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Abstract

Cells are the building blocks of life, forming the vast diversity of tissues and organisms
in Nature. Across these, common cellular morphologies and functions have been
identified. High-throughput, multifactorial profiling of cells has grown exponen-
tially in recent years with the advent of single-cell RNA-sequencing (scRNA-seq),
increasingly unravelling cell diversity. Nonetheless, it is not yet known how different
environments affect cellular phenotypes.

The work presented on this Thesis reports on the transcriptional variation of
cell types across tissues, by use of single-cell RNA-sequencing. This technology,
developed in the last 10 years, has greatly impacted our ability to distinguish cellular
heterogeneity by their gene expression in various tissues or conditions.

Chapter 1 outlines the impact of single-cell RNA-sequencing in cell biology, present-
ing the technology as the natural progression of lower throughput or low-resolution
methods. The chapter then shows how cellular heterogeneity can be deconstructed
by analysing this type of genomics data. It then expands on how individual datasets
can be used to build models of cell type identity for automatic annotation, ultimately
outlining the need to create a global cell type census of a whole organism. A cell
compendium like this should be useful for automatic annotation, as well as to obtain
a cross-tissue integrative overview of cell identity.

The same chapter also delves into the topic of heterogeneity in immune cells. Due
to the evolutionary pressure they are subject to and ubiquitous nature across the
organism, these are some of the most diverse cell types in multicellular organisms.
Chapter 2 presents a deconstruction of T-regulatory cells’ phenotypes in different
mouse and human tissues using single-cell RNA-sequencing. The analysis in this
chapter will show how these cells are structured in subpopulations, and how they
adapt when migrating between lymphoid and non-lymphoid tissues. It will also assess
the conservation of gene expression programmes for the same populations between
mouse and human.

The creation of a global cell type reference is an endeavour that can facilitate
analysis of new data, and reveal novel insights about cell and tissue biology. Several
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datasets have now been produced, and a method that can efficiently integrate them
and prepare them for use as a reference is necessary. Chapter 3 details the devel-
opment of such method, exploring its strengths and how it can be improved, in a
mouse dataset. Chapter 4 then applies this pipeline to a collection of human data,
and shows how cell types relate across tissues, as well as how the human reference
can be used in a practical case.

Lastly, Chapter 5 summarises all chapters, providing an overview on how single-
cell sequencing has changed what we know about tissue biology, and how listing cell
types and compiling them as a functional reference can help future developments in
life sciences.
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Chapter 1

Cellular identity in the genomics era

Cell biologists have attempted, from the inception of the discipline, to categorize the
extensive variability of cells that are found in Nature. This endeavour is hampered by
the intrinsic complexity of cells, which associated to their small size and sensitivity
to the surrounding environment, makes cellular phenotypes hard to probe in an
integrated and comprehensive way. The last decade however has seen extraordinary
improvements in the detail to which molecules can be assayed in individual cells.
Single-cell RNA-sequencing (scRNA-seq) has for the first time provided an unbiased,
transcriptome-wide census of RNA molecules for one cell at a time. By acquiring the
transcriptome of large numbers of cells, we can group them by their gene expression
programmes - a proxy for their function - and thus define their cell identity. The
definition of this cell type identity from the massive amounts of transcriptome data
produced in recent years has required the continuous adoption of new computational
and analytical methodologies.

This chapter provides an introduction to the definition of cell types. It will
show how more recently developed experimental and computational approaches are
shaping our understanding of how cells are categorized.

1.1 Cell type discovery and definition

The term "cell" was coined by Robert Hooke in the 17th century to describe the empty
cell walls he observed in cork samples through his microscope (Hooke, 1667). This
observation was complemented some years later, when Antonie van Leeuwenhoek
first observed live unicellular organisms and other cells with a microscope composed
of more powerful lenses (Mazzarello, 1999). Research and observations in the
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following 200 years led to the formulation of cell theory. Its first tenet was introduced
by Schleiden and Schwann, and states that all living structures are composed of cells
or their byproducts (Schwann, 1847). The theory was later complemented by Robert
Remak, Rudolf Virchow, and Albert Kölliker to include the postulate that all cells
are derived from other cells (in the latin formulation popularized by Virchow, omnis
cellula e cellula).

These early studies looked at a variety of sources to unveil different types of cells.
Leeuwenhoek reported observations from blood, brain, muscle and semen (Leeuwen-
hoeck M, 1674; Leeuwenhoek Antoni Van, 1677). Subsequent developments of
microscopy techniques led to improved imaging of a variety of tissues and the cells
that compose them. For the first centuries of cell biology, microscopy was the method
of choice to identify cell types. While this was mostly due to the relatively reduced
knowledge of cellular biochemistry, it was immediately apparent that morphology
was intrinsically tied to cellular function. The most illustrative example of this is the
neuron, whose unique structure was only unravelled after subsequent improvements
in tissue preparation and staining, as well as increases in resolution and development
of electron microscopy (Mazzarello, 1999). Microscopy was also important in under-
standing where cell types come from by mapping their developmental origin. The
three germ layers - endoderm, mesoderm, ectoderm - were identified in the 19th
century, and was postulated that each of them would give rise to different sets of tis-
sues (Collins and Billett, 1995). Developmental studies have since had a central role
in defining cell lineages, and thus how cell types are related. Advances in microscopy
were also crucial to the identification of organelles. While larger structures, like
nuclei, are still identifiable with simpler microscopes (Brown, 1866), others required
improved resolution and staining or preparation to be identified (Golgi and Lipsky,
1989). Other advancements in microscopy like live-cell imaging or super resolution
microscopy are constantly perfected to expand the boundaries of cellular functional
characterization.

Advances in biochemistry and molecular biology revealed that most organic
molecules that compose cells are directly responsible for their function. Proteins
are responsible for most cellular functions, being involved in enzymatic reactions,
signalling and regulatory pathways or structural components. They became a prime
target for cellular phenotyping with the development of immunostaining (Coons
et al., 1941), whereby an antibody that specifically targets a certain protein is usually
tagged with a fluorophore. Immunostaining can identify protein expression in tissue
slices, and the use of different fluorophores allows for the imaging of cells expressing
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multiple proteins. The usefulness of immunostaining became especially apparent
when it was combined with high-throughput microfluidics methods and used for
fluorescence-activated cell sorting (FACS) (Bonner et al., 1972). This introduced
the first high-throughput studies on molecular phenotyping of cells, and sorting
allowed cell function to be probed in parallel (Julius et al., 1972). More recently,
mass cytometry has allowed for a further expansion of the repertoire of proteins
assayed (Bandura et al., 2009; Di Palma and Bodenmiller, 2015). This technique,
while destructive, has also been combined with tissue imaging, adding a spatial
component to the cell populations examined (Chang et al., 2017).

The identification and classification of cell types is dependent on their function.
Function is deeply related to cellular morphology (Prasad and Alizadeh, 2019),
and both are ultimately a consequence of the molecular pathways shaping them.
Additionally, even though recent advances permit high throughput cell sorting through
imaging (Nitta et al., 2018), the limited resolution hinders the identification of finer
details of cell and organelle shape, which are frequently more informative of cellular
activity. Cell sorting with fluorescent antibodies and mass cytometry can reveal
more details on the molecules underlying cellular behaviour, but they are targeted
approaches that depend on prior knowledge of the effector molecules. The more
recent attempts at defining cell identity have therefore relied on the unbiased, high-
throughput character of single-cell RNA-sequencing methods.

1.2 Defining cell types using scRNA-seq

Methods to sequence the transcriptome of individual cells started to be developed
shortly after the advent of RNA-seq (Mortazavi et al., 2008; Tang et al., 2009). This
early development was pushed not by a need to define the molecular makeup of the
unit of life, but rather to allow transcriptomic studies to be performed in low-input
samples. Nonetheless, this seminal work still sparked the improvements that occurred
in the decade that followed (Svensson et al., 2018) (Figure 1.1).

Initial developments focused on increasing sensitivity, since the original scRNA-
seq protocol was performed on cells from very early developmental stages, which
are larger and contain more RNA than most differentiated cell types. Different
methodologies quantified gene expression by sequencing distinct transcript segments
(either the 5’ or the 3’ end, or the full transctipt) (Hashimshony et al., 2012; Islam
et al., 2011; Picelli et al., 2014; Ramsköld et al., 2012). The idea of multiplexed
scRNA-seq also started gaining traction with the use of multi-well plates or molecular
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Fig. 1.1: Timeline of scRNA-seq technology development
(A) Key technologies that have allowed jumps in experimental scale. A jump to
~100 cells was enabled by sample multiplexing, and then a jump to ~1,000 cells
was achieved by large-scale studies using integrated fluidic circuits, followed by a
jump to several thousands of cells with liquid-handling robotics. Further orders-of-
magnitude increases bringing the number of cells assayed into the tens of thousands
were enabled by random capture technologies using nanodroplets and picowell
technologies. Recent studies have used in situ barcoding to inexpensively reach the
next order of magnitude of hundreds of thousands of cells. (B) Cell numbers reported
in representative publications by publication date. Key technologies are indicated.
Original figure published in (Svensson et al., 2018).

barcodes for cells. The company Fluidigm eventually introduced the first commercially
available microfluidics chips (called the "Fluidigm C1 system") for miniaturized cell
isolation, RNA extraction and reverse transcription (Brennecke et al., 2013). It is
from this point that increased cell capture becomes the major technological driver
(and has gained even great importance as discussed in Section 1.3). The major
contributors to this have been nanodroplet-based technologies, that have put the
number of profiled cells per dataset in the range of 10.000 to 100.000 (Klein et al.,
2015; Macosko et al., 2015). The importance of this increase in throughput has
been demonstrated by Shekar and colleagues (Shekhar et al., 2016), where they
demonstrate that a Drop-seq dataset of approximately 25.000 cells sequenced at low
depth could identify more bona fide cell types and subtypes than a smaller, more
deeply sequenced Smart-seq2 dataset. Currently, most single-cell RNA-seq datasets
use droplet-based technologies, chiefly the protocols designed for the Chromium
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instrument by 10x Genomics (Zheng et al., 2017), which have a higher sensitivity to
detect different transcripts. Other more recent methods have followed the trend of
increase in cell throughput by using multiplexed barcoding, which allows for different
samples to be combined and reducing sample processing costs, reaching 105-106 cells
for less than $0.01 per cell (Cao et al., 2019a; Rosenberg et al., 2018). A list of the
most up-to-date scRNA-seq methods can be found in Table 1.1.

Table 1.1: Current methods for single-cell RNA-sequencing
Method Name Reference

Fluidigm C1 (Brennecke et al., 2013)
Smart-seq2 (Picelli et al., 2014)
Drop-seq (Macosko et al., 2015)
inDrop (Klein et al., 2015)
CEL-seq2 (Hashimshony et al., 2016)
Chromium (Zheng et al., 2017)
ICELL8 (Goldstein et al., 2017)
Quartz-seq2 (Sasagawa et al., 2018)
mcSCRB-seq (Bagnoli et al., 2018)
SPLiT-seq (Rosenberg et al., 2018)
MARS-seq2 (Keren-Shaul et al., 2019)
sciRNA-seq3 (Cao et al., 2019a)
Seq-Well S3 (Hughes et al., 2019)

The exponential developments in single-cell sequencing technologies were accom-
panied by essential computational developments to analyse the resulting data. From
a cell type discovery perspective, the key methods are clustering and pseudotime
analysis (Rostom et al., 2017), which assign to cells a discrete or a continuous label,
respectively. These are of course dependent of the upstream processing steps of
normalisation, feature selection and dimensionality reduction, as well as often used
batch correction methods (Luecken and Theis, 2019). Most of these analysis steps are
available in accessible software toolkits (Butler et al., 2018; McCarthy et al., 2017;
Wolf et al., 2018).

With clustering, the goal is to identify discrete cell populations. The most widely
used methods for clustering are the louvain and leiden community detection algo-
rithms (Blondel et al., 2008; Traag et al., 2019). These populations are commonly
considered an approximation of the cell types present in a sample of dataset, often
justified by examining the presence of known markers for known cell types across clus-
ters. Further application of differential expression methods (extensively benchmarked
in (Soneson and Robinson, 2018)) between clusters can identify other potentially
novel genes that are, within that context, unique to that population. This can be
used to characterise newly discovered populations (Montoro et al., 2018; Shekhar
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et al., 2016; Villani et al., 2017) and to identify new markers that can be used to
isolate or understand known cell types (Bjorklund et al., 2016; Shulse et al., 2019;
Vento-Tormo et al., 2018).

Pseudotime analysis consists on describing a set of cells from a continuous per-
spective. The name derives from the original application to obtain a dimensionless
temporal trajectory from time course scRNA-seq data (Trapnell et al., 2014). There
are several methods to perform this analysis (exhaustively reviewed in (Saelens
et al., 2019)), all with the goal of defining a latent variable from the data along
which a biological process, reflected in gene expression, is changing. Pseudotime is
especially useful to study response to stimuli (Lönnberg et al., 2017; Trapnell et al.,
2014) and developmental trajectories (Cao et al., 2019a; Watcham et al., 2019),
but has also been used to model changes to cellular spatial distribution (Scialdone
et al., 2016). These methods can differ in the way they model biological trajectories,
with some explicitly allowing for branched trajectories. This is of special importance
in development, where the goal is usually understanding which daughter cell types
share progenitors. The direction of differentiation is usually just assumed according
to previous knowledge and of the experimental conditions. This is not completely
possible in all situations, yet can be inferred from expression data. By considering
RNA kinetics, and using the quantification of spliced/unspliced reads, the current and
future (i.e. still circumscribed to the nucleus) transcriptomic states can be untangled
as a "velocity" vector (Manno et al., 2018). In differentiation trajectories, cell types
are therefore usually defined as the endpoints, with the cells in between forming more
transient cell states, along which gene expression is dynamically adjusting to the final
cellular identity. It should be noted that this "cell type vs cell state" nomenclature is
context-dependent, and there is no absolute agreement on how cell types should be
formally and empirically defined (Various, 2017).

Globally, the increasing adoption of scRNA-seq is due to its multi-gene and un-
biased profile. It allowed for the first time the non-directed profiling of molecules
driving heterogeneity in cellular populations. Nonetheless, its use for defining cell
identity still has some drawbacks. Even though the cost of high-throughput sequenc-
ing keeps dropping, single-cell RNA-seq still requires costly protocols, especially at
the scale that it is currently performed for cell type discovery. This however can be
mitigated by more targeted approaches, aimed at characterizing specific subsets of
already known cell types isolated by their broad markers. scRNA-seq is also prone to
batch effects, which can become more pronounced when comparing or integrating
data generated by different protocols. This has been a very active topic of research,
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and several batch alignment and correction methods can now account for these inte-
gration of different protocols (Butler et al., 2018; Haghverdi et al., 2018; Park et al.,
2018; Stuart et al., 2019). From the protocol side, sample barcoding for multiplexed
processing also greatly reduces batch issues (Shin et al., 2019; Stoeckius et al., 2018).

One last concern, although perhaps the largest, is the fact that profiling a tissue or
a cell type with scRNA-seq does not inherently give any functional information about
the cells. Cellular function has been from the beginning the major point to categorize
cells. RNA, despite being easily correlated with protein presence, is not in most cases
the effector molecule in a biological process. Additionally, most single-cell methodolo-
gies destroy the cell without imaging it, making the link between molecular makeup
and morphology harder to obtain. While this is an ongoing research topic, profiling
cells through the use of multi-omics technologies can help obtain a deeper mecha-
nistic characterization. Information on open chromatin regions (Buenrostro et al.,
2015), histone modifications (Kaya-Okur et al., 2019) or surface proteins (Stoeckius
et al., 2017) have the potential to be combined, directly or indirectly, with single-cell
RNA-seq (Clark et al., 2018). This can provide information on how these molecular
layers interplay and learn about the intrinsic regulatory processes of gene expres-
sion (Gorin et al., 2019; Qiu et al., 2019). CRISPR screens with single-cell expression
readout can also reveal more about cellular function (Datlinger et al., 2017; Dixit
et al., 2016). Lastly, developments in spatial transcriptomics hold the promise of
providing spatial context to cellular transcriptomes profiled individually, providing
information on the tissue context for cell identity determination (Rodriques et al.,
2019; Vickovic et al., 2019). Overall, while the discussion about where to draw the
line between cell types still lasts, technological developments provide us with ever
increasing information to approach a decisive and informative definition.

1.3 Methods for cell type classification

Single-cell RNA-seq was initially developed to obtain the whole transcriptome from
samples with very low starting material (Tang et al., 2009). Nonetheless, the notion of
using it to define cell types through their transcriptome was very early on envisioned.
In 2011, Islam and colleagues end the discussion on their newly developed scRNA-seq
method (STRT-seq) by stating "We envisage the future use of very large-scale single-
cell transcriptional profiling to build a detailed map of naturally occurring cell types,
which would give unprecedented access to the genetic machinery active in each type
of cell at each stage of development." (Islam et al., 2011). The exponential increase



8 Cellular identity in the genomics era

in the number of cells profiled per experiment eventually made this prediction come
true. A large amount of single-cell projects have used the technology to profile cells
captured from various tissues, in steady-state or disease conditions. Yet the most
direct example of how this quote reflects the evolution of the field is the Human Cell
Atlas (HCA) (Regev et al., 2017). This consortium has been established as a forum for
scientists around the world to share their expertise on genomics, bioinformatics, and
tissue biology, and coordinate the high-throughput profiling of cellular heterogeneity
in the human body. The HCA has groups focusing not just on individual organs, but
also on development (Behjati et al., 2018; Taylor et al., 2019) and disease.

In parallel, there have been increased efforts to obtain similar references for
other species, in particular animal models (Cao et al., 2017; Fincher et al., 2018).
The data collected for these species tends to have a greater cell coverage since the
tissue samples can be more readily available. Furthermore, these atlases are by no
means less important or useful than the human reference. The cell atlases produced
for mouse (Han et al., 2018; Various, 2018) were of especial relevance, since they
constitute the first broad, multi-organ cellular census of a mammalian organism, and
one for which a large portion of biomedical science has relied on. The accessibility
of human tissues for profiling and in vitro testing will be crucial in the near future.
Nonetheless, having a mouse reference that can be related to human can not only
teach us about the evolutionary principles that shape cell type evolution through
gene expression, but also serve as a bridge to transpose mouse-based biomedical
discoveries into a human context.

For a cell atlas to be used as a reference, it needs not only the expression data to be
annotated, but also a computational framework that can use it to classify new datasets
of interest. Over the last two years, several methods have been developed to handle
scRNA-seq data (a comprehensive list can be found in Table 1.2), which can be added
to other general purpose classification methods. These methods vary in complexity,
but in general they rely on machine learning approaches to map the reference cell
labels to the target dataset. While the most accurate method for this classification
is still up for debate (see (Abdelaal et al., 2019; Köhler et al., 2019) in addition
to benchmarks in individual method papers), there is agreement about the major
challenges for this task. Classification methods should be aware of batch differences,
be they caused by use of different scRNA-seq protocols or other technical differences
in tissue processing. Different cell isolation and library preparation protocols can
have a large impact on the number and type of genes detected (Mereu et al., 2019).
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Table 1.2: Comprehensive list of papers detailing methods for automated cell state
matching

Method Name Short Description Reference

scmap k-nearest-neighbor search
with cosine distance

(Kiselev et al., 2018)

matchSCore Jaccard Index for cluster markers (Mereu et al., 2018)
ClusterMap Hierarchical clustering with

marker gene binary expression
(Gao et al., 2018)

CaSTLe XGBoost classification (Lieberman et al., 2018)
Moana Linear SVM on (sub)clusters (Wagner and Yanai, 2018)
SAVER-X Autoencoder (Wang et al., 2018)
scQuery Neural network classifier (Alavi et al., 2018)
PopAlign oNMF, Gaussian Mixture model

and Jeffrey’s divergence
(Chen et al., 2018)

scGen VAE and linear classifier (Lotfollahi et al., 2018)
scVI VAE and hierarchical Bayesian model (Lopez et al., 2018)
scPred SVM in principal component space (Alquicira-Hernández et al., 2018)
SingleCellNet Random Forest on

binary marker expression
(Tan and Cahan, 2018)

CellAssign Multi-variable model with marker genes
and hierarchical Bayesian framework

(Zhang et al., 2019a)

ACTINN Neural network (Ma and Pellegrini, 2019)
scID Linear Discriminant Analysis

with marker genes
(Boufea et al., 2019)

SingleR Spearman correlation with training data (Aran et al., 2019)
Garnett Elastic net multinomial classifier using

markers from hierarchical cell types
(Pliner et al., 2019)

SCINA bimodal distribution of signature genes, (Zhang et al., 2019b)
Cell BLAST Adversarial Autoencoder and

nearest neighbour search
(Cao et al., 2019b)

scMatch Correlation with individual sample
or average of references

(Hou et al., 2019)

SuperCT Neural network with binary expression (Xie et al., 2019)
CellO Hierarchical binary classifiers (Bernstein and Dewey, 2019)
scCoGAPS &
projectR

NMF and projection in that latent space (Stein-O’Brien et al., 2019)

SciBet Entropy test and Bayesian comparison
of multinomial distributions

(Li et al., 2019a)

Seurat "Anchors" CCA, L2-normalisation and
mutual nearest neighbours

(Stuart et al., 2019)

LIGER integrative NMF and joint clustering (Welch et al., 2019)
cellHarmony Correlation with cluster centroids

of mean marker gene expression
(DePasquale et al., 2019)

CHETA Correlation with marker genes of
hierarchical reference

(de Kanter et al., 2019)

scPopCorn Co-membership Propensity Graph and
(joint) k-partition

(Wang et al., 2019)

p-DCS Voting based on known marker genes (Domanskyi et al., 2019)
EnClaSC Ensemble neural network classifier (Chen et al., 2019)
scClassify Ensemble classifier from

inferred cell type tree
(Lin et al., 2019)
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Many methods also mention the need to build a comprehensive reference, that
should be integrated taking the into account the technical variability mentioned
above. Training, and especially the prediction phases of the method should also
be scalable. Models can take a very long time to train on larger references, and
prediction steps that involve extensive manipulation or transformation of the target
data can become time consuming with the ever growing size of expression matrices.

Lastly, some methods try to approach this classification problem from a hierarchical
point of view (Lin et al., 2019; Pliner et al., 2019; Wagner and Yanai, 2018). This
is based on the notion that cell types can be organised trees depicting phenotypic
relationships. These trees represent not just developmentally-related lineages, but
also the increasing specification of cellular function (still mostly correlating with
terminal differentiation). This can be of great value in instances like describing cells
from the immune system or the brain, where functional diversification leads to more
intricate phenotypes (see Section 1.4). Notwithstanding, a hierarchical classification
can also be seen as a method that reflects the uncertainty in the prediction. Each
individual cell ideally conforms to a determined phenotype, which would correspond
to a leaf node in an ideal cell hierarchy. Assigning a cell to a parent node rather than
a terminal one (or not doing it with a high confidence) can be caused by data sparsity
or low coverage, and thus not necessarily reflecting a naturally occurring hierarchy
of gene expression-driven cellular phenotypes. Yet this structure is intuitive and
informative, and projects like the Cell Ontology have considerable value in creating a
controlled vocabulary to name and relate cell types (Bard et al., 2005), with some of
the methods listed here explicitly conforming to it. The use of a curated and specific
nomenclature should thus be incentivized when doing de novo annotation of scRNA-
seq data, and supplying these labels can greatly accelerate the data interpretation
and its application in the development of new algorithms.

Large collections of data and development of informative references can be of use
in multiple ways. A steady-state cell identity reference can serve as a baseline to which
a disease sample can be compared. Having a sufficiently comprehensive cell registry
can do away with the need to generate a reference dataset if the goal is quantifying
alterations to the proportions of known cell populations. Evolutionary biology can
also benefit from predictive models for cell identity. Models can be adapted to
function across species, which can help trace the evolutionary origins of cell types.
Producing interpretable models from integrated data can also be informative in itself.
Some models return the importance of genes or gene sets in classifying each cell type,
and as such can help uncover novel features of a cell’s phenotype. Finally, organised
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references can also speed up new in-depth studies of specific cell types, as well as
studies focusing on other aspects of cell identity (e.g. open chromatin, methylation,
proteome, or spatial interactions). It should be noted that the methods discussed
so far in this section, while being in their majority developed for scRNA-seq, can
also for the most part be adapted to other data modalities like scATAC-seq (for open
chromatin) or CITE-seq (combining RNA and surface protein detection). Modelling
cell identity with multiple layers can revel more details about the molecules shaping
it, how they interact, and their relative importance.

1.4 Cell identity in the immune system

The immune system is one of the most complex and diverse biological systems across
the animal kingdom. The increased evolutionary pressure caused by the need to
continuously adapt to the fast evolving pathogens (Barreiro and Quintana-Murci,
2010) has resulted in a broad variety of molecular pathways and cells. The variability
in the types of cells found in the immune system is directly related to their intrinsic
plasticity in gene expression. Immune cells are very responsive to their environment,
having to constantly fine-tune expression programmes to react in a prompt and
targeted manner. It then comes as no surprise that many cell states have been
determined and named in immunology, and it is, perhaps on par with neurobiology,
the field where the definition of cell type and cell state clash the most.

Due to the fact that immune cells are non-adherent cells, immunology benefited
immensely from the development of flow cytometry. Immune cells have been deeply
characterised by this technology, with antibodies targeting surface receptors as well as
cytoplasmic proteins. It then comes as no surprise that the immune system has been
an early and major target of single-cell sequencing methods. scRNA-seq has had a role
in the fine-grained mapping of gene expression changes in haematopoiesis (Watcham
et al., 2019), discovering and reorganising subpopulations (Villani et al., 2017),
mapping their heterogeneity across tissues (Miragaia et al., 2019; Scott et al., 2018),
studying immune response to pathogens (Lönnberg et al., 2017; Stubbington et al.,
2016), and map communication of immune cells with their tissue of residence (Vento-
Tormo et al., 2018).

Immunity can be divided into innate and adaptive. The latter depends on a subset
of lymphocytes which are responsible for an immune response that can flexibly adjust
to invading pathogens in a non-evolutionary way (i.e. without the need for selection
at the level of the individual). The key strength of this system is the use of receptors



12 Cellular identity in the genomics era

which recombine and mutate (Krangel, 2009), forming a highly diverse repertoire that
can eventually be selected to respond to particular invaders. This variability, central
to the adaptive immune response, is further complemented by immune memory, that
is, the specific repertoire obtained when combating an infection will remain stored
in the organism in the form of inactive immune cells, which can be more quickly
reactivated should the same threat reappear. This is far more advantageous than
having to undergo selection of the receptor repertoire every time the same pathogen
is introduced in the system.

Fig. 1.2: Gene and protein structure of TCR
(A) The genomic organization of the human (left) and mouse (right) TCR genes α
(red), β (blue), γ (brown), and δ (green), showing clusters of V, D, J, and C gene
segments aligned vertically for clarity. Arrows represent the direction of transcription
within each of the TCR genes; squares and circles indicate gene elements in the direct
and reverse orientations, respectively. The murine TCR γ2 gene is inverted relative to
the rest of the locus. Dark colors indicate apparently functional gene elements, while
lighter shades represent pseudogenes. Curly brackets indicate the duplicated sets of
V genes in murine TCR α/δ locus. The TCR β and TCR γ loci are both on human
chromosome 7, on opposite sides of the centromere (schematically represented by
the black circle). Original figure published in (Glusman et al., 2001).
(B) Ribbon diagram of the complex oriented as if the TCR MS2-3C8 and CD4
molecules are attached to the T cell at the bottom and the HLA-DR4 MHC class
II molecule is attached to an opposing APC at the top. TCR α chain, blue; TCR β

chain, green; CD4, pink; MHC α chain, gray; MHC β chain, yellow; MBP peptide,
red. Original figure published in (Yin et al., 2012).

Within adaptive immunity lymphocytes, T cells fill various niches, but are broadly
considered to be the orchestrators of immune response (Kumar et al., 2018). T
cells are characterised by their expression of the T Cell Receptor (TCR), a dimeric
surface protein that can recognise an antigen presented by an Antigen Presenting



1.4 Cell identity in the immune system 13

Cell (APC) (Reinherz, 2014). This receptor’s ability to recognize a trove of antigens
resides in the original gene’s unique recombination capacity. TCR genomic segments
are composed of many genes (in addition to a constant region) - grouped into
variable (V), diversity (D) and junction (J) genes - that encode the variable section of
the final protein, which interacts with the antigen presented by the MHC complex
(Figure 1.2A). During T cell development in the thymus, these genes are recombined
through the action of RAG enzymes, which target recombination signal sequences
to cleave DNA and join them - first D and J (if D is present), then (D)J and V. The
insertion of additional non-templated nucleotides at the junctions can result in further
variability. There are numerous V and J genes, which gives rise to a large number of
possible V-J combinations, thus ensuring the diversity needed for antigen recognition
by T cells. This is further augmented by differential combination of TCR chains in the
final receptor. The activity of each receptor sub-unit is subject to selective pressures
that ensure that it can functionally recognise and respond to foreign antigens, while
being unresponsive to self-produced peptides and thus avoid auto-immune responses.
In adaptive T cells, these receptors are composed of an α and a β chain. γ and δ

chains also exist as a pair, but are less variable which results in a different type of
response (Simoes et al., 2018).

The TCR is part of a larger membrane surface complex that assists in the recogni-
tion of the antigen being presented, as well as the APC presenting them (Figure 1.1B).
T lymphocytes can thus be separated into two subsets with a shared developmental
origin, bifurcating depending on the type of antigen-presenting Major Histocompat-
ibility Complex (MHC) they can match. Consequently, each with their own APC
matching capabilities and is easily identifiable by the expression of a surface protein
that participates in this specific interaction. CD8-expressing T cells recognise antigens
presented through MHC class I, which exists on the surface of almost all cells. This
recognition elicits the maturation of CD8+ T cells, preparing them for an anti-cellular
response. This subset is accordingly also named cytotoxic, and through the use
of perforins and granzymes they destroy cancer cells, as well as cells infected by
intracellular pathogens (Halle et al., 2017).

CD4+ T cells are the other lineage of T cells. Also known as T-helper (Th) cells,
these lymphocytes are credited with the organisation of immune response, producing
cytokines that serve as triggers or blockers of particular immune reactions (Luck-
heeram et al., 2012). Th cells recognise antigens presented by the MHC class II,
present only on the membrane of dendritic cells, mononuclear phagocytes, some en-
dothelial cells, thymic epithelial cells (important during T cell selection for functional,
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Fig. 1.3: An overview of known T-helper cell heterogeneity and key marker genes.
Beyond their core markers, Th cells can be classified into based on different pheno-
types that depend on stage of immune response, the type of effector function, the
type of memory cell they form and their tissue of residence (a topic understudied
comparatively to the rest). Question marks (??) represent unresolved phenotypes.

non-self-responding TCR), and B cells. This interaction, combined with signalling
from the media where the cell is acting, induce an activation programme of the cell
that is specific to the external threat being handled. CD4+ T cells encompass a large
transcriptional plasticity, which results in diverse related phenotypes (Figure 1.3).
Th cells have classically been organised into various effector phenotypes based on



1.4 Cell identity in the immune system 15

their cytokine secretion profile (Mosmann et al., 1986; Schmitt and Ueno, 2015),
allowing them to orchestrate the professional immune cells in the microenvironment.
For instance, IFNγ production by Th1 cells has been identified as a key signalling
molecule to combat intracellular parasites through the stimulation of macrophages,
as well as class switch recombination of B cells to an IgG isotype. In turn, Th2 cells
use IL-4 and IL-13 to stimulate basophils and mast cells to release granules against
helminth invaders, and Th17 cells coordinate neutrophil recruitment by epithelial
cells through IL-17A and IL-17F (Weaver et al., 2013). While diverse in function,
these effector phenotypes are not the sole drivers of variability between Th cells,
which also vary according to their activation state (naïve, effector, and memory cells)
and with the host environment cues (tissue-specific phenotypes).

Upon finishing responding to an infection, T cells can go into a lowly replicative
memory state in which they will save the TCR that drove the specialized response.
The various memory states relate to the level of activation of the cell, but also
to its tissue of residence. Cells expressing the chemokine receptor CCR7 are in a
more naive, non-stimulated state, and also target lymphoid tissues like lymph nodes
or the spleen, where most of antigen presenting to CD4+ T cells takes place. In
addition, tissue-homing and residency phenotypes exist, all of them characterised
by the involvement of one or more chemokine receptors or adhesion molecules like
integrins. Nonetheless, tissue-specificity in T-helper cells, and even more broadly in
immune cells, is still generally understudied. Recent developments using single-cell
high throughout methods have tackled this questions (Scott et al., 2018; Wong et al.,
2016a), and it is expected that future efforts will rely on the accumulation of data to
extract these patterns from cross-tissue samples.

Among the phenotypic variability of T-helper cells we can find the particular
subset termed T-regulatory (Treg) cells. They are different from most Th cell subtypes
in that, rather than boosting immune response, they are responsible for dampening
it (Sakaguchi et al., 1995). This regulatory role in the immune system is of dire
importance. Leaving the immune response unchecked can lead to destructive re-
sponses that will adversely affect the organism, as in autoimmune diseases. Treg
cells were originally identified by their high expression of CD25, but as a subset they
are more clearly defined by the expression of the FOXP3 transcription factor (Hori
et al., 2003). Despite the focus on CD4+ Treg cells here presented, CD8+ cells can
also have a regulatory phenotype, yet this are understudied compared to its CD4+

counterpart (Yu et al., 2018).
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Further subsets of Treg cells have been described, either related to the various
parallel programmes that Th cells can adopt or their developmental origin. All
T cells derive from a Common Lymphoid Progenitor cell that originates through
haematopoiesis in the bone marrow, and travels via the bloodstream to mature in
the thymus, where their TCR recombines and is tested for responsiveness to foreign
antigens (positive selection) and against self-antigens (negative selection). However,
natural Treg cells are derived from a subset of T cells with an intermediate level
of response to self-antigens. This subset is further supplemented by induced Treg
cells, which originate from other T-helper cells. While both natural and induced
T-regulatory cells share a role, their distinct origins extend their TCR repertoire and
thus their function (Zhang et al., 2014). Beyond this, Treg cells are also subject to
memory and tissue-trafficking phenotypes like the remaining Th cells (Huehn et al.,
2004), although these are not as well studied.

Immune cells are also described to have roles beyond defense against pathogens.
These roles involve interactions with other non-immune tissues and mostly focus
on their maintenance (Gordon and Martinez-Pomares, 2017; Laurent et al., 2017),
and the immune system has also been described as relaying signals to the nervous
system (Veiga-Fernandes and Mucida, 2016). Treg cells have been increasingly
noted to be relevant, not just for their role in the immune system, but also for their
functions beyond it. This regulatory subset has been shown to be involved in tissue
repair (Li et al., 2018b) (chiefly muscle (Burzyn et al., 2013)), hair growth (Ali
et al., 2017), and homeostatic regulation of gut microbiota (Cebula et al., 2013)
and adipose tissue (Cipolletta, 2014; Sharma and Rudra, 2018). These functions,
being widespread in the organism, consequently rely on an efficient trafficking
and tissue localization scheme (Liston and Gray, 2014). Despite the importance
of understanding how these migration and adaptation programmes are constituted
and regulated (Agace, 2006), this aspect of the immune system is still incompletely
understood.

1.5 Tissue-specific gene expression

Histological studies have uncovered many details of organ biology and physiology.
Tissue staining is routinely used in pathology, and a better understanding of which
molecules are markers of different tissue structures and cells in steady-state has
resulted in important medical advancements.
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Early studies in transcriptomics using microarrays dissected transcriptional re-
sponses to metabolic shifts (DeRisi et al., 1997) and disease (with a particular focus
in cancer) (Rhodes et al., 2004), with homeostatic tissue sample comparison only
appearing later (Shyamsundar et al., 2005).

RNA-sequencing has, from its inception, been linked to the unraveling of cross-
organ and tissue differences (Mortazavi et al., 2008). Compared with preceding
technologies, RNA-seq was capable of detecting a broader variety of transcripts in an
unbiased way, along with high confidence splice junctions and allele-specific expres-
sion, with the added benefit of doing it for a lower cost (Wang et al., 2009). RNA-seq
was quickly adopted and improved (see Section 1.2), extending its sensitivity and
breadth of applications. Consortia were developed around the use of sequencing
technologies for different biomedical purposes, often with RNA-seq taking a pivotal
role (Lonsdale et al., 2013; The Cancer Genome Atlas Research Network et al., 2013;
The ENCODE Project Consortium, 2012). These large collections of data were instru-
mental in revealing the functionality of genomic regions and relationships between
samples. With data from the Genotype-Tissue Expression (GTEx) consortium, it was
revealed how human tissues transcriptionally relate to each other, as well as what
genes vary in expression across tissues and individuals (Melé et al., 2015). The Can-
cer Genome Atlas (TCGA) relied on RNA-seq, as well as other data modalities, from
several cancer types to map the similarities between different tumours, and identify
potentially important pathways for the treatment of those malignancies (Hoadley
et al., 2018). Comparison between disease samples and steady-state can also be
particularly informative, for example in understanding how tumours affect their adja-
cent tissue (Aran et al., 2017), or how tumour growth compares to developmental
tissues and which pathways are involved (Young et al., 2018). In short, while large
databases of expression data can serve as useful resources for broader applications
by the scientific community, they can also be mined for emerging patterns.

Transcriptomic data can also be analysed beyond one species to gain understand-
ing of the evolutionary links of gene expression programmes. Early microarray data
analysis showed how human-chimpanzee divergence was especially accentuated
when looking at brain RNA (Enard et al., 2002). Collection of samples from more
species, combined with the use of RNA-seq, augmented the resolution of what gene
expression changes could be observed (Brawand et al., 2011). Varying divergence
rates for different tissues, gene groups and genomic regions, could be observed
and associated to different selective pressures and tissue functions. Further studies
have since compared other species (Li et al., 2014) or aspects of the transcrip-
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tome (Barbosa-Morais et al., 2012), revealing the intricate way evolution sculpted
molecular programmes in different tissues across the tree of life, and defined the core
genes involved in tissue function.

The functional associations observed between tissues are a consequence of the
similarities and differences of the cell types that constitute them. These are mostly a
result of the developmental processes giving rise to these tissues. For example, most
tissues contain epithelial cells, marked by EPCAM, which share certain features such
as forming barriers and secretory functions (Trzpis et al., 2007). Epithelial cells have
been found to be vastly diverse within and between tissues, adopting different shapes
and spatial arrangements (Wang et al., 2012), as well as further cytological changes
adapted to the specific tissue biology.

Many aspects of tissue-specific heterogeneity stem from immune cells, perhaps
owing to their mobility and plasticity. Various tissue-specific functions of Treg cells
have been described above (Section 1.4). Macrophage heterogeneity represents
another paradigmatic case of between-tissue phenotypic variability. In adult humans,
circulating macrophages derive from bone marrow progenitors; in contrast, tissue-
resident macrophages have been demonstrated to be developmentally related to
haematopoietic progenitors in the yolk sac (Gomez Perdiguero et al., 2015). These
macrophage subsets are important in mediating tissue immunity, while in parallel
governing their homeostasis, such as synaptic pruning by microglia, heme recycling
by splenic macrophages, or the pro-angiogenic role of Hofbauer cells at the maternal-
fetal interface. Importantly, tissue-specific functions are a consequence of signalling
in the local environment, which is capable of completely reprogramming macrophage
chromatin, gene expression and function (Gosselin et al., 2014; Lavin et al., 2014),
and consequently influence their response to tissue-specific injuries (Hoyer et al.,
2019). This heterogeneity has also been detected within tissues, and in the gut has
been associated with signalling provided by local neurons (Gabanyi et al., 2016).
Single-cell RNA-sequencing has also been used to reveal cross-tissue conserved
regulators of macrophage identity (Scott et al., 2018), and could in the future be
used to further explore potential subpopulation heterogeneity and correlate it with
gene expression spatial data to identify associations with specific anatomic locations
within organs.

The application of scRNA-seq methods can extend these methods to comparisons
between cell types, which results in larger scale comparisons, yet will open a window
into how different programmes are specified for cell function in evolution and how
they translate across species. It has recently been showed how variability in expression
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relates to evolution of innate immune response in fibroblasts (Hagai et al., 2018).
Data from this study has been further used to test an artificial intelligence method
that was capable of accurately predict species-specific responses solely based on the
data from the remaining organisms sampled (Lotfollahi et al., 2018). As well as
understanding evolutionary biology of cell types or immune responses, these types
of studies and applications can have considerable impact in translating results from
model organisms into the clinic.

1.6 Insights and scope of this thesis

Single-cell RNA-seq has revolutionized the profiling of cell type heterogeneity over
the last decade. This has allowed for a deep, unbiased look into several organs and
organisms, profiling hundreds of cell types at higher resolution. At the same time,
progress has been made in computationally combining datasets for further analysis.
As an increasing number of scRNA-seq datasets is produced, we come ever closer to
a first draft of a transcriptional Human Cell Atlas, showcasing the full spectrum of
cellular variety in our species.

The expansion in cell throughput is now permitting the study of smaller, rarer
subpopulations. While specific cell types can still be sorted prior to sequencing for
deeper profiling, unknown and underrepresented cell types will require larger num-
bers to be detected. This profound transcriptional portrayal of cells also often results
in valuable resources that can be examined for functional targets of novel therapies
and assays, which is especially true when studying immune cells. Developing directed
cell therapies is a long-term goal of many medical fields, but a thorough knowledge
of key cell types is still needed.

A transcriptional reference for cell types can be a key resource for those employing
scRNA-seq. Having a ready-to-use resource that draws on the combined knowledge
of the data generated would provide immediate assistance for automatic annotation
of novel projects. Additionally, an exhaustive and integrated collection can be very
informative about cell and tissue biology. However, the limits of this integration
should also be tested and examined.

After this introductory chapter, Chapter 2 will show a deep dive into T-regulatory
cell heterogeneity using single-cell RNA-seq. Treg cells have been shown to have
critical roles in steady-state and disease, but it is still not fully understood which
subpopulations fulfill which functions in different tissues, and how this heterogeneity
relates to cross-tissue diversity. The chapter will describe Treg cell subpopulations
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detected in mouse in different tissues and how they compare to other resident T-helper
cells. These subpopulations reflect different activation states, and form a phenotypic
continuum between peripheral tissues (skin and colon) and their respective draining
lymph nodes. The first sections will also discuss the limits of heterogeneity detection
using scRNA-seq, especially when using two different protocols. Lastly, a mouse-to-
human comparison will be presented, comparing conservation and divergence of
gene programmes and Treg cell subpopulations.

Chapters 3 and 4 will focus on the use of broad scRNA-seq data collections to
create informative references for automatic cell type annotation. Chapter 3 will detail
the development of CellTypist, a pipeline to integrate diverse scRNA-seq datasets
and cluster them into meaningful groups that approximate commonly defined cell
identity, and the training of an updatable classifier that can be used to annotate new
datasets. All annotation data available from these datasets is also collected, and the
classifier train is also in itself informative. Following this, Chapter 4 will be centred
on the dissection of a large collection of human scRNA-seq data. After application of
CellTypist, it will explore how gene expression at the cell type level influences tissue
similarity, as well as uncover the groups of genes characterising cell identity.

This thesis ends in Chapter 5, where I will be discussing the broader picture of the
results reported in this thesis. This chapter will explore to what detail cell identity
can be deconstructed, and what that means for informative automated annotation
of new datasets, as well as to our understanding of cell biology and how they are
categorized.



Chapter 2

Tissue adaptation of T-regulatory cells

Non-lymphoid tissues (NLTs) harbour a pool of adaptive immune cells with largely
unexplored phenotype and development. We used single-cell RNA-seq to characterise
35000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon,
their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified
Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation
pseudotime ordering and gene kinetics were consistent in recruitment to skin and
colon, yet the initial NLT-priming in LNs and the final stages of NLT functional
adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated
using an in vivo melanoma-induction model, validating key regulators and receptors.
Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-
mammalian conserved tissue signatures. In summary, we describe the relationship
between Treg cell heterogeneity and recruitment to NLTs through the combined use
of computational prediction and in vivo validation.

This chapter has been published in Immunity as Single-cell transcriptomics of
regulatory T cells reveals trajectories of tissue adaptation (Miragaia et al., 2019), with
the exception of Section 2.2.6 and parts of Sections 2.3 and 2.4. The Methods section
in this chapter only includes the computational steps. The remaining experimental
methods, as well as the supplementary figures, can be found in Appendix A.

Additional contributions: experiments in this chapter were performed by Ri-
cardo J Miragaia. The study was designed by Ricardo J Miragaia, Sarah A Teichmann,
Agnieszka Chomka, Fiona Powrie, and myself. Ricardo J Miragaia is a leading
co-author of the manuscript. Full acknowledgements can be found in Appendix A.
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2.1 Introduction

T-regulatory (Treg) cells are a specialised CD4+ T cell subset which control immune
responses and play a central role in homeostasis (Izcue et al., 2009; Sakaguchi, 2004).
Recent studies have described unique tissue-specific adaptations of non-lymphoid
tissue (NLTs) Treg cells distinct from their lymphoid tissue (LT) counterparts. This
includes acquisition of an effector phenotype with expression of transcripts encoding
effector molecules (Ctla4, Gzmb, Klrg1), chemokines and their receptors (Ccr4), and
immunosuppressive cytokines (Il10) (Bollrath and Powrie, 2013; Panduro et al.,
2016), in addition to tissue-specific signature genes associated with their role in
each environment (Liston and Gray, 2014). Nonetheless, their full transcriptional
phenotype and its reflection on NLT population heterogeneity is yet to be uncovered.

Trafficking of T cells to NLTs occurs in steady-state conditions and develop-
ment (Kimpton et al., 1995; Thome et al., 2015) as well as in response to harmless
stimuli at barrier surfaces such as commensal bacteria and dietary antigens (Ivanov
et al., 2008). Treg cell migration requires tissue-specific cues involving integrins,
chemokine and other G-protein coupled receptors (Cepek et al., 1994; Chow et al.,
2015; Kim et al., 2013).

To provide a deeper insight into Treg cell populations in NLTs, we analysed
single-cell RNA-seq (scRNA-seq) data of Treg cells from mouse colon and skin, and
compared them to LT populations. We identified various transcriptionally distinct
clusters of Treg cells in LTs and NLTs, namely a subpopulation in the LTs which showed
heavy priming to the NLT environment. Pseudotime ordering of these subpopulations
further revealed the transcriptomic adaptations occurring in Treg cells during their
transition from the lymph node to barrier tissues. Our results show that these steady-
state adaptations share a core signature between bLN-to-skin and mLN-to-colon
trajectories, indicative of a general NLT residency programme in barrier tissues.
These findings were recapitulated during de novo Treg cell recruitment to melanoma
in a murine model system. Lastly, we examined the evolutionarily conservation of
NLT Treg cells’ identity between mouse and human.
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2.2 Results

2.2.1 Treg and Tmem cell identity in NLTs is driven by a common

expression module

We performed scRNA-seq on isolated CD4+Foxp3+ (Treg) and CD4+Foxp3-CD44high
memory (Tmem) T cells (Figure A.1A) from two barrier NLT sites - the colonic lamina
propria (hereinafter referred to as colon) and the skin - their lymphoid counterparts
in the draining mesenteric and brachial lymph nodes (mLN and bLN), and the spleen
from a Foxp3-GFP mouse reporter line (Bettelli et al., 2006) (Figure 2.1A). We will
refer to Treg and Tmem cells together as CD4+ T cells. For each sorted population,
single-cells were captured using the droplet-based microfluidic system Chromium
(10x Genomics), hereinafter referred to as 10x. We obtained 30396 good quality
cells (see Methods, Figure A.1C, Table A.5). Using the same gating strategy, two
Smart-seq2 (Picelli et al., 2014) plate-based datasets were produced independently.
These confirmed findings drawn from the 10x, and complemented them with higher
gene coverage and full T cell receptor (TCR) sequences.

A tSNE projection (Figure 2.1B) after filtering (Figure A.1B) showed a division
between LT and NLT, with cells from LTs divided into two clusters, according to
cell-type. NLT cells formed one single skin cluster and two clusters separating Treg
and Tmem cells from colon (Figure 2.1B). We defined gene expression signatures
for Treg and Tmem cells in peripheral tissues by examining differentially expressed
(DE) genes between all NLT and LT cells and, in parallel, between Treg and Tmem
cells (Figure 2.1C). NLT T cell populations are characterised by the expression of
several elements of the TNFRSF-NF-κB pathway, including transducers (Traf1, Traf4,
Traf2b), effectors (Nfkb1, Nfkb2, Rel, Rela, Relb) and inhibitors (Nfkbib, Nfkbid,
Nfkbie). In Tmem cells, these were accompanied by cytokines (Tnfsf8, Tnfsf11) and
various pathway inhibitors, such as Tnfaip8. In contrast, NLT Treg cells expressed
TNF receptors (Tnfrsf4, Tnfrsf9, Tnfrsf18) and transducers (Pim1), underscoring the
importance of signalling via the TNFRSF-NF-κB axis in controlling Treg cells in the
peripheral tissues. Several chemokine receptors appeared DE across tissues and
cell types. Ccr4, Ccr8 and Cxcr4 were upregulated in both colon and skin T cells,
while Ccr1 and Ccr5 were specific to colon and Ccr6 to skin. Cxcr6 was more highly
expressed in NLT Tmem cells. We also detected other genes involved in NLT identity
(Crem, Rgs2, Il1r2, Icos, Hif1a, Kdm6b, Gata3), including some specific to Tmem
(Vps37b, Id2, Ramp3, Tnfsf8) and Treg cells (Il10, Gzmb, Ctla4, Cd83, Socs2).
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Fig. 2.1: Steady-state scRNA-seq datasets of CD4+ T cells from LT and NLT
(A) Experimental design for scRNA-seq data collection. (B) t-SNE representing all
Treg and Tmem cells that passed quality control. (C) Genes defining the identity of
Treg and Tmem cells in lymphoid and non-lymphoid tissues. Colon and skin were
individually compared with their corresponding draining lymph node and spleen
cells. See also Figure A.1.

Together, the scRNA-seq datasets collected provide a comprehensive overview of
Treg and Tmem cells in multiple lymphoid and non-lymphoid tissues, and identify
the TNFRSF-NF-κB pathway as key to their barrier tissue identity.

2.2.2 Heterogeneity within LT and NLT Treg cell populations

Treg cell phenotypical and functional heterogeneity has been extensively discussed in
recent years (Campbell and Koch, 2011; Josefowicz et al., 2012). Clustering our data
within each tissue grouped Treg cells into distinct subpopulations (Figure 2.2A) with
clearly defined marker genes (Figure 2.2B). Across lymphoid organs, we identified



2.2 Results 25

central and effector Treg (cTreg and eTreg) cell subsets (Cretney et al., 2011; Vasan-
thakumar et al., 2015). cTreg cells express typical LT-associated markers, such as Tcf7,
Bcl2, Sell, S1pr1, while eTreg cells expressed a subset of NLT-associated genes, like
Tnfrsf9, Relb, Ikzf2 and Pdcd1. We also detected a subpopulation of Treg cells with
high expression of Stat1 and interferon stimulated genes exclusively in the bLN. A
fourth, less frequent population in lymphoid tissues ( 5-10%; Figure 2.2C), which we
named Treg NLT-like cells, expresses eTreg cell markers as well as genes characteristic
of NLT T cells, such as Itgae, Rora, Fgl2, Klrg1 (Figure 2.2B). We hypothesize that
this population is primed to migrate and adapt to NLTs. Indeed, DE genes between
NLT-like Treg cells from mLN and bLN revealed that the colon-homing molecules Ccr9
and Itga4, as well as their regulator Batf were upregulated specifically in the mLN,
while Cxcr3 and Itgb1 were present in the bLN (Figure 2.2E). These differences were
not observed between other LN subpopulations (data not shown).

To quantify the bias towards LT or NLT phenotypes, we calculated an NLT-LT
marker gene signature for each cluster (Figure 2.2D; see Methods). Consistently
across all LTs, cTreg cells exhibited a clear LT signature, while eTregs and NLT-like
Tregs leaned towards an NLT profile, which was more pronounced in the latter.

In the colon, we found three subpopulations of Treg cells that we labeled as
NLT, suppressive and LT-like. Treg NLT and suppressive cells were present in equal
proportions, both exhibiting NLT traits (Figure 2.2C,D). Treg NLT cells in colon express
higher amounts of Gata3, Nrp1, Areg, Il1rl1, Ikzf2, matching the known thymic-
derived GATA3+-subpopulation (Hu and Zhao, 2015; Schiering et al., 2014), while
suppressive colonic Treg cells expressed more Il10, Gzmb, Lag3, Cxcr3, resembling
the peripherally-derived RORγt+-subpopulation (Ohnmacht et al., 2015; Schiering
et al., 2014; Sefik et al., 2015). Rorc itself, while not present as a marker, appears in
a higher percentage of Treg suppressive cells (6.16% vs 2.85% in colonic Treg NLT
cells). Technical limitations for detection of lowly expressed genes by scRNA-seq
might account for the difficulty in capturing Rorc transcripts. Lastly, LT-like Treg cells
differed from other colonic populations by expressing LT-associated genes including
Sell, Ccr7, Tcf7, Bcl2, and lower amounts of NLT-associated genes such as Klrg1, Cd44,
Icos, Rora, Tnfrsf9, Itgae (Figure 2.2B).

In contrast to the colon, and likely as a consequence of fewer cells captured,
skin Treg cells did not show evident heterogeneity (Figure 2.2A). They expressed
an unequivocal NLT signature (Figure 2.2D), but it was not clear to which colonic
Treg cell populations they were most similar (Figure 2.2B). We addressed this by
using a logistic regression model to calculate the probability of each skin Treg cell
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Fig. 2.2: Heterogeneity within LT and NLT Treg populations
(A) t-SNE projections of Treg cells per tissue, coloured by subpopulation. cTreg:
central Treg, eTreg: effector Treg. (B) Subpopulation marker gene mean expression
(z-score). Values greater than 2.5 or lower than -1.5 are coloured equally. (C) Relative
proportions of Treg cell subpopulations within each tissue that revealed heterogeneity.
(D) NLT/LT signature score in each Treg cell subpopulation, measured as the ratio
between the number of NLT and LT genes that have been identified as significantly
upregulated in each cluster. (Continued on the following page.)
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Fig. 2.2: (continued) (E) Percentage of cells expressing each gene in Treg NLT-like
cells from mLN and bLN. Genes that are upregulated in the bLN subpopulation are
represented by an open circle, and genes upregulated in mLN are represented by a
filled circle. (F) Percentage of cells expressing each gene in colon Treg suppressive and
Treg NLT subpopulations. (G) Matching of non-colonic Treg cells to colonic Treg cell
subpopulations using a logistic regression model (90% accuracy, see Methods). Table
shows the percentage of each identified subpopulation (y-axis) that were labelled by
the model as each Treg cell cluster (x-axis). (H) Percentage of cells expressing each
gene in skin Treg NLT and colon Treg NLT cell subpopulations. See also Figure A.2.

identifying as one of the colonic subpopulations (Figure 2.2G, see Methods). This
revealed that most skin Treg cells were more similar to colonic Treg NLT than to
Treg suppressive cells. Accordingly, colon Treg NLT cell marker genes Gata3, Il1rl1,
Tnfrsf4, Rora were not differentially expressed between skin and colon Treg NLT cells
(Figure 2.2H, Figure A.2A). Despite their resemblance, differences in function and/or
state between skin and colon Treg NLT might reside in a few genes. Among these
are Dgat2, an enzyme involved in lipid synthesis in skin (Fagerberg et al., 2014), and
Ikzf4, a transcription factor relevant for Treg stability (Sharma et al., 2013).

The same approach applied to Treg cells from the spleen, mLN and bLN (Fig-
ure 2.2G) classified most central and effector Treg cells as Treg LT-like cells. Treg
NLT-like cells, on the other hand, were more similar to Treg NLT and Treg suppressive
cells. Both the mLN and the bLN had a higher proportion of Treg cells assigned as
suppressive than spleen, which contained the highest fraction of Treg NLT cells. We
confirmed the presence and proportions of Treg cell subpopulations in the Smart-seq2
datasets by matching these cells to the subpopulations found across LTs and NLTs in
the 10x dataset (Figure A.2B).

Clustering of Tmem cells revealed multiple subpopulations (T helper-1 (Th1 cell),
Th2 cells, Th17 cells, T follicular helper (Tfh) cells, lymphoid) (Figure A.2C and D)
distributed differently across the tissues analysed (Figure A.2D). Th1, Th2 and Th17
cells in lymphoid tissues exhibited a stronger NLT phenotype than Tmem lymphoid
cells and Tfh cells (Figure A.2E), which is likely an indication of their ability to adapt
to and function in the NLTs.

In summary, scRNA-seq allowed us to dissect the heterogeneity of Treg cells
from LTs and NLTs. We identified NLT- and LT-like Treg cell subpopulations that
suggest progressive cross-tissue adaptation to the NLT environment. We found a close
correspondence between skin and colonic Treg NLT cells, whilst revealing differences
in gene expression that might explain their adaptation to the two environments.
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2.2.3 Treg cells adapting to skin and colon share a transcrip-

tional trajectory

The mechanisms underlying Treg cell recruitment and adaptation from LT to NLT
are far from understood. Having identified multiple subpopulations at different
stages of NLT adaptation (Figure 2.2D), we further dissected the dynamics of this
transition. We obtained evidence of CD4+ T cell recruitment from LT to NLT by
reconstructing TCR clonotypes using TraCeR (Stubbington et al., 2016) from the
Smart-seq2 datasets. This showed Tmem and Treg cell clones present in LNs and
respective NLTs (Figure A.4A and A.4B), suggesting cell migration between them.

To identify Treg cell LN-to-NLT adaptation trends in the data, we reconstructed
a pseudospace relationship between cells by obtaining latent variables (LV) from
Bayesian Gaussian Process Latent Variable Modelling (BGPLVM, see Methods) (Titsias
and Lawrence, 2010). Along the mLN to colon trajectory laid out by LV0, Treg cells
are ordered from cTreg to eTreg cells, followed by NLT-like and LT-like Treg cells,
and ending with the overlapping Treg suppressive and Treg NLT cell subpopulations
(Figure 2.3A, “Colon” density plot, Figure A.3A). This order matches the increasing
expression of NLT marker genes and decrease of LT ones across mLN subpopulations
(Figure 2.2B and D). Importantly, Treg NLT-like cells from the mLN partially mixed
with Treg LT-like cells from the colon, supporting the notion that NLT adaptation is
a continuous process spanning LT and NLT. Overall, LV0 accurately represented the
progressive migration and adaptation of Treg cells to the NLT environment, providing
a reference to study the gene expression dynamics along this process. Skin and
bLN Treg cells were projected onto the latent space defined for colon and mLN,
resulting in a similar subpopulation distribution (Figure 2.3A, “Skin” density plot;
see Methods). Nevertheless, a similar projection was observed when using just those
cells (Figure A.3A and B). Applying the same approach to the Smart-seq2 datasets
yielded similar distributions of the inferred cell subpopulations (Figure A.2B) along
the LT-to-NLT adaptation trajectory, as well as considerable overlaps between LV
correlated genes (Figure A.3C-E). The use of velocyto (Manno et al., 2018) to infer
the directionality of adaptation suggests that most Treg cells found in the NLTs, as
well as some of the NLT-like Treg and eTreg cells, are adapting towards a more
pronounced NLT phenotype (Figure A.3C).

We then used the inferred LN-NLT trajectory to identify the cascade of transcrip-
tional changes driving adaptation to NLTs by modelling genes with a sigmoid curve
and find their activation or deactivation “times” (Figure 2.3B; see Methods). We
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Fig. 2.3: Reconstruction of Treg cell recruitment from lymphoid to non-
lymphoid tissues in steady-state
(A) Top two latent variables (LV) found with BGPLVM for mLN and colonic Treg cells,
with bLN and skin Treg cells mapped over the same coordinates. (B) Gene expression
in mLN and colon (top) or bLN and skin (bottom) over LV0 modelled as a sigmoidal
curve. Dashed vertical line marks the activation point of each gene. (C) Sequence
of activation of GO biological processes across the transition to colon (top) or skin
(bottom), evidencing a conservation between both trajectories (Spearman’s rho -
0.61). See also Figures A.3 and A.4.
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found 812 and 1209 genes with a switch in expression (either up or down) along
the bLN-to-skin and mLN-to-colon trajectories, respectively, with 511 of those being
shared. LT-related genes (Lef1, Tcf7, Sell) were downregulated, while NLT associated
genes like Nfil3, Ccr8, Cxcr6, Gzmb were upregulated. TNFRSF-NF-κB-related genes
(Tnfrsf1b, Tnfrsf4, Tnfrsf18) and the Batf transcription factor were upregulated still
in the LN, reflecting the relevance of this pathway for eTreg cell development and
the NLT phenotype (Vasanthakumar et al., 2017, 2015). Towards the NLT side of the
trajectory there is evidence of further Treg cell differentiation, with upregulation of
additional genes involved in this pathway (Nfkb2, Tnfrsf9), as well as other effector
molecules (Il10, Cd44). Important regulators for the final tissue adaptation include
Rora, recently described in skin Treg cells (Malhotra et al., 2018). We searched for
enriched Biological Processes GO Terms, and calculated the mean time of activation
or deactivation (t0) of the genes within each term. We found the gene expression
kinetics along the adaptation trajectories to skin and to colon to be consistent (Spear-
man’s rho=0.61, Figure 2.3C): T cell migration and glycolytic process are among
the earlier events in both colon and skin, followed by cell proliferation; cytokine
production and fatty acid homeostasis emerge towards the end of the adaptation
trajectory.

In summary, we determined a continuous trajectory aligning Treg cell subpop-
ulations from bLN, mLN, skin and colon according to the stage of recruitment and
adaptation to the NLT environments. Furthermore, the consistent ordering of gene
expression programmes shows that gene kinetics leading to NLT adaptation follows a
similar regulatory sequence in both bLN-to-skin and mLN-to-colon trajectories.

2.2.4 Treg cell recruitment into skin and melanoma relies on

common mechanisms

To validate our findings in steady-state cells, we used a mouse melanoma model
to investigate if Treg cell migration and adaptation trajectory to peripheral tissues
could be recapitulated. Previous studies analysing human TCR repertoires (Plitas
et al., 2016; Sherwood et al., 2013) have shown that tumour-Treg cells are likely
to be recruited de novo from LTs and not from the adjacent NLT, despite exhibiting
a phenotype similar to that of NLT Treg cells (De Simone et al., 2016; Plitas et al.,
2016). We therefore purified Treg and Tmem cells from B16.F10 melanomas or PBS
controls 11 days after subcutaneous implantation into Foxp3-IRES-eGFP reporter
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mice (Haribhai et al., 2007) to produce a plate-based scRNA-seq dataset (Figure 2.4A;
see Methods).

Skin and tumour Treg cells clustered separately (Figure 2.4B). As with steady-
state skin, we observed shared clonotypes between tumour and bLN Treg cells
(Figure A.5B). In the tumour-bearing mice, we detected an additional cluster of
cycling cells in both the LN and tumour (Figure A.5A). These observations suggest de
novo recruitment from LN and simultaneous expansion in both tumour and draining-
LN. DE between non-cycling tumour Treg and control skin Treg cells revealed a
relatively small number of genes significantly different between the two Treg cell
populations (28 upregulated in tumour and 10 in steady-state skin (Figure 2.4C)),
in line with recently published human data (Plitas et al., 2016). Tumour Treg cells
upregulate the exhaustion marker Lag3 (Malik et al., 2017), as well as Cxcr3 and
Ccl5, while control skin Treg cells upregulate skin Treg cell markers such as Il1rl1,
Pim1, Sdc4, Kdm6b and Erdr1. However, skin Treg cell signature genes such as Batf,
Tnfrsf4, Tnfrsf9, Samsn1, Tigit, Tchp, Ccr8, Ccr2 and Itgav are similarly expressed in
both populations.

Next, we sought to obtain a shared migration trajectory of steady-state versus
perturbed system (tumour model) Treg NLT cells recruitment. To this end, we used
the MRD-BGPLVM algorithm (Damianou et al., 2012) (see Methods) to explore gene
expression trends across Treg cells from the control skin, tumour and respective
draining-LNs together. Two main latent variables were identified, one explained
almost entirely by cell-cycle-associated variability (LV5), and one mainly associated
with the LT-NLT signature (LV9) (Figure 2.4D, Figure A.5C). Notably, NLT adapta-
tion trajectory (LV9) was strongly related to the trajectories found in control and
melanoma conditions when MRD-BGPLVM is applied to each one individually (re-
spectively, 86% and 61% of genes correlated with LV9 are also correlated with control
LV1 and tumour LV1; Figure A.5E-H, see Methods).

Gene kinetics along NLT adaptation (LV9) for each condition show 158 shared
genes, with 71% of which also present in the steady-state skin trajectory determined
previously. Values of t0 remain largely unchanged between control and melanoma
(Figure 2.4E), suggesting that NLT recruitment and adaptation follow the same
program in homeostatic and perturbed conditions. The tissue adaptation genes
shared between control and melanoma include many of the players in the TNFRSF-
NF-κB pathway we previously described in the steady-state (Tnfrsf9, Tnfrsf18). These
were accompanied by genes associated with cell migration and adhesion (Ccr2, Gpr55,
Plxna2), transcription factors (Rora, Ikzf3, Id2, Batf, Hif1a, Prdm1), secreted factors
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Fig. 2.4: Recruitment and adaptation of Treg cells to the tumour environment
recapitulates steady-state migration
(A) Melanoma induction strategy and sampled tissues. (B) t-SNE depicting Treg and
Tmem cells from tumour and steady-state skin, draining brachial lymph nodes and
spleen. (C) Differential expression between skin and tumour Treg cells. Treg cells clas-
sified as cycling were excluded. (D) (top) Latent variables found with MRD-BGPLVM
representing cell cycle (LV5) and non-lymphoid tissue recruitment/adaptation of Treg
cells (LV9). (bottom) Distribution of cells based on Tissue and Condition and Cell
Cycle phase along the recruitment trajectory. (Continued on the following page.)
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Fig. 2.4: (continued) (E) Difference in activation time (t0) of genes in control and
tumour. Genes are classified as being markers of skin, lymph node, cell cycle or
other. Coloured points show mean +/- mean standard error for each group. Vertical
dashed lines represent the mean +/- standard error for all t0 values. T-test between
control and melanoma t0 indicates no change (p-value = 0.2631), with t0 values
having a Spearman correlation coefficient of 0.65 between both conditions. See also
Figure A.5.

(Lgasl1), and others related to immune activation and effector states (Klrg1, Icos,
Tigit, Gzmb).

Despite the similarities between melanoma and control trajectories, cells from
both conditions do not completely overlap, and Treg cells could be ordered by
NLT adaptation between populations (from least to most adapted cells: control LN,
melanoma LN, tumour, and control skin) (Figure 2.4D). This implies that in response
to an immune challenge in a barrier tissue, a higher fraction of Treg cells in the LNs
acquires NLT adaptations. In fact, for several NLT markers we observed more cells
expressing them in the tumour-draining LN compared to the control, e.g. Id2 (59% vs
26%), Batf (57% vs 26%), Lgals1 (89% vs 67%), further supporting our hypothesis
that there is priming of Treg cells to NLTs while still in the LN. Overall, Treg cells
from challenged mice recapitulate the steady-state NLT adaptation.

2.2.5 Conserved NLT identity in mouse and human

We complemented our characterisation of murine NLT Treg and Tmem cells by
collecting human Treg cells, as well as Tmem (sorted into central and effector
memory) cells from blood and skin, and from tumour-adjacent colon sections from
patients undergoing colonic resection (Figure 2.5A, Figure A.6). Similar to the
mouse analysis, we identified gene markers for human CD4+ T cell populations (see
Methods).

Focusing on one-to-one orthologs, we found that 24 out of 144 human skin Treg
cell markers and 17 out of 74 human colon Treg cell markers overlapped with the
respective mouse signature. In colon, we observe the conservation of Tnfrsf4, Lgals1,
Srgn, Cxcr6, Maf, or Ikzf3 (Figure 2.5B), genes that we had previously identified as
important in defining tissue identity and Treg cell subpopulations. The same applied
to skin Treg cells, where we saw expression of Batf, Rora, Rel, Srgn, Tnfrsf18, and
Tigit across species (Figure 2.5C). Overall, this indicates a conserved role of the core
NLT signature, namely the TNFRSF-NF-κB-pathway.
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Fig. 2.5: Human-mouse comparison of NLT Treg cell marker genes.
(A) Tissues and cell types sampled from human. (B and C) Top: Overlap between
NLT Treg cell markers detected in human and mouse, in either (B) colon or (C)
skin datasets. Bottom: Fold-change between gene expression in non-lymphoid and
lymphoid tissues in mouse and human. Blood and spleen were used as lymphoid
tissues in human and mouse respectively. (D) NLT paralogs exhibiting opposing
expression patterns between human and mouse. See also Figure A.6.
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In several instances we observed the expression pattern of one gene being substi-
tuted by a paralog in the other organism (Figure 2.5D). For example, while the kinase
Pim1 is a marker of mouse NLT Treg cells, and was not expressed in human, the
inverse was true of Pim2. A similar situation was observed for Rgs1-Rgs2, Hif1a-Hif3a
and others. This suggests that some paralogous proteins have evolved to substitute
each other during evolution of NLT Treg cells in mammals. The fact that several of the
identified cases are receptors related to signal transduction leads us to believe that
evolution of cell-cell communication pathways owes some plasticity to differential
paralog usage.

Our cross-species comparison suggests that despite cross-species differences, the
NLT Treg cell adaptation program defined in mouse is generally conserved in human.

2.2.6 Classfication of Treg cell populations across species

The increase in the number of datasets from a variety of species enables the compari-
son of cell types between them. In the previous section, it was explained how the
core NLT Treg cell programmes were conserved between mouse and human, based
on one-to-one orthologs. This type of orthologs make up the majority of conserved
genes between these species, but one-to-many and many-to-many orthologs can also
have important roles in cell identity and function.

Two logistic regression models were trained to detect mouse Treg cell subpop-
ulations in human cells (see Methods). The first model was trained solely using
one-to-one orthologs expressed in both datasets. The second model included all
genes with any sort of orthology by adding the counts of related genes. Within
each tissue, predicted subpopulations appeared as expected, with blood containing
more cTreg and eTreg cells than NLTs, which in their turn had more Treg NLT and
suppressive cells (Figure 2.6A). Transition populations (Treg LT-like and NLT-like)
appeared more represented in general, as well as present in both lymphoid and
non-lymphoid tissues. This is an effect comparable to that observed in Figure 2.2G,
where Treg NLT-like cells are shown to match Treg NLT or Treg LT-like cells from
colon, likely because of the intermediate phenotype of the cells.

When comparing the models per tissue (Figure 2.6A, top vs bottom row), simi-
lar subpopulation proportions are predicted per human tissue, indicating reduced
differences between methods. However, we observe that the "one-to-one orthologs"
model is the only that unexpectedly predicts the presence of Treg NLT in blood, and
predicts in general a higher number of the rare, bLN-restricted Treg Stat1 subpop-



36 Tissue adaptation of T-regulatory cells

Fig. 2.6: Training models for cross-species Treg classification.
(A) Treg cells of each human tissue classified as each subpopulation detected in
mouse using a logistic regression model trained with one-to-one orthologs (top)
or all orthologs (bottom). (B) Row-normalised confusion matrices for each tissue,
comparing the classifications using the one-to-one ortholog model (y-axis) against
the all orthologs model (x-axis). (Continued on the following page.)
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Fig. 2.6: (continued) (C) Distribution of the absolute value of coefficients for the top
300 genes learned for each population, in a model using all expressed mouse genes.
(D) Precision-recall curves for models trained using all mouse genes, all orthologs or
just one-to-one mouse-human orthologs. Precision and recall were calculated on a
balanced test set composed of 10% of mouse Treg cells.

ulation (Figure 2.6B). In the "all orthologs" model, cells that would be assigned to
this subpopulation are instead distributed between Treg NLT-like or LT-like, which are
more evidently present in the same tissues in mouse.

To examine the contribution of different types of genes for cell identity prediction,
we used a model trained on all mouse genes, and plotted the genes with the top
300 coefficients in absolute value by subpopulation and orthology type (Figure 2.6C.
This shows that, while different subpopulations have similar distributions of absolute
coefficients for one-to-one ortholog genes, distributions for one-to-many orthologs
(and genes with no listed ortholog) are more dissimilar. In particular, Treg Stat1
cells have a larger number of one-to-many ortholog genes with a higher coefficient
than the remaining populations, underscoring the importance of this type of genes
in defining this subset. Concomitantly, precision-recall curves calculated for a test
set comprised of 10% of mouse Treg shows that, while most subpopulations are
equally well classified by both ortholog-based models, for Treg Stat1 cells only the "all
orthologs" model performs as well as the "all genes" full model. These observations
provide evidence that, while most cell states can be distinguished from one-to-one
orthologs alone, this may not always be the case.

2.3 Discussion

Our work sheds light on the phenotype of skin and colon Treg cells. We profiled
NLT Treg and Tmem cells to identify global relationships between cell populations,
discriminating general CD4+ and specific Treg cell markers in NLT. We found that
these Treg populations conserve fundamental traits shared across the skin and colon
compartments, namely a substantial prevalence of genes part of the TNFRSF-NF-
κB axis. We leveraged the single-cell resolution of our data to explain Treg cell
heterogeneity in the context of LT-to-NLT transition. Besides the eTreg cell state
previously described in lymphoid organs (Cretney et al., 2011), we found two
transitional subpopulations, Treg NLT-like cells in the lymphoid tissues and Treg LT-
like cell in the non-lymphoid ones, which together explain the cross-tissue transition
from central Treg to Treg NLT cell populations. NLT-like Treg cells in the mLN and bLN
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showed extensive NLT-priming, including the upregulation of tissue-specific homing-
molecules to the drained NLT. Others have demonstrated that a subpopulation of
spleen Treg cells can express a partial visceral adipose tissue (VAT) signature and later
give rise to fully-mature VAT-Treg cells upon migration (Li et al., 2018a), implying
that this is valid for various tissues and should be considered in the design of future
precision medicine strategies involving targeting of Treg cells to NLTs.

Comparative analysis of Treg cell phenotypes revealed genes associated with the
TNFRSF-NF-κB axis to be highly upregulated in NLT (Figure 2.1C). Further enrichment
analysis (Figure 2.7) confirms that this pathway is significantly associated with an
NLT phenotype, despite the incomplete nature of the pathway’s annotation. Genes
such as Tnfrsf4 and Tnfrsf9, which encode for receptors that play a role in inhibiting
Treg cell function (Nagar et al., 2010), were identified here as distinctively associated
with NLT Treg cells, yet are absent from the currently available pathway annotation.
Mining of the dataset presented here can shed light on tissue-specific Treg cell biology,
and reveal additional targets for Treg cell modulation.

Fig. 2.7: Enrichment of genes from the TNF pathway in NLT T cells.
Barplot shows -log10(p-value) from Fisher’s Exact Test, testing the overrepresentation
of genes from the TNF signaling pathway, taken from the KEGG Database. Treg cell
gene sets correspond to the intersection of genes upregulated in Treg cells intersected
with those upregulated in the specific tissue (coloured dots in Figure 1.1C).
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Our pseudotime results support migration and adaptation relationships between
subpopulations, and allowed us to explore the basic mechanisms for the establishment
of peripheral Treg cell phenotypes. In this transition, metabolic and proliferation
changes in Treg cells happen concurrently with priming for migration, followed
by changes in cytokine production machinery upon establishment in the periphery.
Despite the overall similarity of recruitment and adaptation to NLTs, and although all
three subpopulations (skin NLT, colon NLT, colon suppressive) fell close along the NLT
adaptation trajectory, colon but mainly skin Treg NLT cells exhibited greater adapta-
tion to the NLT environment. We hypothesise that the upregulation of Ikzf4, Dgat2
and Itgae observed in skin might explain and contribute to the further stabilisation,
retention and metabolic adaptation of Treg cells to the NLT compartment.

Treg cell priming in LNs is apparent from their increased NLT signature and
expression of tissue-homing molecules, yet it is likely that Treg NLT-like cells are
a heterogeneous subpopulation, with some cells egressing to the NLTs and others
recently drained from the NLTs. This was confirmed using velocyto, and agrees
with the bidirectional migration between LNs and the NLTs described in skin using
a photoconversion system (Matsushima and Takashima, 2010). Studies coupling
photoconversion and scRNA-seq can further our understanding of Treg cell migration
patterns, as previously shown with single-cell qPCR (Ikebuchi et al., 2016).

A considerable proportion of the adaptation programme between bLN-to-tumour
was contained within the bLN-to-skin trajectories. Similarly to steady-state, cues de-
rived from NLTs are likely to prime Treg cells located in the draining LNs, as indicated
by a higher percentage of cells expressing Batf, Lgals1, Id2 and other NLT markers
in melanoma. In sum, tumour Treg cells resemble less mature versions of their
homeostatic skin counterparts that, nevertheless, follow the same NLT adaptation
trajectory.

The establishment of correct orthology relationships can be important for cross
species comparisons. While we show that including a broader variety of ortholog
genes improves prediction for one Treg subpopulation, this is not a definitive solution
and should warrant further testing. A drawback still present is the exclusion of genes
with no defined orthology relationship. These could be included by an approach that
aggregated the genes by gene sets that would match between species, which can
be agnostic to these evolutionary relationships and instead rely on per-species gene
functional descriptions. It can however leave out less well studied genes, or have
poorer performance for less well described or annotated species.
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Despite the conserved tissue-specific signatures, the differential paralog usage
identified between species (Figure 2.5D) suggests a pivotal role for expanded gene
families in rewiring signalling pathways throughout evolution. Studies focusing not
only on tissue-resident cells, but also on the surrounding environment and organs
can help dissect the relevance of these pathways in T cell biology, and how this
evolutionary rewiring might affect immune response and homeostasis.

