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Abstract

The average eukaryotic genome contains many types of variation; from

single nucleotide polymorphisms, small, medium and large insertions

and deletions to copy number variation, translocations and inversions

to name a few. The genome is also highly non-uniform, with some

regions more variable than others. Tandem repeats are stretches of

DNA comprised of a short motif repeated end-to-end multiple times.

They are of interests to geneticists because they exhibit a high rate of

length variation and are relatively frequent in the genome. However,

until now they have been hard to assay using new sequencing tech-

nologies, which have revolutionized the study of other types of genetic

variation. In this thesis, we address this deficit by developing meth-

ods to genotype short tandem repeats from shotgun short sequencing

reads and applying them to human genome data.

To begin, I present a statistical model based on a Bayesian frame-

work which uses Illumina paired end sequencing reads to determine

the genotype of a diploid individual at a given short tandem repeat

locus. This method is applied to all triplet tandem repeats (repeat

motifs three bases in length) in the human genome for an individual

sequenced deeply from multiple libraries as part of the 1000 Genomes

project. We show that our method has good sensitivity and speci-

ficity for both homozygous and heterozygous indel genotypes measur-

ing over three bp in length.

Next, we build upon the previous chapter by utilizing our model for

genotyping across nine deeply sequenced individuals. We use the pu-

tative indel calls made in this data set to gain an understanding of



what factors of a tandem repeat have the largest effect on observing

an indel at a given locus. We look at the effect that various measures

of repeat length, repeat purity, GC content and tandem repeat motif

have on triplet repeat variation. This analysis furthers our under-

standing of tandem repeat variation.

Lastly, we reformulate our individual genotyping model to take se-

quencing data from multiple, low sequence depth individuals in a

population to understand the population distributions of variants at

tandem repeat loci. This uses machine learning approaches including

the expectation-maximization algorithm and Gibbs sampler, that help

elucidate which loci show evidence of variation in the sample popula-

tion, and allow us to explore the distribution of alternate alleles at a

locus. As well as cataloguing variation efficiently, this allows us to ex-

amine a broader picture of the contribution the previously described

factors have in influencing variation at a tandem repeat locus.
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Chapter 1

Introduction

Revolutions in science have often been preceded by revolutions in measurement.

– Sinan Aral, a business professor at New York University (The Economist [2010]).

1.1 New age of technology

The age of modern technology has led to a paradigm shift in regards to how sci-

entific exploration is conducted. Where once data collection limited our ability

to answer pressing questions about highly complex systems, we are now capable

of generating far greater amounts of data at a fraction of the time and cost. As

the capacity of digital devices increase while the price decreases, the amount of

information we are now privy to is magnitudes in size larger than before. Simply,

the amount of digital information increases approximately tenfold every five years

while Moore’s law states that processing power and storage capacity of computer

chips double (or their prices halve) roughly every 18 months (Moore et al. [1998])

which in turn drives our current accumulation of data. However, along with all

the benefits of this data comes the problem of how we make inference about the

underlying systems at play.

With magnitudes more data at hand, it has become an important goal of sci-

ence to develop algorithms and models which can make sense of all this new

information. When utilized to their full potential, large data sets can provide
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fresh insights into many natural systems. The intrinsic make up of many of these

systems lend themselves perfectly to a highly computational and statistical ap-

proach: from analysing high energy physics data to forecasting weather. While

each system has its own intricacies, the prevailing concepts on the underlying

mechanisms are closely related to one another such that advancements in one

field can benefit another field’s exploration (Cohen [2004]). One system which

has enjoyed many advancements through both direct design and from crossover

synergies is DNA sequencing. Where it once took ten years for the first few human

genomes to be sequenced (International Human Genome Sequencing Consortium

[2001], Levy et al. [2007]), the time frame has been lowed to approximately a

single week to sequence an entire human individual’s genome. The per base cost

of DNA sequencing has lowered to about 100,000x cheaper than it was a decade

ago (Nature Jobs [2011]). This abundance of data has increased the need of com-

putational approaches, algorithms and statistical models to make new discoveries

which rely less on the biochemistry of the system and more on the complexities

that arise from such large data sets. Given the raw data from DNA sequencing,

geneticists have endeavored to develop algorithms and models which can reveal

new insight into the complexities of the genome that would previously have re-

mained hidden. This new world of genomic sequencing has given credence to the

belief that genomic medicine has a bright future once geneticists and bioinfor-

maticians decipher the context of the genome. It is only a matter of time before

the “base pairs to bedside” concept is a reality (Green et al. [2011]).

1.2 Sequencing technology and bioinformaticians

The emergence of new sequencing platforms has chauffeured in a new type of

geneticist: a scientist with proficiency in both computer science and statistical

theory who is able to disambiguate the needle of truth from the haystack of data.

The paradigm shift from benchtop to laptop has changed the way genetic re-

search is conducted. The need for these newly trained scientists far outstrips the

current supply which necessitates the migration of individuals into this field (Na-

ture Jobs [2011]). However, the need for quantitatively trained geneticists hasn’t

always been the case in the field of sequencing whose history stretches back over
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four decades.

As with all technological movements, sequencing has experienced a number of

periods that are described by the technology and knowledge of the time. Starting

with the sequencing of RNA by Frederick Sanger (Brownlee et al. [1967]) and the

subsequent sequencing of DNA (Sanger et al. [1982]), this process has been an

archetypal example of exponential technology growth. After Sanger sequencing

came high throughput DNA sequencing that was conducted using electrophoretic

methods in miniaturized systems; such as capillaries, capillary arrays, and mi-

crochannels (Carrilho [2000]). We are now in what is known as the the next

generation sequencing era which is comprised of a number of platforms, processes

and chemistries (Metzker [2009]). These new sequencing technologies have ef-

fected a change within genetics; one where the sequencing of a full genome to a

reasonable depth is no longer prohibitively expensive. The speed and low cost has

led to a number of resequencing projects aimed at demarcating variants within

multiple species’ genomes.

1.3 Genomic variation

Single nucleotide polymorphism (SNPs) represent the largest class of variation

within the human genome, but a large number of ‘structural variations’ have

been uncovered as well. Small insertions and deletions (indels) represent the sec-

ond most frequent class of variation in the human genome followed by deletions,

duplications, inversions, translocations and other large-scale copy-number vari-

ants. An important class of indels within short tandem repeats or microsatellites

(characterized by having multiple exact or near exact tandem copies of a 1-20

bp sequence motif) will be the main subject of this thesis which we will return

to later. While indels exhibit a greater potential to disrupt functional elements

compared to SNPs, they have been characterized to a lesser extent. Because of

this, they are under represented in public variation databases; while there are

24,359,333 unique SNPS in the dbSNP database (version 132), there are only

5,617,945 short indels. Furthermore, resequencing projects have also shown that

structural variants can comprise megabases of nucleotide heterogenity within a
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given genome and are likely to make an important contribution to human diver-

sity as well as disease susceptibility (Feuk et al. [2006]).

1.4 Detecting small scale insertions and dele-

tions

Whole genome sequencing using next generation sequencing technologies has

shown that several hundred thousand indels are located in a single individual’s

genome compared to the reference genome (Wheeler et al. [2008]; Bentley et al.

[2008]; Wang et al. [2008]; McKernan et al. [2009]). Various methods have been

proposed in locating these sites with the most common being based on the align-

ing of sequenced reads directly to the reference and searching for specific signals

that are indicative of a breakpoint. This can be accomplished directly by the

split alignment (or gapped alignment) of reads which span across a breakpoint.

Essentially, if a read from a sequenced individual contains inserted or deleted

sequence relative to the reference sequence, the read will not map exactly to the

genome. Reads whose prefix and suffix match a specific region in the reference to

some identity can then either have sequence removed – with the ends appended to

one another (deletions) – or be split at some distance in the reference (insertions)

to determine if the read then matches the reference genome. Variations of this

approach have been used by numerous sequence alignment algorithms (Li et al.

[2008]; Homer et al. [2009]; Li and Durbin [2009]; Rumble et al. [2009]) which

have located many of these small indels within a resequenced genome. This is

not a perfect method, however. Reads that span a break point close to its end

have been shown to be difficult to align and can lead to misalignment and in turn

false SNP calls (Krawitz et al. [2010]). This problem has been mitigated through

the local realignment of reads which span a putative break point (McKenna et al.

[2010]; Homer et al. [2009]; Albers et al. [2011]). Further, many of these tools do

not permit gaps above a certain size in their split alignments. The maximum gap

size is due in part to the computational cost it would require to search for larger
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and larger gaps and in part because allowing larger gaps can lead to errors. De-

pending on the algorithm, the cost to search possible gap sizes grows non-linearly.

Some aligners will use the Smith-Waterman algorithm to map reads which on the

first pass are not mapped correctly to the genome. Most aligners allow user input

to dictate the aggressiveness of resolving gaps. These values can be tweaked to

allow larger gaps, but run the risk of having more false indel discoveries. However,

if the deletion is too large, then the flanking sections will be shorter and there

will be too many places within the genome the two end lengths of a read (split by

a deletion) can be placed. Similarly, the size of detectable insertions is only a few

base pairs, as every inserted base reduces the fraction of the read that matches

the genome (Medvedev et al. [2009]). Because of this, most indels of more than

a few bases in size are not detected by standard split alignment methods.

A few methods, such as PolyScan, have been developed to locate short indels

of size ≤ 100 bp by analysing long reads from capillary sequence data (Chen

et al. [2007]). As with the previously mentioned alignment tools, PolyScan aligns

reads to the reference genome and infers indels from gaps in the alignments. This

can be used to infer indels in many of the unique regions of the genome. However,

as well as the size of the indel, the efficacy of calling indels is contingent upon the

reads being mapped uniquely to the reference genome. In unique regions of the

genome this is not a problem, but as the uniqueness of DNA decreases, so does

an aligner’s ability to map a read correctly to a specific position on the refer-

ence genome. Nowhere is this more problematic than in repetitive copies of DNA

which take various forms within a genome. Copy number variation (or CNV)

represents the largest type of repeating patterns where whole regions of DNA are

duplicated throughout the genome. Mapping to these regions is difficult as it is

usually unknown which copy the sequenced read is coming from.
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1.5 Tandem Repeats

A particular form of repeat region that is prevalent in the genome and contains

length variation that is hard to type is tandem repeats (minisatellites). These

regions are characterized by 21-60 bp repeat units that are repeated in a tandem

end-to-end fashion some number of times in the genome consisting of both full or

truncated repeat patterns as well as pure and impure repeat tracts. The smaller

equivalent of tandem repeats – and the more prevalent form – are known as short

tandem repeats (or microsatellites). Short tandem repeats (STRs) are repetitive

segments of DNA that are characterized by 1-20 bp repeat units. As with tandem

repeats, they can be both full or truncated repeat units consisting of both pure

and impure repeat tracts. Altogether, there are over 2.1 million STR loci of motif

lengths 1-10,15 and 20 located in the human reference genome.

The STR sites were located by running Tandem Repeats Finder (TRF) ver-

sion 4.00 (Benson [1999]) across the entire human reference genome (NCBI build

36). TRF is able to locate both pure and impure (interrupted) repeats using

a probabilistic model of tandem repeats. Essentially, TRF aligns two tandem

repeat copies of some motif pattern of length n by a sequence of n independent

Bernoulli trials. A Bernoulli trial is defined as a number of independent repeated

trials of an experiment with only one of two outcomes: success or failure (or

match and mismatch in our case). The probabilities of these outcomes are then

defined as p for the probability of success and q = 1−p for the probability of fail-

ure. A series of Bernoulli trials which consists of n trials is known as a binomial

experiment. The probability of k success out of n trials can then be written as

P (k) =

(
n

k

)
pkqn−k

For TRF’s purposes, the probability of a base matching the pattern (success),

P (match), is representative of the average percent identity between copies. For

mismatches (SNPS), insertions or deletions, a second probability is described,

P (mismatch). This denotes the average percentage of mismatches, insertions

and deletions between the copies. TRF uses the distribution of the Bernoulli se-
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quences to locate tandem repeats within the genome to some stringency defined

by the properties of the alignment (P (match) and P (mismatch)). These bounds,

P (match) and P (mismatch), serve as a type of extremal limit – a quantitative

description of the most divergent copies TRF will report.

TRF is broken down into two components: detection and analysis. The program

first locates candidate regions in the genome which can be described as tandem

repeats and then the analysis component attempts to produce an alignment at

each of the candidate sites and if successful, produces a number of statistics about

the alignment and sequence (percent identity, percent indels, composition and en-

tropy measure).

The detection step is broken down into a series of algorithms which scan through

the genome looking for repetitive patterns known as k − tuples. A k − tuple

is a window of k consecutive characters from a nucleotide sequence. Matching

k− tuples are two windows with identical contents and if aligned in the Bernoulli

model would produce a run of k successes. Once these sites are identified, the

candidate pattern corresponding to some positions in the genome are selected

from the nucleotide sequence and aligned with adjacent sequence. If at least two

copies of this pattern are aligned correctly, the tandem repeat is reported. After

these patterns are matched, an initial candidate pattern P is drawn from the

sequence. TRF then iterates through possible patterns from the sequence until

a consensus pattern by majority rule is found from the alignment of P copies

back to the candidate region. This consensus sequence is then used to realign

the sequence and the final alignment is reported with the respective period size

of the repeat motif.

TRF uses a number of parameters which the user can define in regards to the

stringency of locating tandem repeats within a genome. The parameters corre-

spond to the alignment weights for match, mismatch and indels, the matching

probability and indel probability, a maximum period size for patterns to report

and a minimum alignment score to report a tandem repeat. In our analysis, we

left most parameters in the out-of-box configuration. We did, however, iterate
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through each repeat motif length we were interested in looking at. We also set

the minimum alignment score to report a repeat to 30, which corresponded to

a 15 bp perfect triplet repeat or a longer impure triplet repeat. In addition to

this criteria, all repeats (independent of their motif length) were required to be

at least 15 bp in length. In total, TRF identified 2,136,510 repeats in the human

reference genome that met this criteria. This amounted to over 58 Mb of genomic

sequence in the human genome. The results of our TRF run are summarized in

table 1.1 and figure 1.1.

Loci, base count and statistics for STRs in the human genome
Motif size Loci count Bases Mean Std Dev

1 447847 9705850 21.672 6.684
2 209248 7655889 36.588 45.909
3 86401 2391275 27.676 41.335
4 267055 9232626 34.572 53.215
5 168674 4892872 29.008 240.971
6 218574 4949601 22.645 22.739
7 291167 5910812 20.300 29.382
8 207127 4986481 24.075 26.304
9 151583 4067068 26.831 85.026
10 39215 1505968 38.403 56.680
15 28833 1533692 53.192 94.687
20 20786 1533188 73.761 121.431

total 2136510 58365322 27.318 102.788

Table 1.1: Counts of all tandem repeat loci found by TRF within the human
reference genome that correspond to a given repeat motif with corresponding
mean and standard deviation statistics. The first column represents the motif
size and the second and third column represents the number of loci and total
bases, respectively, corresponding with the motif length in the human genome.
The fourth and fifth columns are the calculated mean and standard deviations
for all loci in that row, respectively.
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(a) Histogram of lengths of STR loci in human
genome

(b) Histogram of lengths of STR loci greater
than 35 bp in the human genome

Figure 1.1: Histogram of number of loci of each length across the human genome
with loci longer than 150 bp binned in the last bin. The number of STR loci
(motifs of 1-10, 15 and 20 bp) across the genome are mostly of lengths <40 bp
(1,926,168 of 2,136,510, roughly 90%). Even the shortest paired end reads (36
bp) are almost able to extend across these repeat loci to make indel calls by
alignment possible (given the indel is not an insertion that increases the repeat
length above the length of the short paired end read). This limits the amount
of sites which our model is applicable (see table 1.3) for high coverage data sets.
However, samples sequenced with paired end reads at a lower coverage will have
much lower chance of reads being sequenced exactly so that they can expand
across an STR locus (see figure 1.4).

Aside from their prevalence in the human genome, STRs come in a variety of

lengths within the genome. While the average length of STRs is around 27

bp, the standard deviation is extremely large as shown in table 1.1. This large

discrepancy in the sizes of the standard deviations – specifically for motifs of

lengths 5 and 9 bp – are most readily explained by extremely long loci. While

most motifs’ longest loci are anywhere from two to six thousand bp in length, the

motifs of lengths 5 and 9 bp have loci that are as long as sixty-five and twenty-five

thousand bps in length, respectively (see table 1.2).
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Ten longest loci for each motif length
Motif size Ten longest loci

1 92, 93, 97, 98, 99, 101, 113, 128, 396, 415
2 1620, 1636, 1645, 1710, 1740, 1741, 1801, 1838, 1844, 4760
3 1314, 1321, 1354, 1509, 1528, 1722, 1804, 2594, 3148, 3925
4 2027, 2093, 2162, 2173, 2531, 2963, 3144, 4101, 5656, 6240
5 4863, 4927, 6585, 7433, 26557, 26771, 28286, 29067, 46493, 65350
6 1383, 1428, 1436, 1509, 1537, 1589, 1780, 1826, 1835, 2403
7 1989, 1996, 2045, 2065, 2067, 2295, 2339, 2365, 3024, 4816
8 1328, 1357, 1494, 1497, 1577, 1613, 1835, 1919, 2180, 2779
9 2331, 2531, 2892, 3783, 3861, 4107, 5651, 6235, 10241, 25733
10 1348, 1358, 1414, 1504, 1527, 1632, 2086, 2182, 2229, 2266
15 2305, 2309, 2366, 2403, 2590, 2713, 2830, 2837, 2865, 4327
20 2032, 2205, 2362, 2432, 2533, 2555, 2600, 2784, 4139, 4360

Table 1.2: Lengths of the ten longest loci in each tandem repeat length motif.

1.6 Small scale insertions and deletions in tan-

dem repeats

1.6.1 Background significance of tandem repeat indels

While also being extremely prevelant in the human genome, tandem repeat

loci are highly variable between populations and individuals due to their rela-

tively high mutation rate compared to the rest of the genome (Pearson et al.

[2005]). They commonly undergo indel mutations of single or multiple repeat

units (Di Rienzo et al. [1994]), thus the two copies of a locus in an individual

may easily differ by up to 100 bp from that in the reference genome. Small indels

have been shown to be more prevalent in tandem repeat regions of exons than

in non-tandem repeat regions of exons. Tandem repeat loci that lie within exons

have been shown to be significantly over-represented in disease-related genes in

both human and mouse (Madsen et al. [2008]). Indels in both coding and non-

coding tandem repeat loci have been linked to diseases such as spinocerebellar

ataxia (SCA types 1, 2, 3, 6, 7), Huntingtons disease, fragile X syndrome, and

myotonic dystrophy (Ball et al. [2005]; Hamosh et al. [2005]). To date, tandem

repeat instability has been implicated as the causative factor in more than forty
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neurological, neurogenerative and neuromuscular disorders (Pearson et al. [2005])

by pathogenic mechanisms involving the loss or gain of function at the protein or

RNA level (Gatchel and Zoghbi [2005]). While tandem repeat loci of all repeat

unit sizes are susceptible to mutations, triplet repeats have come to the forefront

of tandem repeat research due to the high number of diseases caused by indels

at triplet repeat loci (Pearson et al. [2005]). We note that triplet repeats are

relatively rarer in the sequence than other short motif tandem repeats (see table

1.1) and wonder whether it is possible that this is due to some form of selection.

Tandem repeat loci evolve mainly through replication slippage-mediated gain and

loss of single repeat units (Ellegren [2000]; Mahtani and Willard [1993]). Recent

studies have shown that, in addition to replication slippage, expansions and con-

tractions at tandem repeat loci can also be caused by faulty repair of DNA lesions

(Kovtun and McMurray [2008]; Lenzmeier and Freudenreich [2000]). Given their

abundance and high mutation rates, tandem repeat loci play an important role

in the ongoing evolution of the human genome (Ellegren [2004]). It is very likely

that some indels in tandem repeat loci are the cause of normal phenotypic vari-

ations in humans and other species (Kashi et al. [1997]; Kashi and King [2006]).

In addition to their importance to disease and evolution, variation at tandem re-

peat loci has been very useful in ascertaining the demographic history of human

populations throughout the world (Zhivotovsky et al. [2003]).

1.6.2 Detection of indels using paired end mapping infor-

mation

Carrying on from table 1.1, it is important to keep the distribution of tandem

repeat lengths in mind when we start to look at calling indels within a tandem

repeat. Indels in repeat regions can be called in a similar way as indels within

unique regions of the genome. However, directly calling indels within tandem

repeats from split alignments only works up to a point. When the total length

of the repeat in the sequenced individual increases towards the read length, the

read can no longer be aligned accurately to the reference genome. Reads whose

sequence is comprised entirely of a repeating pattern are unable to be mapped
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correctly to the genome for multiple reasons. One such instance is when a read

is sequenced from a CNV because it is difficult to tell which copy the sequenced

read is coming from. Similarly, as tandem repeats are the same pattern of se-

quence repeated over and over, there is no way of telling which of the many STR

loci in the genome with the same motif a read is sequenced from, nor where in

the repeat locus the sequenced read should be placed. This causes a problem

when trying to determine the exact length of a tandem repeat locus, and in turn,

whether a sequenced individual contains an insertion or deletion. One way to

rectify this problem has been to target sequence these loci with longer reads, for

example from capillary sequencing. Another way has been to target a specific

locus by PCR with primers in flanking unique sequence, but this is low through

put by modern standards. The large amount of money and time needed to geno-

type many tandem repeat loci has been prohibitively expensive and because of

this, typing these sites on a large scale has been difficult. However, the chemistry

for some next generation sequencing technologies provides additional information

that can be used to solve this problem: the sequenced reads are paired, which

correspond to two regions that lie some genomic distance apart in the genome of

the sequenced individual. This distance (or fragment length) is a consequence of

the sizes of DNA fragments selected by virtue of coming from the two ends of a

DNA fragment created during library construction. Read pairs that are proxi-

mal to the tandem repeat on each side of it but not within the repeat locus are

mapped to the reference genome and the additional mapping distance data offers

information in determining the length of the tandem repeat. Therefore, instead

of a read being 36 bp in length (a standard read length for early sequencing

from the Illumina platform), the physical coverage (or distance between mapped

reads) increases the pair’s reach up to hundreds of base pairs that can now span

across a repetitive region and offer information about the repeat tract’s length

in a sequenced individual. It is through this paradigm that many of the next

generation indel callers identify longer indels.

As alluded to in section 1.4, extensive sequencing of tandem repeat loci has been

limited due to the costs and time required using traditional capillary sequencing
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methods. Compared to traditional capillary sequencing methods, next genera-

tion sequencing machines produce orders of magnitude more sequence data in a

fraction of the time and cost (Mardis [2008]). The trade-off is that the sequenced

reads for platforms, such as Illumina, are much shorter than traditional capillary

sequence reads – currently around 100 bp in length per read for the Illumina

platform. From these shorter reads, multiple tools have arisen to fill in the gap

left by alignment tools to find indels larger than a few base pairs.

The concept of using end sequencing profiling (ESP), also known as paired end

mapping (PEM), of paired reads to demarcate structural variations has been

around since 2005. Applied to both somatic structural variations in cancer

genomes (Volik et al. [2006]) and normal genomes (Tuzun et al. [2005]), what

these methods have in common is that they use the distribution of the distance

between the paired end reads to facilitate researchers’ ability to locate large in-

sertions and deletions. Essentially, these algorithms assess the distribution of

paired end read separations mapped to a reference genome and define cutoffs

where they feel the mapped separation of two reads in the reference was more

extreme then expected, and occurred because of a structural variant rather than

by chance. The earlier incantations of this methodology used fosmid pairs to lo-

cate very large insertions and deletions by locating regions in the genome where

the paired alignment of reads mapped anomalously. These algorithms looked for

reads which mapped further than three standard deviations away from the mean

(Volik et al. [2006], Tuzun et al. [2005]), and at a certainty of over 99%, these

‘discordant’ reads (reads whose mapping was not in line with the distribution)

were indicative of a structural variant. When these discordant pairs occurred in

clusters at a specific genomic region, they gave more power to make a putative

variant call (see figure 1.2). However, as the fosmids’ separations were so large,

the resolution to find variants was limited to structural variants on the order of

tens of kilobases and larger. As technology evolved, this methodology migrated

over to next generation sequencing technologies – such as Korbel’s use of the 454

platform (Korbel et al. [2007]). As fragments from next generation sequencing

machines were smaller and in turn more tightly distributed, the resolution to find

smaller variants became possible. In line with previous studies, Korbel defined a
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cutoff distance for paired end reads which was indicative of a variant. Through

this method, variants of size 2 kb and larger were located in the human genome.

As the methods of fragment library creation become better, the distribution of

fragments became tighter and so did the ability to call smaller and smaller indels.

Using the more recent sequencing of both the 454 and Illumina platforms, struc-

tural variation callers can be broken down conveniently into three subgroups –

with each subgroup having its own process of locating indels of varying sizes.
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Figure 1.2: The underlying paired end sequencing methodology used to detect
structural variation by fosmid pairing (Tuzun et al. [2005]). Deletions in the
fosmid source are defined as sites where two or more fosmid end-sequence pairs
span > 48 kb. Insertions are defined as sites where two or more fosmids span
< 32 kb (red). These length thresholds are three standard deviations from the
mean insert size.

The first, and smallest group, is comprised of the Geometric Analysis of Structural

Variants tool (GASV). This algorithm takes a geometric approach for structural

variation identification, classification and comparison. Instead of using the paired

read separations directly to locate discordant reads and then make inference, this

approach represents the uncertainty in the measurement of a structural variant as

a polygon in the plane and identifies measurements supporting the same variant

by computing intersections of polygons (Sindi et al. [2009]). This work was the

first of its kind to present a general framework for comparing structural variants

across multiple samples and measurement techniques. While this paper pre-

sented a very interesting way to think of structural variants, the methods where

not used extensively within the field of structural variation detection. The pre-

vious paradigm of finding outliers remained the prevailing technique for locating

structural variations.

