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Abstract

In recent years, whole-exome sequencing has successfully identified genes in which rare

variants confer substantial risk for neurodevelopmental disorders, such as autism spectrum

disorders and intellectual disability. In many of these studies, the same gene is implicated in

a wide variety of diagnoses and presentations. Despite a number of rare variant studies in

schizophrenia, no gene has been significantly implicated using rare coding variants. In this

Thesis, I compiled the largest rare variant data set in schizophrenia to date, and meta-analysed

the whole-exome sequences of 1,077 trios, 4,268 cases, and 9,343 matched controls. With

these data, I identified a genome-wide significant association between rare loss-of-function

(LoF) variants in SETD1A and risk for schizophrenia. I additionally found that SETD1A is

substantially depleted of LoF variants in the general population, and that LoF variants in

this gene increased risk for a range of neurodevelopmental disorders. Combined, our results

implicate epigenetic regulation, specifically histone modification, as a mechanism in the

pathogenesis of schizophrenia, and suggest that rare risk alleles may potentially be shared

between schizophrenia and other neurodevelopmental disorders.

To better understand if SETD1A finding can be generalized to a larger number of rare

schizophrenia risk variants, I jointly analysed the trio and case-control exome data with

array-based copy number variant calls from 6,882 cases and 11,255 controls. I found that

individuals with schizophrenia carried a significantly higher burden of rare damaging variants

in 3,488 “highly constrained” genes with a near-complete depletion of truncating variants.

Rare variant enrichment analyses demonstrated that the rare schizophrenia risk variants were

most strongly enriched in autism risk genes, and genes diagnostic of severe developmental

disorders. I further showed that schizophrenia patients with intellectual disability had a

greater enrichment of rare damaging variants in highly constrained genes, but that a weaker

but significant enrichment existed throughout the larger schizophrenia population. Combined,

these results demonstrate that schizophrenia risk loci of large effect across a range of variant

types implicate a common set of genes shared with broader neurodevelopmental disorders,

suggesting a path forward in identifying additional risk genes in psychiatric disorders and

further supporting a neurodevelopmental etiology to the pathogenesis of schizophrenia.
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Chapter 1

Introduction

1.1 Schizophrenia

Schizophrenia is a highly complex, common and debilitating psychiatric illness characterised

by a breakdown of how a person perceives and responds to the reality around them. The

clinical symptoms for this disorder have changed and evolved since its first description

as dementia praecox by Emil Kraepelin in 1887, but its most striking, and perhaps defin-

ing, features remain its positive symptoms, comprising hallucinations (false perceptions),

delusions (irrational beliefs), and disorganised speech and behaviour. This contrasts with

schizophrenia’s negative symptoms where there is an absence of normal social function,

typically in the form of social withdrawal and lack of motivational drive. The prognosis

of individuals with schizophrenia varies dramatically: approximately half of patients have

poor outcomes one year after their first episode [1, 2], and around 20% suffer from chronic

relapses and severe symptoms for the remainder of their lives [3, 4]. Despite its severe

symptoms and varied prognosis, schizophrenia is common in the general population with a

lifetime risk of ∼0.7%, and it is not surprisingly that the disorder has substantial societal and

personal costs [5]. Patients with schizophrenia rarely fulfil their full occupational potential,

with over 80% of affected individuals permanently unemployed [6, 7]. From reasons ranging

from suicides to metabolic disease from antipsychotic use, people with schizophrenia have a

decreased life expectancy of 12 to 15 years when compared to the general population [8].

Furthermore, individuals with schizophrenia are perceived with unwarranted social stigma

and are unfairly described as unpredictable and dangerous [9]. This, combined with already

difficult clinical outcomes, contributes to the isolation and distress faced by people with

mental illnesses.

Substantial progress has been made by large-scale epidemiological, imaging, functional,

and genetic studies to elucidate the nature of schizophrenia in the past few decades. In this
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Chapter, I first lay out the diagnostic criteria for schizophrenia, and describe the clinical

heterogeneity in its presentation. I then describe how symptoms are currently managed,

the prognosis facing people with schizophrenia, and the current prevalence, incidence, and

burden of disease. I briefly discuss environmental exposures that have been shown to increase

risk of schizophrenia, before describing in detail the varied and complex contributions to

schizophrenia’s genetic architecture. I then discuss the arrival of sequencing as a means of

studying rare variants, the first results from these studies, and the biological insights that

have emerged. Finally, I briefly outline the aspects of schizophrenia genetics that I attempt to

address in this Thesis.

1.1.1 Diagnostic criteria and clinical heterogeneity in presentation

The operational diagnostic criteria for schizophrenia are defined in the five editions of the

Diagnostic and Statistical Manual of Mental Disorders (DSM) [10]. These definitions are built

on a number of historical descriptions of schizophrenia, incorporating Kraepelin’s focus on its

relapsing and deteriorating course, Bleuler’s emphasis on negative symptoms such as social

withdrawal and detachment from reality, and Schneider’s first-rank symptoms that laid out

the core features of psychotic manifestation [11]. As clinical research in psychiatric disorders

advanced, the characteristics by which schizophrenia was defined also evolved, highlighting

different aspects of these historical descriptions [12]. The most recent version, DSM-V,

defines five core symptoms for schizophrenia: hallucinations, delusions, disorganised speech,

grossly disorganised or catatonic behaviour, and negative symptoms [13]. For a full diagnosis

of schizophrenia, the DSM-V requires the presence of at least two of these core symptoms

over a period of six months with at least one month of active symptoms, and at least one of

these symptoms must be psychotic (e.g. hallucinations, delusions, or disorganised speech).

Cognitive deficits are regarded as a characteristic feature of schizophrenia, with 3.7% to

5.2% of schizophrenia patients given an additional diagnosis of intellectual disability [14].

However, cognitive impairment was not included as a diagnostic criterion in DSM-V, as

it did not sufficiently distinguish between schizophrenia and other psychiatric disorders

[13]. Because there are no diagnostic biomarkers or physiological tests for schizophrenia,

diagnoses are only made by a psychiatrist with careful examination of the individual’s

behaviour and recent history.

From this definition, it is clear that a diagnosis of schizophrenia represents a wide range

of possible symptoms occurring with varying duration and severity resulting in different

long-term outcomes. Because of the breadth of its diagnostic criteria, schizophrenia can be

perceived as a syndromic concept, one that could even encompass some number of biologi-

cal disorders of brain with different underlying etiologies but sharing similar symptomatic
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manifestation [4, 15]. In addition to being broadly defined and heterogeneous, many of its

core symptoms are not unique and are observed in a number of other psychiatric disorders.

The Schneiderian first-rank symptoms, frequently used to describe the primary presentation

of schizophrenia, have also been observed in patients with bipolar disorders [16]. Psychotic

symptoms are also present, albeit less frequently, in bipolar disorders and major depression

[17]. Major depressive disorder with severe psychotic symptoms is diagnosed as psychotic

depression [18], and schizophrenia with prominent mood symptoms is diagnosed as schizoaf-

fective disorder. In addition, differential diagnoses like schizophreniform, psychotic and

delusional disorders may be given instead when a full diagnosis of schizophrenia is not

satisfied, despite these conditions sharing a number of symptoms characteristic of schizophre-

nia [10]. Indeed, psychotic symptoms may not even originate from underlying psychiatric

illness: hallucinations and delusions can be induced by substance abuse and other general

medical conditions [17], and are observed at a sub-clinical level in 5% of individuals without

a psychiatric diagnosis [19]. Finally, individuals with schizophrenia often have additional

symptoms that generally define other psychiatric disorders, including depression, anxiety,

substance abuse, obsessive-compulsive disorder, panic disorder, and post-morbid cognitive

impairment [20]. These observations suggest that while the current categorical classifica-

tion for schizophrenia may be a clinically convenient and useful concept, it overlooks the

symptomatic and possible etiological overlap with other psychiatric conditions.

1.1.2 Disease management and prognosis

Following a clinical diagnosis of schizophrenia, patients are generally prescribed antipsy-

chotic medication to control positive symptoms. Despite many iterations of these drugs

over the years, they are designed to target a single biological mechanism - the blocking of

dopamine D2 receptor (D2R) activity [21]. The first generation of antipsychotics, such as

chlorpromazine (low potency), fluphenazine and haloperidol (high potency), are effective

in addressing positive symptoms like hallucinations and delusions, but can cause severe

extra-pyramidal or movement-related side-effects, including tremors, rigidity, and spasms

[22]. The second generation of antipsychotics, such as aripiprazole, olanzapine and risperi-

done, were developed in the 1980s to target D2R with lower affinity and also disrupt other

neuronal receptors (e.g. serotonin, epinephrine). While these have reduced motor side-effects,

second-generation antipsychotics have significant metabolic side-effects, including increased

rates of weight gain, dyslipidemia, and diabetes [21, 23]. A first-generation antipsychotic,

clozapine, is prescribed in the case of treatment-resistant schizophrenia, but its use is limited

by its severe side-effects, one of which is agranulocytosis, or lowered white blood count, that

can be potentially fatal [24, 22].
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Antipsychotic drugs generally have some efficacy in treating the core psychotic symptoms,

but a number of key issues emerge from their use in schizophrenia. First, both generations

of antipsychotic drugs appear to have limited effectiveness in addressing the negative and

cognitive symptoms of schizophrenia [21]. Even if positive symptoms are treated, many

patients still suffer from a lack of motivation and social withdrawal, preventing them from

resuming normal lives. In addition, for reasons ranging from severe side-effects, limited

perceived efficacy, and social stigma, antipsychotic use in chronic schizophrenia suffers

from substantial drop-out rates, with reports stating that 74% of patients discontinued their

assigned treatment before the end of an 18-month study [24]. These high drop rates contribute

to a higher risk of relapse of psychotic symptoms.

There is substantial patient heterogeneity in the prognosis of schizophrenia, with some

patients showing signs of recovery while others following a chronic and deteriorating course.

A five-year follow-up study of schizophrenia patients after the first psychotic episode demon-

strated that around half showed some signs of symptom remission, and another quarter had

adequate social functioning during this time [2]. Only 13.7% met the full criteria for a

prolonged recovery. A long-term study following patients for 15 to 25-years supported this

result, and similarly found that about 50% of cases have reasonable outcomes while only

16% achieve a late-phase recovery [1]. The increased mortality in schizophrenia has been

attributed to a number of causes of death: individuals with schizophrenia are at a greater risk

of dying from a large range of natural causes (cardiovascular diseases, digestive diseases,

endocrine diseases, infectious diseases, and respiratory diseases), and strikingly, have a

1.73-fold higher risk of accidents and a 12-fold higher risk of suicide [8]. A number of these

may not be mechanistically related to the biology of schizophrenia, but rather due to an

inability or aversion to accessing health care, or unhealthy lifestyle choices that generally

increase risk of cardiovascular disease [25]. Despite better outcomes than previously thought,

broad progress in therapeutic development and societal support is needed to improve the

prognosis of individuals with schizophrenia.

1.1.3 Epidemiology and global burden of disease

The lifetime prevalence for schizophrenia, or the proportion of people who had schizophre-

nia in a study population, is estimated to be four in every one thousand individuals [5].

The lifetime morbid risk, or the proportion of people who had or will eventually develop

schizophrenia, is 7.2 per 1,000 individuals. In layman’s terms, around seven in every thou-

sand individuals will be diagnosed with schizophrenia in their lives. Interestingly, there is

substantial variability in these estimates from different studies: a meta-analysis found that

the first and third quartile of estimates of lifetime morbid risk is 4.7 and 17.2 per 1,000
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respectively [5]. This variation is observed between countries, and even between regional

sites and neighbourhoods [26]. Estimates of incidence and lifetime risk also exclude other

psychotic disorders, which are relatively common in the general population. In a population

survey in Finland, the following lifetime prevalences are observed: 0.32% for schizoaffective

disorder, 0.07% for schizophreniform disorder, 0.18% for delusional disorder, and 0.42%

for substance induced disorders [17]. Combined, the lifetime prevalence of all psychotic

disorders including schizophrenia is over 3% in this nationally representative sample.

Schizophrenia symptoms begin to appear in the late teens with a peak between 20 and

30 years of age [27]. Schizophrenia at an earlier age is extremely rare, and has a prevalence

of about 1 per 10,000 in children [28]. In a representative sample of schizophrenia patients

from Germany, the mean age of onset for the earliest sign of a mental disorder, first psychotic

symptom, and first hospitalisation is 25.4, 27.9, and 30.0 years of age respectively [29]. A

number of factors appear to influence the mean age of onset, with pre-morbid functioning and

gender among the most significant. Individuals with earlier, youth-onset schizophrenia have

more severe cognitive deficits on executive function, IQ, and verbal memory while individuals

with much later onset have a more specific and limited pattern of cognitive deficits [28]. The

mean age of onset occurs three to five years earlier in men, and the age of onset distributions

when stratified by gender also have visibly different distributions [27]: age-of-onset for men

reaches a maximum at an earlier age, while a secondary peak is observed in females after the

age of 40. Finally, schizophrenia is more commonly observed in men, with a male-to-female

rate ratio of 1.4 (1.3 - 1.6, 95% CI) [5].

The Global Burden of Disease study use disability-adjusted life years (DALYs), defined

as the sum of years of life lost (YLLs) and years lived with disability (YLDs), to measure

disease and injury burden in the world [30]. Even though schizophrenia occurs less frequently

(< 1%) than other major causes of disability and mortality, such as cardiovascular diseases,

cancers, and neurodegenerative diseases in developed nations and infectious disease in

developing nations, it is ranked as the 43rd leading cause of disability-adjusted life years

globally, and unlike many other conditions, affects both developing or developed countries

to a very similar extent. Notably, from 1990 to 2010, schizophrenia’s per-capita DALYs

increased by 10.5% while the burden of disease in mental and behavioural disorders as a group

increased by 5.9%, a trend that runs counter to the progress made in common infectious

diseases (−59.9%), maternal disorders (−42.6%), cancer (−2.1%), and cardiovascular

diseases (−5.7%). Globally, we see that profile of disease burden is shifting from infectious

diseases affecting neonates and children to cancers, heart diseases, and mental illnesses like

schizophrenia.
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1.1.4 Environmental risk factors

Large-scale epidemiological studies have demonstrated that the a number of environmental

exposures are strongly associated with schizophrenia, each with substantial effects (odds

ratio [OR] > 2) on risk. First, childhood adversity and trauma, encompassing neglect,

sexual, physical, and emotional abuse, are significantly linked with the risk of psychosis,

with an overall odds ratio of 2.79 (2.34−3.31, 95% CI) [31–34]. Furthermore, individuals

suffering from extreme stress in early life, such as growing up in a time of persistent and

extreme famine, have increased rates of brain abnormalities and psychiatric disorders [35–

38]. Adverse prenatal outcomes, such as obstetrical complications, low birth weight, and

shortened gestation period, are also significant predictors of schizophrenia [39, 40]. In the

pharmacological space, a number of studies have suggested that long-term cannabis use

increases the risk of general psychotic disorders and schizophrenia. In a study of 45,570

Swedish conscripts, the odds ratio for schizophrenia in chronic, heavy users of cannabis

was ∼2.1 when compared to individuals who did not use cannabis, and this result remained

significant even after controlling for other psychiatric illnesses and social background [41].

Subsequent analyses in New Zealand, Germany, and U.K. replicated these results with

very similar effects [42]. However, no study has definitively shown that cannabis use is

causally linked to schizophrenia; it is also known that individuals with psychotic disorders

are generally prone to higher rates of substance abuse, and cannabis use may be an outcome

rather than a cause of schizophrenia. Another robust, though broadly defined, environment

exposure for schizophrenia is urbanicity. People born or brought up in cities experience

higher rates of psychosis [43], and this result remains significant even after controlling

for socio-economic status and ethnic composition [44]. The association with urbanicity is

independent of the metric by which urbanicity is defined (urban-rural [binary] or population

density [quantitative]). However, the mechanism underlying this association remains unclear;

it is possible that urbanicity is a proxy for more specific environmental exposures like

substance use, social isolation, and pollution. Finally, migration and minority status has

been linked in increased rates of schizophrenia. Two studies based in London and The

Hague have identified a dose-response relationship between the proportion of non-white

ethnic minorities in a neighbourhood and the incidence of schizophrenia, finding higher

rates of schizophrenia in minority groups when they are a smaller proportion of the regional

population [45, 46]. In summary, a number of environmental factors are robustly linked with

schizophrenia. However, because of the high levels of correlation between these exposures

(e.g. urbanicity, drug use, minority status) and the obvious fact that significant associations

certainly do not imply causation, great care must be taken when extrapolating notions of

causality from these results.
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1.2 The genetic architecture of schizophrenia

1.2.1 Family studies find substantial genetic component to risk

Since the early days of psychiatry, it was believed that schizophrenia, and psychiatric traits

in general, had a substantial genetic component. Family studies have consistently shown that

relatives of schizophrenia patients are at greater risk than the general population, with the

lifetime risk nearly ten-fold higher in siblings or offspring of individuals with schizophrenia

[47]. Furthermore, a person’s risk for schizophrenia increases with the number of affected

family members, with the lifetime risk increasing to 16% when both a parent and a sibling are

affected, and 46% in the offspring of two parents with schizophrenia [47]. However, familial

clustering does not prove the existence of a genetic component as it can be confounded by

shared environmental factors, which is why scientists turned to twin and adoption studies to

estimate schizophrenia’s true genetic component. Monozygotic (MZ) and dizygotic (DZ)

twin pairs enable the estimation of the broad-sense and narrow-sense (additive) genetic

heritability along with the variance explained by shared environmental influences. The twin

study approach uses the following properties of MZ and DZ twins: that MZ twins share

the entire additive genetic component, DZ twins share approximately half, and MZ and DZ

twins have the same shared environmental component. These studies found a strikingly high

concordance in monozygotic twins that was vastly greater than the concordance observed

in dizygotic twins: with a DSM-III definition of schizophrenia, MZ twin pairs showed a

concordance of 47.6% while DZ twin pairs showed a concordance of 9.5%, with an estimated

heritability or h2 of 0.85 [48]. One of the most cited estimates of the genetic component

of schizophrenia comes from a meta-analysis of twelve twin studies, which refined the

point estimate of the broad-sense heritability of schizophrenia to 81% (73−90%, 95% CI),

with consistent evidence for a shared environmental contribution of 11% (3−19% CI) [49].

While substantial heterogeneity was observed among the point estimates from the twelve

twin studies, together, these studies show consistent support for a large genetic component in

the etiology of schizophrenia.

However, the twin study method has been criticised for a number of its core assump-

tions, including the possibility that monozygotic twins are more likely to share the same

environmental exposures when compared to dizygotic twins. To address this, scientists

turned to studies investigating the rates of psychiatric illness in children with biological

parents who developed schizophrenia but who were given up for adoption. These adoption

studies compared the incidence of schizophrenia in adopted children from parents with

schizophrenia to the incidence in adopted children from non-schizophrenia parents. The

first of such efforts in 1966 found that 10.6% of 47 adopted children with affected mothers
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developed schizophrenia, and found none in 50 control children [50]. A number of subse-

quent adoption studies replicated and extended these results [51]. Some of these showed

genetic liability for schizophrenia conferred risk for broader psychiatric phenotypes (e.g.

schizoid personality disorders). Other studies followed adopted children of affected fathers,

enabling them to exclude intra-uterine influences as a potential environmental confounder.

Furthermore, nation-wide adoption studies demonstrated that the biological relatives of an

adopted individual with schizophrenia have higher than expected incidences of schizophrenia,

while the adopted family have incidences no different than baseline [51]. Together, the

results from family studies spanning nearly eighty years and multiple designs conclusively

demonstrate that a substantial genetic contribution exists in the etiology of schizophrenia.

1.2.2 Genome-wide association studies implicate common polygenic vari-
ation

Subsequent studies sought to clarify the nature of the genetic contributions to risk of

schizophrenia with the ultimate goal of identifying the number, frequencies, and effect

sizes of risk alleles in the human population. The existence of a monogenic architecture

was immediately excluded due to the absence of clear segregation patterns in families. The

search for individual variants of substantial effect continued in linkage and candidate gene

studies, but these efforts were largely unsuccessful in identifying risk factors that explain

schizophrenia’s genetic liability. A more likely hypothesis describing a polygenic architecture

akin to other complex traits was proposed by Gottesman and Shield as early as 1967 [52].

This model suggests that a very large number of loci of modest effect together contribute to

the liability of developing schizophrenia. This hypothesis can explain the high concordance

in twin studies, and the increased risk when more relatives of an individual are affected. It

also provides an explanation for the surprisingly high incidence of schizophrenia in general

population despite its negative prognosis, since selection cannot effectively eliminate so

many common variants with such modest effects of fitness. Despite the polygenic model’s

plausibility, it was not until the arrival of array-based genotyping at a population scale that

this theory is proven true.

The completion of the Human Genome Project and the HapMap Project helped create

comprehensive catalogues of millions of common variants in the human population [53].

The maturation of DNA microarray technologies at around the same time enabled the

multiplex genotyping of hundreds of thousands of single nucleotide polymorphisms in a

single individual. Finally, statistical methods were developed to robustly test individual

markers for association with different human traits, controlling for systematic biases from
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sample ascertainment, genotyping error, and multiple testing. The convergence of these

milestones paved the way for a new era of genetic mapping in human disease. Since the mid-

2000s, genome-wide association studies (GWAS) have made significant progress in advancing

our understanding of the genetic architecture of complex diseases, confirming that many

human traits and disorders indeed have a polygenic component [54]. The early results for

psychiatric disorders were less compelling; although a multi-stage GWAS for schizophrenia

in 2008 identified a single SNP near ZNF804A [55], smaller studies investigating common

variants in Crohn’s disease and Type 1 Diabetes identified many more loci at genome-wide

significance.

Instead of simply identifying individual loci using the GWAS approach, a landmark

study combined the additive effects of nominally significant loci into quantitative scores,

and computed and tested these scores for association to schizophrenia in an independent

sample [56]. The scores generated on SNPs with P < 0.5 was highly correlated with

schizophrenia risk (P = 9×10−19), and explained around 3% of the variance. This result

was replicated in several other independent data sets and at varying P-value thresholds.

Notably, the polygenic score for schizophrenia was specific to psychiatric disease, having no

association with cardiovascular and autoimmune diseases. The limited success in identifying

individual loci originated in part due to the breadth of schizophrenia’s diagnostic criteria and

differences in its genetic architecture when compared to other complex traits. Schizophrenia

likely encompassed a number of disorders with different underlying etiologies. Therefore,

individuals recruited into schizophrenia studies represented a highly heterogeneous clinical

sample, which resulted in reduced statistical power when detecting variants which conferred

risk for a subset of individuals. Second, schizophrenia appeared to have fewer loci of

individually large effect when compared to other complex traits. For instance, autoimmune

disorders had common risk variants with odds ratios of greater than 1.5 [54], which enabled

robust associations with only a few hundred cases. While early association studies of

schizophrenia did not have sufficient power to identify many individual risk loci, they

strongly confirmed a polygenic component to schizophrenia involving common variants.

Reassuringly, a subsequent genome-wide association study of 36,989 cases and 113,075

controls identified 128 independent common variant associations (minor allele frequency

[MAF] > 2%) that remained significant after multiple testing correction (Figure 5.1) [57].

Combined, these 128 loci explained 3.4% of variation in the liability-threshold model.

Variance components analysis on the same sample determined that more than 71% of all

one Megabase (Mb) regions in the genome contained at least one common risk allele, and

estimated the additive heritability from common variants to be 27.4% [58]. Therefore, the

modest effects of common variants (median odds ratio [OR] = 1.08) are combined to produce
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a polygenic contribution estimated to explain a notable fraction of the overall genetic liability

in schizophrenia.

1.2.3 Recurrent copy number events confer substantial risk

Copy number variants (CNVs) are a type of structural variation that either deletes or du-

plicates a segment of DNA greater than 1 Kilobase in size. As a class of variation, CNVs

account for the largest proportion of bases that vary between individuals [59], and confer

risk for a number of Mendelian and complex diseases [60]. Early results from cytogenetic

studies, such the identification of trisomy 21 as the cause of Down syndrome and a burden of

chromosomal abnormalities in children with autism, suggested that structural variants may

explain at least a portion of the genetic liability in brain disorders [61]. This hypothesis was

validated when a copy number variant - the 22q11.2 deletion - was implicated as the first

genetic risk locus for schizophrenia. The 22q11.2 deletion is highly recurrent, and has two

common breakpoints resulting in a removal of 3 Mb or 1.5 Mb of sequence and a single

copy loss in 30 to 40 genes. While this deletion causes a broader syndrome characterised by

cognitive impairment and physical abnormalities, nearly 24% of carriers have psychiatric

symptoms satisfying the full diagnostic criteria for schizophrenia [62].

With the arrival of array-based genotyping technologies, these early results were gen-

eralised when individuals with schizophrenia were shown to have a greater genome-wide

burden of rare copy number variants compared to controls [63]. A genome-wide analysis

comprising of 3,391 cases and 3,181 controls demonstrated that a 1.15-fold enrichment of

rare and large CNVs (MAF < 1% and > 100kb) existed in individuals with schizophrenia.

The enrichment was even greater at 1.32-fold for deletions with a length of least 500 Kilo-

bases. Subsequent studies began to implicate individual loci at genome-wide significance,

beginning with the 1q21.1, 15q11.2, and Neurexin 1 loci [64]. More recently, follow-up of

putative risk loci in tens of thousands of individuals identified 11 rare CNVs that individually

conferred substantial risk for schizophrenia (ORs 2− 60, Figure 5.1) [63, 65–67]. These

risk CNVs appeared to be highly recurrent and shared nearly the same breakpoints within

each locus. This was due to the mechanism by which these CNVs were formed: they are

flanked by segmental duplications, which enable higher rates of non-allelic homologous

recombination and increased mutability at these regions. Because they are subject to strong

negative selection, the 11 risk CNVs remain very rare events in the general population and

explain only a small fraction of the genetic liability for schizophrenia [68]. Together, these

findings established that both common variants and rare structural variation contribute to the

complex genetic architecture of schizophrenia.
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Fig. 1.1 Risk variants for schizophrenia. The effect size of each genome-wide significant

risk variant for schizophrenia, as described in Ripke et al. and Rees et al., were plotted

against its allele frequency in cases [57, 67].
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1.2.4 Shared common risk variants across psychiatric disorders

The categorical symptoms used to define psychiatric disorders are generally not exclusive to

a single diagnosis. For instance, the Schneiderian First Rank symptoms for schizophrenia

are observed in individuals with bipolar disorders, and schizophrenia patients often have

symptoms characteristic of depression, anxiety, and obsessive-compulsive disorder [16, 20].

Furthermore, relatives of patients with bipolar disorders are 4.9-fold more likely to have

schizophrenia than relatives of control individuals [69]. These observations provide early

evidence that genetic risk may be shared between psychiatric disorders.

Polygenic risk scores generated from schizophrenia case-control data were significantly

associated with bipolar disorder (P < 7×10−9) and explained up to 1.9% of the variance,

demonstrating that schizophrenia and bipolar disorder shared at least some common risk

variants [56]. To further explore the shared genetic etiology between psychiatric disorders,

array-based genotype data from case-control studies of schizophrenia, bipolar disorder, major

depressive disorder, attention-deficit hyperactivity disorders, and autism were used to estimate

the narrow-sense heritability of each disorder and the genetic correlation between each pair

of disorders [70, 71]. Remarkably, common risk variants were significantly shared across all

these conditions. The strongest correlation was observed between schizophrenia and bipolar

disorder (0.68; 0.62− 0.72, 95% CI), an expected result when considering clinical and

epidemiological evidence for overlapping symptoms. The weakest correlation was observed

between schizophrenia and autism (0.16; 0.1− 0.22, 95% CI), which was also expected

since autism is believed to have more of a neurodevelopmental etiology. Reassuringly, no

correlation was observed with Crohn’s disease, demonstrating that the sharing of common

variants was specific to psychiatric disorders. The significant genetic correlation between

psychiatric disorders is likely driven by a number of pleiotrophic risk alleles tagged by

common variants, and suggests that some number of biological mechanisms of disease may

too be shared between brain disorders previously thought to be largely distinct.

1.3 Whole-exome sequencing as a means of studying rare
variants

By accumulating sufficiently large sample sizes for GWAS needed for discovery and replica-

tion, large consortia have been particularly successful in identifying common variants of small

effects even in highly heterogeneous traits [72]. The many thousands of common genetic

variants associated with increased risk in complex diseases have opened up unprecedented

opportunities for the elucidation of disease pathways, mechanisms, and genetic architecture.
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Despite the success of the GWAS approach, the biological mechanisms of the vast majority

of common risk loci remain largely unknown, with many interspersed in intergenic regions

or in linkage with multiple variants in close proximity to a number of genes [73]. The nature

of linkage disequilibrium (LD) in association studies has made it difficult to pinpoint the

precise functional variant, gene, and pathway implicated, and while functional annotation

and network connectivity can help prioritize genes, the causal variant may not have been

typed at all, and large LD blocks may mask multiple independent causal variants that account

for additional genetic risk. Furthermore, the risk factors discovered by GWAS are generally

low-effect common variants that explain only a fraction of genetic heritability. For instance,

the genome-wide significant common risk loci for schizophrenia identified from 36,989 cases

explain only 3.4% of variation in the liability-threshold model [57]. Even if all common

risk alleles were identified, they only explain around 27.4% of the broad-sense heritability

previously estimated to be around 81% [49, 58]. The genetic architecture of schizophrenia

is far from being fully ascertained, with the number of loci, effect sizes, frequencies, and

interactions yet to be determined, and ultimately, existing genotyping arrays only assay a

subset of all variants that may confer disease risk.

