Comparative genomics of Escherichia coli causing bloodstream infections in the Hospital for Tropical Diseases, Ho Chi Minh city, Vietnam

Tu Thi Phuong Le

Wellcome Trust Sanger Institute
University of Cambridge
Darwin College

This dissertation is submitted for the degree of Master of Philosophy in Biological Science
September 2017

Declaration

I hereby declare that:

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text and bibliography. My dissertation is not substantially the same as any that I have submitted for a degree or diploma or other qualification at any other University. I further state that no part of my dissertation has already been or is being concurrently submitted for any such degree, diploma or other qualification.

I confirmed that my dissertation does not exceed the limit of length of 20,000 words prescribed in the Special Regulations of the MPhil examination for which I am a candidate.

Acknowledgements

This thesis was possible because of the collective efforts of many people, from the patient beds to lab benches and computer clusters, trying to deconvolute one of the oldest and cheekiest bacteria that cause big issues not only in a single referral hospital in Vietnam, but also across the globe.

This has been a tough but wonderful journey. I was extremely grateful to work on this project and have seen myself grow academically, intellectually, and personally in the past year in Cambridge.

First of all, I would like to thank my main supervisor Prof. Nicholas Robert Thomson for his unbelievable patience and guidance during the research. His continuous encouragement and support during difficult times is something that I always greatly appreciated.

I also would like to thank my former supervisor Prof. Stephen Baker from Oxford University Clinical Research Unit (OUCRU) for coming up with the idea for this project during the application process to the MPhil program as it turned out to be a very interesting project.

I would like to express my gratitude to my thesis committee members including Julian Rayner, Stephen Bentley, Estee Torok, and Kate Baker, who have provided valuable feedback and criticism.

I would like to thank members of Team 216 at the Sanger Institute for their tremendous daily support, as well as for providing me with a remarkably happy and friendly place to work. In no particular order, these include Angèle Bénard, Mathew Beale and Déborah Kreyenbihler. With no prior background on working with whole genome sequencing data, I therefore could not have completed the project without the guidance and patience of Alison Mather (Cambridge University), Daryl Domman, Eva Heinz and Alex Wailan (Sanger Institute), who never hesitating to spend time teaching me when I was stuck. I also would like to thank Ngure Kagia, another MSc student, who helped me to feel comfortable using Linux and computer clusters at the very beginning of my time at Sanger. Finally, I am indebted to Matthew Dorman for giving very constructive helpful feedback during my writing process.

The blood-derived Escherichia coli strains from this six-year period is the effort of all Microbiology staff at Hospital for Tropical Disease (Ho Chi Minh city, Vietnam), especially Nguyen Huu Hien and Tran Thi Ngan who carried out the blood culturing, identification, antimicrobial phenotype testing and sample archiving. The clinical metadata extracted from electronic hospital record database for this study was kindly provided by Nguyen Huu Hien, Dr Nguyen Phu Huong Lan and Dr Nguyen Van Vinh Chau. The second set of blood and stool isolates, as well as its associated clinical data, came from a big study on hospital acquired infections in the Intensive Care Unit lead by Dr Duong Bich Thuy, Mr James Campell, Dr Louise Thwaites, Prof Stephen Baker and Prof Guy Thwaites. I also would like to thank Nguyen Hoang Thu Trang, To Thi Thanh Huyen and Vong Vinh Phat for assisting me during the DNA extraction stage. I also would like to thank Dr Ho Dang Trung Nghia for discussions about the context of management and treatment of BSI patients in the hospital. My work relied on enormous sequencing
data of nearly 700 bacterial isolates, therefore I am indebted to the DNA core sequencing team and also the Pathogen Informatics team at the Sanger Institute for sample management, sequencing, and providing many analysis pipelines and bioinformatics supports. Many scripts and software I used for WGS analysis in this thesis were written by Simon Harris and Andrew Page.

Apart from working, I would like to give special thanks to Benjamin Bai, Simon Scutts, other friends and colleagues at Sanger and Darwin college badminton club for keeping me sane through many fun and joyful badminton matches.

Finally, this study could not have made possible without the support of the Wellcome Trust, who generously funded not only my university fees and living expenses, but also the research costs in both institutions in two nations, Sanger (UK) and OUCRU (Vietnam). I hope my study will shed a light on how the cheeky E. coli cause disease in Vietnamese patients as well as acquire drug resistance over time. Future work will be required to understand how to prevent and reduce the burden of disease in Vietnamese patients.

To my parents and little sister,
for their endless and unconditional love.

Table of Contents

Declaration i
Acknowledgements ii
Dedication iv
Contents v
Figures vii
Tables. viii
Abstract ix
Chapter 1: Introduction. vii
1.1. The history, taxonomy, and characteristics of Escherichia coli. 1
1.1.1. Introduction 1
1.1.2. Commensal E. coli 1
1.1.3. The E. coli genome. 2
1.1.4. Pathogenic E. coli. 2
1.2. E. coli associated with bloodstream infections (BSIs), sepsis and bacteraemia 3
1.3. Hospital for Tropical Disease (HTD), Vietnam. 4
1.4. Antimicrobial resistance in E. coli. 4
1.5. AMR E. coli in Vietnam. 5
1.5.1 ESBL - producing E. coli and carbepenemase- producing E. coli 6
1.5.2 Carbapenemase-producing E. coli 7
1.6. Mobile genetic elements (MGEs) 7
1.7. Reservoirs of E. coli and transmission mechanism 8
1.8. Aims and objectives of the study 8
Chapter 2: Comparative Genomics of BSIs caused by E. coli in the Hospital for Tropical Diseases in Vietnam 10
2.1. Introduction 10
2.2. Methods 11
2.2.1. Strain collection 11
2.2.2 Ethics 11
2.2.3 Bacterial isolation 11
2.2.4. Metadata 12
2.2.5. Whole genome sequencing 12
2.2.6. Accessions 12
2.2.7. Genome assembly and annotation 12
2.2.8. Quality control of sequencing data. 13
2.2.9. In silico MLST and phylogroup classification 13
2.2.10. Construction of core genome phylogeny 13
2.3. Results 14
2.3.1. Sequencing and QC 14
2.3.2. Basic patient demographic and clinical outcome of hospitalised patients with BSIs. 15
2.3.3. The genomic diversity and population structure of BSI and carriage E. coli from Vietnamese patients attending HTD. 16
2.4. Discussion 25
Chapter 3: The accessory genome of Escherichia coli of patients attending HTD 27
3.1. Introduction 27
3.2. Methods 30
3.2.1. In silico virulence, $A M R$, and plasmid replicon type gene detection 30
3.2.2. Antimicrobial phenotype testing 30
3.2.3. Statistical analysis 30
3.3. Results 31
3.3.1. The distribution of virulence factors between blood and rectal swab isolates 31
3.3.2. The distribution of virulence factors between different BAPS lineages/ phylogroups/STs 33
3.3.3. Antimicrobial resistance phenotype between blood/rectal swab isolates 41
3.3.4. Antimicrobial resistance genes distribution in blood/ rectal swab 42
3.4. Discussion 50
Chapter 4: Understanding the relationships between BSI and carriage E. coli isolates in patients attending HTD, Vietnam. 53
4.1. Introduction 53
4.2. Methods 54
4.2.1 Study participants. 54
4.2.2. Isolate collection 54
4.2.3. Phylogenetic analysis 54
4.2.4. AMR genes, replicon types and virulence genes identification 54
4.3. Results 54
4.3.1. Patient and sample recruitment 54
4.3.2. Genomic diversity among rectal swab and blood derived E. coli isolates on admission to HTD ICU 55
4.3.2. Longitudinal diversity 59
4.4. Discussion 63
Chapter 5 Final discussion 65

Figures

Figure 2.1. Sequencing and QC work flow for the samples included for whole genome sequencing(WGS) in this study14
Figure 2.2: Comorbidity and outcome in patients with E. coli BSIs. 16
Figure 2.3: The pan genome of 687 Escherichia coli 18
Figure 2.4: Population structure of 665 E. coli isolates analysed in this study 19
Figure 2.5: The phylogenies of E. coli taken from HTD, including reference strains, reported alongside clinical metadata for E. coli causing BSI 22
Figure 2.6: STs distribution of blood and rectal swab isolates 23
Figure 2.7: A core genome tree visualised in Phandango for blood and rectal swab isolates 24
Figure 3.1: Volcano plot for odds ratio versus $-\log _{10} \mathrm{p}$-value of gene distribution between invasive and carriage isolates 33
Figure 3.2: Phylogeny of E. coli lineages and virulence genes found in each isolate. 34
Figure 3.3: The distribution of AMR resistance between blood and carriage isolate 42
Figure 3.4: Total number of resistance genes and replicon types. 43
Figure 3.5: AMR genotypes and phenotypes across all E. coli isolates 44
Figure 3.6: The genetic environment of $\mathrm{mer}-1$ on a chromosomal contig. 45
Figure 4.1: Phylogenetic diversity among rectal swab and blood derived E. coli isolates from HTD57
Figure 4.2: Pairwise SNP distances within and between patients based on the variant calls from the core gene alignment 58
Figure 4.3: Twenty longitudinal isolates and from seven patients 59
Figure 4.4: Graph shows phylogenetic relationship between isolates in patient P3 (03-283) 63

Tables

Table 2.1: Clinical characteristic of E. coli BSIs patients.15Table 3.1: Common virulence factors identified in ExPEC 28
Table 3.2: The percentage of isolates carrying specific virulence genes in the 12 most dominant sequence types of E. coli found in this study. 36
Table 3.3: bla CTX-M distribution among different STs 46
Table 3.4: Plasmid replicon type identified in E. coli collection. 47

Abstract

Escherichia coli (E.coli) is a versatile bacterium, with the capability to act not only as a commensal coloniser but also as a pathogen that can cause invasive disease. Currently, E. coli is the leading cause of bloodstream infections in both developed and developing countries, accounting for $25-30 \%$ of bacteraemia cases globally. E. coli bacteraemia is further exacerbated by the emergence of antimicrobial resistance, particularly extended spectrum β-lactamases (ESBLs) and carbapenemases in Gramnegative bacteria. Understanding the nature and diversity of E. coli causing bloodstream infections is crucial for the enhancement of infection control measures, to minimise the further emergence of antimicrobial resistant isolates, and for the reduction of morbidity and mortality.

We used whole-genome sequencing to analyse the population structure of 506 invasive and 159 carriage E. coli isolates collected at The Hospital for Tropical Diseases, Vietnam during 2010-2015, and to look for genetic signatures that differentiate them from one another. We found substantial diversity therein, both in the total number of sequence types present, and in the number of resistant genes carried. Among blood isolates, ST131, ST95, ST69, ST1 193 and ST73 were dominant STs, while from the rectal swab (carriage) isolates, ST131, ST1193 and ST648 were most prevalent. All of these STs from blood and rectal swab samples remained dominant over the entire study period, the exception being ST1193. Interestingly ST1 193 was not present in Vietnam prior to 2011, but once introduced, it quickly emerged and replaced other more drug sensitive E. coli clones. From longitudinal sampling and paired E. coli isolated from blood and rectal swab from the same patients, we demonstrated that majority of E. coli infections (57%) were acquired from the patients' own gut microbiota. This study shows that several genetic factors, including genes that mediate adhesion (fimbriae and pili), iron acquisition (siderophores), immune evasion (capsule synthesis) and toxin elaboration (haemolysin and cytotoxic necrotizing factor 1) are significantly more common in invasive E. coli than in carriage strains. We were also able to begin to explain anomalies in the patterns of antimicrobial resistance of blood and rectal swab E. coli isolates using the population structure we defined here.

Taken together, we have generated a genetic framework for future studies focusing on E. coli BSI at HTD. These data also demonstrate that a combination of both virulence genes and antimicrobial resistance genes are essential for the success of certain lineages in causing invasive disease in Vietnamese patients. Perhaps more importantly we also show that patients who develop bacteraemia in hospital did so largely through infection with isolates already present in their intestinal tract and so were predominantly community acquired invasive infections rather than hospital acquired infections, contrary to our original hypothesis.

Chapter 1: Introduction

1.1. The history, taxonomy, and characteristics of Escherichia coli

1.1.1. Introduction

Escherichia coli (E. coli) is a bacterial genus and species, belonging to the family Enterobacteriaceae. Originally called "Bacterium coli commune" in 1885, it was subsequently renamed E. coli after Theodor Escherich, a German paediatric physician, who investigated and characterised the bacteria colonising infant guts, as well as their role in infant digestion [1].

We now know that E. coli is a ubiquitous member of microbiota in the lower intestinal tract of reptiles, humans, as well as most other warm-blooded animals [2]. A typical human gut can carry up to $10^{9} \mathrm{E}$. coli cells [3]. This compares to the 3.0×10^{13} human cells making up the body and the estimated $3.8 \times$ 10^{13} number of bacterial cells that colonise the human body [4]. In the context of the digestive tract, E. coli represents about $0.1-5 \%$ of the gut microbiota; although it is ubiquitous, it represents only a minor component of the gut bacterial population [5, 6]. Since E. coli grows rapidly, has relatively simple nutritional requirements, and is highly genetically amenable, it quickly became the main Gram-negative prokaryotic model system [2].
E. coli is not only a benign resident of the human gut, but can also contribute positively to human health. For example, E. coli produces Vitamin K and serves as a barrier layer in the gut, helping to outcompete and to outgrow pathogenic bacteria which attempt to colonise that niche [7]. E. coli is also known to inhabit niches outside of the warm-blooded gut, including water, sediments and soils [8, 9], it is not restricted to colonising humans or warm-blooded animals. Moreover, along with this ability to colonise a diverse set of niches, E. coli is also a diverse organism genetically. The ability of E. coli to survive and to colonise many niches, both biological and abiotic environments, as well as to behave as both a commensal and pathogenic bacterium, makes this species an excellent candidate for the study of bacterial evolution and adaptation [10].

1.1.2. Commensal E. coli

The population structure of commensal E. coli has been reviewed extensively by Tenaillon et al [3]. Along with others gut microbiome, E. coli is one of the first bacterial species to colonized infant's gastrointestinal tract after natural birth delivery and might originate from the maternal faecal flora [11]. The population of E. coli in the human gut is diverse: at any given time point, each person carries one predominant E. coli strain/genotypes which accounts for more than 50% of the total E. coli in the gut, and simultaneously harbours several other strains/genotypes at different percentages [12]. Longitudinal sampling of stool isolates revealed that there are frequently more than two genotypes of E. coli colonising the gut, defined as resident (stay for years) or transient colonisers (only present for a few
days or weeks). E. coli are classified into four major phylogroups A, B1, B2 and D [13] and populations of these phylogroups are spatiotemporally diverse. Different human populations are dominated by different phylogroups, and dominant phylogroups in a population may vary over time [14]. For example, the guts of native people in French Guyana are composed of more "commensal" E. coli phylogroups A and D than people from an urban city like Paris [15]. There was also a shift from phylogroup A to B2 in Parisians between the 1980s and 2000s. Such differences are explained mainly by diet and hygiene [16, 17].

1.1.3. The E. coli genome

Bacterial genomes can be sub-divided into core and accessory regions. Core genes are families of genes that are found in all members of a particular species, whereas accessory genes are present in some, but not all, genomes of that species. Together, the core and accessory regions of genes constitute the pan genome. From comparative genomic studies that have analysed the core and pan genomes of E. coli, we know that the core genome of E. coli consists of nearly 2,000 genes. However, the size of the predicted core depends heavily on the number of genomes and the cutoffs used to define orthologous genes [18, 19].

The pan genome defined by comparative genomic analysis of the first 20 fully sequenced E. coli genomes, which represent all E. coli pathotypes, contains around 18,000 genes [18]. The number of genes in the E. coli pan genome increases linearly with the number of newly added E. coli genomes [20]. Compared to more host restricted prokaryotes such as Chlamydia trachomatis or Corynebacterium pseudotuberculosis, E. coli is thought to have an "open" pan genome, whereby accessory genes might provide significant benefits to the E. coli host such as substrate utilisation and stress tolerance in harsh environments [21]. A recent analysis of 2,085 E. coli genomes estimate that there are 3,188 core gene families across Escherichia coli species and approximately 89,000 unique gene families [22, 23].

1.1.4. Pathogenic E. coli

Despite being part of the normal microbiota of healthy individuals and a useful laboratory workhorse, variants of E. coli are also known to be pathogens which are estimated to cause million infections per year [24, 25].
E. coli is one of the four leading causes of moderate to severe diarrheal disease in children under five years of age [26, 27]. Globally, it is the main cause of urinary tract infections (UTIs) and blood stream infections (BSIs) in the elderly, and of meningitis in neonates [28]. These pathogenic groups can be further subdivided into intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). Of the InPEC, there are five major groups, known as pathotypes, defined based on the specific disease with which they are associated: enteroaggregative E. coli (EAEC), enterohaemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC) and diffusively adherent E. coli (DAEC). Four main pathotypes exist for ExPEC: uropathogenic
E. coli (UPEC), neonatal meningitis E. coli (NMEC), avian-pathogenic E. coli (APEC) and sepsisassociated E. coli (SePEC). The intestinal E. coli pathotype is based on the clinical manifestation of the disease and the virulence genes which they carry [29]. EPEC harbours loci of enterocyte effacement (LEE) and bundle-forming pilus gene ($b f p$), whereas EHEC encodes LEE together with genes encoding the Shiga toxin (stx1, stx2, or both together). ETEC expresses the LT and ST enterotoxins. EIEC possess ipaH genes located on pINV plasmids that enable this pathotype to invade host cells. The genetic determinants of the APEC pathotype remain unclear [30].

Although there are many different E. coli pathotypes, the subject of this study are those pathotypes associated with bloodstream infections, sepsis and bacteraemia. These pathotypes will now be considered in more detail.

1.2. E. coli associated with bloodstream infections (BSIs), sepsis and bacteraemia

Prior to the year 2000, it is estimated that 10 million people were affected every year by E. coli BSIs, with mortality rates of 44 deaths per 100,000 individuals [31]. E. coli bacteraemia is defined by the presence of E. coli in the blood, whereas sepsis is defined as the host systemic inflammatory response to the E. coli bloodstream infection, which leads to multiple organ failure [32]. E. coli can enter the blood as a consequence of severe primary infections such as pneumonia or urinary infection [33]. Other routes of infection include the direct inoculation of the bacteria into the blood via such routes as chronic urinary catheterisation, mechanical ventilation or prostate biopsy. Bacteraemia can also emerge from the gut through a process called bacterial translocation, whereby bacteria or bacterial products are translocated from the gut to mesenteric lymph nodes, from where they disseminate and cause disease systematically $[34,35]$. In leukaemia patients, the bowel appears to be a portal for E. coli translocation and repeated bacteraemia episodes, whereby the same genotype has been isolated from blood and stool [36]. Data from mice which have undergone chemotherapy, or from mice bearing tumours, confirm this bacterial translocation hypothesis, although the mechanism underlying this phenomenon remains unknown [37].

