ 3.01E-08 0.098183672 7.18E-08 10 0.005842 11 Chylomicron assembly Reactome
R-HSA-8963888 apob 6.39E-08 0.24090487 6.48E-09 10 0.001438 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldlpl 6.41E-08 0.303509995 6.64E-09 10 0.000858 11 Chylomicron assembly Reactome
R-HSA-8963888 lhdltg_ 2.38E-07 0.248013219 6.88E-05 10 0.000773 11 Chylomicron assembly Reactome
R-HSA-8963888 lldlpl_ 4.25E-07 0.046875529 2.37E-07 10 0.02747 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldlpl 6.11E-07 0.195788822 0.000226 10 0.001796 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldll 6.12E-07 0.215946625 0.000218 10 0.001764 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldlp 6.27E-07 0.336990987 0.000219 10 0.001784 11 Chylomicron assembly Reactome
R-HSA-8963888 xsvldltg_ 6.28E-07 0.089073028 0.00775 10 1.70E-05 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldlce 1.14E-06 0.309746179 0.000159 10 0.001166 11 Chylomicron assembly Reactome
R-HSA-8963888 xxlvldltg 1.16E-06 0.176848043 0.000474 10 0.002696 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldltg 1.18E-06 0.321278515 0.000222 10 0.002044 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldlc 1.20E-06 0.309130119 0.000172 10 0.001447 11 Chylomicron assembly Reactome
R-HSA-8963888 xxlvldlce 1.21E-06 0.210451215 0.000326 10 0.001414 11 Chylomicron assembly Reactome
R-HSA-8963888 xxlvldll 1.29E-06 0.192140471 0.000347 10 0.002374 11 Chylomicron assembly Reactome
R-HSA-8963888 lvldlpl_ 1.43E-06 0.551285259 8.06E-06 9 0.014211 11 Chylomicron assembly Reactome
R-HSA-8963888 xxlvldlp 2.07E-06 0.186176084 0.000354 10 0.00242 11 Chylomicron assembly Reactome
R-HSA-8963888 totfa 2.11E-06 0.511678701 8.44E-07 10 0.045133 11 Chylomicron assembly Reactome
R-HSA-8963888 xxlvldlc 2.14E-06 0.219048098 0.000325 10 0.001807 11 Chylomicron assembly Reactome
R-HSA-8963888 xlvldlfc 2.19E-06 0.314011612 0.000228 10 0.002124 11 Chylomicron assembly Reactome
R-HSA-8963898 xsvldltg 9.97E-10 0.237293907 2.89E-08 23 0.003889 19 Plasma lipoprotein assembly Reactome
R-HSA-8963898 svldlpl 6.28E-07 0.819781918 1.17E-06 23 0.002978 19 Plasma lipoprotein assembly Reactome
R-HSA-8963898 svldlfc 6.79E-07 1 1.11E-06 23 0.004052 19 Plasma lipoprotein assembly Reactome
R-HSA-8963898 svldlp 1.19E-06 1 1.35E-06 23 0.004011 19 Plasma lipoprotein assembly Reactome
R-HSA-8963898 svldll 1.25E-06 1 1.13E-06 23 0.004472 19 Plasma lipoprotein assembly Reactome
R-HSA-8963901 hdld 9.72E-10 0.001414545 0.000108 12 8.68E-06 12 Chylomicron remodeling Reactome
R-HSA-8963901 xlhdlfc 3.04E-09 0.004188796 0.000336 12 6.07E-05 12 Chylomicron remodeling Reactome
R-HSA-8963901 lhdlc_ 1.01E-08 0.003841981 4.60E-05 12 0.000594 12 Chylomicron remodeling Reactome
R-HSA-8963901 xlhdlpl 1.13E-08 0.007480561 0.000162 12 4.45E-05 12 Chylomicron remodeling Reactome
R-HSA-8963901 xlhdlc 1.76E-07 0.011331821 0.002411 12 0.000666 12 Chylomicron remodeling Reactome
R-HSA-8964058 tgpg 5.88E-10 0.006630914 1.81E-05 17 2.46E-06 8 HDL remodeling Reactome

