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Abstract

Waves of genome wide association studies (GWAS) have identified a large number of
loci associated with disease predisposition and natural traits in the past decade. A
number of identified variants have revealed potential causal mechanisms for the asso-
ciated diseases. However, despite the early success, much of the phenotypic variation
is not explained by the GWAS variants and the effect sizes tend to be very small. The
real challenge in advancing our understanding, and subsequently making it relevant
for clinical application, is deciphering the biological functions of these loci, which re-
main largely uncertain. Compared to the whole organism phenotypes that are distal
to the genetic variants, cellular phenotypes are closer to genetic regulation, thus not
only tend to offer effect size, as shown in expression QTL studies, but also are likely
to mediate between genotypes and whole organism phenotypes, supporting biological
functions.

In chapter 2, I describe a genetic association study on binding of a primary tran-
scription factor CCCTC binding factor (CTCF) in human populations. We search
for quantitative trait loci (QTL) for tens of thousands of CTCF binding sites in a
group of 51 individuals, making this the first well powered QTL study on a major
transcription factor in humans. We discovered a large number of QTLs and revealed
a strong genetic component that contributes to binding variation. We found the as-
sociated variants are often located near to predicted binding sites, some perturbing
the binding motif directly, and others affecting indirectly. We observed allele specific
effect (intra-individual) consistent with QTL signals (inter-individuals), supporting a
strong genetic component in CTCF binding variation.

In chapter 3, T address the problem of low power in associations between gene



expression levels and phenotypes. This is largely driven by the high degree of stochas-
ticity in the measured gene expression levels. We showed that by applying factor
analysis both to remove global confounding effects and to create summarizing factors
for biological pathways, the heritability and association strength can be substantially
elevated as a result. We applied this idea to a cohort with skin expression data with
ageing phenotypes, and discovered heritable ageing pathways.

It is also of great interest to develop new methods for obtaining measurements
of cellular phenotypes. In chapter 4 I describe a novel computational method to
estimate telomere length from whole genome or exome sequencing data. Using data
from the TwinsUK cohort that has both DNA sequencing data and experimental
telomere length measurements available, I show that our method can effectively extract
telomere length information. The method has been applied to a few cancer studies in

collaboration and achieved early success in confirming experimental findings.
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Chapter 1
Introduction

Life presents enormous diversity. From the white snow flower growing in the over 2000
meters high plateau in Tibet to the lionfish swimming in the Indo-Pacific sea, each life
form has dramatically different appearance, structure, behavior, reproduction etc. Yet
they fit in a global ecosystem finding their own ways of living, with their positions and
roles shaped by the force of evolution. Fascinatingly, given how distinctive each life is,
there are things that are shared and principles that they follow. Understanding how
diverse life arises and how the characters transmit and spread between generations
and species is key to reveal the basic principles that govern their biology.

Some of the patterns must have been realized by ancient humans. These include
that children are more likely to have similar appearance to their parents in having
similar eye colors, skin colors, height and so on. However, it was not at all straightfor-
ward to understand the reason for such similarity between parents and their offspring.
To answer this question, a number of prerequisite questions need to be addressed first.
How is information faithfully maintained in individuals, and the cells within them?
How is this information transferred from one generation to the next and how does it
control the characteristics of an individual?

Here I briefly review the progress in the genetics of traits that are at the level of
individuals, and how we can use a similar approach to study the genetics of molecu-

lar traits at a cellular level, which must come between the genetic material and the
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organismal trait. I firstly introduce the history of mapping Mendelian traits and quan-
titative traits. I then discuss widely used methods that have been developed to date
for genetic mapping. Finally, I describe the progress in studying cellular traits using

the same principles.

1.1 Hunting for genetic determinants of phenotypes

1.1.1 Mendelian traits

The understanding of the basic principles of genetics has come a long way in the last
150 years. In early and mid nineteenth century, the use of hybridization in plants to
obtain flowers with desired colors was already studied scientifically (Gértner, 1849).
But the principles that govern the formation of the traits were yet to be formulated.
Gregor Mendel chose peas (Leguminosae), which has clearly distinguishable charac-
teristics and good protection at flowering time from foreign pollen contamination, for
his studies(Mendel, 1865). After eight years of counting the number of peas with dif-
ferent seed coat colors, shape etc, his milestone paper in 1865 illustrated the principles
that were later referred to as Mendelian Laws, which became the corner stones of the
genetic field.

During the same period, scientific progress on cytology discovered possible phys-
ical molecules or structures that can be linked to Mendelian factors. In 1866 Ernst
Haeckel postulated that the nucleus is responsible for heredity from the observation
that sperms largely contain nuclei. Deoxyribonucleic acid (DNA) was first isolated by
a Swiss physician Friedrich Miescher in 1869 and later in 1875 Strasburger discovered
chromosomes. Sutton and Boveri in 1903 proposed the “chromosomal theory of inher-
itance”, which suggested a direct link between the Mendelian factors and a physical
cellular molecule. The inheritance material was confirmed later in 1952 in the famous

bacteriophage experiment by Alfred Hershey and Martha Chase.
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1.1.2 Quantitative traits

Mendelian factors can be observed in traits that are separated into clear categories,
such as the color of seed coats. But there are also, perhaps more prevalently, traits that
are continuous and not clearly separable into discrete classes, such as the weight of peas
or the height of plants. Many of these traits are also highly heritable. Initially, there
seemed to be little connection between Mendelian factors and continuous traits. Early
scientists were unable to discover a simple rule of heredity in these traits. Breeding
studies such as East 1916 suggest that absolute dominance is rare. Even a Mendelian
trait such as the plant color, with careful examination, still shows some variation.
This suggests that quantitative characteristics probably result from the action of the
environment on the segregation of many Mendelian loci. Statistical developments at
the same time were helpful in reconciling the disconnection. Fisher’s paper (Fisher,
1919) first introduced variance decomposition, which mathematically illustrated that
the variance of a trait can be separated into different components, including those
driven by genetic factors as well as non-genetic factors. Many of the concepts and
methods in Fisher’s paper became the foundations of quantitative genetics that we
still use today.

The first quantitative trait loci (QTL) mapping was done by Karl Sax in 1923.
He found that the weight of beans (Phaseolus vulgaris) followed a similar distribution
to that of the pigmentation colors. The beans homozygous for color are about twice
as heavy as the beans heterozygous for color. This observation suggested that either
the Mendelian factor for color also affects weight as a quantitative factor, or there
exists two tightly linked Mendelian factors that control the color and the weight of
the beans, and that the effect on the weight is additive.

1.1.3 Genetic variation and markers

Mendel’s law of segregation applies directly to alleles on different chromosomes. How-
ever, alleles on the same chromosome can be transmitted together as linkage groups
and it is difficult to distinguish their individual effects. Recombination is the primary

mechanism that separates them. In sexually reproducing diploid genomes, a pair of ho-
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mologous chromosomes synapse followed by individual chromatids exchange segments
of DNA in meiosis. The frequency of two genes being separated by a recombination
event can be used to define their genetic distance, i.e. m = —3In(1 — 2r) by Haldane
(Haldane, 1919), where r is the recombination frequency. It has been noticed that
genetic distances do not uniformly distribute along the chromosome as the nucleotide
distance, but instead have hotspots and cold spots (Jeffreys et al., 2005; Myers et al.,
2005), and also varies considerably between genders (Kong et al., 2002). Recombi-
nation provides an important source of genetic variation and allows for evaluating
the marginal effects of genes. Genetic markers that are experimentally accessible for
capturing such variation are thus critical for mapping traits.

For most of the 20th century QTL studies have been greatly constrained by the lack
of markers that can be densely spaced in the genome to capture the genetic variation.
The development of DNA restriction fragment length polymorphism (RFLP) was the
first method that substantially increased the resolution to DNA-level polymorphism.
Eric Lander and David Botstein (Lander and Botstein, 1989) proposed statistical
methods to dissect Mendelian factors in quantitative traits, which became the main
stream approach in the following years.

In the last decade, technological advances made it possible to detect single nu-
cleotide polymorphism (SNP) (see review Brookes, 1999), which is the most abundant
form of genetic variation and offers a single base pair resolution. The International
HapMap Project (The International HapMap 3 Consortium, 2010) is one of the key
resources in defining a map of SNPs using nucleotide arrays. The project eventu-
ally genotyped 1.6 million SNPs in 1,184 individuals from eleven populations, focus-
ing mostly on the common variants with allele frequency >5%. The 1000 Genomes
Project was the first project to sequence a large number of individuals with a goal
of cataloging genetic variation across populations. The pilot phase of the project
(The 1000 Genomes Consortium, 2010) has identified 15 million SNPs, 1 million
short insertion and deletions and 20,000 structural variants in 179 individuals from
four populations. The most recent phase of the project (phase three) has identi-
fied 80 million SNPs in 2,523 individuals from 26 populations (unpublished). These

projects have provided essential information for genetic mappings. Recently a num-
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ber of projects aim to further improve cataloging genetic variation by sequencing a
large number of individuals with particular focuses. This includes population wide
sequencing project such as UK10K (http://www.ukl0k.org/) for the British popu-
lation, GoNL (http://www.nlgenome.nl/) for the Netherlands population, and Sar-
diNTA (http://genome.sph.umich.edu/wiki/SardiNIA) for the Sardinian population,
or disease focused projects such as the GoT2D for type 2 diabetes and the Inter-
national Cancer Genome Project (International Cancer Genome Consortium, 2010,

https://icgc.org/) for cancer.

1.2 Mapping quantitative traits

Heritable factors can be inferred from phenotypic distributions such as the frequencies
of peas with different colors in Mendel’s experiments. However, most traits do not have
an intuitive phenotypic distribution as that of the pea color. The distributions can be
very complex, particularly when a phenotype is controlled by multiple loci. In these
cases, the marginal effect of individuals genes can hardly be detected or distinguished,
and QTLs can not be discovered by modeling phenotype data only.

Using information provided by the molecular markers is an obvious way to resolve
this puzzle. Although it is not possible to know the locations of the QQTLs beforehand,
with a dense marker map, some of the tested markers are likely to be in linkage
disequilibrium with genuine QTL loci. These tagging markers can be mapped in a
number of approaches, and quantitative methods have been developed to define the

relationships between the markers and the traits.

1.2.1 Linkage analysis and its limitation

Linkage analysis aims to identify genetic factors influencing traits by analyzing the
cosegregation of markers with the traits across generations in families. Based on
this idea, linkage analysis has been tremendously successful in identifying Mendelian
diseases. Some of the examples include the identification of multiple mutations in the
CFTR gene causing cystic fibrosis (Tsui et al., 1985; Riordan et al., 1989), the disease
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haplotypes in Huntington’s disease (Gusella et al., 1983; MacDonald et al., 1992) etc.
The susceptible variants are often rare, possibly shaped by negative selection, but for
the method to work they need to be highly penetrant.

Linkage analysis has also been applied to common diseases and quantitative traits.
For example, variants have been identified associated with inflammatory bowel disease
(IBD) (reviewed in Mathew and Lewis, 2004), type I diabetes (Luo et al., 1995; Mein
et al., 1998) and schizophrenia (Williams et al., 1999; Ekelund et al., 2000). How-
ever, the heritability accounted for by the identified variants is typically very modest,
even when the heritability of the disease is much higher, e.g. IBD and schizophrenia.
Clearly, the reported loci are only a fraction of the full picture of the genetic archi-
tecture of these diseases. When the genetic genetic architecture is complex, where
the phenotype is determined by a collection of variants with low penetrance, often
a very large number of families is needed to discover and differentiate these effects.
For example the association of type 2 diabetes with the Prol12Ala variant in the per-
oxisome proliferative activated receptor-y gene (PPARG), which has an effect size of
1.25 fold, could only be detected using linkage studies of over one million sib pairs
(Altshuler et al., 2000). It is impractical to recruit enough families with several af-
fected generations to obtain a sufficient number of informative meioses, especially
given that human families tend to be small. It becomes even more challenging if the
study disease has late onset. These results suggest that in contrast to Mendelian dis-
ease, where a limited number of high penetrance loci are responsible for the disease
phenotypes, complex diseases have much more complex genetic architecture that the

linkage analysis approach is not well powered to discover.

1.2.2 Population association analysis

Instead of using a linkage study design, a simple statistical association can be used,
which merely states the co-occurrence of genotypes and phenotypes in a population.
Such an association may exist due to the fact that a DNA segment that contains a
variant affecting disease susceptibility can be inherited by many individuals that share

a common ancestor who carries the factor. This approach has been extremely powerful
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over the last 8 years, resulting in over 10,000 genotypes to phenotype associations
(Wellcome Trust Case Control Consortium, 2007; The NHGRI GWAS Catalog, Welter
et al., 2014).

1.2.2.1 Mapping disease variants with case control phenotypes

For many diseases, there is no clear quantitative measure indicating the disease status.
The phenotype is then reduced to a binary form of whether an individual does or does
not have the disease. In this scenario, a case control design is often used. Healthy
and disease individuals, often on the order of thousands, are recruited to a study
and genotyped for a large number of variants, on the order of hundreds of thousands
to millions. The basic idea is to compare the genotype frequency of the markers
between the cases and the controls. A highly divergent marker frequency would suggest
a possible link between the marker and the disease status. For each variant, the
number of individuals with AA, AB and BB genotypes can be counted for the healthy
individuals (myg;) and the disease individuals (my;) to form a contingency table as

below.

Genotype | AA | AB | BB | Total

Case mi1 mi9 mi3 m.

Control Mop1 | Mo2 | T3 myo.

Total mi | ma | ms m

o . 2 2 ol 3 (my—E[mg)* .
The association can be tested using a x= test: x* = >, 4> 7 Flno] with

two degrees of freedom, where E[m;;] = % . The effect of a genotype can then be
estimated as an odds ratio OR 4 = %

1.2.2.2 Mapping QTLs using a simple t-test

A variety of methods have been developed for QTL mapping (Leal, 1998; Balding
et al., 2008). Here I introduce the widely used ¢—tests, the analysis of variance and

more recently linear mixed models.



1.2 Mapping quantitative traits 15

The marginal effect of substituting allele A with allele B can be evaluated by com-
paring the homozygous individuals AA and heterozygous individuals AB, assuming
effects are normally distributed in each genotype group with same variance. Let g
and p; be the genuine means of the phenotypes. The test hypothesis can be formulated
as Hy : g = p1, and Hy @ g # p1. The test statistic is thus

my — My o (ny—1)s7+ (ng —1)s3

SZ(L + L)’

ni no

TL1+7’L()—2

where (mg, m1), (ng,n1), and (sg, s1) are the sample means, samples sizes and sample
standard deviations of AA and AB respectively. Hy is rejected if ¢ exceeds a significant
threshold, such as av = 5% when ¢ > t(g.925) for a two tailed test with ng+mn, —2 degrees

of freedom.

1.2.2.3 Mapping QTLs using linear regression models

More generally, population samples contain three genotypes (AA, AB, BB). The quan-
titative phenotype y can be modeled as resulting from the sum of genetic effects and

environmental effects in a simple linear model

Vi = p+ o + 6, i =1.n,

where y; is the phenotypic value of the ¢th individual; x; is the genetic dosage of the
ith individual, which is the allele count of one allele such as (0,1,2) for the number of
B alleles in genotypes (AA, AB, BB). € represents the random error in y that can not
explained by z, which is assumed to be independently and identically distributed. To
satisfy the assumption for the distribution of the error term, often phenotypic
measurements need to be transformed, e.g. using log, square root or mapping to
normal quantiles. This can also be extended to generalized linear models that allow

for response variables that have a variety of error models.

A simple way to make inference about the parameters (3, 0?) is to use the least
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square approach, which gives
. N R 1
B=X'X)"Xy, &*=——(y = Xp)"(y - X8)

where y©' = (y1, s, ..., yn) is a vector of phenotypes and XJT = (21, Tj2, ..., Tjn) Is a
vector of genotypes at variant j for each individual. [ is often interpreted as the effect
size, representing the contribution of a unit change in the genetic dosage encoded in
x to the phenotype .

This is equivalent to a single factor analysis of variance (ANOVA) of the genetic
effect. The mean sum of squares within genotype groups SSyinin reflects any other
residual variation that is non-genetic. The difference between the total sum of squares

(SSiotar) and SSuyitnin, SSpetween, reflects the QTL genotypes effect on the phenotypes.

Ssbetween/(‘?* 1)
SSwithin (n_l)

genetic effect. The statistical significance level can be computed by comparing to the

The ratio between them is an F' value that can be used to test for the
F distribution with degrees of freedom 2 and n — 3. If we let o.be the environmental
variance and o,be the genetic variance, the heritability can be expressed as h? =

2
where o, can be estimated by SSyitnin/(n — 1) and 02 can be estimated by

g
ag—l-ag ’
(S Shetween — SSwitnin)/k where k is a factor adjusting for group size of three genotype
groups (k =3/ (% + n% + niz)) In case of comparing two genotype groups, F' = t2.

Many studies also use maximum likelihood approaches to estimate genetic effects.

With the same linear model, the likelihood function is

Dl 8,0) = T 20—+ ) o)

12
where z is the standard normal density function z(x) = \/#2?6_7. The inference of

the parameters is often done using the Expectation-Maximization algorithm (Moon,
1996). The likelihood of the full model with estimates (fi,3,6) can be compared

against a null model (i, 0, dy) where the genetic effect is removed by setting 8 = 0
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to compute likelihood ratio statistic

\_/

LOD = —2Log(

L(p,B.0
00 )

L(yio, 0, o)

LOD has an asymptotic x? distribution with one degree of freedom, which can be

used to determine statistical significance.

1.2.2.4 Mapping QTLs using linear mixed models

Spurious associations can arise when study samples in association analysis have vari-
able genetic relationships, in which case the ¢; are not independent. Such confounding
factors of relatedness may not be known to the researcher from phenotypic data collec-
tion. To adjust for it, the linear mixed model approach has become a popular method
of choice recently. These models typically use an additional random variable with a
specific covariance structure to capture the genome wide sample relatedness (Kang
et al., 2008; Zhang et al., 2010; Listgarten et al., 2012; Zhou and Stephens, 2012):

y=XB+Zu+e

where y is the phenotype vector, 3 is an unknown fixed effect for the candidate genetic
marker, and u is an additional random effect reflecting the genetic effect due to relat-
edness. u is normally distributed with u ~ N (0, K 03), where K is the kinship matrix,
with each k; ; the correlation between the markers either genome wide (Kang et al.,
2010) or a selected subset (Listgarten et al., 2012), of individual ¢ and j. o is the
unknown genetic variance. For statistical testing, similarly, a likelihood ratio statistic
can be computed by comparing against a null model. This model successfully removes
false positives due to sample structure. It can also help to refine genuine signals by
controlling for the other genetic markers that are not the candidate locus being tested,
such as using only markers on chromosomes except the one that the test mark locates
in (Listgarten et al., 2012).

The main limitation of the linear mixed model approach is the computation cost,
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which in the full model is of the order of MN?3 (Kang et al., 2008). There have
been improvements on reducing the cost by making approximations. One approach
is based on the assumption that the genetic effects of total markers by wu is approxi-
mately shared between individual markers, thus the relationship matrix only needs to
be built once instead of each time per marker. The data is then rotated by the eigen-
decomposition of the relationship matrix to remove the structure (Listgarten et al.,
2012). Another approach is based on the observation that a relatively small number
of independent markers can be selected to capture the information about relatedness.
A careful selection of markers could dramatically reduce the size of the relationship

matrix and allows for exact analysis in each test (Listgarten et al., 2012).

1.2.3 Multiple testing correction

In an association scan, a collection of statistical tests is typically evaluated for a large
number of markers. While there are good reasons for doing so, such as one wishes to
allow as many genetic causes as possible, this leads to a major issue in the greatly
increased probability of declaring false positives. Typically a nominal p = 0.05 is
used to claim an effect is statistically significant. This means that the probability
of rejecting null hypothesis is 5% by chance. However, in cases where a data set is
used to test for many hypothesis, the probability of reaching p = 0.05 is substantially
elevated by chance. For example, in 100 tests, the probability of observing at least

one test significant at 5% level is
Pr(minp; < 0.05) =1 — Pr(all p; > 0.05) =1 — (1 — 0.05)" = 0.99

which means it is almost guaranteed to have at lease one nominally significant associ-
ation.

Methods have been developed to resolve this problem by adjusting the thresh-
old when multiple tests are performed. The minimum p value distribution, which is
substantially skewed to low p values, is used as the p value distribution under the
null hypothesis instead of the individual p value distribution, which is uniform. The

corresponding error rate is often referred to as the family wise error rate (FWER).
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The Bonferroni correction is a simple method to control for FW ER < « by using a
threshold of p < =, where m is the number of tests.

Bonferroni correction can be too strict in many cases. A more liberal approach is
to control for a false discovery rate, where the significance is declared while accepting a
fraction of false positives. One popular method is the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995), which relies on the assumption that p values under
the null model are uniformly distributed. A false discovery rate can thus be calculated
by comparing the observed value against its percentile rank: p < %q to declare k
signals out of m tests at a false discovery rate q.

More recently, a q value approach (Storey and Tibshirani, 2003) was developed and
frequently used in many studies (Degner et al., 2012; Maurano et al., 2012; McVicker
et al., 2013). It further calibrates the balance between the fraction of the declared
significances and the false positives in an automated way. It estimates the proportion
of tests my that are drawn from the null by fitting a cubic spline to the p value
distribution and taking the frequency of the p values at the end of the distribution,
which reflects the proportions of nulls when there is no association. This my can then
be used to calibrate a false discovery rate at any p value level.

The distribution of p values under the null hypothesis can also be empirically
estimated using permutations. This is normally conducted by random assigning phe-
notypes or genotypes to individuals. The nominal p values from the original test can

be compared to the p values from the permutations to establish an FDR level.

1.2.4 Statistical power in genetic associations

The statistical power to detect associations between genotypes and phenotypes de-
pends on a number of factors. Situations where variants have small effects are partic-
ularly hard to map. The linkage strength between a marker and a genuine QTL also
adds to the complexity. Below I discuss how these factors relate to each other using
the simplest t-test model.

Assume that we want to seek for results controlling for a type I error rate o and a
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type II error rate [, then
1 — (3= Prob(ty > z42) =1 — ®(2a — t)

where z, is the critical value for the confidence level 1 — aunder the null hypothesis
t1 = 0;® is the standard normal cumulative density function. If we assume the ratio
of AA:AB:BB is 1:2:1, a QTL is linked with the tested marker at a recombination
rate r, and the genuine additive effect is a, then the difference between AA and BB is
my — mg = (1 — 2r)2a, where (mg, my) are the phenotypic sample means of AA and
BB. The t statistics is calculated as

mo — My _(1-27’)2&

20+ \f8s/n

Replacing t with z,/2 + 23,

Zaj2 T 2
=8 iﬂgmaﬁ/s]Q
We can see that QTL can be detected with small n if the effect size a is large, the
linkage r between the marker and the QTL is strong and the residual noise s is small.
Note that the QTL effect is only mediated via the marker locus that is linked to the
causative variant, thus the real effect can be under estimated, and it is not easily
distinguishable between a strong effect via weak linkage and a weak effect via strong
linkage.

So far the most reliable way to validate a discovery is to replicate the result in an
independent sample cohort. The general principle of choosing the replicate setting is
to repeat the initial experimental design as closely as possible, with samples drawn
from the same population and phenotypically ascertained using the same procedure.
The position of the associated loci in the replication cohort must be identical to the
original position or in strong linkage disequilibrium, with an effect in similar order
and in same direction. One caveat is that the effect in the initial association can be

over estimated due to winner’s curse (Zollner and Pritchard, 2007). On the other
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hand, fewer tests are conducted in replication, reducing the multiple testing burden.

Estimates from multiple replicates can regress towards the genuine mean effect.

