
Chapter 2

Tissue adaptation of T-regulatory cells

Non-lymphoid tissues (NLTs) harbour a pool of adaptive immune cells with largely
unexplored phenotype and development. We used single-cell RNA-seq to characterise
35000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon,
their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified
Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation
pseudotime ordering and gene kinetics were consistent in recruitment to skin and
colon, yet the initial NLT-priming in LNs and the final stages of NLT functional
adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated
using an in vivo melanoma-induction model, validating key regulators and receptors.
Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-
mammalian conserved tissue signatures. In summary, we describe the relationship
between Treg cell heterogeneity and recruitment to NLTs through the combined use
of computational prediction and in vivo validation.

This chapter has been published in Immunity as Single-cell transcriptomics of
regulatory T cells reveals trajectories of tissue adaptation (Miragaia et al., 2019), with
the exception of Section 2.2.6 and parts of Sections 2.3 and 2.4. The Methods section
in this chapter only includes the computational steps. The remaining experimental
methods, as well as the supplementary figures, can be found in Appendix A.

Additional contributions: experiments in this chapter were performed by Ri-
cardo J Miragaia. The study was designed by Ricardo J Miragaia, Sarah A Teichmann,
Agnieszka Chomka, Fiona Powrie, and myself. Ricardo J Miragaia is a leading
co-author of the manuscript. Full acknowledgements can be found in Appendix A.
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2.1 Introduction

T-regulatory (Treg) cells are a specialised CD4+ T cell subset which control immune
responses and play a central role in homeostasis (Izcue et al., 2009; Sakaguchi, 2004).
Recent studies have described unique tissue-specific adaptations of non-lymphoid
tissue (NLTs) Treg cells distinct from their lymphoid tissue (LT) counterparts. This
includes acquisition of an effector phenotype with expression of transcripts encoding
effector molecules (Ctla4, Gzmb, Klrg1), chemokines and their receptors (Ccr4), and
immunosuppressive cytokines (Il10) (Bollrath and Powrie, 2013; Panduro et al.,
2016), in addition to tissue-specific signature genes associated with their role in
each environment (Liston and Gray, 2014). Nonetheless, their full transcriptional
phenotype and its reflection on NLT population heterogeneity is yet to be uncovered.

Trafficking of T cells to NLTs occurs in steady-state conditions and develop-
ment (Kimpton et al., 1995; Thome et al., 2015) as well as in response to harmless
stimuli at barrier surfaces such as commensal bacteria and dietary antigens (Ivanov
et al., 2008). Treg cell migration requires tissue-specific cues involving integrins,
chemokine and other G-protein coupled receptors (Cepek et al., 1994; Chow et al.,
2015; Kim et al., 2013).

To provide a deeper insight into Treg cell populations in NLTs, we analysed
single-cell RNA-seq (scRNA-seq) data of Treg cells from mouse colon and skin, and
compared them to LT populations. We identified various transcriptionally distinct
clusters of Treg cells in LTs and NLTs, namely a subpopulation in the LTs which showed
heavy priming to the NLT environment. Pseudotime ordering of these subpopulations
further revealed the transcriptomic adaptations occurring in Treg cells during their
transition from the lymph node to barrier tissues. Our results show that these steady-
state adaptations share a core signature between bLN-to-skin and mLN-to-colon
trajectories, indicative of a general NLT residency programme in barrier tissues.
These findings were recapitulated during de novo Treg cell recruitment to melanoma
in a murine model system. Lastly, we examined the evolutionarily conservation of
NLT Treg cells’ identity between mouse and human.



2.2 Results 23

2.2 Results

2.2.1 Treg and Tmem cell identity in NLTs is driven by a common

expression module

We performed scRNA-seq on isolated CD4+Foxp3+ (Treg) and CD4+Foxp3-CD44high
memory (Tmem) T cells (Figure A.1A) from two barrier NLT sites - the colonic lamina
propria (hereinafter referred to as colon) and the skin - their lymphoid counterparts
in the draining mesenteric and brachial lymph nodes (mLN and bLN), and the spleen
from a Foxp3-GFP mouse reporter line (Bettelli et al., 2006) (Figure 2.1A). We will
refer to Treg and Tmem cells together as CD4+ T cells. For each sorted population,
single-cells were captured using the droplet-based microfluidic system Chromium
(10x Genomics), hereinafter referred to as 10x. We obtained 30396 good quality
cells (see Methods, Figure A.1C, Table A.5). Using the same gating strategy, two
Smart-seq2 (Picelli et al., 2014) plate-based datasets were produced independently.
These confirmed findings drawn from the 10x, and complemented them with higher
gene coverage and full T cell receptor (TCR) sequences.

A tSNE projection (Figure 2.1B) after filtering (Figure A.1B) showed a division
between LT and NLT, with cells from LTs divided into two clusters, according to
cell-type. NLT cells formed one single skin cluster and two clusters separating Treg
and Tmem cells from colon (Figure 2.1B). We defined gene expression signatures
for Treg and Tmem cells in peripheral tissues by examining differentially expressed
(DE) genes between all NLT and LT cells and, in parallel, between Treg and Tmem
cells (Figure 2.1C). NLT T cell populations are characterised by the expression of
several elements of the TNFRSF-NF-κB pathway, including transducers (Traf1, Traf4,
Traf2b), effectors (Nfkb1, Nfkb2, Rel, Rela, Relb) and inhibitors (Nfkbib, Nfkbid,
Nfkbie). In Tmem cells, these were accompanied by cytokines (Tnfsf8, Tnfsf11) and
various pathway inhibitors, such as Tnfaip8. In contrast, NLT Treg cells expressed
TNF receptors (Tnfrsf4, Tnfrsf9, Tnfrsf18) and transducers (Pim1), underscoring the
importance of signalling via the TNFRSF-NF-κB axis in controlling Treg cells in the
peripheral tissues. Several chemokine receptors appeared DE across tissues and
cell types. Ccr4, Ccr8 and Cxcr4 were upregulated in both colon and skin T cells,
while Ccr1 and Ccr5 were specific to colon and Ccr6 to skin. Cxcr6 was more highly
expressed in NLT Tmem cells. We also detected other genes involved in NLT identity
(Crem, Rgs2, Il1r2, Icos, Hif1a, Kdm6b, Gata3), including some specific to Tmem
(Vps37b, Id2, Ramp3, Tnfsf8) and Treg cells (Il10, Gzmb, Ctla4, Cd83, Socs2).
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Fig. 2.1: Steady-state scRNA-seq datasets of CD4+ T cells from LT and NLT
(A) Experimental design for scRNA-seq data collection. (B) t-SNE representing all
Treg and Tmem cells that passed quality control. (C) Genes defining the identity of
Treg and Tmem cells in lymphoid and non-lymphoid tissues. Colon and skin were
individually compared with their corresponding draining lymph node and spleen
cells. See also Figure A.1.

Together, the scRNA-seq datasets collected provide a comprehensive overview of
Treg and Tmem cells in multiple lymphoid and non-lymphoid tissues, and identify
the TNFRSF-NF-κB pathway as key to their barrier tissue identity.

