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4.1 Aims: 

 

1. To investigate the underlying architecture of severe developmental disorders by 
carrying out burden analyses for evidence of autosomal recessive disease 
 

2. To generate a population matched control dataset for studying individuals with 
developmental disorders using the untransmitted diplotypes from parent offspring 
trios 

 
3. To contribute to the significant improvement of the diagnosis of children with 

developmental disorders as a clinician researcher working as a member of the 
Deciphering Developmental Disorders (DDD) analysis team. 

 
 

4.2 Introduction  

4.2.1 Developmental disorders and motivation for this investigation 
 
Developmental disorders are a diverse group of conditions that result in abnormal 

human development. Identifying the underlying genetic causes of these disorders has 

considerable benefit to affected individuals and their families, healthcare services and 

society.  Strategies to unravel the causes of developmental disorders have been 

improving for decades, however despite decades of gene discovery efforts large 

numbers of families remain without a diagnosis for their disorder.  A detailed background 

to developmental disorders is found in Chapter 1: Introduction.  

 

The advent of next generation sequencing approaches has significantly improved 

discovery of the genetic cause of developmental disorders, however there are many 

more disorders to discover. Particular challenges to gene discovery in this current era of 

genomics include accurately assigning pathogenicity to variants, and establishing 

population matched, technically non-biased, phenotypically healthy control cohorts.  In 

terms of developmental disorders, the contribution of the various types of autosomal 

disorder to developmental disorders as a whole is unknown.    

 

4.2.2 The Deciphering Developmental Disorders (DDD) Study 
 

With the increasingly widespread use of whole exome sequencing many local, national 

and international collaborations have been formed to share resources and combine 



 

patient numbers to make diagnoses and facilitate new gene discovery. In the UK, the 

Deciphering Developmental disorders (DDD) study is a collaborative research study 

involving researchers from the Wellcome Trust Sanger Institute and Clinical Geneticists 

and Clinical Scientists from all the Clinical Genetics units in the UK and Ireland(48).  The 

aim of the DDD study is to improve Clinical Genetic practice for children with 

developmental disorders.  The entry criteria are severe, undiagnosed developmental 

disorders with the majority of individuals recruited having intellectual disability (see Table 

4-1).  

 

Inclusion Criteria Exclusion Criteria 

1. Neurodevelopmental disorder 
AND/OR 
 

2. Congenital anomalies AND/OR 
 

3. Abnormal growth parameters  
(height, weight, OFC, 2 items 
>3sd, 1 item >4sd) AND/OR 
 

4. Dysmorphic features AND/OR 
 

5. Unusual behavioral phenotype 
AND/OR 
 

6. Genetic disorder of significant 
impact for which the molecular 
basis is currently unknown 
(affected family members) 

1. Adults with capacity in Scotland 
 

2. Terminations and stillbirths 
 

3. Children with a known molecular 
diagnosis 

 

Table 4-1 Recruitment criteria for the Deciphering Developmental Disorders (DDD) Study.  Inclusion 
criteria and exclusion criteria for the DDD study.  

 

The DDD study has a recruitment network of 180 clinicians recruiting from 24 regional 

genetics services throughout the UK and republic of Ireland.  The DDD study uses whole 

exome sequencing in trios (proband and both parents) to make diagnoses and to 

facilitate the discovery of new genes implicated in developmental disorders.  To enable 

consistent phenotyping using standardised terms, Probands and their parents undergo 

detailed clinical phenotyping using Human Phenotype Ontology (HPO)(58) terms (see 

also Chapter 1: Introduction) by their local clinician.  This phenotypic information is 

entered into a portal in the Decipher database(118) alongside anthropometric data and 

information about family history, birth history, pregnancy and neuro-imaging.  Decipher 



 

facilitates further gene discovery through recording variation in a standardised updatable 

manner and making this available to clinicians worldwide(118). 

  

A clinician curated database is used in order to facilitate the feedback of causal gene 

variants within the DDD Study.  The Development Disorder Genotype-2-Phenotype 

Database (DDG2P) is a database of published genotype-phenotype relationships for 

genes associated with developmental disorders(196). The DDG2P was curated from 

data obtained from UniProt, OMIM and a systematic screen of the American Journal of 

Human Genetics and Nature Genetics since 2005.  The DDG2P is updated regularly to 

incorporate new developmental disorder genes as they are published, or further 

evidence about the relationship of a gene with a developmental disorder.  The DDG2P is 

categorised into the level of certainty that the gene causes developmental disease 

(confirmed, probable or possible), the mechanism of associated mutations (e.g. loss-of 

function, activating) and the allelic status associated with disease (e.g. monoallelic, 

biallelic) see Table 4-2.   

Category Choices 

level of evidence for Developmental disorder 
association 

Confirmed DD gene, Probable DD gene, 
Possible DD gene, Not DD gene, IF gene, 
DD and IF gene 

Inheritance mode Monoallelic, Biallelic, Both, Imprinted, 
Digenic, Hemizygous, X-linked dominant, 
Mosaic, Mitochondrial, Uncertain 

Mutation type Loss of function, All missense/in-frame, 
Dominant negative, Activating, Increased 
gene dosage, Cis-regulatory or promoter 
mutation, Uncertain 

Table 4-2: Summary of the curation categories for genes associated with developmental disorders 
in the Development Disorder Genotype-2-Phenotype Database DDG2P clinician curated database.  
DD = Developmental disorder, IF = Incidental finding. 

 
The DDD study has a bioinformatics pipeline to filter and flag variants in DDG2P genes 

for clinical reporting.  In addition, multiple analyses are carried out to drive discovery of 

new genes, including analyses aimed at discovering new genes underlying specific 

modes of inheritance such as dominant disorders and recessive discovers.  One of my 

key roles in the DDD study was to investigate autosomal recessive inheritance in the first 

1133 trios. 



 

4.2.3. Recessive gene discovery: A short history 
 
Homozygosity (or autozygosity) mapping in consanguineous families has been a 

powerful approach to identify the cause of rare autosomal recessive conditions(197, 

198).  Consanguinity, usually defined in Clinical Genetics as a union between a couple 

who are second cousins or closer(199), is common in many cultures(199, 200).  

Consanguinity increases the coefficient of inbreeding (proportion of the genome which is 

identical or homozygous by descent) and therefore increases the likelihood of 

pathogenic mutations in a homoallelic state. Homozygosity (or autozygosity) mapping 

has been modified and improved in line with advances in technology.  The underlying 

principle is that a hypothesis-free genome-wide search is carried out for overlapping 

blocks of homozygosity in affected individuals, usually from multiple different families.  

Then the disease causing mutation is identified through sequencing genes within 

overlapping regions.   At first the detection of autozygous regions was carried out by 

genotyping individuals with panels of highly polymorphic microsatellite markers, 

subsequently single nucleotide polymorphism (SNP) arrays(201) were used.  