Overall, we reveal a dynamic adaptation of T cells as they traffic across tissues,
and provide an open resource (data.teichlab.org) for investigating in vivo CD4+ T cell
phenotypes in mouse and human, to ultimately harness NLT CD4+ T cells as future
therapeutic targets.

2.4 Methods

For further experimental methods see Appendix A.

2.4.1 RNA expression quantification and normalisation

Sequencing data from 10x runs was aligned and quantified using the CellRanger
software package with default parameters.

Gene expression from Smart-seq2 scRNA-seq data was quantified in counts using
Salmon v0.6.0 (Patro et al., 2017), with the parameters –fldMax 150000000 –fldMean
350 –fldSD 250 –numBootstraps 100 –biasCorrect –allowOrphans –useVBOpt. For
mouse, the cDNA sequences used contain genes from GRCm38 and sequences from
RepBase, as well as ERCC sequences and an EGFP sequence. Since the EGFP RNA
is transcribed together with Foxp3, counts from these two genes were added after
quantification to represent Foxp3 expression. For human data quantification, cDNA
sequences from GRCh38 and ERCC were used.

Standard scRNA-seq analysis (QC, differential expression and marker gene de-
tection, and clustering) was performed using Seurat (Satija et al., 2015). All data
was log-normalised using the NormaliseData function with a scale factor of 10000.
Our expression data for different tissues is also available for user-friendly interactive
browsing online at data.teichlab.org.
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2.4.2 scRNA-seq quality control

Quality control of 10x-derived data was made taking into account number of UMIs -
keeping cells with between 1000 and 15000 UMI - and number of genes - keeping
cells with between 700 and 3500 genes with at least 1 UMI (Table A.5). While cells
were not filtered by their mitochondrial read content, cells with an elevated number
of these reads are eventually removed via clustering (see “Subpopulation detection
in 10x data”).

For Smart-seq2 data, count values for each cell were grouped in an expression
matrix, and ERCC expression were separated from true gene expression. Cells
were then filtered based on different quality parameters calculated for each dataset
(Table A.5). Additionally, the output of TraCeR (Stubbington et al., 2016) was used
to remove cells without a detected TCR sequence, as well as invariant Natural Killer
T (iNKT) cells and γδ T cells (defined as cells with at least one γ and one δ chain
detected and no αβ pair). For the colon and skin datasets, 433 and 745 cells passed
quality control, respectively.

Importantly, we note that TCR detection greatly improved our filtering by exclud-
ing cell types captured by FACS that did not fit the intended categories. This is the
case for iNKT cells - captured mostly together with spleen T memory cells - and γδ-T
cells - sorted together with skin Tmem cells in the melanoma experiment. Indeed, we
also identified a NKT population in the 10x dataset, mostly within the cells sorted
as spleen Tmem cells, as well as some LN Tmem cells (Figure A.1B and A.1C). We
cannot, however, state that these are “invariant”, since we have no access to their
complete TCR chains. TCR filtering also enables removal of cell doublets by identify-
ing cells expressing an excessive diversity of recombined TCR chains. Even in cases of
no allelic exclusion for TCR α and β sequences, each cell would still only be able to
produce two recombinants of each, allowing removal of cell doublets expressing more
than two recombinants for a TCR locus. Lastly, we removed all cells not expressing
any recombinant TCR in order to have a more stringent quality control. While in
the human dataset the number of cells without a TCR was evenly distributed across
tissues and cell types, there was a clear skew towards TCR absence in peripheral Treg
cells (colon and skin) in the mouse datasets. These Treg cells did not appear to differ
from the remaining population, having no differentially expressed genes or major
differences in their overall number, presenting only a skew towards a higher number
of reads (data not shown).
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2.4.3 Dimensionality reduction methods

To obtain an overview of the datasets showing the relationships between cell popula-
tion clusters, Principal Component Analysis (PCA) and tSNE were used. Before PCA,
data was scaled using the ScaleData function (negative binomial model, normalising
by the number of UMI and centering the data). PCA and tSNE were calculated
using the RunPCA and RunTSNE functions, respectively. For each dataset, a dif-
ferent number of Principal Components (PCs) and values for perplexity were used
(Table A.5), chosen by visual inspection of an elbow plot representing the relative
importance of each PC. With exception of the PCA projection for the complete 10x
dataset, only highly variable genes were used, calculated using the FindVariableGenes
function from Seurat with the parameter ‘num.bin‘ of 100 and ‘binning.method‘ of
"equal_frequency". Using all genes for dimensionality reduction of the whole 10x
dataset resulted in more accurate clustering, allowing for the identification of most
contaminant cells on this first step (Figure A.1B). Plate-based datasets were treated
separately as much as possible to avoid confounding batch effects from experiments
performed separately.

2.4.4 Subpopulation detection in 10x data

To find clusters in the data, we used the FindClusters function from Seurat, with the
same number of principal components used for tSNE. Cluster annotation was done
by inspecting markers detected by the FindAllMarkers function.

Global clustering of the 10x dataset was done with the resolution parameter set
to 0.2. After clustering the complete dataset, we excluded artifactual subpopula-
tions (Figure A.1). A mixed Treg and Tmem cell population characterised by high
expression of immediate-early response genes (e.g. Jun, Junb, Fos, Fosb), which has
previously been reported in other cell types (Adam et al., 2017; van den Brink et al.,
2017; Wu et al., 2017) was removed. An additional population of lymphoid tissue
Tmem cells was also excluded because they presented expression profiles similar to
NKT cells (Nkg7, Ccl5, Cd160, Klrbc1, Cxcr6).

Clustering on individual tissues used the following resolutions: for Treg cells, 0.3
on Spleen, 0.4 on bLN, 0.4 on mLN, 0.5 on Colon, 0.4 on all skin cells; for Tmem cells
0.4 on Spleen, 0.3 on bLN, 0.7 on mLN, and 0.6 on Colon. Annotation was performed
and subpopulations characterised by immediate-early response genes were removed.
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2.4.5 Differential expression analysis

Differential expression (DE) and marker gene detection was performed using the
FindMarkers and the FindaAllMarkers functions from the Seurat R package, using
the default Wilcoxon test. Genes were considered differentially expressed if they had
an average log fold-change of at least 0.25 and a Bonferroni-adjusted p-value of 0.05
or lower.

For DE including all cells of the 10x dataset, a minimum of 5% of cells had to ex-
press the gene, otherwise a minimum of 1% was used. For comparisons between tests
(for example Treg vs Tmem cells and LT vs NLT, see Figure 2.1C), the FindMarkers
function was run twice - the first time to determine all genes considered expressed
for each comparison, the second using the union of all those genes.

In the human and mouse comparison, human NLTs were compared to blood and
mouse NLTs were compared to spleen only, and testing was restricted to genes with
one-to-one orthologs.

2.4.6 Mapping cells to known populations using logistic regres-

sion classification

To make a correspondence of cells in the 10x dataset with the identified Treg cell
subtypes in the colon (Figure 2.2G), or between Smart-seq2 data and the complete
10x dataset (Figure A.2B), the counts and subpopulation labels of the 10x dataset
Treg cell subpopulations and the complete 10x dataset were used to train a logistic
regression classification model using scikit-learn with an L1 penalty and default
parameters. The label with the highest probability predicted by the model was then
attributed to each cell. The figures show the percentage of each tested population
that was predicted as matching to each learned label.

For cross-species mapping of Treg subpopulations, 90% of the sorted Treg cells
from mouse were used to construct two models, with the remaining subpopulation-
balanced partition kept separately for model testing. The first model (refered to in
Figure 2.6 as "one-to-one orthologs") was used only using genes expressed in both
species that are one-to-one orthologs. Another model was trained by using all genes
with known orthologs, and adding the counts for genes with many orthologs. For
example, if a gene in mouse corresponds to three genes in human (i.e. a one-to-
many relationship), then the counts of the three human genes are added and given
one identifier. For many-to-many relationships, the same happens in both species
simultaneously. Additionally, a third model was trained using all mouse genes, to use
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as a ground truth for the predictive power of the other models. With 10-fold cross
validation, these three models have a mean accuracy of 84.0%, 84.7%, and 85.6%,
respectively. Precision-recall curves were then calculated using the 10% test set.

2.4.7 Obtaining a migration latent variable for steady-state Treg

cells

The large dimensionality of single-cell RNA-seq data has been used before to gain
insights on time-dependent events (Lönnberg et al., 2017; Trapnell et al., 2014) by
applying methods for pseudotime inference. Although it is impossible to follow one
cell through the complete process, these methods can order single-cell data into a
continuous dimension, using the discrete samples as snapshots containing a multitude
of intermediate states.

Immune cells are expected to migrate between LTs and NLTs. We assumed that
this effect would be reflected as a gradual single-cell expression phenotype, which
could be captured as a latent variable of the data. To achieve this, we used Bayesian
Gaussian Process Latent Variable Modelling (BGPLVM) (Titsias and Lawrence, 2010),
implemented in the python package GPy (https://github.com/SheffieldML/GPy) as
“GPy.models.BayesianGPLVM”, which was already used before for dimensionality
reduction in scRNA-seq data to model Th1-Tfh cell differentiation (Lönnberg et al.,
2017). BGPLVM was used on log-scaled counts and only considering highly variable
genes. We run the method with six latent variables (LV) to be sure we capture
the most relevant ones by Automatic Relevance Determination (ARD, Figure A.3A),
although this number does not alter significantly the performance of the algorithm.
We then interpret the most important LV as the one ordering the cells between
tissues along a migration and adaptation transition. In agreement, we observe gene
expression changes associated with losing the lymphoid tissue identity and acquiring
a peripheral tissue transcriptional profile (Figure 2.3B).

For 10x data, the method was used on mLN and colon Treg cells. We then mapped
bLN and skin Treg cells onto the same LV using the predict function from the BGPLVM
module, in order to have a similar coordinate system for both trajectories. Running
BGPLVM with all data together would achieve a similar result (not shown). A BGPLVM
projection of bLN and skin Treg cells (Figure A.3B) shows an identical projection
but with a wider gap between bLN and skin cells due to the large differences in cell
numbers. We excluded spleen cells from this analysis to focus specifically on LN to
NLT adaptation.



2.4 Methods 45

Similar effects are also observed in the corresponding Smart-seq2 cells (Fig-
ure A.4D). We then show that all the LVs chosen as a “pseudospace variable” (LV0)
have a similar effect between datasets by comparing the shared proportions of genes
correlated with each of them (Figure A.4E).

2.4.8 Identifying a common tissue migration trajectory in con-

trol and melanoma

Similarly to the steady-state, migration from the LN to the skin with a melanoma
challenge is also expected. A common between-tissue Treg cell migration trajectory
in control and melanoma conditions was obtained using Manifold Relevance De-
termination (Damianou et al., 2012) (MRD). MRD works by having an underlying
BGPLVM model whose dimensions can be shared or private between sections of the
data. Having the prior knowledge that a cell-cycle effect is present in the data (Fig-
ure A.5A) and with the goal of obtaining a LV explaining tissue recruitment in both
conditions, the melanoma dataset was divided into three sections for input: one with
the expression in all cell-cycle associated genes, one with marker genes for any tissue,
and one with the remaining genes. The importance of each section in each latent
variable is shown in the ARD plot (Figure A.5C). The model was run allowing for 12
LVs as output, and the one highly influenced by tissue-specific genes but not cell-cycle
or other genes was used as a migration trajectory for both conditions (Figure 2.4D).
The effects captured by these LVs can be observed in BGPLVM projections for the
individual conditions (Figure A.5E-G).

2.4.9 Switch-like genes in the migration latent variable

Gene expression changes in a continuous trajectory can be interpreted as a series of
switch-like events. These can be modeled using a sigmoid curve, described by the
following equation:

S =
2×µ0

1+ e−k(t−t0)
(2.1)

where µ0 is the mean expression between the sigmoid “on” and “off” states, t0

is the point in which the switch in expression happens, and k defines the sigmoid
inclination and can be interpreted as the activation strength. Parameter k will
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additionally inform on the direction of the switch (activation or inhibition) from its
signal.

The R package switchde (Campbell and Yau, 2017) was used to model gene
expression as a sigmoid in the inferred migration trajectories, using the appropriate
latent variable as pseudotime.

In the steady-state 10x dataset partitions (mLN+colon Treg cells and bLN+skin
Treg cells), switchde was applied for non-Tmem cell specific genes expressed in at
least 30 cells, as well as genes with an absolute correlation greater than 0.25 with
the LV chosen for both partitions. Due to the large differences in the number of cells
in the skin partition, we ran switchde 100 times on different subsamples of each
Treg cell subpopulation matching the smallest subpopulation size (405 for the colon
partition, 55 for the skin partition), and used the median values of the parameters for
further analysis. For the melanoma dataset, genes expressed in at least 5 cells in both
conditions were tested. Only genes with a q-value<=0.05 and that had a t0 within
the LV range were kept for further interpretation.

2.4.10 RNA velocity estimation

RNA velocity is a measure that leverages detection of spliced and unspliced transcripts
to predict single-cell development directionality (Manno et al., 2018). We used
velocyto to determine in which direction cells were changing in the cross-tissue
adaptation trajectories. We have followed the python implementation of velocyto,
and the code can be found in https://github.com/tomasgomes/Treg_analysis/blob/
master/Velocyto.ipynb, where each of the runs is present.

2.4.11 Detection of expanded clonotypes

T cell receptor (TCR) sequences were reconstructed from single-cell RNA-seq data
and used to infer clonality using TraCeR (Stubbington et al., 2016). We used TraCeR
with the parameters –loci A B D G, –max_junc_len 120 to allow reconstruction of
TCRα, TCRβ, TCRδ and TCRγ chains in each cell and to permit TCRγ chains with
long CDR3 regions.

2.4.12 GO Term enrichment

To test for enriched GO Biological Processes or KEGG Pathways in gene sets, the
gprofiler R package (Reimand et al., 2016) was used, with the option of moderate

https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
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hierarchical filtering enabled. No custom background was used (i.e. all genes with
a GO Term annotation were considered). To determine the succession of Biological
Processes GO Terms (Figure 2.3C), we used the approach above on all genes called
DE by switchde, and plotted only the terms with at least two genes.

2.4.13 Cell-cycle analysis

To assess potential effects of cell-cycle in the interpretation of the scRNA-seq datasets,
Cyclone (Scialdone et al., 2015) (implemented in the scran R package) was used
on all datasets. Results for the mouse melanoma dataset (where a relevant cycling
population exists) were projected on the tSNE (Figure A.5A). As the vast majority of
cells was assigned to the default cell-cycle stage (G0/G1 in mouse, S in human), no
cell-cycle correction was performed.

2.5 Conclusions and future work

This Chapter has elucidated the molecular makeup of Treg cells in their tissue context,
and revealed the transcriptional transitions these cells undergo during adaptation
to a new tissue environment. Deep characterisation of colon, skin, their draining
lymph nodes and spleen revealed evident transcriptional heterogeneity, reflected in
distinct subpopulations likely associated with different activation and cross-tissue
transition stages. The full steady-state profile of Treg cells requires further sampling
of more tissues. Skin Treg cells, because they are harder to extract, were not as
deeply sampled, yet some heterogeneity could still be inferred (Figure 2.2G).

Increasing the number of profiled tissues holds the promise of revealing further
tissue-specific subpopulations, allowing for a full map of Treg cell phenotypic regula-
tion to be compiled. Recent work has showed that Treg heterogeneity is associated
with TCR activation in colon and spleen (Zemmour et al., 2018), and further inte-
gration of gene expression and open chromatin data has shed light into Treg cell
tissue-specific regulatory networks (DiSpirito et al., 2018). In particular, this last
study places NF-κB-related transcription factors (Nfkb1, Nfkb2, Rel, Relb) within the
colon-specific regulatory network, demonstrating the increased power in combining
data from different tissues. Within the colon, the authors of the study also identify a
subpopulation of cells they presume to be circulating (expressing Ccr7, similarly to
LT-like Treg in Figure 2.2A), and they are capable to in addition distinguish between
thymic and periphery-derived Treg cells. Various factors (tissue processing protocol,
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single-cell isolation method, among others) can influence the detection of the genes
driving these populations to explain why they were not detected in the data here
presented. Nonetheless, comparing these studies shows how useful it can be com-
bining scRNA-seq data obtained from different sources. Lastly, all the studies here
described have mostly focused on mouse. Recent analysis in our lab (James et al.,
2019) has showed that, from total immune cells extracted from human colon and
mesenteric lymph nodes, the Treg cell subpopulations described in this Chapter can
also be detected, further confirming the robustness of this finding.

When sampling diverse tissues, their physical processing is crucial, not just to
obtain a comprehensive representation of the cells present, but also in the way that
such extraction protocols can affect cellular phenotypes. It has been described that,
due to some processing methods, cells can undergo transcriptional changes, with the
activation of immediate early genes as a response to stress, or activation of genes
encoding for heat-shock proteins (van den Brink et al., 2017). Importantly, some of
the immediate early genes are also implicated in immune response, such as Fos and
Jun. Furthermore, this effect can be cell type-dependent, additionally confounding
the interpretation of said data. Mitigation of these effects has been achieved in the
past by inhibiting transcription during tissue processing (Wu et al., 2017). While
in the present work we avoided drawing excessive interpretations regarding genes
involved in these pathways, future cross-tissue works should account for these effects.
This should ideally happen at the biological material processing stage, since some of
these genes can have bona fide functions within the tissue-specific context (Wheaton
and Ciofani, 2019).

The inferred transcriptional trajectory (Figure 2.3A) offers a base model for what
tissue adaptation of Treg cells during trafficking might resemble. This trajectory was
inferred under the assumption that all cross-tissue intermediate states are represented,
however this might not be the case. The overlap between the LT-like and NLT-like
Treg subpopulations is encouraging, pointing at these being the intermediate state of
this transition. Indeed, NLT-like Treg cells in lymph nodes expressed surface receptors
known to direct cells to their specific tissues (Figure 2.2E). However, it can also
be argued that a true transition stage would have to be captured "in transit", i.e.
obtained from blood. This might be hard to achieve given the very low representation
of these cells compared to other circulating lymphocytes. In a model organism,
it could potentially be addressed by genetically modifying Treg cells to express a
detectable marker upon exit of lymph nodes or NLT, if such regulatory mechanism
is completely understood. A further aspect to consider is the directionality of cell
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trafficking. Velocyto analysis (Figure A.3C) hinted at a LN-to-NLT transition, however
it was not conclusive, also showing some NLT-like cells to be adapting into a lymph
node identity. It is indeed possible that trafficking occurs in both directions, yet the
association of this movement with the detected subpopulations will only be revealed
by combining single-cell sequencing with lineage tracing, for example using adoptive
transfer into specific tissues.

It is also expected that the data here produced and dissected serves as a plat-
form for future functional studies on Treg identity. This has already been the case
in (Wheaton and Ciofani, 2019), where the authors, starting from the tissue-specific
expression of Junb captured in this dataset, validate the importance of this gene for
adaptation of the Treg cell effector programme in the colon, through the use of Treg
cell-specific knock-out of the gene. Gene knock-out studies can be very powerful to
test the importance of the genes here revealed to impact Treg identity and adaptation.
This can be combined with lineage tracing of these cells to quantify how affected
cell trafficking is, or with functional assays to evaluate whether the gene is impor-
tant for Treg suppressive function, for example. In humans, functional validation is
more restricted due to ethic concerns, yet the gene lists here produced can also be
cross-referenced with genes involved in autoimmune or tissue-specific pathologies,
shedding light into the role of tissue-specific Treg cells in these diseases.

The unravelling of Treg cell heterogeneity also feeds into the more general topic
of how cell types can be classified. Based on their transcriptional phenotype, it is
apparent that the Treg cell subpopulations represent transient states. Despite being
evidently different when examining each individual tissue (Figure 2.2A), they can
actually appear similar when compared with other tissues and cell types (Figure 2.1).
For this reason, the establishment of a cell type reference should firstly consider cells
in their tissue context, and only then establish the similarities across these. It can
however be debated how accurately these different states could be distinguished
in the context of a broader cell type classification. Future methods might aim at
representing transient cell states separately from the defined, central cell identity.
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Abstract

Cells are the building blocks of life, forming the vast diversity of tissues and organisms
in Nature. Across these, common cellular morphologies and functions have been
identified. High-throughput, multifactorial profiling of cells has grown exponen-
tially in recent years with the advent of single-cell RNA-sequencing (scRNA-seq),
increasingly unravelling cell diversity. Nonetheless, it is not yet known how different
environments affect cellular phenotypes.

The work presented on this Thesis reports on the transcriptional variation of
cell types across tissues, by use of single-cell RNA-sequencing. This technology,
developed in the last 10 years, has greatly impacted our ability to distinguish cellular
heterogeneity by their gene expression in various tissues or conditions.

Chapter 1 outlines the impact of single-cell RNA-sequencing in cell biology, present-
ing the technology as the natural progression of lower throughput or low-resolution
methods. The chapter then shows how cellular heterogeneity can be deconstructed
by analysing this type of genomics data. It then expands on how individual datasets
can be used to build models of cell type identity for automatic annotation, ultimately
outlining the need to create a global cell type census of a whole organism. A cell
compendium like this should be useful for automatic annotation, as well as to obtain
a cross-tissue integrative overview of cell identity.

The same chapter also delves into the topic of heterogeneity in immune cells. Due
to the evolutionary pressure they are subject to and ubiquitous nature across the
organism, these are some of the most diverse cell types in multicellular organisms.
Chapter 2 presents a deconstruction of T-regulatory cells’ phenotypes in different
mouse and human tissues using single-cell RNA-sequencing. The analysis in this
chapter will show how these cells are structured in subpopulations, and how they
adapt when migrating between lymphoid and non-lymphoid tissues. It will also assess
the conservation of gene expression programmes for the same populations between
mouse and human.

The creation of a global cell type reference is an endeavour that can facilitate
analysis of new data, and reveal novel insights about cell and tissue biology. Several



xii

datasets have now been produced, and a method that can efficiently integrate them
and prepare them for use as a reference is necessary. Chapter 3 details the devel-
opment of such method, exploring its strengths and how it can be improved, in a
mouse dataset. Chapter 4 then applies this pipeline to a collection of human data,
and shows how cell types relate across tissues, as well as how the human reference
can be used in a practical case.

Lastly, Chapter 5 summarises all chapters, providing an overview on how single-
cell sequencing has changed what we know about tissue biology, and how listing cell
types and compiling them as a functional reference can help future developments in
life sciences.
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Chapter 1

Cellular identity in the genomics era

Cell biologists have attempted, from the inception of the discipline, to categorize the
extensive variability of cells that are found in Nature. This endeavour is hampered by
the intrinsic complexity of cells, which associated to their small size and sensitivity
to the surrounding environment, makes cellular phenotypes hard to probe in an
integrated and comprehensive way. The last decade however has seen extraordinary
improvements in the detail to which molecules can be assayed in individual cells.
Single-cell RNA-sequencing (scRNA-seq) has for the first time provided an unbiased,
transcriptome-wide census of RNA molecules for one cell at a time. By acquiring the
transcriptome of large numbers of cells, we can group them by their gene expression
programmes - a proxy for their function - and thus define their cell identity. The
definition of this cell type identity from the massive amounts of transcriptome data
produced in recent years has required the continuous adoption of new computational
and analytical methodologies.

This chapter provides an introduction to the definition of cell types. It will
show how more recently developed experimental and computational approaches are
shaping our understanding of how cells are categorized.

1.1 Cell type discovery and definition

The term "cell" was coined by Robert Hooke in the 17th century to describe the empty
cell walls he observed in cork samples through his microscope (Hooke, 1667). This
observation was complemented some years later, when Antonie van Leeuwenhoek
first observed live unicellular organisms and other cells with a microscope composed
of more powerful lenses (Mazzarello, 1999). Research and observations in the
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following 200 years led to the formulation of cell theory. Its first tenet was introduced
by Schleiden and Schwann, and states that all living structures are composed of cells
or their byproducts (Schwann, 1847). The theory was later complemented by Robert
Remak, Rudolf Virchow, and Albert Kölliker to include the postulate that all cells
are derived from other cells (in the latin formulation popularized by Virchow, omnis
cellula e cellula).

These early studies looked at a variety of sources to unveil different types of cells.
Leeuwenhoek reported observations from blood, brain, muscle and semen (Leeuwen-
hoeck M, 1674; Leeuwenhoek Antoni Van, 1677). Subsequent developments of
microscopy techniques led to improved imaging of a variety of tissues and the cells
that compose them. For the first centuries of cell biology, microscopy was the method
of choice to identify cell types. While this was mostly due to the relatively reduced
knowledge of cellular biochemistry, it was immediately apparent that morphology
was intrinsically tied to cellular function. The most illustrative example of this is the
neuron, whose unique structure was only unravelled after subsequent improvements
in tissue preparation and staining, as well as increases in resolution and development
of electron microscopy (Mazzarello, 1999). Microscopy was also important in under-
standing where cell types come from by mapping their developmental origin. The
three germ layers - endoderm, mesoderm, ectoderm - were identified in the 19th
century, and was postulated that each of them would give rise to different sets of tis-
sues (Collins and Billett, 1995). Developmental studies have since had a central role
in defining cell lineages, and thus how cell types are related. Advances in microscopy
were also crucial to the identification of organelles. While larger structures, like
nuclei, are still identifiable with simpler microscopes (Brown, 1866), others required
improved resolution and staining or preparation to be identified (Golgi and Lipsky,
1989). Other advancements in microscopy like live-cell imaging or super resolution
microscopy are constantly perfected to expand the boundaries of cellular functional
characterization.

Advances in biochemistry and molecular biology revealed that most organic
molecules that compose cells are directly responsible for their function. Proteins
are responsible for most cellular functions, being involved in enzymatic reactions,
signalling and regulatory pathways or structural components. They became a prime
target for cellular phenotyping with the development of immunostaining (Coons
et al., 1941), whereby an antibody that specifically targets a certain protein is usually
tagged with a fluorophore. Immunostaining can identify protein expression in tissue
slices, and the use of different fluorophores allows for the imaging of cells expressing
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multiple proteins. The usefulness of immunostaining became especially apparent
when it was combined with high-throughput microfluidics methods and used for
fluorescence-activated cell sorting (FACS) (Bonner et al., 1972). This introduced
the first high-throughput studies on molecular phenotyping of cells, and sorting
allowed cell function to be probed in parallel (Julius et al., 1972). More recently,
mass cytometry has allowed for a further expansion of the repertoire of proteins
assayed (Bandura et al., 2009; Di Palma and Bodenmiller, 2015). This technique,
while destructive, has also been combined with tissue imaging, adding a spatial
component to the cell populations examined (Chang et al., 2017).

The identification and classification of cell types is dependent on their function.
Function is deeply related to cellular morphology (Prasad and Alizadeh, 2019),
and both are ultimately a consequence of the molecular pathways shaping them.
Additionally, even though recent advances permit high throughput cell sorting through
imaging (Nitta et al., 2018), the limited resolution hinders the identification of finer
details of cell and organelle shape, which are frequently more informative of cellular
activity. Cell sorting with fluorescent antibodies and mass cytometry can reveal
more details on the molecules underlying cellular behaviour, but they are targeted
approaches that depend on prior knowledge of the effector molecules. The more
recent attempts at defining cell identity have therefore relied on the unbiased, high-
throughput character of single-cell RNA-sequencing methods.

1.2 Defining cell types using scRNA-seq

Methods to sequence the transcriptome of individual cells started to be developed
shortly after the advent of RNA-seq (Mortazavi et al., 2008; Tang et al., 2009). This
early development was pushed not by a need to define the molecular makeup of the
unit of life, but rather to allow transcriptomic studies to be performed in low-input
samples. Nonetheless, this seminal work still sparked the improvements that occurred
in the decade that followed (Svensson et al., 2018) (Figure 1.1).

Initial developments focused on increasing sensitivity, since the original scRNA-
seq protocol was performed on cells from very early developmental stages, which
are larger and contain more RNA than most differentiated cell types. Different
methodologies quantified gene expression by sequencing distinct transcript segments
(either the 5’ or the 3’ end, or the full transctipt) (Hashimshony et al., 2012; Islam
et al., 2011; Picelli et al., 2014; Ramsköld et al., 2012). The idea of multiplexed
scRNA-seq also started gaining traction with the use of multi-well plates or molecular
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Fig. 1.1: Timeline of scRNA-seq technology development
(A) Key technologies that have allowed jumps in experimental scale. A jump to
~100 cells was enabled by sample multiplexing, and then a jump to ~1,000 cells
was achieved by large-scale studies using integrated fluidic circuits, followed by a
jump to several thousands of cells with liquid-handling robotics. Further orders-of-
magnitude increases bringing the number of cells assayed into the tens of thousands
were enabled by random capture technologies using nanodroplets and picowell
technologies. Recent studies have used in situ barcoding to inexpensively reach the
next order of magnitude of hundreds of thousands of cells. (B) Cell numbers reported
in representative publications by publication date. Key technologies are indicated.
Original figure published in (Svensson et al., 2018).

barcodes for cells. The company Fluidigm eventually introduced the first commercially
available microfluidics chips (called the "Fluidigm C1 system") for miniaturized cell
isolation, RNA extraction and reverse transcription (Brennecke et al., 2013). It is
from this point that increased cell capture becomes the major technological driver
(and has gained even great importance as discussed in Section 1.3). The major
contributors to this have been nanodroplet-based technologies, that have put the
number of profiled cells per dataset in the range of 10.000 to 100.000 (Klein et al.,
2015; Macosko et al., 2015). The importance of this increase in throughput has
been demonstrated by Shekar and colleagues (Shekhar et al., 2016), where they
demonstrate that a Drop-seq dataset of approximately 25.000 cells sequenced at low
depth could identify more bona fide cell types and subtypes than a smaller, more
deeply sequenced Smart-seq2 dataset. Currently, most single-cell RNA-seq datasets
use droplet-based technologies, chiefly the protocols designed for the Chromium
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instrument by 10x Genomics (Zheng et al., 2017), which have a higher sensitivity to
detect different transcripts. Other more recent methods have followed the trend of
increase in cell throughput by using multiplexed barcoding, which allows for different
samples to be combined and reducing sample processing costs, reaching 105-106 cells
for less than $0.01 per cell (Cao et al., 2019a; Rosenberg et al., 2018). A list of the
most up-to-date scRNA-seq methods can be found in Table 1.1.

Table 1.1: Current methods for single-cell RNA-sequencing
Method Name Reference

Fluidigm C1 (Brennecke et al., 2013)
Smart-seq2 (Picelli et al., 2014)
Drop-seq (Macosko et al., 2015)
inDrop (Klein et al., 2015)
CEL-seq2 (Hashimshony et al., 2016)
Chromium (Zheng et al., 2017)
ICELL8 (Goldstein et al., 2017)
Quartz-seq2 (Sasagawa et al., 2018)
mcSCRB-seq (Bagnoli et al., 2018)
SPLiT-seq (Rosenberg et al., 2018)
MARS-seq2 (Keren-Shaul et al., 2019)
sciRNA-seq3 (Cao et al., 2019a)
Seq-Well S3 (Hughes et al., 2019)

The exponential developments in single-cell sequencing technologies were accom-
panied by essential computational developments to analyse the resulting data. From
a cell type discovery perspective, the key methods are clustering and pseudotime
analysis (Rostom et al., 2017), which assign to cells a discrete or a continuous label,
respectively. These are of course dependent of the upstream processing steps of
normalisation, feature selection and dimensionality reduction, as well as often used
batch correction methods (Luecken and Theis, 2019). Most of these analysis steps are
available in accessible software toolkits (Butler et al., 2018; McCarthy et al., 2017;
Wolf et al., 2018).

With clustering, the goal is to identify discrete cell populations. The most widely
used methods for clustering are the louvain and leiden community detection algo-
rithms (Blondel et al., 2008; Traag et al., 2019). These populations are commonly
considered an approximation of the cell types present in a sample of dataset, often
justified by examining the presence of known markers for known cell types across clus-
ters. Further application of differential expression methods (extensively benchmarked
in (Soneson and Robinson, 2018)) between clusters can identify other potentially
novel genes that are, within that context, unique to that population. This can be
used to characterise newly discovered populations (Montoro et al., 2018; Shekhar
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et al., 2016; Villani et al., 2017) and to identify new markers that can be used to
isolate or understand known cell types (Bjorklund et al., 2016; Shulse et al., 2019;
Vento-Tormo et al., 2018).

Pseudotime analysis consists on describing a set of cells from a continuous per-
spective. The name derives from the original application to obtain a dimensionless
temporal trajectory from time course scRNA-seq data (Trapnell et al., 2014). There
are several methods to perform this analysis (exhaustively reviewed in (Saelens
et al., 2019)), all with the goal of defining a latent variable from the data along
which a biological process, reflected in gene expression, is changing. Pseudotime is
especially useful to study response to stimuli (Lönnberg et al., 2017; Trapnell et al.,
2014) and developmental trajectories (Cao et al., 2019a; Watcham et al., 2019),
but has also been used to model changes to cellular spatial distribution (Scialdone
et al., 2016). These methods can differ in the way they model biological trajectories,
with some explicitly allowing for branched trajectories. This is of special importance
in development, where the goal is usually understanding which daughter cell types
share progenitors. The direction of differentiation is usually just assumed according
to previous knowledge and of the experimental conditions. This is not completely
possible in all situations, yet can be inferred from expression data. By considering
RNA kinetics, and using the quantification of spliced/unspliced reads, the current and
future (i.e. still circumscribed to the nucleus) transcriptomic states can be untangled
as a "velocity" vector (Manno et al., 2018). In differentiation trajectories, cell types
are therefore usually defined as the endpoints, with the cells in between forming more
transient cell states, along which gene expression is dynamically adjusting to the final
cellular identity. It should be noted that this "cell type vs cell state" nomenclature is
context-dependent, and there is no absolute agreement on how cell types should be
formally and empirically defined (Various, 2017).

Globally, the increasing adoption of scRNA-seq is due to its multi-gene and un-
biased profile. It allowed for the first time the non-directed profiling of molecules
driving heterogeneity in cellular populations. Nonetheless, its use for defining cell
identity still has some drawbacks. Even though the cost of high-throughput sequenc-
ing keeps dropping, single-cell RNA-seq still requires costly protocols, especially at
the scale that it is currently performed for cell type discovery. This however can be
mitigated by more targeted approaches, aimed at characterizing specific subsets of
already known cell types isolated by their broad markers. scRNA-seq is also prone to
batch effects, which can become more pronounced when comparing or integrating
data generated by different protocols. This has been a very active topic of research,
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and several batch alignment and correction methods can now account for these inte-
gration of different protocols (Butler et al., 2018; Haghverdi et al., 2018; Park et al.,
2018; Stuart et al., 2019). From the protocol side, sample barcoding for multiplexed
processing also greatly reduces batch issues (Shin et al., 2019; Stoeckius et al., 2018).

One last concern, although perhaps the largest, is the fact that profiling a tissue or
a cell type with scRNA-seq does not inherently give any functional information about
the cells. Cellular function has been from the beginning the major point to categorize
cells. RNA, despite being easily correlated with protein presence, is not in most cases
the effector molecule in a biological process. Additionally, most single-cell methodolo-
gies destroy the cell without imaging it, making the link between molecular makeup
and morphology harder to obtain. While this is an ongoing research topic, profiling
cells through the use of multi-omics technologies can help obtain a deeper mecha-
nistic characterization. Information on open chromatin regions (Buenrostro et al.,
2015), histone modifications (Kaya-Okur et al., 2019) or surface proteins (Stoeckius
et al., 2017) have the potential to be combined, directly or indirectly, with single-cell
RNA-seq (Clark et al., 2018). This can provide information on how these molecular
layers interplay and learn about the intrinsic regulatory processes of gene expres-
sion (Gorin et al., 2019; Qiu et al., 2019). CRISPR screens with single-cell expression
readout can also reveal more about cellular function (Datlinger et al., 2017; Dixit
et al., 2016). Lastly, developments in spatial transcriptomics hold the promise of
providing spatial context to cellular transcriptomes profiled individually, providing
information on the tissue context for cell identity determination (Rodriques et al.,
2019; Vickovic et al., 2019). Overall, while the discussion about where to draw the
line between cell types still lasts, technological developments provide us with ever
increasing information to approach a decisive and informative definition.

1.3 Methods for cell type classification

Single-cell RNA-seq was initially developed to obtain the whole transcriptome from
samples with very low starting material (Tang et al., 2009). Nonetheless, the notion of
using it to define cell types through their transcriptome was very early on envisioned.
In 2011, Islam and colleagues end the discussion on their newly developed scRNA-seq
method (STRT-seq) by stating "We envisage the future use of very large-scale single-
cell transcriptional profiling to build a detailed map of naturally occurring cell types,
which would give unprecedented access to the genetic machinery active in each type
of cell at each stage of development." (Islam et al., 2011). The exponential increase
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in the number of cells profiled per experiment eventually made this prediction come
true. A large amount of single-cell projects have used the technology to profile cells
captured from various tissues, in steady-state or disease conditions. Yet the most
direct example of how this quote reflects the evolution of the field is the Human Cell
Atlas (HCA) (Regev et al., 2017). This consortium has been established as a forum for
scientists around the world to share their expertise on genomics, bioinformatics, and
tissue biology, and coordinate the high-throughput profiling of cellular heterogeneity
in the human body. The HCA has groups focusing not just on individual organs, but
also on development (Behjati et al., 2018; Taylor et al., 2019) and disease.

In parallel, there have been increased efforts to obtain similar references for
other species, in particular animal models (Cao et al., 2017; Fincher et al., 2018).
The data collected for these species tends to have a greater cell coverage since the
tissue samples can be more readily available. Furthermore, these atlases are by no
means less important or useful than the human reference. The cell atlases produced
for mouse (Han et al., 2018; Various, 2018) were of especial relevance, since they
constitute the first broad, multi-organ cellular census of a mammalian organism, and
one for which a large portion of biomedical science has relied on. The accessibility
of human tissues for profiling and in vitro testing will be crucial in the near future.
Nonetheless, having a mouse reference that can be related to human can not only
teach us about the evolutionary principles that shape cell type evolution through
gene expression, but also serve as a bridge to transpose mouse-based biomedical
discoveries into a human context.

For a cell atlas to be used as a reference, it needs not only the expression data to be
annotated, but also a computational framework that can use it to classify new datasets
of interest. Over the last two years, several methods have been developed to handle
scRNA-seq data (a comprehensive list can be found in Table 1.2), which can be added
to other general purpose classification methods. These methods vary in complexity,
but in general they rely on machine learning approaches to map the reference cell
labels to the target dataset. While the most accurate method for this classification
is still up for debate (see (Abdelaal et al., 2019; Köhler et al., 2019) in addition
to benchmarks in individual method papers), there is agreement about the major
challenges for this task. Classification methods should be aware of batch differences,
be they caused by use of different scRNA-seq protocols or other technical differences
in tissue processing. Different cell isolation and library preparation protocols can
have a large impact on the number and type of genes detected (Mereu et al., 2019).
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Table 1.2: Comprehensive list of papers detailing methods for automated cell state
matching

Method Name Short Description Reference

scmap k-nearest-neighbor search
with cosine distance

(Kiselev et al., 2018)

matchSCore Jaccard Index for cluster markers (Mereu et al., 2018)
ClusterMap Hierarchical clustering with

marker gene binary expression
(Gao et al., 2018)

CaSTLe XGBoost classification (Lieberman et al., 2018)
Moana Linear SVM on (sub)clusters (Wagner and Yanai, 2018)
SAVER-X Autoencoder (Wang et al., 2018)
scQuery Neural network classifier (Alavi et al., 2018)
PopAlign oNMF, Gaussian Mixture model

and Jeffrey’s divergence
(Chen et al., 2018)

scGen VAE and linear classifier (Lotfollahi et al., 2018)
scVI VAE and hierarchical Bayesian model (Lopez et al., 2018)
scPred SVM in principal component space (Alquicira-Hernández et al., 2018)
SingleCellNet Random Forest on

binary marker expression
(Tan and Cahan, 2018)

CellAssign Multi-variable model with marker genes
and hierarchical Bayesian framework

(Zhang et al., 2019a)

ACTINN Neural network (Ma and Pellegrini, 2019)
scID Linear Discriminant Analysis

with marker genes
(Boufea et al., 2019)

SingleR Spearman correlation with training data (Aran et al., 2019)
Garnett Elastic net multinomial classifier using

markers from hierarchical cell types
(Pliner et al., 2019)

SCINA bimodal distribution of signature genes, (Zhang et al., 2019b)
Cell BLAST Adversarial Autoencoder and

nearest neighbour search
(Cao et al., 2019b)

scMatch Correlation with individual sample
or average of references

(Hou et al., 2019)

SuperCT Neural network with binary expression (Xie et al., 2019)
CellO Hierarchical binary classifiers (Bernstein and Dewey, 2019)
scCoGAPS &
projectR

NMF and projection in that latent space (Stein-O’Brien et al., 2019)

SciBet Entropy test and Bayesian comparison
of multinomial distributions

(Li et al., 2019a)

Seurat "Anchors" CCA, L2-normalisation and
mutual nearest neighbours

(Stuart et al., 2019)

LIGER integrative NMF and joint clustering (Welch et al., 2019)
cellHarmony Correlation with cluster centroids

of mean marker gene expression
(DePasquale et al., 2019)

CHETA Correlation with marker genes of
hierarchical reference

(de Kanter et al., 2019)

scPopCorn Co-membership Propensity Graph and
(joint) k-partition

(Wang et al., 2019)

p-DCS Voting based on known marker genes (Domanskyi et al., 2019)
EnClaSC Ensemble neural network classifier (Chen et al., 2019)
scClassify Ensemble classifier from

inferred cell type tree
(Lin et al., 2019)
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Many methods also mention the need to build a comprehensive reference, that
should be integrated taking the into account the technical variability mentioned
above. Training, and especially the prediction phases of the method should also
be scalable. Models can take a very long time to train on larger references, and
prediction steps that involve extensive manipulation or transformation of the target
data can become time consuming with the ever growing size of expression matrices.

Lastly, some methods try to approach this classification problem from a hierarchical
point of view (Lin et al., 2019; Pliner et al., 2019; Wagner and Yanai, 2018). This
is based on the notion that cell types can be organised trees depicting phenotypic
relationships. These trees represent not just developmentally-related lineages, but
also the increasing specification of cellular function (still mostly correlating with
terminal differentiation). This can be of great value in instances like describing cells
from the immune system or the brain, where functional diversification leads to more
intricate phenotypes (see Section 1.4). Notwithstanding, a hierarchical classification
can also be seen as a method that reflects the uncertainty in the prediction. Each
individual cell ideally conforms to a determined phenotype, which would correspond
to a leaf node in an ideal cell hierarchy. Assigning a cell to a parent node rather than
a terminal one (or not doing it with a high confidence) can be caused by data sparsity
or low coverage, and thus not necessarily reflecting a naturally occurring hierarchy
of gene expression-driven cellular phenotypes. Yet this structure is intuitive and
informative, and projects like the Cell Ontology have considerable value in creating a
controlled vocabulary to name and relate cell types (Bard et al., 2005), with some of
the methods listed here explicitly conforming to it. The use of a curated and specific
nomenclature should thus be incentivized when doing de novo annotation of scRNA-
seq data, and supplying these labels can greatly accelerate the data interpretation
and its application in the development of new algorithms.

Large collections of data and development of informative references can be of use
in multiple ways. A steady-state cell identity reference can serve as a baseline to which
a disease sample can be compared. Having a sufficiently comprehensive cell registry
can do away with the need to generate a reference dataset if the goal is quantifying
alterations to the proportions of known cell populations. Evolutionary biology can
also benefit from predictive models for cell identity. Models can be adapted to
function across species, which can help trace the evolutionary origins of cell types.
Producing interpretable models from integrated data can also be informative in itself.
Some models return the importance of genes or gene sets in classifying each cell type,
and as such can help uncover novel features of a cell’s phenotype. Finally, organised
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references can also speed up new in-depth studies of specific cell types, as well as
studies focusing on other aspects of cell identity (e.g. open chromatin, methylation,
proteome, or spatial interactions). It should be noted that the methods discussed
so far in this section, while being in their majority developed for scRNA-seq, can
also for the most part be adapted to other data modalities like scATAC-seq (for open
chromatin) or CITE-seq (combining RNA and surface protein detection). Modelling
cell identity with multiple layers can revel more details about the molecules shaping
it, how they interact, and their relative importance.

1.4 Cell identity in the immune system

The immune system is one of the most complex and diverse biological systems across
the animal kingdom. The increased evolutionary pressure caused by the need to
continuously adapt to the fast evolving pathogens (Barreiro and Quintana-Murci,
2010) has resulted in a broad variety of molecular pathways and cells. The variability
in the types of cells found in the immune system is directly related to their intrinsic
plasticity in gene expression. Immune cells are very responsive to their environment,
having to constantly fine-tune expression programmes to react in a prompt and
targeted manner. It then comes as no surprise that many cell states have been
determined and named in immunology, and it is, perhaps on par with neurobiology,
the field where the definition of cell type and cell state clash the most.

Due to the fact that immune cells are non-adherent cells, immunology benefited
immensely from the development of flow cytometry. Immune cells have been deeply
characterised by this technology, with antibodies targeting surface receptors as well as
cytoplasmic proteins. It then comes as no surprise that the immune system has been
an early and major target of single-cell sequencing methods. scRNA-seq has had a role
in the fine-grained mapping of gene expression changes in haematopoiesis (Watcham
et al., 2019), discovering and reorganising subpopulations (Villani et al., 2017),
mapping their heterogeneity across tissues (Miragaia et al., 2019; Scott et al., 2018),
studying immune response to pathogens (Lönnberg et al., 2017; Stubbington et al.,
2016), and map communication of immune cells with their tissue of residence (Vento-
Tormo et al., 2018).

Immunity can be divided into innate and adaptive. The latter depends on a subset
of lymphocytes which are responsible for an immune response that can flexibly adjust
to invading pathogens in a non-evolutionary way (i.e. without the need for selection
at the level of the individual). The key strength of this system is the use of receptors
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which recombine and mutate (Krangel, 2009), forming a highly diverse repertoire that
can eventually be selected to respond to particular invaders. This variability, central
to the adaptive immune response, is further complemented by immune memory, that
is, the specific repertoire obtained when combating an infection will remain stored
in the organism in the form of inactive immune cells, which can be more quickly
reactivated should the same threat reappear. This is far more advantageous than
having to undergo selection of the receptor repertoire every time the same pathogen
is introduced in the system.

Fig. 1.2: Gene and protein structure of TCR
(A) The genomic organization of the human (left) and mouse (right) TCR genes α
(red), β (blue), γ (brown), and δ (green), showing clusters of V, D, J, and C gene
segments aligned vertically for clarity. Arrows represent the direction of transcription
within each of the TCR genes; squares and circles indicate gene elements in the direct
and reverse orientations, respectively. The murine TCR γ2 gene is inverted relative to
the rest of the locus. Dark colors indicate apparently functional gene elements, while
lighter shades represent pseudogenes. Curly brackets indicate the duplicated sets of
V genes in murine TCR α/δ locus. The TCR β and TCR γ loci are both on human
chromosome 7, on opposite sides of the centromere (schematically represented by
the black circle). Original figure published in (Glusman et al., 2001).
(B) Ribbon diagram of the complex oriented as if the TCR MS2-3C8 and CD4
molecules are attached to the T cell at the bottom and the HLA-DR4 MHC class
II molecule is attached to an opposing APC at the top. TCR α chain, blue; TCR β

chain, green; CD4, pink; MHC α chain, gray; MHC β chain, yellow; MBP peptide,
red. Original figure published in (Yin et al., 2012).

Within adaptive immunity lymphocytes, T cells fill various niches, but are broadly
considered to be the orchestrators of immune response (Kumar et al., 2018). T
cells are characterised by their expression of the T Cell Receptor (TCR), a dimeric
surface protein that can recognise an antigen presented by an Antigen Presenting
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Cell (APC) (Reinherz, 2014). This receptor’s ability to recognize a trove of antigens
resides in the original gene’s unique recombination capacity. TCR genomic segments
are composed of many genes (in addition to a constant region) - grouped into
variable (V), diversity (D) and junction (J) genes - that encode the variable section of
the final protein, which interacts with the antigen presented by the MHC complex
(Figure 1.2A). During T cell development in the thymus, these genes are recombined
through the action of RAG enzymes, which target recombination signal sequences
to cleave DNA and join them - first D and J (if D is present), then (D)J and V. The
insertion of additional non-templated nucleotides at the junctions can result in further
variability. There are numerous V and J genes, which gives rise to a large number of
possible V-J combinations, thus ensuring the diversity needed for antigen recognition
by T cells. This is further augmented by differential combination of TCR chains in the
final receptor. The activity of each receptor sub-unit is subject to selective pressures
that ensure that it can functionally recognise and respond to foreign antigens, while
being unresponsive to self-produced peptides and thus avoid auto-immune responses.
In adaptive T cells, these receptors are composed of an α and a β chain. γ and δ

chains also exist as a pair, but are less variable which results in a different type of
response (Simoes et al., 2018).

The TCR is part of a larger membrane surface complex that assists in the recogni-
tion of the antigen being presented, as well as the APC presenting them (Figure 1.1B).
T lymphocytes can thus be separated into two subsets with a shared developmental
origin, bifurcating depending on the type of antigen-presenting Major Histocompat-
ibility Complex (MHC) they can match. Consequently, each with their own APC
matching capabilities and is easily identifiable by the expression of a surface protein
that participates in this specific interaction. CD8-expressing T cells recognise antigens
presented through MHC class I, which exists on the surface of almost all cells. This
recognition elicits the maturation of CD8+ T cells, preparing them for an anti-cellular
response. This subset is accordingly also named cytotoxic, and through the use
of perforins and granzymes they destroy cancer cells, as well as cells infected by
intracellular pathogens (Halle et al., 2017).

CD4+ T cells are the other lineage of T cells. Also known as T-helper (Th) cells,
these lymphocytes are credited with the organisation of immune response, producing
cytokines that serve as triggers or blockers of particular immune reactions (Luck-
heeram et al., 2012). Th cells recognise antigens presented by the MHC class II,
present only on the membrane of dendritic cells, mononuclear phagocytes, some en-
dothelial cells, thymic epithelial cells (important during T cell selection for functional,
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Fig. 1.3: An overview of known T-helper cell heterogeneity and key marker genes.
Beyond their core markers, Th cells can be classified into based on different pheno-
types that depend on stage of immune response, the type of effector function, the
type of memory cell they form and their tissue of residence (a topic understudied
comparatively to the rest). Question marks (??) represent unresolved phenotypes.

non-self-responding TCR), and B cells. This interaction, combined with signalling
from the media where the cell is acting, induce an activation programme of the cell
that is specific to the external threat being handled. CD4+ T cells encompass a large
transcriptional plasticity, which results in diverse related phenotypes (Figure 1.3).
Th cells have classically been organised into various effector phenotypes based on
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their cytokine secretion profile (Mosmann et al., 1986; Schmitt and Ueno, 2015),
allowing them to orchestrate the professional immune cells in the microenvironment.
For instance, IFNγ production by Th1 cells has been identified as a key signalling
molecule to combat intracellular parasites through the stimulation of macrophages,
as well as class switch recombination of B cells to an IgG isotype. In turn, Th2 cells
use IL-4 and IL-13 to stimulate basophils and mast cells to release granules against
helminth invaders, and Th17 cells coordinate neutrophil recruitment by epithelial
cells through IL-17A and IL-17F (Weaver et al., 2013). While diverse in function,
these effector phenotypes are not the sole drivers of variability between Th cells,
which also vary according to their activation state (naïve, effector, and memory cells)
and with the host environment cues (tissue-specific phenotypes).

Upon finishing responding to an infection, T cells can go into a lowly replicative
memory state in which they will save the TCR that drove the specialized response.
The various memory states relate to the level of activation of the cell, but also
to its tissue of residence. Cells expressing the chemokine receptor CCR7 are in a
more naive, non-stimulated state, and also target lymphoid tissues like lymph nodes
or the spleen, where most of antigen presenting to CD4+ T cells takes place. In
addition, tissue-homing and residency phenotypes exist, all of them characterised
by the involvement of one or more chemokine receptors or adhesion molecules like
integrins. Nonetheless, tissue-specificity in T-helper cells, and even more broadly in
immune cells, is still generally understudied. Recent developments using single-cell
high throughout methods have tackled this questions (Scott et al., 2018; Wong et al.,
2016a), and it is expected that future efforts will rely on the accumulation of data to
extract these patterns from cross-tissue samples.

Among the phenotypic variability of T-helper cells we can find the particular
subset termed T-regulatory (Treg) cells. They are different from most Th cell subtypes
in that, rather than boosting immune response, they are responsible for dampening
it (Sakaguchi et al., 1995). This regulatory role in the immune system is of dire
importance. Leaving the immune response unchecked can lead to destructive re-
sponses that will adversely affect the organism, as in autoimmune diseases. Treg
cells were originally identified by their high expression of CD25, but as a subset they
are more clearly defined by the expression of the FOXP3 transcription factor (Hori
et al., 2003). Despite the focus on CD4+ Treg cells here presented, CD8+ cells can
also have a regulatory phenotype, yet this are understudied compared to its CD4+

counterpart (Yu et al., 2018).
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Further subsets of Treg cells have been described, either related to the various
parallel programmes that Th cells can adopt or their developmental origin. All
T cells derive from a Common Lymphoid Progenitor cell that originates through
haematopoiesis in the bone marrow, and travels via the bloodstream to mature in
the thymus, where their TCR recombines and is tested for responsiveness to foreign
antigens (positive selection) and against self-antigens (negative selection). However,
natural Treg cells are derived from a subset of T cells with an intermediate level
of response to self-antigens. This subset is further supplemented by induced Treg
cells, which originate from other T-helper cells. While both natural and induced
T-regulatory cells share a role, their distinct origins extend their TCR repertoire and
thus their function (Zhang et al., 2014). Beyond this, Treg cells are also subject to
memory and tissue-trafficking phenotypes like the remaining Th cells (Huehn et al.,
2004), although these are not as well studied.

Immune cells are also described to have roles beyond defense against pathogens.
These roles involve interactions with other non-immune tissues and mostly focus
on their maintenance (Gordon and Martinez-Pomares, 2017; Laurent et al., 2017),
and the immune system has also been described as relaying signals to the nervous
system (Veiga-Fernandes and Mucida, 2016). Treg cells have been increasingly
noted to be relevant, not just for their role in the immune system, but also for their
functions beyond it. This regulatory subset has been shown to be involved in tissue
repair (Li et al., 2018b) (chiefly muscle (Burzyn et al., 2013)), hair growth (Ali
et al., 2017), and homeostatic regulation of gut microbiota (Cebula et al., 2013)
and adipose tissue (Cipolletta, 2014; Sharma and Rudra, 2018). These functions,
being widespread in the organism, consequently rely on an efficient trafficking
and tissue localization scheme (Liston and Gray, 2014). Despite the importance
of understanding how these migration and adaptation programmes are constituted
and regulated (Agace, 2006), this aspect of the immune system is still incompletely
understood.

1.5 Tissue-specific gene expression

Histological studies have uncovered many details of organ biology and physiology.
Tissue staining is routinely used in pathology, and a better understanding of which
molecules are markers of different tissue structures and cells in steady-state has
resulted in important medical advancements.
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Early studies in transcriptomics using microarrays dissected transcriptional re-
sponses to metabolic shifts (DeRisi et al., 1997) and disease (with a particular focus
in cancer) (Rhodes et al., 2004), with homeostatic tissue sample comparison only
appearing later (Shyamsundar et al., 2005).

RNA-sequencing has, from its inception, been linked to the unraveling of cross-
organ and tissue differences (Mortazavi et al., 2008). Compared with preceding
technologies, RNA-seq was capable of detecting a broader variety of transcripts in an
unbiased way, along with high confidence splice junctions and allele-specific expres-
sion, with the added benefit of doing it for a lower cost (Wang et al., 2009). RNA-seq
was quickly adopted and improved (see Section 1.2), extending its sensitivity and
breadth of applications. Consortia were developed around the use of sequencing
technologies for different biomedical purposes, often with RNA-seq taking a pivotal
role (Lonsdale et al., 2013; The Cancer Genome Atlas Research Network et al., 2013;
The ENCODE Project Consortium, 2012). These large collections of data were instru-
mental in revealing the functionality of genomic regions and relationships between
samples. With data from the Genotype-Tissue Expression (GTEx) consortium, it was
revealed how human tissues transcriptionally relate to each other, as well as what
genes vary in expression across tissues and individuals (Melé et al., 2015). The Can-
cer Genome Atlas (TCGA) relied on RNA-seq, as well as other data modalities, from
several cancer types to map the similarities between different tumours, and identify
potentially important pathways for the treatment of those malignancies (Hoadley
et al., 2018). Comparison between disease samples and steady-state can also be
particularly informative, for example in understanding how tumours affect their adja-
cent tissue (Aran et al., 2017), or how tumour growth compares to developmental
tissues and which pathways are involved (Young et al., 2018). In short, while large
databases of expression data can serve as useful resources for broader applications
by the scientific community, they can also be mined for emerging patterns.

Transcriptomic data can also be analysed beyond one species to gain understand-
ing of the evolutionary links of gene expression programmes. Early microarray data
analysis showed how human-chimpanzee divergence was especially accentuated
when looking at brain RNA (Enard et al., 2002). Collection of samples from more
species, combined with the use of RNA-seq, augmented the resolution of what gene
expression changes could be observed (Brawand et al., 2011). Varying divergence
rates for different tissues, gene groups and genomic regions, could be observed
and associated to different selective pressures and tissue functions. Further studies
have since compared other species (Li et al., 2014) or aspects of the transcrip-
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tome (Barbosa-Morais et al., 2012), revealing the intricate way evolution sculpted
molecular programmes in different tissues across the tree of life, and defined the core
genes involved in tissue function.

The functional associations observed between tissues are a consequence of the
similarities and differences of the cell types that constitute them. These are mostly a
result of the developmental processes giving rise to these tissues. For example, most
tissues contain epithelial cells, marked by EPCAM, which share certain features such
as forming barriers and secretory functions (Trzpis et al., 2007). Epithelial cells have
been found to be vastly diverse within and between tissues, adopting different shapes
and spatial arrangements (Wang et al., 2012), as well as further cytological changes
adapted to the specific tissue biology.

Many aspects of tissue-specific heterogeneity stem from immune cells, perhaps
owing to their mobility and plasticity. Various tissue-specific functions of Treg cells
have been described above (Section 1.4). Macrophage heterogeneity represents
another paradigmatic case of between-tissue phenotypic variability. In adult humans,
circulating macrophages derive from bone marrow progenitors; in contrast, tissue-
resident macrophages have been demonstrated to be developmentally related to
haematopoietic progenitors in the yolk sac (Gomez Perdiguero et al., 2015). These
macrophage subsets are important in mediating tissue immunity, while in parallel
governing their homeostasis, such as synaptic pruning by microglia, heme recycling
by splenic macrophages, or the pro-angiogenic role of Hofbauer cells at the maternal-
fetal interface. Importantly, tissue-specific functions are a consequence of signalling
in the local environment, which is capable of completely reprogramming macrophage
chromatin, gene expression and function (Gosselin et al., 2014; Lavin et al., 2014),
and consequently influence their response to tissue-specific injuries (Hoyer et al.,
2019). This heterogeneity has also been detected within tissues, and in the gut has
been associated with signalling provided by local neurons (Gabanyi et al., 2016).
Single-cell RNA-sequencing has also been used to reveal cross-tissue conserved
regulators of macrophage identity (Scott et al., 2018), and could in the future be
used to further explore potential subpopulation heterogeneity and correlate it with
gene expression spatial data to identify associations with specific anatomic locations
within organs.

The application of scRNA-seq methods can extend these methods to comparisons
between cell types, which results in larger scale comparisons, yet will open a window
into how different programmes are specified for cell function in evolution and how
they translate across species. It has recently been showed how variability in expression
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relates to evolution of innate immune response in fibroblasts (Hagai et al., 2018).
Data from this study has been further used to test an artificial intelligence method
that was capable of accurately predict species-specific responses solely based on the
data from the remaining organisms sampled (Lotfollahi et al., 2018). As well as
understanding evolutionary biology of cell types or immune responses, these types
of studies and applications can have considerable impact in translating results from
model organisms into the clinic.

1.6 Insights and scope of this thesis

Single-cell RNA-seq has revolutionized the profiling of cell type heterogeneity over
the last decade. This has allowed for a deep, unbiased look into several organs and
organisms, profiling hundreds of cell types at higher resolution. At the same time,
progress has been made in computationally combining datasets for further analysis.
As an increasing number of scRNA-seq datasets is produced, we come ever closer to
a first draft of a transcriptional Human Cell Atlas, showcasing the full spectrum of
cellular variety in our species.

The expansion in cell throughput is now permitting the study of smaller, rarer
subpopulations. While specific cell types can still be sorted prior to sequencing for
deeper profiling, unknown and underrepresented cell types will require larger num-
bers to be detected. This profound transcriptional portrayal of cells also often results
in valuable resources that can be examined for functional targets of novel therapies
and assays, which is especially true when studying immune cells. Developing directed
cell therapies is a long-term goal of many medical fields, but a thorough knowledge
of key cell types is still needed.

A transcriptional reference for cell types can be a key resource for those employing
scRNA-seq. Having a ready-to-use resource that draws on the combined knowledge
of the data generated would provide immediate assistance for automatic annotation
of novel projects. Additionally, an exhaustive and integrated collection can be very
informative about cell and tissue biology. However, the limits of this integration
should also be tested and examined.

After this introductory chapter, Chapter 2 will show a deep dive into T-regulatory
cell heterogeneity using single-cell RNA-seq. Treg cells have been shown to have
critical roles in steady-state and disease, but it is still not fully understood which
subpopulations fulfill which functions in different tissues, and how this heterogeneity
relates to cross-tissue diversity. The chapter will describe Treg cell subpopulations
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detected in mouse in different tissues and how they compare to other resident T-helper
cells. These subpopulations reflect different activation states, and form a phenotypic
continuum between peripheral tissues (skin and colon) and their respective draining
lymph nodes. The first sections will also discuss the limits of heterogeneity detection
using scRNA-seq, especially when using two different protocols. Lastly, a mouse-to-
human comparison will be presented, comparing conservation and divergence of
gene programmes and Treg cell subpopulations.

Chapters 3 and 4 will focus on the use of broad scRNA-seq data collections to
create informative references for automatic cell type annotation. Chapter 3 will detail
the development of CellTypist, a pipeline to integrate diverse scRNA-seq datasets
and cluster them into meaningful groups that approximate commonly defined cell
identity, and the training of an updatable classifier that can be used to annotate new
datasets. All annotation data available from these datasets is also collected, and the
classifier train is also in itself informative. Following this, Chapter 4 will be centred
on the dissection of a large collection of human scRNA-seq data. After application of
CellTypist, it will explore how gene expression at the cell type level influences tissue
similarity, as well as uncover the groups of genes characterising cell identity.

This thesis ends in Chapter 5, where I will be discussing the broader picture of the
results reported in this thesis. This chapter will explore to what detail cell identity
can be deconstructed, and what that means for informative automated annotation
of new datasets, as well as to our understanding of cell biology and how they are
categorized.



Chapter 2

Tissue adaptation of T-regulatory cells

Non-lymphoid tissues (NLTs) harbour a pool of adaptive immune cells with largely
unexplored phenotype and development. We used single-cell RNA-seq to characterise
35000 CD4+ regulatory (Treg) and memory (Tmem) T cells in mouse skin and colon,
their respective draining lymph nodes (LNs) and spleen. In these tissues, we identified
Treg cell subpopulations with distinct degrees of NLT phenotype. Subpopulation
pseudotime ordering and gene kinetics were consistent in recruitment to skin and
colon, yet the initial NLT-priming in LNs and the final stages of NLT functional
adaptation reflected tissue-specific differences. Predicted kinetics were recapitulated
using an in vivo melanoma-induction model, validating key regulators and receptors.
Finally, we profiled human blood and NLT Treg and Tmem cells, and identified cross-
mammalian conserved tissue signatures. In summary, we describe the relationship
between Treg cell heterogeneity and recruitment to NLTs through the combined use
of computational prediction and in vivo validation.

This chapter has been published in Immunity as Single-cell transcriptomics of
regulatory T cells reveals trajectories of tissue adaptation (Miragaia et al., 2019), with
the exception of Section 2.2.6 and parts of Sections 2.3 and 2.4. The Methods section
in this chapter only includes the computational steps. The remaining experimental
methods, as well as the supplementary figures, can be found in Appendix A.

Additional contributions: experiments in this chapter were performed by Ri-
cardo J Miragaia. The study was designed by Ricardo J Miragaia, Sarah A Teichmann,
Agnieszka Chomka, Fiona Powrie, and myself. Ricardo J Miragaia is a leading
co-author of the manuscript. Full acknowledgements can be found in Appendix A.
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2.1 Introduction

T-regulatory (Treg) cells are a specialised CD4+ T cell subset which control immune
responses and play a central role in homeostasis (Izcue et al., 2009; Sakaguchi, 2004).
Recent studies have described unique tissue-specific adaptations of non-lymphoid
tissue (NLTs) Treg cells distinct from their lymphoid tissue (LT) counterparts. This
includes acquisition of an effector phenotype with expression of transcripts encoding
effector molecules (Ctla4, Gzmb, Klrg1), chemokines and their receptors (Ccr4), and
immunosuppressive cytokines (Il10) (Bollrath and Powrie, 2013; Panduro et al.,
2016), in addition to tissue-specific signature genes associated with their role in
each environment (Liston and Gray, 2014). Nonetheless, their full transcriptional
phenotype and its reflection on NLT population heterogeneity is yet to be uncovered.

Trafficking of T cells to NLTs occurs in steady-state conditions and develop-
ment (Kimpton et al., 1995; Thome et al., 2015) as well as in response to harmless
stimuli at barrier surfaces such as commensal bacteria and dietary antigens (Ivanov
et al., 2008). Treg cell migration requires tissue-specific cues involving integrins,
chemokine and other G-protein coupled receptors (Cepek et al., 1994; Chow et al.,
2015; Kim et al., 2013).

To provide a deeper insight into Treg cell populations in NLTs, we analysed
single-cell RNA-seq (scRNA-seq) data of Treg cells from mouse colon and skin, and
compared them to LT populations. We identified various transcriptionally distinct
clusters of Treg cells in LTs and NLTs, namely a subpopulation in the LTs which showed
heavy priming to the NLT environment. Pseudotime ordering of these subpopulations
further revealed the transcriptomic adaptations occurring in Treg cells during their
transition from the lymph node to barrier tissues. Our results show that these steady-
state adaptations share a core signature between bLN-to-skin and mLN-to-colon
trajectories, indicative of a general NLT residency programme in barrier tissues.
These findings were recapitulated during de novo Treg cell recruitment to melanoma
in a murine model system. Lastly, we examined the evolutionarily conservation of
NLT Treg cells’ identity between mouse and human.
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2.2 Results

2.2.1 Treg and Tmem cell identity in NLTs is driven by a common

expression module

We performed scRNA-seq on isolated CD4+Foxp3+ (Treg) and CD4+Foxp3-CD44high
memory (Tmem) T cells (Figure A.1A) from two barrier NLT sites - the colonic lamina
propria (hereinafter referred to as colon) and the skin - their lymphoid counterparts
in the draining mesenteric and brachial lymph nodes (mLN and bLN), and the spleen
from a Foxp3-GFP mouse reporter line (Bettelli et al., 2006) (Figure 2.1A). We will
refer to Treg and Tmem cells together as CD4+ T cells. For each sorted population,
single-cells were captured using the droplet-based microfluidic system Chromium
(10x Genomics), hereinafter referred to as 10x. We obtained 30396 good quality
cells (see Methods, Figure A.1C, Table A.5). Using the same gating strategy, two
Smart-seq2 (Picelli et al., 2014) plate-based datasets were produced independently.
These confirmed findings drawn from the 10x, and complemented them with higher
gene coverage and full T cell receptor (TCR) sequences.

A tSNE projection (Figure 2.1B) after filtering (Figure A.1B) showed a division
between LT and NLT, with cells from LTs divided into two clusters, according to
cell-type. NLT cells formed one single skin cluster and two clusters separating Treg
and Tmem cells from colon (Figure 2.1B). We defined gene expression signatures
for Treg and Tmem cells in peripheral tissues by examining differentially expressed
(DE) genes between all NLT and LT cells and, in parallel, between Treg and Tmem
cells (Figure 2.1C). NLT T cell populations are characterised by the expression of
several elements of the TNFRSF-NF-κB pathway, including transducers (Traf1, Traf4,
Traf2b), effectors (Nfkb1, Nfkb2, Rel, Rela, Relb) and inhibitors (Nfkbib, Nfkbid,
Nfkbie). In Tmem cells, these were accompanied by cytokines (Tnfsf8, Tnfsf11) and
various pathway inhibitors, such as Tnfaip8. In contrast, NLT Treg cells expressed
TNF receptors (Tnfrsf4, Tnfrsf9, Tnfrsf18) and transducers (Pim1), underscoring the
importance of signalling via the TNFRSF-NF-κB axis in controlling Treg cells in the
peripheral tissues. Several chemokine receptors appeared DE across tissues and
cell types. Ccr4, Ccr8 and Cxcr4 were upregulated in both colon and skin T cells,
while Ccr1 and Ccr5 were specific to colon and Ccr6 to skin. Cxcr6 was more highly
expressed in NLT Tmem cells. We also detected other genes involved in NLT identity
(Crem, Rgs2, Il1r2, Icos, Hif1a, Kdm6b, Gata3), including some specific to Tmem
(Vps37b, Id2, Ramp3, Tnfsf8) and Treg cells (Il10, Gzmb, Ctla4, Cd83, Socs2).
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Fig. 2.1: Steady-state scRNA-seq datasets of CD4+ T cells from LT and NLT
(A) Experimental design for scRNA-seq data collection. (B) t-SNE representing all
Treg and Tmem cells that passed quality control. (C) Genes defining the identity of
Treg and Tmem cells in lymphoid and non-lymphoid tissues. Colon and skin were
individually compared with their corresponding draining lymph node and spleen
cells. See also Figure A.1.

Together, the scRNA-seq datasets collected provide a comprehensive overview of
Treg and Tmem cells in multiple lymphoid and non-lymphoid tissues, and identify
the TNFRSF-NF-κB pathway as key to their barrier tissue identity.

2.2.2 Heterogeneity within LT and NLT Treg cell populations

Treg cell phenotypical and functional heterogeneity has been extensively discussed in
recent years (Campbell and Koch, 2011; Josefowicz et al., 2012). Clustering our data
within each tissue grouped Treg cells into distinct subpopulations (Figure 2.2A) with
clearly defined marker genes (Figure 2.2B). Across lymphoid organs, we identified



2.2 Results 25

central and effector Treg (cTreg and eTreg) cell subsets (Cretney et al., 2011; Vasan-
thakumar et al., 2015). cTreg cells express typical LT-associated markers, such as Tcf7,
Bcl2, Sell, S1pr1, while eTreg cells expressed a subset of NLT-associated genes, like
Tnfrsf9, Relb, Ikzf2 and Pdcd1. We also detected a subpopulation of Treg cells with
high expression of Stat1 and interferon stimulated genes exclusively in the bLN. A
fourth, less frequent population in lymphoid tissues ( 5-10%; Figure 2.2C), which we
named Treg NLT-like cells, expresses eTreg cell markers as well as genes characteristic
of NLT T cells, such as Itgae, Rora, Fgl2, Klrg1 (Figure 2.2B). We hypothesize that
this population is primed to migrate and adapt to NLTs. Indeed, DE genes between
NLT-like Treg cells from mLN and bLN revealed that the colon-homing molecules Ccr9
and Itga4, as well as their regulator Batf were upregulated specifically in the mLN,
while Cxcr3 and Itgb1 were present in the bLN (Figure 2.2E). These differences were
not observed between other LN subpopulations (data not shown).

To quantify the bias towards LT or NLT phenotypes, we calculated an NLT-LT
marker gene signature for each cluster (Figure 2.2D; see Methods). Consistently
across all LTs, cTreg cells exhibited a clear LT signature, while eTregs and NLT-like
Tregs leaned towards an NLT profile, which was more pronounced in the latter.

In the colon, we found three subpopulations of Treg cells that we labeled as
NLT, suppressive and LT-like. Treg NLT and suppressive cells were present in equal
proportions, both exhibiting NLT traits (Figure 2.2C,D). Treg NLT cells in colon express
higher amounts of Gata3, Nrp1, Areg, Il1rl1, Ikzf2, matching the known thymic-
derived GATA3+-subpopulation (Hu and Zhao, 2015; Schiering et al., 2014), while
suppressive colonic Treg cells expressed more Il10, Gzmb, Lag3, Cxcr3, resembling
the peripherally-derived RORγt+-subpopulation (Ohnmacht et al., 2015; Schiering
et al., 2014; Sefik et al., 2015). Rorc itself, while not present as a marker, appears in
a higher percentage of Treg suppressive cells (6.16% vs 2.85% in colonic Treg NLT
cells). Technical limitations for detection of lowly expressed genes by scRNA-seq
might account for the difficulty in capturing Rorc transcripts. Lastly, LT-like Treg cells
differed from other colonic populations by expressing LT-associated genes including
Sell, Ccr7, Tcf7, Bcl2, and lower amounts of NLT-associated genes such as Klrg1, Cd44,
Icos, Rora, Tnfrsf9, Itgae (Figure 2.2B).

In contrast to the colon, and likely as a consequence of fewer cells captured,
skin Treg cells did not show evident heterogeneity (Figure 2.2A). They expressed
an unequivocal NLT signature (Figure 2.2D), but it was not clear to which colonic
Treg cell populations they were most similar (Figure 2.2B). We addressed this by
using a logistic regression model to calculate the probability of each skin Treg cell
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Fig. 2.2: Heterogeneity within LT and NLT Treg populations
(A) t-SNE projections of Treg cells per tissue, coloured by subpopulation. cTreg:
central Treg, eTreg: effector Treg. (B) Subpopulation marker gene mean expression
(z-score). Values greater than 2.5 or lower than -1.5 are coloured equally. (C) Relative
proportions of Treg cell subpopulations within each tissue that revealed heterogeneity.
(D) NLT/LT signature score in each Treg cell subpopulation, measured as the ratio
between the number of NLT and LT genes that have been identified as significantly
upregulated in each cluster. (Continued on the following page.)
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Fig. 2.2: (continued) (E) Percentage of cells expressing each gene in Treg NLT-like
cells from mLN and bLN. Genes that are upregulated in the bLN subpopulation are
represented by an open circle, and genes upregulated in mLN are represented by a
filled circle. (F) Percentage of cells expressing each gene in colon Treg suppressive and
Treg NLT subpopulations. (G) Matching of non-colonic Treg cells to colonic Treg cell
subpopulations using a logistic regression model (90% accuracy, see Methods). Table
shows the percentage of each identified subpopulation (y-axis) that were labelled by
the model as each Treg cell cluster (x-axis). (H) Percentage of cells expressing each
gene in skin Treg NLT and colon Treg NLT cell subpopulations. See also Figure A.2.

identifying as one of the colonic subpopulations (Figure 2.2G, see Methods). This
revealed that most skin Treg cells were more similar to colonic Treg NLT than to
Treg suppressive cells. Accordingly, colon Treg NLT cell marker genes Gata3, Il1rl1,
Tnfrsf4, Rora were not differentially expressed between skin and colon Treg NLT cells
(Figure 2.2H, Figure A.2A). Despite their resemblance, differences in function and/or
state between skin and colon Treg NLT might reside in a few genes. Among these
are Dgat2, an enzyme involved in lipid synthesis in skin (Fagerberg et al., 2014), and
Ikzf4, a transcription factor relevant for Treg stability (Sharma et al., 2013).

The same approach applied to Treg cells from the spleen, mLN and bLN (Fig-
ure 2.2G) classified most central and effector Treg cells as Treg LT-like cells. Treg
NLT-like cells, on the other hand, were more similar to Treg NLT and Treg suppressive
cells. Both the mLN and the bLN had a higher proportion of Treg cells assigned as
suppressive than spleen, which contained the highest fraction of Treg NLT cells. We
confirmed the presence and proportions of Treg cell subpopulations in the Smart-seq2
datasets by matching these cells to the subpopulations found across LTs and NLTs in
the 10x dataset (Figure A.2B).

Clustering of Tmem cells revealed multiple subpopulations (T helper-1 (Th1 cell),
Th2 cells, Th17 cells, T follicular helper (Tfh) cells, lymphoid) (Figure A.2C and D)
distributed differently across the tissues analysed (Figure A.2D). Th1, Th2 and Th17
cells in lymphoid tissues exhibited a stronger NLT phenotype than Tmem lymphoid
cells and Tfh cells (Figure A.2E), which is likely an indication of their ability to adapt
to and function in the NLTs.

In summary, scRNA-seq allowed us to dissect the heterogeneity of Treg cells
from LTs and NLTs. We identified NLT- and LT-like Treg cell subpopulations that
suggest progressive cross-tissue adaptation to the NLT environment. We found a close
correspondence between skin and colonic Treg NLT cells, whilst revealing differences
in gene expression that might explain their adaptation to the two environments.
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2.2.3 Treg cells adapting to skin and colon share a transcrip-

tional trajectory

The mechanisms underlying Treg cell recruitment and adaptation from LT to NLT
are far from understood. Having identified multiple subpopulations at different
stages of NLT adaptation (Figure 2.2D), we further dissected the dynamics of this
transition. We obtained evidence of CD4+ T cell recruitment from LT to NLT by
reconstructing TCR clonotypes using TraCeR (Stubbington et al., 2016) from the
Smart-seq2 datasets. This showed Tmem and Treg cell clones present in LNs and
respective NLTs (Figure A.4A and A.4B), suggesting cell migration between them.