The next group of callers can be seen as a direct extension of Korbel, Tuzun and

Volik’s outlier methods. First, extending further on his research, Korbel released

PEMer (or paired end mapper) in 2009 (Korbel et al. [2009]). Using the same

strategy as in his first paper, Korbel looked for clusters of various read numbers

to locate discordant reads whose separations were greater than three standard de-
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viations away from the median. However, unlike his previous method, PEMer’s

methods were applied across multiple sequencing platforms: 454, Illumina, and

ABI. The efficacy of PEMer’s modeling was tested on the 454 platform and had

very marginal gains in being able to detect smaller indels than previously listed.

Also, in the same year, two more tools were released which boasted a higher res-

olution for calling smaller indels using the same principle of looking for clusters

of reads mapping some number of standard deviations away from the mean. As

well as PEMer, SVDetect also used multiple sequencing platforms to locate large,

genomic structural variations (Zeitouni et al. [2010]), but lacked the power to call

significantly smaller indels. This was was answered by two other structural varia-

tion callers: VariationHunter and McKernan’s SOLiD method. VariationHunter

(Hormozdiari et al. [2009]) was able to locate deletions and insertions smaller

than 100 bp using Illumina paired end reads as the libraries were much tighter

than that of the 454 platform. The paired end reads used for this analysis came

from a single individual having a sequence depth of roughly 42x and a physical

coverage of 120x (fragment size of 200 bp, Bentley et al. [2008]). Next, McK-

ernan published a paper using the SOLiD platform to locate deletions as small

as 86 bp and insertions as small as 30 bp. As the sizes of indels being found

reached their maximum resolution given the current technology and methods, it

was necessary to re-evaluate the method which only looked for discordant reads

which mapped some number of standard deviations away from the mean/median.

In the same year as many of these other tools came out, two algorithms came

out which took a novel approach to calling indels: BreakDancer and MoDIL.

BreakDancer, like many of the other tools, used discordant reads whose mapped

separation was outside three standard deviations to locate structural variants.

Using this method, it was run on a data set consisting of 844 structural vari-

ants identified on chromosome 17 of J. Craig Venter’s genome: 425 deletions,

415 insertions and 4 inversions ranging from 20 to 7,953 bp. Paired end reads

were simulated measuring 50 bp in read length at 100x physical coverage with a

normally distributed insert size library with a mean size of 200 bp and standard

deviation of 20 bp. While able to locate many variants at a decent sensitivity,

38.4% (324 including 147 shorter than 60 bp), and a low false positive rate,1.48%,
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it had trouble locating the smaller indels as well as variants which occurred in

repetitive regions that are difficult to map to or assemble across. In addition

to this, the novel part of BreakDancer included an additional method – named

BreakDanceMini – designed to locate smaller indels in the region of 10 to 20 bp.

Instead of only locating the regions of discordant reads mapping largely away from

the mean, it took anomalous regions (areas where a cluster of reads where larger

than expected but less so than discordant reads) and compared the distributions

of the paired end mappings of these regions with the full data set of paired end

separations using a two-sample Kolmogorov-Smirnov test. If the K-S statistic

measured ≥ 2.3 (indicating the distribution of separations are in fact different)

the locus was tagged as a variant. The use of the Kolmogorov-Smirnov test in-

creased the number of false positives to 10%, but also increased the method’s

ability to call 10-20 bp indels.

Before moving on to the last tool, I will provide a bit of background on the

Kolmogorov-Smirnov test (K-S test). The K-S test is a nonparametric test for the

equality of continuous, one-dimensional probability distributions that is used to

compare both a sample with a reference probability distribution (one-sample K-S

test), or to compare two samples (two-sample K-S test). These two tests quan-

tify the distance between the empirical distribution function of the sample and

the cumulative distribution of the reference distribution or the distance between

the empirical functions of the two samples. The null hypothesis for these two

tests is that the sample is drawn from the null distribution (one-sample) or that

both samples are drawn from the same distribution (two-sample). Essentially,

the K-S test can serve as a goodness of fit test between multiple distributions.

The empirical distribution function Fn of n independent identically distributed

(iid) observations Xi is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x

where IXi≤x is the indicator function (equal to 1 if Xi ≤ x and equal to 0 other-

wise). For clarity, iid – as referred to previously – is a term in probability theory

17



Chapter 1. Introduction

and statistics that defines a sequence – or other collection of random variables

– that each random variable has the same probability distribution as the others

and are mutually independent. From this, we are able to define the K-S statistic

for a given cumulative distribution function F (x) as

Dn = supx|Fn(x)− F (x)|

where supx is the supremum of the set of distances, and if the sample comes from

the distribution F (x), then Dn converges to 0 almost surely with increasing n. In

analysis, supremum (or least upper bound) of a set S of real numbers is defined

to be the smallest real number that is greater than or equal to every number

in S. A critical value of Dn is set such that any time the test statistic is above

the critical value, the null distribution is rejected – that the sample distribution

was not drawn from the null distribution. This knowledge is important when

describing the methods of the MoDIL tool.

MoDIL (mixture of distributions indel locator) was the first method to specif-

ically look for indels in the size range of 20 to 50 bp from next generation se-

quencing data. As with BreakDancerMini, MoDIL is not limited in resolution of

structural variation detection by searching only for large paired end read devia-

tions, but uses clustered reads whose deviation by a small number of nucleotides

is indicative of an insertion or deletion. The MoDIL algorithm, instead of looking

for discordant read pairs, compares the distribution of paired end separations in

the sequenced library to the distribution of observed paired end distances at a

particular genomic location. By streaming through the genome, MoDIL looks

at each genomic location and clusters paired end reads which overlap a partic-

ular position. At sites where there is no indel, the distribution of paired end

separations at a genome location should match the distribution of all paired end

separations across the genome. However, if there has been a homozygous indel

at this location, the distribution will shift off the population distribution by ap-

proximately the size of the indel. If there is a heterozygous indel, there will then

be two distributions from which the paired end separations will come from with

approximately half of the paired end reads coming from one distribution and half
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from the other (see figure 1.3). MoDIL represents the genotype of a putative

(a) Distribution of paired end mappings
for a homozygous deletion.

(b) Distribution of paired end mappings
for a heterozygous genotype

Figure 1.3: Example of a homozygous (1.3a) and heterozygous (1.3b) deletion
with the observed distribution of mapped distances shown in gray. (1.3a) A
homozygous deletion of 24 bp. Notice the shift from the null distribution (blue)
to the best match distribution (red). (1.3b) A heterozygous deletion of 24 bp
with one allele the same length as the reference length. The mapped distances at
this locus are generated from two distributions with means centering at 230 bp
and 208 bp (deletion and reference allele, respectively).

variant locus by the random variable of the expected size of the indel (the mean

of the fragment library size minus the paired end read separation) with two ran-

dom variables representing each haplotype. From each cluster, MoDIL tried to

identify the two distributions, {D1,D2}, with fixed shapes and arbitrary means

that best fit the observed data using the K-S test. When locating the means

of the two distributions, MoDIL employs an expectation-maximation algorithm

with appropriate Bayesian priors to prevent over-fitting. By assuming that the

reads are drawn from a single fragment library with a defined distribution which

follows a Gaussian distribution with some known mean and standard deviation,

MoDIL iterates through possible genotypes and reports which indel pair value

minimizes the goodness of fit test from the K-S test.

MoDIL has shown promise in locating and describing smaller indels than the
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previously described tools. By looking at smaller variations in the paired end

mappings rather than very large divergences, it has been able to locate much

smaller indels within the genome. However, MoDIL is weakened in the long run

by some of the assumptions it makes. These assumptions are that the distribu-

tion of paired end separations is well defined by a Gaussian distribution and that

all the reads come from a single distribution. While the aim of fragment library

creation is to have a tight, well described distribution of paired end separations,

this is not always the case. Also, individuals are often sequenced by multiple

fragment libraries. Because of this, a hole exists in the current literature on

how to address the mass sequencing now being undertaken at sequencing centres

across the world. Lastly, none of these tools – including MoDIL – are specifically

designed for typing tandem repeat regions. None of the aforementioned tools

take into consideration some of the bias that occurs in paired end read mappings

around tandem repeats which unchecked, could lead to many false positives. As

discussed earlier, read mapping to tandem repeats becomes more and more diffi-

cult as the repeat length increases.

Split alignments are only able to call extremely short indels (a few bp in length)

in short repeats, while paired end mapping tools are unable to accurately and

consistently call small indels (5-20 bp). This leaves an important part of genomic

variation un-assayed on a large scale, as shown in table 1.3. More importantly

in the case of split alignments, a read must to not only span the repeat, but also

extend a sufficient distance into the proximal unique sequence on each side to

place it unequivocally at this particular repeat in the genome.

1.6.3 Relevance of an indel caller for short tandem repeats

In determining the necessity of developing an indel caller specifically for tandem

repeats, we looked at whether the previous gapped alignment tools were sufficient

enough to answer this problem. In doing so, we calculated the expected number

of times a region (or repeat tract) would be both extended across by reads of a

given length as well as physically covered (spanned). Reads of length 100 bp, as

well as fragment libraries of size 300 and 500 bp, were chosen as they are most
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Loci lengths for various motif lengths
Motif size Total ≥40 bp ≥60 bp ≥80 bp ≥100 bp

1 447847 9930 (2.217%) 770 (0.172%) 74 (0.017%) 5 (0.001%)
2 209248 55765 (26.650%) 14896 (7.119%) 8453 (4.040%) 5821 (2.782%)
3 86401 8295 (9.601%) 2806 (3.248%) 1892 (2.190%) 1385 (1.603%)
4 267055 46166 (17.287%) 23612 (8.842%) 15859 (5.938%) 11712 (4.386%)
5 168674 17709 (10.499%) 6117 (3.627%) 3150 (1.87%) 1977 (1.172%)
6 218574 10562 (4.832%) 3498 (1.600%) 1767 (0.808%) 1075 (0.492%)
7 291167 5443 (1.869%) 1955 (0.671%) 1314 (0.451%) 1009 (0.347%)
8 207127 9116 (4.401%) 3894 (1.880%) 2468 (1.192%) 1751 (0.845%)
9 151583 6429 (4.241%) 2777 (1.832%) 1816 (1.198%) 1337 (0.882%)
10 39215 8537 (21.770%) 3985 (10.162%) 2388 (6.090%) 1672 (4.264%)
15 28833 12067 (41.851%) 3681 (12.767%) 2069 (7.176%) 1419 (4.921%)
20 20786 20323 (97.773%) 6073 (29.217%) 3165 (15.227%) 2150 (10.344%)

totals 2136510 210342 (9.845%) 74064 (3.467%) 44415 (2.079%) 31313 (1.466%)

Table 1.3: Count of tandem repeat loci of lengths for a given motif repeat length.
The second column shows the number of loci in the human genome of that given
motif length. The third through sixth columns are the number of loci (and
percent of total) of greater than or equal length of that in the header of the
column (lengths 40, 60, 80 and 100 bp). The shorter read lengths of most new
sequencing technologies means that many loci would remain un-assayed by split
alignment methods.

representative of what is currently being sequenced by the Illumina platform.

The coverage (c) and number of reads (z) were the most important factors to

take into consideration as they are essential in determining the expected number

of extending and spanning reads for the aforementioned scenarios.

Base pair coverage and physical coverage are calculated in the same way, the

difference being the length of the segment (b) and number of reads; the single

ends will consist of two times more reads than the paired ends as each pair is

comprised of two single end reads. Coverage, can generally be calculated the

same way as in equation 2.7 (described in detail in chapter 2. Conversely, being

interested in the number of reads, a simple reorganization of equation 2.7 yields

the number of reads produced at a given coverage

z =
c · g
b
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where depending on if you are looking for single or paired end reads you may keep

or omit the coefficient two in the denominator, respectively. Next, we calculate

the number of subregions (sq) of a given length (q) that are within the entire

region we are sequencing. This will aid us in determining how often each of these

subregions are extended/spanned across by our single and paired end reads

sq = g − q + 1

We next calculate how many subregions (tq) are crossed by each of the single

and paired end reads for a given q. This can be calculated identically as the

number of mappable positions, pm, was in equation 2.1 (see chatper 2 for further

discussion). Lastly, we can directly calculate the expected number (fq) of times

a subregion is extended/spanned across by single and pair ended reads

fq =
z · tq
sq

Figure 1.4 illustrates the expected number of extending and spanning reads you

would observe for a given coverage across STRs of varying size.

22



Chapter 1. Introduction

Figure 1.4: Graph of expected number of spanning reads (physical coverage) and
reads that extend across various genomic lengths at base pair coverages of 10, 15
and 20x. Reads of length of 100 bp were chosen to illustrate the upper bound
of read lengths currently available. The spanning coverage was then calculated
for fragment libraries of sizes 300 and 500 bp. It is clear from the graph that
although many sites will have a few extending reads, all sites will have multiple
spanning reads which can be used to ascertain whether an indel exists in a given
repeat tract. Most callers-by-alignment need at least 2 to 3 reads to extend across
a region to make an accurate call as there is a chance that a singleton may be
a read sequencing error – especially in repeat tracts. This means that the cutoff
for being able to make calls using crossing reads is lower than the read length.

1.7 Ascertaining tandem repeat allele frequen-

cies in large populations

High throughput sequencing technologies have made population scale sequencing

studies of genetic variation a reality. The 1000 Genomes Project has been one
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of the most recent large scale population sequencing projects to come out of the

next generation sequencing era. It has aimed to provide a deep characterization

of human genome sequence variation as a foundation for understanding the re-

lationship between genotype and phenotype. As low frequency variants (those

defined as having a minor allele frequency between 0.5 and 5%) vastly outnum-

ber common variants, and are also believed to contribute significantly to disease

susceptibility, it was the goal of the 1000 Genomes Project to systematically lo-

cate these variants across the global population to facilitate further research and

our understanding of how genetic diversity contributes to phenotypic expression.

Overall, the project aims to characterize over 95% of variants that are in genomic

regions accessible to current high throughput sequencing technologies that have

an allele frequency of at least 1%.

The 1000 Genomes Project’s design is to sequence populations in each of five

major continental groups (ancestry in Europe, East Asia, South Asia, Africa and

the Americas) to an average depth of 4x. In the recent low-coverage sequencing

pilot study, 179 individuals were sequenced to roughly 2-6x using a mix of plat-

forms, with about 80% of reads coming from the Illumina sequencers. In total

60, 59 and 60 individuals were sequenced from the CEU, YRI and CHB+JPT

populations with a collective total number of mapped bases at 1,881 Gb (3.56x

coverage). The current Phase 1 build of the 1000 Genomes Project has over 1000

individuals sequenced from 14 populations (see figure 1.5). From the pilot se-

quencing, researchers were able to identify 14.4 millions SNPs, 1.3 million short

indels and over 20,000 larger structural variants. The FDR for this set was ex-

perimentally validated to be kept below 5% for SNPs and short indels, and less

than 10% for structural variants. This pilot study has shown the power, and in

turn efficacy, of pooling individuals together in similar populations to demarcate

variation. Understanding genome variation is well within scientists’ grasp and it

is only a matter of time before all variation to a very low frequency will be found.

However, the one caveat to many of these large sequencing projects is the amount

of inaccessible regions that arise from the low coverage and short read lengths.

Of the reference genome, 85% was readily accessible in the 1000 Genomes Pi-

lot project as well as 93% of the coding sequences. Of the 15% that remains
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inaccessible, 97% has been annotated as repeats or segmental duplications. Re-

peats remain an area of low penetrance for calling both SNPs and indels. The

Figure 1.5: Map of populations in 1000 Genomes Project Phase 1 build.

sheer number of individuals sequenced in many of these studies limit the effective

coverage by which each individual can be sequenced to. This in turn can make

calling certain variants a difficult task. Past population sequencing projects using

capillary technology (Bhangale et al. [2005]; Mills et al. [2006]) have elucidated

some variation on a population scale, but the inherent cost of sequencing large

parts of the genome using the Sanger method has proved prohibitively expensive

for a full genome assay of indels.

Alongside the 1000 Genomes Project, methods for demarcating variation in pooled

populations has been a large point of research over the past few years. Some

models have been developed which aim at finding the actual genotype of each

individual within a population by using the background population sequencing

as a context from which an individual’s reads are compared (Bansal and Libiger

[2011]). Essentially, they propose that the evidence supporting a variant allele

at a position in an individual will be significant when compared to the popula-

tion background in the absence of that variant. A likelihood ratio test is used

to compare the results of an individual’s sequencing to that of the population
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where a cutoff is put in place so that any individual’s loci that are above this

cutoff are assigned the putative genotype. In total, 408 indels were identified

across seven populations in the 1000 Genomes exon sequencing data. As these

regions were sequenced to a high depth by both 454 and Illumina sequencing, the

promise of this method locating many indels across the entire genome is quite low.

Another suggested approach is using the pooled information to learn the shared

variation amongst a population rather than solely use the population as a back-

ground parameter against which to compare an individual’s data. This comes

from the knowledge that each read corresponds to a specific allele length in an

individual that is also part of the overall allele frequency in the population. These

reads can therefore be leveraged with one another to accurately detect variant

frequencies within a population. This has allowed population geneticists to iden-

tify both common and rare DNA sequence variants within a population (Koboldt

et al. [2009]). These methods have previously been developed for SNPs, but no

such methods have been developed to specifically look at highly polymorphic

tandem repeat loci.

1.8 Proposal

In chapter 2 of this thesis, I present a novel method that uses the additional

read mapping information to analyse Illumina sequencing data to probabilisti-

cally model the length of the two copies of a tandem repeat locus in a sequenced

individual. This method will allow me to genotype any deep sequenced individual

at any short tandem repeat locus whose repeat length is below the fragment li-

brary length. This method is then applied in chapter 3 to nine deeply sequenced

individuals. The resulting genotypes of these individuals at each locus will be

combined and used in understanding what increases the probability of observing

a variant at a short tandem repeat locus. In chapter 4, I reformulate my geno-

type calling method for low coverage individuals who are sequenced as part of

large resequencing projects – such at the 1000 Genomes Project. This population

variation method will use the combined information from sequenced reads in all
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individuals in a population. This population based approach intends to under-

stand the underlying distribution of variants at a locus within a population. This

model can be used to explore what sites are actively evolving and what sites’

allele distribution is not best explained by the reference.
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Chapter 2

Genotyping short tandem repeats

using short paired end reads from

two deeply sequenced individuals

Collaboration note This chapter contains work performed in collaboration with

Dr. Avril Coghlan. Avril assisted in the identification of tandem repeats in the

human genome using Tandem Repeat Finder, as well as designing and imple-

menting a method for determining the haplotype of multiple sequenced individuals

using trace reads from the Trace Archive (Cochrane et al. [2009]) which was in-

strumental to determining a prior probability of observing an indel of a given

magnitude.

The largest hindrance in genotyping a STR locus arises as the repeat length

approaches, and ultimately surpasses, the length of a read. This makes it ex-

tremely difficult for assemblers as they are unable to accurately determine the

exact placement of a read within the locus as there is no point of reference. Some

assemblers will estimate the repeat length based on the coverage of reads in the

repeat locus (Myers [2005]). This assumption, however, is highly variable as the

effective read coverage across the genome is subject to random fluctuations, and

even when the read depth is very deep, it is not consistent (Bentley et al. [2008])

yielding inaccurate length predictions.
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However, due to the advent of paired end read sequencing, we now possess addi-

tional information that can be used in determining the length of a tandem repeat

by modeling the expected separation of the two reads. This process, as it turns

out, is not as straight forward as one might imagine, as there are many consider-

ations that must be taken into account when modeling the expected separation

of the reads in a sequenced pair.

2.1 Locating tandem repeats in the human ref-

erence genome

We began our analysis of STRs by first locating all tandem repeat positions in

the human genome. We relied on Tandem Repeats Finder (TRF) version 4.00

(Benson [1999]) to locate all repeat loci in the human reference genome (NCBI

build 36) corresponding to repeat motif lengths of 1-10, 15 and 20 bp. TRF

was able to locate both pure and impure (interrupted) repeats. The minimum

alignment score to report a repeat was set to 30, which corresponded to a 15

bp perfect triplet repeat or a longer impure triplet repeat. In addition to this

criterion, all repeats (independent of their motif length) were required to be of at

least 15 bp long. In total, TRF identified 2,137,399 repeats in the human reference

genome that met this criteria. The results of our TRF run are summarized in

table 1.1 in chapter 1 (which represents the number of loci after migrating the

positions from NCBI build 36 to GRCh build 37, described below).

2.1.1 Translating NCBI build 36 coordinate to GRCh build

37 coordinates

Over the course of this project, it was necessary to migrate the tandem repeat

coordinates from NCBI build 36 to GRCh build 37 as newer sequence runs’ reads

were mapped to GRCh build 37 and older reads were remapped to the newer

coordinates. LiftOver (Kuhn et al. [2006]) was used as it was able to realign the

tandem repeat positions to the newer coordinates from a chain file which was

downloaded from

29



Chapter 2. Genotyping short tandem repeats using short paired end reads from
two deeply sequenced individuals

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/liftOver/

Almost all of the positions were able to be migrated uniquely, though due to

changes in the reference, 889 sites were not used due to being partially or fully

deleted, or split in the newer GRCh build 37 genome for all tandem repeat lengths

(1-10, 15 and 20 bp).

Looking at the triplet repeats, 86,435 loci were identified in NCBI build 36 with

86,401 uniquely migrated to GRCh build 37 (34 excluded loci: 7 deleted and

27 partially deleted). A by eye analysis of these loci using the UCSC Genome

Browser (http://genome.ucsc.edu) showed liftOver’s results to be correct; that

these loci had in fact been removed or relocated somewhere up or down stream in

GRCh build 37. As the number of sites unable to be accurately migrated over was

deemed insignificant (0.04% for triplet repeats), we did not feel it was necessary

to rerun TRF on the new GRCh build 37 genome.

2.2 Sources of sequence

Two sequenced individuals were used for this project; NA12878 and NA18507.

Both samples were sequenced on the Illumina platform which generates paired end

reads from the two ends of DNA fragments that were size selected during library

creation. In addition to the Illumina sequence, NA12878 was also sequenced

on the 454 platform. Both individuals had some additional shotgun genome

sequence obtained using traditional Sanger (capillary) methods. These additional

sequences were indispensable to the modeling and validation of our method. The

long capillary reads were necessary to help establish the prior parameters for

our model and also served as an ad hoc resource in locating candidate sites for

validation by 454 reads.

2.2.1 Individual NA12878 sequence

The sequence data for both the Illumina and 454 platforms are available from

ftp://ftp-trace.ncbi.nih.gov/1000genomes/.
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2.2.1.1 Illumina read sequence data

As part of the pilot project of the 1000 Genomes Project (Consortium [2010]),

individual NA12878 (the daughter of a HapMap father-mother-daughter trio of

European ancestry) was sequenced to approximately 22.5x sequence depth with

paired end reads of average read length 37 bp on the Illumina platform.

2.2.1.2 454 sequence data

In addition to Illumina sequencing and as part of the pilot project of the 1000

Genomes Project, individual NA12878 was sequenced to approximately 12.8x

sequence depth with an average read length of 276 by the 454 platform.

2.2.1.3 Capillary sequence data

We downloaded 2,156,700 reads pertaining to individual NA12878 from the ERA

trace archive with an average read length of 722 bp and at an average depth of

coverage of 0.5x.

2.2.2 Individual NA18507 sequence

2.2.2.1 Illumina read sequence data

The genome of a male Yoruban individual, NA18507, was fully sequenced by the

Illumina sequencing platform (Bentley et al. [2008]) to an average depth of 41x

sequence coverage with paired-end reads, whose average read length length was

32 bp. The Illumina sequence data for NA18507 is publicly available in the short

read archive by accession SRA000271

(http://www.ncbi.nlm.nih.gov/sra/SRA000271).

2.2.2.2 Capillary sequence data

We downloaded 3,916,150 reads pertaining to individual NA18507 from the ERA

trace archive with an average read length of 741 bp and an average depth of

coverage of 0.9x.
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2.3 Mapping of paired end reads to the human

reference genome

Each sequenced individual’s short paired end reads were aligned to the reference

human. Reads from individual NA18507 were aligned with MAQ (Li et al. [2008])

to NCBI build 36. Reads from individual NA12878 were aligned using BWA (Li

and Durbin [2009]) to GRCh build 37 along with other 1000 Genomes samples.

When working with paired end reads’ mapping data, it was necessary to ac-

quaint ourselves with the various mapping scenarios one would encounter. As

the focus of our analysis is on tandem repeats, I will limit the type of mapped

paired end read scenarios to the following (though this is not exhaustive and ig-

nores unmapped paired end reads as well as reads which would signify inversions

and translocations, (Korbel et al. [2007])): uniquely mapped paired end reads,

spanning paired end read pairs and hanging/anchoring reads. By far the largest

group are uniquely mapped paired end reads, which as their name states, are

mapped uniquely anywhere within the genome and are constrained only by their

mapping quality (described in 2.4). The group of reads that will be the focus

of this chapter are spanning paired end reads. Last are hanging/anchored reads

which arise around repeats due to the inability of a read to map uniquely through

a repeat as seen in figure 2.1.

2.4 Determining the empirical distribution of a

given library’s mapped paired end read sep-

arations (MPERS), P(M)

One of the principal factors in determining the genotype of a STR locus using

read pair data is first knowing the distribution of separations for a given library.

The distribution of lengths of the DNA fragments from which paired end reads

were sequenced can be estimated by mapping all reads to the reference genome

and calculating the distance between the mapped positions of the two reads of

each read pair (the mapped paired end read separation, MPERS, see section 2.3
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Figure 2.1: Four of the various mapping scenarios related to paired end reads.
Paired end reads which map uniquely within the genome and are filtered only
by their mapping quality are known as unique reads (black). Paired end reads
which are of sufficient length and have mapped on either side of a repetitive region
are known as spanning reads (blue). Adjacent to repetitive regions lie anchoring
reads which map to the unique flanking regions of a repeat (red) and whose mate
(green) maps within the repetitive region.

for read mapping). The MPERS distribution is different for each sequencing li-

brary, because each library is in general made from a different preparation of

DNA fragments.