 

In terms of limitations, despite the use of SNP arrays and computational analysis for 

linkage, the capillary sequencing involved to identify the disease gene is extremely time 

consuming, particularly in gene-rich areas or for large candidate intervals.  This 

technique is also heavily dependent on the availability of consanguineous families.  A 

significant proportion of individuals with recessive diseases are not the product of a 

consanguineous union, however gene mapping for recessive disorders in outbred 

populations has been much more difficult than autozyosity mapping(202).  Limited 

linkage information from nuclear families and the heterogeneity of causative mutations in 

these families, are reasons why gene mapping has been so difficult in outbred 

populations.  

 

The first developmental disorder solved by whole exome sequencing was the autosomal 

recessive condition Miller syndrome(41) (see chapter 1: Introduction). Since this time, 

next generation sequencing techniques have increasingly been employed as a fast 

alternative for sequencing genes within the overlapping blocks of homozygosity to high 

depth when carrying out homozygosity (autozygosity) mapping. Makrythanasis et al 

carried out autozygosity mapping and whole exome sequencing and array CGH in 50 



 

consanguineous families with neurodevelopmental disorders and reported a diagnosis 

rate of 38% in 18 families for variants in known disease associated genes (1 though 

array CGH, 17 through whole exome sequencing)(203).  However, these studies are 

limited by the necessity of investigating consanguineous families, small numbers and the 

difficulty of assigning pathogenicity to variants.  Other authors have carried out recessive 

gene discovery using Array-comparative Genomic Hybridisation (aCGH) in combination 

with whole exome sequencing.  Aradhya et al found 10.1% of 138 families (who had 

been found to have a single mutation in a bilallelic gene on sequencing) were found to 

have a CNV on the other allele through exonic array CGH.  Array CGH has also been 

used in combination with a SNP array to detect a homozygous disease causing CNV in a 

region of autozygosity in single families, each within a large study combining SNP arrays 

and array CGH(203, 204). 

4.2.4 Challenges to recessive gene discovery 
 
During the last decade, the identification of de novo dominant copy number variants 

improved the diagnosis of genetically heterogeneous developmental disorders (reviewed 

by Mefford et al(205)).  More recently with the advent of next generation sequencing 

technologies, the identification of de novo single nucleotide variants (SNVs) and small 

insertions and deletions (indels) has revolutionised the diagnosis and understanding of 

sporadic developmental disorders(85, 206, 207).  In dominant disorders, de novo 

mutations are so rare they give a clue about causality, however everyone has some 

homozygous or compound heterozygous missense variants that are harder to assign 

pathogenicity to and understand.  Also for some recessive diseases which require there 

to be one loss of function allele and one hypomorphic allele for pathogenicity, (as 

bilallelic loss of function alleles would likely not be compatible with life, and biallelic 

hypomorphic alleles would not cause disease), it would be impossible to detect the 

underlying genetic cause for these disorders using linkage in a consanguineous 

population using this technique. 

 

4.2.5 Summary  
 

The advent of next generation sequencing approaches has significantly improved 

discovery of the genetic cause of developmental disorders, however there are many 



 

more disorders to discover and the contribution of the various types of autosomal 

disorder to developmental disorders as a whole is unknown. The DDD study is a national 

study to improve the diagnosis of developmental disorders that employs genome wide 

techniques to diagnose multiple underlying genetic mechanisms causing developmental 

disorders. 

4.3 Methods 

4.3.1 Whole exome sequencing within the DDD Study 
 
DNA and or saliva samples were sent to the Wellcome Trust Sanger Institute (WTSI) 

from regional genetics centers for processing and sequencing by the WTSI core facility.   

 

Quality control, including confirmation of family structure and gender 

 

On arrival at the WTSI individual samples were evaluated for DNA quality, call rate and 

average heterozygosity using a Sequenom assay (Sequenom, San Diego, USA). For 

quality control, in order to detect and remove poor quality samples individual samples 

with a heterozygosity value below 0.195 or above 0.756 or a call rate less than 0.74 

were failed.  Trios were analysed for mismatches between the genotyped gender versus 

the stated gender versus in sequenom data.  Trio samples were also analysed for the 

likelihood of the expected pedigree structure.  This assessed for sample mix ups and 

non-paternity and non-maternity.  All pedigrees demonstrating non-standard relatedness 

were evaluated manually before any further sample processing was allowed to occur. 

 

Whole Exome Sequencing 

 

Whole exome sequencing was carried out on DNA samples from all probands and both 

parents using SureSelect RNA baits: Human All Exon V3 Plus with custom ELID  

#C0338371 (Agilent, Wokingham, UK), and 75 base paired-end sequencing on the 

HiSeqTM 2000 platform (Illlumina, saffron Walden, UK).  The bait design used 

incorporates 271,063 bait regions and includes the Agilent Sanger-Exome (Human All 

Exome 50mb Kit) with an additional 57,680 bait regions used to cover ultra-conserved 

regions, heart enhancers and additional enhancer regions.  The median sequencing 



 

depth was 90X across the whole targeted sequence with 95% of samples having an 

average sequencing depth in excess of 65X. The WTSI core facility carried out all of this 

work. 

 

SNV and INDEL Detection (GAPI pipeline at the Wellcome Trust Sanger Institute) 
 

The Genome Analysis Production Informatics (GAPI) pipeline at the Wellcome Trust 

Sanger Institute was used to process all Binary Alignment/Map (BAM) files.  The 

reference genome (GRCh37_hs37d5) was used for read mapping.  Picard (version 1.46) 

was used to mark duplicate fragments, GATK (version 1.1) was used to perform local 

realignment around INDELS and was then used to recalibrate base qualities. SNVs were 

called with GATK using the UnifiedGenotyper, INDELS and SNVs were called with 

Samtools (version 0.1.16) mpileup options -d 500 -C50 -m3 -F0.002 and variants were 

filtered using the vcfutils.pl utility and options –p -d 4 -D 1200 from Samtools.  A 

dedicated INDEL caller, Dindel (version 1.01) was used to call a further set of INDELS.  

Individual single sample variant call formatted (VCF) files were produced by the GAPI 

pipeline for each caller (Samtools, GATK and Dindel).  These individual files were then 

combined into a merged VCF file.  Resolution of merging conflicts was carried out in the 

following caller order: Dindel, GATK, Samtools where the first caller in this list (the 

primary caller) was used to define the position and genotype of the variant. The Genome 

Analysis Production Informatics (GAPI) pipeline team at the Wellcome Trust Sanger 

Institute carried out this work. 

 

4.3.2 Concepts behind my method: Transmission of disease alleles and burden 
analyses 
 
There are two concepts that were important in the conception of the method I used in my 

investigation.  These were the ‘transmission of disease alleles’ and the concept of 

‘burden’.  I will detail these here: 

 

Transmission of disease alleles 

If the proband has a recessive disorder it is expected that they have inherited a disease 

allele from each of their parents.  If the proband has a new dominant disorder, then this 

has not been inherited from a germline variant in either of their parents.  If a proband has 



 

a dominant disorder and they have inherited this from one of their parents who is also 

affected (or a carrier female in the case of X-linked disorders), then the proband would 

also be expected to have inherited the disease allele from this parent.  Therefore, the 

alleles the proband hasn’t inherited from their parents, when put together, form the 

genome of a theoretical human whose phenotype would be expected to be normal.  This 

is because for all of the above scenarios the disease alleles have been passed to the 

proband, or arose de novo in the proband in the case of a new dominant disorder. 