To identify Treg cell LN-to-NLT adaptation trends in the data, we reconstructed
a pseudospace relationship between cells by obtaining latent variables (LV) from
Bayesian Gaussian Process Latent Variable Modelling (BGPLVM, see Methods) (Titsias
and Lawrence, 2010). Along the mLN to colon trajectory laid out by LV0, Treg cells
are ordered from cTreg to eTreg cells, followed by NLT-like and LT-like Treg cells,
and ending with the overlapping Treg suppressive and Treg NLT cell subpopulations
(Figure 2.3A, “Colon” density plot, Figure A.3A). This order matches the increasing
expression of NLT marker genes and decrease of LT ones across mLN subpopulations
(Figure 2.2B and D). Importantly, Treg NLT-like cells from the mLN partially mixed
with Treg LT-like cells from the colon, supporting the notion that NLT adaptation is
a continuous process spanning LT and NLT. Overall, LV0 accurately represented the
progressive migration and adaptation of Treg cells to the NLT environment, providing
a reference to study the gene expression dynamics along this process. Skin and
bLN Treg cells were projected onto the latent space defined for colon and mLN,
resulting in a similar subpopulation distribution (Figure 2.3A, “Skin” density plot;
see Methods). Nevertheless, a similar projection was observed when using just those
cells (Figure A.3A and B). Applying the same approach to the Smart-seq2 datasets
yielded similar distributions of the inferred cell subpopulations (Figure A.2B) along
the LT-to-NLT adaptation trajectory, as well as considerable overlaps between LV
correlated genes (Figure A.3C-E). The use of velocyto (Manno et al., 2018) to infer
the directionality of adaptation suggests that most Treg cells found in the NLTs, as
well as some of the NLT-like Treg and eTreg cells, are adapting towards a more
pronounced NLT phenotype (Figure A.3C).

We then used the inferred LN-NLT trajectory to identify the cascade of transcrip-
tional changes driving adaptation to NLTs by modelling genes with a sigmoid curve
and find their activation or deactivation “times” (Figure 2.3B; see Methods). We
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Fig. 2.3: Reconstruction of Treg cell recruitment from lymphoid to non-
lymphoid tissues in steady-state
(A) Top two latent variables (LV) found with BGPLVM for mLN and colonic Treg cells,
with bLN and skin Treg cells mapped over the same coordinates. (B) Gene expression
in mLN and colon (top) or bLN and skin (bottom) over LV0 modelled as a sigmoidal
curve. Dashed vertical line marks the activation point of each gene. (C) Sequence
of activation of GO biological processes across the transition to colon (top) or skin
(bottom), evidencing a conservation between both trajectories (Spearman’s rho -
0.61). See also Figures A.3 and A.4.
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found 812 and 1209 genes with a switch in expression (either up or down) along
the bLN-to-skin and mLN-to-colon trajectories, respectively, with 511 of those being
shared. LT-related genes (Lef1, Tcf7, Sell) were downregulated, while NLT associated
genes like Nfil3, Ccr8, Cxcr6, Gzmb were upregulated. TNFRSF-NF-κB-related genes
(Tnfrsf1b, Tnfrsf4, Tnfrsf18) and the Batf transcription factor were upregulated still
in the LN, reflecting the relevance of this pathway for eTreg cell development and
the NLT phenotype (Vasanthakumar et al., 2017, 2015). Towards the NLT side of the
trajectory there is evidence of further Treg cell differentiation, with upregulation of
additional genes involved in this pathway (Nfkb2, Tnfrsf9), as well as other effector
molecules (Il10, Cd44). Important regulators for the final tissue adaptation include
Rora, recently described in skin Treg cells (Malhotra et al., 2018). We searched for
enriched Biological Processes GO Terms, and calculated the mean time of activation
or deactivation (t0) of the genes within each term. We found the gene expression
kinetics along the adaptation trajectories to skin and to colon to be consistent (Spear-
man’s rho=0.61, Figure 2.3C): T cell migration and glycolytic process are among
the earlier events in both colon and skin, followed by cell proliferation; cytokine
production and fatty acid homeostasis emerge towards the end of the adaptation
trajectory.

In summary, we determined a continuous trajectory aligning Treg cell subpop-
ulations from bLN, mLN, skin and colon according to the stage of recruitment and
adaptation to the NLT environments. Furthermore, the consistent ordering of gene
expression programmes shows that gene kinetics leading to NLT adaptation follows a
similar regulatory sequence in both bLN-to-skin and mLN-to-colon trajectories.

2.2.4 Treg cell recruitment into skin and melanoma relies on

common mechanisms

To validate our findings in steady-state cells, we used a mouse melanoma model
to investigate if Treg cell migration and adaptation trajectory to peripheral tissues
could be recapitulated. Previous studies analysing human TCR repertoires (Plitas
et al., 2016; Sherwood et al., 2013) have shown that tumour-Treg cells are likely
to be recruited de novo from LTs and not from the adjacent NLT, despite exhibiting
a phenotype similar to that of NLT Treg cells (De Simone et al., 2016; Plitas et al.,
2016). We therefore purified Treg and Tmem cells from B16.F10 melanomas or PBS
controls 11 days after subcutaneous implantation into Foxp3-IRES-eGFP reporter
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mice (Haribhai et al., 2007) to produce a plate-based scRNA-seq dataset (Figure 2.4A;
see Methods).

Skin and tumour Treg cells clustered separately (Figure 2.4B). As with steady-
state skin, we observed shared clonotypes between tumour and bLN Treg cells
(Figure A.5B). In the tumour-bearing mice, we detected an additional cluster of
cycling cells in both the LN and tumour (Figure A.5A). These observations suggest de
novo recruitment from LN and simultaneous expansion in both tumour and draining-
LN. DE between non-cycling tumour Treg and control skin Treg cells revealed a
relatively small number of genes significantly different between the two Treg cell
populations (28 upregulated in tumour and 10 in steady-state skin (Figure 2.4C)),
in line with recently published human data (Plitas et al., 2016). Tumour Treg cells
upregulate the exhaustion marker Lag3 (Malik et al., 2017), as well as Cxcr3 and
Ccl5, while control skin Treg cells upregulate skin Treg cell markers such as Il1rl1,
Pim1, Sdc4, Kdm6b and Erdr1. However, skin Treg cell signature genes such as Batf,
Tnfrsf4, Tnfrsf9, Samsn1, Tigit, Tchp, Ccr8, Ccr2 and Itgav are similarly expressed in
both populations.

Next, we sought to obtain a shared migration trajectory of steady-state versus
perturbed system (tumour model) Treg NLT cells recruitment. To this end, we used
the MRD-BGPLVM algorithm (Damianou et al., 2012) (see Methods) to explore gene
expression trends across Treg cells from the control skin, tumour and respective
draining-LNs together. Two main latent variables were identified, one explained
almost entirely by cell-cycle-associated variability (LV5), and one mainly associated
with the LT-NLT signature (LV9) (Figure 2.4D, Figure A.5C). Notably, NLT adapta-
tion trajectory (LV9) was strongly related to the trajectories found in control and
melanoma conditions when MRD-BGPLVM is applied to each one individually (re-
spectively, 86% and 61% of genes correlated with LV9 are also correlated with control
LV1 and tumour LV1; Figure A.5E-H, see Methods).

Gene kinetics along NLT adaptation (LV9) for each condition show 158 shared
genes, with 71% of which also present in the steady-state skin trajectory determined
previously. Values of t0 remain largely unchanged between control and melanoma
(Figure 2.4E), suggesting that NLT recruitment and adaptation follow the same
program in homeostatic and perturbed conditions. The tissue adaptation genes
shared between control and melanoma include many of the players in the TNFRSF-
NF-κB pathway we previously described in the steady-state (Tnfrsf9, Tnfrsf18). These
were accompanied by genes associated with cell migration and adhesion (Ccr2, Gpr55,
Plxna2), transcription factors (Rora, Ikzf3, Id2, Batf, Hif1a, Prdm1), secreted factors
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Fig. 2.4: Recruitment and adaptation of Treg cells to the tumour environment
recapitulates steady-state migration
(A) Melanoma induction strategy and sampled tissues. (B) t-SNE depicting Treg and
Tmem cells from tumour and steady-state skin, draining brachial lymph nodes and
spleen. (C) Differential expression between skin and tumour Treg cells. Treg cells clas-
sified as cycling were excluded. (D) (top) Latent variables found with MRD-BGPLVM
representing cell cycle (LV5) and non-lymphoid tissue recruitment/adaptation of Treg
cells (LV9). (bottom) Distribution of cells based on Tissue and Condition and Cell
Cycle phase along the recruitment trajectory. (Continued on the following page.)
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Fig. 2.4: (continued) (E) Difference in activation time (t0) of genes in control and
tumour. Genes are classified as being markers of skin, lymph node, cell cycle or
other. Coloured points show mean +/- mean standard error for each group. Vertical
dashed lines represent the mean +/- standard error for all t0 values. T-test between
control and melanoma t0 indicates no change (p-value = 0.2631), with t0 values
having a Spearman correlation coefficient of 0.65 between both conditions. See also
Figure A.5.

(Lgasl1), and others related to immune activation and effector states (Klrg1, Icos,
Tigit, Gzmb).

Despite the similarities between melanoma and control trajectories, cells from
both conditions do not completely overlap, and Treg cells could be ordered by
NLT adaptation between populations (from least to most adapted cells: control LN,
melanoma LN, tumour, and control skin) (Figure 2.4D). This implies that in response
to an immune challenge in a barrier tissue, a higher fraction of Treg cells in the LNs
acquires NLT adaptations. In fact, for several NLT markers we observed more cells
expressing them in the tumour-draining LN compared to the control, e.g. Id2 (59% vs
26%), Batf (57% vs 26%), Lgals1 (89% vs 67%), further supporting our hypothesis
that there is priming of Treg cells to NLTs while still in the LN. Overall, Treg cells
from challenged mice recapitulate the steady-state NLT adaptation.

2.2.5 Conserved NLT identity in mouse and human

We complemented our characterisation of murine NLT Treg and Tmem cells by
collecting human Treg cells, as well as Tmem (sorted into central and effector
memory) cells from blood and skin, and from tumour-adjacent colon sections from
patients undergoing colonic resection (Figure 2.5A, Figure A.6). Similar to the
mouse analysis, we identified gene markers for human CD4+ T cell populations (see
Methods).

Focusing on one-to-one orthologs, we found that 24 out of 144 human skin Treg
cell markers and 17 out of 74 human colon Treg cell markers overlapped with the
respective mouse signature. In colon, we observe the conservation of Tnfrsf4, Lgals1,
Srgn, Cxcr6, Maf, or Ikzf3 (Figure 2.5B), genes that we had previously identified as
important in defining tissue identity and Treg cell subpopulations. The same applied
to skin Treg cells, where we saw expression of Batf, Rora, Rel, Srgn, Tnfrsf18, and
Tigit across species (Figure 2.5C). Overall, this indicates a conserved role of the core
NLT signature, namely the TNFRSF-NF-κB-pathway.
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Fig. 2.5: Human-mouse comparison of NLT Treg cell marker genes.
(A) Tissues and cell types sampled from human. (B and C) Top: Overlap between
NLT Treg cell markers detected in human and mouse, in either (B) colon or (C)
skin datasets. Bottom: Fold-change between gene expression in non-lymphoid and
lymphoid tissues in mouse and human. Blood and spleen were used as lymphoid
tissues in human and mouse respectively. (D) NLT paralogs exhibiting opposing
expression patterns between human and mouse. See also Figure A.6.
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In several instances we observed the expression pattern of one gene being substi-
tuted by a paralog in the other organism (Figure 2.5D). For example, while the kinase
Pim1 is a marker of mouse NLT Treg cells, and was not expressed in human, the
inverse was true of Pim2. A similar situation was observed for Rgs1-Rgs2, Hif1a-Hif3a
and others. This suggests that some paralogous proteins have evolved to substitute
each other during evolution of NLT Treg cells in mammals. The fact that several of the
identified cases are receptors related to signal transduction leads us to believe that
evolution of cell-cell communication pathways owes some plasticity to differential
paralog usage.

Our cross-species comparison suggests that despite cross-species differences, the
NLT Treg cell adaptation program defined in mouse is generally conserved in human.

2.2.6 Classfication of Treg cell populations across species

The increase in the number of datasets from a variety of species enables the compari-
son of cell types between them. In the previous section, it was explained how the
core NLT Treg cell programmes were conserved between mouse and human, based
on one-to-one orthologs. This type of orthologs make up the majority of conserved
genes between these species, but one-to-many and many-to-many orthologs can also
have important roles in cell identity and function.

Two logistic regression models were trained to detect mouse Treg cell subpop-
ulations in human cells (see Methods). The first model was trained solely using
one-to-one orthologs expressed in both datasets. The second model included all
genes with any sort of orthology by adding the counts of related genes. Within
each tissue, predicted subpopulations appeared as expected, with blood containing
more cTreg and eTreg cells than NLTs, which in their turn had more Treg NLT and
suppressive cells (Figure 2.6A). Transition populations (Treg LT-like and NLT-like)
appeared more represented in general, as well as present in both lymphoid and
non-lymphoid tissues. This is an effect comparable to that observed in Figure 2.2G,
where Treg NLT-like cells are shown to match Treg NLT or Treg LT-like cells from
colon, likely because of the intermediate phenotype of the cells.

When comparing the models per tissue (Figure 2.6A, top vs bottom row), simi-
lar subpopulation proportions are predicted per human tissue, indicating reduced
differences between methods. However, we observe that the "one-to-one orthologs"
model is the only that unexpectedly predicts the presence of Treg NLT in blood, and
predicts in general a higher number of the rare, bLN-restricted Treg Stat1 subpop-
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Fig. 2.6: Training models for cross-species Treg classification.
(A) Treg cells of each human tissue classified as each subpopulation detected in
mouse using a logistic regression model trained with one-to-one orthologs (top)
or all orthologs (bottom). (B) Row-normalised confusion matrices for each tissue,
comparing the classifications using the one-to-one ortholog model (y-axis) against
the all orthologs model (x-axis). (Continued on the following page.)
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Fig. 2.6: (continued) (C) Distribution of the absolute value of coefficients for the top
300 genes learned for each population, in a model using all expressed mouse genes.
(D) Precision-recall curves for models trained using all mouse genes, all orthologs or
just one-to-one mouse-human orthologs. Precision and recall were calculated on a
balanced test set composed of 10% of mouse Treg cells.

ulation (Figure 2.6B). In the "all orthologs" model, cells that would be assigned to
this subpopulation are instead distributed between Treg NLT-like or LT-like, which are
more evidently present in the same tissues in mouse.

To examine the contribution of different types of genes for cell identity prediction,
we used a model trained on all mouse genes, and plotted the genes with the top
300 coefficients in absolute value by subpopulation and orthology type (Figure 2.6C.
This shows that, while different subpopulations have similar distributions of absolute
coefficients for one-to-one ortholog genes, distributions for one-to-many orthologs
(and genes with no listed ortholog) are more dissimilar. In particular, Treg Stat1
cells have a larger number of one-to-many ortholog genes with a higher coefficient
than the remaining populations, underscoring the importance of this type of genes
in defining this subset. Concomitantly, precision-recall curves calculated for a test
set comprised of 10% of mouse Treg shows that, while most subpopulations are
equally well classified by both ortholog-based models, for Treg Stat1 cells only the "all
orthologs" model performs as well as the "all genes" full model. These observations
provide evidence that, while most cell states can be distinguished from one-to-one
orthologs alone, this may not always be the case.

2.3 Discussion

Our work sheds light on the phenotype of skin and colon Treg cells. We profiled
NLT Treg and Tmem cells to identify global relationships between cell populations,
discriminating general CD4+ and specific Treg cell markers in NLT. We found that
these Treg populations conserve fundamental traits shared across the skin and colon
compartments, namely a substantial prevalence of genes part of the TNFRSF-NF-
κB axis. We leveraged the single-cell resolution of our data to explain Treg cell
heterogeneity in the context of LT-to-NLT transition. Besides the eTreg cell state
previously described in lymphoid organs (Cretney et al., 2011), we found two
transitional subpopulations, Treg NLT-like cells in the lymphoid tissues and Treg LT-
like cell in the non-lymphoid ones, which together explain the cross-tissue transition
from central Treg to Treg NLT cell populations. NLT-like Treg cells in the mLN and bLN
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showed extensive NLT-priming, including the upregulation of tissue-specific homing-
molecules to the drained NLT. Others have demonstrated that a subpopulation of
spleen Treg cells can express a partial visceral adipose tissue (VAT) signature and later
give rise to fully-mature VAT-Treg cells upon migration (Li et al., 2018a), implying
that this is valid for various tissues and should be considered in the design of future
precision medicine strategies involving targeting of Treg cells to NLTs.

Comparative analysis of Treg cell phenotypes revealed genes associated with the
TNFRSF-NF-κB axis to be highly upregulated in NLT (Figure 2.1C). Further enrichment
analysis (Figure 2.7) confirms that this pathway is significantly associated with an
NLT phenotype, despite the incomplete nature of the pathway’s annotation. Genes
such as Tnfrsf4 and Tnfrsf9, which encode for receptors that play a role in inhibiting
Treg cell function (Nagar et al., 2010), were identified here as distinctively associated
with NLT Treg cells, yet are absent from the currently available pathway annotation.
Mining of the dataset presented here can shed light on tissue-specific Treg cell biology,
and reveal additional targets for Treg cell modulation.

Fig. 2.7: Enrichment of genes from the TNF pathway in NLT T cells.
Barplot shows -log10(p-value) from Fisher’s Exact Test, testing the overrepresentation
of genes from the TNF signaling pathway, taken from the KEGG Database. Treg cell
gene sets correspond to the intersection of genes upregulated in Treg cells intersected
with those upregulated in the specific tissue (coloured dots in Figure 1.1C).
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Our pseudotime results support migration and adaptation relationships between
subpopulations, and allowed us to explore the basic mechanisms for the establishment
of peripheral Treg cell phenotypes. In this transition, metabolic and proliferation
changes in Treg cells happen concurrently with priming for migration, followed
by changes in cytokine production machinery upon establishment in the periphery.
Despite the overall similarity of recruitment and adaptation to NLTs, and although all
three subpopulations (skin NLT, colon NLT, colon suppressive) fell close along the NLT
adaptation trajectory, colon but mainly skin Treg NLT cells exhibited greater adapta-
tion to the NLT environment. We hypothesise that the upregulation of Ikzf4, Dgat2
and Itgae observed in skin might explain and contribute to the further stabilisation,
retention and metabolic adaptation of Treg cells to the NLT compartment.

Treg cell priming in LNs is apparent from their increased NLT signature and
expression of tissue-homing molecules, yet it is likely that Treg NLT-like cells are
a heterogeneous subpopulation, with some cells egressing to the NLTs and others
recently drained from the NLTs. This was confirmed using velocyto, and agrees
with the bidirectional migration between LNs and the NLTs described in skin using
a photoconversion system (Matsushima and Takashima, 2010). Studies coupling
photoconversion and scRNA-seq can further our understanding of Treg cell migration
patterns, as previously shown with single-cell qPCR (Ikebuchi et al., 2016).

A considerable proportion of the adaptation programme between bLN-to-tumour
was contained within the bLN-to-skin trajectories. Similarly to steady-state, cues de-
rived from NLTs are likely to prime Treg cells located in the draining LNs, as indicated
by a higher percentage of cells expressing Batf, Lgals1, Id2 and other NLT markers
in melanoma. In sum, tumour Treg cells resemble less mature versions of their
homeostatic skin counterparts that, nevertheless, follow the same NLT adaptation
trajectory.

The establishment of correct orthology relationships can be important for cross
species comparisons. While we show that including a broader variety of ortholog
genes improves prediction for one Treg subpopulation, this is not a definitive solution
and should warrant further testing. A drawback still present is the exclusion of genes
with no defined orthology relationship. These could be included by an approach that
aggregated the genes by gene sets that would match between species, which can
be agnostic to these evolutionary relationships and instead rely on per-species gene
functional descriptions. It can however leave out less well studied genes, or have
poorer performance for less well described or annotated species.
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Despite the conserved tissue-specific signatures, the differential paralog usage
identified between species (Figure 2.5D) suggests a pivotal role for expanded gene
families in rewiring signalling pathways throughout evolution. Studies focusing not
only on tissue-resident cells, but also on the surrounding environment and organs
can help dissect the relevance of these pathways in T cell biology, and how this
evolutionary rewiring might affect immune response and homeostasis.

Overall, we reveal a dynamic adaptation of T cells as they traffic across tissues,
and provide an open resource (data.teichlab.org) for investigating in vivo CD4+ T cell
phenotypes in mouse and human, to ultimately harness NLT CD4+ T cells as future
therapeutic targets.

2.4 Methods

For further experimental methods see Appendix A.

2.4.1 RNA expression quantification and normalisation

Sequencing data from 10x runs was aligned and quantified using the CellRanger
software package with default parameters.

Gene expression from Smart-seq2 scRNA-seq data was quantified in counts using
Salmon v0.6.0 (Patro et al., 2017), with the parameters –fldMax 150000000 –fldMean
350 –fldSD 250 –numBootstraps 100 –biasCorrect –allowOrphans –useVBOpt. For
mouse, the cDNA sequences used contain genes from GRCm38 and sequences from
RepBase, as well as ERCC sequences and an EGFP sequence. Since the EGFP RNA
is transcribed together with Foxp3, counts from these two genes were added after
quantification to represent Foxp3 expression. For human data quantification, cDNA
sequences from GRCh38 and ERCC were used.

Standard scRNA-seq analysis (QC, differential expression and marker gene de-
tection, and clustering) was performed using Seurat (Satija et al., 2015). All data
was log-normalised using the NormaliseData function with a scale factor of 10000.
Our expression data for different tissues is also available for user-friendly interactive
browsing online at data.teichlab.org.
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2.4.2 scRNA-seq quality control

Quality control of 10x-derived data was made taking into account number of UMIs -
keeping cells with between 1000 and 15000 UMI - and number of genes - keeping
cells with between 700 and 3500 genes with at least 1 UMI (Table A.5). While cells
were not filtered by their mitochondrial read content, cells with an elevated number
of these reads are eventually removed via clustering (see “Subpopulation detection
in 10x data”).

For Smart-seq2 data, count values for each cell were grouped in an expression
matrix, and ERCC expression were separated from true gene expression. Cells
were then filtered based on different quality parameters calculated for each dataset
(Table A.5). Additionally, the output of TraCeR (Stubbington et al., 2016) was used
to remove cells without a detected TCR sequence, as well as invariant Natural Killer
T (iNKT) cells and γδ T cells (defined as cells with at least one γ and one δ chain
detected and no αβ pair). For the colon and skin datasets, 433 and 745 cells passed
quality control, respectively.

Importantly, we note that TCR detection greatly improved our filtering by exclud-
ing cell types captured by FACS that did not fit the intended categories. This is the
case for iNKT cells - captured mostly together with spleen T memory cells - and γδ-T
cells - sorted together with skin Tmem cells in the melanoma experiment. Indeed, we
also identified a NKT population in the 10x dataset, mostly within the cells sorted
as spleen Tmem cells, as well as some LN Tmem cells (Figure A.1B and A.1C). We
cannot, however, state that these are “invariant”, since we have no access to their
complete TCR chains. TCR filtering also enables removal of cell doublets by identify-
ing cells expressing an excessive diversity of recombined TCR chains. Even in cases of
no allelic exclusion for TCR α and β sequences, each cell would still only be able to
produce two recombinants of each, allowing removal of cell doublets expressing more
than two recombinants for a TCR locus. Lastly, we removed all cells not expressing
any recombinant TCR in order to have a more stringent quality control. While in
the human dataset the number of cells without a TCR was evenly distributed across
tissues and cell types, there was a clear skew towards TCR absence in peripheral Treg
cells (colon and skin) in the mouse datasets. These Treg cells did not appear to differ
from the remaining population, having no differentially expressed genes or major
differences in their overall number, presenting only a skew towards a higher number
of reads (data not shown).
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2.4.3 Dimensionality reduction methods

To obtain an overview of the datasets showing the relationships between cell popula-
tion clusters, Principal Component Analysis (PCA) and tSNE were used. Before PCA,
data was scaled using the ScaleData function (negative binomial model, normalising
by the number of UMI and centering the data). PCA and tSNE were calculated
using the RunPCA and RunTSNE functions, respectively. For each dataset, a dif-
ferent number of Principal Components (PCs) and values for perplexity were used
(Table A.5), chosen by visual inspection of an elbow plot representing the relative
importance of each PC. With exception of the PCA projection for the complete 10x
dataset, only highly variable genes were used, calculated using the FindVariableGenes
function from Seurat with the parameter ‘num.bin‘ of 100 and ‘binning.method‘ of
"equal_frequency". Using all genes for dimensionality reduction of the whole 10x
dataset resulted in more accurate clustering, allowing for the identification of most
contaminant cells on this first step (Figure A.1B). Plate-based datasets were treated
separately as much as possible to avoid confounding batch effects from experiments
performed separately.

2.4.4 Subpopulation detection in 10x data

To find clusters in the data, we used the FindClusters function from Seurat, with the
same number of principal components used for tSNE. Cluster annotation was done
by inspecting markers detected by the FindAllMarkers function.

Global clustering of the 10x dataset was done with the resolution parameter set
to 0.2. After clustering the complete dataset, we excluded artifactual subpopula-
tions (Figure A.1). A mixed Treg and Tmem cell population characterised by high
expression of immediate-early response genes (e.g. Jun, Junb, Fos, Fosb), which has
previously been reported in other cell types (Adam et al., 2017; van den Brink et al.,
2017; Wu et al., 2017) was removed. An additional population of lymphoid tissue
Tmem cells was also excluded because they presented expression profiles similar to
NKT cells (Nkg7, Ccl5, Cd160, Klrbc1, Cxcr6).

Clustering on individual tissues used the following resolutions: for Treg cells, 0.3
on Spleen, 0.4 on bLN, 0.4 on mLN, 0.5 on Colon, 0.4 on all skin cells; for Tmem cells
0.4 on Spleen, 0.3 on bLN, 0.7 on mLN, and 0.6 on Colon. Annotation was performed
and subpopulations characterised by immediate-early response genes were removed.
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2.4.5 Differential expression analysis

Differential expression (DE) and marker gene detection was performed using the
FindMarkers and the FindaAllMarkers functions from the Seurat R package, using
the default Wilcoxon test. Genes were considered differentially expressed if they had
an average log fold-change of at least 0.25 and a Bonferroni-adjusted p-value of 0.05
or lower.

For DE including all cells of the 10x dataset, a minimum of 5% of cells had to ex-
press the gene, otherwise a minimum of 1% was used. For comparisons between tests
(for example Treg vs Tmem cells and LT vs NLT, see Figure 2.1C), the FindMarkers
function was run twice - the first time to determine all genes considered expressed
for each comparison, the second using the union of all those genes.

In the human and mouse comparison, human NLTs were compared to blood and
mouse NLTs were compared to spleen only, and testing was restricted to genes with
one-to-one orthologs.

2.4.6 Mapping cells to known populations using logistic regres-

sion classification

To make a correspondence of cells in the 10x dataset with the identified Treg cell
subtypes in the colon (Figure 2.2G), or between Smart-seq2 data and the complete
10x dataset (Figure A.2B), the counts and subpopulation labels of the 10x dataset
Treg cell subpopulations and the complete 10x dataset were used to train a logistic
regression classification model using scikit-learn with an L1 penalty and default
parameters. The label with the highest probability predicted by the model was then
attributed to each cell. The figures show the percentage of each tested population
that was predicted as matching to each learned label.

For cross-species mapping of Treg subpopulations, 90% of the sorted Treg cells
from mouse were used to construct two models, with the remaining subpopulation-
balanced partition kept separately for model testing. The first model (refered to in
Figure 2.6 as "one-to-one orthologs") was used only using genes expressed in both
species that are one-to-one orthologs. Another model was trained by using all genes
with known orthologs, and adding the counts for genes with many orthologs. For
example, if a gene in mouse corresponds to three genes in human (i.e. a one-to-
many relationship), then the counts of the three human genes are added and given
one identifier. For many-to-many relationships, the same happens in both species
simultaneously. Additionally, a third model was trained using all mouse genes, to use
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as a ground truth for the predictive power of the other models. With 10-fold cross
validation, these three models have a mean accuracy of 84.0%, 84.7%, and 85.6%,
respectively. Precision-recall curves were then calculated using the 10% test set.

2.4.7 Obtaining a migration latent variable for steady-state Treg

cells

The large dimensionality of single-cell RNA-seq data has been used before to gain
insights on time-dependent events (Lönnberg et al., 2017; Trapnell et al., 2014) by
applying methods for pseudotime inference. Although it is impossible to follow one
cell through the complete process, these methods can order single-cell data into a
continuous dimension, using the discrete samples as snapshots containing a multitude
of intermediate states.

Immune cells are expected to migrate between LTs and NLTs. We assumed that
this effect would be reflected as a gradual single-cell expression phenotype, which
could be captured as a latent variable of the data. To achieve this, we used Bayesian
Gaussian Process Latent Variable Modelling (BGPLVM) (Titsias and Lawrence, 2010),
implemented in the python package GPy (https://github.com/SheffieldML/GPy) as
“GPy.models.BayesianGPLVM”, which was already used before for dimensionality
reduction in scRNA-seq data to model Th1-Tfh cell differentiation (Lönnberg et al.,
2017). BGPLVM was used on log-scaled counts and only considering highly variable
genes. We run the method with six latent variables (LV) to be sure we capture
the most relevant ones by Automatic Relevance Determination (ARD, Figure A.3A),
although this number does not alter significantly the performance of the algorithm.
We then interpret the most important LV as the one ordering the cells between
tissues along a migration and adaptation transition. In agreement, we observe gene
expression changes associated with losing the lymphoid tissue identity and acquiring
a peripheral tissue transcriptional profile (Figure 2.3B).

For 10x data, the method was used on mLN and colon Treg cells. We then mapped
bLN and skin Treg cells onto the same LV using the predict function from the BGPLVM
module, in order to have a similar coordinate system for both trajectories. Running
BGPLVM with all data together would achieve a similar result (not shown). A BGPLVM
projection of bLN and skin Treg cells (Figure A.3B) shows an identical projection
but with a wider gap between bLN and skin cells due to the large differences in cell
numbers. We excluded spleen cells from this analysis to focus specifically on LN to
NLT adaptation.
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Similar effects are also observed in the corresponding Smart-seq2 cells (Fig-
ure A.4D). We then show that all the LVs chosen as a “pseudospace variable” (LV0)
have a similar effect between datasets by comparing the shared proportions of genes
correlated with each of them (Figure A.4E).

2.4.8 Identifying a common tissue migration trajectory in con-

trol and melanoma

Similarly to the steady-state, migration from the LN to the skin with a melanoma
challenge is also expected. A common between-tissue Treg cell migration trajectory
in control and melanoma conditions was obtained using Manifold Relevance De-
termination (Damianou et al., 2012) (MRD). MRD works by having an underlying
BGPLVM model whose dimensions can be shared or private between sections of the
data. Having the prior knowledge that a cell-cycle effect is present in the data (Fig-
ure A.5A) and with the goal of obtaining a LV explaining tissue recruitment in both
conditions, the melanoma dataset was divided into three sections for input: one with
the expression in all cell-cycle associated genes, one with marker genes for any tissue,
and one with the remaining genes. The importance of each section in each latent
variable is shown in the ARD plot (Figure A.5C). The model was run allowing for 12
LVs as output, and the one highly influenced by tissue-specific genes but not cell-cycle
or other genes was used as a migration trajectory for both conditions (Figure 2.4D).
The effects captured by these LVs can be observed in BGPLVM projections for the
individual conditions (Figure A.5E-G).

2.4.9 Switch-like genes in the migration latent variable

Gene expression changes in a continuous trajectory can be interpreted as a series of
switch-like events. These can be modeled using a sigmoid curve, described by the
following equation:

S =
2×µ0

1+ e−k(t−t0)
(2.1)

where µ0 is the mean expression between the sigmoid “on” and “off” states, t0

is the point in which the switch in expression happens, and k defines the sigmoid
inclination and can be interpreted as the activation strength. Parameter k will
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additionally inform on the direction of the switch (activation or inhibition) from its
signal.

The R package switchde (Campbell and Yau, 2017) was used to model gene
expression as a sigmoid in the inferred migration trajectories, using the appropriate
latent variable as pseudotime.

In the steady-state 10x dataset partitions (mLN+colon Treg cells and bLN+skin
Treg cells), switchde was applied for non-Tmem cell specific genes expressed in at
least 30 cells, as well as genes with an absolute correlation greater than 0.25 with
the LV chosen for both partitions. Due to the large differences in the number of cells
in the skin partition, we ran switchde 100 times on different subsamples of each
Treg cell subpopulation matching the smallest subpopulation size (405 for the colon
partition, 55 for the skin partition), and used the median values of the parameters for
further analysis. For the melanoma dataset, genes expressed in at least 5 cells in both
conditions were tested. Only genes with a q-value<=0.05 and that had a t0 within
the LV range were kept for further interpretation.

2.4.10 RNA velocity estimation

RNA velocity is a measure that leverages detection of spliced and unspliced transcripts
to predict single-cell development directionality (Manno et al., 2018). We used
velocyto to determine in which direction cells were changing in the cross-tissue
adaptation trajectories. We have followed the python implementation of velocyto,
and the code can be found in https://github.com/tomasgomes/Treg_analysis/blob/
master/Velocyto.ipynb, where each of the runs is present.

2.4.11 Detection of expanded clonotypes

T cell receptor (TCR) sequences were reconstructed from single-cell RNA-seq data
and used to infer clonality using TraCeR (Stubbington et al., 2016). We used TraCeR
with the parameters –loci A B D G, –max_junc_len 120 to allow reconstruction of
TCRα, TCRβ, TCRδ and TCRγ chains in each cell and to permit TCRγ chains with
long CDR3 regions.

2.4.12 GO Term enrichment

To test for enriched GO Biological Processes or KEGG Pathways in gene sets, the
gprofiler R package (Reimand et al., 2016) was used, with the option of moderate

https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
https://github.com/tomasgomes/Treg_analysis/blob/master/Velocyto.ipynb
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hierarchical filtering enabled. No custom background was used (i.e. all genes with
a GO Term annotation were considered). To determine the succession of Biological
Processes GO Terms (Figure 2.3C), we used the approach above on all genes called
DE by switchde, and plotted only the terms with at least two genes.

2.4.13 Cell-cycle analysis

To assess potential effects of cell-cycle in the interpretation of the scRNA-seq datasets,
Cyclone (Scialdone et al., 2015) (implemented in the scran R package) was used
on all datasets. Results for the mouse melanoma dataset (where a relevant cycling
population exists) were projected on the tSNE (Figure A.5A). As the vast majority of
cells was assigned to the default cell-cycle stage (G0/G1 in mouse, S in human), no
cell-cycle correction was performed.

2.5 Conclusions and future work

This Chapter has elucidated the molecular makeup of Treg cells in their tissue context,
and revealed the transcriptional transitions these cells undergo during adaptation
to a new tissue environment. Deep characterisation of colon, skin, their draining
lymph nodes and spleen revealed evident transcriptional heterogeneity, reflected in
distinct subpopulations likely associated with different activation and cross-tissue
transition stages. The full steady-state profile of Treg cells requires further sampling
of more tissues. Skin Treg cells, because they are harder to extract, were not as
deeply sampled, yet some heterogeneity could still be inferred (Figure 2.2G).

Increasing the number of profiled tissues holds the promise of revealing further
tissue-specific subpopulations, allowing for a full map of Treg cell phenotypic regula-
tion to be compiled. Recent work has showed that Treg heterogeneity is associated
with TCR activation in colon and spleen (Zemmour et al., 2018), and further inte-
gration of gene expression and open chromatin data has shed light into Treg cell
tissue-specific regulatory networks (DiSpirito et al., 2018). In particular, this last
study places NF-κB-related transcription factors (Nfkb1, Nfkb2, Rel, Relb) within the
colon-specific regulatory network, demonstrating the increased power in combining
data from different tissues. Within the colon, the authors of the study also identify a
subpopulation of cells they presume to be circulating (expressing Ccr7, similarly to
LT-like Treg in Figure 2.2A), and they are capable to in addition distinguish between
thymic and periphery-derived Treg cells. Various factors (tissue processing protocol,
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single-cell isolation method, among others) can influence the detection of the genes
driving these populations to explain why they were not detected in the data here
presented. Nonetheless, comparing these studies shows how useful it can be com-
bining scRNA-seq data obtained from different sources. Lastly, all the studies here
described have mostly focused on mouse. Recent analysis in our lab (James et al.,
2019) has showed that, from total immune cells extracted from human colon and
mesenteric lymph nodes, the Treg cell subpopulations described in this Chapter can
also be detected, further confirming the robustness of this finding.

When sampling diverse tissues, their physical processing is crucial, not just to
obtain a comprehensive representation of the cells present, but also in the way that
such extraction protocols can affect cellular phenotypes. It has been described that,
due to some processing methods, cells can undergo transcriptional changes, with the
activation of immediate early genes as a response to stress, or activation of genes
encoding for heat-shock proteins (van den Brink et al., 2017). Importantly, some of
the immediate early genes are also implicated in immune response, such as Fos and
Jun. Furthermore, this effect can be cell type-dependent, additionally confounding
the interpretation of said data. Mitigation of these effects has been achieved in the
past by inhibiting transcription during tissue processing (Wu et al., 2017). While
in the present work we avoided drawing excessive interpretations regarding genes
involved in these pathways, future cross-tissue works should account for these effects.
This should ideally happen at the biological material processing stage, since some of
these genes can have bona fide functions within the tissue-specific context (Wheaton
and Ciofani, 2019).

The inferred transcriptional trajectory (Figure 2.3A) offers a base model for what
tissue adaptation of Treg cells during trafficking might resemble. This trajectory was
inferred under the assumption that all cross-tissue intermediate states are represented,
however this might not be the case. The overlap between the LT-like and NLT-like
Treg subpopulations is encouraging, pointing at these being the intermediate state of
this transition. Indeed, NLT-like Treg cells in lymph nodes expressed surface receptors
known to direct cells to their specific tissues (Figure 2.2E). However, it can also
be argued that a true transition stage would have to be captured "in transit", i.e.
obtained from blood. This might be hard to achieve given the very low representation
of these cells compared to other circulating lymphocytes. In a model organism,
it could potentially be addressed by genetically modifying Treg cells to express a
detectable marker upon exit of lymph nodes or NLT, if such regulatory mechanism
is completely understood. A further aspect to consider is the directionality of cell
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trafficking. Velocyto analysis (Figure A.3C) hinted at a LN-to-NLT transition, however
it was not conclusive, also showing some NLT-like cells to be adapting into a lymph
node identity. It is indeed possible that trafficking occurs in both directions, yet the
association of this movement with the detected subpopulations will only be revealed
by combining single-cell sequencing with lineage tracing, for example using adoptive
transfer into specific tissues.

It is also expected that the data here produced and dissected serves as a plat-
form for future functional studies on Treg identity. This has already been the case
in (Wheaton and Ciofani, 2019), where the authors, starting from the tissue-specific
expression of Junb captured in this dataset, validate the importance of this gene for
adaptation of the Treg cell effector programme in the colon, through the use of Treg
cell-specific knock-out of the gene. Gene knock-out studies can be very powerful to
test the importance of the genes here revealed to impact Treg identity and adaptation.
This can be combined with lineage tracing of these cells to quantify how affected
cell trafficking is, or with functional assays to evaluate whether the gene is impor-
tant for Treg suppressive function, for example. In humans, functional validation is
more restricted due to ethic concerns, yet the gene lists here produced can also be
cross-referenced with genes involved in autoimmune or tissue-specific pathologies,
shedding light into the role of tissue-specific Treg cells in these diseases.

The unravelling of Treg cell heterogeneity also feeds into the more general topic
of how cell types can be classified. Based on their transcriptional phenotype, it is
apparent that the Treg cell subpopulations represent transient states. Despite being
evidently different when examining each individual tissue (Figure 2.2A), they can
actually appear similar when compared with other tissues and cell types (Figure 2.1).
For this reason, the establishment of a cell type reference should firstly consider cells
in their tissue context, and only then establish the similarities across these. It can
however be debated how accurately these different states could be distinguished
in the context of a broader cell type classification. Future methods might aim at
representing transient cell states separately from the defined, central cell identity.





Chapter 3

Developing a method to integrate and
classify cell types across tissues

The widespread adoption of single-cell sequencing technologies has revolutionised
the molecular profiling of cells. The use of these methods allows us to understand
the building blocks of tissues at an unprecedented resolution. As further human
tissues are examined, a catalog of cell types and their gene expression profile can be
compiled from published data.

This chapter outlines the development of a computational pipeline for cross-tissue
integration of scRNA-seq data, illustrating the performance of individual steps in
a controlled dataset. The pipeline is tuned to capture cell type similarities from
annotated and non-annotated data between tissues, resulting in an unbiased gene
expression reference for cell type identity. This reference can then be used to train
CellTypist, a set of logistic regression classifiers capable of assigning cell type identity
to newly produced scRNA-seq data. CellTypist is trained on the Tabula Muris dataset
as a mouse reference, and on a large collection of tissue-derived human data.

This project was initially conceived together with Valentine Svensson while he
was part of the Teichmann group. The human data collection and integration was per-
formed with the assistance of Ni Huang. The mouse and human cell type references
trained here are further analysed in Chapter 4.

3.1 Introduction

The growth of the scRNA-seq field is in part due to an increasing number of complex
and detailed cellular census of individual tissues, often directly associated with large
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consortia that aggregate these datasets and establish guidelines and collaborations
to identify all cell types across an organism (Regev et al., 2017). Individually,
these studies have provided crucial insights into cell biology. Nonetheless, the data
generated can often be reused for new purposes, either on its own to extract new
conclusions, or through combination or comparison with novel data.

To combine scRNA-seq datasets, batch correction and batch alignment methods
seek to either correct gene expression values accounting for technical metadata (Buet-
tner et al., 2017; Büttner et al., 2019; Haghverdi et al., 2018; Johnson et al., 2007;
Ritchie et al., 2015), or place cells from different batches, technologies and datasets
in a common manifold, allowing joint clustering and pseudotime analysis (Butler
et al., 2018; Hie et al., 2019a; Korsunsky et al., 2018; Polański et al., 2019; Stuart
et al., 2019). Conversely, comparison between scRNA-seq datasets aims to impart
the knowledge gained from one dataset into another, usually through classification
models. Various methods have been developed to compare cell types (and indeed
other labels) across datasets (reviewed in Chapter 1.3, Table 1.2). A benchmark of 22
classification methods for scRNA-seq (Abdelaal et al., 2019) has revealed SVM-based
classifiers as the top performing ones, capable of accurate cross-dataset classification
and handling of all genes by using L2 regularisation. This study also echoed the
findings of another recent study (Köhler et al., 2019) that demonstrated that deep
learning methods do not outperform classical machine learning approaches, including
SVM and logistic regression, for cell type classification.

Despite the high accuracy of there tools, which are highly effective at annotating
new data using specific datasets, their scope will is limited to the dataset chosen
as a reference and don’t directly handle large collections of data. To address the
need for a reference that can allow fast and automatic annotation across tissues,
we have developed a pipeline for integration of scRNA-seq data obtained from a
variety of tissues, which can then be used to build CellTypist, a global cell type
classification method based on logistic regression classifiers. While previous work
has been developed for well annotated mouse data using a neural network-based
classifier (Alavi et al., 2018), CellTypist can leverage data with different annotations,
focusing on providing broad identifiers for cells based on a reference from pooled
data.

This chapter discusses the structure of the integration and classification pipeline,
exploring its strengths and caveats, with each step performed on the Tabula Muris
data (Various, 2018). Despite coming from a sole publication, this dataset has the
advantage that it was generated in highly controlled conditions, spans 20 tissues,
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and includes a detailed and robust cell type annotation to be used as a ground truth
for the performance of each stage. The methodology outline is then used to train
classifiers based on the Tabula Muris, as well as a collection of human data of close
to 1.5 million cells. The training accuracy and bias of the models is assessed and
discussed, with suggestions for further improvements.

CellTypist is further explored in Chapter 4, where its application will be tested
for automatic classification. It will also be explored in terms of biological insights,
in order to identify cross-tissue relationships and examine which genes the model
deemed important to determine cell identity.

3.2 Methodology

3.2.1 Per-tissue clustering to approximate cell type annotations

Processing the data that will be used as a reference in CellTypist follows three major
steps. First, the data collected follows a procedure for uniform per-tissue processing
(Figure 3.1A). Next, the clusters determined in each tissue are matched across the
whole dataset (Figure 3.2A). Lastly, the combined clusters are used as labels to train
a logistic regression classifier using the complete data collection (Figure 3.4A).

Most scRNA-seq studies profile cellular heterogeneity in one specific biological
sample, which often results in reporting the cell types or cell states present. While this
is clearly displayed in the figures from these studies, this information in not always
supplied in a machine-readable format, associated with either the raw sequencing
reads or the quantified gene expression. Furthermore, most annotations do not follow
a uniform, controlled vocabulary (Bard et al., 2005), and is often done at varying
resolutions depending on the focus of the study or the breadth of the dataset.

The pipeline starts by splitting the collected data by tissues, grouping together
data from different studies that profile the same body part, even if using distinct
scRNA-seq protocols (Figure 3.1A). At this stage, data from each tissue is processed
following a uniform workflow using scanpy (Wolf et al., 2018). Gene expression is
normalised by their total counts and log transformed, and different datasets are batch
aligned using BBKNN (Polański et al., 2019). Lastly, clustering at varying resolutions
using the Leiden algorithm (Traag et al., 2019) is performed. This processing is
executed to ensure that all tissues are similarly treated, regardless of the level of
annotation, and to allow unannotated data to be included and bolster CellTypist’s
training data.
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Fig. 3.1: Data reprocessing per-tissue
(A) Pipeline for initial data processing. Data collected is split into tissue, followed by
integration of different datasets (in Tabula Muris, different protocols), and clustered
to optimally match existing cell type annotations. (Continued on the following page.)
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Fig. 3.1: (continued) (B) Per-tissue cluster optimisation, choosing the resolution that
approximates existing cell type annotations. Similarity is measured with normalised
split-join distance, and constrained to solutions with a number of clusters of at least
as many as existing annotations in the tissue. Upper panel shows the full range
of resolutions tested per-tissue; lower panel shows the resolution range in which
the optimal value for each tissue was present. (C) Co-occurrence of annotated cell
types in the same clusters, determined by summing the products of each cell types
per-cluster percentage. Only cell types with at least one co-occurrence value of 0.05
were kept. m.g. - mammary gland.

The clustering performed in each tissue can be optimised to approximate existing
cell type labels. To this end, various groupings were generated in each tissue using a
range of values for the resolution parameter of the Leiden algorithm. The clusters
obtained were subsequently compared to known cell type annotations. The distance
between clusters and cell types was calculated using the normalised split-join (SJ)
distance (Dongen, 2000). Briefly, SJ distance measures the distance between two
data partitions according to the number of element-wise division (split) or merge
(join) operations necessary to fully convert the new partition into the former. In
this specific example, it counts the number of operations necessary to convert the
new clustering groups back into any known cell type annotations. Since the values
in the original metric are dependent on the number of elements being cluster, and
which here differ between tissues, Figure 3.1B shows a normalised version of the
metric, where it was divided by 2N, with N = number of cells for a given tissue. Its
values will fall in an interval between 0 and 1, corresponding to complete similarity
or complete dissimilarity.

The calculated normalised SJ distance for each Leiden clustering resolution tested
is plotted in Figure 3.1B (top). The chosen resolutions (black circles) are a result of
Leiden clustering that 1) outputs at least as many clusters as there are unique cell
type labels in the largest dataset contributing to that tissue, and 2) has the lowest
normalised split-join distance. Despite the broad range of clustering resolutions tested,
(from 0.1 to 5 at 0.1 intervals), the parameters chosen for all tissues concentrated at
resolutions of up to 0.5 (Figure 3.1B, top shaded box and bottom expansion). Tissues
appeared to organise into two distinct groups: a smaller group with an SJ distance
above 0.2, and a larger one with a distance below 0.2. Interestingly, all tissues in
the higher SJ distance group were only sequenced using Smart-seq2 (Figure B.1),
suggesting that integration of data from different protocols is not resulting in clusters
that incorrectly approximate known cell types. This group also had, in general, fewer
cell types annotated, thus the higher values could be explained by overclustering.
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To understand the extent of misclustering of cell types within the per-tissue
clustering step, co-clustering of known cell types was examined across all tissues
(Figure 3.1C). We started with a cell type-by-cluster matrix, showing the distribution
of cell types per cluster as a percentage. To obtain a symmetric matrix, i.e. show the
co-occurrence of two cell types normalised for the occurrence of each cell type, we
obtained the product of this matrix with its transposed form. The resulting matrix
is subsequently filtered to only include cell types with at least one co-occurrence
value of 0.05 (meaning more than 20% of the cells from each cell type in a pair
would appear in the same clusters). Besides a high clustering of cells with the same
annotation, the plot shows that most of the mixing happens between related cell types
(e.g. epithelial cell, ciliated epithelial cell and basal cell of epithelium of trachea;
luminal cell of lactiferous duct and luminal epithelial cell of mammary gland), or
between hematopoietic-derived cells (e.g. neutrophil, erythrocyte, granulocyte;
hematopoietic stem cell, macrophage and dendritic cell; leukocyte and mast cell).
This is expected due to the similarities between related cell types, as well as due to
less resolved clustering of immune and non-immune cells when these are analysed
together. Another possible explanation is the existence of doublets, yet these tend to
happen between specific pairs of cell types, which was not the most common case.

Overall, despite some losses in the resolution of cell groupings, the per-tissue
clustering step of CellTypist maintains much of the cell type information existing in
the original data.

3.2.2 Combining cell clusters across tissues using tissue-specific

classifiers

In order to obtain a global reference for cell type classification, cell identity should be
harmonised between all surveyed tissues. To achieve this, the clusters obtained at the
end of the previous step are used as target labels predicted from gene expression using
logistic regression models for each tissue (Figure 3.2A, left). Model characteristics
and training parameters are detailed in Section 3.2.3. These models are then used to
classify the complete datasets, thus obtaining assignment probabilities to the clusters
in every tissue for each cell. These probabilities are further averaged per cluster, so
that we obtain a mean probability of every per-tissue cluster corresponding to all
others.

The merging of clusters is dependent on two parameters. The first (thr1) is defined
as a threshold for the dot product of the mean probabilities of two clusters, above
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Fig. 3.2: Cross-tissue matching of cell types
(A) For each tissue, a logistic regression model is trained, and used obtain a classi-
fication probability of all tissues. Clusters are then linked depending on the mean
probabilities of one cluster matching another (thr1). Clusters are ranked on connectiv-
ity, and grouped with neighbouring clusters that share a proportion of its neighbours
(thr2). (Continued on the following page.)
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Fig. 3.2: (continued) (B and C) Merging of cell types (x-axis) using the method in
(A) for models trained on known cell type labels (left y-axis). (B) shows the top
parameter combination (thr1 = 0.99, thr2 = 0.5) based on split-join distance; (C)
shows the combination that came in third (thr1 = 0.5, thr2 = 0.6) and which resulted
in increased merging.

which they are considered similar (i.e. "connected"). Based on this we can obtain
a network with the connections between all clusters (Figure 3.2A, middle). This
network serves as the base to define the cluster groupings. Clusters are then ranked
based on their degree (i.e. the number of clusters they connect to) and grouped with
their neighbours that share at least a defined percentage of their neighbours (thr2)
(Figure 3.2A, right). The clusters merged are removed from the ranking, and the
condition is iteratively applied until it has been tested for all elements. Lastly, the
solutions for all thresholds are ranked based on their improvement over the per-tissue
labels as measured by the split-join distance (detailed below).

To assess how this algorithm performed in a situation with known labels, it was
tested using the annotated cell types for each tissue instead of clusters. After ranking
the solutions given by the different parameter combinations tested (combinations
identical to Figure 3.3B), we inspected the top parameter combination (Figure 3.2B,
thr1 = 0.99 and thr2 = 0.5), as well as the third, which presented the lowest
combined cluster number (Figure 3.2C, thr1 = 0.5 and thr2 = 0.6). Most clusters
resulting from the merging workflow, in both solutions, combined cell types annotated
with the same name in different tissues. This is particularly evident for endothelial
cells, B cells, and T cells. While the score for the merging presented in panel C was
not as good as that for panel B, it is immediately apparent that the more extensive
merging still conserves most of the correct labeling, even grouping together identical
cell types that are left separate in the first solution. This indicates that there can be
a range of approximately correct parameter combinations, and hints at the tissue
specificity of certain widespread cell types. Taking as an example endothelial cells,
the first combination leaves lung and diaphragm separate from the remaining tissues.

This merging was then performed on the tissue clusters obtained from the first
section of the pipeline. Both thresholds in the algorithm were tested with the values
0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, and 0.99. With the increase
of both parameters, we observe an increase in the total number of clusters and a
decrease in the fraction of merged clusters (Figure 3.3A). This trend is more evident
for thr2, which is more directly involved in determining which clusters are grouped
together. Results of all thr1-thr2 parameter combinations were then ranked based on
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the split-join distance when comparing with known cell type labels, taking the original
per-tissue clusters as a baseline. The parameter grid (Figure 3.3B) shows lower values
for this ratio ("merged clusters" SJ distance/"per tissue clusters" SJ distance) at higher
thr2 values, with the best combination (lowest ratio) at thr1 = 0.8, thr2 = 0.99.
Examining this combination for how cell type labels were grouped revealed that,
similarly to Figure 3.2B and C, many identical cell types had been grouped together

Fig. 3.3: Evaluation of clusters matched across tissues
(A) Change in number of total clusters and fraction of merged clusters with each
threshold value (see Figure 3.2A for reference). Parameters resulting in a single
cluster were not represented. (B) Parameter grid showing the variation of the ratio of
split-join distance between merged clusters and cell type annotation, and per-tissue
clusters and cell type annotation. (C) Grouping of cell types contained in per-tissue
clusters (x-axis) using the top parameter combination (thr1 = 0.8, thr2 = 0.99)
based on split-join distance.
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(e.g. T cells; endothelial cells). Moreover, we can observe that cells with different
names but similar functions are grouped together, as is the case of endothelial cells
and fenestrated cells (an endothelial cell part of the renal glomerulus). In contrast,
however, it could be observed that some cell types dispersed across more than one
cluster. Even so, in cases where this happened (e.g. kidney tubule cell; mesenchymal
stem cell of adipose), this dispersion tended to be minor, with a majority of cells from
each of these annotated cell types coalescing in one cluster.

In sum, this demonstrates that this workflow is capable of merging cells with a
similar transcriptome, and making cell identity across tissues uniform.

3.2.3 Generating updatable transparent-box models for cell type

classification

Cell type classifiers have been descibed to achieve high performances even when based
on simple models (Abdelaal et al., 2019; Köhler et al., 2019). The classifier used for
CellTypist can be used to provide a fast and unbiased cell identity annotation of new
datasets. CellTypist’s classifier is implemented in Python using scikit-learn (Pedregosa
et al., 2011), and uses a logistic regression model with L2 regularization (Figure 3.4A).
This allows the model to remain accurate, while still providing information about the
contribution of all genes to determining the classification of each cell type. Training
is done through mini-batch training using stochastic gradient descent (SGD). SGD is
used since it makes the model more scalable, as it can converge without training over
the whole dataset. It requires approximately one million data points to train, provided
that all observations from all labels are passed to it. The models here presented will
see the whole data a fixed number of times (epochs), to demonstrate their behaviour
during training. The model encompassing all tissues was trained for 25 epochs, and
the models trained on individual tissues (used in 3.2.2, Figure 3.2) were trained for
10 epochs. Additionally, SGD also allows for online training, meaning that if new
data is obtained it can be easily incorporated into the model.

This methodology was first tested on the complete Tabula Muris dataset, training
the model to predict the existing cell type annotations. The model converged after
fewer than 500 iterations (each iteration corresponding to a batch of 1000 cells),
and resulted in a prediction accuracy of 95% on the held-out test set (Figure 3.4B).
Performance per class was assessed by calculating the F1 score, i.e. the harmonic
mean between precision and recall for each class. A partial dependency between this
score and the number of cells in a give class was observed for smaller groups (fewer
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Fig. 3.4: Model training outline and evaluation
(A) Model training and usage outline. A logistic regression model is trained using
stochastic gradient descent. When deployed, it can provide annotations for unlabelled
data, which can the be further supplied back into the model to update it. (B) Accuracy
during model fitting for training and held-out test data, to directly predict Tabula
Muris cell type labels. Vertical dashed lines represent each training epoch. Terminal
label indicated final accuracy for prediction in the test set. (C) F1-score for each cell
type (black dots) as a function of class size (in log10 scale). (D) Precision-curves for
each cell type (gray), and global micro average (black).

than 100 cells in the test set (10% of the total), Figure 3.4C, Tables B.1 and B.2).
The strong predictive capability of the model can be further observed by plotting the
precision-recall curves for each class (Figure 3.4D). While we again observe some
classes to have a poorer performance, a micro-averaging of precision and recall of all
classes (i.e. average precision and recall by calculating true positives, false positives
and false negatives for each class) shows a very strong performance.

These results demonstrate the high performance of simple and intuitive logistic
regression to train models capable of annotating data from various sources.
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3.3 Results

3.3.1 Training CellTypist on the Tabula Muris dataset

After integrating scRNA-seq data across tissues, as described in Sections 3.2.1
and 3.2.2, the expression values can be used to unbiasedly predict cell identity
by constructing a model in a similar fashion to that described in Section 3.2.3.

Fig. 3.5: Evaluating model trained on cross-tissue integrated clusters
(A) Abundance of annotated cell types in cross-tissue clusters. Colours represent
clusters with at least x% of a given cell type. (B) Accuracy during model fitting for
training and held-out test data, to predict cross-tissue integrated clusters. Vertical
dashed lines represent each training epoch. Terminal label indicated final accuracy
for prediction in the test set. (C) F1-score for each cluster label (black dots) as a
function of class size (in log10 scale). (D) Precision-curves for each cluster (gray),
and global micro average (black).
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The model training framework was thus tested using the cluster labels resulting
from the merging shown in Figure 3.3 (thr1 = 0.8, thr2 = 0.99). Clustering at
the tissue level resulted in 222 clusters overall, compared with 139 cell type-tissue
combinations. This increase was mainly registered in Pancreas (+20 clusters), Colon
(+17), Fat (+11), Brain Neurons (+11) and Aorta (+9). All of these were clustered
with a resolution of 0.1, and all were solely represented in Smart-seq2-derived data
(Figure B.1). This hints at potential batch effects that were unaccounted for in the
initial analysis step. Merging the clusters across tissues resulted in a final number
of 198 clusters as the top result, compared to 75 unique annotated cell types, a
difference that is mostly propagated for the initial large increase in the number of
clusters. Nonetheless, those that were merged grouped in many cases cells with a
similar phenotype in many cases (Figure 3.3).

Figure 3.5A examines the representation of annotated cell types across all clusters,
showing that a large majority of cell types are in one or more clusters where they
represent at least 90% of cells, indicating that although the number of clusters is
elevated compared to expectations, most clusters are highly specific. Similarly to the
cell type-based model, performance metrics globally show a fast convergence and
high training accuracy (Figure 3.5B), as well as a high per-label precision and recall
(Figure 3.5C, D), with most classes having an F1 score above 0.75. Classification
performance can be seen broken down by cluster in Tables B.3, B.4, B.5, and B.6.
These again reveal the poorer performance of lowly represented clusters, many of
which originating from the overclustered tissues mentioned above.

3.3.2 Training CellTypist on a collection of human data

To obtain a global, cross-tissue perspective of human cell types, we obtained a broad
representation of single-cell transcriptomes by collecting several publicly available
scRNA-seq datasets (Table B.7). Information about tissue, scRNA-seq protocol, sam-
pling method, and cell type annotation (when available) were obtained from the
respective publications and data repositories, together with the gene expression
matrices (Figure 3.6).

The 28 datasets collected include 21 tissues, mostly collected from adult biopsies
(Figure 3.6A and 3.6B), and totalling close to 1.5 million cells. Various studies
focus on haematopoietic-derived cells, and as such many of the sampled tissues are
mostly composed of immune cells (Figure B.2). Most cells are obtained using the
droplet-based "Chromium" instrument from 10x Genomics ("10X" in Figure 3.6C),
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Fig. 3.6: Cell numbers in the human dataset collection
Number of cells, in log10 scale, collected from different tissues, and distributed by
publication (A), type of collection (B), and scRNA-seq protocol (C). hnLN - head and
neck lymph nodes; axLN - axilary lymph nodes; mLN - mesenteric lymph nodes.

followed by the plate-based, full-length Smart-seq2 ("SS2"). Despite this imbalance
in usage of different technologies, it is in agreement with what has been reported



3.3 Results 65

in an exhaustive curated reference of single-cell sequencing datasets (Svensson and
Beltrame, 2019).

Single-cell RNA-seq expression data was collected for the publications listed in
Table B.7, together with cell type annotations when these were available. Infor-
mation about tissue, donor type and scRNA-seq protocol were obtained from the
publications.In most cases, count data was available together with the raw sequencing
reads in the chosen repository. In other cases, the expression matrices deposited
included log normalised data. This means that the data was normalised by the
total number of reads/UMI of each cell, often followed by multiplication by a spe-
cific scaling factor (usually 10000), and finally log scaled, adding 1 to account for
the zeroes present. For these datasets, data was reconverted to counts following
an approach similar to that explained in http://www.nxn.se/valent/2018/10/25/
unscaling-scaled-counts-in-scrna-seq-data. Briefly, given the scaling factor S, rep-
resenting the second most abundant value for each cell, and x for each expression
value, unscaled data U was obtained by applying Formula 4.1, followed by rounding
to the nearest unit to remove floating point inaccuracies.

U =
ex −1

S
(3.1)

Raw count matrices were then compiled together, guaranteeing as much corre-
spondence as possible between the diverse gene references used. All gene identifiers
were mapped to the corresponding HGNC gene names, and all unique identifiers were
kept. This was done to maintain the integrity of each dataset, as well as facilitate
data collection and incorporation.

The CellTypist pipeline was then applied to the complete human dataset, with
parameter optimisation as described in the previous Sections. Data from the same
tissues was integrated and clustered using the Leiden algorithm (Traag et al., 2019)
at several resolutions. For tissues with cell type annotations, resolution was optimised
using the split-join distance (Dongen, 2000) between clusters and cell type annotation
and constrained to a number of clusters at least as large as the number of cell type
annotations in the largest collected dataset (Figure 3.7A, see Section 3.2.1). This led
to a total of 641 clusters in all tissues.

Following clustering, per tissue logistic regression models were trained, running
for 10 epochs of a maximum of 100 iterations each. These models were used to run the
cross-tissue cluster merging pipeline (Section 3.2.2), and a combination of parameters
was chosen based on the ratio of split-join distances (merged vs annotated cell types

http://www.nxn.se/valent/2018/10/25/unscaling-scaled-counts-in-scrna-seq-data
http://www.nxn.se/valent/2018/10/25/unscaling-scaled-counts-in-scrna-seq-data
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over per tissue vs annotated cell types) (Figure 3.7B, Figure B.3A,B), resulting
in the choice of thr1 = 0.99 and thr2 = 0.8 (627 clusters). Additionally, three
other combinations were chosen for comparison: thr1 = 0.4 and thr2 = 0.99 (607
clusters), the combination with the top split-join ratio when only considering merged
clusters (Figure B.3C, Figure B.5A-B); thr1 = 0.25 and thr2 = 0.25 (420 clusters),

Fig. 3.7: Running CellTypist on a human scRNA-seq data collection
(A) Per-tissue cluster optimisation, choosing the resolution that approximates existing
cell type annotations. Similarity is measured with normalised split-join distance, and
constrained to solutions with a number of clusters of at least as many as existing
annotations in the largest collected dataset. Selected values are indicated with a
black circle. (B) Grid of parameters tested for cross-tissue cluster merging, showing
the variation of the ratio of split-join distance between merged clusters and cell
type annotation, and per-tissue clusters and cell type annotation (colour and size
of points). (C) Accuracy during model fitting for training and held-out test data, to
predict cross-tissue integrated clusters obtained using thr1 = 0.99 and thr2 = 0.8 as
parameters for CellTypist (optimal value in (B)). Vertical dashed lines represent each
training epoch. Terminal label indicated final accuracy for prediction in the test set.
(D) F1-score for each cluster label (black dots) as a function of class size (in log10
scale).
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one of the combinations with the highest fraction of merged clusters (Figure B.3B,
Figure B.5C-D); thr1 = 0.1 and thr2 = 0.1 (218 clusters), the combination with the
highest fraction of merged clusters, as well as highest split-join fraction (Figure B.3B,
Figure B.5E-F).

An example of a tissue (pancreas) with consistently annotated cell types across
datasets can be seen in Figure B.4 with the merged clusters in the thr1 = 0.99 and
thr2 = 0.8 model. We can appreciate that the pipeline, similarly to Figure 3.3C,
successfully merged various similarly annotated cell types (alpha, beta, acinar, ductal,
delta, gamma, epsilon, endothelial), albeit with some small "contamination" by other
cell types. Other however were not so well separated, as is the case of the immune
cells (t_cell, mast, MHC class II), which were grouped together.

The cell groupings obtained were used to train a logistic regression model using
Stochastic Gradient Descent (Section 3.2.3). Training was done for 25 epochs of a
maximum of 100 iterations each, where in each iteration 1000 cells were seen by
the model. 90% of the total data was used as a training set, and the remaining as
a left out test set that was tested at every iteration (Figure 3.7C, Figure B.5). The
model had a classification accuracy of 84% on left-out test data (Figure 3.7C), and
the F1 statistic calculated for each label was in most cases above 0.75(Figure 3.7D,
Tables B.8 to B.19), meaning elevated precision and recall in the model, especially for
clusters with more than 100 cells, as previously shown (Figure 3.4C, Figure 3.5C).

Three additional models, trained using sets of clusters derived using different
parameters, were also examined (top markers for largest clusters from each model
are listed in Supplementary Table B.20). These were thr1 = 0.4 and thr2 = 0.99
(Figure B.5A-B), thr1 = 0.25 and thr2 = 0.25 (Figure B.5C-D), and thr1 = 0.1 and
thr2 = 0.1 (Figure B.5E-F). These models show a lower performance, in particular
the latter (thr1 = 0.1 and thr2 = 0.1), with a test classification accuracy of 73%.
This may be due to the excessive merging of clusters within and across tissues, thus
leading to hybrid, undetermined groups of cells (Figure C.4). Other models are more
conservative in this regard, and show a better classification performance. The model
using clusters obtained with thr1 = 0.25 and thr2 = 0.25 still has noticeably worse
values for the split-join distance, yet also represents a more condensed cell type
reference (420 clusters), without sacrificing accuracy (83%). Lastly, the model with
the parameters thr1 = 0.4 and thr2 = 0.99, in particular, is the one showing the
greatest improvement in matching annotated cell types after cross-tissue merging,
thus representing another possible reference model.
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In sum, the collected datasets allow for the training of the CellTypist pipeline and
construct a fully interpretable human cell type reference.

3.4 Discussion

CellTypist has been designed as a way of systematising cell identity from expression
data, and use it directly for automatic annotation. The pipeline has been designed
keeping scalability in mind, fully aware that the first model represents an initial
release that will be continuously updated. It is expected that the increase in data
sources and available expert annotations will greatly improve the usability of the
framework going forwards.

The construction of this pipeline is also subject to evolution. It has been developed
with the ability to include unannotated data in a cell type reference. Existing cell
type annotation is highly informative when deposited together with the expression
data or the accompanying publication, although this is not always the case. Even so,
the vast majority of scRNA-seq analysis pipelines rely either on Leiden (Traag et al.,
2019) or Louvain (Blondel et al., 2008) clustering, which are used in the per-tissue
processing step and thus results in a considerable approximation between known and
new labels (Figure 3.1B). Even though the final, merged labels are to be manually
curated and named, existing cell type annotations can also be made available to the
end user, adding another layer of validation to the results.

The results presented here demonstrate that integration using the pipeline can
correctly merge similar cell types (Figures 3.2B,C; Figure 3.3C; Figure B.4C). However,
these results are not perfect. The fact that, in some instances, T cells share clusters
with natural killer cells, highlights that the method does not yet achieve perfect cell
type separation. These two cell types have similar transcriptomes, which explains
why in some reduced representations used for clustering they might appear very close.
Nonetheless they are easily distinguishable by the expression of a small set of markers,
and could be efficiently distinguished by a logistic regression model using curated
labels (Figure 3.4C and D). This mixing between different cell types results from both
integration stages of the pipeline. Figures 3.3C and B.4 show that the merged clusters
are composed of more than one annotated cell type, although generally containing
a majority of a specific cell type, which results from the non-exact overlap between
per-tissue clusters and annotated cell types. Additionally, misgrouping caused by
the cross-tissue matching step (Figure 3.2B) can occur, where similar cell types can
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be incorrectly merged (e.g. natural killer cells and T cells; smooth muscle cell and
epithelial cells).

These inaccuracies can be mitigated in various ways. The resolution bottleneck
introduced by the first, per-tissue integration step can be potentially improved. For
example, one possibility is to adopt a more curated approach after clustering every
tissue, although this would require significantly more human input. Another option
would be to rely more on data with existing annotations. One way to achieve this is by
using a label propagation method that, within each integrated tissue, passes existing
labels to unannotated data (Barkas et al., 2019). Alternatively, the method can
instead iteratively apply the algorithm used to integrate the clusters between tissues
(Figure 3.2A). In the first step this would be applied for each dataset collected to
merge all existing data for each tissue, and relying on existing annotations. A second
step would then be applied between tissues as shown (Figure 3.2). This guarantees
that any known heterogeneity in the collected data is preserved and propagated into
the final annotation, but has the disadvantage that any novel populations that would
be detected by data integration can be lost, and requires the cell type labels to be
thoroughly verified a priori. Integration can also be improved by a cross-tissue batch
alignment approach (e.g. using MNN (Haghverdi et al., 2018) or BBKNN (Polański
et al., 2019)), which could potentially help with the proper overlap between cell
populations, yet can be difficult to apply at scale. It is expected that improving the
integration steps of the pipeline will ultimately lead to more confident matches across
tissues, since at the moment the pipeline is very conservative when establishing these
relationships. Lastly, an ensemble approach can also be taken by combining all the
per-tissue models into a single classifier. This has the disadvantage that the pipeline
will not immediately identify relationships between cell types in different tissues, yet
could potentially, from the same model, match the most similar cell population and
tissue from the same model.

This Chapter also demonstrated the viability of logistic regression as a method-
ology for cell type classification using a broad atlas as a reference (Figures 3.4B-D
and 3.5B-D). This is in line with previous reports (Abdelaal et al., 2019; Köhler
et al., 2019), showing that cell identity classification is not improved by the use of
deep learning methods, and can be accurately performed using simpler machine
learning frameworks. The results also demonstrate that this method is robust enough
to accommodate clusters with some mixture of cell types (which results in lower
phenotypic resolution) (Figure 3.5), and even from a broad variety of tissues and
protocols (Figure 3.7). However, it is important to highlight the potential biases that
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can arise from the collected data, since the representation of cell types in different
tissues might be uneven. Differential representation of cell populations across tissues
can potentially result in a bias learned by the model. As an example, if a cell type has
a tissue-specific signature (that is not present in other cells from that same tissue),
and this cell type is more abundantly profiled from that tissue, the gene signature
learned by the model may reflect, at least partially, the tissue-specific signature rather
than the desired cross-tissue phenotype. While this is difficult to consider for all cell
types (due to likely tissue-specific heterogeneity and lowly abundant populations),
the use of down-sampling (Hie et al., 2019b; Wong et al., 2016b) before training
or the application of a model ensemble approach could mitigate this. Furthermore,
imbalances in the data can also result in differential representation of cell populations
across tissues. This is the case with the human data collection, where there is a
preponderance of immune cells, with some organs profiled only with respect to this
cell compartment (Figure B.2). This justified the need for an updatable model, in
order to add data to incompletely profiled tissues.

The implementation of CellTypist is also explicitly constructed such that the
resulting model can be easily updated. This is due to the implementation using
stochastic gradient descent, which allows for easy and direct updates to the model by
running more learning iterations on novel data. This is important to maintain the
reference up to date. However, it can only be done by classifying new data according
to the existing labels. If the new datasets collected include cell types that are not
represented in CellTypist, then the full pipeline needs to be ran anew. Nonetheless,
this allows for the database to have fast minor releases to maintain it up to date
with the latest dataset publications, as well as less frequent major releases that more
thoroughly integrate these datasets and revise the annotation database. CellTypist
will be available with a web interface, allowing for classifications to be ran via a
web server, or, alternatively, download the models to test locally. It will include a
database characterising the cell type labels present in the model. While different
organisms will have different models, many of the cell types described are predicted
to be present in multiple species, and can in future updates have their cross-species
similarities defined and reflected in CellTypist’s accompanying cell type compendium.

Overall, this chapter has demonstrated that CellTypist can organise a valuable re-
source for cell type annotation. Furthermore, this resource can be readily interpreted
from inspection of gene coefficients for each label. In the next chapter, a practical
application and interpretation of CellTypist will be presented.



Chapter 4

Application and biological insights of
the CellTypist model

The identity of a cell can be defined by the genes it expresses. Knowing these gene
sets is what helps us to identify cell types when analysing scRNA-seq data, yet this
manual identification often requires a vast domain-specific knowledge, and thus
interpretable models that either rely or identify these genes can be useful to make
cell type classification automatic. Furthermore, an increasing number of studies has
applied scRNA-seq to profile various body locations and describe the cells that make
up a tissue, in the steady-state or disease. A smaller number of studies have focused
on the differences between the cell types detected in different tissues (Miragaia
et al., 2019; Scott et al., 2018). However, we don’t yet know how variable the
transcriptome of most cell types is between tissues, and how much of a tissue’s
transcriptomic identity is reflected in each cell type.

This Chapter follows from the construction of the CellTypist models in the previous
Chapter, and explores its application for automatic cell type classification and inter-
pretability with regards to cell identity and cross-tissue relationships. The present
Chapter will reveal the type of genes important in defining cellular phenotypes across
tissues, and outline how tissue gene expression signatures relate different anatomical
regions.

The analyses here performed are based on the methodology outlined in Chapter 3.
Supplementary figures and tables are included in Appendix C.
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4.1 Introduction

Recent developments in single-cell sequencing have enabled unbiased and high-
throughput assessment of cell types through transcriptomic profiling (Svensson
et al., 2018). A few individual works have aimed at profiling cell types across most
tissues of an organism (Fincher et al., 2018; Han et al., 2018; Plass et al., 2018;
Various, 2018). Other more complex and detailed cellular census have been done for
individual tissues, and large consortia have been established to aggregate some of
these datasets and establish guidelines and collaborations to identify all cell types
across an organism (Regev et al., 2017).

The definition of cell type is, like many biological terms, a working definition.
Cells have been classified based on different aspects of their morphology, molecular
phenotype, or function. Historically, this knowledge of cell identity has been restricted
to specific fields (e.g. immunology, neuroscience), hindering the development of
an integrative, systemic perspective of cell types in the body. Single-cell RNA-seq
technologies (scRNA-seq) are now challenging this perspective, since they allow for
an unbiased profiling of cell identity through the transcriptome. As scRNA-seq data
acquisition grows (Svensson et al., 2018), so does our understanding of the cellular
make up of the profiled tissues. The Human Cell Atlas Consortium has defined as one
of its goals to develop a cellular taxonomy (Regev et al., 2017), which is necessarily
harmonised across tissues. Nonetheless, a unified, transcriptome-driven perspective
of cell identity is still lacking.

The molecular basis for the relationships between tissues were initially probed by
high-throughput methods; first microarrays (Enard et al., 2002), and later with RNA-
seq (Barbosa-Morais et al., 2012; Brawand et al., 2011; Mortazavi et al., 2008). More
recent studies are now linking this transcriptome cross-tissue variability with genome
variants (Consortium, 2015; GTEx Consortium, 2017), unravelling the regulatory
determinants behind tissue biology. Further analysis have delved into the importance
of transcription factors for tissue identity (Sonawane et al., 2017), revealing that
tissue specificity lies not only in these molecules but mostly on the tissue-specific
regulatory roles they play, while also showing that transcription factors are less likely
to be identified as tissue-specific than other genes. An integrated predictive model of
cell identity should be able to reveal patterns relating tissues through cell identity
relationships, as well as offer a broad perspective of the genes determining cell types.

Here we will expand on the pipeline developed in Chapter 3, testing CellTypist for
automatic annotation of scRNA-seq data, to probe cellular identity in primary cells
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across body locations. Testing the model trained on human data on an independent
dataset reveals an elevated accuracy for cell types and tissues represented in the
reference, as well as informative approximations for cell types not yet included in
CellTypist.

Beyond classification, CellTypist can also be dissected to unravel aspects of cell
type and tissue biology. The integration pipeline can recapitulate known tissue
associations, caused either by comparable cell sampling (e.g. tissues solely profiled
for immune cells), or by functional similarity. These are evident both at the tissue
integration stage, as well as in the top genes learned by the model that define cell
groupings in each tissue. These genes are further examined for patterns in cell
identity definition, revealing a global pattern for genes coding for functional effector
molecules (i.e. receptors and secreted proteins) to be more pivotal in defining cell
identity than others involved in genomic regulation. Finally, we discuss the potential
uses and implementation of a scRNA-seq-derived cell type reference.

4.2 Results

4.2.1 CellTypist as an operational reference for annotation

The operational goal of CellTypist is to be used as an automatic classification frame-
work for scRNA-seq data. Data integrated through the pipeline can be used as an
unbiased model of cell identity to predict cell type labels in unannotated data.

The data generated in (Madissoon et al., 2019) was used to test the classification
performance of CellTypist with the compiled human data. This dataset was chosen
because it includes three distinct tissues - lung, oesophagus, and spleen. Of the three
tissues, lung is the only represented in the collected datasets (yet not contributed
from the same sample), although many of the cells collected from spleen (mostly
immune cells) are present in the model, contributed by different tissues. More than
200.000 cells were collected from these three tissues, with various cell populations
manually identified.