We were able to calculate the MPERS distribution for each library quite sim-

ply. After alignment of the sequenced reads to the reference genome, it was only

a matter of parsing through the alignment file and applying the following cal-

culation: if the first read of a read pair mapped to coordinates x1 − x2 on a

chromosome in the reference genome and the second read mapped to coordinates

x3−x4 on the same chromosome on the reference genome (where x2 > x1, x4 > x3

and x3 ≥ x1), the MPERS (M) is the distance between the start of the mapped

position of the first read (x1) and the end of the mapped position of the second

read (x4) plus 1; M = x4 − x1 + 1.

The empirical distribution of MPERS for all read pairs from each library was cal-

culated from approximately ten million uniquely mapped paired end read pairs.

We refer to the empirical distribution of MPERS for all read pairs from a library

as P (M). This is an estimate of the probability distribution of the lengths of
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the fragments in the library. Thus, the mean of the P (M) distribution is an esti-

mate of the mean size of the fragments in that library. Often, an individual was

sequenced from multiple fragment libraries and therefore had multiple MPERS

distributions.

After mapping the paired end reads to the reference genome (see section 2.3),

we were left with alignment files detailing the mapping position of each paired

end read to the chromosome to which it was mapped. Starting with chromosome

1, we streamed through the alignment files taking only paired end reads whose

single ended mapping quality score, q, was equal to or above 30 (this corresponds

to a mapping error rate of ≤0.001 as taken from PHRED scoring (Ewing and

Green [1998]) where error = 10−q/10). We believed it was important for our anal-

ysis that both reads mapped uniquely to the reference. It is not unusual for

the paired end mapping score to be much higher than the single ended mapping

score and this is never more the case than when looking at repetitive regions

in the genome. The discrepancy between single ended and paired end mapping

scores arises due to the fact that the paired end mapping score makes use of

the additional information of what the expected paired end mapping separation

should be. This is a problem for our calculation when one of the reads maps

to a unique position while the other maps into non-unique sequence. While the

read that is mapped to the non-unique sequence is unable to be placed exactly,

the knowledge from its mate limits the range by which it is placed. This causes

the paired end score to be much higher than the single ended score. This is a

major problem for our model when we rely on the exact mapping of both reads

to determine the MPERS. By limiting our assessment to only mate pairs that

are made up of two reads that both map uniquely independent of one another,

we were able to remove any systematic bias that might occur both in a library’s

MPERS distribution as well as our actual genotype predictions (described below

in section 2.6.3.1). It was also important that the two reads be mapped in the

correct orientation with respect to one another. Incorrect orientations could sig-

nify an inversion or translocation (Korbel et al. [2007]) which would only act to

obfuscate our model and predictions and are outside the scope of this analysis.
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2.4.1 The empirical distribution of mapped paired sepa-

rations (MPERS)

2.4.1.1 Individual NA12878

Individual NA12878 was sequenced from eight separate paired end read libraries.

Of these eight libraries, two were not considered in our analysis as none of their

paired end reads mapping qualities were above our set PHRED score of 30. The

six libraries used in our analysis varied in genome coverage from 1.5 to 6.4x.

Because of the lower depth sequencing of some libraries, we were unable to locate

ten million uniquely mapped pairs for every library. We simply took as many

reads as we could find and from them, generated the empirical distribution of

each library. The statistics for each library are seen below in table 2.1.

Library statistics for individual NA12878
Library Bases sequenced Mean STD Coverage

g1k-sc-NA12878-WG-1 19327027164 301.1 144.6 6.4
Solexa-3630 14717717437 83.8 9.1 4.9

g1k-sc-NA12878-CEU-1 12546297144 140.9 12.5 4.2
NA12878.1 10463534460 232.4 11.0 3.5

g1k-sc-NA12878-CEU-2 6012622836 180.7 31.0 2.0
Solexa-5460 4443002700 204.9 31.4 1.5

totals 67510201741 196.3 52.2 22.5

Table 2.1: Statistics for individual NA12878’s libraries. Columns (from left to
right) represent the library name, the number of sequenced bases, the mean value
of the MPERS, the standard deviation of the MPERS and the overall base cov-
erage in the genome.

2.4.1.2 Individual NA18507

Individual NA18507 was sequenced from a single short paired end read library

from which we calculated the MPERS for ten million uniquely mapped paired end

read pairs. These read pairs had a near Normal distribution of MPERS ranging

from 36-270 bp, a mean MPERS of 209 bp and a standard deviation of 13 bp

(∼6.2% of the mean). The shortest observed MPERS of 36 bp would arise when
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each of the reads in a read pair mapped to exactly overlapping positions in the

reference genome.

2.5 Detecting indels in tandem repeat loci using

long capillary reads from the Trace Archive

We detected indels in tandem repeats by analysing aligned traditional (capillary)

sequence reads downloaded from the Trace Archive. For our analysis, we only

considered repeat loci that have unique flanking regions to ensure that reads

matching a locus were not from a paralogous locus. Repeat loci with unique

flanking regions were verified using SSAHA2 (Ning et al. [2001]) by searching for

matches in the reference genome to the sequence 100 bp up and downstream of

each tandem repeat site. A 100 bp flanking region was considered unique if it

only had a match to itself, or if its best non-self match had <90% identity.

At each tandem repeat locus with two unique flanking sequences, we used the

Trace Archive SSAHA2 Client (Ning et al. [2004]) to search for matches between

its 100 bp flanking sequences and human reads in the Trace Archive. A read

matching the flanking regions of a tandem repeat locus was accepted if: (i) it had

matches of ≥97% identity to both flanking regions and the matches were in the

same order as in the reference genome; (ii) the matches covered ≥80% of both

flanking regions; and (iii) the repeat locus in the read had high quality sequence

(all bases had PHRED (Ewing et al. [1998]) quality scores of >10).

Indels in tandem repeats were then identified by finding cases where the length

of a repeat locus differed between the reference genome and a matching sequence

read from the Trace Archive. To estimate the length difference, the read was

aligned using SSEARCH (Pearson [1991]) to a sequence consisting of the refer-

ence genome repeat locus plus 100 bp of up and downstream DNA. The length

of the gapped region (if any) in the repeat locus in the SSEARCH alignment

was used as an estimate of the length difference between the reference genome’s

length and sequenced sample’s length.

36



Chapter 2. Genotyping short tandem repeats using short paired end reads from
two deeply sequenced individuals

Of the matches between the capillary reads and tandem repeats, many contained

an identifier for the individual from whom the DNA originated. As the coverage

was quite low, we were only able to determine one haplotype at most individuals’

loci, but in a few cases we had evidence that led us to believe we could correctly

genotype an individual at a given locus, that is, determine both haplotypes. This

was only possible if we detected two distinct alleles at a tandem repeat locus

using the Trace Archive reads from an individual. We therefore assumed that

the individual must be a heterozygote at that locus and therefore knew the true

genotype. On the other hand, if we only detected one allele at a particular re-

peat locus using Trace Archive reads from an individual, it was impossible for

us to know whether the individual is homozygous at the locus or heterozygous

with only one allele represented in sequenced reads in the Trace Archive. Due

to the random nature of shotgun sequencing (Anderson [1981]), by chance some

sites were sequenced more than others. Sites which contained more spanning

traces gave us more information in regards to whether the site truly was homozy-

gous. For instance, looking solely at traces which contained a unique identifier

for triplet repeat positions in the human genome (219,796), the Trace Archive

contained 3,654 individuals’ positions which contained at least 4 spanning reads.

Knowing that there is a 50% probability being drawn from one allele or the other,

the probability of observing (or not observing) one of the alleles can be described

by the binomial distribution. For the case of observing a reference allele in four

traces, the probability of observing only the reference allele in a heterozygote

by chance is 6.25%. This knowledge becomes important when considering which

sites were best suited for validation (2.9.2.1). An initial set of 3,534 trace calls

from individual NA18507 was used to generate the prior probability distribution

for a single allele call in our model for calling short indels in tandem repeats

(2.6.4).
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2.6 Detecting indels in tandem repeat loci using

short read sequence data

To investigate whether a tandem repeat is different in length in a sequenced sam-

ple compared to the reference genome, we compared the distribution of MPERS

for read pairs that map on either side of a given repeat locus to the calculated

distribution of MPERS for all read pairs in an individual’s genome that maps

uniquely across a given repeat length (see figure 2.2). Put simply, a shift in the

MPERS distribution at a given locus to the right suggest that the repeat locus is

smaller in the sample than in the reference genome, while a shift to the left sug-

gests it is longer. Based on this understanding of how paired end mappings work

across indels, our method iterates through all plausible allele configurations for a

diploid genome at each short tandem repeat locus and estimates the most likely

lengths of the two copies in a sequenced sample by using a maximum Bayesian

posterior approach.

2.6.1 Background on indel detection using paired end se-

quence data

Before delving into the intricacies of determining the repeat length based on the

the distribution of MPERS, assume first that the length of the sequence frag-

ments in a library could be held constant at some chosen value. If a sequenced

tandem repeat locus was the same length in a sample as in the reference genome,

the MPERS for a read pair sequenced from either end of a fragment contain-

ing that locus should be equal to the chosen fragment length for that library.

However, when sequence is removed from a repeat locus in a sample relative to

the reference genome – as is the case for deletions – the MPERS for a read pair

sequenced from either end of a fragment containing the locus will be longer than

the chosen fragment length for the library. This happens because when sequence

is removed in a sample, the reads of a spanning read pair are mapped further

apart than expected. The actual fragments coming from the fragment library

have not changed in length, only the sequence between the reads has changed

relative to the reference. The same principle holds true in the opposite direction
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for insertions: the reads of a spanning read pair are mapped closer together, and

so the MPERS is smaller than expected. Figures 2.2 and 2.3 illustrate how such

a shift would occur by comparing two scenarios where the sequenced sample has

either the reference repeat length allele or a deletion.

In reality, the fragments in a given library have a distribution of lengths approx-

imately centered at the chosen fragment length for the library. Thus, to identify

an indel in a repeat locus, we must test whether the distribution of MPERS for

spanning read pairs spanning the locus matches better with a different distribu-

tion of MPERS than that of the distribution of sequence lengths in the fragment

library (see section 2.6.3.1). Ideally, shifts in the mean MPERS across a se-

quenced repeat locus to the left and right compared to the mean MPERS for a

fragment library are indicative of an insertion or deletion, respectively.

2.6.2 The empirical distribution of MPERS for read pairs

that span a STR locus of a given length, Pl(M))

The main underpinning of our model for detecting indels in STRs involves exam-

ining the distribution of MPERS for read pairs whose two reads map on either

side of a repeat locus (spanning read pairs). When looking at STR loci, span-

ning read pairs are independently mapped around an STR but are constrained

by the fact that they must be sequenced from a fragment that is at least as long

as the STR with enough bases outside the repeat to map uniquely to the flank-

ing sequence. This inevitably has the effect that the longer the STR locus is in

the sample which was sequenced, the higher the mean MPERS of its spanning

read pairs will be (as illustrated in figure 2.4). As well as an increase in the mean

MPERS for longer STRs, the number of spanning reads at a given locus is reduced

as the STR increases in length. More directly, as the repeat tract approaches the

length of the chosen fragment size, the proportion of reads capable of spanning

the repeat locus diminishes in line with the size of the repeat length which is

independent of the sequence coverage (2.5a). This has the reciprocal effect of

increasing the number of hanging/anchoring reads around an STR as the repeat

length increases. This trade off from spanning mate pairs to hanging/anchoring
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Figure 2.2: Graphic of mapped paired end read alignments of an individual whose
locus matches the reference (top) and whose locus contains a deletion in respect
to the reference (bottom). The blue paired end reads at top align at the exact
distance one would expect to observe given the fragment length of a sequenced
library, which is indicative of the individual having the same locus length as in
the reference. The blue paired end reads at bottom, however, map further apart
due to a removal of bases in the sequenced individual (yellow line). The removal
of bases in the sequenced individual will therefore cause all mapped paired end
reads across this locus to appear to map further apart than the expected MPERS
for the given library.

reads is more or less linear with increasing repeat length until the repeat tract

surpasses the fragment length library size where there are no longer any spanning

reads and the number of hanging/anchoring reads remains constant (2.5b). This

restriction represents the main limiting factor in the robustness of our approach

to genotyping STRs in a deep sequenced individual. Unlike many problems in

sequence assembly and resequencing analysis where additional sequencing helps,

the problem of assaying longer STRs can only be rectified by creating a new li-

brary with a longer fragment size. Knowing the distribution of MPERS across

varying repeat lengths was crucial to the efficacy of our model. Because the dis-
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Figure 2.3: Mapped paired end reads sequenced from an individual whose reads
align to both the reference repeat length (top) as well as a deletion in the repeat
tract in respect to the reference (bottom). The bottom most read pair in the top
illustration (blue, closest to the sequence) has a span of 43 bp that encapsulates
a poly-A chain of length 20 bp. This mate pair’s right read begins one bp to
the right of the repeat tract (black arrow, base C). As reads from this library
are only 5 bps in length, it is not possible to directly sequence across this repeat
tract and determine the overall length, but as the read maps at the distance
one would expect given the fragment length library, we can assume that the
sequenced individual’s repeat length is the same as that of the reference length.
The sequence at bottom contains a deletion of 10 bp in the poly-A repeat tract.
This deletion effectively causes the bottom most read to map 10 bps downstream
of the repeat (from the green arrow to the black arrow) making the MPERS
appear larger than they actually are when compared to other MPERS in the
same library. This anomalous mapping would be indicative of there being a 10
bp deletion in the repetitive tract.

tribution of MPERS naturally drifts upwards as the repeat length increases, it

was paramount we know what the true distributions of MPERS across varying

repeat lengths were, otherwise we would make numerous false positives in the

form of deletions.

Our initial approach in determining the distribution of MPERS across varying

repeat sizes was to amalgamate all repeats within the genome of a given size into

groups and the distribution of reads across these groups were calculated. As our
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(a) Distribution of MPERS for library g1k-sc-
NA12878-CEU-1 across differing repeat lengths

(b) Inset of MPERS peaks for graph (a)

Figure 2.4: Empirical distributions of MPERS for individual NA12878 library
g1k-sc-NA12878-CEU-1. (a) Distribution of MPERS for all read pairs used in
calculating the empirical distribution for library g1k-sc-NA12878- CEU-1 (black)
as well as the subset distributions of MPERS for read pairs that would span a
specific repeat locus of length 25 (green), 50 (blue), 75 (yellow) 100 (red) and 125
bp (purple). (b) Close-up of the distributions peaks illustrating the right tending
of the MPERS distribution as the repeat locus length increases.

model needs the values of all possible repeat lengths, this posed a problem as

many of the longer repeat lengths were not extremely prevalent in the genome.

This method also had the problem that the mapping of reads across repeats in

the genome were not always uniform and as expected. If there were proximal

repetitive regions to a given repeat of a known length, they could cause the reads

to map further than expected due to the inability of shorter paired end reads to

map uniquely across both the tandem repeat as well as the adjacent repetitive

sequence which in turn would throw off our calculation of the empirical distri-

butions. Lastly, the regions in the genome might not match the reference length

in the sequenced sample. For example, if a site in the reference measured 60

bp and the sample sequenced had a deletion of 21 bp, the read pairs from that
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(a) Graph of spanning read pairs (b) Graph of hanging reads

Figure 2.5: Simulation results of the number of spanning (a) and hanging (b)
reads across different coverages and repeat lengths from a constant fragment
length library. Graphs (a) and (b) represent the number of spanning read pairs
and hanging reads, respectively, observed when simulating a repeat tract of 0 to
200 bp by increments of 5 bp (y-axis) at different coverages (10 to 40x by incre-
ments of 5, bottom to top) of a fragment length library of 150 bp and a standard
deviation of 0 and then mapping simulated paired end reads from the sequence
and mapping them back to the sequence from which they were just sequenced
from. Thirty simulations were conducted for each repeat length, coverage with
the dotted lines representing 1 standard deviation above and below the mean
number of spanning/hanging reads observed for a given repeat length, coverage
pair. As the repeat tract approaches the fragment length library size, the number
of spanning reads approaches zero and no spanning reads are observed after this
point. Hanging reads work in exactly the opposite direction where their numbers
increase up to the fragment library length, but then level out once the repeat
tract increases above the fragment library size. For full discussion on how the
simulations were performed, see 2.8
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sample’s locus would be used in calculating the distribution of MPERS for re-

peat lengths of 60 bp, not 39 bp. These concerns led us away from calculating

the distributions of MPERS for repeat lengths directly from spanning reads in

the genome to a more theoretically-based approach which used the distribution of

MPERS for the uniquely mapped reads we had already gathered (see section 2.4).

The expected distribution of MPERS for read pairs that span a STR of a given

length, Pl(M), was calculated by looking through the entire set of read pairs in

the genome wide screen and generating a subset of read pairs whose MPERS

were of sufficient length to map uniquely on either side of a repeat locus of a

given length, l. Only read pairs whose MPERS were two bp longer than a repeat

locus’s length were added to the subset. This criterion assured that the MPERS

were of sufficient length that one bp of each read could map outside the repeat

locus, thus anchoring it in the adjacent unique sequence.

We iterated through every possible l that could be spanned by a fragment li-

brary (10 bp to 6 standard deviations above the mean MPERS of the fragment

library) and generated an empirical distribution; we did not generate any distri-

butions for l < 10 bp as they were considered of insufficient length.

Figure 2.6: Cartoon representation of actual mapping positions of two paired
end reads across a poly-A repeat of length 20 bp. The blue paired end read of
MPERS 24 bp has three unique positions it can map to and still uniquely span
the repeat, while the green paired end read of MPERS of 22 bp has only one.

To calculate the number of possible mapped positions that a read pair could

have given that it has a MPERS value of M = m and spans a repeat locus of

length l, we use the following equation

nl(m) = m− l + 1 (2.1)
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For example (as shown in Fig 2.6), if a read pair has a MPERS of m = 24 bp

and is spanning a 20 bp repeat locus, there are three possible mapped positions

that the read pair could have, m20(24) = 3. The number of unique mappable

positions is important to consider because much longer MPERS will have a lower

probability of being observed in the genome, but will actually have a much higher

chance of spanning a repeat. Now knowing the nl(m), it is simply a matter of

exhaustively looking at all possible mappable positions for each MPERS in a

subset of read pairs across a repeat length and determining the probability of

observing a spanning read pair of a given MPERS. This probability was calculated

by multiplying the nl(m) by the frequency of observing a spanning read pair of

length m (F (m)) from a given library. The Pl(M) for a library was calculated as

follows:

Pl(M = m) =
nl(m) · F (m)∑
m′ nlm

′ · F (m′)
(2.2)

where the denominator in equation 2.2 normalizes the estimated probabilities.

2.6.3 Estimating the genotype of a tandem repeat locus

When estimating the size of a putative indel, as discussed earlier, we consider

that for longer repeat loci there is a higher probability of observing spanning

read pairs with higher MPERS values; that the true length of the repeat locus

in the individual will affect the distribution of MPERS observed when read pairs

sequenced from fragments that contain that locus are mapped to the reference

genome. The true distribution of MPERS for a given locus plays an important role

in ascertaining the correct allele length when maximizing the posterior probability

of a locus containing an indel of a given size based on the observed paired end

reads spanning a locus (see 2.6.3.1).

2.6.3.1 Rationale behind analysing MPERS distributions to detect

indels in STR loci

If a sequenced STR locus is the same length in a sample as in the reference

genome, the distributions of MPERS for paired end reads sequenced from either
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end of a fragment containing the locus should be as given by equation 2.2. How-

ever, if there is a deletion in this individual’s repeat locus relative to the reference

genome, the MPERS for a read pair sequenced from fragments spanning the locus

will tend to be greater than expected on the order of the size of the indel. For

example, consider an individual with a homozygous insertion of 15 bp in a repeat

locus relative to the reference genome (indel size i = 15). The mean MPERS

for the read pairs that span the repeat locus will be shifted approximately 15 bp

to the left (or 15 bp shorter than expected). If the size of the true indel length

is then added to the MPERS for each of the spanning read pairs, the resulting

distribution would align with the true underlying distribution given by equation

2.2, with l increased by i

Pl+i(m+ i) (2.3)

Using the same example as before, assume the repeat locus length in the reference

genome was 60 bp; therefore the length of the repeat locus in the sample’s copies

would be 75 bp. Because of this, we must compare the distribution of MPERS for

paired end reads spanning the locus to the probability distribution of MPERS for

all spanning paired end reads that span repeat loci that are 75 bp in the sample

sequenced.

The inherent problem with equation 2.3 was that it only considered a single

allele (haploid), precluding the model’s ability to make correct genotype calls for

individuals that were heterozygous at a locus. If the individual is homozygous

at a STR locus, then all read pairs that span the locus will be drawn from two

identical distributions, whereas at a heterozygous locus, there will be two distri-

butions that a spanning paired end read can come from with a 50% probability

that a paired end was drawn from each of the two distributions corresponding

to the separate copy lengths. We note that the actual probability of a paired

end read being drawn from an allele is contingent upon the repeat length in the

sequenced sample, and when different – as is the case for heterozygotes – the

smaller of the two alleles has a marginal gain in the probability that a read was

drawn from it (independent of its MPERS) as the number of sites a paired end
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read can uniquely map to increases (as stated in equation 2.1). But, as this gain

was negligible for most cases as the difference in repeat lengths in each of the

copies was rarely observed to be extremely different (see section 2.6.4), it was

ignored and the probabilities of drawing from one allele or the other were set

equal.

Ultimately, it was necessary to be able to genotype any of the following sce-

narios: a locus which is homozygous with two reference alleles (i1 = 0, i1 = i2),

homozygous with two non-reference alleles (i1 6= 0, i1 = i2), heterozygous where

one allele matches the reference length (i{1,2} = 0, i1 6= i2) or heterozygous where

neither alleles matches the reference length (i1 6= i2 6= 0).

As the model iterates through all possible indel size genotypes (i1 and i2), for

computational ease it was important to constrain our predictions to a sensible

range. Having initially assayed tandem repeats using capillary reads (see section

2.5), we knew that a majority of all indels for a given motif length fell within

±10 repeat units of the reference length and were of multiples of the motif length

for shorter repeat motif lengths; of the 155,676 calls made from capillary reads in

the Trace Archive for repeat motifs of length thee (triplets), only 56 (0.03%) fell

outside the range of [-30,30] and 2069 (1.3%) were not multiples of three. From

here, we could now calculate the probability that the observed MPERS came

from distributions and reads which corresponded with the underlying true repeat

lengths in the sequenced sample’s two distributions corresponding with the pu-

tative genotype call {i1, i2} which relate them to the underlying repeat length of

the two copies (Pl+i1(M = m+ i1) and Pl+i2(M = m+ i2)). The likelihood of the

data given the hypothesized genotype can then be calculated as

Ll+i1,l+i2 =
∏
s∈r

[
1

2
Pl+i1(ms + i1) +

1

2
Pl+i2(ms + i2)]

where r is the set of read pairs, s, spanning the locus, and ms is the MPERS of

read pair s. We then maximized this likelihood and arrive, hopefully, at the true
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genotype

arg max
i1,i2

Ll+i1,l+i2(i1, i2|r) = {î1, î2}

In practice, however, the maximum likelihood estimate was usually incorrect due

to the natural variation in the distribution of MPERS. Without a prior, the model

ran the risk of overcalling false positives. This problem was directly observed

during our simulations to check the proof of concept for our model (see section

2.8.1). The heatmap in figure 2.7 illustrates this concept of over fitting the data

which will occur without the necessary priors in place.
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Figure 2.7: Heatmap of likelihoods at a selected repeat locus of length 60 bp from
a simulated homozygous reference genotype with average base pair coverage 15x.
In the simulation, the maximum likelihood estimate determined the genotype to
be {6,-12} (white X), where the actual genotype was reference (white +). The
distribution of likelihoods is unimodal, centering around the incorrect genotype
call X caused by the random variation in the MPERS of a fragment library.
Simulation methods are discussed in section 2.8.

From this understanding that the maximum likelihood would not suffice in cor-

rectly genotyping a STR, we estimated the probability of genotype {i1, i2} at a

given locus by employing a Bayesian approach which incorporated a genotype

prior that will be discussed below.

Bayes’ theorem states that the probability of A given B is equal to the likeli-

hood of B given A times the prior probability of A divided by the probability of

B.

P (A|B) =
L(B|A)P (A)

P (B)
(2.4)
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To find a sample’s genotype, we calculated the proportional posterior probability

of an indel pair {i1, i2} at a given locus by multiplying the likelihood of the set

of paired end reads (r) by the prior probability of the putative genotype

Pl+i1,l+i2(i1, i2|r) ∝ P (i1, i2|k) · Li1,i2 (2.5)

Li1,i2 =
∏
s∈r

[
1

2
Pl+i1(ms + i1) +

1

2
Pl+i2(ms + i2)]

where P (i1, i2|k) is the prior probability of genotype {i1, i2} given its motif repeat

length is k. The methods for which we estimate the prior probabilities are de-

scribed in section 2.6.4. As we were interested in ascertaining the most probable

genotype, we searched for which indel pair maximized the proportional posterior

probability of equation 2.5.

arg max
i1,i2

Pl+i1,l+i2(i1, i2|r) = {î1, î2}

This calculation was performed in log space to rectify the problem of numerical

underflow in determining the genotype which maximized the posterior probability.

Because many deeply sequenced individuals are sequenced from multiple libraries,

it is important to combine the shared information across libraries in determining

the correct genotype. As the signal for the underlying true repeat length is inter-

preted the same by any spanning read pair sequenced from a library, we were able

to combine the information from different libraries by assuming the sequencing

of all libraries (as the same as paired end reads in a library) are independent of

one another, and then by taking the product of equation 2.5 for each library, we

were left with

Pl+i1,l+i2(i1, i2|r) ∝ P (i1, i2|k) ·
∏
b∈t

Li1,i2,b

Li1,i2,b =
∏
s∈rb

[
1

2
Pl+i1,b(ms + i1) +

1

2
Pl+i2,b(ms + i2)]
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where t is the list of libraries sequenced from an individual, rb is the set of spanning

read pairs for library b and Pl+i{1,2},b are the MPERS distribution for library b.