Processed whole exome sequencing data in variant call format files doesn’t give the 

whole sequence at every allele.  However, it does give all of the variants from the 

reference sequence.  Therefore, taking all of the variants from each parent that the 

proband didn’t inherit and putting them together gives the ‘untransmitted diplotype 

control’ for that trio.  In summary, If the cause of the proband’s developmental disorder is 

genetic then it results from a variant or variants they carry or a structural rearrangement 

or imprinting defect within their genome. Therefore, an individual inheriting the variants 

carried by both parents, that the proband did not inherit, (the ‘untransmitted diplotypes’) 

is predicted to be no different from a random individual in the population.  The 

untransmitted diplotype control is also matched to the population of the proband and 

their parents and the data has been processed in the same way as that of the proband.  

This analysis was carried out prior to the generation of the ExAC database which 

contains control data from around 60,000 individuals from exome sequencing 

studies(120) and therefore there were less control data available at this stage.   

 

Burden  

Burden refers to the enrichment of a defined subclass of variation in cases, over null 

expectation. For example, Girirajan et al investigated children with intellectual disability 

and showed that children with multiple severely damaging copy number variants (a 

greater burden) had neurological and specific organ deficits in more domains than those 

with a single variant(208).  The presence of a burden of a subclass of variation does not 

implicate any one variant as causal.  Instead, it demonstrates the relevance of that class 

of variant, and prioritizes it for further investigation.  In addition, burden analyses may 

help dissect the underlying architecture of genetic disorders by enabling an estimation of 

the proportion of variants of a particular class that are likely to be pathogenic.  For 

example, burden analysis may show that recessive diseases contribute significantly to 



 

undiagnosed developmental disorders, by showing an enrichment of inherited 

pathogenic alleles inherited from unaffected parents in affected individuals compared to 

controls.  Alternatively, they might highlight a contribution of recessive disease to 

developmental disorders by demonstrating an excess of compound heterozygous or 

homozygous loss of function or protein altering variants in affected individuals compared 

to controls. Also, if there was evidence that a significant number of undiagnosed 

developmental disorders have recessive inheritance, it may help give parents empiric 

recurrence risks for future pregnancies. 

 

4.3.3 I merged and filtered variant call format files (VCFs)  
 

In order to generate the untransmitted diplotype control, for each trio, I merged the 

mother, father and proband’s VCF files using VCF tools(160). From the merged VCF 

files, I wrote custom programs in Perl to generate the untransmitted diplotype controls.  

To improve variant quality and reduce the inclusion of sequencing errors I removed non 

‘PASS’ variants.  In order to remove sites where artifacts are likely, I removed variants 

with multiple reference alleles or multiple alternate alleles.  Finally, I removed intronic 

and upstream variants. In addition, I removed indels, CNVs, X and Y chromosome 

variants.  I next calculated the genotypes of the untransmitted diplotypes based on the 

genotypes of the mother, father and proband for each trio (table 4-3).  

  



 

 

Mother Father Proband Untransmitted 

diplotype 

0/0 0/1 0/1 0/0 

0/0 0/1 0/0 0/1 

0/0 1/1 0/1 0/1 

1/0 0/0 0/1 0/0 

1/0 0/0 0/0 1/0 

1/1 0/0 1/0 1/0 

1/1 1/1 1/1 1/1 

1/1 0/1 0/1 1/1 

1/1 0/1 1/1 0/1 

0/1 1/1 1/1 0/1 

0/1 1/1 1/1 0/1 

0/1 1/1 0/1 1/1 

0/1 0/1 0/1 0/1 

0/1 0/1 1/1 0/1 

0/1 0/1 0/0 1/1 

Table 4-3: Calculation of the genotype of the untransmitted diplotype for each trio.  The genotype of 
the untransmitted diplotype was calculated based on the genotypes of the mother, father and proband for 
each trio.  For example, if the genotype of the mother was 0/0 and the father was 0/1 and the proband was 
0/0, it could be concluded that the untransmitted diplotype genotype was 0/1. 

 
For every variant carried by the mother, father or proband I calculated the genotype of 

the proband at this allele.  For example, if the mother and father both have the genotype 

0/1 and the proband has the genotype 1/1, the genotype for the untransmitted diplotype 

for this variant would be 0/0.  If the mother, father and proband all have the genotype 

0/1, then the untransmitted diplotype would also have the genotype 0/1.   

4.3.4 I removed variants that did not fit with Mendelian inheritance 
 

When calculating the genotype of the untransmitted diplotype, I identified some genotype 

combinations in the mother, father and proband that were not compatible with Mendelian 

inheritance (Non-Mendelian variants). As it had already been confirmed that the family 

relationships were correct (see above), I could exclude non-paternity or non-maternity as 

the cause of these erroneous variant combinations.   



 

In order to determine how to process these non-Mendelian variant combinations, I 

investigated their underlying cause by studying a single trio (FAMP100003).  In 

FAMP100003, there were a total of 94,497 variants present in either the mother, father 

or proband or in a combination of all three. Of these 94,497 variants, 3288 variants had a 

trio genotype configuration not consistent with Mendelian inheritance.   

I first considered why these mother, father, proband genotype combinations had 

occurred and if the reason was identified how this would affect the interpretation of what 

the untransmitted diplotype’s genotype would be for that trio.  For example, the mother, 

father, proband genotype combination 0/0, 0/0, 0/1 could be caused by: 1. A false 

positive variant in the proband, 2. A false negative variant in the mother or father or 3. A 

real de novo mutation in the proband.  However, whatever the cause of this genotype 

combination, the resulting genotype for the untransmitted diplotype would be 0/0. I 

therefore removed the non-Mendelian variants that would not make a difference to the 

untransmitted diplotypes’s genotype (table 4-4).   

 
Mother’s Genotype Father’s Genotype Proband’s Genotype 
0/0 1/1 1/1 
1/1 0/0 1/1 
0/0 1/1 0/0 
0/1 1/1 0/0 
1/1 0/0 0/0 
1/1 0/1 0/0 
1/1 1/1 0/0 
1/1 1/1 0/1 
 
Table 4-4 Non-Mendelian variants, which will not affect the untransmitted diplotypes genotype 
Non-Mendelian variants in the mother, father, proband, which whatever the cause for the abnormal 
genotype combination would not make a difference to the untransmitted diplotypes genotype.  
 

I next sought to investigate the cause of the remaining 412 non-Mendelian variants for 

which the genotype of the untransmitted diplotype could not be calculated (table 4-5). 

  



 

 

Mother’s 

Genotype 

Father’s 

Genotype 

Proband’s 

Genotype 

Number of 

variants 

0/0 1/1 1/1 41 

1/1 0/0 1/1 56 

0/0 1/1 0/0 97 

0/1 1/1 0/0 27 

1/1 0/0 0/0 112 

1/1 0/1 0/0 32 

1/1 1/1 0/0 17 

1/1 1/1 1/0 30 

  Total 412 

Table 4-5: Non-Mendelian variants in a single trio. Number and configuration of the variants not 
compatible with Mendelian inheritance observed in a single DDD Study trio following removal of variants 
on the X and Y chromosome and Intronic and upstream variants and those variants that would not affect 
the untransmitted diplotype’s genotype whatever the reason for the erroneous genotype combination. 

