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Abstract

Animals use their sense of smell to gather plethora of information about their surround-
ings. The detection of odorants occurs in the main olfactory epithelium (MOE), which
contains olfactory sensory neurones (OSNs) among other cell types; these express olfact-
ory receptors (ORs) that bind to odorants. Each OSN expresses only one allele of one
OR gene from a family of over 1,200 in the mouse genome. Thus, the mouse nose has
over 1,200 different OSN types, each characterised by the OR expressed. High levels
of genomic variation have been reported both in the mouse and human OR repertoire.
This is thought to contribute to the unique sense of smell each individual has, but a
large proportion of the observed phenotypic variance remains unaccounted for.

In this dissertation, I present the results from an RNAseq-based approach used to
quantify the OSN repertoire of the mouse. Firstly, I validated the accuracy and re-
producibility of this technology to study the olfactory system. I then characterised the
transcriptome of the MOE and of the OSNs as a population and at the single-cell level.
This allowed me to conclusively prove that OR expression is indeed monogenic and
monoallelic. Then, I demonstrated that the method is sensitive enough to detect the
expression of almost the complete OR repertoire. Also, I was able to annotate full-length
gene models for many OR genes.

Secondly, I explored the diversity of OSN types in three inbred strains of mice
(C57BL/6, CAST/EiJ and 129S5) via their OR gene expression levels. I found that
each strain has a unique and reproducible distribution of OSNs in their noses, and that
genomic variation instructs this neuronal variance in cis. Finally, I analysed the plas-
ticity of the distribution of the different classes of OSNs by stimulating animals with
particular odorants. Exposure to an enriched olfactory environment results in the dif-
ferential expression of dozens of OR genes in a reproducible and specific manner. These
changes increase with time and are reversible. These data allow to comprehensively ex-
plore and dissect the effects of genetic and environmental variation on the regulation of
OR expression and OSN repertoire. Together they generate an olfactory sensory system
that is individually unique.
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