2.2.2 Heterogeneity within LT and NLT Treg cell populations

Treg cell phenotypical and functional heterogeneity has been extensively discussed in
recent years (Campbell and Koch, 2011; Josefowicz et al., 2012). Clustering our data
within each tissue grouped Treg cells into distinct subpopulations (Figure 2.2A) with
clearly defined marker genes (Figure 2.2B). Across lymphoid organs, we identified
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central and effector Treg (cTreg and eTreg) cell subsets (Cretney et al., 2011; Vasan-
thakumar et al., 2015). cTreg cells express typical LT-associated markers, such as Tcf7,
Bcl2, Sell, S1pr1, while eTreg cells expressed a subset of NLT-associated genes, like
Tnfrsf9, Relb, Ikzf2 and Pdcd1. We also detected a subpopulation of Treg cells with
high expression of Stat1 and interferon stimulated genes exclusively in the bLN. A
fourth, less frequent population in lymphoid tissues ( 5-10%; Figure 2.2C), which we
named Treg NLT-like cells, expresses eTreg cell markers as well as genes characteristic
of NLT T cells, such as Itgae, Rora, Fgl2, Klrg1 (Figure 2.2B). We hypothesize that
this population is primed to migrate and adapt to NLTs. Indeed, DE genes between
NLT-like Treg cells from mLN and bLN revealed that the colon-homing molecules Ccr9
and Itga4, as well as their regulator Batf were upregulated specifically in the mLN,
while Cxcr3 and Itgb1 were present in the bLN (Figure 2.2E). These differences were
not observed between other LN subpopulations (data not shown).

To quantify the bias towards LT or NLT phenotypes, we calculated an NLT-LT
marker gene signature for each cluster (Figure 2.2D; see Methods). Consistently
across all LTs, cTreg cells exhibited a clear LT signature, while eTregs and NLT-like
Tregs leaned towards an NLT profile, which was more pronounced in the latter.

In the colon, we found three subpopulations of Treg cells that we labeled as
NLT, suppressive and LT-like. Treg NLT and suppressive cells were present in equal
proportions, both exhibiting NLT traits (Figure 2.2C,D). Treg NLT cells in colon express
higher amounts of Gata3, Nrp1, Areg, Il1rl1, Ikzf2, matching the known thymic-
derived GATA3+-subpopulation (Hu and Zhao, 2015; Schiering et al., 2014), while
suppressive colonic Treg cells expressed more Il10, Gzmb, Lag3, Cxcr3, resembling
the peripherally-derived RORγt+-subpopulation (Ohnmacht et al., 2015; Schiering
et al., 2014; Sefik et al., 2015). Rorc itself, while not present as a marker, appears in
a higher percentage of Treg suppressive cells (6.16% vs 2.85% in colonic Treg NLT
cells). Technical limitations for detection of lowly expressed genes by scRNA-seq
might account for the difficulty in capturing Rorc transcripts. Lastly, LT-like Treg cells
differed from other colonic populations by expressing LT-associated genes including
Sell, Ccr7, Tcf7, Bcl2, and lower amounts of NLT-associated genes such as Klrg1, Cd44,
Icos, Rora, Tnfrsf9, Itgae (Figure 2.2B).

In contrast to the colon, and likely as a consequence of fewer cells captured,
skin Treg cells did not show evident heterogeneity (Figure 2.2A). They expressed
an unequivocal NLT signature (Figure 2.2D), but it was not clear to which colonic
Treg cell populations they were most similar (Figure 2.2B). We addressed this by
using a logistic regression model to calculate the probability of each skin Treg cell
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Fig. 2.2: Heterogeneity within LT and NLT Treg populations
(A) t-SNE projections of Treg cells per tissue, coloured by subpopulation. cTreg:
central Treg, eTreg: effector Treg. (B) Subpopulation marker gene mean expression
(z-score). Values greater than 2.5 or lower than -1.5 are coloured equally. (C) Relative
proportions of Treg cell subpopulations within each tissue that revealed heterogeneity.
(D) NLT/LT signature score in each Treg cell subpopulation, measured as the ratio
between the number of NLT and LT genes that have been identified as significantly
upregulated in each cluster. (Continued on the following page.)



2.2 Results 27

Fig. 2.2: (continued) (E) Percentage of cells expressing each gene in Treg NLT-like
cells from mLN and bLN. Genes that are upregulated in the bLN subpopulation are
represented by an open circle, and genes upregulated in mLN are represented by a
filled circle. (F) Percentage of cells expressing each gene in colon Treg suppressive and
Treg NLT subpopulations. (G) Matching of non-colonic Treg cells to colonic Treg cell
subpopulations using a logistic regression model (90% accuracy, see Methods). Table
shows the percentage of each identified subpopulation (y-axis) that were labelled by
the model as each Treg cell cluster (x-axis). (H) Percentage of cells expressing each
gene in skin Treg NLT and colon Treg NLT cell subpopulations. See also Figure A.2.

identifying as one of the colonic subpopulations (Figure 2.2G, see Methods). This
revealed that most skin Treg cells were more similar to colonic Treg NLT than to
Treg suppressive cells. Accordingly, colon Treg NLT cell marker genes Gata3, Il1rl1,
Tnfrsf4, Rora were not differentially expressed between skin and colon Treg NLT cells
(Figure 2.2H, Figure A.2A). Despite their resemblance, differences in function and/or
state between skin and colon Treg NLT might reside in a few genes. Among these
are Dgat2, an enzyme involved in lipid synthesis in skin (Fagerberg et al., 2014), and
Ikzf4, a transcription factor relevant for Treg stability (Sharma et al., 2013).

The same approach applied to Treg cells from the spleen, mLN and bLN (Fig-
ure 2.2G) classified most central and effector Treg cells as Treg LT-like cells. Treg
NLT-like cells, on the other hand, were more similar to Treg NLT and Treg suppressive
cells. Both the mLN and the bLN had a higher proportion of Treg cells assigned as
suppressive than spleen, which contained the highest fraction of Treg NLT cells. We
confirmed the presence and proportions of Treg cell subpopulations in the Smart-seq2
datasets by matching these cells to the subpopulations found across LTs and NLTs in
the 10x dataset (Figure A.2B).

Clustering of Tmem cells revealed multiple subpopulations (T helper-1 (Th1 cell),
Th2 cells, Th17 cells, T follicular helper (Tfh) cells, lymphoid) (Figure A.2C and D)
distributed differently across the tissues analysed (Figure A.2D). Th1, Th2 and Th17
cells in lymphoid tissues exhibited a stronger NLT phenotype than Tmem lymphoid
cells and Tfh cells (Figure A.2E), which is likely an indication of their ability to adapt
to and function in the NLTs.