It is almost certain that genetic variation other than common SNPs are associated with

complex disease risk. Already, rare structural variation has been demonstrated to play a

non-trivial role in the manifestation of a range of psychiatric disorders including autism,

Alzheimer’s disease, and schizophrenia [74]. Rare CNVs contribute to increased risk for

schizophrenia and bipolar disorder, with at least 11 large CNVs conferring substantial risk

for severe psychiatric outcomes [67]. Furthermore, genome-wide association studies are

unable to investigate SNPs and indels that are rare in the population (MAF < 1%) or unique

to a single individual. Because negative selection acts most strongly on variants with large

fitness coefficients, the variants that confer the most risk for disease necessarily reside in the

lower end of allele frequency spectrum. As technologies mature, approaches that characterize

this rarer subset of risk-conferring variation are rapidly scaled up to complement existing

genotyping efforts, in hopes of completing the genetic picture on complex disorders.

While de novo assembly of the first human genome required the capillary sequencing of

long reads that took nearly a decade to complete, next-generation whole-genome sequencing

(WGS) instead generates and aligns short reads (< 100bp) from a single individual to

the human reference genome to build a variation map [75]. If the genome is sequenced

at reasonable coverage (30− 60×), we can identify nearly all common and rare single

nucleotide variants and the vast majority of large structural variants with reasonable accuracy.

This technology is sufficient in generating the high-resolution datasets required to fine-

map existing risk loci, uncover population-specific variants, and identify ultra-rare exonic
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variants with clear functional consequences. However, whole-genome sequencing remains

prohibitively expensive for sequencing many thousands of individuals at the coverage required

to accurately call variants. Data production, processing, and storage of high-coverage whole-

genome data remain costly and time-consuming: uncompressed reads of a single genome at

standard 30× coverage is approximately 250 Gigabytes in size, with the compressed BAM

file reaching nearly 300 Gb in size [76].

As a cost-effective alternative, whole exome sequencing (WES) selectively sequences

only coding regions of a genome at very high-coverage using a target enrichment strategy

[77]. The target region is usually between 35 and 65 Megabases, representing at most

2% of the human genome. Not only are sequencing costs much lower, but production,

storage, and analyses of exome sequences are not as computationally intensive. Furthermore,

coding variants are much easier to functionally interpret, classify, and annotate than those in

non-coding regions, which prove valuable in downstream analyses [78].

1.3.1 Common study designs for sequencing studies

Parent-proband trio studies investigating the role of de novo mutations

Already, whole-exome sequencing has been successful in identifying causal variants for

Mendelian traits. The technology is particularly effective in resolving severe disorders where

cases are rare and sporadic and the causal variant is likely de novo in origin. Every individual

has an average of 74 germline de novo mutations, of which one resides in the protein-coding

region [79, 80]. These de novo events are systematically identified by comparing the exomes

of the biological parents and the proband and looking for variants that violate principles

of Mendelian inheritance. De novo mutations are more enriched for alleles conferring

substantial risk for disease compared to inherited rare and common variants because they

have not undergone post-zygotic negative selection. Compounded by the absolute rarity

of these events, de novo mutations with highly damaging functional consequences (e.g.

putative loss-of-function) have a high prior of being pathogenic for disease when compared

to inherited variation. Since observing multiple damaging de novo events in a single protein-

coding gene is extremely unlikely, sequencing a small number of cases and identifying genes

with multiple de novo hits is often sufficient in the discovery of the causal variant in sporadic

Mendelian disorders. Because of the relative straightforwardness of this analysis, whole-

exome sequencing has been extremely successful in discovering genes underlying unsolved

monogenic disorders. The first wave of whole-exome sequencing analyses identified the

causal genes for Miller syndrome (DHODH), Kabuki syndrome (KMT2D), and Bohring-

Opitz syndrome (ASXL1) [81–83] by sequencing fewer than 15 affected individuals. These
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early results motivated the formation of clinical cohorts composed of many thousands of

individual with sporadic and severe disorders likely of monogenic etiology to enable large-

scale gene discovery.

In addition to diagnosing severe monogenic disorders, whole-exome sequencing has

revealed a major role of rare variation in psychiatric and neurodevelopmental disorders, im-

plicating individual genes, gene sets, and biological processes. Even in highly heterogeneous

and complex human disorders, the rarity of damaging de novo events makes it possible to

observe statistically significant recurrence of mutations in individual genes with smaller

sample sizes than would be required in a case-control design. Two early whole-exome

sequencing study identified de novo mutations in 151 patients with intellectual disability

to better understand its genetic etiology [84, 85]. One study found diagnostic variants in

16% of patients [84], while the other found a 3.9-fold excess of de novo LoF mutations

in cases compared to controls [85]. These results confirmed that de novo mutations are

an important cause of intellectual disability, and that whole-exome sequencing is a highly

useful diagnostic tool despite the disorder’s substantial clinical and genetic heterogeneity.

Trio studies investigating autism spectrum disorders similarly found that damaging de novo
mutations are elevated in simplex cases compared to controls [80, 86, 87]. However, the rate

of de novo events in individuals with autism was less than the rate observed in intellectual

disability, suggesting that de novo mutations play an important but more limited role in the

genetic architecture of autism. However, sufficient numbers of de novo mutations in ∼600

probands were observed in the same genes to implicate novel autism risk genes, including

CHD8 and KATNAL2.

Rare variant association analyses using case-control data sets

Whole-exome sequencing has been less successful in identifying genomic regions in which

the burden of rare variants differ between cases and controls. While the methodology

behind common variant association testing is now well established, rare variants cannot

be individually tested due to their absolute rarity in the human population, and must be

aggregated into sets in order to be analysed [88]. Purifying selection strongly reduces the

allele frequencies of highly damaging variants, and thus, variants with the strongest effects are

likely to be much rarer in the population. Because of this, neutral variants vastly outnumber

damaging rare alleles, and increase the baseline level of noise in collapsing tests [88]. Rare

variant analyses enrich for risk alleles by aggregating only variants below a particular allele

frequency threshold (i.e. < 0.1%) and with a likely damaging coding consequence (e.g.

missense or loss-of-function). In order to reduce costs, the first analyses attempting to

identify rare risk variants for complex diseases used targeted sequencing in a small number
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of genes. This approach achieved mixed success: the sequencing of 25 candidate genes

in 24,892 cases with autoimmune diseases and 41,911 matched controls demonstrated a

limited role of rare coding variants [89] while the targeted sequencing of 1,326 genes in 9,946

psoriasis cases and matched controls did not identify any gene with a burden of rare variants

[90]. On the other hand, targeted sequencing in 63 known prostate cancer risk regions in

9,237 individuals did not identify novel genes, but found that rare SNPs explained a notable

fraction of prostate cancer risk [91], and another study sequencing four candidate genes in

438 cases and 327 controls identified a burden of rare variants for hypertriglyceridemia [92].

Only a small number of rare variant association studies identified individual risk genes, and

this required the sequencing of tens of thousands of individuals. For example, the targeted

sequencing of 56 genes in 28,207 individuals with inflammatory bowel disease and 17,575

healthy controls identified rare risk variants in NOD2, IL18RAP, CUL2, C1orf106, PTPN22
and MUC19, and protective variants in IL23R and CARD9 [93]. These results suggest that

extremely large samples would be needed to identify rare variants with only a moderate

effect on risk.

Several large-scale efforts have tried to expand targeted sequencing approaches to test

the entire exome. For instance, the NHLBI exome-sequencing project attempted to identify

rare risk variants for cardiometabolic traits and cardiovascular disease using the exomes of

6,500 individuals [78]. The analysis of these exomes did not identify any novel genes for any

of these traits. These data were then combined with imputed genotypes of 64,132 individ-

uals, array-based genotyping of rare variants (Exomechip) in 15,936 individuals, targeted

sequences in 6,721 cases and 6,711 controls, and exome sequences in 9,793 individuals. Only

then did the study identify rare alleles in LDLR and APOA5 as conferring risk for myocardial

infarction [94]. It is clear that very few case-control whole-exome sequencing studies at

this time have sufficient power to identify risk genes. Thus, rare variant association testing

likely will require much larger sample sizes in the tens of thousands in order to successfully

identify risk genes at exome-wide significance.

1.4 Early results from sequencing in schizophrenia

Whole-exome sequencing studies investigating de novo mutations and case-control burden

have demonstrated that rare variation plays an important role in the genetic architecture of

schizophrenia. A number of early studies found that de novo missense and loss-of-function

mutations were elevated in cases compared to controls [95–97], and proposed a number

of possible candidate genes based on one or two de novo events. The largest study of

schizophrenia de novo mutations so far whole-exome sequenced 617 parent-proband trios,
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and found intriguing patterns in groups of synaptic proteins and gene targets of FMRP
[98]. The study further found that individuals with school grades below the median had a

higher enrichment of de novo mutations, suggesting that there was a link between these more

damaging variants and cognition. While it nominated TAF13 as a possible candidate gene, the

study did not have sufficient power to identify a single risk gene despite having similar sample

sizes as early autism and intellectual disability trio data sets. In total, seven studies have

studied de novo mutations in 1,077 schizophrenia probands, and identified thirty-eight genes

with two or more de novo nonsynonymous mutations [66, 98, 99, 95, 97, 100–102]. These

studies have found suggestive evidence for candidate genes, including EHMT1, DLG2, TAF13
and SETD1A [66, 98, 99], but much larger data sets are required to robustly demonstrate

these are true schizophrenia genes achieving genome-wide significance.

A recent case-control exome sequencing study with 2,543 schizophrenia cases and 2,543

matched controls compared the rate of rare variants in individual genes between cases and

controls using a one-sided burden test and the SNP-set (sequence) kernel association test

(SKAT) [103, 104]. To enrich for risk variants, the authors stratified their analyses by allele

frequency and functional class (missense or missense and loss-of-function). Unfortunately,

they did not identify any individual gene at a Bonferroni P-value of 1.25×10−6. Instead,

the study tested for a rare variant signal in biologically meaningful gene sets, and found a

significant burden of rare disruptive variants across a set of 2,546 genes selected on the basis

of a variety of biological hypotheses about schizophrenia risk and previous genome-wide

screens, including GWAS, copy number variation (CNV) and de novo mutation studies [103].

Furthermore, an enrichment in the targets of FMRP and synaptic density proteins was also

observed, similar to observations in the analysis of de novo mutations. Despite not having

sufficient power to identify individual genes, these analyses demonstrate that rare variants

contribute to the genetic architecture of schizophrenia, and risk genes will eventually be

identified with sufficiently large data sets.

1.5 Biological insights from genetic studies of schizophre-
nia

A number of biological insights have emerged from these early genetic results in schizophre-

nia. First, gene set enrichment analyses of de novo CNVs from 662 trios provided evidence

that these events disproportionately disrupted genes that were components of the post-synaptic

density proteome [66]. This observation was partially explained by a strong enrichment

in genes of the N-methyl-D-aspartate receptor (NMDAR) and neuron activity-regulated
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cytoskeleton-associated (ARC) protein postsynaptic density signalling complexes, and fur-

ther supported the hypothesis that synaptic processes were dysregulated in schizophrenia.

Enrichment analyses of de novo single nucleotide polymorphisms in the same trios replicated

these results, and found that large effect SNVs and indels also clustered in genes in the

NMDAR and ARC complex [98]. Furthermore, schizophrenia de novo mutations were

enriched in voltage-gated calcium channels and transcriptional targets of the Fragile X mental

retardation protein (FMRP), a result also observed in recent analyses of rare variants in

autism [105]. This study also found a nominal overlap with de novo LoF variants from

probands with intellectual disability (P = 0.019, uncorrected), but this result was based on

the observation of a single de novo event in the schizophrenia probands. A large case-control

analysis of whole-exome sequencing data further strengthened these observations by demon-

strating a burden of damaging variants in genes in the NMDAR and ARC components of

the post-synaptic density, calcium signaling genes, and translational targets of FMRP [103],

and similarly, a case-control study of copy number variants in 4,719 schizophrenia cases and

5,917 controls also implicated components of the post-synaptic density, calcium channel

genes and targets of FMRP [106]. Together, analyses from multiple study designs analysing

different forms of rare variation suggest an overlapping set of biological processes, such as

transmission at glutamatergic synapses, are perturbed in schizophrenia.

Genetic risk loci identified in genome-wide association studies provide additional insights

into the pathogenesis of schizophrenia. A number of intriguing genome-wide hits have

been identified in the largest GWAS to date, one of which is a common variant near the

dopamine receptor D2 gene [57]. First- and second-generation antipsychotic drugs work by

inhibiting D2R activity, and furthermore, abnormal pre-synaptic dopaminergic activity is a

major hypothesis of schizophrenia pathogenesis [107]. The discovery of this single genetic

signal suggests that other common variant loci may highlight novel biological processes and

valuable therapeutic targets warranting functional follow-up. Gene set analyses of common

risk variants found enrichment for brain and immune enhancers, but no specific pathways

appeared significant [57]. A study investigating biological pathways using common variant

data from individuals with schizophrenia, major depression, and bipolar disorder found

evidence that risk variants aggregate in a number of core biological processes, including

histone methylation, neuronal signalling pathways, and components of the post-synaptic

density [108]. Therefore, overlapping results from common and rare variant are reaffirming

previous hypotheses of disease pathogenesis and identifying novel and specific mechanisms

in the etiology of schizophrenia.
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1.6 Goals of this Thesis

Recent studies have demonstrated that the genetic architecture of common disorders are

highly polygenic and involves a combination of common, rare, and de novo risk variants

distributed across the genome. Furthermore, analyses of rare variation support a complex

and heterogeneous architecture involving many thousands of risk alleles and hundreds of

genes, suggesting that very large sample sizes will be required to convincingly identify

individual risk genes using only rare coding alleles. This polygenicity is best exemplified in

studies of neurodevelopmental disorders, such as autism spectrum disorder and intellectual

disability, which required many thousands of exome sequences to identify genes at genome-

wide significance [105, 109]. Despite several whole-exome sequencing studies investigating

rare variants in schizophrenia, no individual gene had been significantly implicated using

rare coding SNVs. Because of these promising results, multiple large consortia have been

established to generate large sequencing data sets that will enable researchers to understand

the link between rare variants and human traits and disorders. Three such efforts include

the UK10K study, the Deciphering Developmental Disorder (DDD) study, and the Autism

Sequencing Consortium (ASC). Initiated in 2010, the UK10K project has sequenced the

whole-exomes of 5,296 individuals, including those diagnosed with autism, schizophrenia,

obesity, and a number of rare diseases suspected to have a monogenic etiology. The goal

of the project is to characterize rare variants in the UK population, and determine the

contribution of these variants to a broad spectrum of traits and disorders with very different

genetic architectures. On the other hand, the Deciphering Development Disorders study aims

to use exome sequencing to help identify potential genetic causes of severe, undiagnosed

developmental disorders. Over 4,000 trios have been sequenced thus far, and over the next few

years, the project aims to sequence a total of 12,000 trios. Finally, the Autism Sequencing

Consortium sought to generate large whole-genome and whole-exome sequencing data

sets to identify loci associated with increased risk of autism across the allele frequency

spectrum through a combination of de novo, dominant, and recessive analyses of rare variants.

Hopefully, after the completion of these large projects, much more will be understood about

the role that rare variants have in the genetic architecture of complex disorders.

In my dissertation, I processed and analysed high-coverage sequence data sets from

the UK10K project and the DDD study in an attempt to identify risk genes containing rare

variants with large effects that contribute to increased risk in psychiatric disorders, with a

primary focus on schizophrenia. I first conducted rare variation association analyses using

data generated in the UK10K study, which included 1,488 UK schizophrenia and 399 Finnish

cases. We then aggregated de novo and case-control data from other published schizophrenia

data sets in order to increase power for gene discovery. In the process, I improved the
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procedures used in generating high-quality sequencing data (variant calling, filtering, and

annotation), and refined and applied existing statistical procedures used in common and

rare variant association testing. To increase statistical power, I combined signal from

multiple whole-exome data sets, applied various filters on allele frequency, variant annotation,

and predicted functional impact, and meta-analysed rare variants across family and case-

control designs. Furthermore, rare variants identified in individuals with schizophrenia were

compared and contrasted with those from probands in the DDD and ASC studies in order to

understand the genetic connections between psychiatric and neurodevelopmental disorders.

This included performing quality control and analysing a large independent copy number

variant data set to increase power. After combining rare SNVs and CNVs data sets, I tested

a number of biological hypotheses related to schizophrenia risk, and showed that the rare

variants supported a neurodevelopmental etiology to schizophrenia. In summary, I sought to

contribute to the understanding of the genetic architecture of complex psychiatric disorders

through a comprehensive analysis of available high-coverage sequencing data.



Chapter 2

A protocol for the quality control of
whole-exome sequencing data sets

2.1 Challenges behind the production and analysis of se-
quencing data

Whole-exome sequencing has emerged as the technology of choice in investigating the

contribution of rare variation in the genetic basis of complex disorders. It has been most

successful in identifying genes underlying rare Mendelian disorders, in which only a small

number of samples are needed to reveal causal variants of large effect [110, 111]. Early results

from complex diseases have demonstrated that a genome-wide burden of disruptive variants

exists in cases compared to controls. However, the identification of individual risk genes

remains elusive because a large number of genes appear to underlie many complex traits and

our ability to differentiate pathogenic variants from neutral polymorphisms remains limited

[78, 103, 88]. Much larger sample sizes, possibly in the tens of thousands, are required

to identify sufficient numbers of rare variants to implicate individual risk genes [88, 105].

While studies have individually analysed a small number of exomes, in aggregate tens of

thousands of whole-exome sequences have been generated to date [112]. Meta-analyses

leveraging published data sets are beginning to have sufficient power for gene discovery.

Standardized protocols currently exist for performing variant discovery on whole-exome

sequence data [113–117]. Raw reads in a FASTQ files are first mapped to a genome

reference, duplicated reads are marked in the resulting BAM file to reduce amplification bias,

and base quality scores are empirically adjusted for systematic errors. A variant caller such

as Samtools mpileup or GATK HaplotypeCaller identifies sites at which a potential variant

exists relative to the reference, and calculates the probabilities of each possible genotype
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at that site [113, 114]. For very large data sets, samples are called individually and merged

before variant calling occurs in aggregate. This enables the incorporation of variant-level

information across samples when determining the appropriate genotype. Subsequently, a

variant classifier, such as GATK Variant Quality Score Recalibration (VQSR), filters out

mapping and sequencing artefacts. The remaining variants are annotated with predicted

biological consequences and analysed. These best practices were successfully applied in

Mendelian disorder studies and parent-proband trio studies analysing de novo mutations

[110, 118, 98].

As we begin to jointly analyse thousands of samples aggregated from published studies,

additional complexities in the preparation and production of whole-exome sequencing data

begin to emerge. First, sequencing technologies have a higher genotyping error rate than

array-based calls, and unlike common variant association studies, genotype refinement using

a reference panel is unlikely to improve the quality of variant calls at the lowest end of

the allele frequency spectrum [116]. To partially address this, each sample is sequenced to

sufficiently high depth to ensure reasonable coverage (40× or greater) over the entire exome

[116]. However, the enrichment of coding sequences using DNA hybridization inherently

leads to uneven coverage: certain regions are captured to much greater affinity due to

sequence context (high GC content), while other baits fail when overlapping polymorphisms

modify its annealment affinity. Baits targeting low complexity regions capture reads from

other repetitive sequences, leading to a even greater disparity of coverage across the exome.

These limitations are further exacerbated by the substantial batch effects that appear from

combining data from different exome sequencing studies. Depending on study design,

researchers sequence samples to different mean coverage, which result in higher quality calls

in some samples over others. Furthermore, a number of commercial captures are available

for target enrichment, and each have systematic biases in its regional coverage of the exome.

Finally, sequencing centres have different protocols for sample preparation, sequencing, and

data production that are subject to change as technology progresses, all of which introduces

additional variability between groups of samples. To aggregate and meta-analyse published

sequencing data sets, we must first address these sources of systematic bias which often

confound the results of rare variant association tests.

In this Chapter, I first describe the whole-exome sequencing data generated in the UK10K

project, the Deciphering Developmental Disorders (DDD) study, INTERVAL study, Swedish

Schizophrenia study, and the Sequencing Initiative Suomi (SiSU) project, all of which are

analysed in Chapters 3 and 4. I then highlight the steps taken to prepare these data for

analysis, and detail best practices to harmonize sequence production, variant calling, and

variant- and sample-level QC across many thousands of whole-exome sequences. Useful
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metrics for comparing variant quality between data sets are shown and discussed. Using

diagnostic de novo mutations from the DDD study, I determine which in silico annotation

tool best differentiated pathogenic from benign variants, which I then use to classify missense

variants in subsequent analyses. Finally, I describe published whole-exome sequencing data

sets of schizophrenia parent-proband trios, and extend a method of modelling the recurrence

of de novo mutations for gene discovery.

2.1.1 Publication note and contributions

The results described in this chapter was peer-reviewed and published earlier this year [119].

I briefly summarise the various contributions to this project. The neuro group within the

UK10K study recruited and whole-exome sequenced schizophrenia cases. This initiative

was led by Aarno Palotie, Michael J. Owen, Jeffrey C. Barrett, and Daniel Geschwind.

The sequencing team at the Wellcome Trust Sanger Institute performed exome capture,

sequencing, and alignment for the UK10K and INTERVAL studies. I received the raw VCF

for the Finnish case-control data set from Mitja I. Kurki and Aarno Palotie. I performed

all subsequent production, and QC steps for these data under the supervision of Jeffrey C.

Barrett. Unless explicitly stated, the parts of the peer-reviewed publication reproduced in this

Chapter are my original work.

2.2 Materials and methods

2.2.1 Sample collections

Individuals clinically diagnosed with schizophrenia were recruited and exome sequenced as

part of eight neurodevelopmental collections (Aberdeen, Collier, Edinburgh, Gurling, Muir,

UK-SCZ, Finnish-SCZ, and Kuusamo) in the UK10K sequencing project. Matched popula-

tion controls were selected from non-psychiatric arms of the UK10K project, healthy blood

donors from the INTERVAL project, and five Finnish population studies (ENGAGE, Familial

dyslipidemia, FINRISK, Health 2000, and METSIM). Additional details on the UK10K

dataset are described in Table 2.1 and 2.2, and the sequence data have been deposited into

the European Genome-phenome Archive (EGA) under study accession EGAO00000000079.

The Swedish schizophrenia case-control study had been described in an earlier publication

[103], and I acquired processed VCFs for this data set via dbGaP authorized access (Ac-

cession: phs000473.v1.p1). A total of 2,536 schizophrenia cases and 2,543 controls were

available for analysis. The DDD study was designed to further our understanding of broader

developmental disorders while advancing clinical genetics practice in the UK. 4,281 children
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Table 2.1 Description of samples collections included as cases in the UK10K schizophrenia

analysis. 1,353 cases remained after sample quality control.

with diverse, severe undiagnosed developmental disorders and their parents were exome

sequenced to identify novel risk genes carrying variants of large effect. Patient recruitment,

sample collection, sequencing production, and initial analysis of the dataset were described

in detail in a previous publication [118]. The sequence data had been deposited into the EGA

under study accession EGAS00001000775.

The SiSU project is an international collaboration generating whole genome and whole-

exome sequence data from Finnish samples, and consists of a number of prospective and

case-control cohorts, including the ENGAGE, FINRISK, Health 2000, and METSIM studies

(http://www.sisuproject.fi/content/cohorts). The Northern Finnish 1966 Birth Cohort (NFBC)

is a geographically based representative birth cohort including 96% (N = 12,068) of all

live births in the two most northern provinces of Finland in 1966. The Northern Finnish

Intellectual Disability Cohort (NFID) is an ongoing sample collection of individuals who have

been diagnosed with ICD-10 diagnosis of intellectual disability or specific developmental

disorder of speech and language of unknown etiology (ICD-10 codes: F70-F79 and F80-F89).

The current sample includes 324 patients and their first-degree family members (N = 631,

92 full trios) with GWAS and WES data available. Combined, 5,720 Finnish exomes from

the SiSU project were available for analysis.
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Table 2.2 Description of samples collections included as controls in the UK10K schizophrenia

analysis. 4,769 controls remained after sample quality control.
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Informed consent was obtained for all samples. Further information is available at

http://uk10k.org/, http://www.ddduk.org, http://www.intervalstudy.org.uk/, and http://www.

sisuproject.fi/.

2.3 Sequence data production

2.3.1 Sample preparation

DNA samples in the UK10K, DDD, and INTERVAL studies were sequenced at the Wellcome

Trust Sanger Institute (Hinxton, Cambridge). One to three micrograms of DNA was sheared

to ∼100 to 400 base pairs using either a Covaris E210 or LE220 machine (Covaris, Woburn,

MA, USA), and processed using Illumina paired-end DNA library preparation. Three

different captures were used to capture targeted coding regions: an expanded custom Agilent

SureSelect Human All Exon v.3 capture with custom ELID C0338371 in the UK10K project,

the Agilent SureSelect Human All Exon v.3 Kit (ELID S02972011) in the DDD study, and

the Agilent SureSelect Human All Exon v.5 kit in INTERVAL study. All libraries were

subsequently sequenced on Illumina HiSeq 2000 with 75 base paired-end reads in multiple

batches according manufacturer’s protocol over the duration of each project.

2.3.2 Alignment and BAM processing

Sequencing reads that failed quality control (QC) were first removed using the Illumina

GA pipeline. Remaining raw reads were mapped to the reference genome (GRCh37 in

UK10K; GRCh37_hs37d5 in DDD and INTERVAL studies) using BWA (v0.5.9-r16 in

UK10K; v0.5.10 in DDD and INTERVAL) [113], and duplicate fragments were marked

using Picard (v1.36 in UK10K; v1.98 in DDD; v1.114 in INTERVAL) [120]. GATK (version

1.1-5-g6f43284 in UK10K; version 3.1-1-g07a4bf8 in DDD; version 3.2-2-gec30cee in

INTERVAL) was used to perform local realignment around indels [115], and recalibrate base

qualities in each sample BAM. I applied VerifyBamID (v1.0) to estimate the Freemix value,

which is representative of the contamination fraction in our sequence data [121]. I used the

recommended thresholds for contamination, and removed samples if they had Freemix score

≥ 0.03. 31 samples or 2% of the UK10K data set were excluded, while 201 samples or 4.5%

of the INTERVAL data set were excluded. We were unsure if the excess contamination in

the INTERVAL study occurred during sample extraction, preparation, or sequencing.
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2.3.3 Variant calling

I first called variants in individual samples using GATK Haplotype Caller (version 3.2-2-

gec30cee). All samples were merged into random batches of 200 using CombineGVCFs,

and then joint-called using GenotypeGVCFs at default settings [115, 122]. Because three

different exome captures had been used, variant calling was performed on the union of Agilent

v.3 and v.5 baits with 100 base pairs of flanking sequence. I subsequently ran the GATK

VQSR on all GENCODE coding variants using default settings. This joint calling protocol

was suggested by the GATK development team for the production of large sequencing data

sets.

2.4 Variant calling and quality control across capture and
batch

2.4.1 Adjusting for differences between capture and batch

The sequence data for individuals of UK ancestry was generated at the Wellcome Trust Sanger

Institute using the same Illumina sequencing platform and some version of the SureSelect

Human All Exon v.3 or v.5 captures. However, substantial differences exist between the

exome captures, and this must be carefully adjusted for if samples were to be jointly analysed

in a case-control framework. The v.5 capture improved coverage across the entire exome by

shifting problematic coding baits into the intronic region and excluding a small percentage of

repetitive and problematic genes. Because of this, the v.3 and v.5 captures shared only 77%

of their targeted regions, and a simple intersection could not be used to prioritise genomic

regions for a joint analysis. To best harmonize calls across projects, I first re-called samples

together using a common calling pipeline at the union of both Agilent captures with 100 bp

of flanking sequence. Instead of calculating coverage at v.3 and v.5 captures, I calculated

per-sample read depth at all coding exons defined by GENCODE version 19 to evaluate

differences in coverage and sequence quality [123]. From these data, I identified a set

of well-behaved coding regions with sufficient coverage across batches and captures for

subsequent QC and analysis.