In developed countries such as the United States of America, Canada, and the United Kingdom, the annual incidence of invasive E. coli bloodstream infections ranges between 30 [38] to 63 cases per 100,000 [39]. This increases with age, especially in people over 45 years old, with incidence in this senior population (>45 years old) being up to 150 cases per 100,000 [40]. There has also been a general increase in the number of reported of E. coli bacteraemia cases [41] in the $21^{\text {st }}$ century; for instance, from 1999-2011 and after 2006, the number of reported E. coli bacteraemia cases in UK increased from 3.4 to 5.7 per 10,000 bedstays [42].

Unfortunately, there are limited data available regarding the incidence and risk factors of E. coli bacteremia in developing world. In developing countries within Africa and South Asia, bacteraemia is commonly associated with HIV-positive patients who are co-infected with invasive non-typhoid

Salmonella or Salmonella Typhi infections. However, among non-Salmonella enterobacterial infections, E. coli is still the leading cause of BSIs both in adult and children [43-45] affecting both HIV and non-HIV patients equally [46]. In Cambodia, surveys carried out from 2007 to 2010 showed that E. coli accounted for nearly 30% of BSIs cases [47]. In Vietnam, retrospective blood culture data from 1994 to 2008 showed the decline of S. Typhi and S. Paratyphi A, but an increase in the number of fungi, non-typhoid Salmonella and E. coli infections that was concurrent with the HIV epidemic [48]. E. coli and Klebsiella pneumoniae were recently reported as the two most common cause of community and hospital acquired blood stream infection in the North of Vietnam [49]. A recent sepsis study in Southeast Asia encompassing 13 public hospitals in Indonesia, Thailand and Vietnam showed that E. coli is one of the most common cause of sepsis in this region [45].

It is hypothesised that those E. coli bacteraemia cases which are not related to invasive medical procedures often begin as infections of the urinary tract, gastrointestinal tract, or the lung, and subsequently progress into an invasive blood stream infection [50]. The general risk factors for progressing to a blood stream infection include dialysis, solid organ transplantation and neoplastic disease [38]. In the adult population, aging is an important factor that modulates the risk of developing bacteraemia. Other comorbid medical conditions that alter the immune system, such as infection with HIV, diabetes, cancer, and cirrhosis, also increase the risk of nosocomial bacteraemia [51]. Risk factors for E. coli colonisation and infection in neonates include premature birth, low birth weight, prolonged mechanical ventilation, length of hospital stay and antibiotic usage [52].

1.3. Hospital for Tropical Disease (HTD), Vietnam

The retrospective study described in this thesis was conducted at Hospital for Tropical Diseases, a 550bed tertiary referral hospital for infectious disease in Vietnam. The hospital consists of seven wards, including one intensive care unit (ICU) that treats both adult and children patients and admits 38,000 patients annually. The hospital mainly serves patients resident in Ho Chi Minh City and the southern part of Vietnam, with a catchment population of 42 million people [53]. Patients without infectious diseases, such as cancer, tuberculosis, and non-HIV immunosuppression are referred to other hospitals.

1.4. Antimicrobial resistance in E. coli

An antibiotic is defined as a substance able to inhibit the growth of or kill a microbe [54]. Since the discovery of the first antibiotic, penicillin, in 1927 and its initial widespread use as a therapeutic agent in the 1940s, a wide range of antibiotic compounds have saved millions of lives and helped to control infectious disease, as well as to prevent infections during invasive procedures such as surgery and routine biopsies. Whilst the term 'antibiotic' was originally used to describe naturally occurring compounds, the term used now is 'antimicrobial', in order to encompass semi-synthetic antibiotics [55].

Since the first use of antimicrobials, the phenomenon of bacteria becoming non-susceptible or resistant to these compounds has been documented [54]. Bacterial antimicrobial resistance (AMR) describes the
process by which a micro-organism shows a reduced or non-susceptible phenotype to an antimicrobial compound that previously inhibited or killed it. This is achieved through multiple different strategies such as drug inactivation or modification, alteration of the drug target site, alteration of the metabolic pathway affected by the drug, and reduction of the rate of drug accumulation within the cell via reduced uptake or active efflux [56]. Bacterial AMR phenotypes can be due to intrinsic or acquired mechanisms of resistance. Intrinsic resistance is the innate ability of a bacterium to be resistant to antimicrobial compounds due to natural structure or functional characteristics, thereby allowing bacteria to tolerate particular drugs. For example, Klebsiella species are naturally resistant to penicillin since they carry core chromosomal genes that encode enzymes which degrade ampicillin as it enters the cell. Acquired resistance however is when drug sensitive bacteria become resistant through point mutations, by acquiring genes from other bacteria through horizontal gene transfer or a combination of these two mechanisms. An example of acquired resistance through the generation of point mutations include mutations within genes encoding the drug target site - these include point mutations in chromosomal genes such as DNA gyrase or the 23S rRNA genes which confer resistance to fluoroquinolones and aminoglycosides, respectively. Examples of acquired resistance through horizontal gene transfer of mobile genetics elements (MGEs) from another bacterium include plasmids that encode genes that confer resistance to carbapenems and most other classes of antimicrobial [56](see Section 1.6).

Although point mutations in chromosomal genes are vertically inherited, and their dissemination throughout a bacterial population requires the spread and expansion of a resistant bacterial clone, MGEs are particularly able to disseminate rapidly and broadly, not only between members of the same species, but also more broadly within bacterial families. For example, mcr-1, the gene that confers colistin resistance, was first identified in E. coli, but is now found in Salmonella, Klebsiella, Enterobacter [57] and has also been shown to be capable of transfer outside of the Enterobacteriaceae into Pseudomonas aeruginosa in the laboratory [58].

1.5. AMR E. coli in Vietnam

For critically ill patients suffering BSIs, especially in patients in intensive care units, oral or intravenous antibiotics are the only interventions suitable to combat these infections. However, modern treatment options for E. coli are very limited, due to the high level of AMR in this species. Multi drug resistant E. coli (MDR) is defined as bacteria with reduced susceptibility to at least one antimicrobial agent in three or more antimicrobial classes. In the Hospital for Tropical Diseases (HTD), Vietnam, according to the hospital treatment guideline, patients are treated empirically with fluoroquinolone or third generation cephalosporin if they have a suspected BSI. The reality in HTD, as well as in many other hospital settings, is that blood culture results and antimicrobial susceptibility test data are generally not available until 48 hours after testing. If a patient fails to respond to these antimicrobial treatments because they are infected with a MDR E. coli, for example, it is sometimes too late to switch to another antibiotic therapy regime [59]. Such patients commonly develop septic shock leading to a poor
prognosis [60]. Furthermore, successful treatment of patients infected with MDR E. coli increases treatment costs because patients need to be treated with newer classes of antibiotic. Infection with MDR E. coli BSIs also often recur, and significantly increase length of hospital stay [61]. It is therefore important to identify the prevalence of bacterial infections that show AMR to guide better treatment and patient management. Currently in HTD, all patients with ESBL-producing E. coli will be treated with carbapenem or with piperacillin-tazobactam as alternative therapy (personal communication).

The increasing of MDR E. coli is not restricted to HTD in Vietnam. The same trend has been observed in other hospitals in low to middle income countries [62, 63]. Indeed, E. coli has now been listed by the World Health Organization (WHO) as one of twelve bacteria that pose the greatest threat to human health, highlighting the urgent development of new antibiotic therapies [64]. Since $3^{\text {rd }}$ - generation cephalosporin was used as an empirical treatment for this study we will only focus on the prevalence of ESBL - producing E. coli collected between 2010 and 2015 from patients attending HTD in Vietnam.

1.5.1 ESBL - producing E. coli and carbepenemase- producing E. coli

Extended - spectrum β-lactam (ESBL) is a term that refers to a class of enzyme capable of hydrolysing β-lactam antibiotics. β-lactam antibiotics are a class of broad spectrum antibiotics containing a β-lactam ring, including penicillins, cephalosporins, monobactam and carbapenems. These antibiotics bind to bacterial penicillin binding proteins, making the bacterium unable to synthesise cell walls correctly, leading to a failure of the bacterial cell to divide. Third generation cephalosporins have a broad spectrum of activity against all Gram-negative species; these are favoured by clinicians for use in treating a variety of infections [65, 66]. β-lactamase enzymes, however, can be inhibited by inhibitors such as clavulanic acid or tazobactam.

Prior to the 1990s, class A β-lactamase enzymes, including TEM and SHV enzymes, were typically responsible for conferring an ESBL-producing phenotype upon the Enterobacteriaceae. However, the epidemiology of ESBL-producing E. coli changed dramatically since the acquisition of CTX-M genes by this species. These genes have been proposed to have originated from Kluyvera spp., and are encoded mainly on plasmids [67]. The genetic context of CTX-M-producing E. coli is complicated; CTX-M genes are often co-inherited with other resistance genes as part of Insertion Sequences (IS), fragments of DNA capable of being mobilised around bacterial chromosomes and plasmids. IS elements such as ISEcp1, ISCR1 and IS26 often coexist with bla $a_{\text {CTX-M }}$ [68].

Currently, over 150 bla $_{\text {CTX-m }}$ genes have been described and they are classified into five groups based on their amino acid sequence similarity: CTX-M-1, 2, 8, 9 and 25 . CTX-M proteins share $>94 \%$ amino acid identity within each group and $<=90 \%$ similarity between various groups.

1.5.2 Carbapenemase-producing E. coli

Carbapenems are also members of the β-lactam class of antibiotics, and include imipenem, ertapenem, meropenem and doripenem. Carbapenems are often considered to be "antibiotics of last resort". Despite this, resistance to carbapenems conferred by carbapenemase enzymes is spreading worldwide [69]. Different type of carbapenemases include $b l a_{\mathrm{NDM}}, b l a_{\mathrm{KPC}}, b l a_{\mathrm{OXA}}, b l a_{\mathrm{IMP}}$ genes. However, since the majority of E. coli remain sensitive to this drug within our hospital, we will not focus on these genes in detail in this thesis.

1.6. Mobile genetic elements (MGEs)

Mobile genetic elements (MGEs) can mobilise resistance genes horizontally within a bacterial population

Horizontal gene transfer (HGT) is the process by which genetic material can be transferred between different strains of a bacterial species (intra-transfer), or between closely related bacteria of different species (inter-transfer). Unlike naturally occurring mutations, which take time to accumulate in a genome and to accumulate in a population during repeated cellular division, bacteria can potentially acquire multiple resistance genes, and therefore phenotypes, in a single acquisition event. The dissemination of drug resistance within a population of bacteria can be potentiated by HGT, such that resistance genes can be spread both laterally and vertically throughout a population.

There are three mechanisms for HGT - transformation, conjugation and transduction.
Transformation is the process by which competent bacteria take up exogenous DNA and thereby incorporate novel genetic material into the genome. This may take place under stressful conditions, or under conditions that affect bacterial growth. In the environment, extracellular DNA is constantly excreted from live bacteria and is released from dead bacteria, serving as a pool of genetic information. Naked chromosomal DNA or plasmids released into soil and water can remain intact for hours or days, whereas DNA that is released into the blood by invasive bacteria will be degraded within several minutes by DNAse enzymes that are components of human serum. However, this relatively short time is sufficient for transformation to occur.

Conjugation is the transfer of genetic material, often plasmids or transposons, through direct contact between bacteria cells using a pili as a bridge. Each plasmid has their own replication system, those with the same replication system cannot coexist stably within the same cell, and are considered to be "incompatible". This incompatibility led to the development of the incompatibility typing scheme (commonly called Inc-typing) for plasmids [70]. Plasmids encode their own replication machinery, separate to that of the chromosome, and also can be maintained vertically using toxin-antitoxin systems [70]. Transposons which contain IS elements and can be mobilised via self-encoded transposase enzymes, however, can be incorporated into the host chromosome or plasmids through transposition.

Transduction is the process by which bacteria acquire new DNA upon infection by bacteriophages. Bacteriophages are viruses that infect bacteria and incorporate themselves into the host chromosome as a prophage during the lysogenic stage of their life cycle. A prophage can switch from a lysogenic state to a virulent lytic state, and in doing so may co-package host DNA together with the phage genome. Upon cell lysis, this host DNA can be transduced to a new host cell upon infection by a viral particle, and thus facilitate gene transfer between different bacteria [71].

1.7. Reservoirs of E. coli and transmission mechanism

The ability of E. coli to colonise and survive in different hosts and environments makes it difficult to identify the source of E. coli infections. In the past, E. coli infections such as those caused by ExPEC have been described as sporadic infections caused by bacteria that originate from the host's gastrointestinal (GI) tract [72]. In addition, E. coli is able to colonise the GI tract of warm blooded animals; therefore, many investigations sought the origin of transmission through the food chain and farm animals. Unfortunately, these studies used low resolution genotyping methods such as pulse-field gel electrophoresis (PFGE), multi locus variable - number tandom repeat analysis (MLVA) and multi locus sequence typing (MLST) [73, 74]. Although detection of the same MLST genotype and same AMR phenotype can occur between animal and human isolates, the conclusions drawn from these studies are potentially misleading and do not provide enough resolution to infer E. coli transmission. For example, in a study by Been and colleagues, they show that at the whole genome sequence level, isolates from chicken and humans were not identical and they actually share the same mobile genetic element (plasmid) rather than representing the spill over of same clonal strains between two populations [75].

A recent study in Sweden also supports the notion that the clonal spread of E. coli from animals to human was unlikely. This study by Börjesson et al. on ESBL-producing E. coli from nearly 5,000 samples collected from food, farm animals, healthy humans and BSI patients found that there was limited clonal spread of these E. coli strains from animals and food to humans, but E. coli from poultry can serve as a reservoir for drug resistance genes and for plasmids that can move to E. coli types commonly found in humans [76]. Nevertheless, whether E. coli from animals still represents a source for human infections requires further investigation even if it remains controversial [77]. Outside human and animal hosts, E. coli, especially strains within phylogroup B2 and D found in coastal sediments, could represent a potential reservoir for commensal and pathogenic E. coli [78].

1.8. Aims and objectives of the study

There are no data available regarding the genetics of those E. coli that cause bloodstream infections (BSIs) in the Vietnamese population. We aimed to sequence 690 bacterial samples to obtain a highresolution snapshot of the landscape of E. coli causing BSIs. We also screened for virulence genes and AMR genes to determine if these non-core genes are associated with invasive disease.

Research questions

1. Is there a specific lineage or sequence type that is circulating and causing invasive disease in Vietnamese patients, or disease outcome dependent upon host factors alone, such that all E. coli are capable of causing invasive disease? (i.e., is there any specific lineage associated with disease outcome?)
2. How is the gene content of invasive E. coli different to that of carriage E. coli isolates? Are there significant genetic markers that differentiate these invasive bacteria such as AMR genes, colonisation factors, toxins, siderophores, capsule type, etc.?

Chapter 2: Comparative Genomics of BSIs caused by E. coli in the Hospital for Tropical Diseases in Vietnam

2.1. Introduction

Hospital acquired infections (HAIs) are a major threat to patient safety, which in locations with poor surveillance and infection control can lead to high rates of infection and significant mortality. The problem of HAIs is further exacerbated by the emergence of antimicrobial resistance, particularly extended spectrum β-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria.

Healthcare settings across Asia are under increasing pressure to control the spread of multidrug-resistant (MDR) HAIs and to reduce the overall levels of MDR in bacteria. Recent work has specifically highlighted nosocomial bloodstream infections (BSIs) as a major cause of mortality in high dependency units. Notably, two outbreaks of Klebsiella pneumoniae in 2012 occurred in the neonatal intensive care unit (NICU) in a tertiary hospital in Nepal, which had a mortality rate of 75%. This study found, using whole genome sequencing, that there were regular peaks of BSIs across the hospital, associated with MDR HAIs that recurred even after deep cleaning of the hospital. This upsurge in MDR BSIs with high mortality is a growing trend echoed in other healthcare settings across Asia [79]. These peaks in infection are driven by an increase in the rate of isolation (from blood) of bacteria such as Escherichia coli that are resistant to most available antimicrobials. Currently, in 2015, 24\% of all BSIs in Hospital for Tropical Disease (HTD), Ho Chi Minh city, Vietnam are attributable to E. coli (unpublished data). Understanding the nature of HAIs across Asia is required to enhance infection control measures, to optimise therapeutic approaches, to minimise the further emergence of antimicrobial resistance, and to reduce morbidity and mortality due to BSIs caused by MDR HAIs.

The hypothesis:
We hypothesise that bacterial isolates causing BSIs are more closely related to one other than to isolates taken from the gut of patients attending our hospital. This is because many BSI E. coli are hospital acquired isolates which are likely to be members of a restricted number of genetic lineages, and to carry genetic loci (such as genes encoding antimicrobial resistance and siderophores) which are more strongly associated with an invasive phenotype in comparison to non-invasive phenotypes, including UTIs and respiratory infections.

Specific Aim:
The aim of this chapter was to determine the genetic epidemiology of E. coli causing BSIs in the Hospital for Tropical Diseases (HTD) in Ho Chi Minh city, Vietnam. To address this hypothesis, we set out to compare the genomes of E. coli associated with BSIs to those of carriage E. coli isolates taken from patients attending this hospital. For a limited number of samples, it was possible to collect bacterial
isolates from both the rectal swab samples and bloodstream infections of the same patient for comparison.

2.2. Methods

2.2.1. Strain collection

Our strain collection consisted of 690 E. coli isolates derived from two different studies called 15EN and 06EI. Of these 496 represented a longitudinal collection of isolates that were cultured from patients with BSIs admitted to Hospital for Tropical Diseases (HTD) in Vietnam between 2010 and 2014 (15EN). These isolates were selected randomly from the approximately 100 isolates collected per year during this period. Also included were 94 randomly selected E. coli isolates taken from rectal swabs from patients included in the 06EI study looking for HAIs in the intensive care unit (ICU) in HTD during 2015. All of the above randomly selected samples were collected from patients that had been sampled on or after admission. All isolates are described in detail in Supplementary Tables S1 and S2.