An overview of the classification results, projected in UMAP (McInnes et al., 2018)
(Figure 4.1A, Figure C.9A, Figure C.10A), shows a similarity between the individual
labelling of different clusters. The increased noise in CellTypist’s annotations are
likely due to the large number of categories it includes. Despite this, most model
labels are highly specific, being attributed almost entirely to a single original cell
type annotation (Figure 4.1B, Figure C.9B, Figure C.10B). While the opposite is not
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Fig. 4.1: CellTypist predictions for lung data from (Madissoon et al., 2019)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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true (i.e. one cell type annotation can correspond to more than one cluster), it is
nonetheless evident that each cell type is dominated by one or very few clusters
(Figure 4.1C, Figure C.9C, Figure C.10C). Furthermore, even when excluding clusters
including less than 10% of cells from each annotated cell type (as is the case in the
heatmap in Figure 4.1C), the remaining clusters still include 70-90% of cells (purple
sidebar in Figure 4.1C).

A downside of validating CellTypist with independent data is that the comparison
can not be directly assessed, since the existing annotations for this dataset do not
match those used by CellTypist, which compiles a variety of nomenclatures used in
each specific publication from where the data was obtained. Nonetheless, this can be
circumvented by manual inspection of existing labels, as well as matching the dataset
annotations with the model clusters to approximate a gold standard.

A more careful look at the annotations present in the clusters that matched
each original cell type in lung reveals the accuracy of the model. Type 2 alveolar
cells matched clusters only containing that same annotation, whereas clusters in
alveolar type 1 included type 1, and type 2, as well as secretory cells. Ciliated cells
and fibrolasts mostly matched a single cluster each, in both cases composed of the
exact same annotation. Cells annotated as "Lymph_vessels" and "Blood_vessels" both
matched cl11 (containing "endothelium" and "lymphatic" cells), with the first also
matching lymphatic endothelial cells from the axillary lymph node. T cell annotations
were mostly assigned to cluster cl8, which includes a mix of CD4 and CD8 cells. In
addition, T regulatory cells also matched cluster cl614, which includes activated T
cells and Tregs. NK cells also matched a cluster with CD8 T cell annotation, but
included two others containing mostly NK cells from other tissues. Lung cells that
are derived from the myeloid lineage (Macrophages, Monocytes, Dendritic cells)
all matched clusters mostly composed of these same annotations, albeit with some
mix between them, which again demonstrates some of the difficulty that exists in
separating these cell types.

For a more quantitative assessment of CellTypist’s accuracy, an identical cell type
nomenclature would have to exist between the model and the validation dataset.
While one could opt for renaming CellTypist’s labels in accordance with those present
in the model, two arguments invalidate this approach. First, converging into the exact
same labels could be misleading, since different methodologies would be utilised
for labelling the validation dataset and the model clusters - the latter would rely
on the model coefficients, as well as existing annotation from the original datasets.
Second, this would not take into account differences in resolution between the model
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Fig. 4.2: Classification accuracy for the (Madissoon et al., 2019) dataset
(A) Variation in mean accuracy with the maximum number of cell types from each
tissue allowed to be matched to a cluster. Weighted mean takes the number of cells
into account. (B) Variation in mean accuracy with the maximum number of cell
types from each tissue allowed to be matched to a cluster, stratified by tissue. (C)
Classification accuracy for each cell type from each tissue (colour), as a function
of the entropy calculated for the predicted cluster representation of each cell type,
normalised by its representation.
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and the data, and would penalise its lack of specificity. An example of this is the
situation described in the previous paragraph for the dataset’s "Lymph_vessels" and
"Blood_vessels" labels, which both match a clearly general endothelial cluster, and
thus opting for one of these labels would wrongly penalise the other.

Instead, correspondence between dataset cell types and model clusters was in-
dependently determined by assessing the enrichment for cell type markers in the
top 500 coefficients for each model label using GSEA (see Methods Section 4.4.2).
This was done in an attempt to approximate the annotations based on marker gene
expression, the most commonly used methodology. All tissue/cell type combinations
were tested together for enrichment, filtered for significance (q-value<=0.05) and
positive enrichment scores, and ranked by the latter. Cluster-cell type correspondence
was assessed per tissue, with a variable number of corresponding top cell types
accepted (Figure 4.2A and B). Accuracy was then calculated for each cell type, based
on whether each cell’s cluster assignment by the model had was enriched for the
same cell type originally labelling that cell. As expected, inclusion of more cell types
to match each cluster led to increasing accuracy (Figure 4.2A).

This accuracy was different between tissues, with lung as the best scoring, followed
by Spleen and the Oesophagus (Figure 4.2B). This is in line with the composition of
the data that underlies CellTypist: Lung has a high accuracy since this tissue and most
of its cell types are represented; Spleen also has elevated scores since it is mostly
composed of immune cells, which are highly abundant in the model coming from
Blood, Bone Marrow, and other tissues; Oesophagus presents a lower score due to
the fact that the sample mostly includes different types of specialised epithelial cells,
which are absent or underrepresented in the model.

The accuracy per cell type and tissue was then examined (Figure 4.2C), allowing
for up to 5 cell types to correspond to a cluster, the value at which accuracy stabilises.
These assignments can be found in Supplementary Table C.1 to Supplementary
Table C.10. A value greater than 1 also has the advantage of better reflecting
the many-to-many relationships that exist between model clusters and manual cell
type annotations. It should also be noted that this implies that the model cluster
can represent a lower resolution or broader cell type identity in many cases. For
example, macrophages and other myeloid cells are enriched within the same cluster
despite consisting of many (sub)types of cells (for a concrete example, see cl252 in
Supplementary Table C.3).

Figure 4.2C shows an increased accuracy for most immune cell types, as well as
lung-derived cells. The lowly-performing immune cells from the spleen originate
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from rarer populations, which explains the higher weighted mean accuracy, and
reveals resolution limitations in the model. Conversely, most of the top-performing
cells from the Oesophagus come from immune cell populations with a low level of
specificity (as illustrated by the"NK_T_CD8_Cytotoxic" label), which also make up
a small percentage of the total cells recovered from this organ. There is a modest
negative correlation between the accuracy for each cell type and how many clusters
each cell type is distributed across (normalised by log10(number of cells), Spearman
Correlation = -0.33, p-value<0.01). Lastly, Figure 4.2 shows that accuracy from cell
types and tissues represented in the models will be in the range of 0.4 to 0.85, and
rare or absent cell populations will be between 0.2 and 0.5.

The other models resulting from different parameters were also briefly examined.
Despite the differences in number of clusters, all models show a similar specificity for
the assigned clusters (Figure C.12). However, both models with fewer clusters (thr1
= 0.25, thr2 = 0.25; and thr1 = 0.1, thr2 = 0.1) both show less unique matching of
original cell types to clusters (Figure C.13), with most of them matching the same
larger clusters, which is likely an artifact of excessive merging within and across
tissues (Figure 3.2A).

Globally, it has been demonstrated that CellTypist can be successfully used to
annotate datasets with a broad diversity of cell types, and future improvements to
the pipeline are likely to make it more precise in attributing cell identity.

4.2.2 Matching cell identity across tissues

The number of clusters detected in each tissue are independent of the number of
datasets (Spearman Rank Correlation = -0.01, p-value for null hypothesis of "ρ=0"
= 0.9344), although moderately correlated with the number of cells present in each
tissue (Spearman Rank Correlation = 0.52, p-value for null hypothesis of "ρ=0" =
0.01497) (Figure C.2). The subsequent cluster merging step draws a map of cell
identity relationships across tissues. Examining this map can reveal higher order
relationships between the tissues present in the global dataset. Thus, the per-tissue
classification probabilities used to construct the cluster matching graph (Figure 3.2A)
were used to calculate the mean probability of cells from a per-tissue (non-merged)
cluster matching the clusters of all tissues. The resulting tissue-by-cluster mean
probability matrix is represented in the clustered heatmap of Figure 4.3A. This plot
shows that about a third of all clusters have an average high confidence assignment



4.2 Results 79

across tissues (bottom of the heatmap), with the remaining two-thirds having much
lower per-tissue mean probabilities.

The clustering of these values reveals a stark division between tissues whose
immune compartment was predominantly profiled (left major branch of dendro-
gramme), and those with a more global or non-immune profiling (right branch). This
is highlighted by the per tissue mean expression of PTPRC, the gene encoding for
the CD45 receptor, which is exclusively expressed in immune cells (Altin and Sloan,
1997) (Figure B.2). Expression of EPCAM - an epithelial cell marker - and CD34 -
an endothelial cell marker - further illustrate this division, being most expressed in
tissues in the opposite dendrogramme branch. The same effect, however, is not as
pronounced when examining the results from the Tabula Muris dataset (Figure 4.3C),
where cell type sampling is less biased per tissue. Tissues with similar levels of
expression of the same markers can be observed to cluster together (heatmap tissue
clusters with AU p-value<=95: Spleen and Marrow; Trachea to Muscle; Kidney
and Liver; Brain_Neurons and Pancreas); however the stark immune/non-immune
division observed for human data is no longer present. We can thus conclude that
tissue similarity, as defined by cell type correspondence, is driven by cell identity, in
particular by the major lineage (immune, epithelial, endothelial), yet can be affected
by cell type sampling proportions.

Tissue identity is also reflected in gene expression, and therefore in the genes
with the top coefficients determined by the CellTypist model. To unbiasedly probe the
existence of tissue-specific signatures in the top genes of all clusters, tissue signatures
were derived from bulk RNA-seq data, using data from the GTEx Consortium for
human (Consortium, 2015) and from the ENCODE Consortium for mouse (Dunham
et al., 2012) (see Methods Section 4.4.2). This provided independent references for
tissue identity using gene expression. Inspection of human tissue identity enrichment
in cell clusters per tissue (Figure 4.3B) shows that, despite the sets of tissues in
the CellTypist and GTEx datasets not overlapping completely, matching between
them is mostly concordant. Most immune cell-enriched tissues cluster independently
(AU p-value = 96 for both branches) by having many clusters enriched in blood
and spleen-specific genes. Beyond this separation, There is a high correspondence
between tissue-specific genes and the tissues present in the data. Examples are Liver,
Brain, Testis, Lung (Parenchyma), Kidney, Pancreas, and Colon (matching Small
Intestine). Among the tissues with more diverging matching are Skin, likely because
of the very biased cell sampling (Treg and Tmem cells (Miragaia et al., 2019)). Other
tissue correspondences might derive from functional similarities, such as Pancreas
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Fig. 4.3: Cell identity relationships across tissues
(A) Heatmap of the mean assignment probability of cells from a per-tissue cluster to
the clusters of each given tissue in the human collection dataset. (B) Heatmap of
the fraction of human collection clusters from a given tissue whose CellTypist model
(thr1 = 0.99; thr2 = 0.8, see Chapter 3 Section 3.3.2) signature is enriched in certain
tissue-specific genes. Gene signatures were derived from GTex bulk RNA-seq data. (C)
Heatmap of the mean assignment probability of cells from a per-tissue cluster to the
clusters of each given tissue in the Tabula Muris dataset. (D) Heatmap of the fraction
of Tabula Muris clusters from a given tissue whose CellTypist model (thr1 = 0.8; thr2
= 0.99, see Chapter 3 Section 3.3.1) signature is enriched in certain tissue-specific
genes. Gene signatures were derived from ENCODE tissue bulk RNA-seq data.
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and Pituitary (hormonal secretion), Tonsil and Spleen (lymphoid tissues), or Upper
Airway and Vagina (mucosal epithelia).

Similar specificity relationships can be observed in the Tabula Muris dataset
(Figure 4.3D), with a high matching for Pancreas, Liver, Kidney, Bladder, Thymus,
and Lung, among others. Matching by functional or cell composition similarity was
also present, such as Fat and mammary gland, or Diaphragm and skeletal muscle
tissue. However, the evident division between immune/non-immune visible in human
was once again absent. This further indicates that comparative analysis of tissue
composition at the single cell level must be based on datasets that are representative
of the tissues’ cellular composition, in order to avoid biased characterisations.

The tissue relationships highlighted by the gene set enrichment directly derive
from the CellTypist model trained and the cell groupings that the pipeline defines.
Examining other model alternatives shows that in some of them the tissue hierarchy
is maintained (Figure C.3), with the exception of the thr1 = 0.1, thr2 = 0.1 model.
This is likely caused by excessive merging of clusters, leading to non-meaningful
groupings and not so meaningful gene coefficients from the model.

Plotting the clusters resulting from cross-tissue merging in CellTypist can also
reveal the similarity across tissues (Figure C.4). As already shown by Figure B.3A, the
model with thr1 = 0.99 and thr2 = 0.8 is the one with the lowest number of merged
clusters. We can however still observe clusters merging across tissues that have similar
profiles and were included in the "immune enriched" group in Figure 4.3B - liver
and bone marrow, lung parenchyma and intestine, decidua and omentum adipose
tissue - as well as tissues that have functional associations - decidua and placenta,
upper airway and lung parenchyma. The remaining models appear to maintain the
occurrence of these associations between tissues, like the close clustering between
axLN and hnLN, or the association of tissues including more immune sampling with
blood and bone marrow. This is further underscored when the tissue gene signatures
are examined in the merged clusters of each model (Figure C.5). Both thr1 = 0.4 and
thr2 = 0.99 and thr1 = 0.25 and thr2 = 0.25 again present the distinctive pattern
of clustering the tissue signatures by the tissue functions as described before for the
immune/non-immune partitions. The first model (thr1 = 0.99 and thr2 = 0.8) also
shows some of this pattern, although not as evidently, likely due to the lower number
of merged clusters. The same can not be observed for the thr1 = 0.1 and thr2 = 0.1
model, likely due to excessive merging leading to a less meaningful classifier.
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Together, these results show that single cell populations in different tissues capture
some of the tissue biology and specificity, representing functional and compositional
relationships between them.

4.2.3 Gene expression hallmarks of cell identity

The training of a logistic regression-base classifier model as used in CellTypist allows
for a direct evaluation of the genes important for the classification of each cluster
through their learned coefficients. With a comprehensive cell type reference, we can
start to unravel what are the key determinants of cell identity across tissues.

Relationships between human cell clusters were probed by counting the number
of pairwise shared genes. The top 500 genes were used to avoid a hard coefficient
value threshold across clusters, since the top values can be very variable between
them. Clustering once more revealed a division between most immune and non-
immune clusters (Figure 4.4A). Moreover, various clusters containing cells from the
same tissue were also grouped together, hinting at the existence of gene expression
programmes shared by the different cell types within a tissue.

The concept of "cell type" is defined in different ways by different biomedical
research communities, yet it is consistently related to a cell’s molecular phenotype, i.e.
the molecules involved in cellular function. These can either be the effector molecules
directly responsible for the cell’s array of functions, or the genomic regulators con-
trolling the expression of genes involved in these functions. It has been showed that
tissue-specificity at the gene expression level is mostly due to transcription factor-
gene regulatory interactions (Sonawane et al., 2017). The CellTypist model was used
to assess what types of genes were more often at the top of the model coefficient
rankings, which reflect the importance of expression of that gene in classifying a cell
type. The following gene categories were considered (see Methods Section 4.4.2):
Transcription Factors, Chromatin Modulators, Kinases and Phosphatases, Ligases
and Deubiquitinases, Catalytic enzymes, Housekeeping genes, Receptors, Secreted
proteins, Transmembrane proteins, and Peripheral membrane proteins.

Both in human (Figure C.6) and mouse (Figure C.7), we did not observe a large
difference between the mean expression levels of genes from different groups, or
between their maximum coefficients; most highly ranked genes (in the top 500) had
a mean expression level around 10 reads. This coincided with a high correlation
(0.56 in human, 0.86 in mouse, Spearman correlation coefficient) between mean
expression and maximum reported coefficient, suggesting a dependency of gene
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Fig. 4.4: Top gene groups for cell identification across human tissues
(A) Clustered heatmap of the number of genes in common between pairs of CellTypist
clusters (thr1 = 0.99, thr2 = 0.8) in human data. Genes per cluster were determined
as those with the top 500 coefficients learned by the model. Values in the diagonal
(number of genes per cluster, 500) were set to 0. (B) Upset plot counting the number
of clusters enriched for a group of genes with a specific function. (C) Heatmap of
number of clusters per tissue (y-axis) enriched for groups of genes with a specific
function (x-axis). For panels (B) and (C), the gene groups "transcription factors",
"transmembrane", "secreted", "receptors", "membrane peripheral proteins", "kinases
and phosphatases", "chromatin modulators", "catalytic enzymes", "housekeeping
genes" were tested. Only the terms enriched in at least one cluster are shown.
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Fig. 4.5: Top gene groups for cell identification across mouse tissues
(A) Clustered heatmap of the shared number of genes between pairs of CellTypist
clusters (thr1 = 0.8, thr2 = 0.99) in the Tabula Muris data. Genes per cluster were
determined as those with the top 500 coefficients learned by the model. Values in the
diagonal (number of genes per cluster, 500) were set to 0. (B) Upset plot counting the
number of clusters enriched for a group of genes with a specific function. (C) Heatmap
of number of clusters per tissue (y-axis) enriched for groups of genes with a specific
function (x-axis). For panels (B) and (C), the gene groups "transcription factors",
"transmembrane", "secreted", "receptors", "membrane peripheral proteins", "kinases
and phosphatases", "chromatin modulators", "catalytic enzymes", "housekeeping
genes" were tested. Only the terms enriched in at least one cluster are shown.
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importance for classification on expression level. However, this relationship appears
to be non-linear, as evidenced by its shape, which remains constant for genes with
about 10 reads or more, and by the low Pearson Correlation Coefficient (0.05 in
human, 0.08 in mouse). Thus, gene expression level only affects the learned model
coefficient when comparing lowly and highly expressed genes.

Testing the gene groups described above for enrichment (see Methods Sec-
tion 4.4.4) showed a consistent pattern for all surveyed models of predominantly
enriched membrane and secreted proteins (Figure 4.4B, Figure C.8). A number of
clusters also had transcription factors enriched in their top hits, albeit in markedly
lower number. Enrichment for the tested gene groups appeared evenly distributed
across tissues, and did not group them in any meaningful manner (Figure 4.4C).
Lastly, it is also notable that only a fraction of the total clusters showed enrichment
for any of the classes tested, which could be due to the restrictive test that only
looks for enrichment at the very top genes, as well as the non-comprehensive list of
functions tested.

Examining the model produced by CellTypist on the Tabula Muris dataset revealed
similar results. The grouping of immune versus non-immune clusters present in
human was again absent (Figure 4.5A), as had been observed in the previous Section
(Figure 4.3). The patterns for gene groups were nonetheless similar, with a greater
enrichment of secreted proteins across all cell clusters (Figure 4.5B), and the largest
significant groups spread across more various tissues (Figure 4.5C).

These results point to the greater importance of the gene expression regulatory
network’s output molecules (genes coding for membrane and secreted proteins),
when computationally defining the identity of a cell.

4.3 Discussion

From its inception, the Human Cell Atlas (HCA) consortium has aimed to "define all
human cell types in terms of distinctive molecular profiles (such as gene expression
profiles)" (Regev et al., 2017), a task that can not be easily accomplished by a single
team. Beyond the financial and ethical constraints, collecting good quality scRNA-seq
data requires tissue-specific knowledge, as well as profiling using both top-down and
bottom-up approaches to obtain an overview of cell populations, while capturing
cell type-specific phenotypic variations. Yet as data on human cells accumulates,
methods capable of compiling the cellular census envisioned by the HCA members,
and making it available to the community will be of great use.
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The human data presented provides a broad overview of several organs. This
leads the cell type reference generated by CellTypist to be broadly applicable to
new datasets. This reference is dependent on the way these tissues are sampled.
Currently, many of them are mostly or totally composed of immune cells which,
while adding valuable information about their diverse phenotypes, can also bias the
model. Collecting more datasets is the ideal way of mitigating this problem, but it
can also be addressed by using data augmentation or downsampling approaches (Hie
et al., 2019b; Wong et al., 2016b). This would be especially relevant at the model
training step, as we have observed the clear impact of number of cells per label in
classification accuracy (Figure 3.4C, Figure 3.5C, Figure 3.7D).

Consistent data integration is also essential to avoid redundant classes and mis-
leading interpretations about cell type and tissue relationships. Data integration for
scRNA-seq is still a heavily studied topic (Haghverdi et al., 2018; Lopez et al., 2018;
Polański et al., 2019; Stuart et al., 2019), and can considerably influence the cell
groupings detected in the data. CellTypist is likely to evolve as a pipeline, in order to
adopt a within- and cross-tissue integration framework that closely reflects the cell
type information available for each dataset. This integration will also lead to a clear
cell type label for the model, while also reflecting the cell type resolution limitations
of the classifier.

Tissue identity relationships appear as an emergent result from the application of
CellTypist. The associations revealed between tissues are present at the cross-tissue
integration stage (Figure 4.3A), and then also reflected in the top genes learned by
the logistic regression model (Figure 4.3B). Furthermore, tissue identity is to some
degree robust to incorrect or excessive grouping of single-cells (Figure C.3), which
reveals that tissues-specific expression programmes might be intrinsic to the core cell
identity. The resolution of these tissue connections and programmes can be improved
by broader cell type sampling and integration. This will allow the model to reveal a
more fine-grained hierarchy beyond the immune/non-immune split, and ultimately
map cellular phenotypes to a structured cell identity atlas.

The data compiled offers for the first time a window into the gene expression
hallmarks of cell identity for the first time. Analysis of enriched gene expression
programmes can be improved by using a more uniform gene reference, as well as
adopting more informative labels for the clusters obtained (which can come from
improved dataset merging or manual annotation). Nonetheless, the analysis showed
consistently ranked receptors and secreted molecules above transcription factors
when defining cell identity (Figure 4.4B, Figure C.8). This is in agreement with
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previous reports (Sonawane et al., 2017), yet this is the first instance where this
type of analysis could achieve this level of cell type resolution. Importantly, defining
which genes make up the core of cellular phenotypes is not the same as defining cell
identity regulation. However, knowledge of the minimal gene expression set required
to classify or obtain a determined phenotype (and consequently function) is a key
point in understanding the operational definition of cell types. Thus, the expansion
and improvement of the CellTypist reference will increasingly provide a foundation to
understanding how cell types arise and evolve (Zimmermann et al., 2019), and will
help prioritise gene targets for effective cellular engineering.

This large human cell type reference can be very useful to characterise cell identity
in a variety of systems. In disease-focused studies, the steady-state reference provided
by CellTypist can automatically annotate the cells obtained from a disease sample,
without relying on a matching healthy sample. This is useful in large scale studies
that aim to quantify cell number alterations in disease, yet steady-state cells would
still be required to identify disease-specific gene expression programmes or cell
subpopulations. Another potential use is to characterise cell fates and heterogeneity
when differentiating organoids. Classifying scRNA-seq data from the generated
organoids using an unbiased reference can reveal the cell types present that a specific
protocol was able to differentiate. CellTypist will also be available as an online
resource, where the model can be directly used, and is accompanied by a database
showing the defining characteristics of each cell type - marker genes detected, tissues
of origin, datasets characterising them, and similar cell types. This is further intended
to be articulated with a Cell Ontology (Bard et al., 2005), and have cell names be
consistently used when new data is produced, with a direct correspondence to both
databases. Lastly, future releases of CellTypist models will include more species,
adding an evolutionary layer to our knowledge of cell identity.

4.4 Methods

4.4.1 CellTypist parameter optimisation and training

Use of the integration and model training pipeline in the human dataset collection
was done as described in Chapter 3 Section 3.3.2, and is again briefly explained
here. Data from the same tissues was integrated and clustered using the Leiden
algorithm (Traag et al., 2019) at several resolutions. For tissues with cell type
annotations, resolution was optimised using the split-join distance (Dongen, 2000)
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between clusters and cell type annotation and constrained to a number of clusters at
least as large as the number of cell type annotations in the largest collected dataset
(Figure 3.7A).

Following clustering, per tissue logistic regression models were trained, running
for 10 epochs of a maximum of 100 iterations each. These models were used to run the
cross-tissue cluster merging pipeline (Chapter 3 Section 3.2.2), and a combination of
parameters was chosen based on the ratio of split-join distances (merged vs annotated
cell types over per tissue vs annotated cell types) (Figure 3.7B), resulting in the choice
of thr1 = 0.99 and thr2 = 0.8. Additionally, three other combinations were chosen
for comparison: thr1 = 0.4 and thr2 = 0.99, the combination with the top split-join
ratio when only considering merged clusters (Figure B.3C, Figure B.5A-B); thr1 =
0.25 and thr2 = 0.25, one of the combinations with the highest fraction of merged
clusters (Figure B.3B, Figure B.5C-D); thr1 = 0.1 and thr2 = 0.1, the combination
with the highest fraction of merged clusters, as well as highest split-join fraction
(Figure B.3B, Figure B.5E-F).

The groupings obtained were used to train a logistic regression model using
Stochastic Gradient Descent (Chapter 3 Section 3.2.3). Training was done for 25
epochs of a maximum of 100 iterations each, where in each iteration 1000 cells
were seen by the model. 90% of the total data was used as a training set, and the
remaining as a left out test set that was tested at every iteration (Figure 3.7C-D,
Figure B.5).

4.4.2 Obtaining gene group lists

The groups of genes here presented were chosen to reflect various broad functions
present in cells. They are not exhaustive, and overlaps between gene sets exist due to
the ambiguity of some categories. In some tests, various categories were used, yet
only those with at least one positive result were reported (Figure 4.3B, Figure 4.4B).

Cell type markers (from (Madissoon et al., 2019)): for each tissue, the function
"rank_genes_groups" from scanpy (Wolf et al., 2018) was used to determine the
markers of each cell type. A filter of q-value<=0.01 and log2 fold-change>=1 was
used to select the top markers of each annotated group.

GO Terms: GO Terms were downloaded using the biomaRt R package (Dur-
inck et al., 2009). Genes from different terms were then grouped in the following
categories (similar to (Hagai et al., 2018)): chromatin modulators (GO:0006338
(chromatin remodelling), GO:0003682 (chromatin binding), GO:0042393 (histone
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binding), and GO:0016568 (chromatin modification)); kinases and phosphatases
(GO:0004672 (protein kinase activity) and GO:0004721 (phosphoprotein phos-
phatase activity)) and catalytic enzymes (GO:0003824 (catalytic activity)).

Transcription Factors: Human transcription factors were obtained from Ani-
malTFDB v3.0 ( http://bioinfo.life.hust.edu.cn/AnimalTFDB/) (Hu et al., 2019).

Housekeeping genes: Housekeeping genes were obtained from https://m.tau.ac.il/
~elieis/HKG/ (Eisenberg and Levanon, 2013).

Cell communication-associated genes: Genes involved in cell-cell communication
were obtained from cellphonedb.org (Efremova et al., 2019). Only genes annotated
as "transmembrane", "secreted", "peripheral", and "receptor" were kept. Given the
structure of the annotation in this database, some genes are included in more than
one group. In particular, most receptors and some secreted proteins are also classified
as transmembrane.

Tissue-specific genes: Tissue specific genes were determined as described in (Yanai
et al., 2005) (see (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) for a bench-
mark). Briefly, RNA-seq expression data from the GTex Consortium (human, https:
//gtexportal.org/home/index.html) or ENCODE Consortium (mouse, https://www.
encodeproject.org/) were obtained (Consortium, 2015; Dunham et al., 2012). The
tau statistic was calculated for each gene, and it consists on the normalised deviation
of a gene’s expression in a tissue from the maximum expression value observed. Only
genes with a tau value greater than or equal to 0.5 were kept C.1. This threshold
was used in order to have enough genes per group to test tissue specificity. Despite
this being a very relaxed threshold, no genes shared between tissues were found.
Moreover, using a more restrictive threshold like 0.9 resulted in numbers within the
same order of magnitude of genes for each tissue, although not enough to test for
enrichment.

4.4.3 Clustering

Clustering (in heatmaps) was performed using the hclust function from R, with
euclidean distance and the "ward.D2" method. Clustering uncertainty was assessed
using the pvclust R package, and AU p-values greater than or equal to 95 were
considered significant.

http://bioinfo.life.hust.edu.cn/AnimalTFDB/
https://m.tau.ac.il/~elieis/HKG/
https://m.tau.ac.il/~elieis/HKG/
cellphonedb.org
https://gtexportal.org/home/index.html
https://gtexportal.org/home/index.html
https://www.encodeproject.org/
https://www.encodeproject.org/
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4.4.4 Enrichment of gene groups

To obtain enriched groups of genes (Sections 4.2.2 and 4.2.3), the top 500 genes
based on their model coefficients were obtained for each cluster. Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005) was performed using the liger R package
(https://cran.rstudio.com/web/packages/liger/index.html), considering the gene
sets as defined in Section 4.4.2. Enrichment was deemed signifficant if the q-value was
lower than 0.05, and if the enrichment score was positive, signifying an enrichment
in the top genes. In heatmaps plotting GSEA results (Figure 4.3B-D; Figure C.3),
the colour scale is capped at 0.8 (fraction of enriched clusters per tissue), and the
annotation scales are capped at 0.5 (fraction of clusters with mean expression of
the indicated gene of at least 1). Clusters merge across tissues were only counted
towards the tissue contributing the most cells to them.

https://cran.rstudio.com/web/packages/liger/index.html


Chapter 5

Concluding remarks

Developments in single-cell genomics are still shaping the way we define cellular
identity. With the increasing number of cell types, organs and species profiled, we
are bound to obtain an exhaustive overview of eukaryotic cell diversity, together
with their genomic determinants. This work illustrates the importance of studying
cell types across different tissues, and discussed computational challenges as well as
solutions for the integrative atlasing of cellular diversity.

5.1 Cells and genes trade-offs in single-cell profiling

The number of cells profiled per study is still increasing exponentially (Svensson
et al., 2018). This has been accompanied by a marked expansion in the number
of studies using single-cell technologies (Svensson and Beltrame, 2019), much of
it due to the spread in use of a more standardised cell isolation and sequencing
pipeline, 10x Genomics’ Chromium technology. This democratisation of single-cell
omics is resulting in more cell types, tissues and species being profiled. Nevertheless,
single-cell studies should be designed with a clear goal, and the choice of protocol
should be adequate to the question at hand.

With regards to the type of sequencing, scRNA-seq protocols can be broadly split
between full length transcript profiling and 5’/3’ RNA tagging. Full length protocols -
the most widely used being Smart-seq2 (Picelli et al., 2014) - follow in the footsteps of
the majority of bulk RNA-seq studies. Smart-seq2 is still dependent on mRNA isolation
by the poly-A tail, and thus does not reveal changes in non-polyadenylated transcript
as other protocols might (Hayashi et al., 2018; Verboom et al., 2019). Despite this,
Smart-seq2’s full length characteristics have been important to study immune cells.
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The development of TraCeR (Stubbington et al., 2016) and BraCeR (Lindeman et al.,
2018) have allowed the detection of TCR and BCR transcripts in single-cell data,
which in turn have been used to lineage trace T cells with similar developmental
origin (Lönnberg et al., 2017) and Treg cell migration between tissues (Miragaia
et al., 2019) (Chapter 2). Smart-seq2 has also allowed uncovering the diversity
of KIR receptors in NK cells at the maternal-fetal interface (Vento-Tormo et al.,
2018). Splicing-oriented studies with this protocol, on the other hand, have been
scarce (Arzalluz-Luque and Conesa, 2018), yet splicing can be important in revealing
important features of cell identity. Combination of Chromium and PacBio long read
sequence has revealed cell type specific isoforms in mouse cerebellum (Gupta et al.,
2018). Other changes in isoform usage also exist that can influence cell identity, yet
this has been underappreciated.

The dominance of 3’ and 5’ sequencing protocols stems from the fact that a large
number of cells is more important to revealing cell diversity in a given tissue or
condition than increased sequencing depth or number of genes per cell (Svensson
et al., 2019), which has been showed early on when profiling bipolar retinal cells in
mouse (Shekhar et al., 2016). Droplet-based protocols allow the user to more easily
isolate a large number of cells, which are then only sequenced at lower levels. This
increase in cell numbers was necessary in the Treg cell work presented in Chapter 2
to detect the subpopulations composing the lymph node-peripheral tissue trajectory
(Figures 2.2 and 2.3). Thus, at the transcriptomic level, different protocols can serve
complementary functions - either increasing the resolution of the cellular census, or
providing a more detailed representation of the molecular makeup of cell populations.

5.2 Building a transcriptomic atlas of cell types

The study presented in Chapter 2 shows that, to unravel the full extent of cell
identity, it is not enough to unbiasedly profile a tissue, since even low-frequency cell
populations may reveal functional heterogeneity. Furthermore, the relevance of this
is sometimes only apparent once more tissue-specific context is added. In isolation,
the census of colonic Treg cells would only reveal different levels of activation, but
once this was combined with the draining mesenteric lymph node (mLN) populations,
and compared with Treg cells in the brachial lymph nodes, it became clear that these
subpopulations formed a continuum across organs, and the subpopulations present
in the mLN expressed genes that coded for homing chemokine receptors specific for
the colon.



5.2 Building a transcriptomic atlas of cell types 93

The development of single-cell sequencing methods has unlocked the ability to
perform unbiased cellular phenotyping. Yet there are several layers, from DNA, RNA
and protein, to probe this phenotype. From these, at the single-cell level, RNA is by
far the most widely available. While it is not as close to cellular function as proteins,
it is a good approximation, and can be unbiasedly amplified. The spread of cellular
transcriptomic profiling was not initially accompanied by a development of dedicated
databases for this type of data, although more recent efforts have been made towards
this end (Alavi et al., 2018; Franzén et al., 2019), and it is the goal of the Human
Cell Atlas to gather and standardise single-cell expression data. Moreover, most of
the data produced is not accompanied by cell type annotations in a machine-readable
format, nor does it follow a standardised nomenclature. This is likely because the
existing ontologies (Bard et al., 2005) were not prepared for this explosion in cell
profiling and the diversity of cell types and states it brought. Thus, the existence of
these scRNA-seq datasets creates an opportunity to develop and update an informed
cell type reference (Aevermann et al., 2018). Chapter 3 introduced CellTypist, a
method to integrate scRNA-seq data from multiple sources and tissues. This pipeline
does not require a uniform annotation a priori, and produces an interpretable model
for annotation of new data.

While most cell population profiling focuses on RNA, other aspects are also
relevant. Open chromatin regions, which can be identified through scATAC-seq, are
often involved in regulation of gene expression, and have been shown to be sufficient
to distinguish cell types similarly to expression profiling (Cusanovich et al., 2018).
An open chromatin cell type atlas can then provide a more regulatory perspective on
cell identity, perhaps more clearly illustrating what effective alterations at the DNA
level result in acquisition or loss of cellular phenotypes.

Cell type references like CellTypist have a multitude of applications, ranging
from basic science to applied biomedicine. The predictive capabilities of this sort
of models can be used to test cellular responses in organoids (Brazovskaja et al.,
2019). This assessment can range from evaluating the differentiation potential of
cultured cells, to measuring deviations and responses caused by external factors, like
varying differentiation molecules or infectious agents. Ultimately, this can further
improve the efforts in the field of tissue engineering, by guiding the development
of in vitro differentiation protocols (Camp et al., 2018). Likewise, these references
can also be used in a clinical setting to probe changes in cell diversity in disease. In
cancer, infiltration and phenotypic changes of immune cells can be assessed, and
single-cell phenotyping of tumour cells can monitor its progression. Monitoring of
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cell abundances and diversity in the clinic can provide a new view of disease from a
"cell ecology" perspective.

More fundamentally, CellTypist, as an integrated, cross-tissue cell type com-
pendium can inform us on the key genes that define the core cellular phenotype.

5.3 Defining cellular identity

The advent of single-cell genomics has re-ignited the debate on the definition of cell
type identity. Historically, cell types have been defined based on their morphology,
location, function, or developmental origin. Development of cellular staining, and
especially flow cytometry, have added molecular phenotyping to this list. While
flow cytometry already offered a large cell throughput capable of detecting even the
smallest populations, the revolutionary aspect of single-cell transcriptomics has been
the unbiased probing of RNA molecules, revealing a new high-resolution cellular map
of gene expression programmes.

It is only through integration that we can achieve a organism-scale picture of
cell identity. This is achieved by CellTypist, which is capable of resolving cell type
correspondences across tissues (Figure 3.1, Figure 4.3), and provides the list of genes
at the core of each cell grouping (Figure 4.4). Despite the discussed limitations, owed
in part to the still limited diversity of data available, CellTypist lays the groundwork
and reveals the first systematic picture of human cell types (with an expansion to
other species in sight).

The transcriptomic composition of cells is vastly informative for their taxonomy,
yet only makes up a small portion of the information we can obtain. Other omics
modalities (open chromatin, chromatin modifications, methylation, proteomics, ...)
can provide equally informative yet complementary perspectives on cellular iden-
tity. Furthermore, these can be integrated computationally (Stuart et al., 2019) or
obtained simultaneously using appropriate protocols (Angermueller et al., 2016;
Clark et al., 2018). Nonetheless, an ideal compendium of cell types should strive
to go beyond this low level and invasive characterisation, and merge back into the
knowledge obtained from other modalities. Cellular interactions are of great im-
portance to cell function, and thus spatial information adds a relevant layer to this.
Mapping the developmental trajectories of all cell types can inform us on their origin
and generative processes. Morphology is the most easily observed characteristic,
and heavily related to cell function, thus controlled by the genome. Only through
integration can this systems view of cell biology come to fruition.
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When possessing information on these many layers of cell phenotypes, we will be
able to more accurately define the boundary between cell types and cell states. Often
these can be observed in each individual modality - transient versus definitive cell
shapes, immune lineages and their response to pathogens, or intermediate versus leaf
stages in cellular differentiation. Yet these perspectives need each other, as cellular
form and function should be understood in the context of its origin and genomic
programming. Reconciling these different perspectives through a multi-window
approach will provide us with a complete blueprint of the basic unit of life. It is
expected that the unified view provided by the Human Cell Atlas - and indeed all cell
atlases - results in a Modern Synthesis of Cell Theory.
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Appendix A

Additional information to Chapter 2

This Appendix contains supplementary information for Chapter 2, including experi-
mental methods and supplementary figures.

A.1 Additional Experimental Methods

A.1.1 Mice

All mice were maintained under specific pathogen-free conditions at the Wellcome
Genome Campus Research Support Facility (Cambridge, UK) and at the Kennedy
Institute for Rheumatology (Oxford, UK). All procedures were in accordance with
the Animals Scientific Procedures Act 1986. For steady-state experiments, the Foxp3-
GFP-KI mouse reporter line (Bettelli et al., 2006) was used. The melanoma challenge
was performed in Foxp3-IRES-GFP genetically targeted reporter mice (Haribhai et al.,
2007) purchased from The Jackson Laboratory (stock no. 006772). In both cases,
6-14 week-old females were used.

A.1.2 Human samples

Human skin and blood samples were obtained from patients undergoing breast reduc-
tion plastic surgeries (REC approval number: 08/H0906/95+5). Surgical-resection
specimens were obtained from patients attending the John Radcliffe Hospital Gas-
troenterology Unit (Oxford, UK). These specimens were obtained from normal regions
of bowel adjacent to resected colorectal tumours from patients undergoing surgery. In-
formed, written consent was obtained from all donors. Human experimental protocols
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were approved by the NHS Research Ethics System (Reference number:11/YH/0020).
Further details concerning patients and tumours can be found in Table A.6.

A.1.3 Murine leukocytes isolation in steady-state skin dataset

To isolate leukocytes from ear tissue, ears were removed at the base, split into halves
and cut into very small pieces. Tissue was digested in 3.5ml RPMI medium (GIBCO)
with 0.1% BSA, 15mM Hepes, 1mg/ml collagenase D (Roche) and 450µg/ml Liberase
TL (Roche) for 60 minutes at 37°C in a shaking incubator at 200rpm. Digested tissue
was passed through an 18G needle to further disrupt the tissue and release cells.
Cells were filtered through a 70µm cell strainer, and the digestion was terminated
by addition of ice-cold RPMI containing 0.1% BSA (Sigma-Aldrich) and 5mM EDTA
(Invitrogen). A three-layer (30, 40, 70%) Percoll (GE Healthcare) density-gradient
was used to enrich for the lymphocytes. Cells obtained from the digestion were
layered in the 30% layer on top of the 40% and 70% layers, and centrifuged for 20
minutes at 1800rpm without brake. Cells at the 40/70% interface were collected for
the subsequent analysis. Cell suspensions from spleen and bLN were prepared as
described previously (Uhlig et al., 2006).

A.1.4 Murine leukocytes isolation in steady-state colon dataset

Colons were washed twice in RPMI medium (GIBCO) with 0.1% BSA (Sigma-Aldrich)
and 5mM EDTA (Invitrogen) in a shaking incubator at 200rpm at 37°C to remove
epithelial cells. The tissue was then digested for an hour in RPMI with 10% FCS,
15mM Hepes (GIBCO) and 100U/ml collagenase VIII (Sigma-Aldrich). Digestion was
terminated by addition of ice-cold RPMI with 10% FCS (Sigma-Aldrich) and 5mM
EDTA (Invitrogen). Leukocyte enrichment and suspension was obtained as described
in the previous paragraph.

A.1.5 Melanoma induction and cell isolation

The melanoma induction experiments were performed in accordance with UK Home
Office regulations under Project License PPL 80/2574. The protocol used was adapted
from a previous publication (Riedel et al., 2016). For syngeneic tumours, 2.5 × 105
B16.F10 melanoma cells (ATCC) were inoculated subcutaneously into the shoulder
region of 6- to 14-week-old female Foxp3-IRES-GFP mice (Haribhai et al., 2007).
Animals were excluded if tumours failed to form or if health concerns were reported.
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Control Foxp3-IRES-GFP mice were injected with 50 µl PBS. Animals were culled after
11 days. Tumours, tumour-draining (brachial) lymph nodes and spleen were isolated
for subsequent analysis. PBS-injected and steady-state skin, draining lymph nodes
(bLN) and spleen were collected from control mice. Tumour and PBS-injected skin
were mechanically disrupted and digested in a 1ml mixture of 1 mg/ml collagenase
A (Roche) and 0.4 mg/ml DNase I (Roche) in PBS (solution A) at 37°C for 1h with
600rpm rotation. 1ml of PBS containing 1mg/ml Collagenase D (Roche) and 0.4
mg/ml DNase I (Roche) (solution B) was then added to each sample, which returned
to 37 °C for 1h with 600 rpm rotation. Lymph nodes were digested for 30min in
500µl of solution A, and for further 30min after the addition of 500µl of solution
B. EDTA (Invitrogen) at the final concentration of 10mM was added to all samples.
Spleens were processed as described previously (Uhlig et al., 2006). Suspensions
were passed through a 70 µm cell strainer before immunostaining. Samples from
different animals were kept separated throughout processing and sorting.

A.1.6 Isolation of human CD4+ T cells

Isolation of leukocytes from human skin

Plastic surgery skin included reticular dermis to the depth of the fat layer. The
upper 200 microns of skin were harvested using a split skin graft knife. Whole skin
was digested in RPMI 1640 with 100IU/ml penicillin, 100µ/ml streptomycin, 2mM
L-glutamine (GIBCO), 10% FCS (Sigma-Aldrich) and 1.6mg/ml type IV collagenase
(Worthington-Biochemical) for 12-16 hours at 37°C and 5% CO2. Digest was passed
repeatedly through a 10ml pipette until no visible material remained. To yield a single-
cell suspension, digest was passed through a 100-micron filter into a polypropylene
sorting tube.

Isolation of leukocytes from human colon

Normal regions of bowel adjacent to resected colorectal tumours were prepared
as previously described, with minor modifications (Bettelli et al., 2006; Geremia
et al., 2011). In brief, mucosa was dissected and washed in 1 mM dithiothreitol
(DTT) (Sigma-Aldrich) solution for 15 min at room temperature to remove mucus.
Specimens were then washed three times in 0.75 mM EDTA (Invitrogen) to deplete
epithelial crypts and were digested for 2h in 0.1 mg/ml collagenase A solution
(Roche). For enrichment of mononuclear cells, digests were centrifuged for 30 min at
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500g in a four-layer Percoll (GE Healthcare) gradient and collected at the 40%/60%
interface.

Peripheral blood mononuclear cell isolation

10mL blood from skin donors were collected into EDTA (Invitrogen). Density cen-
trifugation with Lymphoprep (STEMCELL Technologies) was performed according
to manufacturer’s instructions. Recovered cells were cryopreserved by pelleting and
resuspending in 1ml heat-inactivated fetal calf serum containing 10% DMSO, and
storing at -80ºC. Cryovials were later thawed in water bath, then rapidly being trans-
ferred to warmed medium (RPMI 1640 (GIBCO) with 100IU/ml penicillin, 100µg/ml
streptomycin, 2mM L-glutamine (GIBCO), 10% FCS (Sigma-Aldrich)) and filtered
through a 100-µm filter.

A.1.7 Flow cytometry and single-cell RNA sequencing

Mouse and human cell suspensions were sorted as described in Figure 2.1A, Fig-
ure 2.4A, Figure 2.5A, and Figure A.1A.

Droplet-based scRNA-seq datasets were produced using a Chromium system (10x
Genomics), referred to as 10x. Cell populations of interest were sorted, manually
counted, and their concentrations adjusted to enable the capture of 5̃000 cells (except
for skin Treg and Tmem cells, for which we aimed to capture 3̃00 each). The standard
protocol for the 10x single cell 3’ kit (V2 chemistry) was followed and each cell
population loaded onto a separate chip inlet. We ran each sample on one lane of
Illumina HiSeq 4000, following manufacturer’s recommendations.

Two plate-based scRNA-seq datasets: the “colon dataset”, including Treg and
Tmem cells from colon, mLN and spleen, and the “skin dataset” from skin, bLN
and spleen. Single cells were sorted in 2µl of Lysis Buffer (1:20 solution of RNase
Inhibitor (Clontech) in 0.2% v/v Triton X-100 (Sigma-Aldrich)) in 96 well plates, spun
down and immediately frozen at -80ºC. Smart-seq2 protocol (Picelli et al., 2014) was
largely followed to obtain mRNA libraries from single cells. Oligo-dT primer, dNTPs
(ThermoFisher) and ERCC RNA Spike-In Mix (1:50,000,000 final dilution, Ambion)
were then added. Reverse Transcription and PCR were performed as previously
published (Picelli et al., 2014), using 50U of SMARTScribe™ Reverse Transcriptase
(Clontech). The cDNA libraries for sequencing were prepared using Nextera XT DNA
Sample Preparation Kit (Illumina), according to the protocol supplied by Fluidigm.
Libraries from single cells were pooled and purified using AMPure XP beads (Beckman
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Coulter). Pooled samples were sequenced on an Illumina HiSeq 2500 (paired-end
100-bp reads) or Illumina HiSeq 2000 v4 chemistry (paired-end 75-bp reads) aiming
at an average depth of 1 million reads/cell.



132 Additional information to Chapter 2



A.2 Supplementary Tables and Figures 133

A.2 Supplementary Tables and Figures

Table A.1: Batch details for the Mouse steady-state Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_colon spleen.Treg Steady-state Pool mouse_colon_5 25/05/2015 17/09/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_14 27/05/2015 17/09/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 17/09/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_10 25/05/2015 17/09/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 17/09/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_16 30/09/2015 10/06/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/06/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/06/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/01/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/06/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_16 30/09/2015 10/01/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/01/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/01/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/01/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/01/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/01/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/08/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/08/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/08/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/08/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/08/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/07/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/08/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/07/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/07/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/07/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/07/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/07/2015
mouse_skin skin.Treg Steady-state Pool mouse_skin_1 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_1 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_2 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_2 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_3 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_3 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_4 08/04/2017 18/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_4 08/04/2017 18/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_5 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_5 08/04/2017 19/04/2017
mouse_skin spleen.Treg Steady-state Pool mouse_skin_8 08/04/2017 18/04/2017
mouse_skin spleen.Tmem Steady-state Pool mouse_skin_8 08/04/2017 18/04/2017
mouse_skin spleen.Treg Steady-state Pool mouse_skin_9 08/04/2017 18/04/2017
mouse_skin spleen.Tmem Steady-state Pool mouse_skin_9 08/04/2017 18/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_14 08/04/2017 19/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_14 08/04/2017 19/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_15 08/04/2017 19/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_15 08/04/2017 19/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_16 08/04/2017 18/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_16 08/04/2017 18/04/2017
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Table A.2: Batch details for the Mouse melanoma Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_mel skin.Treg Tumour T1 mouse_mel_641 01/06/2016 NA
mouse_mel skin.Treg Tumour T2 mouse_mel_641 01/06/2016 NA
mouse_mel spleen.Treg Control C1 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C2 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C3 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C4 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_645 01/06/2016 NA
mouse_mel spleen.Treg Control C5 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C5 mouse_mel_645 01/06/2016 NA
mouse_mel spleen.Treg Control C6 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_645 01/06/2016 NA
mouse_mel skin.Treg Tumour T5 mouse_mel_641 01/06/2016 NA
mouse_mel spleen.Tmem Control C1 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C2 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C3 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C4 mouse_mel_644 02/06/2016 NA
mouse_mel spleen.Tmem Control C5 mouse_mel_644 02/06/2016 NA
mouse_mel spleen.Tmem Control C6 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Tmem Control C4 mouse_mel_645 01/06/2016 NA
mouse_mel skin.Treg Tumour T1 mouse_mel_640 02/06/2016 NA
mouse_mel spleen.Treg Tumour T1 mouse_mel_638 02/06/2016 NA
mouse_mel spleen.Treg Tumour T2 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Treg Tumour T2 mouse_mel_640 02/06/2016 NA
mouse_mel spleen.Treg Tumour T5 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Treg Tumour T5 mouse_mel_640 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_648 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Treg Control C5 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_646 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T1 mouse_mel_638 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T5 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Tmem Control C4 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Tmem Control C5 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Tmem Control C6 mouse_mel_648 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T2 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Tmem Control C6 mouse_mel_648 01/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_648 01/06/2016 NA
mouse_mel LN.Treg Tumour T2 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Treg Tumour T1 mouse_mel_642 02/06/2016 NA
mouse_mel spleen.Treg Tumour T1 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Treg Tumour T2 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Treg Tumour T5 mouse_mel_639 02/06/2016 NA
mouse_mel LN.Treg Tumour T5 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Treg Control C4 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Treg Control C5 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Treg Control C6 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Tumour T1 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Tmem Tumour T2 mouse_mel_642 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T2 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T5 mouse_mel_639 02/06/2016 NA
mouse_mel LN.Tmem Tumour T5 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Tmem Control C4 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Control C5 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Control C6 mouse_mel_643 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T1 mouse_mel_639 02/06/2016 NA
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Table A.3: Batch details for the Human steady-state Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

human skin.Treg Steady-state skin_1 human_plate_skin_9 27/10/2015 11/11/2015
human skin.Tem Steady-state skin_1 human_plate_skin_8 20/10/2015 11/11/2015
human skin.Tcm Steady-state skin_1 human_plate_skin_7 28/10/2015 11/11/2015
human blood.Treg Steady-state skin_1 human_plate_skin_3 23/09/2015 11/11/2015
human blood.Tem Steady-state skin_1 human_plate_skin_2 28/10/2015 11/11/2015
human blood.Tcm Steady-state skin_1 human_plate_skin_1 27/10/2015 11/11/2015
human skin.Tcm Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human skin.Treg Steady-state skin_2 human_741 09/06/2016 date_lib_skin_2
human skin.Tem Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human blood.Treg Steady-state skin_2 human_741 09/06/2016 date_lib_skin_2
human skin.Treg Steady-state skin_3 human_745 10/06/2016 date_lib_skin_2
human skin.Tcm Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human skin.Tem Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Treg Steady-state skin_3 human_745 10/06/2016 date_lib_skin_2
human blood.Tcm Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Tem Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Tcm Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human blood.Tem Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human colon.Treg Steady-state colon_1 human_2 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_1 human_1 17/09/2016 07/12/2016
human colon.Tcm Steady-state colon_1 human_5 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_2 human_1 15/11/2016 07/12/2016
human colon.Tem Steady-state colon_2 human_7 15/11/2016 07/12/2016
human colon.Tem Steady-state colon_1 human_7 15/11/2016 07/12/2016
human colon.Tcm Steady-state colon_2 human_4 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_1 human_2 15/11/2016 01/12/2016
human colon.Treg Steady-state colon_1 human_1 17/09/2016 01/12/2016
human colon.Tcm Steady-state colon_2 human_4 15/11/2016 01/12/2016
human colon.Tem Steady-state colon_2 human_7 15/11/2016 01/12/2016
human colon.Treg Steady-state colon_2 human_2 17/09/2016 07/12/2016
human colon.Treg Steady-state colon_2 human_1 15/11/2016 01/12/2016
human skin.Treg Steady-state skin_2 human_742 NA date_lib_skin_2
human skin.Tem Steady-state skin_2 human_744 NA date_lib_skin_2
human skin.Tcm Steady-state skin_2 human_744 NA date_lib_skin_2
human blood.Treg Steady-state skin_2 human_742 NA date_lib_skin_2
human skin.Treg Steady-state skin_3 human_746 NA date_lib_skin_2
human skin.Tcm Steady-state skin_3 human_748 NA date_lib_skin_2
human skin.Tem Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Treg Steady-state skin_3 human_746 NA date_lib_skin_2
human blood.Tcm Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Tem Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Tem Steady-state skin_2 human_744 NA date_lib_skin_2
human blood.Tcm Steady-state skin_2 human_744 NA date_lib_skin_2

Table A.4: Batch details for the Mouse steady-state Chromium 10x data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_10x skin.Treg Steady-state Pool chip 2 date_10x_run date_10x_run
mouse_10x skin.Tmem Steady-state Pool chip 2 date_10x_run date_10x_run
mouse_10x colon.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x colon.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x mLN.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x mLN.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x bLN.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x bLN.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x spleen.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x spleen.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
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Table A.5: Quality control criteria for filtering single cell transcriptomes in each
dataset, parameters for dimensionality reduction and QC rejection fractions. Cells
were kept if they passed all these filters (see Methods). Related to Figure 2.1

Mouse
Colon

Mouse
Skin

Mouse
Melanoma

Human
Skin/Colon

Mouse 10x

Protocol Smart-seq2 Smart-seq2 Smart-seq2 Smart-seq2 Chromium (10x)
Maximum
mitochondrial
reads (%)

10 10 10 20 Not Used

Maximum
ERCC-derived
reads (%)

25 25 25 50 Not Used

Maximum
unmapped
reads (%)

30 30 30 60 Not Used

Minimum
number of
detected genes

1750 1750 1750 1000 700

Minimum
number of
mapped reads/UMI

250000 250000 250000 100000 1000

Contains
TCR reads
(TraCeR)

Y Y Y Y Not Used

Number of
PCs for
tSNE/clustering

20 20 20 20 30

tSNE perplecity 30 30 30 30 30
QC rejection
fraction

0.23 0.11 0.33 0.15 0.01

TCR rejection
fraction
(after QC)

0.16 0.11 0.20 0.28 Not Used

Maximum
number of
detected genes

Not Used Not Used Not Used Not Used 3500

Maximum
number of UMI

Not Used Not Used Not Used Not Used 15000

Clustering rejection
fraction
(after QC)

Not Used Not Used Not Used Not Used 0.09
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Table A.6: Information on human donors with biological material included in this
study. Related to Figure 2.5

skin_1 skin_2 skin_3 colon_1 colon_2
Tissue Skin Skin Skin Colon Colon
Age - - - 64 62
Sex F F F F M
Pathology and
location

Breast
reduction;
Breast

Breast
reduction;
Breast

Breast
reduction;
Breast

adenocarcinoma;
Caecum

Tubilovillous
adenoma;
rectum

Tumour
stage

- - - PT3 N0(0/23)
M0 L0 V0
R0 Duke’s B

PT0

Date of
diagnosis

- - - - Oct/2015

Observations
Matching
blood
sample

Matching
blood
sample

Matching
blood
sample

- -
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Fig. A.1: Sorting and identification of Treg and Tmem cells (Related to Fig-
ure 2.1).
(A) Flow cytometry-sorting strategy for sorting Treg and Tmem cells from (top)
lymphoid (mLN) and (bottom) non-lymphoid (colonic lamina propria, cLP, as an
example) organs. (B) tSNE projection of all 10x dataset cells passing QC, coloured by
the resulting graph-based clustering. Cells from the NKT, Stress/Mt and Undefined
clusters were removed from further analysis. (Continued on the following page.)
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Fig. A.1: (continued) (C) Number of cells from each cluster in (D) originating from
each sorted population. (D and E) Treg and Tmem cells were obtained with the same
methodology as in Figure 2.1A, sequenced using Smart-seq2. t-SNE dimensionality
reduction represents all sorted cells for each individual batch that passed quality
control (see Methods). Colors match cell-type and tissue of origin. (F) Genes defining
the identity of Treg and Tmem cells in lymphoid and non-lymphoid tissues, obtained
from the Smart-seq2 datasets. Colon and skin were individually compared with their
corresponding draining lymph node and spleen cells. Significantly expressed genes
in each cell-type-tissue combination have an average log fold-change greater than
0.25 and and adjusted p-value lower than 0.05 (Wilcoxon test).
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Fig. A.2: Heterogeneity in SS2 and Tmem cell populations (Related to Fig-
ure 2.2).
(A) Percentage of cells expressing each gene in skin Treg NLT and colon Treg NLT
subpopulations in Smart-seq2 data. Genes that are upregulated in the skin Treg NLT
subpopulation (log2(FC)>0.25 and adjusted p-value<0.05) are represented by an
open circle, and genes upregulated in colon Treg NLT (log2(FC)<(-0.25) and adjusted
p-value<0.05) are represented by a filled circle. (Continued on the following page.)
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Fig. A.2: (continued) (B) Matching of Smart-seq2 Treg cells sorted populations to
identified Treg subpopulations in the 10x dataset using a logistic regression model
(85% accuracy, see Methods). Table shows the percentage of each sorted population
(y-axis) that were labelled as each Treg cluster (x-axis). (C) t-SNE projection of
Tmem cells per tissue coloured by subpopulations found using graph-based clustering.
(D) Subpopulation marker gene mean expression levels (z-score) per subpopulation.
Gene markers exhibit |log2(FC)|>0.25 and adjusted p-value<0.05 in the comparison
of each subpopulation versus all the other cells within the same tissue. Values greater
than 2.5 or lower than -1.5 are coloured equally. (E) Relative proportions of Tmem
subpopulations within each tissue that revealed heterogeneity. (F) Measure of the
NLT/LT signature score in each Tmem subpopulation, measured as the ratio between
the number of NLT and LT genes that have been identified as significantly upregulated
in each cluster.
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Fig. A.3: Additional information on BGPLVM for the 10x dataset (Related to
Figure 2.3)
(A) Automatic Relevance Determination (ARD) plots for BGPLVM of Treg in mLN
and colon (top, referring to Figure 2.3A), and bLN and skin (bottom, referring
to Figure A.3B) datasets. These plots show the relevance of each latent variable
extracted from the data. (B) BGPLVM dimensionality reduction of bLN and skin Treg
cells from the 10X dataset (top), with a density plot showing the distribution along
LV0 of each identified subpopulation (bottom). (C) Velocyto vectorfield overlaid on
BGPLVM projection of mLN and colon Treg cells (related to Figure 2.3A).
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Fig. A.4: Additional information on BGPLVM for the Smart-seq2 datasets (Re-
lated to Figure 2.3)
(A and B) Clonotypes detected using TraCeR in the Smart-seq2 (A) Mouse Colon
dataset, or (B) Mouse Skin dataset. In each panel, on the left, number of clonotypes
detected spanning different tissues and cell type combinations. Top right half reg-
isters all events of TCR chain sharing, bottom left half only considers the sharing
of productive α and β TCR chain, and on the right, number of clonotypes detected
within each cell type and tissue, considering the sharing of any chain or productive
α and β. (C) ARD plots for BGPLVM of Smart-seq2 Treg in mLN and colon (top,
referring to panel D, left), and bLN and skin (bottom, referring to panel D, right)
datasets. (D) BGPLVM dimensionality reduction of Smart-seq2 data of Treg from
lymph nodes and non-lymphoid tissues (top), with a histogram plot showing the
distribution along LV0 of each subpopulation identified (bottom). mLN and colon
Treg are plotted on the left, while bLN and skin Treg are plotted on the right. Cells
are coloured by the inferred subpopulation they belong to as per the predictions
made in Figure A.2B. (E) Pairwise overlap between the sets of genes with absolute
correlation with LV0 greater than 0.25 in each of the four steady-state datasets. The
percentages refer to the proportion of the set on the x-axis that is overlapping the set
on the y-axis.
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Fig. A.5: Additional details on the MRD-BGPLVM projection (Related to Fig-
ure 2.4).
(A) t-SNE dimensionality reduction coloured by cell cycle phase in the mouse
melanoma dataset. (B) Clonotypes detected using TraCeR in the Mouse Melanoma
dataset. On the left, number of clonotypes detected spanning different tissues and
cell type combinations. Top right half registers all events of TCR chain sharing,
bottom left half only considers the sharing of productive α and β TCR chain. On the
right, number of clonotypes detected within each cell type and tissue, considering
the sharing of any chain or productive α and β. (C) ARD plots for MRD-BGPLVM of
Treg in control and melanoma conditions. Colours show effect of gene groups in each
obtained latent variable. (Continued on the following page.)
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Fig. A.5: (continued) (D) Velocyto vectorfield overlaid on MRD-BGPLVM projection
of bLN and skin from both Control and Melanoma conditions (related to Figure 2.4D).
(E) ARD plots for BGPLVM of Smart-seq2 Treg in bLN and skin in the Control
condition (left, related to panel F), and Melanoma condition (bottom, related to
panel G). (F and G) BGPLVM projection of bLN and skin in control (F) and melanoma
(G) conditions, using the top two latent variables. (H) Pairwise overlap between the
sets of genes with absolute correlation with LV0 greater than 0.25 in each subset
of the melanoma dataset. The percentages refer to the proportion of the set on the
x-axis that is overlapping the set on the y-axis.

Fig. A.6: Additional information on the Human dataset (Related to Figure 2.5).
(A and B) t-SNE dimensionality reduction. Shapes match cell type and tissue accord-
ing to legend. Colours match either cell type and tissue (A) or sampled individual
(B). (C) Z-score of mean expression levels of identified markers across all sampled
cell types and tissues in human. (D) Clonotypes detected using TraCeR in the Human
dataset. On the left, number of clonotypes detected spanning different tissues and
cell type combinations. Top right half registers all events of TCR chain sharing,
bottom left half only considers the sharing of productive α and β TCR chain. On the
right, number of clonotypes detected within each cell type and tissue, considering
the sharing of any chain or productive α and β.



146 Additional information to Chapter 2

A.3 Data and Code Accessibility

scRNA-seq data for this project has been deposited in ArrayExpress under the ac-
cession numbers E-MTAB-6072 and E-MTAB-7311. Processed data can be found in
https://figshare.com/projects/Treg_scRNA-seq/38864, and analysis notebooks can
be found in https://github.com/tomasgomes/Treg_analysis.
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Appendix B

Additional information to Chapter 3

This Appendix contains supplementary figures for Chapter 3.

B.1 Supplementary Figures

Fig. B.1: Cell numbers in the Tabula Muris dataset
Bars show number of cells (left y axis) collected from different tissues (x axis), split
by scRNA-seq protocol (colour). Points show the number of cell types (right y axis)
identified by protocol (coloured circles) or their union (triangle). 10X - Chromium
(10X Genomics) protocol; SS2 - Smart-seq2 protocol.
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Fig. B.2: Expression of PTPRC and EPCAM in human data collection (Related to
Figure 3.6)
2D-binned plot of single-cell expression of PTPRC (encoding for the CD45 receptor,
an immune cell marker), and EPCAM (an epithelial cell marker). Inset table (top
right) shows the number of cell expressing (T) or not (F) each of the genes. Cells
expressing both genes are likely doublets or affected by ambient RNA in droplet-based
experiments.
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Fig. B.3: CellTypist parameters grids with other statistics (Related to Figure 3.7)
Parameter grids for CellTypist showing variation in (A) total number of clusters; (B)
fraction of merged clusters; (C) SJ ratio calculated only for merged clusters.



152 Additional information to Chapter 3

Fig. B.4: Grouping of annotated cell types and datasets in human pancreas data
(Related to Figure 3.7)
Number of cells of each cluster coming from a specific dataset (right y-axis), with a
particular cell type annotation (left y-axis). Pancreas was used for this example due
to the consistent cell type annotations used across datasets. CellTypist parameters:
thr1 = 0.99; thr2 = 0.8.
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Fig. B.5: Training statistics for other CellTypist models (Related to Figure 3.7)
For each model trained (thr1 = 0.4 and thr2 = 0.99 - top; thr1 = 0.25 and thr2 =
0.25 - middle; thr1 = 0.1 and thr2 = 0.1 - bottom): (A, C, E) accuracy during model
fitting for training and held-out test data; (B, D, F) F1-score for each cluster label
(black dots) as a function of class size (in log10 scale).
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B.2 Supplementary Tables
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Table B.1: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
cell type labels. Cell type labels were obtained from the annotation accompanying
the Tabula Muris gene expression data, described in the original publication.

Cell Type F1 Score Support (Test set) Total Cells

Bergmann glial cell 1.00 3 30
brain pericyte 1.00 13 132
Brush cell of epithelium
proper of large intestine

1.00 4 45

enteroendocrine cell 1.00 2 25
mesothelial cell 1.00 3 26
neuronal stem cell 1.00 4 36
pancreatic ductal cell 1.00 13 131
type II pneumocyte 1.00 18 183
microglial cell 1.00 433 4329
keratinocyte stem cell 1.00 137 1371
oligodendrocyte 1.00 119 1186
basal cell 0.99 167 1668
luminal epithelial cell
of mammary gland

0.99 55 552

type B pancreatic cell 0.99 41 411
chondroblast 0.99 38 380
B cell 0.98 1237 12382
kidney tubule cell 0.98 218 2182
mesenchymal cell 0.98 184 1842
stromal cell 0.98 1261 12610
skeletal muscle satellite stem cell 0.98 44 442
neuron 0.98 20 196
oligodendrocyte precursor cell 0.97 20 202
mesenchymal stem cell of adipose 0.97 192 1924
basal cell of epidermis 0.97 652 6520
hematopoietic stem cell 0.97 267 2672
hepatocyte 0.97 141 1405
skeletal muscle satellite cell 0.97 90 895
pancreatic A cell 0.97 29 287
epithelial cell 0.97 102 1017
astrocyte of the cerebral cortex 0.96 40 403
Fraction A pre-pro B cell 0.96 24 240
endocardial cell 0.96 24 240
T cell 0.96 835 8346
keratinocyte 0.95 278 2777
epithelial cell of large intestine 0.95 179 1793
endothelial cell 0.95 692 6914
large intestine goblet cell 0.95 81 814
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Table B.2: F1 scores and class sizes for CellTypist trained on the Tabula Muris with cell
type labels. Cell type labels were obtained from the annotation accompanying the
Tabula Muris gene expression data, described in the original publication. (continued)

Cell Type F1 Score Support (Test set) Total Cells

fibroblast 0.95 248 2487
pancreatic D cell 0.95 9 91
pancreatic acinar cell 0.94 18 177
enterocyte of epithelium
of large intestine

0.94 78 782

luminal cell of lactiferous duct 0.93 43 430
neutrophil 0.93 82 820
mesenchymal stem cell 0.93 163 1630
endothelial cell of hepatic sinusoid 0.92 20 196
epidermal cell 0.92 45 445
granulocyte 0.91 156 1559
monocyte 0.91 106 1056
neuroendocrine cell 0.90 54 543
Kupffer cell 0.89 5 51
fenestrated cell 0.88 41 414
cardiac muscle cell 0.87 22 223
smooth muscle cell 0.87 37 367
natural killer cell 0.85 117 1168
macrophage 0.85 194 1924
leukocyte 0.84 187 1878
bladder cell 0.84 146 1455
erythrocyte 0.81 21 208
ciliated cell 0.80 5 55
ciliated epithelial cell 0.80 2 20
pancreatic stellate cell 0.80 3 29
myeloid cell 0.79 53 527
pancreatic PP cell 0.78 11 107
kidney collecting duct cell 0.76 12 116
stem cell of epidermis 0.75 4 45
dendritic cell 0.71 43 438
unknown 0.67 63 625
Clara cell 0.67 2 18
hematopoietic cell 0.67 2 17
mast cell 0.44 2 22
basal cell of urothelium 0.40 36 365
basal cell of epithelium of trachea 0.12 4 36
epicardial adipocyte 0.00 9 93
lung neuroendocrine cell 0.00 0 2
type I pneumocyte 0.00 0 2
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Table B.3: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3.

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl103 1.00 21 207 endothelial cell (93.7%) Lung (100%)
cl124 1.00 8 82 neuron (100%) Brain_Neurons (100%)
cl135 1.00 3 26 neuron (100%) Brain_Neurons (100%)
cl138 1.00 6 57 neuron (98.2%) Brain_Neurons (100%)
cl147 1.00 15 147 kidney collecting duct cell (57.1%) Kidney (100%)
cl154 1.00 2 17 neuron (100%) Brain_Neurons (100%)
cl166 1.00 5 50 type B pancreatic cell (100%) Pancreas (100%)
cl175 1.00 10 96 Fraction A pre-pro B cell (65.6%) Marrow (100%)
cl185 1.00 5 47 Brush cell of epithelium proper

of large intestine (89.4%)
Colon (100%)

cl186 1.00 1 8 neuron (100%) Brain_Neurons (100%)
cl189 1.00 46 462 hepatocyte (97.4%) Liver (100%)
cl193 1.00 4 39 unknown (61.5%) Aorta (100%)
cl194 1.00 1 14 enteroendocrine cell (100%) Colon (100%)
cl20 1.00 12 123 pancreatic ductal cell (99.2%) Pancreas (100%)
cl27 1.00 1 9 enteroendocrine cell (100%) Colon (100%)
cl65 1.00 2 21 pancreatic stellate cell (90.5%) Pancreas (100%)
cl73 1.00 2 21 leukocyte (100%) Pancreas (100%)
cl89 1.00 1 13 astrocyte of the

cerebral cortex (69.2%)
Brain_Neurons (69.2%)

cl161 0.99 96 959 keratinocyte (93.8%) Tongue (100%)
cl150 0.99 83 833 keratinocyte stem cell (97.7%) Skin (100%)
cl70 0.99 163 1631 basal cell (99.8%) Mammary (100%)
cl157 0.99 68 682 luminal epithelial cell

of mammary gland (57.8%)
Mammary (100%)

cl190 0.99 58 583 hepatocyte (100%) Liver (100%)
cl143 0.99 54 544 kidney tubule cell (98%) Kidney (100%)
cl171 0.99 54 539 keratinocyte stem cell (99.6%) Skin (100%)
cl26 0.99 36 357 luminal cell of lactiferous duct (51%) Mammary (100%)
cl81 0.99 72 715 endothelial cell (93.3%) Lung (100%)
cl38 0.98 223 2227 fibroblast (99.3%) Heart (100%)
cl100 0.98 105 1052 mesenchymal cell (97.1%) Bladder (100%)
cl108 0.98 49 494 epithelial cell (54.5%) Trachea (55.9%)
cl31 0.98 496 4961 stromal cell (97.4%) Trachea (100%)
cl49 0.98 82 823 mesenchymal cell (98.4%) Bladder (100%)
cl122 0.97 39 386 stromal cell (99.7%) Lung (100%)
cl37 0.97 367 3665 stromal cell (98.4%) Trachea (100%)
cl17 0.97 74 742 epithelial cell of

large intestine (99.9%)
Colon (100%)

cl95 0.97 90 899 T cell (99.8%) Thymus (100%)
cl6 0.97 227 2267 hematopoietic stem cell (73.7%) Marrow (100%)
cl165 0.97 101 1008 kidney tubule cell (98.5%) Kidney (100%)
cl47 0.97 116 1157 bladder cell (78%) Bladder (100%)
cl1 0.97 454 4543 basal cell of epidermis (95%) Tongue (100%)
cl54 0.97 180 1798 granulocyte (61.5%) Marrow (100%)
cl136 0.97 63 631 T cell (100%) Thymus (100%)
cl24 0.97 63 631 epithelial cell (92.4%) Trachea (100%)
cl106 0.96 41 407 chondroblast (93.1%) Muscle (99.3%)
cl180 0.96 39 392 kidney tubule cell (98.7%) Kidney (100%)
cl141 0.96 128 1279 skeletal muscle

satellite cell (67.9%)
Muscle (70%)

cl71 0.96 24 239 smooth muscle cell (98.7%) Heart (100%)
cl32 0.96 24 238 mesenchymal stem cell (97.5%) Diaphragm (100%)
cl85 0.96 82 822 natural killer cell (99.8%) Lung (100%)
cl44 0.96 143 1434 mesenchymal stem cell (93.4%) Muscle (100%)
cl176 0.96 24 242 enterocyte of epithelium of

large intestine (97.9%)
Colon (100%)

cl181 0.96 23 229 astrocyte ofthe
cerebral cortex (92.6%)

Brain_Neurons (100%)
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Table B.4: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 1)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl76 0.95 23 232 endocardial cell (98.7%) Heart (100%)
cl151 0.95 32 324 hepatocyte (99.7%) Liver (100%)
cl126 0.95 22 223 keratinocyte (95.5%) Tongue (100%)
cl39 0.95 159 1593 endothelial cell (72.8%) Trachea (65.3%)
cl99 0.95 87 868 stromal cell (99.1%) Lung (100%)
cl140 0.95 68 684 hematopoietic stem cell (64%) Marrow (100%)
cl83 0.95 38 379 macrophage (53.6%) Marrow (98.2%)
cl187 0.95 19 188 type II pneumocyte (97.3%) Lung (100%)
cl159 0.94 17 174 oligodendrocyte precursor

cell (99.4%)
Brain_Neurons (100%)

cl62 0.94 196 1955 endothelial cell (98.7%) Heart (68%)
cl86 0.94 101 1012 basal cell of epidermis (95.6%) Tongue (99.4%)
cl125 0.94 17 168 type B pancreatic cell (98.2%) Pancreas (100%)
cl144 0.94 77 771 basal cell of epidermis (95.2%) Tongue (100%)
cl64 0.94 150 1504 T cell (99.1%) Mammary (100%)
cl48 0.94 68 678 stromal cell (99%) Mammary (100%)
cl131 0.94 86 862 oligodendrocyte (96.6%) Brain_Neurons (100%)
cl60 0.94 239 2391 T cell (99.3%) Spleen (100%)
cl74 0.94 753 7534 B cell (98.6%) Spleen (70.5%)
cl14 0.94 123 1232 B cell (60%) Mammary (100%)
cl110 0.94 63 630 bladder cell (81.4%) Bladder (99.4%)
cl18 0.94 97 965 leukocyte (97.3%) Trachea (100%)
cl96 0.94 73 729 mesenchymal stem cell

of adipose (55.4%)
Fat (55.7%)

cl55 0.94 132 1318 endothelial cell (98%) Muscle (100%)
cl113 0.94 143 1434 keratinocyte (97.6%) Tongue (99.7%)
cl132 0.94 23 226 epithelial cell of

large intestine (83.2%)
Colon (100%)

cl43 0.93 120 1197 monocyte (69.2%) Marrow (100%)
cl112 0.93 8 84 large intestine goblet cell (100%) Colon (100%)
cl97 0.93 8 80 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl173 0.93 22 220 epidermal cell (93.2%) Skin (100%)
cl67 0.93 29 294 granulocyte (94.6%) Fat (100%)
cl129 0.93 36 360 stromal cell (99.2%) Lung (100%)
cl0 0.93 118 1182 T cell (87.9%) Thymus (100%)
cl127 0.93 35 348 large intestine goblet cell (87.9%) Colon (100%)
cl35 0.92 48 481 leukocyte (88.4%) Heart (100%)
cl82 0.92 18 179 brain pericyte (58.1%) Brain_Neurons (58.1%)
cl21 0.92 31 307 endothelial cell (94.8%) Mammary (100%)
cl57 0.92 54 537 B cell (98.7%) Muscle (100%)
cl11 0.91 11 115 ciliated cell (47%) Lung (100%)
cl58 0.91 21 211 endothelial cell of

hepatic sinusoid (85.8%)
Liver (100%)

cl121 0.90 41 413 epithelial cell of
large intestine (99.8%)

Colon (100%)

cl42 0.90 20 204 neuroendocrine cell (95.1%) Trachea (100%)
cl88 0.90 31 308 myeloid cell (99%) Fat (100%)
cl52 0.90 54 538 endothelial cell (99.3%) Fat (100%)
cl184 0.89 12 117 pancreatic acinar cell (97.4%) Pancreas (100%)
cl34 0.89 33 327 macrophage (96.9%) Muscle (100%)
cl130 0.89 18 176 large intestine goblet cell (96%) Colon (100%)
cl72 0.89 94 938 mesenchymal stem cell

of adipose (99.9%)
Fat (100%)

cl94 0.89 62 617 stromal cell (97.4%) Lung (100%)
cl142 0.88 16 156 type B pancreatic cell (100%) Pancreas (100%)
cl77 0.88 31 309 leukocyte (48.9%) Lung (58.3%)
cl13 0.88 33 326 unknown (61%) Muscle (100%)
cl145 0.88 38 384 basal cell of epidermis (80.7%) Skin (100%)
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Table B.5: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 2)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl45 0.88 55 545 stromal cell (94.3%) Lung (100%)
cl102 0.87 17 170 stromal cell (87.6%) Lung (97.1%)
cl153 0.87 14 137 pancreatic A cell (71.5%) Pancreas (100%)
cl84 0.86 22 216 monocyte (81.9%) Lung (100%)
cl15 0.86 24 239 macrophage (74.9%) Kidney (100%)
cl51 0.86 123 1229 microglial cell (99.6%) Brain_Microglia (100%)
cl172 0.86 18 177 large intestine goblet cell (52%) Colon (100%)
cl87 0.86 29 294 dendritic cell (88.4%) Lung (100%)
cl90 0.86 8 76 endothelial cell (100%) Aorta (100%)
cl10 0.85 271 2706 B cell (98.1%) Spleen (100%)
cl7 0.85 53 535 macrophage (63.6%) Spleen (100%)
cl177 0.85 21 208 enterocyte of epithelium of

large intestine (90.4%)
Colon (100%)

cl53 0.83 27 273 endothelial cell (96.3%) Lung (100%)
cl183 0.83 13 128 large intestine goblet cell (98.4%) Colon (100%)
cl29 0.83 170 1700 microglial cell (100%) Brain_Microglia (100%)
cl162 0.83 24 237 enterocyte of epithelium of

large intestine (98.7%)
Colon (100%)

cl115 0.83 22 219 mesenchymal stem cell
of adipose (99.5%)

Fat (100%)

cl188 0.83 20 197 astrocyte of the
cerebral cortex (87.3%)

Brain_Neurons (100%)

cl119 0.83 32 317 oligodendrocyte (99.7%) Brain_Neurons (100%)
cl40 0.83 26 260 neuroendocrine cell (74.2%) Trachea (100%)
cl107 0.82 9 94 epidermal cell (43.6%) Skin (96.8%)
cl109 0.82 26 265 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl12 0.81 143 1427 microglial cell (98.5%) Brain_Microglia (100%)
cl152 0.81 15 155 pancreatic A cell (98.1%) Pancreas (100%)
cl56 0.80 47 467 T cell (72.8%) Fat (100%)
cl9 0.80 5 49 epithelial cell (95.9%) Fat (100%)
cl69 0.80 11 113 neuroendocrine cell (90.3%) Trachea (100%)
cl80 0.79 22 222 neutrophil (98.2%) Fat (100%)
cl36 0.79 16 162 myeloid cell (90.1%) Fat (100%)
cl149 0.79 19 186 epidermal cell (57.5%) Skin (100%)
cl68 0.79 77 766 T cell (74.7%) Marrow (60.8%)
cl191 0.78 13 131 epithelial cell of large intestine (59.5%) Colon (100%)
cl63 0.77 31 315 T cell (91.1%) Lung (100%)
cl2 0.77 16 156 Kupffer cell (32.7%) Liver (100%)
cl158 0.77 25 255 epithelial cell of large intestine (76.1%) Colon (100%)
cl197 0.76 10 97 unknown (58.8%) Brain_Neurons (100%)
cl114 0.75 35 354 macrophage (99.4%) Lung (100%)
cl28 0.75 9 94 B cell (69.1%) Diaphragm (100%)
cl101 0.75 5 48 endothelial cell (93.8%) Fat (91.7%)
cl111 0.75 5 53 oligodendrocyte (64.2%) Brain_Neurons (100%)
cl4 0.71 31 313 cardiac muscle cell (62.9%) Heart (100%)
cl5 0.70 21 210 fibroblast (66.2%) Kidney (100%)
cl148 0.70 11 107 pancreatic D cell (57.9%) Pancreas (100%)
cl30 0.69 36 362 T cell (96.4%) Muscle (100%)
cl93 0.67 1 9 unknown (44.4%) Aorta (100%)
cl41 0.62 19 187 macrophage (73.8%) Lung (100%)
cl25 0.62 6 60 leukocyte (90%) Bladder (100%)
cl8 0.59 11 106 unknown (67.9%) Brain_Neurons (100%)
cl50 0.57 5 46 fibroblast (58.7%) Aorta (100%)
cl33 0.55 8 78 endothelial cell (92.3%) Diaphragm (100%)
cl19 0.50 1 14 leukocyte (78.6%) Pancreas (100%)
cl79 0.50 3 26 smooth muscle cell (96.2%) Fat (100%)
cl16 0.48 7 69 endothelial cell (85.5%) Bladder (100%)
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Table B.6: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 3)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl66 0.45 26 262 B cell (98.1%) Lung (100%)
cl59 0.44 4 36 leukocyte (77.8%) Kidney (100%)
cl23 0.22 7 67 epicardial adipocyte (47.8%) Aorta (100%)
cl155 0.18 2 18 pancreatic acinar cell (100%) Pancreas (100%)
cl104 0.00 0 5 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl105 0.00 0 4 mesenchymal stem cell
of adipose (100%)

Fat (100%)

cl116 0.00 0 5 endothelial cell (100%) Fat (100%)
cl117 0.00 1 12 smooth muscle cell (100%) Brain_Neurons (100%)
cl118 0.00 0 3 epithelial cell of

large intestine (66.7%)
Colon (100%)

cl120 0.00 0 5 endothelial cell (100%) Brain_Neurons (100%)
cl123 0.00 2 16 pancreatic PP cell (100%) Pancreas (100%)
cl128 0.00 1 6 pancreatic PP cell (100%) Pancreas (100%)
cl133 0.00 1 9 oligodendrocyte precursor

cell (100%)
Brain_Neurons (100%)

cl134 0.00 0 4 epithelial cell of
large intestine (100%)

Colon (100%)

cl137 0.00 1 14 pancreatic A cell (64.3%) Pancreas (100%)
cl139 0.00 3 34 pancreatic A cell (64.7%) Pancreas (100%)
cl146 0.00 1 9 T cell (88.9%) Fat (100%)
cl156 0.00 3 26 pancreatic D cell (100%) Pancreas (100%)
cl160 0.00 1 8 type B pancreatic cell (100%) Pancreas (100%)
cl163 0.00 0 3 type B pancreatic cell (100%) Pancreas (100%)
cl164 0.00 0 4 neuron (100%) Brain_Neurons (100%)
cl167 0.00 0 3 pancreatic ductal cell (100%) Pancreas (100%)
cl168 0.00 1 8 smooth muscle cell (37.5%) Aorta (100%)
cl169 0.00 1 6 unknown (100%) Brain_Neurons (100%)
cl170 0.00 0 4 pancreatic A cell (100%) Pancreas (100%)
cl174 0.00 1 6 fibroblast (66.7%) Aorta (100%)
cl178 0.00 0 3 epicardial adipocyte (100%) Aorta (100%)
cl179 0.00 1 6 type B pancreatic cell (100%) Pancreas (100%)
cl182 0.00 0 3 Brush cell of epithelium proper

of large intestine (100%)
Colon (100%)

cl192 0.00 0 5 epithelial cell of large intestine (60%) Colon (100%)
cl195 0.00 0 4 pancreatic acinar cell (100%) Pancreas (100%)
cl196 0.00 5 50 pancreatic acinar cell (78%) Pancreas (100%)
cl22 0.00 5 53 skeletal muscle satellite

stem cell (90.6%)
Diaphragm (100%)

cl3 0.00 1 6 keratinocyte stem cell (100%) Skin (100%)
cl46 0.00 1 11 epicardial adipocyte (54.5%) Aorta (100%)
cl61 0.00 2 16 B cell (93.8%) Diaphragm (100%)
cl75 0.00 1 10 hematopoietic cell (60%) Aorta (60%)
cl78 0.00 2 20 hematopoietic cell (55%) Aorta (55%)
cl91 0.00 0 3 endothelial cell (100%) Aorta (100%)
cl92 0.00 7 70 endothelial cell (58.6%) Aorta (100%)
cl98 0.00 0 3 macrophage (100%) Diaphragm (100%)
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Table B.7: Human scRNA-seq datasets collected and corresponding cell numbers
Dataset Reference # cells

baron16 (Baron et al., 2016) 8.569
bjorklund16 (Bjorklund et al., 2016) 648
gierahn17 (Gierahn et al., 2017) 3.694
guo18 (Guo et al., 2018) 12.053
habib17 (Habib et al., 2017) 14.963
hcaImmune18 HCA Data Portal 593.844
henry18 (Henry et al., 2018) 109.061
jaitin19 (Jaitin et al., 2019) 13.199
james20 Unpublished 32.228
lamanno16 (La Manno et al., 2016) 1.977
li19 (Li et al., 2019b) 1.886
masuda19 (Masuda et al., 2019) 6.144
menon18 (Menon et al., 2018) 9.846
miragaia18 (Miragaia et al., 2019) 1.168
muraro16 (Muraro et al., 2016) 2.126
nowakowski17 (Nowakowski et al., 2017) 4.261
popescu19 (Popescu et al., 2019) 113.063
segal19 (Segal et al., 2019) 1.475
segerstolpe16 (Segerstolpe et al., 2016) 3.363
smillie19 (Smillie et al., 2019) 110.110
sohni19 (Sohni et al., 2019) 34.729
takeda19 (Takeda et al., 2019) 33.257
vento18 (Vento-Tormo et al., 2018) 69.883
vieira19 (Braga et al., 2019) 26.013
wang16 (Wang et al., 2016) 635
young18 (Young et al., 2018) 44.526
zhang18 (Zhang et al., 2018) 5.989
zheng17 (Zheng et al., 2017) 163.234

Total 1.421.944

data.humancellatlas.org
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Table B.8: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it.