In Figure 2.1, the v.5-captured samples (INTERVAL) had lower read depth across the

entire exome, but covered a larger percentage of coding regions than in earlier v.3 captures

(DDD and UK10K). The samples in the UK10K study were divided into two batches,

reflecting a known chemistry change that occurred early in the project. DDD exomes more

closely resembled the UK10K v.3 samples in regional coverage but clear differences still
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Fig. 2.1 Density plots of sequence coverage in the UK10K, INTERVAL, and DDD
datasets. Per-sample sequence coverage was calculated and summarised from exome se-

quencing data generated in the UK10K (N = 4,734 in batch 0, and N = 562 in batch 1),

INTERVAL (N = 4,502), and DDD (N = 1,972) datasets. The UK10K dataset was separated

into two sequencing batches. Top: sample mean coverage; Middle: percentage of GENCODE

v19 coding bases covered at 10× or more in each sample; Bottom: percentage of GENCODE

v.19 coding bases covered at 20x or more in each sample.
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existed between the v.3 and custom v.3 capture. Since all schizophrenia cases were sequenced

using the v.3 capture, I have less power to detect rare variant associations in regions where

this capture has limited coverage. I restricted our analysis to variants with a read depth of

7× or more in at least 80% of samples in each of the four batches (UK10K batch 0, UK10K

batch 1, DDD, and INTERVAL). For a more stringent filter, I identified exons that were

covered at 10× or more in at least 80% of samples in each batch for a total of 28.5 Mbs. By

applying these filters, I excluded regions that were not covered with sufficiently high depth

in our v.3-captured cases, or were not targeted in our v.5-captured controls by design.

2.5 Sample-level quality control for case-control analysis

The combined case-control data set consisted of individuals recruited from three countries:

the UK, Sweden, and Finland. The UK and Finnish cases were recruited as part of the

UK10K project, and the Swedish individuals were recruited in an independent study. While

cases were called with nationality-matched controls, each subgroup was processed and

sequenced at a different location with different reagents, and had to be analysed separately to

reduce the effects of possible confounders like population stratification. Because of this, I

performed sample-level and variant-level quality control steps on each nationality separately,

and describe these steps in detail below.

2.5.1 Sample-level QC in the UK10K-INTERVAL case-control data set

In the UK10K data set, we sequenced the exomes of 1,488 UK individuals with schizophrenia

and 5,469 matched controls without a known neuropsychiatric diagnosis. After per-sample

depth analysis, I removed 22 samples with low coverage (≤ 75% of the GENCODE v.19 cod-

ing region covered at ≥ 10×). I next identified high-quality LD-pruned SNPs to investigate

familial relatedness, non-European population ancestry, and outlying heterozygosity rates in

our data set. To acquire these variants, I extracted common SNPs (MAF > 5%) that passed a

stringent VQSR threshold (tranche sensitivity 99.0%), had missingness < 3%, and Hardy-

Weinberg equilibrium χ2 P-values > 1×10−3 in the UK10K and INTERVAL sequencing

batches. I merged this subset of samples and variants with the 1000 Genomes Phase III

release, and retained 43,837 SNPs with MAF > 5% and missingness < 3% in the combined

dataset. These variants were LD-pruned on PLINK v1.9 with parameters –indep-pairwise 50

5 0.2 while excluding extended regions of high LD (chr 6: 25,000,000-35,000,000, and chr 8:

7,000,000-13,000,000) [124]. After filtering, a total of 19,554 high-quality LD-pruned SNPs

were available for analysis.
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Fig. 2.2 Principal components analysis of UK and Finnish samples in our UK10K
schizophrenia dataset. Principal components were estimated using 1000 Genomes samples,

onto which I projected our cases and controls. I verified if samples had the same population

ancestry (UK or Finnish) as reported in the sample manifests, and excluded individuals who

were of non-European ancestry. Thresholds for sample inclusion and exclusion are shown

as dashed lines in each plot. Top left: Population structure of all UK10K samples, with

1000 Genomes populations used as bases. Samples bracketed by the dotted lines are of

European ancestry; Bottom left: PCA plot of individuals of non-Finnish European ancestry

in the UK10K dataset with 1000 Genomes European populations used as bases. Samples

not within the UK cluster (bracketed by the dotted lines) were excluded from analysis; Top
right: PCA plot of individuals of Finnish ancestry in the UK10K dataset. Samples not

in the Finnish cluster (bracketed by the dotted lines) were excluded from analysis. The

three-letter symbols describing each population originate from nomenclature in the 1000

Genomes Project. UK10K: samples in our case-control study; SCZ: schizophrenia cases;

Control: controls from our study.
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Principal components analysis (PCA) was performed using PLINK v1.947 with 1000

Genomes Phase III samples as reference populations. I observed that 407 individuals were

of non-European ancestry (Figure 2.2). In a second PCA using only European populations

as reference, I observed that our samples were predominantly of UK or North European

ancestry, with a small number of cases more related to 1000 Genomes individuals from the

Iberian peninsula (Figure 2.2). I retained these individuals, but noted that they may have to be

grouped into a separate batch or excluded in later analyses. I estimated kinship coefficients

between each sample pair using KING v1.448 [125], and removed 39 duplicate samples and

68 samples with abnormal values likely due to some level of contamination. Individuals in

first, second, and third-degree relationships were identified, and 190 samples were selectively

removed until the maximum pairwise kinship coefficient within the cohort is 0.09375. In

all, 826 samples were removed during QC, resulting in a final cohort of 6,122 UK samples

(1,353 cases and 4,769 controls).

2.5.2 Sample-level QC in the Finnish and Swedish case-control data
sets

In the UK10K data set, we sequenced the exomes of 399 Finnish individuals with schizophre-

nia and 2,116 matched controls, and performed variant calling using the GATK pipeline at

the Broad Institute (Cambridge, MA). After obtaining unprocessed VCFs containing these

samples, I excluded 16 samples with lower-than-expected coverage, and determined that

all samples within the Finnish data set were of either non-Finnish European or Finnish

ancestry (Figure 2.2). A more detailed projection using 1000 Genomes European individuals

revealed that 27 samples were more closely related to non-Finnish Europeans in ancestry, and

I excluded these 27 individuals from further analysis. From relatedness analysis, I excluded

67 samples. In all, 103 samples were removed during QC, resulting in a final data set of 2,412

samples (392 cases and 2,020 controls). A similar analysis within the Swedish case-control

data set determined that all samples were of non-Finnish European or Finnish ancestry. I

excluded 17 samples due to relatedness, resulting in a final data set of 5,073 individuals

(2,519 cases and 2,554 controls).
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2.6 Variant filtering in case-control data sets

2.6.1 Variant filtering in the UK10K-INTERVAL data set

Standard protocol for variant filtering recommends the use of GATK VQSR for calculating

the probability that a variant is real, and selecting a threshold that maintains a desired

sensitivity for true variants. The VQSR model trains on the annotation metrics (mapping

quality, strand bias, quality by depth) of validated variants from the HapMap project and

the 1000 Genomes Project to classify the remaining variants. However, recent studies have

suggested that VQSR is less effective in filtering ultra-rare variants, especially those that are

seen only once (singletons) or twice (doubletons) in the data set [126]. Notably, VQSR does

not filter individual genotypes, which allows low-quality calls to be inaccurately retained

if that site on average passes VQSR filtering. The inability to remove these low-quality

genotypes within variable sites adds unnecessary noise in downstream analyses. However,

recommended thresholds for filtering individual genotypes have not been established.

To complement the GATK filtering step, I empirically derived site and genotype filters by

evaluating the sensitivity and specificity of different thresholds using a training set consisting

of real rare variants and sequencing artefacts. First, I assumed that rare and singleton

ExomeChip genotype calls in 295 UK10K cases (83 in batch 0, 212 in batch 1) represented

real variants, and evaluated concordance with corresponding calls in our sequence data

to assess sensitivity. Second, I identified inherited variants unique to parent-proband pair

(inherited doubletons) and Mendelian inheritance inconsistent variants within DDD parent-

proband trios to evaluate SNP and indel filtering thresholds. I computed the percentage of

inherited variants retained and putative de novo variants removed at various thresholds to

evaluate the effectiveness of our variant filtering. Using these data, I explored genotype

thresholds across a number of variant and genotype-level metrics, including VQSLOD score,

reference allele read depth (DP0), alternate allele read depth (DP1), allelic balance (AB),

genotype quality (GQ), and mean genotype quality (GQ_MEAN). Variant thresholds were

determined for SNPs and indels separately. In summary, I used rare array-based variants and

rare Mendelian inheritance consistent (truth sets) and inconsistent variants from trios (false

set) to calibrate variant filtering thresholds.

Variant filtering thresholds for SNPs

Applying the following filters achieved a reasonable compromise between sensitivity and

specificity within our case-control data set (Figure 2.3):

• Exclude variants outside the VQSR tranche with 99.75% sensitivity
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Fig. 2.3 The evaluation of different variant filtering thresholds using rare DDD in-
herited variants and Mendelian inconsistent variants as a testing set. I evaluated the

sensitivity and specificity across a range of thresholds for each variant and genotype-metric.

AB<: retain variants with allelic balance greater than this threshold; DP1: retain variants

with alternate allele read depth greater than this threshold; GQ: retain variants with genotype

quality greater than this threshold; VQSR: retain variants with a GATK variant recalibration

scores greater than this threshold.

• Exclude variants with mean GQ < 30

• Exclude genotype calls with GQ < 30

• Exclude genotype calls with DP1 < 2

• Exclude genotype calls with AB < 0.2 and AB > 0.8

Using these thresholds, I removed 95.63% of all Mendelian inconsistent genotype calls

while retaining 98.38% of all doubleton inherited variants. In the ExomeChip data set,

I retained 99.45% of variants seen only once in the UK10K samples, and 99.62% of all

heterozygote calls. While GATK recommended a more conservative VQSLOD score thresh-

old (either VQSRTranche99.50 or VQSRTranche99.0), I found that a less stringent VQSR

filter combined with genotype-level thresholds retained a larger percentage of rare inherited

variants while attaining reasonable specificity. If VQSR were applied without genotype-

level filters, only 40.8% of all Mendelian inconsistent genotype calls would be excluded

were I to maintain a comparable sensitivity of 98% for doubleton inherited variants. I also

removed SNPs with missingness greater than 20%, and tested SNPs for deviation from Hardy-

Weinberg equilibrium within each sequencing batch (UK10K batch 0, UK10K batch 1, and

INTERVAL) and within the entire data set. The Hardy-Weinberg filter addressed mapping

issues that arose from differences in exome baits or decoy sequences used during alignment:
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mismapped variants often are seen only as heterozygotes in one batch and homozygotes in

another. Any variant that deviated from Hardy-Weinberg equilibrium with χ2 P-values of
< 1×10−8 in any batch or in the entire data set was excluded. Finally, I excluded variants
that resided in low-complexity regions, the 2% of the genome highly enriched for repetitive

sequences in which alignment and variant calling is more difficult (see Heng et al. [117] for
a more precise definition and motivation for its use). At each stage of filtering, I reported the

per-sample transition-transversion rate (TiTv), the number of heterozygote calls, the number

of non-reference homozygous calls, and the number of variants observed only once within

the UK10K-INTERVAL call set (Figure 2.4, 2.5). The variant metrics appeared comparable

across the four batches, and the mean sample TiTv was ∼3.26, the expected rate for coding

SNPs in European populations.

Variant filtering thresholds for indels

Using the same approach described above for SNPs, I found that the following filters achieved

a reasonable compromise between sensitivity and specificity for indel discovery within our

case-control data set:

• Exclude variants outside the VQSR tranche with 99.50% sensitivity

• Exclude variants with mean GQ < 90

• Exclude genotype calls with GQ < 90

• Exclude genotype calls with DP1 < 2

• Exclude genotype calls with AB < 0.25 and AB > 0.8

Using these variant and genotype-level thresholds, I removed 92.35% of all unfiltered

Mendelian inconsistent indel calls while retaining 93.60% of all doubleton inherited indels.

Applying VQSR alone was not sufficient to acquiring a clean indel set: even at a stringent

VQSLOD threshold of −0.3151 (VQSRTrancheINDEL0.00to99.00), I only achieved speci-

ficity of 40.72% for Mendelian inconsistent indels. I also removed indels with missingness

greater than 20%, and those that deviated from Hardy-Weinberg equilibrium with χ2 P-values
of < 1×10−8. I removed indels that resided in low-complexity, highly repetitive regions

(defined in the previous section) that could not be appropriately aligned using short-read

technology. Lastly, I excluded all indels that have more than two alternate alleles, or were

clustered within 3 bp of another indel. Following these indel filtering steps, the number of

indels and frameshift:inframe ratio appeared comparable across all batches (Figure 2.6).

From previous studies of parent-proband trio studies, we expected to find one coding de
novo mutation per proband [79, 80]. In our DDD trio data set, we observed 92 de novo SNVs
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Fig. 2.4 Variant metrics in the UK10K and INTERVAL datasets after each variant fil-
tering step. Box plots of per-sample heterozygote count (nHets), non-reference homozygote

count (nNonRefHom), TiTv (TiTv), number of singletons (nSiS), and number of indels

(nIndels) following each variant QC step. Variant metrics were summarised across all sam-

ples in the UK10K and INTERVAL datasets. Raw: no variant QC steps applied; Cov7:

restricting to variants with at least 7× mean coverage; VQSR: GATK variant calibration

using default parameters; Miss: filter for excess missingness; HWE: filter for deviation

from Hardy-Weinberg equilibrium; GTfilt: filter for low alternate allele read depth, and

abnormal allelic balance; GQmean: filter for low genotype quality; LCR: exclude variants in

low-complexity regions.
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and 12 de novo indels per proband prior to variant filtering, and 4 de novo SNVs and 0.92 de
novo indels per proband after variant filtering. The observed de novo mutation rate in our

data set still exceeded the expected rate of mutation described in previous studies, suggesting

that our variant QC was not sufficiently strict to over-filter genuine de novo events while

vastly reducing the number of false positives.

2.6.2 Variant filtering in the Finnish and Swedish data sets

In the Finnish data set, SNPs and individual genotype calls were excluded according to the fol-

lowing criteria: VQSLOD <−2.6557 (VQSRTrancheSNP99.75), GQ < 30, or GQ_MEAN

< 30. Indel sites and genotypes were excluded according to the following criteria: VQSLOD

< −0.2731 (VQSRTrancheIndel99.50), GQ < 90, or GQ_MEAN < 30. In addition, I re-

moved variants with missingness greater than 20%, or if they deviated from Hardy-Weinberg

equilibrium with χ2 P-values of < 1× 10−8. All variants within low-complexity regions

were excluded. I also removed all indels that have more than two alternate alleles, or were

located within 3 base pairs of another indel. After variant and genotype-level QC, the

sample TiTv and frameshift:inframe ratio was ∼3.29 and ∼1.01 respectively, which was

comparable across batches of the Finnish data set and with the UK10K-INTERVAL call set

(Figure 2.5, 2.6).

I was unable to acquire raw BAMs for the Swedish data set to re-call and perform QC

from scratch. However, the Swedish data set as provided already had very stringent filters

applied during a previous analysis, and I analysed the dataset with little additional QC.

Variant sites and genotypes were filtered out if the Hardy-Weinberg equilibrium χ2 P-values
< 1×10−8, missingness > 20%, or if they reside within in low-complexity regions. After

variant and site QC, the sample TiTv and frameshift:inframe ratio was ∼3.28 and ∼1.15
respectively, which was comparable across batches and with the UK10K-INTERVAL call

set.

2.7 Comparison of population genetics metrics across data
sets

Following sample and variant QC, 6,122 UK samples (1,353 cases and 4,769 controls),

2,412 Finnish samples (392 cases and 2,020 controls), and 5,073 Swedish samples (2,519

cases and 2,554 controls) were available for analysis. Variant counts and population genetic

metrics between data sets and sequencing batches were harmonized: the sample TiTv (mean

∼3.25) and the frameshift:inframe ratio were comparable across all populations and batches
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Fig. 2.5 Variant counts summarised according to variant class and sequencing batch in
the UK10K, INTERVAL, Finnish, and Swedish datasets. Box plots of per-sample variant

counts in the UK10K, INTERVAL, Finnish, and Swedish datasets. All samples included

in our meta-analysis are represented in the figure. The UK10K datasets was sub-divided

according to sequencing batches (batch 0 and batch 1), and sample ancestry (UK and Finnish).

The Finnish control datasets was separated by study of origin (Metsim, Finrisk, and Sanger

controls). The Swedish case-control dataset was separated into two sequencing batches.

Differences exist in total variant counts between the UK, Finnish, and Swedish collections,

likely reflecting differences in sequencing depth, capture reagents, sequencing protocol, read

alignment, and variant calling. However, variant counts and population genetics metrics were

consistent between cases and controls within each population group.
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(Figure 2.6). However, I still observed some differences between variant counts between the

UK, Finnish, and Swedish data sets (Figure 2.5). The UK, Finnish, and Swedish samples

were independently produced and called at different sequencing centres, and the discrepancy

in variant counts likely reflected differences in capture, sequencing batch, calling procedure,

and quality control. In particular, the Swedish data set we acquired from dbGAP underwent

extremely stringent variant filtering, and had per-sample variant counts nearly half of that

observed in the UK10K-INTERVAL data set and the 1000 Genomes Phase III data set.

These differences would confound rare variant tests and need to be explicitly corrected for.

In subsequent analyses, I adjusted for between-population differences by treating them as

separate analytical groups. More importantly, cases and controls within each population

group appeared to be well-matched, and this was reflected in the null statistics of subsequent

variant and gene-based analyses.

Fig. 2.6 Distributions of TiTv and frameshift-inframe ratios in the UK10K, INTER-
VAL, Finnish, and Swedish datasets. Here, I have a box plot of sample TiTv (left) and

violin plot of sample frameshift-to-inframe ratio (right) in the UK10K, INTERVAL, Finnish,

and Swedish datasets. All samples included in our meta-analysis are represented in the figure.

See 2.5 for the legend, and a description of each batch and sub-study. Following sample

and variant QC, the per-sample transition-to-transversion ratio was comparable between all

populations (mean ∼ 3.25).

2.8 Systematic annotation of coding variants

I used the Ensembl Variant Effect Predictor (VEP) version 75 to annotate coding variants

with GENCODE version 19 transcripts as reference [127]. VEP plugins were used to apply

in silico classifiers to missense variants, such as PolyPhen, SIFT, and CADD [128–130].

For each variant, I assigned a functional consequence on a per-gene basis, aggregating all

transcript-level annotations and retaining only the most severe consequence. Coding variants

were assigned into the following functional categories:
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1. Loss-of-function or disruptive (LoF) variants

• Frameshift

• Stop-gained

• Splice acceptor and donor variants

2. Initiator codon variants

3. Inframe deletion or insertions

4. Missense variants (mis)

5. Synonymous variants

Following other rare variant studies [94, 103, 105], I stratified our analyses into two functional

classes: 1. LoF variants, 2. missense or initiator codon variants.

2.9 Evaluating the effectiveness of existing in silico predic-
tors of pathogenicity

The use of variant annotation tools to prioritise coding variation has helped increase statistical

power for gene discovery [88, 94]. Most variants identified in the coding region reside in

the rarer end (MAF < 0.1%) of the allele frequency spectrum (AFS) [78]. If the predicted

functional consequence of variants were disregarded, a simple comparison of allele counts

between cases and controls would be diluted by large numbers of non-functional variants [88].

Functional annotation tools intend to accurately distinguish the pathogenic, disease-causing

variants from neutral polymorphisms, thus enriching our analyses on causal risk variants

while decreasing the rate of background noise. However, over-filtering and removing true

signals can have a detrimental effect on our power, especially when the allele counts of rare

damaging variants are already low due to purifying selection. A delicate balance between

specificity and sensitivity in annotating disease-causing variants is required to maximize our

power in detecting true associations.

2.9.1 The interpretation of protein-coding consequences

In the simplest case, a variant is annotated as functional based on its effect on a protein

product. A true loss-of-function (LoF) variant either drastically reduces levels of the gene

product or disrupts a protein’s ability to carry out key functions. This can be through

truncations, aberrant splicing, shifts in coding sequences, and pre-mature stop codons. A
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missense variant causes an amino acid substitution, which can lead to change in protein

functionality. Many of these changes are benign and would not be subject to strong selection:

missense variants may substitute amino acids without affecting charge and folding or disrupt

a domain or peptide that is irrelevant to protein function. On other hand, some missense

variants eliminate protein function by disrupt protein folding or modifying the charge of an

active site. Thus, even if a variant labelled as missense or loss-of-function by VEP, additional

information is needed to properly evaluate its pathogenicity.

2.9.2 A description of existing annotation tools

Because of this, a series of statistical tools have been developed to predict the pathogenicity

of missense variants. These missense classifiers primarily differ in the statistical approach

applied, the features inputed into the model, and the training and testing data set used for

calibration and evaluation (Table 2.3). For instance, PolyPhen2 uses a Bayesian classifier

to characterize missense variants based on structural information about the binding site,

protein domains, contact with ligands, and subunit interactions [129]. All the calculated

features are trained using a Bayes classifier on the HumDiv data set, a curated list of variants

causing Mendelian disorders, and the Humvar data set, a more comprehensive list of risk

alleles from UniProt [131]. SIFT, another popular tool, models function using a multiple

sequence alignment of proteins, and determines which base mutations was most tolerated

across similar proteins [128]. A SIFT score of 0.05 indicates the alternate allele was observed

in 5% of all alignments and could be considered not as damaging. Other missense classifiers

include LRT, MutationTaster, MutationAssessor, FATHMM, Radial SVM,MetaLR, GERP++,

PhyloP, Condel2, and SiPhy [132, 133]. Some of these, like GERP++, and PhyloP, classify

variants based on the degree of sequence conservation between species, while others, like

Radial SVM and Condel2, are ensemble classifiers that integrate results from other tools to

annotate variants. CADD differs in its approach completely by simulating its training set and

comparing these randomly generated alleles to the set of derived alleles common between

the human-chimpanzee ancestral genome [130]. A support vector machine with a large set

of features, including SIFT and PolyPhen, was used to model the relative deleteriousness of

all possible alleles across the genome. Unlike the other tools, CADD could annotate both

coding and non-coding variants.

When evaluating these models, differences in statistical approach, input features, and

training and testing data must be carefully considered to prevent issues of circularity and bias

(Table 2.3). For example, MutationalTaster incorporates frequency information from 1000

Genomes when determining pathogenicity; a testing set consisting of rare damaging variants

as pathogenic and common variants as benign would inflate the classifier’s effectiveness.
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Ensemble classifiers like CONDEL and Radial SVM incorporated MutationTaster, SIFT, and

PolyPhen as features, and indirectly incorporated frequency information. Furthermore, only a

few robust variant data sets exist for evaluating the effectiveness of each classifier, and many

of these classifiers already use them for training. For instance, PolyPhen, CONDEL, Radial

SVM, and MetaLR trained on the same set of curated coding variants provided by Uniprot,

while others trained on the Human Gene Mutation Database (HGMD) database. Therefore, a

new and wholly independent dataset is best suited for evaluating the performance of these in
silico classifiers.

2.9.3 Strategy for evaluating variant annotation tools

I evaluated the effectiveness of available annotation tools for LoF and missense variants

using a series of novel variant sets previously not used for classifier training. First, I used

a clinician-curated set of variants from the DDD study. De novo and inherited variants

were identified and validated in 1,133 affected probands, and variants disrupting known

developmental disorder genes were manually curated to determine if these variants were

pathogenic relative to the patient’s phenotype. I used all clinically reportable variants as a

truth set, and all rejected variants as a false set. For an additional truth set, I accumulated de
novo mutations from 2,263 trios sequenced as part of the Autism Sequencing Consortium,

and 2,500 trios sequenced in the Simon Simplex Collection. I identified all de novo missense

variants disrupting autism risk genes from Sanders et al. [109] as another truth set.
The ExAC database contained coding variants from 60,706 unrelated individuals without

severe paediatric diseases joint-called in a single pipeline [112]. It is important to note

that this release of ExAC contained a number of individuals with psychiatric phenotypes.

I assumed that the fraction of pathogenic variants in this data set was substantially lower

than in the DDD and ASD studies, and used missense variants with MAF < 1% in ExAC

as a false set. Finally, I re-annotated a large set of functional, protein-coding variants

manually curated by Uniprot for an additional training set. This truth set consisted of variants

described by Uniprot as disease-causing and our negative truth set were variants described as

general polymorphisms. I applied the following in silico classifiers to the missense variants:

PolyPhen2, SIFT, LRT, MutationTaster, MutationAssessor, FATHMM, Radial SVM, MetaLR,

GERP++, PhyloP, Condel2, CADD, and SiPhy. Using causal variants identified in the DDD

and ASD studies, I determined guidelines for prioritising variants in trio and case-control

analyses.
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Table 2.3 Description and summary of statistical tools developed to predict the pathogenicity

of coding variants. The statistical method, features, and training set of each missense classifier

were described. More information on these tools could be found in the annotation database

dbNSFP [132, 133].
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2.9.4 Preparation of annotation files

I used the Annovar tool and the dbNSFP v2.7 database [132, 133] to annotate all missense

variants with the following classifiers: PolyPhen2, SIFT, LRT, MutationAssessor, FATHMM,

Radial SVM, MetaLR, GERP++, PhyloP, CADD, and SiPhy. I used VEP to annotate variants

with CADD and Condel2 scores. Condel2 scores were separately downloaded from FannsDB

and parsed to be compatible with VEP.

2.9.5 Classifiers display variable performance depending on test data

First, I tested the effectiveness of the 14 classifiers in identifying pathogenic and benign

variants in the UniProt data set. I found that ensemble classifiers, such as LR score, Radial

SVM, VEST3, and CONDEL, had the greatest area under the curve (AUC), and reached a

sensitivity and specificity of just under 90% (Figure 2.7). These classifiers used PolyPhen,

SIFT and conservation scores as features to train more flexible statistical methods like the

random forest and support vector machine. This was followed by CADD and PolyPhen that

reached a sensitivity and specificity of just under 80%. SIFT and annotation methods based

on conservation did not perform as well as the other classifiers.

I next evaluated the classifiers using pathogenic de novo mutations from the DDD and

ASD studies as positive testing data. I first used UniProt benign polymorphisms as negative

testing data. As seen in Figure 2.8, I found that the missense classifiers performed sub-

stantially worse when classifying de novo mutations when compared to UniProt pathogenic

variants. None of the classifiers had a discrimination threshold that simultaneously achieved

a sensitivity and specificity of greater than 82%. Ensemble classifiers like LR score and

Radial SVM still outperformed the remaining classifiers. Along with CADD, these more

flexible methods outperformed PolyPhen, SIFT, and other conservation-based annotations.

Finally, I used ExAC missense variants with MAF < 1% as an alternate negative testing

data set, while still using diagnostic de novo mutations as the positive testing set. Again, the

ensemble classifiers massively outperformed the remaining annotation tools, with LR score

and Radial SVM leading with the highest AUC (Figure 2.9).

I attempted to identify optimal discrimination thresholds for each missense classifier using

Youden’s J-statistic. Surprisingly, the optimal discrimination threshold for each annotation

tool was highly sensitive to the testing data set used. For LR score, the optimal threshold for

the Uniprot testing data set was 0.28, and resulted in a sensitivity and specificity of 0.92 and

0.87 respectively. However, this same threshold resulted in a sensitivity and specificity of

0.68 and 0.98 when classifying de novo mutations and ExAC common variants. The optimal

threshold for this data set was instead 0.037, which yielded a sensitivity and specificity of
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Fig. 2.7 ROC curve evaluating the performance of missense classifiers on UniProt
pathogenic-benign variants. UniProt pathogenic variants were used as the positive testing
set, while UniProt polymorphic (benign) variants were used as the negative testing set. The

sensitivity and 1− specificity was plotted at various threshold settings for each classifier.
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0.96 and 0.94 respectively. Unfortunately, this pattern was also observed for Radial SVM and

VEST3. While the ensemble classifiers appear to outperform the other classifiers, identifying

the discrimination thresholds at which this generally occurs is not at all straightforward.

While it is difficult to explain this variability in optimal thresholds, these ensemble classifiers

directly or indirectly incorporate allele frequency as a feature in their models, and this may

lead to biases in evaluation depending on the proportion of common and rare variants in the

testing data sets.

Ultimately, I selected CADD > 15 to classify missense variants as damaging in our

case-control analysis. While CADD had an AUC lower than LR pred and Radial SVM,

it had optimal discrimination thresholds that were highly comparable across the different

testing data sets. The sensitivity and specificity at these optimal thresholds did not vary

significantly between different testing data sets. For de novo — ExAC common variant data

set, the optimal threshold was 14.1, the sensitivity was 0.84, and specificity was 0.86; for

the de novo — Uniprot benign data set, the optimal threshold was 16.3, with a sensitivity of

0.76, and specificity of 0.79; for the Uniprot pathogenic-benign data set, the threshold was

15.4, with a sensitivity of 0.82 and specificity of 0.75. CADD performed robustly across each

of our testing data sets, and its performance was superior to both PolyPhen, SIFT, and the

other conservation scores. Finally, its continuous score extended to synonymous, splice, LoF,

intronic, and intergenic variants, which may be useful for analyses that extended beyond

missense variants.