2.6.4 Prior Probabilities

In estimating the genotype priors for our model, it was necessary to first ascertain

the distribution of indel sizes across the genome before estimating the probabili-

ties of genotype configurations. The priors were calculated using the haploid calls

made from the capillary data in NA18507 as described in section 2.5. Due to the

low coverage of capillary reads for NA18507, we were usually able to infer only one

copy length per STR locus. Out of the 17,181 triplet repeat loci in the autosomes

at which we inferred at least one copy length, only 206 sites had evidence for two

separate repeat lengths. This does not mean that the probability of observing a

heterozygous locus is 1.2%, but that there was not sufficient sequencing to know

the true genotype at each locus. Because of this, we used each call as a haploid

to estimate the prior probability of observing an indel of size i bp in a STR locus

relative to the reference genome. The priors were conditioned upon which family

they belong to in regards to their repeat length motif unit size of k bp. The

distribution was estimated from the total number of alleles observed in NA18507

that contain indels of size i bp divided by the total number of alleles observed

in NA18507 containing indels of any size (including no indel, i = 0). The value

P (i|k) was therefore calculated as

P (i|k) =
F (i|k)∑
∀i′ F (i′|k)

where F (i|k) is the number of single allele calls observed in individual NA18507

that contain indels of size i bp for a repeat length motif of size k.
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Figure 2.8: Prior probability distribution of haploid indel calls made in individual
NA18507 from capillary reads. This distribution is based on 3,435 calls; 2,474
reference calls (72.0%) and 961 indel calls (28.0%).

For our prior, we choose a call set whose values did not put as much weight on the

prior as to force all true calls to be reference calls. In total, this call set was com-

prised of 3,453 autosomal calls (3,225 single allele calls, 105 heterozygote calls).

However, a problem came to light when we looked at the distribution of prior

probabilities for our indel distribution data set. When the number of insertions

versus the number of deletions were compared for the same absolute size indels,

there is a bias towards observing deletions over insertions.

Because the reference length is selected at random, we believe this bias is not

biological, but in fact an artifact of the calls made by the capillary alignment.
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Rectifying this problem was completed simply by averaging between same mag-

nitude insertion and deletion calls. For example, if P (i = −6|k = 3) = .3 and

P (i = 6|k = 3) = .2, the estimated prior probability for a structural variant of

magnitude 6 was generally calculated as 0.25 using

P (|i||k) =
P (−i|k) + P (i|k)

2

which yielded a symmetric distribution of prior probabilities mirrored across the

reference allele length (figure 2.9). Indels that were not of magnitudes in mul-

tiples of the repeat motif length were proportionally pooled into their nearest

two adjacent bins to remove any intermediary calls. Because the mutation rate

at STR loci varies between sites and can be quite high, there is a significant

probability of multiple alleles at a locus, and we cannot derive the distribution of

genotypes from the distribution of indel sizes by assuming Hardy-Weinberg inde-

pendence. We also were not able to estimate the genotype distribution from the

NA18507 capillary alignment data, because the depth was inadequate to reliably

sample both alleles (as we only observed 206 heterozygous sites in the large call

data set). Therefore we based our genotype prior heuristically on the following

assumptions:

1. The most likely genotype is a homozygous genotype where both copies of

the repeat locus in the sample are the same length as the repeat length

observed in the reference genome, {i1 = 0, i1 = i2}.

2. The second most likely genotype is heterozygous with one reference allele

length and one non-reference (indel) allele length, {i{1,2} = 0, i1 6= i2}.

3. The third most likely genotype is a homozygous indel in respect to the

reference genome length, {i1 = i2, i1 6= 0}.

4. The least likely genotype is a heterozygous genotype where both alleles

differ in length from the reference length, {i1 6= i2 6= 0}.

Based on these assumptions, we estimated the relative prior probabilities of the

non-homozygous reference genotypes as follows (scaled to a value of 1 for the

homozygous reference genotype): for a heterozygous genotype with one reference
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Figure 2.9: Symmetric prior probability distribution of haploid indel calls made
in individual NA18507 from capillary reads.

allele {i{1,2} = 0, i1 6= i2} we used the value P (i{1,2}|k) (the probability of observ-

ing an indel of size i), for a homozygous indel {i1 = i2, i1 6= 0} we used 0.5·P (i1|k),

and for a heterozygous genotype with two non-reference alleles {i1 6= i2 6= 0} we

used P (i1|k) · P (i2|k)0.5, where the absolute value of i1 is larger than that of i2.

This prior assured that the calls would be more accurate than simply assuming

the two copies repeat lengths were independent of one another. When graphed,

the prior probability space illustrates the areas we would expect to see more calls

when assaying a number of repeats across a genome. Figure 2.10 is a representa-

tion of the prior probability space of repeat length motif k = 3.
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Figure 2.10: Heat map of the estimated prior probabilities for the varying geno-
types of a triplet repeat locus in an individual (shown in log space). The con-
firmation of the probability space illustrates the assumptions made about which
genotypes will be more likely than others. The most probable genotype is the ho-
mozygous reference (0,0; red), followed by a heterozygote with one reference allele
(horizontal and vertical lines where allele 1 or allele 2 equals 0), a homozygous
indel (top diagonal line) and lastly a heterozygote with neither allele matching
the reference length.

Literature on the mutability of tandem repeats generally agrees that the com-

position of the repeat motif (v), as well as the repeat locus length (l) in the

reference can either increase or decrease the repeat locus’s likelihood of undergo-

ing an insertion or deletion event (Ellegren [2004]). Ideally, the prior probability

of a locus would be conditioned on both the v and l (P (i1, i2|k, v, l)) but there

was insufficient data to incorporate this information into our prior.
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2.6.5 Odds ratio and normalized posterior

As a measure of our confidence in a genotype call for a repeat locus in a sample,

we calculated the ratio of the posterior probabilities of the maximum posterior

call to the reference homozygous call. This ratio gave us an idea of which calls

had the most evidence that a locus was non-reference. In a large call data set –

as is the case for the human genome – the odds ratio gave us a good indication

of which loci had more evidence for our call to be correct compared to all other

calls which may serve as a filter after determining which of our calls are correct

through validation.

odds ratio =
Pl+î1,l+î2 (̂i1, î2|rb)

Pl,l(i1 = 0, i2 = 0|rb)
(2.6)

For later analysis, we needed to calculate the full posterior probability of our calls

as opposed to the proportional posterior which sufficed in determining the indel

pair which maximized equation 2.5. This value was calculated straightforwardly

as

Pl+i1,l+i2(i1, i2|rb) =
P (i1, i2|k) · Ll+i1,l+i2∑
i′1,i

′
2
P (i′1, i

′
2|k) · Ll+i′1,l+i′2

Ll+i1,l+i2 =
∏
r∈rb

1

2
Pl+i1(M = ms + i1) +

1

2
Pl+i2(M = ms + i2)

Ll+i′1,l+i′2 =
∏
r∈rb

1

2
Pl+i′1(M = ms + i′1) +

1

2
Pl+i′2(M = ms + i′2)

where the denominator normalizes the probability which we previously omitted in

equation 2.5. Due to our omission of the denominator, we calculated the propor-

tional probability in log space to avoid numerical underflow. Incorporating the

denominator added the complexity of what to do with the log of a summation – a

non-trivial task. Luckily, we were able to locate a solution to this problem known

generally as the ‘logsumexp trick.’ The logsumexp trick is easily found through
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any google search, as well as in many statistical analysis books (Durbin [1998]) to

answer the problem of underflowing a computer’s resources when calculating the

normalization constant in Bayes’ theorem. A relatively straight forward solution,

the logsumexp trick exploits the inherent logarithmic property that raising a log

to its base yields simply the value of the number.

x = eln(x)

From this, the log sum can be calculated directly as follows

logsumexpexp(at) = log
∑
t

expat

log
∑
t

expat = log
∑
t

expat expA−A = A+ log
∑
t

expat−A

where A = max{at}. Now able to calculate the posterior probability for each

genotype call, it became a matter of simply setting up the ratio between the

genotype call which maximized the posterior probability to that of the reference

genotype call (see equation 2.6).

2.7 Software

The software to implement this model, called STRYPE, is available as an end

user package for genotyping tandem repeats. Source code and supplementary

material (including a test data set for individual NA18507) can be found at

https://sourceforge.net/projects/strypecode/

Individual NA18507 was chosen as a test set to minimize the number of files that

needed to be downloaded by the user to test the program. As each library needed

its own series of distributions specific to its fragment size library, NA18507 was

a perfect sample as it was sequenced to a deep coverage by a single library.
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2.8 Simulations

Before running the model on any real data, it was important to test the proof of

concept before engaging in any further analysis. This test was conducted using

the alignment tool MAQ which comes with an added feature that allows users

to generate a simulated set of paired end reads. These reads are drawn from

a Gaussian distribution whose mean and standard deviation are input by the

user. As well as the library’s fragment size parameters, MAQ’s input includes

the length (b) of each of the paired end reads (chosen as 35 bp for this simulation)

as well as the number of paired end reads (z) to be simulated. This input was

ancillary to the more quoted statistic of bp coverage (c); the number of times a

base is sequenced by the reads in a sample. Determining the c of a sample is

completed simply by multiplying the number of reads by their read length and

dividing by the sample length (in bp)

c =
2 · b · z
g

(2.7)

where the coefficient of two is for the fact that the number of reads simulated are

in pairs and must be considered separate when calculating c.

Next, we selected a region of 1,800 bp from the genome of Streptococcus suis

that contained no repeat tracts. This sequence (in fasta format) was then split

in half at position 900 at which we introduced a STR of a predetermined length.

We chose the STR to be of motif CAG and of pure tract with a length that was

a multiple of the motif size (k = 3). Each genotype scenario (described below)

was simulated and our model’s accuracy was scrutinized.

The genotype determined which simulated sequence the reads were generated

from and the reference repeat length determined which simulated sequence they

were mapped back to. The MAQ simulations were run for a given µ and σ as well

as c which incorporated both the 1,800 bp reference sequence plus the additional

repeat length in the sequence. For simplicity, all simulation examples described
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below will have the following parameters: l is 60 bp, c is 40x, µ is 200 bp and std

is 10% of the mean (20 bp).

2.8.1 Reference

As the most observed genotype when looking across all STRs in a sequenced

genome (see section 2.9), it was important that our simulations prove that the

prior distribution would alleviate the problem of making false positive calls based

on the natural variation in the fragment length library. As described in section

2.6.3.1, a simple maximum likelihood would cause there to be numerous false

positives and downgrade the efficacy of our model. However, the addition of a

prior based both on the magnitude of the indel calls as well as their genotype

should bring our call accuracy more in line with the truth.

Simulating reference genotypes were the most straight forward process as they

did not rely on generating sequence for multiple samples. Using the above pre-

scribed user input, 60 bp of CAG sequence was inserted into the truncated region

of S. suis starting at position 900. This fasta sequence was then input into MAQ

simulate and reads were simulated corresponding to the user’s input. The simu-

lated paired end reads were then mapped back to the sequence and the map file

alignments were then run through our model. We noted that more times than

not, the maximum likelihood estimate would place the genotype off the reference

(782 of 1000 simulations), but the addition of the prior decreased this number to

9 – a 0.9% false positive rate. The set of spanning paired end reads is consistent

with the underlying MPERS distribution from which they were sampled (figure

2.11).
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Figure 2.11: Histogram of spanning paired end read separations and MPERS dis-
tribution for a reference genotype simulation. The histogram of spanning paired
end read separations across a simulated repeat tract coincide distinctly with the
distribution of MPERS you would expect to observe given the sample is homozy-
gous at a locus with repeat length l.

2.8.2 Homozygous indel

The second least complex simulation scenario, the homozygous indel, required

only a single additional step. Unlike the reference genotype, however, two se-

quences were generated to emulate the scenario of a homozygous indel at a STR

locus. To start, a reference sequence was generated to which the MAQ sim-

ulated reads would be mapped. An additional sequence was generated which

corresponded with the length of the true repeat tract

lnew = lreference + i (2.8)
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For instance, a homozygous deletion of -21 bp in a STR of length 60 bp would

mean the paired end reads would be simulated from a sequence which contained

a repeat tract of 39 bp. The reads simulated from the shortened repeat sequence

sample would then be mapped back to the reference containing a repeat length

of 60 bp. When graphed, this would look as if the set of spanning paired end

reads were mapped 21 bases further apart than what would be expected given the

reference repeat locus length (figure 2.12). In the example shown, the maximum

likelihood genotype was {-18,-21}, but the maximum posterior probability geno-

type was {-21,-21} which is correct. The power of our model to detect indels is

contingent upon the underlying genotype; as the genotype diverges more from the

reference, the more power our model has for correctly genotyping the individual.
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Figure 2.12: Histogram of spanning paired end read separations across an individ-
ual whose repeat length is 21 bp shorter than that in the reference graphed against
the MPERS distribution for a reference length genotype. The mean MPERS for
the spanning paired end reads is therefore shifted approximately 21 bp to the
right.

To assess the accuracy of our model in calling homozygous indels, we’ve simulated

each of the plausible homozygous indels within a biologically relevant range ([-

30,30] by units of three bp) 50 times and checked our model’s accuracy. The

values for these simulations are listed in table 2.2.
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Simulation accuracy statistics for homozygous indels

Indel size Genotype Number of genotype calls

30 30 30 24

30 27 27 15

30 24 24 11

27 24 24 26

27 27 27 12

27 30 30 6

27 21 21 6

24 24 24 22

24 21 21 16

24 18 18 7

24 27 27 5

21 18 18 23

21 21 21 20

21 15 15 5

21 24 24 2

18 15 15 22

18 18 18 15

18 12 12 6

18 21 21 4

18 30 0 1

18 24 24 1

18 24 0 1

15 12 12 20

15 15 15 19

15 18 18 6

15 9 9 3

15 24 0 1

15 21 0 1

12 12 12 23

12 9 9 19
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Indel size Genotype Number of genotype calls

12 15 15 4

12 15 0 2

12 6 6 1

12 21 0 1

9 9 9 23

9 6 6 17

9 12 12 4

9 0 0 3

9 15 0 2

9 21 0 1

6 0 0 23

6 6 6 18

6 9 9 5

6 9 0 2

6 15 0 1

6 12 0 1

3 0 0 46

3 6 6 3

3 9 0 1

-3 0 0 42

-3 -6 -6 7

-3 -9 -9 1

-6 0 0 30

-6 -6 -6 17

-6 -9 -9 3

-9 -6 -6 22

-9 -9 -9 21

-9 -12 -12 3

-9 0 0 3

-9 0 -12 1

-12 -9 -9 33

-12 -12 -12 13
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Indel size Genotype Number of genotype calls

-12 -6 -6 3

-12 -15 -15 1

-15 -12 -12 27

-15 -15 -15 15

-15 -9 -9 6

-15 -6 -6 2

-18 -15 -15 32

-18 -12 -12 12

-18 -18 -18 5

-18 -21 -21 1

-21 -18 -18 21

-21 -15 -15 20

-21 -21 -21 7

-21 -12 -12 2

-24 -21 -21 24

-24 -18 -18 23

-24 -15 -15 2

-24 -24 -24 1

-27 -21 -21 32

-27 -24 -24 12

-27 -18 -18 6

-30 -24 -24 26

-30 -21 -21 18

-30 -27 -27 4

-30 -18 -18 2

Table 2.2: Results from simulations of homozygous indel calls. The first column
indicates the size of the simulated homozygous indel, the second and third column
is the value of the reported genotype from our model and the fourth column is
the number of genotypes reported for that particular indel simulation size (out
of 50 for each homozygous simulation).

As shown in table 2.2, our model rarely calls homozygotes heterozygotes (16
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out of 1,000 incorrectly called heterozygotes, 1.6%) and when this happens, the

incorrect genotype always has a reference call, which is in line with the higher

prior probability for heterozygous indels with one reference allele. Out of the

Incorrectly genotyped homozygotes as heterozygotes
Indel size Genotype

18 30 0
18 24 0
15 24 0
15 21 0
12 21 0
12 15 0
12 15 0
9 21 0
9 15 0
9 15 0
6 9 0
6 9 0
6 15 0
6 12 0
3 9 0
-9 0 -12

Table 2.3: Simulations where a homozygous indel was called a heterozygote. The
first column indicates the size of the simulated homozygous indel, the second and
third column is the value of the reported genotype from our modeling.

calls which we correctly called as homozygous (984), 255 of the calls were of the

correct size (25.9%), 475 were within ±3 bp (48.3%), 216 were within ±6 bp

(22.0%), 36 were within ±9 bp (3.7%) and 2 were within ±12 bp (0.2%).

2.8.3 Heterozygous with one reference allele

Having tackled the two homozygous scenarios (reference and homozygous indel),

the heterozygous simulation with one reference allele is essentially a marriage

between the previous two. The same number of sample sequences are generated

where one corresponds to the reference length and the other is calculated as

described in equation 2.8. The difference being that the reads are simulated from
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both samples and then amalgamated and aligned to the reference genotype. In

practice, paired end reads are sequenced from one of the two copies at a 50%

probability (as described in 2.6.3.1). In order to emulate that, the number of

paired end reads were first calculated which yielded the desired c for the reference

length. Next, a random number generator was used to assign a value between [0,1]

for each of the paired end reads to be simulated. Depending on the value of the

generated number, the number of reads coming from a given copy (≤ 0.5 for allele

1 and > 0.5 for allele 2) was determined. Once this was complete, the number

of paired end reads for each respective repeat length were simulated and then

combined into a single set and aligned to the reference repeat length sequence. As

the paired end reads were now drawn from two separate distributions, a distinctive

bimodel distribution will be observed in the histogram of MPERS for spanning

reads (see figure 2.13). This does, in turn, lower the number of reads being drawn

from each copy, diminishing the precision of our calls. But given the variant is of

sufficient size, our model is able to detect it. In total, out of the 1,000 simulations

(50 simulations at each indel size from [-30,30] in units of three bp), only 382 were

called reference (38.2%, 100 of which were ±3 bp that were all called reference).

The detection increases to 47% once the indel increases to an absolute size of 12

bp, and rises further to 96.5% for indels with an absolute value over 20 bp (see

table 2.4). One source of error for our predictions is for calling heterozygotes

homozygotes. The reasoning behind this is that its difficult to distinguish a

homozygote site from a heterozygote the mean of whose two indel sizes is the size

of the homozygote. Out of the 618 detected variants, 425 were called homozygous

(69%) with almost all calls being within a couple motif lengths of the mid value

between the variant and the reference. However, when our model did call the site

heterozygote, almost all the putative variants were within a few motif lengths of

the true variant size. Furthermore, a distinct bias in power to call deletions over

insertions is shown in table 2.4. This discrepancy may be caused by the fact that

the expected number of spanning reads is greater for a deletion allele as there

is less sequence to map across (as described in section 2.4) yielding more unique

positions a mate pair can map to.
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Genotyped heterozygotes
Genotype Detected Count
30 0 notdetected 1
30 0 detected 49
27 0 detected 50
24 0 notdetected 2
24 0 detected 48
21 0 notdetected 3
21 0 detected 47
18 0 notdetected 11
18 0 detected 39
15 0 notdetected 15
15 0 detected 35
12 0 notdetected 27
12 0 detected 23
9 0 notdetected 39
9 0 detected 11
6 0 notdetected 47
6 0 detected 3
3 0 notdetected 50
0 -3 notdetected 50
0 -6 notdetected 46
0 -6 detected 4
0 -9 notdetected 37
0 -9 detected 13
0 -12 notdetected 26
0 -12 detected 24
0 -15 notdetected 13
0 -15 detected 37
0 -18 notdetected 7
0 -18 detected 43
0 -21 notdetected 8
0 -21 detected 42
0 -24 detected 50
0 -27 detected 50
0 -30 detected 50

Table 2.4: Detection counts of simulated heterozygotes. The first two columns
indicate the simulated genotype. The third column is the category for whether a
variant was detected or not and the fourth column being the count.
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2.8.4 Heterozygous with no reference allele

The last and most complicated, the heterozygous genotype where neither copies’

length matches the reference length required generating three samples of lengths l,

l+ i1 and l+ i2. From here, the same procedure as in the heterozygous simulation

with one reference allele was carried out for the number of paired end reads

to be simulated from each copy, but this time, the reads came only from one

of the two sequences that contained an indel. The simulated reads were then

mapped to the reference sequence, yielding a bimodal distribution of spanning

paired end reads as seen in figure 2.13. For our simulations, we iterated through

Figure 2.13: Histogram of spanning paired end reads across an individual whose
two copies differ in length from the reference graphed against the MPERS distri-
bution for a reference length genotype. This sample contains an insertion of 30
bp and a deletion of 30 bp. It is quite obvious that the number of spanning paired
end reads is larger for the deletion allele (peak at right) compared to the insertion
allele (peak at left). This is caused by the fact that as the copy lengths are quite
different in size (60 bp), the allele containing the deletion is much shorter and
therefore has a higher probability of more paired end reads spanning its locus.
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every possible heterozygote pair from [-30,30], in units of three bp, excluding the

reference allele (described above). In all, we generated 9,500 simulations, which

equates to 50 simulations for each genotype. In total, 2,374 were called reference

(25%) which is higher than that of the heterozygote simulations with one reference

allele. The cause of this increase in reference calls is due to the same problem

as described above with the mean of the two variants being called homozygous.

In this simulation, indel pairs whose values essentially cancel one another out

– an insertion of 12 bp and a deletion of 12 bp – will many times be called

reference. Furthermore, as we strongly penalize heterozygotes, many loci with

alleles only a couple motifs or less apart will sometimes be called reference because

the separation of distributions isn’t enough to produce a large enough signal to

overcome the prior cost. However, when a variant is detected, its true allele

values are within a few motifs – unless pushed into a homozygous configuration

the mean of the two variants (4,391 out of 7,126, 62%).

2.9 Results on real data

We have developed a method for inferring the genotype of a STR locus in a

diploid sample based on short paired end read sequencing data (see section 2.6)

implemented in the software package STRYPE (see section 2.7). For each repeat

locus in the reference genome, we assume that a sample has two copies of the

repeat locus of lengths l+i1 and l+i2 bp. Based on the short paired end sequence

data from the sample, we estimate what sizes of indels i1 and i2 in the two copies

of the repeat locus relative to the reference genome maximize the a posteriori

probability found using Bayes’ theorem (see equation 2.4), including the case

i1 = i2 = 0. Here we evaluate the use of STRYPE to assay a full genome’s

worth of tandem repeats for individuals sequenced by both a single and multiple

libraries.

2.9.1 Inferring genotypes at repeat loci in individual NA12878

To test the efficacy of our method on a real data, a full assay of all triplet repeat

loci (k = 3) in NA12878 was conducted. As described earlier in table 1.1 in chap-
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ter 1, TRF identified 86,435 triplet repeat loci in the human genome. However,

we decided to limit our exploration solely to the autosomes which brought the

count of loci down to 80,868 which ranged in length from 15-3925 bp (mean 27.7

bp, median 21 bp). The accuracy of our method depends on the number of span-

ning paired end reads that are observed across a triplet repeat locus; therefore

we only considered loci at which we had ≥10 spanning paired end reads. This

cutoff was arbitrarily chosen as it was obvious that having only a few spanning

paired end reads yielded almost no information – and had we required too many,

we would have dismissed a large number of loci (9,113 were dismissed from the

75,688 which had at least one spanning paired end read, figure 2.14). Our prior

should remove any further loci that do not contain sufficient information to make

a non-reference call. At the 66,575 triplet STR sites with at least ten spanning

paired end reads, our method made the following calls: 62,418 reference loci,

3,043 homozygous indel loci, 1,040 heterozygous reference loci (one reference al-

lele and one non-refernce allele) and 74 non-reference (two different non-reference

alleles) heterozygous indel loci.
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Figure 2.14: Histogram for loci containing a given number of spanning paired end
reads for every triplet repeat loci in individual NA12878. The smaller libraries’
number of spanning paired end reads will diminish much quicker than the larger
fragment libraries and this could explain why the histogram has two peaks as
this histogram does not take the size of the tandem repeat in the reference into
consideration, only the number of spanning paired end reads.

2.9.2 Accuracy in inferring genotypes at repeat loci

2.9.2.1 Validation data from capillary and 454 alignments

As part of the pilot project for the 1000 Genomes Project, individual NA12878

was sequenced to approximately 22.5x depth using the Illumina sequencer (Con-

sortium [2010]). The same DNA was also sequenced using the 454 sequencer and

capillary sequence to approximately 12.8x and 0.5x depth, respectively. The 454
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and capillary reads are relatively long (mean 276 and 722 bp), compared to the

Illumina reads (mean 37 bp). Because of their length, the 454 and capillary reads

are long enough that it is possible to accurately infer some haplotypes (capillary)

and genotypes (454) at STR loci by making read-to-genome alignments.

We used automated analysis based on the capillary reads to generate a candidate

set of independently confirmed STR indel sites. We then manually inspected 454

alignments at a subset of these sites using the tview alignment tool in samtools (Li

et al. [2009]) to produce a truth set for assessing our method’s accuracy. Because

of the low capillary depth of 0.5x, most loci had only a single allele typed by the

capillary reads. In total the capillary analysis called 64 sites with two distinct

alleles, 8,463 sites with one called allele matching the reference, and 783 with one

called indel allele. The candidate set was composed of all 64 heterozygous calls,

plus 114 reference called sites with ≥4 spanning capillary reads and 158 indel

sites with ≥2 spanning capillary reads (see table 2.5).
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Validation table for multiple sequence types in individual NA12878
Capillary call Number of candidates 454 call 454 call totals

reference 114

reference 111
homozygous indel 0

heterozygous 2
inconclusive 1

homozygous indel 158

reference 5
homozygous indel 56

heterozygous 52
inconclusive 45

heterozygous 64

reference 4
homozygous indel 3

heterozygous 44
inconclusive 13

Table 2.5: Statistics for validation set for multiple sequence types. The capillary
calls were used to identify sites of interest based on the number of reads which
covered the tandem repeat loci (as discussed in section 2.5). These sites were then
examined by eye with 454 alignments to ascertain the true genotype of the locus.
The last column states the breakdown of what genotypes were actually observed
by eye using the 454 alignments. Some alignments were not readily resolvable by
eye due to 454’s rate of sequencing errors, especially around repeat units (Huse
et al. [2007]).