1.2.5 GWAS results and interpretation

The Wellcome Trust Case Control Consortium (Wellcome Trust Case Control Con-
sortium, 2007) performed the first large association study by comparing disease indi-
viduals and healthy individuals (case-control design) for 7 diseases. Some of the early
successes using the GWAS approach include the discovery of TNFSF15 as susceptibil-
ity gene to the Crohn’s disease (Yamazaki et al., 2005) and TCF2 (or HNF1B) for type
2 diabetes and prostate cancer (Gudmundsson et al., 2007). Variants are also found
in genes that can be targeted by drugs, such as PPARG and KCNJ11 associated with
type 2 diabetes, and IL12B associated with psoriasis, targeted by thiazolidinediones,
sulfonylureas and anti-p40 antibodies (Krueger et al., 2007; Manolio et al., 2008).
These early results were followed by an explosive growth of studies with more study
individuals and using more dense genetic markers. Recently, the International IBD
Genetics Consortium (IIBDGC) (http://www.ibdgenetics.org/) reported the discovery
of 163 loci associated with Crohn’s disease using a very large study cohort consisting
of over 75,000 individuals (Jostins et al., 2012). Many of the loci reported in this
study are implicated in other immune-mediated disorders, e.g. ankylosing spondylitis
and psoriasis.

In some cases, the causal relationship is plausible, such as the IFTH1 gene identi-
fied as associated with diabetes (Nejentsev et al., 2009). The gene is known to play
a role in antiviral infection and there is strong link between type 1 diabetes and viral
infection(Nejentsev et al., 2009). However, more often there are cases where the func-
tional relevance is not obvious. Variants reported in different studies sometimes reveal
unexpected connections, e.g. CDKN2A is reported to be associated with Coronary
disease, type 2 diabetes, and invasive melanoma (Kamb et al., 1994; Helgadottir et al.,
2007; Scott et al., 2007).

One important observation in genome wide association studies is that the odds ratio

for associated variants is modest, typically between 1 to 1.5 (Hindorff et al., 2009).



1.3 The promise of cellular phenotypes 22

For example, a recent large scale genome wide association study on type 2 diabetes
in more than 150,000 individuals revealed more than 70 loci but only explain 11% of
T2D heritability(Morris et al., 2012). Similarly, a large scale study on Crohn’s disease
showed that the heritability is only 23% (Franke et al., 2010). The reasons are two fold.
First, it is possible that the variants identified by the genome wide association study
are only a small subset of the variants that contribute to the disease etiology. Due to
the statistical power and the winner’s curse, the rest is not sufficiently powered to be
discovered, particularly the ones with low allele frequency, e.g. MAF<1%. Second,
the genetic effect of a DNA variant must propagate through multiple levels of cellular
networks, regulated by other mechanisms such as epigenetics or by environments,
which substantially reduces the initial effect, manifesting a weak effect at higher level
that can result from initial strong effects at cellular level.

Albeit the challenges and limitations, the GWAS results nevertheless highlight
informative clues on the underlying biology. To seek further understanding, one has
to investigate deeper into tissues and cells, these reasons have motivated studies into
mapping molecular phenotypes measured in a cell, where most statistical methods are

also applicable.

1.3 The promise of cellular phenotypes

1.3.1 Moving towards cellular phenotypes

Cellular processes are more directly subject to genetic regulation. For that reason, the
effect size, defined as the magnitude of change in the downstream measurement by a
change in the genetic allele, could be much higher than individual level traits.
Another important advantage is that cellular phenotypes can be linked to inter-
pretable cellular products. The regulation process can be seen as a generative process,
starting from decoding the information stored in DNA to transcribing into RNA and
then to translating into proteins. The measurement of the product abundance at each
step could reveal the mechanistic process with direct relational context. In practice,

it is not yet technically possible to capture all these types of information simultane-
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ously, but it is already feasible to measure each step separately using various molecular

assays and integrate the measurements later in computational analysis.

1.3.2 The measurement of cellular phenotypes

The first major leap in large scale measurement of cellular phenotypes is perhaps the
microarray. It is based on the same idea as Southern Blot (Southern, 1992) that DNA
fragment can be hybridized to known complementary DNA sequences, called probes.
This can be used to measure gene expression levels, where mRNA is reverse tran-
scribed into cDNA, which can then be hybridized to a microarray. The method allows
simultaneous quantitation of a large number of probes, designed to target a number
of genes. The first study using microarray profiling gene expression was published in
1995 (Schena et al., 1995).

In 2005, the birth of next generation sequencing started a new era for genomic
assays. It has further revolutionized the sequencing of DNA using an idea of se-
quencing by synthesis for a large amount of short DNA fragments in a massively
parallel way(Bentley et al., 2008). The price has dropped exponentially as a result,
from $10M in 2005 to $4000 in 2014 per human genome at 30x coverage (NHGRI,
www.genome.gov /sequencingcosts). It is gradually making investigating genetics at
genome wide scale for a large group of individuals practically feasible.

Next generation sequencing technology also gives rise to a large variety of assays
that are designed to measure other molecules. The basic idea is to transform the
desired molecular information into a collection of DNA sequences, which can be se-
quenced. During the past few years, a rich collection of methods have been developed.
For example, for RNA transcription related information, RNA-seq (transcript abun-
dance, Chu and Corey, 2012) and GRO-Seq (binding sites of active Pol II, Core et al.,
2008); For translation, Ribo-Seq (ribosome profiling, Ingolia, 2014) etc have been de-
veloped. For DNA Methylation, Bisulfite Sequencing (BS-Seq, Krueger et al., 2012)
and MeDIP-Seq (Taiwo et al., 2012) are widely used. For DNA-Protein interactions,
there are DNase-Seq, FAIRE-Seq and ChIP-Seq (See review Furey, 2012). A recent
refinement of ChIP-seq, ChIP-exo, is able to identify the exact bases that are bound
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by a factor (Rhee and Pugh, 2011). Chromosome conformation can be measured by
assays such as Hi-C/3C-Seq and more recently 5C, which relies on the cross linked
DNA generated due to interactions between two factors (Dostie and Dekker, 2007;
Simonis et al., 2009; Lieberman-Aiden et al., 2009). There are also assays designed to
measure special sequence elements, such as Tn-Seq for transposon sequencing.

The resulting sequences from these assays can be aligned to a reference sequence
to reveal the information about where the event has occurred and how much of tar-
get products exist in the starting material. Chapter 2 of this thesis uses ChIP-seq
technology in particular for measuring bindings of the CCCTC (CTCF) binding fac-
tor. In detail, it works by extracting segments involved in protein-DNA interactions
using Chromatin Immunoprecipitation(ChIP) followed by sequencing. When protein-
DNA interaction occurs in a cell, binding proteins and DNA segments are temporarily
bonded as a complex. Such structure can be chemically strengthened using cross link-
ing agent, after which the long DNA molecules are then shared into ~500bp fragments
by sonication. This produces a mixture of DNA fragments, within which some are
bonded by proteins. The ones of interest are then selectively immunoprecipitated
from cell debris using specific antibodies, such as anti-CTCF in the case of chapter 2.
The target molecule is thus enriched and purified. Once this material is obtained, the
associated DNA fragments can be extracted out and sent for sequencing. The initial
locations of the protein-DNA interactions can then be determined by aligning these
sequences back to the reference genome. The quantity of the fragments corresponds
to the number of the molecules in the starting material, representing the intensity
of the binding. One caveat is that there is a number of sources of technical varia-
tion involved in the data production (Taub et al., 2010). For example, non specific
fragments may remain in the purified material, which then become background for
the real binding sites. Computational methods have been developed to differentiate
signals from background.

The fast development of cellular assays has opened the door to obtain cellular in-
formation in an economical, genome wide, and simultaneous way. This has allowed to
investigate the genetic landscape of molecular traits such as gene expression, transcrip-

tion factor binding, histone modification etc. The relations or dependencies between
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these molecular events can be examined in a scale that has never been reached before.
QTL approaches can be applied to discover genetic loci that play a role in regulation

in various levels and aspects of the molecular processes in a cell.

1.3.3 Latent variables in analyzing high dimensional geno-

types and cellular phenotypes

In association mapping with disease traits, tens of thousands to tens of millions geno-
types are assayed. In QTL mapping of cellular phenotypes, in addition to a large
number of genotypes, a high dimensional phenotype is also measured, e.g. by mi-
croarray or by next generation sequencing assays. The measured phenotypic variation
can come from sources such as cellular fluctuations (Liebermeister, 2002; Dueck et al.,
2005; Gibson, 2008), regulation of gene expression (Sanguinetti et al., 2006; Pournara
and Wernisch, 2007), and environmental conditions (Hastie et al., 2000), many of
which are confounding factors that need to be accounted for to prevent loss of power
in discovering true signals and also false discovery of spurious signals (Leek and Storey,
2007; Hyun et al., 2008).

One way of disentangling the mixture in a high dimensional dataset is to use dimen-
sion reduction techniques to identify key components that reflect the data structure.
On the one hand, these components can be used to reflect the relationships between
samples learned from the measured dataset, thus become useful indicators when inde-
pendent sampling is assumed. On the other hand, they can help identify sources that
are influential to a large number of traits, which often come from a non-interesting
source, such as technical batches. Data for some of the factors that affect transcript
levels may have been collected by researchers, such as age, experimental batch, etc.,
the inclusion of which as covariates in association models have shown to improve QTL
discoveries (Emilsson et al., 2008). However, perhaps more prevalently, the confound-
ing factors are hidden to researchers. In this case computational methods can help
identify them, which can be considered alongside known covariates in association map-
pings (Leek and Storey, 2007; Hyun et al., 2008; Stegle et al., 2010; Nica et al., 2011;

Fusi et al., 2012). At a smaller scale, such as genes in a pathway, such component
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can themselves become phenotypes that reflect the commonality of the traits that are
functionally linked. This thesis explores this in Chapter 3 in the context of associating
gene expression to ageing phenotypes.

Among the dimension reduction techniques, principal component analysis (PCA)
is perhaps the most widely used method. In PCA the original data is converted by an
orthogonal projection onto a lower dimensional linear space known as principal space.
The corresponding dimensions, known as principal components, are learned from the
data by either maximizing the variance of the projected data (Hotelling, 1933) or
equivalently minimizing the averaged projection costs defined as the mean square
error between the projections and the initial data points (Pearson, 1901). Consider a
dataset {x,}, n=1,..., N where x,, = {z,,}, m={1,.. M} with N observations each
of M dimensions. PCA attempts to project the data onto a space with dimension
D < M. The dimension of the new linear space can be defined by a unit vector u with
constraint u’u = 1. The variance of the projected data is thus given by V. = u’Su
where S = + Y | (x, — X)(x, — X)”. Maximize V with the constraint on u gives a
quantity A that satisfies Su = Au, where u and A\ are the eigenvector and eigenvalue
of S. This process can be repeated to obtain D principal components {uy, ..., us} with
corresponding eigenvalues {Ay, ..., A\, } with A; > Ay > ... > Ag.

As a non parametric method, PCA has an advantage of not requiring model as-
sumptions. Other advantages also include fast computational speed, and very easy
visualization for separating samples based on their high dimensional measurements,
e.g. Novembre et al. (2008) showed the first two principal components learned from one
million genotypes correctly separated European populations into geographic groups.
The PC projection can also be directly linked to the genealogical history of samples
(McVean, 2009), although this may not be unique as multiple processes such as iso-
lation, migration and admixture can give similar projections. In disease mappings,
because of this property, PCs are useful to control for population stratification, where
they can be included as fixed covariates in association models (Price et al., 2006;
Novembre and Stephens, 2008).

Alternative to the linear projection, PCA can also be expressed as a probabilistic

solution for latent variables using maximum likelihood, known as the probabilistic PCA
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(Tipping and Bishop, 1997). Consider z latent variables corresponding to the principal
components with a prior probability p(z) = N(z | 0,I), where I is the identity matrix,
the conditional probability of the observations is p(x | z) = N(z | Wz + p, 0I), where
the columns of W define a D dimensional linear subspace. The observations in x is
thus reconstructed from a mapping between a space spanned by W to the original
data space by x, with additional Gaussian noise with a variance of 2. Different from
the conventional PCA, the numerical solutions of W such as via the EM algorithm do
not guarantee that the columns of W are orthogonal to each other.

Probabilistic PCA has some advantages over the conventional PCA. This includes
more efficient inference using the EM algorithm, having a likelihood function that
can be readily used for comparison with other models, automatic identification of the
dimension of the subspace due to the Bayesian treatment etc (Bishop, 2006). A closely
related method to the probabilistic PCA is factor analysis (Basilevsky, 1994; Tipping
and Bishop, 1997). The only difference is that its covariance structure is defined as
W, an M x M matrix, instead of an isotropic 0?1, where W captures the independent
variance associated with each coordinate. This feature has shown to be particularly
useful in capturing natural correlation between variables, such as expression levels of
genes that are functionally linked. The PEER package (Stegle et al., 2010) provides
software for both conventional PCA and factor analysis for high dimensional genomic
data.

1.3.4 The genetics of gene expression

As an important product of DNA coding, gene expression is technically feasible to
measure and has thus attracted a large amount of research focus. Many studies have
looked for expression QTLs (eQTLs), aiming to link genetic variation to expression
levels of gene products. Genetic regulation of gene expression levels has been found to
underlie phenotypes from human diseases (see reviews Kleinjan and van Heyningen,
2005; Wray and Wray, 2007) to the morphology of Darwin’s finches (Abzhanov et al.,
2004).
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Genetics of gene expression variation Gene expression variation can result from
a number of factors, including environmental effects, epigenetic effects, biological ran-
dom fluctuations, and genetic effects. How much of phenotypic variation can be ex-
plained by genetics is one of the core questions that need to be addressed. Studies have
shown that a high proportion of gene expression levels (over 40%) are heritable across
individuals (Petretto et al., 2006; Stranger et al., 2007; Dixon et al., 2007; Goring
et al., 2007; Price et al., 2011; Grundberg et al., 2012). The heritability varies but is
mostly greater than 10%, which is much larger than that from a typical GWAS study
for whole organism phenotypes (see review Skelly et al., 2009).

A recent study on over four hundred twins found 8,329 out of the 13,970 genes in
the investigation have shown one or several QTLs (Lappalainen et al., 2013). This
suggests that the expression levels of a large majority of the genes are under genetic
control. An additional level of evidence supporting this can be seen when comparing
the expression levels of the two alleles of a gene within heterozygous individuals, or
the allele specific expression (Morley et al., 2004). This study has found in humans
around 6.5% of sites per individual show allele specific expression, largely consistent
with the eQTLs. As the sample size and the accuracy of measurement increases, more
eQTLs are likely to be discovered, including ones with relative weak effects (Cheung
et al., 2010; Grundberg et al., 2012). The current data suggest that variation in the
expression of genes is substantially linked to the genetic background.

The eQTLs discovered so far are enriched in regions close to the transcription
start site (TSS) and the transcription end site (TES), areas known to play a role in
the regulation of gene expression, mostly via transcription factor binding or methyla-
tion modifications (Veyrieras et al., 2008; Dimas et al., 2009; Stranger et al., 2012).
Many eQTLs are found within the promoter binding motif, directly perturbing the
binding in the interface, making them very likely to be causal. These effects are pre-
sumably mediated via changing the binding affinity of the promoter complex, which
subsequently affects the efficiency of gene transcription. This may also cause differ-
ential usage of promoters, which is known to be an important source of variation in
gene expression (Forrest et al., 2014). Notably, 16% of disease GWAS variants are
eQTLs (Lappalainen et al., 2013), evidence supporting an effect route from DNA to
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gene expression then to disease traits.

Genetic regulation in cis and trans Genetic effects on gene expression and
other molecular phenotypes within a genomic location are often categorized into in
cis and in trans. These term were initially introduced by Haldane (Needham, 1942)
to describe different allele configurations in heterozygous individuals, with a meaning
actually more similar to linkage disequilibrium. The terminology was later used by
Lewis (Lewis, 1945) to describe whether two mutations are in the same gene.

In the eQTL literature, cis and trans are typically defined more based on the dis-
tance between the associated variants to the target genes. Genetic regions proximal
to the target genes are referred to as cis regions while the ones at a different chro-
mosome or far from the target genes are referred to as trans regions. This may be a
reasonable classification as a large proportion of eQTLs are indeed close (<100kb) to
the transcription start sites (T'SS) of genes (7), representing an important type of cis
elements. It however can also be problematic, for example the distance thresholds used
for differentiating cis and trans is arbitrary in different studies, from a few hundred
base pairs to one or two megabases.

Notably, the differentiation between the cis and trans effect can also be based on
the principle that cis elements are allele specific, while trans element can act on both
of the target alleles. One study design is to compare the ratio of transcription between
the two alleles in a hybrid offspring and the gene expression levels between the two
parents (Wittkopp et al., 2004). A consistent ratio would suggest a cis effect driven
by the target gene while otherwise it suggests a trans effect driven by other factors
somewhere else in the genome or epigenetics effects.

Localizing cis and trans effect elements involves hugely different levels of technical
challenges. The search space for a trans association is the product of the number
of genetic markers and the number of expression traits, which is several orders of
magnitudes greater than that for a cis scan. As a result, a trans effect with a similar
effect size as a cis effect is much harder to detect because of the multiple testing
penalty. A trans scan also involves correcting for more confounding factors that further

weakens the signal. Indeed, trans eQTLs discovered so far are only a small minority



1.3 The promise of cellular phenotypes 30

(Stranger et al., 2007; Small et al., 2011) in human studies.

1.3.5 The genetics of transcription factor binding

Transcription factor binding variation is one of the primary mechanisms by which gene
expression is modulated. Key questions include what is the variability of transcription
factor binding, what drives it, and how does it affect variation of gene expression levels.
Studies have largely taken one of two approaches: 1) investigate specific regions at
which regulatory events occur to build transcription factor binding maps, and associate
genetic sequence variation within the binding sites to the binding variation; 2) consider
binding variation as a quantitative trait and apply QTL mapping.

Technically, transcription factor binding can be measured using ChIP-seq genome
wide, which does not require prior knowledge of the binding sequence. The sequence
reads from a ChIP-seq experiment can be aligned to the reference genome to recover
where the binding events have occurred and how strong they are. This normally in-
volves a computational analysis called peak calling, which essentially identifies regions
with a higher density of reads compared to that in the background based on esti-
mations using various models (see reviews Laajala et al., 2009; Park, 2009). Using
the reads mapped at the identified binding peaks, algorithms have been developed to
infer short sequence patterns, called motifs, with a length normally less than 20bp,
predicted to be the binding interface between the transcription factor and the DNA
nucleotide (Tompa et al., 2005; Elnitski et al., 2006).

Transcription factor binding variation Studies on binding variation between
species suggest that many binding events are species specific, with large divergence
between species. For example, Boyer et al. (2005) and Kunarso et al. (2010) showed
that the binding of two key regulatory proteins (OCT4 and NANOG) in human and
mouse embryonic stem cells show dramatic divergence. Such divergence was also seen
in hepatocytes when comparing transcription factor binding profiles between human
and mouse (FOXA2, HNF1A, HNF4A and HNF6, Odom et al.; 2007). The binding

profile are substantially diverged in closely related yeast (Stel2 and Tecl, Borneman
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et al., 2007) and fungi (MCMI1, Tuch et al.; 2008). A recent study comparing two
transcription factors in five vertebrates reconfirmed the pattern shown in the previous
studies (Schmidt et al., 2010), revealing that individual binding events are gained and
lost rapidly during evolutionary time, although the conservation level varies largely
between different transcription factors, suggesting different evolutionary constraint.
There is also substantial binding variation between individuals within species.
Zheng et al. (2010) found 30% of sites of STE12 show binding variation in a group
of yeast segregants from two divergent parents. Kasowski et al. (2010) profiled NFxb
and Pol IT in a small group of ten humans and showed that 25% and 7.5% respectively
of sites vary between individuals. A subset of the binding variation correlates with
downstream gene expression. This suggests that many differences in individuals and
species are at the level of transcription factor binding, which plays a strong role in

species diversity and gene regulation.

Genetics of transcription factor binding variation It is of great interest to
understand what gives rises to the variation in transcription factor binding. Genetic
factors and environmental effects can both play a role. Recent studies have increas-
ingly shown that heritable genetic effects are responsible for a large component of the
transcription binding variation. A clever experiment by Wilson et al. (2008) provided
convincing evidence. The study used an aneuploid mouse strain carrying a human
chromosome 21, and asked whether transcription factor binding on chromosome 21 is
driven by human sequence or by the mouse nuclear environment. The results showed
that transcription factor binding on the human chromosome is largely recapitulated,
supporting the hypothesis that transcription factor binding is mostly governed by
genetic sequence.

Associating genetic variation with binding variation in yeast has showed that cis
regulation plays the primary role (Zheng et al., 2010). The linked genetic variants
tend to reside within the binding motif of the target protein or related cofactors.
This suggests that genetics affects transcription factor binding by affecting the bind-
ing affinity at the protein-DNA interface. The variants that affect sequence motif

that subsequently affect binding affinity correlate with the binding signals (Kasowski
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et al., 2010; McDaniell et al., 2010). It is also common that some binding events of
transcription factors are correlated with mutations near the binding motif (Kasowski
et al., 2010; McDaniell et al., 2010). Notably, binding variation also depends on the
accessibility of the DNA in chromatin configuration, supported by the findings that
sequence variation that affects DNase I sensitivity sites, nucleosome positioning and

DNA methylation also affect transcription factor binding (Segal and Widom, 2009).

Validation of the function of transcription factor binding A variety of com-
putational methods have been developed to infer the functions of QTL variants, mostly
by summing evidence from published functional data sets as well as sequencing con-
servation (McLaren et al., 2010; Kircher et al., 2014). Eventually, an experimental
validation such as by gene knock-down or nuclei base editing (Cong et al., 2013;
Hwang et al., 2013) will be required to confirm the predictions. For example, Cu-
sanovich et al. (2014) investigated differential transcription factor binding by knocking
down 59 transcription factors in one HapMap lymphoblastoid cell line. The results
show that most transcription factor changes only exert weak impact on the expression
levels of genes within a 10kb window, and the ones that cause large changes tend
to be located at transcription factor binding clusters, or at sites with high binding
affinity or at enhancer regions. In a related study, the FANTOM consortium (The
Fantom Consortium, 2014) knocked down 52 transcription factors in an acute mono-
cytic leukemia-derived cell line (THP-1) throughout a time course of growth arrest and
differentiation (Suzuki et al., 2009), revealing complex roles of transcription factors
in the regulatory network, with no single transcription factor driving the differentia-
tion process. These studies have identified a small number of functional transcription
factors or core regulators, a perturbation of which cause immediate downstream gene
expression changes.

In general, the connection between the transcription factor network and gene ex-
pression appears to be complex with individual effects being relatively weak. It is
possible that the perturbation of a single transcription factor can be compensated by
other factors in the same biological process. Sophisticated system biology approaches

may help reveal the network relationships and their impact on the gene expression.
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It is also noted that, although there has been a large volume of studies on transcrip-
tion factor binding, primarily driven by technological advances such as ChIP-seq, it is
still not possible to profile all transcription factors in a cell. High quality antibodies
are still not available for all factors due to technical limitations. The scope of current
studies is largely affected by this technical limitation to focus on a small number of
transcription factors whose measurement is technically robust. A much bigger picture

of the binding landscape is yet to be revealed.

1.3.6 The genetics of other epigenetic variation

The DNA molecule is physically organized into a three dimensional structure of chro-
matin. The scaffold of the structure that DNA coils around is made by protein com-
plexes called nucleosomes that are composed of histone protein octamers. Regulatory
information is conveyed by the positions of nucleosomes and the modification of histone
proteins, the tails of which can be covalently modified by methylation or acetylation
(Campos and Reinberg, 2009; Segal and Widom, 2009). Such modifications have been
shown to correlate with downstream functions. Covalent modification can also occur
on nucleotide with methyl groups added to cytosine. These modifications, which in-
teract closely with DNA nucleotide itself and play important roles in the readout of

DNA information, are generally termed as epigenetics.

Epigenetic elements involved in organizing chromatin structure The archi-
tecture of chromatin is not completely understood. Studies have shown that there exist
areas that are attached to the nuclear lamina forming a particular spatial organization.
These lamina associated domains are surrounded by CpG islands and insulators such
as the CCCTC binding factor, and are associated with low gene expression (Guelen
et al., 2008). These results suggest a functional impact of chromatin structure by
delineating broad active or recessive environments for the readout of DNA informa-
tion by transcription. A related study applied Hi-C technology to identify higher
order chromatin interactions genome wide in human and mouse embryonic stem cells.