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl19 1.00 6 56 No annotation (100%) Intestine (100%)
cl198 1.00 4 41 No annotation (100%) Brain_Microglia (100%)
cl264 1.00 8 76 Endo (m) (96.1%) Decidua (100%)
cl311 1.00 12 123 Smooth muscle (56.9%) Lung Parenchyma (100%)
cl319 1.00 1 7 SCT (100%) Placenta (100%)
cl362 1.00 2 21 No annotation (100%) Brain_Microglia (100%)
cl67 1.00 33 326 Endo L (97.5%) Decidua (100%)
cl307 0.99 392 3916 Type 2 (97.8%) Lung Parenchyma (100%)
cl282 0.99 450 4496 Myoid cells (6.6%) Testis (100%)
cl295 0.99 46 464 dS1 (35.3%) Decidua (100%)
cl376 0.99 1039 10393 No annotation (100%) Prostate (100%)
cl242 0.99 905 9047 dS1 (50.8%) Decidua (100%)
cl34 0.99 71 710 Fibroblasts (99.7%) Lung Parenchyma (100%)
cl179 0.99 1013 10132 dNK2 (49%) Decidua (100%)
cl131 0.98 193 1932 Macrophages (97%) Lung Parenchyma (100%)
cl451 0.98 976 9763 CD19+ B (96.4%) Blood (100%)
cl83 0.98 310 3104 Leydig cells (18.8%) Testis (100%)
cl12 0.98 30 302 endothelial (90.4%) Pancreas (100%)
cl27 0.98 369 3685 Endothelial cells (8.8%) Testis (100%)
cl266 0.98 55 547 Neutrophils (74.2%) Lung Parenchyma (100%)
cl127 0.98 26 258 Macrophages (98.1%) Lung Parenchyma (100%)
cl269 0.98 26 264 NK (87.1%) Lung Parenchyma (100%)
cl55 0.98 180 1797 ductal (88.1%) Pancreas (100%)
cl44 0.98 551 5513 dM1 (50.2%) Decidua (100%)
cl286 0.98 173 1731 fFB1 (99.2%) Placenta (100%)
cl97 0.98 188 1875 dP1 (54.7%) Decidua (100%)
cl24 0.98 91 910 Macrophages (37.1%) Testis (100%)
cl109 0.98 424 4240 No annotation (100%) BoneMarrow (100%)
cl102 0.98 353 3529 fFB1 (0.1%) Testis (99.8%)
cl122 0.98 128 1276 HB (98.2%) Placenta (100%)
cl345 0.98 101 1012 MGE newborn neurons (29.5%) Brain (100%)
cl64 0.97 78 783 Endo (m) (97.3%) Decidua (100%)
cl494 0.97 314 3137 No annotation (100%) BoneMarrow (100%)
cl133 0.97 79 791 Macrophages (97.1%) Lung Parenchyma (100%)
cl35 0.97 89 885 dM3 (86.4%) Placenta (100%)
cl284 0.97 53 533 Ciliated (99.6%) Upper airway (100%)
cl369 0.97 89 889 delta (95.6%) Pancreas (100%)
cl79 0.97 702 7018 NK (52.3%) Liver (100%)
cl23 0.97 18 178 Neutrophils (52.8%) Upper airway (100%)
cl442 0.97 894 8944 CD56+ NK (91.2%) Blood (100%)
cl341 0.97 227 2269 Sperm (84.5%) Testis (100%)
cl113 0.97 2447 24471 CD19+ B (0.3%) Blood (100%)
cl252 0.97 228 2276 Macrophages (90%) Lung Parenchyma (100%)
cl447 0.97 919 9192 Treg (0%) Blood (100%)
cl192 0.97 155 1551 Neutrophils (93.5%) Lung Parenchyma (100%)
cl523 0.97 985 9851 No annotation (100%) BoneMarrow (100%)
cl338 0.97 15 145 EVT (82.8%) Decidua (100%)
cl379 0.97 116 1159 Type 2 (97.7%) Lung Parenchyma (100%)
cl281 0.97 99 994 dS3 (85.5%) Decidua (100%)
cl517 0.96 595 5952 No annotation (100%) BoneMarrow (100%)
cl75 0.96 162 1619 No annotation (100%) BoneMarrow (100%)
cl118 0.96 89 887 Macrophages (98.9%) Lung Parenchyma (100%)
cl327 0.96 266 2658 Differentiating Spermatogonia (11.6%) Testis (100%)
cl378 0.96 419 4194 No annotation (100%) Prostate (100%)
cl312 0.96 141 1413 Early Primary Spermatocytes (38.7%) Testis (100%)
cl314 0.96 396 3959 No annotation (100%) Prostate (100%)
cl321 0.96 76 759 dNK1 (31.4%) Decidua (100%)
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Table B.9: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 1)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl208 0.96 134 1335 dM1 (51%) Decidua (99.7%)
cl69 0.96 1184 11840 CD19+ B (30.9%) Blood (100%)
cl322 0.96 107 1070 Elongated Spermatids (66%) Testis (100%)
cl570 0.96 70 699 OPC (86.6%) Brain (100%)
cl326 0.96 365 3653 No annotation (100%) Kidney (100%)
cl22 0.96 12 121 No annotation (100%) Brain_Microglia (100%)
cl455 0.95 1072 10721 CD8+/CD45RA+

Naive Cytotoxic (0.9%)
Blood (100%)

cl49 0.95 244 2441 Fibroblast (29.9%) Liver (100%)
cl543 0.95 172 1722 No annotation (100%) BoneMarrow (100%)
cl380 0.95 543 5433 No annotation (100%) Prostate (100%)
cl7 0.95 102 1015 No annotation (100%) Omentum Adipose Tissue (100%)
cl15 0.95 49 486 MG (70.2%) Brain (100%)
cl11 0.95 57 572 Endothelium (65%) Lung Parenchyma (56.3%)
cl606 0.95 623 6230 WNT2B+ Fos-lo 1 (27.4%) Colon (100%)
cl413 0.95 1834 18344 CD8+/CD45RA+

Naive Cytotoxic (0.1%)
Blood (100%)

cl45 0.95 486 4862 Macrophages (70.2%) Colon (100%)
cl308 0.95 66 656 Type 2 (98.6%) Lung Parenchyma (100%)
cl40 0.95 267 2669 Kupffer Cell (19.8%) Liver (100%)
cl440 0.95 931 9305 CD34+ (87.6%) Blood (100%)
cl316 0.94 122 1216 Secretory (91.2%) Upper airway (100%)
cl77 0.94 269 2694 No annotation (100%) BoneMarrow (100%)
cl155 0.94 237 2373 pro-B cell (25%) Liver (99.8%)
cl240 0.94 74 744 dNK2 (47.6%) Decidua (100%)
cl2 0.94 461 4613 No annotation (100%) Prostate (100%)
cl503 0.94 692 6923 No annotation (100%) BoneMarrow (100%)
cl268 0.94 176 1760 dS1 (94%) Decidua (100%)
cl243 0.94 81 808 dS1 (87.5%) Decidua (100%)
cl63 0.94 41 406 Secretory (67.5%) Lung Parenchyma (100%)
cl582 0.94 193 1933 Th cell (0.1%) Kidney (100%)
cl261 0.94 108 1078 EVT (97%) Placenta (100%)
cl206 0.94 44 439 fFB1 (98.9%) Placenta (100%)
cl283 0.94 165 1650 dT CD8 (26.2%) Decidua (88.3%)
cl403 0.94 357 3568 Megakaryocyte (45.3%) Liver (100%)
cl68 0.94 207 2071 ILC precursor (39.3%) Liver (100%)
cl492 0.93 343 3425 No annotation (100%) BoneMarrow (100%)
cl370 0.93 124 1239 acinar (80%) Pancreas (100%)
cl372 0.93 63 630 gamma (87.6%) Pancreas (100%)
cl456 0.93 1151 11506 CD34+ (1.4%) Blood (100%)
cl47 0.93 493 4926 Normal_cell (4%) Kidney (100%)
cl377 0.93 432 4324 No annotation (100%) Prostate (100%)
cl536 0.93 30 296 No annotation (100%) BoneMarrow (100%)
cl547 0.93 60 595 No annotation (100%) BoneMarrow (100%)
cl219 0.93 57 574 Endothelial cells (3.8%) Testis (100%)
cl540 0.93 179 1785 No annotation (100%) BoneMarrow (100%)
cl432 0.93 743 7430 No annotation (100%) Prostate (100%)
cl375 0.93 207 2065 alpha (90.4%) Pancreas (100%)
cl515 0.93 638 6377 No annotation (100%) BoneMarrow (100%)
cl374 0.93 204 2040 beta (98.9%) Pancreas (100%)
cl271 0.93 105 1047 No annotation (100%) Omentum Adipose Tissue (100%)
cl371 0.93 134 1343 alpha (97.5%) Pancreas (100%)
cl401 0.92 455 4553 No annotation (100%) Prostate (100%)
cl506 0.92 914 9140 No annotation (100%) BoneMarrow (100%)
cl504 0.92 1595 15946 No annotation (100%) BoneMarrow (100%)
cl260 0.92 81 811 Basal (98.3%) Upper airway (100%)
cl250 0.92 135 1353 No annotation (100%) axLN (100%)
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Table B.10: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 2)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl301 0.92 14 138 Secretory (87%) Upper airway (100%)
cl542 0.92 175 1748 No annotation (100%) BoneMarrow (100%)
cl490 0.92 1166 11658 No annotation (100%) BoneMarrow (100%)
cl568 0.92 761 7609 TA 1 (37.4%) Colon (100%)
cl458 0.92 1177 11771 CD56+ NK (47.2%) Blood (100%)
cl474 0.92 92 920 Mast cell (49.1%) Liver (100%)
cl48 0.92 18 177 Tcm (57.1%) Skin (100%)
cl495 0.92 308 3084 No annotation (100%) BoneMarrow (100%)
cl509 0.92 760 7595 No annotation (100%) BoneMarrow (100%)
cl277 0.92 12 115 No annotation (100%) Brain_Microglia (100%)
cl470 0.92 1345 13446 NK CD16+ (9.1%) Blood (100%)
cl592 0.92 925 9250 No annotation (100%) BoneMarrow (100%)
cl340 0.92 259 2593 Hepatocyte (40.9%) Liver (100%)
cl335 0.92 57 566 Late primary

Spermatocytes (41.3%)
Testis (100%)

cl255 0.92 114 1144 EVT (98.8%) Placenta (100%)
cl70 0.91 381 3813 No annotation (100%) BoneMarrow (100%)
cl59 0.91 36 356 END (66%) Brain (100%)
cl233 0.91 407 4066 VCT (99.9%) Placenta (100%)
cl511 0.91 573 5731 No annotation (100%) BoneMarrow (100%)
cl464 0.91 610 6102 Mid Erythroid (25.5%) Liver (100%)
cl323 0.91 107 1068 Spermatogonial

Stem cell (0.7%)
Testis (100%)

cl554 0.91 498 4982 B cell IgA plasma (45.9%) Colon (100%)
cl552 0.91 93 926 No annotation (100%) BoneMarrow (100%)
cl258 0.91 75 747 alpha (99.9%) Pancreas (100%)
cl457 0.91 2216 22163 PB Naive CD4 (0.1%) Blood (100%)
cl25 0.91 95 951 No annotation (100%) Omentum Adipose Tissue (100%)
cl38 0.91 32 319 Unknown1 (24.8%) Brain (100%)
cl232 0.91 70 702 CD4 Tfh (71.2%) mLN (100%)
cl486 0.90 441 4414 No annotation (100%) BoneMarrow (100%)
cl404 0.90 1304 13039 No annotation (100%) Prostate (100%)
cl612 0.90 698 6977 Immature Enterocytes 1

(35.6%)
Colon (100%)

cl214 0.90 16 157 ILC2 (83.4%) Tonsil (100%)
cl581 0.90 279 2792 Normal_cell (6.5%) Kidney (100%)
cl488 0.90 389 3888 No annotation (100%) BoneMarrow (100%)
cl293 0.90 42 424 Ciliated (99.8%) Upper airway (100%)
cl115 0.90 277 2767 Kupffer Cell (26.7%) Liver (100%)
cl373 0.90 63 632 acinar (59.3%) Pancreas (100%)
cl429 0.90 567 5673 No annotation (100%) Prostate (100%)
cl518 0.90 234 2344 No annotation (100%) BoneMarrow (100%)
cl56 0.90 575 5748 Mid Erythroid (29.5%) Liver (100%)
cl417 0.90 257 2570 No annotation (100%) Prostate (100%)
cl491 0.90 366 3663 No annotation (100%) BoneMarrow (100%)
cl505 0.90 1430 14301 No annotation (100%) BoneMarrow (100%)
cl278 0.90 100 1000 VCT (97.7%) Placenta (100%)
cl390 0.90 55 547 earlyRG (2.2%) Brain (100%)
cl575 0.90 278 2780 Endothelium;

Mixed_phenotype (<0.1%)
Kidney (100%)

cl279 0.90 85 849 VCT (93.1%) Placenta (100%)
cl36 0.89 172 1717 Endothelial (25.6%) Colon (100%)
cl210 0.89 104 1038 dNK3 (87.5%) Decidua (100%)
cl444 0.89 2513 25130 CD8+/CD45RA+

Naive Cytotoxic (59%)
Blood (100%)

cl299 0.89 77 774 beta (89%) Pancreas (100%)
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Table B.11: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 3)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl538 0.89 204 2038 No annotation (100%) BoneMarrow (100%)
cl430 0.89 680 6797 No annotation (100%) Prostate (100%)
cl567 0.89 789 7894 TA 1 (75.4%) Colon (100%)
cl498 0.89 276 2763 No annotation (100%) BoneMarrow (100%)
cl569 0.89 490 4899 Plasma (94.8%) Colon (100%)
cl247 0.89 4 37 No annotation (100%) Omentum Adipose Tissue (100%)
cl259 0.89 15 154 EVT (100%) Placenta (100%)
cl336 0.89 10 101 No annotation (100%) Brain_Microglia (100%)
cl88 0.89 47 466 Endothelium (1.3%) axLN (98.7%)
cl478 0.89 1857 18568 CD4+/CD45RA+/CD25-

Naive T (48.1%)
Blood (100%)

cl57 0.89 157 1571 DCs (60.2%) Lung Parenchyma (100%)
cl8 0.89 225 2246 dT CD8 (31.5%) Decidua (100%)
cl512 0.88 679 6788 No annotation (100%) BoneMarrow (100%)
cl100 0.88 17 169 Plasma (1.8%) Omentum Adipose Tissue (98.2%)
cl267 0.88 13 126 No annotation (100%) Brain_Microglia (100%)
cl433 0.88 821 8207 No annotation (100%) Prostate (100%)
cl408 0.88 73 727 EVT (97.2%) Placenta (100%)
cl1 0.88 724 7237 Renal_cell_carcinoma (3.4%) Kidney (100%)
cl339 0.88 192 1917 Spermatogonial

Stem cell (4.5%)
Testis (100%)

cl392 0.88 56 563 Newborn Excitatory Neuron
- late born (1.2%)

Brain (100%)

cl317 0.88 123 1226 VCT (97.5%) Placenta (100%)
cl280 0.88 9 92 No annotation (100%) Brain_Microglia (100%)
cl382 0.88 8 83 Fibroblasts (77.1%) Lung Parenchyma (100%)
cl391 0.87 115 1147 Newborn Excitatory Neuron

- early born (42%)
Brain (100%)

cl134 0.87 946 9463 Early Erythroid (44.5%) Liver (100%)
cl617 0.87 176 1764 CD69+ Mast (50.6%) Colon (100%)
cl350 0.87 19 190 Unclassified (75.3%) Brain (100%)
cl355 0.87 43 432 Ciliated (97.5%) Upper airway (100%)
cl18 0.87 21 206 ILC3 (96.6%) Tonsil (100%)
cl387 0.87 268 2680 Spermatogonial

Stem cell (6.7%)
Testis (100%)

cl256 0.87 80 801 not applicable (65.9%) Pancreas (99.6%)
cl74 0.87 605 6048 No annotation (100%) Prostate (100%)
cl508 0.87 864 8640 No annotation (100%) BoneMarrow (100%)
cl610 0.87 310 3098 CD4+ Memory (81.7%) Colon (100%)
cl46 0.87 601 6013 CD14+ Monocyte (30%) Blood (100%)
cl431 0.87 742 7415 No annotation (100%) Prostate (100%)
cl613 0.87 273 2734 Follicular (74.8%) Colon (100%)
cl4 0.86 27 272 Sertoli cells (5.9%) Testis (100%)
cl309 0.86 33 325 No annotation (100%) axLN (100%)
cl500 0.86 453 4529 No annotation (100%) BoneMarrow (100%)
cl14 0.86 87 865 T cell (76.2%) Lung Parenchyma (100%)
cl510 0.86 689 6892 No annotation (100%) BoneMarrow (100%)
cl13 0.86 24 240 No annotation (100%) hnLN (100%)
cl203 0.86 11 108 fFB2 (97.2%) Placenta (100%)
cl37 0.86 8 79 NK (88.6%) Tonsil (100%)
cl62 0.86 7 72 No annotation (100%) Brain_Microglia (100%)
cl501 0.86 464 4637 No annotation (100%) BoneMarrow (100%)
cl601 0.86 84 835 B cell IgA plasma (71.9%) Colon (100%)
cl590 0.85 386 3857 B cell IgA plasma (70.7%) Colon (100%)
cl343 0.85 97 968 NSC (13.4%) Brain (100%)
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Table B.12: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 4)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl516 0.85 1394 13939 No annotation (100%) BoneMarrow (100%)
cl238 0.85 141 1411 B cell memory (40%) mLN (100%)
cl595 0.85 637 6372 Plasma (97.3%) Colon (100%)
cl611 0.85 168 1677 B cell IgA plasma (64.9%) Colon (100%)
cl306 0.85 38 384 Myoid cells (5.5%) Testis (100%)
cl475 0.84 146 1457 Mid Erythroid (24.6%) Liver (100%)
cl101 0.84 221 2213 Plasma (85.6%) Colon (100%)
cl497 0.84 278 2784 No annotation (100%) BoneMarrow (100%)
cl51 0.84 834 8335 Kupffer Cell (27.8%) Liver (100%)
cl438 0.84 314 3141 HSC_MPP (36%) Liver (100%)
cl452 0.84 1198 11980 MO (0.6%) Blood (100%)
cl183 0.84 49 494 Mast cell (86.2%) Lung Parenchyma (86.6%)
cl534 0.84 951 9505 No annotation (100%) BoneMarrow (100%)
cl514 0.84 938 9378 No annotation (100%) BoneMarrow (100%)
cl93 0.84 528 5279 Myeloid (31.8%) Blood (100%)
cl110 0.84 132 1318 No annotation (100%) BoneMarrow (100%)
cl576 0.83 1353 13527 Th cell (3.7%) Kidney (100%)
cl386 0.83 62 619 MGE Progenitors (22%) Brain (100%)
cl43 0.83 7 66 No annotation (100%) Intestine (100%)
cl439 0.83 1849 18491 Bcell (0%) Blood (100%)
cl220 0.83 234 2342 Sperm (0.6%) Testis (100%)
cl26 0.83 69 692 activated_stellate (40.5%) Pancreas (100%)
cl507 0.83 892 8923 No annotation (100%) BoneMarrow (100%)
cl275 0.83 16 161 No annotation (100%) Prostate (100%)
cl50 0.83 32 316 No annotation (100%) Omentum Adipose Tissue (100%)
cl332 0.83 94 937 GABA1 (50.6%) Brain (100%)
cl428 0.83 42 421 No annotation (100%) Prostate (100%)
cl615 0.83 252 2520 CD4+ CD25- T cells (31.3%) Colon (100%)
cl520 0.83 214 2137 No annotation (100%) BoneMarrow (100%)
cl270 0.83 84 842 No annotation (100%) axLN (100%)
cl329 0.83 253 2534 Private (4.9%) Kidney (100%)
cl493 0.82 329 3289 No annotation (100%) BoneMarrow (100%)
cl30 0.82 9 93 ILC1 (100%) Tonsil (100%)
cl276 0.82 35 349 No annotation (100%) Brain_Microglia (100%)
cl304 0.82 361 3610 Sertoli cells (0.1%) Testis (100%)
cl551 0.82 107 1070 No annotation (100%) BoneMarrow (100%)
cl549 0.82 116 1156 No annotation (100%) BoneMarrow (100%)
cl418 0.82 979 9790 Mid Erythroid (67.6%) Liver (100%)
cl389 0.82 17 171 No annotation (100%) Brain_Microglia (100%)
cl96 0.82 21 205 EVT (94.6%) Placenta (98.5%)
cl246 0.82 71 714 Basal (99.4%) Upper airway (100%)
cl3 0.82 13 125 macrophage (43.2%) Pancreas (100%)
cl448 0.82 921 9207 CD14+ Monocyte (1.8%) Blood (100%)
cl87 0.82 642 6419 Treg NL-like (0%) BoneMarrow (100%)
cl465 0.82 292 2919 Mid Erythroid (71.9%) Liver (100%)
cl229 0.82 35 347 No annotation (100%) hnLN (100%)
cl71 0.82 1018 10179 CD8+ Cytotoxic T (49.7%) Blood (100%)
cl524 0.81 15 148 No annotation (100%) BoneMarrow (100%)
cl480 0.81 291 2914 CD4+ CD25high

T cells (28.1%)
Blood (100%)

cl263 0.81 62 617 Basal (99.2%) Upper airway (100%)
cl586 0.81 88 881 exPFC1 (55.2%) Brain (100%)
cl477 0.81 155 1554 Early Erythroid (55.1%) Liver (100%)
cl537 0.81 53 525 No annotation (100%) BoneMarrow (100%)
cl143 0.81 62 620 beta (90.6%) Pancreas (100%)
cl577 0.81 83 834 NK cell 1 (4.2%) Kidney (100%)
cl178 0.81 40 401 No annotation (100%) hnLN (100%)
cl502 0.80 571 5707 No annotation (100%) BoneMarrow (100%)
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Table B.13: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 5)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl571 0.80 459 4593 TA 1 (51.9%) Colon (100%)
cl298 0.80 15 146 No annotation (100%) Brain_Microglia (100%)
cl553 0.80 86 861 No annotation (100%) BoneMarrow (100%)
cl359 0.80 31 309 Unclassified (66%) Brain (100%)
cl360 0.80 458 4577 Sertoli cells (0%) Testis (100%)
cl76 0.80 1487 14872 MO (3.5%) Blood (100%)
cl80 0.80 61 614 No annotation (100%) Omentum Adipose Tissue (100%)
cl296 0.80 57 565 Early Born Deep Layer/

subplate Excitatory Neuron V1
(25%)

Brain (100%)

cl460 0.80 487 4866 PB Naive CD4 (0.1%) Blood (100%)
cl459 0.79 1360 13598 CD8+/CD45RA+

Naive Cytotoxic (58.9%)
Blood (100%)

cl272 0.79 58 579 No annotation (100%) axLN (100%)
cl227 0.79 121 1205 No annotation (100%) axLN (100%)
cl41 0.79 25 249 EVT (87.1%) Decidua (100%)
cl358 0.79 494 4938 Sertoli cells (0.1%) Testis (100%)
cl262 0.79 86 862 Basal (98.5%) Upper airway (100%)
cl89 0.79 471 4714 CD8+ LP (58%) Colon (100%)
cl160 0.79 166 1656 No annotation (100%) Omentum Adipose Tissue (99.8%)
cl313 0.79 53 528 SCT (78.6%) Placenta (100%)
cl449 0.78 1453 14529 CD4+/CD25 T Reg (49.5%) Blood (100%)
cl626 0.78 117 1172 B cell IgA plasma (53.2%) Colon (100%)
cl616 0.78 249 2494 CD8+ IELs (52.4%) Colon (100%)
cl361 0.78 112 1124 exPFC1 (88.9%) Brain (100%)
cl399 0.78 50 499 GABA2 (55.5%) Brain (100%)
cl435 0.78 1197 11966 Kupffer Cell (67%) Liver (100%)
cl254 0.77 19 190 No annotation (100%) hnLN (100%)
cl422 0.77 412 4117 Late Erythroid (23.9%) Liver (100%)
cl618 0.77 158 1583 Plasma (84.2%) Colon (100%)
cl556 0.77 548 5477 Cycling TA (47.1%) Colon (100%)
cl60 0.77 114 1137 No annotation (100%) Omentum Adipose Tissue (100%)
cl402 0.77 497 4972 No annotation (100%) Prostate (100%)
cl318 0.77 159 1591 VCT (97.4%) Placenta (100%)
cl453 0.76 983 9833 CD4+/CD25 T Reg (35.3%) Blood (100%)
cl548 0.76 1017 10174 No annotation (100%) BoneMarrow (100%)
cl483 0.76 73 726 Sertoli cells (0.3%) Testis (100%)
cl400 0.76 774 7742 Mid Erythroid (63.6%) Liver (100%)
cl412 0.76 58 581 Kupffer Cell (32.7%) Liver (100%)
cl388 0.76 59 590 exCA3 (62.5%) Brain (100%)
cl367 0.76 121 1206 ASC1 (58%) Brain (100%)
cl224 0.76 21 206 No annotation (100%) hnLN (100%)
cl147 0.76 414 4144 Mid Erythroid (28.2%) Liver (99.9%)
cl463 0.76 1431 14305 CD8+/CD45RA+

Naive Cytotoxic (1.1%)
Blood (100%)

cl128 0.75 611 6107 TA 2 (39%) Colon (100%)
cl621 0.75 653 6529 CD4+ Activated

Fos-lo (36.6%)
Colon (100%)

cl303 0.75 36 355 SCT (97.5%) Placenta (100%)
cl31 0.75 51 514 No annotation (100%) axLN (100%)
cl485 0.75 445 4453 No annotation (100%) BoneMarrow (100%)
cl52 0.75 5 52 Fibroblasts (86.5%) Upper airway (100%)
cl39 0.74 103 1034 No annotation (100%) Omentum Adipose Tissue (100%)
cl473 0.74 124 1237 CD4 (46.6%) Blood (100%)
cl58 0.74 179 1793 B cell memory (38.8%) mLN (100%)
cl225 0.74 24 237 No annotation (100%) hnLN (100%)
cl519 0.74 1064 10640 No annotation (100%) BoneMarrow (100%)
cl132 0.74 23 229 No annotation (100%) hnLN (100%)
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Table B.14: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 6)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl496 0.74 281 2810 No annotation (100%) BoneMarrow (100%)
cl285 0.73 129 1290 CD4 Tfh (41.4%) mLN (100%)
cl623 0.73 122 1224 TA 2 (31.9%) Colon (100%)
cl434 0.73 867 8667 No annotation (100%) Prostate (100%)
cl16 0.73 39 389 Endothelium (56.3%) Lung Parenchyma (100%)
cl593 0.73 4 38 Best4+ Enterocytes (100%) Colon (100%)
cl148 0.73 15 147 No annotation (100%) hnLN (100%)
cl54 0.73 122 1217 ODC1 (93.1%) Brain (100%)
cl513 0.72 659 6588 No annotation (100%) BoneMarrow (100%)
cl441 0.72 759 7588 CD8+/CD45RA+

Naive Cytotoxic (0.9%)
Blood (100%)

cl248 0.72 27 267 No annotation (100%) hnLN (100%)
cl173 0.72 13 127 No annotation (100%) hnLN (100%)
cl454 0.72 1072 10715 CD8+/CD45RA+ Naive

Cytotoxic (0.3%)
Blood (100%)

cl598 0.72 22 219 Immature Goblet (77.6%) Colon (100%)
cl409 0.72 1576 15761 CD4+/CD45RO+

Memory (44.6%)
Blood (100%)

cl315 0.72 46 461 exPFC1 (45.3%) Brain (100%)
cl555 0.71 506 5061 Immature Goblet (28.8%) Colon (100%)
cl212 0.71 27 267 DC1 (89.9%) Decidua (100%)
cl416 0.71 19 192 No annotation (100%) Prostate (100%)
cl0 0.70 23 231 Endo (f) (34.2%) Placenta (100%)
cl337 0.70 79 789 exDG (87.6%) Brain (100%)
cl174 0.70 79 785 No annotation (100%) axLN (100%)
cl415 0.70 1267 12670 PB Naive CD4 (25.7%) Blood (100%)
cl205 0.70 781 7807 Nephron_epithelium (6.6%) Kidney (100%)
cl476 0.70 218 2183 CD8+ Cytotoxic T (83.3%) Blood (100%)
cl385 0.69 152 1523 No annotation (100%) Omentum Adipose Tissue (100%)
cl274 0.69 60 600 No annotation (100%) axLN (100%)
cl427 0.68 149 1487 No annotation (100%) axLN (100%)
cl53 0.68 481 4814 Granulocytes (2%) Blood (100%)
cl137 0.68 28 275 No annotation (100%) axLN (100%)
cl180 0.68 107 1066 No annotation (100%) axLN (100%)
cl574 0.67 330 3304 Plasma (94.3%) Colon (100%)
cl185 0.67 155 1554 B cell follicular (53%) mLN (100%)
cl622 0.67 134 1338 Immature Enterocytes 2

(52.9%)
Colon (100%)

cl546 0.67 119 1191 No annotation (100%) BoneMarrow (100%)
cl213 0.67 105 1051 No annotation (100%) axLN (100%)
cl384 0.67 4 43 No annotation (100%) Omentum Adipose Tissue (100%)
cl28 0.66 170 1703 No annotation (100%) BoneMarrow (100%)
cl472 0.66 405 4046 CD8+ T cells (20%) Blood (100%)
cl325 0.66 27 274 No annotation (100%) Brain_Microglia (100%)
cl184 0.66 31 311 No annotation (100%) axLN (100%)
cl152 0.66 20 203 Ciliated (100%) Lung Parenchyma (100%)
cl423 0.66 35 345 No annotation (100%) axLN (100%)
cl443 0.65 971 9705 Kupffer Cell (69.9%) Liver (100%)
cl479 0.65 248 2480 Bcell (1.8%) Blood (100%)
cl365 0.65 74 740 ODC1 (93.9%) Brain (100%)
cl410 0.65 1714 17137 PB Naive CD4 (0.2%) Blood (100%)
cl450 0.65 676 6759 CD4+ T Helper (43.9%) Blood (100%)
cl624 0.65 108 1078 Immature Enterocytes 1

(78.7%)
Colon (100%)

cl218 0.65 54 544 No annotation (100%) axLN (100%)
cl156 0.65 1652 16515 PB Naive CD4 (0.1%) Blood (100%)
cl541 0.65 176 1756 No annotation (100%) BoneMarrow (100%)
cl141 0.65 12 121 No annotation (100%) Intestine (100%)
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Table B.15: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 7)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl221 0.65 1297 12967 PB Naive CD4 (0.3%) Blood (100%)
cl580 0.64 633 6331 NK cell (6.7%) Kidney (100%)
cl215 0.64 22 217 No annotation (100%) hnLN (100%)
cl414 0.64 88 883 Kupffer Cell (29.7%) Liver (100%)
cl145 0.64 65 646 No annotation (100%) hnLN (100%)
cl484 0.64 13 134 No annotation (100%) hnLN (100%)
cl251 0.64 91 906 B cell memory (47.7%) mLN (100%)
cl176 0.63 42 416 No annotation (100%) hnLN (100%)
cl33 0.63 15 152 No annotation (100%) Brain_Microglia (100%)
cl614 0.63 266 2655 CD4+ Memory (41.7%) Colon (100%)
cl297 0.63 11 113 ILC3 (92%) Tonsil (100%)
cl124 0.63 392 3915 Plasma (43.6%) Colon (100%)
cl144 0.62 27 268 No annotation (100%) hnLN (100%)
cl241 0.62 61 614 No annotation (100%) axLN (100%)
cl187 0.62 42 418 No annotation (100%) hnLN (100%)
cl172 0.62 100 1003 No annotation (100%) axLN (100%)
cl175 0.62 75 748 No annotation (100%) axLN (100%)
cl420 0.61 134 1337 No annotation (100%) axLN (100%)
cl273 0.61 12 117 CD4 T central memory (81.2%) mLN (100%)
cl346 0.60 7 72 Unknown4 (59.7%) Brain (100%)
cl619 0.59 87 869 CD4+ Activated Fos-hi (48.4%) Colon (100%)
cl591 0.59 328 3283 Plasma (48.4%) Colon (100%)
cl529 0.58 39 389 No annotation (100%) BoneMarrow (100%)
cl231 0.58 17 167 No annotation (100%) hnLN (100%)
cl597 0.58 24 238 Enterocytes (41.6%) Colon (100%)
cl550 0.58 113 1128 No annotation (100%) BoneMarrow (100%)
cl265 0.57 26 262 CD4 T central memory (83.2%) mLN (100%)
cl368 0.57 23 229 No annotation (100%) Brain_Microglia (100%)
cl324 0.57 7 73 No annotation (100%) Brain_Microglia (100%)
cl197 0.56 44 436 No annotation (100%) hnLN (100%)
cl216 0.56 80 797 No annotation (100%) axLN (100%)
cl190 0.56 29 289 No annotation (100%) hnLN (100%)
cl73 0.55 374 3741 B cell IgA plasma (21.1%) Colon (100%)
cl366 0.55 78 782 exPFC1 (61.8%) Brain (100%)
cl106 0.55 35 347 CD4 T central memory (73.5%) mLN (100%)
cl608 0.55 51 512 Macrophages (28.1%) Colon (100%)
cl584 0.54 79 794 ASC1 (50.5%) Brain (100%)
cl419 0.54 121 1208 No annotation (100%) axLN (100%)
cl620 0.54 151 1509 Plasma (67.1%) Colon (100%)
cl153 0.53 136 1355 No annotation (100%) axLN (100%)
cl445 0.52 1945 19446 PB Naive CD4 (0.2%) Blood (100%)
cl625 0.52 91 907 Enterocyte Progenitors (62.7%) Colon (100%)
cl573 0.52 32 315 ODC1 (89.2%) Brain (100%)
cl290 0.52 26 262 No annotation (100%) Brain_Microglia (100%)
cl446 0.52 911 9111 PB Naive CD8 (0.3%) Blood (100%)
cl162 0.50 14 144 No annotation (100%) hnLN (100%)
cl200 0.50 3 27 DC1 (100%) Decidua (100%)
cl226 0.50 28 277 No annotation (100%) hnLN (100%)
cl302 0.50 86 856 VCT (62.4%) Placenta (100%)
cl559 0.47 37 365 ODC1 (95.9%) Brain (100%)
cl425 0.47 57 574 No annotation (100%) axLN (100%)
cl522 0.47 19 193 No annotation (100%) BoneMarrow (100%)
cl426 0.47 71 709 No annotation (100%) axLN (100%)
cl10 0.46 9 95 No annotation (100%) axLN (100%)
cl349 0.46 18 180 exCA3 (72.8%) Brain (100%)
cl223 0.46 31 312 No annotation (100%) hnLN (100%)
cl222 0.45 30 296 No annotation (100%) hnLN (100%)
cl237 0.45 68 677 B cell memory (34.4%) mLN (100%)
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Table B.16: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 8)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl42 0.44 7 66 No annotation (100%) Brain_Microglia (100%)
cl320 0.43 44 444 exDG (68.7%) Brain (100%)
cl596 0.43 38 383 CD4+ Memory (35.5%) Colon (100%)
cl189 0.43 14 143 No annotation (100%) hnLN (100%)
cl217 0.42 18 176 No annotation (100%) hnLN (100%)
cl126 0.40 4 40 Mast cell (92.5%) Lung Parenchyma (100%)
cl20 0.40 21 208 B cell memory (38.5%) mLN (100%)
cl253 0.38 21 205 No annotation (100%) hnLN (100%)
cl85 0.38 20 198 No annotation (100%) axLN (100%)
cl9 0.38 9 86 No annotation (100%) hnLN (100%)
cl287 0.37 10 104 No annotation (100%) Brain_Microglia (100%)
cl411 0.37 34 340 Mid Erythroid (46.8%) Liver (100%)
cl353 0.37 21 205 exPFC1 (95.1%) Brain (100%)
cl424 0.37 46 459 No annotation (100%) axLN (100%)
cl169 0.36 19 194 No annotation (100%) hnLN (100%)
cl609 0.36 85 848 Enterocyte Progenitors (28.8%) Colon (100%)
cl364 0.35 14 139 No annotation (100%) Brain_Microglia (100%)
cl351 0.33 20 201 exPFC1 (92%) Brain (100%)
cl481 0.33 21 205 CD8+/CD45RA+

Naive Cytotoxic (0.5%)
Blood (100%)

cl594 0.32 43 425 TA 1 (38.1%) Colon (100%)
cl146 0.32 45 453 No annotation (100%) hnLN (100%)
cl357 0.32 23 234 exDG (71.8%) Brain (100%)
cl348 0.32 16 158 ASC1 (19.6%) Brain (100%)
cl310 0.29 6 58 CD4 T central memory (34.5%) mLN (100%)
cl245 0.28 119 1186 No annotation (100%) axLN (100%)
cl395 0.27 17 168 No annotation (100%) Brain_Microglia (100%)
cl421 0.27 16 161 No annotation (100%) axLN (100%)
cl129 0.27 12 116 No annotation (100%) Intestine (100%)
cl234 0.25 14 140 No annotation (100%) hnLN (100%)
cl354 0.25 21 208 exCA3 (65.9%) Brain (100%)
cl5 0.25 7 71 Tcm (36.6%) Skin (100%)
cl181 0.22 8 78 No annotation (100%) Intestine (100%)
cl565 0.22 33 332 ODC1 (92.2%) Brain (100%)
cl168 0.20 12 115 No annotation (100%) Intestine (100%)
cl194 0.19 28 276 No annotation (100%) hnLN (100%)
cl356 0.17 21 214 exPFC1 (94.9%) Brain (100%)
cl347 0.15 12 123 exPFC1 (86.2%) Brain (100%)
cl151 0.15 35 349 No annotation (100%) hnLN (100%)
cl171 0.14 67 666 No annotation (100%) axLN (100%)
cl149 0.13 138 1376 No annotation (100%) axLN (100%)
cl186 0.12 14 138 No annotation (100%) hnLN (100%)
cl230 0.11 101 1006 CD4 T central memory (42.7%) mLN (100%)
cl383 0.11 18 179 No annotation (100%) Omentum Adipose Tissue (100%)
cl352 0.10 20 202 exDG (81.2%) Brain (100%)
cl135 0.09 4 43 B cell (9.3%) Intestine (90.7%)
cl394 0.07 17 171 No annotation (100%) Brain_Microglia (100%)
cl103 0.00 0 3 dS2 (100%) Decidua (100%)
cl104 0.00 0 3 CD8 T cell (66.7%) mLN (100%)
cl105 0.00 0 3 B cell follicular (66.7%) mLN (100%)
cl107 0.00 0 4 CD4 T central memory (50%) mLN (100%)
cl108 0.00 0 3 dS3 (100%) Decidua (100%)
cl111 0.00 0 4 VCT (100%) Placenta (100%)
cl112 0.00 0 3 No annotation (100%) axLN (100%)
cl114 0.00 0 3 Neutrophils (100%) Lung Parenchyma (100%)
cl116 0.00 0 4 VCT (100%) Placenta (100%)
cl117 0.00 0 3 B cell memory (66.7%) mLN (100%)
cl119 0.00 0 3 Endothelium (100%) Lung Parenchyma (100%)
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Table B.17: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 9)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl120 0.00 0 3 Endo (m) (100%) Decidua (100%)
cl121 0.00 0 3 Type 2 (66.7%) Lung Parenchyma (100%)
cl123 0.00 0 5 dNK p (60%) Decidua (100%)
cl125 0.00 1 15 B cell (100%) Lung Parenchyma (100%)
cl130 0.00 0 5 No annotation (100%) axLN (100%)
cl136 0.00 7 75 Treg NL-like (41.3%) mLN (100%)
cl138 0.00 7 73 No annotation (100%) Intestine (100%)
cl139 0.00 0 3 EVT (100%) Placenta (100%)
cl140 0.00 0 4 No annotation (100%) Brain_Microglia (100%)
cl142 0.00 0 4 Macrophages (100%) Lung Parenchyma (100%)
cl150 0.00 10 103 No annotation (100%) Intestine (100%)
cl154 0.00 0 4 CD4 T central memory (75%) mLN (100%)
cl157 0.00 0 5 fFB1 (100%) Placenta (100%)
cl158 0.00 1 14 B cell (100%) Lung Parenchyma (100%)
cl159 0.00 0 4 Endo L (100%) Decidua (100%)
cl161 0.00 11 115 No annotation (100%) Intestine (100%)
cl163 0.00 3 31 B cell memory (83.9%) mLN (100%)
cl164 0.00 9 93 No annotation (100%) Intestine (100%)
cl165 0.00 7 67 No annotation (100%) Intestine (100%)
cl166 0.00 8 81 No annotation (100%) Intestine (100%)
cl167 0.00 6 57 No annotation (100%) Intestine (100%)
cl17 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl170 0.00 7 69 No annotation (100%) Intestine (100%)
cl177 0.00 9 91 No annotation (100%) Intestine (100%)
cl182 0.00 1 13 B cell memory (69.2%) mLN (100%)
cl188 0.00 7 68 No annotation (100%) Intestine (100%)
cl191 0.00 4 37 No annotation (100%) Intestine (100%)
cl193 0.00 4 42 No annotation (100%) Intestine (100%)
cl195 0.00 7 67 No annotation (100%) Intestine (100%)
cl196 0.00 6 64 No annotation (100%) Intestine (100%)
cl199 0.00 1 7 Secretory (100%) Upper airway (100%)
cl201 0.00 1 9 Plasma (100%) Decidua (100%)
cl202 0.00 7 68 No annotation (100%) Intestine (100%)
cl204 0.00 8 82 No annotation (100%) Intestine (100%)
cl207 0.00 5 53 No annotation (100%) Intestine (100%)
cl209 0.00 1 10 B cell (100%) Lung Parenchyma (100%)
cl21 0.00 2 22 No annotation (100%) Intestine (100%)
cl211 0.00 0 4 No annotation (100%) Brain_Microglia (100%)
cl228 0.00 11 114 No annotation (100%) hnLN (100%)
cl235 0.00 1 9 B cell follicular (33.3%) mLN (100%)
cl236 0.00 1 8 Type 1 (100%) Lung Parenchyma (100%)
cl239 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl244 0.00 1 6 Granulocytes (100%) Decidua (100%)
cl249 0.00 18 182 No annotation (100%) axLN (100%)
cl257 0.00 1 15 VCT (100%) Placenta (100%)
cl288 0.00 8 79 No annotation (100%) Brain_Microglia (100%)
cl289 0.00 5 52 No annotation (100%) Brain_Microglia (100%)
cl29 0.00 0 4 B cell follicular (75%) mLN (100%)
cl291 0.00 1 7 dS1 (100%) Decidua (100%)
cl292 0.00 2 24 No annotation (100%) Brain_Microglia (100%)
cl294 0.00 1 14 No annotation (100%) Brain_Microglia (100%)
cl300 0.00 26 259 Ciliated (97.7%) Upper airway (100%)
cl305 0.00 1 6 No annotation (100%) Omentum Adipose Tissue (100%)
cl32 0.00 0 3 Endo (m) (100%) Placenta (100%)
cl328 0.00 12 121 No annotation (100%) Brain_Microglia (100%)
cl330 0.00 8 78 No annotation (100%) Brain_Microglia (100%)
cl331 0.00 11 109 No annotation (100%) Brain_Microglia (100%)
cl333 0.00 11 107 No annotation (100%) Brain_Microglia (100%)
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Table B.18: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 10)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl334 0.00 12 119 CD4 Tfh (73.1%) mLN (100%)
cl342 0.00 0 5 exCA3 (80%) Brain (100%)
cl344 0.00 2 21 GABA2 (57.1%) Brain (100%)
cl363 0.00 6 57 No annotation (100%) Brain_Microglia (100%)
cl381 0.00 1 7 Ciliated (100%) Lung Parenchyma (100%)
cl393 0.00 3 35 No annotation (100%) Brain_Microglia (100%)
cl396 0.00 2 22 No annotation (100%) Brain_Microglia (100%)
cl397 0.00 4 41 No annotation (100%) Brain_Microglia (100%)
cl398 0.00 4 43 No annotation (100%) Brain_Microglia (100%)
cl405 0.00 3 26 Kupffer Cell (69.2%) Liver (100%)
cl406 0.00 0 5 ILC precursor (100%) Liver (100%)
cl407 0.00 1 8 Kupffer Cell (62.5%) Liver (100%)
cl436 0.00 0 3 CD8+/CD45RA+

Naive Cytotoxic (100%)
Blood (100%)

cl437 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl461 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl462 0.00 2 20 CD4+/CD45RA+/CD25-

Naive T (55%)
Blood (100%)

cl466 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl467 0.00 0 4 CD56+ NK (50%) Blood (100%)
cl468 0.00 1 7 No annotation (100%) Blood (100%)
cl469 0.00 1 10 No annotation (100%) Blood (100%)
cl471 0.00 2 24 No annotation (100%) Blood (100%)
cl482 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl487 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl489 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl499 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl521 0.00 2 19 No annotation (100%) BoneMarrow (100%)
cl525 0.00 13 129 No annotation (100%) BoneMarrow (100%)
cl526 0.00 4 43 No annotation (100%) BoneMarrow (100%)
cl527 0.00 3 29 No annotation (100%) BoneMarrow (100%)
cl528 0.00 1 8 No annotation (100%) BoneMarrow (100%)
cl530 0.00 0 5 No annotation (100%) BoneMarrow (100%)
cl531 0.00 0 5 No annotation (100%) BoneMarrow (100%)
cl532 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl533 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl535 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl539 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl544 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl545 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl557 0.00 3 29 No annotation (100%) Brain_Microglia (100%)
cl558 0.00 13 131 No annotation (100%) Brain_Microglia (100%)
cl560 0.00 12 118 No annotation (100%) Brain_Microglia (100%)
cl561 0.00 10 101 No annotation (100%) Brain_Microglia (100%)
cl562 0.00 4 39 No annotation (100%) Brain_Microglia (100%)
cl563 0.00 3 30 No annotation (100%) Brain_Microglia (100%)
cl564 0.00 3 28 No annotation (100%) Brain_Microglia (100%)
cl566 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl572 0.00 13 133 No annotation (100%) Brain_Microglia (100%)
cl578 0.00 1 12 Endothelium; Ascending_vasa_recta;

VCAM1- (8.3%)
Kidney (100%)

cl579 0.00 15 154 No annotation (100%) hnLN (100%)
cl583 0.00 0 3 dS2 (100%) Decidua (100%)
cl585 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl587 0.00 1 12 ODC1 (100%) Brain (100%)
cl588 0.00 2 19 ODC1 (94.7%) Brain (100%)
cl589 0.00 9 88 ASC1 (48.9%) Brain (100%)
cl599 0.00 10 101 Immature Goblet (81.2%) Colon (100%)



B.2 Supplementary Tables 173

Table B.19: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 11)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl6 0.00 3 34 T cell (41.2%) Upper airway (100%)
cl600 0.00 2 21 TA 2 (85.7%) Colon (100%)
cl602 0.00 2 20 Immature Enterocytes 1 (35%) Colon (100%)
cl603 0.00 1 8 Cycling TA (50%) Colon (100%)
cl604 0.00 0 4 Enterocytes (100%) Colon (100%)
cl605 0.00 0 3 Immature Goblet (100%) Colon (100%)
cl607 0.00 0 3 Macrophages (66.7%) Colon (100%)
cl61 0.00 4 39 No annotation (100%) Intestine (100%)
cl65 0.00 0 3 Basal (100%) Upper airway (100%)
cl66 0.00 0 4 No annotation (100%) Intestine (100%)
cl72 0.00 2 23 B cell (87%) Upper airway (100%)
cl78 0.00 0 3 dM2 (100%) Decidua (100%)
cl81 0.00 1 6 dM2 (83.3%) Decidua (100%)
cl82 0.00 0 3 dT CD4 (33.3%) Decidua (100%)
cl84 0.00 0 3 Neutrophils (100%) Lung Parenchyma (100%)
cl86 0.00 0 3 Basal (100%) Upper airway (100%)
cl90 0.00 0 3 dM2 (100%) Decidua (100%)
cl91 0.00 0 3 dM2 (66.7%) Decidua (100%)
cl92 0.00 0 3 VCT (100%) Decidua (100%)
cl94 0.00 0 3 CD4 Tfh (66.7%) mLN (100%)
cl95 0.00 0 3 dNK1 (100%) Decidua (100%)
cl98 0.00 0 5 dM3 (60%) Placenta (100%)
cl99 0.00 0 3 CD4 Tfh (33.3%) mLN (100%)
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Table B.20: Top genes in the largest merged clusters of each CellTypist model
Model Cluster Top Genes

thr1 = 0.99, thr2 = 0.8 cl87 S100A4, FOS, KLRB1, DUSP1, NFKBIA, KLF6,
LTB, CXCR4, ANXA1, SRGN

cl147 HBG2, EEF1A1, RNASE1, HMOX1, RPL39,AL138963.3,
AC026803.1, H3F3A, EGFL7, FP671120.4

cl102 C7, DCN, DLK1, IGF2, COL3A1, COL1A1,
HSPA1A, TSHZ2, HSPA1B, MMP2

cl155 IGLL1, VPREB1, HIST1H4C, HMGB2, H3F3A, PTTG1,
IL7R, CD24, SMC4, HMGA1

cl160 MT-RNR2, MT-TT, MT-TG, SNORA31, MT-RNR1,
MTCO1P40, MT-TK, EEF1A1P5, MT2A, Y_RNA

thr1 = 0.4, thr2 = 0.99 cl263 RPL10P9, RPS3A, DONSON, RPL9, RPS10, AL031280.1,
SELENOM, RPS26, DPY30, RPL7

cl530 PPBP, MT-RNR1, GNG11, HIST1H2AC, MIR1244-2,
NCOA4, GPX1, PF4, OAZ1, CAVIN2

cl215 GLRX, REXO2, CPVL, GYPB, HIST1H4C, FAM178B,
HEMGN, RGS16, TUBA3C, GIHCG

cl234 GNLY, CD52, NKG7, GZMH, CD3D, CD3G,
IL32, TRGC2, TRAC, TRBC1

cl233 IGLC2, IGLC3, HLA-DRA, CD74, AL365357.1, CD52,
MIR1244-2, MTATP6P1, HLA-DQB1, AC005912.1

thr1 = 0.25, thr2 = 0.25 cl114 FN1, TPT1, MARCO, RPL10, SARAF, EEF1A1,
PS3A, TIMP3, RPS29, AL365357.1

cl72 CCL3L1, AL450405.1, RPL41, KLRF1, IGHA1, DUSP4,
GZMK, CCL4L1, TYROBP, CCN1

cl102 MTND1P23, RPS26, JUNB, AL450405.1, MTCO1P12,
RPS4Y1, ACTB, C20orf204, LTB, MIR1244-2

cl10 PLP1, LINC01116, SELE, HMOX1, IGFBP5, CXCL12,
MTRNR2L8, TFPI2, HBG1, APOE

cl23 AL450405.1, HLA-DRA, AC027290.2, RPL26, CD74,
RPL39, H3F3A, RPS26, LINC01781, HLA-DRB6

thr1 = 0.1, thr2 = 0.1 cl10 AMH, DHRS2, ADAMDEC1, SELE, CRHBP,
AL450405.1, INS, POSTN, TMEM88, GZMK

cl1 FAM178B, PNMT, GAL, CCL3L1, SFTPB, GCG,
RAB38, KLF1, HLA-DRB6, CCL5

cl2 WFDC1, PHGR1, IGFBP3, PAGE4, BAMBI, MARCO,
IGSF6, SERPINB3, FRZB, HAPLN1

cl20 MTND1P23, AL450405.1, NHSL2, ZNF90, JUNB, CPA5,
MTCO1P12, AL513365.1, RPL9P9, RP11-138A9.2

cl57 AL365226.1, MTRNR2L12, XAGE2, ANAPC4,
AC068134.2, IL24, RETREG1, C3, CSF1R, EMX1
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Fig. C.1: Number of tissue-specific genes determined per tissue for human (A)
and mouse (B))
Tissue specific genes were determined by calculating tau (see Section 4.4.2) and
keeping only those with a value greater than 0.5. No genes shared between tissues
were found.
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Fig. C.2: Relating number of per-tissue clusters and number of cells (Related to
Figure 3.7A)
Scatter plot showing the variation of number of clusters per tissue with the number
of cells, as well as number of datasets collected for each tissue (colour).
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Fig. C.3: Enrichment of tissue gene modules in other CellTypist models (Related
to Figure 4.3)
Heatmaps showing the fraction of clusters in each tissue (x-axis) with an enrichment
for tissue-specific gene programmes (y-axis) determined from GTEx data. Each
heatmap represents a different set of clusters per tissue, resulting from using different
parameters in the CellTypist pipeline. Plot for thr1 = 0.99, thr2 = 0.8 is identical to
Figure 4.3B.
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Fig. C.4: Clusters merged across tissues in the different models (Related to
Figure 4.3)
Heatmaps showing the number of cells contributed by each tissue into cross-tissue
clusters for each model.
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Fig. C.5: Enrichment of tissue gene modules in merged clusters of different Cell-
Typist models (Related to Figure 4.3)
Heatmaps showing the -log10(q-value) of each merged cluster (x-axis) for the en-
richment of tissue-specific gene programmes (y-axis) in their top 500 genes output
by the model. Each heatmap represents a different set of merged clusters, resulting
from using different parameters in the CellTypist pipeline.
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Fig. C.6: Correlation between gene expression and importance in the human
CellTypist model (Related to Figure 4.4)
Scatterplot shows the relationship between mean expression across all cells and the
maximum coefficient for each gene across all labels. Density plots show distribution
of gene groups, and distribution of genes included in the top 500 coefficients of
any label, along the mean expression (top) or maximum coefficient (left) range.
Spearman correlation coefficient = 0.56, p-value < 0.01.



182 Additional information to Chapter 4

Fig. C.7: Correlation between gene expression and importance in the Tabula
Muris CellTypist model (Related to Figure 4.5)
Scatterplot shows the relationship between mean expression across all cells and the
maximum coefficient for each gene across all labels. Density plots show distribution
of gene groups, and distribution of genes included in the top 500 coefficients of
any label, along the mean expression (top) or maximum coefficient (left) range.
Spearman correlation coefficient = 0.86, p-value < 0.01.
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Fig. C.8: Gene upset plots of different CellTypist models (Related to Figure 4.4)
Upset plots counting the number of clusters enriched for a specific group of genes in
each model. The gene groups tested were "transcription factors", "transmembrane",
"secreted", "receptors", "membrane peripheral proteins", "kinases and phosphatases",
"chromatin modulators", "catalytic enzymes", "housekeeping genes". Only the terms
enriched in at least one cluster were shown. The plot for thr1 = 0.99, thr2 = 0.8 is
identical to Figure 4.4B.
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Fig. C.9: CellTypist predictions for oesophagus data from (Madissoon et al.,
2019) (Related to Figure 4.1)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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Fig. C.10: CellTypist predictions for spleen data from (Madissoon et al., 2019)
(Related to Figure 4.1)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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Fig. C.11: Matching CellTypist predictions in lung with annotations in the data
collection (Related to Figure 4.1)
(A) CellTypist clusters (thr1 = 0.99, thr2 = 0.8) matched to each original cell type
annotation. Only the top 3 clusters per cell type were selected. (B) Proportion of cell
type annotations (columns) represented in the CellTypist clusters matched to lung.
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Fig. C.12: Clusters matching lung annotated cell types in other CellTypist models
(Related to Figure 4.1B)
Proportion of clusters (rows) matching each annotated cell type (columns) in the
models thr1 = 0.4, thr2 = 0.99 (A), thr1 = 0.25, thr2 = 0.25 (A), and thr1 = 0.1,
thr2 = 0.1 (C).
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Fig. C.13: Lung annotated cell types matching clusters in other CellTypist models
(Related to Figure 4.1C)
Proportion of annotated cell types (rows) included in each cluster (columns) in the
models thr1 = 0.4, thr2 = 0.99 (A), thr1 = 0.25, thr2 = 0.25 (A), and thr1 =
0.1, thr2 = 0.1 (C). Only clusters including at least 10% of a given cell type were
included.
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Table C.1: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters

Cluster Tissue Cell types

cl430 Lung Alveolar_Type1
cl430 Oesophagus Epi_upper,Epi_stratified
cl433 Lung Alveolar_Type2
cl433 Spleen Plasmablast,DC_1,Monocyte,NK_dividing,Plasma_IgG
cl429 Lung Alveolar_Type1
cl39 Lung T_CD4,T_cells_Dividing,T_regulatory
cl39 Spleen T_CD4_fh,T_CD4_conv,T_CD4_reg,T_CD8_MAIT,T_CD4_naive
cl39 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Mast_cell,Lymph_vessel
cl402 Lung Alveolar_Type2,Alveolar_Type1
cl402 Oesophagus Epi_suprabasal
cl318 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,Macrophage_Dividing,Alveolar_Type1
cl318 Spleen NK_dividing,T_cell_dividing,B_Hypermutation,Plasmablast,CD34_progenitor
cl318 Oesophagus Epi_dividing
cl416 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Lymph_vessel
cl416 Oesophagus Glands_mucous,Epi_basal,Glands_duct,Epi_suprabasal
cl263 Lung Alveolar_Type1,Alveolar_Type2,Ciliated
cl263 Oesophagus Epi_stratified,Epi_basal,Glands_duct
cl2 Lung DC_2,DC_activated,Lymph_vessel,DC_Monocyte_Dividing,DC_1
cl2 Spleen DC_1,DC_activated,DC_2,DC_plasmacytoid,T_CD8_gd
cl2 Oesophagus Blood_vessel,NK_T_CD8_Cytotoxic,Mast_cell,T_CD8,Dendritic_Cells
cl1 Lung Blood_vessel
cl1 Oesophagus Blood_vessel,Mast_cell,Dendritic_Cells,Stroma,NK_T_CD8_Cytotoxic
cl548 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD4_conv
cl548 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl80 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel
cl80 Spleen T_CD8_MAIT,T_CD8_CTL
cl80 Oesophagus Stroma,Epi_basal,Lymph_vessel,Glands_duct,Epi_suprabasal
cl6 Lung T_cells_Dividing,DC_Monocyte_Dividing,DC_1,DC_activated,DC_plasmacytoid
cl6 Spleen T_cell_dividing,DC_plasmacytoid,T_CD8_CTL,B_Hypermutation,NK_dividing
cl6 Oesophagus Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Mast_cell
cl614 Lung T_CD4,T_regulatory,T_cells_Dividing
cl614 Spleen T_CD4_fh,T_CD4_reg,T_CD4_conv,T_CD4_naive
cl614 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl262 Lung Alveolar_Type1,DC_1,DC_2,DC_activated
cl262 Oesophagus Epi_stratified
cl63 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Blood_vessel,Lymph_vessel
cl63 Spleen DC_activated,DC_1,CD34_progenitor,DC_2,T_CD8_MAIT
cl63 Oesophagus Glands_duct,Epi_basal,Glands_mucous,Epi_suprabasal,Lymph_vessel
cl513 Lung T_CD4,T_cells_Dividing,T_regulatory,Mast_cells
cl513 Spleen T_CD4_reg,T_CD8_MAIT,T_CD4_conv,T_CD4_fh,T_cell_dividing
cl513 Oesophagus Mast_cell,T_CD4,NK_T_CD8_Cytotoxic,T_CD8
cl89 Lung NK_Dividing,T_CD8_CytT,DC_plasmacytoid,DC_activated,NK
cl89 Spleen T_CD8_activated,T_CD8_gd,T_CD8_MAIT,NK_CD160pos,T_CD8_CTL
cl89 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,B_CD27pos,Mast_cell
cl377 Lung Alveolar_Type2,Alveolar_Type1
cl11 Lung Blood_vessel,Lymph_vessel,Muscle_cells,Fibroblast,Alveolar_Type2
cl11 Spleen B_mantle,T_cell_dividing,NK_dividing
cl11 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
cl424 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl424 Oesophagus Lymph_vessel,Blood_vessel
cl329 Lung Ciliated,Mast_cells,T_CD4,Alveolar_Type1,T_CD8_CytT
cl329 Spleen T_CD8_gd,DC_activated
cl329 Oesophagus T_CD4,T_CD8,Glands_duct,NK_T_CD8_Cytotoxic,B_CD27pos
cl128 Lung Alveolar_Type1,Alveolar_Type2
cl128 Oesophagus Glands_mucous,Epi_stratified
cl31 Lung Lymph_vessel,Fibroblast,Alveolar_Type1
cl31 Spleen DC_activated,T_CD4_naive
cl31 Oesophagus Lymph_vessel,Epi_basal
cl8 Lung T_cells_Dividing,T_CD4,T_CD8_CytT,T_regulatory,DC_plasmacytoid
cl8 Spleen T_CD4_reg,T_CD4_conv,T_CD8_activated,T_cell_dividing,T_CD8_CTL
cl8 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell,B_CD27neg
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Table C.2: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 1)

Cluster Tissue Cell types

cl554 Lung B_cells,DC_plasmacytoid,DC_activated,T_cells_Dividing
cl554 Spleen B_follicular,B_mantle,B_Hypermutation
cl554 Oesophagus B_CD27pos,B_CD27neg,T_CD4,Dendritic_Cells,NK_T_CD8_Cytotoxic
cl425 Lung Lymph_vessel,Blood_vessel,Muscle_cells,Fibroblast
cl425 Spleen DC_1
cl425 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Epi_basal,Glands_duct
cl210 Lung NK_Dividing,NK,T_cells_Dividing,DC_plasmacytoid,DC_1
cl210 Spleen NK_CD160pos,NK_FCGR3Apos,T_CD8_gd,NK_dividing,T_CD8_MAIT
cl210 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,B_CD27pos
cl87 Lung T_CD4
cl87 Spleen T_CD8_MAIT,Monocyte
cl87 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell
cl47 Lung Fibroblast,Muscle_cells,NK_Dividing,Blood_vessel,Lymph_vessel
cl47 Oesophagus Stroma,Blood_vessel,Epi_basal,Lymph_vessel
cl222 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl222 Oesophagus Lymph_vessel,Blood_vessel,Stroma
cl88 Lung Blood_vessel,Lymph_vessel,Alveolar_Type1,DC_activated,Muscle_cells
cl88 Spleen T_CD8_MAIT,T_CD4_conv,T_CD4_naive,DC_activated
cl88 Oesophagus Blood_vessel,Lymph_vessel,Epi_basal,Glands_duct,Stroma
cl73 Lung T_cells_Dividing,T_CD4,T_regulatory,DC_activated
cl73 Spleen T_CD4_reg,T_CD8_MAIT,ILC,T_CD4_fh,T_CD4_conv
cl73 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell,B_CD27pos
cl606 Lung Fibroblast,Muscle_cells,DC_activated,Macrophage_MARCOpos,Macrophage_MARCOneg
cl606 Spleen Monocyte,DC_1,DC_2,Macrophage
cl606 Oesophagus Stroma,Mast_cell,Epi_suprabasal,Mono_macro,Lymph_vessel
cl449 Spleen T_cell_dividing,T_CD4_conv,T_CD4_fh,B_Hypermutation,CD34_progenitor
cl449 Oesophagus Lymph_vessel,Blood_vessel,Glands_duct
cl58 Lung T_regulatory,T_cells_Dividing,T_CD4,T_CD8_CytT,Mast_cells
cl58 Spleen NK_CD160pos,T_CD4_reg,T_CD8_gd,T_CD8_MAIT,T_CD8_CTL
cl58 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Mast_cell,Dendritic_Cells
cl74 Lung Alveolar_Type1
cl74 Oesophagus Epi_basal,Glands_duct
cl147 Spleen CD34_progenitor
cl71 Lung T_CD8_CytT
cl71 Spleen T_CD8_MAIT,T_CD8_activated,T_CD8_CTL,T_CD8_gd
cl71 Oesophagus T_CD4,T_CD8
cl616 Lung T_CD8_CytT,NK_Dividing,NK,T_regulatory,T_cells_Dividing
cl616 Spleen T_CD8_activated,T_CD8_MAIT,T_CD8_gd,NK_CD160pos,T_CD4_fh
cl616 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4
cl179 Lung NK_Dividing,NK,T_cells_Dividing
cl179 Spleen NK_dividing,NK_CD160pos,T_CD8_gd,NK_FCGR3Apos,ILC
cl179 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,Epi_dividing,T_CD4,Mast_cell
cl34 Lung Fibroblast,Muscle_cells,Monocyte
cl34 Spleen Monocyte,T_CD8_CTL
cl34 Oesophagus Stroma,Lymph_vessel,Dendritic_Cells,Epi_basal,Mono_macro
cl271 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel
cl271 Oesophagus Stroma,Lymph_vessel,Epi_basal,Blood_vessel,Epi_suprabasal
cl172 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl172 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Epi_basal,Epi_suprabasal
cl435 Lung Macrophage_MARCOneg,Macrophage_MARCOpos
cl435 Spleen Macrophage,DC_2,Monocyte
cl79 Lung NK_Dividing,NK,T_CD8_CytT,T_cells_Dividing,T_regulatory
cl79 Spleen T_CD8_activated,NK_dividing,T_CD8_gd,T_CD8_CTL,NK_CD160pos
cl79 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Epi_dividing,Mono_macro
cl36 Lung Blood_vessel,DC_activated,DC_Monocyte_Dividing,DC_plasmacytoid,Macrophage_MARCOpos
cl36 Spleen DC_2,DC_activated,DC_1,B_follicular,Macrophage
cl36 Oesophagus Blood_vessel,Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg
cl505 Spleen Monocyte
cl404 Lung Muscle_cells,Fibroblast
cl404 Oesophagus Epi_suprabasal
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Table C.3: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 2)

Cluster Tissue Cell types

cl464 Lung Macrophage_MARCOneg
cl464 Spleen CD34_progenitor,DC_2
cl464 Oesophagus Dendritic_Cells
cl596 Lung T_CD4,T_cells_Dividing,T_regulatory,Mast_cells,B_cells
cl596 Spleen T_CD8_MAIT,T_CD4_conv,T_CD4_fh,T_CD4_reg,T_CD4_naive
cl596 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4,Dendritic_Cells,B_CD27pos
cl45 Lung DC_2,Macrophage_MARCOneg,DC_1,DC_Monocyte_Dividing,DC_plasmacytoid
cl45 Spleen DC_2,DC_1,DC_activated,DC_plasmacytoid,Monocyte
cl45 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg,Blood_vessel
cl51 Lung DC_2,Macrophage_MARCOneg,DC_1,DC_activated,DC_Monocyte_Dividing
cl51 Spleen DC_2,DC_1,DC_activated,Monocyte,Macrophage
cl51 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,B_CD27pos,B_CD27neg
cl441 Spleen T_CD4_naive
cl432 Lung Alveolar_Type1,Ciliated,Alveolar_Type2
cl432 Spleen B_mantle
cl432 Oesophagus Glands_duct,Glands_mucous,Epi_basal
cl617 Lung DC_2,Mast_cells,Muscle_cells
cl617 Spleen Monocyte,T_CD8_MAIT
cl617 Oesophagus Mast_cell,Dendritic_Cells,Epi_basal,B_CD27pos,Mono_macro
cl260 Lung DC_plasmacytoid,Alveolar_Type1,Ciliated,Monocyte,DC_activated
cl260 Spleen CD34_progenitor
cl260 Oesophagus Blood_vessel,Epi_suprabasal
cl452 Lung Monocyte
cl452 Spleen Monocyte
cl27 Lung Blood_vessel,Lymph_vessel,Muscle_cells
cl27 Oesophagus Blood_vessel,Lymph_vessel,Stroma
cl64 Lung Blood_vessel,Lymph_vessel,Fibroblast,Muscle_cells
cl64 Spleen T_CD4_conv
cl64 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
cl205 Lung T_CD8_CytT
cl205 Spleen T_CD8_gd,T_CD8_CTL
cl252 Lung Macrophage_MARCOpos,Macrophage_Dividing,DC_activated,DC_Monocyte_Dividing,DC_2
cl252 Spleen DC_2,DC_1,NK_dividing,DC_activated,CD34_progenitor
cl252 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,Mast_cell,Mono_macro,T_CD8
cl76 Spleen Monocyte
cl508 Lung T_CD8_CytT,T_CD4,T_regulatory,NK,NK_Dividing
cl508 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,T_CD8_gd,T_CD4_fh
cl508 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl621 Lung T_cells_Dividing,T_CD4,T_regulatory,DC_activated
cl621 Spleen T_CD8_MAIT,T_CD4_reg,T_cell_dividing,Monocyte,T_CD4_conv
cl621 Oesophagus T_CD4,T_CD8,Dendritic_Cells,NK_T_CD8_Cytotoxic,Mast_cell
cl512 Lung Monocyte,Macrophage_MARCOneg,Macrophage_MARCOpos,DC_1,DC_2
cl512 Spleen Monocyte,DC_2,Macrophage,DC_activated,DC_1
cl512 Oesophagus Mono_macro,Dendritic_Cells,B_CD27pos,B_CD27neg,T_CD4
cl70 Lung DC_Monocyte_Dividing,DC_1,Macrophage_Dividing,DC_activated,Macrophage_MARCOpos
cl70 Spleen DC_1,DC_2,DC_activated,B_follicular,B_mantle
cl70 Oesophagus Dendritic_Cells,Blood_vessel,Mono_macro,B_CD27pos,B_CD27neg
cl568 Lung Ciliated
cl340 Lung Fibroblast,Lymph_vessel
cl340 Spleen DC_plasmacytoid
cl340 Oesophagus Glands_mucous,Stroma,Epi_basal,Lymph_vessel
cl57 Lung Macrophage_MARCOneg,DC_2,DC_Monocyte_Dividing,DC_activated,DC_1
cl57 Spleen DC_2,Monocyte,DC_1,DC_activated,DC_plasmacytoid
cl57 Oesophagus Dendritic_Cells,Mono_macro,Lymph_vessel,Mast_cell,Blood_vessel
cl491 Lung Macrophage_Dividing,DC_Monocyte_Dividing,Macrophage_MARCOpos,DC_activated,DC_2
cl491 Spleen DC_2,DC_1,Monocyte,Macrophage,DC_activated
cl491 Oesophagus Dendritic_Cells,Mono_macro,B_CD27neg,T_CD4,B_CD27pos
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Table C.4: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 3)