After visual inspection of the 454 alignments in tview, we removed any sites

where the alignments remained unclear (59 sites in total were removed, table

2.5). Figures 2.16 and 2.15 depict two loci where we are both able and unable,

respectively, to make the correct genotype call based on visual inspection.
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Figure 2.15: Samtools tview of a 454 alignment for an unambiguously geno-
typed locus. The locus is of repeat motif CAG between positions 165776248 and
165776284 on chromosome 1. From the automated capillary analysis, two sep-
arate indels were observed: 3 and -15 bp. When looking at this alignment, it
is clear that some of the reads are missing 15 bp of sequence (denoted by blue
dash at right) while the others contain an additional 3 bp (yellow and red dashes
at right with the inserted motif appearing at the start and end of the repeat,
respectively).
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Figure 2.16: Samtools tview of a 454 alignment for an inconclusive genotyped lo-
cus. This locus is of repeat motif CAA between positions 61801605 and 61801620
on chromosome 1. From the automated capillary analysis, a single indel of -1
bp was called from 2 reads that extended across the locus. Towards the end of
the repeat, it appears there is a series of sequencing errors brought on by the
poly-A chain that limits our ability to correctly genotype this locus using 454
reads. Because of this, this locus was removed from our analysis.

In the end, we were left with a validation set of 277 calls: 120 homozygous

reference (i1 = 0, i2 = 0), 59 homozygous indels (i1 = i2, i1 6= 0), and 98

heterozygous loci (i1 6= i2). The lower limit of four spanning reads was to ensure

that if we only inferred one allele at a particular locus based on the 454 data,

it is unlikely that NA12878 is actually heterozygous at the locus and that we

simply have not observed the other allele. The probability of observing only a

single copy four times and never the other copy is 1
2

4
= 1

16
. From the validation

set of 277 call sites, our method was able to infer the genotypes at 246 loci (the

other loci having too few spanning paired end reads): 117 homozygous reference

genotypes, 52 homozygous indel genotypes and 77 heterozygous genotypes, 69

of which contained a reference allele length. Overall, STRYPE’s sensitivity to

detect indels was good. Figure 2.17 shows the distribution of allele sizes for true

indels when STRYPE called a reference genotype (false negative calls).
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Figure 2.17: Plot of the 454 indel genotypes when our method called a reference
genotype, {0, 0}. Almost all these genotypes’ repeat lengths are within ±3 bp
of the reference length (86%) as demarcated by the four dark black dots around
the reference call. As the absolute difference between the reference locus’s repeat
length and the individual’s allele’s repeat length increases, so does the power
of our method to detect these variants, which explains why fewer and fewer
calls appear as you move away from the reference as shown by the light colored,
sparsely placed dots.

2.9.2.2 Accuracy at homozygous reference loci

Of the 117 loci inferred to have homozygous reference genotypes in NA12878

based on the 454 data, our method correctly inferred 114 (97.4%) to also be

homozygous reference. However, it erroneously inferred one (0.9%) of the ho-

mozygous reference loci as a homozygous indel locus and two (1.7%) to be het-

erozygous (both containing one reference length allele). We were able to fix this

by looking at the odds ratios we previously calculated and determining a cutoff

which minimized the false discovery rate while not causing too high a number of
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true calls to be called reference (see sections 2.9.2.3 and 2.9.2.4). In our model,

the calls non-reference calls we are most certain of are those with a high odds

ratio between the genotype call made compared to the reference. When we dis-

carded indel calls at which the log odds ratio was weak, ≤ 1, two of the three false

positives were removed. By filtering using the odds ratio, it is possible to discard

almost all the false positive calls while retaining a large majority of the true calls,

37/44 (84%, see below for discussion of true calls sections 2.9.2.3 and 2.9.2.4).

We therefore recommended using this filter because minimizing the number of

false positives typically outweighs the loss in number of true indels.

2.9.2.3 Accuracy at homozygous indel loci

Using the 454 sequence data, we inferred that 52 loci have homozygous non-

reference indel genotypes. Figure 2.18 illustrates the relationship between what

the observed true genotype is – as found by the 454 sequence – compared to what

our method calls at these loci. Approximately half the loci (25) had homozygous

indels of size of ±3, only one of which was called as non-reference by our method,

indicating that there is insufficient power with these libraries/coverage for our

method to distinguish an offset of 3 bp from the reference genotype call. Of the

remaining 27 loci, our method calls 21 (78%) as non-reference homozygotes. All

but one of our method’s calls was within 6 bp or less of the 454 call (the exception

being of size +9 bp called as reference), and 5 of 9 sites with absolute indel size 6

were called non-reference. Of the 21 non-reference calls made by our method, all

are in the correct direction (no insertions called deletions and vice versa), 8 (38%)

are called with the correct size, 11 with absolute difference 3 bp (52%), and the

remaining 2 with absolute difference 6 bp (10%). The mean absolute error was a

little larger for homozygous insertion (3.3 bp) compared to homozygous deletion

(2.7 bp) genotypes.

2.9.2.4 Accuracy at heterozygous loci

Heterozygous genotypes are more difficult to correctly genotype as the number of

spanning paired end reads for each copy is approximately half of what it would

be compared to a homozygous site. It is also much more difficult to distinguish
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Figure 2.18: Comparison of true homozygous indel genotypes as called from 454
sequence to that of our method’s calls at these loci. The diagonal x = y represents
our methods calls being exactly on the true genotype call with any deviations from
this line an error. Most all calls are within 6 bp from this line. The horizontal
value y = 0 is representative of loci where there is not enough paired end read
information to call a non-reference call. This is where the only outlier of +9 bp
lies.

a homozygote site from a heterozygote the mean of whose two indel sizes is the

size of the homozygote (as discussed in 2.8.4). To test the efficacy of our model

to call heterozygotes, we looked at sites which contained two distinct copies at

a locus from our 454 assessment. Based on this 454 data, we inferred 77 loci

to have heterozygous genotypes with at least 10 spanning paired end reads: 69

with one reference allele and one non-reference allele and 8 with two different

non-reference alleles. Again, true heterozygotes with maximal indel sizes of ±3

were not called. Out of the 77 loci, 3 (4%) sites were called exactly using our
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method. This is lower than for loci with homozygous reference (97.4%) or ho-

mozygous indel genotypes (15%). Among loci inferred from 454 data to have

heterozygous genotypes with one reference allele (69 sites), 8 were also inferred

by our method to be heterozygous with one reference allele. Amongst these, our

method correctly inferred the non-reference allele (indel) size at 3 (38%) loci and

at 7 loci (88%) the calls were within ±3 bp. At one site the allele difference was 6

bp (our method’s call of 12, 454 call of 6). Considering all sites with heterozygous

genotypes, our method called 80% of the alleles to within ±3 bp. Figure 2.19

shows how our method performs at the heterozygous loci.

Ultimately, the most telling statistic is the comparison of haploid calls between

what the true copies’ lengths were as called by 454 sequence to what our method

reported. When comparing proximal size alleles in each of the haplotypes of our

calls to the true lengths, it is clear that our method is rarely off by more than ±6

bp. What is meant by ‘proximal size alleles’ is when matching the two copies’

lengths to the true lengths, we look for pairings which minimize the absolute

difference between the two sets and in case of a tie, take exact matches preferen-

tially. For example, had our method called a locus of genotype {-6,-3} and the

true genotype was {0,-3}, then we would match haploids of 0, -6 and -3, -3 as

opposed to -3, -6 and 0,-3.
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Figure 2.19: Join plot comparison of actual genotype (red dot) compared to the
genotype called by our method (blue dot). The dotted diagonal line represents
the homozygous genotype while the solid black lines illustrate the difference in
genotype calls between the truth and out method’s call. Ideally, the shorter the
line, the more accurate the call. Horizontal and vertical lines are also significant
as they denote that one allele length is called correctly. The three green triangles
denote the genotypes where our method accurately called the true genotype. It
should be noted that many of the calls overlapped which obfuscated the true
number of loci conferring to each genotype call. To alleviate this problem, a
random jitter in the range of [-0.5,0.5] was added to all calls that were of a distance
of no more than ten units from the reference genotype call. The distance of 10 was
chosen as the majority of overlapping calls fell within this range as it represents
the smaller, more abundant indels in the genome. Distance is calculated simply
as: distance =

√
(x2 − x1)2 + (y2 − y1)2, where x1 = y1 = 0
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Figure 2.20: Histogram of differences in proximal allele lengths between genotype
calls made by 454 and our method. More than half (63%) of all of our method’s
allele lengths match exactly the allele length inferred from 454 reads. When the
threshold is raised to ±3 bp, the percentage raises further to 90%.

2.9.3 Comparison with MoDIL

Of all the other methods which use short paired end reads to detect indels, MoDIL

(Lee et al. [2009]) is the closest to our model as it analyses the MPERS distri-

bution of spanning read pairs to infer indels. However, MoDIL is not specifically

designed to infer indels in STR loci but indels across the entire genome. This has

the added benefit of being robust in calling indels, but lacks in the precision we

hope to achieve.

We described how MoDIL works in chapter 1 (see section 1.6.2).

Like our method, MoDIL can infer both homozygous and heterozygous indel

genotypes. However, an advantage of our method is that it calculates a confi-

dence score: the odds ratio between the genotype call made and the homozygous
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reference genotype (see equation 2.6). Furthermore, while MoDIL assumes that

an individual was sequenced from one fragment library, our method can combine

data from multiple libraries that differ in the mean, variance and shape of the

fragment length distribution. Because of this, it makes a direct comparison of

our model’s calls to MoDIL’s calls for individual NA12878 extremely difficult.

The detection power of MoDIL is reported to be 38% for small indels of 10-14 bp

and 71% for indels of 15-19 bp (Lee et al. [2009]) on a deeper sequenced sample

(NA18507), whereas our method detects 34% (44/129) of indels of any size, 23%

(25/107) of variants less than 10 bp, 86% (19/22) of variants greater than or equal

to 10 bp in our NA12878 assessment – which is sequenced from multiple libraries

to a lower depth. Had we used a single, well behaved library – a library whose

distribution is closely inline with a tightly distributed (STD≤10%) Gaussian –

which was sequenced to a high depth, we believe STRYPE’s proportion of calls

would increase further past MoDIL’s resolution.

As MoDIL was not designed specifically to use multiple libraries, we were un-

sure of what MoDIL’s efficacy would be by combining the libraries of NA12878.

However, through correspondences with MoDILs author, we were told that it was

acceptable to add all the libraries together, thus increasing the effective coverage.

However, further discussion with MoDILs author suggested that due to the size

of the indels we were focusing on (ranging from [-15,15] bp), and in combina-

tion with NA12878’s libraries standard deviations (ranging from 9.1 to 144.6 bp),

MoDIL would be unable to make any calls for indels of this magnitude – even

if the paired end reads had been sequenced from the same sample. As outlined

in MoDILs supplementary methods, it had a recall rate for indels larger than 10

bp of roughly 0.5 from a single, tightly distributed (STD <10% mean) simulated

library of coverages between 5 and 100x (much greater than NA12878’s libraries

coverage).

Ultimately, to test our belief that MoDIL was unable to make any calls, we ran

NA12878’s chromosome 11s paired end reads with MoDIL. Since MoDIL cannot

specifically target a region, we were forced to run the entire chromosome, which
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took magnitudes more time to run than STRYPE. In the end, MoDIL was un-

able to locate any clusters signifying a structural variation within chromosome

11. Because of this, no indel calls were reported.

2.10 Discussion

We have developed a novel method which uses short paired end read sequencing

data to infer the genotype (repeat length) of the two copies of a STR locus in a

diploid individual. Our method estimates the lengths of the two indels – one in

each of the two copies of the individuals locus – and then calculates the odds ratio

between the genotype that maximizes the posterior probability and the reference

genotype posterior.

2.10.1 Specific adaptations for detecting indels in STR

loci

We have assessed the accuracy of our method by inferring the genotypes at triplet

repeat loci in individual NA12878 based on short read paired end data. The ac-

curacy of our method depends on the tightness of the fragment size distributions

in each library of NA12878, as well as its overall sequence depth. With an over-

all average MPERS of 200 bp and standard deviation of 59 bp (see table 2.1),

NA12878 is representative of an individual sequenced from multiple semi-well be-

haved libraries – libraries whose distributions are not as tightly distributed and

symmetric as the Gaussian. With the libraries having a combined depth of 22.5x,

our method can discover a majority of variation ≥6 bp with few to no false pos-

itives.

Overall, our method correctly inferred the genotype at 63% of all triplet repeat

alleles and 90% of all triplet repeat alleles within ±3 bp (see figure 2.20). One

limitation of our method is that it requires a reasonable number of spanning

paired end reads (≥10) to infer the genotype at a repeat locus. While NA12878

was sequenced to a depth of 22.5x, for a variety of reasons some genomic regions

had a much lower physical coverage. We found at least one spanning read pair

at 77,165 (95%) of the 80,868 triplet repeat loci located in autosomes identified
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by TRF, and ≥10 spanning read pairs at 66,575 (82%) loci. Reasons for not

having enough spanning read pairs include base composition bias of the sequenc-

ing libraries, non-uniqueness in the flanking sequence and the repeat being too

long. The mean fragment length per library for many of the NA12878 libraries is

above 200 bp (see table 2.1), so we could, with sufficient depth, be able to infer

genotypes for loci of up to 200 bp. This includes most triplet repeat loci since

less than 1% of triplet repeats are longer than 200 bp in length.

Our method calls more deletion alleles (5282) than insertion alleles (1992). One

reason for this is that we lose power to call large insertions in long STRs because

these variants can result in total lengths longer than the paired end separation.

However, almost all STRs detected with insertions have lengths that are shorter

than the MPERS distribution, therefore the primary reason for the imbalance is

that many of the libraries for NA12878 have a heavy left-tail in the fragment size

distribution (see figure 2.21). As leftward shifts of the MPERS distribution for

paired end reads spanning a locus are used by our method to infer an insertion,

this reduces our power to detect these events. Generating libraries with a tighter,

more symmetric distribution of fragment lengths will alleviate this problem.
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(a) Distribution of the MPERS for library g1k-sc-
NA12878-CEU-2

(b) Distribution of the MPERS for library Solexa-
5460

Figure 2.21: Distribution of the MPERS for two separate libraries for sequenced
individual NA12878. A noticeable heavy left-sided tail can be observed which
lessens the statistical power for calling insertions.

2.11 Conclusion

In conclusion, we have developed a novel method for inferring genotypes in STR

loci based on short paired end read data and have identified 4,157 loci with non-

reference STR variants in NA12878 with a low false positive rate. This data

set and method helps give a more complete picture of genetic variation based

on whole genome next generation sequence data, and will aid in studies of STR

mutation and evolution.
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Chapter 3

Factors influencing polymorphism

in short tandem repeats

Collaboration note This chapter contains work performed in collaboration with

Dr. Avril Coghlan and Dag Lyberg. Avril assisted in curating a list of triplet re-

peat positions in the human genome which contained the locus’s repeat motif and

motif family. Dag assisted in curating a list of transcript sites from ENCODE.

The hypermutability of STRs makes them of great interest to geneticists. Many

smaller surveys have been conducted to ascertain the mutation rate of short tan-

dem repeats (Lai and Sun [2003], Whittaker et al. [2003], Brinkmann et al. [1998],

Ananda et al. [2011]). These studies have focused on a small set of specific loci

in the human genome (Brinkmann et al. [1998]; Weber and Wong [1993]) due to

the complexities of typing short tandem repeats (as discussed in chapter 2).

Past research has sought to understand their evolution over time (Calafell et al.

[1998]) as well as use STRs as markers for forensic analysis (Kasai et al. [1990];

Urquhart et al. [1994]; Lygo et al. [1994]; Ruitberg et al. [2001]). As of the writing

of this work, there has been no genome wide assay of short tandem repeats that

we are aware of. A genome wide assay of STRs would have the power to elucidate

what factors in STRs increase the chance of observing a variant at a locus. Some

of the proposed factors include the composition of the repeat motif, the purity

of the repeat in the reference genome, the length of the repeat in the reference
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genome, the GC content of the repeat and proximal sequence and whether the

STR resides within a transcript. There has been past research that looked into

understanding how some of these factors affect mutation rate (Xu et al. [2005]),

but nothing on a large, genome wide scale. This is due mostly in part to the fact

that past sequencing of STRs is both costly and slow (Sprecher et al. [1996]),

which has precluded a large, genome wide assay. However, due to the advent of

next generation sequencing technology, we are now able to explore these loci on

a massive scale.

Building upon our method of genotyping STRs using spanning paired end reads

(see chapter 2), we plan to understand what factors in a STR increase or decrease

the chance of observing a variant at that locus.

3.1 Sources of sequence

To increase the total number of variants found, and therefore the power of our

analysis, we ran STRYPE on three trio data sets which met the requirements of

being sequenced to a high coverage with Illumina paired end reads. A trio data

set derives from a nuclear family composed of each parent and a single child.

Two of the trios were from the 1000 Genomes Pilot Project (Consortium [2010])

which consisted of families from the CEU and YRI population, and the third was

sequenced by Illumina – also from YRI population HapMap samples.

3.1.1 1000 Genomes pilot trios

The sequence data for both 1000 Genomes Project families is publicly avail-

able and can be downloaded from ftp://ftp.1000genomes.ebi.ac.uk/ . These were

mapped using the BWA alignment tool as part of the 1000 Genomes pilot project.

3.1.1.1 Sequencing statistics

A summary of the libraries’ statistics from the 1000 Genomes trio pilot set is

shown in table 3.1.
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Library statistics for 1000 Genomes trio pilot data

Population Individual Library Bases Coverage

CEU

NA12891

Solexa-6407 7817400156 2.6

Solexa-3625 43934509439 14.6

g1k-sc-NA12891-CEU-2 21897329228 7.3

g1k-sc-NA12891-CEU-1 15129837000 5.0

totals 88779075823 29.6

NA12878

g1k-sc-NA12878-WG-1 19327027164 6.4

Solexa-3630 14717717437 4.9

g1k-sc-NA12878-CEU-1 12546297144 4.2

NA12878.1 10463534460 3.5

g1k-sc-NA12878-CEU-2 6012622836 2.0

Solexa-5460 4443002700 1.5

totals 67510201741 22.5

NA12892

g1k-sc-NA12892-CEU-1 15254665056 5.1

g1k-sc-NA12892-CEU-2 21865659579 7.3

Solexa-3594 31658274363 10.6

Solexa-5455 11074558755 3.7

totals 79853157753 26.6

YRI

NA19238

2675169269 17346838500 5.8

QRAAADHAAPE 702666135 0.2

2485373691 34983913124 11.7

QRAAADCAAPE 2352597354 0.8

totals 55386015113 18.5

NA19240

2675080346 26442703184 8.8

QRAACDJAAPE 195022575 0.1

QRAACDEAAPE 8315238204 2.8

2485441832 50960025784 17.0

CT1898 22975401315 7.7

totals 108888391062 36.3
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Population Individual Library Bases Coverage

YRI NA19239

QRAABDDAAPE 10045560105 3.3

QRAABDHAAPE 459880560 0.2

2485443314 37182509292 12.4

2675080202 30382984800 10.1

totals 78070934757 26.0

Table 3.1: Mapped bases and corresponding coverage for the two trios in 1000
Genomes pilot project. The first column indicates the population from which
the individual (column 2) was sequenced from. The third column indicates the
sequenced library and the fourth and fifth column indicate the number of bases
sequenced and effective base coverage, respectively, for that library.

3.1.2 Illumina Trio

The sequence data for the Illumina trio is publicly available and can be down-

loaded from http://www.ncbi.nlm.nih.gov/sra with identifiers SRA009225 (NA18506),

SRA000271 (NA18507) and SRA009347 (NA18508). Each of these individuals’

libraries were mapped using the BWA alignment tool as part of the Illumina se-

quencing study. Table 3.2 lists the the libraries from which each individual was

sequenced and its corresponding coverage.

Library statistics for Illumina trio data
Individual Library Bases Coverage
NA18506 CT1696 126419574701 42.140
NA18507 CT1194 125394885034 41.798
NA18508 CT1704 121122865300 40.374

Table 3.2: Mapped bases and corresponding coverage for the Illumina trio data
set.

3.2 MPERS distributions

Figure 3.1 shows the distributions of libraries coming from the nine individuals

in our data set.
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Figure 3.1: Distributions of each library in the nine individuals from the three
trios data set. Made up of thirty libraries, the range and shape of each library is
unique. The libraries which yield more information for our analysis are those that
are tightly distributed around the fragment size library (the peak of the curve,
such as those around 80, 150 and 250 bp). The less sharp peaks – as well as those
with heavy tails – yield less information from which we can use to genotype STR
loci.

Aside from the mean and standard deviation of each library (which sometimes

can be misleading), we looked at two statistics that might give us a better sense

of how well behaved each libraries’ distribution of MPERS really are; skewness
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and kurtosis.

Knowing whether a library is symmetric or not is important if we are to un-

derstand why one form of indels is being called over the other (as discussed in

chapter 2). When a library’s distribution is heavy tailed, the sensitivity to call in-

dels that correspond to MPERS shifts in the direction of the heavy tail decreases.

Also, a more gradual decline in the density of MPERS as you move away from the

mean adds noise to our system when calling indels in that direction. By knowing

the skewness of our distributions, we have a better idea of any underlying biases

in calling insertions or deletions.

The skewness, γ1, of each library (which is the third standardized moment) is

calculated as

γ1 = E

[(
X − µ
σ

)3
]

=
µ3

σ3

where µ3 is third moment about the mean and σ is the standard deviation. From

this formula, we were able to calculate the sample skewness of each library from

n values (where n is the number MPERS in a library) as

g1 =
m3

m
3/2
2

=
1
n
·
∑n

i=1(xi − x̄)3

( 1
n
·
∑n

i=1(xi − x̄)2)3/2
(3.1)

where x̄ is the sample mean, m3 is the sample third central moment, and m2

is the second central moment (sample variance). To elucidate the correlation of

moments, the denominator in equation 3.1 was simplified so that skewness was

calculated in terms of the ratio of the third cumulant m3 and the second cumu-

lant, m2.

As a final statistic, we calculated the kurtosis of each library to get a sense

of how peaked our data was around the mean. A higher value for kurtosis meant

that more of the variance of the data is a result of extreme outliers as opposed

to moderately sized deviations. Explicitly, kurtosis is the standardized fourth
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moment and is defined as

β2 =
µ4

σ4
,

where µ4 is the fourth moment about the mean and σ is the standard deviation.

This gives rise to the more commonly referred to expression that is defined as the

fourth cumulant divided by the square of the second (variance squared) minus 3.

γ2 =
µ4

σ4
− 3

The minus 3 is a correction to make the kurtosis of the normal distribution equal

zero. Lastly, the sample kurtosis for n values was calculated as

g2 =
m4

m2
2

− 3 =
1
n

∑n
i=1(xi − x̄)4(

1
n

∑n
i=1(xi − x̄)2

)2 − 3

Table 3.3 outlines the values of these four statistics; mean, standard deviation,

skewness and kurtosis for each of the libraries sequenced from individuals in the

three trios.
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Library statistics for three trio populations
Population Individual Library Mean Std Skewness Kurtosis

CEU NA12878 g1k-sc-NA12878-CEU-1 140.177 10.392 0.155 -0.034
CEU NA12878 g1k-sc-NA12878-CEU-2 189.372 14.805 -1.110 2.906
CEU NA12878 g1k-sc-NA12878-WG-1 301.076 144.622 0.296 -1.326
CEU NA12878 NA12878.1 233.048 9.229 -0.190 0.072
CEU NA12878 Solexa-3630 84.112 7.788 0.103 1.331
CEU NA12878 Solexa-5460 210.661 14.574 -1.467 6.764
CEU NA12891 g1k-sc-NA12891-CEU-1 133.592 15.348 -0.674 1.199
CEU NA12891 g1k-sc-NA12891-CEU-2 157.120 22.587 -1.566 3.436
CEU NA12891 Solexa-3625 79.055 7.747 0.329 2.272
CEU NA12891 Solexa-6407 206.715 23.307 -2.054 6.943
CEU NA12892 g1k-sc-NA12892-CEU-1 155.015 15.309 -1.099 2.030
CEU NA12892 g1k-sc-NA12892-CEU-2 163.254 18.798 -1.279 2.774
CEU NA12892 Solexa-3594 78.128 10.278 1.034 3.371
CEU NA12892 Solexa-5455 204.256 17.115 -1.539 5.571
YRI NA19238 2485373691 242.773 32.157 0.219 -0.822
YRI NA19238 2675169269 276.749 32.648 -0.454 0.234
YRI NA19238 QRAAADCAAPE 209.670 12.329 0.317 0.338
YRI NA19238 QRAAADHAAPE 439.481 16.263 0.030 -0.049
YRI NA19239 2485443314 231.121 30.080 -0.059 -0.563
YRI NA19239 2675080202 294.645 27.179 0.255 0.091
YRI NA19239 QRAABDDAAPE 238.279 14.850 -0.266 0.394
YRI NA19239 QRAABDHAAPE 295.971 125.481 0.069 -1.388
YRI NA19240 2485441832 263.918 40.037 0.183 -0.755
YRI NA19240 2675080346 273.335 19.263 0.185 0.167
YRI NA19240 CT1898 230.439 16.299 -0.065 -0.306
YRI NA19240 QRAACDEAAPE 309.156 42.723 -2.214 5.809
YRI NA19240 QRAACDJAAPE 527.394 50.323 -1.052 1.437

Illumina NA18506 CT1696 222.426 15.779 -0.426 0.482
Illumina NA18507 CT1194 209.138 13.072 0.046 -0.431
Illumina NA18508 CT1704 202.089 15.247 0.024 -0.450

Table 3.3: Statistics for individuals’ libraries in the three trio data sets. The
first three columns indicate the population, individual and library from which
the statistics are coming from, respectively. And the last four columns represent
the mean, standard deviation, skewness and kurtosis of each library.