It identified “topological domains” that are particularly involved in the interactions,
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and these domains are correlated with insulator binding protein CTCF, housekeeping
genes, tRNA genes and short interspersed element (SINE) retrotransposons (Dixon
et al., 2012). The active chromatin areas also correlate with open chromatin struc-
ture, with DNA in linear form and not wrapped around nucleosomes. These areas can
be identified by using restriction enzyme DNase I, as only the open chromatin areas

are exposed to excision sites that can be digested.

Genetic factors in epigenetic variation Epigenetic variation can result from
genetic or non-genetic reasons. It is known that epigenetic modification helps to
store the memory of the environmental exposures. A key question is to what extent
epigenetic variation between individuals are due to genetic reasons? A related study
(McDaniell et al., 2010) found that DNasel foot print is highly heritable using six
samples from a family of European ancestry. Another more recent study performed
DNase I hypersensitivity site mapping in 70 HapMap cell lines of Yoruba ancestry,
and identified a large number of genetic variants that are associated with the level of
chromatin accessibility (dsQTLs). It estimates that over 50% of eQTLs are dsQTLs,
with their effects mediated through chromatin accessibility. Based on the same set
of cell lines, Bell et al. (2011) discovered methylation levels of 180 CpG-sites in 173
genes associated with cis QTL variants (10% FDR). Another study (Zhang et al., 2014)
discovered that cytosine modifications at CpG sites are primarily driven by cis QTLs
using over one hundred HapMap cell lines of European and African origin. A subset
of these modifications colocalize with transcription factors to enhance or repress gene
expression, often associated with changes in chromosome accessibility. These studies
have established the regulatory connections between genetic variation and epigenetic

variation (similar results are seen in McVicker et al., 2013).

Non-genetic factors in epigenetic variation It has also been seen that there exist
substantial non-genetic causes for epigenetic variation. Environmental effects can also
cause methylation variation thus in general the direction of causality is unknown. A
change in methylation can either be the result of a genetic effect changing it to the

current status, or an environmental exposure that is stored in a form of epigenetic
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modifications. The monozygotic twins with identical genetic background can help
resolve this, as MZ twins have identical genetic background (Bell and Spector, 2012).
In the aging context, Bell and Spector (2012) showed that differential methylation
is associated with age and age related phenotypes in a twins cohort, but highlighted
that a subset of these can be mediated by genetic reasons. Another study (Rakyan
et al., 2011) investigated monozygotic twins pairs that are discordant for childhood-
onset type 1 diabetes (T'1D) identified methylation sites that are associated with the

disease.

1.3.7 Tissue and environment effect in QTL mapping

One important caveat in QTL mapping is cell type and cell state. Studies on multiple
tissues have shown that although there is a modest degree of sharing, quite often the
regulatory effect of an eQTL is private to a specific tissue. It is therefore crucial to
search for QTL in the correct tissue, i.e. in a tissue that is relevant to the disease
of interest. This may not always be straightforward, as in some cases the regulatory
effect is not in the tissue where a trait is manifested. Using a wrong tissue could be
misleading. Cells with similar differentiation lineages have increased eQTL sharing
relative to developmental distant tissues. However, a significant fraction of cis-eQTLs
are cell type specific. This argues that variation that primarily affects late devel-
opmental processes may achieve sufficient power to be discovered by a cis scan (see
review Gaffney et al., 2012). A number of projects have started to look into the land-
scape of gene expression as well as regulatory element signals in multiple cell types
(?; The Fantom Consortium, 2014). This is still very challenging, as many tissues
are not experimentally accessible, or are financially expensive when studied on a large
scale, which can be necessary to detect weak effects or intra individual effects. The
Human Induced Pluripotent Stem Cells Initiative (HipSci, http://www.hipsci.org/) is
one of the first projects to systematically investigate genetics, epigenetic, proteomics
and cell biology in induced stem cells and the differentiated daughter cells from them.
With induced stem cells, HipSci is able to access tissues that are normally not very

accessible from normal sample biopsy procedure, such as neurons, by differentiating
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stem cells into the target cells. Genetic mappings for a variety of tissues obtained
in a number of differentiation stages may be powerful in revealing some of the key
biological insights, such as how genetics regulates tissue differentiation. This could be
the first step towards understanding this important process, and ideally one should
measure such process in vivo.

Additional to cell type, cell state also contributes to the variation of molecular
phenotypes. It is known that the transcription profile changes dramatically when a
cell is at different stages of its life cycle (Marguerat et al., 2012). Most current studies
are conducted in cells in quiescent state, which may not be the state relevant to the
trait. Phenotypes are not necessarily present in the quiescent state, and the ones of
interest can be hidden in this system. Applying assays that are targeting the correct
cell state will be important in reveal the genuine regulatory architecture.

Environmental exposure is also an important source of variation. In the absence of
accurate measurement, environmental factors will cause loss of power due to increased
stochasticity. Most environmental exposures are hard to measure. The number of
study cohorts with well annotated environmental measures, usually obtained from
questionnaires, is very limited, and even if there is, it is not certain that the relevant

quantities are measured.

1.3.8 Resolving the causative relationship

Cellular molecules work together in a system to achieve a biological function. Genes
responsible for a particular biological function can be grouped together as a path-
way, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG) catalogs some common
pathways (Kanehisa et al., 2004). It is of interest to know the causative relationships
among the molecules, which gives the knowledge of how a function is achieved. It is
possible to do this from experiments by perturbing different combinations of various
molecule levels. The relationship can however also be estimated numerically, for ex-
ample, looking at conditional probabilities in different regulation configurations (e.g.
Schadt et al.; 2005). In the genomic context, one important characteristic is that

genetic variation is generally fixed in an individual’s life time, with the exception of
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somatic mutations. Thus it provides an important anchor to resolve such relationships
(Lawlor et al., 2008), which is tremendously interesting in understanding its role in

the network.

1.4 Overview of the remainder of this thesis

This thesis tackles a number of problems of mapping cellular traits as well as devel-
oping new methods for measuring cellular phenotypes. The remaining of the thesis is

organized in four chapters

o Chapter 2 describes a first well powered systematic QTL study of a primary
transcription factor CCCTC binding factor. This work is published in PLoS
Genetics (Ding et al., 2014).

o Chapter 3 describes a method to substantially increase power in gene expression
association to ageing. This work is accepted in G3 subject to minor revisions
(joint first author).

o Chapter 4 describes a novel approach to measure telomere length using existing
genome or exome sequencing data in a large scale. This work is published in
Nucleic Acid Research (Ding et al., 2014, first author). The method has been
applied to a melanoma study, which discovers several mutations in the Protection
of Telomeres 1 (POT1) gene that are disease susceptible (Robles-Espinoza et al.,
2014).

o Chapter 5 provides a conclusion, drawing together materials from the previous

chapters and discusses future directions.



Chapter 2

The genetics of CCCTC binding

factor

Collaboration note. This chapter contains work in collaboration with Yunyun Ni,
Sander W. Timmer and others in the research groups of Gregory E. Crawford, Ja-
son D. Lieb, Vishwanath R. Iyer and Fwan Birney. This work is published in PLoS
Genetics (Ding et al., 2014). I am the lead author alongside the other two joint first
authors Yunyun Ni and Sander W. Timmer. My contribution in this work includes
data production and quality control, quantifying CTCF binding regions, genotype pro-
duction, association mapping, and jointly with Yunyun Ni allele specific analysis. The
manuscript also contains a novel discovery of three distinct CTCF binding modes on
X chromosome, which was primarily conducted by Sander W. Timmer, and is not

presented here.

2.1 Overview

In the past decade a large number of variants have been discovered associated with
traits or disease. Although they provide important hints, it is not at all straightforward
to understand the underlying biological mechanisms. The majority of the loci that

have been found are in non-protein coding DNA sequences, suggesting regulatory roles
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often responsible for the phenotypic effect (The 1000 Genomes Consortium, 2010).
Sequence conservation based approaches can identify the regulatory regions that are
under selection pressure, possibly due to binding of a protein factor or other regulators
(Lindblad-Toh et al., 2011). Recent sequencing based technologies can give a more
direct measure for regulatory events, such as the binding of CCCTC factor (Kunarso
et al., 2010; Schmidt et al., 2010) and a number of other factors, e.g. Noonan and
McCallion, 2010 and McVicker et al., 2013, revealing the landscape of the regulatory
elements in human genome.

Studying the effect of genetic variants on gene regulation has become an important
approach to find intermediates between genotype and whole organism phenotype. Us-
ing DNase I hypersensitivity and binding assays for the CTCF transcription factor on
two family trios with known genome sequences, McDaniell et al. (2010) showed that
allele-specific binding patterns consistent with strong genetic effects could be readily
measured at heterozygous sites. Other studies have shown allele specific binding of
RNA polymerase and NF-xB binding measured across a small number of individuals
(Kasowski et al., 2010), or of a wider range of transcription factors in a single cell line
(Reddy et al., 2012). Similarly, differences between mouse strains in binding of PU-1
and CEBPa at enhancer regions correlate with sequence differences and adjacent gene
expression (Heinz et al., 2013). Intriguingly, some sites with prominent SNPs in the
binding motifs of CTCF did not show a genetic effect in a study of its binding across an
extended family (Maurano et al., 2012). Reciprocally, differences in transcriptor factor
binding were seen between closely related species even where there was no sequence
difference in the binding region (Stefflova et al., 2013).

In order to examine these phenomena further, and infer potential causative con-
nections to disease GWAS results, we need to identify specific cases where a genetic
variant affects binding. To do this we can use genetic association mapping. When
applied to transcript expression levels as the measurements on 60 or more samples,
this approach has identified thousands of expression quantitative trait loci (eQTLs)
(Spielman et al., 2007; Stranger et al., 2007; Pickrell et al., 2010). A QTL study of hu-
man open chromatin (Degner et al., 2012) found 8,902 DNase I hypersensitivity sites

that were correlated with genetic variants. However, there are currently no systematic
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association studies of how genetic variation in human populations affects the binding
pattern of a specific transcription factor. Here we carry out such a study.

To identify transcription factor binding QTLs, we measured the binding of CTCF
across a panel of lymphoblastoid cell lines (LCL). Previous studies have shown that
there is resemblance between LCLs and the parent lymphocytes at a variety of molecu-
lar levels including transcription factor binding according to accumulated observations
(See review Sie et al., 2009). Despite of some inherit limitations, such as aneuploidy,
gene mutations and reprogramming, often associated with telomerase activity, which
can be controlled experimentally to a certain level, LCLs has still been instrumental
in general as a resource for functional screening that offers acceptable fidelity and is
scalable compared to clinical trails or in vivo systems.

CTCF is a highly conserved multifunctional protein that serves both as a tran-
scription factor as well an insulator binding protein, preventing interactions between
enhancers and promoters and demarcating chromatin domains. Working with cohesin,
CTCF can also mediate chromosomal looping interactions, and is involved in imprint-
ing as well as X-inactivation (see Lee et al., 2012; Merkenschlager and Odom, 2013
for reviews). There have been extensive locus specific studies (Bell et al., 1999; Bell
and Felsenfeld, 2000; Yusufzai et al., 2004; Splinter et al., 2006; Stedman et al., 2008;
van de Nobelen et al., 2010; Sopher et al., 2011) and specific genome wide screens
(Cuddapah et al., 2009; Phillips and Corces, 2009).

Schmidt et al. (2010) showed in breast cancer cell lines and hepatocellular carci-
noma cell lines CTCF appears to work independently to cohesin. Schmidt et al. (2010)
compared CTCF binding patterns across five species and showed that its binding vari-
ation correlates with the evolution distances between species. Previous studies have
shown the extent of genetic effects on CTCF binding in families (McDaniell et al.,
2010; Maurano et al., 2012), although specific loci underlying these effects have not
been identified.

We used ChIP-seq to measure CTCF binding in 51 lymphoblastoid cell lines (L.CLs)
from the HapMap CEU population, each of which had already been sequenced as part
of the 1000 Genomes Project (The 1000 Genomes Consortium, 2010) and had been
subjected to RNA-seq analysis (Montgomery et al., 2010). Our data and analysis
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identified thousands of CTCF binding QTLs across the human genome. These data,
together with the available full genome sequence of the cell lines, allowed us to explore
parameters of genetic effects on protein-DNA binding. For example, we defined the
relationship of the QTL location to the TF binding motif, estimated the relative
impact of substitutions and insertions/deletions (INDELs), and measured whether

allele-specific differences are indicative of population-wide variation.

2.2 Measuring CTCF binding in HapMap cell lines

ChIP-seq Chromatin immunoprecipitation was done at the University of Texas
Austin and sequenced at the Wellcome Trust Sanger Institute. Cells were cross-linked
with 1% formaldehyde for 7 min at room temperature. Formaldehyde was deactivated
by adding glycine. Chromatin from harvested cells was sonicated with a Bioruptor to
an average size of 500 bp DNA. Immunoprecipitation was performed using sonicated
chromatin by adding anti-CTCF antibody (Millipore 07-729). For a subset of eight
samples, including day replicates GM12891 and GM12892, the same procedure was
applied but without using the anti-CTCF antibody, which gives information for esti-
mating the input background. ChIP DNA was used to generate a ChIP-seq library
according to the standard Illumina protocol. The library was then sequenced using
the Illumina HiSeq platform in 50bp paired end reads. On average ~85.5M reads were
produced per sample. Data have been submitted to the European Nucleotide Archive,
available with accession number ERP002168. They are also deposited in ArrayEx-
press with accession number E-ERAD-141. Sequence lanes were assessed for multiple
quality metrics including total yield, read quality, mapping quality, GC content distri-
bution and duplication rate. All sequencing reads were aligned to the human reference
sequence (GRCh37) using BWA v0.5.9-r16 (Li and Durbin, 2009) using default pa-
rameter settings. Duplicate reads were marked by the “MarkDuplicates” function of
the software Picard (v1.47 http://picard.sourceforge.net/) and removed. We reason
that as the binding interface is much smaller than the fragment size and we used
paired-end sequencing, duplicates are more likely to be technical than biological. We

applied a stringent filter by removing all the reads with mapping quality score below
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Figure 2.1: ChIP-seq production. The proportions of the mapped fragments, unique
fragments, and CTCF bound fragments are plotted for each samples.

30, improperly paired (with 0x2 flag set in the BAM format), or with mate pairs more
than 1kb apart (Figure 2.1). For allele specific analysis, we further performed local
realignment using a variant-aware aligner glia (https://github.com/ekg/glia), which
aligns reads against paths in a variant graph built by combining the reference sequence

and known variants.

Binding region calling We performed binding region identification using a Parzen
kernel density window algorithm that we applied in previous studies and achieved good
performance (Shivaswamy et al., 2008; Lee et al., 2012). This procedure was applied to
both experimental and input datasets after combining lanes and replicates into cell-line
sample sets. Local maxima of these Parzen scores were used to define binding peak po-
sitions, and the interquartile range of the kernel density profile was used to determine
the corresponding binding site of highest read density. The resulting set of candidate
CTCF binding sites was then subjected to input correction, filtering for copy number

artifacts, and determination of statistical significance. A input profile was built using
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data from a subset of eight samples that went through the exact same production
except that the antibody was not used. First, in order to normalize for background
represented by the input control, each binding site was paired with the corresponding
input site with the highest read count within 200 bp. A binomial P-value was computed
for each binding site under the null hypothesis that ChIP and input reads were equally
likely. The ratio of total ChIP to input reads for each sample was used to normalize
for differences in sequencing depth before calculating the binomial P-value, with the
library having higher sequencing depth always scaled downward. Binding sites falling
in previously defined genomic regions with aberrantly high signal due to copy number
differences were discarded (Boyle, Davis et al. 2008, http://genome.ucsc.edu/cgi-
bin/hgTrackUi?hgsid=334775099& c=chrX&g=wgFEncodeMapability). Binding sites
dominated by input were also discarded, retaining only sites where the ChIP read
count scaled by sequencing depth exceeded input.

The resulting set of filtered peak P-values was subjected to multiple hypothe-
sis testing using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995).
Next, binding regions for the cell lines at various significance levels were merged using
bedtools v2.17.0 (Quinlan and Hall 2010) in such a way as to preserve the set of calling
cell lines (bedtools merge -nms -scores collapse -n). We employed several metrics in
order to determine an appropriate significance cutoff, including the relationship be-
tween binding region count and P-value (Figure 2.2) and the number of calling cell
lines for each binding region (Figure 2.3). Raw P-values were used to define significant
sites once the P-value threshold was determined. Binding regions with BH-adjusted
P-value < 1E-5 were initially retained as significant (n=127,351), as that value ap-
peared to be the inflection point in the binding region versus P-value curve and had
the largest reduction in binding regions called in just one sample.

Finally, in order to assess the quality of binding regions called in only one cell
line, we used bedtools (bedtools intersect —¢) to identify binding regions containing
the extended CTCF motif (Figure 2.4). Binding regions called in only one cell line
showed a significantly lower occurrence of the CTCF motif as compared to binding
regions called by two or more cell lines. Therefore, we discarded binding regions called

in only one cell line and retained the 63,753 merged binding regions at adjusted P-value
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lines, at three adjusted P-values.
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Figure 2.4: Proportion of merged binding regions as a function of number of calling
cell lines, at three adjusted P-values.

1E-5 with two or more cell lines.

Blacklisting regions Out of 63,753 binding regions identified, we removed 2,898
binding regions falling in repeat sequences or in the Immunoglobulin heavy chain lo-
cus or major histocompatibility complex (MHC). In detail, 2,578 binding regions lie
completely within repeat sequences marked by a merged set consisting of “Repeat
Masker”, “Segmental Dup” or “Simple Repeat” from the table browser of the UCSC
Genome Browser, 35 binding regions lie within the Immunoglobulin heavy chain lo-
cus (chr14:106053226-106330470) and 285 fall in the MHC region (chr6:28477797-
33448354).

Motif word identification We searched for instances of CTCF motif in the dis-

covered binding regions using the CTCF canonical 19bp position weight matrix down-
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loaded from the JASPAR database (Sandelin et al., 2004, http://jaspar.binf.ku.dk/).
We extracted DNA sequences at the identified binding regions from human genome
reference GRCh37 to construct a sequence database. The search was then performed
using the software FIMO(Grant et al., 2011) of the MEME tool suite (Bailey et al.,
2009) using parameter “~threshold 1E-4”. This process identified at least one motif
instance in 45,867 of our 57,428 binding regions. For the ones with multiple motif
instances, we selected the motif with highest matching score as the nominal binding

motif for the region for some analysis.

2.3 Quantification of CTCF binding

With the peak profile identified above, we quantified the signal for each binding re-
gion by counting the number of sequencing fragments (read pairs) when alignment
overlapping the region. We applied stringent criteria by only counting the properly
aligned read pairs with quality score at least 30 and excluding all the duplicated reads
(samtools view -f 0x42 -F0x604 —q 30). We used Bedtools (v2.16.2) (Quinlan and Hall,
2010) to count the intersection between fragments and identified binding regions. This
produced an N x M matrix, where N is the number of samples and M is the number
of binding regions. To evaluate the variation in the ChIP experiments, for two sam-
ples we collected replicated data on four consecutive days. Using binding sites defined
previously, we compared the correlation between replicates grown on consecutive days
and the correlation between all other samples. We found a mean pairwise correlation
coefficient of 0.83 and 0.82 for the replicate sets for NA12891 and NA12892, respec-
tively, while the mean pairwise correlation coefficient between samples was 0.17. This
suggests a good signal to noise ratio in the experiment. This could be considered
as covariates in linear model. However, in our data, we do not see much deviation
from uniform in the test results from our random control (results shown in 2.11), for
simplicity, we do not add additional variables to our tests.

For the subsequent genetic analysis, we are interested in the binding regions that
have good signal and also vary between individuals. The mean and variance of binding

intensities are correlated by the nature of the Poisson process for the sequencing. We
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found a group of 4,516 binding regions (7% of the total binding regions identified)
with little signal or variation - defined as binding regions mapped with fewer than 6
fragments on average per sample and SD < 5.14. The cut-off was chosen as it delin-
eates clear groups of background intensity and signal intensity with distinct strengths

(Figure 2.5). These binding regions were excluded from further analysis.

Normalization Previous studies (Montgomery et al., 2010; Degner et al., 2012)
have shown that appropriate normalization can substantially enhance genetic asso-
ciation signals by removing confounding non-genetic sources of variation. Potential
sources of confounding variation include experimental batch effects, GC bias in se-
quencing library construction and latent unknown technical or biological factors that
have systematic effects across large numbers of binding regions. To address these is-
sues, we normalized the raw binding intensity using the following five step approach
to generate a normalised adjusted binding intensity (NABI).
1. Rescale by sequence depth.

- Ri,jMecm(Sj)

Xi,j g
J

where R, ; is the raw intensity of the ¢th binding region of the jth lane, and 5
is the sum of intensity across all binding regions for the jth lane. R, is scaled by a
factor of the proportion of mean of S across all P lanes over .S;.

2. Remove variance introduced by GC composition. We adjusted for GC bias
in sequencing library construction by forming percentile bins for GC composition of
all binding regions and normalising the binding intensities within each bin. Since
the fragment length is much larger than the motif length, this bias is not strongly

influenced by the motif sequence.

le’]
Median(Xy, j; k same GC bin as 1)

Xij=

where 1, 7, k are the indices for binding region, lane, and GC bin respectively.

3. Merge lanes of a same individual by taking the mean. A subset of our samples
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Figure 2.5: Quality control by raw signal intensity and inter cell line variability. For
each binding region we counted the overlapping sequencing fragments (identified by a
properly paired read pair) and used it as a measure for the raw binding intensity. We
plot the log of the variance of the binding intensities across 51 individuals versus the
log of the mean of the binding intensities using the R function smoothScatter. The
degree of blue is proportional to the density of data points. As a Poisson process the
mean and variance correlate to each other. There exists a natural cutoff between the
lower left tail and the majority at mean 6 and standard deviation 5.14. These lower
left tail binding regions are the sites with very low intensity and also low variability.
We removed these sites, 4,516 binding regions in total, before further analysis.
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were sequenced on multiple lanes and in these cases we took the mean value across

lanes as the measurement of the individual.

D;; = Mean(X; ;;j lanes of ), { = 1...N

where X ; is the measure from the previous step, i, j, [ are indices for the binding
region, lane and samples, respectively. N is the total number of samples.

4. Centre-scale binding intensity for each binding region. We then scaled the
binding intensity for each binding region by subtracting the mean and then dividing
by the standard deviation. This transforms the measures of each binding region into
zero mean and unit variance, which is needed for the quantile normalization to be less

affected by the different variances of different binding regions

7 D;; — Mean(D;)
o StDev(D;)

where 7, [ are indices for binding region and sample.

5. Quantile normalize each sample data to a normal distribution. The distribution
of binding intensities for each individual is complex. Previous studies have shown that
quantile normalization, initially developed for normalising the microarray signals of
gene expression, can assist statistical analysis by converting the distributions of each
sample to a reference distribution. The linear regression model used to identify QTL in
our study assumes a Gaussian distribution of binding measures within each genotype
class. We therefore mapped the measures across all binding regions of each sample
to the corresponding normal quantiles. This produces a matrix that is essentially a

perturbation permutation of the normal quantiles

SM K Z, < Zz‘,l})
M+1

where ® is the cumulative normal density function and M is the total number of

N\E

il = q)_l(

binding regions. [ is an indicator function that returns 1 if the condition is met and
0 otherwise.

6. Remove confounding variation by principal component analysis (PCA). The
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Variables \ PC1 \ pPC2 ‘
Sequencing mapping rate 0.049 | 0.50
Duplication rate 0.065 | 0.031
Sequencing depth 0.043 | 0.012
ChIP batch 0.31 | 0.097
ChIP batch with sequencing batch regressed out | 0.47 | 0.075
Epstein-Barr virus load 0.12 | 0.022

Table 2.1: Correlations between PC1, PC2 and the experimental variables. In associ-
ation tests PC1 was removed.

measures of binding for each individual can be confounded by a number of hidden
factors due to either biological or technical factors, or both. We performed PCA and
saw that the first factor explained 24.1% of the variance in the data, substantially
more than later components (Figure 2.6). Further investigation of this component
showed that it was correlated with ChIP batch date, and it was therefore removed
(Table 2.1).