 

I investigated these 412 variants by first interrogating their read depth metrics in the 

merged VCF file.  To determine whether there was sufficient read depth to confirm the 

variant and further analyse it, I assigned a cut-off value of 7 reads or greater.  I selected 

this figure (≥ 7 reads) as this was a cut-off already used internally within the DDD study 

as a filter for assessment of apparent de novo mutations. Interrogation of the read depth 

metrics in the merged VCF file showed only 132 of the 412 variants had a read depth in 

the individuals of the trio who carry the variant of ≥ 7 reads.  However, as read depth 

metrics are only given for a certain locus in the merged VCF file for individuals who 

themselves carry the variant I therefore sought to determine the read depth at the loci of 

all 132 variants in all three individuals by reviewing each of them manually using the 

Integrative Genomics Viewer (IGV)(209, 210).  Manual review using the IGV of the loci of 

each of the 132 variants in the mother, father and proband showed that only 64 variants 

had a read depth of ≥ 7 reads in all three individuals.  I concluded from this that low read 

depth results in bad quality variants which adversely affect my analysis.   

 

I next selected these 64 variants with adequate read depth for further analysis. I 

reviewed each of them manually using the IGV, to estimate the most likely true genotype 

combination.  For this analysis, I grouped these variants into those of the same non-



 

Mendelian genotype combination, hypothesising that the underlying cause is the same 

for each group of variants. Using a combination of visual inspection and the alternate 

and reference allele read count at each loci, I estimated the mostly likely real genotype 

combination using the IGV for each variant (Table 4-6).  If all the reads (or the 

overwhelming majority of reads) showed the alternate allele, then I deduced the 

genotype was 1/1 (2).  If none of the reads (or only one or two reads showed the 

alternative allele I deduced the genotype was 0/0 (0).  If 50% of the reads (or by if by eye 

around 50% of the reads) showed the alternative allele, I deduced that the genotype was 

0/1(1).  I accepted that this process was unlikely to be fully accurate, however I carried 

this out to help determine why these non-Mendelian variants existed and to determine 

what to do with them.  To use an illustrative example, if encountering the IGV plot shown 

in figure 4-1 which was called as 2.2.1 in the mother, father, child respectively.   If 

reviewing this by eye I would note that each of the individuals (mother, father and child) 

all have the vast majority of reads showing the alternate allele, therefore I would 

conclude that the true mother, father, child genotype at this position is 2.2.2. 

 



 

 
Figure 4-1: Example Integrative Genomics Viewer (IGV) plot to demonstrate deduction of likely true 
genotype combination.  
This Integrative Genomics Viewer (IGV) plot shows the reads for the mother, father, child at position 
Chromosome 1, genomic co-ordinates: 987200.  The top reads refer to the mother, the middle reads the 
father, and the bottom reads refer to the proband.  The genotype for this trio was called as 2.2.1 in the 
mother, father and child respectively at this base position.  However, reviewing this IGV plot gives 
evidence that the true genotype at this position is 2.2.2. 
 

For some non-Mendelian genotype combinations, the non-Mendelian genotype 

combination appeared to be the most likely genotype. For other non-Mendelian genotype 

combinations, different variants appeared to have different most likely real Mendelian 

genotypes, suggesting that the underlying cause for the same non-Mendelian genotypes 



 

may not be the same for each variant. For two variants it was difficult to deduce what the 

most likely genotype combination was, and these were labelled as unclear.   

 

 

Non Mendelian 

Genotype 

combination Number of Variants 

Estimated Real 

Genotype 

combination 

0.2.0 7 0.2.1(5), 0.2.0(2) 

2.0.0 2 1.0.0 (1) Unclear (1) 

1.2.0 1 1.2.0 

0.2.0 6 1.2.1 

1.2.0 4 1.2.1 

0.2.2 6 1.2.2 

2.0.0 12 2.0.1 (9) 2.0.0 (3) 

2.0.2 2 2.0.2 

2.1.0 2 2.1.1 

2.0.2 6 2.1.2 

2.2.1 15 2.2.2 

2.2.0 1 Unclear 

Total 64   

 

Table 4-6: Number of variants with non-Mendelian genotypes per non-Mendelian genotype 
combination with estimated real genotype.  Variants with mother, father, proband genotype 
combinations that were not compatible with Mendelian inheritance were grouped by genotype combination 
and each manually reviewed using the Integrative Genomics Viewer (IGV) to estimate the mostly likely real 
genotype.  Column 1 shows genotypes in the order: Mother.Father.Proband.  Column 3 (Estimated real 
genotype) shows genotypes in the order: Mother.Father.Proband.  The numbers in brackets show how 
many variants showed that real genotype combination.   

 

Therefore, in total, of the 412 non-Mendelian variants in trio FAMP100003, 348 did not 

pass the read depth cut-off of ≥ 7 reads.  Of the 64 variants with sufficient read depth, 

the most likely real genotype combination could not be determined in all cases. I 

therefore decided for ongoing analysis that variants that did not show a Mendelian 

pattern of inheritance within a trio would be filtered out as the non-Mendelian variants 

are likely erroneous and result from low read depth. As the number of variants implicated 



 

is relatively small per trio I concluded the effect per trio on the downstream analysis 

would be minimal. 

4.3.5 I filtered variants by QUAL score  
 

I studied a subset of 10 trios to determine whether the number of variants carried by the 

inherited diplotypes seemed appropriate.  I investigated the number of common and rare 

(MAF <0.01) SNVs in the probands and untransmitted diplotypes  (Figure 4-2).  A greater 

number of common and rare variants were observed in the untransmitted diplotypes than 

in the probands. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-2: Number of single nucleotide variants (SNVs) in the probands and untransmitted 
diplotypes. A. Common SNVs.  B. Rare SNVs MAF <0.01.  These figures were plotted using data 
generated from a subset of 200 probands and 200 untransmitted diplotypes.   

 

In order to determine the reason for the discrepancy in the number of common and rare 

variants between the probands and untransmitted diplotypes I investigated the 

relationship between the QUAL score and number of variants. QUAL (variant quality 

score) is a phred-scaled quality score generated by GATK (161). The QUAL score is an 

estimate of the confidence that the variant caller correctly identified that a given genome 

locus exhibits true variation in at least one sample, i.e. that there is a true variant and not 

an artefact resulting from sequencing, alignment or data processing.  
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Figure 4-3: Studies of QUAL score and number of SNPs per sample for the probands and 
untransmitted diplotypes.  A: Number of common variants against QUAL score for the probands and 
untransmitted diplotypes. Red dots represent untransmitted diplotypes, black dots represent probands.  B. 
Number of rare (MAF <0.01) variants against QUAL score for the probands and untransmitted diplotypes. 
Red dots represent untransmitted diplotypes, black dots represent probands.  A randomly selected subset 
of approximately 10% of 1139 probands and untransmitted diplotypes datasets were used to generate 
plots A and B.  C and D: log10(p) versus QUAL threshold for a Mann-Whitney test of the numbers of rare 
SNPs per sample in probands and untransmitted diplotypes against QUAL score.  