94



Chapter 3. Factors influencing polymorphism in short tandem repeats

3.3 Detecting indels in short tandem repeats

Using the methods described in chapter 2, we genotyped all triplet repeat loci

for each individual in the three trio sequencing data sets. Each individual was

typed independently; no information from which family the individual was from

was used to force Mendelian segregation at putative variant sites. Altogether,

596,078 sites had ≥ 10 spanning paired ends across the nine individuals, 29,746

had no spanning paired end reads and 101,727 had < 10 spanning paired end

reads. From the sites with ≥ 10 spanning paired end reads, STRYPE called

548,141 loci homozygous reference and 47,937 with a variant. The total number

of genotype configurations was in line – relative to one another – with what we

would expect: 29,904 homozygous indels (the most likely), 14,957 heterozygous

with one reference allele (second most likely) and 3,076 heterozygous with no

reference allele. A summary of the three trio family call sets is presented in table

3.4.
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Variant call statistics for three trio families
Individual Sites called Sites uncalled ≥10 spanning reads Reference
NA18508 77946 2893 71834 64747
NA19238 77196 3643 60034 58892
NA19239 78299 2540 70538 67017
NA18507 76143 4696 69833 61457
NA12891 77471 3368 56709 52339
NA12878 78309 2530 69196 62835
NA18506 77969 2870 71523 61804
NA12892 75631 5208 50707 48151
NA19240 78841 1998 75704 70899

total 697805 29746 596078 548141
Individual Variants Homozygous indels Heterozygous reference Heterozygous
NA18508 7087 5055 1790 242
NA19238 1142 954 147 41
NA19239 3521 2586 798 137
NA18507 8376 5617 2450 309
NA12891 4370 1798 2008 564
NA12878 6361 3410 2427 524
NA18506 9719 5786 3073 860
NA12892 2556 1267 1088 201
NA19240 4805 3431 1176 198

total 47937 29904 14957 3076

Table 3.4: Variant calls made in the three trio families.

3.4 Short tandem repeat criteria

Measuring the prevalence of STR variation as a property of its sequence compo-

sition and context has been a goal of this research since the initial modeling of

variants in a single sample (see chatper 2). The probability of observing a variant

at a locus depends on multiple factors. In the following sections, a list of factors

which we believe might influence an STR’s chance of exhibiting a variant will be

discussed and assessed using the calls made from our three trio families data.
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3.4.1 STR metrics

To determine the effect a certain factor has on the prevalence of variation across

varying STR loci, it is first important to define what exactly we are measuring

in a way that yields a clear mechanism for inference. One way of doing this is

by setting forth a metric for each factor. A metric is a simple way of ordering a

set such that the distance between each value in a set can be directly calculated.

The metric itself will take the form of a set of ordered numbers where a higher

order number means either an increase or decrease in a factor we are trying to

measure. Each factor we wish to measure has its own metric and in turn, its own

strengths and weaknesses. A metric will never encapsulate all the information of

a system, but does help us order a set of data which we can later analyse to see

what effect (if any) a certain factor has on a system. In the sections below, we

describe the factors (listed in table 3.5) we believe will have the greatest effect

on observing a structural variation at a locus and how each factors’s metric was

calculated.

Description of factor tags
Factor tag Description

family trio family from which the individuals come from
motif triplet repeat motif family from which the STR is a part of
purls longest stretch purity metric

purnew purity percent match
GCref percent of GC content in a STR locus
GC100 percent of GC content in a STR locus and up and down stream 100 bp
GConly percent of GC content up and downstream 100 bs of a STR locus

lenpurnew length based metric for purity percent match
trans boolean value whether a STR is located within a transcript
reflen length of a STR in the reference

spanreads number of observed spanning read pairs across a STR

Table 3.5: Table of the factor tags used in our modeling and their respective
description.
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3.4.2 Tandem repeat length in reference (reflen)

A STR’s repeat length in the reference was calculated directly from the start

and stop positions of the repeat. As described in chapter 2, all STR loci in the

human genome were located using Tandem Repeat Finder (TRF) that met a set

of criteria that determined whether a stretch of sequence in the reference should

be considered a tandem repeat or not. The length (and in turn metric) was

calculated as

l = z − y + 1

where y and z represent the start and end position of the STR in the reference

sequence, respectively. This metric is very basic and tells us nothing about the

internal composition of the repeat other than its length. The background mu-

tation rate has been estimated to be on the order of 10−8 per base for single

nucleotide polymorphisms (Drake et al. [1998]) and approximately a magnitude

less for length mutations, 10−9 (Nachman and Crowell [2000]). Using just this

information, it stands to reason that as the length of the STR locus increases, so

shall the probability of observing a structural variation.

3.4.3 Tandem repeat motif family (motif)

Repeat motifs are self-repeating stretches of DNA sequence. These repeats can

take the form of any repeating permutation of the four bases {A,C,G,T}. Within

these permutations, repeats of the same motif length can be grouped together by

their sequence similarities. These similar sequence patterns are grouped together

in ‘families’.

Each motif length will have some number of families; the simplest example are

the motif families for the motifs of length one. Within each family, there is also

some number of repeat permutations. Each of the permutations in a family must

represent correctly ordered sequence matches of the repeat sequence on the for-

ward strand, as well as its reverse complement sequence on the reverse strand.
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For example, the motif family AAC would have three permutations on the for-

ward strand (AAC, CAA and ACA) and three permutations on the reverse strand

(TTG, GTT and TGT).

In total, there are 10 unique repeat families for repeat motifs of length three

bp – which have been summarized in table 3.6.

List of families for motifs of length three
Motif family Forward strand Reverse strand

AAC AAC, CAA, ACA TTG, GTT, TGT
AAG AAG, GAA, AGA TTC, CTT, TCT
AAT AAT, TAA, ATA TTA, ATT, TAT
ACC ACC, CAC, CCA TGG, GTG, GGT
ACG ACG, GAC, CGA TGC, CTG, GCT
ACT ACT, TAC, CTA TGA, ATG, GAT
ATC ATC, CAT, TCA TAG, GTA, AGT
ATG ATG, GAT, TGA TAC, CTA, ACT
ATT ATT, TAT, TTA TAA, ATA, AAT
CCG CCG, GCC, CGC GGC, CGG, GCG

Table 3.6: Table of each motif family belonging to the set of motifs whose repeat
length is three.

3.4.4 Purity of tandem repeat in reference

The purity of a tandem repeat is defined as the degree of unbroken repeat units

of a motif in a STR locus. This score is effected by the number of foreign base

pairs (those that do not match the motif) and inserted or deleted sequence that

exist within a repeat locus. The larger amount of foreign bases and indels in a

locus decreases the level of purity of that repeat. Purity is an important metric

to scrutinize as the purity of sequence in a tandem repeat has been shown to

increase the variability at a repeat locus (Legendre et al. [2007]). Many metrics

have been proposed in regards to repeat purity. In the following section, we shall

discuss three metrics we used to categorize the purity of each tandem repeat.
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3.4.4.1 Longest pure stretch (purls)

The longest pure stretch of a STR is the length of the longest subsequence within

a repeat locus that goes unbroken by a foreign base either through substitution or

addition/removal of a base(s). For example, in the sequence AACAACAACGAA-

CAA, the subsequence AACAACAAC (which is comprised of three full repeat

units) is the longest stretch with length 9 bp. Our longest stretch metric does

allow for the first and last repeat to be truncated. The longest stretch for repeat

sequence TTGTTGTAGTTG would be TTGTTGT, where the two bases TG are

removed from the last repeat.

3.4.4.2 Percent match (purnew)

Aside from the longest pure stretch which only measures a subsequence in a STR

locus, percent match measures the overall adherence to the motif unit across the

locus. This metric gives us a better idea of the overall purity of a repeat locus.

For our analysis, we devised two related metrics to measure the percent match

a tandem repeat had to its given repeat motif. The first, purnew, is the over-

all adherence of a STRs sequence to its repeat motif. This algorithm looks at

each subsequence of length of the motif and determines if it matches the overall

consensus motif pattern. The algorithm calculates the proportion of start posi-

tions in a tandem repeat locus whose subsequent sequence matches the family of

motifs a repeat locus is attributed to. It should be noted, however, that it only

gives a positive score for subsequences that match the motif on the same strand.

For instance, the family of motifs AAC would have AAC, ACA and CAA on the

forward strand and TTG, GTT and TGT on the reverse. If the motifs of the

reverse strand appear on the forward strand, they are considered foreign bases

and not scored as fitting the motif pattern. The second metric, lenpurnew, is

simply the value of purnew multiplied by the length of the repeat locus in the

reference. This in essence scales the percent match value to the repeat length.

We believed it was important to have this additional metric associated with the

purnew metric because ignoring the length of the STR gives rise to a bias in
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shorter STRs having a higher purity metric score than longer STRs. This bias is

described later in section 3.5.1.1.

3.4.4.2.1 Percent match algorithm

1. Set score = 0

2. Define all possible permutations which match a family of motifs that reside

on the same strand

3. Starting at x = 1

4. If subsequence (Sx, ..., Sx+|M |−1) matches a possible permutation defined in

2, score+ +

5. x+ +

If x ≤ |S| − |m|+ 1

goto 4

else

last

6. Calculate purity as score
|S|−|m|+1

The value of the purnew metric was calculated as described above, yielding a

value residing between [0, 1]. A higher value is indicative of a larger adherence to

the motif family and less foreign bases, indels within the locus.

3.4.5 GC content in and around tandem repeat (GCref,

GC100 and GConly)

The amount of GC content in and around a STR can have an impact on both

the detection and prevalence of observing an indel. GC rich regions have been

shown to have an increased prevalence of sequencing errors (Dohm et al. [2008];

Meacham et al. [2011]). These errors would cause the mapping of paired end reads

to decrease, thus decreasing the effective coverage of a locus. For our analysis,

we considered three GC composition metrics
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1. GCref: the fraction of G or C bases in the reference STR sequence

2. GC100: the fraction of G or C bases in the reference STR sequence plus

100 bp up and down stream

3. GConly: the fraction of G or C bases in the 100 bp flanking regions only

3.4.6 Whether a tandem repeat is in a transcript (trans)

The last metric is whether or not the STR resides within a known transcript (both

introns and exons). The human genome’s transcript start and stop positions were

downloaded from the ENCODE project website at

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/. In total there are

70,663 transcripts on autosomes in the ENCODE data base. Of these, many were

duplicated (exact start and stop positions) which were removed leaving a total

of 51,492 transcripts. Further to this, there were many overlapping transcripts.

When determining if a STR resided within a transcript, it only needed to be

located in one of the overlapping transcripts. We did not distinguish between

multiple transcripts for a single STR; a count of one was given no matter the

number of transcripts that the STR was situated in. In total, out of the 80,805

triplet repeat sites in the human autosomes, 42,622 resided within a transcript

and 38,183 laid outside.

3.5 Results

We approached our analysis of STR factors in two ways: the influence each factor

had on observing a non-reference allele, and the effect each factor had on the over-

all magnitude of the observed indel for both insertions and deletions. To begin,

we sought to determine the effects of observing a non-reference allele by using a

logistic regression which determined the influence each factor had on observing a

non-reference allele at a given locus. In more detail, a logistic regression is used

in predicting the probability of the occurrence of an event by fitting the data

to a logit function of a logistic curve. For our purposes, we were interested in

the logistic regression as it is a generalized linear model (GLM) used in binomial

102



Chapter 3. Factors influencing polymorphism in short tandem repeats

regressions (discussed below). Like other regressions, the logistic linear regres-

sion can make use of several predictor variables (our factors) that may be either

numerical (purity, reference length, etc.) or categorical (motif family, trio family,

etc.).

To begin, the logistic function is defined as

f(z) =
ez

ez + 1
(3.2)

where z is some linear relationship between the explanatory variables

z = β0 + β1x1 + · · ·+ βpxp

where β0 is the intercept and β1, ..., βp are the regression coefficients of the ex-

planatory variables x1, ..., xp, respectively. The variable z in essence is a measure

of the total contribution of all the independent variables used in the model. Next,

as mentioned previously, this logistic regression is a GLM for the binomial regres-

sion. A binomial regression can be described as a series of Bernoulli trials (a series

of one of two possible disjoint outcomes). The results of this regression are as-

sumed to be binomially distributed which is fitted as a generalised linear model

where the predicted values µ are the probabilities that any single event will result

in a success (indel). The likelihood of these predictions µ are given as

L(D|µ) =
n∏
i=1

Iyi=1(µi) + Iyi=0(1− µi) (3.3)

where D represents the response data, Iyi
is the indicator function which takes

the value one when an event occurs and zero otherwise. The likelihood function is

specified by defining the parameters µi as functions of the explanatory variables

(in our case the factors). There are many methods of generating the values of

µ in systematic ways that allow for interpretation of the model. However, there

is a requirement that the model linking the probabilities µ to the explanatory

variables should be of a form which only produces values in the range 0 to 1

which we have described above in equation 3.2. It is then only a matter of fitting
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the model to the parameter values that maximize the likelihood in equation 3.3.

Next, we looked at the influence each factor has on the magnitude of an in-

del given an indel is observed. Sites which were called reference by our model

were excluded from this analysis. A linear model was used for this analysis as it

determined the value each factor had on the overall value of the response variable

– in this case the size of the indel. A linear model is a statistical model which

models the relation between the observations Yi (indels) and the independent

variables Xij (factors) as

Yi = β0 + β1(Xi1) + · · ·+ βp(Xip) + εi, i = 1, . . . , n

where βi are the regression coefficients and εi is the residual error. The value of

β0 represents the intercept of the linear model while the rest of the regression

coefficients represent the amount of influence (equivalent to slope) a factor has

in describing the overall system you aim to model; a positive coefficient denotes

a positive correlation while a negative coefficient denotes a negative correlation.

Assuming the residual errors are normally distributed, the values of these coeffi-

cients are estimated by least squares analysis by minimizing the sum of squares

function (S), which is defined as

S =
n∑
i=1

(Yi − β0 − β1(Xi1)− · · · − βp(Xip))
2 .

We used the software package R to carry out this analysis (R Development Core

Team [2011]).

3.5.1 Modeling of factors

A logistic regression was used to determine the effect each of the 11 factors had

on observing a non-reference allele in a STR locus. For ease of computation and

modeling, we separated the called genotypes into two alleles and did all the anal-

ysis at the level of alleles. This appeared to be the easiest approach and we did

not feel it changed the overall inference we could make regarding the the outcome
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of our modeling. A summary of the model’s output is produced by R, giving the

value of each of the coefficients for each of the factors as well as a p-value that

indicated the confidence the model had that each of the coefficient values was

non-zero. For almost every coefficient calculated in our analysis, the p-value was

less than 0.001. Because of this, when we discuss specific coefficients below they

will by default have a p-value less than 0.001. In the rare cases where this isn’t

the case, we shall explicitly state which factors’ coefficients are not statistically

significant. This is the same for our linear model which we used to determine

what effect, if any, a factor has on the magnitude of an observed indel.

To begin, we looked at the reference and non-reference calls for a combined model

incorporating all factors listed in table 3.5. However, this produced some surpris-

ing results (see figure 3.2), where for example GC100 had a negative coefficient

and GConly had a positive coefficient, although those are themselves strongly

correlated. Further investigation showed that this correlation was in fact the

source of the problem: there was confounding between correlated factors leading

to indeterminacy in the models. Therefore, we chose to model each factor in

isolation and then compared the scaled coefficients (multiplying the mean value

of the factor by its fit coefficient) to one another to gauge the relative influence

each factor had on observing a non-reference allele, as well as, the influence each

factor had on the size of the observed indel.
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Figure 3.2: Graph of coefficients determined by full logistic regression of factors
giving contradictory results because of confounding between correlated factors.

By sorting the scaled coefficients by the absolute value and plotting them on the

same graph, it was clear which factors had the largest effect (be it positive or

negative). In the end, we ended up with four plots: logistic regression for non-

reference, linear regression for the magnitude of an indel and linear regressions

for the size of both insertions and deletions. The graphs of each of these scenarios

are plotted in figures 3.3, 3.4, 3.5 and 3.6 which illustrate the absolute effect of

each of the factors. On each graph, all the coefficient values are shown aside from

those having a p-value > 0.05 which include motifs ACG and AGC in the logistic

linear model, motifs ACG and ACT in the insertions linear model and trans in

the deletions linear model. Out of all the factors’ coefficients that were graphed,

all had a p-value < 0.001 except for GCref in the insertions linear model that
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had a p-value in between the range of (0.01, 0.05).

Figure 3.3: Bar graph of absolute values of coefficients from a logistic linear model
for a STR being non-reference.
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Figure 3.4: Bar graph of absolute values of coefficients from a linear model for
the magnitude of an indel at variant STR loci.
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Figure 3.5: Bar graph of absolute values of coefficients from linear model for the
magnitude of an insertion at variant STR loci.

Figure 3.6: Bar graph of absolute values of coefficients from linear model for the
magnitude of a deletion at variant STR loci.
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3.5.1.1 Bias in modeling of purity

Upon inspecting the results of our regressions, it was surprising that the pu-

rity measure appears to be negatively correlated to the probability of observing a

variant. Previous studies suggest that a higher purity increases the chance of mu-

tation and polymorphism. Additionally, we found that the length of the longest

pure subsequence in a repeat locus had the strongest correlation with observing a

variant. We believe the cause of this correlation in opposition of what we would

expect is that the the purity metric does not take into consideration the lengths

of the STR in the reference. This would lead towards a bias of smaller repeats

having a higher purity score than larger repeats because the chance of observing

a foreign base or indel in a longer repeat is higher than a shorter repeat. Fur-

ther, the criteria by which we ran our TRF means that shorter tandem repeats

were not allowed to have any non-motif matching bases, otherwise they were not

considered STRs. In order to test this belief, we graphed each locus’s purity as

a function of its length. Each STR locus was grouped into a bin of length 10 bp

ranging from 15 to 205 bp. The values of these bins were then calculated showing

a decrease of average purity as the repeat length increases. By simply multiplying

the purity score by the repeat length in the reference, this bias is corrected.
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Figure 3.7: Boxplot of repeat purity across varying repeat lengths. This boxplot
shows the values for our purity metric described in 3.4.4.2.1.

3.6 Discussion

Building upon our previous work in chapter 2, we have explored the effect a

number of factors have on the probability of observing a variant in a STR locus.

Using our previously described genotyping method for STRs, we ran a full genome

analysis across nine deeply sequenced individuals – three trio data sets from

two distinct populations (CEU, YRI) from the 1000 Genomes Pilot study and
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Illumina’s sequenced YRI trio. We made calls at 101,727 sites (sites having ≥ 10

spanning read pairs) across these nine individuals; 47,937 sites within this call

set contained an observed variant in at least one of the alleles. Our method, as

described in chapter 2, yields a very small number of false positives and when

a variant is called, the variant’s true length is almost always within a couple

of repeat motifs’ length of the actual repeat length in the resequenced sample.

Because of this, we expect that any correlation we make is not coming from

numerous spurious calls. The large number of calls across multiple loci ensures

adequate power for our model, even if individual call sets are incomplete.

3.6.1 Sample family correlations

We decided to model some of the factors which might not be as interesting biolog-

ically, but that give us insight as to whether the actual correlations are correct,

an ad hoc control so to speak. For instance, the family that a sample belongs

to (CEU or YRI in 1000 Genomes Pilot Study, Illumina’s trio) can increase or

decrease the rate of observance of indels, because observing an indel is directly

correlated with the sequence depth (see section 3.1.1.1) and overall shape (mean,

standard deviation, skewness and kurtosis; see table 3.3) of the distribution. It is

therefore not surprising that the Illumina trio has the most calls. This explains

why the factors familyCEU and familyYRI have a strong negative influence in

figure 3.3 (due to detection power) but much less and even an opposite effect

in figure 3.4 which models the variant length conditional on the detection of a

variant. This suggests that STRYPE’s length estimates are not subject to read

bias based on sequencing depth conditional on making a call.

3.6.2 GC composition correlations

Ignoring factors believed to be unimportant biologically or biased (family and

length independent purity metrics), what was left were the true set of factors

that play some sort of biological role in observing an indel at a given STR locus.

Looking at figure 3.3, one of the largest influences on observing a variant is the

amount of GC content proximal to the STR locus; the higher this GC content, the

less likely you are to observe a variant. It is perhaps surprising that it is the GC
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composition of the flanking regions rather than the repeat sequence itself that has

one of the largest effects overall, as well as the largest amongst the GC content

metrics. One technical explanation as to why fewer variants are observed in

regions with high proximal GC content is the higher portion of sequencing errors

in this region could lower the number of spanning read pairs, in turn lowing the

power of our model to detect variants. In order to explore the external factor of

mapping bias in the the genome, we compared directly the proximal GC content

(GConly) to the GC content within the STR (GCref) based on the number of

spanning reads observed at a given locus (see figure 3.8). The difference in the

two metrics across the number of spanning read pairs showed that there is an

indication that a higher GC content in the proximal sequence is associated with

fewer spanning read pairs. For all but two bin sizes (190 and 200, which are the

two smallest bins), the amount of flanking GC composition is anywhere from 10%

to 35% higher than the STR composition, with the lower spanning read counts

showing the strongest bias – which are also the largest bins.
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Figure 3.8: Boxplot of differences in GConly and GCref at a locus binned by the
number of observed spanning read pairs at a locus. Each bin represents all sites
in the genome which have a given number of spanning read pairs independent of
the length.

3.6.3 Motif correlations

All but two motifs, CCG and AAT, were positively correlated with observing a

variant (compared to the AAC family). While the families AAG, CCG, AGG,

ACC, ATC and ACT all have comparable influence compared to one another,

AAT has approximately five times more influence than the next strongest fam-
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ily. As the family AAT is the only family to not contain any GC content, this

correlation is in agreement with the factor GCref which is strongly correlated in

the opposite direction. Most astonishing is while GC composition in the refer-

ence is positively correlated with observing an indel, the motif family CCG is

negatively correlated. It might be possible that CCG repeats form some sort of

secondary structure such as G-quadruplexes which are relatively prevalent in the

genome and may decrease the chance of those sites undergoing mutation (Hazel

et al. [2004], Huppert and Balasubramanian [2005], Bugaut and Balasubramanian

[2008]). This is something to be explored further.

3.6.4 Purity correlations

The purity related correlation that had the largest effect out of all the factors

was the length of the longest pure repeat in a locus. This correlation showed that

the chance of observing a variant at a locus is less contingent upon the repeat’s

overall adherence to the motif than it is to the actual length of the longest pure

stretch. Foreign bases and small indels which disrupt the motif frame may lower

the rate of slippage, as well as other mechanisms that cause mutation at STRs

discussed in chapter 1.

3.6.5 Further correlations: number of spanning read pairs,

repeat length in reference and located within a tran-

script

The number of spanning read pairs, unsurprisingly, had one of the highest influ-

ences on whether a variant was observed at a repeat locus. Because of the design

of our model, its clear that the more spanning read pairs at a locus, the more

power there is to call a variant.

The length of a STR in the reference is also strongly correlated with observ-

ing an indel. This finding is in stride with the general understanding that longer

stretches of DNA have a larger possibility of containing a variant. This correlation

is directly in unison with the strongest indicator (purls) in that longer repeats in
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the reference are also more likely to have longer pure stretches.

Lastly, there is a negative correlation of observing variants within transcripts.

Our analysis in chapter 2 of indels called from capillary alignment showed that

most triplet repeat variants were a multiple of three in length, which if occurring

in an exon, would not disrupt the reading frame. However, the addition/removal

of a multiple of three bases would in turn add or delete the number of multiples

of three amino acids in a protein. Though not as detrimental as a reading frame

shift, indels within a transcript (especially in an exon) are likely to be under pu-

rifying selection. Another possible contribution to the reduction of indels within

transcripts is transcription-associated repair (Hanawalt [1994], Hoeijmakers et al.

[2001]).

3.6.6 Independent analysis and comparison of each fac-

tors’ effect on the magnitude of a variant at non-

reference loci

A natural progression from the previous analysis is to determine the effect of

factors on indel size at STR loci (see figures 3.4, 3.5 and 3.6).

3.6.6.1 All variants

Many of the correlations seen in the logistic linear model are the same as in

the linear model for indel magnitudes. If a factor is positively correlated with

observing a variant, it is also positively correlated with the size of the variant.

However, the proximal GC content (GConly, GC100) is now strongly correlated

with observing larger indels while it is negatively correlated with observing a non-

reference locus. This can be explained by the lower amount of spanning reads

when proximal GC content is high (see 3.6.2). Smaller size variants would need

more spanning reads to be called while larger variants need less. Therefore, the

larger variants would be more readily called in regions of high GC content.

The entirety of motif families are also positively correlated. AAT has the largest

effect for observing a larger indel but from the previous analysis, is negatively
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correlated with observing a variant (the largest coefficient of the motif families).

This is quite interesting. Motif CCG also exhibits this interesting reversal.

As expected from our modeling of non-reference variants, the length of the longest

pure stretch and reference positively effects the magnitude of the variant when

one is observed. Larger indels are more likely in longer STRs because there is

more sequence which can undergo replication slippage compared to shorter STRs.

The number of spanning reads also exhibits a reversal in influence from observing

a variant to the size of the variant. While observing a variant is strongly influ-

enced by the number of spanning reads, the number of spanning reads actually

decreased the magnitude. As longer variants reside in longer repeats, these loci

inherently have less spanning reads. Additionally, as discussed earlier, larger vari-

ants need less spanning reads to be called as the signal is stronger than smaller

variants. This would explain why the number of spanning reads is negatively

correlated with observing a variant.

Lastly, residing within a transcript is negatively associated with observing larger

indels. The larger the variant within a transcript, the more disruptive it will be,

especially if it resides in the exon which will affect the production of the amino

acid chain during translation.