2.4 Imputing missing genotypes

Our 51 samples consist of 35 individuals present in the 1000 Genomes Phase 1 release
(v3 20101123) (The 1000 Genomes Consortium, 2012), 11 individuals in the 1000
Genomes Pilot, 2 individuals in 1000 Genomes high coverage Trio (NA12891 and
NA12892) and 3 individuals in the HapMap III (Stranger et al., 2012). The eleven
1000 Genomes Pilot samples have low coverage. We calculated the genotype likelihood
for each of the Phase 1 sites using samtools (Li et al., 2009) and then performed
imputation using BEAGLE (Browning and Yu, 2009) and IMPUTE2 (Howie et al.,
2009) with the 1000 Genomes Phase 1 data as a reference panel. Using Illumina
Omni 2.5M SNP array genotypes (available ftp://ftp.1000genomes.ebi.ac.uk/voll /ftp/
technical /working /20120131 _omni_ genotypes_and__intensities/) as a validation set,
we obtained good accuracy from this procedure with a mean non-reference discordance
rate of 2.33% and an average genotype dosage R? of 0.956. We also imputed the
three HapMap III samples, using their genotype data on the Omni 2.5M array as
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Figure 2.6: Proportion of phenotypic variance explained by each principal component
(PC). We performed principal component analysis (PCA) on the normalized data
to discover latent factors that explain large proportion of phenotypic variation. We
saw that the first principal component explains substantially more variance than the
others. When we looked at the correlation between the first principal component and
technical and experimental variables, we found that it correlates with ChIP batch
at p=0.47. The first principal component is removed from the data before further
analysis.
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the imputation panel and the 1000 Genome Phase 1 as the reference panel. We then
integrated data from each source and obtained a consolidated genotype set for all 51
individuals. For association mapping, we filtered variants by requiring >5% minor
allele frequency, P value for Hardy-Weinberg Equilibrium (HWE) >1E-4 and position
within 50kb to either side of a binding region being mapped. The window size was
chosen to be 100kb as we are primarily interested in cis regulation but also allowing
possibility that there may exist multiple binding sites with variable affinity strengths
in the window. Finally, 4,687,317 variants entered analysis, with 4,250,881 SNPs and
436,436 INDELSs.

The 1000 Genome Phase 1 release gives a comprehensive ascertainment of the
genetic variants. However, it is still possible that some variants private to this study
cohort are yet to be found. To address this concern, we performed variant calling
for the CTCF binding regions using ChIP-seq data. The calling was done by using
samtools mpileup with parameters “-DV -C50 -q 30 -Q 30 -d 10000 —u -1 $qtl_regions
-b $bam_ list -f $reference”, followed by BCF tools with parameter “-t $qtl regions
-mv”. This is independent from the previous variant calling and gives information
private to the ChIP-seq data. We filtered on the quality of the calling by keeping
only variants with QUAL score greater than 20. We also kept only the variants that
are private to the new call set and are absent in the 1000 Genomes Phase 1 data. In
the end, we obtained 4,756 variants are within binding regions with 2,282 SNPs and
2,474 INDELSs. It is a small additional quantity compared to the variant set of the
1000 Genome Phasel release, but is enriched for INDELs (52%). When we conducted
the same association scan using only these additional variants, we discovered 55 QTL
binding regions associated with 60 variants, out of which only 8 QTL binding regions
are new and no variants were found within motif. Thus the effect of this additional

variant set is minimum in our QTL scan.

2.5 Association testing

We applied linear regression for association testing. For each binding region, we tested

the association between the binding intensities and the genotypes of the variants that
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are within 50kb of the binding region by linear regression: y; = [Orri + €k, © €
{1, ...,57428} where y; is the normalized binding intensity for the /th individual, x; is
the genetic dosage, represented as the minor allele count, for variant k& and individual
[, and € is the non-genetic noise term assumed to follow distribution N(0,0?). The

parameters (ﬂA ,0%) can be fitted using maximum likelihood methods. For each loci k,
B

Vvar(8)

We estimated the FDR by a ¢ value method (Storey and Tibshirani, 2003), which

establishes P<7.1E-5 as an FDR of 1%. We further filtered the associated SNPs by

requiring the P value to be within one order of magnitude to that of the P value of the

we tested the null hypothesis 8 = 0 using test statistics ¢ =

lead SNP. We report these cluster variants as associated to the target binding region.
We also reported results when a more stringent Bonferroni threshold was applied. The
threshold was calculated at a significant level of a=0.05 corrected for 13,293,727 tests,
which gives 3.8E-9 for the actual threshold.

2.6 Allele specific analysis

Read counts at each allele were counted for the 5.6M SNPs within 50kb of a binding
region. Heterozygous SNPs with significant allele-specific CTCF binding were identi-
fied. In detail, for each individual at each site, we calculated a binomial P value at
all heterozygous SNPs with the null hypothesis that the two allele counts are equal.
We then performed multiple testing adjustment for all heterozygous SNPs that have
at least 2 reads at each allele and at least 2 reads difference between the two alleles
using the Benjamini&Hochberg (Benjamini and Hochberg, 1995 ) method. Significant
allele-specific binding was determined with an FDR 5%.

2.7 Results

Analysis of CTCF binding in 51 genotyped individuals reveals thousands
of binding QTLs We performed ChIP-seq on extracted chromatin from genotyped
LCLs as previously described (Lee et al., 2012) except that we sequenced the DNA
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fragments from both ends (Figure 2.7). We quantified binding to binding regions
similarly to previous work (Lee et al., 2012) but pooled all the samples and identified
a composite set of binding regions with detectable CTCF binding at low threshold.
We then counted the sequence fragments that overlap each binding region in each
individual, and normalized the signal to correct for systematic biases as in Degner
et al., 2012. We discarded binding regions that showed very little inter-individual
variance or had only one or two individuals with significant binding scores. Overall,
our normalized data showed effectively enhanced signal noise ratio and motivated QTL
analysis (Figure 2.7B, 2.9, and 2.11).

To measure the variance due to growth differences between the cells, we grew two
individual cell lines as four independent cultures started on four consecutive days.
There was higher correlation between these biological replicates from the same indi-
vidual than between samples from different individuals, although all data sets were
modestly correlated as expected for CTCF ChIP-seq (Figure 2.8). We next examined
the data to see whether there were any systematic biases between samples. A princi-
pal component analysis identified some systematic variance, with a particularly strong
first component (explained 24.1% of the variance, Figure 2.6) that on investigation was
correlated to known experimental batches. We therefore removed the first principal
component, significantly improving the recovery of QTLs (Figure 2.9). This is in gen-
eral a good practice from previous studies, e.g. Degner et al.; 2012, as methods such
as PCA could not enhance random noise. We used the resulting normalized adjusted
binding intensity (NABI) for subsequent analyses.

To discover QTLs, we correlated SNPs and small biallelic insertion or deletion
(INDEL) variants within 50 kb of the binding region with the NABI metric, using a
linear model (Table 2.2, example in Figure 2.10). As expected, the majority of variants
do not have a significant association with variation in CTCF binding, with the linear
model P-value distribution following the expected distribution (>95% of tests, fraction
of the overlap between the black line and red line, Figure 2.11). When samples are
permuted, the distribution of the test statistic falls on the expected line. Using a non-
parametric statistic we saw similar P values (Figure 2.11). Using a Bonferroni adjusted
threshold of P < 3.8E-9 we find 509 binding regions with significant QTLs. Using a
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Figure 2.7: A. Flow chart indicating the overall design of the experiment. B. Overview
of the binding intensities of a binding site across samples in three genotype groups of
the associated SNP. ChIP-seq signal from the samples is aligned as tracks for this region
of chromosome 3. The greyness is proportional to fragments mapped at the position,
indicating binding intensity, with dark grey indicating high fragment count. Samples
are grouped by their genotype at SNP 1rs936266, C/C, C/T or T/T, respectively.
Binding sites were identified, as shown in the binding region track along with the
number of samples passing the peak calling threshold. The colours of the binding
regions represent the consistency of identifying the binding region across samples.
Specifically, red binding regions were identified in 10 or more cell lines, blue binding
regions in 5-9 cell lines and green binding regions in 2-4 cell lines. Finally the bottom
track shows the corresponding CTCF motifs, with quality score attached to each site.
The binding intensity decreases for T heterozygotes and further for T homozygotes.
The inset panel shows allele-specific binding for the C and T allele (blue and red,
respectively) in the heterozygous individuals (C/T) as percentage of the total count.
Binding intensities consistently favour the C allele over the T allele.
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Figure 2.8: Higher correlation within day replicates compared to between different
samples. We calculate the pair-wise Spearman correlation among all samples, includ-
ing the two day-replicates, 12891 and 12892, shown as the last two sets of four samples.
A diagonal line in each cell represents perfect correlation whereas a full circle represents
no correlation. Increasingly flattened ellipses indicate a greater degree of correlation.
When comparing among the day replicates, we obtained a correlation coefficient of
0.83 and 0.82 for GM12891 and GM12892, respectively. We also looked at the mean
correlation of all the other samples and found a correlation of 0.17. Therefore we see
much higher correlation within day replicates than that of all other samples.
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Figure 2.9: The number of significant QTLs found as a function of false discovery
rate (FDR), plotted for the raw data and after each stage of the data normalization
procedure that we used. We first normalised the binding intensities for each sample
by the total read depth for that sample. We then corrected for GC composition by
removing the median count of binding regions in the same GC bin (100 bins in total)
from each binding region. The measures for each binding region were then centre-
scaled by removing the mean and then dividing by the standard deviation (track
hidden behind GC as center scale does not affect regression). This was followed by a
quantile normalization, which maps the measures of each sample to normal quantiles
across all binding regions. Lastly, we removed the first principal component that
explains the most global phenotypic variation.
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Figure 2.10: An example CTCF QTL. Here shows all associations for all variants in
the region of the binding region at chr3:108125397-108125829. SNPs are shown as solid
circles and INDELs are shown as triangles, colored by R?. Inset is boxplot showing
the normalized adjusted binding intensity (NABI) for the different possible genotypes
of SNP 1s936266. Genotype is strongly associated with the binding intensity of the
binding region (P=1.69E-19), with the C allele favoring binding.

more liberal False Discovery Rate (FDR) (Storey and Tibshirani, 2003) approach to
take advantage of the smaller number of effectively independent tests occurring in these
limited cis-regions, we discovered 1,837 binding regions (3% of total binding regions)
with at least one significant variant at the 1% FDR level; relaxing the threshold to
10% FDR we discover 6,747 binding regions (12% of the total) (Table 2.2).

We chose to focus further analysis on the 1% FDR threshold as this provided ample
QTLs from which to derive insights. We only considered one association per binding

region, because the small number of samples meant that there was insufficient power
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Figure 2.11: A Quantile-Quantile plot showing the distribution of the observed (y-axis)
compared to the expected P values(x-axis). The red line is the distribution of the P
values from the null model. The brown line on the y-axis shows the 1% FDR level
determined by the ¢ value method (Storey and Tibshirani, 2003). Black and blue dots
indicate P values from the linear tests and permutation controls, where sample labels
are randomly permuted. Association test by linear methods can be inappropriate
and give spurious signal if the normality assumption is not met. Although in our
normalization procedure the binding measures are mapped to normal quantiles sample-
wise, it is still possible that the normality assumption does not hold binding region-
wise. To test if this would bias the QTL mapping we performed the same tests using
the Spearman’s rank method (orange line). We see a slight elevation of the black line,
suggesting the rank test is more conservative but would give similar results (1476 out
of 1837 QTL binding regions overlap between two tests), and our linear test is mostly
appropriate. The subsequent analysis is based on the discovery set from the linear
test at a 1% FDR (brown line) threshold.
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Study Parameters

Traits (Binding Regions) 57,428

Variants 4,687,317
SNPs 4,250,881
INDELs 436,436
Study Results
Binding Regions 1,837
Variants 24,534
SNPs 22,954
INDELs 1,580
GWAS overlaps 61
eQTL overlaps 366

Table 2.2: Summary statistics of the CTCF QTL scan.

for a conditional analysis for secondary associations in almost all cases. Within this set
of associations, the genetic variant accounted for a substantial fraction of the variation
in CTCF binding (median R? 0.38, Figure 2.12). When comparing the effect sizes and
the proportion of variance explained between QTL at 1% FDR and 10%FDR, the 1%
FDR set has higher values (the average absolute value of beta = 1.1 (0.37-3.39)) than
the 10% FDR set (average absolute value of beta = 0.80 (0.26-2.83), Figure 2.13).
We summarized the collective set of variants which might be involved in each
binding region association as being the cluster of SNPs within one order of magnitude
of the P-value of the lead variant. 24,534 variants were identified in at least one
cluster at the 1% FDR level, 13.4 variants on average per binding region (Table 2.2).
As expected, these variants were mainly clustered around the target binding region,
and when a CTCF binding motif could be identified (1341 of the 1837 cases) and a
cluster QTL variant was present in the motif, the frequency was correlated with the
information content and the GERP score (Cooper et al., 2005) of the motif (Figure
2.14B), as seen previously (Maurano et al., 2012). This is not driven by any biases
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Figure 2.13: Effect sizes and proportion of variance explained of QTLs discovered at
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Significance Binding Binding QTL in <lkb <10kb <30kb
region count  regions with motif
motif
10% FDR 6,747 5,260 453 1,386 2,583 4,057
1% FDR 1,837 1,341 344 747 1,023 1,199
Bonferroni 509 360 164 258 322 341

Table 2.3: CTCF QTLs with associated variants in different distance ranges.

in the distribution of the variants around the CTCF binding interface (Figure 2.14).
However, only a minority of significant binding regions had a QTL candidate within
the motif (344/1341), and in only a small majority of cases was there a QTL within 1kb
(747/1341), of the binding region (Table 2.3). Considering that out of 45,668 binding
regions that contain at least one motif, 2,090 (4.6%) binding regions have at least one
variants on its binding motif. The QTL set shows strong enrichment of functional
variants that are on motif: out of 1,341 that are motif containing, 344 (25.6%) have
QTL variants within the motif.

We explored further the cases where there was no proximal variant in the clus-
ter. There was not a substantial difference in genotype quality around the associated
binding regions in these cases compared to binding regions with proximal effects, sug-
gesting that there is not a large missing data problem. When considering all 1000
Genomes Project variants including those with allele frequency below 5%, in 95.5% of
these cases, there was a proximal variant within 1kb of the binding region in linkage
disequilibrium (LD) with the distal lead variant, where LD was defined as the absolute
value of D’ > 0.5. In approximately half of these cases the P-value of the proximal
association either fell just outside the one order of magnitude threshold to fall in the
cluster, or was just under the FDR threshold (Figure 2.16). In the 99 such cases
where such a proximal variant was within the CTCF binding motif, the position of
the variant was correlated with the information content of the position in the motif
(Figure 2.17). Therefore a substantial fraction of the apparently distal cases appear

to be explained by proximal cases. However still only a minority can be explained by
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Figure 2.14: A. The distribution of variants (SNPs and INDELs) within a 50kb window
over all binding regions that contain a motif. Y axis indicates the number of variants
at a given position indicated by X axis with respect to the binding motif. Variants are
uniformly distributed throughout the window, except a small reduction at the center
corresponding to the high information content of the motif. B. The density of QTL
variants with respect to distance from the motif of the associated binding regions.
Density plots are shown at kb (inset) and base pair resolution (main plot). SNP and
INDEL are shown as black and red bars respectively. For these cases the QTL density
correlates with the information content of the motif (Spearman’s rank p=0.63) shown
at the bottom.
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Figure 2.15: The QTL effect size correlates with the information content and the
GERP score for the variants present in the motif .

variants in the binding motif itself. We looked at overlapping between the associated
variants and other markers including DNase [ hypersensitivity sites and transcription
factor binding sites. We did not see a clear enrichment towards a particular motif. We
also conducted the analysis excluding short INDELs to replicate the more common-
place association analysis using only SNPs. In an INDEL-free analysis we would have
missed QTLs in 67 binding regions entirely (~5% of significant binding regions), and
for 56 additional binding regions the closest observed explanatory SNP would have
been over 1 kb away from the motif inside the peak. For these SNPs, there is usually
a short indel with similar direct P-value inside the binding region. We further ex-
plored whether another cause for distal QTL effects could be due to the distal variant
affecting a second neighbouring binding region of CTCF, which in turn influenced the
primary binding region, but there was only one case where we could find any evidence
for this model (Figure 2.18).

We additionally investigated the cases where there exist binding interactions be-

tween the QTL binding region and the neighboring region. For each of the four
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categories with sufficient abundance (model 1, 2, 3 and 4 in Figure 2.18), we com-
pared the average signals between the QTL binding region (B1) and the neighboring
binding region (B2) for a number of molecular markers using data obtained from the
ENCODE project (7). We observed distinct patterns of regulatory signals between
model 1,2 and model 3,4 (Figure 2.19). We saw that when there exists interactions
between two binding regions (model 3,4), active transcription factors, enhancers and
active histone markers tend to be more enriched in the QTL binding regions, as shown
in red in Figure 2.19. This change is not driven by their distances being closer to the
transcription start site (TSS) by chance, measured as the distance to the closest TSS,
because the neighboring binding regions have similar distance to the TSS as the QTL
binding regions (red and green lines in the density plots, Figure 2.19). We observed
corresponding changes in histone modifications (H2AZ, H3k27ac, H3k4mel, H3k4me2
and H3k4me3) depending on the direction of the interactions between two binding
regions (Figures 2.19 and Figure 2.20).

The effect size distribution with respect to allele frequency shows increased effect
sizes for lower frequency SNPs, with a clear absence of large effects of common alleles
(Figure 2.21). There is no statistical difference in effect size distribution between SNP
and indel variants (Figure 2.21).

The dual-end sequencing of the ChIP-seq fragments provides the resolution to
discover specific binding modes that influence the spatial distribution of the recovered
fragments. To analyse this, we characterised ChIP-seq binding regions by metrics that
summarised the extent of the peak and the position of the summit on a per individual
basis, and used these additional metrics as phenotypes in a quantitative trait analysis
using the methods described above. In detail, for each binding region in each sample,
we measure the average left end, middle point and right end of sequencing fragments.
The variation of the average positions across samples thus reflect variations in binding
shapes across samples. Out of all 57,428 binding regions that were tested, we found
25 shifts in peak shape driven by a genetic locus at the 1% FDR. Ten cases were also
associated with a change in peak height. An example is shown in Figure 2.22, with
the two homozygous genotypes showing the creation of a new associated peak, and

merging of a double peak, and from visual inspection the other cases also look as if



2.7 Results 66

20- ®
®
° . /,’
.®
.. .. .
_ D prime

€19 : s
S -
— 0.5
®©

> 0.0
|
- - -0.5
O -1.0
©

F

@ go.
S .
— ® 0.2
e'/ ® 03
8 Qo4

I

0 5 10 15 20
—log(P) proximal variant in LD

Figure 2.16: P value distribution of the proximal variants. Here the P values from the
association between the CTCF binding and the lead distal QTL variants are plotted
against that of the proximal variants, which are in LD with the distal QTL variants.
The horizontal and vertical dashed lines are the 1% genome wide FDR threshold
established in the main analysis. The diagonal line assists to indicate same P values.
Each dot is colored by its D’ value of LD with its size scaled by the allele frequency
of the proximal variant.



2.7 Results 67

cor with motif=0.361

10-
>
(@)
c
()]
-
O
o
L

5

0 -

~10 5 0 5 10
Position

Figure 2.17: Distribution of the proximal variants that are on motif and in LD with
the distal lead QTL variants. Here the proximal variants were aligned to the motif
positions. We saw a correlation between their distribution and the information content
of the motif at p = 0.36.
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Figure 2.18: Evidence for indirect effects when a second binding region is present in the
distal QTL window. Many (75.5%) of our distal QTLs contain a second CTCF binding
region in their 50kb cis-window. To explore possible causal relationships between the
lead variant, the associated binding region(BR1) and the second binding region(BR2)
we constructed seven graphical models (A) and compared them using the Bayesian
Information Criterion (BIC). In each case we assign the most likely model, chosen as
having the lowest BIC (AIC showed same results). The frequency of the chosen models
(B) suggests that there is almost never evidence for the association effect of the distal
variant being mediated via a secondary binding region. The most frequently preferred
model (1) did not involve BR2 at all; for the next most preferred models (3 and 4) there
was some evidence of interactions between neighbouring CTCF binding sites, but we
could not explain the variant association to BR1 binding via BR2. The only models
which support mediation of binding at BR1 via BR2 are 5 and 6, and in only one
case do we see one of these being selected. The P value of BR1 when conditioned on
BR2 is plotted in (C). We further investigated the enrichment of a range of ENCODE
(?) signals over the QTL binding region and the neighboring region. We found the
association between two binding regions (model 3,4) tend to correlate with the active
regulatory signals (Figure 2.19).
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Figure 2.19: The interaction between QTL binding region and neighboring binding
region correlates with regulatory events. The distal QTL set is as previously described
(Figure 2.18). For each of the four categories with sufficient abundance (model 1,
2, 3 and 4), we compare the average signals between the QTL binding region (B1)
and the neighboring binding region (B2) for a number of molecular markers using
data obtained from the ENCODE project (Birney et al., 2007). We observed distinct
patterns of regulatory signals between model 1,2 and model 3,4. We saw that when
there exists interactions between two binding regions (model 3,4), active transcription
factors, enhancers and active histone markers tend to be more enriched in the QTL
binding regions, as shown in red. This change is not driven by their distances being
closer to the transcription start site (T'SS) by chance, measured as the distance to
the closest T'SS, because the neighboring binding regions have similar distance to the
TSS as the QTL binding regions (red and green lines in the density plots). Some of
the histone modifications (H2AZ, H3k27ac, H3k4mel, H3k4me2 and H3k4me3) swap
enrichment direction between model 3 and model 4 depending on the direction of
interaction between Bl and B2 (also see Figure 2.20 for more detailed enrichment
signals).
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Figure 2.20: Change of histone modifications depending on the interaction models
between the QTL binding region and the neighboring binding region (see Figure 2.18
and Figure 2.19 for explanations about the models).
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Figure 2.21: Effect size versus derived allele frequency for all CTCF QTLs identified
at 1 % FDR.

they can be explained as two CTCF peaks in close proximity, one or both of which is
under cis-genetic control.

There are 61 CTCF QTL variants that overlap with disease and trait associated
variants from other studies (Table 2.4, GWAS Catalog Hindorff et al., 2009). In
particular there is a disproportionate overlap with immune system related diseases
(20 variants; x? P-value 1.7E-9). This is consistent with the lymphocyte origin of
LCLs, and may suggest roles of CTCF binding in the disease phenotypes.

In summary, these results are consistent with previous studies(Kasowski et al.,
2010; Maurano et al., 2012; Reddy et al., 2012; Stefflova et al., 2013) that observed
substantial variation in transcription factor binding within and between species, only
a minority of which could be accounted for by genetic differences in the binding motif.
We also found that only 25.7% of our QTLs could be explained by a genetic variant
in the motif. The majority of the remainder can be explained by changes within 1kb
of the motif, consistent with observations that transcription factor binding differences

between mouse strains are more likely if there are genetic differences within 200bp of
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Figure 2.22: Example of CTCF peak shape QTL. Reads for samples in each homozy-
gous genotype group at QTL rs11935835 were merged (AA and CC, respectively), and
the average CC genotype profile is plotted above the main axis (in green), and the
average AA genotype profile below (in red); each plot is reflected on the other axis
in a lighter colour to allow visual comparison. The AA genotype has stronger overall
binding, with a second peak to the left, whereas the CC genotype has a double peak.
The heterozygote has intermediate profile between these two (not visualized in this
figure). The binding region is marked as a brown box with the SNP position marked
by a black vertical dash.
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the binding site (Heinz et al., 2013). However there remain some genetic associations
for which we are not able to identify any proximal candidate, suggesting that longer
range influences can make some contribution to CTCF binding. Using published gene
expression data for a subset of these samples, we looked at correlations between CTCF
bindings and expression levels of nearby genes. We did not see strong correlations

between the two, suggesting more complex role of CTCF in influencing genes.