 

 

  



 

I first sought to identify low quality variants as the numbers of these are potentially likely 

to be different between the proband and the untransmitted diplotypes and they may 

result from low read depth.  Therefore, I investigated the relationship between QUAL 

score threshold and statistical significance between the numbers of rare (MAF <0.01) 

SNPs per sample in the probands and untransmitted diplotypes.  I sought to pick a 

QUAL score threshold that largely eliminated the difference in variant numbers between 

the proband and untransmitted diplotypes.   

 

In order to do this, I carried out a Mann-Whitney test (with assistance from Tomas 

Fitzgerald) between the number of rare SNPs in probands compared to untransmitted 

diplotypes vs. QUAL(Figure 4-3).  I selected nominal (uncorrected) p value cut-offs of 

0.05 and 0.01 to assess what QUAL score values these corresponded to.  From Figure 

4-3, the 0.01 significance level was determined as being a QUAL score of 179 and the 

0.05 significance level was determined to be a QUAL score of 194.  Plots of number of 

rare variants in probands and untransmitted diplotypes using QUAL score cut-offs of 179 

and 194 are shown in Figure 4-4.   

 

I selected a QUAL score cut-off of 179 as a relatively conservative filter for the 

subsequent analyses. At this threshold the difference in variant numbers between the 

proband and untransmitted diplotypes was largely eliminated removing many of the low 

quality variants.  I appreciated that there remained a modest difference between the 

number of variants in the probands and untransmitted diplotypes and that there was a 

balance between removing low quality variants and removing diagnoses.   



 

 
                    Proband        Untransmitted                      Proband  Untransmitted 
              Diplotype           Diplotype 
 
Figure 4-4: Boxplots to show number of single nucleotide variants (SNVs) in the probands and 
untransmitted diplotypes. A. Common SNVs.  B. Rare SNVs: (MAF <0.01).  These figures were plotted 
using data generated from a subset of 200 probands and 200 untransmitted diplotypes.   
 

4.3.6 I removed trios with extreme variant numbers  
 

I compared the numbers of rare variants carried by the probands and the untransmitted 

diplotypes.  I noted that there were some outlying individuals with low or high numbers of 

rare variants. I first explored what these outliers represented - the hypothesis was that 

ancestry could be resulting in the differences between rare variant number and this was 

further investigated and confirmed by carrying out a principle component analysis (PCA), 

this was carried out by Tomas Fitzgerald (figure 4-5). For on-going analysis, I filtered out 

trios that had extreme rare variant numbers (less than 200 or greater than 6000) in the 

proband or the untransmitted diplotypes to prevent trios with extreme variant numbers 

from adversely affecting the investigation. 



 

                            
Figure 4-5: A: Principle component analysis (PCA) of individuals in the DDD.   
European ancestry was defined by a PCA2 value of greater than 0.04. B: Comparison of the number of 
rare variants in the untransmitted diplotypes and probands.  Variant numbers are labelled by ancestry, 
Blue circles represent European ancestry, red circles represent non-European ancestry.  European 
ancestry was defined by a PCA2 value of greater than 0.04.                                           

4.3.7 I generated cumulative haplotype counts of rare SNVs  
 

Using 1127 trios, in order to perform burden analyses, I generated cumulative counts of 

1. haplotypes containing rare (minor allele frequency of ≤ 5%) variants, and 2. rare 

bilallelic variants for the probands and untransmitted diplotype for each gene in the 

A 

B 



 

genome by each variant type.  I used the variant classification shown in Table 4-7, 

adapted from the classification devised by Purcell et al(211).  Where there was more 

than one variant in the same gene on the same allele, I selected the variant with the 

most severe consequence (loss of function / disruptive > damaging > functional > Silent). 

I processed the proband’s exome variant profiles used in this analysis in the same way 

as the untransmitted diplotypes, i.e. they had had specific variant types removed as in 

Figure 4-6.  

 

Variant classification 

 

Type of variant 

Disruptive Stop gained, transcript ablation, splice donor 

variant, splice acceptor variant, frameshift 

variant 

Disruptive / Damaging All of the disruptive variants plus functional 

variants predicted to be damaging by two 

algorithms: SIFT-Deleterious and PolyPhen-

Probably damaging) 

Functional Missense, inframe deletion, inframe insertion, 

coding sequence variant stop lost (not 

fulfilling the above criteria for ‘Damaging’) 

Silent Synonymous variant 

Table 4-7: Classification used for variants when generating cumulative haplotype counts.  This 
classification was adapted from that devised by Purcell et al(211). 

 

4.3.8 I compared filtered variant ratios to those observed in autism 
 

To determine whether the number of filtered variants and filtered variant ratios were 

similar to those identified in other studies, I compared the number of rare (minor allele 

frequency of ≤ 5%) variants predicted to completely knock out the encoded protein 

product (homozygous or compound heterozygous loss of function variants) observed in 

our probands and untransmitted diplotypes to published data from children with 

autism(212), see Table 4-8. Our figures were significantly higher than those identified in 

individuals with autism and their controls used, also the individuals with autism carried 

more variants than the controls, whereas in our study it was vice versa.  I sought to 

further investigate this discrepancy by investigating the effect on numbers of variants 



 

and effect on variant ratios by excluding certain subgroups and by looking for genes that 

may be skewing the ratios and numbers. 

 

 Rare (≤ 5%) 
Heterozygous 
LoF Variants in 
1127 probands 
and 1127 
untransmitted 
diplotypes 

Rare (≤ 5%) 
Homozygous 
or comp het 
LoF Variants 

Number of 
complete 
knock out 
events per 
individual  

Number of 
complete 
knock out 
events per 
individual 
(Lim et al 2013) 
in 933 
probands and 
869 controls 

Probands  16976 119 + 14 = 133 0.118 0.066 
Controls / 
Unitrans. Diplo. 

16965 138 + 15 = 153 0.135 0.033 

Table 4-8: Comparison of the number of Rare (≤ 5%) filtered variants observed in our probands and 
untransmitted diplotypes compared to previously published data from children with autism(212).   

4.3.9 Investigating the discrepancy of our ratios with those in autism 
 

I took a number of approaches to investigate why there was a discrepancy between our 

figures and those observed in individuals with autism.  I first investigated whether one or 

more genes harboured excessive numbers of homozygous variants with a minor allele 

frequency of ≤ 5% in the probands or untransmitted diplotypes and was affecting the 

ratios observed in our data.  I next investigated the genes that harboured homozygous 

loss of function variants in more than one ‘individual’ (proband or untransmitted 

diplotype), see Table 4-9.  However, overall the numbers of genes and ‘individuals’ this 

involved were small and I didn’t think this was contributing to the discrepancy observed 

between ratios in my data and that of Lim et al(212). 