The remaining 100 isolates included in this study were derived from 31 patients with matched rectal swab (69) and BSI (31) isolates. These patients were enrolled in an extension of the 15EN study during 2015 at HTD. These matched samples are included in the general analysis below but will also be described in more detail in Chapter 4. All rectal isolates were considered to be carriage isolates as they were not linked to any clinically recorded signs of enteric disease.

2.2.2 Ethics

Both studies were approved by the ethical committee at Hospital for Tropical Disease (HTD) and by the University of Oxford Tropical Research Ethics Committee (OxTREC).

2.2.3 Bacterial isolation

All microbiological culture work was performed in laboratories at HTD and OUCRU. Routine care at HTD dictates that patients admitted with febrile illness and with a suspected bacteraemia will have their blood cultured as part of routine diagnosis of the hospital. Briefly, for these samples, 5 mL of patient's blood was incubated at $37^{\circ} \mathrm{C}$ in a BACTEC bottle. Positive BACTEC bottles were then sub-cultured onto selective MacConkey agar (MC) for further microbiology identification either by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF, Bruker) or using API20E strips (BioMerieux, France) following the manufacturer's guidelines. Commensal and carriage E. coli were cultured from rectal swabs of patients participating in the 06EI study. Swabs were taken twice weekly from admission day until discharge. Microbiology identification procedure was as for blood isolates, except that for each rectal swab, if E. coli colonies with different morphologies or AMR phenotypes (lactose fermenting, non-lactose fermenting and β-haemolytic) were identified, multiple colonies were collected. The number of isolates collected per patient ranged from one to four isolates,
except for one patient from which a total of 20 isolates were collected during a long-term hospitalisation (described in detail in Chapter 4).

All isolates included in this study were tested for their antimicrobial susceptibility phenotype using 13 antimicrobials, also described in detail in Chapter 3.

2.2.4. Metadata

Patient demographic data were extracted from electronic hospital records in both studies. This included information about patients including age and gender (see Supplementary Tables S1). We inferred patient comorbidities, such as their HIV status or chronic hepatitis/liver cirrhosis, based either on the ward into which the patient was admitted, or from initial diagnoses from doctors when blood culture requests were submitted. These samples were denoted "HIV/liver disease" samples. Length of hospital stay was calculated by subtracting the date of discharge from the date of admission. The clinical outcomes for all patients included in this study were available. However, data on recent hospital admission and antibiotic treatment were only available for isolates that were collected in the 06EI study. In an effort to look for the origin of infection, or coinfection at different bodily sites, the patient identifiers for all patients for whom we had associated blood-borne isolates were used to screen the urinary and peritoneal fluid (ascites) positive patient database to determine whether there were also corresponding records of E. coli isolates cultured from the liver abscesses or urinary tract infections from that patient too. However, we were only able to collect information about antimicrobial susceptibility phenotype for these E. coli isolates. Unfortunately, we could not include them in this study for sequencing because the samples were not being kept.

We define community acquired (CA) infections as being patients who test positive for E. coli from blood cultures collected during the first 48 hours of the patients admission to HTD and define hospital acquired (HA) infections as isolates cultured from blood collected at least 48 hours after admission.

2.2.5. Whole genome sequencing

Genomic DNA was extracted in OUCRU using Wizard Genomic DNA Purification kit (Promega, USA) and sent to the Sanger Institute. Approximately $2 \mu \mathrm{~g}$ of DNA was subjected to sequencing using Illumina HiSeq 2500 platform to generate 125 bp paired end reads.

2.2.6. Accessions

Short read sequence data from this study are available in the European Read Archive (ERA) under project accession ERP017161. All samples and their accession numbers are detailed in Supplementary Table S1 and S2.

2.2.7. Genome assembly and annotation

Annotated assemblies were produced using the pipeline described in detail in Page et al [80]. For each
sample, sequence reads were used to create multiple assemblies using VelvetOptimiser v2.2.5 [81] and Velvet v1.2 [82]. An assembly improvement step was applied to the assembly with the best N_{50}, and SSPACE was used to scaffold the contigs [83]. Sequence gaps were filled using GapFiller [84]. Automated annotation was performed using PROKKA v1.11 [85] and Escherichia databases from RefSeq [86].

2.2.8. Quality control of sequencing data

In order to confirm the quality of the sequenced bacterial genomes, a range of different tools were used to determine the quality of the short-read Illumina sequence data. Short reads data quality score was accessed using FastQC v0.11.4 [87]. FastQC compiles sequence quality into one report which details basic statistics of all reads in each sample, such as GC content percentage ($\mathrm{GC} \%$), total number of reads, and sequence quality score. All reports were aggregated using MultiQC [88] for a complete output and was manually assessed. Samples showing a GC\% different from that expected for E. coli (49-52\%) were excluded from the analysis. Sequence quality was further checked by mapping the reads to a reference genome E. coli K-12 strain MG1655 (EMBL accession number U00096). Samples were excluded if number of contigs was higher than 300 or the total reference genome coverage was less than 80%.

Kraken was used to assign taxonomic labels to short DNA sequences to confirm the genus and species of each sample [89]. CheckM was also used to test for genome heterogeneity and completeness [90].

2.2.9. In silico MLST and phylogroup classification

Multilocus sequence typing (MLST) is a traditional typing method that uses the combined sequence of seven housekeeping genes in the genome to assign the bacteria to a sequence type (ST). STs were determined from WGS data using MLST check [91], which compares the assembled genome against the E. coli MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) to assign a specific allelic profile.

Originally E. coli was classified into phylogroups A, B1, B2 and D: phylogroups were defined as group of isolates representing distinct clades in a phylogeny built from the ECOR collection [92]. Different phylogroups were believed to have differences in gene content that reflected different niches and lifestyle [93]. E. coli phylogroup of each isolate was determined by blasting de novo assemblies against three marker genes, chuA, yjaA and tspE4.C2 proposed by Clement et al [94]. Those from our collection that could not be classified into these four phylogroups were label as "other phylogroups".

2.2.10. Construction of core genome phylogeny

The core and pan genome of Escherichia coli was determined using ROARY [95], in which core genes are defined as those which produce products that share a minimum BLASTp percentage identity of 95% and are present in at least 95% of all isolates. The sequences of all core genes were concatenated into a multiple sequence alignment file. We also included 25 reference genomes from annotated reference
strains from different phylogroups, plus E. fergusonii and E. albertii (see Supplementary Table S3).
Approximate maximum likelihood phylogenetic trees, based on core gene alignments, were constructed using FastTree v2.1 [96]. SNP alignments of core genes was used to subdivide the population of the sequenced E. coli isolates by hierarchical clustering using hierBAPS [97]. Phylogenetic trees and associated metadata were visualized in iTOL [98] or Phandango [99].

2.3. Results

2.3.1. Sequencing and QC

DNA was prepared for whole genome sequencing from a total of 690 isolates (see Methods). Following library preparation and quality control steps, which took into account the combined results from FastQC, Kraken, CheckM, genome size as well as number of contigs (see Methods), 665 were taken forward for further analysis (see Figure 2.1). This included 506 genomes from isolates cultured from blood and 159 from isolates cultured from rectal swabs (described below; Supplementary Table S1 and S2).

Figure 2.1. Sequencing and QC work flow for the samples included for whole genome sequencing (WGS) in this study. Indicated are the number of samples that passed through each stage of sequencing and QC. The numbers in brackets indicate the number of samples that failed at each sequencing stage or QC step.

2.3.2. Basic patient demographic and clinical outcome of hospitalised patients with BSIs.

The patient characteristics linked to the 506 E. coli genomes derived from BSIs are summarised in Table 2.1. Looking at the demographic data, 54% of all E. coli BSI patients were female and the median age of all patients with BSIs was 53 (interquartile range (IQR) $38-65$ years old). Based on the ward into which the patient was admitted and/or the hospital records, immunocompromised patients infected with HIV accounted for $63 / 506$ (12\%) of all BSI patients while 109/506 (22\%) BSI isolates were derived from patients with chronic hepatitis B / C or cirrhosis. If age was taken into account then for patients under 40 years of age, 37% of patients with BSI were also HIV positive, while in the BSI patients between 40 and 60 years of age, 7% of them were HIV positive and 32% had liver disease (Figure 2.2).

Table 2.1: Clinical characteristic of E. coli BSIs patients

Patient characteristic		$\mathrm{n}=506$	\% - Median(IQR)
Gender	female	270	53.36
	male	236	46.64
Age		53	38-65
Acquisition	CA ($<48 \mathrm{~h}$)	445	87.94
	$\mathrm{HA}(>48 \mathrm{~h})$	57	11.26
	unknown	4	0.79
Outcome	recover	368	72.8
	worsen*	56	11.1
	no change*	69	13.7
	death*	12	2.4
Hospital length		11	8-15
Comorbidity	Liver disease	109	21.54
	HIV	63	12.45

* "Death" means patients died at HTD. "worsen" means clinical symptom progress toward a severe infection manifesting as increased breathing rate, increased white cell counts, respiratory failure, coma. This is likely to equate to death since Vietnamese traditional practice is to be discharge patients home to die. "No change" means the patients clinical condition did not improved after treatment or they were transfered to another hospital and therefore lost to follow up.

Figure 2.2: Comorbidity and outcome in patients with E. coli BSIs. Other comorbidity but not prevalent including diabetes, severe pneumonia, severe Dengue fever, cholecystitis and meningitis.

Overall, 368/506 (72.8\%) patient conditions were improved or recovered when discharged. 56/506 (11\%) was discharged to die at home, while $12 / 506$ (2.4\%) died at the hospital. Sixty-nine patients (69/506;13.6\%) showed no improvement, either because they were transferred to another hospital at discharge or clinical symptoms had not improved after treatment and they had been discharged so there was no means to confirm clinical outcome. Mortality rates could range from 14% up to 27% (summarised in Figure 2.2). If gender is considered mortality rates were 58% and 42% in men and women, respectively. However, mortality was highest in HIV positive (8/12; 66.7\%) patients of which the majority were men ($6 / 8$ patients; 75%), explaining the anomaly. The mean time to death at the hospital was 2 days (IQR 1-3 days) after admission, while patients, if they survived spent an average of 12-14 days recovering from BSIs.

2.3.3. The genomic diversity and population structure of BSI and carriage E. coli from Vietnamese patients attending HTD.

In order to construct an accurate phylogeny, we determined the core genome for the entire sequenced dataset and 22 reference E. coli genomes plus three Escherichia outgroups: one E. fergusonii and two E. albertii (Supplementary table S3). The core and pan genome of the E. coli was determined using ROARY (see Methods). The pan genome of all isolates analysed in this study, amounted to 42,856
genes (Figure 2.3). In total, 2,796 genes were conserved in more than 95% of all isolates. Since the average E. coli genome contains approximately 4,500 $\sim 5,000$ genes, this indicates that the core genes comprised approximately half of the average genome gene content. Interestingly, from the accessory genes, the number of genes present in less than 15% (103 isolates) of total genomes comprised 36,531 genes. This underlines the extreme level of diversity seen in these genomes and indicated that E. coli has an open genome (Figure 2.3), consistent with previous studies [100]. This also underlines the ability of E. coli to adapt to new environments and indicates that there is a high level of genetic diversity in E. coli present in patients attending HTD. Our pan genome prediction includes all mobile elements such as prophage and insertion sequences.

To determine the population structure of both BSIs and carriage E. coli included in this study, and including the reference sequences, we constructed a phylogenetic tree from a multiple sequence alignment of the core genes. We identified 443,135 single nucleotide polymorphisms (SNPs) over $2,700,577$ nucleotides of core genes. Due to the high genetic diversity of the alignment, maximum likelihood phylogenetic trees were constructed using FastTree v2.1 [96]. The SNP alignments of core genes were used to subdivide the population of the sequenced E. coli isolates by hierarchical clustering using hierBAPS [97]. This analysis identified 15 primary BAPS clusters denoted as L1-L15 (Figure 2.4). The MLST ST and ECOR phypogroups was also predicted for all isolates in order to link the genomic data to the common terms of reference used in hospitals, like HTD, to describe E. coli.

Looking at MLST STs across our dataset, we identified a total of 117 STs amongst the 665 isolates analysed, of which $12 / 117$ (10.2%) were new STs with a single locus variant (Supplementary table S1and S2). The ST distribution showed significant diversity but also highlighted the circulation of 12 dominant STs (ST131, ST95, ST1193, ST38, ST69, ST648, ST73, ST405, ST354, ST410, ST12, ST10), which account for nearly $70 \%(453 / 665)$ of all STs identified in this study (Figure 2.4). Among these, ST131 and ST95 were the most common in our collection, comprising 17.6% (117/665) and 8.7% (58/665) of all STs identified in this study, respectively. Apart from the 12 dominant STs, the remaining 105 STs, were each only defined in between 1 and 9 isolates. The latter are referred to as 'Others' in Figure 2.4. It is evident from Figure 2.4 that the 15 HierBAPS phylogenetic groupings are largely congruent with the MLST ST subdivisions apart from BAPS cluster 10 (L10), 11 (L11) and 14 (L14), which encompassed multiple different STs.

When comparing the WGS phylogeny with the ECOR phylogroup assignment for isolates collected in HTD, it was apparent that isolates were represented in all four historical phylogroups A, B1, B2 and D. We confirmed previous observations that phylogroup A and B1 are closely related lineages [101]. However, within each lineage A and B1, there is significant genetic diversity between isolates. For example, in phylogroup A, the median number of pairwise SNPs between isolates was 31,768 (range 0 - 72,133), whereas in phylogroup B1, the median was 28,791 SNPs (range $0-37,189$). Genetic diversity is lower between isolates in phylogroup B2 (median 193, range $0-32,164$) and phylogroup

D (median 3,417, range 0-51,318). It is also clear from Figure 2.4 that the ECOR phylogroups are broad subdivisions that include multiple STs and BAPS groupings. Although important to relate these findings to standard terms of reference, it is clear they do not offer sufficiently high resolution for fine scaled analysis.

Figure 2.3: The pan genome of 687 Escherichia coli, two Escherichia albertii and one Escherichia fergusonii comprised 42,846 genes in total with 2,796 genes core genes present in more than 95% of all isolates. 33 genes were defined as soft core genes, which were genes present from $94-95 \%$ isolates. Finally, shell genes were 3,496 genes that appeared in more than 15% but less than 94% isolates.

[^0]

Relating whole genome phylogeny, BAPS groups, ECOR phylogroupings and MLST STs to patient clinical data.

The WGS phylogeny of the E. coli isolates was then used as a framework on to which MLST, ECOR phylogroup and the clinical metadata was mapped. When relating the phylogeny to clinical data including patient gender, comorbidities as well as linking patient BSIs samples to corresponding isolates reported from other sterile sites (urine/ peritoneal fluid), we identify several patterns. First, although isolates taken from female and male patients were distributed equally across the phylogeny (Figure 2.5), in certain BAPS clusters and STs there was a skew in the gender distribution (Figure 2.5). For example, in ST69(L4), 95(L8), 410(L6), 1193(L13) of phylogroup B2 and D ($>60 \%$ patients were female) while in other STs of phylogroup B1 and A (L11/L14), majority of patients were male ($>60 \%$). These STs 69, 95 and 410 are known to be associated with urinary tract infections (UTIs) in women [102], and this was supported by having the corresponding isolates with the same antimicrobial resistant (AMR) profile from urine isolates listed in the HTD patient database. Secondly, looking at the patient demographic and clinical data for lineages included within ECOR phylogroups $\mathrm{B} 1, \mathrm{~A}$ and D showed E. coli isolates more associated with carriage and male patients with liver disease as well as patients that also tested positive by culture for E. coli from peritoneal fluid (Figure 2.5). Interestingly, isolates taken from patients with HIV were more likely to be associated with phylogroup D and B2, but not exclusively.

Comparing ST and sample type, it was evident that STs within the B2 phylogroup were more likely to have been isolated from blood (52.17\%) than stool (25.16\%) (264/506 versus 40/159, p<0.001, Chi square test, Figure 2.4). In contrast, rectal swab isolates were enriched in phylogroups A and B1: 16.3\% (26/159) phylogroup A in rectal swab versus 7.31% (37/506) in blood ($\mathrm{p}<0.001$) and $12.58 \%(20 / 159)$ phylogroup B1 in rectal swab versus $5.53 \%(28 / 506)$ in blood ($\mathrm{p}=0.003$). However, blood and rectal swab derived isolates were almost equally represented amongst isolates belonging to phylogroup D (31% in blood versus 36% in rectal swabs, $\mathrm{p}=0.275$).

From looking at all 117 STs , there were a total of 42 STs only found in isolates taken from blood samples, 42 STs only found only in rectal swab derived isolates, and the remaining 33 STs were evenly distributed between blood and rectal swab E. coli (Figure 2.6). In our study, the most globally prevalent ST, ST131, was the most common ST isolated from both blood (19.7\%, 100/506 isolates) and rectal swab samples ($6.7 \%, 10 / 159$ isolates) possibly suggesting that carriage in the gut is linked to pathogenic E. coli establishing BSIs in an otherwise healthy individual. Conversely, none of ST73 and only one of ST95 were found in rectal swabs (Figure 2.6). This suggests that if these two STs entered to blood after colonizing a different bodily site, then they either lack the ability to colonize the gut in sufficient number to be detected in our clinical screen, or that they may be more prone to colonizing bladder and kidney epithelial cells instead of gastrointestinal tract.
E. coli carriage isolates, taken from rectal swabs, showed many different STs and long branches consistent a highly diverse community of E. coli living together in our gastrointestinal tracts (Figure 2.7). However, none of our isolates belonged to the other Escherichia species, E. fergusonii or E. albertii, even when we sample a large collection of E. coli longitudinally over a 5-year period.

Figure 2.6: STs distribution of blood and rectal swab isolates. For colour see key.
In addition to differences in the relative abundance of STs across the whole collection we observed minor fluctuations in the relative proportion of different STs/BAPS clusters that comprised the total E. coli for different years (Figure 2.7), the exception being the proportion of ST131 which remained high throughout the whole 5 -year period ranging from 18% to 22% of isolates sequenced/year. The most striking increase in numbers observed was for ST1193 which accounted for 3.7% E. coli BSIs in 2011, but then increased to 10% in 2014. We observed a reduction in the proportion of ST69, ST73 and other less common STs over the same time period.