PMID Disease/Trait CHR SNP -log(Pcw as) | Binding region -log(Porr)
start
Table 2.4: The overlap between CTCF QTL variants and GWAS variants.
18204098 Systemic lupus 8 rs13277113 10 11339579 4.891
erythematosus
17611496 Asthma 17 rs7216389 10.046 38028921 14.668
21627779 Alzheimer’s disease 11 rs1562990 10.398 60018960 15.264
23263486 Urate levels 5 rs17632159 10.398 72431291 5.383
19079260 Body mass index 1 rs2568958 11 72796185 23.913
19079260 Body mass index 1 rs2568958 11 72808237 20.605
19079260 Body mass index 1 152568958 11 72794697 20.529
17554300 Type 1 diabetes 12 rs11171739 11 56435260 4.979
22396660 Nephrolithiasis 5 rs11746443 11.046 176797734 4.184
21460841 Alzheimer’s disease 11 rs4938933 11.097 60018960 14.791
(late onset)
21102463 Crohn’s disease 6 rs415890 11.523 167411229 5.477
19430480 Type 1 diabetes 17 rs2290400 12.222 38028921 14.668
23222517 Red blood cell traits 22 rsb749446 12.523 32870620 4.932
21804548 Asthma 12 rs1701704 12.699 56435260 4.931
22561518 Vitiligo 12 rs2456973 13.523 56435260 4.931
22423221 Mean platelet volume 6 rs210134 14.699 33546527 5.42
22700719 Chronic lymphocytic 6 rs210142 15.046 33546527 5.42
leukemia
21833088 Multiple sclerosis 16 rs7200786 16.046 11196016 4.233
21829393 Type 1 diabetes 12 rs1701704 17.301 56435260 4.931
autoantibodies
17554260 Type 1 diabetes 12 152292239 19.699 56435260 5.796
23128233 Inflammatory bowel 6 rs1819333 20.155 167411229 5.477
disease
23128233 Inflammatory bowel 21 rs7282490 25.699 45659281 4.193
disease
21829393 Type 1 diabetes 12 rs2292239 26.523 56435260 5.796
autoantibodies
21149283 | Iron status biomarkers 11 rs236918 27 117051957 5.29
22139419 Platelet counts 6 rs210134 35.155 33546527 5.42
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PMID Disease/Trait CHR SNP -log(Paw as) Binding region -log(Pgrr)
start
22504420 Bone mineral density rs6959212 37.398 38110179 8.869
21079607 Anorexia nervosa rs6782029 5.046 11661145 4.572
23251661 Obesity-related traits rs1044826 5.097 139072763 4.783
18839057 Attention deficit 16 rs11646411 5.155 82772300 4.259
hyperactivity disorder
23192594 Body mass index 18 rs11876941 5.301 50906413 9.637
(interaction)
22589738 Subcutaneous adipose 1 rs990871 5.398 72794697 20.061
tissue
22589738 Subcutaneous adipose 1 rs990871 5.398 72808237 19.855
tissue
22365631 Temperament (bipolar 21 rs2150410 5.398 40547111 14.838
disorder)
23319000 Metabolite levels 2 rs6750634 5.398 50763433 14.085
(HVA/MHPG ratio)
23251661 Obesity-related traits 17 rs1051424 5.523 57976434 11.83
21998595 Height 6 rs2224391 5.523 5261260 11.231
23319000 Metabolite levels 8 rs13251954 5.699 29034453 4.16
(HVA-5-HIAA Factor
score)
20195514 Primary tooth 17 rs9674544 6.097 47091576 4.54
development (time to
first tooth eruption)
20862305 Type 2 diabetes 15 rs1436955 6.155 62417944 4.854
22797727 | Renal function-related 5 rs12654812 6.301 176797734 4.943
traits (sCR)
21833088 Multiple sclerosis rs4075958 6.301 176797734 4.344
21408207 Systemic lupus rs2736340 6.523 11339579 4.891
erythematosus
22451204 Parkinson’s disease 2 rs6430538 6.699 135540345 15.085
22797727 | Renal function-related 5 rs12654812 6.699 176797734 4.943
traits (eGRFcrea)
20228799 Ulcerative colitis 17 rs8067378 7 38028921 14.668
19023125 Brain imaging in 5 rs245201 7.046 127169342 5.004
schizophrenia
(interaction)
21118971 Small-cell lung cancer 11 rs716274 7.046 103408608 4.285
19079261 Body mass index 1 rs2815752 7.222 72796185 23.913
19079261 Body mass index 1 rs2815752 7.222 72808237 20.605
19079261 Body mass index 1 rs2815752 7.222 72794697 20.529
20596022 Alopecia areata 12 rs1701704 7.523 56435260 4.931
19079260 Weight 1 rs2568958 7.699 72796185 23.913
19079260 Weight 1 rs2568958 7.699 72808237 20.605
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PMID Disease/Trait CHR SNP -log(Pgw as) | Binding region -log(Pgrr)
start
19079260 Weight 1 rs2568958 7.699 72794697 20.529
23128233 Inflammatory bowel 5 rs12654812 7.699 176797734 4.943
disease
19165918 Systemic lupus 8 rs2618476 7.699 11339579 4.891
erythematosus
20195514 Primary tooth 17 rs9674544 7.699 47091576 4.54
development (number
of teeth)
18464913 Protein quantitative 11 rs7112513 8.222 117051957 5.29
trait loci
19503088 Rheumatoid arthritis 8 rs2736340 8.222 11339579 4.891
20881960 Height 7 rs6959212 8.699 38110179 8.869
19801982 Bone mineral density 7 rs1524058 9 38110179 9.083
(spine)
23291587 Behcet’s disease 12 rs2617170 9 10563751 5.679
21459883 Dilated 1 rs10927875 9 16321009 4.468
cardiomyopathy
18198356 Type 1 diabetes 12 rs1701704 9.046 56435260 4.931
22446961 Kawasaki disease 8 rs2736340 9.046 11339579 4.891
22139419 Mean platelet volume 3 rs10512627 9.301 124339333 9.465
19820697 Hematological 22 rs9609565 9.398 32870620 4.943
parameters
23128233 Inflammatory bowel 14 rs194749 9.523 69255227 4.287
disease
21943158 | Cardiovascular disease 11 rs508487 9.699 117051957 4.597
risk factors
22001757 Liver enzyme levels 8 rs6984305 9.699 9178038 4.199
(alkaline phosphatase)
23251661 Obesity-related traits 7 rs11976180 5.15490196 143760743 6.02128023
23064961 Dental caries 13 rs735539 5.397940009 21285708 7.303681407
22566498 Response to 11 rs11020821 6.045757491 94234754 5.607190203
angiotensin II receptor
blocker therapy
22566498 Response to 11 rs11020821 5.397940009 94234754 5.607190203
angiotensin II receptor
blocker therapy
(opposite direction w/
diuretic therapy)
22561518 Vitiligo 11 rs4409785 12.69897 95311198 7.479585622
22001757 Liver enzyme levels 1 rs10908458 14.69897 155085124 5.091098739
(gamma-glutamyl
transferase)
21833088 Multiple sclerosis 11 rs4409785 6.22184875 95311198 7.479585622
21037568 Hodgkin’s lymphoma 2 rs1432295 7.698970004 61066413 7.269570862
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PMID Disease/Trait CHR SNP -log(Pgw as) | Binding region -log(Pgrr)
start
20972438 Bladder cancer 4 rs798766 12.39794001 1731408 5.210110236
20708005 Non-alcoholic fatty 13 rs1305088 5.045757491 29252925 4.210516688
liver disease histology
(other)
20395239 Optic disc size (cup) 12 rs10858945 5.22184875 90456729 4.268051964
20348956 | Urinary bladder cancer 4 rs798766 11 1731408 5.210110236
19343178 Height 7 rs849141 10.52287875 28182178 4.157298252
19197348 Quantitative traits 7 rs2527866 5.522878745 157091071 7.170945424
18759275 Uric acid levels 3 rs6442522 5.301029996 15440342 17.31606037

Allele-specific bias analysis of CTCF binding provides independent confir-
mation of QTLs This data set represents an excellent resource to directly examine
allele-specific biases in TF binding at heterozygous sites in a larger set of individuals
than previous studies (McDaniell et al., 2010). Allele-specific binding refers to statis-
tically significant biases in binding to the two alleles in a diploid cell, at sites where a
heterozygous polymorphism allows the two alleles to be distinguished. Allele-specific
binding thus is an independent way of assessing how genetic variants at binding sites
might affect binding variation. Although the two alleles at heterozygous SNPs are nor-
mally referred to as the reference or alternate allele (referring to which base is found
in the reference genome sequence and which is the alternate base), here we chose to
categorize the two alleles as ancestral (shared with chimp) or derived (human specific).
This has two advantages. First, any residual effect of biases in aligning sequence reads
to the reference allele will be minimized. Second, measuring allele-specific binding in
terms of the ancestral and derived allele provides information about how evolutionary
changes might affect CTCF binding.

After processing the reads, we identified allele-specific sites using a binomial null
model of equal occupancy of both alleles at heterozygous sites, using a 5% FDR. cor-
rected threshold, similar as described previously(McDaniell et al., 2010). Allele specific
variants were identified using reads pooled across all individuals for each allele. This
process identified 589 SNPs that have replicated in at least two individuals showing
significant allele-specific bias. We examined the allele counts of all heterozygous in-
dividuals at these 589 SNPs. For most sites (91.5%) the allele-specific biases were
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consistent between individuals, confirming the predominantly genetic basis of allele-
specific binding (Figure 2.23). At such sites, the same ancestral or derived allele was
preferred for binding across 2 or more individuals.

However, there were 50 (8.5%) sites which showed significant but opposite allele-
specific biases between two or more individuals. Six of these 50 sites could potentially
be explained by virtue of being close to loci known to be subject to allelic exclusion
(the Immunoglobulin heavy chain), a process that affects one allele randomly (see
Discussion). One site lies in the KCNQ1 imprinted locus, where the regulatory status
depends on parent of origin rather than genotype. The 46 other sites at which the
allele- specific binding bias switches between individuals (Appendix Table A.1) could
represent new random allelic exclusion loci or imprinted sites, or could arise because
the site at which we see allele specificity is incompletely linked with the causal variant
(Lappalainen et al., 2013). We tested whether there was a SNP which specifically
explained the allele specific switching site; for 28 cases this was the case. We are
not able to directly test whether any of these sites could be due to imprinting be-
cause parent-of-origin information is not available for the heterozygous alleles of these
individuals.

Interestingly, a significant majority (68%, P <1E-16) of the SNPs showed increased
binding to the ancestral allele (Figure 2.23). Alignment bias towards the reference
allele has been reported before (McDaniell et al., 2010) and because the ancestral
allele is more likely to be the reference allele, the increased binding to the ancestral
allele could be the result of the alignment bias. To rule out this possibility, we analyzed
the cases where the ancestral allele is the alternate allele and found that the binding
bias remained towards the ancestral allele (Figure 2.25). Additionally, we repeated
the allele-specific analysis after using a variant-aware aligner. The results were largely
identical to what we observed as described above, indicating that the preference for
the ancestral allele is not a trivial outcome of any alignment bias (Figure 2.26).

The allele-specific signal at binding regions (intra-individual measurements) mostly
correlated linearly with the QTL effect size (inter-individual measurements) (Figure
2.24). There were however exceptions to this, and these were mainly cases in which

there was an allele-specific signal but not inter-individual QTL. We observed QTLs
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Figure 2.23: Summary of allele-specific analysis. SNP loci that show significant allele-
specific CTCF binding in at least 2 samples are included. The y-axis represents the
proportion of the total read counts from the ancestral allele. The 589 SNP loci are
ordered by mean proportion ancestral allele for all heterozygous samples (black line).
Heterozygous samples that do not pass the allele-specificity threshold are shown as
gray points. Significant and consistent allele-specific samples (ie. the binding bias is
toward the same allele) are represented by orange points. Significant but inconsistent
samples are either blue (inconsistency explained by the nature of the site) or green
(inconsistency unexplained).
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Figure 2.24: Allele-specificity correlates with QTL effect size (8). The mean pro-
portion reference allele count for all heterozygous samples at SNP loci that show
significant allele-specificity in at least 2 samples are plotted against the QTL effect
size () at that locus. Only the 3 values from associations where the SNP is located
within the associated binding region are shown.
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Figure 2.25: Effect of the reference allele. Even when the reference allele is the derived
allele (Derived), the binding bias remained towards the ancestral allele.
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with strong effect size in binding regions tend to show strong allele-specificity (Figure
2.27).

2.8 Discussion

This study is the first association QTL study performed on transcription factor binding
in humans to our knowledge. The single site QTL properties are consistent with and
extend other studies such as the family based studies (McDaniell et al., 2010; Maurano
et al., 2012), the DNase I QTL (Degner et al., 2012). We find a large number of QTLs,
with the majority being within or close to the binding region, and approximately a
quarter inside the bound CTCF motif. By using the 1000 Genomes Project cell lines,
we can be reasonably confident that we have a full catalog of common variation of
which some subset are the causal variants. Using this information we could show that
for a large fraction of the associations where the initial analysis suggested a distal
variant more than 1kb away, there was a plausible causal candidate also within 1kb
of the binding motif. Overall this suggests that, at least for CTCF, the substantial
majority (~75%) of common genetic variants in the region with a reasonably strong
effect on transcription factor binding lie within 1kb of the binding motif, although
only a minority are actually within the motif. This clarifies previous observations that
genetic variants contributing to transcription factor binding (CTCF and many others)
were typically not in the motif itself (Kasowski et al., 2010; Stefflova et al., 2013) but
there was enrichment nearby (Heinz et al., 2013).

These results suggest that the regulatory mechanism is not readily explainable
by a simple regulation model. When we overlap CTCF QTLs with binding of other
transcription factors that are measured by the ENCODE project, CTCF QTL variants
that are not within the canonical motif are characterized by a modest enrichment
(approximately 2 fold compared to random) of H3K4me3 and other transcription
factors, such as PU1, Rad21, Pol II, ZNF1, YY1, and USF1. In these cases it is
possible that the effect may be mediated via collaborations between these factors and
CTCEF. There is a small fraction (1.5%) of CTCF QTLs overlap cis eQTLs discovered
in previous studies, indicating limited cis genetic effect targeting both CTCF binding
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Figure 2.26: Effect of alignment to allele specific analysis. We performed local realign-
ment using a variant aware aligner glia (https://github.com/ekg/glia), which align
reads to a variant graph (Lee et al., 2002) built using supplied variants, and compared
the allelic bias in our significant allele specific sites between the two alignments. We
saw that the effect of local realignment is minimum.
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Figure 2.27: No QTLs with strong effect size in binding regions that do not show
strong allele specificity. The x-axis shows allele specificity (measured as % reference),
and the y-axis shows between-individual effect () orientated such that positive is
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and gene expression simultaneously. However, it is possible that CTCF affect gene
expression distantly at a weaker level. Such effect could take place via higher order
interactions via 3D chromatin structures such as looping (Bulger and Groudine, 2011).
Much more samples may be needed to achieve sufficient power.

The results from this and many other studies suggest that motif adjacent sequences
may influence transcription factor activities. This may exist when transcription factor
binds to weaker secondary motifs that are close to the canonical motif or distribute
around the canonical motif. Even those highly sequence specific transcription factors
such as CTCF do not bind to their canonical motif in 100% cases, but instead show a
distribution of binding occurring at different positions and alleles. Alternatively, it is
also possible that variants that are on the canonical motif are removed from population
due to their large effect. On the contrary, the ones in the close vicinity nearby may
have weaker but significant phenotypic effects that is below selection (Farh et al.,
2014).

We see hundreds of sites showing allele-specific binding. The idea that allele-
specific events have similar effects inside one cell as genotypic effects do between
individuals is commonplace (McVicker et al., 2013). Here we show that these two
effects are well modeled by a linear relationship (at least for this assay), though there
is also an interesting subset of allele-specific sites that show no QTL. In contrast there
are few QTL loci that overlap binding regions without an allele-specific signal.

As expected, some of the allele specific sites switch specificity between the alleles in
different samples, consistent with a nearby, incompletely linked causal allele, random
allelic inactivation or parent-of-origin imprinting. Many of these sites can be explained
by an incompletely linked nearby locus, highlighting that the causal variant is often
not co-incident with the binding region.

Finally with more confident mapping of reads from paired read ChIP-seq data
we are able to show that a consistent signal towards reference alleles is in fact pre-
dominantly due to a biological effect favoring ancestral alleles (at least for the CTCF
transcription factor). This suggests that base pair changes segregating in the popu-
lation tend to reduce binding of existing sites (rather than create new sites), at least

for CTCF, and this is consistent with CTCF motif creation occurring by non-base
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pair changes, e.g. repeat deposition, as suggested in Schmidt et al. (2012). Similar
observations have been made on the allele effect of gene expression, where the new
mutations tend to reduce gene expression levels (Chaix et al., 2008).

The understanding of the non-coding variants, which comprise the vast majority of
the disease susceptibility variants discovered so far is remains challenging mostly due
to our limited knowledge of the regulatory mechanisms in the non-coding regions. This
catalog of CTCF QTL sites is part of a growing set of molecular assays that are being
examined in outbred individuals (for example, see Kasowski et al., 2010; Degner et al.,
2012; Maurano et al., 2012; Kilpinen et al., 2013; McVicker et al., 2013). It provides
a specific hypothesis for the 63 disease related loci which overlap these QTLs, and
for future overlaps with other molecular, cellular and disease related phenotypes. The
gradual unraveling of the different variant effects on different molecular behavior will
provide a growing understanding of molecular and physiological processes in health
and disease.

Systematic survey using data of multiple cellular events for the same set of sam-
ples could offer hints for understanding the underlying biological mechanisms. Much
work remains to be done to collect such information. Ideally it should be done in
vivo such that the data genuinely reflect the biological effect independent of technical
interventions. Additionally data of each event should be collected in a time series with
events at each time point collected simultaneously . Although this may not be pos-
sible with the current technologies, it is most likely to offer the correct information.
Such experiments may also pose computational challenges. Methods are needed to
deal with very large volumes of data. Meanwhile, the number of cellular events are
usually far more numerous than the number of samples, raising a “small n, large p”
problem. It is challenging to resolve the causal relationships among these variables.
Nevertheless, the regulatory mechanisms largely remain to be understood, only after

which it becomes possible to choose the right candidates for therapeutic interventions.



Chapter 3

Using latent factors to enhance
power in mapping expression QTLs

for ageing

Collaboration note. This chapter contains work in collaboration with Andrew Brown.
The manuscript of this work is accepted by G3 subject to minor revisions. I am the
joint lead author with Andrew Brown. My contribution includes processing microarray
probe intensities, normalizations, learning both global and pathway factors, association

analysis, and manuscript writing.

3.1 Overview

Ageing is a multifactorial process, reflecting how the physical state of an organism
accumulates changes and gene expression has been a field of increasing interest in
studying this process. Microarrays and more recent RNA-seq technologies allow the
simultaneous quantification of cell population average mRNA abundance for thousands
of genes. These technologies have proved useful in providing diagnostic profiles for
certain diseases (Reis-Filho and Pusztai, 2011). In the case of ageing, consistent

patterns of age-related changes in gene expression have been observed across several
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tissues and species (Lu et al., 2004), such as over-expression of inflammation and
immune-response genes and under-expression of genes involved in energy metabolism
in older samples (de Magalhaes et al., 2009). Given this commonality of function
amongst genes which show age related changes in expression, we decided to investigate
ageing in the context of biological knowledge on the function of genes, as provided by
pathway annotations.

Array expression experiments generate high dimensional structured data sets, in
which there are correlated patterns across large numbers of genes. Some of these are
due to known technical or biological effects such as batch effects and cell growth stage,
which when not the focus of the analysis can be removed by including them as covari-
ates. However, even after this, there is typically substantial structural correlation. In
previous studies, these can be represented by linear components of expression measure-
ments, or factors, that can be inferred using methods such as principal components
analysis (PCA) or factor analysis to create global phenotypes (Leek and Storey, 2007;
Parts et al., 2011). When the aim is to discover local effects, such as cis genetic regu-
lation, these global phenotypes can be treated as nuisance variables and removed from
further analysis. This has been seen to increase power in analysis (Montgomery et al.,
2010; Pickrell et al., 2010; Stegle et al., 2010). Conversely, if the aim is to differentiate
between a case and control condition using expression, then global phenotypes could
be more effective classifiers than local phenotypes (Hastie et al., 2000).

A recent study applied factor analysis methods in a two stage procedure to generate
phenotypes representing expressions of groups of genes (Stegle et al., 2010). After
regressing out global factors, as in Parts et al. (2011), expression levels for groups of
functionally related genes, as defined by annotations from pathway databases, were
treated as new expression datasets and the same factor analysis methods were used
to construct pathway factors. The factors constructed on pathway sets of genes were
taken as concise summaries of common expression variation across each pathway. We
test these factors values below as phenotypes, and so refer to them as phenotype
factors as in some cases just phenotypes.

Here, we apply this method to gene expression data from abdominal skin tissues

from 647 samples. Unlike previous studies which have concentrated on genetic variants
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which regulate multiple genes within a pathway (Parts et al., 2011), we focused on
discovering associations between gene expression and an environmental variable age.
We obtain our pathway gene sets from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Kanehisa et al., 2004). Subsequently, by looking for associations
between these new pathway phenotypes and age, we discover groups of functionally
related genes with a common response to ageing which could be used as biomarkers
describing molecular changes with age.

With data from a twin cohort containing both monozygotic and dizygotic twins,
we can estimate proportions of variance explained by age, genetic variation, common
environmental variation, and unique environmental variation (noise). Stochasticity
in gene expression, which will form part of the unique environment component, is
believed to play a role in the ageing process (Bahar et al., 2006). By investigating
sources of variation within the pathway phenotypes, we find that they are more robust
than the expression of individual genes with less unique environment variation. This

explains some of our success at discovering associations with age.

3.2 Expression profiling

The data analyzed here are part of the MuTHER project (Multiple Tissue Human
Expression Resource - http://www.muther.ac.uk/, Nica et al., 2011) and were down-
loaded from the ArrayExpress archive, accession no. E-TABM-1140. In summary, the
study included 856 Caucasian female individuals (336 monozygotic (MZ) and 520 dizy-
gotic (DZ) twins) recruited from the TwinsUK Adult twin registry (Moayyeri et al.,
2013a). The age at sampling ranged from 39 to 85 years with a mean age of 59 years.
Punch biopsies (8mm) were taken from relatively photo-protected infra-umbilical skin.
Subcutaneous adipose tissue was dissected from each biopsy and the remaining skin
tissue was weighed and stored in liquid nitrogen. Expression profiling of this skin
tissue was performed using Illumina Human HT-12 V3 BeadChips where 200ng of
total RNA was processed according to the protocol supplied by Hlumina. All sam-
ples were randomized prior to array hybridization and the technical replicates were

always hybridised on different beadchips. Raw data were imported to the Illumina
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Beadstudio software and probes with fewer than three beads present were excluded.
Log2-transformed expression signals were then normalized separately per tissue with
quantile normalization of the replicates of each individual followed by quantile normal-
ization across all individuals as previously described (Grundberg et al., 2012). Post-
QC expression profiles were subsequently obtained for 647 individuals. The Illumina
probe annotations were cross-checked by mapping the probe sequence to the NCBI
Build 36 genome with MAQ (Li et al., 2008). Only uniquely mapping probes with
no mismatches and either an Ensembl or RefSeq ID were kept for analysis. Probes
mapping to genes of uncertain function (LOC symbols) and those encompassing a
common SNP (1000G release June 2010) were further excluded, leaving 23,555 probes

used in the analysis.
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Box 1: Modeling
We model phenotype y;of individual 7 (age A;) as follows:

(Full) Yyi=p+adi+8i+vi+e
Bi ~ N(0,0%F4n)
Yi ~ N(0,0%7)
€ ~ N(0,0?%)

(Null) Yi=p+ B+t
Bi ~ N(0,0%n1)
i~ N(0,0%7)
e ~ N(0,0?)

To correctly model the twin structure we enforce that 8; = 3; when ¢ and j
are twins, and 7; = 7; when ¢ and j are monozygotic twins (capturing the
increased genetic correlation of monozygotic twins).