2.9.6 A comparison of annotation approach with other whole-exome
sequencing studies

While the annotation approach described here does not differ drastically with approaches

used by other whole-exome sequencing studies, it does differ in some notable aspects, which

I discuss here. Nearly all studies grouped functional coding variants into two categories

for analysis: loss-of-function variants (defined as nonsense, essential splice, and frameshift

variants), and nonsynonymous variants (defined as missense and inframe indels) [98, 103,

105, 118, 94, 112, 134, 135]. Variants were annotated based on the most severe consequence

on any transcript. Where studies generally differed was in the tool used to annotate variants,

the transcript reference database, and the in silico classifiers used to prioritise pathogenic

missense variants. For instance, Purcell et al. and Fromer et al. used PLINK/SEQ to

annotate variants according to the RefSeq transcript definitions; Do et al. and De Rubeis et
al. used SnpEff and also according to RefSeq transcripts; the DDD and ExAC studies used

VEP according to Ensembl GENCODE transcript definitions; Genovese et al. used SnpEff
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Fig. 2.8 ROC curve evaluating the performance of missense classifiers on pathogenic de
novo mutations and benign variants from UniProt. Pathogenic de novo mutations from
the DDD and autism studies were used as the positive testing set, while UniProt polymorphic

(benign) variants were used as the negative testing set. The sensitivity and 1 - specificity was

plotted at various threshold settings for each classifier.



2.9 Evaluating the effectiveness of existing in silico predictors of pathogenicity 47

Fig. 2.9 ROC curve evaluating the performance of missense classifiers on pathogenic
de novo mutations and ExAC missense variants with MAF > 1%. Pathogenic de novo
mutations from the DDD and autism studies were used as the positive testing set, while

ExAC missense variants with MAF > 1% variants were used as the negative testing set. The

sensitivity and 1 - specificity was plotted at various threshold settings for each classifier.
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according to GENCODE transcripts, and Fuchsberger et al. used a combination of annotation

tools that included SnpEff and ANNOVAR according to GENCODE transcripts. In many of

these studies, little justification was provided for the choice of annotation tool and transcript

database. Notably, when 80 million variants were annotated using multiple approaches, only

a 83% agreement was observed in the annotation for exonic variants when using the RefSeq

or Ensembl GENCODE transcript sets as references [136]. In the end, I decided to annotate

variants using VEP with GENCODE transcripts as reference because a number of data sets

and resources used in our analyses, such as ExAC database, GTeX database, and the DDD

study, followed this approach. In addition, as seen in the following section, the GENCODE

transcript reference contained a more complete set of coding genes, which permitted the

analysis of an additional 1,067 protein-coding genes. However, as discussed in [136], variant

annotation remained an unsolved problem, and no single annotation software or transcript

set was identified as directly superior to the others.

Whole-exome sequencing studies also differed in the tools used for classifying missense

variants as pathogenic and benign. Fromer et al., Do et al. and De Rubeis et al. used

PolyPhen-2, while Purcell et al., Fuchsberger et al., and Genovese et al. used an ensemble

approach in which missense variants classified as damaging by multiple tools were defined as

pathogenic. In the previous sections, I demonstrated that a number of the classifiers, including

CADD, outperformed PolyPhen-2 and SIFT. On the other hand, the ensemble approach

incorporated a number of tools that did not perform well in our evaluation (such as LRT), or

was not very robust and had very different optimal discrimination thresholds depending on

the testing set used . Furthermore, in Table 2.3, I described complicated interdependencies

between the different annotation tools, in which the same data sets were used for training

and evaluation, and some tools even incorporated SIFT and PolyPhen as features during

training. Thus, I decided to use CADD to annotate missense variants in our analysis, which

achieved reasonable sensitivities and specificities while robust to the choice of the testing

data set. I did not apply LOFTEE, as no other case-control or trio study performed additional

filtering on loss-of-function variants. However, this remains an unsolved problem, and no

single approach could be suggested as directly superior to the others.

2.10 A meta-analysis of published schizophrenia parent-
proband trio studies

Recent studies have leveraged whole-exome sequencing to identify de novo mutations in

parent-proband trios. These mutations are very rare germline events that arose in a single
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generation, and their unlikely occurrence in individual genes have been used to implicate

risk genes for severe Mendelian disorders. In these disorders, gene discovery did not require

a well-calibrated statistical model: for instance, five of the six probands sequenced with

Wiedemann-Steiner syndrome had LoF mutations in KMT2A [137], while nine of the ten

probands sequenced with Kabuki syndrome had de novo truncating events in KMT2D [82].

However, for more complex and heterogeneous disorders, the burden of de novo mutations

was likely spread over many genes. Early sequencing studies of hundreds of schizophrenia

and autism probands successfully demonstrated that a genome-wide excess of de novo
mutations existed in cases compared to controls [80, 96], but were underpowered to identify

individual genes.

Because recent studies have suggested that case-control and de novo data appeared

to implicate an overlapping set of genes [105], I aggregated validated de novo mutations

identified in schizophrenia trios from seven published studies for analysis with our case-

control cohort [98, 99, 95, 97, 100–102]. I ensured that all de novo mutations included our

analysis had been validated with Sanger sequencing, and that each parent-proband trio was

included only once in our analysis (Table 2.4). For example, the Xu et al. 2011 and 2012

studies and the Takata et al. 2014 study analysed trios from the same underlying cohort.

After excluding sample duplicates, I identified 118 LoF and 662 missense de novo mutations

in 1,077 schizophrenia probands for subsequent analysis.

2.11 Gene-specific mutation rates based on GENCODE tran-
scripts

To implicate individual genes using de novo mutations, a robust method of evaluating the

excess of de novo events is needed. One approach to evaluating the excess of de novo
mutations is to first estimate the expected per-generation rate of new mutations in gene g
(μg). Given this gene-specific rate, the probability of observing X new mutations in gene g
as observed in N trios can be modelled using the following Poisson distribution:

X ∼ Pois(2Nμg)

P(X ≥ x) = 1−
x−1
∑
i=0

P(X = i)

where X is number of de novo mutations in gene g, μg is the gene-specific mutation rate, and

N is the number of trios in our study. However, establishing robust gene-specific mutation
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Table 2.4 Published studies identifying de novo mutations in schizophrenia parent-proband

trios using whole-exome sequencing. The Xu et al. and Takata et al. studies analysed the trios
from the same underlying cohort. After excluding sample duplicates, 1,077 schizophrenia

trios were available for analysis.

rates is challenging: genes differ significantly in both total coding length and local sequence

context, resulting in substantial differences in their mutability.

A recent study generated gene-specific mutation rates by considering the tri-nucleotide

context of each base change, and integrating these locally adjusted rates across an entire

gene [138]. The probabilities of each of the 192 possible mutational changes were described

as constant values in a mutation rate table. To calculate a gene-specific mutation rate for

different types of mutations (LoF, missense, synonymous), the authors determined all possible

mutational changes in the gene that would introduce a change of that particular class, and

added the tri-nucleotide probabilities of all of these theoretical events. As a robustness check,

the study showed that the correlation between the number of rare synonymous variants in

each gene and the probability of a synonymous mutation as defined by the mutational rate

model was 0.94.

Because of the reliability of this model as demonstrated in its use in previous studies of

autism and developmental disorders [105, 118], I chose to incorporate it in our analysis of

schizophrenia trios, with a few minor adjustments. First, the gene-specific mutation rates

in Samocha et al. were calculated based on canonical transcripts as defined by an older

version of NCBI RefSeq database (pre-2014), which described fewer protein-coding genes

and transcripts per gene than the GENCODE database [123]. Second, the missense mutation

rates did not incorporate in silico annotations to prioritise more damaging events, and
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restricting our analysis to only CADD ≥ 15 missense variants further reduces the mutational

target of each gene and improves power [130]. To address these limitations, I identified

the canonical GENCODE v.19 coding transcript of each gene as defined by the APPRIS

annotation pipeline. APPRIS incorporated information from protein structure, functional

information, and evolutionary evidence to identify one transcript per gene as the principal

functional isoform. In the case of multiple principal transcripts, I conservatively selected the

longest APPRIS principal transcript. Gene-specific mutation rates for LoF, missense, and

synonymous variants for each GENCODE transcript were computed using the tri-nucleotide

mutation rates and method previously described in Samocha et al, by adding the probabilities
of all theoretical mutational events. I then annotated all possible missense mutations with

CADD scores, and calculated a gene-specific mutation rate for missense variants with CADD

PHRED score ≥ 15.

For genes that existed in both transcript references (RefSeq and GENCODE), our muta-

tion rates based on GENCODE transcripts correlated well with those described in Samocha

et al., with a correlation coefficient of 0.97 and 0.98 for missense and LoF mutations re-

spectively (Figure 2.10). Notably, our gene mutation rates were on average greater than the

published rates since I conservatively selected for longer transcripts when multiple principal

isoforms are available. By using GENCODE over RefSeq, I generated rates for an additional

1,067 protein-coding genes, enabling statistical tests on a more comprehensive set of genes. I

also found that only 44% of all possible missense variants had CADD ≥ 15, resulting in a

substantial reduction in the mutational target for most genes in the genome (Figure 2.11).

Interestingly, there was substantial variability in the fraction of CADD damaging sites in

different genes: I found that missense damaging sites were nearly completely absent in

around ∼1,500 genes, while in other genes, more than 75% of all missense sites can be

prioritised as damaging. This variability appears to be a property of gene function, since

olfactory receptors as a class appear to have the lowest proportion of missense damaging

sites. As later shown in Section 4.3.2, these classifier-adjusted rates increased our power to

distinguish patterns in de novo burden across neurodevelopmental and psychiatric disorders.

2.12 Discussion

Using whole-exome sequence data from the UK10K study, INTERVAL study, Swedish

Schizophrenia project, and the SiSU project, I generated a discovery data set of 4,264

schizophrenia cases and 9,343 controls. Despite following standard protocol for alignment

and joint calling all samples at the same time, I still observed substantial batch effects from

different exome captures used at different time points of the experiment. To address this, I
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Fig. 2.10 Correlation between mutation rates generated using GENCODE and RefSeq
transcript databases I compared the LoF, missense, synonymous, and total mutation rates

generated using the two different transcript references. Each dot represented a different gene,

and mutation rate μ calculated from RefSeq was plotted along the Y-axis, while the rate from

GENCODE was plotted along the X-axis.

Fig. 2.11 The ratio of the damaging missense mutation rate to the missense mutation
rate of each GENCODE coding gene. The ratio between missense rate using only CADD

damaging sites to the rate from all missense sites was displayed using a histogram. The mean

of the bi-modal distribution was 0.44.
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restricted our analysis to regions with reasonable coverage in all samples (7× or greater in

80% of each sequencing batch), and then identified appropriate variant- and genotype-level

filters using rare inherited and Mendelian inconsistent calls from the DDD study. I found that

well-calibrated threshold filters on variant- and genotype-level quality metrics (GQ, DP, and

AB) complemented well with a supervised method like GATK VQSR to produce reasonable

sensitivity and specificity for rare variant calls. A small number of common coding SNPs was

sufficient for sample-level QC aimed at reducing potential biases from ancestry, relatedness,

and contamination. Following sample and variant QC, I observed no genome-wide inflation

in rare variant tests in subsequent analyses (Section 3.3.1, 3.3.6).

To increase power of collapsing tests of missense variants, I tested the effectiveness of a

number of available in silico classifiers on a set of de novo mutations from the DDD study that

were reported back to patients and their families as clinically significant. Ensemble classifiers

(LR pred and Radial SVM) performed well when compared to commonly used tools like

SIFT and PolyPhen, but a fixed discrimination threshold could not be reliably determined.

As a second best option, I decided to annotate missense variants with a CADD score ≥ 15 as

damaging, excluding up to 80% of all benign polymorphisms while retaining up to 80% of all

diagnostic missense variants. I restricted our subsequent analyses to damaging missense and

LoF variants. Lastly, I extended the tri-nucleotide de novo model to all canonical GENCODE

transcripts, and generated mutation rates for damaging missense variants in addition to

all other functional classes. Taken together, the steps highlighted in this Chapter lay the

framework for analyses of rare variant data that should also be applicable in future exome

sequencing studies.
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Chapter 3

SETD1A is associated with schizophrenia
and neurodevelopmental disorders

3.1 Introduction

3.1.1 Motivation behind rare variant analyses in psychiatric disorders

Recent genome-wide association studies have demonstrated that a large proportion of the

genetic liability of psychiatric disorders resides in thousands of common alleles each with

modest effect [56, 140, 70]. This realization motivated global efforts to aggregate studies with

ever-larger sample sizes, and ultimately resulted in the discovery of over 108 common risk

loci for schizophrenia [57]. Concurrent analyses similarly suggested that common polygenic

variation explained most of the genetic risk in autism spectrum disorders, a condition

considered neurodevelopmental in origin. Combining genotyping data sets further showed

that schizophrenia, bipolar disorder, and anxiety shared common risk variants, successfully

recapitulating the overlap in clinical symptoms across psychiatric disorders [70].

Despite the successes of common variant analyses, studies investigating rare coding

variation (minor allele frequency < 0.1%) provide an unique opportunity to extend our

understanding of the genetic architecture of psychiatric disorders. First, alleles that confer

substantial risk for human disease are expected to reside in the rare end of the allele frequency

spectrum. These variants are subject to strong negative selection, and thus, are depleted

in the general population. In addition, because coding alleles cause changes at the mRNA

and protein level, they are easier to fine-map than common intergenic variants, and are

more likely to cause obvious cellular changes in human carriers. Both these properties

increase the success and interpretability of subsequent functional studies, which are critical

for elucidating the biological mechanisms underlying human disorders. Furthermore, while



58 SETD1A is associated with schizophrenia and neurodevelopmental disorders

ultra-rare variants explain only a modest fraction of the broad-sense heritability of complex

disorders, they contribute substantially to individual liability, and are immediately useful in

clinical practice for identifying patients with higher risk for disease [141]. At the moment,

genetic counselling and genetic testing are limited to fully penetrant alleles for Mendelian

traits (e.g. HTT repeat length for Huntington’s disease or HBB allele for sickle cell anaemia)

or rare variants of large effect (e.g. BRCA1/2 alleles for breast cancer or APOE alleles

for cardiovascular disease), and many more of these clinically relevant variants remain to

be discovered. Fortunately, the decreasing costs of whole-exome sequencing has enabled

the identification of very rare, often private, protein-coding variants in sufficiently large

populations, and well-designed studies leveraging this technology can advance our limited

understanding of the rare variant contribution to complex disorders.

3.1.2 Early studies of rare variants in psychiatric disorders

The first results that suggested an important role for rare variants in psychiatric disorders came

from karyotyping and cytogenetic studies of large structural variation. These early studies

demonstrated that individuals with autism had elevated rates of chromosomal abnormalities,

with large rearrangements observed in 5 to 7% of cases [61]. Because many of these risk

copy number variant (CNVs) were recurrent, highly penetrant in cases and nearly absent in

controls, even very small studies had sufficient power to identify putative risk loci, such as

the 15q11.13 duplication in autism [142, 143]. The 22q11.2 deletion was the first structural

variant to be significantly implicated in schizophrenia [144], and nearly 24% of carriers had

psychiatric symptoms that fulfilled the full diagnostic criteria for schizophrenia [62].

With the arrival of array-based genotyping technologies, these early results were general-

ized across psychiatric and neurodevelopmental disorders when individuals with schizophre-

nia, bipolar disorders, and autism were shown to have a greater genome-wide burden of

copy number variants compared to controls [63, 145, 146]. In particular, schizophrenia cases

had a 3.6-fold enrichment of rare deletions (>500 Kilobases), while between 5 and 10%

of individuals with autism carried large structural variants [63, 147]. Family-based studies

further identified a 2.3-fold and 5.6-fold excess of de novo CNV events were observed in

probands with schizophrenia and autism respectively [148, 63, 147]. Follow-up of putative

risk loci in many thousands of individuals identified 11 rare recurrent CNVs that individually

conferred substantial risk for schizophrenia (ORs 2−60) [63, 65–67], and an analysis of de
novo structural variants in 1,124 families identified six risk CNVs for autism [149]. Together,

these findings firmly established that rare structural variation contributed to the complex

genetic architecture of psychiatric disorders.
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However, there is great difficulty in translating these discoveries to an improved under-

standing of the biological mechanisms underlying schizophrenia. Many of the 11 schizophre-

nia risk CNVs (e.g.. 22q11.2 deletion) disrupt hundreds of Kilobases and the function of

numerous genes; despite thorough functional studies in in vivo and in vitro systems, the

identification of precise genes underlying the relevant psychiatric symptoms remained dif-

ficult and time-consuming for most of these loci [150]. On the other hand, whole-exome

sequencing has enabled the identification of ultra-rare, disruptive variants at single base

resolution, and multiple studies leveraging this technology have shown that many of the

observations from analyses of structural variants also extend to this better-resolved class

of rare variants. Three studies that whole-exome sequenced ∼600 autism parent-proband

trios demonstrated that autism cases had an excess of damaging de novo SNVs compared to

controls, and identified a number of novel risk genes using gene-level rare variant tests (i.e.

ANK2, CHD8, DYRK1A, GRIN2B, KATNAL2, POGZ, SCN2A) [80, 86, 87]. Schizophrenia
individuals also had an excess of rare LoF variants compared to controls [96, 97, 103, 98],

but these studies did not have sufficient power to implicate individual risk genes using the

reoccurrence of de novo mutations or case-control burden.

3.1.3 Emerging results from sequencing studies of neurodevelopmen-
tal disorders

Meta-analyses of de novo mutations identified in autism probands

The successes of early whole-exome sequencing studies motivated the Autism Sequencing

Consortium (ASC) to aggregate even larger sequencing data sets in hopes of identifying

additional risk genes. As a follow-up of the smaller trio studies from 2012, the ASC

meta-analysed whole-exome sequence data for 2,270 trios, and used a robust mutation rate

framework to identify genes with a statistically elevated rate of de novo events [105]. The

study also compiled a independent cohort of 1,601 cases and 5,397 ancestry-matched controls

in which de novo mutations could not be identified. Because case-control and de novo data

appeared to implicate an overlapping set of genes, the authors developed a novel statistical

framework that tested for disease association for each gene by combining information from de
novo mutations, inherited variants, and case-control burden [151]. The model was calibrated

such that de novo mutations carried the most weight followed by inherited and case-control

data. The framework also modelled LoF variants and PolyPhen-damaging missense variants

separately but integrated the two sources of information into a single test. Using this more

sophisticated hierarchical Bayesian model, the study identified 22 genes at FDR < 5% and

107 genes at FDR < 30% in which a disruptive variant conferred substantial risk for autism.
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Pathway analyses of these genes implicated synaptic formation, transcriptional regulation and

chromatin remodelling as core biological processes in the development of autism. Together,

these results suggest that many thousands of exome sequences (over 14,000 in this analysis)

are required identify risk genes at genome-wide significance, and that the integration of de
novo mutations with case-control burden of rare variants can result in a substantive increase

in statistical power.

Insights into neurodevelopment from the Deciphering Developmental Disorders study

The same methods and technologies were concurrently applied to study the genetic contri-

butions to developmental disorders. As part of the Deciphering Developmental Disorders

(DDD) study, 1,113 children were recruited from regional genetic services across the UK and

Ireland with clinical features including intellectual disability (87% of individuals), cranial

abnormalities (30%), seizures (24%), and autism (12%) [118]. 1,618 validated de novo
mutations were identified in this data set, nearly a three-fold excess when compared to expec-

tation in the general population. 317, or 28%, of these children carried a likely pathogenic

de novo mutation in the DECIPHER DDG2P database, a curated set of 1,129 genes previ-

ously demonstrated to carry variants causing developmental disorders. Using gene-specific

mutation rates, the study identified 12 new genes associated with developmental disorders.

Surprisingly, seven of the ten most significant genes in the ASC meta-analysis (FDR < 0.1%)

were also implicated as risk genes for severe developmental disorders. This suggests that

autism and broader neurodevelopmental disorders have at least some genetic overlap, and

that leveraging this shared genetics may be useful for identifying additional risk genes in

future studies.

3.1.4 Goal and aims

Despite the several whole-exome sequencing studies investigating rare variants in schizophre-

nia, no individual gene had been significantly implicated using rare coding SNVs. Motivated

by the new statistical methods and emerging results from the ASC and the DDD study, I

aggregated existing family-based and case-control sequencing data sets in schizophrenia,

and combined de novo recurrence and case-control burden to identify novel risk genes. By

meta-analyzing the whole-exome sequences of 4,264 schizophrenia cases, 9,343 controls

and 1,077 trios, I hoped to attain sufficient power to identify novel genes that carry alleles

conferring substantial risk for schizophrenia.
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3.1.5 Publication note and contributions

The results described in this chapter was peer-reviewed and published earlier this year [119].

I briefly summarise the various contributions to this project. The sources of the data used

were provided in Chapter 2. I performed all the production, and QC steps for these data, and

designed the statistical approach to integrate the case-control data with de novo mutation

recurrence. Other than the DDD proband phenotypic similarity analysis and SETD1A splice

reporter assay, I performed all the analysis described in this Chapter, as well as generated

all the Figures and Tables. Olli Pietiläinen, Moira Blyth, Trevor Cole, Shelagh Joss, David

Collier, and Mandy Johnstone kindly provided phenotypic details for the UK10K, DDD,

and SiSU SETD1A carriers. I wrote the first draft of the manuscript, and received very

helpful corrections, comments, and suggestions from my supervisor Jeffrey C. Barrett. The

manuscript was further improved after receiving useful comments from Dave Curtis, Patrick

Sullivan, Michael Owen, Michael O’Donovan. Unless explicitly stated, the parts of the

peer-reviewed publication reproduced in this chapter are my original work.

3.2 Materials and methods

3.2.1 Gene-based analysis in the case-control data set

A description of the study collections that compose of the schizophrenia case-control data

set was provided in Section 2.2.1. There, I also highlighted the key steps taken to align, call,

and prepare the sequence data. In total, rare variants from 4,264 cases and 9,343 controls,

and de novo mutations from 1,077 trios were available for analysis. To identify genes with

a significant burden of rare, damaging variants, I first applied the Fisher’s exact test as

implemented in PLINK/SEQ [104, 152]. I collapsed all rare variants identified in the coding

region of each gene as defined by GENCODE v.19, and tested for an excess of LoF variants

and LoF combined with damaging missense variants in cases compared to controls. Because

I analysed only variants with MAF < 0.5%, the probability of an individual carrying more

than one LoF or damaging missense variant was low. Therefore, I coded an individual as 1 if

they carry a rare allele in a gene, and 0 otherwise. I applied the Fisher’s exact test at three

different minor allele frequency (MAF) thresholds (singletons, ≥ 0.1% and ≥ 0.5%), as was

performed in previous rare variant analyses of schizophrenia [103]. To evaluate significance,

I performed two million case-control permutations within each population (UK, Finnish, and

Swedish) to control for ancestry and batch-specific differences.

I also tried to replicate previous results which found a polygenic burden of rare variants

in schizophrenia cases compared to controls. The approach used for gene set enrichment
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analysis broadly followed the methodology described in Purcell et al. and implemented in

PLINK/SEQ and the SMP utility [103]. This method of gene set enrichment testing featured

more prominently and is elaborated further in Section 4.2.2. Briefly, the gene set enrichment

statistic was calculated as the sum of single gene burden test-statistics corrected for exome-

wide differences between cases and controls. Statistical significance was determined using

two million case-control permutations as described above. The reported odds ratios and

confidence intervals from the enrichment analyses were calculated from raw counts without

taking into account ancestry and batch-specific differences in cases and controls.

3.2.2 Meta-analysis of de novo mutations and case-control burden

3.2.3 Frequentist method of meta-analysis using Fisher’s method

I aggregated validated de novo mutations identified in 1,077 schizophrenia trios from seven

published studies for analysis with our case-control cohort. Recurrence of de novo mutations

was modelled as the Poisson probability of observing N or more de novo variants in a gene

given a baseline gene-specific mutation rate obtained from the method described in Samocha

et al., modified to produce LoF and damaging missense rates for each canonical GENCODE

v.19 gene (see Section 2.11) [138, 123]:

X ∼ Pois(2Nt μ)

P(X ≥ x) = 1−
x−1

∑
i=0

P(X = i)

where Nt was the number of schizophrenia trios in our analysis (1,077), X was number of

observed de novo mutations within the trio data set, and μ was the gene-specific mutation

rate. A one-sided Fisher’s exact test (described above, in Section 3.2.1) was used to model

the difference in rare LoF (MAF < 0.1%) burden between cases and controls. Previous case-

control whole-exome sequencing studies similarly used one-sided tests for gene discovery

[103, 105]. In particular, Purcell et al. suggested that the one-sided test was appropriate

since current case-control studies for schizophrenia would not have sufficient power to detect

rare protective alleles, and that prior work on the burden of copy number variants and de
novo mutations suggested a predominantly one-sided model in which rare alleles increase

risk for disease. However, any significant result I report would remain significant regardless

of a one-sided or two-sided model. Subsequently, de novo and case-control burden P-values
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were meta-analysed using Fisher’s combined probability method:

X2
2k ∼−2

k

∑
i=1

ln(pi)

where pi was the P-value for the ith test, k = 2 was the number of tests being combined,

and X2 followed a χ-square distribution with 2k = 4 degrees of freedom. To calculate an

odds ratio for LoF variants in each gene, we treated the 1,077 probands as additional cases in

our case-control data set. For the schizophrenia discovery data set, the per-gene odds ratios

were calculated from observed LoF variants in 5,341 cases and 9,343 controls. Because

the number of observed LoF variants in each gene were often quite small, the odds ratio

calculation was corrected using penalized maximum likelihood logistic regression model

(Firth’s method, implemented in the logistf R package).

3.2.4 Bayesian modeling of de novo and case-control variants using
TADA

In addition to the frequentist method of meta-analysis, I also applied the Transmission and

Disequilibrium Association (TADA) method as described in He et al. [151] and implemented

in De Rubeis et al. [105]. TADA is a hierarchical Bayesian statistical method for the joint

analysis of case-control and family studies, in which information from the recurrence of de
novo mutations was integrated with inherited and case-control burden in a single statistical

test. Briefly, variants in Nt trios were classified as de novo, transmitted, or non-transmitted,

and all variants of each category were collapsed to a single count per gene. Counts of de
novo mutations were modelled using a Poisson distribution with two exogenous parameters:

μ , the gene-specific mutation rate for the specific variant class, and γ , the relative risk of

disease-associated variants. Case-control counts were similarly modelled using a Poisson

distribution, but instead of μ , the rate parameter depended on the general frequency of rare

variants in the population (q), scaled by sample size. A Bayesian approach was used to test if

a gene conferred disease risk, with the null and alternate hypotheses defined as H0 : γ = 1

and H1 : γ > 1 respectively. Within this framework, different relative risk parameters γ were

used to model LoF and missense variants, and de novo and case-control variants. These γ
parameters were crucial for weighting the importance of different types of information when

the joint statistic was computed. Generally, γ̄d > γ̄ and γ̄LoF > γ̄mis. Finally, per-gene Bayes

factors were calculated for LoF and missense variants separately, and then combined.

The robustness of results from TADA depended heavily on the specification of its

hyperparameters, which were dependent on the (unknown) genetic architecture of the trait.
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These include the relative risks for de novo and case-control variants (parametrized by γ̄d and

γ̄), and the number of true risk genes in schizophrenia (k). To apply TADA, I needed to first

define hyperparameters that reasonably represent schizophrenia’s true genetic architecture.

However, the estimation of γ̄ required the identification of a small set of true risk genes, but

no risk genes have yet been discovered in schizophrenia. Using estimates from the autism

analysis would be incorrect, since autism has a greater excess of de novo LoF and missense

mutations than schizophrenia. To use TADA in a robust manner, I ran the model across a

range of reasonable parameters to determine if any signal appeared significant throughout:

• γ̄d ∈ {2,4,6,8,10,12,15,20} for LoF variants

• γ̄ ∈ {1,2,4} for LoF inherited and case-control variants

• γ̄d ∈ {1,2,4} for missense variants

• γ̄ = 1 for missense inherited and case-control variants

• k ∈ {100,500,1000,2000}

I used the default values for the remaining parameters, and applied the following restrictions:

γ̄d > γ̄ and γ̄LoF > γ̄mis.

3.2.5 Validation of variants of interest

The experimental validation of individual variants of interest was performed by Elena

Prigmore of the DDD study. Primers were designed using Primer 3 to produce products

between 400 and 600 bp in length centred on the site of interest. Using genomic DNA from

all trio members as templates, PCR reactions were carried out using Thermo-Start Taq DNA

Polymerase (Thermo Scientific) following the manufacturer’s protocol, and successful PCR

products were capillary sequenced. Traces from all trio members were aligned, viewed, and

scored for the presence or absence of the variant.