  



 

 

 

Number of homozygous 

loss of function variants

Number of genes 

0 19075 

1 77 

2 18 

3 2 

 

 

Number of homozygous 

loss of function variants 

Number of genes 

0 19068 

1 81 

2 15 

3 6 

4 1 

5 1 

 

Table 4-9 Number of genes with homozygous variants in probands and untransmitted diplotypes. 
(A) Number of genes with homozygous loss of function variants with a minor allele frequency of ≤ 5% in 
1127 probands.  (B) Number of genes with homozygous loss of function variants with a minor allele 
frequency of ≤ 5% in 1127 controls (untransmitted diplotypes).   

 

4.3.10 I filtered out consanguineous trios  
 

I next compared the number of rare (MAF ≤ 5%) loss of function and synonymous 

variants in consanguineous versus non-consanguineous trios. Using King Score(213). 

The King score is an estimation of the kinship coefficient (degree of consanguinity) 

between any two individuals.  It is obtained by using a rapid algorithm for relationship 

inference that allows the presence of unknown population substructure(213).  I defined 

consanguineous families as those having a King Score > 0. Removing the probands 

from consanguineous trios resulted in the relationship of the numbers of rare 

homozygous variants between probands and controls becoming more consistent with 

A 

B 



 

the figures published in autism(212), see Table 4-10.  In the study of individuals with 

autism there were approximately twice as many complete knock-out events in affected 

individuals than in controls.  However, in this analysis, with the consanguineous families 

included there were a larger number of complete knock out events in the untransmitted 

diplotypes than in the probands.  Removing the probands from consanguineous trios 

from my analysis resulted in the numbers of complete knock-out events being more 

equal between probands and untransmitted diplotypes.  Therefore,  it can be concluded, 

the probands and untransmitted diplotypes from consanguineous trios harbour large 

numbers of homozygous variants.  To prevent generating untransmitted diplotypes with 

homozygosity by descent, I removed consanguineous families (N=47) from this analysis. 

 

  
Number of rare complete knock our events per individual 

 All trios Consanguineous trios 
 

Non-Consanguineous 
trios 

 
Probands 0.118 

 
0.638 
 

0.095 
 

Untransmitted 
diplotypes 

0.136 
 

0.915 0.102 
 

 
Table 4-10 Number of rare complete knock our events per individual  
Rare means ≤ 5%. Complete knock out = compound het and homozygous events.  For consanguineous 
trios, N=47 individuals (47 probands and 47 untransmitted diplotypes).  For Non-consanguineous, N=1080 
(1080 probands and 1080 untransmitted diplotypes).  For all trios, N= 1127 (1127 probands and 1127 
untransmitted diplotypes) 
 

4.3.11 QUAL 1000 filter improves ratios but likely removes diagnoses 
 

With consanguineous trios now removed I investigated whether more stringent filtering 

might give variant ratios more similar to those reported in individuals with autism.  I 

filtered the variants using a QUAL score of 1000. This resulted in a larger number of 

variants in the probands than in the untransmitted diplotypes.  It also resulted in a 

number of events per proband to per control ratio, which was closer to that observed in 

individuals with autism(25)(see table 4-11).  However, the number of loss of function 

homozygous and compound heterozygous variants observed at this QUAL score cut-off 

was substantially decreased.  I therefore concluded that a number of diagnoses were 

likely removed as a result of this and I decided to continue the analysis with a QUAL 

score cut-off of 179. 



 

 

 

 Rare (≤ 5%) 
Homozygous 
or comp het 
LoF Variants in 
1080 probands 
and 1080 
untransmitted 
diplotypes 

Number of 
complete 
knock out 
events per 
individual in 
our data 

Rare (≤ 5%) 
Homozygous 
or comp het 
LoF Variants 
in 933 
probands 
versus 869 
controls 
(Lim et al 
2013)(212) 

Number of 
complete 
knock out 
events per 
individual 
(Lim et al 
2013)(212) 

Probands  53 + 3 = 56 0.052 62 0.066 
Controls 41 + 3 = 44 0.041 29 0.033 
 

Table 4-11: Complete knock out variants at QUAL score 1000. 
Number of homozygous and compound heterozygous loss of function variants in 1080 probands and 1080 
untransmitted diplotypes using a QUAL score cut off of 1000, compared to the number of complete knock 
out events observed in individuals with autism and controls reported by Lim et al(212).  
 

4.3.12 Summary of untransmitted diplotype generation method 
 

In summary, I generated a population based control dataset of untransmitted diplotypes 

using the untransmitted haplotypes from the parents of the affected probands in 1,080 

non-consanguineous trios. To prevent generating untransmitted diplotypes with 

homozygosity by descent, consanguineous families were removed from this analysis.  

An exome variant profile for the untransmitted diplotypes control was generated for each 

trio. The trio VCF files (mother, father, child) were merged and the following variants 

removed: Non ‘PASS’ variants, INDELS, variants involving a multiallelic reference or 

alternate allele, CNVs, X and Y chromosome variants, intronic and upstream variants 

and variants with a QUAL score <179. The genotype in the untransmitted diplotypes was 

calculated based on the genotypes of the mother, father and proband.  Variants that did 

not fit with Mendelian inheritance were removed.  A summary of this method and all the 

filtering steps for the untransmitted diplotypes generation is shown in figure 4-6.  

 



 

 
Figure 4-6: Flow diagram showing the processing steps for generating the untransmitted 
diplotypes.   

 

4.3.13 Outline of burden analyses using untransmitted diplotypes 
 

For consistency, I processed the probands’ exome variant profiles used in this analysis 

in the same way as the untransmitted diplotypes, i.e. they had had specific variant types 

removed as above.

 

In order to perform burden analyses, I first compared cumulative counts of rare (MAF < 

5%) homozygous and compound heterozygous loss of function and damaging functional 

variants between the probands and untransmitted diplotypes.   

 

I next identified a specific group of probands likely to have a dominant cause of their 

developmental disorder, the ‘dominant probands’.  I hypothesised that removing these 

‘dominant probands’ from the rest of the proband group would have the effect of 

enriching the remaining group of probands (the non-dominant probands) for recessive 

developmental disorders if they are present.  I concluded I would identify this enrichment 

by carrying out burden analyses between the ‘dominant’ and ‘non-dominant’ probands.   



 

4.4 Results 

4.4.1 I identified over transmission of very rare inherited LoF variants to probands 
 

I first compared cumulative counts of rare (MAF < 5%) inherited LoF variants between 

the probands and untransmitted diplotypes.  I identified no observable genome wide 

trend towards over-transmission to probands for these variants (Table 4-12).  I next 

investigated whether there was an over-transmission of very rare inherited LoF variants 

(MAF < 0.05%) to probands and showed a genome-wide trend towards over 

transmission to probands (p=0.015) (Table 4-12).  I conclude that this finding gives 

important  evidence that inherited variants are contributing to developmental disorders in 

this DDD study cohort.  I did not observe this over transmission for very rare inherited 

damaging missense variants (Table 4-12).   