In summary, scRNA-seq allowed us to dissect the heterogeneity of Treg cells
from LTs and NLTs. We identified NLT- and LT-like Treg cell subpopulations that
suggest progressive cross-tissue adaptation to the NLT environment. We found a close
correspondence between skin and colonic Treg NLT cells, whilst revealing differences
in gene expression that might explain their adaptation to the two environments.
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2.2.3 Treg cells adapting to skin and colon share a transcrip-

tional trajectory

The mechanisms underlying Treg cell recruitment and adaptation from LT to NLT
are far from understood. Having identified multiple subpopulations at different
stages of NLT adaptation (Figure 2.2D), we further dissected the dynamics of this
transition. We obtained evidence of CD4+ T cell recruitment from LT to NLT by
reconstructing TCR clonotypes using TraCeR (Stubbington et al., 2016) from the
Smart-seq2 datasets. This showed Tmem and Treg cell clones present in LNs and
respective NLTs (Figure A.4A and A.4B), suggesting cell migration between them.

To identify Treg cell LN-to-NLT adaptation trends in the data, we reconstructed
a pseudospace relationship between cells by obtaining latent variables (LV) from
Bayesian Gaussian Process Latent Variable Modelling (BGPLVM, see Methods) (Titsias
and Lawrence, 2010). Along the mLN to colon trajectory laid out by LV0, Treg cells
are ordered from cTreg to eTreg cells, followed by NLT-like and LT-like Treg cells,
and ending with the overlapping Treg suppressive and Treg NLT cell subpopulations
(Figure 2.3A, “Colon” density plot, Figure A.3A). This order matches the increasing
expression of NLT marker genes and decrease of LT ones across mLN subpopulations
(Figure 2.2B and D). Importantly, Treg NLT-like cells from the mLN partially mixed
with Treg LT-like cells from the colon, supporting the notion that NLT adaptation is
a continuous process spanning LT and NLT. Overall, LV0 accurately represented the
progressive migration and adaptation of Treg cells to the NLT environment, providing
a reference to study the gene expression dynamics along this process. Skin and
bLN Treg cells were projected onto the latent space defined for colon and mLN,
resulting in a similar subpopulation distribution (Figure 2.3A, “Skin” density plot;
see Methods). Nevertheless, a similar projection was observed when using just those
cells (Figure A.3A and B). Applying the same approach to the Smart-seq2 datasets
yielded similar distributions of the inferred cell subpopulations (Figure A.2B) along
the LT-to-NLT adaptation trajectory, as well as considerable overlaps between LV
correlated genes (Figure A.3C-E). The use of velocyto (Manno et al., 2018) to infer
the directionality of adaptation suggests that most Treg cells found in the NLTs, as
well as some of the NLT-like Treg and eTreg cells, are adapting towards a more
pronounced NLT phenotype (Figure A.3C).

We then used the inferred LN-NLT trajectory to identify the cascade of transcrip-
tional changes driving adaptation to NLTs by modelling genes with a sigmoid curve
and find their activation or deactivation “times” (Figure 2.3B; see Methods). We
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Fig. 2.3: Reconstruction of Treg cell recruitment from lymphoid to non-
lymphoid tissues in steady-state
(A) Top two latent variables (LV) found with BGPLVM for mLN and colonic Treg cells,
with bLN and skin Treg cells mapped over the same coordinates. (B) Gene expression
in mLN and colon (top) or bLN and skin (bottom) over LV0 modelled as a sigmoidal
curve. Dashed vertical line marks the activation point of each gene. (C) Sequence
of activation of GO biological processes across the transition to colon (top) or skin
(bottom), evidencing a conservation between both trajectories (Spearman’s rho -
0.61). See also Figures A.3 and A.4.
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found 812 and 1209 genes with a switch in expression (either up or down) along
the bLN-to-skin and mLN-to-colon trajectories, respectively, with 511 of those being
shared. LT-related genes (Lef1, Tcf7, Sell) were downregulated, while NLT associated
genes like Nfil3, Ccr8, Cxcr6, Gzmb were upregulated. TNFRSF-NF-κB-related genes
(Tnfrsf1b, Tnfrsf4, Tnfrsf18) and the Batf transcription factor were upregulated still
in the LN, reflecting the relevance of this pathway for eTreg cell development and
the NLT phenotype (Vasanthakumar et al., 2017, 2015). Towards the NLT side of the
trajectory there is evidence of further Treg cell differentiation, with upregulation of
additional genes involved in this pathway (Nfkb2, Tnfrsf9), as well as other effector
molecules (Il10, Cd44). Important regulators for the final tissue adaptation include
Rora, recently described in skin Treg cells (Malhotra et al., 2018). We searched for
enriched Biological Processes GO Terms, and calculated the mean time of activation
or deactivation (t0) of the genes within each term. We found the gene expression
kinetics along the adaptation trajectories to skin and to colon to be consistent (Spear-
man’s rho=0.61, Figure 2.3C): T cell migration and glycolytic process are among
the earlier events in both colon and skin, followed by cell proliferation; cytokine
production and fatty acid homeostasis emerge towards the end of the adaptation
trajectory.

In summary, we determined a continuous trajectory aligning Treg cell subpop-
ulations from bLN, mLN, skin and colon according to the stage of recruitment and
adaptation to the NLT environments. Furthermore, the consistent ordering of gene
expression programmes shows that gene kinetics leading to NLT adaptation follows a
similar regulatory sequence in both bLN-to-skin and mLN-to-colon trajectories.

2.2.4 Treg cell recruitment into skin and melanoma relies on

common mechanisms

To validate our findings in steady-state cells, we used a mouse melanoma model
to investigate if Treg cell migration and adaptation trajectory to peripheral tissues
could be recapitulated. Previous studies analysing human TCR repertoires (Plitas
et al., 2016; Sherwood et al., 2013) have shown that tumour-Treg cells are likely
to be recruited de novo from LTs and not from the adjacent NLT, despite exhibiting
a phenotype similar to that of NLT Treg cells (De Simone et al., 2016; Plitas et al.,
2016). We therefore purified Treg and Tmem cells from B16.F10 melanomas or PBS
controls 11 days after subcutaneous implantation into Foxp3-IRES-eGFP reporter
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mice (Haribhai et al., 2007) to produce a plate-based scRNA-seq dataset (Figure 2.4A;
see Methods).

Skin and tumour Treg cells clustered separately (Figure 2.4B). As with steady-
state skin, we observed shared clonotypes between tumour and bLN Treg cells
(Figure A.5B). In the tumour-bearing mice, we detected an additional cluster of
cycling cells in both the LN and tumour (Figure A.5A). These observations suggest de
novo recruitment from LN and simultaneous expansion in both tumour and draining-
LN. DE between non-cycling tumour Treg and control skin Treg cells revealed a
relatively small number of genes significantly different between the two Treg cell
populations (28 upregulated in tumour and 10 in steady-state skin (Figure 2.4C)),
in line with recently published human data (Plitas et al., 2016). Tumour Treg cells
upregulate the exhaustion marker Lag3 (Malik et al., 2017), as well as Cxcr3 and
Ccl5, while control skin Treg cells upregulate skin Treg cell markers such as Il1rl1,
Pim1, Sdc4, Kdm6b and Erdr1. However, skin Treg cell signature genes such as Batf,
Tnfrsf4, Tnfrsf9, Samsn1, Tigit, Tchp, Ccr8, Ccr2 and Itgav are similarly expressed in
both populations.