3.2.6 Functional consequence of the exon 16 splice acceptor deletion

The functional assay described here was performed by Sebastian S. Gerety of the DDD study

to assess the impact of the exon 16 splice acceptor site variant. A custom minigene construct

was first created by cloning the entire 696 bp genomic region encompassing exons 15, 16, 17

and intervening introns of human SETD1A, fused in-frame to a C-terminal GFP. We flanked

the cassette with a strong upstream promoter and a downstream polyadenylation sequence.

We transfected plasmids containing either the reference or deletion-containing forms into

HELA cells, and these cells were grown for 2 days under standard conditions. The RNA was
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extracted (RNEasy, Qiagen) from the transfected cells and cDNA was synthesized (Super-

script III, Invitrogen). Minigene-specific primers were designed to avoid amplification of

endogenous HELA derived transcripts. The first pair of primers spanned all three exons, thus

allowing us to detect overall splicing changes (Pair 1, Forward 2: TCGAAGAGTCATAAA-

CACTGCCATG, Reverse 9: GTGAACAGCTCCTCGCCCTTG). We also designed pairs

of exonic, intron-spanning primers to distinguish splicing events upstream (Pair 2, Forward

1: TTTGCAGGATCCCATCGAAGAGTC, exon 16 reverse: CACTGTCCATGATGGCG-

GAGGTA) and downstream (Pair 3, exon16 forward: CTGCTGAGCGCCATCGGTAC,

exon17 reverse: CTGAACTTGTGGCCGTTTACGTC) of exon 16. We performed PCR on

the cDNA from two transfection replicates of each sample. Agarose gels were used identify

PCR product size differences (DNA ladder: 2-log ladder, New England Biolabs), which were

further analysed by capillary sequencing.

3.2.7 Phenotype clustering in DDD probands

The phenotypic clustering analysis of DDD probands was performed by Jeremy McRae.

Clinical geneticists as part of the DDD study systematically recorded phenotypes of probands

with severe developmental disorders using the Human Phenotype Ontology (HPO) [153].

The Human Phenotype Ontology version 2013-11-30 was used to record phenotypes of

these individuals. We leveraged this systematic phenotypic data to assess the probability

that the probands shared more similar clinical features than expected by chance. For each

pair of terms, we calculated the information content (defined as the negative logarithm of

the probability of the terms’ usage within 4,295 DDD probands) for the most informative

common ancestor. We estimated the similarity of HPO terms between two individuals as the

maximum information content (maxIC) from pairwise comparisons of the HPO terms for the

two individuals. We then estimated the phenotype similarity for a set of N probands as the

sum of all the pairwise maxIC scores. A null distribution of similarity scores was simulated

from randomly sampled sets of N DDD probands, and the P-value was calculated as the

proportion of simulated scores greater than or equal to the observed score.

3.3 Results

3.3.1 Study design

The case-control data set consisted of 357,088 damaging missense and 55,955 LoF variants

called in 4,264 cases and 9,343 controls (Figure 3.1). I restricted our analyses to rare variants,

stratified by allele frequency (singletons, < 0.1%, and < 0.5%) and function (LoF and
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damaging missense variants). I first replicated the enrichment of rare LoF variants in the

previously implicated set of 2,456 genes [103] in our UK and Finnish schizophrenia data sets

(P = 7×10−4). Having confirmed that rare disruptive variants spread among many genes

are associated with schizophrenia risk, I tested for an excess of disruptive variants within

each of 18,271 genes in cases compared to controls using the Fisher’s exact test. Despite our

large sample size, the per-gene statistics followed a null distribution in all tests, and I was

unable to implicate any gene via case-control burden of disruptive variants (Figures 3.2, 3.3).

Fig. 3.1 Study design for the schizophrenia exome meta-analysis. The source of sequenc-

ing data, sample sizes, variant classes, and analytical methods are described. Details on

case-control samples are shown on the right, while parent-proband trios are described on the

left.

3.3.2 LoF variants in SETD1A are associated with schizophrenia

To determine whether the integration of de novo mutations with case-control burden might

succeed in discovering risk genes in schizophrenia, I aggregated, processed, and re-annotated
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Fig. 3.2 Manhattan plot of the rare variant association analysis of LoF variants in 4,264
cases and 9,343 controls. I tested for an excess of LoF variants within 18,271 genes using

Fisher’s exact test. − log10 P-values were plotted against the chromosomal location (mid-

point) of each gene. I showed results from three allele frequency thresholds (singletons,

< 0.1% and < 0.5%) for aggregating rare variants. No gene exceeded the exome-wide

significant threshold of P = 1.25×10−6 (red line).
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Fig. 3.3 QQ plots of the rare variant association analysis of LoF variants in 4,264 cases
and 9,343 controls. I tested for an excess of LoF variants within 18,271 genes using Fisher’s

exact test, and plotted the ordered − log10 P-values against transformed P-values sampled

from the uniform distribution. The QQ plots for gene burden tests with minor allele frequency

cut-offs of 0.1% and 0.5% followed an expected null distribution. The QQ plot for the burden

test of singleton variants still showed deflation because the per-gene counts are too low and

the data does not meet the asymptotic requirements of the statistical test. I included P-values

from informative tests in which genes have at least one case LoF count.
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de novo mutations in 1,077 schizophrenia probands from seven published studies, and found

118 LoF and 662 missense variants [98, 99, 95, 97, 100–102]. Thirty-eight genes had two

or more de novo nonsynonymous mutations, two of which (SETD1A and TAF13) had been

previously suggested as candidate schizophrenia genes [98, 99]. I found that the 754 genes

with de novo mutations were significantly enriched in rare LoF variants in cases compared

to controls from our main dataset. In these 754 genes, the most significant case-control

enrichment across allele frequency thresholds and functional class was for the test of LoF

variants with MAF< 0.1% (P = 2.1×10−4; OR 1.08, 1.02−1.14, 95% CI), which I focused

on for subsequent analysis.

Motivated by this overlap of genes with de novo mutations and excess case-control

burden, I meta-analysed de novo variants in the 1,077 published schizophrenia trios with

rare LoF variants (MAF < 0.1%) in 4,264 cases and 9,343 controls. I used two analytical

approaches, one based on Fisher’s method to combine de novo and case-control P-values,
and the other using the transmission and de novo association (TADA) model to integrate

de novo, transmitted, and case-control variation using a hierarchical Bayesian framework

[105, 151] (Figure 3.1). I focused on results that were significant in both analyses, and

which did not depend on the choice of parameters in TADA (Figure 3.8). In both methods,

loss-of-function mutations in a single gene, SETD1A, were significantly associated with

schizophrenia risk (Table 3.2, Fisher’s combined P = 3.3×10−9). I observed three de novo
mutations and seven case LoF variants in our discovery cohort, and none in our controls

(Figure 3.6). In one of the seven case carriers, direct genotyping in parents confirmed that

the LoF variant (c.518-2A>G) was a de novo event, but genotypes were not available for the

other parents. I looked for additional SETD1A LoF variants in unpublished whole exomes

from 2,435 unrelated schizophrenia cases and 3,685 controls [154], but none were identified

(Table 3.2). Thus, in more than 20,000 exomes, I observed ten case and zero control LoF

variants (corrected OR 35.2, 4.5− 4528, 95% CI). Although the confidence intervals are

wide, rare LoF variants in SETD1A conferred substantial risk for schizophrenia. No other

gene approached genome-wide significance (Table 3.1, Figures 3.4, 3.5).

3.3.3 Robustness of the SETD1A association

Previous large sequencing analyses such as the Swedish schizophrenia, DDD and NHLBI

myocardial infarction studies [103, 118, 94] had defined genome-wide significance for gene

burden tests using a Bonferroni correction for the number of genes and the number of

functional and frequency cut-offs tested. For example, P < 1.25×10−6 is 0.05 corrected for

20,000 genes tested for nonsynonymous and LoF variants, and a further correction for two

frequency thresholds would require the even more stringent cut-off of P < 6.25×10−7). For
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Fig. 3.4 Manhattan plot of the meta-analysis of de novo mutations and case-control
variants in 1,077 trios, 4,264 cases and 9,343 controls. De novo and case-control burden

P-values were meta-analysed using Fisher’s combined probability method. − log10 P-values

were plotted against the chromosomal location (mid-point) of each gene. A total of 18,271

genes were tested. Only SETD1A exceeded exome-wide significance, with P = 3.3×10−9.

Red line: P = 1.25×10−6.

Table 3.1 Meta-analysis results for 1,077 trios, 4,264 cases and 9,343 controls. Only SETD1A
reached exome-wide significance.
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Fig. 3.5 QQ plot of the meta-analysis of de novo mutations and case-control variants
in 1,077 trios, 4,264 cases and 9,343 controls. De novo and case-control burden P-values
were meta-analysed using Fisher’s combined probability method, and the log10 P-values
plotted against transformed P-values sampled from the uniform distribution. Because only a

subset of genes had de novo LoF variants, Fisher’s method deflated the combined P-value of

genes without any de novo information.

Fig. 3.6 The genomic position and coding consequences of 16 SETD1A LoF variants ob-
served in the schizophrenia exome meta-analysis, the DDD study, and the SiSU project.
Variants discovered in patients with schizophrenia are plotted above the gene, and those

discovered in individuals with other neurodevelopmental disorders (from DDD and SiSU) are

plotted below. Each variant is coloured according to its mode of inheritance. All LoF variants

appear before the conserved SET domain, which is responsible for catalysing methylation.

Seven LoF variants occur at the same two-base deletion at the exon 16 splice acceptor

(c.4582-2delAG>-).
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Table 3.2 Results from statistical tests associating disruptive variants in SETD1A to
schizophrenia and developmental delay. None of these tests incorporated exomes from the

ExAC database. The number of SETD1A LoF variants and the sample size of each dataset are

indicated in each cell. The statistical tests were performed as follows: a: a one-sided burden

test of case-control LoF variants using Fisher’s exact test, b: the Poisson probability of

observing N de novo variants in SETD1A given a calibrated baseline gene-specific mutation

rate, c: meta-analysis of de novo and case-control burden P-values using Fisher’s combined

probability test, d: the INTERVAL dataset (n = 4,769) were used as matched controls.

these thresholds to control false positives, however, the test being used must produce well-

calibrated P-values. This had been shown to be true for standard approaches in a case-control

setting, such as the basic burden test, Fisher’s exact test, and the sequence kernel association

test (SKAT), as long as the cases and controls were well-matched and residual differences

are corrected for [103, 94]. On the other hand, parent-proband trio studies used a Poisson or

Binomial model parametrised by gene-specific mutation rates and the discovery sample size

to test for an elevated rate of de novo mutations. While this approach was powerful, it was

less robust than the approaches described above. De novo test statistics were highly sensitive

to the specification of gene-specific mutation rates, which were well-established for SNVs

but not small indels. Furthermore, the low counts in de novo studies made results sensitive to

the size of the discovery dataset.

Depletion of SETD1A LoF variants in the ExAC database

I performed five analyses to ensure our SETD1A association was robust to possible con-

founders of rare variant association testing. First, to validate our observation of the rarity of

disruptive variants in SETD1A in unaffected individuals, I examined the Exome Aggregation

Consortium (ExAC) v0.3 for the LoF variants in SETD1A [112]. All exomes in ExAC were

joint-called using the GATK v3.2 pipeline, and included other public exome datasets, such

as the 1000 Genomes Project and NHLBI-GO Exome Sequencing Project, with additional

quality control compared to their original releases. In 60,706 unrelated exomes, I observed

seven LoF variants in SETD1A. Since the v0.3 release aggregated studies of psychiatric disor-
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ders including the Swedish schizophrenia study, I excluded all samples from these data sets,

leaving only four LoF variants in 45,376 exomes without a known neuropsychiatric diagnosis.

I next applied the same stringent QC metrics used in our analysis to ExAC data. I found that

the 16:30976302-GC/G indel observed in two individuals was located at the same position as

a high-quality SNP, and occurred at a homopolymer run of cytosines. At the genotype level,

both calls had a genotype quality (GQ) Phred probability of < 40, far lower than used in our

study in which I required indels to have a GQ > 90. In addition, the variant has poor allelic

balance (AB < 0.15), and the BAM alignment reflected these low-quality metrics [112].

Given this evidence, I excluded the putative indel. Two high-quality SETD1A LoF variants

in 45,376 unaffected ExAC exomes remained. Following the approach in Samocha et al., I
determined the significance of the depletion of SETD1A LoF variants in ExAC using a signed

Z-score of the χ-squared deviation between observed and expected counts [138]. I scaled

the expected LoF counts provided by ExAC (43 in 60,706) to 45,376 exomes (expected

32.5), and calculated the one-tailed P-value of the signed Z-score assuming two observed

LoF variants. Observing only two LoF variants when expecting 32.5 variants represented a

substantial depletion compared to chance expectation (P = 4.4×10−8). According to its pLI

score, a measure of constraint relative to other coding genes calculated using the ExAC data,

SETD1A is among the 3% most constrained genes in the human genome [112]; LoF variants

in SETD1A were almost totally absent in the general population.

Dependence of results on specification of mutation rate

Second, four of the ten SETD1A carriers with schizophrenia had the same two-base deletion

at the exon 16 splice acceptor (c.4582-2delAG>-), at least two of which occurred as de novo
mutations (Figure 3.6). Since this variant underpinned the statistical significance of our

observation, I investigated it further in several ways. First, to rule out sequencing artefacts, I

confirmed a clean call where I had access to the raw sequencing reads (n = 2), and noted that

both published de novo mutations at this position had been validated with Sanger sequencing

[99, 101]. Second, our model, and therefore the test statistic that I report, was dependent on

a gene-specific mutation rate. To address the possibility that the recurrent mutation occurred

at a hypermutable site (and thus our model was not well calibrated), I determined that our

observations would be exome-wide significant (P < 1.25×10−6) even if the mutation rate

at this position were up to ten-fold higher (7×10−5) than the cumulative LoF rate for all

other positions in SETD1A (6.6×10−6). If the two-base deletion mutation rate were truly

this high (e.g. greater than 99.99% of all per-gene LoF mutation rates), I would expect to

find 6.4 observations in 45,376 non-schizophrenia exomes in ExAC, but I observed only 1

(Fisher’s exact test P = 0.013).



74 SETD1A is associated with schizophrenia and neurodevelopmental disorders

Functional assay evaluating the function of recurrent deletion of the exon 16 splice
acceptor

Third, we used a minigene construct to show that this two-base deletion resulted in the

retention of the upstream intron. As expected, strong GFP expression was detected from

the reference sequence construct. This suggested correct splicing occurred between exons,

leading to in-frame GFP translation. The mutant form displayed dramatically weaker GFP

expression. mRNA was extracted from the transfected cells, and PCR reactions spanning all

three exons revealed an increased transcript size in the mutant form compared to reference

(Figure 3.7a). A PCR reaction spanning just the first 2 exons (15/16) revealed a similar shift

in size, suggesting that the splice site deletion/mutation was causing intron retention between

exons 15 and 16 (Figure 3.7b). Sanger sequencing of the PCR products confirmed this

aberrant splicing outcome (Figure 3.7c). The predicted translation product would therefore

include translation of exon 15, the subsequent intron, and out-of-frame translation of exon

16, resulting in a premature stop within this exon. The downstream splicing event to exon 17

was not affected. These data indicated that in a human in vitro system, the recurrent indel we

observe in probands resulted in a premature stop codon and a truncated SETD1A protein.

Independence of results on parameterization in TADA

Fourth, to ensure our results were robust when applying TADA, I generated Bayes factor

across a set of reasonable hyperparameters, and the results largely agreed with those obtained

from the Fisher’s combined probability method: only one gene, SETD1A, had reached

genome-wide significance (Figure 3.8). I found that the most influential parameters were

γ̄d (mean relative risk of de novo LoF variants), γ̄ (mean relative risk for case-control LoF

variants), and π0 (fraction of true risk genes). While holding these parameters constant, the

Bayes factors did not vary to any appreciable degree across the remaining hyperparameters. I

found that our signal in SETD1A had a q-value < 0.01 as long as γd > 4, γ > 4, and k > 100.

If I assumed a greater mean relative risk for LoF variants in SETD1A (γ̄ > 8 and γ > 8) as

expected for strong risk alleles in a constrained gene, SETD1A was exome-wide significant

for any reasonable specification of k. No other gene has q-value < 0.01 under any tested

parametrization, including the parametrization used in the previous autism meta-analysis

(Table 3.3). Thus, the SETD1A result from the Bayesian analyses were robust at all reasonable

specifications of the model’s hyperparameters.
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Fig. 3.7 Results from the minigene experiment assessing the impact of the exon 16 splice
acceptor site variant. This figure and the data contained within were generated and provided

by Sebastian S. Garety. A. Minigene constructs driving expression of exons 15, 16 (Ref and

Alt), and 17 fused to GFP were transfected into HELA cells. RT-PCR analysis of cell lysates

using primer pair 2, spanning exons 15, 16, and the intervening intron revealed a change in

size of PCR products suggesting retention of the intervening intron in the construct containing

the splice-acceptor deletion (panel A, Exons 15-16, REF versus ALT). PCRs with primer

pair 3, spanning the intron downstream of exon 16 showed no change in band sizes (panel

A, Exons 16-17, REF versus ALT), suggesting this intron was correctly spliced out in both

reference and alternate forms. B. Depiction of genomic locus surrounding the exon 16 splice

acceptor deletion. The predicted structure of reference (green) and deletion containing (red)

transcripts were shown above and below genomic map. The red star indicated a predicted

premature stop codon due to intron retention and resulting frame-shifted translation. C.
Results from capillary sequencing of PCR products from panel A confirmed intron retention

in the splice acceptor deletion construct (panel C, RNA, yellow box). This resulted in a

predicted frame-shifted translation of exon 16 (panel C, PEP, red box), and a premature

truncation of the protein 28 amino acids into exon 16 (red star). Downstream intron splicing

was confirmed by capillary sequencing to be intact in both constructs.
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Fig. 3.8 The robustness of the SETD1A result across reasonable parameters in the
TADA model. Because the TADA model depended heavily on the specification of its

hyperparameters, I calculated the log q-value of SETD1A across different mean relative risk

of de novo variants (γ̄d), mean relative risk of case-control variants (γ̄), and numbers of

true schizophrenia risk genes (k). Each vertical column is a different value for γ̄ , and each

horizontal facet is a different value for k. Our signal in SETD1A had a q-value < 0.01 as

long as γd > 4, γ > 4, and k > 100. Blue line: P = 0.05; red line: P = 0.01.
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Table 3.3 TADA results using the hyperparameters in the De Rubeis et al. autism meta-

analysis. Only SETD1A has a q-value < 0.01.
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Table 3.4 Burden tests associating disruptive variants in SETD1A to schizophrenia and
developmental delay. De novo status of variants was ignored and non-schizophrenia exomes

from the ExAC database were incorporated as controls. The number of SETD1A LoF variants

and the sample size of each dataset were indicated in each cell. a: the full control dataset (n

= 58,404) was used to calculate the P-value.

Burden testing with non-psychiatric ExAC exomes as additional controls

Finally, to demonstrate that our result was significant independent of mutation rate speci-

fication, I ignored the de novo status of variants in our discovery and replication datasets,

creating a combined dataset of 7,776 cases and 13,028 controls. I then included unaffected

ExAC exomes as additional controls, and observed ten LoF variants in 7,776 cases and two

LoF variants in 58,404 controls. Using a basic test of case-control burden (Table 3.4), I found

that LoF variants in SETD1A were significantly associated with schizophrenia (Fisher’s exact

test: P = 2.6×10−8; OR 37.6, 8.0−353, 95% CI). This result was driven by ten very rare

variants in our schizophrenia cases: six were observed in only one individual each, and the

seventh, the two-base recurrent deletion at the exon 16 splice acceptor (c.4582-2delAG>-),

was observed in four individuals. Two of the four recurrent indels were de novo, and the other

two were found in unrelated individuals of different ancestry (one from Sweden and one from

the UK). Similarly, of the two LoF variants in ExAC, one was observed in only one individual

and the other was the recurrent indel in an individual of African ancestry. Thus, our burden

test of very rare variants in SETD1A would not be confounded by systematic differences

between sub-populations in the ExAC exomes and our dataset. Taken together, these five

analyses excluded many possible artefacts, and provided confidence in our conclusion that

LoF variants in SETD1A conferred substantial risk for schizophrenia.

3.3.4 SETD1A is associated with severe developmental disorders

All heterozygous carriers of SETD1A LoF variants satisfied the full diagnostic criteria

for schizophrenia, including classic positive symptoms such as hallucinations, prominent

disorganization, and paranoid delusions (Table 3.5). Six of these individuals were male

and four were female. Eight patients had evidence of chronic illness, requiring long-term

input from psychiatric services. Notably, of the seven SETD1A LoF carriers for whom
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Table 3.5 Phenotypes of individuals in the schizophrenia exome meta-analysis who
carry LoF variants in SETD1A. For each individual, I provide the genomic coordinates of

the variant, its mode of inheritance, and the study from which each patient was first recruited.

“Clinical features” describes notable neuropsychiatric or neurodevelopmental symptoms in

each individual, and “Intellectual functioning” provides additional information on reported

cognitive phenotypes.

any information on intellectual functioning was available, one was noted to have severe

learning difficulties while the six appeared to have mild to moderate learning difficulties.

Four patients were noted to have achieved developmental milestones with clinically salient

delays (Table 3.5). I was unable to confirm if the three Swedish carriers had any form of

cognitive impairment. This was consistent with previous reports that individuals with autism

or schizophrenia who have de novo LoF mutations have a higher rate of cognitive impairment

[98, 105].

To investigate whether SETD1A might play a role in other neurodevelopmental disorders,

I looked for de novo LoF mutations in SETD1A in 3,581 published trios with autism, severe

developmental disorders, or intellectual disability [105, 118, 85, 84], but found none. I
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Table 3.6 Phenotypes of individuals in the DDD study and SiSU project who carry
LoF variants in SETD1A. For each individual, I provide the genomic coordinates of the

variant, its mode of inheritance, and the study from which each patient was first recruited.

“Clinical features” describes notable neuropsychiatric or neurodevelopmental symptoms in

each individual, and “Intellectual functioning” provides additional information on reported

cognitive phenotypes. NFID: Northern Finnish Intellectual Disability study; NFBC: Northern

Finnish Birth Cohort.

next turned to an additional 3,148 children with diverse, severe, developmental disorders

recruited as part of the DDD study, and discovered four probands with LoF variants in

SETD1A (Table 3.6). Three of these occurred at the recurrent exon 16 splice junction indel

described above (two de novo, one maternally inherited), and the fourth was a maternally

inherited frameshift insertion (Figure 3.6). We validated all four LoF variants using Sanger

sequencing. All four probands have developmental delay with additional phenotypes that

cluster within the larger DDD study using the HPO clustering analysis (empirical P = 0.042).

I additionally observed a de novo CNV deleting 650 Kilobases encompassing SETD1A
(chr16:30,964,376−31,614,891, Figure 3.9) in a DDD proband. CNV calling and quality

control in the DDD study was described in a previous publication [118], and the call was

supported by signal from 156 probes. The proband had global developmental delay, absent

speech, motor delay, sleep disturbance, developmental regression, feeding difficulties in

infancy, and generalized myoclonic seizures. SETD1A did not reach exome-wide significance

as a developmental disorder gene within the DDD study alone (P = 3.0×10−3), but when I

jointly analysed all samples using the frequentist meta-analysis approach, the association was

clear to both severe developmental disorders and schizophrenia (P = 3.1×10−8, Table 3.2).

Because all of the DDD SETD1A carriers were under 12 years old at recruitment and as

schizophrenia rarely manifests at this age [28], it remains unknown if these individuals will

develop schizophrenia.
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Fig. 3.9 De novo microdeletion of a single copy of SETD1A identified in the DDD study.
A proband was identified to have a 650 kb deletion encompassed SETD1A and 29 other

genes. The figure showing the deletion was generated using the UCSC Genome Browser

(https://genome.ucsc.edu/).
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In 5,720 unrelated Finnish individuals exome sequenced as part of the Sequencing Initia-

tive Suomi project, I identified two additional heterozygous LoF variants in SETD1A. One

individual with a stop-gain variant was recruited as part of the Northern Finnish Intellectual

Disability cohort with a diagnosis of mental retardation, short stature, mild facial dysmor-

phology, and EEG abnormalities (Table 3.6). Notably, this individual was also diagnosed

with delusional disorder and unspecified psychosis at 15 years of age. The second SETD1A
LoF carrier belonged to the Northern Finnish 1966 Birth Cohort (NFBC), a representative,

geographically based population cohort. This individual had epileptic episodes at 7 years

of age, and was diagnosed with an unspecified personality disorder by a psychiatrist. Thus,

in an additional search for SETD1A LoF carriers, only two were found, both in individuals

affected by neuropsychiatric disorders.

3.3.5 Power calculations to show co-morbid cognitive impairment in
schizophrenia SETD1A carriers

While I found an association between SETD1A and schizophrenia and developmental disor-

ders, I was unable to demonstrate whether LoF variants in this gene specifically decreased

cognitive ability in individuals with schizophrenia. I performed a power calculation to

determine the sample size required to show additional cognitive impairment in SETD1A
LoF carriers with schizophrenia. I assumed that pre-morbid IQ in individuals diagnosed

with schizophrenia followed a Gaussian distribution with mean μ0 and standard deviation

σ . I further assumed that the distribution of pre-morbid IQ in carriers of SETD1A LoF

variants was also Gaussian, shared the same standard deviation σ , but had a shifted mean

μ1. To calculate the sample size needed to show that μ0 and μ1 were statistically different, I

performed power calculations using a one-sided t-test of means with a range of parameters

for the effect size and frequency of SETD1A LoF variants.

I defined the following:

• N = sample size (individuals diagnosed with schizophrenia)

• d = |μ0−μ1|
σ , or the effect size (in s.d. units) of SETD1A LoF variants on pre-morbid IQ

• α = 0.05, Type I error probability

• p = frequency of LoF variants in SETD1A in schizophrenia cases

Figure 3.10 showed power to detect this effect across the following parameter combina-

tions:

• N ∈ {5000,10000, . . .100000}
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Fig. 3.10 Sample size curves for detecting an increased risk of pre-morbid cognitive
impairment in schizophrenia SETD1A LoF carriers. I performed power calculations

using a simple one-sided t-test to identify sample sizes required to show possible cognitive

impairment in SETD1A schizophrenia carriers. Effect sizes d (0.5, 1), and allele frequencies

(0.0001, 0.0005, 0.001) are varied to show their influence on statistical power. I assumed a

Type I error probability of 0.05. For these effect sizes and frequencies, a sample of tens of

thousands of cases would be needed.
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• d ∈ {0.5,1}, or μ1 = μ0−σ ×d

• p ∈ {1×10−4,5×10−4,1×10−3}

Assuming a modest effect on cognition (d = 0.5) and that only one in 10,000 schizophre-

nia patients carried a LoF variant in SETD1A, a sample size of over 100,000 individuals

would be required for 50% power to detect the effect on cognition. If this effect was greater

(d = 1) and the true frequency was similar to the 0.1% observed in our study, a sample size

of over 10,000 individuals would have > 50% power.

3.3.6 De novo burden in neurodevelopmental disorders

Even though our study had an overall sample size comparable to recent ASD and DD studies

that identified 7 ASD genes and 32 DD genes [105, 118], I was only able to implicate a single

schizophrenia gene at genome-wide significance. To investigate this further, I aggregated and

analysed de novo mutations from four different studies: 1,113 probands with developmental

disorders [118], 2,297 ASD probands [105], and 566 control probands [155, 80]. Using

this data set, I compared the rates of de novo events in each group relative to baseline

exome-wide mutation rates. Briefly, de novo mutations (xd) in each neurodevelopmental

condition were modelled as xd ∼ Pois(2Nt μG), where Nt is the number of trios, μG is the

genome-wide mutation rate for a particular functional class, and xd is the observed number

of de novo mutations in Nt trios. The genome-wide mutation rate of each variant class

was calculated as the sum of all gene-specific mutation rates in Samocha et al. [138]

(μsyn = 0.137, μdamaging mis = 0.165, μLoF = 0.043). I modelled de novo mutations in control

trios to ensure that the genome-wide mutation rates were well calibrated. I reported the

probability of observing xd or more mutations in Nt trios given the genome-wide mutation

rate, and used the Poisson exact test to determine if pairwise differences in de novo rates

existed between control, schizophrenia, autism, and developmental disorder trios. I reported

the two-sided P-values and rate ratios, and Bonferroni correction was used to adjust for

multiple testing.

The rates of de novo mutations across damaging missense and LoF variants were signifi-

cantly higher in DD than in ASD, and higher in ASD than in schizophrenia (Figure 3.11).