Cluster Tissue Cell types

cl100 Lung Blood_vessel,DC_plasmacytoid,Lymph_vessel,Muscle_cells,DC_2
cl100 Spleen DC_plasmacytoid,DC_2,B_follicular,B_mantle,DC_1
cl100 Oesophagus Blood_vessel,Dendritic_Cells,Lymph_vessel,Stroma,Mono_macro
cl46 Lung DC_activated,DC_1,DC_Monocyte_Dividing,Macrophage_MARCOneg,Macrophage_MARCOpos
cl46 Spleen DC_activated,DC_2,DC_1,B_follicular,B_Hypermutation
cl46 Oesophagus Dendritic_Cells,Blood_vessel,Mono_macro,B_CD27neg,B_CD27pos
cl44 Lung DC_2,Macrophage_MARCOneg,DC_Monocyte_Dividing,Macrophage_MARCOpos,Monocyte
cl44 Spleen Monocyte,DC_2,DC_activated,Macrophage,T_CD4_conv
cl44 Oesophagus Mono_macro,Dendritic_Cells,T_CD8,B_CD27neg,NK_T_CD8_Cytotoxic
cl503 Lung DC_2,Macrophage_MARCOneg,Monocyte,DC_activated
cl503 Spleen Monocyte,Macrophage
cl503 Oesophagus Epi_basal,Blood_vessel,Mono_macro,Glands_duct
cl25 Lung Macrophage_MARCOneg,Macrophage_MARCOpos,

DC_2,Macrophage_Dividing,DC_Monocyte_Dividing
cl25 Spleen DC_2,Monocyte,Macrophage,DC_1,DC_plasmacytoid
cl25 Oesophagus Mono_macro,Dendritic_Cells,Mast_cell,Glands_duct,Lymph_vessel
cl93 Lung Monocyte,Macrophage_MARCOpos
cl93 Spleen Monocyte
cl485 Lung Plasma_cells,DC_1
cl485 Spleen Plasma_IgG,Plasma_IgM,Monocyte
cl577 Lung Alveolar_Type2,Alveolar_Type1
cl577 Spleen B_follicular
cl577 Oesophagus Epi_upper
cl316 Lung Alveolar_Type1
cl316 Oesophagus Glands_mucous,Glands_duct,Epi_upper,Epi_basal
cl220 Lung Ciliated
cl611 Lung T_CD4,T_regulatory,DC_activated,T_cells_Dividing,DC_2
cl611 Spleen T_CD8_MAIT,T_CD4_conv,ILC,T_CD4_fh,T_cell_dividing
cl611 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8
cl242 Lung Fibroblast
cl242 Oesophagus Stroma,Epi_basal
cl458 Lung NK_Dividing,NK,T_CD8_CytT
cl458 Spleen T_CD8_CTL,NK_FCGR3Apos,NK_CD160pos,NK_dividing,T_CD8_MAIT
cl458 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4
cl417 Lung Lymph_vessel,Alveolar_Type1
cl417 Spleen DC_1
cl417 Oesophagus Glands_duct,Glands_mucous
cl401 Lung DC_2,DC_activated
cl401 Oesophagus Glands_mucous,Glands_duct
cl581 Lung Alveolar_Type2,Alveolar_Type1,Ciliated
cl581 Oesophagus Epi_basal
cl592 Lung DC_plasmacytoid
cl592 Spleen B_follicular,B_mantle
cl592 Oesophagus B_CD27pos,B_CD27neg
cl376 Lung Muscle_cells,Fibroblast,Ciliated
cl376 Oesophagus Stroma,Lymph_vessel,Mast_cell
cl519 Lung T_regulatory,T_CD4,T_cells_Dividing
cl519 Spleen T_CD8_MAIT,T_CD4_fh,T_CD4_conv,T_CD4_reg
cl519 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8,Mast_cell
cl35 Lung Macrophage_MARCOpos,DC_Monocyte_Dividing,DC_1,

Macrophage_Dividing,Macrophage_MARCOneg
cl35 Spleen DC_1,DC_2,DC_activated,Monocyte,B_mantle
cl35 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,Glands_duct,B_CD27pos
cl446 Lung T_CD4,T_CD8_CytT,T_regulatory
cl446 Spleen T_CD4_fh,T_CD4_reg,T_CD8_MAIT,T_CD4_naive
cl446 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl219 Lung Blood_vessel,Muscle_cells,Lymph_vessel,Alveolar_Type1,Fibroblast
cl219 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
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Table C.5: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 4)

Cluster Tissue Cell types

cl496 Lung T_CD4
cl496 Spleen T_CD4_conv,T_CD4_naive
cl69 Lung DC_plasmacytoid,Plasma_cells,B_cells,DC_1,Macrophage_MARCOneg
cl69 Spleen B_follicular,Plasma_IgM,DC_plasmacytoid,Plasmablast,B_mantle
cl69 Oesophagus B_CD27neg,B_CD27pos,Blood_vessel,Glands_duct,Dendritic_Cells
cl134 Spleen CD34_progenitor
cl28 Lung T_cells_Dividing,NK_Dividing
cl28 Spleen NK_dividing,T_cell_dividing
cl14 Lung T_cells_Dividing,T_regulatory,T_CD4,T_CD8_CytT,NK_Dividing
cl14 Spleen T_CD8_CTL,T_CD4_reg,T_CD4_fh,T_cell_dividing,T_CD4_conv
cl14 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Dendritic_Cells,B_CD27pos
cl40 Lung DC_plasmacytoid,B_cells,DC_1,DC_activated,DC_2
cl40 Spleen B_follicular,B_mantle,DC_plasmacytoid,DC_activated
cl40 Oesophagus B_CD27neg,B_CD27pos,Dendritic_Cells
cl509 Lung DC_1,DC_2,Macrophage_MARCOneg
cl509 Spleen B_follicular,B_mantle
cl509 Oesophagus Mono_macro,B_CD27pos,Dendritic_Cells,B_CD27neg
cl113 Lung DC_plasmacytoid,DC_activated
cl113 Spleen B_mantle,B_follicular
cl507 Lung T_regulatory,Ciliated
cl507 Spleen T_CD4_naive,T_CD4_conv
cl102 Lung Fibroblast,Muscle_cells,Lymph_vessel
cl102 Oesophagus Stroma,Epi_basal,Blood_vessel,Lymph_vessel
cl590 Lung T_CD4,T_cells_Dividing,T_regulatory
cl590 Spleen T_CD4_fh,T_CD4_reg,T_CD4_naive,T_CD4_conv
cl590 Oesophagus NK_T_CD8_Cytotoxic,T_CD4
cl422 Lung Macrophage_MARCOneg,DC_2,DC_Monocyte_Dividing,

Macrophage_MARCOpos,Macrophage_Dividing
cl422 Spleen DC_2,CD34_progenitor,Unknown,NK_FCGR3Apos,Monocyte
cl422 Oesophagus Dendritic_Cells,B_CD27neg,NK_T_CD8_Cytotoxic,Mono_macro,T_CD8
cl106 Lung DC_1,B_cells,DC_activated,DC_2
cl106 Spleen B_follicular,B_mantle,B_Hypermutation
cl106 Oesophagus B_CD27pos,B_CD27neg,Dendritic_Cells,Blood_vessel,T_CD4
cl183 Lung Mast_cells,T_CD4,DC_Monocyte_Dividing,T_cells_Dividing,DC_plasmacytoid
cl183 Spleen T_CD8_MAIT,Monocyte,T_CD4_reg,CD34_progenitor,B_follicular
cl183 Oesophagus Mast_cell,Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8,T_CD4
cl68 Lung T_CD4,T_cells_Dividing,T_regulatory,DC_1,Mast_cells
cl68 Spleen T_CD4_naive,T_CD4_fh,T_CD4_conv,ILC,T_CD4_reg
cl68 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8,Dendritic_Cells,B_CD27pos
cl192 Lung Monocyte,Macrophage_MARCOpos,DC_2,DC_Monocyte_Dividing,Macrophage_MARCOneg
cl192 Spleen Monocyte,DC_2,Macrophage
cl192 Oesophagus Mono_macro,Dendritic_Cells,Mast_cell,B_CD27pos,T_CD4
cl16 Lung DC_activated,Blood_vessel,Plasma_cells,DC_1,DC_Monocyte_Dividing
cl16 Spleen Plasma_IgG,Plasmablast,Plasma_IgM,B_follicular,B_mantle
cl16 Oesophagus Blood_vessel,B_CD27neg,B_CD27pos,Lymph_vessel,Dendritic_Cells
cl608 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,DC_activated,DC_1
cl608 Spleen B_Hypermutation,T_cell_dividing,B_follicular,DC_2,NK_dividing
cl608 Oesophagus B_CD27pos,B_CD27neg,T_CD4,Epi_dividing,T_CD8
cl470 Lung NK_Dividing,NK,T_CD8_CytT
cl470 Spleen NK_FCGR3Apos,T_CD8_CTL,T_CD8_MAIT,NK_dividing,NK_CD160pos
cl470 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl53 Spleen Platelet,CD34_progenitor
cl479 Oesophagus B_CD27neg
cl124 Lung Plasma_cells
cl124 Spleen Plasma_IgM,Plasma_IgG,Plasmablast
cl124 Oesophagus B_CD27pos
cl131 Lung Macrophage_MARCOpos,Macrophage_Dividing,Macrophage_MARCOneg,

DC_2,DC_Monocyte_Dividing
cl131 Spleen Monocyte,DC_2,DC_1,Macrophage,B_follicular
cl131 Oesophagus Mono_macro,Glands_duct,Dendritic_Cells,B_CD27pos,Blood_vessel
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Table C.6: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 5)

Cluster Tissue Cell types

cl152 Lung Ciliated,Alveolar_Type1,Alveolar_Type2
cl152 Oesophagus Glands_mucous,Glands_duct
cl306 Lung Muscle_cells,Blood_vessel,Fibroblast,Lymph_vessel,Alveolar_Type1
cl306 Oesophagus Stroma,Blood_vessel,Epi_basal,Lymph_vessel,Epi_suprabasal
cl115 Lung Monocyte,Macrophage_Dividing,Macrophage_MARCOpos,DC_Monocyte_Dividing
cl115 Spleen Monocyte,NK_CD160pos,T_CD8_CTL
cl115 Oesophagus Mono_macro,Dendritic_Cells,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell
cl601 Lung B_cells,DC_1,DC_2,DC_plasmacytoid,DC_activated
cl601 Spleen B_follicular,B_mantle,DC_activated,T_CD8_gd
cl601 Oesophagus B_CD27pos,B_CD27neg,Dendritic_Cells,Mono_macro,T_CD4
cl307 Lung Alveolar_Type2,Alveolar_Type1,DC_activated,Ciliated,Monocyte
cl307 Spleen Plasmablast,DC_activated,DC_1,Plasma_IgG,Plasma_IgM
cl307 Oesophagus Mast_cell
cl426 Lung Lymph_vessel,Blood_vessel,DC_activated,Fibroblast
cl426 Spleen T_cell_dividing,DC_1,DC_activated
cl426 Oesophagus Lymph_vessel,Blood_vessel,Stroma
cl428 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel,Alveolar_Type2
cl428 Spleen T_CD4_fh
cl428 Oesophagus Stroma,Lymph_vessel,Epi_suprabasal,Blood_vessel,Epi_basal
cl212 Lung DC_1,DC_Monocyte_Dividing,DC_2,DC_activated,T_cells_Dividing
cl212 Spleen DC_1,DC_2,DC_activated,B_follicular,NK_dividing
cl212 Oesophagus Dendritic_Cells,B_CD27pos,B_CD27neg,Mono_macro,NK_T_CD8_Cytotoxic
cl85 Lung Muscle_cells,Blood_vessel,Fibroblast,Lymph_vessel,Alveolar_Type1
cl85 Spleen B_follicular,T_CD4_conv,B_mantle
cl85 Oesophagus Blood_vessel,Stroma,Lymph_vessel,Epi_basal,Epi_suprabasal
cl133 Lung Macrophage_MARCOpos,Macrophage_Dividing,Mast_cells,Alveolar_Type1,Alveolar_Type2
cl133 Oesophagus Dendritic_Cells,Glands_duct,Mono_macro,Epi_basal
cl414 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,DC_1,DC_2
cl414 Spleen NK_dividing,T_cell_dividing,B_Hypermutation,DC_1,DC_2
cl414 Oesophagus Epi_dividing,Dendritic_Cells,Mono_macro,B_CD27pos,NK_T_CD8_Cytotoxic
cl516 Lung T_regulatory,T_CD4
cl516 Spleen T_CD4_reg,T_CD4_naive,T_CD4_fh,T_CD4_conv
cl516 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8
cl379 Lung Alveolar_Type2,Alveolar_Type1,Macrophage_MARCOneg,

Macrophage_Dividing,Macrophage_MARCOpos
cl379 Spleen Macrophage
cl379 Oesophagus Dendritic_Cells,Mono_macro,Glands_duct
cl83 Lung Fibroblast,Lymph_vessel,Blood_vessel
cl83 Oesophagus Stroma,Lymph_vessel,Blood_vessel
cl412 Lung Macrophage_MARCOneg,DC_2,DC_1,DC_Monocyte_Dividing,DC_plasmacytoid
cl412 Spleen DC_2,DC_1,Monocyte,DC_plasmacytoid,B_follicular
cl412 Oesophagus Dendritic_Cells,Mono_macro,NK_T_CD8_Cytotoxic,B_CD27neg,T_CD4
cl285 Lung T_cells_Dividing,DC_plasmacytoid,Plasma_cells
cl285 Spleen DC_activated,Plasmablast,DC_plasmacytoid,DC_1
cl285 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,B_CD27pos
cl281 Lung Fibroblast,Lymph_vessel,Muscle_cells,Macrophage_MARCOpos,Blood_vessel
cl281 Spleen DC_1
cl281 Oesophagus Epi_basal,Stroma,Glands_duct,Blood_vessel,Lymph_vessel
cl382 Lung Muscle_cells,Fibroblast,Alveolar_Type1,Lymph_vessel,Blood_vessel
cl382 Spleen T_CD8_CTL,T_cell_dividing,NK_dividing,T_CD8_activated,T_CD4_reg
cl382 Oesophagus Stroma,Glands_duct,Epi_basal,Epi_suprabasal,Blood_vessel
cl97 Lung Muscle_cells,Fibroblast,DC_Monocyte_Dividing,T_cells_Dividing,Blood_vessel
cl97 Spleen T_cell_dividing,NK_dividing,B_Hypermutation,Plasmablast
cl97 Oesophagus Stroma,Epi_dividing,Epi_upper,Epi_suprabasal
cl595 Lung DC_plasmacytoid,Mast_cells,DC_2,DC_activated,T_cells_Dividing
cl595 Spleen T_CD8_gd,Plasma_IgG,Plasma_IgM
cl595 Oesophagus Mast_cell,T_CD4,NK_T_CD8_Cytotoxic,Glands_mucous,B_CD27pos
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Table C.7: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 6)

Cluster Tissue Cell types

cl75 Lung Plasma_cells,B_cells
cl75 Spleen Plasma_IgG,Plasma_IgM,Plasmablast
cl75 Oesophagus B_CD27pos
cl268 Lung Fibroblast,Muscle_cells
cl268 Oesophagus Stroma
cl620 Spleen Plasmablast
cl273 Lung NK_Dividing,T_CD8_CytT,T_cells_Dividing,NK,T_CD4
cl273 Spleen T_CD8_gd,NK_CD160pos,T_CD8_MAIT,T_CD8_activated,T_CD8_CTL
cl273 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,B_CD27neg
cl543 Lung Plasma_cells
cl543 Spleen Plasma_IgM,Plasma_IgG
cl13 Lung Muscle_cells,Fibroblast,DC_activated,DC_1,Blood_vessel
cl13 Spleen T_CD8_gd
cl13 Oesophagus Stroma,Glands_duct,Blood_vessel,Lymph_vessel,Glands_mucous
cl546 Lung B_cells,DC_plasmacytoid,DC_1,Macrophage_MARCOneg,Plasma_cells
cl546 Spleen B_mantle,B_follicular,DC_activated
cl546 Oesophagus B_CD27neg,B_CD27pos,Dendritic_Cells,Mono_macro,Blood_vessel
cl23 Lung DC_2,Monocyte,DC_1,DC_activated,DC_Monocyte_Dividing
cl23 Spleen DC_2,Monocyte,DC_1,DC_activated,B_mantle
cl23 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg,T_CD4
cl490 Lung NK,NK_Dividing,Ciliated
cl490 Spleen NK_FCGR3Apos,NK_CD160pos,NK_dividing
cl490 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl497 Lung DC_2,DC_activated,Macrophage_MARCOneg,DC_1,DC_plasmacytoid
cl497 Spleen B_follicular,DC_activated
cl497 Oesophagus Dendritic_Cells,Mono_macro,Blood_vessel,Glands_duct
cl438 Lung DC_1,DC_Monocyte_Dividing,T_CD4,DC_2,Macrophage_MARCOneg
cl438 Spleen CD34_progenitor,DC_1,DC_plasmacytoid,ILC,B_Hypermutation
cl438 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg,B_CD27pos
cl495 Lung NK_Dividing,T_cells_Dividing
cl495 Oesophagus Epi_dividing
cl110 Lung Macrophage_MARCOpos,Macrophage_MARCOneg,Lymph_vessel,

Mast_cells,Macrophage_Dividing
cl110 Spleen Macrophage,Monocyte,DC_plasmacytoid,DC_2,T_CD4_conv
cl110 Oesophagus Mono_macro,Stroma,Glands_duct,Lymph_vessel,Mast_cell
cl269 Lung T_cells_Dividing,T_CD4,T_CD8_CytT,NK_Dividing,NK
cl269 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,T_CD8_gd,NK_CD160pos
cl269 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4,Dendritic_Cells,Mast_cell
cl127 Lung Macrophage_MARCOpos,Macrophage_Dividing,DC_2,Monocyte,Macrophage_MARCOneg
cl127 Spleen Macrophage,DC_2,Monocyte,B_follicular,DC_1
cl127 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,B_CD27pos,Blood_vessel
cl311 Lung Muscle_cells,Fibroblast,Blood_vessel,Lymph_vessel,Alveolar_Type1
cl311 Spleen T_CD8_CTL,T_CD4_fh,T_CD8_activated,T_CD4_reg,T_CD4_conv
cl311 Oesophagus Stroma,Lymph_vessel,Blood_vessel,Epi_suprabasal,Epi_basal
cl118 Lung Macrophage_MARCOpos,Macrophage_Dividing,Macrophage_MARCOneg,DC_2,Monocyte
cl118 Spleen Monocyte,DC_2,Macrophage
cl118 Oesophagus Mono_macro,Dendritic_Cells
cl77 Lung DC_plasmacytoid,DC_activated
cl77 Spleen DC_plasmacytoid,B_follicular,DC_activated
cl77 Oesophagus B_CD27pos,Dendritic_Cells,Blood_vessel
cl472 Lung NK_Dividing,NK,T_CD8_CytT
cl472 Spleen T_CD8_CTL,NK_FCGR3Apos,T_CD8_MAIT,NK_CD160pos,T_CD8_activated
cl610 Lung T_CD4,T_cells_Dividing,T_regulatory
cl610 Spleen T_CD4_fh,T_CD4_reg,T_CD4_conv,T_CD4_naive,T_CD8_activated
cl610 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl180 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl180 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Glands_duct,Epi_basal
cl251 Lung DC_1,Plasma_cells,Monocyte,DC_activated
cl251 Spleen Plasma_IgM,B_follicular,Plasma_IgG
cl251 Oesophagus T_CD8,T_CD4,B_CD27neg
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Table C.8: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 7)

Cluster Tissue Cell types

cl380 Lung Fibroblast,DC_2,DC_1
cl380 Spleen Monocyte
cl380 Oesophagus Stroma,NK_T_CD8_Cytotoxic,Epi_basal,Lymph_vessel,Glands_duct
cl591 Lung Plasma_cells
cl591 Spleen Plasma_IgM,Plasma_IgG,Plasmablast
cl591 Oesophagus B_CD27pos
cl266 Lung Monocyte,DC_2,Macrophage_MARCOneg,DC_1,DC_activated
cl266 Spleen Monocyte,DC_2,DC_plasmacytoid,DC_1,Macrophage
cl266 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,NK_T_CD8_Cytotoxic,T_CD4
cl510 Lung Macrophage_Dividing,DC_Monocyte_Dividing
cl510 Spleen Monocyte
cl510 Oesophagus Mono_macro
cl101 Lung DC_plasmacytoid,DC_activated,Mast_cells,T_cells_Dividing,Plasma_cells
cl101 Spleen B_follicular,DC_activated,Plasmablast,T_CD8_activated,T_CD8_gd
cl101 Oesophagus Dendritic_Cells,B_CD27pos,Blood_vessel,Glands_duct,B_CD27neg
cl24 Lung Macrophage_MARCOneg,DC_Monocyte_Dividing,DC_2,Monocyte,Macrophage_MARCOpos
cl24 Spleen Monocyte,DC_2,DC_1,Macrophage,B_mantle
cl24 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,B_CD27pos,B_CD27neg
cl473 Lung T_CD4,T_regulatory,T_cells_Dividing,T_CD8_CytT,DC_activated
cl473 Spleen T_CD8_MAIT,T_CD8_CTL,T_CD4_conv,T_CD4_naive,T_CD4_fh
cl473 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl7 Lung Muscle_cells,Fibroblast,Lymph_vessel,Blood_vessel,Alveolar_Type1
cl7 Spleen T_CD8_CTL
cl7 Oesophagus Stroma,Blood_vessel,Lymph_vessel,Glands_duct,Epi_basal
cl618 Lung T_cells_Dividing,T_regulatory,T_CD4,B_cells,DC_Monocyte_Dividing
cl618 Spleen Plasmablast
cl618 Oesophagus B_CD27pos,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg
cl155 Lung T_cells_Dividing,DC_Monocyte_Dividing,NK_Dividing,Macrophage_Dividing,B_cells
cl155 Spleen T_cell_dividing,B_Hypermutation,Plasmablast,NK_dividing,B_follicular
cl155 Oesophagus Epi_dividing,B_CD27pos,B_CD27neg
cl67 Lung Lymph_vessel,Blood_vessel,Fibroblast,Muscle_cells,DC_Monocyte_Dividing
cl67 Spleen DC_1,NK_dividing,T_cell_dividing,B_Hypermutation,DC_2
cl67 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Glands_duct,Epi_basal
cl0 Lung Blood_vessel,DC_Monocyte_Dividing,Lymph_vessel,DC_1,DC_plasmacytoid
cl0 Spleen NK_dividing,B_Hypermutation,T_cell_dividing,CD34_progenitor,DC_1
cl0 Oesophagus Blood_vessel,Lymph_vessel,Dendritic_Cells,Mono_macro,B_CD27pos
cl524 Lung NK_Dividing,T_cells_Dividing,DC_Monocyte_Dividing,NK,Macrophage_Dividing
cl524 Spleen NK_dividing,T_cell_dividing,NK_CD160pos,B_Hypermutation,NK_FCGR3Apos
cl524 Oesophagus Epi_dividing,NK_T_CD8_Cytotoxic,T_CD8,T_CD4
cl514 Lung T_CD8_CytT,T_cells_Dividing,T_CD4,T_regulatory
cl514 Spleen T_CD8_activated,T_CD8_gd,T_CD8_MAIT,T_CD8_CTL,T_CD4_reg
cl514 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl474 Lung Mast_cells,DC_1
cl474 Spleen CD34_progenitor
cl474 Oesophagus Mast_cell,Mono_macro,Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8
cl619 Lung T_cells_Dividing,T_CD4,Monocyte,T_regulatory,Mast_cells
cl619 Spleen T_CD8_MAIT,T_CD4_reg,T_CD4_fh,T_CD4_conv,ILC
cl619 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8,Dendritic_Cells,Mast_cell
cl486 Lung Monocyte,Macrophage_MARCOneg,DC_2,Macrophage_MARCOpos,T_CD4
cl486 Spleen Monocyte,DC_2
cl486 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,NK_T_CD8_Cytotoxic,B_CD27pos
cl502 Lung T_CD8_CytT,T_cells_Dividing,NK_Dividing,NK
cl502 Spleen T_CD8_CTL,T_CD8_activated,T_CD8_MAIT,T_CD8_gd,T_CD4_reg
cl502 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl501 Lung NK,NK_Dividing
cl501 Spleen NK_CD160pos,NK_FCGR3Apos,NK_dividing,T_CD8_gd
cl501 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl55 Lung Alveolar_Type1,Lymph_vessel,Blood_vessel
cl55 Oesophagus Epi_basal,Glands_duct,Epi_suprabasal,Glands_mucous,Blood_vessel
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Table C.9: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 8)

Cluster Tissue Cell types

cl529 Lung T_CD8_CytT,NK,NK_Dividing,Monocyte,T_CD4
cl529 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,NK_FCGR3Apos,NK_CD160pos
cl529 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,Mono_macro
cl26 Lung Fibroblast,Muscle_cells
cl26 Oesophagus Stroma,Epi_suprabasal
cl60 Lung NK_Dividing,NK,T_CD8_CytT,Macrophage_MARCOpos,DC_Monocyte_Dividing
cl60 Spleen T_CD8_CTL,NK_FCGR3Apos,NK_CD160pos,T_CD8_gd,T_CD8_MAIT
cl60 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,Mono_macro
cl236 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Muscle_cells,Lymph_vessel
cl236 Spleen T_CD4_conv,T_CD8_MAIT,T_cell_dividing,NK_dividing,T_CD8_CTL
cl236 Oesophagus Epi_upper,Glands_duct,Epi_basal,Glands_mucous,Epi_stratified
cl538 Lung NK_Dividing,T_cells_Dividing
cl538 Spleen Unknown,NK_dividing
cl538 Oesophagus Epi_dividing
cl238 Lung Mast_cells,T_cells_Dividing,DC_plasmacytoid,T_CD4,T_regulatory
cl238 Spleen Plasma_IgM,T_CD4_reg,T_CD8_MAIT
cl238 Oesophagus T_CD4,T_CD8,Dendritic_Cells,NK_T_CD8_Cytotoxic,Glands_mucous
cl439 Spleen B_mantle
cl465 Lung Alveolar_Type2
cl465 Spleen T_cell_dividing,Unknown,B_Hypermutation
cl447 Lung T_CD4
cl447 Spleen Unknown
cl283 Lung T_regulatory,T_CD4,T_cells_Dividing,T_CD8_CytT,DC_plasmacytoid
cl283 Spleen T_CD4_reg,T_CD4_conv,T_CD8_MAIT,T_CD8_activated,T_CD4_fh
cl283 Oesophagus T_CD4,T_CD8
cl52 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel,Alveolar_Type1
cl52 Spleen T_CD8_gd,T_CD8_CTL,T_CD4_conv,T_CD8_MAIT
cl52 Oesophagus Stroma,Lymph_vessel,Epi_basal,Blood_vessel,Epi_suprabasal
cl615 Lung T_regulatory,T_CD4,T_cells_Dividing,T_CD8_CytT
cl615 Spleen T_CD4_fh,T_CD4_reg,T_CD8_activated,T_CD8_gd
cl615 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg
cl237 Lung Plasma_cells,DC_activated,T_regulatory,Mast_cells
cl237 Spleen Plasma_IgM,Plasma_IgG,B_follicular
cl237 Oesophagus T_CD8
cl443 Lung Monocyte,DC_2,DC_Monocyte_Dividing,DC_1,DC_activated
cl443 Spleen Macrophage,T_CD8_gd,Monocyte,DC_activated,NK_CD160pos
cl443 Oesophagus Mono_macro,Dendritic_Cells,NK_T_CD8_Cytotoxic,B_CD27neg,T_CD4
cl626 Lung Plasma_cells,DC_2
cl626 Spleen Plasma_IgM,T_CD8_gd,Plasmablast
cl547 Lung Plasma_cells,Alveolar_Type2,Fibroblast,DC_Monocyte_Dividing,DC_plasmacytoid
cl547 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,DC_plasmacytoid,B_follicular
cl547 Oesophagus Glands_mucous,B_CD27pos,Dendritic_Cells,T_CD8
cl275 Lung Blood_vessel,Muscle_cells,Lymph_vessel,Fibroblast
cl275 Spleen B_follicular,CD34_progenitor
cl275 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal,Epi_suprabasal
cl185 Lung T_cells_Dividing,T_CD4,T_regulatory
cl185 Spleen T_CD4_reg,T_CD4_conv,T_CD8_activated,T_CD8_MAIT,T_CD4_fh
cl185 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl515 Lung Monocyte,Macrophage_MARCOpos
cl515 Spleen Monocyte,Macrophage,DC_2,T_CD8_MAIT,NK_CD160pos
cl515 Oesophagus Glands_duct,Mono_macro
cl148 Lung Lymph_vessel,Blood_vessel,Fibroblast,Muscle_cells,Alveolar_Type1
cl148 Spleen T_CD8_gd,DC_1
cl148 Oesophagus Lymph_vessel,Stroma,Blood_vessel,Epi_basal,Glands_mucous
cl569 Lung Plasma_cells,B_cells,Alveolar_Type2
cl569 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,B_follicular
cl569 Oesophagus B_CD27pos,Glands_mucous,B_CD27neg
cl282 Lung Muscle_cells,Fibroblast,Blood_vessel,Lymph_vessel,Alveolar_Type1
cl282 Oesophagus Stroma,Blood_vessel,Lymph_vessel,Epi_basal,Epi_suprabasal
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Table C.10: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 9)

Cluster Tissue Cell types

cl314 Lung Fibroblast,Muscle_cells,Lymph_vessel
cl314 Spleen DC_1,DC_2,DC_activated
cl314 Oesophagus Epi_suprabasal,Stroma
cl378 Lung Fibroblast,Alveolar_Type1
cl378 Oesophagus Stroma,Epi_basal,Epi_suprabasal
cl20 Lung DC_2,DC_1,Monocyte,DC_Monocyte_Dividing,DC_activated
cl20 Spleen DC_2,DC_1,Monocyte,DC_activated,CD34_progenitor
cl20 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,T_CD8,Mast_cell
cl168 Lung T_cells_Dividing,T_CD4,T_regulatory,T_CD8_CytT,DC_Monocyte_Dividing
cl168 Spleen T_cell_dividing,T_CD8_MAIT,T_CD4_fh,T_CD4_conv,NK_dividing
cl168 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8,Dendritic_Cells
cl308 Lung Alveolar_Type2,Alveolar_Type1
cl308 Oesophagus Glands_mucous
cl304 Lung Blood_vessel
cl304 Spleen DC_1,NK_dividing
cl537 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,T_CD4,T_regulatory
cl537 Spleen T_cell_dividing,NK_dividing,T_CD4_reg,B_Hypermutation,T_CD8_MAIT
cl537 Oesophagus Epi_dividing,T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27pos
cl613 Lung B_cells,DC_plasmacytoid,DC_1,DC_Monocyte_Dividing,DC_activated
cl613 Spleen B_follicular,B_mantle,B_Hypermutation
cl613 Oesophagus B_CD27pos,B_CD27neg,Mono_macro,Dendritic_Cells
cl574 Lung Plasma_cells
cl574 Spleen Plasmablast,Plasma_IgM,Plasma_IgG
cl493 Spleen Platelet
cl550 Lung B_cells,T_CD4,T_regulatory,T_CD8_CytT,DC_activated
cl550 Spleen T_CD8_CTL,B_follicular,B_mantle,T_CD8_MAIT,T_CD8_activated
cl550 Oesophagus T_CD4,B_CD27neg,B_CD27pos,NK_T_CD8_Cytotoxic,T_CD8
cl492 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,Macrophage_Dividing,T_CD4
cl492 Spleen NK_dividing,B_Hypermutation,CD34_progenitor,T_cell_dividing,Plasmablast
cl492 Oesophagus Epi_dividing,B_CD27pos,B_CD27neg,NK_T_CD8_Cytotoxic
cl265 Lung Plasma_cells
cl265 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,B_follicular,NK_dividing
cl265 Oesophagus Glands_mucous
cl310 Lung Plasma_cells,DC_activated,DC_1,T_regulatory,Mast_cells
cl310 Spleen Plasma_IgG,Plasma_IgM,Plasmablast,DC_plasmacytoid,T_cell_dividing
cl310 Oesophagus B_CD27pos,Glands_mucous,B_CD27neg,NK_T_CD8_Cytotoxic,T_CD8
cl500 Spleen NK_FCGR3Apos,T_CD8_CTL
cl576 Lung Alveolar_Type1,Alveolar_Type2,Macrophage_MARCOneg
cl576 Spleen T_CD8_activated,T_CD8_CTL
cl403 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,Mast_cells,Monocyte
cl403 Spleen NK_dividing,T_cell_dividing,Plasmablast,Platelet,B_Hypermutation
cl403 Oesophagus Epi_dividing,Mast_cell,Dendritic_Cells,Lymph_vessel
cl240 Lung NK_Dividing,DC_Monocyte_Dividing,NK,Macrophage_Dividing,T_CD8_CytT
cl240 Spleen NK_dividing,NK_CD160pos,T_CD8_gd,NK_FCGR3Apos,B_Hypermutation
cl240 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Mast_cell,Mono_macro
cl230 Lung T_regulatory
cl549 Lung Mast_cells
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Chapter 4

Application and biological insights of
the CellTypist model

The identity of a cell can be defined by the genes it expresses. Knowing these gene
sets is what helps us to identify cell types when analysing scRNA-seq data, yet this
manual identification often requires a vast domain-specific knowledge, and thus
interpretable models that either rely or identify these genes can be useful to make
cell type classification automatic. Furthermore, an increasing number of studies has
applied scRNA-seq to profile various body locations and describe the cells that make
up a tissue, in the steady-state or disease. A smaller number of studies have focused
on the differences between the cell types detected in different tissues (Miragaia
et al., 2019; Scott et al., 2018). However, we don’t yet know how variable the
transcriptome of most cell types is between tissues, and how much of a tissue’s
transcriptomic identity is reflected in each cell type.

This Chapter follows from the construction of the CellTypist models in the previous
Chapter, and explores its application for automatic cell type classification and inter-
pretability with regards to cell identity and cross-tissue relationships. The present
Chapter will reveal the type of genes important in defining cellular phenotypes across
tissues, and outline how tissue gene expression signatures relate different anatomical
regions.

The analyses here performed are based on the methodology outlined in Chapter 3.
Supplementary figures and tables are included in Appendix C.



72 Application and biological insights of the CellTypist model

4.1 Introduction

Recent developments in single-cell sequencing have enabled unbiased and high-
throughput assessment of cell types through transcriptomic profiling (Svensson
et al., 2018). A few individual works have aimed at profiling cell types across most
tissues of an organism (Fincher et al., 2018; Han et al., 2018; Plass et al., 2018;
Various, 2018). Other more complex and detailed cellular census have been done for
individual tissues, and large consortia have been established to aggregate some of
these datasets and establish guidelines and collaborations to identify all cell types
across an organism (Regev et al., 2017).

The definition of cell type is, like many biological terms, a working definition.
Cells have been classified based on different aspects of their morphology, molecular
phenotype, or function. Historically, this knowledge of cell identity has been restricted
to specific fields (e.g. immunology, neuroscience), hindering the development of
an integrative, systemic perspective of cell types in the body. Single-cell RNA-seq
technologies (scRNA-seq) are now challenging this perspective, since they allow for
an unbiased profiling of cell identity through the transcriptome. As scRNA-seq data
acquisition grows (Svensson et al., 2018), so does our understanding of the cellular
make up of the profiled tissues. The Human Cell Atlas Consortium has defined as one
of its goals to develop a cellular taxonomy (Regev et al., 2017), which is necessarily
harmonised across tissues. Nonetheless, a unified, transcriptome-driven perspective
of cell identity is still lacking.

The molecular basis for the relationships between tissues were initially probed by
high-throughput methods; first microarrays (Enard et al., 2002), and later with RNA-
seq (Barbosa-Morais et al., 2012; Brawand et al., 2011; Mortazavi et al., 2008). More
recent studies are now linking this transcriptome cross-tissue variability with genome
variants (Consortium, 2015; GTEx Consortium, 2017), unravelling the regulatory
determinants behind tissue biology. Further analysis have delved into the importance
of transcription factors for tissue identity (Sonawane et al., 2017), revealing that
tissue specificity lies not only in these molecules but mostly on the tissue-specific
regulatory roles they play, while also showing that transcription factors are less likely
to be identified as tissue-specific than other genes. An integrated predictive model of
cell identity should be able to reveal patterns relating tissues through cell identity
relationships, as well as offer a broad perspective of the genes determining cell types.

Here we will expand on the pipeline developed in Chapter 3, testing CellTypist for
automatic annotation of scRNA-seq data, to probe cellular identity in primary cells
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across body locations. Testing the model trained on human data on an independent
dataset reveals an elevated accuracy for cell types and tissues represented in the
reference, as well as informative approximations for cell types not yet included in
CellTypist.

Beyond classification, CellTypist can also be dissected to unravel aspects of cell
type and tissue biology. The integration pipeline can recapitulate known tissue
associations, caused either by comparable cell sampling (e.g. tissues solely profiled
for immune cells), or by functional similarity. These are evident both at the tissue
integration stage, as well as in the top genes learned by the model that define cell
groupings in each tissue. These genes are further examined for patterns in cell
identity definition, revealing a global pattern for genes coding for functional effector
molecules (i.e. receptors and secreted proteins) to be more pivotal in defining cell
identity than others involved in genomic regulation. Finally, we discuss the potential
uses and implementation of a scRNA-seq-derived cell type reference.

4.2 Results

4.2.1 CellTypist as an operational reference for annotation

The operational goal of CellTypist is to be used as an automatic classification frame-
work for scRNA-seq data. Data integrated through the pipeline can be used as an
unbiased model of cell identity to predict cell type labels in unannotated data.

The data generated in (Madissoon et al., 2019) was used to test the classification
performance of CellTypist with the compiled human data. This dataset was chosen
because it includes three distinct tissues - lung, oesophagus, and spleen. Of the three
tissues, lung is the only represented in the collected datasets (yet not contributed
from the same sample), although many of the cells collected from spleen (mostly
immune cells) are present in the model, contributed by different tissues. More than
200.000 cells were collected from these three tissues, with various cell populations
manually identified.

An overview of the classification results, projected in UMAP (McInnes et al., 2018)
(Figure 4.1A, Figure C.9A, Figure C.10A), shows a similarity between the individual
labelling of different clusters. The increased noise in CellTypist’s annotations are
likely due to the large number of categories it includes. Despite this, most model
labels are highly specific, being attributed almost entirely to a single original cell
type annotation (Figure 4.1B, Figure C.9B, Figure C.10B). While the opposite is not
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Fig. 4.1: CellTypist predictions for lung data from (Madissoon et al., 2019)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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true (i.e. one cell type annotation can correspond to more than one cluster), it is
nonetheless evident that each cell type is dominated by one or very few clusters
(Figure 4.1C, Figure C.9C, Figure C.10C). Furthermore, even when excluding clusters
including less than 10% of cells from each annotated cell type (as is the case in the
heatmap in Figure 4.1C), the remaining clusters still include 70-90% of cells (purple
sidebar in Figure 4.1C).

A downside of validating CellTypist with independent data is that the comparison
can not be directly assessed, since the existing annotations for this dataset do not
match those used by CellTypist, which compiles a variety of nomenclatures used in
each specific publication from where the data was obtained. Nonetheless, this can be
circumvented by manual inspection of existing labels, as well as matching the dataset
annotations with the model clusters to approximate a gold standard.

A more careful look at the annotations present in the clusters that matched
each original cell type in lung reveals the accuracy of the model. Type 2 alveolar
cells matched clusters only containing that same annotation, whereas clusters in
alveolar type 1 included type 1, and type 2, as well as secretory cells. Ciliated cells
and fibrolasts mostly matched a single cluster each, in both cases composed of the
exact same annotation. Cells annotated as "Lymph_vessels" and "Blood_vessels" both
matched cl11 (containing "endothelium" and "lymphatic" cells), with the first also
matching lymphatic endothelial cells from the axillary lymph node. T cell annotations
were mostly assigned to cluster cl8, which includes a mix of CD4 and CD8 cells. In
addition, T regulatory cells also matched cluster cl614, which includes activated T
cells and Tregs. NK cells also matched a cluster with CD8 T cell annotation, but
included two others containing mostly NK cells from other tissues. Lung cells that
are derived from the myeloid lineage (Macrophages, Monocytes, Dendritic cells)
all matched clusters mostly composed of these same annotations, albeit with some
mix between them, which again demonstrates some of the difficulty that exists in
separating these cell types.

For a more quantitative assessment of CellTypist’s accuracy, an identical cell type
nomenclature would have to exist between the model and the validation dataset.
While one could opt for renaming CellTypist’s labels in accordance with those present
in the model, two arguments invalidate this approach. First, converging into the exact
same labels could be misleading, since different methodologies would be utilised
for labelling the validation dataset and the model clusters - the latter would rely
on the model coefficients, as well as existing annotation from the original datasets.
Second, this would not take into account differences in resolution between the model
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Fig. 4.2: Classification accuracy for the (Madissoon et al., 2019) dataset
(A) Variation in mean accuracy with the maximum number of cell types from each
tissue allowed to be matched to a cluster. Weighted mean takes the number of cells
into account. (B) Variation in mean accuracy with the maximum number of cell
types from each tissue allowed to be matched to a cluster, stratified by tissue. (C)
Classification accuracy for each cell type from each tissue (colour), as a function
of the entropy calculated for the predicted cluster representation of each cell type,
normalised by its representation.
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and the data, and would penalise its lack of specificity. An example of this is the
situation described in the previous paragraph for the dataset’s "Lymph_vessels" and
"Blood_vessels" labels, which both match a clearly general endothelial cluster, and
thus opting for one of these labels would wrongly penalise the other.

Instead, correspondence between dataset cell types and model clusters was in-
dependently determined by assessing the enrichment for cell type markers in the
top 500 coefficients for each model label using GSEA (see Methods Section 4.4.2).
This was done in an attempt to approximate the annotations based on marker gene
expression, the most commonly used methodology. All tissue/cell type combinations
were tested together for enrichment, filtered for significance (q-value<=0.05) and
positive enrichment scores, and ranked by the latter. Cluster-cell type correspondence
was assessed per tissue, with a variable number of corresponding top cell types
accepted (Figure 4.2A and B). Accuracy was then calculated for each cell type, based
on whether each cell’s cluster assignment by the model had was enriched for the
same cell type originally labelling that cell. As expected, inclusion of more cell types
to match each cluster led to increasing accuracy (Figure 4.2A).

This accuracy was different between tissues, with lung as the best scoring, followed
by Spleen and the Oesophagus (Figure 4.2B). This is in line with the composition of
the data that underlies CellTypist: Lung has a high accuracy since this tissue and most
of its cell types are represented; Spleen also has elevated scores since it is mostly
composed of immune cells, which are highly abundant in the model coming from
Blood, Bone Marrow, and other tissues; Oesophagus presents a lower score due to
the fact that the sample mostly includes different types of specialised epithelial cells,
which are absent or underrepresented in the model.

The accuracy per cell type and tissue was then examined (Figure 4.2C), allowing
for up to 5 cell types to correspond to a cluster, the value at which accuracy stabilises.
These assignments can be found in Supplementary Table C.1 to Supplementary
Table C.10. A value greater than 1 also has the advantage of better reflecting
the many-to-many relationships that exist between model clusters and manual cell
type annotations. It should also be noted that this implies that the model cluster
can represent a lower resolution or broader cell type identity in many cases. For
example, macrophages and other myeloid cells are enriched within the same cluster
despite consisting of many (sub)types of cells (for a concrete example, see cl252 in
Supplementary Table C.3).

Figure 4.2C shows an increased accuracy for most immune cell types, as well as
lung-derived cells. The lowly-performing immune cells from the spleen originate
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from rarer populations, which explains the higher weighted mean accuracy, and
reveals resolution limitations in the model. Conversely, most of the top-performing
cells from the Oesophagus come from immune cell populations with a low level of
specificity (as illustrated by the"NK_T_CD8_Cytotoxic" label), which also make up
a small percentage of the total cells recovered from this organ. There is a modest
negative correlation between the accuracy for each cell type and how many clusters
each cell type is distributed across (normalised by log10(number of cells), Spearman
Correlation = -0.33, p-value<0.01). Lastly, Figure 4.2 shows that accuracy from cell
types and tissues represented in the models will be in the range of 0.4 to 0.85, and
rare or absent cell populations will be between 0.2 and 0.5.

The other models resulting from different parameters were also briefly examined.
Despite the differences in number of clusters, all models show a similar specificity for
the assigned clusters (Figure C.12). However, both models with fewer clusters (thr1
= 0.25, thr2 = 0.25; and thr1 = 0.1, thr2 = 0.1) both show less unique matching of
original cell types to clusters (Figure C.13), with most of them matching the same
larger clusters, which is likely an artifact of excessive merging within and across
tissues (Figure 3.2A).

Globally, it has been demonstrated that CellTypist can be successfully used to
annotate datasets with a broad diversity of cell types, and future improvements to
the pipeline are likely to make it more precise in attributing cell identity.

4.2.2 Matching cell identity across tissues

The number of clusters detected in each tissue are independent of the number of
datasets (Spearman Rank Correlation = -0.01, p-value for null hypothesis of "ρ=0"
= 0.9344), although moderately correlated with the number of cells present in each
tissue (Spearman Rank Correlation = 0.52, p-value for null hypothesis of "ρ=0" =
0.01497) (Figure C.2). The subsequent cluster merging step draws a map of cell
identity relationships across tissues. Examining this map can reveal higher order
relationships between the tissues present in the global dataset. Thus, the per-tissue
classification probabilities used to construct the cluster matching graph (Figure 3.2A)
were used to calculate the mean probability of cells from a per-tissue (non-merged)
cluster matching the clusters of all tissues. The resulting tissue-by-cluster mean
probability matrix is represented in the clustered heatmap of Figure 4.3A. This plot
shows that about a third of all clusters have an average high confidence assignment
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across tissues (bottom of the heatmap), with the remaining two-thirds having much
lower per-tissue mean probabilities.

The clustering of these values reveals a stark division between tissues whose
immune compartment was predominantly profiled (left major branch of dendro-
gramme), and those with a more global or non-immune profiling (right branch). This
is highlighted by the per tissue mean expression of PTPRC, the gene encoding for
the CD45 receptor, which is exclusively expressed in immune cells (Altin and Sloan,
1997) (Figure B.2). Expression of EPCAM - an epithelial cell marker - and CD34 -
an endothelial cell marker - further illustrate this division, being most expressed in
tissues in the opposite dendrogramme branch. The same effect, however, is not as
pronounced when examining the results from the Tabula Muris dataset (Figure 4.3C),
where cell type sampling is less biased per tissue. Tissues with similar levels of
expression of the same markers can be observed to cluster together (heatmap tissue
clusters with AU p-value<=95: Spleen and Marrow; Trachea to Muscle; Kidney
and Liver; Brain_Neurons and Pancreas); however the stark immune/non-immune
division observed for human data is no longer present. We can thus conclude that
tissue similarity, as defined by cell type correspondence, is driven by cell identity, in
particular by the major lineage (immune, epithelial, endothelial), yet can be affected
by cell type sampling proportions.

Tissue identity is also reflected in gene expression, and therefore in the genes
with the top coefficients determined by the CellTypist model. To unbiasedly probe the
existence of tissue-specific signatures in the top genes of all clusters, tissue signatures
were derived from bulk RNA-seq data, using data from the GTEx Consortium for
human (Consortium, 2015) and from the ENCODE Consortium for mouse (Dunham
et al., 2012) (see Methods Section 4.4.2). This provided independent references for
tissue identity using gene expression. Inspection of human tissue identity enrichment
in cell clusters per tissue (Figure 4.3B) shows that, despite the sets of tissues in
the CellTypist and GTEx datasets not overlapping completely, matching between
them is mostly concordant. Most immune cell-enriched tissues cluster independently
(AU p-value = 96 for both branches) by having many clusters enriched in blood
and spleen-specific genes. Beyond this separation, There is a high correspondence
between tissue-specific genes and the tissues present in the data. Examples are Liver,
Brain, Testis, Lung (Parenchyma), Kidney, Pancreas, and Colon (matching Small
Intestine). Among the tissues with more diverging matching are Skin, likely because
of the very biased cell sampling (Treg and Tmem cells (Miragaia et al., 2019)). Other
tissue correspondences might derive from functional similarities, such as Pancreas
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Fig. 4.3: Cell identity relationships across tissues
(A) Heatmap of the mean assignment probability of cells from a per-tissue cluster to
the clusters of each given tissue in the human collection dataset. (B) Heatmap of
the fraction of human collection clusters from a given tissue whose CellTypist model
(thr1 = 0.99; thr2 = 0.8, see Chapter 3 Section 3.3.2) signature is enriched in certain
tissue-specific genes. Gene signatures were derived from GTex bulk RNA-seq data. (C)
Heatmap of the mean assignment probability of cells from a per-tissue cluster to the
clusters of each given tissue in the Tabula Muris dataset. (D) Heatmap of the fraction
of Tabula Muris clusters from a given tissue whose CellTypist model (thr1 = 0.8; thr2
= 0.99, see Chapter 3 Section 3.3.1) signature is enriched in certain tissue-specific
genes. Gene signatures were derived from ENCODE tissue bulk RNA-seq data.
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and Pituitary (hormonal secretion), Tonsil and Spleen (lymphoid tissues), or Upper
Airway and Vagina (mucosal epithelia).

Similar specificity relationships can be observed in the Tabula Muris dataset
(Figure 4.3D), with a high matching for Pancreas, Liver, Kidney, Bladder, Thymus,
and Lung, among others. Matching by functional or cell composition similarity was
also present, such as Fat and mammary gland, or Diaphragm and skeletal muscle
tissue. However, the evident division between immune/non-immune visible in human
was once again absent. This further indicates that comparative analysis of tissue
composition at the single cell level must be based on datasets that are representative
of the tissues’ cellular composition, in order to avoid biased characterisations.

The tissue relationships highlighted by the gene set enrichment directly derive
from the CellTypist model trained and the cell groupings that the pipeline defines.
Examining other model alternatives shows that in some of them the tissue hierarchy
is maintained (Figure C.3), with the exception of the thr1 = 0.1, thr2 = 0.1 model.
This is likely caused by excessive merging of clusters, leading to non-meaningful
groupings and not so meaningful gene coefficients from the model.

Plotting the clusters resulting from cross-tissue merging in CellTypist can also
reveal the similarity across tissues (Figure C.4). As already shown by Figure B.3A, the
model with thr1 = 0.99 and thr2 = 0.8 is the one with the lowest number of merged
clusters. We can however still observe clusters merging across tissues that have similar
profiles and were included in the "immune enriched" group in Figure 4.3B - liver
and bone marrow, lung parenchyma and intestine, decidua and omentum adipose
tissue - as well as tissues that have functional associations - decidua and placenta,
upper airway and lung parenchyma. The remaining models appear to maintain the
occurrence of these associations between tissues, like the close clustering between
axLN and hnLN, or the association of tissues including more immune sampling with
blood and bone marrow. This is further underscored when the tissue gene signatures
are examined in the merged clusters of each model (Figure C.5). Both thr1 = 0.4 and
thr2 = 0.99 and thr1 = 0.25 and thr2 = 0.25 again present the distinctive pattern
of clustering the tissue signatures by the tissue functions as described before for the
immune/non-immune partitions. The first model (thr1 = 0.99 and thr2 = 0.8) also
shows some of this pattern, although not as evidently, likely due to the lower number
of merged clusters. The same can not be observed for the thr1 = 0.1 and thr2 = 0.1
model, likely due to excessive merging leading to a less meaningful classifier.
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Together, these results show that single cell populations in different tissues capture
some of the tissue biology and specificity, representing functional and compositional
relationships between them.

4.2.3 Gene expression hallmarks of cell identity

The training of a logistic regression-base classifier model as used in CellTypist allows
for a direct evaluation of the genes important for the classification of each cluster
through their learned coefficients. With a comprehensive cell type reference, we can
start to unravel what are the key determinants of cell identity across tissues.

Relationships between human cell clusters were probed by counting the number
of pairwise shared genes. The top 500 genes were used to avoid a hard coefficient
value threshold across clusters, since the top values can be very variable between
them. Clustering once more revealed a division between most immune and non-
immune clusters (Figure 4.4A). Moreover, various clusters containing cells from the
same tissue were also grouped together, hinting at the existence of gene expression
programmes shared by the different cell types within a tissue.

The concept of "cell type" is defined in different ways by different biomedical
research communities, yet it is consistently related to a cell’s molecular phenotype, i.e.
the molecules involved in cellular function. These can either be the effector molecules
directly responsible for the cell’s array of functions, or the genomic regulators con-
trolling the expression of genes involved in these functions. It has been showed that
tissue-specificity at the gene expression level is mostly due to transcription factor-
gene regulatory interactions (Sonawane et al., 2017). The CellTypist model was used
to assess what types of genes were more often at the top of the model coefficient
rankings, which reflect the importance of expression of that gene in classifying a cell
type. The following gene categories were considered (see Methods Section 4.4.2):
Transcription Factors, Chromatin Modulators, Kinases and Phosphatases, Ligases
and Deubiquitinases, Catalytic enzymes, Housekeeping genes, Receptors, Secreted
proteins, Transmembrane proteins, and Peripheral membrane proteins.

Both in human (Figure C.6) and mouse (Figure C.7), we did not observe a large
difference between the mean expression levels of genes from different groups, or
between their maximum coefficients; most highly ranked genes (in the top 500) had
a mean expression level around 10 reads. This coincided with a high correlation
(0.56 in human, 0.86 in mouse, Spearman correlation coefficient) between mean
expression and maximum reported coefficient, suggesting a dependency of gene
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Fig. 4.4: Top gene groups for cell identification across human tissues
(A) Clustered heatmap of the number of genes in common between pairs of CellTypist
clusters (thr1 = 0.99, thr2 = 0.8) in human data. Genes per cluster were determined
as those with the top 500 coefficients learned by the model. Values in the diagonal
(number of genes per cluster, 500) were set to 0. (B) Upset plot counting the number
of clusters enriched for a group of genes with a specific function. (C) Heatmap of
number of clusters per tissue (y-axis) enriched for groups of genes with a specific
function (x-axis). For panels (B) and (C), the gene groups "transcription factors",
"transmembrane", "secreted", "receptors", "membrane peripheral proteins", "kinases
and phosphatases", "chromatin modulators", "catalytic enzymes", "housekeeping
genes" were tested. Only the terms enriched in at least one cluster are shown.
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Fig. 4.5: Top gene groups for cell identification across mouse tissues
(A) Clustered heatmap of the shared number of genes between pairs of CellTypist
clusters (thr1 = 0.8, thr2 = 0.99) in the Tabula Muris data. Genes per cluster were
determined as those with the top 500 coefficients learned by the model. Values in the
diagonal (number of genes per cluster, 500) were set to 0. (B) Upset plot counting the
number of clusters enriched for a group of genes with a specific function. (C) Heatmap
of number of clusters per tissue (y-axis) enriched for groups of genes with a specific
function (x-axis). For panels (B) and (C), the gene groups "transcription factors",
"transmembrane", "secreted", "receptors", "membrane peripheral proteins", "kinases
and phosphatases", "chromatin modulators", "catalytic enzymes", "housekeeping
genes" were tested. Only the terms enriched in at least one cluster are shown.
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importance for classification on expression level. However, this relationship appears
to be non-linear, as evidenced by its shape, which remains constant for genes with
about 10 reads or more, and by the low Pearson Correlation Coefficient (0.05 in
human, 0.08 in mouse). Thus, gene expression level only affects the learned model
coefficient when comparing lowly and highly expressed genes.

Testing the gene groups described above for enrichment (see Methods Sec-
tion 4.4.4) showed a consistent pattern for all surveyed models of predominantly
enriched membrane and secreted proteins (Figure 4.4B, Figure C.8). A number of
clusters also had transcription factors enriched in their top hits, albeit in markedly
lower number. Enrichment for the tested gene groups appeared evenly distributed
across tissues, and did not group them in any meaningful manner (Figure 4.4C).
Lastly, it is also notable that only a fraction of the total clusters showed enrichment
for any of the classes tested, which could be due to the restrictive test that only
looks for enrichment at the very top genes, as well as the non-comprehensive list of
functions tested.

Examining the model produced by CellTypist on the Tabula Muris dataset revealed
similar results. The grouping of immune versus non-immune clusters present in
human was again absent (Figure 4.5A), as had been observed in the previous Section
(Figure 4.3). The patterns for gene groups were nonetheless similar, with a greater
enrichment of secreted proteins across all cell clusters (Figure 4.5B), and the largest
significant groups spread across more various tissues (Figure 4.5C).

These results point to the greater importance of the gene expression regulatory
network’s output molecules (genes coding for membrane and secreted proteins),
when computationally defining the identity of a cell.

4.3 Discussion

From its inception, the Human Cell Atlas (HCA) consortium has aimed to "define all
human cell types in terms of distinctive molecular profiles (such as gene expression
profiles)" (Regev et al., 2017), a task that can not be easily accomplished by a single
team. Beyond the financial and ethical constraints, collecting good quality scRNA-seq
data requires tissue-specific knowledge, as well as profiling using both top-down and
bottom-up approaches to obtain an overview of cell populations, while capturing
cell type-specific phenotypic variations. Yet as data on human cells accumulates,
methods capable of compiling the cellular census envisioned by the HCA members,
and making it available to the community will be of great use.



86 Application and biological insights of the CellTypist model

The human data presented provides a broad overview of several organs. This
leads the cell type reference generated by CellTypist to be broadly applicable to
new datasets. This reference is dependent on the way these tissues are sampled.
Currently, many of them are mostly or totally composed of immune cells which,
while adding valuable information about their diverse phenotypes, can also bias the
model. Collecting more datasets is the ideal way of mitigating this problem, but it
can also be addressed by using data augmentation or downsampling approaches (Hie
et al., 2019b; Wong et al., 2016b). This would be especially relevant at the model
training step, as we have observed the clear impact of number of cells per label in
classification accuracy (Figure 3.4C, Figure 3.5C, Figure 3.7D).

Consistent data integration is also essential to avoid redundant classes and mis-
leading interpretations about cell type and tissue relationships. Data integration for
scRNA-seq is still a heavily studied topic (Haghverdi et al., 2018; Lopez et al., 2018;
Polański et al., 2019; Stuart et al., 2019), and can considerably influence the cell
groupings detected in the data. CellTypist is likely to evolve as a pipeline, in order to
adopt a within- and cross-tissue integration framework that closely reflects the cell
type information available for each dataset. This integration will also lead to a clear
cell type label for the model, while also reflecting the cell type resolution limitations
of the classifier.

Tissue identity relationships appear as an emergent result from the application of
CellTypist. The associations revealed between tissues are present at the cross-tissue
integration stage (Figure 4.3A), and then also reflected in the top genes learned by
the logistic regression model (Figure 4.3B). Furthermore, tissue identity is to some
degree robust to incorrect or excessive grouping of single-cells (Figure C.3), which
reveals that tissues-specific expression programmes might be intrinsic to the core cell
identity. The resolution of these tissue connections and programmes can be improved
by broader cell type sampling and integration. This will allow the model to reveal a
more fine-grained hierarchy beyond the immune/non-immune split, and ultimately
map cellular phenotypes to a structured cell identity atlas.

The data compiled offers for the first time a window into the gene expression
hallmarks of cell identity for the first time. Analysis of enriched gene expression
programmes can be improved by using a more uniform gene reference, as well as
adopting more informative labels for the clusters obtained (which can come from
improved dataset merging or manual annotation). Nonetheless, the analysis showed
consistently ranked receptors and secreted molecules above transcription factors
when defining cell identity (Figure 4.4B, Figure C.8). This is in agreement with
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previous reports (Sonawane et al., 2017), yet this is the first instance where this
type of analysis could achieve this level of cell type resolution. Importantly, defining
which genes make up the core of cellular phenotypes is not the same as defining cell
identity regulation. However, knowledge of the minimal gene expression set required
to classify or obtain a determined phenotype (and consequently function) is a key
point in understanding the operational definition of cell types. Thus, the expansion
and improvement of the CellTypist reference will increasingly provide a foundation to
understanding how cell types arise and evolve (Zimmermann et al., 2019), and will
help prioritise gene targets for effective cellular engineering.

This large human cell type reference can be very useful to characterise cell identity
in a variety of systems. In disease-focused studies, the steady-state reference provided
by CellTypist can automatically annotate the cells obtained from a disease sample,
without relying on a matching healthy sample. This is useful in large scale studies
that aim to quantify cell number alterations in disease, yet steady-state cells would
still be required to identify disease-specific gene expression programmes or cell
subpopulations. Another potential use is to characterise cell fates and heterogeneity
when differentiating organoids. Classifying scRNA-seq data from the generated
organoids using an unbiased reference can reveal the cell types present that a specific
protocol was able to differentiate. CellTypist will also be available as an online
resource, where the model can be directly used, and is accompanied by a database
showing the defining characteristics of each cell type - marker genes detected, tissues
of origin, datasets characterising them, and similar cell types. This is further intended
to be articulated with a Cell Ontology (Bard et al., 2005), and have cell names be
consistently used when new data is produced, with a direct correspondence to both
databases. Lastly, future releases of CellTypist models will include more species,
adding an evolutionary layer to our knowledge of cell identity.

4.4 Methods

4.4.1 CellTypist parameter optimisation and training

Use of the integration and model training pipeline in the human dataset collection
was done as described in Chapter 3 Section 3.3.2, and is again briefly explained
here. Data from the same tissues was integrated and clustered using the Leiden
algorithm (Traag et al., 2019) at several resolutions. For tissues with cell type
annotations, resolution was optimised using the split-join distance (Dongen, 2000)
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between clusters and cell type annotation and constrained to a number of clusters at
least as large as the number of cell type annotations in the largest collected dataset
(Figure 3.7A).

Following clustering, per tissue logistic regression models were trained, running
for 10 epochs of a maximum of 100 iterations each. These models were used to run the
cross-tissue cluster merging pipeline (Chapter 3 Section 3.2.2), and a combination of
parameters was chosen based on the ratio of split-join distances (merged vs annotated
cell types over per tissue vs annotated cell types) (Figure 3.7B), resulting in the choice
of thr1 = 0.99 and thr2 = 0.8. Additionally, three other combinations were chosen
for comparison: thr1 = 0.4 and thr2 = 0.99, the combination with the top split-join
ratio when only considering merged clusters (Figure B.3C, Figure B.5A-B); thr1 =
0.25 and thr2 = 0.25, one of the combinations with the highest fraction of merged
clusters (Figure B.3B, Figure B.5C-D); thr1 = 0.1 and thr2 = 0.1, the combination
with the highest fraction of merged clusters, as well as highest split-join fraction
(Figure B.3B, Figure B.5E-F).

The groupings obtained were used to train a logistic regression model using
Stochastic Gradient Descent (Chapter 3 Section 3.2.3). Training was done for 25
epochs of a maximum of 100 iterations each, where in each iteration 1000 cells
were seen by the model. 90% of the total data was used as a training set, and the
remaining as a left out test set that was tested at every iteration (Figure 3.7C-D,
Figure B.5).

4.4.2 Obtaining gene group lists

The groups of genes here presented were chosen to reflect various broad functions
present in cells. They are not exhaustive, and overlaps between gene sets exist due to
the ambiguity of some categories. In some tests, various categories were used, yet
only those with at least one positive result were reported (Figure 4.3B, Figure 4.4B).

Cell type markers (from (Madissoon et al., 2019)): for each tissue, the function
"rank_genes_groups" from scanpy (Wolf et al., 2018) was used to determine the
markers of each cell type. A filter of q-value<=0.01 and log2 fold-change>=1 was
used to select the top markers of each annotated group.

GO Terms: GO Terms were downloaded using the biomaRt R package (Dur-
inck et al., 2009). Genes from different terms were then grouped in the following
categories (similar to (Hagai et al., 2018)): chromatin modulators (GO:0006338
(chromatin remodelling), GO:0003682 (chromatin binding), GO:0042393 (histone
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binding), and GO:0016568 (chromatin modification)); kinases and phosphatases
(GO:0004672 (protein kinase activity) and GO:0004721 (phosphoprotein phos-
phatase activity)) and catalytic enzymes (GO:0003824 (catalytic activity)).

Transcription Factors: Human transcription factors were obtained from Ani-
malTFDB v3.0 ( http://bioinfo.life.hust.edu.cn/AnimalTFDB/) (Hu et al., 2019).

Housekeeping genes: Housekeeping genes were obtained from https://m.tau.ac.il/
~elieis/HKG/ (Eisenberg and Levanon, 2013).

Cell communication-associated genes: Genes involved in cell-cell communication
were obtained from cellphonedb.org (Efremova et al., 2019). Only genes annotated
as "transmembrane", "secreted", "peripheral", and "receptor" were kept. Given the
structure of the annotation in this database, some genes are included in more than
one group. In particular, most receptors and some secreted proteins are also classified
as transmembrane.

Tissue-specific genes: Tissue specific genes were determined as described in (Yanai
et al., 2005) (see (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) for a bench-
mark). Briefly, RNA-seq expression data from the GTex Consortium (human, https:
//gtexportal.org/home/index.html) or ENCODE Consortium (mouse, https://www.
encodeproject.org/) were obtained (Consortium, 2015; Dunham et al., 2012). The
tau statistic was calculated for each gene, and it consists on the normalised deviation
of a gene’s expression in a tissue from the maximum expression value observed. Only
genes with a tau value greater than or equal to 0.5 were kept C.1. This threshold
was used in order to have enough genes per group to test tissue specificity. Despite
this being a very relaxed threshold, no genes shared between tissues were found.
Moreover, using a more restrictive threshold like 0.9 resulted in numbers within the
same order of magnitude of genes for each tissue, although not enough to test for
enrichment.

4.4.3 Clustering

Clustering (in heatmaps) was performed using the hclust function from R, with
euclidean distance and the "ward.D2" method. Clustering uncertainty was assessed
using the pvclust R package, and AU p-values greater than or equal to 95 were
considered significant.

http://bioinfo.life.hust.edu.cn/AnimalTFDB/
https://m.tau.ac.il/~elieis/HKG/
https://m.tau.ac.il/~elieis/HKG/
cellphonedb.org
https://gtexportal.org/home/index.html
https://gtexportal.org/home/index.html
https://www.encodeproject.org/
https://www.encodeproject.org/
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4.4.4 Enrichment of gene groups

To obtain enriched groups of genes (Sections 4.2.2 and 4.2.3), the top 500 genes
based on their model coefficients were obtained for each cluster. Gene Set Enrichment
Analysis (GSEA) (Subramanian et al., 2005) was performed using the liger R package
(https://cran.rstudio.com/web/packages/liger/index.html), considering the gene
sets as defined in Section 4.4.2. Enrichment was deemed signifficant if the q-value was
lower than 0.05, and if the enrichment score was positive, signifying an enrichment
in the top genes. In heatmaps plotting GSEA results (Figure 4.3B-D; Figure C.3),
the colour scale is capped at 0.8 (fraction of enriched clusters per tissue), and the
annotation scales are capped at 0.5 (fraction of clusters with mean expression of
the indicated gene of at least 1). Clusters merge across tissues were only counted
towards the tissue contributing the most cells to them.

https://cran.rstudio.com/web/packages/liger/index.html


Chapter 5

Concluding remarks

Developments in single-cell genomics are still shaping the way we define cellular
identity. With the increasing number of cell types, organs and species profiled, we
are bound to obtain an exhaustive overview of eukaryotic cell diversity, together
with their genomic determinants. This work illustrates the importance of studying
cell types across different tissues, and discussed computational challenges as well as
solutions for the integrative atlasing of cellular diversity.

5.1 Cells and genes trade-offs in single-cell profiling

The number of cells profiled per study is still increasing exponentially (Svensson
et al., 2018). This has been accompanied by a marked expansion in the number
of studies using single-cell technologies (Svensson and Beltrame, 2019), much of
it due to the spread in use of a more standardised cell isolation and sequencing
pipeline, 10x Genomics’ Chromium technology. This democratisation of single-cell
omics is resulting in more cell types, tissues and species being profiled. Nevertheless,
single-cell studies should be designed with a clear goal, and the choice of protocol
should be adequate to the question at hand.

With regards to the type of sequencing, scRNA-seq protocols can be broadly split
between full length transcript profiling and 5’/3’ RNA tagging. Full length protocols -
the most widely used being Smart-seq2 (Picelli et al., 2014) - follow in the footsteps of
the majority of bulk RNA-seq studies. Smart-seq2 is still dependent on mRNA isolation
by the poly-A tail, and thus does not reveal changes in non-polyadenylated transcript
as other protocols might (Hayashi et al., 2018; Verboom et al., 2019). Despite this,
Smart-seq2’s full length characteristics have been important to study immune cells.
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The development of TraCeR (Stubbington et al., 2016) and BraCeR (Lindeman et al.,
2018) have allowed the detection of TCR and BCR transcripts in single-cell data,
which in turn have been used to lineage trace T cells with similar developmental
origin (Lönnberg et al., 2017) and Treg cell migration between tissues (Miragaia
et al., 2019) (Chapter 2). Smart-seq2 has also allowed uncovering the diversity
of KIR receptors in NK cells at the maternal-fetal interface (Vento-Tormo et al.,
2018). Splicing-oriented studies with this protocol, on the other hand, have been
scarce (Arzalluz-Luque and Conesa, 2018), yet splicing can be important in revealing
important features of cell identity. Combination of Chromium and PacBio long read
sequence has revealed cell type specific isoforms in mouse cerebellum (Gupta et al.,
2018). Other changes in isoform usage also exist that can influence cell identity, yet
this has been underappreciated.

The dominance of 3’ and 5’ sequencing protocols stems from the fact that a large
number of cells is more important to revealing cell diversity in a given tissue or
condition than increased sequencing depth or number of genes per cell (Svensson
et al., 2019), which has been showed early on when profiling bipolar retinal cells in
mouse (Shekhar et al., 2016). Droplet-based protocols allow the user to more easily
isolate a large number of cells, which are then only sequenced at lower levels. This
increase in cell numbers was necessary in the Treg cell work presented in Chapter 2
to detect the subpopulations composing the lymph node-peripheral tissue trajectory
(Figures 2.2 and 2.3). Thus, at the transcriptomic level, different protocols can serve
complementary functions - either increasing the resolution of the cellular census, or
providing a more detailed representation of the molecular makeup of cell populations.

5.2 Building a transcriptomic atlas of cell types

The study presented in Chapter 2 shows that, to unravel the full extent of cell
identity, it is not enough to unbiasedly profile a tissue, since even low-frequency cell
populations may reveal functional heterogeneity. Furthermore, the relevance of this
is sometimes only apparent once more tissue-specific context is added. In isolation,
the census of colonic Treg cells would only reveal different levels of activation, but
once this was combined with the draining mesenteric lymph node (mLN) populations,
and compared with Treg cells in the brachial lymph nodes, it became clear that these
subpopulations formed a continuum across organs, and the subpopulations present
in the mLN expressed genes that coded for homing chemokine receptors specific for
the colon.
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The development of single-cell sequencing methods has unlocked the ability to
perform unbiased cellular phenotyping. Yet there are several layers, from DNA, RNA
and protein, to probe this phenotype. From these, at the single-cell level, RNA is by
far the most widely available. While it is not as close to cellular function as proteins,
it is a good approximation, and can be unbiasedly amplified. The spread of cellular
transcriptomic profiling was not initially accompanied by a development of dedicated
databases for this type of data, although more recent efforts have been made towards
this end (Alavi et al., 2018; Franzén et al., 2019), and it is the goal of the Human
Cell Atlas to gather and standardise single-cell expression data. Moreover, most of
the data produced is not accompanied by cell type annotations in a machine-readable
format, nor does it follow a standardised nomenclature. This is likely because the
existing ontologies (Bard et al., 2005) were not prepared for this explosion in cell
profiling and the diversity of cell types and states it brought. Thus, the existence of
these scRNA-seq datasets creates an opportunity to develop and update an informed
cell type reference (Aevermann et al., 2018). Chapter 3 introduced CellTypist, a
method to integrate scRNA-seq data from multiple sources and tissues. This pipeline
does not require a uniform annotation a priori, and produces an interpretable model
for annotation of new data.

While most cell population profiling focuses on RNA, other aspects are also
relevant. Open chromatin regions, which can be identified through scATAC-seq, are
often involved in regulation of gene expression, and have been shown to be sufficient
to distinguish cell types similarly to expression profiling (Cusanovich et al., 2018).
An open chromatin cell type atlas can then provide a more regulatory perspective on
cell identity, perhaps more clearly illustrating what effective alterations at the DNA
level result in acquisition or loss of cellular phenotypes.

Cell type references like CellTypist have a multitude of applications, ranging
from basic science to applied biomedicine. The predictive capabilities of this sort
of models can be used to test cellular responses in organoids (Brazovskaja et al.,
2019). This assessment can range from evaluating the differentiation potential of
cultured cells, to measuring deviations and responses caused by external factors, like
varying differentiation molecules or infectious agents. Ultimately, this can further
improve the efforts in the field of tissue engineering, by guiding the development
of in vitro differentiation protocols (Camp et al., 2018). Likewise, these references
can also be used in a clinical setting to probe changes in cell diversity in disease. In
cancer, infiltration and phenotypic changes of immune cells can be assessed, and
single-cell phenotyping of tumour cells can monitor its progression. Monitoring of
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cell abundances and diversity in the clinic can provide a new view of disease from a
"cell ecology" perspective.

More fundamentally, CellTypist, as an integrated, cross-tissue cell type com-
pendium can inform us on the key genes that define the core cellular phenotype.

5.3 Defining cellular identity

The advent of single-cell genomics has re-ignited the debate on the definition of cell
type identity. Historically, cell types have been defined based on their morphology,
location, function, or developmental origin. Development of cellular staining, and
especially flow cytometry, have added molecular phenotyping to this list. While
flow cytometry already offered a large cell throughput capable of detecting even the
smallest populations, the revolutionary aspect of single-cell transcriptomics has been
the unbiased probing of RNA molecules, revealing a new high-resolution cellular map
of gene expression programmes.

It is only through integration that we can achieve a organism-scale picture of
cell identity. This is achieved by CellTypist, which is capable of resolving cell type
correspondences across tissues (Figure 3.1, Figure 4.3), and provides the list of genes
at the core of each cell grouping (Figure 4.4). Despite the discussed limitations, owed
in part to the still limited diversity of data available, CellTypist lays the groundwork
and reveals the first systematic picture of human cell types (with an expansion to
other species in sight).

The transcriptomic composition of cells is vastly informative for their taxonomy,
yet only makes up a small portion of the information we can obtain. Other omics
modalities (open chromatin, chromatin modifications, methylation, proteomics, ...)
can provide equally informative yet complementary perspectives on cellular iden-
tity. Furthermore, these can be integrated computationally (Stuart et al., 2019) or
obtained simultaneously using appropriate protocols (Angermueller et al., 2016;
Clark et al., 2018). Nonetheless, an ideal compendium of cell types should strive
to go beyond this low level and invasive characterisation, and merge back into the
knowledge obtained from other modalities. Cellular interactions are of great im-
portance to cell function, and thus spatial information adds a relevant layer to this.
Mapping the developmental trajectories of all cell types can inform us on their origin
and generative processes. Morphology is the most easily observed characteristic,
and heavily related to cell function, thus controlled by the genome. Only through
integration can this systems view of cell biology come to fruition.
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When possessing information on these many layers of cell phenotypes, we will be
able to more accurately define the boundary between cell types and cell states. Often
these can be observed in each individual modality - transient versus definitive cell
shapes, immune lineages and their response to pathogens, or intermediate versus leaf
stages in cellular differentiation. Yet these perspectives need each other, as cellular
form and function should be understood in the context of its origin and genomic
programming. Reconciling these different perspectives through a multi-window
approach will provide us with a complete blueprint of the basic unit of life. It is
expected that the unified view provided by the Human Cell Atlas - and indeed all cell
atlases - results in a Modern Synthesis of Cell Theory.
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Appendix A

Additional information to Chapter 2

This Appendix contains supplementary information for Chapter 2, including experi-
mental methods and supplementary figures.

A.1 Additional Experimental Methods

A.1.1 Mice

All mice were maintained under specific pathogen-free conditions at the Wellcome
Genome Campus Research Support Facility (Cambridge, UK) and at the Kennedy
Institute for Rheumatology (Oxford, UK). All procedures were in accordance with
the Animals Scientific Procedures Act 1986. For steady-state experiments, the Foxp3-
GFP-KI mouse reporter line (Bettelli et al., 2006) was used. The melanoma challenge
was performed in Foxp3-IRES-GFP genetically targeted reporter mice (Haribhai et al.,
2007) purchased from The Jackson Laboratory (stock no. 006772). In both cases,
6-14 week-old females were used.

A.1.2 Human samples

Human skin and blood samples were obtained from patients undergoing breast reduc-
tion plastic surgeries (REC approval number: 08/H0906/95+5). Surgical-resection
specimens were obtained from patients attending the John Radcliffe Hospital Gas-
troenterology Unit (Oxford, UK). These specimens were obtained from normal regions
of bowel adjacent to resected colorectal tumours from patients undergoing surgery. In-
formed, written consent was obtained from all donors. Human experimental protocols
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were approved by the NHS Research Ethics System (Reference number:11/YH/0020).
Further details concerning patients and tumours can be found in Table A.6.