Next, we sought to obtain a shared migration trajectory of steady-state versus
perturbed system (tumour model) Treg NLT cells recruitment. To this end, we used
the MRD-BGPLVM algorithm (Damianou et al., 2012) (see Methods) to explore gene
expression trends across Treg cells from the control skin, tumour and respective
draining-LNs together. Two main latent variables were identified, one explained
almost entirely by cell-cycle-associated variability (LV5), and one mainly associated
with the LT-NLT signature (LV9) (Figure 2.4D, Figure A.5C). Notably, NLT adapta-
tion trajectory (LV9) was strongly related to the trajectories found in control and
melanoma conditions when MRD-BGPLVM is applied to each one individually (re-
spectively, 86% and 61% of genes correlated with LV9 are also correlated with control
LV1 and tumour LV1; Figure A.5E-H, see Methods).

Gene kinetics along NLT adaptation (LV9) for each condition show 158 shared
genes, with 71% of which also present in the steady-state skin trajectory determined
previously. Values of t0 remain largely unchanged between control and melanoma
(Figure 2.4E), suggesting that NLT recruitment and adaptation follow the same
program in homeostatic and perturbed conditions. The tissue adaptation genes
shared between control and melanoma include many of the players in the TNFRSF-
NF-κB pathway we previously described in the steady-state (Tnfrsf9, Tnfrsf18). These
were accompanied by genes associated with cell migration and adhesion (Ccr2, Gpr55,
Plxna2), transcription factors (Rora, Ikzf3, Id2, Batf, Hif1a, Prdm1), secreted factors
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Fig. 2.4: Recruitment and adaptation of Treg cells to the tumour environment
recapitulates steady-state migration
(A) Melanoma induction strategy and sampled tissues. (B) t-SNE depicting Treg and
Tmem cells from tumour and steady-state skin, draining brachial lymph nodes and
spleen. (C) Differential expression between skin and tumour Treg cells. Treg cells clas-
sified as cycling were excluded. (D) (top) Latent variables found with MRD-BGPLVM
representing cell cycle (LV5) and non-lymphoid tissue recruitment/adaptation of Treg
cells (LV9). (bottom) Distribution of cells based on Tissue and Condition and Cell
Cycle phase along the recruitment trajectory. (Continued on the following page.)
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Fig. 2.4: (continued) (E) Difference in activation time (t0) of genes in control and
tumour. Genes are classified as being markers of skin, lymph node, cell cycle or
other. Coloured points show mean +/- mean standard error for each group. Vertical
dashed lines represent the mean +/- standard error for all t0 values. T-test between
control and melanoma t0 indicates no change (p-value = 0.2631), with t0 values
having a Spearman correlation coefficient of 0.65 between both conditions. See also
Figure A.5.

(Lgasl1), and others related to immune activation and effector states (Klrg1, Icos,
Tigit, Gzmb).

Despite the similarities between melanoma and control trajectories, cells from
both conditions do not completely overlap, and Treg cells could be ordered by
NLT adaptation between populations (from least to most adapted cells: control LN,
melanoma LN, tumour, and control skin) (Figure 2.4D). This implies that in response
to an immune challenge in a barrier tissue, a higher fraction of Treg cells in the LNs
acquires NLT adaptations. In fact, for several NLT markers we observed more cells
expressing them in the tumour-draining LN compared to the control, e.g. Id2 (59% vs
26%), Batf (57% vs 26%), Lgals1 (89% vs 67%), further supporting our hypothesis
that there is priming of Treg cells to NLTs while still in the LN. Overall, Treg cells
from challenged mice recapitulate the steady-state NLT adaptation.

2.2.5 Conserved NLT identity in mouse and human

We complemented our characterisation of murine NLT Treg and Tmem cells by
collecting human Treg cells, as well as Tmem (sorted into central and effector
memory) cells from blood and skin, and from tumour-adjacent colon sections from
patients undergoing colonic resection (Figure 2.5A, Figure A.6). Similar to the
mouse analysis, we identified gene markers for human CD4+ T cell populations (see
Methods).

Focusing on one-to-one orthologs, we found that 24 out of 144 human skin Treg
cell markers and 17 out of 74 human colon Treg cell markers overlapped with the
respective mouse signature. In colon, we observe the conservation of Tnfrsf4, Lgals1,
Srgn, Cxcr6, Maf, or Ikzf3 (Figure 2.5B), genes that we had previously identified as
important in defining tissue identity and Treg cell subpopulations. The same applied
to skin Treg cells, where we saw expression of Batf, Rora, Rel, Srgn, Tnfrsf18, and
Tigit across species (Figure 2.5C). Overall, this indicates a conserved role of the core
NLT signature, namely the TNFRSF-NF-κB-pathway.
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Fig. 2.5: Human-mouse comparison of NLT Treg cell marker genes.
(A) Tissues and cell types sampled from human. (B and C) Top: Overlap between
NLT Treg cell markers detected in human and mouse, in either (B) colon or (C)
skin datasets. Bottom: Fold-change between gene expression in non-lymphoid and
lymphoid tissues in mouse and human. Blood and spleen were used as lymphoid
tissues in human and mouse respectively. (D) NLT paralogs exhibiting opposing
expression patterns between human and mouse. See also Figure A.6.
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In several instances we observed the expression pattern of one gene being substi-
tuted by a paralog in the other organism (Figure 2.5D). For example, while the kinase
Pim1 is a marker of mouse NLT Treg cells, and was not expressed in human, the
inverse was true of Pim2. A similar situation was observed for Rgs1-Rgs2, Hif1a-Hif3a
and others. This suggests that some paralogous proteins have evolved to substitute
each other during evolution of NLT Treg cells in mammals. The fact that several of the
identified cases are receptors related to signal transduction leads us to believe that
evolution of cell-cell communication pathways owes some plasticity to differential
paralog usage.

Our cross-species comparison suggests that despite cross-species differences, the
NLT Treg cell adaptation program defined in mouse is generally conserved in human.

2.2.6 Classfication of Treg cell populations across species

The increase in the number of datasets from a variety of species enables the compari-
son of cell types between them. In the previous section, it was explained how the
core NLT Treg cell programmes were conserved between mouse and human, based
on one-to-one orthologs. This type of orthologs make up the majority of conserved
genes between these species, but one-to-many and many-to-many orthologs can also
have important roles in cell identity and function.

Two logistic regression models were trained to detect mouse Treg cell subpop-
ulations in human cells (see Methods). The first model was trained solely using
one-to-one orthologs expressed in both datasets. The second model included all
genes with any sort of orthology by adding the counts of related genes. Within
each tissue, predicted subpopulations appeared as expected, with blood containing
more cTreg and eTreg cells than NLTs, which in their turn had more Treg NLT and
suppressive cells (Figure 2.6A). Transition populations (Treg LT-like and NLT-like)
appeared more represented in general, as well as present in both lymphoid and
non-lymphoid tissues. This is an effect comparable to that observed in Figure 2.2G,
where Treg NLT-like cells are shown to match Treg NLT or Treg LT-like cells from
colon, likely because of the intermediate phenotype of the cells.