Meta-p= Meta-analysis p-value
Meta-p (no APO) = Meta-analysis p-value after removing APO genes from gene sets (APOB and APOC3)
WES p = p-value in WES dataset
N WES = number of variants tested in WES dataset
WGS p = p-value in WGS dataset
N WGS = number of variants tested in WGS dataset



Appendix B

Supplementary Table 9: Detailed results for gene sets with enriched rare variation in tails of lipoprotein traits
S-VLDL-C lower tail outliers. Hyperlipidemia gene set.
gene snp dataset MAC residuals in all carriers
AGL rs200459772 WES 5 2.36762834154852,-0.334045067074641,0.431527558983269,-0.838811852821138,-3.05000388882286
APOB 2:21236148 WES 1 -2.661258903
APC rs150973053 WES 1 -3.089584993
APC rs201830995 WES 3 -2.87066740721444,-0.787318922230483,0.420463200843388
CYP19A1 rs141305220 WES 2 -3.49405574671022,-1.2437172570647
CYP19A1 rs200111039 WES 9 -2.97590453300663,0.253051068847167,0.795701074251656,1.01065228811834,-0.403431340606028,-0.144560598282279,-3.08958499345356,0.741693060794646,-0.4324749949308
NPHS1 rs368988883 WES 1 -3.374778926
GCG 2:163003928 WGS 1 -3.123944186
APC 5:112173509 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112174919 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112178070 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112179437 WGS 2 -3.54394449881421,-0.121786221385006
NOS3 7:150698995 WGS 2 -0.18836307152566,-2.7037021818663
NOS3 7:150706632 WGS 5 -0.304682642445497,-0.26183599116571,-0.48084454181164,-2.83884053615798,-0.759193154129386
CETP rs150236668 WGS 2 -1.08925353711354,-3.54394449881421
NPHS1 19:36342715 WGS 3 0.920578019402659,-0.398163133632229,-2.93246487402699

XS-VLDL-P lower tail outliers. Hyperlipidemia gene set.
gene snp dataset MAC effects
APOB 2:21236148 WES 1 -3.436640493
APC rs150973053 WES 1 -3.202863174
APC rs201830995 WES 3 -2.86524374013287,-0.168052075323293,0.077312983454771
NOS3 rs141170595 WES 7 -1.18611115166881,-2.95589825540599,-0.246085238062439,1.13215214546922,0.154253491587311,-0.217108986788457,-1.74689283105004
CYP19A1 rs141305220 WES 2 -3.20538984720828,-0.876451886676179
CYP19A1 rs200111039 WES 9 -2.64098645212551,0.545406135777777,1.01054251354388,0.76392757891617,-0.245365417517183,-0.682701582154253,-3.20286317422441,0.569449665319146,-0.251861115970539
NPHS1 rs368988883 WES 1 -3.318749511
NPHS2 1:179520511 WGS 2 0.213855282424323,-2.73710673267041
NPHS2 1:179530462 WGS 6 -2.85736273031488,0.500033274189366,0.129175297645043,0.476908535573381,-0.94191940828643,0.175183524144263
APOB 2:21255263 WGS 1 -2.965806851
GCG 2:163003928 WGS 1 -3.430062283
APC 5:112173509 WGS 2 -2.94907099537461,-0.259525678305062
APC 5:112174919 WGS 2 -2.94907099537461,-0.259525678305062
APC 5:112178070 WGS 2 -2.94907099537461,-0.259525678305062
APC 5:112179437 WGS 2 -2.94907099537461,-0.259525678305062
NOS3 7:150698995 WGS 2 -0.466020371752611,-2.83066719904639
CETP rs150236668 WGS 2 -0.633213631434203,-2.94907099537461