Indeed, the rate of damaging missense variants in schizophrenia was not different from base-

line rates (P = 0.45) and only nominally higher than in controls (P = 0.029), and the rates of

LoF variants were only slightly elevated (P = 5.7×10−3). In ASD, by contrast, missense

(P = 9.4×10−10) and LoF (P = 3.7×10−15) rates were significantly greater than expecta-

tion. In developmental disorders, the rates were even higher (missense: P = 2.5× 10−17;

LoF: P = 1.3×10−31) (Figure 3.11). Across all genes in the genome, the rate of disruptive
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Fig. 3.11 A comparison of genome-wide de novo mutation rates in probands with
autism, developmental disorders, schizophrenia, and controls. Rates were modelled

using calibrated genome-wide mutation rates. Significant excess of de novo mutations when

compared to the baseline model was marked with an asterisk (P < 4× 10−3, Bonferroni

correction for 12 tests). Nominal significance could be inferred from the error bars (95% CI).
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de novo variants differed dramatically across these disorders. Because the recurrence of de
novo mutations is a particularly powerful way to identify risk genes, the weak excess of de
novo variants in schizophrenia provides at least a partial explanation for the limited success

of this strategy to date in identifying genes for this disorder.

3.4 Discussion

In one of the largest exome-sequencing studies of complex disease to date, I identified an

association between rare LoF variants in SETD1A and risk of schizophrenia and other severe

neurodevelopmental phenotypes. A previous report [99] suggested SETD1A as a candidate

schizophrenia gene based on two of the de novo mutations included in our analysis. Our

study establishes the SETD1A association at a significance exceeding a Bonferroni corrected

P-value of 1.25×10−6 independent of any specification of gene mutation rate. Indeed, in

keeping with observations in other neurodevelopmental disorder sequencing studies, even

larger meta-analyses of schizophrenia exomes will be required to define the phenotypic

spectrum of SETD1A LoF variant carriers, and to identify new risk genes.

SETD1A, also known as KMT2F, encodes one of the methyltransferases that catalyse the

methylation of lysine residues in histone H3. Loss-of-function variants in at least five other

genes within this family result in dominant Mendelian disorders characterized by severe

developmental phenotypes including intellectual disability [156]. These include Wiedemann-

Steiner syndrome (KMT2A), Kleefstra syndrome (EHMT1), and Kabuki syndrome (KMT2D)

(Figure 3.12). Moreover, rare de novo LoF mutations and copy number variants in KMT2C,

KMT2E, KDM5B, and KDM6B have been recently associated with autism risk [109]. The

developmental and cognitive phenotypes of SETD1A carriers are consistent with these other

Mendelian conditions of epigenetic machinery; however, among all genes associated with

developmental disorders and intellectual disability, SETD1A is the first shown to definitively

predispose to schizophrenia, offering insights into the biological differences underlying these

conditions [118, 157]. As with other risk genes for severe neurodevelopmental phenotypes,

it is possible that an allelic series of LoF variants exists in SETD1A, where different variants

increase risk for different clinical features. However, seven of the 16 LoF variant carriers

(Figure 3.12) have the same two base deletion at the splice acceptor of exon-16 (c.4582-

2delAG>-): four in individuals with schizophrenia and three in individuals diagnosed with

other developmental disorders. Thus, the same variant is associated with both schizophrenia

and developmental disorders.

Detailed phenotypes from the DDD and SISu studies suggest that SETD1A carriers may

have distinctive features, including delayed speech and language development, epilepsy,
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Fig. 3.12 Mendelian disorders of epigenetic machinery at histone H3. Writers (in green)

add methyl groups at the specified residue of the histone tail, while erasers (in red) perform

targeted demethylation. Disrupting variants in writers and erasers described in the figure

result in well-known examples of dominant, highly penetrant disorders characterised by

developmental delay and intellectual disability. Only the tail of histone H3 and its four

key lysine residues are illustrated here. Alternate nomenclature: EHMT1 (also known as

KMT1D), EZH2 (KMT6A), NSD1 (KMT3B), SETD1A (KMT2F).
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personality disorder, and facial dysmorphology (Table 3.6). While cognitive and devel-

opmental phenotypes in schizophrenia patients are sparser, four individuals had delayed

developmental milestones, one is noted as having mild facial dysmorphology and minimal

brain damage, and another had epileptic seizures during childhood (Table 3.5). However,

impairment of cognitive function is now generally regarded, along with positive and negative

symptoms, as an integral feature of schizophrenia rather than a co-morbidity, and our study,

as designed, cannot address whether variants in SETD1A are specifically associated with

the cognitive features of the disorder. Indeed, it would require a re-sequencing study with

detailed cognitive measurements on tens of thousands of patients (Figure 3.10) to decisively

answer this question.

The clinical heterogeneity observed in carriers of SETD1A LoF variants is reminiscent

of at least 11 large copy number variant syndromes (one of which, 16p11.2 is nearby, but

not overlapping SETD1A), which cause schizophrenia in addition to many other develop-

mental defects [67, 158]. A canonical example is the 22q11.2 deletion syndrome, which is

characterised by schizophrenia in 22.6% of adult carriers [159], highly variable intellectual

impairment [160], and numerous severe neurological and physical defects [161]. A consider-

ably larger cohort (such as the hundreds of cases of 22q11.2 deletion syndrome studied to

date) will be needed to accurately estimate the relative penetrance of SETD1A LoF variants

for schizophrenia, developmental disorders, and other clinical features.

Fig. 3.13 SET1/COMPASS complex A highly conserved protein complex that methylates

the tail of histone H3. SETD1A or KMT2F is one of the catalytic cores of this complex.

While disruptions of SETD1A are very rare events and occur in only a small fraction of

schizophrenia cases (0.13% in our meta-analysis; 0.062% − 0.24% 95% CI), several lines

of evidence suggest that histone H3 methylation is more broadly relevant to schizophrenia.
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The H3K4 methylation gene ontology category (GO:51568) showed the strongest statistical

enrichment among 4,939 biological pathways in GWAS data of psychiatric disorders [108].

This category contains 20 genes, including SETD1A and six others (ASH2L, CXXC1, RBBP5,
WDR5, DPY30, and WDR82) [162–164] that together form the SET1/COMPASS complex,

through which SETD1A regulates transcription by targeted methylation (Figure 3.13). Indeed,

two of the genes in GO:51568 (WDR82 and KMT2E) are near genome-wide significant

associations to schizophrenia [57]. A previous study of de novo CNVs in schizophrenia trios

identified one deletion and one duplication overlapping EHMT1, another histone methyl-

transferase [66] implicated in developmental delay, and a range of congenital abnormalities

[164]. While no gene in the H3K4 category reached exome-wide significance, we observed

a de novo mutation and one case LoF variant in KMT2D, one case LoF variant in KMT2A
and KMT2B, and two case LoF variants in KMT2C and KMT2E. These highly constrained

genes were in the same methyltransferase family as SETD1A, and in which LoF variants

also caused severe developmental disorders. Finally, conserved H3K4me3 peaks identified

in pre-frontal cortical neurons co-localise with genes related to biological mechanisms in

schizophrenia including glutamatergic and dopaminergic signalling [165]. Our implication

of SETD1A therefore contributes to the growing body of evidence that chromatin modifica-

tion, specifically histone H3 methylation, is an important mechanism in the pathogenesis of

schizophrenia.



Chapter 4

Schizophrenia risk genes are shared with
neurodevelopmental disorders

4.1 Introduction

4.1.1 Early evidence for a neurodevelopmental etiology to schizophre-
nia

While the precise causes of schizophrenia remain unknown, the neurodevelopmental hy-

pothesis postulates that certain genetic or environmental insults early in brain development

ultimately manifest in adolescence and adulthood. Since its formulation by Weinberger,

Murray and Lewis in 1987 [166, 167], evidence from clinical, epidemiological, imaging,

and genetic studies has emerged to support this model of schizophrenia pathogenesis. First,

through CT, MRI, and histochemistry staining techniques, neuroimaging studies identified

gross brain abnormalities in schizophrenia patients prior to and at the onset of illness, includ-

ing structural differences in the dorsolateral prefrontal cortex, hippocampus, cingulate cortex,

and superior temporal gyrus [168–170]. Individuals with schizophrenia also had a general

reduction in cortical gray matter, or a loss of nerve cell bodies and branching dendrites,

when compared to unaffected siblings [171, 172]. Additional imaging studies also identified

widespread white matter abnormalities, suggesting neuron connectivity may be impaired due

to dysfunctional myelination [173]. Together, these results indicated that brain morphology

and function was systematically altered in schizophrenia, with many changes present prior to

the onset of disease.

Adverse pre-natal outcomes and lower childhood cognitive ability were linked to the

development of schizophrenia in large-scale epidemiological studies. Developmental delay

and obstetrical complications were associated with up to a 4.6-fold increase in the schizophre-
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nia risk [39], and on average, individuals with schizophrenia displayed deficits in cognitive

and motor function during childhood preceding the onset of illness [40]. Pre-term births,

defined as low birth weight and a shortened gestation period, also increased risk for a range

of childhood and psychiatric disorders, including schizophrenia [174].

In addition, a number of early environmental exposures have been associated with

schizophrenia risk. First, children born during times of extreme and persistent famine

in the Netherlands and China sustained increased rates of psychiatric disorders and brain

abnormalities in later life [35–38]. Second, infections during the neonatal period, in particular

with Toxoplasma gondii, were associated with increased risk for schizophrenia [175, 176].

Third, early childhood traumas, especially sexual abuse, were linked to a 3.16-fold increase

in reported psychotic symptoms [31–34]. Finally, individuals who migrated between the ages

of 0 and 4 years were more frequently diagnosed with psychotic disorders (rate ratio = 2.96),

and this risk decreased with older age at migration [177]. Combined, these epidemiological

and clinical studies suggested that early environmental exposures and pre-morbid symptoms

in childhood were strong predictors of development of schizophrenia in adolescence and

adulthood.

Evidence for a neurodevelopmental etiology to schizophrenia was further supported

by recent results from genetic analyses of common variants. By comparing array-based

genotype data across disorders, these studies demonstrated that common risk variants are

shared, to varying degrees, between individuals with schizophrenia, bipolar disorder, major

depressive disorder, attention-deficit hyperactivity disorder, and autism spectrum disorders

(ASD) [70, 71]. The strongest correlation was observed between schizophrenia and bipolar

disorder (0.64± 0.04, 95% CI), with the weakest between schizophrenia and autism, a

neurodevelopmental disorder (0.16±0.06, 95% CI). The genetic correlation between many

of these psychiatric and neurodevelopmental disorders is likely driven by a number of

pleiotrophic common variants; however, the biological processes that underlie these variants

have not yet been identified. Combined, results across imaging, epidemiological, clinical,

and genetic studies suggest that certain neurodevelopmental processes, when dysregulated,

could result in increased risk for adult-onset psychiatric disorders.

4.1.2 Sharing of rare variants between autism spectrum disorders and
intellectual disability

Recent sequencing studies demonstrated that the sharing of genetic risk in brain disorders

extended to rare coding variants, with most of this evidence coming from analyses of autism,

intellectual disability (ID), and developmental disorders. The largest sequencing study of
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autism to date meta-analysed multiple sources of rare variant data, including de novo SNVs,

de novo small CNVs, and inherited rare variants, and implicated 46 genes and 6 CNV regions

at a FDR of 5% [109]. I intersected these autism risk genes with the Developmental Disorder

Genotype-Phenotype (DDG2P) database to determine if they were additionally associated

with broader syndromic features [157, 118]. This database was developed as a tool for

identifying likely causal variants for severe developmental disorders in the Deciphering

Developmental Disorders (DDD) study. While the original list identified developmental

disorder genes using information from OMIM, UniProt, and a systematic screen of journal

publications since 2005, it had since incorporated robust gene discoveries from the DDD

study. Intriguingly, 20 of the 46 autism genes and all six risk CNVs had previously been

described as dominant causes of severe developmental disorders (Figure 4.1). Some of

these, such as ADNP, ARID1B, the 1q21.1 and 22q11.2 locus, defined well-known clinical

syndromes characterized by intellectual disability and distinctive facial features [157, 118].

Further support for this shared overlap came from phenotypic analyses of probands with

mutations in these genes. Autistic individuals with an IQ below the median (89) had a

1.7-fold higher rate of de novo CNVs and SNVs when compared to probands with an IQ

above the study median [149, 155, 109]. However, an excess burden of de novo mutations

was still observed in cases even at an IQ of above 130, suggesting that while these rare

variants were strongly associated with cognitive impairment, they also contributed to risk

in the full range of individuals with autism. Together, these genetic analyses showed that

a shared genetic etiology existed across neurodevelopmental disorders, with a particularly

strong rare variant overlap between autism spectrum disorders and intellectual disability.

4.1.3 Individual loci increasing risk for schizophrenia and neurodevel-
opmental disorders

However, the evidence from rare variants for a broader shared genetic etiology between

schizophrenia and neurodevelopmental disorders is more mixed. An analysis of de novo
mutations from schizophrenia probands found a nominal overlap with de novo LoF variants

from probands with intellectual disability (P = 0.019, uncorrected), but this result was based

on the observation of a single de novo event [98]. A whole-exome sequencing study of 2,536

schizophrenia cases and 2,543 controls tested for a burden of rare LoF and nonsynonymous

variants in candidate gene sets for autism and intellectual disability, including genes hit

by de novo mutations in intellectual disability and autism, but did not observe any overlap

[103]. Evidence at individual rare schizophrenia risk loci suggested that a partial, perhaps

weaker overlap may exist between psychiatric and neurodevelopmental disorders. First,
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Fig. 4.1 The overlap between autism risk genes and dominant developmental disorder
genes. This Venn Diagram illustrates the overlap between the autism risk genes implicated

by Sanders et al. at FDR < 5% (46 genes) and dominant brain developmental disorder risk

genes described in the DDG2P database (152 genes).

all 11 recurrent rare copy number variants shown to substantially increased the risk for

schizophrenia (OR > 2) also increase risk for developmental disorders and congenital

malformations [67, 158]. Notably, the penetrance of these CNVs was at least several fold

higher for the development of a childhood-onset disorder, such as ID and ASD, than for

schizophrenia. In our meta-analysis of 16,000 whole exomes, I showed that LoF variants in

SETD1A conferred substantial risk for both schizophrenia and developmental disorders [119].

Seven of the ten carriers with schizophrenia had pre-morbid additional learning difficulties,

and four additional carriers were identified among 4,281 children with severe developmental

disorders sequenced as part of the DDD study. Therefore, emerging results from these

individual risk loci showing pleiotropic effects offer the possibility that a larger number of

developmental disorder genes could additionally confer substantial risk for schizophrenia.

4.1.4 Genes with near-complete depletion of protein-truncating vari-
ants

Insights into the rare variant architecture of autism and developmental disorders also emerged

from a large-scale analysis that identified individual genes intolerant to mutational change.

This effort was led by the Exome Aggregation Consortium (ExAC), a global effort to compile

publicly available exome sequence data, and aimed to find the set of genes most enriched

for variants that individually confer substantial risk for human disease. They calculated the

selective constraint for every gene in the genome by comparing the observed number of rare
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loss-of-function variants in exomes from 60,706 unrelated individuals without severe, early-

onset disorders to the number predicted by a gene-specific mutation rate model [138]. Using

a Gaussian mixture model, each gene was assigned a probability of being loss-of-function

intolerant (pLI) score, which separated genes with sufficient observations into LoF intolerant

(pLI > 0.9) and LoF tolerant (pLI < 0.1). From these analyses, 3,230 genes were identified

with near-complete depletion of such truncating variants [109, 112, 138], which I refer to as

the “highly constrained” gene set. The pLI score correlated well with other approaches that

also aimed to identify genes under purifying selection, and as expected, pLI > 0.9 genes were

over-represented in OMIM as having variants causing autosomal and X-linked dominant

Mendelian diseases [138]. When applied to sequencing studies of autism trios, constrained

genes were found to contain a 2.3-fold enrichment of de novo LoF variants compared to

expectation in the mutational rate model [109, 112, 138]. It was not too surprising then, that

autism risk genes identified in De Rubeis and Sanders et al. were overwhelmingly genes

that were under selective constraint. Furthermore, the targets of key neural regulatory genes

previously implicated in autism, such as translational targets of FMRP, promoter targets of

CHD8, and splice targets of RBFOX [105, 178], also showed significant overlap with the

constrained gene set. Finally, the de novo LoF mutations identified in probands with severe

developmental disorders and intellectual disability also resided disproportionately in genes

with more extreme constraint values (P < 1×10−6) [138]. Given this evidence, it is possible

that the variants conferring substantial risk in psychiatric disorders, including schizophrenia

and bipolar disorders, also resided within these highly constrained genes.

4.1.5 Aims and goals

Here, I describe a series of analyses integrating large-scale genetic datasets to explore the

potential overlap of genetic risk between schizophrenia and broader developmental disorders.

I jointly analysed data from whole-exome sequences from 1,077 schizophrenia trios, 4,264

cases and 9,343 controls, and array-based CNV calls from 6,882 cases and 11,255 controls.

While the identification of individual genes remained difficult, I performed enrichment

analyses testing for a higher burden of rare, disruptive SNVs and CNVs in 1,766 gene sets,

including the highly constrained gene set and other groups of genes previously implicated

in intellectual disability and autism. I also obtained cognitive measures for a subset of

schizophrenia cases, including 279 patients with pre-morbid intellectual disability, and 1,165

cases who do not have intellectual disability. I compared the enrichment of rare variants

in each of these clinical subsets to determine if there was a link between LoF burden and

additional cognitive impairment. Combined, I present a detailed analysis of one of the largest

accumulation of rare variant data for schizophrenia to date to better understand which genes
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are implicated by this class of variants, and how they relate to neurodevelopment more

generally.

4.1.6 Publication note and contributions

The results described in this Chapter has been submitted to BiorXiv and is currently un-

dergoing peer-review. I designed the study, aggregated the required data, performed all of

the analysis, and generated all the Figures and Tables described in this Chapter. This work

was completed under the supervision of Jeffrey C. Barrett. Elliot Rees kindly provided

the ClozUK CNV calls from his previous publication [67]. James T. R. Walters provided

detailed phenotypic information for the Cardiff data set. Mandy Johnstone provided clinical

details for the MUIR data set. Robin M. Murray, Marta Di Forti, Elvira Bramon, and Conrad

Iyegbe provided cognitive measures for the London cohort. Jaana Suvisaari and Minna

Tornianen provided cognitive measures for the Finnish cohort. Patrick Sullivan provided data

on educational attainment on the Swedish individuals. I wrote the first draft of the manuscript,

and received very helpful corrections, comments, and suggestions from my supervisor Jeffrey

C. Barrett. The manuscript was further improved after receiving useful comments from Dave

Curtis, Michael J. Owen, and Michael C. O’Donovan. Unless explicitly stated, the parts of

the peer-reviewed publication reproduced in this chapter are my original work.

4.2 Methods

4.2.1 Sample collections

The data production, and quality control of the schizophrenia case-control whole-exome

sequencing data set were described in detail in Section 2.4 and in a previous publication

[119]. Briefly, I jointly called each case data set with its nationality-matched controls, and

excluded samples based on contamination, coverage, non-European ancestry, and excess

relatedness. I applied a number of empirically derived variant- and genotype-level filters,

including filters on GATK VQSR, genotype quality, read depth, allele balance, missingness,

and Hardy-Weinberg disequilibrium. The per-sample metrics were comparable between

batches following QC. In total, 4,264 cases and 9,343 controls were available for analysis.

The data production and quality control of the array-based CNV case-control data set

were described in an earlier publication [179]. The schizophrenia cases were recruited as

part of the CLOZUK and CardiffCOGS studies, which consisted of both schizophrenia

individuals taking the antipsychotic clozapine and a general sample of cases from the UK.

Matched controls were selected from four publicly available non-psychiatric data sets. All



4.2 Methods 97

samples were genotyped using Illumina arrays at the Broad Institute, and processed and

called under the same protocol. The log R ratios and B-allele frequencies were generated

using the Illumina Genome Studio software, and CNVs were called with PennCNV using a

consensus set of 520,766 probes shared across arrays. Individuals with outlying values in

raw CNV metrics (log R ratio and B-allele frequencies) and per-sample CNV counts were

excluded. I further excluded samples based on non-European ancestry, excess relatedness,

and contamination. Only CNVs supported by more than 10 probes and greater than 10

Kilobases in size were retained to ensure high quality calls. In total, 6,882 cases and

11,255 controls were available for analysis. Finally, Sanger-validated de novo mutations

identified through whole exome-sequencing of 1,077 schizophrenia parent-proband trios

were aggregated and re-annotated for enrichment analyses [98, 101, 95, 102, 99, 96, 97]. A

full description of each trio study, including sequencing and capture technology and sample

recruitment was provided in Section 3.2.3.

The Ensembl Variant Effect Predictor (VEP) version 75 was used to annotate all variants

(SNVs and CNVs) according to GENCODE v.19 coding transcripts. I defined frameshift,

stop gained, splice acceptor and donor variants as loss-of-function (LoF), and missense or

initiator codon variants with a CADD Phred score ≥ 15 as damaging missense. A deletion

was annotated as disrupting a gene if the deletion overlapped a part of the gene’s coding

sequence. I more conservatively defined genes as duplicated only if the entire canonical

transcript of the gene overlapped with the duplication event.

4.2.2 Rare variant gene set enrichment analyses

Case-control enrichment burden tests

For the case-control SNV data set, I performed permutation-based gene set enrichment tests

using an extension of the variant threshold method described in Price et al. [180]. The method

assumed that variants with a minor allele frequency (MAF) below an unknown threshold

T were more likely to be damaging than variants with a MAF above T , and this threshold

was allowed to differ for every gene or pathway tested. To consider different possible values

for threshold T , a gene or gene set test statistic t(T ) was calculated for every allowable T ,

and the maximum test-statistic, or tmax, was selected. The statistical significance of tmax

was evaluated by permuting phenotypic labels, and calculating tmax from the permuted data

such that different values of T could be selected following each permutation. In Price et
al., t(T ) was defined as the z-score calculated from regressing the phenotype on the sum

of the allele counts of variants in a gene with MAF < T . I extended this method to test for

enrichment in gene sets by regressing schizophrenia status on the total number of damaging
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alleles in the gene set of interest with MAF < T (Xin,T ) while correcting for the total number

of damaging alleles genome-wide with MAF < T (Xall,T ). Xall,T was added as a covariate to

control for any exome-wide differences between schizophrenia cases and controls, ensuring

any significant gene set result was significant beyond baseline differences. t(T ) was defined

as the t-statistic testing if the regression coefficient of Xin,T deviated from 0. I then calculated

t(T ) for all thresholds below a minor allele frequency of 0.1%, and selected the maximum

value for the tmax based on the observed data. To calculate a null distribution for tmax, I

performed two million case-control permutations within each population (UK, Finnish, and

Swedish) to control for batch and ancestry, and calculated tmax for each permuted sample

while allowing T to vary. The P-value for each gene set was calculated as the fraction of

the two million permuted samples that had a greater tmax than what was observed in the

unpermuted data. The odds ratio and 95% confidence interval of each gene set was calculated

using a logistic regression model, regressing schizophrenia status on Xin while controlling

for total number of variants genome-wide (Xall) and population (UK, Finnish, and Swedish).

Unlike gene set P-values which were calculated using permutation across multiple frequency

thresholds, the odds ratios and 95% CI were calculated using only variants observed once in

our data set (allele count of 1) to ensure they were comparable between tested gene sets.

CNV logistic regression

For enrichment analyses using the case-control CNV data set, I adapted the logistic regression

framework described in Raychaudhuri et al. and implemented in PLINK to compare the case-

control differences in the rate of CNVs overlapping a specific gene set [181]. Importantly,

this method corrected for differences in CNV size and total genes disrupted [182, 106, 181].

I first restricted our analyses to coding deletions and duplications, and tested for enrichment

using the following model:

log
Pi,case

1−Pi,case
= β0 +β1si +β2gall +β3gin + ε (4.1)

where for individual i, pi is the probability they have schizophrenia, si is the total length

of CNVs, gall is the total number of genes overlapping CNVs, and gin is the number of

genes within the gene set of interest overlapping CNVs. It has been shown that β1 and β2

sufficiently controlled for the genome-wide differences in the rate and size of CNVs between

schizophrenia cases and controls, while β3 captured the true gene set enrichment above this

background rate [182, 106, 181]. For each gene set, I reported the one-sided P-value, odds

ratio, and 95% confidence interval of β3.



4.2 Methods 99

Weighted permutation-based sampling of de novo mutations

For each variant class of interest (LoF, missense, and synonymous as control), I tabulated

the total number of de novo mutations observed in the 1,077 schizophrenia trios (Nobs). I

then generated 2 million random samples of Nobs de novo mutations of the variant class of

interest. To ensure the mutations were reasonably distributed across the genome, I weighted

the probability of observing a de novo event in a gene by its estimated mutation rate. These

baseline gene-specific mutation rates were calculated using the method described in Samocha

et al. and extended to produce LoF and damaging missense rates for each GENCODE v.19

gene [138]. I then calculated one-sided enrichment P-values for each gene set as the fraction

of the two million random samples that had a greater or equal number of de novo mutations

in the gene set of interest than what is observed in the 1,077 trios:

Pgene set =
number of times Ni ≥ Nobs

Nperm
(4.2)

where Ni is the number of de novo mutations in random sample i that hit a gene in the gene set

of interest, and Nperm is the total number of random samples (2×106). The effect size of the

enrichment was calculated as the ratio between the number of observed mutations in the gene

set of interest and the average number of mutations in the gene set across the two million

random samples, or Nobs

E(Ni)
. I adapted a method in Fromer et al. to calculate 95% credible

intervals for the enrichment statistic [98]. I first generated a list of one thousand evenly

spaced values between 0 and ten times the point estimate of the enrichment. For each value,

the mutation rates of genes in the gene set of interest were multiplied by that amount, and

50,000 random samples of de novo mutations were generated using these weighted rates. The

probability of observing the number of mutations in the gene set of interest given each effect

size multiplier was calculated as the fraction of samples in which the number of mutations

in the gene set was the same as the observed number in the 1,077 trios. I normalised the

probabilities across the 1,000 values to generate a posterior distribution of the effect size,

and calculated the 95% credible interval using this empirical distribution.

4.2.3 Combined joint analysis

Gene set P-values calculated using the case-control SNV, case-control CNV, and de novo
data were meta-analysed using Fisher’s combined probability method to provide a single test
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statistic for each gene set:

X2
2k ∼−2(ln(pDNM)+ ln(pSNV)+ ln(pCNV))

where pDNM, pSNV, and pCNV are the gene set P-values for the corresponding test, k = 3 is

the number of tests being combined, and X2 followed a χ-square distribution with 2k = 6

degrees of freedom. I corrected for the number of gene sets tested in the discovery analysis

(N = 1,766) by controlling the false discovery rate (FDR) using the Benjamini-Hochberg

approach. The p.adjust() function in R was used to calculate FDR-corrected p-values, or

q-values, for each gene set. I reported only results with a q-value of less than 5%.

4.2.4 Description of gene sets

Public gene set databases

When aggregating different gene sets from various sources, I re-mapped all gene identifiers to

the GENCODE v.19 release, and excluded all non-coding genes from further analysis. First,

I accessed and combined gene sets from five public databases: Gene Ontology (release 146;

June 22, 2015 release), KEGG (July 1, 2011 release), PANTHER (May 18, 2015 release),

REACTOME (March 23, 2015 release), and the Molecular Signatures Database (MSigDB)

hallmark processes (version 4, March 26, 2015 release). Given our focus on very rare (MAF

< 0.1% or singleton variants) and de novo variants, I had limited power to detect enrichment

in small gene sets, as evident in previous studies of schizophrenia and autism rare variation

in which the strongest signals came from aggregating hundreds of genes [98, 103, 105].

Therefore, I restricted our analyses to 1,687 gene sets from the five public databases with

more one hundred genes.

Schizophrenia candidate gene sets

I additionally tested gene sets selected based on biological hypotheses about schizophrenia

risk, and genome-wide screens investigating rare variants in broader neurodevelopmental dis-

orders. These included gene sets described in previous enrichment analyses of schizophrenia

rare variants [66, 103]: translational targets of FMRP [183, 184], components of the post-

synaptic density [66, 103], ion channel proteins [103], components of the ARC, mGluR5,

and NMDAR complexes [103], proteins at cortical inhibitory synapses [182, 185], targets of

mir-137 [103], and genes near schizophrenia common risk loci [57, 103].
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Constrained genes

To extend results from autism and intellectual disability, I tested if the burden of rare variants

in individuals with schizophrenia was similarly concentrated in genes intolerant of protein-

truncating variants. I used the pLI metric described in the ExAC v0.3.1 database as a measure

of gene-level selective constraint [112]. Since the full v0.3.1 release contained the Swedish

schizophrenia study, I used the subset of the ExAC database that excluded data sets that

included individuals with a psychiatric diagnosis for all analyses in this study. The pLI

metric was computed from non-psychiatric release of 45,376 exomes. I defined all genes

annotated with pLI > 0.9 as “highly constrained”, and genes annotated with pLI < 0.9 were

described as “ExAC unconstrained”. The “highly constrained” gene set was composed of

3,488 genes, while the “ExAC unconstrained” gene set was composed of 14,753 genes. To

provide a higher resolution test of how damaging variants were distributed at different levels

of constraint, I further ranked and grouped genes into deciles and bideciles according to

the pLI metric (top 10%, top 20%, etc.), and tested for rare variant enrichment using these

smaller gene sets.