When comparing the models per tissue (Figure 2.6A, top vs bottom row), simi-
lar subpopulation proportions are predicted per human tissue, indicating reduced
differences between methods. However, we observe that the "one-to-one orthologs"
model is the only that unexpectedly predicts the presence of Treg NLT in blood, and
predicts in general a higher number of the rare, bLN-restricted Treg Stat1 subpop-
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Fig. 2.6: Training models for cross-species Treg classification.
(A) Treg cells of each human tissue classified as each subpopulation detected in
mouse using a logistic regression model trained with one-to-one orthologs (top)
or all orthologs (bottom). (B) Row-normalised confusion matrices for each tissue,
comparing the classifications using the one-to-one ortholog model (y-axis) against
the all orthologs model (x-axis). (Continued on the following page.)
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Fig. 2.6: (continued) (C) Distribution of the absolute value of coefficients for the top
300 genes learned for each population, in a model using all expressed mouse genes.
(D) Precision-recall curves for models trained using all mouse genes, all orthologs or
just one-to-one mouse-human orthologs. Precision and recall were calculated on a
balanced test set composed of 10% of mouse Treg cells.

ulation (Figure 2.6B). In the "all orthologs" model, cells that would be assigned to
this subpopulation are instead distributed between Treg NLT-like or LT-like, which are
more evidently present in the same tissues in mouse.

To examine the contribution of different types of genes for cell identity prediction,
we used a model trained on all mouse genes, and plotted the genes with the top
300 coefficients in absolute value by subpopulation and orthology type (Figure 2.6C.
This shows that, while different subpopulations have similar distributions of absolute
coefficients for one-to-one ortholog genes, distributions for one-to-many orthologs
(and genes with no listed ortholog) are more dissimilar. In particular, Treg Stat1
cells have a larger number of one-to-many ortholog genes with a higher coefficient
than the remaining populations, underscoring the importance of this type of genes
in defining this subset. Concomitantly, precision-recall curves calculated for a test
set comprised of 10% of mouse Treg shows that, while most subpopulations are
equally well classified by both ortholog-based models, for Treg Stat1 cells only the "all
orthologs" model performs as well as the "all genes" full model. These observations
provide evidence that, while most cell states can be distinguished from one-to-one
orthologs alone, this may not always be the case.

2.3 Discussion

Our work sheds light on the phenotype of skin and colon Treg cells. We profiled
NLT Treg and Tmem cells to identify global relationships between cell populations,
discriminating general CD4+ and specific Treg cell markers in NLT. We found that
these Treg populations conserve fundamental traits shared across the skin and colon
compartments, namely a substantial prevalence of genes part of the TNFRSF-NF-
κB axis. We leveraged the single-cell resolution of our data to explain Treg cell
heterogeneity in the context of LT-to-NLT transition. Besides the eTreg cell state
previously described in lymphoid organs (Cretney et al., 2011), we found two
transitional subpopulations, Treg NLT-like cells in the lymphoid tissues and Treg LT-
like cell in the non-lymphoid ones, which together explain the cross-tissue transition
from central Treg to Treg NLT cell populations. NLT-like Treg cells in the mLN and bLN
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showed extensive NLT-priming, including the upregulation of tissue-specific homing-
molecules to the drained NLT. Others have demonstrated that a subpopulation of
spleen Treg cells can express a partial visceral adipose tissue (VAT) signature and later
give rise to fully-mature VAT-Treg cells upon migration (Li et al., 2018a), implying
that this is valid for various tissues and should be considered in the design of future
precision medicine strategies involving targeting of Treg cells to NLTs.

Comparative analysis of Treg cell phenotypes revealed genes associated with the
TNFRSF-NF-κB axis to be highly upregulated in NLT (Figure 2.1C). Further enrichment
analysis (Figure 2.7) confirms that this pathway is significantly associated with an
NLT phenotype, despite the incomplete nature of the pathway’s annotation. Genes
such as Tnfrsf4 and Tnfrsf9, which encode for receptors that play a role in inhibiting
Treg cell function (Nagar et al., 2010), were identified here as distinctively associated
with NLT Treg cells, yet are absent from the currently available pathway annotation.
Mining of the dataset presented here can shed light on tissue-specific Treg cell biology,
and reveal additional targets for Treg cell modulation.

Fig. 2.7: Enrichment of genes from the TNF pathway in NLT T cells.
Barplot shows -log10(p-value) from Fisher’s Exact Test, testing the overrepresentation
of genes from the TNF signaling pathway, taken from the KEGG Database. Treg cell
gene sets correspond to the intersection of genes upregulated in Treg cells intersected
with those upregulated in the specific tissue (coloured dots in Figure 1.1C).
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Our pseudotime results support migration and adaptation relationships between
subpopulations, and allowed us to explore the basic mechanisms for the establishment
of peripheral Treg cell phenotypes. In this transition, metabolic and proliferation
changes in Treg cells happen concurrently with priming for migration, followed
by changes in cytokine production machinery upon establishment in the periphery.
Despite the overall similarity of recruitment and adaptation to NLTs, and although all
three subpopulations (skin NLT, colon NLT, colon suppressive) fell close along the NLT
adaptation trajectory, colon but mainly skin Treg NLT cells exhibited greater adapta-
tion to the NLT environment. We hypothesise that the upregulation of Ikzf4, Dgat2
and Itgae observed in skin might explain and contribute to the further stabilisation,
retention and metabolic adaptation of Treg cells to the NLT compartment.

Treg cell priming in LNs is apparent from their increased NLT signature and
expression of tissue-homing molecules, yet it is likely that Treg NLT-like cells are
a heterogeneous subpopulation, with some cells egressing to the NLTs and others
recently drained from the NLTs. This was confirmed using velocyto, and agrees
with the bidirectional migration between LNs and the NLTs described in skin using
a photoconversion system (Matsushima and Takashima, 2010). Studies coupling
photoconversion and scRNA-seq can further our understanding of Treg cell migration
patterns, as previously shown with single-cell qPCR (Ikebuchi et al., 2016).

A considerable proportion of the adaptation programme between bLN-to-tumour
was contained within the bLN-to-skin trajectories. Similarly to steady-state, cues de-
rived from NLTs are likely to prime Treg cells located in the draining LNs, as indicated
by a higher percentage of cells expressing Batf, Lgals1, Id2 and other NLT markers
in melanoma. In sum, tumour Treg cells resemble less mature versions of their
homeostatic skin counterparts that, nevertheless, follow the same NLT adaptation
trajectory.