 

 Probands 

(n = 1080)                     

Untransmitted Diplotypes 

(n = 1080) 

Rare (MAF<5%) Inherited LoF 
Variants 

15805 15749 

Rare (MAF<5%) Inherited 
Damaging Functional Variants 

98566 98455 

Very Rare (MAF<0.05%) 
Inherited LoF Variants 

4416 4191 

Very Rare (MAF<0.05%) 
Inherited Damaging Functional 
Variants 

21965 22044 

 

Table 4-12:  Total number of rare and very rare inherited variants observed in probands and 
untransmitted diplotype controls.   

Total number of rare and very rare inherited variants in 1080 children with developmental disorders in 
comparison to a control dataset of 1080 untransmitted diplotypes.  MAF = Minor Allele Frequency. There 
was an over-transmission of very rare (<0.05%) inherited Loss of Function (LoF) variants (MAF < 0.05%) 
to probands (p=0.015), using the transmission disequilibrium test (McNemar’s chi-square)(214).  
There was no observable genome wide trend to over transmission of very rare (<0.05%) Damaging 
Functional variants to probands or of rare (MAF < 5%) LoF variants to probands.  

 

The over transmission to probands I have identified could be consistent with individuals 

having a recessive disease, an inherited dominant disease, or an oligogenic disorder.  

The fact that only by looking at very rare inherited LoF variants (MAF < 0.05%) is there a 

significant difference between the probands and untransmitted diplotypes suggests that 

low quality variants may be affecting the results for the less rare variants (MAF < 5% 



 

variants) or that disease resulting from inherited alleles is caused by very rare variants.  

4.4.2 Stronger enrichment of bilallelic DDG2P variants than globally 
 

I identified no genome-wide enrichment of rare (<5%) biallelic (compound heterozygous 

or homozygous) loss of function or missense variants in the probands versus the 

untransmitted diplotypes. When focusing the analysis on individual genes, there were no 

genes with significant differences in number of biallelic (compound heterozygous or 

homozygous) loss of function variants or missense variants.  It is likely that low quality 

variants in both the probands and the untransmitted diplotypes may be preventing an 

observable difference being identified between probands and untransmitted diplotypes. 

 

I next investigated specifically for enrichment of (<5%) bilallelic variants in the list of 

1,142 known Developmental Disorder (DD) genes in the probands.  This showed a 

stronger enrichment of LoF variants than in the genome-wide analysis.  Of note, 

however, the untransmitted diplotypes contained 1 biallelic and 34 monoallelic rare LoF 

SNVs.  This highlights the importance of when interpreting genomes of patients with 

developmental disorders, not to assume that any damaging variants in known 

developmental disorder genes are definitely pathogenic. 

 

4.4.3 Depletion of rare biallelic LoF mutations in ‘dominant probands’ 
 
I next evaluated rare (MAF < 5%) biallelic (homozygous and compound heterozygous) 

LoF mutations in the dominant probands compared to other probands and showed a 

0.56-fold depletion of such variants (p=0.04) in dominant probands (Table 4-13). I 

identified no enrichment in biallelic damaging missense variants in the other probands 

compared to the dominant probands, consistent with the findings of Lim et al in 

individuals with autism(212).  I conclude that this gives evidence of the presence of 

recessive disorders in the ‘non-dominant’ probands in the DDD study.   

  



 

 

 

 

 

 

 

 

 

 

 

Table 4-13: Rate of biallelic loss of function and damaging functional variants.   

Rate of rare (MAF < 5%) biallelic loss-of-function and damaging functional variants per untransmitted 
diplotype, dominant and non-dominant proband. ‘dominant probands’ refers to probands with a reported de 
novo mutation or affected parents, and ‘other probands’ to all remaining probands. ‘DDG2P Biallelic’ refers 
to confirmed and probable DDG2P genes with a biallelic mode of inheritance.  For untransmitted 
diplotypes, N=1080, for dominant probands, N=270 and for non-dominant probands N=810. 

 

I next investigated the properties of the dominant probands to see whether this gave any 

insight into differences they had from the non-dominant probands that may enable more 

stringent filtering of the untransmitted diplotypes. I investigated the following properties: 

Variant type, QUAL score, Haplotype score, Readsum score, MQ Ranksum score.  

However, on visual inspection, I observed no obvious difference between the plotted 

distributions of these properties between of the probands and the untransmitted 

diplotypes.  

 

4.5 My findings in context and other contributions to the DDD study 

 

In summary I generated a control dataset of untransmitted diplotypes with which I 

demonstrated evidence that inherited variants are contributing to developmental 

disorders in this DDD study cohort. This analysis was carried out at a time when the 

ExAC database(120), containing large quantities of control data from exome sequencing 

studies was not available.  By studying the probands with likely dominant disorders 

(dominant probands), I showed that there was a depletion of biallelic loss of function 

mutations in dominant probands compared to the other probands (non-dominant 

Biallelic Variant Types Rate per 
Untransmitted 
Diplotype 
 

Rate per Dominant 
Proband  
 

Rate per Non-
Dominant Proband 
 

LoF/LoF (Genome-wide) 
 

0.102 0.063 0.106 

LoF/Dam (Genome-wide) 
 

0.081 0.078 0.088 

Dam/Dam (Genome-wide) 
 

0.289 0.333 0.326 

LoF/LoF (DDG2P Biallelic) 
 

0.001 0.004 0.004 

LoF/Dam (DDG2P Biallelic) 
 

0.002 0 0.007 

Dam/Dam (DDG2P Biallelic) 0.024 0.026 0.031 



 

probands), this gives evidence for the presence of recessive disorders in individuals with 

developmental disorders in the DDD study.  My findings were a key part of the analysis 

of the first 1133 trios in the DDD study.  Other key findings from the analysis of 1133 

trios, were that 12 novel genes associated with developmental disorders were 

discovered. Together with a multi-disciplinary team of Clinical Geneticists, scientists and 

bioinformaticians, I reviewed the variants in DDG2P genes flagged for clinical reporting 

by the bioinformatics pipeline within the DDD study in the 1133 trios in a weekly meeting.  

We assessed each variant for analytical and clinical validity.  For each variant, we 

compared the patient’s phenotypic features, family history and growth parameters to the 

known phenotype for that gene.  When there was sufficient overlap we reported the 

variant back to the regional genetics service via the patient’s local clinician.  In total 31% 

of the 1133 probands and their families received a diagnosis for their disorder.  

Throughout this process we adjusted the robust bioinformatics pipeline underlying the 

DDD study, through identifying: problems with reporting, identifying large genes with 

multiple variants (such as titin), or genes that had multiple variants thought to be 

spurious or sequencing errors.  I played an important role in this overall process, 

contributing my clinical experience and dysmorphology knowledge to help give clinical 

validity to new pipelines or analyses.  I played a significant role in the development of the 

pipeline but also reporting rules.  In addition, I manually reviewed in detail the first 30 de 

novo mutations we reported for clinical validity, and continued to contribute to clinical 

reporting thoughout my three years on the project. 