$>$

$\mathrm{s} \perp \mathrm{S} \| \mathbb{I}^{-} \perp \mathrm{S} 7 \mathrm{~W}$
$\boldsymbol{\infty}$

Proportion of hierBAPS cluster
जै 古 話

Proportion of STs

2.4. Discussion

Among 38, 000 hospital admissions to HTD every year, E. coli causes more BSIs than any other Gramnegative bacteria or fungi, accounting for around 20% of all BSI cases (HTD unpublished hospital records). Unlike seen in other nosocomial bacteria such as Klebsiella pneumoniae or Staphylococcus aureus $[103,104]$, the majority of BSI in our study (88%) were from patients with BSIs diagnosed on or within 2 days of admission and so deemed to have been community acquired. The remaining patients were considered to have HAI E. coli infections because they acquired the BSI >2 days after admission (this is discussed further in Chapter 4 for the longitudinally sampled patients). All of these patients had severe chronic diseases such as AIDS, cirrhosis, hepatitis B / C or tetanus which required long term hospitalization, and sometimes were seen to develop E. coli BSIs as secondary infections as described in detail in Chapter 4. Positively, in terms of patient care, of the 506 patients that had blood stream infections over the period of study 70% recovered and so likely responded to antimicrobial treatment. However, treatment took on average between 12-14 days representing a considerable burden on space and resource within HTD. It was also apparent from the basic patient meta data that was a slight gender bias in BSI towards females (53%) in the sample collection sequenced in this study. In contrast, BSI at HTD caused by all pathogens are generally biased towards occurring in men (65% of all BSI cases, unpublished data).

Aiming to understand the nature of E. coli causing BSIs in HTD, Vietnam as well to see if the trend of E. coli BSIs seen here mimics patterns of E. coli causing disease elsewhere in the world, we used WGS to investigate the population structure of isolates taken from patients with E. coli BSIs from HTD between Jan 2010 to Dec 2014. Also included were patients with matched blood stream and rectal swab isolates from 2015. The WGS data for all isolates was used to construct an accurate whole genome phylogeny. This was then used to predict BAPs clusters, ECOR phylogroups and MLST sequence types for all isolates. Not only is this the first study of its type at HTD, this is also the largest collection WGS of E. coli from one hospital to date.

We used these data to determine the composition of different STs with potential to carriage and causing BSIs in the HTD patients and showed that there was high diversity in isolates affecting patients at HTD including 15 primary BAPS clusters all the ECOR phypogroups and a total of 117 STs by in silico MLST. From these data, it was clear that the four dominant STs affecting patients attending HTD are the same in many studies internationally [102, 105]. Study by Adams-Sapper et al [105] found the same 4 STs dominant from 2007-2010 when investigating the nature of E. coli causing BSIs in United States. What was also apparent from these data was that these STs remained largely stable over the time of the study. The exception being ST 1193. We observed the introduction of ST1193 to patients at HTD in 2011, since then ST1193 has increased steadily to account for $\sim 10 \%$ BSIs cases every year. Interestingly, there was little documentation of ST1193 in the literature until it was reported recently as
the second most common ST after ST131 in China in 2011 [106]. We hypothesised that the introduction and successful establishment in Vietnamese population was linked to antimicrobial resistant genes they carried. We will discuss in more detailed about ST1193 in final discussion in Chapter 5.

Here we also found strong associations between patient gender and comorbidity with the lineage of E. coli causing BSIs: lineages (STs and BAPS groups) within the ECOR phylogroup B1 and A were significantly associated with rectal swab samples, men and liver abscesses. Isolates in these phylogroup groups showed high pairwise differences in SNP content between isolates. Lineages within the ECOR phylogroup D were equally represented in blood and rectal swab samples. But perhaps most importantly our data showed that there was a significant association between members of phylogroup B2 and invasive disease at HTD. In addition, isolates belonging to B2 (as well phylogroup D) were also associated with female patients. For HIV patients (most of whom were male patients in our study), these data suggested that there was no significant association between the phylogenies of the isolates causing BSI and HIV occurrence. These data are consistent with previous studies which have shown that extraintestinal pathogenic E. coli (ExPEC; Chapter 1) commonly belong to phylogroup B2, and less frequently phylogroup D , whereas the more diverse commensal and intestinal pathogenic E. coli are often members of phylogroups A and B1 [13, 107, 108].

In summary, here we determined the full diversity, and flux in that diversity, of isolates from patients attending HTD. The following chapters will further investigate the possible link between clinical outcome and bacterial lineage by focussing on the presence or absence of known virulence genes and those associated with antimicrobial resistance.

Chapter 3: The accessory genome of Escherichia coli of patients attending HTD.

3.1. Introduction

In Chapter 2, we have shown that E. coli from rectal swabs and blood samples of patients attending HTD are extraordinarily diverse, with a core genome composed of only $\sim 3,000$ genes but a pan genome in excess of 40,000 genes, most of which are very specific to a subset of isolates (less than 15% of strains). Within this diversity there are likely to be many different non-pathogenic commensals as well as a range of different pathotypes (see Chapter 1). Since none of our rectal samples came from patients with enteric disease, we were not expecting to find intestinal pathogenic E. coli (InPEC). However, data described in Chapter 2 showed that there was a significant association between the phylogenies of the isolates sequenced and sample type, with members of phylogroup B2 significantly associated with blood stream infection at HTD. This is consistent with the literature which shows that extraintestinal pathogenic E. coli (ExPEC) dominate this phylogroup clinically [108]. Unlike InPEC which are obligate pathogens and have certain distinctive virulence factors that can be used to define them exclusively, ExPEC and commensal E. coli are not easily distinguished from one another [10], not least because ExPEC can also be found in healthy individuals. Nevertheless, there are a set of characteristic virulence genes that were extensively discovered by screening across ExPEC E. coli (adapted from [108, 109]; see Table 3.1). Of the ExPECs the most common cause of human disease comes from the uropathogenic E. coli (UPEC) subdivision. Whilst UPECs are the major cause of urinary tract infections they are often found in the gut of the infected individuals as well as causing more systemic disease [110].

Table 3.1: Common virulence factors identified in ExPEC

Functional category	Virulence factors	Gene detected
(1) Adhesion	Afimbrial adhesin	afa $A B C D E F / d r a P$
	Type 1 fimbriae (Fim)	fimABCDEFGHI
	P fimbriae (Pap)	papABCDEFGKX
	S/F1C fimbriae (Sfa, Foc)	sfaABHSY, focACDFGH
	Common pilus	yag_ecp
	Adhesin	fdeC
	Dispersin (intestinal adhesin in EAEC)	aap_aspU
(2) Iron acquisition	Enterobactin	entABCDEFS,fepABCD, fes
	Salmochelin	iroBCDEN
	Aerobactin	iucABCD, iutA
	Yersiniabactin	fyuA,ybtAEPQSTUX,irp 12
	Hemin uptake system	chuASTUVWXY
(3) Toxin	Enterotoxin	astA, senB
	Hemolysin	hly $A B C D$
	Cytotoxic necrotising factor 1 (CNF-1)	cnf1
	Serine protease autotransporters Sat, Pic	sat, pic
	Haemoglobin protease	vat
(4) Invasin	Invasion of brain endothelium	ibeA
(5) Protectins	K1 capsule	kspDMT
	Tir domain containing protein	$t c p C$

The genes in Table 3.1 were the main virulence determinants responsible for the mechanisms by which uropathogenic E. coli (UPEC) can cause disease, including cystitis and pyelonephritis [111]. These functions can be divided into at least five categories, with many of these factors indeed occuring with high redundancy [112]. In order to establish infection, UPEC first needs to attach to host cells through different types of fimbriae. Among them, Type 1 fimbriae, especially fim H, are essential to causing infection in UPEC [113]. Toxins such as hly and vat are used to lyse host cells, both for bacterial
nutrition and to disseminate to deeper tissues. Iron acquisition systems are used to chelate free iron from host, to enable bacterial proliferation [114]. Immune evasion is achieved by producing capsule $(k s p D M T)$, to protect bacteria from serum bactericidal activity of human plasma [115, 116].

Apart from virulence genes, antimicrobial resistance (AMR) genes are also an important component of the accessory genome since AMR genes confers selective advantage on members of bacterial populations when under antibiotic selection. MDR E. coli have also recently been listed by World Health Organization (WHO) as an urgent threat to humanity, and new antibiotics are urgently needed [64]. Currently, many genes mediating resistance to last resort antibiotics such as bla ${ }_{\mathrm{NDM}}$ and mcr-1 are reported to be located on plasmids [58, 117]. E. coli infections in Asia are reported as having the highest prevalence of ESBL-producing isolates, mainly by possessing the bla $a_{\text {Стх-м }}$ gene [118]. Tracking and understanding the diversity of AMR genes in E. coli causing infections in our collection is required to limit the spread of these bacteria in both community and hospital environments.

Plasmids have long been recognised as the vehicle by which AMR genes and virulence genes spread quickly between bacterial species. Acquisition of virulence and AMR plasmids might change the prevalence of a specific clone in disease-causing bacterial populations [119]. One classic example is that simply by acquiring the 230 kb virulence plasmid pINV, which encodes T3SS, both Shigella spp. and EIEC can invade cells, live an intracellular lifestyle, and cause diarrheal disease [120]. Other distinct InPEC pathotypes are also mediated by virulence plasmids, such as plasmid pEAF which encodes an adherence factor in enteropathogenic E. coli (EPEC); plasmid pAA encoding aggregative adherent fimbria (AAF) in enteroaggrative E. coli (EAEC); and colonisation factors, ST and LT toxin can be located on a plasmid in enterotoxigeneic E. coli (ETEC) [121]. Plasmids in Enterobacteriaceae are diverse in terms of their size and the number of genes they carry. A rep gene PCR based method has been developed to classify plasmids as belonging to different Incompatibility (Inc) classes, called replicon typing scheme [122].

However, information about virulence, AMR and plasmid replicon genes are often missing from the core genome analysis because by definition these are not core genes. Thus, it is essential to screen for different components of accessory genomes and to relate them back to the core genome phylogenetic tree to look for genes that differently distributed between them.

Abstract

Aim: We hypothesised that specific virulence factors might explain the virulence potential of ExPEC relative to carriage E. coli, as well as explaining the successful expansion of several common lineages such as ST131, ST1193, ST73 and ST95. In order to test this hypothesis, we used a systematic approach to scan the E. coli genomes in our study for the presence of known and well-defined virulence genes, as well as for genes known to confer antimicrobial resistance. We then compared the distribution of these genes between the randomly sampled isolates cultured from blood and rectal swabs (see Chapter 2 Section

2.2). We used these data to look for any associations between genes and sample site, and to study differences between different lineages and STs.

Specific questions to be answered:

1) Are there any genes significantly associated with disease phenotype (blood/carriage)?
2) How are virulence genes distributed between different lineages?
3) Do AMR genes confer a selective advantage on population of E. coli causing invasive disease?

3.2. Methods

3.2.1. In silico virulence, $A M R$, and plasmid replicon type gene detection

ARIBA [123] was used to screen genomes for the presence of antimicrobial resistance (AMR) genes. Briefly, this algorithm mapped raw reads to reference gene sequences, used mapped reads to perform local assemblies, and to report gene presence or absence as well as whether the gene in question existed as a new variant. We also use ARIBA to screen for virulence genes and replicon types. AMR gene sequences were obtained from the ResFinder database [124], virulence gene sequences were taken from the VFDB database [125], and plasmid replicon types from the PlasmidFinder database [119]. PlasmidSPADES [126] was used to identify contigs likely to be plasmids from SPADES assembly graphs [127] and plasmid contigs were visualised using Bandage [128].

3.2.2. Antimicrobial phenotype testing

All isolates were tested for their antimicrobial susceptibility phenotype using 13 antimicrobials including amikacin $(30 \mu \mathrm{~g})$ (AMK), amoxicillin $(20 \mu \mathrm{~g}) /$ clavulanic acid ($10 \mu \mathrm{~g}$) (AMC), ceftazidime $(30 \mu \mathrm{~g})(\mathrm{CAZ})$, ceftriaxone $(30 \mu \mathrm{~g})(\mathrm{CRO})$, cefepime $(30 \mu \mathrm{~g})(\mathrm{FEP})$, ciprofloxacin $(5 \mu \mathrm{~g})(\mathrm{CIP})$, ofloxacin $(5 \mu \mathrm{~g})(\mathrm{OFX})$, trimethoprim $(1.25 \mu \mathrm{~g})$ /sulfamethoxazole $(23.75 \mu \mathrm{~g})$ (SXT), imipenem (10 $\mu \mathrm{g})(\mathrm{IPM})$, ertapenem $(10 \mu \mathrm{~g})(\mathrm{ETP})$, meropenem $(10 \mu \mathrm{~g})(\mathrm{MEM})$, tazocine or piperacillin $(100 \mu \mathrm{~g}) /$ tazobactam $(10 \mu \mathrm{~g})(\mathrm{TZP})$, ticarcillin $(75 \mu \mathrm{~g}) /$ clavulanic acid $(10 \mu \mathrm{~g})(\mathrm{TCC})$. Antimicrobial susceptibility was determined using the disk diffusion method following Clinical and Laboratory Standard Institute (CLSI) guidelines [129]. An EBSL-producing phenotype was determined by the double disk diffusion method [130], using a combination of third-generation cephalosporin discs, i.e. ceftazidime, ceftriaxone, cefepime and amoxicillin $(20 \mu \mathrm{~g}) /$ clavulanic acid $(10 \mu \mathrm{~g})$. All phenotypic tests were performed by Microbiology staff at HTD as part of clinical routine laboratory work.

3.2.3. Statistical analysis

Logistic regression was used to calculate the association between a gene and an outcome of being invasive or carriage phenotype in Stata v. 13 (StataCorp). The P value was adjusted for multiple comparisons using the Bonferroni correction method. Values of $P<0.05$ after Bonferroni correction were considered to be significant. Differences in gene distribution in each group were calculated using

Chi squared or Fisher exact test (when observation in contingency table <5). Distribution of total AMR genes and replicon genes between $\mathrm{STs} / \mathrm{BAPS}$ lineage or blood/carriage were computed using the Wilcoxon test. Gene presence/absence data were visualised in Phandango [99] and plots were produced by ggplot2 package [131] in R (R Foundation).

3.3. Results

3.3.1. The distribution of virulence factors between blood and rectal swab isolates

Using the virulence database 'VFDB' [125], containing 2,600 reference genes across Gram-negative and Gram-positive bacteria, we identified a total of 205 virulence genes across our strain collection, classified into five groups: adhesion, iron acquisition, toxins, invasins and protectins (Table 3.1). By comparing the distribution of these genes between blood and rectal swab isolates our analysis, we identified several genes that might serve as predictors for an invasive phenotype ($O R \geq 2, \mathrm{p} \leq 0.05$). These include loci related to adhesion ($p a p$ cluster, $f d e C$), iron acquisition system (yersiniabactin, salmochelin, aerobactin), toxins ($h l y, v a t$) and protectin ($k s p D$) (Figure 3.1). One of the most significant associations was between P fimbriae and invasive disease (papBCDEFGIJK; $\mathrm{OR} \geq 3, \mathrm{p} \leq 10^{-8}$). P fimbriae mediate the ability to adhere to kidney epithelial cells and are strongly associated with ExPEC and invasive disease [132]. Of the siderophores showing a strong odds ratio for blood stream infections, the highest score was seen for yersiniabactin (ybt, irp, fyuA) (OR 3.3, $95 \% \mathrm{CI} 2.2-5, \mathrm{p}=4.26 \times 10^{-8}$) followed by salmochelin (iro) (OR 2.7, 95\% CI 1.64-4.5, $\mathrm{p}=3.5 \times 10^{-4}$) and aerobactin (iuc) (OR 2.2, 95% CI 1.6-3.3, $\mathrm{p}=4 \times 10^{-5}$). Enterobactin, an archetypal siderophore system, was identified across all E. coli isolates included in this study, and therefore is not considered to be characteristic of ExPEC, consistent with previous studies [133].

We also detect the association between member of serine protease autotransporters (SPATE) family including sat, pic and vat, which were also more likely to be present in invasive isolates than carriage. Each autotransporter has been shown to cause vacuolating of host tissues [112]. Other detected virulence factors have also been well-studied, including hemolysin (hlyABCD), kspMD which mediates K1 capsule, and ibeA, all of which increase the odds of causing invasive disease.

Apart from genes that are enriched in blood isolates, we also found genes/loci that are more likely to be associated with intestinal pathogenic E. coli (InPEC) isolates. These included esp genes which encode type three secretion system effector proteins and are encoded on the locus of enterocyte effacement (LEE), a pathogeneicity island, characteristic of enterohemorrhagic E. coli (EHEC) and EPEC pathotypes, both members of the InPEC (see section 3.1). Included within this locus we detected esp X which is only known to be found on the LEE in EHEC isolates [134] (Figure 3.2). In addition, we also found many other virulence genes characteristic of $\mathrm{O} 157: \mathrm{H} 7$ such as $\operatorname{ces} A B D L T, \operatorname{etg} A, \operatorname{nleBCEGH}$, sepDLQ, escCDEFGIJLNMPRSTUV in one patient with a fatal outcome, suggesting that EHEC

O157:H7 infection (ST752; data not shown) is rare in Vietnam, but can subsequently gain access to the bloodstream.

Figure 3.1: Volcano plot for odds ratio versus $-\log _{10} \mathrm{p}$-value of gene distribution between invasive and carriage isolates. The graph shows the odds ratio (x-axis) versus the $-\log _{10}$ of p -value (y -axis) from the results of the logistic regression model. Each dot represents a single gene. OR <1 indicates that the gene is more likely to be associated with rectal swab isolates (coloured in grey) whereas genes with $\mathrm{OR}>1$ are more likely to be associated with blood isolates. Genes in red represent the association is statistically significant with $-\log _{10}(\mathrm{p}$-value) ≥ 1.3 (i.e., $\mathrm{p}<0.05$). Genes in green indicate that there is an association between tested gene and invasive disease but it is not statistically significant. All analysis was performed in Stata v. 13 (StataCorp) and results were plotted using ggplot2 package in R (R computing).

3.3.2. The distribution of virulence factors between different BAPS lineages/ phylogroups/STs

When studying the distribution of virulence genes across lineages, we noticed that genes were clustered according to ECOR phylogroups (Figure 3.2). For examples the chu and pap genes are absent from phylogroup A (L14)/B1 (L11), whereas esp genes are mostly present in phylogroup $\mathrm{D}(\mathrm{L} 1,2,3,4,9)$ and phylogroup A/B1. A certain number of virulence genes are present in all isolates regardless of their lineages or potential pathogenic outcome. These include genes that mediate enterobactin, outer membrane protein A, type 1 fimbriae (fim), general secretion pathway ($g s p$) on T3SS, and common pilus (yag_ecp).