3.6.6.2 Independent analysis of insertions and deletions compared to

the reference

When comparing the magnitude of indel calls in insertions versus deletions, al-

most all correlational directions match one another with the exception of the

motif family AGC which is negatively correlated in inserts and positively corre-

lated in deletions. Its effect, however, is relatively small in both directions and

is most likely statistically insignificant. The correlations that stand out the most

are in the same relative order of significance. While the strongest indicators of

larger variants are the purity metrics for insertions, it is the proximal GC content

for deletions. All other factors seem to be in the same order and relative influ-

ence to one another. A simple explanation is not readily available and warrants

117



Chapter 3. Factors influencing polymorphism in short tandem repeats

further analysis. It should also be noted that the reference genome does not

represent the ancestral state. Many of the tandem repeats were estimated using

BACs and so at variable loci the allele present in the BAC was chosen, which

typically will represent a selection at random according to the population allele

frequencies. This makes inference difficult when comparing whether insertions or

deletions are more likely as we can not say for sure that the alleles in the reference

represent the ancestral state.

3.7 Conclusion

We have seen evidence for a variety of effects on STR mutation properties that are

broadly in line with previous expectations (Kelkar et al. [2008]). Aside from the

independent correlation values, the knowledge of which factors have the strongest

effect could assist in our future modeling of STR indels. We could use this

information to describe a more accurate prior than the one we developed in

chapter 2.
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Chapter 4

Population based analysis of

short tandem repeats

Collaboration note This chapter contains work performed in collaboration with

David Knowles. David assisted in developing the statistical machinery used in

estimating the allele vector at each STR locus.

As sequence depth plays the most important part in our ability to assay vari-

ation in STRs using short paired end reads, STYRPE is restricted to genotyping

only individuals who have been sequenced to a relatively high physical coverage

depth. However, a major mode of current genome wide sequencing is to sequence

many individuals from a population at a lower depth – as in the 1000 Genomes

Project (Consortium [2010]) and the UK10K (www.uk10k.org). For example, the

target 4x depth that the 1000 Genomes Project is using for genome wide sequenc-

ing is well below what is necessary for our model to make informative calls on a

single individual’s genotype at a STR.

However, within the spectrum of population genetics, each locus in a diploid

individual is comprised of two alleles which are more than likely shared across

numerous individuals in that population. If we could use the combined infor-

mation from multiple individuals, we would have enough sequence information

to make predictions of the overall frequency of alleles at a locus, as well as how

diverse a locus is. This would complement our analysis of factors which affect
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the chance of observing an indel at a given STR, as well as give us a list of can-

didate sites which might be multiallelic (characterized by many alleles) or whose

underlying allele frequency in a population is not best described by the reference

allele length. What this essentially means is: does some number of individuals in

a population have the reference allele, or is/are there an alternate set of allele(s)

at that locus comprising a certain density not coinciding with the reference allele

length.

4.1 Low coverage individuals in the 1000 Genomes

Project

As briefly described in chapter 1, the 1000 Genomes Project is a massive, multi-

national sequencing project which endeavors to sequence 2,500 individuals across

twenty-seven populations. In the intermediate data sets that we consider here,

corresponding to an early phase I freeze from November 2010, 929 individuals

were sequenced with the Illumina paired end read platform that had at least

one library that passed quality control requirements. In all, 1,122 libraries have

been sequenced which pass the quality control criteria (about 1.2 libraries per

individual).

4.1.1 Sources of sequence

Sequenced at multiple centres, each individual’s sequence was downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/ having been mapped to the human reference

genome, GRCh build 37, using the BWA alignment tool.

4.1.2 Sequencing statistics

The sequencing coverage was calculated for every library/individual (as in previ-

ous chapters) for those sequenced in the 1000 Genomes Project. Each library was

sequenced to a much lower depth than in the previous chapters, ranging from a

library sequencing coverage of 0.010 to 10.299x (mean of 2.456±1.456) and an in-

dividual sequencing coverage from 0.0096 to 10.756x (mean of 2.966±1.464). This
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is lower than the target coverage for the project of 4x per sample because this is

an interim data set and we included all samples with any sequence, however little.

In total, fourteen populations were sequenced ranging in number of individu-

als from 6 to 98, as well as, the number of libraries per population ranging from 6

to 122. Thirteen of the fourteen populations had a combined depth greater than

170x, with the deepest coverage coming from the JPT population at 303x. The

largest population, TSI, had an amalgamated base coverage of 235.961x. This

would mean, given an allele of frequency 20% in a population, you would have an

effective depth of 38.1x which should be sufficient to detect it (depth taken from

median population sequencing depth of 190.489x). The power to discern set vari-

ants only increases as the number of individuals sequenced increases, contingent

upon the samples having a shared allele amongst them. The statistics for each of

the populations is listed in table 4.1.

Population statistics for 1000 Genomes Project low coverage data set
Population Individuals Libraries Bases sequenced Coverage Avg. cov. (lib) Avg. cov. (ind)

YRI 66 74 628904103390 209.635 2.833 3.176
ASW 50 57 544728006968 181.576 3.186 3.632
GBR 70 90 519154431151 173.051 1.923 2.472
TSI 98 122 707881625221 235.961 1.934 2.408
CHB 81 141 582563154053 194.188 1.377 2.397
CLM 50 50 518391563974 172.797 3.456 3.456
LWK 83 93 783360704228 261.120 2.808 3.146
MXL 54 59 540194155266 180.065 3.052 3.335
CHS 92 104 672006329021 224.002 2.154 2.435
PUR 52 59 560368488942 186.789 3.166 3.592
JPT 72 77 911055671783 303.685 3.944 4.218
IBS 6 6 49644449600 16.548 2.758 2.758
FIN 75 90 548432746738 182.811 2.031 2.437
CEU 80 100 700341495829 233.447 2.334 2.918
totals 929 1122 8267026926164 2755.675 2.456 2.966

Table 4.1: Summary of sequencing statistics for individuals’ libraries in 1000
Genomes Project low coverage data set. The number of individuals per population
ranges from 6 to 98 and number of libraries per population ranges from 6 to 122.
The total number of bases sequenced from each individual/library is summarised
in the fourth column with the average per base coverage across all individuals in
the fifth column. The last two columns indicates the average base coverage per
library and individual in each population, respectively.

121



Chapter 4. Population based analysis of short tandem repeats

4.1.3 Population MPERS distributions

A major component of our analysis is based on the concept that each individual

belongs to a local population and that their alleles will be drawn from an unob-

served distribution of alleles from within these populations. This means that in

principle: the more individuals there are in a population sample, the more power

there should be to detect the underlying allele frequencies and general dispersion

of STR lengths within a loci. In a global population analysis, however, the alleles

might be so dispersed that it becomes hard to resolve one from another. Before

we carried out any further modeling, it was important to look at the distributions

of MPERS across the 1000 Genomes libraries to get an estimate of the general

distributions of fragment sizes.

Given that there are over a thousand libraries sequenced for the 1000 Genomes

Project, there is not much we can really deduce from the plot of all MPERS

distributions (figure 4.1). However, libraries which differ in fragment length but

maintain similar variances are almost identical in terms of information they are

are able to give. Larger libraries will be able to assay longer STRs and at equal

coverages, yield more spanning read pairs, but for a STR of length less than both

fragment libraries, each library will supply approximately the same amount of

information per spanning read pair. We therefore centered these distributions by

offsetting their mean to zero and compared the more important characteristics of

the distributions such as variance and shape (figure 4.2). The general form of a

unimodal distribution across all libraries is promising in the context of genotyping

STRs across populations (figure 4.2). Again, the sheer number of distributions

does obfuscate the assessment of the general shape of each library’s distribution

as the magnitude of overlying distributions is not explicitly shown. When we

break the libraries down by population, it becomes clear which populations are

more informative in terms of shape and distribution.
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Figure 4.1: Plot of MPERS distributions for every library in the 1000 Genomes
Project data set. Most libraries’ MPERS fall within the range of 150 to 600 bp
with peaks (fragment library sizes) around 150, 200, 400 and 500 bp.

4.2 Modeling

Modeling a population’s underlying distribution of alleles within a STR locus

relative to the reference adds multiple complexities compared to the previous

modeling of a single individual’s genotype as described in chapter 2. Instead of

assuming that all spanning reads come from a maximum of two alleles, now the

union of all indels in the population is possible.

We still take a Bayesian approach, calculating the (log) likelihood of the ob-

served data, and combining a prior with this to estimate the posterior. The
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Figure 4.2: Plot of MPERS distributions whose mean of each library is arbitrarily
set at zero. It is clear that the majority of libraries have a MPERS variance that
is tightly bound around the mean value (peak at zero). This does not mean
that all libraries behave well (as signified by the MPERS distributions whose
values fluctuate highly away from the mean). However, the prevailing shape of
the MPERS distributions tend towards an adherence to being tightly bound.

matrix likelihood is calculated from the full likelihood matrix from each individ-

ual across the set of possible diploid calls at a site([-30x30],[-30,30] in the case of

triplet repeats) exactly as in chapter 2.

Not interested in a specific individual’s genotype, our previous prior over diploid

genotypes from chapter 2 was no longer appropriate. Instead, we needed a prior

over all distributions of alleles at a locus. As we were no longer looking for geno-

types, but allele frequencies, it meant that our posterior would take the form of a
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(a) MPERS for ASW population(b) MPERS for CEU population (c) MPERS for CHB population

(d) MPERS for CHS population (e) MPERS for CLM population (f) MPERS for FIN population

(g) MPERS for GBR population (h) MPERS for IBS population (i) MPERS for JPT population

multinomial distribution; where each indel value in the multinomial distribution

was representative of the relative frequency of that allele within the population.

Achieving a multinomial posterior distribution meant that we would use a Dirich-
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(j) MPERS for LWK population (k) MPERS for MXL population (l) MPERS for PUR population

(m) MPERS for TSI population (n) MPERS for YRI population

Figure 4.3: Plots of the raw MPERS for each of the fourteen populations in the
1000 Genomes Project data set. Each population is usually sequenced by libraries
having multiple fragment size libraries (with an exception of CHS, FIN and IBS).

let prior. The Dirichlet distribution is the conjugate prior for the multinomial

distribution and is made up of a family of continuous multivariate probability

distributions parameterized be a single vector α. The Dirichlet probability den-

sity function returns the belief that the probabilities of |K| mutually exclusive

events are xi given that each event has been observed αi − 1 times. The values

of vector α represent the number of pseudo counts for a given event xi.

The Dirichlet distribution of order |K| ≥ 2 having parameters of α1, ..., α|K| > 0
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has a probability density function given by

f(x1, . . . , x|K|−1;α1, . . . , α|K|) =
1

β(α)

|K|∏
i=1

xαi−1
i (4.1)

for all probabilities of vector X (x1, ..., x|K|) being non-zero, positive and satisf-

ing the condition that x1 + ... + x|K|−1 < 1, where xK is simply the probability

calculated directly as 1−x1− ...−x|K|−1 and the density is zero outside this open

K − 1-dimensional simplex. The distribution is normalized by the multinomial β

function.

Because we normalize to obtain posteriors, in practice we could drop the β func-

tion and use a proportional Dirichlet prior as the values will correlate directly to

the actual probabilities described in equation 4.1. The Dirichlet prior’s parameter

vector α will consist of |K| possible indel values. The probability of any one of

these values is pk. The vector p is a probability vector whose elements are all

> 0 and sum to one. Therefore, our Dirichlet prior is expressed as

π(p) ∝
|K|∏
i=1

pαi−1
i

Looking now at population alleles instead of genotypes, we will assume within

a population – and by extension an individual (n) – all indels (i) are mutually

independent of one another such that

p(I1, I2) = p(I1) · p(I2) = pI1 · pI2

Next we define the conditional distribution for a purported population allele

vector (p) for genotype calls in an individual as

p(I1, I2, dn|p) ∝ p(dn|I1, I2) · p(I1, I2|p) (4.2)

p(dn|I1, I2) = ln,I1,I2
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p(I1, I2|p) = pI1 · pI2

where dn is all the spanning read information for an individual at a given locus

and ln,I1,I2 is the likelihood of the data in individual n having genotype {I1, I2}
as calculated in chapter 2.

Having defined the joint probability distribution for an individual, it was not ob-

vious the best means by which we should model this system. We sought methods

capable of learning the best values of p from the data, which essentially represents

the true underlying frequency of alleles at a locus in a population. In the end,

we choose two different algorithms to explore; the Expectation-Maximization al-

gorithm (EM algorithm) and Gibbs sampling. However, first we will describe the

priors that we used.

4.2.1 Priors

We considered three priors (π()) for our modeling which had the following ini-

tialization parameters α (pseudcounts)

1. uniform: a uniform prior with an α value of one for every indel size

2. conservative: a prior with 0.8 of the weight on the reference allele (α of

80) and the rest of the weight equally distributed across the indels, 0.01 (α

of 1.

3. decay: a prior used in chapter 2 where the most weight is on the reference

allele and then a gradual decay of weight as indel sizes move away from the

reference, pseudo counts found by multiplying the probability of an indel

by 100

4.2.2 EM algorithm

The EM algorithm is a method for determining either the maximum likelihood

or maximum a posteriori (MAP) estimates of parameters in statistical models,

where the model depends on unobserved latent variables – which in our case
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are the underlying frequencies of indel alleles in a population. The algorithm

takes an iterative approach which switches between performing the expectation

step (E) and the maximization step (M). In the E step, the algorithm computes

the expectation of the log-likelihood evaluated with the current estimate for the

parameters (the indel allele frequency in the population), then the M step recal-

culates the parameters which maximize the expected log-likelihood found in the

E step. The new parameter values found in the M step are then used in the next

iteration of the E step and this process is iterated, hopefully converging at the

true parameter values.

The problem with MAP inference is that it ignores the uncertainty in our in-

del assignments. For the high coverage samples in chapter 2, this is not as much

of a problem as we were solely interested in the genotype of a single individual

and had enough power to make a genotype call. But for the low coverage indi-

vidual’s in the population, this is more of a problem as we may be over fitting

the data. Instead we keep the posterior distribution for each individual; qn(i1, i2).

For purposes of inference, it is convenient to write the prior on the allele fre-

quencies as

p(i) =
∏
K

p
I[i=k]
k (4.3)

where I[i = k] is the indicator function; this interpretation was used for ease of

computation in the EM model shown later. Similarly, it was convenient to write

the likelihood terms for individual n in the same form

Ln(i1, i2|dn) =
∏

s∈I1,t∈I2

l
I[i1=s,i2=t]
n,s,t (4.4)

When these two equations (4.3 and 4.4) are combined with equation 4.2, the joint

distribution for the population model is

p(p, {i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∏
K

pak−1 ·
∏
N

∏
s∈I1,t∈I2

[pI[i1=s]
s · pI[i2=t]

t · lI[i1=s,i2=t]
n ](4.5)
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which in log space would be

log p(p, {i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∑
K

(ak − 1) log pk +∑
N

∑
s∈I1,t∈I2

I[i1 = s] log ps + I[i2 = s] log pt + I[i1 = s, i2 = t] log ln,s,t

As it is apparent here, having written the terms in the form of indicator func-

tions, it is simple to take the expectation with respect to q to give the following

variational lower bound on the log marginal likelihood as

l(q, p) ∝
∑
K

(ak − 1) log pk +∑
N

∑
s∈I1,t∈I2

q(i1 = s) log ps + q(i2 = t) log pt + q(i1 = s, i2 = t) log ln,s,t

where q(i1 = s) = q(i2 = s) =
∑

t q(i1 = s, i2 = t) which aggregates all the mass

of the two-dimensional matrix (genotype calls) into a one-dimensional vector

representing the overall frequency of an allele in a population at a given locus.

The E step is now simply

q(i1 = s, i2 = t) ∝ ps · pt · ln,s,t ∀s, t

It should be noted that q must be normalised such that
∑

s∈I1,t∈I2 q(i1 = s, i2 =

t) = 1. Finally, the M step will maximise parameters with respect to the prior as

pk ∝ αk − 1 +
∑
N

[q(in,1 = k) + q(in,2 = k)] = αk − 1 + 2
∑
N

q(in,1 = k)

where the final equation expresses the symmetry between i1 and i2.

4.2.3 Gibbs sampling

As a second, non-deterministic method, it would be useful to check the results

of our EM algorithm by having the full posterior using a Monte Carlo Markov

chain approach (MCMC). We used the Gibbs sampler for our MCMC process. In

essence, the Gibbs sampler samples from the two latent variables p and I in hopes
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of describing the true posterior. To start, we initialize p with some reasonable

value (i.e. uniform, gradual decay in density as you move away from the reference

length and equal dispersion of densities across the indels with the majority of the

density on the reference). From the conditional distribution in equation 4.2, we

can derive the conditional distribution for in,1, in,2 as

p(In,1, In,2|p, dn) = pn,i1 · pn,i2 · ln,i1,i2 (4.6)

The sampling of (In,1, In,2) involves sampling from the two-dimentional discrete

distribution for each individual n. Given the genotype {in,1, in,2}, the conditional

distribution on p is a Dirichlet and is calculated as

p(p|{i1,1, i1,2, ..., i|N |,1, i|N |,2}, D) ∝
∏
K

pαk−1
k ·

∏
n∈N

pn,i1 · pn,i2

∝
∏
K

p
P

N (I[i1=k]+I[i2=k]+αk−1)
k (4.7)

which is another Dirichlet with parameters given by the summation in the expo-

nent (
∑

N(I[i1 = k] + I[i2 = k] + αk − 1)). Explicitly, this equation is summing

the number of allele calls of a particular allele size swithin a population at a

given locus and combining these with the prior pseudocounts. We let the Gibbs

sampler run which iterates back and forth between sampling from p and I using

equations 4.6 and 4.7, respectively. We store each iteration’s values which are

later used to estimate our model’s parameters.

4.3 Simulation

To compare the EM and Gibbs sampling approaches, we simulated data with

various distributions of indel alleles, using real STR loci as our template. We se-

lected these sites from the 1,881 triplet repeat loci found by TRF on chromosome

20.
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4.3.1 Simulation of MPERS for spanning read pairs

The number of simulated spanning read pairs at each locus should match the

number of spanning read pairs observed at the same locus in the real data. This

ensures that our simulations will not give better results because of a discrepancy

in the number of of spanning read pairs. Looking across all positions in chromo-

some 20 (1,881 loci), we determined how many spanning read pairs were at each

locus for each individual’s library as we had in chapter 2. The count of spanning

read pairs was used to determine how many spanning read pairs we would simu-

late for each individual’s library.

The separation sizes of spanning read pairs that we simulated depended on the

empirical MPERS distribution of the relevant library, and on the repeat length

of each locus. Each sequence library’s length distributions were calculated from

approximately ten million reads (as discussed in chapter 2), but as this set of

MPERS does not adhere to the bias of MPERS in longer STRs, we sampled

directly from the generated empirical distributions (see chapter 2). For exam-

ple, if we were interested in simulating a scenario where all the individuals in

a population contain the reference allele at both copies – say a length of 50 bp

– then for each individual’s library, we would sample some number of reads (as

taken from the number of observed spanning read pairs in the real data) from

distributions of length 50 bp. The distributions were comprised of the MPERS

and the probability of observing that MPERS in the genome conditioned on the

reads being drawn from a repeat length of length l. We sampled directly from

this distribution by first calculating the cumulative distribution of the MPERS in

rank of smallest to largest, and then randomly sampled a value between [0,1] with

a precision of 10−7, or the probability of sampling a single MPERS from the dis-

tribution. This value correlated within some range of the cumulative distribution

of the MPERS (described as a step function) and the MPERS whose cumulative

probability value was the closest was the sampled MPERS. We did this for each

set of spanning read pairs for each individual’s library. These MPERS were then

used to calculate the likelihood of genotype calls for each individual as described

previously in section 4.2.
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The process becomes a bit trickier when we move away from simulating a ho-

mozygous reference scenario. First, we need to correctly simulate the relative

frequency of an allele within a population. A simple example would be where

fifty percent of all alleles in a population coincide with a deletion of 12 bp rela-

tive to the 50 bp reference length and the other fifty percent coincide with the

reference allele. This means that each individual has a fifty percent chance that

each of her alleles are either the deletion allele or the reference allele. This means

that there are three possibly genotypes an individual can have: homozygous ref-

erence, homozygous indel and heterozygous. To simulate this, each individual is

sampled twice from the frequency distribution of alleles at a locus. This yields the

true genotype of the individual at that locus. Then for each spanning read pair

(numbering in the amount of spanning read pairs in the real data as before), the

allele from which the spanning read pair comes from is sampled at a fifty percent

probability that it comes from either one allele or the other. This will obviously

only have any meaning for individuals whose simulated genotype is heterozygous

but it is important as the sampling of reads in real data is drawn at random

from one allele or the other. This procedure is carried out for every individual’s

library such that each person has some count of reads being drawn from one of

the two alleles that were sampled from the overall distribution of alleles in the

population. The spanning read pairs are then sampled from the distributions

of MPERS from an individual’s library in the same form as described above but

with one additional criteria: that the distribution from which the MPERS is sam-

pled from coincides with the true STR length. For example, say an individual

was sequenced from a single library and at a specific locus had four spanning

paired end reads. From the sampling of alleles, it came out that this individual

was heterozygous at this particular locus and it worked out that two reads came

from the reference allele and two reads came from the deletion allele. This means

that two MPERS were sampled from the distribution for that individual’s library

which coincided with the reference allele length (50 bp) and two MPERS were

sampled from the distribution for that individual’s library which coincided with

the deletion allele length (50 - 12 bp or 38 bp). All four reads were then used

in calculating the likelihood of genotype calls for that individual’s library, where
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the calculation of the likelihood is naive as to which allele these sampled MPERS

were drawn from – as would be the case for real data.

4.3.2 Simulation results

The simulated reads were used as input into our two algorithms for three differ-

ent scenarios: only reference alleles, two alleles off reference (±-9 bp, both at a

frequency of 0.5) and three alleles (0.45 density on both alleles -12 bp and 6 bp

and 0.1 density on the reference allele). We decided to look at multiple frequency

distributions to be sure that our algorithms were able to work on all frequency

scenarios we would encounter in real data. We also chose to use multiple popula-

tions to check the robustness of our model and to be sure that a model’s efficacy is

not contingent upon some unobserved criterion specific to a population. For our

analysis, we decided to use populations CHS and CLM which are comprised of 92

and 53 individuals, respectively. Our simulations were conducted using a uniform

prior which was a reasonable choice for our simulations to check whether each of

the algorithms was overfitting the data or not. The uniform prior would not be

appropriate for our later analysis of real data when we looked at the entropy, off

reference and off ±3 bp for each locus in a population (discussed in section 4.4).

4.3.2.1 Reference allele frequency

The first simulation was on the CHS population from an allele frequency dis-

tribution that was entirely comprised of reference allele lengths. We randomly

chose 14 loci in chromosome 20 for our analysis. We forced each locus’s length in

the simulation to match the reference and sampled MPERS from the distribution

which coincided with the reference length. The vector values for these 14 sites

for both the EM and Gibbs algorithm are shown in figures 4.4 and 4.5.
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Figure 4.4: Prediction of allele frequency distribution for the EM algorithm (blue
bars) in 14 simulated loci in chromosome 20 from an underlying allele frequency
distribution comprised solely of reference alleles based on a CHS population (red
bars). Most all the predictions’ allele frequency distributions center around the
truth (reference). However at start position 50159225, the predicted frequency
allele distribution differs greatly from the truth. Further inspection showed that
for this site, there were fewer reads spanning at this locus from the real data, which
in turn meant fewer simulated spanning read pairs which the EM algorithm could
use. Another example of misfitting is at position 62526548. In these cases, the
EM algorithm can over fit the data, leading to a confident false positive call.
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Figure 4.5: Allele frequency distribution prediction of alleles for the Gibbs sam-
pler algorithm (blue bars) in 14 simulated loci in chromosome 20 from an under-
lying allele frequency distribution comprised solely of reference alleles based on
a CHS population (red bars). Most of the predictions’ allele frequency distribu-
tions center around the truth (reference). However at start positions 50159225
and 62526548, the posterior allele frequency distributions are close to the uni-
form prior distribution because there is little information from the data. They
therefore would not create false positives as we had with the EM algorithm.
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4.3.2.2 Two and three allele population frequency alleles

The next step in determining the efficacy of the two algorithms was to see how

each performed when the allele frequencies were no longer all on one allele length,

as well as not all allele lengths corresponding to the reference length. In deter-

mining this, we simulated two scenarios: first a two allele frequency distribution

of ±9 bp in the CLM population, and second a three allele frequency distribution

in the CHS population with allele lengths corresponding to the reference allele,

a -12 bp deletion and 6 bp insertion. Thirty loci at random were chosen in chro-

mosome 20 for each of the two scenarios. Each algorithm then made calls at each

locus whose resulting allele frequency distributions were scrutinized against the

truth. Figures 4.6, 4.7, 4.8 and 4.9 illustrate the results of the two simulation

scenarios for each algorithm.
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Figure 4.6: Allele frequency distribution prediction of alleles for the EM algorithm
(blue bars) in 30 simulated loci in chromosome 20 from an underlying allele
frequency distribution of ±9 bp each at a 0.5 frequency (red bars) based on
a CLM population. As with the reference simulation, the EM is much more
aggressive, yielding both stronger signals on the truth, as well as, overfitting at
some loci, e.g. at the fourth locus in the bottom row.
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Figure 4.7: Allele frequency distribution prediction of alleles for the Gibbs sample
algorithm (blue bars) in 30 simulated loci in chromosome 20 from an underlying
allele frequency of ±9 bp each at a 0.5 frequency (red bars) in a CLM population.
Not as aggressive as the EM, sites show lower frequency peaks around the truth,
but the Gibbs sampler, as before, does not overfit the data.
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Figure 4.8: Allele frequency distribution predictions of alleles for the EM al-
gorithm (blue bars) in 30 simulated loci in chromosome 20 from an underlying
allele frequency of 0.45 at both -12 bp deletion and 9 bp insertion alleles and a
0.1 frequency at the reference allele (red bars) based on a CLM population.
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Figure 4.9: Allele frequency distribution predictions of alleles for the Gibbs sam-
pler algorithm (blue bars) in 30 simulated loci in chromosome 20 from an under-
lying allele frequency of 0.45 at both -12 bp deletion and 9 bp insertion alleles
and a 0.1 frequency at the reference allele (red bars) based on a CLM population.