From the null model we can define heritability (h?), proportion of environmen-
tal variance explained by age (p,) and the proportion of variance explained
by the unique environment (p.) as:

2
h2 _ 2054
= 3 2 512 )
Ofpp Tz o2 +azvar(A;)

a?var(A;)

Pa = OFam—Ohz T Fajvar(4s)

o2

Pe = O%AM+U?MZ+C’2+O‘$”“T(A1)

Note that for p, the genetic variance is removed from the denominator.
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3.3 Gene expression pathway factors

In a two step approach, factor analysis methods were first used to discover patterns
of common variation across the entire dataset. The software package PEER was
applied using the default settings and using technical measurements (experimental
batch, RNA quality and concentration) as covariates to create 5 components which
in total explained 35.7% of the variation in the dataset. Secondly, the effects of
the five global factors together with the technical covariates including batch, RNA
concentration and RNA quality were removed from the whole gene expression data
sets. The residuals after this process were then grouped to pathway subsets according
to the KEGG annotation. For each pathway, we created five pathway phenotypes
using PEER with the default settings.

In a two step approach, factor analysis methods were first used to discover patterns
of common variation across the entire dataset. The software package PEER (Parts
et al., 2011) was applied using the default settings and using technical measurements
(experimental batch, RNA quality and concentration) as covariates to create 5 factors,
which in total explained 35.7% of the variation in the dataset. For each individual, a
factor is a weighted sum of all the gene expression measurements of that individual.
The weights are chosen so that the factors iteratively explain the maximum amount
of variation in the dataset subject to certain prior assumptions; these factors produce
concise summaries of consistent patterns of expression for large numbers of genes.

We then used KEGG pathway annotation (186 pathways) as prior information to
group genes into pathways. This allows inference of PEER factors for each pathway
that we refer to as phenotype factors, in contrast to the global factors previously de-
scribed. As before, these factors are weighted sums of gene expression measurements,
but in this case only of genes within the pathway. Since global factors have been
removed from the dataset prior to calculation of phenotype factors, these factors are
unlikely to capture global effects on gene expression, but instead pathway specific
patterns of expression. If a large enough module of genes within the pathway is co-
expressed then likely one factor will also show the same pattern of co-expression across

individuals. Equally, groups of genes could show opposite patterns of expression; this
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antagonistic gene expression could be reflected as factor values which correlate with
one set of genes and are anti-correlated with the other across individuals. Individual
genes can contribute positively or negatively to the weighted sum (indicated by the
sign of the corresponding weight), meaning that a positive correlation between age
and phenotype factor can be induced by negative correlations with individual genes.
We grouped the expression data set into 186 pathway subsets. For each pathway we
created five pathway phenotypes using PEER with the default settings. We consider
the learnt pathway factor values across individuals as five new phenotypes which can
be investigated for associations with age (analysis performed as described in Box 1.
An alternative strategy would be to choose different numbers of factors based on the
cumulative amount of variance explained. For the sake of simplicity and as a proof of
principle, in this analysis we chose to use five factors as they explained a substantial

amount of the variance in expression without too large a multiple testing burden.

3.4 Pathway factor and phenotype association

Association tests were performed: i) between each pathway factor and chronological
age, and ii) between single genes and chronological age using the linear mixed models
defined in Box 1. These models have been implemented by the lme4 package (Bates
et al., 2014) in R (Computing, R Foundation for Statistical Vienna, 2008). For each
phenotype a likelihood ratio test of the full model, which includes the age term, and
the null model (without modeling age) produced evidence of an age effect. P values
produced by this analysis were assessed for significance allowing for multiple testing
using a Bonferroni adjusted threshold. A permuted dataset was created, which main-
tained the twin structure by permuting singletons, dizygotic and monozygotic twins
separately and ensuring that twin pairs were kept together.

Significant associations between pathway phenotypes and age were further investi-
gated to trace the particular genes within the pathway driving the signal. We report
genes with a Bonferroni significant P value which accounts for the number of genes

within the pathway that was tested.
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3.5 Heritability analysis

To compute heritability, proportion of environmental variance explained by age, and
the proportion of variance explained by unique environment, we fitted the full model
from Box 1. Then the genetic component to variation was estimated as twice the
additional correlation of MZ twins relative to DZ twins. The environmental compo-
nent to the phenotype was the sum of the contribution from the fixed age effect, the
random noise term, and the shared environmental component, again estimated from
the difference between M7 and DZ. Estimates of these proportions are constrained to

lie between 0 and 1 inclusive.

3.6 Single-gene based pathway enrichment analysis

We compared the significant pathways found by our factor analysis methods to those
found by looking for enrichment of single gene associations with age. Firstly we tested
each gene for association with age using the methods described in Box 1 and produced
a list of Bonferroni significant genes P< 0.05 (this list contained 682 differentially
expressed genes). For each pathway, we applied a Fisher’s exact test to infer whether
the proportion of significantly associated genes within the pathway was greater than
would be expected by chance, which is estimated as being proportional to the pathway
size. We also investigated whether using an FDR cut-off for significant age associations
would produce more significant pathways or power would be diluted by including too
many false positives. When re-running the analysis using a less stringent threshold
(3,487 genes were associated with age with FDR< 0.05) we found fewer significant
pathways, and results correlated less well with the results of the factor based analysis
(Spearman correlation of 0.36 (P=5.1x10—7) compared to 0.49 for Bonferroni, P=2.1
x 10—12). A complete list of all significant single gene age associations (FDR< 0.05,
3,487 genes), with estimate of effect size and direction, can be found in Appendix
Table A.3.
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3.7 Results

The first stage of the analysis was to remove the effect of both known and unknown
nuisance variables from the gene expression data. Using PEER software, we esti-
mated five global factors which explained 35.7% of the variation in the complete gene
expression data. As the aim of this analysis was to find pathway specific responses to
ageing, we treated these global factors as nuisance covariates and regressed these out
of the data, together with batch and RNA quality which are known experimental con-
founders. Data were then divided into subsets of genes within 186 KEGG pathways.
For each pathway, five factors were estimated using PEER as described above, which
explained on average 17.5% of the residual variation of all genes within this pathway
after removing the global factors. For the 186 KEGG pathways, this produced 930
phenotypes which were tested for association with age. In total, 69 significant associa-
tions (P<5.38E-5, the Bonferroni adjusted threshold) from 57 distinct pathways were
identified. The most significant 20 pathways are listed in Table 3.1, and a list of all
57 significant pathways can be found in Appendix Table A.2.

We also explored an alternative method for finding pathway related to ageing,
looking for enrichment in the number of significantly associated genes falling into a
particular pathway, analogous to the method used in the DAVID methodology (Huang
et al., 2009). This discovered a total of 7 significant pathways (Appendix Table A.3).
Thus, applying factor analysis methods to discover significantly associated pathways
uncovered eight times as many hits. All pathways discovered by single gene enrich-
ment methods were also discovered using factor analysis. There is strong concordance
between P values discovered by the two methods (Spearman correlation = 0.49, P=
2.1 x 10E12). Figure 3.1 shows a Q-Q plot of P values for both methods against
the theoretical P values under the complete null hypothesis. We see enrichment of
significant P values for both methods, but this is not present when analysing the per-
muted data with factor analysis methods (green dots). This suggests that age plays a
widespread role in the expression of these pathways, as enrichment of P values is not
due to invalid model assumptions and can be observed using two different methods.

To investigate which genes drove the significant pathway associations, we exam-
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Figure 3.1: Q-Q plot of observed P values against theoretical P values for factor
analysis (red dots) and single-gene based methods (in blue). Permutations (in green)
shows the results of a combined analysis of 10 permuted datasets. Horizontal lines
shown Bonferroni significance thresholds accounting for different numbers of tests (186
tests for single gene measures in blue, 930 for factor analysis in red, and 9300 for the
combined 10 permutation analysis in green).
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ined how many genes within a significant pathway showed significant age associations
(Table 3.1 and Appendix Table A.2). On average 16% of genes within the pathways
have P<0.05 after adjusting for the number of genes in the pathway, with a minimum
of 1 gene and maximum of 24. The proportion is similar between pathways of different
sizes, in contrary to the traditional pathway enrichment analysis, where there is bias

towards large pathways.

Table 3.1: List of 20 pathways most significantly associated with age, together
with the the number of significantly associated genes (P < 0.05, corrected using
Bonferroni for the total number of genes in the pathway), the total number of

genes, and the heritability of the pathway factor.

KEGG_ID Pathway P value of Number of Number of Heritability
pathway factor significant genes in
genes pathway
00900 Terpenoid Backbone 6.23E-13 6 13 0.00
Biosynthesis
00980 Metabolism of 6.47E-13 6 54 0.09

Xenobiotics by
Cytochrome P450

01040 Biosynthesis of 1.11E-12 6 17 0.25
Unsaturated Fatty
Acids
00100 Steroid Biosynthesis 1.33E-12 12 14 0.41
00650 Butanoate Metabolism 1.51E-12 8 27 0.39
04146 Peroxisome 1.56E-12 17 64 0.45
00830 Retinol Metabolism 1.93E-12 6 48 0.45
00010 Glycolysis 3.59E-12 12 49 0.42
Gluconeogenesis
00051 Fructose and Mannose 3.99E-12 8 32 0.32
Metabolism
00290 Valine Leucine and 1.15E-11 3 11 0.00

Isoleucine Biosynthesis

00561 Glycerolipid 2.63E-11 6 38 0.34
Metabolism

00620 Pyruvate Metabolism 4.20E-11 11 35 0.37

00770 Pantothenate and 4.76E-11 4 16 0.48

COA Biosynthesis
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00280 Valine Leucine and 5.79E-11 10 35 0.51
Isoleucine Degradation

00020 Citrate Cycle TCA 1.12E-10 8 23 0.43
Cycle
04916 Melanogenesis 3.34E-10 10 93 0.00
04910 Insulin Signalling 3.70E-10 13 122 0.45
Pathway

00565 Ether Lipid 5.89E-10 3 27 0.00
Metabolism

00350 Tyrosine Metabolism 9.44E-10 4 32 0.34

00640 Propanoate 1.03E-09 6 26 0.59
Metabolism

Different KEGG pathways can contain overlapping sets of genes, as they can de-
scribe related biological function. Because of this, our significant associations with
age for different pathways could be related due to a common underlying effect on a
given set of genes. To explore whether the observed age-associations are unique to
their pathway, or common to multiple pathways, we calculated the Spearman correla-
tion between those phenotypes. There are 24 pathway phenotypes with a correlation
greater than 0.8 with at least one other phenotype (Appendix Table A.4). These
phenotypes frequently relate to metabolism, and form a highly connected set (Figure
3.2). We infer from this that there could be a common effect of age acting on all these
phenotype factors.

We next explored how different sources of variation in the different phenotypes
analysed here affect our ability to discover age associations. We calculated the heri-
tabilities, the proportion of environmental variance explained by age, and the propor-
tion of variance explained by the unique environment (Box 1) for i) KEGG pathways,
ii) global factors (which we have treated as nuisance covariates) and iii) for individual
genes (Figure 3.3, global factor histograms are not shown as there are too few phe-
notypes). The relative differences in sources of variation between global and pathway
factors, and individual genes are shown in Figure 3.4. We see that as we move away

from local phenotypes (individual genes) to pathway phenotypes and then to global
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Figure 3.2: Network of connected factor phenotypes. Twenty four of the 69 age-
associated factor phenotypes have a Spearman correlation of at least 0.8 with at least
one other phenotype. These phenotypes show a highly connected structure, likely
meaning there are common age effects driving these associations. A key for identifying
which pathways correspond to the nodes can be found in Appendix Table A .4.
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phenotypes, the proportion of variation explained by unique environment decreases.
This is because that there is a stochastic component to each single gene’s expression:
by taking a weighted average of a number of genes, we average away this component.
If all else were to remain constant, this reduction in stochastic noise would simulta-
neously increase heritability (as the total variance decreases), and boost the ability to
discover associations with biological meaning, such as age. We see in the first panel of
Figure 3.4 that the relative contribution of unique environment to pathway phenotypes
is smaller than the contribution to genes. This also partly explains the results shown in
the second and third panels: a greater proportion of variance is explained by age and
genetic factors (heritability) for pathway factors than individual gene measurements.

When considering global factors, as expected the unique environment is greatly
reduced. However, there is not a strong influence of ageing and heritability in this
case is still moderate. This is likely because age and genetics do not act in a consistent
way across large sets of genes. Leek and Storey, 2007 argued that global factors can
capture experimental noise and batch effects. This is consistent with our findings.
Heritabilities and proportion of variance explained by age for all pathways are reported
in Appendix Table A.5.

We further looked for novel genetic associations with these pathway phenotypes,
not seen as single gene expression associations. However, this was unsuccessful despite
the increased heritability in pathway factors. This is likely due to the genetic architec-
ture of gene regulation. Genes are regulated both in cis, where a nearby variant effects
the expression of a single gene, and in trans, where a long range regulatory effect can
hit multiple genes (Grundberg et al., 2012). The genetics of pathway phenotypes is a
combination of cis effects on individual genes and trans effects, potentially affecting
multiple genes in the pathway. However, trans variants typically have much smaller
effect size: the increase in the reliability of pathway phenotypes is insufficient to com-
pensate for the lower power to discover trans effects. Thus, the only associations
discovered were when single genes loaded heavily enough on a pathway to indirectly

reflect the cis association.
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Figure 3.3: Histograms showing the proportion of environmental variation explained
by age, heritability, and the proportion of variance explained by the unique environ-
ment for pathway factors and the individual gene measurements. The calculations
correspond to equations in Box 1. Note that the proportions are not sum to one as
they are not normalized by a same denominator: for age the variance explained by
the genetic factors is removed.
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Figure 3.4: The relative importance of sources of variation to global, pathway and
gene phenotypes. Measures of variation shown are the proportion of variance explained
by unique environment, proportion of variance explained by genetics (heritability) and
the proportion of environmental variation explained by age. The five categories are
individual genes; genes that are in pathways annotated by KEGG; pathway factors; age
associated factors and global factors. To show more clearly the differences in relative
importance of these measures to different classes of phenotypes, all proportions are
scaled such that contribution to gene phenotypes equals one. Numbers above the bars
give the absolute, unscaled proportions.
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3.8 Discussion

We have seen that both the heritability and the proportion of environmental variance
explained by age is greater for pathway phenotypes than for individual genes. Con-
sistent with this, a previous study found a greater proportion of associations for the
pathway phenotypes than using single gene tests using this same dataset (Glass et al.,
2013, 23% compared to 7% of phenotypes are significantly associated with age when
using the same 0.05 FDR threshold adopted in that paper). This can be explained by
our findings on the influence of unique environment on pathway phenotypes relative
to single genes.

Stochasticity in gene expression, which contributes to the unique environment com-
ponent that we measure, has been seen to increase with age. For example, animal
model studies (Herndon et al., 2002; Bahar et al., 2006) have reported increased cell-
to-cell variation in gene expression with age and tissue specific decline of functions
associated to stochastic events. Others have found genes associated with longevity to
be strongly regulated in older animals with low levels of stochasticity and higher levels
of heritability (McCarroll et al., 2004; Vinuela et al., 2012). The aim of our analysis
was to find mean effects, rather than variance effects (though both effects are often
seen together). By reducing the unique environment variable component using path-
way factor analysis methods, we arguably focus much more on a systematic longevity
changes with age rather than the environmental stochasticity. However, it is difficult
to make inference about causality with gene expression: we cannot know whether we
are observing changes in expression which are driving the ageing process, or markers
for it.

Of the 57 significant pathways, we frequently see four types of pathway, all of which
have been previously linked with ageing: i) insulin signaling ; ii) sugar and fatty acid
metabolism; iii) xenobiotic metabolism; and iv) cancer related pathways.

We find the insulin signaling pathway (hsa04910) to be highly associated with age in
our data (P=3.7E-10). Much evidence has accumulated for the influence of the insulin
signaling pathway on longevity, originating in C. elegans, where lowered insulin/IGF-1

signalling (IIS) can lead to a significant increase in life span (Friedman and Johnson,
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1988). This effect has also been seen in the fruit fly D. melanogaster (Clancy et al.,
2001) and in mice (Holzenberger et al., 2003). Outside of model organisms, it has
been observed that variants in FOXO transcription factors related to this pathway
can affect longevity in humans (Willcox et al., 2008), although its gene expression
does not show significant association with age.

In addition to those related to insulin, our list of age-associated pathways in-
cludes many that are involved in metabolism or glycolosis. Examples of these include
biosynthesis of unsaturated fatty acids (hsa00980), butanoate metabolism (hsa00650),
glycolysis gluconeogenesis (hsa00010), fructose and mannose metabolism (hsa00051)
and valine leucine and isoleucine biosynthesis (hsa00290) (P < 1.15E-11). It has previ-
ously been suggested that metabolism related pathways play roles in ageing and ageing
related diseases(Barzilai et al., 2012). In particular, Houtkooper et al. (2011) showed
that glucose and compounds involved in the metabolism of glucose were biomarkers
of ageing in liver and muscle tissue in mice.

Other ageing related pathways include those involved in the metabolism of xeno-
biotics allow cells to deactivate and excrete unexpected compounds. One example
is glutathione metabolism (hsa00480, P=1.45E-7), a well known anti-oxidant which
protects against cell damage by reactive oxygen species (Pompella et al.; 2003).

Finally, similarities between cancer and ageing have been noticed (Finkel et al.,
2007). For example, cellular senescence, when a cell loses the ability to divide, can
form a break on cancer development; clearing such cells can delay the development
of age-associated disorders (Baker et al., 2011). There are a number of pathways in
our list that have been linked to cancer, in particular skin cancer, possibility because
this was done using skin tissue. These include melanogenesis (hsa04916, P=3.34E-10),
the PPAR signaling pathway (hsa03320, P=1.83E-9), the hedgehog signaling pathway
(hsa04340, P=1.12E-7) and glioma (hsa05214, P=4.26E-7)

In addition to age, other phenotypes have been linked to expression patterns of
multiple genes. For example, BMI has been linked to expression patterns in adipose
tissue of multiple genes within a group which share a common trans master regulator,
and such phenotypes could mediate between expression and diseases such as type

2 diabetes (Small et al., 2011). Principal components and factor analysis has also
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been suggested as a way to build classifiers for binary traits (Hastie et al., 2000),
perhaps to predict prognosis of disease from gene expression data. The ability of
pathway phenotypes to provide reliable measures of expression with direct biological
interpretation means they could also be applied in both situations, to understand the
relationship between expression and such phenotypes.

Our analysis shows that factor analysis applied to gene expression data effectively
reduces stochastic noise in summaries of gene expression patterns, giving more power
to discover associations. These phenotypes are substantially more heritable than in-
dividual genes. Using them we can improve our ability to identify biological processes
underpinning ageing. This is consistent with the idea that removing latent factors
that exert broad effects on gene expressions increases power in associations. We show
that the same idea can be used to create pathway factors that are robust and inter-
pretable. Finally, our analysis reveals pathways that have been seen to be important
in longevity from a number of previous studies, as well as novel pathways that can be

further investigated.



Chapter 4

Measuring telomere length from

sequence data

Collaboration Note. The method developed in this work was designed by Richard
Durbin and implemented and evaluated by myself. The study uses data collected from
the TwinsUK cohort.

4.1 Overview

Telomeres cap the ends of chromosomes and are critical for the maintenance of genome
integrity. In humans, telomeres comprise sequences of 5-15kb TTAGGG tandem re-
peats and their telomere binding proteins (Samassekou et al., 2010). In the absence
of telomerase or the alternative lengthening pathways (Henson et al., 2002), telom-
eres undergo progressive attrition, which ultimately leads to replicative senescence or
apoptosis. Thus, telomere length is an indicator of replicative history and replicative
potential — two features of great importance to human health and disease (Blasco,
2005).

Standard methods for telomere length measurement are generally classified into
three categories: (i) Southern blot analysis of the terminal restriction fragments that

measures the average length (mTRF) and length distribution of telomeres in a sample
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of cells (Kimura et al., 2010); (ii) methods that examine variation in telomere length
between chromosomes and cells, i.e., fluorescence in situ hybridization (FISH) tech-
niques, including Q-FISH (Martens et al., 1998) and Flow-FISH (Baerlocher et al.,
2006); and (iii) quantitative PCR (qPCR)-based techniques that measure telomere
DNA content in relative units (compared to single gene DNA) (Cawthon, 2009).

Next-generation sequencing has now provided an opportunity to obtain genomic
information cost effectively in large scale. Shotgun sequence data contains sequencing
reads from the telomeres just as any other region of the genome. However, little
information about the telomeres can be gained from standard alignments of these
reads to the reference sequence. This is because the repetitive nature of the telomeric
regions means that it is not possible to assign with confidence the exact origins of the
reads, and also because in the human reference sequence (build GRCh37) the ends of
most chromosomes are simply stretches of Ns, representing unknown nucleotides.

Instead, previous studies (Castle et al., 2010) have shown that information on
telomere length is contained in the number of telomere motif copies (TTAGGG or
CCCTAA) found in reads. Parker et al. (2012) applied this idea to cancer samples.
However, cancer samples typically suffer from aneuploidy, complicating the validation
of their results by method such as qPCR (it relies on normalising against a unit copy
region). This may be the reason why the measures in Parker et al. (2012) only converge
to a low resolution telomere status, defined as either gain, no change or loss relative
to normal control. Additionally, the vast majority of the samples were pediatric with
mean age 7.5 years, and they did not demonstrate a relationship between age and
their sequence-based telomere length measurement.

Here, we further examine the relationship between reads containing telomere repeat
sequence and telomere length, and describe software for estimating telomere length
based on genome-wide sequence data. We demonstrate our method on 260 leukocyte
samples (aged 27 -74 years, mean age 51 years) from the TwinsUK cohort (Moayyeri
et al., 2013b) that have both Illumina 100bp paired-end whole genome sequence and
telomere length measurements using Southern blot mTRFs. We also investigate 96
samples from the 1000 Genomes Project (The 1000 Genomes Consortium, 2010) that

have both whole genome and exome data.
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4.2 Study samples and data

The 260 UK10K individuals investigated in this study were all female aged 27 -
74 years (mean age 51 years) from the TwinsUK cohort (Moayyeri et al., 2013b,
http://www.twinsuk.ac.uk/). Except for 5 pairs of dizygous twins, the rest were all
unrelated. Leukocyte telomere lengths of these individuals as mTRFs were measured
using Southern blot. Whole genome sequencing was conducted using the Illumina
HiSeq technology, yielding sequencing reads with coverage ranging from 4X to 16.6X
(average 6.5X, pooled across lanes). Twelve individuals with a much higher read du-
plication rate (more than 3 fold that of other samples) were excluded from the rest of
the analysis since they gave outlier results (Figure 4.1).

Sequence data are available from the European Genome-phenome Archive (EGA)
study number EGAS00001000108, submitted by UKI10K (http://www.uk10k.org).

The 1000 Genomes Project sequence data were downloaded from http://www.1000genomes.org.

4.3 Estimating telomere length from whole genome

sequence data.

4.3.1 Estimator

We first examined the frequency of reads from the TwinsUK dataset with different
numbers of copies of TTAGGG and also each non-cyclical permutation of TTAGGG
as a control. The frequencies of all non-TTAGGG hexamers showed a monotonic
decay as the number of repeat units increased, with none occurring in a read more
than eleven times (Figure 4.2). In contrast, beyond seven repeats there was an increase
in the number of reads containing TTAGGG. We defined reads as telomeric if they
containedk or more TTAGGG repeats, with a default threshold value of & = 7, values
higher than which do not increase performance substantially. These can then be
translated into an estimate of the physical length via a size factor s and a constant
length cin | = t;g/(46s), where [ is the length estimate, ¢ is the number of telomeric
reads at threshold k, g is the genome length and s is the total number of reads. The
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Figure 4.1: The effect of duplication rate and coverage to TelSeq performance. In
essence, TelSeq relies on sampling of genomic regions from a sequencing library. Cov-
erage and duplication thus affect the translation of a relative measure into an absolute
one. Low coverage indicates insufficient sampling and thus results in high variation
in estimation (Figure 4.4) while high duplication suggests over enrichment of certain
genomic regions and thus changes the translation factor ¢. In whole genome sequenc-
ing high duplication rate indicates low library complexity and loss of information.
Twelve of our samples were found to have an exceptionally high duplication rate (>3
fold greater than the rest, panel A), and were outliers when regressing against mTRF
(panel B). We based our evaluation on samples with duplication rate below 10%, which
is typically what is expected for whole genome sequencing.
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factor of 46 corresponds to number of telomere ends 46(23x2).