Figure 3.2: Phylogeny of E. coli lineages and virulence genes found in each isolate. Red dots represent gene presence; white indicates gene absence. The tree, rooted on E. albertii, includes STs and BAPS lineage information. Key gene differences within and between STs were highlighted (1 to 18). (1) Afimbrial adhesion (afa/draP), (2) Hemin uptake system (chu), (3) papB, (4) T3SS effector (esp), (5) adhesion (fim), (6) adhesion (foc), (7) T2SS general secretion pathway protein (gsp), (8) hemolysin (hly), (9) salmochelin (iro), (10) aerobactin (iuc, iut), (11) adhesion (pap), (12) autotransporter (pic), (13) toxin (sat, senB), (14) adhesion (sfa), (15) protectin (tcp), (16) toxin (vat), (17) adhesion (yagEcp), (18) yersiniabactin ($y b t$).

Breaking the phylogroups down into ST or BAPS lineages, we looked at the distribution of the virulence genes in more detail across the twelve most prevalent STs in our collection (Table 4.2). Within phylogroup B2, the four dominant STs are ST95 (BAPS L8), 73 (L7), 1193 (L13) and 131(L12). Although ST131 is a globally successful pathogenic clone of E. coli, ST73 carried eight more virulence genes than ST131, ST95 and ST1193 (Figure 3.2), and several of these genes were exclusive to ST73 in our collection. These included the foc gene cluster (focA to foc), sfa cluster ($s f a A$, sfaF), hly (hlyA to hlyC), cnf1, pic, sat, vat and tcpC (Table 4.2). ST73 in our study had more Pap genes than ST131, as well as having additional fimbriae such as S1 fimbriae ($s f a$ operon) and F1C fimbriae (foc operon). Interestingly other rare STs in phylogroup B2, including ST12/ST969/ST998 (L10), appear to possess the same virulence profile as ST73 and so likely to be capable of causing invasive disease.

Even within a specific ST, we observed the gain and loss of several specific genes. For example, within ST131, not all isolates (62\%) possess P fimbriae, and those that lack P fimbriae may harbour afa/draP (9.4%) and to a lesser extent sfa/foc (1.7%). In addition to having genes related to colonization, 50% to 80% of our ST131 isolates carry gene that encode toxins including $h l y$, sat, senB and cnf-1 (Figure 4.2, Table 4.2). Of the other STs carrying pap genes 12% of the member of ST38 in our collection harbour
$p a p G$. In those that lack $\operatorname{pap} G, 63.4 \%$ utilise afimbrial adhesin (afa) and Dr fimbrae (draP) which can bind to uroepithelial cells in the same way as P fimbriae. 12\% of ST38 also use dispersin (aap/aspU), a protein mediated colonization factor characteristic of enteroaggrative E. coli pathotypes (EAEC) for binding.
 the percentage of all isolates among the 665 isolates that possess the gene/locus.
Table 3.2: The percentage of isolates carrying specific virulence genes in the 12 most dominant sequence types of E. coli found in this study. Total represents

$\begin{aligned} & \text { b} \\ & \vdots \\ & \vdots \\ & \vdots \\ & 2 \end{aligned}$	4 0 0 0 0	

Functional category	Gene cluster	Genes	ST													
			10	1193	12	131	354	38	405	410	648	69	73	95	other	Total (\%)
Iron acquisition	Enterobactin (entABCDEFS)	entABCES	100	100	100	100	100	100	100	100	100	100	100	100	100	100
		entD	100	0	100	0	100	100	100	100	100	97.4	100	100	74.1	66.9
		entF	0	0	0	82.1	0	0	0	0	0	0	100	0	4.2	20.9
	fepABCDG	fepA	100	100	100	100	100	100	100	100	100	100	100	55.2	97.6	95.3
		$f e p B C D G$	100	100	100	100	100	100	100	100	100	100	100	100	99.5	99.8
	Salmochelin (irobCDEN)	irobe	16.7	0	91.7	0	0	2.4	0	35.7	33.3	12.8	82.4	96.6	23.6	25.6
		iroCD	16.7	0	91.7	0	0	2.4	0	35.7	30.6	12.8	82.4	94.8	23.1	25.1
		iron	16.7	0	75	0	0	0	0	35.7	33.3	12.8	82.4	89.7	22.6	24.2
	Aerobactin (iucABCD, iutA)	iuc $A B C$	66.7	97.9	91.7	97.4	13.3	58.5	71.4	92.9	80.6	92.3	58.8	96.6	33.5	67.7
		iucD	8.3	0	83.3	0.9	0	19.5	25	0	11.1	69.2	2.9	0	11.8	12.6
		iutA	8.3	0	83.3	0.9	0	19.5	21.4	0	13.9	69.2	2.9	0	11.8	12.6
	$\begin{array}{\|l\|l} \hline \text { Yersiniabactin (fyuA, } \\ \text { ybtAEPQSTUX, irp12) } \end{array}$	fyua	50	100	100	100	40	87.8	100	71.4	58.3	94.9	100	100	51.4	78.3
		ybtAEPQSTUX	50	100	100	100	40	87.8	100	71.4	58.3	94.9	100	100	51.4	78.3
		irp1	50	100	91.7	100	40	87.8	100	71.4	58.3	94.9	100	96.6	50	77.4
		irp2	50	0	91.7	94	40	87.8	100	71.4	52.8	92.3	94.1	94.8	48.6	68
	Hemin uptake system $($ chuASTUVWXY $)$	chuASTUVWXY	0	100	100	100	100	100	100	0	100	100	100	100	44.8	78.5

	で¢ı	8＊¢9	$\varepsilon \cdot \varsigma 8$	0	0	0	0	0	0	0	$\varepsilon \cdot \varepsilon 8$	99	0	${ }^{p \prime}$		
$\varepsilon \cdot 9$	$8 \cdot \varepsilon$	カ＇ε	I＇t6	0	0	0	0	0	0	0	0	0	0	ग？d		
$\varepsilon \downarrow \downarrow$		0	8＇19	6.92	$6 \cdot \varepsilon 1$	0	－＇z¢	L－¢s	0	9.96	0	0	L．91	pps		
9.81	s．8	L＇I	で88	9 z	0	0	9 ¢	0	0	$8 \cdot ¢$	L＇99	$\varepsilon \cdot \downarrow$	0	$I^{\text {fup }}$		
	60	0	I＇tt	$9 \times$	0	0	ガして	$\varepsilon \cdot L$	0	L＇ts	SL	$\varepsilon \cdot \downarrow$	0	3^{414}		
zz		0	で16	I＇s	0	0	ガして	$\varepsilon \cdot L$	0	9－¢¢	$L^{\circ} \mathrm{I} 6$	$\varepsilon \cdot \downarrow$	0	gV＇ily $^{\text {d }}$	u！s¢ ¢ $_{\text {¢ }}$	
6：s¢	でદા	0	Itt	L＇99	0	ガして	เて¢	1 －¢	0	£08	$\varepsilon \% 8$	I＇S8	sz	guas		
$\varepsilon \varepsilon^{6} 6$	$\varepsilon^{\circ} 0 \sim$	0	6 ¢	0	9 －s	I＇L	0	9 t	$\varepsilon \cdot \varepsilon 1$	9 z	$\varepsilon \cdot 8$	0	L＇91	visb		${ }_{\text {uixo }}{ }^{\text {L }}$
（\％）［飞인	．әчю	S6	εL	69	879	01t	s0t	8ε	เธ£	İI	zI	E6II	0 I			
													LS	งงขə9		

L＇8	I＇L	0	I 26	0	0	0	0	0	0	0	$\varepsilon \cdot ¢ 8$	0	0	$\int_{\text {dot }}$		
て＇02	8．11	001	6.2	0	0	0	0	0	0	60	0	001	L＇91	$L^{d s y}$		
z9	¢゙っt	$\varepsilon: 86$	\＆¢ ¢	I＇t9	I＇98	0	6 \％t	¢ 08	$\varepsilon ¢ \varepsilon \varepsilon$	869	L＇I6	001	L＇91	$W^{d s y}$		
†＇LL	6．15	001	1＇L6	I＇z8	L＇I6	0	\＆＇t9	001	00 I	ع 86	L＇16	001	¢ $\cdot 91$	$q^{d s y}$	ขnsdeo IY	sulpopio．$_{\text {d }}$
$\varepsilon \cdot \varsigma$	¢＇L	I＇z1	0	0	0	0	0	0	$\varepsilon ๕ ¢ L$	60	0	0	0	vวq！		u！¢eseui

3.3.3. Antimicrobial resistance phenotype between blood/rectal swab isolates

We tested for phenotypic resistance to 13 antimicrobials belonging to five classes, including aminoglycosides, $3^{\text {rd }}$ and $4^{\text {th }}-$ generation cephalosporins, β-lactam plus inhibitor, carbapenem, trimethoprim and fluoroquinolones. Isolates exhibited the highest resistance to cotrimoxazole (STX) with 70% and 75% isolates in blood and carriage isolates respectively. Ninety-nine percent of isolates were sensitive to carbapenem (ertapenem, imipenem, meropenem) and aminoglycosides (amikacin). Resistance to $3^{\text {rd }}-$ generation cephalosporins, which are used as empirical treatments against suspected BSIs in HTD, was $\sim 50 \%$ (Figure 3.3).

Looking at the dominant STs, ST131 was the most prevalent ST in our blood collection (100/506, 19.76%). Its global spread has been partially attributed to its drug resistance profile that includes resistance to fluoroquinolones and third-generation β-lactams [135]. Of note the newly-emerging ST1193 clone seen in HTD, which accounted for 7.11% of cases ($36 / 506$), has the same resistance profile as ST131. Nevertheless, ST95 (57/506, 11.26\%) and ST73 (34/506, 6.72\%), the second and fifth prevalence STs, are generally susceptible to most antibiotics (See supplementary Tables S1 and S2 for complete list of resistance phenotypes).

Looking at all samples we observed no statistical significance between AMR phenotypes across blood and rectal swab isolates, except for combinations of β-lactam antimicrobials that include an inhibitor (amoxicillin-clavulanic acid, ticarcillin-clavulanic acid and piperacillin-tazobactam; highlighted in Figure 3.3). The most dramatic difference was seen in the case of piperacillin-tazobactam (TZP), a drug combination of extended spectrum penicillin (piperacillin) and tazobactam; tazobactam acts as an inhibitor of the β-lactamase enzyme. Fewer than 20% of BSI isolates showed reduced susceptibility to TZP and were classed as resistant, whereas $>50 \%$ of all rectal swab isolates were classed as phenotypically resistant (Figure 3.3). This is important because TZP and carbapenem are used as an alternative treatment for ESBL-producing E. coli BSI at HTD.

Figure 3.3: (A) The distribution of AMR resistance between blood and carriage isolate. Asterisks highlight the three antimicrobials showing differences in the levels of resistance between BSI isolates and rectal swab. (B) Total resistant genes and (C) total replicon genes found in two groups. n.s: not significant, ${ }^{* * *} \mathrm{p}<0.001$; p -values were calculated using Wilcoxon test for continuous data and Chi square test for category data. Antimicrobial abbreviations: amikacin (AMK), amoxicillin-clavulanic acid (AMC), ceftazidime (CAZ), ceftriaxone (CRO), cefepime (FEP), ertapenem (ETP), imipenem (IPM), meropenem (MEM), ciprofloxacin (CIP), ofloxacin (OFX), trimethoprim-sulfamethoxazole (SXT), ticarcillin-clavulanic acid (TCC), piperacillin-tazobactam (TZP).

3.3.4. Antimicrobial resistance genes distribution in blood/ rectal swab

We screened E. coli genomes in this study for resistance genes and plasmid replicons that are associated with AMR to evaluate the diversity of AMR genes and plasmids in our E. coli collection. We found a total of 54 genes that have the potential to confer resistance to not only drugs against which these isolates exhibit a resistant phenotype (β-lactam, fluoroquinolone, etc.), but also to members of other classes including rifampicin, chloramphenicol, macrolide, fosfomycin, lincosamide, tetracyclin, streptomycin and colistin (Figure 3.5). The general lack of difference in phenotypic AMR profile between blood and carriage isolates was supported by comparing the total number of AMR genes and
plasmid replicon genes in BSI and rectal swab isolates: overall there was no statistical significant difference (median 8 vs 8, Wilcoxon test) (Figure 3.3).

Consistent with the phenotypic data showing that the majority of our isolates remained sensitive to carbapenem - we only found three isolates harbouring bla $_{\mathrm{NDM}-4}$ or bla $_{\mathrm{NDM}-5}$, and the presence of these genes corresponded to the resistance phenotype of the specific isolate (Supplementary Table S6). Although there was no difference in the profile of genes when comparing blood and rectal swab derived isolates overall, the total number of AMR genes and replicon types are substantially different between STs/BAPS lineage (Figures $3.4 \& 3.5$). ST131 and ST1193 contained more AMR genes than "susceptible" STs such as ST73 and ST95 (median 9 versus $6, \mathrm{p}=4.07 \times 10^{-06}$, Wilcoxon test). However, ST131 contain less replicon types than ST1 193 (median 4 versus $6, \mathrm{p}=4.463 \times 10^{-11}$, Wilcoxon test).

Figure 3.4: Total number of resistance genes and replicon types distributed across the most prevalent STs and among all 15 BAPS lineages in this dataset. Resistance genes found in different STs (A) and BAPs lineages (B). Total replicon types found in STs (C) and BAPs lineages (D). n.s: not significant, *** $\mathrm{p}<0.001$ (Wilcoxon test)

Figure 3.5: AMR genotypes and phenotypes across all E. coli isolates in this collection. Columns report infection site (blood/carriage, see key in Fig 2.7), red is present while white is absent, black were missing phenotype data (ESBL, CIP, OFX) since ESBL phenotypes were not assessed for isolates from 2010. Phylogroups are denoted on the branches of the phylogenetic tree.

Since extended spectrum β-lactams are one of the most important classes of antimicrobial at HTD we looked for ESBL-genes across all lineages (Table 3.3). We found that the majority of ESBL-producing isolates belonging to ST1193 carried bla $a_{\text {CTX-M-27 }}(27 / 31,87 \%)$, whereas ST131 isolates carried different bla $_{\text {CTX-м }}$ gene classes such as bla $_{\text {CTX-М-14 }}\left(33 / 106,31 \%\right.$), bla $_{\text {CTX-м-15 }}(32 / 106,32 \%)$ orbla $a_{\text {CTX-М-27 }}(22 / 106$, 20.8%). However, a small number of ST131 isolates contained multiple bla $a_{\text {CTх-м }}$ genes and ST131 isolates carried the greatest range of ESBL genes, suggesting that this genetic background has the ability to acquire and maintain multiple plasmids containing multiple bla $a_{\text {Cтх-м }}$ genes. This contrasted with ST1193 which almost exclusively carried bla $_{\text {CTX-M-27 }}$. The absence of multiple classes A (cefotaximase (CTX-M), temoneira (TEM) and sulfhydryl variable (SHV); Figure 3.5) ESBLs was also noticeable in other lineages such as the STs within BAPS lineages L10, L8 and L7. These lineages carried the bla тEм ESBL gene but, apart from essentially sporadic isolates, lacked other class A ESBL genes (Figure 3.5 and Figure 2.7 for the BAPS lineages). Importantly it is noticeable that these lineages were also largely susceptible to TZP as well as many other front-line antimicrobials (Figure 3.5).

We also detected the newly discovered $m c r-1$ in three isolates from patients attending HTD - one from an invasive isolate (ST617) and two from consecutive rectal swabs of day 0 and day 5 in one patient in ICU (Supplementary Table S6). Looking at the assembled genome data it was clear that the $m c r$ - 1 gene in the rectal swab isolates were located on an Incl plasmid, with the same structure as plasmid pHNSHP45 by Liu et al [136] (data was confirmed by visualizing mer-1 genes on contigs in Bandage
[128]). However, in the blood isolate, this gene was flanked by $I S A p 11$ transposon and the tnp A gene on a large chromosomal contig, suggesting that the gene might be chromosomally integrated rather than plasmid-borne (Figure 3.6). Chromosomally integrated $m c r-1$ has been reported recently in clinical E. coli isolates from Vietnam and E. coli isolated from retail chicken meat in Switzerland - these reports highlight the easy mobilisation of $m \mathrm{mr}-1$ across different genetic locations [137, 138].