A.1.3 Murine leukocytes isolation in steady-state skin dataset

To isolate leukocytes from ear tissue, ears were removed at the base, split into halves
and cut into very small pieces. Tissue was digested in 3.5ml RPMI medium (GIBCO)
with 0.1% BSA, 15mM Hepes, 1mg/ml collagenase D (Roche) and 450µg/ml Liberase
TL (Roche) for 60 minutes at 37°C in a shaking incubator at 200rpm. Digested tissue
was passed through an 18G needle to further disrupt the tissue and release cells.
Cells were filtered through a 70µm cell strainer, and the digestion was terminated
by addition of ice-cold RPMI containing 0.1% BSA (Sigma-Aldrich) and 5mM EDTA
(Invitrogen). A three-layer (30, 40, 70%) Percoll (GE Healthcare) density-gradient
was used to enrich for the lymphocytes. Cells obtained from the digestion were
layered in the 30% layer on top of the 40% and 70% layers, and centrifuged for 20
minutes at 1800rpm without brake. Cells at the 40/70% interface were collected for
the subsequent analysis. Cell suspensions from spleen and bLN were prepared as
described previously (Uhlig et al., 2006).

A.1.4 Murine leukocytes isolation in steady-state colon dataset

Colons were washed twice in RPMI medium (GIBCO) with 0.1% BSA (Sigma-Aldrich)
and 5mM EDTA (Invitrogen) in a shaking incubator at 200rpm at 37°C to remove
epithelial cells. The tissue was then digested for an hour in RPMI with 10% FCS,
15mM Hepes (GIBCO) and 100U/ml collagenase VIII (Sigma-Aldrich). Digestion was
terminated by addition of ice-cold RPMI with 10% FCS (Sigma-Aldrich) and 5mM
EDTA (Invitrogen). Leukocyte enrichment and suspension was obtained as described
in the previous paragraph.

A.1.5 Melanoma induction and cell isolation

The melanoma induction experiments were performed in accordance with UK Home
Office regulations under Project License PPL 80/2574. The protocol used was adapted
from a previous publication (Riedel et al., 2016). For syngeneic tumours, 2.5 × 105
B16.F10 melanoma cells (ATCC) were inoculated subcutaneously into the shoulder
region of 6- to 14-week-old female Foxp3-IRES-GFP mice (Haribhai et al., 2007).
Animals were excluded if tumours failed to form or if health concerns were reported.
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Control Foxp3-IRES-GFP mice were injected with 50 µl PBS. Animals were culled after
11 days. Tumours, tumour-draining (brachial) lymph nodes and spleen were isolated
for subsequent analysis. PBS-injected and steady-state skin, draining lymph nodes
(bLN) and spleen were collected from control mice. Tumour and PBS-injected skin
were mechanically disrupted and digested in a 1ml mixture of 1 mg/ml collagenase
A (Roche) and 0.4 mg/ml DNase I (Roche) in PBS (solution A) at 37°C for 1h with
600rpm rotation. 1ml of PBS containing 1mg/ml Collagenase D (Roche) and 0.4
mg/ml DNase I (Roche) (solution B) was then added to each sample, which returned
to 37 °C for 1h with 600 rpm rotation. Lymph nodes were digested for 30min in
500µl of solution A, and for further 30min after the addition of 500µl of solution
B. EDTA (Invitrogen) at the final concentration of 10mM was added to all samples.
Spleens were processed as described previously (Uhlig et al., 2006). Suspensions
were passed through a 70 µm cell strainer before immunostaining. Samples from
different animals were kept separated throughout processing and sorting.

A.1.6 Isolation of human CD4+ T cells

Isolation of leukocytes from human skin

Plastic surgery skin included reticular dermis to the depth of the fat layer. The
upper 200 microns of skin were harvested using a split skin graft knife. Whole skin
was digested in RPMI 1640 with 100IU/ml penicillin, 100µ/ml streptomycin, 2mM
L-glutamine (GIBCO), 10% FCS (Sigma-Aldrich) and 1.6mg/ml type IV collagenase
(Worthington-Biochemical) for 12-16 hours at 37°C and 5% CO2. Digest was passed
repeatedly through a 10ml pipette until no visible material remained. To yield a single-
cell suspension, digest was passed through a 100-micron filter into a polypropylene
sorting tube.

Isolation of leukocytes from human colon

Normal regions of bowel adjacent to resected colorectal tumours were prepared
as previously described, with minor modifications (Bettelli et al., 2006; Geremia
et al., 2011). In brief, mucosa was dissected and washed in 1 mM dithiothreitol
(DTT) (Sigma-Aldrich) solution for 15 min at room temperature to remove mucus.
Specimens were then washed three times in 0.75 mM EDTA (Invitrogen) to deplete
epithelial crypts and were digested for 2h in 0.1 mg/ml collagenase A solution
(Roche). For enrichment of mononuclear cells, digests were centrifuged for 30 min at
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500g in a four-layer Percoll (GE Healthcare) gradient and collected at the 40%/60%
interface.

Peripheral blood mononuclear cell isolation

10mL blood from skin donors were collected into EDTA (Invitrogen). Density cen-
trifugation with Lymphoprep (STEMCELL Technologies) was performed according
to manufacturer’s instructions. Recovered cells were cryopreserved by pelleting and
resuspending in 1ml heat-inactivated fetal calf serum containing 10% DMSO, and
storing at -80ºC. Cryovials were later thawed in water bath, then rapidly being trans-
ferred to warmed medium (RPMI 1640 (GIBCO) with 100IU/ml penicillin, 100µg/ml
streptomycin, 2mM L-glutamine (GIBCO), 10% FCS (Sigma-Aldrich)) and filtered
through a 100-µm filter.

A.1.7 Flow cytometry and single-cell RNA sequencing

Mouse and human cell suspensions were sorted as described in Figure 2.1A, Fig-
ure 2.4A, Figure 2.5A, and Figure A.1A.

Droplet-based scRNA-seq datasets were produced using a Chromium system (10x
Genomics), referred to as 10x. Cell populations of interest were sorted, manually
counted, and their concentrations adjusted to enable the capture of 5̃000 cells (except
for skin Treg and Tmem cells, for which we aimed to capture 3̃00 each). The standard
protocol for the 10x single cell 3’ kit (V2 chemistry) was followed and each cell
population loaded onto a separate chip inlet. We ran each sample on one lane of
Illumina HiSeq 4000, following manufacturer’s recommendations.

Two plate-based scRNA-seq datasets: the “colon dataset”, including Treg and
Tmem cells from colon, mLN and spleen, and the “skin dataset” from skin, bLN
and spleen. Single cells were sorted in 2µl of Lysis Buffer (1:20 solution of RNase
Inhibitor (Clontech) in 0.2% v/v Triton X-100 (Sigma-Aldrich)) in 96 well plates, spun
down and immediately frozen at -80ºC. Smart-seq2 protocol (Picelli et al., 2014) was
largely followed to obtain mRNA libraries from single cells. Oligo-dT primer, dNTPs
(ThermoFisher) and ERCC RNA Spike-In Mix (1:50,000,000 final dilution, Ambion)
were then added. Reverse Transcription and PCR were performed as previously
published (Picelli et al., 2014), using 50U of SMARTScribe™ Reverse Transcriptase
(Clontech). The cDNA libraries for sequencing were prepared using Nextera XT DNA
Sample Preparation Kit (Illumina), according to the protocol supplied by Fluidigm.
Libraries from single cells were pooled and purified using AMPure XP beads (Beckman
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Coulter). Pooled samples were sequenced on an Illumina HiSeq 2500 (paired-end
100-bp reads) or Illumina HiSeq 2000 v4 chemistry (paired-end 75-bp reads) aiming
at an average depth of 1 million reads/cell.
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A.2 Supplementary Tables and Figures

Table A.1: Batch details for the Mouse steady-state Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_colon spleen.Treg Steady-state Pool mouse_colon_5 25/05/2015 17/09/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_14 27/05/2015 17/09/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 17/09/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_10 25/05/2015 17/09/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 17/09/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_16 30/09/2015 10/06/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/06/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/06/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/01/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/06/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/06/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_16 30/09/2015 10/01/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/01/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/01/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/01/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/01/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/01/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/08/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/08/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/08/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/08/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/08/2015
mouse_colon LN.Treg Steady-state Pool mouse_colon_9 21/09/2015 10/07/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/08/2015
mouse_colon colon.Treg Steady-state Pool mouse_colon_15 29/09/2015 10/07/2015
mouse_colon colon.Tmem Steady-state Pool mouse_colon_18 28/05/2015 10/07/2015
mouse_colon spleen.Treg Steady-state Pool mouse_colon_7 29/09/2015 10/07/2015
mouse_colon spleen.Tmem Steady-state Pool mouse_colon_4 30/09/2015 10/07/2015
mouse_colon LN.Tmem Steady-state Pool mouse_colon_11 28/05/2015 10/07/2015
mouse_skin skin.Treg Steady-state Pool mouse_skin_1 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_1 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_2 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_2 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_3 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_3 08/04/2017 19/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_4 08/04/2017 18/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_4 08/04/2017 18/04/2017
mouse_skin skin.Treg Steady-state Pool mouse_skin_5 08/04/2017 19/04/2017
mouse_skin skin.Tmem Steady-state Pool mouse_skin_5 08/04/2017 19/04/2017
mouse_skin spleen.Treg Steady-state Pool mouse_skin_8 08/04/2017 18/04/2017
mouse_skin spleen.Tmem Steady-state Pool mouse_skin_8 08/04/2017 18/04/2017
mouse_skin spleen.Treg Steady-state Pool mouse_skin_9 08/04/2017 18/04/2017
mouse_skin spleen.Tmem Steady-state Pool mouse_skin_9 08/04/2017 18/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_14 08/04/2017 19/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_14 08/04/2017 19/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_15 08/04/2017 19/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_15 08/04/2017 19/04/2017
mouse_skin LN.Treg Steady-state Pool mouse_skin_16 08/04/2017 18/04/2017
mouse_skin LN.Tmem Steady-state Pool mouse_skin_16 08/04/2017 18/04/2017



134 Additional information to Chapter 2

Table A.2: Batch details for the Mouse melanoma Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_mel skin.Treg Tumour T1 mouse_mel_641 01/06/2016 NA
mouse_mel skin.Treg Tumour T2 mouse_mel_641 01/06/2016 NA
mouse_mel spleen.Treg Control C1 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C2 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C3 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Treg Control C4 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_645 01/06/2016 NA
mouse_mel spleen.Treg Control C5 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C5 mouse_mel_645 01/06/2016 NA
mouse_mel spleen.Treg Control C6 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_645 01/06/2016 NA
mouse_mel skin.Treg Tumour T5 mouse_mel_641 01/06/2016 NA
mouse_mel spleen.Tmem Control C1 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C2 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C3 mouse_mel_637 02/06/2016 NA
mouse_mel spleen.Tmem Control C4 mouse_mel_644 02/06/2016 NA
mouse_mel spleen.Tmem Control C5 mouse_mel_644 02/06/2016 NA
mouse_mel spleen.Tmem Control C6 mouse_mel_644 02/06/2016 NA
mouse_mel skin.Tmem Control C4 mouse_mel_645 01/06/2016 NA
mouse_mel skin.Treg Tumour T1 mouse_mel_640 02/06/2016 NA
mouse_mel spleen.Treg Tumour T1 mouse_mel_638 02/06/2016 NA
mouse_mel spleen.Treg Tumour T2 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Treg Tumour T2 mouse_mel_640 02/06/2016 NA
mouse_mel spleen.Treg Tumour T5 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Treg Tumour T5 mouse_mel_640 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_648 02/06/2016 NA
mouse_mel skin.Treg Control C4 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Treg Control C5 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_646 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T1 mouse_mel_638 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T5 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Tmem Control C4 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Tmem Control C5 mouse_mel_646 02/06/2016 NA
mouse_mel skin.Tmem Control C6 mouse_mel_648 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T2 mouse_mel_638 02/06/2016 NA
mouse_mel skin.Tmem Control C6 mouse_mel_648 01/06/2016 NA
mouse_mel skin.Treg Control C6 mouse_mel_648 01/06/2016 NA
mouse_mel LN.Treg Tumour T2 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Treg Tumour T1 mouse_mel_642 02/06/2016 NA
mouse_mel spleen.Treg Tumour T1 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Treg Tumour T2 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Treg Tumour T5 mouse_mel_639 02/06/2016 NA
mouse_mel LN.Treg Tumour T5 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Treg Control C4 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Treg Control C5 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Treg Control C6 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Tumour T1 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Tmem Tumour T2 mouse_mel_642 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T2 mouse_mel_639 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T5 mouse_mel_639 02/06/2016 NA
mouse_mel LN.Tmem Tumour T5 mouse_mel_642 02/06/2016 NA
mouse_mel LN.Tmem Control C4 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Control C5 mouse_mel_643 02/06/2016 NA
mouse_mel LN.Tmem Control C6 mouse_mel_643 02/06/2016 NA
mouse_mel spleen.Tmem Tumour T1 mouse_mel_639 02/06/2016 NA
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Table A.3: Batch details for the Human steady-state Smart-seq2 data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

human skin.Treg Steady-state skin_1 human_plate_skin_9 27/10/2015 11/11/2015
human skin.Tem Steady-state skin_1 human_plate_skin_8 20/10/2015 11/11/2015
human skin.Tcm Steady-state skin_1 human_plate_skin_7 28/10/2015 11/11/2015
human blood.Treg Steady-state skin_1 human_plate_skin_3 23/09/2015 11/11/2015
human blood.Tem Steady-state skin_1 human_plate_skin_2 28/10/2015 11/11/2015
human blood.Tcm Steady-state skin_1 human_plate_skin_1 27/10/2015 11/11/2015
human skin.Tcm Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human skin.Treg Steady-state skin_2 human_741 09/06/2016 date_lib_skin_2
human skin.Tem Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human blood.Treg Steady-state skin_2 human_741 09/06/2016 date_lib_skin_2
human skin.Treg Steady-state skin_3 human_745 10/06/2016 date_lib_skin_2
human skin.Tcm Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human skin.Tem Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Treg Steady-state skin_3 human_745 10/06/2016 date_lib_skin_2
human blood.Tcm Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Tem Steady-state skin_3 human_747 10/06/2016 date_lib_skin_2
human blood.Tcm Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human blood.Tem Steady-state skin_2 human_743 09/06/2016 date_lib_skin_2
human colon.Treg Steady-state colon_1 human_2 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_1 human_1 17/09/2016 07/12/2016
human colon.Tcm Steady-state colon_1 human_5 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_2 human_1 15/11/2016 07/12/2016
human colon.Tem Steady-state colon_2 human_7 15/11/2016 07/12/2016
human colon.Tem Steady-state colon_1 human_7 15/11/2016 07/12/2016
human colon.Tcm Steady-state colon_2 human_4 15/11/2016 07/12/2016
human colon.Treg Steady-state colon_1 human_2 15/11/2016 01/12/2016
human colon.Treg Steady-state colon_1 human_1 17/09/2016 01/12/2016
human colon.Tcm Steady-state colon_2 human_4 15/11/2016 01/12/2016
human colon.Tem Steady-state colon_2 human_7 15/11/2016 01/12/2016
human colon.Treg Steady-state colon_2 human_2 17/09/2016 07/12/2016
human colon.Treg Steady-state colon_2 human_1 15/11/2016 01/12/2016
human skin.Treg Steady-state skin_2 human_742 NA date_lib_skin_2
human skin.Tem Steady-state skin_2 human_744 NA date_lib_skin_2
human skin.Tcm Steady-state skin_2 human_744 NA date_lib_skin_2
human blood.Treg Steady-state skin_2 human_742 NA date_lib_skin_2
human skin.Treg Steady-state skin_3 human_746 NA date_lib_skin_2
human skin.Tcm Steady-state skin_3 human_748 NA date_lib_skin_2
human skin.Tem Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Treg Steady-state skin_3 human_746 NA date_lib_skin_2
human blood.Tcm Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Tem Steady-state skin_3 human_748 NA date_lib_skin_2
human blood.Tem Steady-state skin_2 human_744 NA date_lib_skin_2
human blood.Tcm Steady-state skin_2 human_744 NA date_lib_skin_2

Table A.4: Batch details for the Mouse steady-state Chromium 10x data.
Experiment Tissue.Cell Type Condition Donor Plate/Chip Plate/Chip date Library Date

mouse_10x skin.Treg Steady-state Pool chip 2 date_10x_run date_10x_run
mouse_10x skin.Tmem Steady-state Pool chip 2 date_10x_run date_10x_run
mouse_10x colon.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x colon.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x mLN.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x mLN.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x bLN.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x bLN.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x spleen.Treg Steady-state Pool chip 1 date_10x_run date_10x_run
mouse_10x spleen.Tmem Steady-state Pool chip 1 date_10x_run date_10x_run
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Table A.5: Quality control criteria for filtering single cell transcriptomes in each
dataset, parameters for dimensionality reduction and QC rejection fractions. Cells
were kept if they passed all these filters (see Methods). Related to Figure 2.1

Mouse
Colon

Mouse
Skin

Mouse
Melanoma

Human
Skin/Colon

Mouse 10x

Protocol Smart-seq2 Smart-seq2 Smart-seq2 Smart-seq2 Chromium (10x)
Maximum
mitochondrial
reads (%)

10 10 10 20 Not Used

Maximum
ERCC-derived
reads (%)

25 25 25 50 Not Used

Maximum
unmapped
reads (%)

30 30 30 60 Not Used

Minimum
number of
detected genes

1750 1750 1750 1000 700

Minimum
number of
mapped reads/UMI

250000 250000 250000 100000 1000

Contains
TCR reads
(TraCeR)

Y Y Y Y Not Used

Number of
PCs for
tSNE/clustering

20 20 20 20 30

tSNE perplecity 30 30 30 30 30
QC rejection
fraction

0.23 0.11 0.33 0.15 0.01

TCR rejection
fraction
(after QC)

0.16 0.11 0.20 0.28 Not Used

Maximum
number of
detected genes

Not Used Not Used Not Used Not Used 3500

Maximum
number of UMI

Not Used Not Used Not Used Not Used 15000

Clustering rejection
fraction
(after QC)

Not Used Not Used Not Used Not Used 0.09
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Table A.6: Information on human donors with biological material included in this
study. Related to Figure 2.5

skin_1 skin_2 skin_3 colon_1 colon_2
Tissue Skin Skin Skin Colon Colon
Age - - - 64 62
Sex F F F F M
Pathology and
location

Breast
reduction;
Breast

Breast
reduction;
Breast

Breast
reduction;
Breast

adenocarcinoma;
Caecum

Tubilovillous
adenoma;
rectum

Tumour
stage

- - - PT3 N0(0/23)
M0 L0 V0
R0 Duke’s B

PT0

Date of
diagnosis

- - - - Oct/2015

Observations
Matching
blood
sample

Matching
blood
sample

Matching
blood
sample

- -
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Fig. A.1: Sorting and identification of Treg and Tmem cells (Related to Fig-
ure 2.1).
(A) Flow cytometry-sorting strategy for sorting Treg and Tmem cells from (top)
lymphoid (mLN) and (bottom) non-lymphoid (colonic lamina propria, cLP, as an
example) organs. (B) tSNE projection of all 10x dataset cells passing QC, coloured by
the resulting graph-based clustering. Cells from the NKT, Stress/Mt and Undefined
clusters were removed from further analysis. (Continued on the following page.)
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Fig. A.1: (continued) (C) Number of cells from each cluster in (D) originating from
each sorted population. (D and E) Treg and Tmem cells were obtained with the same
methodology as in Figure 2.1A, sequenced using Smart-seq2. t-SNE dimensionality
reduction represents all sorted cells for each individual batch that passed quality
control (see Methods). Colors match cell-type and tissue of origin. (F) Genes defining
the identity of Treg and Tmem cells in lymphoid and non-lymphoid tissues, obtained
from the Smart-seq2 datasets. Colon and skin were individually compared with their
corresponding draining lymph node and spleen cells. Significantly expressed genes
in each cell-type-tissue combination have an average log fold-change greater than
0.25 and and adjusted p-value lower than 0.05 (Wilcoxon test).
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Fig. A.2: Heterogeneity in SS2 and Tmem cell populations (Related to Fig-
ure 2.2).
(A) Percentage of cells expressing each gene in skin Treg NLT and colon Treg NLT
subpopulations in Smart-seq2 data. Genes that are upregulated in the skin Treg NLT
subpopulation (log2(FC)>0.25 and adjusted p-value<0.05) are represented by an
open circle, and genes upregulated in colon Treg NLT (log2(FC)<(-0.25) and adjusted
p-value<0.05) are represented by a filled circle. (Continued on the following page.)
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Fig. A.2: (continued) (B) Matching of Smart-seq2 Treg cells sorted populations to
identified Treg subpopulations in the 10x dataset using a logistic regression model
(85% accuracy, see Methods). Table shows the percentage of each sorted population
(y-axis) that were labelled as each Treg cluster (x-axis). (C) t-SNE projection of
Tmem cells per tissue coloured by subpopulations found using graph-based clustering.
(D) Subpopulation marker gene mean expression levels (z-score) per subpopulation.
Gene markers exhibit |log2(FC)|>0.25 and adjusted p-value<0.05 in the comparison
of each subpopulation versus all the other cells within the same tissue. Values greater
than 2.5 or lower than -1.5 are coloured equally. (E) Relative proportions of Tmem
subpopulations within each tissue that revealed heterogeneity. (F) Measure of the
NLT/LT signature score in each Tmem subpopulation, measured as the ratio between
the number of NLT and LT genes that have been identified as significantly upregulated
in each cluster.
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Fig. A.3: Additional information on BGPLVM for the 10x dataset (Related to
Figure 2.3)
(A) Automatic Relevance Determination (ARD) plots for BGPLVM of Treg in mLN
and colon (top, referring to Figure 2.3A), and bLN and skin (bottom, referring
to Figure A.3B) datasets. These plots show the relevance of each latent variable
extracted from the data. (B) BGPLVM dimensionality reduction of bLN and skin Treg
cells from the 10X dataset (top), with a density plot showing the distribution along
LV0 of each identified subpopulation (bottom). (C) Velocyto vectorfield overlaid on
BGPLVM projection of mLN and colon Treg cells (related to Figure 2.3A).
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Fig. A.4: Additional information on BGPLVM for the Smart-seq2 datasets (Re-
lated to Figure 2.3)
(A and B) Clonotypes detected using TraCeR in the Smart-seq2 (A) Mouse Colon
dataset, or (B) Mouse Skin dataset. In each panel, on the left, number of clonotypes
detected spanning different tissues and cell type combinations. Top right half reg-
isters all events of TCR chain sharing, bottom left half only considers the sharing
of productive α and β TCR chain, and on the right, number of clonotypes detected
within each cell type and tissue, considering the sharing of any chain or productive
α and β. (C) ARD plots for BGPLVM of Smart-seq2 Treg in mLN and colon (top,
referring to panel D, left), and bLN and skin (bottom, referring to panel D, right)
datasets. (D) BGPLVM dimensionality reduction of Smart-seq2 data of Treg from
lymph nodes and non-lymphoid tissues (top), with a histogram plot showing the
distribution along LV0 of each subpopulation identified (bottom). mLN and colon
Treg are plotted on the left, while bLN and skin Treg are plotted on the right. Cells
are coloured by the inferred subpopulation they belong to as per the predictions
made in Figure A.2B. (E) Pairwise overlap between the sets of genes with absolute
correlation with LV0 greater than 0.25 in each of the four steady-state datasets. The
percentages refer to the proportion of the set on the x-axis that is overlapping the set
on the y-axis.
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Fig. A.5: Additional details on the MRD-BGPLVM projection (Related to Fig-
ure 2.4).
(A) t-SNE dimensionality reduction coloured by cell cycle phase in the mouse
melanoma dataset. (B) Clonotypes detected using TraCeR in the Mouse Melanoma
dataset. On the left, number of clonotypes detected spanning different tissues and
cell type combinations. Top right half registers all events of TCR chain sharing,
bottom left half only considers the sharing of productive α and β TCR chain. On the
right, number of clonotypes detected within each cell type and tissue, considering
the sharing of any chain or productive α and β. (C) ARD plots for MRD-BGPLVM of
Treg in control and melanoma conditions. Colours show effect of gene groups in each
obtained latent variable. (Continued on the following page.)



A.2 Supplementary Tables and Figures 145

Fig. A.5: (continued) (D) Velocyto vectorfield overlaid on MRD-BGPLVM projection
of bLN and skin from both Control and Melanoma conditions (related to Figure 2.4D).
(E) ARD plots for BGPLVM of Smart-seq2 Treg in bLN and skin in the Control
condition (left, related to panel F), and Melanoma condition (bottom, related to
panel G). (F and G) BGPLVM projection of bLN and skin in control (F) and melanoma
(G) conditions, using the top two latent variables. (H) Pairwise overlap between the
sets of genes with absolute correlation with LV0 greater than 0.25 in each subset
of the melanoma dataset. The percentages refer to the proportion of the set on the
x-axis that is overlapping the set on the y-axis.

Fig. A.6: Additional information on the Human dataset (Related to Figure 2.5).
(A and B) t-SNE dimensionality reduction. Shapes match cell type and tissue accord-
ing to legend. Colours match either cell type and tissue (A) or sampled individual
(B). (C) Z-score of mean expression levels of identified markers across all sampled
cell types and tissues in human. (D) Clonotypes detected using TraCeR in the Human
dataset. On the left, number of clonotypes detected spanning different tissues and
cell type combinations. Top right half registers all events of TCR chain sharing,
bottom left half only considers the sharing of productive α and β TCR chain. On the
right, number of clonotypes detected within each cell type and tissue, considering
the sharing of any chain or productive α and β.
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A.3 Data and Code Accessibility

scRNA-seq data for this project has been deposited in ArrayExpress under the ac-
cession numbers E-MTAB-6072 and E-MTAB-7311. Processed data can be found in
https://figshare.com/projects/Treg_scRNA-seq/38864, and analysis notebooks can
be found in https://github.com/tomasgomes/Treg_analysis.
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Appendix B

Additional information to Chapter 3

This Appendix contains supplementary figures for Chapter 3.

B.1 Supplementary Figures

Fig. B.1: Cell numbers in the Tabula Muris dataset
Bars show number of cells (left y axis) collected from different tissues (x axis), split
by scRNA-seq protocol (colour). Points show the number of cell types (right y axis)
identified by protocol (coloured circles) or their union (triangle). 10X - Chromium
(10X Genomics) protocol; SS2 - Smart-seq2 protocol.
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Fig. B.2: Expression of PTPRC and EPCAM in human data collection (Related to
Figure 3.6)
2D-binned plot of single-cell expression of PTPRC (encoding for the CD45 receptor,
an immune cell marker), and EPCAM (an epithelial cell marker). Inset table (top
right) shows the number of cell expressing (T) or not (F) each of the genes. Cells
expressing both genes are likely doublets or affected by ambient RNA in droplet-based
experiments.
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Fig. B.3: CellTypist parameters grids with other statistics (Related to Figure 3.7)
Parameter grids for CellTypist showing variation in (A) total number of clusters; (B)
fraction of merged clusters; (C) SJ ratio calculated only for merged clusters.
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Fig. B.4: Grouping of annotated cell types and datasets in human pancreas data
(Related to Figure 3.7)
Number of cells of each cluster coming from a specific dataset (right y-axis), with a
particular cell type annotation (left y-axis). Pancreas was used for this example due
to the consistent cell type annotations used across datasets. CellTypist parameters:
thr1 = 0.99; thr2 = 0.8.
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Fig. B.5: Training statistics for other CellTypist models (Related to Figure 3.7)
For each model trained (thr1 = 0.4 and thr2 = 0.99 - top; thr1 = 0.25 and thr2 =
0.25 - middle; thr1 = 0.1 and thr2 = 0.1 - bottom): (A, C, E) accuracy during model
fitting for training and held-out test data; (B, D, F) F1-score for each cluster label
(black dots) as a function of class size (in log10 scale).



154 Additional information to Chapter 3

B.2 Supplementary Tables
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Table B.1: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
cell type labels. Cell type labels were obtained from the annotation accompanying
the Tabula Muris gene expression data, described in the original publication.

Cell Type F1 Score Support (Test set) Total Cells

Bergmann glial cell 1.00 3 30
brain pericyte 1.00 13 132
Brush cell of epithelium
proper of large intestine

1.00 4 45

enteroendocrine cell 1.00 2 25
mesothelial cell 1.00 3 26
neuronal stem cell 1.00 4 36
pancreatic ductal cell 1.00 13 131
type II pneumocyte 1.00 18 183
microglial cell 1.00 433 4329
keratinocyte stem cell 1.00 137 1371
oligodendrocyte 1.00 119 1186
basal cell 0.99 167 1668
luminal epithelial cell
of mammary gland

0.99 55 552

type B pancreatic cell 0.99 41 411
chondroblast 0.99 38 380
B cell 0.98 1237 12382
kidney tubule cell 0.98 218 2182
mesenchymal cell 0.98 184 1842
stromal cell 0.98 1261 12610
skeletal muscle satellite stem cell 0.98 44 442
neuron 0.98 20 196
oligodendrocyte precursor cell 0.97 20 202
mesenchymal stem cell of adipose 0.97 192 1924
basal cell of epidermis 0.97 652 6520
hematopoietic stem cell 0.97 267 2672
hepatocyte 0.97 141 1405
skeletal muscle satellite cell 0.97 90 895
pancreatic A cell 0.97 29 287
epithelial cell 0.97 102 1017
astrocyte of the cerebral cortex 0.96 40 403
Fraction A pre-pro B cell 0.96 24 240
endocardial cell 0.96 24 240
T cell 0.96 835 8346
keratinocyte 0.95 278 2777
epithelial cell of large intestine 0.95 179 1793
endothelial cell 0.95 692 6914
large intestine goblet cell 0.95 81 814
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Table B.2: F1 scores and class sizes for CellTypist trained on the Tabula Muris with cell
type labels. Cell type labels were obtained from the annotation accompanying the
Tabula Muris gene expression data, described in the original publication. (continued)

Cell Type F1 Score Support (Test set) Total Cells

fibroblast 0.95 248 2487
pancreatic D cell 0.95 9 91
pancreatic acinar cell 0.94 18 177
enterocyte of epithelium
of large intestine

0.94 78 782

luminal cell of lactiferous duct 0.93 43 430
neutrophil 0.93 82 820
mesenchymal stem cell 0.93 163 1630
endothelial cell of hepatic sinusoid 0.92 20 196
epidermal cell 0.92 45 445
granulocyte 0.91 156 1559
monocyte 0.91 106 1056
neuroendocrine cell 0.90 54 543
Kupffer cell 0.89 5 51
fenestrated cell 0.88 41 414
cardiac muscle cell 0.87 22 223
smooth muscle cell 0.87 37 367
natural killer cell 0.85 117 1168
macrophage 0.85 194 1924
leukocyte 0.84 187 1878
bladder cell 0.84 146 1455
erythrocyte 0.81 21 208
ciliated cell 0.80 5 55
ciliated epithelial cell 0.80 2 20
pancreatic stellate cell 0.80 3 29
myeloid cell 0.79 53 527
pancreatic PP cell 0.78 11 107
kidney collecting duct cell 0.76 12 116
stem cell of epidermis 0.75 4 45
dendritic cell 0.71 43 438
unknown 0.67 63 625
Clara cell 0.67 2 18
hematopoietic cell 0.67 2 17
mast cell 0.44 2 22
basal cell of urothelium 0.40 36 365
basal cell of epithelium of trachea 0.12 4 36
epicardial adipocyte 0.00 9 93
lung neuroendocrine cell 0.00 0 2
type I pneumocyte 0.00 0 2
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Table B.3: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3.

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl103 1.00 21 207 endothelial cell (93.7%) Lung (100%)
cl124 1.00 8 82 neuron (100%) Brain_Neurons (100%)
cl135 1.00 3 26 neuron (100%) Brain_Neurons (100%)
cl138 1.00 6 57 neuron (98.2%) Brain_Neurons (100%)
cl147 1.00 15 147 kidney collecting duct cell (57.1%) Kidney (100%)
cl154 1.00 2 17 neuron (100%) Brain_Neurons (100%)
cl166 1.00 5 50 type B pancreatic cell (100%) Pancreas (100%)
cl175 1.00 10 96 Fraction A pre-pro B cell (65.6%) Marrow (100%)
cl185 1.00 5 47 Brush cell of epithelium proper

of large intestine (89.4%)
Colon (100%)

cl186 1.00 1 8 neuron (100%) Brain_Neurons (100%)
cl189 1.00 46 462 hepatocyte (97.4%) Liver (100%)
cl193 1.00 4 39 unknown (61.5%) Aorta (100%)
cl194 1.00 1 14 enteroendocrine cell (100%) Colon (100%)
cl20 1.00 12 123 pancreatic ductal cell (99.2%) Pancreas (100%)
cl27 1.00 1 9 enteroendocrine cell (100%) Colon (100%)
cl65 1.00 2 21 pancreatic stellate cell (90.5%) Pancreas (100%)
cl73 1.00 2 21 leukocyte (100%) Pancreas (100%)
cl89 1.00 1 13 astrocyte of the

cerebral cortex (69.2%)
Brain_Neurons (69.2%)

cl161 0.99 96 959 keratinocyte (93.8%) Tongue (100%)
cl150 0.99 83 833 keratinocyte stem cell (97.7%) Skin (100%)
cl70 0.99 163 1631 basal cell (99.8%) Mammary (100%)
cl157 0.99 68 682 luminal epithelial cell

of mammary gland (57.8%)
Mammary (100%)

cl190 0.99 58 583 hepatocyte (100%) Liver (100%)
cl143 0.99 54 544 kidney tubule cell (98%) Kidney (100%)
cl171 0.99 54 539 keratinocyte stem cell (99.6%) Skin (100%)
cl26 0.99 36 357 luminal cell of lactiferous duct (51%) Mammary (100%)
cl81 0.99 72 715 endothelial cell (93.3%) Lung (100%)
cl38 0.98 223 2227 fibroblast (99.3%) Heart (100%)
cl100 0.98 105 1052 mesenchymal cell (97.1%) Bladder (100%)
cl108 0.98 49 494 epithelial cell (54.5%) Trachea (55.9%)
cl31 0.98 496 4961 stromal cell (97.4%) Trachea (100%)
cl49 0.98 82 823 mesenchymal cell (98.4%) Bladder (100%)
cl122 0.97 39 386 stromal cell (99.7%) Lung (100%)
cl37 0.97 367 3665 stromal cell (98.4%) Trachea (100%)
cl17 0.97 74 742 epithelial cell of

large intestine (99.9%)
Colon (100%)

cl95 0.97 90 899 T cell (99.8%) Thymus (100%)
cl6 0.97 227 2267 hematopoietic stem cell (73.7%) Marrow (100%)
cl165 0.97 101 1008 kidney tubule cell (98.5%) Kidney (100%)
cl47 0.97 116 1157 bladder cell (78%) Bladder (100%)
cl1 0.97 454 4543 basal cell of epidermis (95%) Tongue (100%)
cl54 0.97 180 1798 granulocyte (61.5%) Marrow (100%)
cl136 0.97 63 631 T cell (100%) Thymus (100%)
cl24 0.97 63 631 epithelial cell (92.4%) Trachea (100%)
cl106 0.96 41 407 chondroblast (93.1%) Muscle (99.3%)
cl180 0.96 39 392 kidney tubule cell (98.7%) Kidney (100%)
cl141 0.96 128 1279 skeletal muscle

satellite cell (67.9%)
Muscle (70%)

cl71 0.96 24 239 smooth muscle cell (98.7%) Heart (100%)
cl32 0.96 24 238 mesenchymal stem cell (97.5%) Diaphragm (100%)
cl85 0.96 82 822 natural killer cell (99.8%) Lung (100%)
cl44 0.96 143 1434 mesenchymal stem cell (93.4%) Muscle (100%)
cl176 0.96 24 242 enterocyte of epithelium of

large intestine (97.9%)
Colon (100%)

cl181 0.96 23 229 astrocyte ofthe
cerebral cortex (92.6%)

Brain_Neurons (100%)
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Table B.4: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 1)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl76 0.95 23 232 endocardial cell (98.7%) Heart (100%)
cl151 0.95 32 324 hepatocyte (99.7%) Liver (100%)
cl126 0.95 22 223 keratinocyte (95.5%) Tongue (100%)
cl39 0.95 159 1593 endothelial cell (72.8%) Trachea (65.3%)
cl99 0.95 87 868 stromal cell (99.1%) Lung (100%)
cl140 0.95 68 684 hematopoietic stem cell (64%) Marrow (100%)
cl83 0.95 38 379 macrophage (53.6%) Marrow (98.2%)
cl187 0.95 19 188 type II pneumocyte (97.3%) Lung (100%)
cl159 0.94 17 174 oligodendrocyte precursor

cell (99.4%)
Brain_Neurons (100%)

cl62 0.94 196 1955 endothelial cell (98.7%) Heart (68%)
cl86 0.94 101 1012 basal cell of epidermis (95.6%) Tongue (99.4%)
cl125 0.94 17 168 type B pancreatic cell (98.2%) Pancreas (100%)
cl144 0.94 77 771 basal cell of epidermis (95.2%) Tongue (100%)
cl64 0.94 150 1504 T cell (99.1%) Mammary (100%)
cl48 0.94 68 678 stromal cell (99%) Mammary (100%)
cl131 0.94 86 862 oligodendrocyte (96.6%) Brain_Neurons (100%)
cl60 0.94 239 2391 T cell (99.3%) Spleen (100%)
cl74 0.94 753 7534 B cell (98.6%) Spleen (70.5%)
cl14 0.94 123 1232 B cell (60%) Mammary (100%)
cl110 0.94 63 630 bladder cell (81.4%) Bladder (99.4%)
cl18 0.94 97 965 leukocyte (97.3%) Trachea (100%)
cl96 0.94 73 729 mesenchymal stem cell

of adipose (55.4%)
Fat (55.7%)

cl55 0.94 132 1318 endothelial cell (98%) Muscle (100%)
cl113 0.94 143 1434 keratinocyte (97.6%) Tongue (99.7%)
cl132 0.94 23 226 epithelial cell of

large intestine (83.2%)
Colon (100%)

cl43 0.93 120 1197 monocyte (69.2%) Marrow (100%)
cl112 0.93 8 84 large intestine goblet cell (100%) Colon (100%)
cl97 0.93 8 80 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl173 0.93 22 220 epidermal cell (93.2%) Skin (100%)
cl67 0.93 29 294 granulocyte (94.6%) Fat (100%)
cl129 0.93 36 360 stromal cell (99.2%) Lung (100%)
cl0 0.93 118 1182 T cell (87.9%) Thymus (100%)
cl127 0.93 35 348 large intestine goblet cell (87.9%) Colon (100%)
cl35 0.92 48 481 leukocyte (88.4%) Heart (100%)
cl82 0.92 18 179 brain pericyte (58.1%) Brain_Neurons (58.1%)
cl21 0.92 31 307 endothelial cell (94.8%) Mammary (100%)
cl57 0.92 54 537 B cell (98.7%) Muscle (100%)
cl11 0.91 11 115 ciliated cell (47%) Lung (100%)
cl58 0.91 21 211 endothelial cell of

hepatic sinusoid (85.8%)
Liver (100%)

cl121 0.90 41 413 epithelial cell of
large intestine (99.8%)

Colon (100%)

cl42 0.90 20 204 neuroendocrine cell (95.1%) Trachea (100%)
cl88 0.90 31 308 myeloid cell (99%) Fat (100%)
cl52 0.90 54 538 endothelial cell (99.3%) Fat (100%)
cl184 0.89 12 117 pancreatic acinar cell (97.4%) Pancreas (100%)
cl34 0.89 33 327 macrophage (96.9%) Muscle (100%)
cl130 0.89 18 176 large intestine goblet cell (96%) Colon (100%)
cl72 0.89 94 938 mesenchymal stem cell

of adipose (99.9%)
Fat (100%)

cl94 0.89 62 617 stromal cell (97.4%) Lung (100%)
cl142 0.88 16 156 type B pancreatic cell (100%) Pancreas (100%)
cl77 0.88 31 309 leukocyte (48.9%) Lung (58.3%)
cl13 0.88 33 326 unknown (61%) Muscle (100%)
cl145 0.88 38 384 basal cell of epidermis (80.7%) Skin (100%)
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Table B.5: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 2)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl45 0.88 55 545 stromal cell (94.3%) Lung (100%)
cl102 0.87 17 170 stromal cell (87.6%) Lung (97.1%)
cl153 0.87 14 137 pancreatic A cell (71.5%) Pancreas (100%)
cl84 0.86 22 216 monocyte (81.9%) Lung (100%)
cl15 0.86 24 239 macrophage (74.9%) Kidney (100%)
cl51 0.86 123 1229 microglial cell (99.6%) Brain_Microglia (100%)
cl172 0.86 18 177 large intestine goblet cell (52%) Colon (100%)
cl87 0.86 29 294 dendritic cell (88.4%) Lung (100%)
cl90 0.86 8 76 endothelial cell (100%) Aorta (100%)
cl10 0.85 271 2706 B cell (98.1%) Spleen (100%)
cl7 0.85 53 535 macrophage (63.6%) Spleen (100%)
cl177 0.85 21 208 enterocyte of epithelium of

large intestine (90.4%)
Colon (100%)

cl53 0.83 27 273 endothelial cell (96.3%) Lung (100%)
cl183 0.83 13 128 large intestine goblet cell (98.4%) Colon (100%)
cl29 0.83 170 1700 microglial cell (100%) Brain_Microglia (100%)
cl162 0.83 24 237 enterocyte of epithelium of

large intestine (98.7%)
Colon (100%)

cl115 0.83 22 219 mesenchymal stem cell
of adipose (99.5%)

Fat (100%)

cl188 0.83 20 197 astrocyte of the
cerebral cortex (87.3%)

Brain_Neurons (100%)

cl119 0.83 32 317 oligodendrocyte (99.7%) Brain_Neurons (100%)
cl40 0.83 26 260 neuroendocrine cell (74.2%) Trachea (100%)
cl107 0.82 9 94 epidermal cell (43.6%) Skin (96.8%)
cl109 0.82 26 265 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl12 0.81 143 1427 microglial cell (98.5%) Brain_Microglia (100%)
cl152 0.81 15 155 pancreatic A cell (98.1%) Pancreas (100%)
cl56 0.80 47 467 T cell (72.8%) Fat (100%)
cl9 0.80 5 49 epithelial cell (95.9%) Fat (100%)
cl69 0.80 11 113 neuroendocrine cell (90.3%) Trachea (100%)
cl80 0.79 22 222 neutrophil (98.2%) Fat (100%)
cl36 0.79 16 162 myeloid cell (90.1%) Fat (100%)
cl149 0.79 19 186 epidermal cell (57.5%) Skin (100%)
cl68 0.79 77 766 T cell (74.7%) Marrow (60.8%)
cl191 0.78 13 131 epithelial cell of large intestine (59.5%) Colon (100%)
cl63 0.77 31 315 T cell (91.1%) Lung (100%)
cl2 0.77 16 156 Kupffer cell (32.7%) Liver (100%)
cl158 0.77 25 255 epithelial cell of large intestine (76.1%) Colon (100%)
cl197 0.76 10 97 unknown (58.8%) Brain_Neurons (100%)
cl114 0.75 35 354 macrophage (99.4%) Lung (100%)
cl28 0.75 9 94 B cell (69.1%) Diaphragm (100%)
cl101 0.75 5 48 endothelial cell (93.8%) Fat (91.7%)
cl111 0.75 5 53 oligodendrocyte (64.2%) Brain_Neurons (100%)
cl4 0.71 31 313 cardiac muscle cell (62.9%) Heart (100%)
cl5 0.70 21 210 fibroblast (66.2%) Kidney (100%)
cl148 0.70 11 107 pancreatic D cell (57.9%) Pancreas (100%)
cl30 0.69 36 362 T cell (96.4%) Muscle (100%)
cl93 0.67 1 9 unknown (44.4%) Aorta (100%)
cl41 0.62 19 187 macrophage (73.8%) Lung (100%)
cl25 0.62 6 60 leukocyte (90%) Bladder (100%)
cl8 0.59 11 106 unknown (67.9%) Brain_Neurons (100%)
cl50 0.57 5 46 fibroblast (58.7%) Aorta (100%)
cl33 0.55 8 78 endothelial cell (92.3%) Diaphragm (100%)
cl19 0.50 1 14 leukocyte (78.6%) Pancreas (100%)
cl79 0.50 3 26 smooth muscle cell (96.2%) Fat (100%)
cl16 0.48 7 69 endothelial cell (85.5%) Bladder (100%)
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Table B.6: F1 scores and class sizes for CellTypist trained on the Tabula Muris with
integrated cluster labels. Labels are derived from the CellTypist pipeline, as described
in Chapter 3. (continued 3)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl66 0.45 26 262 B cell (98.1%) Lung (100%)
cl59 0.44 4 36 leukocyte (77.8%) Kidney (100%)
cl23 0.22 7 67 epicardial adipocyte (47.8%) Aorta (100%)
cl155 0.18 2 18 pancreatic acinar cell (100%) Pancreas (100%)
cl104 0.00 0 5 mesenchymal stem cell

of adipose (100%)
Fat (100%)

cl105 0.00 0 4 mesenchymal stem cell
of adipose (100%)

Fat (100%)

cl116 0.00 0 5 endothelial cell (100%) Fat (100%)
cl117 0.00 1 12 smooth muscle cell (100%) Brain_Neurons (100%)
cl118 0.00 0 3 epithelial cell of

large intestine (66.7%)
Colon (100%)

cl120 0.00 0 5 endothelial cell (100%) Brain_Neurons (100%)
cl123 0.00 2 16 pancreatic PP cell (100%) Pancreas (100%)
cl128 0.00 1 6 pancreatic PP cell (100%) Pancreas (100%)
cl133 0.00 1 9 oligodendrocyte precursor

cell (100%)
Brain_Neurons (100%)

cl134 0.00 0 4 epithelial cell of
large intestine (100%)

Colon (100%)

cl137 0.00 1 14 pancreatic A cell (64.3%) Pancreas (100%)
cl139 0.00 3 34 pancreatic A cell (64.7%) Pancreas (100%)
cl146 0.00 1 9 T cell (88.9%) Fat (100%)
cl156 0.00 3 26 pancreatic D cell (100%) Pancreas (100%)
cl160 0.00 1 8 type B pancreatic cell (100%) Pancreas (100%)
cl163 0.00 0 3 type B pancreatic cell (100%) Pancreas (100%)
cl164 0.00 0 4 neuron (100%) Brain_Neurons (100%)
cl167 0.00 0 3 pancreatic ductal cell (100%) Pancreas (100%)
cl168 0.00 1 8 smooth muscle cell (37.5%) Aorta (100%)
cl169 0.00 1 6 unknown (100%) Brain_Neurons (100%)
cl170 0.00 0 4 pancreatic A cell (100%) Pancreas (100%)
cl174 0.00 1 6 fibroblast (66.7%) Aorta (100%)
cl178 0.00 0 3 epicardial adipocyte (100%) Aorta (100%)
cl179 0.00 1 6 type B pancreatic cell (100%) Pancreas (100%)
cl182 0.00 0 3 Brush cell of epithelium proper

of large intestine (100%)
Colon (100%)

cl192 0.00 0 5 epithelial cell of large intestine (60%) Colon (100%)
cl195 0.00 0 4 pancreatic acinar cell (100%) Pancreas (100%)
cl196 0.00 5 50 pancreatic acinar cell (78%) Pancreas (100%)
cl22 0.00 5 53 skeletal muscle satellite

stem cell (90.6%)
Diaphragm (100%)

cl3 0.00 1 6 keratinocyte stem cell (100%) Skin (100%)
cl46 0.00 1 11 epicardial adipocyte (54.5%) Aorta (100%)
cl61 0.00 2 16 B cell (93.8%) Diaphragm (100%)
cl75 0.00 1 10 hematopoietic cell (60%) Aorta (60%)
cl78 0.00 2 20 hematopoietic cell (55%) Aorta (55%)
cl91 0.00 0 3 endothelial cell (100%) Aorta (100%)
cl92 0.00 7 70 endothelial cell (58.6%) Aorta (100%)
cl98 0.00 0 3 macrophage (100%) Diaphragm (100%)
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Table B.7: Human scRNA-seq datasets collected and corresponding cell numbers
Dataset Reference # cells

baron16 (Baron et al., 2016) 8.569
bjorklund16 (Bjorklund et al., 2016) 648
gierahn17 (Gierahn et al., 2017) 3.694
guo18 (Guo et al., 2018) 12.053
habib17 (Habib et al., 2017) 14.963
hcaImmune18 HCA Data Portal 593.844
henry18 (Henry et al., 2018) 109.061
jaitin19 (Jaitin et al., 2019) 13.199
james20 Unpublished 32.228
lamanno16 (La Manno et al., 2016) 1.977
li19 (Li et al., 2019b) 1.886
masuda19 (Masuda et al., 2019) 6.144
menon18 (Menon et al., 2018) 9.846
miragaia18 (Miragaia et al., 2019) 1.168
muraro16 (Muraro et al., 2016) 2.126
nowakowski17 (Nowakowski et al., 2017) 4.261
popescu19 (Popescu et al., 2019) 113.063
segal19 (Segal et al., 2019) 1.475
segerstolpe16 (Segerstolpe et al., 2016) 3.363
smillie19 (Smillie et al., 2019) 110.110
sohni19 (Sohni et al., 2019) 34.729
takeda19 (Takeda et al., 2019) 33.257
vento18 (Vento-Tormo et al., 2018) 69.883
vieira19 (Braga et al., 2019) 26.013
wang16 (Wang et al., 2016) 635
young18 (Young et al., 2018) 44.526
zhang18 (Zhang et al., 2018) 5.989
zheng17 (Zheng et al., 2017) 163.234

Total 1.421.944

data.humancellatlas.org
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Table B.8: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it.

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl19 1.00 6 56 No annotation (100%) Intestine (100%)
cl198 1.00 4 41 No annotation (100%) Brain_Microglia (100%)
cl264 1.00 8 76 Endo (m) (96.1%) Decidua (100%)
cl311 1.00 12 123 Smooth muscle (56.9%) Lung Parenchyma (100%)
cl319 1.00 1 7 SCT (100%) Placenta (100%)
cl362 1.00 2 21 No annotation (100%) Brain_Microglia (100%)
cl67 1.00 33 326 Endo L (97.5%) Decidua (100%)
cl307 0.99 392 3916 Type 2 (97.8%) Lung Parenchyma (100%)
cl282 0.99 450 4496 Myoid cells (6.6%) Testis (100%)
cl295 0.99 46 464 dS1 (35.3%) Decidua (100%)
cl376 0.99 1039 10393 No annotation (100%) Prostate (100%)
cl242 0.99 905 9047 dS1 (50.8%) Decidua (100%)
cl34 0.99 71 710 Fibroblasts (99.7%) Lung Parenchyma (100%)
cl179 0.99 1013 10132 dNK2 (49%) Decidua (100%)
cl131 0.98 193 1932 Macrophages (97%) Lung Parenchyma (100%)
cl451 0.98 976 9763 CD19+ B (96.4%) Blood (100%)
cl83 0.98 310 3104 Leydig cells (18.8%) Testis (100%)
cl12 0.98 30 302 endothelial (90.4%) Pancreas (100%)
cl27 0.98 369 3685 Endothelial cells (8.8%) Testis (100%)
cl266 0.98 55 547 Neutrophils (74.2%) Lung Parenchyma (100%)
cl127 0.98 26 258 Macrophages (98.1%) Lung Parenchyma (100%)
cl269 0.98 26 264 NK (87.1%) Lung Parenchyma (100%)
cl55 0.98 180 1797 ductal (88.1%) Pancreas (100%)
cl44 0.98 551 5513 dM1 (50.2%) Decidua (100%)
cl286 0.98 173 1731 fFB1 (99.2%) Placenta (100%)
cl97 0.98 188 1875 dP1 (54.7%) Decidua (100%)
cl24 0.98 91 910 Macrophages (37.1%) Testis (100%)
cl109 0.98 424 4240 No annotation (100%) BoneMarrow (100%)
cl102 0.98 353 3529 fFB1 (0.1%) Testis (99.8%)
cl122 0.98 128 1276 HB (98.2%) Placenta (100%)
cl345 0.98 101 1012 MGE newborn neurons (29.5%) Brain (100%)
cl64 0.97 78 783 Endo (m) (97.3%) Decidua (100%)
cl494 0.97 314 3137 No annotation (100%) BoneMarrow (100%)
cl133 0.97 79 791 Macrophages (97.1%) Lung Parenchyma (100%)
cl35 0.97 89 885 dM3 (86.4%) Placenta (100%)
cl284 0.97 53 533 Ciliated (99.6%) Upper airway (100%)
cl369 0.97 89 889 delta (95.6%) Pancreas (100%)
cl79 0.97 702 7018 NK (52.3%) Liver (100%)
cl23 0.97 18 178 Neutrophils (52.8%) Upper airway (100%)
cl442 0.97 894 8944 CD56+ NK (91.2%) Blood (100%)
cl341 0.97 227 2269 Sperm (84.5%) Testis (100%)
cl113 0.97 2447 24471 CD19+ B (0.3%) Blood (100%)
cl252 0.97 228 2276 Macrophages (90%) Lung Parenchyma (100%)
cl447 0.97 919 9192 Treg (0%) Blood (100%)
cl192 0.97 155 1551 Neutrophils (93.5%) Lung Parenchyma (100%)
cl523 0.97 985 9851 No annotation (100%) BoneMarrow (100%)
cl338 0.97 15 145 EVT (82.8%) Decidua (100%)
cl379 0.97 116 1159 Type 2 (97.7%) Lung Parenchyma (100%)
cl281 0.97 99 994 dS3 (85.5%) Decidua (100%)
cl517 0.96 595 5952 No annotation (100%) BoneMarrow (100%)
cl75 0.96 162 1619 No annotation (100%) BoneMarrow (100%)
cl118 0.96 89 887 Macrophages (98.9%) Lung Parenchyma (100%)
cl327 0.96 266 2658 Differentiating Spermatogonia (11.6%) Testis (100%)
cl378 0.96 419 4194 No annotation (100%) Prostate (100%)
cl312 0.96 141 1413 Early Primary Spermatocytes (38.7%) Testis (100%)
cl314 0.96 396 3959 No annotation (100%) Prostate (100%)
cl321 0.96 76 759 dNK1 (31.4%) Decidua (100%)
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Table B.9: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 1)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl208 0.96 134 1335 dM1 (51%) Decidua (99.7%)
cl69 0.96 1184 11840 CD19+ B (30.9%) Blood (100%)
cl322 0.96 107 1070 Elongated Spermatids (66%) Testis (100%)
cl570 0.96 70 699 OPC (86.6%) Brain (100%)
cl326 0.96 365 3653 No annotation (100%) Kidney (100%)
cl22 0.96 12 121 No annotation (100%) Brain_Microglia (100%)
cl455 0.95 1072 10721 CD8+/CD45RA+

Naive Cytotoxic (0.9%)
Blood (100%)

cl49 0.95 244 2441 Fibroblast (29.9%) Liver (100%)
cl543 0.95 172 1722 No annotation (100%) BoneMarrow (100%)
cl380 0.95 543 5433 No annotation (100%) Prostate (100%)
cl7 0.95 102 1015 No annotation (100%) Omentum Adipose Tissue (100%)
cl15 0.95 49 486 MG (70.2%) Brain (100%)
cl11 0.95 57 572 Endothelium (65%) Lung Parenchyma (56.3%)
cl606 0.95 623 6230 WNT2B+ Fos-lo 1 (27.4%) Colon (100%)
cl413 0.95 1834 18344 CD8+/CD45RA+

Naive Cytotoxic (0.1%)
Blood (100%)

cl45 0.95 486 4862 Macrophages (70.2%) Colon (100%)
cl308 0.95 66 656 Type 2 (98.6%) Lung Parenchyma (100%)
cl40 0.95 267 2669 Kupffer Cell (19.8%) Liver (100%)
cl440 0.95 931 9305 CD34+ (87.6%) Blood (100%)
cl316 0.94 122 1216 Secretory (91.2%) Upper airway (100%)
cl77 0.94 269 2694 No annotation (100%) BoneMarrow (100%)
cl155 0.94 237 2373 pro-B cell (25%) Liver (99.8%)
cl240 0.94 74 744 dNK2 (47.6%) Decidua (100%)
cl2 0.94 461 4613 No annotation (100%) Prostate (100%)
cl503 0.94 692 6923 No annotation (100%) BoneMarrow (100%)
cl268 0.94 176 1760 dS1 (94%) Decidua (100%)
cl243 0.94 81 808 dS1 (87.5%) Decidua (100%)
cl63 0.94 41 406 Secretory (67.5%) Lung Parenchyma (100%)
cl582 0.94 193 1933 Th cell (0.1%) Kidney (100%)
cl261 0.94 108 1078 EVT (97%) Placenta (100%)
cl206 0.94 44 439 fFB1 (98.9%) Placenta (100%)
cl283 0.94 165 1650 dT CD8 (26.2%) Decidua (88.3%)
cl403 0.94 357 3568 Megakaryocyte (45.3%) Liver (100%)
cl68 0.94 207 2071 ILC precursor (39.3%) Liver (100%)
cl492 0.93 343 3425 No annotation (100%) BoneMarrow (100%)
cl370 0.93 124 1239 acinar (80%) Pancreas (100%)
cl372 0.93 63 630 gamma (87.6%) Pancreas (100%)
cl456 0.93 1151 11506 CD34+ (1.4%) Blood (100%)
cl47 0.93 493 4926 Normal_cell (4%) Kidney (100%)
cl377 0.93 432 4324 No annotation (100%) Prostate (100%)
cl536 0.93 30 296 No annotation (100%) BoneMarrow (100%)
cl547 0.93 60 595 No annotation (100%) BoneMarrow (100%)
cl219 0.93 57 574 Endothelial cells (3.8%) Testis (100%)
cl540 0.93 179 1785 No annotation (100%) BoneMarrow (100%)
cl432 0.93 743 7430 No annotation (100%) Prostate (100%)
cl375 0.93 207 2065 alpha (90.4%) Pancreas (100%)
cl515 0.93 638 6377 No annotation (100%) BoneMarrow (100%)
cl374 0.93 204 2040 beta (98.9%) Pancreas (100%)
cl271 0.93 105 1047 No annotation (100%) Omentum Adipose Tissue (100%)
cl371 0.93 134 1343 alpha (97.5%) Pancreas (100%)
cl401 0.92 455 4553 No annotation (100%) Prostate (100%)
cl506 0.92 914 9140 No annotation (100%) BoneMarrow (100%)
cl504 0.92 1595 15946 No annotation (100%) BoneMarrow (100%)
cl260 0.92 81 811 Basal (98.3%) Upper airway (100%)
cl250 0.92 135 1353 No annotation (100%) axLN (100%)
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Table B.10: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 2)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl301 0.92 14 138 Secretory (87%) Upper airway (100%)
cl542 0.92 175 1748 No annotation (100%) BoneMarrow (100%)
cl490 0.92 1166 11658 No annotation (100%) BoneMarrow (100%)
cl568 0.92 761 7609 TA 1 (37.4%) Colon (100%)
cl458 0.92 1177 11771 CD56+ NK (47.2%) Blood (100%)
cl474 0.92 92 920 Mast cell (49.1%) Liver (100%)
cl48 0.92 18 177 Tcm (57.1%) Skin (100%)
cl495 0.92 308 3084 No annotation (100%) BoneMarrow (100%)
cl509 0.92 760 7595 No annotation (100%) BoneMarrow (100%)
cl277 0.92 12 115 No annotation (100%) Brain_Microglia (100%)
cl470 0.92 1345 13446 NK CD16+ (9.1%) Blood (100%)
cl592 0.92 925 9250 No annotation (100%) BoneMarrow (100%)
cl340 0.92 259 2593 Hepatocyte (40.9%) Liver (100%)
cl335 0.92 57 566 Late primary

Spermatocytes (41.3%)
Testis (100%)

cl255 0.92 114 1144 EVT (98.8%) Placenta (100%)
cl70 0.91 381 3813 No annotation (100%) BoneMarrow (100%)
cl59 0.91 36 356 END (66%) Brain (100%)
cl233 0.91 407 4066 VCT (99.9%) Placenta (100%)
cl511 0.91 573 5731 No annotation (100%) BoneMarrow (100%)
cl464 0.91 610 6102 Mid Erythroid (25.5%) Liver (100%)
cl323 0.91 107 1068 Spermatogonial

Stem cell (0.7%)
Testis (100%)

cl554 0.91 498 4982 B cell IgA plasma (45.9%) Colon (100%)
cl552 0.91 93 926 No annotation (100%) BoneMarrow (100%)
cl258 0.91 75 747 alpha (99.9%) Pancreas (100%)
cl457 0.91 2216 22163 PB Naive CD4 (0.1%) Blood (100%)
cl25 0.91 95 951 No annotation (100%) Omentum Adipose Tissue (100%)
cl38 0.91 32 319 Unknown1 (24.8%) Brain (100%)
cl232 0.91 70 702 CD4 Tfh (71.2%) mLN (100%)
cl486 0.90 441 4414 No annotation (100%) BoneMarrow (100%)
cl404 0.90 1304 13039 No annotation (100%) Prostate (100%)
cl612 0.90 698 6977 Immature Enterocytes 1

(35.6%)
Colon (100%)

cl214 0.90 16 157 ILC2 (83.4%) Tonsil (100%)
cl581 0.90 279 2792 Normal_cell (6.5%) Kidney (100%)
cl488 0.90 389 3888 No annotation (100%) BoneMarrow (100%)
cl293 0.90 42 424 Ciliated (99.8%) Upper airway (100%)
cl115 0.90 277 2767 Kupffer Cell (26.7%) Liver (100%)
cl373 0.90 63 632 acinar (59.3%) Pancreas (100%)
cl429 0.90 567 5673 No annotation (100%) Prostate (100%)
cl518 0.90 234 2344 No annotation (100%) BoneMarrow (100%)
cl56 0.90 575 5748 Mid Erythroid (29.5%) Liver (100%)
cl417 0.90 257 2570 No annotation (100%) Prostate (100%)
cl491 0.90 366 3663 No annotation (100%) BoneMarrow (100%)
cl505 0.90 1430 14301 No annotation (100%) BoneMarrow (100%)
cl278 0.90 100 1000 VCT (97.7%) Placenta (100%)
cl390 0.90 55 547 earlyRG (2.2%) Brain (100%)
cl575 0.90 278 2780 Endothelium;

Mixed_phenotype (<0.1%)
Kidney (100%)

cl279 0.90 85 849 VCT (93.1%) Placenta (100%)
cl36 0.89 172 1717 Endothelial (25.6%) Colon (100%)
cl210 0.89 104 1038 dNK3 (87.5%) Decidua (100%)
cl444 0.89 2513 25130 CD8+/CD45RA+

Naive Cytotoxic (59%)
Blood (100%)

cl299 0.89 77 774 beta (89%) Pancreas (100%)
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Table B.11: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 3)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl538 0.89 204 2038 No annotation (100%) BoneMarrow (100%)
cl430 0.89 680 6797 No annotation (100%) Prostate (100%)
cl567 0.89 789 7894 TA 1 (75.4%) Colon (100%)
cl498 0.89 276 2763 No annotation (100%) BoneMarrow (100%)
cl569 0.89 490 4899 Plasma (94.8%) Colon (100%)
cl247 0.89 4 37 No annotation (100%) Omentum Adipose Tissue (100%)
cl259 0.89 15 154 EVT (100%) Placenta (100%)
cl336 0.89 10 101 No annotation (100%) Brain_Microglia (100%)
cl88 0.89 47 466 Endothelium (1.3%) axLN (98.7%)
cl478 0.89 1857 18568 CD4+/CD45RA+/CD25-

Naive T (48.1%)
Blood (100%)

cl57 0.89 157 1571 DCs (60.2%) Lung Parenchyma (100%)
cl8 0.89 225 2246 dT CD8 (31.5%) Decidua (100%)
cl512 0.88 679 6788 No annotation (100%) BoneMarrow (100%)
cl100 0.88 17 169 Plasma (1.8%) Omentum Adipose Tissue (98.2%)
cl267 0.88 13 126 No annotation (100%) Brain_Microglia (100%)
cl433 0.88 821 8207 No annotation (100%) Prostate (100%)
cl408 0.88 73 727 EVT (97.2%) Placenta (100%)
cl1 0.88 724 7237 Renal_cell_carcinoma (3.4%) Kidney (100%)
cl339 0.88 192 1917 Spermatogonial

Stem cell (4.5%)
Testis (100%)

cl392 0.88 56 563 Newborn Excitatory Neuron
- late born (1.2%)

Brain (100%)

cl317 0.88 123 1226 VCT (97.5%) Placenta (100%)
cl280 0.88 9 92 No annotation (100%) Brain_Microglia (100%)
cl382 0.88 8 83 Fibroblasts (77.1%) Lung Parenchyma (100%)
cl391 0.87 115 1147 Newborn Excitatory Neuron

- early born (42%)
Brain (100%)

cl134 0.87 946 9463 Early Erythroid (44.5%) Liver (100%)
cl617 0.87 176 1764 CD69+ Mast (50.6%) Colon (100%)
cl350 0.87 19 190 Unclassified (75.3%) Brain (100%)
cl355 0.87 43 432 Ciliated (97.5%) Upper airway (100%)
cl18 0.87 21 206 ILC3 (96.6%) Tonsil (100%)
cl387 0.87 268 2680 Spermatogonial

Stem cell (6.7%)
Testis (100%)

cl256 0.87 80 801 not applicable (65.9%) Pancreas (99.6%)
cl74 0.87 605 6048 No annotation (100%) Prostate (100%)
cl508 0.87 864 8640 No annotation (100%) BoneMarrow (100%)
cl610 0.87 310 3098 CD4+ Memory (81.7%) Colon (100%)
cl46 0.87 601 6013 CD14+ Monocyte (30%) Blood (100%)
cl431 0.87 742 7415 No annotation (100%) Prostate (100%)
cl613 0.87 273 2734 Follicular (74.8%) Colon (100%)
cl4 0.86 27 272 Sertoli cells (5.9%) Testis (100%)
cl309 0.86 33 325 No annotation (100%) axLN (100%)
cl500 0.86 453 4529 No annotation (100%) BoneMarrow (100%)
cl14 0.86 87 865 T cell (76.2%) Lung Parenchyma (100%)
cl510 0.86 689 6892 No annotation (100%) BoneMarrow (100%)
cl13 0.86 24 240 No annotation (100%) hnLN (100%)
cl203 0.86 11 108 fFB2 (97.2%) Placenta (100%)
cl37 0.86 8 79 NK (88.6%) Tonsil (100%)
cl62 0.86 7 72 No annotation (100%) Brain_Microglia (100%)
cl501 0.86 464 4637 No annotation (100%) BoneMarrow (100%)
cl601 0.86 84 835 B cell IgA plasma (71.9%) Colon (100%)
cl590 0.85 386 3857 B cell IgA plasma (70.7%) Colon (100%)
cl343 0.85 97 968 NSC (13.4%) Brain (100%)
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Table B.12: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 4)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl516 0.85 1394 13939 No annotation (100%) BoneMarrow (100%)
cl238 0.85 141 1411 B cell memory (40%) mLN (100%)
cl595 0.85 637 6372 Plasma (97.3%) Colon (100%)
cl611 0.85 168 1677 B cell IgA plasma (64.9%) Colon (100%)
cl306 0.85 38 384 Myoid cells (5.5%) Testis (100%)
cl475 0.84 146 1457 Mid Erythroid (24.6%) Liver (100%)
cl101 0.84 221 2213 Plasma (85.6%) Colon (100%)
cl497 0.84 278 2784 No annotation (100%) BoneMarrow (100%)
cl51 0.84 834 8335 Kupffer Cell (27.8%) Liver (100%)
cl438 0.84 314 3141 HSC_MPP (36%) Liver (100%)
cl452 0.84 1198 11980 MO (0.6%) Blood (100%)
cl183 0.84 49 494 Mast cell (86.2%) Lung Parenchyma (86.6%)
cl534 0.84 951 9505 No annotation (100%) BoneMarrow (100%)
cl514 0.84 938 9378 No annotation (100%) BoneMarrow (100%)
cl93 0.84 528 5279 Myeloid (31.8%) Blood (100%)
cl110 0.84 132 1318 No annotation (100%) BoneMarrow (100%)
cl576 0.83 1353 13527 Th cell (3.7%) Kidney (100%)
cl386 0.83 62 619 MGE Progenitors (22%) Brain (100%)
cl43 0.83 7 66 No annotation (100%) Intestine (100%)
cl439 0.83 1849 18491 Bcell (0%) Blood (100%)
cl220 0.83 234 2342 Sperm (0.6%) Testis (100%)
cl26 0.83 69 692 activated_stellate (40.5%) Pancreas (100%)
cl507 0.83 892 8923 No annotation (100%) BoneMarrow (100%)
cl275 0.83 16 161 No annotation (100%) Prostate (100%)
cl50 0.83 32 316 No annotation (100%) Omentum Adipose Tissue (100%)
cl332 0.83 94 937 GABA1 (50.6%) Brain (100%)
cl428 0.83 42 421 No annotation (100%) Prostate (100%)
cl615 0.83 252 2520 CD4+ CD25- T cells (31.3%) Colon (100%)
cl520 0.83 214 2137 No annotation (100%) BoneMarrow (100%)
cl270 0.83 84 842 No annotation (100%) axLN (100%)
cl329 0.83 253 2534 Private (4.9%) Kidney (100%)
cl493 0.82 329 3289 No annotation (100%) BoneMarrow (100%)
cl30 0.82 9 93 ILC1 (100%) Tonsil (100%)
cl276 0.82 35 349 No annotation (100%) Brain_Microglia (100%)
cl304 0.82 361 3610 Sertoli cells (0.1%) Testis (100%)
cl551 0.82 107 1070 No annotation (100%) BoneMarrow (100%)
cl549 0.82 116 1156 No annotation (100%) BoneMarrow (100%)
cl418 0.82 979 9790 Mid Erythroid (67.6%) Liver (100%)
cl389 0.82 17 171 No annotation (100%) Brain_Microglia (100%)
cl96 0.82 21 205 EVT (94.6%) Placenta (98.5%)
cl246 0.82 71 714 Basal (99.4%) Upper airway (100%)
cl3 0.82 13 125 macrophage (43.2%) Pancreas (100%)
cl448 0.82 921 9207 CD14+ Monocyte (1.8%) Blood (100%)
cl87 0.82 642 6419 Treg NL-like (0%) BoneMarrow (100%)
cl465 0.82 292 2919 Mid Erythroid (71.9%) Liver (100%)
cl229 0.82 35 347 No annotation (100%) hnLN (100%)
cl71 0.82 1018 10179 CD8+ Cytotoxic T (49.7%) Blood (100%)
cl524 0.81 15 148 No annotation (100%) BoneMarrow (100%)
cl480 0.81 291 2914 CD4+ CD25high

T cells (28.1%)
Blood (100%)

cl263 0.81 62 617 Basal (99.2%) Upper airway (100%)
cl586 0.81 88 881 exPFC1 (55.2%) Brain (100%)
cl477 0.81 155 1554 Early Erythroid (55.1%) Liver (100%)
cl537 0.81 53 525 No annotation (100%) BoneMarrow (100%)
cl143 0.81 62 620 beta (90.6%) Pancreas (100%)
cl577 0.81 83 834 NK cell 1 (4.2%) Kidney (100%)
cl178 0.81 40 401 No annotation (100%) hnLN (100%)
cl502 0.80 571 5707 No annotation (100%) BoneMarrow (100%)
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Table B.13: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 5)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl571 0.80 459 4593 TA 1 (51.9%) Colon (100%)
cl298 0.80 15 146 No annotation (100%) Brain_Microglia (100%)
cl553 0.80 86 861 No annotation (100%) BoneMarrow (100%)
cl359 0.80 31 309 Unclassified (66%) Brain (100%)
cl360 0.80 458 4577 Sertoli cells (0%) Testis (100%)
cl76 0.80 1487 14872 MO (3.5%) Blood (100%)
cl80 0.80 61 614 No annotation (100%) Omentum Adipose Tissue (100%)
cl296 0.80 57 565 Early Born Deep Layer/

subplate Excitatory Neuron V1
(25%)

Brain (100%)

cl460 0.80 487 4866 PB Naive CD4 (0.1%) Blood (100%)
cl459 0.79 1360 13598 CD8+/CD45RA+

Naive Cytotoxic (58.9%)
Blood (100%)

cl272 0.79 58 579 No annotation (100%) axLN (100%)
cl227 0.79 121 1205 No annotation (100%) axLN (100%)
cl41 0.79 25 249 EVT (87.1%) Decidua (100%)
cl358 0.79 494 4938 Sertoli cells (0.1%) Testis (100%)
cl262 0.79 86 862 Basal (98.5%) Upper airway (100%)
cl89 0.79 471 4714 CD8+ LP (58%) Colon (100%)
cl160 0.79 166 1656 No annotation (100%) Omentum Adipose Tissue (99.8%)
cl313 0.79 53 528 SCT (78.6%) Placenta (100%)
cl449 0.78 1453 14529 CD4+/CD25 T Reg (49.5%) Blood (100%)
cl626 0.78 117 1172 B cell IgA plasma (53.2%) Colon (100%)
cl616 0.78 249 2494 CD8+ IELs (52.4%) Colon (100%)
cl361 0.78 112 1124 exPFC1 (88.9%) Brain (100%)
cl399 0.78 50 499 GABA2 (55.5%) Brain (100%)
cl435 0.78 1197 11966 Kupffer Cell (67%) Liver (100%)
cl254 0.77 19 190 No annotation (100%) hnLN (100%)
cl422 0.77 412 4117 Late Erythroid (23.9%) Liver (100%)
cl618 0.77 158 1583 Plasma (84.2%) Colon (100%)
cl556 0.77 548 5477 Cycling TA (47.1%) Colon (100%)
cl60 0.77 114 1137 No annotation (100%) Omentum Adipose Tissue (100%)
cl402 0.77 497 4972 No annotation (100%) Prostate (100%)
cl318 0.77 159 1591 VCT (97.4%) Placenta (100%)
cl453 0.76 983 9833 CD4+/CD25 T Reg (35.3%) Blood (100%)
cl548 0.76 1017 10174 No annotation (100%) BoneMarrow (100%)
cl483 0.76 73 726 Sertoli cells (0.3%) Testis (100%)
cl400 0.76 774 7742 Mid Erythroid (63.6%) Liver (100%)
cl412 0.76 58 581 Kupffer Cell (32.7%) Liver (100%)
cl388 0.76 59 590 exCA3 (62.5%) Brain (100%)
cl367 0.76 121 1206 ASC1 (58%) Brain (100%)
cl224 0.76 21 206 No annotation (100%) hnLN (100%)
cl147 0.76 414 4144 Mid Erythroid (28.2%) Liver (99.9%)
cl463 0.76 1431 14305 CD8+/CD45RA+

Naive Cytotoxic (1.1%)
Blood (100%)

cl128 0.75 611 6107 TA 2 (39%) Colon (100%)
cl621 0.75 653 6529 CD4+ Activated

Fos-lo (36.6%)
Colon (100%)

cl303 0.75 36 355 SCT (97.5%) Placenta (100%)
cl31 0.75 51 514 No annotation (100%) axLN (100%)
cl485 0.75 445 4453 No annotation (100%) BoneMarrow (100%)
cl52 0.75 5 52 Fibroblasts (86.5%) Upper airway (100%)
cl39 0.74 103 1034 No annotation (100%) Omentum Adipose Tissue (100%)
cl473 0.74 124 1237 CD4 (46.6%) Blood (100%)
cl58 0.74 179 1793 B cell memory (38.8%) mLN (100%)
cl225 0.74 24 237 No annotation (100%) hnLN (100%)
cl519 0.74 1064 10640 No annotation (100%) BoneMarrow (100%)
cl132 0.74 23 229 No annotation (100%) hnLN (100%)
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Table B.14: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 6)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl496 0.74 281 2810 No annotation (100%) BoneMarrow (100%)
cl285 0.73 129 1290 CD4 Tfh (41.4%) mLN (100%)
cl623 0.73 122 1224 TA 2 (31.9%) Colon (100%)
cl434 0.73 867 8667 No annotation (100%) Prostate (100%)
cl16 0.73 39 389 Endothelium (56.3%) Lung Parenchyma (100%)
cl593 0.73 4 38 Best4+ Enterocytes (100%) Colon (100%)
cl148 0.73 15 147 No annotation (100%) hnLN (100%)
cl54 0.73 122 1217 ODC1 (93.1%) Brain (100%)
cl513 0.72 659 6588 No annotation (100%) BoneMarrow (100%)
cl441 0.72 759 7588 CD8+/CD45RA+

Naive Cytotoxic (0.9%)
Blood (100%)

cl248 0.72 27 267 No annotation (100%) hnLN (100%)
cl173 0.72 13 127 No annotation (100%) hnLN (100%)
cl454 0.72 1072 10715 CD8+/CD45RA+ Naive

Cytotoxic (0.3%)
Blood (100%)

cl598 0.72 22 219 Immature Goblet (77.6%) Colon (100%)
cl409 0.72 1576 15761 CD4+/CD45RO+