4.3.3 Simulation results comparisons

After completing our three simulation runs, we sought to determine which al-

gorithm worked the best, while yielding the fewest false positives. To start, we
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looked at the average values each algorithm produced across all the loci for each

of the simulation scenarios. This gave us an idea of how well in general the

algorithms worked in ascertaining the underlying allele frequency distributions.

Averages were found by amalgamating all the allele frequency vectors for each

locus and then normalizing the values. The graph of these averages for each of

the algorithms is shown in figures 4.10 and 4.11.

Figure 4.10: Averages of allele frequency distributions (blue bars) across chromo-
some 20 for three simulation scenarios (red bars) for the EM algorithm.

Figure 4.11: Averages of allele frequency distributions (blue bars) across chromo-
some 20 for three simulation scenarios (red bars) for Gibbs sampling algorithm.
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Looking at the average frequency calls for both algorithms, it appears that both

perform well under the reference scenario for non-reference calls, with neither

method showing any systematic bias. It does stand to mention, however, that

the EM algorithm is better at distinguishing between multiple alleles. In the two

non-reference scenarios, the separation of allele frequencies is more clear cut for

the EM than the Gibbs sampler. From this, it could be argued that the EM is a

better choice.

However, aside from the overall averages of the allele frequency distributions

for each algorithm, its important to look at a per locus accuracy rate as we are

most interested in minimizing the number of false positive calls we make. As we

have already noticed (see figure 4.4), the EM algorithm has a tendency of over

fitting the data. When the amount of data is low – such that a putative repeat

length is not observed – the EM forces all the weight onto a few allele sizes. When

we plotted the values of the two algorithms on top of each other, it was clear that

the Gibbs sampler, though not as conservative, didn’t force the density onto a few

calls. The Gibbs sampler also left some of the uncertainty intact while the EM

did not. Figures 4.12, 4.13 and 4.14 show the comparison of the two algorithms

against one another from a selection of the previously graphed loci above. The

top graphs show where the EM predicts the underlying alleles accurately, and the

bottom two graphs where the EM’s predictions are overly aggressive.
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Figure 4.12: Comparison of the EM and Gibbs sampler algorithms for a reference
allele frequency distribution. The y-axis is the log probability of the frequency
of a given allele with the red dots denoting the true underlying allele. The sole
green line represents the values for the EM, while the green line with error bars
represents the Gibbs sampler’s predictions.
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Figure 4.13: Comparison of the EM and Gibbs sampler algorithms for a two
allele frequency simulation. The y-axis is the log probability of the frequency of
a given allele with the red dots denoting the true underlying alleles. The sole
green line represents the values for the EM while the green line with error bars
represents the Gibbs sampler’s predictions. The top graphs show where the EM
predicts the underlying alleles accurately and the bottom two graphs where the
EM’s predictions are overly aggressive.
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Figure 4.14: Comparison of the EM and Gibbs sampler algorithms for a three
allele frequency simulation. The y-axis is the log probability of the frequency of
a given allele with the red dots denoting the true underlying alleles. The sole
green line represents the values for the EM while the green line with error bars
represents the Gibbs sampler’s predictions. The top graphs show where the EM
predicts the underlying alleles accurately and the bottom two graphs where the
EM’s predictions are overly aggressive.
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Looking directly at the values of allele frequency distributions between the EM

and the Gibbs sampler algorithms, it shows explicitly that the EM algorithm

is much more aggressive compared to the Gibbs sampler and pushes almost all

the weight into some number of alleles that it has evidence for. The EM algo-

rithm does not follow the prior distribution (uniform in this case) when there is

not enough data for an allele call, and therefore would cause many more false

positives. Because of this, we used the more conservative Gibbs sampler for our

analysis on real data.

4.3.4 Test statistics

When we try to gain inference from the allele vectors produced by the Gibbs

sampler, it is important that we clearly define the statistics we wish to test so as

not to obfuscate what the data is telling us. From the simulation results, which

come from an idealized system, it does not seem plausible that we will make

specific, single allele calls with the data at hand. The natural way to call specific

alleles would be to set some threshold on the density and if an alleles density is

above the threshold, we would claim that that allele is present in the population.

Defining this value, however, would be difficult and would lead to either a large

number of false positives or false negatives. An alternative approach is to look at

the general composition of the allele frequency distributions. This line of thinking

led us to calculate the entropy of the allele frequency distribution at a locus, as

well as, how much of the density sits off the reference and ±3 bp alleles.

4.3.4.1 Entropy

To begin, we shall first give the formal definition of entropy: the measure of

disorder or unpredictability in a system. Mathematically, the entropy (H) of a

discrete random variable X with possible values {x1, ..., xn} (which for our system

are allele lengths relative to the reference) is calculated as

H(X) = −
|X|∑
i=1

p(xi) log p(xi)
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where p is the probability mass function (amount of density on an allele) of

random variable X. The base of the log can be of any value with the most

common being e, 10 and 2 yielding the entropy in units of nats, dits and bits,

respectively. It should also be noted that for values of pi = 0 for any element i,

the assigned value for the summand 0 · log 0 will be taken as zero. In the context

of our system, entropy is a measure of the amount of allele variability in our

learned allele frequency distribution. Systems whose entropy are low means that

the dispersion of data is also low (the true number of alleles is low). For instance,

say at a particular locus, all the density was in a set allele on the reference:

p(reference) = 1 and p(allele) = 0 for every other allele value. The entropy for

this locus would therefore be zero. Now, assume that all the alleles are of equal

frequency at that locus (p(allele) = 1
21

), the entropy would then be 1.322 (in base

10). This scenario would represent the maximum entropy for an allele frequency

distribution. An allele frequency distribution which predicts a multiallelic locus

would have a high entropy, while a locus that has most of its density on a specific

allele would have a low entropy. Explicitly, this statistic would declare which loci

are actively evolving or have a large number of alleles at a locus. While a locus

with a high entropy doesn’t tell us much about the actual allele frequencies other

than that they vary more than a low entropy locus, hypothetically a low entropy

locus would give us information we can use to determine whether the set allele(s)

is on the reference or not. To do this, we need to look at how much of the allele

density is off the reference/±3 bp.

4.3.4.2 Off reference/±3 bp

We consider two different statistics to measure whether the density away from

the reference is sufficient to say that there are non-reference alleles within the

population at that particular locus. Both these statistics are calculated simply

by subtracting either the learned frequency of the reference allele from one, or

the sum of allele frequencies of allele lengths +3, 0,−3 bp from one. Ideally, we

would be able to use one of these statistics in concert with the entropy statistic,

and from this, be able to tell a lot more about the locus than by each statistic

separately. For a locus which has a low entropy value but a high density off
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reference/±3 bp, we would believe that there is most likely a set allele at that

locus that does not coincide with the reference. However, as we will see below,

having low entropy and a high on reference density act as the null values for our

testing whether or not a statistic’s value at a locus is significant enough to assign

a call to it. This makes inference in the opposite direction more difficult.

4.3.5 False discovery rate

To accurately attribute some categorical value (actively evolving, off reference)

to each locus within a population (as described in 4.3.4.1 and 4.3.4.2), it was

important to first determine what values were in fact significant and which ones

weren’t. This was accomplished by extending our reference simulation to all

triplet tandem repeat loci (1,881) on chromosome 20 for each population. This

yielded 26,334 (1,881 loci · 14 populations) allele frequency distributions. Using

the methods described in 4.3.4.1 and 4.3.4.2, we calculated the values for entropy,

off reference and off ±3 bp for each locus in each population. As we know that

each of these sites were simulated under the condition that every allele for every

individual for every locus matched the reference length, we were able to calculate

the false discovery rate (FDR) at a given cutoff (c) for each population as follows

FDR =

∑
L I[sl > c]

|L|

where L is a set of loci and sl is the statistic value being tested (entropy, off

reference/±3 bp). For entropy, we iterated through cutoffs ranging from [0,2.5]

by increments of 0.001, and for the off reference/±3 bp, iterated through cutoffs

ranging from [0,1] by increments of 0.001. This ultimately yielded a full range of

FDR values from 0 to 1 and the associated cutoff value for each FDR value.

We applied the methods described above to all 1,881 triplet repeat STRs on chro-

mosome 20 for all 14 populations, using each of the test statistics and both the

conservative and decay priors. This makes 1, 881 ·14 ·3 ·2 = 158, 004 tests in total.

Next, for each cutoff threshold we subtracted the number of false positive calls we
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would expect to observe based on our FDR simulations, and plotted the net esti-

mated number of true calls against the FDR. We refer to true calls as the number

of loci called whose value is above the cutoff minus the number of expected false

positives. For example, if in the real data we observed 400 sites which are above

the cutoff for a FDR of 0.05 (chosen to minimize the number of false positive

calls), this means that out of all these 400 calls, roughly 94 are false positives

(1, 881 ·0.05). Taking these false positives into consideration, we are left with 306

true calls ( 400 - 94 ). Shown below are the plots for each statistic/prior pair for

three different populations.
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Figure 4.15: Plot of FDR versus true calls for the ASW population for triplet
repeat loci on chromosome 20.
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Figure 4.16: Plot of FDR versus true calls for the MXL population for triplet
repeat loci on chromosome 20.
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Figure 4.17: Plot of FDR versus true calls for the PUR population for triplet
repeat loci on chromosome 20.

These plots (4.15, 4.16 and 4.17) show a clear advantage in the number of true

calls for the statistics entropy and off ±3 bp. At a FDR of 0.05, the average

weight off ±3 bp for all populations using the decay prior is 0.966 (range of

[0.952,0.977]) and 0.951 (range of [0.915,0.969]) for the conservative prior. We

chose to exclude population IBS as it was only sequenced from six individuals

and its calculated off ±3 bp weights were 0.765 and 0.463 for the decay and con-

servative prior, respectively. The number of loci above the cutoff at a FDR of

0.05 for both entropy and off ±3 statistics using both priors is roughly 90 calls

for each population. Therefore, given our analysis is only on chromosome 20 and

assuming it is representative of the rest of the genome’s ratio of significant loci to

non-significant loci, we would expect to observe over 4,100 independent loci with

significant values for each of the statistic/prior pairs.

We also observed at a number of FDR values (particularly in the off reference

statistic) whose number of expected true calls were negative. This could be be-
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cause the real data is subject to reads not mapping uniformly around real sites

(as they did in our simulation), so the MPERS observed don’t actually come

from the genome wide MPERS distribution. It may also come from multiple low

frequency alleles in the population whose frequencies’ are not large enough to be

picked up by the Gibbs sampler, and are therefore washed away by the prior,

making reference calls more likely.

4.4 Results

We marked out loci across all populations that passed a cutoff corresponding to a

FDR of 0.05 by combining the calls made with either prior. The highest number

of significant loci coming from the combined prior calls was made by the entropy

statistic (1,361 unique loci) followed by the off ±3 bp statistic (1,019 unique loci)

and lastly the off reference statistic (733 unique loci). The number of calls per

prior were almost equal: 1,609 unique loci coming from the decay prior and 1,617

unique loci coming form the conservative prior. From here on, we shall focus our

analysis on the entropy and off ±3 bp statistics.

We next looked at how many loci are called in multiple populations (≥ 5) for the

same statistic (entropy and off ±3 bp) and diagrammed the intersection of the

two statistics’ calls (see figure 4.18).
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Figure 4.18: Venn diagram of intersection of significant loci called by entropy and
off ±3 bp.

4.5 Discussion

For sites where there is a trend for the off ±3 bp statistic in multiple popula-

tions, it most likely means that the reference is the minority global allele (303

loci having a call for off ±3 bp statistic in five or more populations). Loci which

have calls for the entropy statistic in multiple populations mean that these loci

are more likely to be actively evolving and less likely to be under selection (400

loci having a call for entropy in five or more populations). On the other hand,

its harder to say which sites are truly reference or under selection as these values

represent the null in our modeling.

When we looked for loci which were called both for entropy and off ±3 bp,

we found that only 66 sites matched this criteria. This is not altogether that

surprising. These results are consistent with it being unlikely for there to be a

dispersed distribution of allele sizes but almost no reference allele. One would
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expect an actively evolving site to contain at least some density on the reference

allele length in the population.

4.5.1 Factors

As an extension to our analysis in chapter 3 of how the factors of a repeat locus

affect the probability of observing an indel, we decided to explore the same factors

as described in chapter 3 for our two population statistics. To begin, we first fit

a logistical model on whether or not a locus was called using criteria for entropy

and off ±3 bp statistics (at an FDR of 0.05). We next fit a linear model for

sites which were called significant and explored how the factors affected the value

of the two statistics. The values were modeled independent of which prior they

came from; meaning all calls for both priors were lumped together. The plots for

coefficient values are shown below in figures 4.21, 4.22, 4.21 and 4.22.
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Figure 4.19: Bar graph of absolute values of coefficients from logistic linear model
on whether a locus’s entropy value is significant against various factors.
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Figure 4.20: Bar graph of absolute values of coefficients from logistic linear model
on whether a locus’s off ±3 bp value is significant against various factors.

First looking at the logistic modeling of whether a locus has a significant value

for both the entropy and off ±3 bp statistic, we observe that many of the fac-

tors values seem to be relatively in the same order of significance, direction and

magnitude. The statistic GConly has the strongest influence on a locus having a

significant value for both statistics followed closely by both purity and GC con-

tent statistics. The population factors are relatively insignificant for the entropy

statistic and have some influence in the off ±3 bp statistic. In the off ±3 bp statis-

tic, the strongest correlations are negative (compared to the ASW population) in
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populations TSI, CEU, LWK, JPT, YRI and CLM. Inspection of these popula-

tions’ sequencing statistics gives no reason as to why some populations might be

more readily called than others. Furthermore, CHS and CHB (two closely related

populations) have relatively equal correlations in the same direction. This would

lead us to believe that there might truly be correlations in populations which

warrant further inspection. The motifs have relatively little influence, with AAG

having the strongest correlation (positive) which is exactly the same as observed

in our chapter 3 results. The only motif with a stronger signal in the previous

chapter’s modeling was that of AAT (which had a low p-value in our modeling

and was therefore not graphed). The prior had no influence on the system.

If we now go back and scrutinize the larger coefficient values with those in the

logistic linear models in chapter 3, the coefficients are at relatively the same value

and rank, however, GConly and GC100 are both negatively correlated with ob-

serving a variant when they are positively correlated with having significant values

for entropy and off ±3 bp statistic. While both populations YRI and CEU (from

which the individuals in chapter 3 belong to) are negatively correlated with the

entropy and off ±3 statistics, this most likely doesn’t account for this reversal in

influence. Another explanation could be that while the 1000 Genomes Project’s

individuals are sequenced to a lower depth, their combined reads are enough to

overcome the bias in less reads mapping to loci whose proximal sequence is GC

rich (see chapter 3). However, the strongest explanation requires us to think back

to the values of the of the linear regression for magnitudes of indels in chapter 3.

The values for this model showed that the GC content was positively correlated to

there being larger indels when they were observed. Allele frequency distributions

which have smaller alleles would most likely not have enough power to be called

from our entropy and off ±3 bp tests. This knowledge indicates why the larger

indels (which would give rise to higher entropies and off ±3 bp values) would

be positively correlated to the amount of GC content in a region, as observed

previously.

We next fit a linear model to the values of both statistics conditioned on the

statistic’s value being significant.
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Figure 4.21: Bar graph of absolute values of coefficients from linear model of
significant entropy loci values and the various explanatory factors.
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Figure 4.22: Bar graph of absolute values of coefficients from linear model of
significant off ±3 bp loci values and the various explanatory factors.

The same trend in relative size and order is observed for both statistics as was

seen in the previous logistic regression. The only difference being, for the off ±3

bp statistic, GConly negatively influences higher off ±3 bp values. This reversal

is most likely an artifact of the low number of sites used to fit this model – as seen

by the extremely small coefficient values. The values are further corroborated by

comparison to the linear regression for the magnitude of indels in chapter 3 which

shows an almost identical order and relative influence of one factor compared to

another.
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The main hinderance in the modeling of this call set is that the number of loci

assayed is low. However, it is encouraging that the modeling of factors in this

chapter and the previous chapter corroborated, which leads us to believe that the

results are correct and that the learned coefficients do in fact correctly model the

influence each factor has on the allele frequency distribution of tandem repeat

loci.

4.6 Conclusion

Inevitably, our power to model and make inference in this system comes down

to the number of individuals sequenced in a population and their combined se-

quencing depth. For the 1000 Genomes Project data set, split into populations,

it would appear that there is enough data to give some relevant information

about the tendency for a site to be variable, but nowhere close to enough read

information to determine the exact frequency of each allele in a population. A

further study could look back at the reported allele frequency distributions and

make predictions on a range of alleles by setting some threshold on the amount of

density needed to attribute a specific variant in the population. A good starting

place would be places where there is significant weight in the off ±3 bp statis-

tic. One approach to get more information will be to combine the populations

into a global population and see how this affects the values of the statistics at

each locus. We presume that loci that were found to have calls shared across all

populations will continue to be found in this joint analysis, and we also believe

that amalgamating the data might also give enough information to call loci which

previously went uncalled in the individual populations. We have not been able

to carry out this combined analysis yet because of compute resource limitations

in our implementation.

We modeled the effect each factor (as described in chapter 3) has on the val-

ues of our two statistics in both a logistic linear and linear model. The values of

coefficients we found from the modeling were in line with the values and direction
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of coefficients we had observed in the previous chapter – and when not, a expla-

nation was presented as to the cause of the discrepancy and therefore explained

away in context. The continuity of coefficients between the two chapters illus-

trates the viability of this type of exploration in tandem repeat loci. Further, as

the 1000 Genomes Project data set grows, we believe our exploration using this

data will broaden our understanding of what role each factor plays – and to what

extent – in the variation of tandem repeats.
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Conclusions

5.1 Conclusions, discussion and future work

For the past four years, I have endeavored to understand a specific area of ge-

nomic diversity that warrants attention. STR loci remain difficult to type using

new sequencing technology, and because of this, are not fully characterized. My

research has sought to produce a reliable model to type the STR loci of high

sequencing depth individuals using paired end read next generation sequencing

data. From these calls, I sought to characterize the factors which increase or de-

crease the probability of observing a variant at a locus. My single sample variant

calling model was then reformulated to look at the overall genomic diversity of

STR loci in population data of low sequencing depth individuals.

5.1.1 Modeling variation in STRs

The development of STRYPE (chapter 2) has added a new tool to the genomic

variation community that has been specifically designed to type STRs. Because

of their variability within a population, being able to type STRs will assist in

both evolutionary and disease analysis. More so, as many triplet repeats are as-

sociated with – or even the causative factor of – many diseases, additional typing

of STRs may lead to further discoveries.

However, as sequenced reads become longer (from 35 to upwards of 100 bp as
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discussed in the introductory chapter) the number of sites in the genome which

are unable to be typed by split alignment start to diminish quickly. This does

not, in fact, remove the need for alternative methods for typing short tandem re-

peats. Split alignment algorithms will ultimately be the standard indel callers as

technology develops, but they are still constrained by the length of the read and

computational limitations. Longer tandem repeats will still remain unassayed, as

well as, larger indels which are prohibitively expensive to explore due to the large

computational requirements needed to accurately determine the size of an indel.

The latter – and I believe larger problem – will remain the limiting factor until

computational power increases to a point where large scale searches of indels of

varying sizes are not longer prohibitively expensive. That being said, there exists

huge amounts of data that has been sequenced with shorter reads, and to low

enough depths, that normal split alignment tools may be unable to correctly type

– from the three trio families and the 1000 Genomes Project described in this

report to the UK10K Project, as well as, many non-human genomes and projects

(1001 Genomes (Arabidopsis thaliana) project). Without the methods described

here, untold magnitudes of variation would be overlooked. As these sequencing

projects are already underway or complete, to maximize the benefit of their se-

quencing, it is important that the largest amount of information be gleaned from

this sequencing and we believe our method does just that.

5.1.1.1 Future work

In modeling variation in a deep sequenced individual (using a Bayesian approach),

we needed to describe a prior which mitigated the problem of over fitting a sam-

ple’s sequencing data to our calls (described in chapter 2). For our original im-

plementation of STRYPE, the prior was based solely on the calls made from low

sequencing depth capillary reads which only gave us the probability of observing

a single allele of a given repeat length compared to the length of the STR in the

reference. An additional heuristic prior was later added to correct overcalling

of less likely genotypes. Since we are now able to type more and more STRs

across multiple individuals, we can exploit the resulting information by feeding

it back into our model. From this, the validation and simulation data can be
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applied in tandem to learn the true genotype and indel magnitude prior, yielding

a more descriptive and biologically accurate prior we were without in our initial

modeling.

5.1.2 Characterizing STR variation

The analysis of influences different factors have on a STR exhibiting variation

has been limited by the ability of researchers to type many STR loci across many

individuals from a single sequencing platform. Though having its own limita-

tions, whole genome wide shotgun sequencing using next generation sequencing

machines has given geneticists access to magnitudes more sequence data.

As STRs can be characterized by a relatively small number of factors, it is possible

to learn the influence each factor has if a sufficient number of loci are typed across

multiple individuals. Doing just that, we were able to determine the influence

a variety of factors have on triplet repeat STR variation by typing nine deeply

sequenced individuals and regressing the factors against both the observation of

a variant and the size of the variant.

5.1.2.1 Future work

As we focused solely on triplet repeats, the natural progression will be to broaden

our assay to all STRs. To this end, we have identified, using TRF, all 1-10, 15

and 20 bp motifs. It will be interesting to see how the various factors influence

variation across different motif sizes. We presume the length of the longest pure

stretch will remain the strongest influence, but whether the other factors remain

relatively the same will be an interesting study. However, we should point out that

triplet repeats (the focus of this report) are a special set of tandem repeats within

the genome and may not be representative of tandem repeat polymorphism in the

human genome. As discussed in the introductory chapter, the absolute number

of triplet repeats in the human genome is not in line with the number of loci

you’d expect to observe given the trend of decreasing number of loci as motif

length increases. This gives credence to the belief that these sites are different
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and may behave differently when undergoing mutation than the other tandem

repeats, a consideration to keep in mind when modeling the different factors that

effect the probability of observing an indel at a given repeat locus. Also, since the

triplet repeats’ motif length is the same as a reading frame during translation, this

would most likely cause them to act much differently in transcripts – especially

in exons – than other tandem repeat motif lengths. It is also clear from other

indel callers, such as DiNDEL, that different motif length tandem repeats exhibit

different characteristics, as is the case for homopolymers. While homopolymers

are more likely to exhibit sequencing errors, some tandem repeats may fold back

on themselves which could introduce a bias during sequencing (such as the in-

trastrand hairpin structures formed by the CAG/CTG class of triplet repeats

which have been associated with neurological diseases). All these considerations

should be explored and modeled in future implementations. And lastly, once we

have ascertained the relative influences of each factor, to compare them across

all motif lengths would be of great interest. Comparing them side by side would

illustrate what effect (if any) the length of the motif plays in STR variation.

5.1.3 Modeling STR loci in large population data sets

Understanding and defining population scale genomic variation is at the forefront

of bioinformatics research. The low cost and rapid pace of sequencing of whole

genomes has made it possible for geneticists to describe genomic variation down

to allele frequencies of a percent or below in a population for SNPs and small

indels. In hand with this, we sought to understand STR variation on a population

level by calculating the entropy and off reference/±3 bp weight of variants at a

given locus in a population. This study provided a set of loci on chromosome 20

that were shown to be either more variable than expected or whose distribution

of variants at a locus is not best described by the reference.

5.1.3.1 Future work

Memory restraints limited our prototyping to chromosome 20 as it was relatively

easy to assay due to its size (about 2% of the whole genome). However, we
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were unable to run a global data set with all the individuals of each population

combined together. As each population is comprised of a different number of

libraries – that are all in turn sequenced to a different depth – its best to start by

generalizing when discussing the constraints in running a full population assay.

So to start, the number of libraries per population ranges from 6 to 143. For a

single population, our program loads each likelihood file into memory (ranging in

size from 3,852 to 7,340 Kbs, with a mean and standard deviation of 6,640 and

829 Kbs, respectively), and then models the most likely configuration of allele

lengths at a given locus in a population (as outlined in chapter 4). Given the

population with the largest number of libraries (CHB), the amount of memory

needed just to read in the files (at an average size of 6.6 Mbs) – and excluding all

the overhead – is roughly a GB. With Perl’s overhead, this brings the memory

requirement to just under 2 GBs – which is the maximum allotted memory for

a job to run without explicitly requesting more memory. However, on a good

note, the computational requirements were well within the limits; the longest run

(as we ran each population a few times to assure that the sampling was work-

ing) took 70679.96 CPU seconds. When we tried to run the global population by

combining all the libraries (1173), this brought the baseline memory requirements

to 7.7 Gbs – not including the overhead. This pushed our memory requirements

well above the standard memory allotment. Because of this, the next step will

be to figure out a way to reformulate our model so that we can run both full

genome and global data sets or request a much larger segment of memory to be

allocated to our population run – an expensive and somewhat wasteful proposi-

tion. The more sensible, albeit difficult and time consuming task, would be to

rework the model such that only one locus is read in at a time. This does have

the consequence of taking much more time computationally but we must weigh

out the cost and benefits of using up more memory or more computational cycles

– a question best posed to the system’s administrator of our supercomputer farm.

Ultimately, as chromosome 20 had relatively few triplet repeat loci (1,881) com-

pared to the rest of the genome (80,868 in the autosomes), we are sure that many

more sites will be found which warrant attention and whose factors can also be
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scrutinized as those in the high depth sequenced individuals. And as before, we

will be able to consider the motifs of all lengths as well.
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