Figure 3.6: The genetic environment of $m c r-1$ on a chromosomal contig from isolate 221214_63810, visualized using Artemis [139]

¢0¢	69	τ	8	17	8	$\varsigma \downarrow$	$\dagger \tau$	L	901	ε	IE	I	
66	¢Z	I	\dagger	乙	0	\dagger	εI	I	そz	0	L乙	0	Lで $\mathrm{N}^{-} \mathrm{XLD}{ }^{p} 19$
6	I	0	0	0	0	τ	τ	ε	I	0	0	0	tて ${ }^{-} \mathrm{N}^{-} \mathrm{XLJ}{ }^{p} 19$
¢¢	L	0	τ	t	τ	I	ε	τ	$\varepsilon \varepsilon$	I	0	0	カ1－ $\mathrm{N}^{-} \mathrm{XLD}{ }^{\text {pla }}$
\mathcal{E}	0I	0	I	ς	1	I	τ	0	I	0	τ	0	¢¢ ${ }^{-} \mathrm{N}^{-} \mathrm{XL} \mathrm{J}^{p} 1 q$
I	0	0	0	0	0	0	0	0	I	0	0	0	
I	0	0	0	I	0	0	0	0	0	0	0	0	$\mathcal{E}^{-} \mathrm{N}^{-} \mathrm{XLO}^{p}{ }^{\text {d }}$ q
L6	$\dagger 乙$	I	I	8	ς	¢I	†	I	$\dagger \mathcal{1}$	τ	I	I	¢ ${ }^{-} \mathrm{N}^{-} \mathrm{XLJ} p l q$
τ	0	0	0	0	0	0	0	0	τ	0	0	0	
0I	τ	0	0	I	0	I	0	0	ς	0	I	0	$\angle \tau^{-} \mathrm{W}^{-} \mathrm{XLJ}{ }^{p l q} q+\varsigma^{-} \mathrm{W}^{-} \mathrm{XL} \supset^{p l q} q$
I	0	0	0	0	0	I	0	0	0	0	0	0	
L	0	0	0	0	0	0	0	0	L	0	0	0	
［E7OL $^{\text {L }}$	．лци	¢6	69	$8+9$	0It	S0t	8E	tSE	IEI	ZI	E6II	0I	səuәธ̊［－XLL？
（u） LS													

$$
000-00-0-0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \omega \quad \omega
$$

$$
0-0 N 0-0 \infty 0000000000000
$$

$$
0-0-0 \quad 0 \quad 0 \quad a \quad 0 \quad \omega \quad 0
$$

$$
-00-0000 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \omega \quad 0
$$

$$
0 \text { I } 000000-00000000000
$$

§99	ZIZ	85	†	6ε	9ε	\dagger I	82	It	¢I	LII	ZI	$\angle t$	ZI	${ }_{\text {[2]OL }}$
τ	I	0	0	0	I	0	0	0	0	0	0	0	0	E8tIsd
It	¢I	τ	0	0	ε	I	II	I	0	9	0	I	I	LILO ${ }^{\text {d }}$
\mathcal{E}	LI	ε	τ	τ	ε	τ	ς	t	ε	τ	0	0	0	$\chi^{\text {¢ }}$!
τ	τ	0	0	0	0	0	0	0	0	0	0	0	0	I^{-}tXou!
8	ε	0	0	0	0	0	0	\mathcal{E}	0	τ	0	0	0	tXou!
I	0	0	0	0	0	0	0	0	0	0	0	0	I	
1	1	0	0	0	0	0	0	0	0	0	0	0	0	¿xou!
$\pm \mathcal{E}$	$L Z$	I	0	0	τ	0	0	0	0	0	0	I	\mathcal{E}	I^{-}IX ${ }^{\text {¢ }}$
St	0ε	τ	0	ε	ς	0	0	0	0	0	0	τ	ε	IXou!

3.4. Discussion

In this chapter, we compared the distribution of different virulence related and antimicrobial resistance gene contents for the randomly sampled BSI and rectal swab isolates sequenced in this study. The most significant association between its presence and the ability to cause invasive disease was for P fimbriae ($\mathrm{OR}>3, \mathrm{p} \leq 10^{-8}$). P fimbriae is an important colonization factor that enhances early establishment of E. coli in the urinary tract. P fimbriae are often associated with UPEC causing pyelonephritis. The reciprocal regulation of P fimbriae, type 1 fimbriae and flagella help UPEC to ascend from bladder to kidneys [132]. However, the correlation between P fimbriae and virulence remains inconclusive in literature [30].

After attachment to host tissue and following colonisation, in order to grow and proliferate, E. coli requires a siderophore system to acquire iron from the host, where free iron is maintained in an incredibly small concentration $\left(10^{-24} \mathrm{M}\right)$ [133]. Four siderophore systems have been studied in E. coli: enterobactin (fepABCDG, entDFCEBA, fes, entS), salmochelin (iroNEDCB), yersiniabactin (ybt, fyuA, irp) and aerobactin (iucABCD, iutA). The human host has many strategies to prevent heme acquisition from pathogenic bacteria, such as Lipocalin-2 which can bind and inactivate bacterial enterobactin [142] and IL-22 which induces the production of the heme scavenger haemopexin, further limiting host iron availability [143]. Therefore, possessing more than one siderophore system simultaneously may give an E. coli isolate increased fitness and a competitive advantage relative to other E. coli strains.

Several virulence genes showed lineage restriction. Phylogroup B2 isolates which include ST131, ST73, ST95 and ST1193 carried the highest number of genes characteristic of ExPECs, as would be expected from previous studies. This is consistent with data shown in Chapter 2 which showed an association between Phylogroup B2 and gender as well as BSIs. Women are known to be highly susceptible to UTI infections by uropathogenic members UPEC members of the ExPEC. However, it is clear that different lineages employ different fimbrial systems for attaching and colonising the host, and may not necessarily use the same pili or retain more than one due to possible functional redundancy. ST73 in our study possessed more Pap genes than ST131, as well as having additional fimbriae such as S1 fimbriae (sfa operon) and F1C fimbriae (foc operon). This might enhance its ability to bind to human bladder and kidney epithelium cells [144] as well as to form biofilms [145]. The most striking observation was that $t c p C$ can only found in ST73 (97%) and in some less prevalent STs such as ST12, ST969 and ST998. TcpC is a secreted protein that binds to myeloid differentiation factor 88 (MyD88) and impedes Toll-like receptor (TLR4) signalling pathways in innate immunity, therefore promoting intracellular bacterial survival of pathogen [146]. The ability to colonise different cell types, together with having a sophisticated molecular strategy such as $t c p C$ to subvert host defence, and harbouring a toxin such as cnfl to cause cell apoptosis [147], might explain why ST73 was able to emerge as a UPEC clone, with potential to translocate into the blood.

The high prevalence of AMR genes in both BSI and carriage isolates highlights the urgent threat posed by multidrug resistant E. coli that are resistant to all major antibiotics, and the challenge that the clinical management of community acquired E. coli BSIs presents. Luckily genes conferring resistance to last line antimicrobials, $b l a_{\mathrm{NDM}}$ and $m c r-1$, were rare and only sporadically distributed in our E. coli collection at the time of testing.

One other important observation made here was for TZP. TZP is an intravenous combination antibiotic that is not available in the community. TZP, like clavulanic acid, is a combination therapy including a β-lactam inhibitor (tazobactam), inhibiting the β-lactamase produced by ESBL-producing bacteria, so that the effectiveness of ESBL antibiotic combined with it, in this case piperacillin, is preserved. However, TZP is more efficient than clavulanic acid at inhibiting a wider range of ESBLs. Resistance mechanisms for TZP are not well defined but the efficiency of the inhibition is thought to be affected by the type of the ESBL produced, since the inhibitor binds to and blocks the enzyme active site [148]. Sugumar et al., (2014) have suggested that possession of bla a_{OXA} in combination with other bla genes leads to high resistance to the Tazobactam treatment. Consistent with this from looking at the carriage isolates there was a significantly higher proportion of bla a_{OXA} and bla $_{\mathrm{CMY}}$ genes present in TZP resistant isolates than TZP sensitive isolates (25.1% versus $8 \% ; 20.4 \%$ versus $5.2 \%, \mathrm{p}<0.001$, Chi square test) suggesting that Tazobactam is less efficient at inhibiting the products of bla a_{OXA} and bla $_{\mathrm{CMY}}$ than other genes such as bla TEм $(48.5 \%$ versus 61.8%, $p=0.002$, Chi square test). Figure 3.5 also shows that phylogroup B2, BAPS lineages L10, L8 and L7 (ST95, ST73 and ST1193) are dominated by isolates carrying $b l a_{\text {TEM }}$ genes with only sporadic possession of other bla genes. Phenotypically these isolates were largely susceptible to TZP (Figure 3.5) and these susceptible isolates represent a significant proportion (28%) of all BSI isolates sampled in this study. This may explain why the proportion of blood isolates showing resistance to TZP was significantly lower than rectal swab isolates (Figure 3.3), which are more strongly associated with more diverse, less frequently sampled STs from lineages possessing multiple types of bla gene. It is not clear if this could be associated with the intravenously delivery with blood isolates exposed to high therapeutic doses compared to gut isolates due to differential drug penetration. Although as we have shown common BSI STs are present in rectal swab samples.

If the TZP-sensitive ST131 isolate numbers (87/100) from blood (the most prevalent ST causing BSI at HTD) are combined with ST95, ST73 and ST1193 then these 4 STs represent 48% of all BSIs sampled in this study. What's difficult to explain from the above is that a high proportion of ST131 isolates carry bla a_{OXA} in combination with other bla genes. Within the ST131 TZP-sensitive isolates from blood 61 and 26 are bla $a_{\text {OXA }}$ negative or positive, respectively. Of the ST131 TZP-resistant isolates 6 and 7 are $b l a_{\text {OXA }}$ negative or positive, respectively. In addition, all of the $b l a_{\text {OXA }}$ positive isolates also possess either bla $_{\text {CTX }}$ or $b l a_{\text {TEM. }}$. What is more, by performing a genome wide association study using SCOARY [149] which takes the gene presence/absence data from ROARY (see 2.2), then uses the phenotype to
work out gene distribution between 2 groups (TZP resistant or sensitive), in addition to bla genes several other genes showed a positive association, including acrAB (multidrug efflux pump), mphA (multidrug transporter), \quad omp C (outermembrane protein linked to resistance) and the multiple antibiotic resistance protein MarB. Hence, TZP resistance appears to also be associated with general mechanisms of resistance and likely to be multifactorial like macrolide resistance. This may imply genetic background is as important as the possession of specific bla genes for resistance.

What is clear is that there is that the B 2 lineages that were dominant in our BSI isolate collection remain significantly more susceptible to TZP than other phylogroups more associated with rectal swab. We have shown that once established in a community the relative proportion of different STs is stable over time. If we can use this data to identify the less well understood mechanisms of resistance, such as to TZP, we may be able to reach a more proactive state matching any changes in disease patterns in a hospital with flux in the bacterial population and then acquisition of different mechanisms of resistance and change interventions accordingly. Unfortunately, there was insufficient time to pursue this line of investigation further.

Chapter 4: Understanding the relationships between BSI and carriage E. coli isolates in patients attending HTD, Vietnam.

4.1. Introduction

Our results from Chapter 2 demonstrated that E. coli isolates from rectal swab were more likely to be members of ECOR phylogroup A or B1 than they were to belong to B2 or D. This is consistent with previous reports that have shown that phylogroups A and B1 are often identified as "commensal" or "harmless" bacteria and are less often the cause of BSIs. Although there are no single or defined sets of genes that absolutely distinguish invasive from commensal E. coli [10], invasive E. coli (ExPEC) often belonged to phylogroup B2 or D and harbour genes related to adhesion, immune evasion, iron acquisition and toxin production [109] as shown for the HTD isolates in Chapter 3.

In our 06EI study (see Section 2.2, Chapter 2), E. coli were cultured from 700/834 (84\%) HTD ICU patients (data unpublished). Patients when staying long-term in the ICUs are highly vulnerable, and easily contract HAIs, due to their close contact with healthcare workers and other patients [150, 151]. HAI-associated outbreaks in ICU affect both adults and neonates and often involve strains that are highly resistant to therapeutic antibiotic usage in the hospital environments - these are frequently multidrug resistant (MDR) which is associated with a prolonged duration of hospital admission and requires more intense treatment and monitoring which significantly increases treatment costs as well as being associated with, and increasing the risk of a negative clinical outcome [79, 118, 152].

Chapters 2 and 3 of this study showed that there were clear phylogenetic and genetic differences between the randomly sampled rectal swab and BSI isolates from HTD. However, despite being representative of the isolates causing disease they were all derived from unlinked patients. Samples collected in study 06EI provided a unique opportunity to understand the relationship between rectal swab (carriage) and BSI (invasive) isolates taken from the same patient. The samples included in this study also included those taken from a limited number of patients who had been sampled longitudinally during the course of their hospital stay and so it was also possible to compare these E. coli isolates to those taken from the same patient at admission either from rectal swab and or those cultured from blood. Aim: To understand the genetic diversity and relationships of carriage and invasive E. coli isolated from the same patient in HTD, Vietnam.

The specific questions to answer:

1) What is the relationship between the paired E. coli causing BSIs in a patient to those cultured from their rectal swabs?
2) How does E. coli diversity change over time during hospitalisation within a single patient? Are patients carrying the same strains for the duration of their stay or are they reinfected with new strains during their hospitalisation?

4.2. Methods

4.2.1 Study participants

Patient recruitment and sample collection was as detailed in Section 2.2. The 06EI study at the ICU in HTD was conducted from November 2014 to January 2016. Eligible patients (age ≥ 15 years old) admitted to ICU gave informed consent, and a rectal swab was taken from each patient within the first two days post-hospitalisation. This was dubbed "baseline" E. coli carriage. Follow-up rectal swabs were taken twice a week until the patient was discharged and were classified as "longitudinal" isolates.

4.2.2. Isolate collection

Isolates were collected and stored as described in Section 2.2. If growth on solid media revealed the presence of two or more colony morphologies (lactose/non-lactose fermented/ β-haemolytic) then multiple colonies were selected for sequencing. DNA was prepared from these isolates and sent to Sanger Institute for sequencing on Illumina HiSeq platform as described in Chapter 2.

4.2.3. Phylogenetic analysis

Phylogenetic analysis was essentially as described in Chapter 2 Section 2.2 based on whole genome SNPs built from core gene alignment. Core gene alignment was constructed by ROARY, except that we only included a subset of 94 isolates and did not include the reference genomes of E. fergusonii and E. albertii. With the smaller sample size the core genes present in at least 95% of these isolates amounted to 3,077 genes, as expected higher than the total core genes $(2,796)$ defined for the entire sample set in Chapter 2. The pan genome of 94 isolates also comprised of fewer genes $(18,886)$.

4.2.4. AMR genes, replicon types and virulence genes identification

These genomes of these isolates were also screened for antimicrobial resistance, plasmid replicons and virulence genes using ARIBA as describe in Chapter 3 (see Section 3.2). Phylogenetic tree and gene presence/absence as described in Section 3.2.

4.3. Results

4.3.1. Patient and sample recruitment

After QC, we successfully generated genomes of matched E. coli isolates taken from rectal swab (carriage) and blood collected in 2015 from a subset of twenty-eight patients (of the original thirty-one patients with matched samples. See Section 2.2) attending HTD. Of these patients twenty-five had BSI on admission or in less than 2 days after admission and so were considered to represent patients with community acquired blood stream infections. Two patients were transferred from a different ward after

8 days of treatment from the same hospital (03-0029 and 03-0514) while the third patient (03-0283) developed BSIs while being treated for tetanus; therefore, these three patients were recorded as HAIs in the 06EI study.

Of these 28 patients, 8 were male and 20 were female. The median age was 53 years of age (range 2768 year old). Majority patients had an underlying disease that may have predisposed them to bacterial BSIs: 11 patients had liver disease as a consequence of chronic hepatitis B / C or alcoholism. In the remaining 17 patients, other comorbidities included pneumonia, AIDS, tetanus, cholecystitis, diabetes and UTIs, while three others had no known comorbidities. All 8 male patients were recorded as being moderate/heavy smokers and drinking alcoholic beverages, while none of female patients reported that they either smoked or drank alcohol.

In summary, there were 94 isolates remained after QC for this analysis. This included 28 bloodstreams and 46 rectal swab carriage isolates that were collected on day 0 or 1 of admission to HTD ICU, plus 20 longitudinal isolates taken after day 1 from 7 patients. The maximum sampling period was 20 days post admission for patient P3 (03-283).

4.3.2. Genomic diversity among rectal swab and blood derived E. coli isolates on admission to HTD ICU

The core genome phylogenies of all 94 isolates detailed above are shown in Figure 4.1. The phylogenetic tree shows that there are 13 BAPs phylogenetic groups (except L1 and L8) represented in the tree. BAPs groups were previously defined in Figure 2.4 Section 2.3 Chapter 2 and transposed onto this analysis. By MLST these isolates include a total of 37 ST's, of which the dominant STs were ST1193, ST131, and ST648 (Supplementary Table S4). If this is divided by sample type then the most common STs in the blood samples were ST1 193 (5 samples), ST131 (4 samples) and ST69 (3 samples). For rectal isolates, the dominant STs were ST131 (9 samples), ST1193 (6 samples) and ST648 (8 samples) (Figure 4.1).

Of the 28 patients included for $16 / 28$ (57%) the same E. coli STs were cultured from the blood and rectal swab samples. For the remaining 12 patients, the E. coli cultured from blood and carriage samples were of different STs. Its worth noting that rectal swab isolates for $2 / 28$ patients, P1 (03-0048) and P6 (03-0209) (Figure 4.1) with matched samples were collected after day 0 . This was because the samples taken on admission failed to grow when the samples were collected for this study. Since the patients would have received treatment in this time after admission, the likelihood is that this influenced nature of the E. coli population in the gut. Hence, it is possible that the percentage of identical isolates on admission in the blood and rectal swab was higher 57%.

For the 28 paired samples, the genomes of the blood and carriage isolates from 16 patients were on average only differentiated by a median of 2 SNPs (IQR 1-3) (Supplementary Table S5). Clearly this located these isolates on the same phylogenetic branch of the tree. Paired rectal swab and blood isolates
from the same patient can be seen as red and orange nodes (spots) from blood and rectal swab, respectively on Figure 4.1. The arcs shown in Figure 4.1 link the respective paired sample(s) from blood and rectal swab. If multiple isolates were collected on each time point (due to multiples colony morphologies on the resultant culture plates; see methods) from the rectal swab samples then the blood samples are linked by multiple arcs to their respective paired rectal swab nodes (Figure 4.1).

To give an estimation of diversity we plotted the pairwise SNP distances between isolates from the same patient with the same MLST profile or the same ST taken from different patients (Figure 4.2). We used ST to control for the variable inter-lineage (ST) diversity. For the genomes of isolates of the same ST taken from different samples from the same patient the SNP difference between isolates was within 3 SNPs (median 1, IQR $0-2.5$). However, if the same ST was taken from different patients, regardless of sample type then they are on average 3,670 SNPs apart at the whole genome level, (median 2,517; IQR 119-7,135) (Figure 4.2).

There were two exceptions, the paired E. coli genomes from patients P18 (03-0301) and P19 (03-0322) (Supplementary Table S5), were separated by only 40 SNPs respectively although both belonged to same ST1 193 and ST131, as well as the same BAPS lineage (labelled as P18 and P19 of Figure 4.1). However, unlike the other linked samples in this study, because we know the estimated mutation rate of E. coli ST131 is 1 SNPs/genome/year [153] and because the same STs from 2 different patients in our study also have at least 24 SNPs difference, if 2 isolates are >40 SNPs apart it is likely that the patient has acquired the strains from a different source, including other body sites, unrelated to their own rectal carriage strains or there was unsampled diversity not captured on the rectal swab.

Figure 4.2: Pairwise SNP distances within and between patients based on the variant calls from the core gene alignment. A violin plot for SNP distances between isolates taken from the same patient (intra-patient) and in different patients (inter-patient) is reported. Only those paired samples separated by fewer than 12,000 SNPs are reported, since these capture genomic diversity within an MLST, while isolates between different MLST types had a median of 65,000 SNPs. Red dot represents the median SNP differences from each group. Fifteen pairs that are separated by 0 SNPs (i.e., are identical) are reported in this figure as being separated by fewer than one SNP.