S-VLDL-CE lower tail outliers. Hyperlipidemia gene set.
gene snp dataset MAC effects
AGL rs200459772 WES 5 2.36762834154852,-0.334045067074641,0.431527558983269,-0.838811852821138,-3.05000388882286
APOB 2:21236148 WES 1 -2.661258903
APC rs150973053 WES 1 -3.089584993
APC rs201830995 WES 3 -2.87066740721444,-0.787318922230483,0.420463200843388
CYP19A1 rs141305220 WES 2 -3.49405574671022,-1.2437172570647
CYP19A1 rs200111039 WES 9 -2.97590453300663,0.253051068847167,0.795701074251656,1.01065228811834,-0.403431340606028,-0.144560598282279,-3.08958499345356,0.741693060794646,-0.4324749949308
NPHS1 rs368988883 WES 1 -3.374778926
GCG 2:163003928 WGS 1 -3.123944186
APC 5:112173509 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112174919 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112178070 WGS 2 -3.54394449881421,-0.121786221385006
APC 5:112179437 WGS 2 -3.54394449881421,-0.121786221385006
NOS3 7:150698995 WGS 2 -0.18836307152566,-2.7037021818663
NOS3 7:150706632 WGS 5 -0.304682642445497,-0.26183599116571,-0.48084454181164,-2.83884053615798,-0.759193154129386
CETP rs150236668 WGS 2 -1.08925353711354,-3.54394449881421
NPHS1 19:36342715 WGS 3 0.920578019402659,-0.398163133632229,-2.93246487402699

S-HDL-P lower tail outliers. HDL remodeling gene set
gene snp dataset MAC effects
CETP rs140547417 WES 10 0.578651608406939,0.610798008574449,0.292679415486239,0.395395459347943,-1.11386853475629,-2.93263937740899,-0.0998285578608295,-0.0864903418646204,-0.318903381965163,0.775064146714445
LIPG 18:47107925 WES 1 -3.234598237
APOE rs199768005 WES 7 -0.540244700238687,1.92520088605348,0.92978260411206,-3.02709326825206,-0.789305787720864,0.121976706457689,-1.34111543948004
ABCG1 rs148226451 WES 1 -2.932639377
APOA1 11:116706867WGS 1 -3.003505735
APOA1 rs199759119 WGS 7 -1.00536349532665,-2.86126280384725,-0.582922966059555,-0.693164051709012,1.64763326906752,-2.39922951075938,-1.79280325835833
CETP rs142750310 WGS 1 -3.046409293



Appendix B

Supplementary Table 10: Sensitity analyses for rare variant enrichment in tails analysis using different percentile cutoffs to define tails of the phenotypic distribution
.5% Percentile upper tails
trait p.wes p.wgs meta-p Gene set
lldlc 0.00432 0.03209 0.0007737 LDL_clearance
vldld 0.02887 0.00607 0.0009188 VLDL_clearance

.5% Percentile lower tails
trait p.wes p.wgs meta-p Gene set
svldlce 0.02992 0.01634 0.0022477 Hyperlipidemia
svldlfc 0.01287 0.00676 0.0004448 Hyperlipidemia
xsvldlp 0.02992 0.0024 0.0004422 Hyperlipidemia
idltg 0.00032 0.01528 4.02E-05 LDL_remodeling
idltg 1.00E-05 0.01621 2.97E-06 VLDL_assembly

1 Percentile lower tails
trait p.wes p.wgs meta-p Gene set
mhdltg 0.04487 0.00976 0.0021777 Hyperlipidemia

p.wes: permutation p-value in WES
p.wgs: permutation p-value in WGS
meta-p: p-value after meta-analysis using Stouffer's method
Highlighted in yellow are gene sets that are significant after meta-analysis using Stouffer’s method and after adjusting for multiple traits (p<=0.00037). 