The establishment of correct orthology relationships can be important for cross
species comparisons. While we show that including a broader variety of ortholog
genes improves prediction for one Treg subpopulation, this is not a definitive solution
and should warrant further testing. A drawback still present is the exclusion of genes
with no defined orthology relationship. These could be included by an approach that
aggregated the genes by gene sets that would match between species, which can
be agnostic to these evolutionary relationships and instead rely on per-species gene
functional descriptions. It can however leave out less well studied genes, or have
poorer performance for less well described or annotated species.
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Despite the conserved tissue-specific signatures, the differential paralog usage
identified between species (Figure 2.5D) suggests a pivotal role for expanded gene
families in rewiring signalling pathways throughout evolution. Studies focusing not
only on tissue-resident cells, but also on the surrounding environment and organs
can help dissect the relevance of these pathways in T cell biology, and how this
evolutionary rewiring might affect immune response and homeostasis.

Overall, we reveal a dynamic adaptation of T cells as they traffic across tissues,
and provide an open resource (data.teichlab.org) for investigating in vivo CD4+ T cell
phenotypes in mouse and human, to ultimately harness NLT CD4+ T cells as future
therapeutic targets.

2.4 Methods

For further experimental methods see Appendix A.

2.4.1 RNA expression quantification and normalisation

Sequencing data from 10x runs was aligned and quantified using the CellRanger
software package with default parameters.

Gene expression from Smart-seq2 scRNA-seq data was quantified in counts using
Salmon v0.6.0 (Patro et al., 2017), with the parameters –fldMax 150000000 –fldMean
350 –fldSD 250 –numBootstraps 100 –biasCorrect –allowOrphans –useVBOpt. For
mouse, the cDNA sequences used contain genes from GRCm38 and sequences from
RepBase, as well as ERCC sequences and an EGFP sequence. Since the EGFP RNA
is transcribed together with Foxp3, counts from these two genes were added after
quantification to represent Foxp3 expression. For human data quantification, cDNA
sequences from GRCh38 and ERCC were used.

Standard scRNA-seq analysis (QC, differential expression and marker gene de-
tection, and clustering) was performed using Seurat (Satija et al., 2015). All data
was log-normalised using the NormaliseData function with a scale factor of 10000.
Our expression data for different tissues is also available for user-friendly interactive
browsing online at data.teichlab.org.
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2.4.2 scRNA-seq quality control

Quality control of 10x-derived data was made taking into account number of UMIs -
keeping cells with between 1000 and 15000 UMI - and number of genes - keeping
cells with between 700 and 3500 genes with at least 1 UMI (Table A.5). While cells
were not filtered by their mitochondrial read content, cells with an elevated number
of these reads are eventually removed via clustering (see “Subpopulation detection
in 10x data”).

For Smart-seq2 data, count values for each cell were grouped in an expression
matrix, and ERCC expression were separated from true gene expression. Cells
were then filtered based on different quality parameters calculated for each dataset
(Table A.5). Additionally, the output of TraCeR (Stubbington et al., 2016) was used
to remove cells without a detected TCR sequence, as well as invariant Natural Killer
T (iNKT) cells and γδ T cells (defined as cells with at least one γ and one δ chain
detected and no αβ pair). For the colon and skin datasets, 433 and 745 cells passed
quality control, respectively.

Importantly, we note that TCR detection greatly improved our filtering by exclud-
ing cell types captured by FACS that did not fit the intended categories. This is the
case for iNKT cells - captured mostly together with spleen T memory cells - and γδ-T
cells - sorted together with skin Tmem cells in the melanoma experiment. Indeed, we
also identified a NKT population in the 10x dataset, mostly within the cells sorted
as spleen Tmem cells, as well as some LN Tmem cells (Figure A.1B and A.1C). We
cannot, however, state that these are “invariant”, since we have no access to their
complete TCR chains. TCR filtering also enables removal of cell doublets by identify-
ing cells expressing an excessive diversity of recombined TCR chains. Even in cases of
no allelic exclusion for TCR α and β sequences, each cell would still only be able to
produce two recombinants of each, allowing removal of cell doublets expressing more
than two recombinants for a TCR locus. Lastly, we removed all cells not expressing
any recombinant TCR in order to have a more stringent quality control. While in
the human dataset the number of cells without a TCR was evenly distributed across
tissues and cell types, there was a clear skew towards TCR absence in peripheral Treg
cells (colon and skin) in the mouse datasets. These Treg cells did not appear to differ
from the remaining population, having no differentially expressed genes or major
differences in their overall number, presenting only a skew towards a higher number
of reads (data not shown).
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2.4.3 Dimensionality reduction methods

To obtain an overview of the datasets showing the relationships between cell popula-
tion clusters, Principal Component Analysis (PCA) and tSNE were used. Before PCA,
data was scaled using the ScaleData function (negative binomial model, normalising
by the number of UMI and centering the data). PCA and tSNE were calculated
using the RunPCA and RunTSNE functions, respectively. For each dataset, a dif-
ferent number of Principal Components (PCs) and values for perplexity were used
(Table A.5), chosen by visual inspection of an elbow plot representing the relative
importance of each PC. With exception of the PCA projection for the complete 10x
dataset, only highly variable genes were used, calculated using the FindVariableGenes
function from Seurat with the parameter ‘num.bin‘ of 100 and ‘binning.method‘ of
"equal_frequency". Using all genes for dimensionality reduction of the whole 10x
dataset resulted in more accurate clustering, allowing for the identification of most
contaminant cells on this first step (Figure A.1B). Plate-based datasets were treated
separately as much as possible to avoid confounding batch effects from experiments
performed separately.

2.4.4 Subpopulation detection in 10x data

To find clusters in the data, we used the FindClusters function from Seurat, with the
same number of principal components used for tSNE. Cluster annotation was done
by inspecting markers detected by the FindAllMarkers function.

Global clustering of the 10x dataset was done with the resolution parameter set
to 0.2. After clustering the complete dataset, we excluded artifactual subpopula-
tions (Figure A.1). A mixed Treg and Tmem cell population characterised by high
expression of immediate-early response genes (e.g. Jun, Junb, Fos, Fosb), which has
previously been reported in other cell types (Adam et al., 2017; van den Brink et al.,
2017; Wu et al., 2017) was removed. An additional population of lymphoid tissue
Tmem cells was also excluded because they presented expression profiles similar to
NKT cells (Nkg7, Ccl5, Cd160, Klrbc1, Cxcr6).

Clustering on individual tissues used the following resolutions: for Treg cells, 0.3
on Spleen, 0.4 on bLN, 0.4 on mLN, 0.5 on Colon, 0.4 on all skin cells; for Tmem cells
0.4 on Spleen, 0.3 on bLN, 0.7 on mLN, and 0.6 on Colon. Annotation was performed
and subpopulations characterised by immediate-early response genes were removed.
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2.4.5 Differential expression analysis

Differential expression (DE) and marker gene detection was performed using the
FindMarkers and the FindaAllMarkers functions from the Seurat R package, using
the default Wilcoxon test. Genes were considered differentially expressed if they had
an average log fold-change of at least 0.25 and a Bonferroni-adjusted p-value of 0.05
or lower.

For DE including all cells of the 10x dataset, a minimum of 5% of cells had to ex-
press the gene, otherwise a minimum of 1% was used. For comparisons between tests
(for example Treg vs Tmem cells and LT vs NLT, see Figure 2.1C), the FindMarkers
function was run twice - the first time to determine all genes considered expressed
for each comparison, the second using the union of all those genes.