In an attempt to answer this question, we showed that of the remaining 12 patients where the blood and rectal swab isolates belonged to different STs, 6 patients were infected with UPEC clones such as ST73, ST69 and ST131. Looking through the hospital records these patients also had confirmed UTIs (while 2 had ascites, 1 with cholecystitis and 1 unknown), suggesting that the other route of infection possibly was through UTIs. Combined, this shows that for the majority of paired isolates the dominant isolate in the gut (and perhaps the bladder) belonged to the same ST and, from the core genome alignment, was almost indistinguishable from the isolates causing BSIs in that patient on admission to hospital.

4.3.2. Longitudinal diversity

B

Figure 4.3: Twenty longitudinal isolates and from seven patients. The tree presented in this figure is the same as Figure 4.1 except that, for ease of viewing, only arcs from seven of the patients with multiple rectal swab samples are shown. Each arc with a different colour represents blood and rectal swab isolates taken on admission (red and orange nodes, respectively), or isolates from longitudinal samples (grey nodes) belonging to the same patient. The lower diagram shows the timeline of these longitudinal isolates and their STs.

How does the population structure of E. coli change over time during ICU hospitalisation and antibiotic treatment?

As mentioned above, within our sample collection there were samples that belonged to 7 patients who had been sampled multiple times after admission to HTD. The sections below attempt to bring all of the genomic and patient clinical meta data described in this and previous chapters together for these seven patients in order to describe how the population of E. coli in these patients has changed over time and highlight what factors may have influenced that. The phenotypic antibiotic resistance data discussed below is summarised in Supplementary Table S1 and S2 and was determined at the HTD Vietnam. The genes encoding the resistance were investigated in Chapter 3 (Supplementary Table S6). Figure 4.3 describes the STs of the E. coli taken from these patients plotted over the duration of their stay in the hospital with the sampling intervals labelled on it.

Patient P1 (03-0048) and P6 (03-0209)

Unfortunately, patient P1 (03-0048) and P6 (03-0209) did not have baseline isolates (strains could not be recovered from storage). However, looking at the longitudinal isolates collected from these patients after admission showed they were different to their blood isolates (ST10 and ST354) (Figure 4.3). These two patients both had liver disease (cirrhosis and ascites), and both suffered from community-acquired BSIs, infected with ESBL-producing E. coli belonging to ST1722 (P1) and ST69 (P6) respectively. P1 was treated with ceftriaxone and had a fatal outcome after three days. P6 was treated with imipenem for five days after admission, therefore this patient survived the BSIs although they were admitted for a total of 29 days in HTD. ST354 colonised P6 on day 1 and is an ESBL-producing E. coli, that carried both $b l a_{\text {CTX-M-24 }}$ and $b l a_{\mathrm{CMY}-42}$, and was phenotypically resistant to all tested antibiotics except carbapenem.

Patient P2 (03-0314)

Patient P2 (03-0314) was a patient suffering from cirrhosis. Initially, this patient's rectal swab sample was dominated by two STs, ST130 and ST648, both sensitive to 12 out of 13 tested antimicrobials (Supplementary Table S2). The blood isolate matched the rectal swab isolate with only one SNP difference. E. coli isolates were also cultured with the same AMR profile from peritoneal fluid (data not shown). It is very likely that this BSI emerged from translocation of E. coli from the gut. Patient P2 was treated with ceftriaxone. However, on day 6 and day 9, only MDR ESBL-producing E. coli of ST93 were seen in culture. These isolates harboured IncX and IncFII plasmid replicon types (result from Chapter 3). This might reflect either lineage replacement whereby only when sensitive STs such as ST130 and ST648 were killed off by exposure to ceftriaxone, we were then able to pick up drug resistant ST93. The other possibility was this patient acquired a hospital-associated MDR E. coli, although we have no means to identify transmission route unless we had sequenced all carriage isolates from other patients admitted to ICU around that time. The patient unfortunately did not survive.

Patient P4 and P5

Longitudinal rectal swab isolates taken from patients P4 (03-0559) and P5 (03-0710) were also found to be different STs from the original rectal swab isolate taken on admission. P4 was treated with ceftriaxone, since the admission BSI isolate, ST73, was found to be resistant to cotrimoxazole (SXT) and also had reduced susceptibility to ticarcillin/clavulanic acid (TCC) and amoxicillin/clavulanic acid (AMC). However, the rectal swab sample was dominated by ESBL-producing ST131 bla $a_{\text {CTX-m-14 }}$ and SXT resistant E. coli ST155 cultured from the rectal swab collected on admission. On day three postadmission, further rectal swab samples were taken and E. coli isolates of ST38, ST1722 and ST88 were grown. Interestingly, they were all phenotypically resistant to third- and fourth-generation cephalosporins and were ESBL-producing isolates (Supplementary Table S2). Screening for AMR genes using ARIBA and ResFinder revealed (See sections 3.3) that they all harboured bla $a_{\text {Стх-м }}$ genes. ST38 isolates contained bla $a_{\mathrm{CTX}-\mathrm{M}-27}$, ST1722 had both bla $a_{\mathrm{CTX}-\mathrm{M}-27}$ and bla $_{\mathrm{DHA}-1}$ while ST 88 harboured $b l a_{\text {СTX-м-55 }}$.

Patient P5 had diabetes with confirmed UTIs, while carriage isolates were both the same ESBLproducing E. coli ST1193 harboured bla CTX-м-27 $^{\text {so it was very likely that BSIs arose from the gut }}$ colonization then contaminated UTIs. After treatment with both ceftriaxone and amikacin, on day 3, two different STs including sensitive ST69 and MDR ST648 isolates with aac(6')-Ib-cr, bla $a_{\text {CTX-M-15 }}$, $b^{\text {bla }}{ }_{\mathrm{OXA}-1}$, bla $_{\text {TEM-1B }}$ correlating with the presence of a IncFII plasmid (data visualised in Bandage - not shown) were cultured from rectal swabs. This patient's condition did not improve after treatment, and they were transferred to another hospital, hence the opportunity to follow this up was lost.

Patient P7 (03-0514)

Patient P7 (03-0514) was one of three patients that were classified as HAIs in 06EI study since all three patients developed BSIs while staying in the hospital when treated for cirrhosis or tetanus. Since this patient was infected with the same ESBL-producing ST448 in the blood and rectal swab samples, they were treated with norfloxacin and ertapenem; nevertheless, ST448 was also shown to be present in rectal samples on day 4 , with zero SNPs separating it from the original two isolates. This patient was discharged to die at home. ResFinder results revealed that these isolates carried bla $_{\mathrm{CMY}-2}$.

Patient P3 (03-283)

Patient P3 (03-283) was admitted to the hospital suffering from tetanus. This patient did not have a bacteraemia on admission. This patient was swabbed six times during a 19-day stay in the ICU and E. coli isolates were cultured and retained from the rectal swabs on each occasion. The patient was screened for E. coli upon admission, and was treated with metrodinazole (as per standard guidelines for tetanus treatment). Interestingly, the cultured isolates showed multiple colony morphologies on each occasion and so two colonies were preserved from each of the rectal cultures, including those from day one. In addition, this patient developed a BSI on day 20 with the infection being recorded as a hospital-
acquired infection. It is clear (Figure 4.3) that patient P3 (03-283) rectal samples were dominated by two different E. coli MLST clones (ST131, ST6698), while ST43 seems likely to have colonised this patient transiently. It is also clear that the day 20 BSI isolate belonged to the same ST and phylogroup as the majority of the rectal isolates from this patient. This ST131 clone was picked up every sampling time because it is a β-haemolytic E. coli, hence it shows a phenotype that is distinct from other lactose fermenting clone (see Supplementary Table 3).

To see if there was evidence of variation between the longitudinally sampled ST131 isolates we redrew the ST131 cluster in Phandango to include all seven isolates from this patient (Figure 4.4 carriage isolates denoted as LF (lactose-fermented) or NLF (non-lactose fermented) or Bhae(β-hemolytic) proceeding their sample ID, e.g. EI2793NLF, EI2793LF2/EI3892_Bhae; the day 20 BSI isolate is labelled as 010615-16405). An additional three BSIs isolates, and one carriage isolate from three different patients were added for context (Figure 4.4; Labelled as P19, P21, P25). Within seven longitudinal isolates taken from patient $\mathrm{P} 303-0283$, the blood isolate is most genetically closely related to isolate EI1605 β-haemolytic isolate from day 6 , which is identical with 0 SNPs difference in the core genome alignment. The maximum SNP difference between these seven longitudinal isolates was 3 SNPs. In order to understand if there were any differences in the accessory genome between the blood and rectal swab isolates included here, we mapped sequencing reads against 205 genes known to be involved in invasive disease to look for gene presence or absence (Figure 4.4). On first analysis, this seemed to reveal something interesting. The blood isolates differed from the other five carriage isolates from the same patient by possessing two genes, $k s p M-1$ and pap X genes. PapX is important because it is a protein which represses the synthesis of P fimbriae, which we showed was highly correlated with invasive disease at HTD (described in Chapter 3). The impact of this gene would be to attenuate attachment and bacterial motility. Whilst kspM-1 mediated K1 capsules help E. coli escape host immunity response [154]. However, looking across all isolates included in Figure 4.4 it is clear that the presence or absence of these genes, although interesting, does not correlate with sample type: blood or rectal swab although it does highlight some within-host variation between isolates.

Figure 4.4: Graph shows phylogenetic relationship between isolates in patient P3 (03-283). The presence and absence of AMR and virulence genes was related to the core genome phylogeny of seven isolates from patient P3 and two other patients infected with ST131 BSIs.

4.4. Discussion

In our study, by using whole genome sequencing as a high-resolution method to dissect the complexity of E. coli populations, we found here that there is a substantial diversity of E. coli co-existing in each patient's gut; each patient carried at least two different STs from different phylogenetic lineages. Hence, our results are consistent with the study by Stoesser et al on multiple single E. coli isolates isolated from Cambodian children, in which it was found that one healthy individual can carry up to 10 different STs and a range of virulence and AMR determinants located on multiple plasmids [155].

It is also clear that 57% of BSIs collected from our patients for whom we had matched rectal swab isolates were of the same ST and differed by 0 or only a small number of SNPs from their rectal swab isolates, which suggests that they come from their own microbiota. This has been observed in other ICU studies for Klebsiella pneumoniae [156, 157]. However, although we were not able to infer the route of infection for the other cases a significant number of these other patients carried isolates strongly associated with UTIs in their blood, were recorded as having UTI's and were largely female. This may suggest that this is the other major source of BSIs in these patients and is consistent with the findings of Chapter 2 and 3 showing a strong gender bias for the invasive isolates and a link to UTI's.

The diversity of multiple STs living in the same gut flora lead to an interesting point as to whether drugsensitive E. coli could acquire AMR genes through plasmid transfer from AMR strains under antibiotic pressure. Although gut inflammation has been shown to boost the conjugation of a colicin-resistance plasmid between Salmonella Typhimurium and commensal E. coli in a mouse model [158], our finding in a small subset of patients rather show the lineage replacement of sensitive STs by those resistant to
the drug used for treatment (as shown in patients $\mathrm{P} 2, \mathrm{P} 4$ and P 5). The repeated isolation of the same E. coli carried bla $a_{\mathrm{CMY}-27}$ in patient P7 (03-514) (Figure 4.3) show the potential of treatment failure of ertapenem on bla $_{\text {CMY-27-producing }}$ E. coli.

Our study has limitation. Due to the number of strains that needed to be identified and stored during the study, we assumed that all E. coli isolates that were of the same phenotype (colony morphology, colour on MacConkey agar), and of the same AMR pattern, were of the same genotype. This meant that only one or two representative isolates from each phenotype was kept and sequenced. This could lead to an underestimation of the real diversity of E. coli present in the gut and might explain why 43% of our cases harbour different STs between blood and rectal swab on admission.

Chapter 5 Final discussion

The majority of recent large-scale sequencing studies of E. coli have focused on the most prevalent and highly MDR clone, ST131, and have aimed to find factors responsible for its success as a pathogen [135, 153, 159]. Rather than focusing on a single ST or MDR clone, our study took a longitudinal approach, to capture the diversity of E. coli causing bacteraemia in a single hospital over a five-year period to provide basic understanding of E. coli population structure, both from invasive and carriage isolates.

By sequencing randomly more than 650 invasive and carriage isolates over 5 years, our study revealed that there was high genetic diversity in E. coli, with member of all classic ECOR phylogroups, comprised of 117 different STs or 15 BAPs clusters. Although exhibiting high diversity, at the same time, all the major STs causing BSIs in Vietnamese patients typically mirror the diversity of ExPEC all over world, including ST131, ST73, ST95, ST69 and ST1193 as dominant STs [101, 105]. These STs have been known for a long time as ExPEC associated with BSIs and UTIs [102, 160]. Interestingly, among these STs, ST131 and ST1193 is common in both invasive and carriage while ST73 and ST95 only found in BSI samples.

Stratifying by year, we have shown that the population structure of dominant E. coli STs is stable overtime, with in general the proportion of each STs remaining relatively stable every year. This in itself is an extremely important observation to frame the work done to reduce infection at HTD. The only exception was the introduction of ST1193 in 2011, but once established the population regained stability again. This phenomenon was also observed in the 10-year collection of BSI E. coli in United Kingdom [161]. Since majority of BSI were present on admission and so community acquired, these support the hypothesis that there was a high prevalence of carriage of these ExPEC in healthy individuals outside the hospital and in the community. This is particularly significant for immunocompromised patients and patients with other severe comorbidities or unhealthy lifestyles, as we have shown.

As mention above, our study highlighted the introduction of ST1193 in causing BSIs as well as being present in carriage samples in Vietnamese patients. ST1193 was a fluoroquinolone (FQ) resistant clone found as early as 2007 in both human and companion animals (dogs) in Australia [162]. Isolates between those two groups shared the same virulence genes as well as AMR genes, suggesting it was shared between human and animal. ST1193 has also been documented as non-lactose fermenting FQ resistant E. coli causing UTIs in Korea [163], being the second most prevalence ST. In the United States, ST1193 was rare, accounted for only 0.9% FQ resistant isolates. However, ST1193 was recently shown to be amongst the top STs associated with community onset infection in 30 county hospitals across China, from 2010 to 2011 [106]. Apart from exhibiting FQ resistant phenotype, ST1193 emerged as a clone that harboured different bla $_{\text {СTХ-м }}$ including $b l a_{\text {CTX-M-15 }}$, bla $_{\text {CMY-2 }}$ [164] and $b l a_{\mathrm{CTX}-\mathrm{M}-55}[165]$.

ST1193 in our collection interestingly, although FQ resistant, harboured a different bla $_{\text {CTх-м }}$ (bla $a_{\text {Cтх-м- }}$ 27). Collectively, having the same virulence repertoire as ST131, being able to colonize human gut, plus FQ resistant and ESBL-producing might explain the successful clonal expansion of ST1193 in Vietnam. However, further studies combing genomics and epidemiological will be needed to confirm if this is also replicated across and outside of Asia.

Our data confirm that the global emergence of ST131 as the most prevalent ST causing BSIs is also replicated in our hospital and seems to be much more diverse than previously thought. Previous reports [135] have indicated that ST131 isolated from across the globe is FQ resistant and also harbours bla $a_{\text {CTX }}$ ${ }_{\mathrm{m}-15}$. However, in our collection, ST131 did not only harbour bla $a_{\text {CTX-м-15 }}$ alone, but also carried plenty other CTX-M variants such as $b l a_{\text {CTX-м-14 }}, b l a_{\text {CTX-м-27 }}$ and bla $_{\text {Стх-м-55. }}$. This highlights the versatility of ST131 in acquiring and maintaining MDR plasmids, in comparison to the other 2 most common ExPECs: ST73 and ST95. The differences observed between the AMR profiles of ST131/ST1193 and ST73/ST95 lead to another interesting point. Since we were unable to find ST73 and ST95 in carriage isolates, we speculate that these two STs might colonise another habitat outside of human gut. The gut and urinary tract are very distinct environments in terms of the availability of nutrients, immunological control, and the population of resident microbes [166]. Since only a small proportion of bacteria that have siderophore systems can live in the urethra [167], perhaps these UPEC clones ST73 and ST69, do not have a chance to encounter other wider community of bacteria including MDR one as in the gastrointestinal tract. Therefore, there are not many chances to pick up mobile genetic elements like plasmids and transposon that carried resistant gene around as ST131.

Although our work in Chapter 4 included a relatively small sample size of 28 patients, this is the first report using WGS to confirm that the majority of BSIs patients (57\%) are infected with E. coli that are indistinguishable or almost indistinguishable from the dominant strain(s) colonising their guts. This implies that patients were infected with carriage isolates already colonizing their body sites and not through hospital acquired infections as we had initially hypothesised. However, there were exceptions by which haft of the cases were different ST between blood and carriage. For a significant proportion of these isolates we showed these patients had UTI infections, sometimes with E. coli that had matching AMR patterns. Although this is perhaps strong circumstantial evidence that their BSIs might originate from prior UTIs we could not confirm this route of infection because the isolates were not stored. If that was true, it will inform future study design by showing that positive urine samples from other bodily sites are critical in order to fully understand colonisation and subsequently invasive infection of E. coli. If there were to be a future study, we would collect and sequence all paired E. coli isolated from blood, urine and rectal swab on admission from each patient and at a larger scale. By comparing the distribution of STs between different body sites, in the future we might be able to predict which STs can cause BSIs and which STs is just limited to cause bladder infection and also study the interaction of multiple STs coexist in the gut.

Now knowing that colonizing of ExPEC strains such as ST131 and ST1193 pose high risk to subsequently infection in immune compromised patients, either through bacterial translocation in the gut or by seeding bacteria from the gut to the urethra and subsequently bladder infection in the elderly, there are several approaches can be implemented to prevent BSIs infection. The first one is by decolonizing or limiting the presence of these ExPEC and MDR STs in high risk patients. Randomized clinical trial with Lactobacillus plantarum has showed that it can prevent 42% of sepsis cases in newborn between control and cases [168]. In term of preventing UTIs, asymptomatic bacteriuria E. coli strain 83972 has been used to colonized the urethra and compete with virulent UPEC [169, 170]. Other approach includes treating the gut with sugar molecules resemble sugar structure located on gut epithelial cells that FimH can bind, hence also reducing the colonization of FimH producing E. coli [171]. Since possessing P fimbriae and yersiniabactin has been shown, by us and others, to be the important virulence factors for E. coli invasive disease, developing vaccines against these 2 candidates could be a potential approach as well $[172,173]$.