Risk genes for autism and neurodevelopmental disorders

The DECIPHER Developmental Disorder Genotype-Phenotype (DDG2P) database (April

13, 2015 release) was used to define genes diagnostic of developmental disorders [157, 118].

For a high confidence list as used for clinical reporting in the DDD study, I included genes

with a monoallelic or a X-linked dominant mode of inheritance and robust evidence in

the literature (“Confirmed DD Genes”, “Probable DD gene”, “Both DD and IF”). From

these genes, I created four lists based on mechanism (LoF or LoF/missense) and affected

organ system (brain/cognition or any organ system). I further extended these list with novel

genes for severe developmental disorders identified in 4,293 parent-proband trios exome

sequenced in the DDD study [186]. The 94 genome-wide significant genes were described

in Supplementary Table 3 in McRae et al.. Significant genes with de novo LoF mutations

were appended to the LoF and LoF/missense lists, while genes with only de novo missense

mutations were only added to the LoF/missense lists. To define a list of high-quality autism

risk genes, I used the genome-wide results from the largest meta-analysis of ASD whole-

exome sequences to date [109]. ASD risk genes were defined as genes with a FDR < 10%

or < 30% in Sanders et al. For a less stringent list of candidate neurodevelopmental and

autism risk genes, I separately defined ASD and developmental disorder de novo genes as

genes hit by a LoF or a LoF/missense de novo variant in the Sanders et al. and the DDD

study [109, 118]. I additionally incorporated gene sets previously shown to be enriched for
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de novo mutations in autism probands: targets of CHD8 [105, 187, 178], splice targets of

RBFOX [105, 188, 189], hippocampal gene expression networks [190], and neuronal gene

lists from the Gene2cognition database (http://www.genes2cognition.org) [105].

Brain expression gene sets

Finally, as background gene sets, I defined cerebellar and cortical genes as those that

expressed in at least 80% of the corresponding human brain samples in the Brainspan RNA-

seq dataset [191]. I defined a gene as expressed in a sample if the exon and whole gene

read counts were greater than 10 counts, and the Cufflinks lower-bound FPKM estimate was

greater than 0 [192]. For brain-enriched genes or genes preferentially expressed in the brain,

I compared the differential expression of individual genes in the brain against all other tissues

in the GTEx dataset [193], and identified a subset that is 2-fold enriched with a FDR < 5%.

4.2.5 Conditional analyses

A number of gene sets previously implicated in neurodevelopmental disorders, such as the

translational targets of FMRP, were enriched for constrained genes and brain-expressed

genes [138]. However, both these larger gene sets contained a disproportionate number of de
novo mutations in autism probands, making it difficult to determine if our results for smaller

gene sets were significant beyond the enrichment in brain-expressed and highly constrained

genes. To address this, I extended each of three methods used for gene set enrichment to

condition on different gene set backgrounds. I first restricted all variants analysed to those

that reside in the background gene list (B) before testing for an excess of rare variants in

genes shared between the gene set of interest (K) and the background list. I focused on two

background gene sets: brain-enriched genes from GTEx, and the ExAC constrained gene list

(pLI > 0.9) (described above). In the enrichment analyses of the case-control SNV data, I

modified the variant threshold method to regress schizophrenia status on the total number of

damaging alleles in genes present in both the gene set of interest and the background gene set

(K∩B), while correcting for the total number of damaging alleles in the set of all background

genes (B). The logistic regression model for the case-control CNV data was modified to:

log
Pi,case

1−Pi,case
= β0 +β1si +β2gB +β3gK∩B + ε (4.3)

where gB is the total number of background genes overlapping a CNV, and gK∩B is the number

of genes in the intersection of the gene set of interest and the background list overlapping
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a CNV. Finally, I determined the total number of de novo mutations observed in the 1,077

schizophrenia trios that hit a gene in the background gene list. I then generated 2 million

random samples with the same number of de novo mutations. For each gene set, one-sided

enrichment P-values were calculated as the fraction of two million random samples that had

a greater or equal number of de novo mutations in genes in K∩B than what was observed in

the 1,077 trios. Gene set P-values were combined using Fisher’s method. I restricted our

conditional enrichment analysis to gene sets with q-value < 1% in the discovery analysis,

and adjusted for multiple testing using Bonferroni correction.

4.2.6 Rare variants and cognition in schizophrenia

Within the UK10K study, 97 individuals from the MUIR collection were given discharge

diagnoses of mild learning disability and schizophrenia (ICD-8 and -9). The recruitment

guidelines of the MUIR collection were described in detail in a previous publication [194].

In brief, evidence of remedial education was a prerequisite to inclusion, and individuals

with pre-morbid IQs below 50 or above 70, severe learning disabilities, or were unable to

give consent were excluded. The Schizophrenia and Affective Disorders Schedule-Lifetime

version (SADS-L) in people with mild learning disability, PANSS, RDC, and DSM-III-

R, and St. Louis Criterion were applied to all individuals to ensure that any diagnosis of

schizophrenia was robust. In the clinical information provided alongside the Swedish and

Finnish case-control data sets, I identified 182 schizophrenia individuals who were similarly

diagnosed with intellectual disability. Combined, I identified 279 individuals with a diagnosis

of schizophrenia and intellectual disability.

I used cognitive testing and educational attainment in the remaining samples to identify

schizophrenia individuals without intellectual disability. For 502 individuals from the Cardiff

collection in the UK10K study, I acquired their pre-morbid IQ as extrapolated from National

Adult Reading Test (NART), and identified 412 individuals for analysis after excluding all

individuals with predicted pre-morbid IQ of less than 85 (or below one standard deviation

of the population distribution for IQ). I additionally acquired information on educational

attainment in 54 schizophrenia individuals in the UK10K London collection, and retained

27 individuals who completed at least 13 years of schooling. These individuals completed

additional schooling following compulsory education. Lastly, the California Verbal Learning

Test was conducted on 124 Finnish schizophrenia individuals sequenced as part of UK10K,

and a composite score was generated from measures of verbal and visual working memory,

verbal abilities, visuoconstructive abilities, and processing speed. All individuals with

intellectual disability had been excluded from cognitive testing. Within this set of samples, I

additionally excluded any individuals who ranked in the lowest decile in CVLT composite
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score, and retained 92 individuals for analysis. According to these criteria, I identified 531

of 697 schizophrenia individuals from the UK and Finnish data sets with cognitive data as

not having intellectual disability. I additionally acquired data on educational attainment for

the Swedish schizophrenia cases and controls from the Swedish National Registry. After

excluding individuals with intellectual disability, I identified 751 schizophrenia individuals

who did not attend secondary school (less than 9 years of schooling), 776 schizophrenia

individuals who completed compulsory schooling but did not complete secondary schooling

(less than 12 years of schooling), and 634 schizophrenia individuals who completed at least

compulsory and upper secondary schooling (at least 12 years of schooling). I defined the

subset of 634 schizophrenia individuals as cases without intellectual disability. In total,

combining the UK, Finnish, and Swedish data, I identified 1,165 schizophrenia individuals

without cognitive impairment.

Using the case-control SNV enrichment method, I tested for differences in rare variant

burden between the following samples: 279 schizophrenia individuals with ID and 9,270

matched controls, and 1,165 schizophrenia individuals without ID and 9,270 matched controls.

I also tested for differences in rare variant burden between 279 schizophrenia individuals

with ID and the 1,165 schizophrenia individuals without ID. These analyses were restricted to

two gene sets of interest: the constrained gene set (pLI > 0.9) and diagnostic developmental

disorder genes with brain abnormalities as described in DECIPHER DDG2P database

(Figure 4.11, 4.12). Because we performed three pairwise tests of LoF burden across two

gene sets, I controlled for multiple testing using Bonferroni correction, and required any

result to have a p-value of less than 0.0083 (0.05/6) to be significant.

4.3 Results

4.3.1 Study design

To maximize our power to detect signals of enrichment of damaging variants in groups of

genes, I performed a meta-analysis of three different types of rare coding variant studies.

Previous results from these data gave us confidence to proceed with gene set enrichment anal-

yses. Statistical tests of the case-control exome data used case-control permutations within

each population (UK, Finnish, Swedish) to generate empirical P-values to test hypotheses.

When applying this method, I observed no genome-wide inflation was observed in burden

tests of individual genes (Section 3.3.1). In the curated set of de novo mutations, I observed

the expected exome-wide number of synonymous mutations given gene mutation rates from

previously validated models [138], suggesting variant calling was generally unbiased across
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Fig. 4.2 Analysis workflow. Data sets are shown in blue, statistical methods and analysis

steps are shown in green, and results (figures and tables) from the analysis are shown in

orange. The left chart describes analyses testing for enrichment in 1,766 gene sets using the

entire data set. The right chart describes analyses testing for enrichment in constrained and

developmental disorder genes in the subset of cases with cognitive information.



106 Schizophrenia risk genes are shared with neurodevelopmental disorders

GENCODE v.19 coding genes (Section 3.3.6). Lastly, the case-control CNV data set had

been previously analysed for burden of CNVs affecting individual genes and enrichment

analyses in targeted gene sets [182, 179]. Because I had limited power to implicate indi-

vidual genes, I focused our analyses on testing for an excess of rare damaging variants in

schizophrenia patients in a number of gene sets. For each data type (case-control SNV, CNV,

and de novo mutations), I used previously described methods appropriate to each data set

to test for an excess of rare variants (Figure 4.2). Gene set P-values computed using the

three methods were meta-analysed using Fisher’s Method to provide a single P-value for

each gene set. Because I weighted the information from each data type equally, gene sets

achieving significance typically show at least some signal in all three types of data.

4.3.2 Selection of allele frequency thresholds and consequence severity

For the case-control whole-exome data, I applied an extension of the variant threshold model

for gene set enrichment analyses. With this method, I did not need to select an a priori MAF

cut-off, and was able to test damaging variants at a number of frequency thresholds. All

thresholds below a MAF of 0.1% were tested, and statistical significance was assessed by

permutation testing. For all the whole-exome data (case-control and trio data), I restricted

gene set analyses to loss-of-function variants, since these variants had been demonstrated

to show the strongest enrichment for truly damaging variants compared to other functional

classes. In total, 118 LoF de novo variants were observed in the 1,077 parent-proband trios.

For the case-control CNV data, I compared the CNV burden at four MAF thresholds

(< 1%, < 0.5%, < 0.1%, singleton), and three variant classes (deletions, duplications, and

both). When conducting additional robustness checks (Section 4.3.3), I found that the gene

set P-values for CNV burden were dramatically inflated even when testing for enrichment in a

large number of random gene sets (Figure 4.3). After stratifying by CNV size, frequency, type

(deletion and duplications), and quality and testing for burden, I determined that this inflation

was driven in part by very large (overlapping more than 10 genes), common (MAF between

0.1% and 1%) CNVs observed mainly in either cases or controls. Excluding this highly

influential class of CNVs greatly reduced the genomic inflation (Figure 4.4). Unfortunately,

some of these were the 11 recurrent schizophrenia CNVs, and likely harboured true risk

genes. However, because these CNVs were highly recurrent in cases, depleted in controls

and disrupted a large number of genes, any gene set that included even a single gene within

these CNVs would appear to be significant, even after controlling for total CNV length and

genes overlapped. To ensure our model was well-calibrated and its P-values followed a

null distribution for random gene sets, I conservatively restricted our analysis to rare and

small copy number events (Figure 4.4). In summary, I restricted our analysis to case-control
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Fig. 4.3 Q-Q plots of P-values from enrichment tests of 1,766 gene sets. Top left: case-

control SNVs from whole-exome sequence data; Top right: de novo mutations from 1,077

trios; Bottom left: case-control CNVs; Bottom right: meta-analysed P-values from Fisher’s

method (dark blue). Calibrated MAF cut-offs and a tailored enrichment test were applied to

each variant type. Each dot represented a different gene set. General inflation of P-values

from tests of disruptive variants (loss-of-function in de novo tests, and CNVs) was observed.

The genomic inflation parameter λ was provided for each distribution. Damaging missense:

missense variants with CADD Phred > 15.
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Fig. 4.4 The use of frequency and size cut-offs in CNV gene sets enrichment tests to
reduce genomic inflation. Q-Q plots were generated based on P-values from CNV enrich-

ment tests of random gene sets, using different MAF cut-offs (Singletons, < 0.05%, < 0.1%,

1%) and CNV size cut-offs (removing the top 1%, 5%, and 10% of CNVs overlapping the

most genes). Each dot represented a different gene set. Inflation followed the expected null

distribution when more stringent MAF thresholds and size cut-offs were applied (see MAF

< 0.1%, and removing the 10% of CNVs overlapping the most genes). Singletons: CNVs

observed to occur once in our data set.
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loss-of-function (LoF) variants, small deletions and duplications overlapping fewer than

seven genes (excluding the largest 10% of CNVs) with MAF < 0.1% (Figure 4.4), and de
novo mutations annotated as LoF.

4.3.3 Robustness of enrichment analyses

I tested for an excess of rare damaging variants in schizophrenia patients in 1,766 gene

sets. However, I observed an inflation in the quantile-quantile (Q-Q) plot of gene set P-

values (Figure 4.3), so I took several steps to ensure our results were not biased due to

methodological or technical artefacts in our data. First, biases related to analytical method or

data QC should systematically affect all classes of variants, including synonymous variants.

Using the same data and methods, I observed no inflation of P-values when testing for

enrichment of synonymous variants in our case-control and de novo analyses (Figure 4.3).

Second, I uniformly sampled genes from the genome (as defined by GENCODE v.19) to

generate random gene sets with the same size distribution as the 1,766 gene sets in our

discovery analysis. For each random set, I calculated gene set P-values for the case-control

SNV data, case-control CNV data, and de novo data using the appropriate method and

frequency cut-offs across all variant classes. Reassuringly, I observed null distributions in all

such Q-Q plots regardless of variant class and analytical method (Figure 4.5). These findings

suggested that our methods sufficiently corrected for known genome-wide differences in LoF

and CNV burden between cases and controls, and other technical confounders like batch and

ancestry. I then tabulated the number of gene sets each gene was found in, and discovered that

certain genes were over-represented in pathways from the four gene set databases compared

to a random sampling of genes from the genome (Figure 4.6). Furthermore, the top 1000 over-

represented genes were generally more enriched for rare disruptive variants in schizophrenia

cases compared to controls (P = 0.005, Figure 4.6b) while no enrichment was observed

after excluding the top 5000 most frequent genes. This observation would partially explain

the inflation in our Q-Q plots, but there was not an obvious reason for why certain genes

were over-represented in these public databases. I hypothesized that an ascertainment bias

may partially explain this: some genes, like p53, TNF, NFKB, and APOE, are much more

thoroughly investigated in the literature because disruption in these genes across species

result in striking biological consequences. It could also be that these over-represented genes

have multiple core functions impacting a number of biological processes. A pathway analysis

of common variants in psychiatric disorders also displayed similar inflation of P-values when

testing for enrichment in gene sets from GO, KEGG, and Reactome, suggesting that gene sets

from these public databases were also enriched for common variant signal in schizophrenia.

[108]. Together, these results indicated that interpretation of pathway analyses requires
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careful attention to potential sources of bias, but that our data, analytic methods, and main

results are robust.

Fig. 4.5 Q-Q plots of P-values from enrichment tests of random gene sets. Top left:
case-control SNVs from whole-exome sequence data; Top right: de novo mutations from

1,077 trios; Bottom left: case-control CNVs. Genes were randomly sampled from the

genome to create gene sets with the same size distribution as the 1,766 tested gene sets. Each

dot represented a different gene set. Calibrated MAF cut-offs and a tailored enrichment test

were applied to each variant type. The genomic inflation parameter λ was provided for each

distribution. No inflation of test statistics was observed across all variant types. Damaging

missense: missense variants with CADD Phred > 15.

4.3.4 Rare, damaging schizophrenia variants are concentrated in con-
strained genes

Recent studies have demonstrated that recurrent de novo LoF and missense mutations identi-

fied in probands with autism or developmental disorders were overwhelmingly concentrated

in the set of highly constrained genes [109, 112, 138], suggesting that at least some of

the constraint was driven by severe neurodevelopmental consequences of having only one
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Fig. 4.6 Non-random sampling of genes in the 1,766 gene sets resulted in non-null en-
richment of disruptive variants. A: Genes were ranked and plotted based on the number

of gene sets they belonged in. The top 1000 genes were massively over-represented in gene

sets from public databases, and genes outside the top 5000 genes were under-represented.

B: Case-control SNV burden tests of genes over-represented and under-represented in the

1,766 gene sets. The top 1000 most over-represented genes showed a significant enrichment

of LoF variants, while no enrichment was observed for genes outside the top 5000 genes.

Plotted P-values were from burden tests of LoF variants, and error bars described the 95%

confidence interval of the burden estimate. Damaging missense: missense variants with

CADD Phred > 15.
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functioning copy of these genes. I found that rare damaging variants in schizophrenia cases

were also enriched in the highly constrained gene set (P < 3.6×10−10, Table 4.1, Figure 4.7),

with support in case-control SNVs (P < 5× 10−7; OR 1.24, 1.16− 1.31, 95% CI), case-

control CNVs (P = 2.6× 10−4; OR 1.21, 1.15− 1.28, 95% CI), and de novo mutations

(P = 6.7×10−3; OR 1.36, 1.1−1.68, 95% CI). The constrained genes signal in schizophre-

nia was distributed across many genes: if I ranked genes by decreasing significance, the

enrichment disappeared in the case-control SNV analysis (P > 0.05) only after the exclusion

of the top 50 genes, suggesting that many genes contributed to this observation, rather than

just a handful of genes with very large burden.

Fig. 4.7 Enrichment of schizophrenia rare variants in constrained genes. A: Schizophre-

nia cases compared to controls for rare SNVs and indels; B: Rates of de novo mutations in

schizophrenia probands compared to control probands; C: Case-control CNVs. P-values

shown were from the test of LoF enrichment in A, LoF and damaging missense enrichment

in B, and all CNVs enrichment in C. Error bars represent the 95% CI of the point estimate.

Constrained: 3,488 genes with near-complete depletion of truncating variants in the ExAC

database; Unconstrained: genes not under genic constraint; Damaging missense: missense

variants with CADD Phred > 15. Asterisk: P < 1×10−3.

4.3.5 Comparing the enrichment in constrained genes across neurode-
velopmental disorders

I next contrasted the degree of enrichment of de novo mutations in constrained genes between

probands with developmental disorders, autism, and schizophrenia. First, I aggregated and re-

annotated de novo mutations from four studies (1,113 probands with developmental disorders

[118], 4,038 probands with ASD [109, 105], and 2,134 control probands [155, 105]), and
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used the Poisson exact test to compare the de novo rates in constrained genes between

affected probands and matched controls. I tested for differences in counts in each functional

class (synonymous, missense, damaging missense, and LoF) separately, and displayed the

one-sided P-value, rate ratio, and 95% CI of each comparison in Figure 4.8 and 4.9. Overall,

while the enrichment in schizophrenia was consistent with observations in developmental

disorders and autism [138, 105], the absolute effect size was smaller (Figure 4.8, 4.9). Finally,

in the remaining 14,753 genes in the genome, I observed no excess burden of rare damaging

variants in schizophrenia, autism, and severe developmental disorders, suggesting dominant

alleles conferring substantial risk for brain disorders are concentrated in the constrained gene

set (Figure 4.7, 4.9, 4.10).

Fig. 4.8 Enrichment of de novo mutations in genes with near-complete depletion of
truncating variants across schizophrenia and neurodevelopmental disorders. In autism,

schizophrenia, and severe neurodevelopmental disorders, de novo mutations were enriched in

a subset of genes under genic constraint, with no excess of polygenic burden in the remaining

genes. To generate 95% CI and P-values, the rate of de novo mutations in affected trios

(1,077 schizophrenia trios, 1,133 trios with severe neurodevelopmental disorders, and 4,038

trios with autism) was compared against the rate in unaffected control trios (2,038 trios)

using a Poisson exact test. Plotted P-values were from the Poisson test of LoF mutations.

Damaging missense: missense variants with CADD Phred > 15.
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Fig. 4.9 Enrichment of de novo mutations in genes ordered and grouped by genic con-
straint across schizophrenia and neurodevelopmental disorders. Genes were ordered

by their degree of constraint (pLI score), and grouped into six categories: the 10% most

constrained, 10 – 20% most constrained, 20 – 40% most constrained, and so on. The rate

of de novo mutations in affected trios (1,077 schizophrenia trios, 1,133 trios with severe

neurodevelopmental disorders, and 4,038 trios with autism) was compared against the rate in

unaffected control trios (2,038 trios) using a Poisson exact test. A significant enrichment of

rare LoF and damaging missense variants was only observed in the 20% most constrained

genes, while no signal was observed in less constrained genes. Error bars were 95% CI of the

estimate. Plotted P-values were from the Poisson test of LoF mutations. Damaging missense:

missense variants with CADD Phred > 15.
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Fig. 4.10 Enrichment of case-control SNVs in genes ordered and grouped by genic
constraint. Genes were ordered by their degree of constraint (pLI score), and grouped

into six categories: the 10% most constrained, 10−20% most constrained, 20−40% most

constrained, and so on. A significant enrichment of rare LoF and damaging missense variants

was only observed in the 10% most constrained genes, while no signal was observed in less

constrained genes. Synonymous variants followed an expected null distribution. Error bars

were 95% CI of the estimate. The asterisk indicated that P < 1×10−3. Damaging missense:

missense variants with CADD phred > 15.

4.3.6 Schizophrenia risk genes are shared with other neurodevelop-
mental disorders

Given the consistent enrichment of rare damaging variants in constrained genes in schizophre-

nia, autism, and neurodevelopmental disorders, I next determined whether these variants

affected the same genes. I found that both autism risk genes identified from exome sequencing

analyses [109] and genes in which LoF variants are known causes of severe developmental

disorders [157] were significantly enriched for rare variants in individuals with schizophrenia

(PASD = 9.5×10−6; PDD = 2.3×10−6; Table 4.1). Previous studies had shown an enrich-

ment of rare damaging variants in mRNA targets of FMRP in both schizophrenia and autism

[155, 103, 105], which I confirmed (Table 4.1). I sought to identify further shared biology

by testing targets of neural regulatory genes previously implicated in autism [105, 178], and

observed similar enrichment of promoter targets of CHD8 (P = 1.1×10−6) and splice targets

of RBFOX (P = 1.3×10−5).

I tested an additional 1,759 gene sets, and observed a total of 35 with an enrichment at

FDR q < 0.05 (Table 4.2). I replicated previously implicated gene sets, like glutamatergic

synaptic density proteins comprising the NMDAR and ARC complexes [98, 66, 103, 183],

and identified novel gene sets, such as regulation of transmembrane transport (GO:0034762)

and cytoskeleton organisation (GO:0007010). Notably, the gene sets most significantly
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Table 4.1 Gene sets enriched for rare coding variants conferring risk for schizophrenia
at FDR < 1%. The effect sizes and corresponding P-values from enrichment tests of each

variant type (case-control SNVs, DNM, and case-control CNVs) are shown for each gene set,

along with the Fisher’s combined P-value (Pmeta) and the FDR-corrected Q-value (Qmeta).

I only show the most significant gene set if there are multiple ones from the same data set

or biological process. All gene sets displayed had been previously implicated in ASD and

ID. Ngenes: number of genes in the gene set; Est: effect size estimate and its lower and upper

bound assuming a 95% CI; DNM: de novo mutations.
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enriched (FDR q < 0.01) for schizophrenia rare variants (Table 4.1) were all neurodevelop-

mental gene sets previously implicated in autism and intellectual disability (mRNA targets

of FMRP, chromatin modification, organization, and binding [GO], promoter targets of

CHD8 [157, 105, 178, 183]) as well as the large and generic set of cerebellum expressed

and brain-enriched genes. A number of these gene sets, such as the translational targets

of FMRP and risk genes for autism and developmental disorders, significantly overlapped

with brain-expressed genes and constrained genes, both of which also carried a dispropor-

tionate burden of rare variants in schizophrenia. I extended previous methods to allow for

conditional analyses using different gene set backgrounds, and found that the FDR < 5%

neurodevelopmental gene sets were significant even after controlling for baseline enrichment

in brain-enriched genes, demonstrating that they were biologically meaningful beyond brain

expression (Table 4.3). Strikingly, only two gene sets, known ASD risk genes (P = 4×10−4)

and diagnostic DD genes (P = 3×10−5), had an excess of rare coding variants above the

enrichment already observed in constrained genes (Table 4.3). Thus, in addition to biological

pathways implicated specifically in schizophrenia, at least a portion of the schizophrenia

risk conferred by rare variants of large effect is shared with childhood onset disorders of

neurodevelopment.

4.3.7 Schizophrenia rare variants are associated with intellectual dis-
ability

In the autism spectrum disorders, the observed excess of rare damaging variants was much

greater in individuals with intellectual disability than those with normal levels of cognitive

function [155]. A similar reduction in cognitive function was observed in schizophrenia

carriers of SETD1A LoF variants and the 22q11.2 deletion syndrome [159, 119]. Motivated by

these observations, I next sought to explore whether this pattern is consistent in schizophrenia

in a wider set of genes. 279 individuals in the whole-exome data set had pre-morbid

intellectual disability in addition to fulfilling the full diagnostic criteria for schizophrenia. I

also accumulated cognitive phenotype data for the remaining samples, and identified 1,165

individuals with schizophrenia who I could confirm do not have intellectual disability (after

excluding pre-morbid IQ< 85, fewer than 12 years of schooling or lowest decile of composite

cognitive measures, depending on available data). When stratifying into these two groups

(cases with intellectual disability, unknown cognitive status, no intellectual disability), I

observed that the burden of damaging rare variants in constrained genes was significantly

greater in the small set of cases with confirmed intellectual disability than in both the

remaining schizophrenia cases and matched controls (Figure 4.11). Schizophrenia individuals
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Table 4.2 Gene sets enriched for rare coding variants conferring risk for schizophrenia
at FDR < 5%. The effect sizes and corresponding P-values from enrichment tests of each

variant type (case-control SNVs, DNM, and case-control CNVs) are shown for each gene set,

along with the Fisher’s combined P-value (Pmeta) and the FDR-corrected Q-value (Qmeta).

Ngenes: number of genes in the gene set; Est: effect size estimate and its lower and upper

bound assuming a 95% CI; SNV: single nucleotide variants from whole-exome data; DNM:

de novo mutations.



120 Schizophrenia risk genes are shared with neurodevelopmental disorders



4.3 Results 121

Table 4.3 Results from enrichment analyses of FDR < 5% gene sets, conditional on
brain-expressed and ExAC constrained genes. I restricted enrichment analyses to genes

that resided in two different background gene sets (brain-enriched expression in GTeX, and

ExAC-constrained genes), and determined if gene sets with FDR < 5% in the meta-analysis

still had significance above the specific background. The P-values from enrichment tests of

each variant type (case-control SNVs, DNM, and case-control CNVs) were shown for each

gene set, along with the Fisher’s combined P-value (Pmeta). Ngenes: number of genes in the

gene set; SNV: single nucleotide variants from whole-exome data; DNM: de novo mutations.
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with ID had a significantly elevated number of variants in diagnostic developmental disorder

genes compared to the remaining cases and controls (Figure 4.12), and two additionally

carried LoF variants in KMT2A and KMT2D. These two genes are from the same family

of lysine methyltransferases as SETD1A, also known as KMT2F, shown previously as a

schizophrenia risk gene [119].

Fig. 4.11 Enrichment of rare variants in constrained genes between schizophrenia
(SCZ) individuals with ID, schizophrenia individuals without ID, and matched con-
trols. The P-values shown were calculated from the burden test of LoF variants between the

corresponding cases and matched controls. The enrichment of LoF variants in constrained

genes between SCZ individuals with ID and SCZ individuals without ID was displayed as

effect sizes and P-values above the case-control comparisons. Error bars represent the 95%

CI of the point estimate. Damaging missense: missense variants with CADD phred > 15.