In the human and mouse comparison, human NLTs were compared to blood and
mouse NLTs were compared to spleen only, and testing was restricted to genes with
one-to-one orthologs.

2.4.6 Mapping cells to known populations using logistic regres-

sion classification

To make a correspondence of cells in the 10x dataset with the identified Treg cell
subtypes in the colon (Figure 2.2G), or between Smart-seq2 data and the complete
10x dataset (Figure A.2B), the counts and subpopulation labels of the 10x dataset
Treg cell subpopulations and the complete 10x dataset were used to train a logistic
regression classification model using scikit-learn with an L1 penalty and default
parameters. The label with the highest probability predicted by the model was then
attributed to each cell. The figures show the percentage of each tested population
that was predicted as matching to each learned label.

For cross-species mapping of Treg subpopulations, 90% of the sorted Treg cells
from mouse were used to construct two models, with the remaining subpopulation-
balanced partition kept separately for model testing. The first model (refered to in
Figure 2.6 as "one-to-one orthologs") was used only using genes expressed in both
species that are one-to-one orthologs. Another model was trained by using all genes
with known orthologs, and adding the counts for genes with many orthologs. For
example, if a gene in mouse corresponds to three genes in human (i.e. a one-to-
many relationship), then the counts of the three human genes are added and given
one identifier. For many-to-many relationships, the same happens in both species
simultaneously. Additionally, a third model was trained using all mouse genes, to use
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as a ground truth for the predictive power of the other models. With 10-fold cross
validation, these three models have a mean accuracy of 84.0%, 84.7%, and 85.6%,
respectively. Precision-recall curves were then calculated using the 10% test set.

2.4.7 Obtaining a migration latent variable for steady-state Treg

cells

The large dimensionality of single-cell RNA-seq data has been used before to gain
insights on time-dependent events (Lönnberg et al., 2017; Trapnell et al., 2014) by
applying methods for pseudotime inference. Although it is impossible to follow one
cell through the complete process, these methods can order single-cell data into a
continuous dimension, using the discrete samples as snapshots containing a multitude
of intermediate states.

Immune cells are expected to migrate between LTs and NLTs. We assumed that
this effect would be reflected as a gradual single-cell expression phenotype, which
could be captured as a latent variable of the data. To achieve this, we used Bayesian
Gaussian Process Latent Variable Modelling (BGPLVM) (Titsias and Lawrence, 2010),
implemented in the python package GPy (https://github.com/SheffieldML/GPy) as
“GPy.models.BayesianGPLVM”, which was already used before for dimensionality
reduction in scRNA-seq data to model Th1-Tfh cell differentiation (Lönnberg et al.,
2017). BGPLVM was used on log-scaled counts and only considering highly variable
genes. We run the method with six latent variables (LV) to be sure we capture
the most relevant ones by Automatic Relevance Determination (ARD, Figure A.3A),
although this number does not alter significantly the performance of the algorithm.
We then interpret the most important LV as the one ordering the cells between
tissues along a migration and adaptation transition. In agreement, we observe gene
expression changes associated with losing the lymphoid tissue identity and acquiring
a peripheral tissue transcriptional profile (Figure 2.3B).

For 10x data, the method was used on mLN and colon Treg cells. We then mapped
bLN and skin Treg cells onto the same LV using the predict function from the BGPLVM
module, in order to have a similar coordinate system for both trajectories. Running
BGPLVM with all data together would achieve a similar result (not shown). A BGPLVM
projection of bLN and skin Treg cells (Figure A.3B) shows an identical projection
but with a wider gap between bLN and skin cells due to the large differences in cell
numbers. We excluded spleen cells from this analysis to focus specifically on LN to
NLT adaptation.
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Similar effects are also observed in the corresponding Smart-seq2 cells (Fig-
ure A.4D). We then show that all the LVs chosen as a “pseudospace variable” (LV0)
have a similar effect between datasets by comparing the shared proportions of genes
correlated with each of them (Figure A.4E).

2.4.8 Identifying a common tissue migration trajectory in con-

trol and melanoma

Similarly to the steady-state, migration from the LN to the skin with a melanoma
challenge is also expected. A common between-tissue Treg cell migration trajectory
in control and melanoma conditions was obtained using Manifold Relevance De-
termination (Damianou et al., 2012) (MRD). MRD works by having an underlying
BGPLVM model whose dimensions can be shared or private between sections of the
data. Having the prior knowledge that a cell-cycle effect is present in the data (Fig-
ure A.5A) and with the goal of obtaining a LV explaining tissue recruitment in both
conditions, the melanoma dataset was divided into three sections for input: one with
the expression in all cell-cycle associated genes, one with marker genes for any tissue,
and one with the remaining genes. The importance of each section in each latent
variable is shown in the ARD plot (Figure A.5C). The model was run allowing for 12
LVs as output, and the one highly influenced by tissue-specific genes but not cell-cycle
or other genes was used as a migration trajectory for both conditions (Figure 2.4D).
The effects captured by these LVs can be observed in BGPLVM projections for the
individual conditions (Figure A.5E-G).

2.4.9 Switch-like genes in the migration latent variable

Gene expression changes in a continuous trajectory can be interpreted as a series of
switch-like events. These can be modeled using a sigmoid curve, described by the
following equation:

S =
2×µ0

1+ e−k(t−t0)
(2.1)

where µ0 is the mean expression between the sigmoid “on” and “off” states, t0

is the point in which the switch in expression happens, and k defines the sigmoid
inclination and can be interpreted as the activation strength. Parameter k will
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additionally inform on the direction of the switch (activation or inhibition) from its
signal.

The R package switchde (Campbell and Yau, 2017) was used to model gene
expression as a sigmoid in the inferred migration trajectories, using the appropriate
latent variable as pseudotime.

In the steady-state 10x dataset partitions (mLN+colon Treg cells and bLN+skin
Treg cells), switchde was applied for non-Tmem cell specific genes expressed in at
least 30 cells, as well as genes with an absolute correlation greater than 0.25 with
the LV chosen for both partitions. Due to the large differences in the number of cells
in the skin partition, we ran switchde 100 times on different subsamples of each
Treg cell subpopulation matching the smallest subpopulation size (405 for the colon
partition, 55 for the skin partition), and used the median values of the parameters for
further analysis. For the melanoma dataset, genes expressed in at least 5 cells in both
conditions were tested. Only genes with a q-value<=0.05 and that had a t0 within
the LV range were kept for further interpretation.

2.4.10 RNA velocity estimation

RNA velocity is a measure that leverages detection of spliced and unspliced transcripts
to predict single-cell development directionality (Manno et al., 2018). We used
velocyto to determine in which direction cells were changing in the cross-tissue
adaptation trajectories. We have followed the python implementation of velocyto,
and the code can be found in https://github.com/tomasgomes/Treg_analysis/blob/
master/Velocyto.ipynb, where each of the runs is present.