Studies have shown that DNA molecules in a sequencing library are not sampled
and sequenced with equal probability, but instead are subject to biases due to dif-
ferent molecular properties such as GC composition - a high value of which favors
more amplification in the PCR step (Dohm et al., 2008). This results in different
representations of genome regions and makes defining s as the total read number not
a good estimate. Instead, we define s as a fraction of all reads within a specific GC
composition range, and similarly g as the length of genome for which 100bp segment
lie within the same GC range. The range was chosen to be close to the telomeric GC
composition, which is 50% at the TTAGGG dense regions (see Figure 4.3 for results
for other GC composition ranges).

Considering the GC composition removed an important source of experimental
error; and effectively increased the signal by nearly two-fold, as measured by the
correlation between experimental estimates (Figure 4.3). This method is implemented
in a program TelSeq which reads one or more BAM files and returns a report with one
row per read group present in the input.

To calculate g we divide the reference sequence into 100bp consecutive bins and
add 100bp to g if the GC composition of the bin is within the range.

Association to age and mTRF The Pearson’s Correlation Coefficient was calcu-
lated using the cor function of the R language (Computing, R Foundation for Statisti-
cal Vienna, 2008, http://www.r-project.org/). The regression between age and TelSeq
and between age and mTRF was calculated using the Im function of R in models
Im(age ~ telseq) and Im(age ~ mTRF). Two measures were also included in one model
Im(age~telseq + mTRF) as two independent fixed effects. A t-test was done for each
of the two regression coefficient () against null hypothesis § = 0, the results of which

can be seen in the output of the summary function.

Calculating the variance explained To compute the proportion of variance of
age explained, we used the cor function in R cor(age, mTRF, method="pearson") 2.

To compute the additional variance that can be explained by mTRF while controlling
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Figure 4.2: Identification of telomeric reads. In cyan the log scale frequencies of
reads with different numbers of TTAGGG repeats averaged across the 260 TwinsUK
samples, with corresponding plots for permutations of TTAGGG in other colours. In
black the correlation of TelSeq to mTRF as a function of the threshold k for the
number of repeats per read used in the TelSeq measurement.
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Figure 4.3: Normalising by reads with similar GC improves the performance of TelSeq.
It is known that read abundance in a sequencing library is affected by the GC com-
position of a read, a bias primarily introduced in the PCR step where high GC reads
get amplified more often due to their high molecular affinity. Thus, using reads with
similar GC content as background accounts for this molecular property and reflects
the signal to noise ratio more accurately. To demonstrate this we evaluated the per-
formance of TelSeq, as measured by the correlation with mTRF, when normalised by
reads from different GC groups, 42%-58% (purple), 44%-56% (light green), 46%-54%
(red), 48%- 52% (dark green) as well as by all reads (blue). The result showed that
there was a gradual increase to the correlation when GC range approaches 50%. And
in all these cases, the correlation was much higher than that when all reads were used
from a library. Here the analysis was done for the whole range of threshold k, the
number of TTAGGG repeats in a read.
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for TelSeq, we firstly obtained the residuals from a regression between age and TelSeq
(z<-Im(age~TelSeq)$residuals); and then used the residuals to compute the additional

variation explained (cor(z,mTRF)"2). The same procedure was done for TelSeq.

4.3.2 Simulation

We employed simulated datasets to investigate the effect of sequencing coverage. This
was also to discover the minimum amount of sequence required for reasonable length
estimation. We chose the reference sequence (GRCh37) of human chromosome 1
as the sequence source, but with 30kb nucleotides (including unknown nucleotide
Ns) removed from each end and replaced with telomere repeat sequences (TTAGGG)
of the same length. We then simulated Illumina pair-end reads using the software
SimSeq (https://github.com/jstjohn/SimSeq, parameters -1 100 -2 100 —insert_ size
500 —insert_stdev 200) with sequencing coverage in individual BAMs varying from
0.2X (498,501 reads) to 10X(24,925,063 reads) in 0.2X increments (Figure 4.4). For
each setting we repeated the simulation 5 times and generated 255 BAMs in total. We
then applied TelSeq to estimate telomere lengths of these BAMs. TelSeq predicted a
length of 29.4kb on average with 1.47kb standard deviation (5% of mean). Significant
higher variation was seen when coverage was below 2.5X (F=10.5, P=2.2E-16 in the
F test) when compared to results from the higher coverage BAMs (Figure 4.4). For
BAMs with >2.5X coverage, TelSeq predicted telomere length to be 29.5kb with 0.71kb

standard deviation (2.4% of mean).

4.3.3 Results

When TelSeq was applied to the TwinsUK data, the estimates of leukocyte telomere
length (LTL) correlated well with the mTRFs measurements across a range of choices
of k, with correlation p = 0.60 at the default threshold k£ = 7 (P<10E—16; Figure
4.5A). We next examined the relationship between the TelSeq-based LTLs and age
of the donors. Given the wide inter-individual variation in LTLs for persons of the
same age and the impact of environmental factors on this parameter, the correlation

between LTL measurements and age in cross-sectional studies, including TwinsUK,
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Figure 4.4: The effect of sequencing coverage on TelSeq measurement, as-
sessed by simulation. A group of BAMs were simulated using software SimSeq
(https://github.com/jstjohn/SimSeq). Sampling noise is substantially higher when
the coverage is below 2.5X (mean=29.4kb, variation=5% of mean), compared to when
coverage is above 2.5X (mean=29.5kb, variation=2.4% of mean) (A). The mean es-
timates are close to the true value 30kb independent of coverage. When using the
weighted average of 5 BAMs for each coverage group (B), the variation is much
smaller (1% of mean). This is justified theoretically by the relationship X ~ N(u, 0?),
X ~ N(u,0?/n), where n is the sample size. In real experiments, ideally estimates
should be obtained from multiple libraries across multiple lanes for a sample. The
coefficient of variation across lanes per sample is on average 3.2% (Figure 4.7).
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Figure 4.5: Comparison of TelSeq with experimental measure and age in TwinsUK
samples. (A) TelSeq estimate of average telomere length plotted against mTREF esti-
mate; TelSeq (B) and mTRF (C) estimates plotted against age. All average length
estimates in kilobases and ages in years.

is usually modest (Valdes et al., 2005; Broer et al., 2013). Nevertheless, since the
relationship between measurement and donor age depends on the true LTL value,
the correlation provides a means for independent assessment of the informativeness
of different experimental techniques for estimating LTL. The TelSeq measurement
displayed correlation of p=-0.24 (explaining 6.5% variance of age, Figure 4.5B) with
age, comparable to that of mTRF (Figure 4.5C; p=-0.26, explaining 7.5% variance
of age). The difference between -0.24 and -0.26 is not significant in a t-test using a
standard deviation derived by bootstrapping (P=0.79, Figure 4.6). The coefficient of
multiple correlation between age and both LTL and mTRF was higher than either
individual correlation (p=- 0.34, explaining 9% variance of age); both measurements
contributed significantly to the underlying linear regression model, (P=0.016, t-test
for the TelSeq term; P=0.009, t-test for the mTRF term). This implies that neither
TelSeq nor mTRF captured all the information available, and that TelSeq contains
additional information independent from that provided by mTREF.

Comparing the correlation coefficients with age by the two methods To
test whether the difference is significant in the strength of associations between age

and each of two measures, p = -0.24 for TelSeq and p = -0.26 for mTRF, we con-



4.3 Estimating telomere length from whole genome sequence data. 115

ducted bootstrapping using R (sample(sample__index,sample__size,replace=TRUE)))
sampling our cohort 1000 times, from which we obtained an estimate for the stan-
dard deviation of p for mTREF (0.052) and TelSeq(0.056). We can then compute the ¢
statistic t = (pretseq — PmTREF)/54T(S7 01500 + Sturrr) for hypothesis testing (Figure 4.6).

Coefficient of variation A subset of our samples were sequenced on multiple lanes
in separate runs. They can be considered as technical replicates and used to assess
the variability of TelSeq measures. The coefficient of variation (CV) was computed as
the ratio of the standard deviation (SD) to the mean across the technical replicates
for each sample. We selected 110 samples that were sequenced on more than ten lanes
to evaluate the CV and observed an average value of 3.17% with 0.98% standard devi-
ation (4.7), comparable to or smaller than that from the experimental measurements
(Kimura and Aviv, 2011).

Interestingly, when lanes analyzed separately and the telomere length estimate
calculated as the mean across lanes, weighted by lane yield, the sampling error was
further reduced and the correlation with mTRF was stronger (p=0.62 with mTRF
when merged as opposed to p=0.60).

Difference in length estimates Notably, the TelSeq estimate of telomere length
was consistently shorter than the mTRF estimate(mean 5.63kb compared to 6.97kb),
and the mean rate of shortening per year was consistently greater (34.5bp/year against
19.8bp/year) (Figure 4.5B, Figure 4.5C). The mTRF measurements reflect the aver-
age distance from a restriction enzyme site (Hinfl/Rsal or HphI/Mnll) to the end
of a chromosome, and hence overestimate the canonical region of the telomeres of
TTAGGG repeats only. Kimura and Aviv (2011) obtained a similar figure of around
1kb for the additional sub-telomeric length included in an mTRF measurement. The
difference between the TelSeq and mTREF estimates changes as the TelSeq threshold
k changes, reflecting inclusion of different amounts of subtelomeric sequence (Figure
4.8); although the correlation between TelSeq and mTRF remains similar across a

range of values of k (Figure 4.2).
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Figure 4.6: Compare correlation coefficient obtained from mTRF and TelSeq. To
compare the correlation coefficients between age and telomere length estimates from
TelSeq and mTRF, we conducted 1000 bootstraps with replacement from the data set
to obtain an estimate of the standard deviations of the correlation estimates p. We
can then perform a t-test for whether the difference between the observed values -0.24
and -0.26 is significant. The result gave t=0.26, P=0.79, which suggest no statistical
difference between the coefficients obtained from the two measurements.
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Figure 4.7: Sequencing lane variation in TelSeq measures. For each sample that was
sequenced on more than ten lanes, the standard deviation of the length estimates
across lanes is plotted against the mean length estimate. The coefficient of variation
(CV), defined as the ratio of the standard deviation to the mean, varies between 1.3%

and 6.4%, with mean 3.17% and standard deviation 0.98%.
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Figure 4.8: The mTRF measurement is longer than TelSeq estimates across a range
of values for the choices of TelSeq threshold (k). The difference between mTRF and
TelSeq is 1.49kb at k=7, and 5.34kb at k=16. The difference reflects the fact that
mTRF measures the average distance from subtelomeic regions, where the excision
sites of restriction enzymes exist, to the chromosome ends, while TelSeq approaches
include only the ends when choosing a large k. Measurements of two methods correlate

with age similarly, suggesting they both capture the information of telomere shortening
with age.
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4.4 FEstimating telomere length from exome sequence
data.

In addition to whole genome sequence data, a large number of samples have exome
sequence data collected by enrichment of whole genome shotgun sequencing libraries
using capture reagents. In theory, if the exome capture works perfectly, it would
not be possible to use these data for our method. However, in practice with current
technology a typical exome sequencing output contains some fraction (typically 10-
50%) of sequence that is off-target, i.e. not exonic. This fraction represents information
on the rest of the genome and can be used to estimate relative telomere length by our
method. To test this approach, we selected 96 samples from the 1000 Genomes Project
pilot that have matched whole genome and exome sequence and applied TelSeq to both
data sets. We found that when we classify telomeric reads as those containing more
than three TTAGGG hexamers, estimates of telomere length from the two data sets
started to be tightly correlated (Figure 4.9). Using our default threshold of k=7, the
two measures have a Spearman’s Rank correlation coefficient 0.78. This result suggests
that TelSeq can effectively work with exome data, which substantially extends its

potential applications.

4.5 Applications of the method

Mutations in POT1 gene predispose to melanoma Robles-Espinoza et al.
(2014) performed exome sequencing on pedigrees recruited in the UK, Netherlands
and Australia with melanoma cases looking for variants that are explanatory to the
disease. Four loss of function variants in the protection of telomeres 1 gene (POT1)
were identified as cosegregating with melanoma cases in family UF20 (See Figure
4.10A for the pedigree with melanoma cases (arrowed) and missense mutations in
POT1 at p.Tyr89Cys). The mutation disrupts the interaction between POT1 and
single-stranded DNA and led to elongated telomere length (Robles-Espinoza et al.,
2014). Telomere length information is thus an important phenotype to this study.
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Figure 4.9: TelSeq estimates from exome data are highly correlated with those from
whole genome data in 96 samples from the 1000 Genomes Project with matched whole
genome sequences and exome sequence data. A. Scatter plots for TelSeq estimates from
matched whole genome sequence and exome sequence at different thresholds of k, the
amount of TTAGGG repeats in a read. Panels are organised from left to right, top
to bottom as k increases from 1 to 16, where in each plot X axis is the estimates
from the whole genome sequences and y axis is the estimates for the matched exome
sequences. A correlation coefficient is calculated for each panel and plotted in B. The
two measurements start becoming tightly correlated with each other when k>= 3.
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Telomere lengths of the cases along with 38 controls that have wild type POT1 gene
were measured using the qPCR method (Figure 4.10B) and Telseq (Figure 4.10C).
Two methods show consistent signal that the cases with mutated POT1 gene have
much longer telomere than the controls (P < 0.00019).

4.6 Conclusion

In conclusion, we have demonstrated an approach for measuring telomere length using
whole genome or exome sequencing data. This is the first study to our knowledge to
evaluate in detail the relationship between the frequency of telomere repeat sequence
in shotgun sequence data and telomere length, and also to validate extensively with
experimental measurements in a representative large sample cohort with a wide range
of ages. There are some limitations to TelSeq, such as it is not able to obtain individ-
ual telomere length for chromosome arms. Nevertheless, Telseq allows any cohort with
existing genomewide sequence data, including increasingly many cancer genomics and
epidemiological cohort studies, to produce a validated measure of the average telom-
ere length at effectively no cost, with no need for the further sample collection and

experimental procedures required by other methods of ascertaining telomere length.

4.7 Software implementation

Telseq is implemented in C++. It uses BamTools (Barnett et al., 2011) to read BAM
files. The source code is licensed under GNU General Public License Version 3 and is

freely available online (https://github.com/zd1/telseq). To compile, a recent version
of GNU Compiler Collection (GCC) is recommended (Version 4.8 or above).
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Figure 4.10: Measuring telomere lengths in melanoma cases. Mutations in the Pro-
tection of Telomeres 1 gene (POT1) were found transmitted in melanoma cases in
pedigree UF20 (A). The telomere length estimates were obtained independently using
a qPCR approach and Telseq (B and C). The cases that red-arrowed and compared
against controls that have wild type POT1. Both methods indicate longer telomeres
in the three cases. Panel A and B are adapted from Figure 2 in Robles-Espinoza et al.,

2014.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The application of association genetic methods to cellular traits is an important area
of research with great potential to reveal new information about cellular functions, and
help interpret the genetics of diseases and other whole organism traits. This thesis
contributes to the understanding of how DNA variation regulates transcription factor
binding by investigating a key transcription factor CTCF. In chapter 2, I described a
study that performed chromatin immunoprecipitation followed by sequencing (ChIP-
seq) for lymphoblastoid cell lines collected from 51 HapMap individuals. We have
identified tens of thousands of bindings sites with the vast majority showing large
inter individual variations. Most of the binding sites are identified with a matched
CTCF canonical motif, reflecting sequence specificity of the transcription factor. To
reveal the genetic contribution to such variation, we performed QTL analysis using
a linear additive model, and focused on cis regulation within 50kb genomic window.
Our results suggest a strong genetic basis for variation at many binding regions. The
distributions of the physical locations as well as the corresponding effect sizes of the
QTL variants show clear tracking on the information content with the motif, which
suggests that mutations at the DNA-protein binding interface exert a functional im-

pact on binding proportional to the predicted binding affinity of the nucleotide. It



5.1 Conclusions 124

also shows strong correlation with sequence conservation, which supports the func-
tional impact of the variants. Interestingly, there are binding regions whose variation
of binding intensity appears to be only attributable to variants that are distal to the
sequence motif. We recognized that in a substantial fraction of these cases there are
variants within the motif but with low frequency (<5% MAF). Particularly, these low
frequency variants are often in linkage disequilibrium with the lead QTL variants that
are distal, indicating a phenomenon that the lead QTL variant is actually tagging a
putative functional on-motif variant but with lower frequency. Taken this together,
we show that the majority of CTCF binding QTLs have genetic regulatory variants
in close vicinity.

Also in this work, we suggested a novel discovery of CTCF binding patterns on the
X chromosome (See Ding et al., 2014 for details). Particularly we showed there exist
three different types of binding in regions on the X chromosome: ones that only bind
on the inactive X; ones that bind on both X; and ones that only bind to X in females.
Also CTCF binding shows much stronger correlations between nearby sites on X than
on autosome, suggesting important roles of CTCF in X inactivation. Together these
suggest that CTCF maybe involved in a large scale chromatin remodeling associated
with inactivation, although the specific functions of the different types of sites are yet
to be found.

The resulting data from this study also contribute to the growing cellular infor-
mation accumulating around the HapMap cell lines. Currently most public data on
transcription factor binding are on a handful of samples, quite often only one cell line.
This study provides a precious resource for scientists to try to understand the global
picture of cellular regulation by looking at both intra-individual and inter-individual
variations. Statistical methods that adjust for noise in cellular assays may also be able
to use it to better model noises in transcription factor binding assays.

In chapter 3 we tackle the problems of performing phenotype association using
noisy gene expression data. The expression levels of functionally related genes, such
as genes in a signaling pathway, tend to correlate to each other for a biological reason.
Taken this common variation, feature extraction methods can effectively extract signal

out of noise present in data from individual genes. We applied factor analysis firstly
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to remove systematic noise in the entire gene expression data, then to each individual
pathway to extract pathway factors as our new phenotypes. We showed that these
pathway factors are substantially more heritable than individual genes, using estimates
from the twins data in our study. Using ageing phenotypes, our approach revealed a
number of pathways known to be related to ageing as well as new pathways that are
candidates for further investigation.

In this thesis, I also worked on developing new methods for important cellular
traits. In chapter 4, I described a novel method that uses whole genome as well as
exome data to estimate telomere length. It is particularly attractive to the large
sequencing cohorts generated from cancer, epidemiology and ageing studies. Many
important questions about the role of telomere length regulation can be tackled as the
phenotype data can be made available by the new method. I have already applied it
in a melanoma study which discovered that mutations in POT1 gene predispose to

the disease and the mutated POT1 gene is associated with longer telomeres.

5.2 Future Work

Genomic DNA stores functional information that makes diverse biological systems
in various cells and organisms. In addition to the protein-coding sequences, there
is also a group of sequences that can indirectly influence the expression of genes as
regulators. These sequences are key in achieving the complexity of the organisms. For
example, having hugely different number of cells and cell types, Caenorhabditis elegans
(around a thousand cells) and humans (trillions of cells) have quite similar amount of
protein-coding genes (around 20 to 25 thousands).

A large volume of research efforts have been made to understand the regulatory
mechanisms. The genomic regions that are immediately upstream of the transcription
start sites have been found critical for controlling gene expression (See review Wittkopp
and Kalay, 2011). In addition to these regions, one important phenomenon of gene
regulation in higher order organisms is that the regulatory machinery needs not always
be proximal. Increasing amount of studies have shown that there exists functional

elements that are spatially distal to genes but are capable of influencing gene expression
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(See review Bulger and Groudine, 2011). This is possible as chromatin is in a three
dimensional space, where elements that are distal to their target genes can be brought
close by higher order structures. CTCF is one of those special proteins that is involved
in such function. Systematic studies on its bindings including this thesis show that its
binding is regulated by genetic factors. Although nearly half of the QTL variants are
close to the canonical motif, many are not. Only a minority of QTL variants are within
the binding motif affecting binding directly. It is possible that the genetic effects of the
proximal variants are mediated by collaborative factors. These requires investigation
of binding patterns of more transcription factors in a group of individuals to search
for correlation of bindings between them. Also, importantly, a higher resolution map,
ideally at single base pair, is needed for identifying such interactions by knowing
exactly where they bind. The current standard ChIP-seq experiments produce binding
peaks at a resolution of a few hundred base pairs, much larger than the binding
interface. Methods such as the enrichment analysis used in this case may not be reliable
for individual events. Some of the recent technologies, such as Capture-C (Hughes
et al., 2014), shows some promising directions by producing base pair resolution for
interactions between a pair of factors in a cis window. Meanwhile, it is also possible
that transcription factors not always bind to their canonical motifs, but is subject to
a probability as a stochastic process. The bindings may occur at sites with weaker
motif pattern that are yet to be discovered. This could be more confidently identified
if we know the exact positions of binding, which gives much better signal noise ratio
than searching for motifs in long sequences.

Future studies should also extend beyond lymphoblastoid cell lines to more tissues
such as neurons, muscles etc and attempt to collect measurement in vivo. By doing
so the chance of revealing the genuine biological mechanisms are much elevated. The
diversity of regulation in these tissues provide a natural platform for comparing bind-
ing patterns of transcription factors and expression patterns of genes. Associating
these patterns with the developmental features of these tissues may give important
information on the regulatory mechanisms.

In this and many other studies, QTL analysis and allele specific analysis are done

separately. This is because cis regulation patterns can be captured both by comparing
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between individuals, where individuals with AA, AB and BB genotypes should have
different phenotypic levels if the locus is causal, or comparing within individuals, where
in individuals with AB genotype the signals from A and B alleles should be different.
This can be combined into a joint haplotype test that increases the statistical power
(see methods in McVicker et al., 2013). Additionally, quite often the loci showing an
allele specific signal are not the causal loci themselves, supported by the observations
of conflicting signal directions of allele specific alleles between different individuals.
Some initial methods have been developed to search in the local region to find variant
that maximize a test score for consistent allelic imbalance (Lappalainen et al., 2013).
Methods that extend towards these two directions only just begin to emerge and
there is much rooms to develop them further. One approach could be parametrize
phenotype and genotype value by haplotype instead of by individual. An individual
that is homozygous and has a phenotypic value of 10 would be encoded as two entries
in a (genotype, phenotype) format as (0,5), (0,5) or (1,5), (1,5) depending on whether
the genotype is 0 or 1. And an individual that is heterozygous would be encoded as
(0, allelic value for genotype 0) and (1, allelic value for genotype 1), taking the actual
measured allelic value from these individuals. Associations can be tested using a linear
model linking the two variables. This way the inter-individual QTL test and the intra-
individual allele test can be combined. One caveat of such encoding is that the two
entries of an individual are not independent. This is however similar to correcting for
population structures, such as for monozygous twins. One could use a linear mixed
model to correct for such structure using a relationship matrix.

As more and more functional data are accumulated around study samples, ideally
one would want to model them together, looking for not only the effect of genotypes on
each individual phenotype, but also on the network of them, learning their interactions
and eventually the causality directions. Taking advantages of improved phasing algo-
rithms, studies have started to investigate the phenotypes at a haplotype level, which
extends to a larger genomic regions beyond a single SNP, and allows to model many
other phenotypes that occur on the same haplotype. For example, the CTCF data
generated in chapter 2 can be combined with RNA-seq data published for the same
individuals for such analysis. One could model the allelic effects of CTCF binding and
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gene expression using two binomial variables, and see if they behave independently.
Interestingly, haplotype that links two traits can be broken by recombination, form-
ing recombinant samples. This gives an opportunity to distinguish the causal signals
if any, because if the direction of association appear both in non-recombinants and
recombinants, it suggests that two traits are causally linked.