Memory (44.6%)
Blood (100%)

cl315 0.72 46 461 exPFC1 (45.3%) Brain (100%)
cl555 0.71 506 5061 Immature Goblet (28.8%) Colon (100%)
cl212 0.71 27 267 DC1 (89.9%) Decidua (100%)
cl416 0.71 19 192 No annotation (100%) Prostate (100%)
cl0 0.70 23 231 Endo (f) (34.2%) Placenta (100%)
cl337 0.70 79 789 exDG (87.6%) Brain (100%)
cl174 0.70 79 785 No annotation (100%) axLN (100%)
cl415 0.70 1267 12670 PB Naive CD4 (25.7%) Blood (100%)
cl205 0.70 781 7807 Nephron_epithelium (6.6%) Kidney (100%)
cl476 0.70 218 2183 CD8+ Cytotoxic T (83.3%) Blood (100%)
cl385 0.69 152 1523 No annotation (100%) Omentum Adipose Tissue (100%)
cl274 0.69 60 600 No annotation (100%) axLN (100%)
cl427 0.68 149 1487 No annotation (100%) axLN (100%)
cl53 0.68 481 4814 Granulocytes (2%) Blood (100%)
cl137 0.68 28 275 No annotation (100%) axLN (100%)
cl180 0.68 107 1066 No annotation (100%) axLN (100%)
cl574 0.67 330 3304 Plasma (94.3%) Colon (100%)
cl185 0.67 155 1554 B cell follicular (53%) mLN (100%)
cl622 0.67 134 1338 Immature Enterocytes 2

(52.9%)
Colon (100%)

cl546 0.67 119 1191 No annotation (100%) BoneMarrow (100%)
cl213 0.67 105 1051 No annotation (100%) axLN (100%)
cl384 0.67 4 43 No annotation (100%) Omentum Adipose Tissue (100%)
cl28 0.66 170 1703 No annotation (100%) BoneMarrow (100%)
cl472 0.66 405 4046 CD8+ T cells (20%) Blood (100%)
cl325 0.66 27 274 No annotation (100%) Brain_Microglia (100%)
cl184 0.66 31 311 No annotation (100%) axLN (100%)
cl152 0.66 20 203 Ciliated (100%) Lung Parenchyma (100%)
cl423 0.66 35 345 No annotation (100%) axLN (100%)
cl443 0.65 971 9705 Kupffer Cell (69.9%) Liver (100%)
cl479 0.65 248 2480 Bcell (1.8%) Blood (100%)
cl365 0.65 74 740 ODC1 (93.9%) Brain (100%)
cl410 0.65 1714 17137 PB Naive CD4 (0.2%) Blood (100%)
cl450 0.65 676 6759 CD4+ T Helper (43.9%) Blood (100%)
cl624 0.65 108 1078 Immature Enterocytes 1

(78.7%)
Colon (100%)

cl218 0.65 54 544 No annotation (100%) axLN (100%)
cl156 0.65 1652 16515 PB Naive CD4 (0.1%) Blood (100%)
cl541 0.65 176 1756 No annotation (100%) BoneMarrow (100%)
cl141 0.65 12 121 No annotation (100%) Intestine (100%)
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Table B.15: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 7)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl221 0.65 1297 12967 PB Naive CD4 (0.3%) Blood (100%)
cl580 0.64 633 6331 NK cell (6.7%) Kidney (100%)
cl215 0.64 22 217 No annotation (100%) hnLN (100%)
cl414 0.64 88 883 Kupffer Cell (29.7%) Liver (100%)
cl145 0.64 65 646 No annotation (100%) hnLN (100%)
cl484 0.64 13 134 No annotation (100%) hnLN (100%)
cl251 0.64 91 906 B cell memory (47.7%) mLN (100%)
cl176 0.63 42 416 No annotation (100%) hnLN (100%)
cl33 0.63 15 152 No annotation (100%) Brain_Microglia (100%)
cl614 0.63 266 2655 CD4+ Memory (41.7%) Colon (100%)
cl297 0.63 11 113 ILC3 (92%) Tonsil (100%)
cl124 0.63 392 3915 Plasma (43.6%) Colon (100%)
cl144 0.62 27 268 No annotation (100%) hnLN (100%)
cl241 0.62 61 614 No annotation (100%) axLN (100%)
cl187 0.62 42 418 No annotation (100%) hnLN (100%)
cl172 0.62 100 1003 No annotation (100%) axLN (100%)
cl175 0.62 75 748 No annotation (100%) axLN (100%)
cl420 0.61 134 1337 No annotation (100%) axLN (100%)
cl273 0.61 12 117 CD4 T central memory (81.2%) mLN (100%)
cl346 0.60 7 72 Unknown4 (59.7%) Brain (100%)
cl619 0.59 87 869 CD4+ Activated Fos-hi (48.4%) Colon (100%)
cl591 0.59 328 3283 Plasma (48.4%) Colon (100%)
cl529 0.58 39 389 No annotation (100%) BoneMarrow (100%)
cl231 0.58 17 167 No annotation (100%) hnLN (100%)
cl597 0.58 24 238 Enterocytes (41.6%) Colon (100%)
cl550 0.58 113 1128 No annotation (100%) BoneMarrow (100%)
cl265 0.57 26 262 CD4 T central memory (83.2%) mLN (100%)
cl368 0.57 23 229 No annotation (100%) Brain_Microglia (100%)
cl324 0.57 7 73 No annotation (100%) Brain_Microglia (100%)
cl197 0.56 44 436 No annotation (100%) hnLN (100%)
cl216 0.56 80 797 No annotation (100%) axLN (100%)
cl190 0.56 29 289 No annotation (100%) hnLN (100%)
cl73 0.55 374 3741 B cell IgA plasma (21.1%) Colon (100%)
cl366 0.55 78 782 exPFC1 (61.8%) Brain (100%)
cl106 0.55 35 347 CD4 T central memory (73.5%) mLN (100%)
cl608 0.55 51 512 Macrophages (28.1%) Colon (100%)
cl584 0.54 79 794 ASC1 (50.5%) Brain (100%)
cl419 0.54 121 1208 No annotation (100%) axLN (100%)
cl620 0.54 151 1509 Plasma (67.1%) Colon (100%)
cl153 0.53 136 1355 No annotation (100%) axLN (100%)
cl445 0.52 1945 19446 PB Naive CD4 (0.2%) Blood (100%)
cl625 0.52 91 907 Enterocyte Progenitors (62.7%) Colon (100%)
cl573 0.52 32 315 ODC1 (89.2%) Brain (100%)
cl290 0.52 26 262 No annotation (100%) Brain_Microglia (100%)
cl446 0.52 911 9111 PB Naive CD8 (0.3%) Blood (100%)
cl162 0.50 14 144 No annotation (100%) hnLN (100%)
cl200 0.50 3 27 DC1 (100%) Decidua (100%)
cl226 0.50 28 277 No annotation (100%) hnLN (100%)
cl302 0.50 86 856 VCT (62.4%) Placenta (100%)
cl559 0.47 37 365 ODC1 (95.9%) Brain (100%)
cl425 0.47 57 574 No annotation (100%) axLN (100%)
cl522 0.47 19 193 No annotation (100%) BoneMarrow (100%)
cl426 0.47 71 709 No annotation (100%) axLN (100%)
cl10 0.46 9 95 No annotation (100%) axLN (100%)
cl349 0.46 18 180 exCA3 (72.8%) Brain (100%)
cl223 0.46 31 312 No annotation (100%) hnLN (100%)
cl222 0.45 30 296 No annotation (100%) hnLN (100%)
cl237 0.45 68 677 B cell memory (34.4%) mLN (100%)
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Table B.16: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 8)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl42 0.44 7 66 No annotation (100%) Brain_Microglia (100%)
cl320 0.43 44 444 exDG (68.7%) Brain (100%)
cl596 0.43 38 383 CD4+ Memory (35.5%) Colon (100%)
cl189 0.43 14 143 No annotation (100%) hnLN (100%)
cl217 0.42 18 176 No annotation (100%) hnLN (100%)
cl126 0.40 4 40 Mast cell (92.5%) Lung Parenchyma (100%)
cl20 0.40 21 208 B cell memory (38.5%) mLN (100%)
cl253 0.38 21 205 No annotation (100%) hnLN (100%)
cl85 0.38 20 198 No annotation (100%) axLN (100%)
cl9 0.38 9 86 No annotation (100%) hnLN (100%)
cl287 0.37 10 104 No annotation (100%) Brain_Microglia (100%)
cl411 0.37 34 340 Mid Erythroid (46.8%) Liver (100%)
cl353 0.37 21 205 exPFC1 (95.1%) Brain (100%)
cl424 0.37 46 459 No annotation (100%) axLN (100%)
cl169 0.36 19 194 No annotation (100%) hnLN (100%)
cl609 0.36 85 848 Enterocyte Progenitors (28.8%) Colon (100%)
cl364 0.35 14 139 No annotation (100%) Brain_Microglia (100%)
cl351 0.33 20 201 exPFC1 (92%) Brain (100%)
cl481 0.33 21 205 CD8+/CD45RA+

Naive Cytotoxic (0.5%)
Blood (100%)

cl594 0.32 43 425 TA 1 (38.1%) Colon (100%)
cl146 0.32 45 453 No annotation (100%) hnLN (100%)
cl357 0.32 23 234 exDG (71.8%) Brain (100%)
cl348 0.32 16 158 ASC1 (19.6%) Brain (100%)
cl310 0.29 6 58 CD4 T central memory (34.5%) mLN (100%)
cl245 0.28 119 1186 No annotation (100%) axLN (100%)
cl395 0.27 17 168 No annotation (100%) Brain_Microglia (100%)
cl421 0.27 16 161 No annotation (100%) axLN (100%)
cl129 0.27 12 116 No annotation (100%) Intestine (100%)
cl234 0.25 14 140 No annotation (100%) hnLN (100%)
cl354 0.25 21 208 exCA3 (65.9%) Brain (100%)
cl5 0.25 7 71 Tcm (36.6%) Skin (100%)
cl181 0.22 8 78 No annotation (100%) Intestine (100%)
cl565 0.22 33 332 ODC1 (92.2%) Brain (100%)
cl168 0.20 12 115 No annotation (100%) Intestine (100%)
cl194 0.19 28 276 No annotation (100%) hnLN (100%)
cl356 0.17 21 214 exPFC1 (94.9%) Brain (100%)
cl347 0.15 12 123 exPFC1 (86.2%) Brain (100%)
cl151 0.15 35 349 No annotation (100%) hnLN (100%)
cl171 0.14 67 666 No annotation (100%) axLN (100%)
cl149 0.13 138 1376 No annotation (100%) axLN (100%)
cl186 0.12 14 138 No annotation (100%) hnLN (100%)
cl230 0.11 101 1006 CD4 T central memory (42.7%) mLN (100%)
cl383 0.11 18 179 No annotation (100%) Omentum Adipose Tissue (100%)
cl352 0.10 20 202 exDG (81.2%) Brain (100%)
cl135 0.09 4 43 B cell (9.3%) Intestine (90.7%)
cl394 0.07 17 171 No annotation (100%) Brain_Microglia (100%)
cl103 0.00 0 3 dS2 (100%) Decidua (100%)
cl104 0.00 0 3 CD8 T cell (66.7%) mLN (100%)
cl105 0.00 0 3 B cell follicular (66.7%) mLN (100%)
cl107 0.00 0 4 CD4 T central memory (50%) mLN (100%)
cl108 0.00 0 3 dS3 (100%) Decidua (100%)
cl111 0.00 0 4 VCT (100%) Placenta (100%)
cl112 0.00 0 3 No annotation (100%) axLN (100%)
cl114 0.00 0 3 Neutrophils (100%) Lung Parenchyma (100%)
cl116 0.00 0 4 VCT (100%) Placenta (100%)
cl117 0.00 0 3 B cell memory (66.7%) mLN (100%)
cl119 0.00 0 3 Endothelium (100%) Lung Parenchyma (100%)
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Table B.17: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 9)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl120 0.00 0 3 Endo (m) (100%) Decidua (100%)
cl121 0.00 0 3 Type 2 (66.7%) Lung Parenchyma (100%)
cl123 0.00 0 5 dNK p (60%) Decidua (100%)
cl125 0.00 1 15 B cell (100%) Lung Parenchyma (100%)
cl130 0.00 0 5 No annotation (100%) axLN (100%)
cl136 0.00 7 75 Treg NL-like (41.3%) mLN (100%)
cl138 0.00 7 73 No annotation (100%) Intestine (100%)
cl139 0.00 0 3 EVT (100%) Placenta (100%)
cl140 0.00 0 4 No annotation (100%) Brain_Microglia (100%)
cl142 0.00 0 4 Macrophages (100%) Lung Parenchyma (100%)
cl150 0.00 10 103 No annotation (100%) Intestine (100%)
cl154 0.00 0 4 CD4 T central memory (75%) mLN (100%)
cl157 0.00 0 5 fFB1 (100%) Placenta (100%)
cl158 0.00 1 14 B cell (100%) Lung Parenchyma (100%)
cl159 0.00 0 4 Endo L (100%) Decidua (100%)
cl161 0.00 11 115 No annotation (100%) Intestine (100%)
cl163 0.00 3 31 B cell memory (83.9%) mLN (100%)
cl164 0.00 9 93 No annotation (100%) Intestine (100%)
cl165 0.00 7 67 No annotation (100%) Intestine (100%)
cl166 0.00 8 81 No annotation (100%) Intestine (100%)
cl167 0.00 6 57 No annotation (100%) Intestine (100%)
cl17 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl170 0.00 7 69 No annotation (100%) Intestine (100%)
cl177 0.00 9 91 No annotation (100%) Intestine (100%)
cl182 0.00 1 13 B cell memory (69.2%) mLN (100%)
cl188 0.00 7 68 No annotation (100%) Intestine (100%)
cl191 0.00 4 37 No annotation (100%) Intestine (100%)
cl193 0.00 4 42 No annotation (100%) Intestine (100%)
cl195 0.00 7 67 No annotation (100%) Intestine (100%)
cl196 0.00 6 64 No annotation (100%) Intestine (100%)
cl199 0.00 1 7 Secretory (100%) Upper airway (100%)
cl201 0.00 1 9 Plasma (100%) Decidua (100%)
cl202 0.00 7 68 No annotation (100%) Intestine (100%)
cl204 0.00 8 82 No annotation (100%) Intestine (100%)
cl207 0.00 5 53 No annotation (100%) Intestine (100%)
cl209 0.00 1 10 B cell (100%) Lung Parenchyma (100%)
cl21 0.00 2 22 No annotation (100%) Intestine (100%)
cl211 0.00 0 4 No annotation (100%) Brain_Microglia (100%)
cl228 0.00 11 114 No annotation (100%) hnLN (100%)
cl235 0.00 1 9 B cell follicular (33.3%) mLN (100%)
cl236 0.00 1 8 Type 1 (100%) Lung Parenchyma (100%)
cl239 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl244 0.00 1 6 Granulocytes (100%) Decidua (100%)
cl249 0.00 18 182 No annotation (100%) axLN (100%)
cl257 0.00 1 15 VCT (100%) Placenta (100%)
cl288 0.00 8 79 No annotation (100%) Brain_Microglia (100%)
cl289 0.00 5 52 No annotation (100%) Brain_Microglia (100%)
cl29 0.00 0 4 B cell follicular (75%) mLN (100%)
cl291 0.00 1 7 dS1 (100%) Decidua (100%)
cl292 0.00 2 24 No annotation (100%) Brain_Microglia (100%)
cl294 0.00 1 14 No annotation (100%) Brain_Microglia (100%)
cl300 0.00 26 259 Ciliated (97.7%) Upper airway (100%)
cl305 0.00 1 6 No annotation (100%) Omentum Adipose Tissue (100%)
cl32 0.00 0 3 Endo (m) (100%) Placenta (100%)
cl328 0.00 12 121 No annotation (100%) Brain_Microglia (100%)
cl330 0.00 8 78 No annotation (100%) Brain_Microglia (100%)
cl331 0.00 11 109 No annotation (100%) Brain_Microglia (100%)
cl333 0.00 11 107 No annotation (100%) Brain_Microglia (100%)
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Table B.18: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 10)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl334 0.00 12 119 CD4 Tfh (73.1%) mLN (100%)
cl342 0.00 0 5 exCA3 (80%) Brain (100%)
cl344 0.00 2 21 GABA2 (57.1%) Brain (100%)
cl363 0.00 6 57 No annotation (100%) Brain_Microglia (100%)
cl381 0.00 1 7 Ciliated (100%) Lung Parenchyma (100%)
cl393 0.00 3 35 No annotation (100%) Brain_Microglia (100%)
cl396 0.00 2 22 No annotation (100%) Brain_Microglia (100%)
cl397 0.00 4 41 No annotation (100%) Brain_Microglia (100%)
cl398 0.00 4 43 No annotation (100%) Brain_Microglia (100%)
cl405 0.00 3 26 Kupffer Cell (69.2%) Liver (100%)
cl406 0.00 0 5 ILC precursor (100%) Liver (100%)
cl407 0.00 1 8 Kupffer Cell (62.5%) Liver (100%)
cl436 0.00 0 3 CD8+/CD45RA+

Naive Cytotoxic (100%)
Blood (100%)

cl437 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl461 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl462 0.00 2 20 CD4+/CD45RA+/CD25-

Naive T (55%)
Blood (100%)

cl466 0.00 0 3 CD4+/CD25 T Reg (100%) Blood (100%)
cl467 0.00 0 4 CD56+ NK (50%) Blood (100%)
cl468 0.00 1 7 No annotation (100%) Blood (100%)
cl469 0.00 1 10 No annotation (100%) Blood (100%)
cl471 0.00 2 24 No annotation (100%) Blood (100%)
cl482 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl487 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl489 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl499 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl521 0.00 2 19 No annotation (100%) BoneMarrow (100%)
cl525 0.00 13 129 No annotation (100%) BoneMarrow (100%)
cl526 0.00 4 43 No annotation (100%) BoneMarrow (100%)
cl527 0.00 3 29 No annotation (100%) BoneMarrow (100%)
cl528 0.00 1 8 No annotation (100%) BoneMarrow (100%)
cl530 0.00 0 5 No annotation (100%) BoneMarrow (100%)
cl531 0.00 0 5 No annotation (100%) BoneMarrow (100%)
cl532 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl533 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl535 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl539 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl544 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl545 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl557 0.00 3 29 No annotation (100%) Brain_Microglia (100%)
cl558 0.00 13 131 No annotation (100%) Brain_Microglia (100%)
cl560 0.00 12 118 No annotation (100%) Brain_Microglia (100%)
cl561 0.00 10 101 No annotation (100%) Brain_Microglia (100%)
cl562 0.00 4 39 No annotation (100%) Brain_Microglia (100%)
cl563 0.00 3 30 No annotation (100%) Brain_Microglia (100%)
cl564 0.00 3 28 No annotation (100%) Brain_Microglia (100%)
cl566 0.00 0 3 No annotation (100%) Brain_Microglia (100%)
cl572 0.00 13 133 No annotation (100%) Brain_Microglia (100%)
cl578 0.00 1 12 Endothelium; Ascending_vasa_recta;

VCAM1- (8.3%)
Kidney (100%)

cl579 0.00 15 154 No annotation (100%) hnLN (100%)
cl583 0.00 0 3 dS2 (100%) Decidua (100%)
cl585 0.00 0 3 No annotation (100%) BoneMarrow (100%)
cl587 0.00 1 12 ODC1 (100%) Brain (100%)
cl588 0.00 2 19 ODC1 (94.7%) Brain (100%)
cl589 0.00 9 88 ASC1 (48.9%) Brain (100%)
cl599 0.00 10 101 Immature Goblet (81.2%) Colon (100%)
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Table B.19: F1 scores and class sizes for CellTypist trained on the human collection
with integrated cluster labels. Labels are derived from the CellTypist pipeline, as
described in Chapter 3. "Major Cell Type" refers to the most represented cell type,
not counting cell without annotation, unless none have it. (continued 11)

Cluster F1 Score Test Support Total Cells Major Cell Type Major Tissue

cl6 0.00 3 34 T cell (41.2%) Upper airway (100%)
cl600 0.00 2 21 TA 2 (85.7%) Colon (100%)
cl602 0.00 2 20 Immature Enterocytes 1 (35%) Colon (100%)
cl603 0.00 1 8 Cycling TA (50%) Colon (100%)
cl604 0.00 0 4 Enterocytes (100%) Colon (100%)
cl605 0.00 0 3 Immature Goblet (100%) Colon (100%)
cl607 0.00 0 3 Macrophages (66.7%) Colon (100%)
cl61 0.00 4 39 No annotation (100%) Intestine (100%)
cl65 0.00 0 3 Basal (100%) Upper airway (100%)
cl66 0.00 0 4 No annotation (100%) Intestine (100%)
cl72 0.00 2 23 B cell (87%) Upper airway (100%)
cl78 0.00 0 3 dM2 (100%) Decidua (100%)
cl81 0.00 1 6 dM2 (83.3%) Decidua (100%)
cl82 0.00 0 3 dT CD4 (33.3%) Decidua (100%)
cl84 0.00 0 3 Neutrophils (100%) Lung Parenchyma (100%)
cl86 0.00 0 3 Basal (100%) Upper airway (100%)
cl90 0.00 0 3 dM2 (100%) Decidua (100%)
cl91 0.00 0 3 dM2 (66.7%) Decidua (100%)
cl92 0.00 0 3 VCT (100%) Decidua (100%)
cl94 0.00 0 3 CD4 Tfh (66.7%) mLN (100%)
cl95 0.00 0 3 dNK1 (100%) Decidua (100%)
cl98 0.00 0 5 dM3 (60%) Placenta (100%)
cl99 0.00 0 3 CD4 Tfh (33.3%) mLN (100%)
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Table B.20: Top genes in the largest merged clusters of each CellTypist model
Model Cluster Top Genes

thr1 = 0.99, thr2 = 0.8 cl87 S100A4, FOS, KLRB1, DUSP1, NFKBIA, KLF6,
LTB, CXCR4, ANXA1, SRGN

cl147 HBG2, EEF1A1, RNASE1, HMOX1, RPL39,AL138963.3,
AC026803.1, H3F3A, EGFL7, FP671120.4

cl102 C7, DCN, DLK1, IGF2, COL3A1, COL1A1,
HSPA1A, TSHZ2, HSPA1B, MMP2

cl155 IGLL1, VPREB1, HIST1H4C, HMGB2, H3F3A, PTTG1,
IL7R, CD24, SMC4, HMGA1

cl160 MT-RNR2, MT-TT, MT-TG, SNORA31, MT-RNR1,
MTCO1P40, MT-TK, EEF1A1P5, MT2A, Y_RNA

thr1 = 0.4, thr2 = 0.99 cl263 RPL10P9, RPS3A, DONSON, RPL9, RPS10, AL031280.1,
SELENOM, RPS26, DPY30, RPL7

cl530 PPBP, MT-RNR1, GNG11, HIST1H2AC, MIR1244-2,
NCOA4, GPX1, PF4, OAZ1, CAVIN2

cl215 GLRX, REXO2, CPVL, GYPB, HIST1H4C, FAM178B,
HEMGN, RGS16, TUBA3C, GIHCG

cl234 GNLY, CD52, NKG7, GZMH, CD3D, CD3G,
IL32, TRGC2, TRAC, TRBC1

cl233 IGLC2, IGLC3, HLA-DRA, CD74, AL365357.1, CD52,
MIR1244-2, MTATP6P1, HLA-DQB1, AC005912.1

thr1 = 0.25, thr2 = 0.25 cl114 FN1, TPT1, MARCO, RPL10, SARAF, EEF1A1,
PS3A, TIMP3, RPS29, AL365357.1

cl72 CCL3L1, AL450405.1, RPL41, KLRF1, IGHA1, DUSP4,
GZMK, CCL4L1, TYROBP, CCN1

cl102 MTND1P23, RPS26, JUNB, AL450405.1, MTCO1P12,
RPS4Y1, ACTB, C20orf204, LTB, MIR1244-2

cl10 PLP1, LINC01116, SELE, HMOX1, IGFBP5, CXCL12,
MTRNR2L8, TFPI2, HBG1, APOE

cl23 AL450405.1, HLA-DRA, AC027290.2, RPL26, CD74,
RPL39, H3F3A, RPS26, LINC01781, HLA-DRB6

thr1 = 0.1, thr2 = 0.1 cl10 AMH, DHRS2, ADAMDEC1, SELE, CRHBP,
AL450405.1, INS, POSTN, TMEM88, GZMK

cl1 FAM178B, PNMT, GAL, CCL3L1, SFTPB, GCG,
RAB38, KLF1, HLA-DRB6, CCL5

cl2 WFDC1, PHGR1, IGFBP3, PAGE4, BAMBI, MARCO,
IGSF6, SERPINB3, FRZB, HAPLN1

cl20 MTND1P23, AL450405.1, NHSL2, ZNF90, JUNB, CPA5,
MTCO1P12, AL513365.1, RPL9P9, RP11-138A9.2

cl57 AL365226.1, MTRNR2L12, XAGE2, ANAPC4,
AC068134.2, IL24, RETREG1, C3, CSF1R, EMX1
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Fig. C.1: Number of tissue-specific genes determined per tissue for human (A)
and mouse (B))
Tissue specific genes were determined by calculating tau (see Section 4.4.2) and
keeping only those with a value greater than 0.5. No genes shared between tissues
were found.
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Fig. C.2: Relating number of per-tissue clusters and number of cells (Related to
Figure 3.7A)
Scatter plot showing the variation of number of clusters per tissue with the number
of cells, as well as number of datasets collected for each tissue (colour).
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Fig. C.3: Enrichment of tissue gene modules in other CellTypist models (Related
to Figure 4.3)
Heatmaps showing the fraction of clusters in each tissue (x-axis) with an enrichment
for tissue-specific gene programmes (y-axis) determined from GTEx data. Each
heatmap represents a different set of clusters per tissue, resulting from using different
parameters in the CellTypist pipeline. Plot for thr1 = 0.99, thr2 = 0.8 is identical to
Figure 4.3B.
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Fig. C.4: Clusters merged across tissues in the different models (Related to
Figure 4.3)
Heatmaps showing the number of cells contributed by each tissue into cross-tissue
clusters for each model.
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Fig. C.5: Enrichment of tissue gene modules in merged clusters of different Cell-
Typist models (Related to Figure 4.3)
Heatmaps showing the -log10(q-value) of each merged cluster (x-axis) for the en-
richment of tissue-specific gene programmes (y-axis) in their top 500 genes output
by the model. Each heatmap represents a different set of merged clusters, resulting
from using different parameters in the CellTypist pipeline.
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Fig. C.6: Correlation between gene expression and importance in the human
CellTypist model (Related to Figure 4.4)
Scatterplot shows the relationship between mean expression across all cells and the
maximum coefficient for each gene across all labels. Density plots show distribution
of gene groups, and distribution of genes included in the top 500 coefficients of
any label, along the mean expression (top) or maximum coefficient (left) range.
Spearman correlation coefficient = 0.56, p-value < 0.01.
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Fig. C.7: Correlation between gene expression and importance in the Tabula
Muris CellTypist model (Related to Figure 4.5)
Scatterplot shows the relationship between mean expression across all cells and the
maximum coefficient for each gene across all labels. Density plots show distribution
of gene groups, and distribution of genes included in the top 500 coefficients of
any label, along the mean expression (top) or maximum coefficient (left) range.
Spearman correlation coefficient = 0.86, p-value < 0.01.
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Fig. C.8: Gene upset plots of different CellTypist models (Related to Figure 4.4)
Upset plots counting the number of clusters enriched for a specific group of genes in
each model. The gene groups tested were "transcription factors", "transmembrane",
"secreted", "receptors", "membrane peripheral proteins", "kinases and phosphatases",
"chromatin modulators", "catalytic enzymes", "housekeeping genes". Only the terms
enriched in at least one cluster were shown. The plot for thr1 = 0.99, thr2 = 0.8 is
identical to Figure 4.4B.
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Fig. C.9: CellTypist predictions for oesophagus data from (Madissoon et al.,
2019) (Related to Figure 4.1)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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Fig. C.10: CellTypist predictions for spleen data from (Madissoon et al., 2019)
(Related to Figure 4.1)
(A) UMAP projections coloured by the original cell type annotations (left) and those
predicted by CellTypist (right) using thr1 = 0.99 and thr2 = 0.8. (B) Proportion
of clusters (rows) matching each annotated cell type (columns). (C) Proportion
of annotated cell types (rows) included in each cluster (columns). Only clusters
including at least 10% of a given cell type were included.
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Fig. C.11: Matching CellTypist predictions in lung with annotations in the data
collection (Related to Figure 4.1)
(A) CellTypist clusters (thr1 = 0.99, thr2 = 0.8) matched to each original cell type
annotation. Only the top 3 clusters per cell type were selected. (B) Proportion of cell
type annotations (columns) represented in the CellTypist clusters matched to lung.
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Fig. C.12: Clusters matching lung annotated cell types in other CellTypist models
(Related to Figure 4.1B)
Proportion of clusters (rows) matching each annotated cell type (columns) in the
models thr1 = 0.4, thr2 = 0.99 (A), thr1 = 0.25, thr2 = 0.25 (A), and thr1 = 0.1,
thr2 = 0.1 (C).
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Fig. C.13: Lung annotated cell types matching clusters in other CellTypist models
(Related to Figure 4.1C)
Proportion of annotated cell types (rows) included in each cluster (columns) in the
models thr1 = 0.4, thr2 = 0.99 (A), thr1 = 0.25, thr2 = 0.25 (A), and thr1 =
0.1, thr2 = 0.1 (C). Only clusters including at least 10% of a given cell type were
included.
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C.2 Supplementary Tables
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Table C.1: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters

Cluster Tissue Cell types

cl430 Lung Alveolar_Type1
cl430 Oesophagus Epi_upper,Epi_stratified
cl433 Lung Alveolar_Type2
cl433 Spleen Plasmablast,DC_1,Monocyte,NK_dividing,Plasma_IgG
cl429 Lung Alveolar_Type1
cl39 Lung T_CD4,T_cells_Dividing,T_regulatory
cl39 Spleen T_CD4_fh,T_CD4_conv,T_CD4_reg,T_CD8_MAIT,T_CD4_naive
cl39 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Mast_cell,Lymph_vessel
cl402 Lung Alveolar_Type2,Alveolar_Type1
cl402 Oesophagus Epi_suprabasal
cl318 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,Macrophage_Dividing,Alveolar_Type1
cl318 Spleen NK_dividing,T_cell_dividing,B_Hypermutation,Plasmablast,CD34_progenitor
cl318 Oesophagus Epi_dividing
cl416 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Lymph_vessel
cl416 Oesophagus Glands_mucous,Epi_basal,Glands_duct,Epi_suprabasal
cl263 Lung Alveolar_Type1,Alveolar_Type2,Ciliated
cl263 Oesophagus Epi_stratified,Epi_basal,Glands_duct
cl2 Lung DC_2,DC_activated,Lymph_vessel,DC_Monocyte_Dividing,DC_1
cl2 Spleen DC_1,DC_activated,DC_2,DC_plasmacytoid,T_CD8_gd
cl2 Oesophagus Blood_vessel,NK_T_CD8_Cytotoxic,Mast_cell,T_CD8,Dendritic_Cells
cl1 Lung Blood_vessel
cl1 Oesophagus Blood_vessel,Mast_cell,Dendritic_Cells,Stroma,NK_T_CD8_Cytotoxic
cl548 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD4_conv
cl548 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl80 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel
cl80 Spleen T_CD8_MAIT,T_CD8_CTL
cl80 Oesophagus Stroma,Epi_basal,Lymph_vessel,Glands_duct,Epi_suprabasal
cl6 Lung T_cells_Dividing,DC_Monocyte_Dividing,DC_1,DC_activated,DC_plasmacytoid
cl6 Spleen T_cell_dividing,DC_plasmacytoid,T_CD8_CTL,B_Hypermutation,NK_dividing
cl6 Oesophagus Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Mast_cell
cl614 Lung T_CD4,T_regulatory,T_cells_Dividing
cl614 Spleen T_CD4_fh,T_CD4_reg,T_CD4_conv,T_CD4_naive
cl614 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl262 Lung Alveolar_Type1,DC_1,DC_2,DC_activated
cl262 Oesophagus Epi_stratified
cl63 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Blood_vessel,Lymph_vessel
cl63 Spleen DC_activated,DC_1,CD34_progenitor,DC_2,T_CD8_MAIT
cl63 Oesophagus Glands_duct,Epi_basal,Glands_mucous,Epi_suprabasal,Lymph_vessel
cl513 Lung T_CD4,T_cells_Dividing,T_regulatory,Mast_cells
cl513 Spleen T_CD4_reg,T_CD8_MAIT,T_CD4_conv,T_CD4_fh,T_cell_dividing
cl513 Oesophagus Mast_cell,T_CD4,NK_T_CD8_Cytotoxic,T_CD8
cl89 Lung NK_Dividing,T_CD8_CytT,DC_plasmacytoid,DC_activated,NK
cl89 Spleen T_CD8_activated,T_CD8_gd,T_CD8_MAIT,NK_CD160pos,T_CD8_CTL
cl89 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,B_CD27pos,Mast_cell
cl377 Lung Alveolar_Type2,Alveolar_Type1
cl11 Lung Blood_vessel,Lymph_vessel,Muscle_cells,Fibroblast,Alveolar_Type2
cl11 Spleen B_mantle,T_cell_dividing,NK_dividing
cl11 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
cl424 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl424 Oesophagus Lymph_vessel,Blood_vessel
cl329 Lung Ciliated,Mast_cells,T_CD4,Alveolar_Type1,T_CD8_CytT
cl329 Spleen T_CD8_gd,DC_activated
cl329 Oesophagus T_CD4,T_CD8,Glands_duct,NK_T_CD8_Cytotoxic,B_CD27pos
cl128 Lung Alveolar_Type1,Alveolar_Type2
cl128 Oesophagus Glands_mucous,Epi_stratified
cl31 Lung Lymph_vessel,Fibroblast,Alveolar_Type1
cl31 Spleen DC_activated,T_CD4_naive
cl31 Oesophagus Lymph_vessel,Epi_basal
cl8 Lung T_cells_Dividing,T_CD4,T_CD8_CytT,T_regulatory,DC_plasmacytoid
cl8 Spleen T_CD4_reg,T_CD4_conv,T_CD8_activated,T_cell_dividing,T_CD8_CTL
cl8 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell,B_CD27neg
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Table C.2: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 1)

Cluster Tissue Cell types

cl554 Lung B_cells,DC_plasmacytoid,DC_activated,T_cells_Dividing
cl554 Spleen B_follicular,B_mantle,B_Hypermutation
cl554 Oesophagus B_CD27pos,B_CD27neg,T_CD4,Dendritic_Cells,NK_T_CD8_Cytotoxic
cl425 Lung Lymph_vessel,Blood_vessel,Muscle_cells,Fibroblast
cl425 Spleen DC_1
cl425 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Epi_basal,Glands_duct
cl210 Lung NK_Dividing,NK,T_cells_Dividing,DC_plasmacytoid,DC_1
cl210 Spleen NK_CD160pos,NK_FCGR3Apos,T_CD8_gd,NK_dividing,T_CD8_MAIT
cl210 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,B_CD27pos
cl87 Lung T_CD4
cl87 Spleen T_CD8_MAIT,Monocyte
cl87 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell
cl47 Lung Fibroblast,Muscle_cells,NK_Dividing,Blood_vessel,Lymph_vessel
cl47 Oesophagus Stroma,Blood_vessel,Epi_basal,Lymph_vessel
cl222 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl222 Oesophagus Lymph_vessel,Blood_vessel,Stroma
cl88 Lung Blood_vessel,Lymph_vessel,Alveolar_Type1,DC_activated,Muscle_cells
cl88 Spleen T_CD8_MAIT,T_CD4_conv,T_CD4_naive,DC_activated
cl88 Oesophagus Blood_vessel,Lymph_vessel,Epi_basal,Glands_duct,Stroma
cl73 Lung T_cells_Dividing,T_CD4,T_regulatory,DC_activated
cl73 Spleen T_CD4_reg,T_CD8_MAIT,ILC,T_CD4_fh,T_CD4_conv
cl73 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell,B_CD27pos
cl606 Lung Fibroblast,Muscle_cells,DC_activated,Macrophage_MARCOpos,Macrophage_MARCOneg
cl606 Spleen Monocyte,DC_1,DC_2,Macrophage
cl606 Oesophagus Stroma,Mast_cell,Epi_suprabasal,Mono_macro,Lymph_vessel
cl449 Spleen T_cell_dividing,T_CD4_conv,T_CD4_fh,B_Hypermutation,CD34_progenitor
cl449 Oesophagus Lymph_vessel,Blood_vessel,Glands_duct
cl58 Lung T_regulatory,T_cells_Dividing,T_CD4,T_CD8_CytT,Mast_cells
cl58 Spleen NK_CD160pos,T_CD4_reg,T_CD8_gd,T_CD8_MAIT,T_CD8_CTL
cl58 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Mast_cell,Dendritic_Cells
cl74 Lung Alveolar_Type1
cl74 Oesophagus Epi_basal,Glands_duct
cl147 Spleen CD34_progenitor
cl71 Lung T_CD8_CytT
cl71 Spleen T_CD8_MAIT,T_CD8_activated,T_CD8_CTL,T_CD8_gd
cl71 Oesophagus T_CD4,T_CD8
cl616 Lung T_CD8_CytT,NK_Dividing,NK,T_regulatory,T_cells_Dividing
cl616 Spleen T_CD8_activated,T_CD8_MAIT,T_CD8_gd,NK_CD160pos,T_CD4_fh
cl616 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4
cl179 Lung NK_Dividing,NK,T_cells_Dividing
cl179 Spleen NK_dividing,NK_CD160pos,T_CD8_gd,NK_FCGR3Apos,ILC
cl179 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,Epi_dividing,T_CD4,Mast_cell
cl34 Lung Fibroblast,Muscle_cells,Monocyte
cl34 Spleen Monocyte,T_CD8_CTL
cl34 Oesophagus Stroma,Lymph_vessel,Dendritic_Cells,Epi_basal,Mono_macro
cl271 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel
cl271 Oesophagus Stroma,Lymph_vessel,Epi_basal,Blood_vessel,Epi_suprabasal
cl172 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl172 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Epi_basal,Epi_suprabasal
cl435 Lung Macrophage_MARCOneg,Macrophage_MARCOpos
cl435 Spleen Macrophage,DC_2,Monocyte
cl79 Lung NK_Dividing,NK,T_CD8_CytT,T_cells_Dividing,T_regulatory
cl79 Spleen T_CD8_activated,NK_dividing,T_CD8_gd,T_CD8_CTL,NK_CD160pos
cl79 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Epi_dividing,Mono_macro
cl36 Lung Blood_vessel,DC_activated,DC_Monocyte_Dividing,DC_plasmacytoid,Macrophage_MARCOpos
cl36 Spleen DC_2,DC_activated,DC_1,B_follicular,Macrophage
cl36 Oesophagus Blood_vessel,Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg
cl505 Spleen Monocyte
cl404 Lung Muscle_cells,Fibroblast
cl404 Oesophagus Epi_suprabasal
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Table C.3: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 2)

Cluster Tissue Cell types

cl464 Lung Macrophage_MARCOneg
cl464 Spleen CD34_progenitor,DC_2
cl464 Oesophagus Dendritic_Cells
cl596 Lung T_CD4,T_cells_Dividing,T_regulatory,Mast_cells,B_cells
cl596 Spleen T_CD8_MAIT,T_CD4_conv,T_CD4_fh,T_CD4_reg,T_CD4_naive
cl596 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4,Dendritic_Cells,B_CD27pos
cl45 Lung DC_2,Macrophage_MARCOneg,DC_1,DC_Monocyte_Dividing,DC_plasmacytoid
cl45 Spleen DC_2,DC_1,DC_activated,DC_plasmacytoid,Monocyte
cl45 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg,Blood_vessel
cl51 Lung DC_2,Macrophage_MARCOneg,DC_1,DC_activated,DC_Monocyte_Dividing
cl51 Spleen DC_2,DC_1,DC_activated,Monocyte,Macrophage
cl51 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,B_CD27pos,B_CD27neg
cl441 Spleen T_CD4_naive
cl432 Lung Alveolar_Type1,Ciliated,Alveolar_Type2
cl432 Spleen B_mantle
cl432 Oesophagus Glands_duct,Glands_mucous,Epi_basal
cl617 Lung DC_2,Mast_cells,Muscle_cells
cl617 Spleen Monocyte,T_CD8_MAIT
cl617 Oesophagus Mast_cell,Dendritic_Cells,Epi_basal,B_CD27pos,Mono_macro
cl260 Lung DC_plasmacytoid,Alveolar_Type1,Ciliated,Monocyte,DC_activated
cl260 Spleen CD34_progenitor
cl260 Oesophagus Blood_vessel,Epi_suprabasal
cl452 Lung Monocyte
cl452 Spleen Monocyte
cl27 Lung Blood_vessel,Lymph_vessel,Muscle_cells
cl27 Oesophagus Blood_vessel,Lymph_vessel,Stroma
cl64 Lung Blood_vessel,Lymph_vessel,Fibroblast,Muscle_cells
cl64 Spleen T_CD4_conv
cl64 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
cl205 Lung T_CD8_CytT
cl205 Spleen T_CD8_gd,T_CD8_CTL
cl252 Lung Macrophage_MARCOpos,Macrophage_Dividing,DC_activated,DC_Monocyte_Dividing,DC_2
cl252 Spleen DC_2,DC_1,NK_dividing,DC_activated,CD34_progenitor
cl252 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,Mast_cell,Mono_macro,T_CD8
cl76 Spleen Monocyte
cl508 Lung T_CD8_CytT,T_CD4,T_regulatory,NK,NK_Dividing
cl508 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,T_CD8_gd,T_CD4_fh
cl508 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl621 Lung T_cells_Dividing,T_CD4,T_regulatory,DC_activated
cl621 Spleen T_CD8_MAIT,T_CD4_reg,T_cell_dividing,Monocyte,T_CD4_conv
cl621 Oesophagus T_CD4,T_CD8,Dendritic_Cells,NK_T_CD8_Cytotoxic,Mast_cell
cl512 Lung Monocyte,Macrophage_MARCOneg,Macrophage_MARCOpos,DC_1,DC_2
cl512 Spleen Monocyte,DC_2,Macrophage,DC_activated,DC_1
cl512 Oesophagus Mono_macro,Dendritic_Cells,B_CD27pos,B_CD27neg,T_CD4
cl70 Lung DC_Monocyte_Dividing,DC_1,Macrophage_Dividing,DC_activated,Macrophage_MARCOpos
cl70 Spleen DC_1,DC_2,DC_activated,B_follicular,B_mantle
cl70 Oesophagus Dendritic_Cells,Blood_vessel,Mono_macro,B_CD27pos,B_CD27neg
cl568 Lung Ciliated
cl340 Lung Fibroblast,Lymph_vessel
cl340 Spleen DC_plasmacytoid
cl340 Oesophagus Glands_mucous,Stroma,Epi_basal,Lymph_vessel
cl57 Lung Macrophage_MARCOneg,DC_2,DC_Monocyte_Dividing,DC_activated,DC_1
cl57 Spleen DC_2,Monocyte,DC_1,DC_activated,DC_plasmacytoid
cl57 Oesophagus Dendritic_Cells,Mono_macro,Lymph_vessel,Mast_cell,Blood_vessel
cl491 Lung Macrophage_Dividing,DC_Monocyte_Dividing,Macrophage_MARCOpos,DC_activated,DC_2
cl491 Spleen DC_2,DC_1,Monocyte,Macrophage,DC_activated
cl491 Oesophagus Dendritic_Cells,Mono_macro,B_CD27neg,T_CD4,B_CD27pos
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Table C.4: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 3)

Cluster Tissue Cell types

cl100 Lung Blood_vessel,DC_plasmacytoid,Lymph_vessel,Muscle_cells,DC_2
cl100 Spleen DC_plasmacytoid,DC_2,B_follicular,B_mantle,DC_1
cl100 Oesophagus Blood_vessel,Dendritic_Cells,Lymph_vessel,Stroma,Mono_macro
cl46 Lung DC_activated,DC_1,DC_Monocyte_Dividing,Macrophage_MARCOneg,Macrophage_MARCOpos
cl46 Spleen DC_activated,DC_2,DC_1,B_follicular,B_Hypermutation
cl46 Oesophagus Dendritic_Cells,Blood_vessel,Mono_macro,B_CD27neg,B_CD27pos
cl44 Lung DC_2,Macrophage_MARCOneg,DC_Monocyte_Dividing,Macrophage_MARCOpos,Monocyte
cl44 Spleen Monocyte,DC_2,DC_activated,Macrophage,T_CD4_conv
cl44 Oesophagus Mono_macro,Dendritic_Cells,T_CD8,B_CD27neg,NK_T_CD8_Cytotoxic
cl503 Lung DC_2,Macrophage_MARCOneg,Monocyte,DC_activated
cl503 Spleen Monocyte,Macrophage
cl503 Oesophagus Epi_basal,Blood_vessel,Mono_macro,Glands_duct
cl25 Lung Macrophage_MARCOneg,Macrophage_MARCOpos,

DC_2,Macrophage_Dividing,DC_Monocyte_Dividing
cl25 Spleen DC_2,Monocyte,Macrophage,DC_1,DC_plasmacytoid
cl25 Oesophagus Mono_macro,Dendritic_Cells,Mast_cell,Glands_duct,Lymph_vessel
cl93 Lung Monocyte,Macrophage_MARCOpos
cl93 Spleen Monocyte
cl485 Lung Plasma_cells,DC_1
cl485 Spleen Plasma_IgG,Plasma_IgM,Monocyte
cl577 Lung Alveolar_Type2,Alveolar_Type1
cl577 Spleen B_follicular
cl577 Oesophagus Epi_upper
cl316 Lung Alveolar_Type1
cl316 Oesophagus Glands_mucous,Glands_duct,Epi_upper,Epi_basal
cl220 Lung Ciliated
cl611 Lung T_CD4,T_regulatory,DC_activated,T_cells_Dividing,DC_2
cl611 Spleen T_CD8_MAIT,T_CD4_conv,ILC,T_CD4_fh,T_cell_dividing
cl611 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8
cl242 Lung Fibroblast
cl242 Oesophagus Stroma,Epi_basal
cl458 Lung NK_Dividing,NK,T_CD8_CytT
cl458 Spleen T_CD8_CTL,NK_FCGR3Apos,NK_CD160pos,NK_dividing,T_CD8_MAIT
cl458 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4
cl417 Lung Lymph_vessel,Alveolar_Type1
cl417 Spleen DC_1
cl417 Oesophagus Glands_duct,Glands_mucous
cl401 Lung DC_2,DC_activated
cl401 Oesophagus Glands_mucous,Glands_duct
cl581 Lung Alveolar_Type2,Alveolar_Type1,Ciliated
cl581 Oesophagus Epi_basal
cl592 Lung DC_plasmacytoid
cl592 Spleen B_follicular,B_mantle
cl592 Oesophagus B_CD27pos,B_CD27neg
cl376 Lung Muscle_cells,Fibroblast,Ciliated
cl376 Oesophagus Stroma,Lymph_vessel,Mast_cell
cl519 Lung T_regulatory,T_CD4,T_cells_Dividing
cl519 Spleen T_CD8_MAIT,T_CD4_fh,T_CD4_conv,T_CD4_reg
cl519 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8,Mast_cell
cl35 Lung Macrophage_MARCOpos,DC_Monocyte_Dividing,DC_1,

Macrophage_Dividing,Macrophage_MARCOneg
cl35 Spleen DC_1,DC_2,DC_activated,Monocyte,B_mantle
cl35 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,Glands_duct,B_CD27pos
cl446 Lung T_CD4,T_CD8_CytT,T_regulatory
cl446 Spleen T_CD4_fh,T_CD4_reg,T_CD8_MAIT,T_CD4_naive
cl446 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl219 Lung Blood_vessel,Muscle_cells,Lymph_vessel,Alveolar_Type1,Fibroblast
cl219 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal
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Table C.5: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 4)

Cluster Tissue Cell types

cl496 Lung T_CD4
cl496 Spleen T_CD4_conv,T_CD4_naive
cl69 Lung DC_plasmacytoid,Plasma_cells,B_cells,DC_1,Macrophage_MARCOneg
cl69 Spleen B_follicular,Plasma_IgM,DC_plasmacytoid,Plasmablast,B_mantle
cl69 Oesophagus B_CD27neg,B_CD27pos,Blood_vessel,Glands_duct,Dendritic_Cells
cl134 Spleen CD34_progenitor
cl28 Lung T_cells_Dividing,NK_Dividing
cl28 Spleen NK_dividing,T_cell_dividing
cl14 Lung T_cells_Dividing,T_regulatory,T_CD4,T_CD8_CytT,NK_Dividing
cl14 Spleen T_CD8_CTL,T_CD4_reg,T_CD4_fh,T_cell_dividing,T_CD4_conv
cl14 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,Dendritic_Cells,B_CD27pos
cl40 Lung DC_plasmacytoid,B_cells,DC_1,DC_activated,DC_2
cl40 Spleen B_follicular,B_mantle,DC_plasmacytoid,DC_activated
cl40 Oesophagus B_CD27neg,B_CD27pos,Dendritic_Cells
cl509 Lung DC_1,DC_2,Macrophage_MARCOneg
cl509 Spleen B_follicular,B_mantle
cl509 Oesophagus Mono_macro,B_CD27pos,Dendritic_Cells,B_CD27neg
cl113 Lung DC_plasmacytoid,DC_activated
cl113 Spleen B_mantle,B_follicular
cl507 Lung T_regulatory,Ciliated
cl507 Spleen T_CD4_naive,T_CD4_conv
cl102 Lung Fibroblast,Muscle_cells,Lymph_vessel
cl102 Oesophagus Stroma,Epi_basal,Blood_vessel,Lymph_vessel
cl590 Lung T_CD4,T_cells_Dividing,T_regulatory
cl590 Spleen T_CD4_fh,T_CD4_reg,T_CD4_naive,T_CD4_conv
cl590 Oesophagus NK_T_CD8_Cytotoxic,T_CD4
cl422 Lung Macrophage_MARCOneg,DC_2,DC_Monocyte_Dividing,

Macrophage_MARCOpos,Macrophage_Dividing
cl422 Spleen DC_2,CD34_progenitor,Unknown,NK_FCGR3Apos,Monocyte
cl422 Oesophagus Dendritic_Cells,B_CD27neg,NK_T_CD8_Cytotoxic,Mono_macro,T_CD8
cl106 Lung DC_1,B_cells,DC_activated,DC_2
cl106 Spleen B_follicular,B_mantle,B_Hypermutation
cl106 Oesophagus B_CD27pos,B_CD27neg,Dendritic_Cells,Blood_vessel,T_CD4
cl183 Lung Mast_cells,T_CD4,DC_Monocyte_Dividing,T_cells_Dividing,DC_plasmacytoid
cl183 Spleen T_CD8_MAIT,Monocyte,T_CD4_reg,CD34_progenitor,B_follicular
cl183 Oesophagus Mast_cell,Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8,T_CD4
cl68 Lung T_CD4,T_cells_Dividing,T_regulatory,DC_1,Mast_cells
cl68 Spleen T_CD4_naive,T_CD4_fh,T_CD4_conv,ILC,T_CD4_reg
cl68 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8,Dendritic_Cells,B_CD27pos
cl192 Lung Monocyte,Macrophage_MARCOpos,DC_2,DC_Monocyte_Dividing,Macrophage_MARCOneg
cl192 Spleen Monocyte,DC_2,Macrophage
cl192 Oesophagus Mono_macro,Dendritic_Cells,Mast_cell,B_CD27pos,T_CD4
cl16 Lung DC_activated,Blood_vessel,Plasma_cells,DC_1,DC_Monocyte_Dividing
cl16 Spleen Plasma_IgG,Plasmablast,Plasma_IgM,B_follicular,B_mantle
cl16 Oesophagus Blood_vessel,B_CD27neg,B_CD27pos,Lymph_vessel,Dendritic_Cells
cl608 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,DC_activated,DC_1
cl608 Spleen B_Hypermutation,T_cell_dividing,B_follicular,DC_2,NK_dividing
cl608 Oesophagus B_CD27pos,B_CD27neg,T_CD4,Epi_dividing,T_CD8
cl470 Lung NK_Dividing,NK,T_CD8_CytT
cl470 Spleen NK_FCGR3Apos,T_CD8_CTL,T_CD8_MAIT,NK_dividing,NK_CD160pos
cl470 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl53 Spleen Platelet,CD34_progenitor
cl479 Oesophagus B_CD27neg
cl124 Lung Plasma_cells
cl124 Spleen Plasma_IgM,Plasma_IgG,Plasmablast
cl124 Oesophagus B_CD27pos
cl131 Lung Macrophage_MARCOpos,Macrophage_Dividing,Macrophage_MARCOneg,

DC_2,DC_Monocyte_Dividing
cl131 Spleen Monocyte,DC_2,DC_1,Macrophage,B_follicular
cl131 Oesophagus Mono_macro,Glands_duct,Dendritic_Cells,B_CD27pos,Blood_vessel
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Table C.6: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 5)

Cluster Tissue Cell types

cl152 Lung Ciliated,Alveolar_Type1,Alveolar_Type2
cl152 Oesophagus Glands_mucous,Glands_duct
cl306 Lung Muscle_cells,Blood_vessel,Fibroblast,Lymph_vessel,Alveolar_Type1
cl306 Oesophagus Stroma,Blood_vessel,Epi_basal,Lymph_vessel,Epi_suprabasal
cl115 Lung Monocyte,Macrophage_Dividing,Macrophage_MARCOpos,DC_Monocyte_Dividing
cl115 Spleen Monocyte,NK_CD160pos,T_CD8_CTL
cl115 Oesophagus Mono_macro,Dendritic_Cells,T_CD8,NK_T_CD8_Cytotoxic,Mast_cell
cl601 Lung B_cells,DC_1,DC_2,DC_plasmacytoid,DC_activated
cl601 Spleen B_follicular,B_mantle,DC_activated,T_CD8_gd
cl601 Oesophagus B_CD27pos,B_CD27neg,Dendritic_Cells,Mono_macro,T_CD4
cl307 Lung Alveolar_Type2,Alveolar_Type1,DC_activated,Ciliated,Monocyte
cl307 Spleen Plasmablast,DC_activated,DC_1,Plasma_IgG,Plasma_IgM
cl307 Oesophagus Mast_cell
cl426 Lung Lymph_vessel,Blood_vessel,DC_activated,Fibroblast
cl426 Spleen T_cell_dividing,DC_1,DC_activated
cl426 Oesophagus Lymph_vessel,Blood_vessel,Stroma
cl428 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel,Alveolar_Type2
cl428 Spleen T_CD4_fh
cl428 Oesophagus Stroma,Lymph_vessel,Epi_suprabasal,Blood_vessel,Epi_basal
cl212 Lung DC_1,DC_Monocyte_Dividing,DC_2,DC_activated,T_cells_Dividing
cl212 Spleen DC_1,DC_2,DC_activated,B_follicular,NK_dividing
cl212 Oesophagus Dendritic_Cells,B_CD27pos,B_CD27neg,Mono_macro,NK_T_CD8_Cytotoxic
cl85 Lung Muscle_cells,Blood_vessel,Fibroblast,Lymph_vessel,Alveolar_Type1
cl85 Spleen B_follicular,T_CD4_conv,B_mantle
cl85 Oesophagus Blood_vessel,Stroma,Lymph_vessel,Epi_basal,Epi_suprabasal
cl133 Lung Macrophage_MARCOpos,Macrophage_Dividing,Mast_cells,Alveolar_Type1,Alveolar_Type2
cl133 Oesophagus Dendritic_Cells,Glands_duct,Mono_macro,Epi_basal
cl414 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,DC_1,DC_2
cl414 Spleen NK_dividing,T_cell_dividing,B_Hypermutation,DC_1,DC_2
cl414 Oesophagus Epi_dividing,Dendritic_Cells,Mono_macro,B_CD27pos,NK_T_CD8_Cytotoxic
cl516 Lung T_regulatory,T_CD4
cl516 Spleen T_CD4_reg,T_CD4_naive,T_CD4_fh,T_CD4_conv
cl516 Oesophagus T_CD4,NK_T_CD8_Cytotoxic,T_CD8
cl379 Lung Alveolar_Type2,Alveolar_Type1,Macrophage_MARCOneg,

Macrophage_Dividing,Macrophage_MARCOpos
cl379 Spleen Macrophage
cl379 Oesophagus Dendritic_Cells,Mono_macro,Glands_duct
cl83 Lung Fibroblast,Lymph_vessel,Blood_vessel
cl83 Oesophagus Stroma,Lymph_vessel,Blood_vessel
cl412 Lung Macrophage_MARCOneg,DC_2,DC_1,DC_Monocyte_Dividing,DC_plasmacytoid
cl412 Spleen DC_2,DC_1,Monocyte,DC_plasmacytoid,B_follicular
cl412 Oesophagus Dendritic_Cells,Mono_macro,NK_T_CD8_Cytotoxic,B_CD27neg,T_CD4
cl285 Lung T_cells_Dividing,DC_plasmacytoid,Plasma_cells
cl285 Spleen DC_activated,Plasmablast,DC_plasmacytoid,DC_1
cl285 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic,B_CD27pos
cl281 Lung Fibroblast,Lymph_vessel,Muscle_cells,Macrophage_MARCOpos,Blood_vessel
cl281 Spleen DC_1
cl281 Oesophagus Epi_basal,Stroma,Glands_duct,Blood_vessel,Lymph_vessel
cl382 Lung Muscle_cells,Fibroblast,Alveolar_Type1,Lymph_vessel,Blood_vessel
cl382 Spleen T_CD8_CTL,T_cell_dividing,NK_dividing,T_CD8_activated,T_CD4_reg
cl382 Oesophagus Stroma,Glands_duct,Epi_basal,Epi_suprabasal,Blood_vessel
cl97 Lung Muscle_cells,Fibroblast,DC_Monocyte_Dividing,T_cells_Dividing,Blood_vessel
cl97 Spleen T_cell_dividing,NK_dividing,B_Hypermutation,Plasmablast
cl97 Oesophagus Stroma,Epi_dividing,Epi_upper,Epi_suprabasal
cl595 Lung DC_plasmacytoid,Mast_cells,DC_2,DC_activated,T_cells_Dividing
cl595 Spleen T_CD8_gd,Plasma_IgG,Plasma_IgM
cl595 Oesophagus Mast_cell,T_CD4,NK_T_CD8_Cytotoxic,Glands_mucous,B_CD27pos
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Table C.7: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 6)

Cluster Tissue Cell types

cl75 Lung Plasma_cells,B_cells
cl75 Spleen Plasma_IgG,Plasma_IgM,Plasmablast
cl75 Oesophagus B_CD27pos
cl268 Lung Fibroblast,Muscle_cells
cl268 Oesophagus Stroma
cl620 Spleen Plasmablast
cl273 Lung NK_Dividing,T_CD8_CytT,T_cells_Dividing,NK,T_CD4
cl273 Spleen T_CD8_gd,NK_CD160pos,T_CD8_MAIT,T_CD8_activated,T_CD8_CTL
cl273 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,B_CD27neg
cl543 Lung Plasma_cells
cl543 Spleen Plasma_IgM,Plasma_IgG
cl13 Lung Muscle_cells,Fibroblast,DC_activated,DC_1,Blood_vessel
cl13 Spleen T_CD8_gd
cl13 Oesophagus Stroma,Glands_duct,Blood_vessel,Lymph_vessel,Glands_mucous
cl546 Lung B_cells,DC_plasmacytoid,DC_1,Macrophage_MARCOneg,Plasma_cells
cl546 Spleen B_mantle,B_follicular,DC_activated
cl546 Oesophagus B_CD27neg,B_CD27pos,Dendritic_Cells,Mono_macro,Blood_vessel
cl23 Lung DC_2,Monocyte,DC_1,DC_activated,DC_Monocyte_Dividing
cl23 Spleen DC_2,Monocyte,DC_1,DC_activated,B_mantle
cl23 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,B_CD27neg,T_CD4
cl490 Lung NK,NK_Dividing,Ciliated
cl490 Spleen NK_FCGR3Apos,NK_CD160pos,NK_dividing
cl490 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl497 Lung DC_2,DC_activated,Macrophage_MARCOneg,DC_1,DC_plasmacytoid
cl497 Spleen B_follicular,DC_activated
cl497 Oesophagus Dendritic_Cells,Mono_macro,Blood_vessel,Glands_duct
cl438 Lung DC_1,DC_Monocyte_Dividing,T_CD4,DC_2,Macrophage_MARCOneg
cl438 Spleen CD34_progenitor,DC_1,DC_plasmacytoid,ILC,B_Hypermutation
cl438 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg,B_CD27pos
cl495 Lung NK_Dividing,T_cells_Dividing
cl495 Oesophagus Epi_dividing
cl110 Lung Macrophage_MARCOpos,Macrophage_MARCOneg,Lymph_vessel,

Mast_cells,Macrophage_Dividing
cl110 Spleen Macrophage,Monocyte,DC_plasmacytoid,DC_2,T_CD4_conv
cl110 Oesophagus Mono_macro,Stroma,Glands_duct,Lymph_vessel,Mast_cell
cl269 Lung T_cells_Dividing,T_CD4,T_CD8_CytT,NK_Dividing,NK
cl269 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,T_CD8_gd,NK_CD160pos
cl269 Oesophagus T_CD8,NK_T_CD8_Cytotoxic,T_CD4,Dendritic_Cells,Mast_cell
cl127 Lung Macrophage_MARCOpos,Macrophage_Dividing,DC_2,Monocyte,Macrophage_MARCOneg
cl127 Spleen Macrophage,DC_2,Monocyte,B_follicular,DC_1
cl127 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,B_CD27pos,Blood_vessel
cl311 Lung Muscle_cells,Fibroblast,Blood_vessel,Lymph_vessel,Alveolar_Type1
cl311 Spleen T_CD8_CTL,T_CD4_fh,T_CD8_activated,T_CD4_reg,T_CD4_conv
cl311 Oesophagus Stroma,Lymph_vessel,Blood_vessel,Epi_suprabasal,Epi_basal
cl118 Lung Macrophage_MARCOpos,Macrophage_Dividing,Macrophage_MARCOneg,DC_2,Monocyte
cl118 Spleen Monocyte,DC_2,Macrophage
cl118 Oesophagus Mono_macro,Dendritic_Cells
cl77 Lung DC_plasmacytoid,DC_activated
cl77 Spleen DC_plasmacytoid,B_follicular,DC_activated
cl77 Oesophagus B_CD27pos,Dendritic_Cells,Blood_vessel
cl472 Lung NK_Dividing,NK,T_CD8_CytT
cl472 Spleen T_CD8_CTL,NK_FCGR3Apos,T_CD8_MAIT,NK_CD160pos,T_CD8_activated
cl610 Lung T_CD4,T_cells_Dividing,T_regulatory
cl610 Spleen T_CD4_fh,T_CD4_reg,T_CD4_conv,T_CD4_naive,T_CD8_activated
cl610 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl180 Lung Lymph_vessel,Blood_vessel,Fibroblast
cl180 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Glands_duct,Epi_basal
cl251 Lung DC_1,Plasma_cells,Monocyte,DC_activated
cl251 Spleen Plasma_IgM,B_follicular,Plasma_IgG
cl251 Oesophagus T_CD8,T_CD4,B_CD27neg
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Table C.8: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 7)

Cluster Tissue Cell types

cl380 Lung Fibroblast,DC_2,DC_1
cl380 Spleen Monocyte
cl380 Oesophagus Stroma,NK_T_CD8_Cytotoxic,Epi_basal,Lymph_vessel,Glands_duct
cl591 Lung Plasma_cells
cl591 Spleen Plasma_IgM,Plasma_IgG,Plasmablast
cl591 Oesophagus B_CD27pos
cl266 Lung Monocyte,DC_2,Macrophage_MARCOneg,DC_1,DC_activated
cl266 Spleen Monocyte,DC_2,DC_plasmacytoid,DC_1,Macrophage
cl266 Oesophagus Dendritic_Cells,Mono_macro,B_CD27pos,NK_T_CD8_Cytotoxic,T_CD4
cl510 Lung Macrophage_Dividing,DC_Monocyte_Dividing
cl510 Spleen Monocyte
cl510 Oesophagus Mono_macro
cl101 Lung DC_plasmacytoid,DC_activated,Mast_cells,T_cells_Dividing,Plasma_cells
cl101 Spleen B_follicular,DC_activated,Plasmablast,T_CD8_activated,T_CD8_gd
cl101 Oesophagus Dendritic_Cells,B_CD27pos,Blood_vessel,Glands_duct,B_CD27neg
cl24 Lung Macrophage_MARCOneg,DC_Monocyte_Dividing,DC_2,Monocyte,Macrophage_MARCOpos
cl24 Spleen Monocyte,DC_2,DC_1,Macrophage,B_mantle
cl24 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,B_CD27pos,B_CD27neg
cl473 Lung T_CD4,T_regulatory,T_cells_Dividing,T_CD8_CytT,DC_activated
cl473 Spleen T_CD8_MAIT,T_CD8_CTL,T_CD4_conv,T_CD4_naive,T_CD4_fh
cl473 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl7 Lung Muscle_cells,Fibroblast,Lymph_vessel,Blood_vessel,Alveolar_Type1
cl7 Spleen T_CD8_CTL
cl7 Oesophagus Stroma,Blood_vessel,Lymph_vessel,Glands_duct,Epi_basal
cl618 Lung T_cells_Dividing,T_regulatory,T_CD4,B_cells,DC_Monocyte_Dividing
cl618 Spleen Plasmablast
cl618 Oesophagus B_CD27pos,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg
cl155 Lung T_cells_Dividing,DC_Monocyte_Dividing,NK_Dividing,Macrophage_Dividing,B_cells
cl155 Spleen T_cell_dividing,B_Hypermutation,Plasmablast,NK_dividing,B_follicular
cl155 Oesophagus Epi_dividing,B_CD27pos,B_CD27neg
cl67 Lung Lymph_vessel,Blood_vessel,Fibroblast,Muscle_cells,DC_Monocyte_Dividing
cl67 Spleen DC_1,NK_dividing,T_cell_dividing,B_Hypermutation,DC_2
cl67 Oesophagus Lymph_vessel,Blood_vessel,Stroma,Glands_duct,Epi_basal
cl0 Lung Blood_vessel,DC_Monocyte_Dividing,Lymph_vessel,DC_1,DC_plasmacytoid
cl0 Spleen NK_dividing,B_Hypermutation,T_cell_dividing,CD34_progenitor,DC_1
cl0 Oesophagus Blood_vessel,Lymph_vessel,Dendritic_Cells,Mono_macro,B_CD27pos
cl524 Lung NK_Dividing,T_cells_Dividing,DC_Monocyte_Dividing,NK,Macrophage_Dividing
cl524 Spleen NK_dividing,T_cell_dividing,NK_CD160pos,B_Hypermutation,NK_FCGR3Apos
cl524 Oesophagus Epi_dividing,NK_T_CD8_Cytotoxic,T_CD8,T_CD4
cl514 Lung T_CD8_CytT,T_cells_Dividing,T_CD4,T_regulatory
cl514 Spleen T_CD8_activated,T_CD8_gd,T_CD8_MAIT,T_CD8_CTL,T_CD4_reg
cl514 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl474 Lung Mast_cells,DC_1
cl474 Spleen CD34_progenitor
cl474 Oesophagus Mast_cell,Mono_macro,Dendritic_Cells,NK_T_CD8_Cytotoxic,T_CD8
cl619 Lung T_cells_Dividing,T_CD4,Monocyte,T_regulatory,Mast_cells
cl619 Spleen T_CD8_MAIT,T_CD4_reg,T_CD4_fh,T_CD4_conv,ILC
cl619 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8,Dendritic_Cells,Mast_cell
cl486 Lung Monocyte,Macrophage_MARCOneg,DC_2,Macrophage_MARCOpos,T_CD4
cl486 Spleen Monocyte,DC_2
cl486 Oesophagus Mono_macro,Dendritic_Cells,B_CD27neg,NK_T_CD8_Cytotoxic,B_CD27pos
cl502 Lung T_CD8_CytT,T_cells_Dividing,NK_Dividing,NK
cl502 Spleen T_CD8_CTL,T_CD8_activated,T_CD8_MAIT,T_CD8_gd,T_CD4_reg
cl502 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic
cl501 Lung NK,NK_Dividing
cl501 Spleen NK_CD160pos,NK_FCGR3Apos,NK_dividing,T_CD8_gd
cl501 Oesophagus NK_T_CD8_Cytotoxic,T_CD8
cl55 Lung Alveolar_Type1,Lymph_vessel,Blood_vessel
cl55 Oesophagus Epi_basal,Glands_duct,Epi_suprabasal,Glands_mucous,Blood_vessel
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Table C.9: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 8)

Cluster Tissue Cell types

cl529 Lung T_CD8_CytT,NK,NK_Dividing,Monocyte,T_CD4
cl529 Spleen T_CD8_CTL,T_CD8_MAIT,T_CD8_activated,NK_FCGR3Apos,NK_CD160pos
cl529 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,Mono_macro
cl26 Lung Fibroblast,Muscle_cells
cl26 Oesophagus Stroma,Epi_suprabasal
cl60 Lung NK_Dividing,NK,T_CD8_CytT,Macrophage_MARCOpos,DC_Monocyte_Dividing
cl60 Spleen T_CD8_CTL,NK_FCGR3Apos,NK_CD160pos,T_CD8_gd,T_CD8_MAIT
cl60 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Dendritic_Cells,Mono_macro
cl236 Lung Alveolar_Type1,Alveolar_Type2,Ciliated,Muscle_cells,Lymph_vessel
cl236 Spleen T_CD4_conv,T_CD8_MAIT,T_cell_dividing,NK_dividing,T_CD8_CTL
cl236 Oesophagus Epi_upper,Glands_duct,Epi_basal,Glands_mucous,Epi_stratified
cl538 Lung NK_Dividing,T_cells_Dividing
cl538 Spleen Unknown,NK_dividing
cl538 Oesophagus Epi_dividing
cl238 Lung Mast_cells,T_cells_Dividing,DC_plasmacytoid,T_CD4,T_regulatory
cl238 Spleen Plasma_IgM,T_CD4_reg,T_CD8_MAIT
cl238 Oesophagus T_CD4,T_CD8,Dendritic_Cells,NK_T_CD8_Cytotoxic,Glands_mucous
cl439 Spleen B_mantle
cl465 Lung Alveolar_Type2
cl465 Spleen T_cell_dividing,Unknown,B_Hypermutation
cl447 Lung T_CD4
cl447 Spleen Unknown
cl283 Lung T_regulatory,T_CD4,T_cells_Dividing,T_CD8_CytT,DC_plasmacytoid
cl283 Spleen T_CD4_reg,T_CD4_conv,T_CD8_MAIT,T_CD8_activated,T_CD4_fh
cl283 Oesophagus T_CD4,T_CD8
cl52 Lung Fibroblast,Muscle_cells,Lymph_vessel,Blood_vessel,Alveolar_Type1
cl52 Spleen T_CD8_gd,T_CD8_CTL,T_CD4_conv,T_CD8_MAIT
cl52 Oesophagus Stroma,Lymph_vessel,Epi_basal,Blood_vessel,Epi_suprabasal
cl615 Lung T_regulatory,T_CD4,T_cells_Dividing,T_CD8_CytT
cl615 Spleen T_CD4_fh,T_CD4_reg,T_CD8_activated,T_CD8_gd
cl615 Oesophagus T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27neg
cl237 Lung Plasma_cells,DC_activated,T_regulatory,Mast_cells
cl237 Spleen Plasma_IgM,Plasma_IgG,B_follicular
cl237 Oesophagus T_CD8
cl443 Lung Monocyte,DC_2,DC_Monocyte_Dividing,DC_1,DC_activated
cl443 Spleen Macrophage,T_CD8_gd,Monocyte,DC_activated,NK_CD160pos
cl443 Oesophagus Mono_macro,Dendritic_Cells,NK_T_CD8_Cytotoxic,B_CD27neg,T_CD4
cl626 Lung Plasma_cells,DC_2
cl626 Spleen Plasma_IgM,T_CD8_gd,Plasmablast
cl547 Lung Plasma_cells,Alveolar_Type2,Fibroblast,DC_Monocyte_Dividing,DC_plasmacytoid
cl547 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,DC_plasmacytoid,B_follicular
cl547 Oesophagus Glands_mucous,B_CD27pos,Dendritic_Cells,T_CD8
cl275 Lung Blood_vessel,Muscle_cells,Lymph_vessel,Fibroblast
cl275 Spleen B_follicular,CD34_progenitor
cl275 Oesophagus Blood_vessel,Lymph_vessel,Stroma,Epi_basal,Epi_suprabasal
cl185 Lung T_cells_Dividing,T_CD4,T_regulatory
cl185 Spleen T_CD4_reg,T_CD4_conv,T_CD8_activated,T_CD8_MAIT,T_CD4_fh
cl185 Oesophagus T_CD8,T_CD4,NK_T_CD8_Cytotoxic
cl515 Lung Monocyte,Macrophage_MARCOpos
cl515 Spleen Monocyte,Macrophage,DC_2,T_CD8_MAIT,NK_CD160pos
cl515 Oesophagus Glands_duct,Mono_macro
cl148 Lung Lymph_vessel,Blood_vessel,Fibroblast,Muscle_cells,Alveolar_Type1
cl148 Spleen T_CD8_gd,DC_1
cl148 Oesophagus Lymph_vessel,Stroma,Blood_vessel,Epi_basal,Glands_mucous
cl569 Lung Plasma_cells,B_cells,Alveolar_Type2
cl569 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,B_follicular
cl569 Oesophagus B_CD27pos,Glands_mucous,B_CD27neg
cl282 Lung Muscle_cells,Fibroblast,Blood_vessel,Lymph_vessel,Alveolar_Type1
cl282 Oesophagus Stroma,Blood_vessel,Lymph_vessel,Epi_basal,Epi_suprabasal
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Table C.10: Cell types from (Madissoon et al., 2019) with expression programmes
enriched in CellTypist clusters (continued 9)

Cluster Tissue Cell types

cl314 Lung Fibroblast,Muscle_cells,Lymph_vessel
cl314 Spleen DC_1,DC_2,DC_activated
cl314 Oesophagus Epi_suprabasal,Stroma
cl378 Lung Fibroblast,Alveolar_Type1
cl378 Oesophagus Stroma,Epi_basal,Epi_suprabasal
cl20 Lung DC_2,DC_1,Monocyte,DC_Monocyte_Dividing,DC_activated
cl20 Spleen DC_2,DC_1,Monocyte,DC_activated,CD34_progenitor
cl20 Oesophagus Dendritic_Cells,Mono_macro,T_CD4,T_CD8,Mast_cell
cl168 Lung T_cells_Dividing,T_CD4,T_regulatory,T_CD8_CytT,DC_Monocyte_Dividing
cl168 Spleen T_cell_dividing,T_CD8_MAIT,T_CD4_fh,T_CD4_conv,NK_dividing
cl168 Oesophagus NK_T_CD8_Cytotoxic,T_CD4,T_CD8,Dendritic_Cells
cl308 Lung Alveolar_Type2,Alveolar_Type1
cl308 Oesophagus Glands_mucous
cl304 Lung Blood_vessel
cl304 Spleen DC_1,NK_dividing
cl537 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,T_CD4,T_regulatory
cl537 Spleen T_cell_dividing,NK_dividing,T_CD4_reg,B_Hypermutation,T_CD8_MAIT
cl537 Oesophagus Epi_dividing,T_CD4,T_CD8,NK_T_CD8_Cytotoxic,B_CD27pos
cl613 Lung B_cells,DC_plasmacytoid,DC_1,DC_Monocyte_Dividing,DC_activated
cl613 Spleen B_follicular,B_mantle,B_Hypermutation
cl613 Oesophagus B_CD27pos,B_CD27neg,Mono_macro,Dendritic_Cells
cl574 Lung Plasma_cells
cl574 Spleen Plasmablast,Plasma_IgM,Plasma_IgG
cl493 Spleen Platelet
cl550 Lung B_cells,T_CD4,T_regulatory,T_CD8_CytT,DC_activated
cl550 Spleen T_CD8_CTL,B_follicular,B_mantle,T_CD8_MAIT,T_CD8_activated
cl550 Oesophagus T_CD4,B_CD27neg,B_CD27pos,NK_T_CD8_Cytotoxic,T_CD8
cl492 Lung T_cells_Dividing,NK_Dividing,DC_Monocyte_Dividing,Macrophage_Dividing,T_CD4
cl492 Spleen NK_dividing,B_Hypermutation,CD34_progenitor,T_cell_dividing,Plasmablast
cl492 Oesophagus Epi_dividing,B_CD27pos,B_CD27neg,NK_T_CD8_Cytotoxic
cl265 Lung Plasma_cells
cl265 Spleen Plasma_IgM,Plasma_IgG,Plasmablast,B_follicular,NK_dividing
cl265 Oesophagus Glands_mucous
cl310 Lung Plasma_cells,DC_activated,DC_1,T_regulatory,Mast_cells
cl310 Spleen Plasma_IgG,Plasma_IgM,Plasmablast,DC_plasmacytoid,T_cell_dividing
cl310 Oesophagus B_CD27pos,Glands_mucous,B_CD27neg,NK_T_CD8_Cytotoxic,T_CD8
cl500 Spleen NK_FCGR3Apos,T_CD8_CTL
cl576 Lung Alveolar_Type1,Alveolar_Type2,Macrophage_MARCOneg
cl576 Spleen T_CD8_activated,T_CD8_CTL
cl403 Lung DC_Monocyte_Dividing,T_cells_Dividing,NK_Dividing,Mast_cells,Monocyte
cl403 Spleen NK_dividing,T_cell_dividing,Plasmablast,Platelet,B_Hypermutation
cl403 Oesophagus Epi_dividing,Mast_cell,Dendritic_Cells,Lymph_vessel
cl240 Lung NK_Dividing,DC_Monocyte_Dividing,NK,Macrophage_Dividing,T_CD8_CytT
cl240 Spleen NK_dividing,NK_CD160pos,T_CD8_gd,NK_FCGR3Apos,B_Hypermutation
cl240 Oesophagus NK_T_CD8_Cytotoxic,T_CD8,T_CD4,Mast_cell,Mono_macro
cl230 Lung T_regulatory
cl549 Lung Mast_cells
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