2.4.11 Detection of expanded clonotypes

T cell receptor (TCR) sequences were reconstructed from single-cell RNA-seq data
and used to infer clonality using TraCeR (Stubbington et al., 2016). We used TraCeR
with the parameters –loci A B D G, –max_junc_len 120 to allow reconstruction of
TCRα, TCRβ, TCRδ and TCRγ chains in each cell and to permit TCRγ chains with
long CDR3 regions.

2.4.12 GO Term enrichment

To test for enriched GO Biological Processes or KEGG Pathways in gene sets, the
gprofiler R package (Reimand et al., 2016) was used, with the option of moderate

https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
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hierarchical filtering enabled. No custom background was used (i.e. all genes with
a GO Term annotation were considered). To determine the succession of Biological
Processes GO Terms (Figure 2.3C), we used the approach above on all genes called
DE by switchde, and plotted only the terms with at least two genes.

2.4.13 Cell-cycle analysis

To assess potential effects of cell-cycle in the interpretation of the scRNA-seq datasets,
Cyclone (Scialdone et al., 2015) (implemented in the scran R package) was used
on all datasets. Results for the mouse melanoma dataset (where a relevant cycling
population exists) were projected on the tSNE (Figure A.5A). As the vast majority of
cells was assigned to the default cell-cycle stage (G0/G1 in mouse, S in human), no
cell-cycle correction was performed.

2.5 Conclusions and future work

This Chapter has elucidated the molecular makeup of Treg cells in their tissue context,
and revealed the transcriptional transitions these cells undergo during adaptation
to a new tissue environment. Deep characterisation of colon, skin, their draining
lymph nodes and spleen revealed evident transcriptional heterogeneity, reflected in
distinct subpopulations likely associated with different activation and cross-tissue
transition stages. The full steady-state profile of Treg cells requires further sampling
of more tissues. Skin Treg cells, because they are harder to extract, were not as
deeply sampled, yet some heterogeneity could still be inferred (Figure 2.2G).

Increasing the number of profiled tissues holds the promise of revealing further
tissue-specific subpopulations, allowing for a full map of Treg cell phenotypic regula-
tion to be compiled. Recent work has showed that Treg heterogeneity is associated
with TCR activation in colon and spleen (Zemmour et al., 2018), and further inte-
gration of gene expression and open chromatin data has shed light into Treg cell
tissue-specific regulatory networks (DiSpirito et al., 2018). In particular, this last
study places NF-κB-related transcription factors (Nfkb1, Nfkb2, Rel, Relb) within the
colon-specific regulatory network, demonstrating the increased power in combining
data from different tissues. Within the colon, the authors of the study also identify a
subpopulation of cells they presume to be circulating (expressing Ccr7, similarly to
LT-like Treg in Figure 2.2A), and they are capable to in addition distinguish between
thymic and periphery-derived Treg cells. Various factors (tissue processing protocol,
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single-cell isolation method, among others) can influence the detection of the genes
driving these populations to explain why they were not detected in the data here
presented. Nonetheless, comparing these studies shows how useful it can be com-
bining scRNA-seq data obtained from different sources. Lastly, all the studies here
described have mostly focused on mouse. Recent analysis in our lab (James et al.,
2019) has showed that, from total immune cells extracted from human colon and
mesenteric lymph nodes, the Treg cell subpopulations described in this Chapter can
also be detected, further confirming the robustness of this finding.

When sampling diverse tissues, their physical processing is crucial, not just to
obtain a comprehensive representation of the cells present, but also in the way that
such extraction protocols can affect cellular phenotypes. It has been described that,
due to some processing methods, cells can undergo transcriptional changes, with the
activation of immediate early genes as a response to stress, or activation of genes
encoding for heat-shock proteins (van den Brink et al., 2017). Importantly, some of
the immediate early genes are also implicated in immune response, such as Fos and
Jun. Furthermore, this effect can be cell type-dependent, additionally confounding
the interpretation of said data. Mitigation of these effects has been achieved in the
past by inhibiting transcription during tissue processing (Wu et al., 2017). While
in the present work we avoided drawing excessive interpretations regarding genes
involved in these pathways, future cross-tissue works should account for these effects.
This should ideally happen at the biological material processing stage, since some of
these genes can have bona fide functions within the tissue-specific context (Wheaton
and Ciofani, 2019).

The inferred transcriptional trajectory (Figure 2.3A) offers a base model for what
tissue adaptation of Treg cells during trafficking might resemble. This trajectory was
inferred under the assumption that all cross-tissue intermediate states are represented,
however this might not be the case. The overlap between the LT-like and NLT-like
Treg subpopulations is encouraging, pointing at these being the intermediate state of
this transition. Indeed, NLT-like Treg cells in lymph nodes expressed surface receptors
known to direct cells to their specific tissues (Figure 2.2E). However, it can also
be argued that a true transition stage would have to be captured "in transit", i.e.
obtained from blood. This might be hard to achieve given the very low representation
of these cells compared to other circulating lymphocytes. In a model organism,
it could potentially be addressed by genetically modifying Treg cells to express a
detectable marker upon exit of lymph nodes or NLT, if such regulatory mechanism
is completely understood. A further aspect to consider is the directionality of cell
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trafficking. Velocyto analysis (Figure A.3C) hinted at a LN-to-NLT transition, however
it was not conclusive, also showing some NLT-like cells to be adapting into a lymph
node identity. It is indeed possible that trafficking occurs in both directions, yet the
association of this movement with the detected subpopulations will only be revealed
by combining single-cell sequencing with lineage tracing, for example using adoptive
transfer into specific tissues.

It is also expected that the data here produced and dissected serves as a plat-
form for future functional studies on Treg identity. This has already been the case
in (Wheaton and Ciofani, 2019), where the authors, starting from the tissue-specific
expression of Junb captured in this dataset, validate the importance of this gene for
adaptation of the Treg cell effector programme in the colon, through the use of Treg
cell-specific knock-out of the gene. Gene knock-out studies can be very powerful to
test the importance of the genes here revealed to impact Treg identity and adaptation.
This can be combined with lineage tracing of these cells to quantify how affected
cell trafficking is, or with functional assays to evaluate whether the gene is impor-
tant for Treg suppressive function, for example. In humans, functional validation is
more restricted due to ethic concerns, yet the gene lists here produced can also be
cross-referenced with genes involved in autoimmune or tissue-specific pathologies,
shedding light into the role of tissue-specific Treg cells in these diseases.

The unravelling of Treg cell heterogeneity also feeds into the more general topic
of how cell types can be classified. Based on their transcriptional phenotype, it is
apparent that the Treg cell subpopulations represent transient states. Despite being
evidently different when examining each individual tissue (Figure 2.2A), they can
actually appear similar when compared with other tissues and cell types (Figure 2.1).
For this reason, the establishment of a cell type reference should firstly consider cells
in their tissue context, and only then establish the similarities across these. It can
however be debated how accurately these different states could be distinguished
in the context of a broader cell type classification. Future methods might aim at
representing transient cell states separately from the defined, central cell identity.