The algorithm and software developed in chapter 4 have already generated strong
interest in cancer and ageing studies. I am involved in two ongoing cancer studies on
prostate cancer and melanoma while I am writing this thesis. In the ageing context,
some recent work shows strong parental age effect, particularly paternal effect, on the
health and disease status of their offspring (Kong et al., 2012, Goriely and Wilkie,
2012). Such paternal effects can be associated with telomere lengths as longer telom-
eres are transmitted to offspring by older fathers. Telomere lengths can be estimated
from trio sequence data that some already become available from epidemiology stud-
ies. The age at conception can be easily worked out if the ages of the trio are known.
It is also of interest to understand the heritability of telomere length, which can also
be worked out using these data. Additionally, genome wide association analysis can
reveal the genetic loci that are associated with the variation of telomere lengths, which

will be very relevant to the context of ageing, cancer and a number of other diseases.
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Supplementary Tables

Table A.1: Sites with Random Allelic Bias.

’ chrm ‘ asSNP__pos explanation conconrdSNP__pos score ‘ pval ‘ nhets ‘
3 195380708 linked to putative rSNP 195343986 0.413746355 | 0.012 10
13 24473876 linked to putative rSNP 24429097 0.342206506 | 0.001 19

79226788 linked to putative rSNP 79234011 0.303255216 | 0.001 8
11656064 linked to putative rSNP 11641470 0.388698152 | 0.001 13
22893706 linked to putative rSNP 22892011 0.1773247 0.001 17
46378261 unexplained 46372838 0.131808112 | 0.298 23
12 562651 linked to putative rSNP 553733 0.313721634 | 0.001 13
12 562580 unexplained 536056 0.353706121 | 0.052 16
9 104211370 unexplained 104211370 0.056373159 | 0.904
10 52420020 unexplained 52463140 0.368795666 | 0.07
15 51166142 linked to putative rSNP 51127650 0.341124891 | 0.001 14
12 562661 linked to putative rSNP 573870 0.386307382 | 0.033 10
10 57391147 unexplained 57424504 0.438082956 | 0.056 11
14 106598644 unexplained, IgH 106619371 0.172644288 | 0.172 8
14 106627178 unexplained, IgH 106625322 0.241054365 0.16 10
171889524 linked to putative rSNP 171903769 0.475113379 | 0.028 9
80979777 linked to putative rSNP 80977521 0.165461923 | 0.026 20
141437957 linked to putative rSNP 141429029 0.360188346 | 0.001 11
5 110867634 linked to putative rSNP 110839262 0.172184058 | 0.001 8
10 32125803 unexplained 32164980 0.241839254 | 0.518 9
12 8086062 linked to putative rSNP 8086083 0.244866078 | 0.001 13
8 16870536 linked to putative rSNP 16845136 0.382392542 | 0.024 9
11 2554149 within imprinted gene KCNQ1 2552450 0.17695326 | 0.608 8
18 43303114 unexplained 43302764 0.278125778 | 0.098 8
3 34021986 linked to putative rSNP 34014691 0.321042367 | 0.046 9
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Table A.1: Sites with Random Allelic Bias.

14 106626958 unexplained, IgH 106625322 0.251414942 | 0.144 9
18 61009609 linked to putative rSNP 61019692 0.424321072 | 0.002 9
21 39084764 unexplained 39113085 0.438694795 | 0.097 8
11 362099 linked to putative rSNP 344035 0.43792284 | 0.001 8
10 71168561 linked to putative rSNP 71119208 0.318892421 | 0.001 11
6 14397660 linked to putative rSNP 14357172 0.294558813 | 0.001 12
13 112092991 unexplained 112092991 0.288589199 | 0.054 12
1 40138507 linked to putative rSNP 40151426 0.296879492 | 0.003 11
16 75498793 unexplained 75524371 0.312558616 | 0.154 10
9 114360287 linked to putative rSNP 114357659 0.138953631 | 0.001 9
12 84220073 linked to putative rSNP 84262595 0.392129301 | 0.012 10
3 46484283 unexplained 46484283 0.353244439 | 0.163 7
10 102295658 unexplained 102298664 0.089200481 | 0.066 12
19 38042814 unexplained 38070460 0.375844732 | 0.129 9
7 142420355 linked to putative rSNP 142379936 0.14320426 | 0.002 17
10 134717856 unexplained 134671822 0.29972073 | 0.091 8
10 11800229 linked to putative rSNP 11801353 0.474904024 | 0.009 8
12 67835821 linked to putative rSNP 67803505 0.29289579 | 0.027 12
231807181 linked to putative rSNP 231769231 0.269179103 | 0.001 8
100270972 unexplained 100249423 0.31902441 | 0.188 9
10 835055 linked to putative rSNP 859270 0.361235687 | 0.028 15
19 19453560 unexplained 19445856 0.4082047 0.132 9
1 171220925 unexplained 171262373 0.410678075 | 0.147 9
1 248100467 linked to putative rSNP 248059456 0.216975022 | 0.026 17
12 108279247 unexplained 108263228 0.290672468 | 0.052 17
KEGG ID Pathway P value Number of Proportion of

genes

genes

Table A.2: List of all pathways significantly associated with age, together
with the number and proportion of significantly associated genes (P < 0.05,

corrected using Bonferroni for the total number of genes in the pathway).

00900

Terpenoid Backbone 6.23E-13

Biosynthesis

chrm

asSNP_ pos

00980

Metabolism of 6.47E-13
Xenobiotics By
Cytochrome P450

195380708

01040

Biosynthesis of 1.11E-12
Unsaturated Fatty
Acids

13

24473876

00100

Steroid Biosynthesis 1.33E-12

79226788
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KEGG ID Pathway P value Number of Proportion of
genes genes
00650 Butanoate Metabolism 1.51E-12 6 11656064
04146 Peroxisome 1.56E-12 7 22893706
00830 Retinol Metabolism 1.93E-12 6 46378261
00010 Glycolysis 3.59E-12 12 562651
Gluconeogenesis
00051 Fructose and Mannose 3.99E-12 12 562580
Metabolism
00290 Valine Leucine and 1.15E-11 9 104211370
Isoleucine Biosynthesis
00561 Glycerolipid 2.63E-11 10 52420020
Metabolism
00620 Pyruvate Metabolism 4.20E-11 15 51166142
00770 Pantothenate and 4.76E-11 12 562661
COA Biosynthesis
00280 Valine Leucine and 5.79E-11 10 57391147
Isoleucine Degradation
00020 Citrate Cycle TCA 1.12E-10 14 106598644
Cycle
04916 Melanogenesis 3.34E-10 14 106627178
04910 Insulin Signalling 3.70E-10 5 171889524
Pathway
00565 Ether Lipid 5.89E-10 8 80979777
Metabolism
00350 Tyrosine Metabolism 9.44E-10 7 141437957
00640 Propanoate 1.03E-09 5 110867634
Metabolism
04530 Tight Junction 1.12E-09 10 32125803
00030 Pentose Phosphate 1.74E-09 12 8086062
Pathway
03320 PPAR Signalling 1.83E-09 8 16870536
Pathway
00630 Glyoxylate and 2.22E-09 11 2554149

Dicarboxylate
Metabolism
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KEGG ID Pathway P value Number of Proportion of
genes genes
00982 Drug Metabolism 2.93E-09 18 43303114
Cytochrome P450
00260 Glycine Serine and 7.02E-09 3 34021986
Threonine Metabolism
00140 Steroid Hormone 7.49E-09 14 106626958
Biosynthesis
00380 Tryptophan 1.17E-08 18 61009609
Metabolism
04930 Type II Diabetes 1.98E-08 21 39084764
Mellitus
05412 Arrhythmogenic Right 7.44E-08 11 362099
Ventricular
Cardiomyopathy Arvc
00052 Galactose Metabolism 9.27E-08 10 71168561
04340 Hedgehog Signaling 1.12E-07 6 14397660
Pathway
00480 Glutathione 1.45E-07 13 112092991
Metabolism
00532 Glycosaminoglycan 1.53E-07 1 40138507
Biosynthesis
Chondroitin Sulfate
04920 Adipocytokine 2.87E-07 16 75498793
Signaling Pathway
05214 Glioma 4.26E-07 9 114360287
05322 Systemic Lupus 4.56E-07 12 84220073
Erythematosus
05414 Dilated 5.64E-07 3 46484283
Cardiomyopathy
00410 Beta Alanine 1.11E-06 10 102295658
Metabolism
00330 Arginine and Proline 1.39E-06 19 38042814
Metabolism
04510 Focal Adhesion 1.47E-06 7 142420355
00340 Histidine Metabolism 1.53E-06 10 134717856
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KEGG ID Pathway P value Number of Proportion of
genes genes
04360 Axon Guidance 1.66E-06 10 11800229
04060 ECM Receptor 1.77TE-06 12 67835821
Interaction
04150 MTOR Signaling 2.02E-06 2 231807181
Pathway
04270 Vascular Smooth 3.31E-06 6 100270972

Muscle Contraction

00071 Fatty Acid 3.84E-06 10 835055
Metabolism
04142 Lysosome 4.43E-06 19 19453560
00983 Drug Metabolism 5.71E-06 1 171220925
Other Enzymes
00040 Pentose and 6.49E-06 1 248100467
Glucuronate
Interconversions
05416 Viral Myocarditis 1.16E-05 12 108279247
1000 Amino Sugar and 1.70E-05 7 0.179
Nucleotide Sugar
Metabolism
05217 Basal Cell Carcinoma 1.80E-05 10 0.192
00510 N-Glycan Biosynthesis 1.82E-05 7 0.175
04260 Cardiac Muscle 1.83E-05 5 0.0847
Contraction
05216 Thyroid Cancer 1.99E-05 8 0.364
05120 Epithelial Cell 4.85E-05 11 0.186

Signaling In
Helicobacter Pylori
Infection

Table A.3: List of the seven pathways which were signicantly associated with

age, discovered by looking for enrichment of single gene age associations.

KEGG ID Pathway P value
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650 Butanoate Metabolism 8.86E4-06
4060 ECM Receptor Interaction 3.64E4-05
4146 Peroxisome 2.61E+07
620 Pyruvate Metabolism 5.49E+05
100 Steroid Biosynthesis 2.39E+11
900 Terpenoid Backbone Biosynthesis Valine Leucine and Isoleucine | 2.13E+405
290 Degradation 5.58E+06

Table A.4: Key showing which pathways correspond to which nodes in Figure

3.2, and the maximum Spearman correlation of that phenotype with any of

the others representing pathways.

’ Node ‘ Pathway Maximum rho with other phenotype
1 Glycolysis Gluconeogenesis 0.91
2 Citrate Cycle TCA Cycle 0.90
3 Pentose Phosphate Pathway 0.84
4 Fructose and Mannose Metabolism 0.84
5 Beta Alanine Metabolism 0.85
6 Glutathione Metabolism 0.85
7 Pyruvate Metabolism 0.81
8 Butanoate Metabolism 0.94
9 Drug Metabolism Cytochrome P450 0.84
10 Biosynthesis of Unsaturated Fatty Acids 0.92
11 Fatty Acid Metabolism 0.87
12 Glyoxylate and Dicarboxylate Metabolism 0.80
13 Glycerolipid Metabolism 0.90
14 Terpenoid Backbone Biosynthesis 0.90
15 Valine Leucine and Isoleucine Biosynthesis 0.84
16 Pantothenate and COA Biosynthesis 0.85
17 Tryptophan Metabolism 0.82
18 Peroxisome 0.92
19 Insulin Signaling Pathway 0.84
20 Propanoate Metabolism 0.92
21 Valine Leucine and Isoleucine Degradation 0.94
22 Retinol Metabolism 0.90
23 Steroid Hormone Biosynthesis 0.84
24 Steroid Biosynthesis 0.90




162

KEGG ID Pathway Heritability Proportion

Table A.5: Heritability and proportion of variance explained by age for all
pathways. Value reported is for the pathway phenotype most significantly
associated with ageing.

00900 Terpenoid Backbone 1.53E-11 0.0898
Biosynthesis

00980 Metabolism of 0.0904 0.0986
Xenobiotics By
Cytochrome P450

01040 Biosynthesis of 0.253 0.11
Unsaturated Fatty
Acids
00100 Steroid Biosynthesis 0.406 0.143
00650 Butanoate Metabolism 0.39 0.137
04146 Peroxisome 0.453 0.152
00830 Retinol Metabolism 0.449 0.149
00010 Glycolysis 0.417 0.14
Gluconeogenesis
00051 Fructose and Mannose 0.316 0.109
Metabolism
00290 Valine Leucine and 2.61E-12 0.0771

Isoleucine Biosynthesis

00561 Glycerolipid 0.337 0.113
Metabolism

00620 Pyruvate Metabolism 0.368 0.117

00770 Pantothenate and 0.477 0.136

COA Biosynthesis

00280 Valine Leucine and 0.51 0.147

Isoleucine Degradation

00020 Citrate Cycle TCA 0.436 0.126
Cycle
04916 Melanogenesis 2.23E-16 0.0708
04910 Insulin Signaling 0.453 0.121
Pathway
00565 Ether Lipid 1.13E-15 0.064

Metabolism
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KEGG ID Pathway Heritability Proportion
00350 Tyrosine Metabolism 0.342 0.0975
00640 Propanoate 0.591 0.157

Metabolism
04530 Tight Junction 0.103 0.0751
00030 Pentose Phosphate 0.291 0.0831
Pathway
03320 PPAR Signaling 0.235 0.0777
Pathway
00630 Glyoxylate and 0.275 0.0836
Dicarboxylate
Metabolism
00982 Drug Metabolism 0.248 0.0811
Cytochrome P450
00260 Glycine Serine and 0.599 0.141
Threonine Metabolism
00140 Steroid Hormone 0.655 0.167
Biosynthesis
00380 Tryptophan 0 0.0491
Metabolism
04930 Type II Diabetes 0.594 0.13
Mellitus
05412 Arrhythmogenic Right 0.241 0.0674
Ventricular
Cardiomyopathy Arvc
00052 Galactose Metabolism 3.40E-11 0.0504
04340 Hedgehog Signaling 0.375 0.08
Pathway
00480 Glutathione 0.415 0.0804
Metabolism
00532 Glycosaminoglycan 0.273 0.0682
Biosynthesis
Chondroitin Sulfate
04920 Adipocytokine 1.30E-20 0.0475
Signaling Pathway
05214 Glioma 0.102 0.0466
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KEGG ID Pathway Heritability Proportion
05322 Systemic Lupus 8.17E-17 0.045
Erythematosus
05414 Dilated 0.532 0.0867
Cardiomyopathy
00410 Beta Alanine 0.709 0.14
Metabolism
00330 Arginine and Proline 1.70E-16 0.0402
Metabolism
04510 Focal Adhesion 0.397 0.0669
00340 Histidine Metabolism 0.519 0.0874
04360 Axon Guidance 0.606 0.0995
04060 ECM Receptor 0.792 0.196
Interaction
04150 MTOR Signaling 0.219 0.0511
Pathway
04270 Vascular Smooth 0.27 0.0542

Muscle Contraction

00071 Fatty Acid 0.823 0.204
Metabolism

04142 Lysosome 0.566 0.0804

00983 Drug Metabolism 0 0.0322

Other Enzymes

00040 Pentose and 0.562 0.0792
Glucuronate
Interconversions
05416 Viral Myocarditis 0.569 0.0815
00520 Amino Sugar and 0.453 0.0577
Nucleotide Sugar
Metabolism
05217 Basal Cell Carcinoma 0.593 0.0799
00510 N Glycan Biosynthesis 5.87E-16 0.0313
04260 Cardiac Muscle 8.30E-13 0.0312
Contraction

05216 Thyroid Cancer 2.56E-09 0.0332
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KEGG ID Pathway Heritability Proportion
05120 Epithelial Cell 0.652 0.0859
Signaling In
Helicobacter Pylori
Infection
04060 Cytokine Cytokine 3.51E-17 0.0276
Receptor Interaction
00120 Primary Bile Acid 1.69E-16 0.0265
Biosynthesis
00190 Oxidative 1.41E-11 0.0268
Phosphorylation
00760 Nicotinate and 0.401 0.0433
Nicotinamide
Metabolism
00360 Phenylalanine 0.711 0.088
Metabolism
00512 O Glycan Biosynthesis 1.78E-18 0.0253
05213 Endometrial Cancer 0.428 0.0408
00250 Alanine Aspartate and 0.526 0.0507
Glutamate
Metabolism
00564 Glycerophospholipid 0 0.0231
Metabolism
04012 ERBB Signaling 0.121 0.0253
Pathway
05211 Renal Cell Carcinoma 3.64E-11 0.0237
02010 ABC Transporters 0.506 0.0454
04710 Circadian Rhythm 0.0407 0.0292
Mammal
05222 Small Cell Lung 1.03E-17 0.024
Cancer
04062 Chemokine Signaling 0.124 0.0277
Pathway
00590 Arachidonic Acid 0.141 0.027
Metabolism
04610 Complement and 0.504 0.0453

Coagulation Cascades
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KEGG ID Pathway Heritability Proportion
03022 Basal Transcription 0.537 0.0424
Factors
00600 Sphingolipid 8.68E-19 0.0219
Metabolism
05410 Hypertrophic 3.30E-13 0.0147
Cardiomyopathy Hcm
04912 GNRH Signaling 3.11E-16 0.0187
Pathway
04720 Long Term 0 0.0183
Potentiation
03050 Proteasome 0.425 0.0314
04620 JAK Stat Signaling 0.503 0.0382
Pathway
05330 Allograft Rejection 0 0.016
03450 Non Homologous End 0.132 0.0199
Joining
05320 Autoimmune Thyroid 0 0.0156
Disease
03060 Protein Export 0.235 0.0197
03420 Nucleotide Excision 3.19E-14 0.0178
Repair
00660 Alpha Linolenic Acid 0.458 0.0311
Metabolism
04144 Endocytosis 0.0714 0.0181
05010 Alzheimers Disease 0.0757 0.0172
00591 Linoleic Acid 3.00E-11 0.0159
Metabolism
00240 Pyrimidine 6.42E-13 0.0152
Metabolism
00270 Cysteine and 0.00281 0.0162
Methionine
Metabolism
03410 Base Excision Repair 0.377 0.0219
04722 Neurotrophin 4.88E-18 0.0152

Signaling Pathway
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KEGG ID Pathway Heritability Proportion
04070 Phosphatidylinositol 0.312 0.0207
Signaling System
04960 Aldosterone Regulated 3.36E-15 0.0142
Sodium Reabsorption
05130 Pathogenic Escherichia 0.158 0.0158
Coli Infection
04310 WNT Signaling 0.176 0.0174
Pathway
00562 Inositol Phosphate 3.24E-16 0.0138
Metabolism
05221 Acute Myeloid 0.472 0.0268
Leukemia
00071 Selenoamino Acid 3.71E-10 0.0137
Metabolism
04742 Taste Transduction 0.149 0.0174
00531 Glycosaminoglycan 2.23E-19 0.0135
Degradation
05340 Primary 0 0.0133
Immunodeficiency
04640 Hematopoietic Cell 2.35E-16 0.0132
Lineage
05310 Asthma 0.331 0.0183
04620 TGF Beta Signaling 1.72E-18 0.0131
Pathway
00860 Porphyrin and 9.84E-16 0.0124
Chlorophyll
Metabolism
04612 Antigen Processing 2.03E-11 0.0129
and Presentation
05010 Parkinsons Disease 4.25E-09 0.012
00790 Folate Biosynthesis 1.07E-11 0.0119
00500 Starch and Sucrose 0.429 0.0111
Metabolism
05223 Non Small Cell Lung 0 0.0115

Cancer
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KEGG ID Pathway Heritability Proportion
03030 DNA Replication 0 0.0116
04622 RIG I Like Receptor 0 0.0117

Signaling Pathway

04666 FC Gamma R 0.747 0.0415
Mediated
Phagocytosis
04514 Cell Adhesion 0.278 0.016

Molecules CAMS

03430 Mismatch Repair 7.18E-17 0.011

03010 Ribosome 8.63E-19 0.0108

05220 Chronic Myeloid 0.333 0.0164
Leukemia

00910 Nitrogen Metabolism 0 0.0106

04330 Notch Signaling 0.585 0.0251
Pathway

04520 Adherens Junction 1.15E-09 0.0107

05210 Colorectal Cancer 0.289 0.0141

03018 RNA Degradation 1.03E-13 0.00998

03440 Homologous 0 0.0093

Recombination

00920 Sulfur Metabolism 0.121 0.011

00310 Lysine Degradation 0.446 0.0166

04662 B Cell Receptor 0.494 0.0183

Signaling Pathway

00430 Taurine and 8.53E-13 0.00891
Hypotaurine
Metabolism

04964 Proximal Tubule 0.456 0.0163
Bicarbonate

Reclamation

04614 Renin Angiotensin 0.556 0.0183
System

00970 Aminoacyl tRNA 0.107 0.0102
Biosynthesis
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KEGG ID Pathway Heritability Proportion
04672 Intestinal Immune 0 0.00883
Network For IGA
Production
04810 Regulation of Actin 0.215 0.0104
Cytoskeleton
05215 Prostate Cancer 1.55E-09 0.00719
00563 Glycosylphosphatidylinositol 0 0.00816
Gpi Anchor
Biosynthesis
04660 NOD Like Receptor 0 0.00828
Signaling Pathway
04540 Gap Junction 0.121 0.0096
00903 Limonene and Pinene 4.80E-12 0.00822
Degradation
05200 Pathways In Cancer 0.275 0.0119
04660 Toll Like Receptor 8.13E-17 0.00782
Signaling Pathway
04730 Long Term Depression 0.128 0.00885
04020 Calcium Signaling 0.148 0.00936
Pathway
04320 Dorso Ventral Axis 0.271 0.00857
Formation
05110 Vibrio Cholerae 0.353 0.011
Infection
04115 P53 Signaling Pathway 1.07 -0.0975
04962 Vasopressin Regulated 0.331 0.0107
Water Reabsorption
04670 Leukocyte 0.248 0.00871
Transendothelial
Migration
03020 RNA Polymerase 2.52E-16 0.00609
04664 FC Epsilon RI 0.35 0.00908
Signaling Pathway
04140 Regulation of 0 0.00509

Autophagy
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KEGG ID Pathway Heritability Proportion
05010 Huntingtons Disease 0.894 0.0529
00670 One Carbon Pool By 9.11E-13 0.00564

Folate
04660 T Cell Receptor 0.487 0.0103
Signaling Pathway
00740 Riboflavin Metabolism 0.252 0.00627
00533 Glycosaminoglycan 0 0.00452
Biosynthesis Keratan
Sulfate
00230 Purine Metabolism 3.84E-18 0.00462
04130 Snare Interactions In 1.20E-17 0.00475
Vesicular Transport
05020 Prion Diseases 0.272 0.0059
05219 Bladder Cancer 0.229 0.00531
03040 Spliceosome 0.224 0.00573
04010 Mapk Signaling 0.221 0.00506
Pathway
00534 Glycosaminoglycan 1.40E-18 0.00416
Biosynthesis Heparan
Sulfate
00604 Glycosphingolipid 0 0.00372
Biosynthesis Ganglio
Series
04940 Type I Diabetes 0.446 0.00735
Mellitus
04623 Cytosolic DNA 0.431 0.00706
Sensing Pathway
05332 Graft Versus Host 0.432 0.00691
Disease
04740 Olfactory 0 0.0035
Transduction
04110 Cell Cycle 5.02E-18 0.00369
00511 Other Glycan 1.07E-24 0.00321
Degradation
05140 Leishmania Infection 0.136 0.00381
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KEGG ID Pathway Heritability Proportion
04914 Progesterone Mediated 1.82E-19 0.00322
Oocyte Maturation
04120 Ubiquitin Mediated 2.55E-15 0.00315
Proteolysis
00604 Glycosphingolipid 0 0.00271
Biosynthesis Globo
Series
00601 Glycosphingolipid 0.213 0.00341
Biosynthesis Lacto
and Neolacto Series
04370 VEGF Signaling 0.192 0.00362
Pathway
00053 Ascorbate and 0 0.00197
Aldarate Metabolism
04650 Natural Killer Cell 4.16E-19 0.00222
Mediated Cytotoxicity
05212 Pancreatic Cancer 5.99E-48 0.00212
04114 Oocyte Meiosis 1.82E-11 0.00201
04210 Apoptosis 0.632 0.00523
05218 Melanoma 0.349 0.00284
04080 Neuroactive Ligand 1.76E-17 0.00158
Receptor Interaction
05014 Amyotrophic Lateral 0 0.00102
Sclerosis ALS
04950 Maturity Onset 8.21E-12 0.000707

Diabetes of The Young