While the damaging rare variants in constrained genes were most strongly enriched in

the subset of schizophrenia patients with intellectual disability, I still observed a significant

burden in the individuals who did not have intellectual disability (P < 5.5× 10−4) (Fig-

ure 4.11). I additionally identified twelve schizophrenia cases without ID carrying LoF

variants in developmental disorder genes from the DDG2P database. These individuals

satisfied the full diagnostic criteria for schizophrenia without signs of pre-morbid intellectual

disability (Table 4.4). Combined, I show that rare damaging variants in constrained genes in

schizophrenia follow the pattern previously described in autism: concentrated in individuals

with intellectual disability, but not exclusive to that group.
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Table 4.4 Phenotypes of schizophrenia individuals with cognitive information carrying
LoF variants in developmental disorder genes. Of the 531 UK10K schizophrenia individ-

uals without intellectual disability, I acquired detailed clinical information for four out of the

eight carriers of LoF variants in severe developmental disorders genes. These variants were

observed only once in our data set and absent in the ExAC database. For each LoF variant, I

provide its genomic coordinates (hg19) and the gene disrupted, the number of high-quality

LoF variants within this gene identified in 60,706 ExAC individuals and the corresponding

pLI score, and the expected developmental disorder syndrome according to DECIPHER. For

each carrier, I describe notable neuropsychiatric symptoms (Clinical features), the level of

education achieved (Education attainment), and the predicted pre-morbid IQ as extrapolated

from National Adult Reading Test (NART). These four carriers satisfy the full diagnostic

criteria for schizophrenia, and do not appear to be outliers in the expected cognitive range of

schizophrenia patients. To identify high-quality ExAC LoF variants, I retained only variants

in the canonical transcript and were called as homozygote (and not missing) in at least 85%

of the ExAC data set (accessed on July 4th, 2016).
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Fig. 4.12 Enrichment of rare variants in diagnostic developmental disorder genes be-
tween schizophrenia (SCZ) individuals with ID, schizophrenia individuals without ID,
and matched controls. The P-values shown were calculated from the burden test of LoF

variants between the corresponding cases and matched controls. The enrichment of LoF

variants in constrained genes between SCZ individuals with ID and SCZ individuals without

ID were displayed as effect sizes and P-values above the case-control comparisons. Error

bars represent the 95% CI of the point estimate. Damaging missense: missense variants with

CADD Phred > 15.
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4.4 Discussion

My integrated analysis of rare variants from thousands of whole-exome sequences provides

evidence for a partially shared genetic etiology between schizophrenia and other neurodevel-

opmental disorders. While the identification of individual genes remains difficult at current

samples sizes, I demonstrate that the burden of de novo mutations, rare SNVs and CNVs in

schizophrenia is primarily concentrated in a subset of 3,488 genes under genic constraint, an

observation shared with autism and intellectual disability. Furthermore, enrichment analyses

in a large number of gene sets demonstrate that the most robust burden of rare variants in

schizophrenia resides in genes in which LoF variants are diagnostic for severe developmental

disorders and in known autism risk genes. These results were supported by a recently pub-

lished whole-exome sequencing study of Swedish schizophrenia cases and controls [134].

In so far as the genes responsible for intellectual disability necessarily have effects during

central nervous system development, and those that influence ASD must exert their effects

in infancy at the very latest, the findings demonstrate that genetic perturbations adversely

affecting nervous system development also increase risk for schizophrenia. My findings

therefore support the hypothesis that severe, psychiatric illnesses manifesting in adulthood

can have origins early in development.

I additionally show that some of these perturbations have clear manifestations in child-

hood, and that risk variants of large effect in schizophrenia are associated with pre-morbid

intellectual disability. Our observations are consistent with results in autism in which indi-

viduals carrying LoF de novo mutations are more likely to also have cognitive impairment

[71, 109, 155]. Notably, I found that a weaker but still significant rare variant burden was

observed in schizophrenia patients without intellectual disability, showing that variants of

large effect do not simply confer risk for a small subset of schizophrenia patients but are

relevant to disease pathogenesis more broadly.

My data support the general observation that genetic risk factors for psychiatric and

neurodevelopmental disorders do not follow clear diagnostic boundaries, and that the variants

disrupting the same genes, and quite possibly, the same biological processes, result in a wide

range of phenotypic manifestation. For instance, a number of schizophrenia patients without

intellectual disability carry LoF variants in developmental disorder genes that are purified of

damaging mutations in the general population. This clinical pleiotrophy is reminiscent of LoF

variants in SETD1A and 11 large copy number variant syndromes, previously shown to confer

risk for schizophrenia in addition to other prominent developmental defects [67, 119]. I do

not preclude the possibility that allelic series of LoF variants exist in these genes; however,

the most common deletion in the 22q11.2 locus and a recurrent two base deletion in SETD1A
are associated with both schizophrenia and more severe neurodevelopmental disorders,
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suggesting the same variants confer risk for a range of clinical features [119, 195, 196].

Ultimately, it may prove difficult to clearly partition patients genetically into subgroups

with similar clinical features, especially if genes and variants previously thought to cause

well-characterized Mendelian disorders can have such varied outcomes. This pattern is

consistent with the hypothesis that LoF variants in constrained genes result in a spectrum of

neurodevelopmental outcomes with the burden of mutations highest in intellectual disability

and least in schizophrenia, corresponding to a gradient of neurodevelopmental pathology

indexed by cognitive impairment [15].

Despite the complex nature of genetic contributions to risk of schizophrenia, it is notable

that across study designs (trio or case-control) and variant class (SNVs or CNVs), risk loci

of large effect are concentrated in a small subset of genes. Previous rare variant analyses in

other neurodevelopmental disorders, such as autism, have successfully integrated information

across de novo SNVs and CNVs to identify novel risk loci [109]. As sample sizes increase,

meta-analyses leveraging the shared genetic risk across study designs and variant types will

be similarly well powered to identify additional risk genes in schizophrenia.



Chapter 5

Discussion and future directions

5.1 Summary of findings

In recent years, whole-exome sequencing has successfully identified individual genes in

which rare variants or de novo mutations confer substantial risk for autism, intellectual

disability, and severe developmental disorders. Indeed, these studies of broader neurodevel-

opmental disorders have independently revealed that many of the same genes are disrupted

in patients with a wide range of diagnoses and presentations. In this Thesis, I compiled

the largest rare variant data set in schizophrenia to date, meta-analysing the whole-exome

sequences of 1,077 schizophrenia trios, 4,268 cases, and 9,343 matched controls. Using

these data, I implicated at genome-wide significance the first gene, SETD1A, for which

loss of function (LoF) variants conferred substantial risk for schizophrenia (OR > 4), an

adult-onset neuropsychiatric disorder (Figure 5.1). Intriguingly, the ten schizophrenia indi-

viduals with SETD1A disrupted had some degree of cognitive impairment, and LoF variants

in the same gene were also found to confer risk for severe developmental disorders with

highly variable presentation. SETD1A encodes a histone methyltransferase that catalysed

the mono-, di-, and trimethylation of histone H3-K4, and loss-of-function mutations in

the family of H3-K4 histone methyltransferase cause Mendelian conditions characterized

by intellectual disability and developmental delay (e.g.. KMT2A and KMT2D are highly

penetrant for Wiedenmann-Steiner Syndrome and Kabuki’s syndrome, respectively). These

results implicate epigenetic regulation, specifically histone modification, as a mechanism

in the pathogenesis of schizophrenia, and suggest that rare risk alleles may potentially be

shared between schizophrenia and broader neurodevelopmental disorders.

To better understand if the findings relating to SETD1A can be extended and generalized

to a larger number of rare schizophrenia risk variants, I performed a series of analyses that

explored the potential overlap of genetic risk between schizophrenia and broader develop-
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mental disorders. I jointly analysed the trio and case-control exome data set with array-based

CNV calls from 6,882 cases and 11,255 controls, and found that individuals with schizophre-

nia carried a significantly higher burden of rare damaging variants in 3,488 genes with a

near-complete depletion of truncating variants across all variant types. This concentration of

risk alleles in constrained genes was previously observed in autism, intellectual disability,

and severe developmental disorders. I then performed rare variant enrichment analyses in

1,766 gene sets, and found that the rare variant burden was most strongly enriched in known

autism risk genes, and genes diagnostic of severe developmental disorders. This result was

significant even after controlling for the baseline enrichment in genes depleted of truncating

variants. Finally, in a subset of schizophrenia patients with intellectual disability, I showed

that this burden is even stronger than in the general schizophrenia population, mirroring previ-

ous results comparing autism individuals with and without cognitive impairment. Combined,

these results demonstrate that schizophrenia risk loci of large effect across a range of variant

types implicate a common set of genes shared with broader neurodevelopmental disorders,

suggesting a path forward in identifying additional risk genes in psychiatric disorders and

further supporting a neurodevelopmental etiology to the pathogenesis of schizophrenia.

5.2 Limitations of results described in this Thesis

5.2.1 Limitations in the interpretation of protein-coding consequences

Here, I discuss a number of limitations and caveats that are important when discussing the

generalisability of the results in my Thesis, and are helpful in placing my assertions in context.

First, the protocol used to prioritise rare coding variation in this Thesis is not optimal, and

likely has a detrimental effect on power for gene discovery. During the process of variant

annotation, I applied the Variant Effect Predictor tool to assign coding consequences to

each variant while using the GENCODE transcript database as reference. I then annotated

variants based on the most severe consequence on any transcript. However, most genes have

more than one transcript or isoform, and these transcripts can be tissue-specific, expressed at

particular time-points, and perform different functions. Despite the emergence of large gene

expression studies such as GTeX and BrainSpan [191, 193], our catalog of gene transcripts

remain incomplete. Most experiments still perform transcript quantification on bulk tissue,

limiting our understanding of transcript abundance in different cell types. Furthermore,

short-read RNA-seq technology has severe limitations when used to reconstruct full-length

transcripts, and because of this, relevant transcripts remain missing or others are falsely

included in public databases. Lastly, certain tissues, like the developing human brain, cannot
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Fig. 5.1 Risk variants for schizophrenia, with SETD1A included. The effect size of each

genome-wide significant risk variant for schizophrenia, as described in Ripke et al. and Rees

et al., were plotted against its allele frequency in cases [57, 67].
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be easily or ethically accessed, which further limits our understanding of spatial-temporal

abundance of each gene transcript.

Beyond the limitations of existing transcript references, current annotation protocols

are not well-suited for handling variants that could have a specific consequence for one

transcript and a conflicting consequence for another transcript. A recent study compared

the concordance in annotation when different transcript set and software packages were

used to predict the coding consequence of 80 million variants [136]. Surprisingly, there was

only a 44% concordance in annotations for putative LoF variants when using the RefSeq

and Ensembl transcript sets, and a concordance of 65% was observed when comparing

LoF predictions from the VEP and ANNOVAR pipelines. Clearly, the choice of transcript

reference and pipeline has a significant influence on the downstream analysis of whole-exome

sequencing data. These limitations lead to the exclusion of real pathogenic variants, and

further dilute our case-control analyses with large numbers of non-functional variants, all of

which affect the power for gene discovery. Ultimately, we need to improve the quality of

transcript reference databases, and include both abundance and spatial-temporal information

of individual isoforms when annotating variants in future studies.

5.2.2 Insufficient standardisation of clinical data

Second, the limited and variable quality of the clinical data in the studies discussed in this

Thesis prevented me from drawing robust connections between rare variation in schizophre-

nia patients and specific clinical features, such as cognitive impairment and congenital

malformations. For instance, SETD1A belonged to a family of methyltransferases that when

disrupted resulted in severe developmental disorders with a range of cognitive and physical

co-morbidities. However, I could not acquire cognitive data for the vast majority of the 4,264

schizophrenia cases, and very variable clinical data was available for the ten SETD1A LoF

carriers. While the ten carriers appeared to have some degree of cognitive impairment, this is

purely a descriptive statement; insufficient clinical data was available to statistically compare

this observation with the remainder of the schizophrenia data set. Furthermore, a number of

these carriers only had information related to schizophrenia status, and it is quite possible

that these individuals had additional co-morbidities such as seizures, facial dysmorphology

and developmental delay.

On a similar thread, I identified an enrichment of rare damaging variants in developmental

disorder and autism genes, but was unable to acquire the appropriate phenotypic information

to determine if carriers of these LoF variants represented a distinct population of patients.

Schizophrenia carriers of LoF variants in CHD8, an autism risk gene, could potentially

have autistic features in addition to psychosis [105]. Furthermore, the disruption of specific
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developmental disorder genes, such as KMT2A and KMT2D, causes characteristic facial

and physical dysmorphology [157, 118], and our data did not allow us to determine if

this were true of the carriers in the schizophrenia data set. Ultimately, the lack of high-

quality and standardised clinical data accompanying large-scale genetic data is a severe

limitation in our current study, and of association studies of psychiatric traits moving forward.

Comprehensive phenotyping would be required to investigate whether carriers of rare LoF

variants in constrained genes represented a distinct population of patients when compared

to the remaining cases, or if these variants were associated with patterns in age-of-onset,

pre-morbid impairment, neurological co-morbidities, relapse, and severity.

5.2.3 Limitations in the definition of the constrained gene list

The enrichment of rare risk variants in constrained genes is among the most striking results

in early whole-exome sequencing studies of psychiatric and neurodevelopmental disorders.

However, the definition of genic constraint, or the probability of loss-of-function intolerant

(pLI), has caveats that need considered when interpreting the significance of our results. First,

the pLI score was calculated using an expectation-maximization algorithm that assigned

genes to one of three categories: null (in which LoF variants is completely tolerated),

recessive (in which homozygous LoF variants is not tolerated), and haploinsufficient (in

which a single copy loss is not tolerated). Genes above an arbitrary probability threshold

of 0.9 were described as loss-of-function intolerant. From this definition, it is clear that the

power to assign a gene to one of these categories is highly dependent on gene length; longer

genes would have a greater number of expected loss-of-function variants, enabling more

robust estimates of LoF depletion. Despite that notable size of the ExAC study, there may

not be sufficient observations of rare LoF variants in smaller genes to detect a deviation from

expectation, and these genes may have a pLI score less than 0.9 and defined as unconstrained

for this reason. For example, ARX is a gene in which LoF variants cause severe mental

retardation [157, 118], but its pLI score was estimated to be 0.74 because a 4:0 expected-

to-observed LoF variant ratio was insufficient for estimating genic constraint. Therefore, a

gene’s ranking along the distribution of pLI score is highly dependent on statistical power that

is a property of the gene sequence, and the metric itself is not a valid proxy for the strength of

selection or degree of constraint. Furthermore, as described earlier in this Section, most genes

have a number of transcripts that are sometimes regulated in a tissue or time-specific manner

with varying functionality, and this is ignored during the modelling of genic constraint.

LoF variants across all transcripts of a gene were aggregated during the calculation of pLI,

and it is conceivable that LoF variants in certain transcripts are benign while in others,

it is severely pathogenic. Over-simplifying the question of annotation could result in the
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assignment of a gene to the unconstrained category when it is actually haploinsufficient

in one isoform. Finally, the 45,376 exomes used to estimate the depletion of LoF variants

were aggregated from studies that include cases diagnosed with complex disorders. While

exomes of individuals with psychiatric disorders were explicitly excluded, the ExAC study

had an increased incidence of autoimmune disorders, metabolic syndrome, Type II diabetes,

and cardiovascular disorders [112], and risk genes for these conditions would have biased

pLI scores that would be lower than expected for the general population . Given the many

limitations of the ExAC constraint metric, the list of constrained genes is incomplete and

imperfect, and should be treated as so. It is a rough but relatively effective tool in identifying

a set of genes that are likely to be haploinsufficient in the genome. The significant enrichment

of rare variants in constrained genes should be interpreted as simply an indication that there

exists a large number of genes that carry rare LoF variants that substantially increase risk

for psychiatric and neurodevelopmental disorders in the genome. Given this enrichment, the

next step is to identify these genes with a scale-up in sample size of whole-exome sequencing

studies.

5.2.4 Interpretation and generalisability of gene set results

A core set of biological processes had been implicated from gene set enrichment analyses

of rare risk variants, including histone methylation, neuronal signalling pathways, and

components of the post-synaptic density. However, these results come with limitations

and caveats, and must be interpreted in context. First, the gene sets described in public

databases originated from a variety of sources with varying methods of ascertainment. For

example, the Gene Ontology database curated information from over 100,000 peer-reviewed

papers that modelled biological function in a range of cell types, tissues, developmental

time-points, and model organisms. The biological assay, method of sample extraction, and

threshold for statistical significance likely varied between these studies. These sources

of variability influenced the list of genes assigned to a single biological process, which

then affects the interpretation of a gene set enrichment result. One example of this is the

definition of FMRP targets used in autism, schizophrenia, and intellectual disability studies

[103, 98, 105]. FMRP is a protein believed to be involved in synaptic plasticity through

translational regulation, inhibiting protein synthesis through binding to mRNA. Two studies

had identified the translational targets of FMRP in independent experiments [183, 184],

and surprisingly, there was little overlap between the two gene lists. Only one of the lists

from Darnell et al. showed a significant signal in schizophrenia and autism analyses, while

no signal was observed using the Ascano list [103, 98, 105]. The precise reason for the

discrepancy between the two studies remained unknown, but it was suspected the choice of
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cell type may be the source of the difference: the Darnell study looked for targets in mouse

brain tissue, while the Ascano study identified targets in a human embryonic kidney cell

line. However, this also meant that the enrichment of rare variants in FMRP targets from the

Darnell study could originate from an over-representation of brain genes. These issues make

it difficult for us to generalise the insights of gene set enrichment analyses to something

biologically relevant for schizophrenia.

Furthermore, I observed substantial overlap between the gene sets enriched for schizophre-

nia risk variants, which also make it difficult to draw specific insights from our burden results.

The 1,766 gene sets used in our analysis, and the 35 FDR < 5% gene sets were notably

enriched with constrained genes when compared to compared to a random sampling of

genes from the genome (Figure 5.2, 5.3). For example, 67% of the Darnell et al. FMRP
gene targets and 74% of the DDG2P developmental disorder genes were constrained. After

restricting our analyses to constrained genes, only developmental disorder and autism risk

genes remained significantly enriched for schizophrenia risk variants. I could not differentiate

if the other results were biologically significant, and not due to an statistical over-sampling of

constrained genes. Therefore, given the size of the tested gene sets and the substantial overlap

between them, it is difficult to draw conclusions about specific pathways and mechanisms

in the pathogenesis of schizophrenia. To gain meaningful insight into the neurobiology

of schizophrenia, we ought to move beyond gene set analyses and focus on identifying

individual genes such as SETD1A at genome-wide significance, and follow-up each one of

those genes to elucidate the mechanisms underlying schizophrenia pathogenesis.

5.3 Future directions

5.3.1 Whole-genome sequencing at the population scale

Recent studies have made significant progress in advancing our understanding of the genetics

of schizophrenia. These results come from independent studies investigating select aspects

of schizophrenia’s genetic architecture, with SNP genotyping identifying large numbers

of common variants, array-based CNVs implicating large effect CNVs, and whole-exome

sequencing demonstrating a burden of rare variants. Based on the results from the past

decade, the path forward for identifying risk alleles for schizophrenia is clear. Additional

samples will be genotyped using arrays in ever larger numbers, and imputation using the

Haplotype Reference Consortium panel will enable the identification of risk variants with

minor allele frequencies as low as 0.1% [197]. Already, the Psychiatric Genetics Consortium

has plans to massively scale up its GWAS efforts for a number of psychiatric disorders [198].
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Fig. 5.2 Distribution of overlap coefficients with the constrained gene set. The overlap

coefficients between each of the 1,766 discovery gene sets described in Chapter 4 and the

constrained gene set were calculated. Random gene sets were sampled from the genome

with the same size distribution as the discovery gene sets, and their overlap coefficients with

the constrained gene set were also computed. I plotted these values as a density plot. The

overlap coefficient is a similarity measure defined as
|X∩Y |

min(|X |,|Y |) , where X and Y are sets of

genes.
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Fig. 5.3 Heatmap of overlap coefficients calculated between FDR < 5% gene sets. The

overlap coefficients of gene sets enriched for rare coding variants conferring risk for

schizophrenia were computed, clustered, and displayed as a heatmap. The overlap co-

efficient is a similarity measure defined as
|X∩Y |

min(|X |,|Y |) , where X and Y are sets of genes. I also

provided the overlap coefficients between each gene set and the constrained gene set as a

rounded decimal in the Figure.
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Separately, to identify novel risk genes based on rare coding variants, tens of thousands

whole-exome sequences will be produced and analysed, leveraging both de novo mutations

from a trio design and inherited variants from a case-control design. A de novo approach for

gene discovery will be less helpful in discovering risk variants that can be inherited without

a substantial decrease in fitness. New methods will be needed to identify groups of risk

alleles that have moderate penetrance, and this may include leveraging genetic resources such

as the Exome Aggregation Consortium to exclude neutral variants using allele frequency

estimates from hundreds of thousands of exomes to increase power. Despite the clear overlap

between the variant types, there is little integration in current studies of common SNPs, and

rare CNVs, and SNVs for gene discovery. To produce a complete picture of the genetics

of schizophrenia, whole-genome sequencing is best positioned to study the interplay of

common and rare variants in the same individual. Whole-genome sequences from many

thousands of schizophrenia individuals will be integrated with whole-exome sequencing data

and array-based data to produce a complete picture of schizophrenia’s genetic architecture,

improve risk stratification, and refine clinical diagnoses.

5.3.2 Specificity of shared risk alleles for individual psychiatric disor-
ders

An overlapping set of genes appear to be disrupted by de novo mutations in autism, severe

developmental disorders, intellectual disability, and now schizophrenia. A number of these

shared risk genes have been identified, and all of them are depleted of protein-truncating

variants in the general population. A single-copy loss of these neurodevelopmental disorder

genes, including ARID1B, CHD8, and POGZ, increases risk for a range of syndromic features

in addition to cognitive impairment and autism [105, 118]. While cognitive impairment is

co-morbid with schizophrenia and autism to varying degrees, the relative risk of a disruptive

variant in these genes for each clinical diagnosis has not been robustly estimated, and it

remains unclear if these genes preferentially confer risk for a subset of neurodevelopmental

phenotypes. Determining the relative penetrance of these shared risk alleles is important

for refining clinical diagnoses and inferring meaningful and specific biology for individual

neurodevelopmental and psychiatric disorders. To model the relative risks of genes for

neurodevelopmental disorders, we will need to compare and contrast the tens of thousands of

whole-exomes generated by different consortia, including the Autism Sequencing Consor-

tium, the DDD study, and other schizophrenia sequencing efforts. Since these variants are

extremely rare in the population, very large data sets will be required to identify sufficient

numbers of carriers to make robust inferences on individual phenotypes. For instance, only 16
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SETD1A carriers were observed in over 30,000 exomes analysed in our study, and screening

tens of thousands of schizophrenia patients will be necessarily to accurately estimate its

penetrance for cognitive and neurodevelopmental outcomes [119]. However, comprehensive

and comparable clinical data across all these data sets, and not absolute sample size, will be

the limited factor for this type of analysis. Existing whole-exome sequencing data sets jointly

analysed a number of smaller, highly heterogeneous clinical cohorts with incomplete pheno-

typic data, which prevented a comprehensive analysis of co-morbid symptoms. Furthermore,

existing autism and intellectual disability studies have very specific ascertainment criteria,

with many focusing on simplex, sporadic cases that are generally more severe than other

individuals that may share diagnoses of autism and cognitive impairment, and this limits our

ability to generalise estimates of relative risk for the larger population of potential carriers.

Despite these challenges, elucidating the disease specificity of highly penetrant syndromic

variants remains an important task, as we ultimately want to characterise the phenotypic

spectrum of these genes for clinical diagnosis, genetic counselling, and the discovery of new

disease biology.

5.3.3 In vitro and in vivo modeling of risk genes for neurodevelopmen-
tal disorders

Because SETD1A is involved in chromatin modification and regulates the transcription of

a number of unknown genes, the precise biological consequences of haploinsufficiency

in this gene remain difficult to predict without well-designed functional assays. This is

reminiscent of the autism risk genes identified in trio studies, which are also involved in

global processes such as chromatin modification and global transcriptional regulation. One

example of such a gene is CHD8, an ATP-dependent chromatin remodeler that increases

risk for intellectual disability, autism, gastrointestinal abnormalities, and other syndromic

features [199]. A single-copy loss of CHD8 was predicted to dysregulate critical pathways

and networks of genes associated with neurodevelopment. Two functional studies used RNA-

seq and ChIP-seq to identify binding sites for CHD8 and the downstream genes it directly

and indirectly regulates [178, 187]. Genes downregulated by CHD8 implicated pathways

involved in synapse formation, neuron differentiation, and axon guidance. Furthermore,

CHD8-bound and CHD8-downregulated genes were strongly enriched for autism risk genes.

An in vivo zebrafish model of CHD8 recapitulated physical features present in human

carriers, including macrocephaly and impairment of gastrointestinal motility [199]. Similarly,

mice with a single copy loss of SHANK3, another high-penetrant autism gene, exhibited

repetitive grooming habits, deficits in social interaction, and defects in striatal synapses [200].
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Therefore, functional studies will prove to be an invaluable tool in elucidating the mechanism

by which these genes increase risk for neurodevelopmental disorders.

Here, I briefly discuss functional experiments designed to elucidate the biological pro-

cesses disrupted by a single copy of SETD1A. A comprehensive discussion of the technical

details of these experiments are beyond the scope of this Thesis, and admittedly, there

are many caveats and limitations when modelling disease in model organisms and cellular

systems. I would also like to emphasise that the experiments described in this Section will

be performed in collaboration with research groups who have expertise in addressing the

many technical challenges in play. First, as a proof-of-concept study, we have developed

a mouse model of SETD1A in which the entirety of exon-2 is deleted to recapitulate the

heterozygous loss-of-function genotype observed in human carriers. We plan on conducting

three categories of experiments to understand the precise function of this genes. First, we will

deeply phenotype the SETD1A-heterozygous mouse to understand differences in behaviour

and deficits in the cognitive dimension. Abnormal behaviour in schizophrenia is highly

complex and heterogeneous, and include symptoms in the positive, negative, and cognitive

dimensions. A number of assays have been developed to determine the severity of each

cluster of symptoms [201]; however, other than the 22q11.2 deletion mouse model, no valid

genetic model for schizophrenia exists [202, 203]. We will compare and contrast observations

of the SETD1A mice with existing mouse models of schizophrenia to determine if there

is a consistent pattern of behavioural abnormalities that emerge. Second, schizophrenia is

associated with a number of morphological differences in the human brain. Using histology

and MRI, we hope to pinpoint neuroanatomical abnormalities to specific regions in order

to determine differences in brain development that arise from SETD1A haploinsufficiency.

Neuroanatomical abnormalities in mice can serve as a good first step to narrow down relevant

cell types and tissues for in vitro experiments in human cells. Finally, we will extract brain

tissue and leverage RNA-seq and ChIP-seq to identify SETD1A-bound regions and SETD1A-

targeted genes. H3-K4 methyltransferases like SETD1A open previously closed chromatin

and are responsible for transcriptional activation across the genome. SETD1A haploinsuffi-

ciency likely results in differential methylation and consequently differential transcription at

specific regions across the genome. This dysregulation of downstream genes might be linked

to the disease phenotype. We will additionally profile the transcriptomic and epigenetics

dynamics in different parts of the brain (e.g. hippocampus or the prefrontal cortex) to identify

tissue-specific consequences. Using these data, we hope to find biological processes and

co-expression networks that may be relevant to schizophrenia or neurodevelopment.

We have also engineered two LoF variants in SETD1A into human induced pluripotent

stem cell (iPSC) lines. We will use a combination of RNA-seq and ChIP-seq to characterize
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transcriptomic and epigenetic changes in neuronal progenitors. This analysis will provide a

complementary set of differentially methylated regions and differentially expressed genes,

and results from the mouse model and the iPSC line will be compared and contrasted. We will

test these gene sets for enrichment in common schizophrenia risk loci, intellectual disability

and autism risk genes. In summary, in vitro and in vivo models of highly penetrant rare

variants have proven useful in studying genes for neurodevelopmental disorders, and will

likely be applied to many more risk genes in the future to advance our understanding of the

disease mechanisms underlying autism, intellectual disability, and schizophrenia.

5.4 Concluding remarks

It is truly an exciting time for the field of psychiatric genetics. The past two decades have

seen the identification of the first robust genetic risk factors, the validation of the polygenic

model, the demonstration of genetic sharing between neurodevelopmental and psychiatric

disorders, and increasing support for a number of hypotheses on disease mechanism. The

path forward to uncovering the varied and complex genetic contributions is clearer than ever.

In time, whole-genome sequencing will discover an ever-increasing number of common

and rare genetic risk factors and provide a complete picture of the genetic architecture of

psychiatric disorders. This comprehensive map of genetic risk factors will serve as the

foundation of functional studies that seek to elucidate the mechanisms underlying disease

pathogenesis, and reveal valid and meaningful therapeutic targets that may lead to more

effective treatments. Furthermore, robust genetic markers will improve clinical practice

by increasing diagnostic accuracy and informing more useful diagnostic categories and

dimensions for these heterogeneous conditions. These advances, along with societal efforts

to provide increased support and reduce social stigma, will hopefully improve the quality of

lives of the many people profoundly affected by mental illness.
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