 

Further, more recent analyses carried out as part of the DDD study included a case-

control analysis looking for evidence of mosaicism in 1303 DDD trios.  I played a role in 

reviewing the mosaic variants and clinical phenotypes in this investigation which 

identified 12 structural mosaic abnormalities (0.9%) that were reported back to local 

clinicians.  10 out of 12 of these variants were assessed as highly likely to be pathogenic 

in causing the individual’s developmental disorder.  In further analysis of analysis of 

4293 trios, the DDD study identified four new genes implicated in recessive diseases 

and discovered 14 new dominant disease genes.  Again I played a key role in reviewing 

the clinical phenotypes for this investigation and identified families with overlapping 

phenotypes.  Many of the aspects of the DDD study have been incorporated into modern 

day clinical genetics practice, for example the DDG2P is used in Clinical Genetics 



 

laboratories throughout the UK.  Also, multi-disciplinary meetings to review whole exome 

sequencing findings, as pioneered by the DDD study, form an important part of the week 

for a number of Clinical Genetics departments. 

 

4.6 Discussion 

4.6.1 Summary 
 

In summary I generated a control dataset of untransmitted diplotypes which I used to 

carry out burden analyses to look for evidence of autosomal recessive disease in 

individuals with developmental disorders.  I carried out multiple filtering steps to generate 

a dataset of the untransmitted diplotypes, of the correct Mendelian pattern and minimise 

the number of low quality variants. This novel technique to generate a control database 

matched for population and sequencing technique and data processing has not to my 

knowledge been previously attempted.  To my knowledge, my work with the 

untransmitted diplotypes gives the first insight into the contribution of autosomal 

recessive disease in individuals with developmental disorders by studying untransmitted 

alleles from exome sequencing data.  In addition, my analyses, clinical knowledge and 

role in clinical reporting contributed significantly to the DDD study, which has shaped 

modern day clinical genetics knowledge and practice.  

 

4.6.2 Limitations with the untransmitted diplotypes as a control dataset 
 

The theory driving our untransmitted diplotypes control dataset is that individuals 

inheriting the variants the affected proband didn’t inherit (the untransmitted diplotypes) 

would be predicted to be healthy as if the probands disorder was genetic the disease 

causing variant(s) would be expected to be within the variants they carry.  However, the 

true phenotypes of this control dataset are not known and never will be.  Therefore, it 

cannot be ruled out that the untransmitted diplotypes carry lethal variants that would 

result in foetal demise or a severe developmental disorder.  Also our analysis doesn’t 

account for the possibility of non-penetrance of a variant in the parents, or disorders 

resulting from environmental exposures or disease in the mother, or other non-genetic 

causes of developmental disorder in the probands.  



 

 

In addition, we removed variants on the X and Y chromosomes, INDELS and variants 

with multiallelic ALTs or REFs from the untransmitted diplotypes.  Therefore, our control 

dataset is not a complete representation of the exonic variation of the untransmitted 

alleles.   

 

Furthermore, despite the multiple filtering steps I carried out, the untransmitted 

diplotypes are still likely to be enriched with false positive variants from their parents. 

Also filtering the probands may have removed diagnostic variants.  One way I could 

improve this in the future would be to carry out joint variant calling on the raw 

sequencing data used in this investigation with that of other studies using next 

generation sequencing methods.  ‘Joint calling’ methods have been shown to 

successfully separate out true variation from machine artifacts which are common to 

next generation sequencing technologies while preserving true variant sites(215)52).  

Implementing joint calling on my dataset, may therefore remove some of the false-

positive variants in the untransmitted diplotypes.   

 

One alternative to using the untransmitted diplotypes as controls would be to use true 

siblings as controls.  This would overcome the problem of not knowing the untransmitted 

diplotypes phenotypes and also the increased number of false-positive mutations 

observed in the untransmitted diplotypes. 

 

4.6.3 Our findings in context 
 

Other studies using untransmitted alleles 

 

Untransmitted alleles have previously been investigated in individuals with diabetes 

using the Transmission Test for Linkage Disequilibrium (TDT test)(214).  As a test for 

linkage disequilibrium Spielman et al considered a heterozygous allele associated with 

disease in an affected parent and evaluated the frequency with which this allele or its 

alternate was passed to an affected offspring. Although theses authors also studied 

transmitted and untransmitted alleles, the authors only studied single alleles and didn’t 

look at the untransmitted alleles in the context of the other untransmitted allele at the 



 

same loci, i.e. they looked at all of the untransmitted alleles in aggregate from affected 

parents and they didn’t pair up corresponding alleles to investigate real possible 

recessive combinations of alleles within families.  The untransmitted diplotypes dataset 

is therefore to our knowledge a unique control dataset which comprises real 

combinations of recessive variants within families. 

 

4.6.4 Using burden analysis to detect oligogenic inheritance 
 

There is evidence that two hit aetiologies and oligogenic models of inheritance exist in 

developmental disorders and that these events are most likely to be distributed over 

many genes(208, 216-218).  Here we have shown that burden analyses give insight into 

the underlying genetic architecture of developmental disorders.  In the future similar 

methods could be used to investigate for evidence of oligogenic inheritance in individuals 

with developmental disorders. One way to approach this would be following assembly of 

a large cohort of individuals with developmental disorders to remove individuals with 

known monogenic diseases to leave a group that is likely to be enriched with oligogenic 

developmental disorders.  The number and types of variants and their inheritance could 

then be compared between the undiagnosed group and both the diagnosed group and a 

control dataset.  Real siblings could also play an important role in these types of 

analyses. 

 

4.6.5 The future of untangling the aetiology of developmental disorders 
 

Understanding the architecture of developmental disorders is important now as we are in 

an era of mass gene discovery, but will be more so in the future when we are reaching 

saturation of Mendelian gene discovery, as we work out how many of the remaining 

developmental genetic disorders have a genetic cause.  Successful future dominant and 

recessive gene discovery requires larger datasets with international collaborations likely 

playing a role in this.  Full and accurate sharing of standardised phenotypic data is highly 

likely to be needed to help facilitate gene discovery.  Isolated populations / 

consanguineous unions may continue to help in these efforts to uncover recessive 

diseases. So may the use of studying real siblings and incorporating analyses of the 

epigenome. Further understanding of the phenotypic spectrum of genetic diseases, 



 

reasons for disease variability and reduced penetrance will help us understand which 

individuals have more than genetic disorder as composite phenotypes will continue to 

challenge Clinical Geneticists in years to come.  Clinical interpretation of variants will be 

crucial to the dissection of developmental disorders in the future.  

Conclusions 
 
In conclusion, I generated a control dataset of untransmitted diplotypes which I used to 

carry out burden analyses to look for evidence of autosomal recessive disease in 

individuals with developmental disorders. To my knowledge, my work with the 

untransmitted diplotypes gives the first insight into the contribution of autosomal 

recessive disease in individuals with developmental disorders by studying untransmitted 

alleles from exome sequencing data.  In addition, my analyses, clinical knowledge and 

role in clinical reporting contributed significantly to the DDD study, which has shaped 

modern day clinical genetics knowledge and practice.   

 

Successful future gene discovery in developmental disorders requires larger datasets 

with international collaborations likely playing a role in this.  Full and accurate sharing of 

standardised phenotypic data is essential and clinical interpretation of variants identified 

through genome wide sequencing techniques will be crucial to the dissection of 

developmental disorders in the future. 

 

 

 

 

 

  



 

  