Our study has several limitations. First of all, because this is a retrospective study we had little control on the sampling strategy either for the random samples or the matched samples from the same patient. We also only had access to rectal swab and blood samples and yet it is clear that other sample such as urines were collected for some patients with UTIs, but unfortunately they were not stored. Also, some of the patient meta data was predicted, for example liver disease was inferred due to patient care and was not through laboratory confirmed testing such as the AST liver function test. The same was true of the CD4 count for HIV status.

Another limitation of the study was the in ability to assemble plasmids from WGS data. In our dataset, we observed substantial diversity of AMR genes and plasmid replicon types, but due to the nature of short reads sequence produced by Illumina sequencing as well as the presence of repetitive elements such as transposases, we were unable to reconstruct the full plasmid structure and the detailed association between certain type of Inc plasmid and certain AMR genes as well as the genetic backbone surround the genes. One plasmid can harbour multiple replicon types apart from their original replicon, and multiple plasmids may co-exist in one cell. This makes it technically challenging to infer total numbers of plasmids based on total replicon types alone. We also used plasmidSPADES [126] to assemble plasmid (data not shown), however, plasmidSPADES operates by comparing read coverage difference between chromosome and plasmid DNA. Since big plasmids ($>90 \mathrm{~kb}$) are not always present in high copy number, they are present as equivalent read depth to the chromosome and therefore are not recognized by plasmidSPADES. Hence these contigs often remain fragmented plasmicidic contigs. In the next study, we would like to employ Long read sequencing also used to elucidate the diversity of AMR genes each clone carried and build as a framework of to track plasmid movement between Enterobacteriace species, especially in our ICU collection.

In conclusion, the success of certain STs is a multifactorial phenomenon including possessing certain virulence genes (attachment, invasion, iron acquisition, toxin producing) and harbouring AMR genes as selective advantage against antimicrobial treatment. Strain that are capable of doing both things, such as ST131 and ST1193, will continue to account for a high proportion of BSIs cases.

References

1. Shulman, S.T., H.C. Friedmann, and R.H. Sims, Theodor Escherich: the first pediatric infectious diseases physician? Clin Infect Dis, 2007. 45(8): p. 1025-9.
2. Blount, Z.D., The unexhausted potential of E. coli. eLife, 2015. 4.
3. Tenaillon, O., et al., The population genetics of commensal Escherichia coli. Nat Rev Microbiol, 2010. 8(3): p. 207-17.
4. Sender, R., S. Fuchs, and R. Milo, Revised estimates for the number of human and bacteria cells in the body. PLoS Biol, 2016. 14(8): p. e1002533.
5. Stecher, B. and W.D. Hardt, The role of microbiota in infectious disease. Trends Microbiol, 2008. 16(3): p. 107-14.
6. Berg, R.D., The indigenous gastrointestinal microflora. Trends Microbiol, 1996. 4(11): p. 4305.
7. Hudault, S., J. Guignot, and A.L. Servin, Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection. Gut, 2001. 49(1): p. 4755.
8. Bergholz, P.W., J.D. Noar, and D.H. Buckley, Environmental patterns are imposed on the population structure of Escherichia coli after fecal deposition. Appl Environ Microbiol, 2011. 77(1): p. 211-9.
9. Goto, D.K. and T. Yan, Genotypic diversity of Escherichia coli in the water and soil of tropical watersheds in Hawaii. Appl Environ Microbiol, 2011. 77(12): p. 3988-97.
10. Leimbach, A., J. Hacker, and U. Dobrindt, E. coli as an all-rounder: the thin line between commensalism and pathogenicity. Curr Top Microbiol Immunol, 2013. 358: p. 3-32.
11. Nowrouzian, F., et al., Escherichia coli in infants' intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res, 2003. 54(1): p. 8-14.
12. Caugant, D.A., B.R. Levin, and R.K. Selander, Genetic diversity and temporal variation in the E. coli population of a human host. Genetics, 1981. 98(3): p. 467-90.
13. Selander, R.K. and B.R. Levin, Genetic diversity and structure in Escherichia coli populations. Science, 1980. 210(4469): p. 545-7.
14. Escobar-Paramo, P., et al., Large-scale population structure of human commensal Escherichia coli isolates. Appl Environ Microbiol, 2004. 70(9): p. 5698-700.
15. Skurnik, D., et al., Characteristics of human intestinal Escherichia coli with changing environments. Environ Microbiol, 2008. 10(8): p. 2132-7.
16. Massot, M., et al., Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years. Microbiology, 2016. 162(4): p. 642-50.
17. Smati, M., et al., Quantitative analysis of commensal Escherichia coli populations reveals hostspecific enterotypes at the intra-species level. MicrobiologyOpen, 2015. 4(4): p. 604-15.
18. Touchon, M., et al., Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet, 2009. 5(1): p. e1000344.
19. Lukjancenko, O., T.M. Wassenaar, and D.W. Ussery, Comparison of 61 sequenced Escherichia coli genomes. Microbiol Ecol, 2010. 60(4): p. 708-20.
20. Kaas, R.S., et al., Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics, 2012. 13: p. 577.
21. McInerney, J.O., A. McNally, and M.J. O'Connell, Why prokaryotes have pangenomes. Nat Microbiol, 2017. 2: p. 17040.
22. Land, M., et al., Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics, 2015. 15(2): p. 141-61.
23. Cook, H. and D.W. Ussery, Sigma factors in a thousand E. coli genomes. Environ Microbiol, 2013. 15(12): p. 3121-9.
24. Russo, T., Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and Infection, 2003. 5(5): p. 449-456.
25. Scharff, R.L., Economic burden from health losses due to foodborne illness in the United States. J Food Prot, 2012. 75(1): p. 123-31.
26. Kotloff, K.L., et al., Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, casecontrol study. Lancet, 2013. 382(9888): p. 209-22.
27. Lanata, C.F., et al., Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One, 2013. 8(9): p. e72788.
28. Flores-Mireles, A.L., et al., Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol, 2015. 13(5): p. 269-84.
29. Kaper, J.B., J.P. Nataro, and H.L. Mobley, Pathogenic Escherichia coli. Nat Rev Microbiol, 2004. 2(2): p. 123-40.
30. Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
31. Martin, G.S., et al., The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med, 2003. 348(16): p. 1546-54.
32. Cohen, J., The immunopathogenesis of sepsis. Nature, 2002. 420(6917): p. 885-91.
33. Kalra, O.P. and A. Raizada, Approach to a patient with urosepsis. J Glob Infect Dis, 2009. 1(1): p. 57-63.
34. Marchetti, G., C. Tincati, and G. Silvestri, Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev, 2013. 26(1): p. 2-18.
35. Wiest, R., M. Lawson, and M. Geuking, Pathological bacterial translocation in liver cirrhosis. J Hepatol, 2014. 60(1): p. 197-209.
36. Samet, A., et al., Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream. Eur J Clin Microbiol Infect Dis, 2013. 32(11): p. 1393-400.
37. Green, S.I., et al., Murine model of chemotherapy-induced extraintestinal pathogenic Escherichia coli translocation. Infect Immun, 2015. 83(8): p. 3243-56.
38. Laupland, K.B., et al., Incidence, risk factors and outcomes of Escherichia coli bloodstream infections in a large Canadian region. Clin Microbiol Infect, 2008. 14(11): p. 1041-7.
39. Bou-Antoun, S., et al., Descriptive epidemiology of Escherichia coli bacteraemia in England, April 2012 to March 2014. Euro Surveill, 2016. 21(35).
40. Jackson, L.A., et al., Burden of community-onset Escherichia coli bacteremia in seniors. J Infect Dis, 2005. 191(9): p. 1523-9.
41. van der Mee-Marquet, N.L., et al., Marked increase in incidence for bloodstream infections due to Escherichia coli, a side effect of previous antibiotic therapy in the elderly. Front Microbiol, 2015. 6: p. 646.
42. Schlackow, I., et al., Increasing incidence of Escherichia coli bacteraemia is driven by an increase in antibiotic-resistant isolates: electronic database study in Oxfordshire 1999-2011. J Antimicrob Chemother, 2012. 67(6): p. 1514-24.
43. Reddy, E.A., A.V. Shaw, and J.A. Crump, Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis, 2010. 10(6): p. 417-32.
44. Deen, J., et al., Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: a systematic review. Lancet Infect Dis, 2012. 12(6): p. 480-487.
45. Southeast Asia Infectious Disease Clinical Research Network, Causes and outcomes of sepsis in southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Health, 2017. 5(2): p. e157-e167.
46. Huson, M.A., et al., Community-acquired bacterial bloodstream infections in HIV-infected patients: a systematic review. Clin Infect Dis, 2014. 58(1): p. 79-92.
47. Vlieghe, E.R., et al., Bloodstream infection among adults in Phnom Penh, Cambodia: key pathogens and resistance patterns. PLoS One, 2013. 8(3): p. e59775.
48. Nga, T.V., et al., The decline of typhoid and the rise of non-typhoid salmonellae and fungal infections in a changing HIV landscape: bloodstream infection trends over 15 years in southern Vietnam. Trans R Soc Trop Med Hyg, 2012. 106(1): p. 26-34.
49. Dat, V.Q., et al., Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis, 2017. 17(1): p. 493.
50. Dale, A.P. and N. Woodford, Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J Infect, 2015. 71(6): p. 615-26.
51. Martin, G.S., Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther, 2012. 10(6): p. 701-6.
52. Lukac, P.J., R.A. Bonomo, and L.K. Logan, Extended-spectrum beta-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis, 2015. 60(9): p. 138997.
53. Nhu, N.T., et al., Emergence of carbapenem-resistant Acinetobacter baumannii as the major cause of ventilator-associated pneumonia in intensive care unit patients at an infectious disease hospital in southern Vietnam. J Med Microbiol, 2014. 63: p. 1386-94.
54. Davies, J. and D. Davies, Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010. 74(3): p. 417-33.
55. Aminov, R.I., A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol, 2010. 1: p. 134.
56. Blair, J.M., et al., Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol, 2015. 13(1): p. 42-51.
57. Gao, R., et al., Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog, 2016. 12(11): p. e1005957.
58. Liu, Y.Y., et al., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016. 16(2): p. 161-8.
59. Tumbarello, M., et al., Bloodstream infections caused by extended-spectrum-beta-lactamaseproducing Escherichia coli: risk factors for inadequate initial antimicrobial therapy. Antimicrob Agents Chemother, 2008. 52(9): p. 3244-52.
60. Rodriguez-Bano, J., et al., Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol, 2010. 48(5): p. 1726-31.
61. Thaden, J.T., et al., Increased costs associated with bloodstream infections caused by multidrug-resistant Gram-negative bacteria are due primarily to patients with hospitalacquired infections. Antimicrob Agents Chemother, 2017. 61(3).
62. Lim, C., et al., Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife, 2016. 5.
63. Hsu, L.Y., et al., Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev, 2017. 30(1): p. 1-22.
64. WHO, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en, 2017.
65. Leibovici, L., et al., The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med, 1998. 244(5): p. 379-86.
66. Timsit, J.F., et al., Treatment of bloodstream infections in ICUs. BMC Infect Dis, 2014. 14: p. 489.
67. Bevan, E.R., A.M. Jones, and P.M. Hawkey, Global epidemiology of CTX-M beta-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother, 2017. 72(8): p. 21452155.
68. Zhao, W.H. and Z.Q. Hu, Epidemiology and genetics of CTX-M extended-spectrum betalactamases in Gram-negative bacteria. Crit Rev Microbiol, 2013. 39(1): p. 79-101.
69. Nordmann, P., et al., The emerging NDM carbapenemases. Trends Microbiol, 2011. 19(12): p. 588-95.
70. Carattoli, A., et al., Identification of plasmids by PCR-based replicon typing. J Microbiol Methods, 2005. 63(3): p. 219-28.
71. Thomas, C.M. and K.M. Nielsen, Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol, 2005. 3(9): p. 711-21.
72. Brauner, A., et al., Characterization of Escherichia coli isolated in blood, urine and faeces from bacteraemic patients and possible spread of infection. APMIS, 1991. 99(4): p. 381-6.
73. Bergeron, C.R., et al., Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg Infect Dis, 2012. 18(3): p. 415-21.
74. Vincent, C., et al., Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis, 2010. 16(1): p. 88-95.
de Been, M., et al., Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet, 2014. 10(12): p. e1004776.
75. Borjesson, S., et al., Limited dissemination of extended-spectrum beta-lactamase- and plasmidencoded AmpC-producing Escherichia coli from food and farm animals, Sweden. Emerg Infect Dis, 2016. 22(4): p. 634-40.
76. Lazarus, B., et al., Do human extraintestinal Escherichia coli infections resistant to expandedspectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis, 2015. 60(3): p. 439-52.
77. Luna, G.M., et al., Extraintestinal Escherichia coli carrying virulence genes in coastal marine sediments. Appl Environ Microbiol, 2010. 76(17): p. 5659-68.
78. Chung The, H., et al., A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Mol Med, 2015. 7(3): p. 227-39.
79. Page, A.J., et al., Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom, 2016. 2(8): p. e000083.
80. Gladman, S. and T. Seemann, Velvet Optimiser https://github.com/tseemann/VelvetOptimiser. 2008.
81. Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res, 2008. 18(5): p. 821-9.
82. Boetzer, M., et al., Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 2011. 27(4): p. 578-9.
83. Boetzer, M. and W. Pirovano, Toward almost closed genomes with GapFiller. Genome Biol, 2012. 13(6): p. R56.
84. Seemann, T., Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014. 30(14): p. 2068-9.
85. Pruitt, K.D., et al., NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res, 2012. 40(Database issue): p. D130-5.
86. Andrews, S., FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 2010.
87. Ewels, P., et al., MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016. 32(19): p. 3047-8.
88. Wood, D.E. and S.L. Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol, 2014. 15(3): p. R46.
89. Parks, D.H., et al., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015. 25(7): p. 1043-55.
90. Page, A.J., et al., Comparison of multi-locus sequence typing software for next generation sequencing data. bioRxiv, 2017.
91. Ochman, H. and R.K. Selander, Standard reference strains of Escherichia coli from natural populations. J Bacteriol, 1984. 157(2): p. 690-3.
92. van Elsas, J.D., et al., Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J, 2011. 5(2): p. 173-83.
93. Clermont, O., S. Bonacorsi, and E. Bingen, Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol, 2000. 66(10): p. 4555-8.
94. Page, A.J., et al., Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics, 2015. 31(22): p. 3691-3.
95. Price, M.N., P.S. Dehal, and A.P. Arkin, FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol, 2009. 26(7): p. 1641-50.
96. Cheng, L., et al., Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol, 2013. 30(5): p. 1224-8.
97. Letunic, I. and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res, 2016. 44(W1): p. W242-5.
98. Hadfield, J., et al., Phandango: an interactive viewer for bacterial population genomics. bioRxiv, 2017.
99. Rasko, D.A., et al., The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol, 2008. 190(20): p. 6881-93.
100. Salipante, S.J., et al., Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res, 2015. 25(1): p. 119-28.
101. Lau, S.H., et al., Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol, 2008. 46(3): p. 1076-80.
102. Holt, K.E., et al., Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Nat1 Acad Sci U S A, 2015. 112(27): p. E3574-81.
103. Harris, S.R., et al., Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis, 2013. 13(2): p. 130-136.
104. Adams-Sapper, S., et al., Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agents Chemother, 2013. 57(1): p. 490-7.
105. Zhao, L., et al., Molecular epidemiology and genetic diversity of fluoroquinolone-resistant Escherichia coli isolates from patients with community-onset infections in 30 Chinese county hospitals. J Clin Microbiol, 2015. 53(3): p. 766-70.
106. Boyd, E.F. and D.L. Hartl, Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol, 1998. 180(5): p. 1159-65.
107. Kohler, C.D. and U. Dobrindt, What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol, 2011. 301(8): p. 642-7.
108. Starcic Erjavec, M. and D. Zgur-Bertok, Virulence potential for extraintestinal infections among commensal Escherichia coli isolated from healthy humans - the Trojan horse within our gut. FEMS Microbiol Lett, 2015. 362(5).
109. Foxman, B., Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med, 2002. 113 Suppl 1A: p. 5S-13S.
110. Wiles, T.J., R.R. Kulesus, and M.A. Mulvey, Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol, 2008. 85(1): p. 11-9.
111. Luthje, P. and A. Brauner, Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol, 2014. 65: p. 337-72.
112. Snyder, J.A., et al., Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun, 2006. 74(2): p. 1387-93.
113. Holden, V.I. and M.A. Bachman, Diverging roles of bacterial siderophores during infection. Metallomics, 2015. 7(6): p. 986-95.
114. Cross, A.S., et al., The importance of the K1 capsule in invasive infections caused by Escherichia coli. J Infect Dis, 1984. 149(2): p. 184-93.
115. Allen, P.M., et al., Contribution of capsular polysaccharide and surface properties to virulence of Escherichia coli K1. Infect Immun, 1987. 55(11): p. 2662-8.
116. Poirel, L., et al., Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob Agents Chemother, 2011. 55(11): p. 5403-7.
117. Livermore, D.M., Current epidemiology and growing resistance of Gram-negative pathogens. Korean J Intern Med, 2012. 27(2): p. 128-42.
118. Carattoli, A., et al., In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother, 2014. 58(7): p. 3895-903.
119. Lan, R., et al., Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect Immun, 2004. 72(9): p. 5080-8.
120. Croxen, M.A., et al., Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev, 2013. 26(4): p. 822-80.
121. Carattoli, A., Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother, 2009. 53(6): p. 2227-38.
122. Hunt, M., et al., ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. bioRxiv, 2017.
123. Kleinheinz, K.A., K.G. Joensen, and M.V. Larsen, Applying the ResFinder and VirulenceFinder web-services for easy identification of acquired antibiotic resistance and E . coli virulence genes in bacteriophage and prophage nucleotide sequences. Bacteriophage, 2014. 4(1): p. e27943.
124. Chen, L., et al., VFDB 2016: hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res, 2016. 44(D1): p. D694-7.
125. Antipov, D., et al., plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics, 2016. 32(22): p. 3380-3387.
126. Bankevich, A., et al., SPAdes: a new genome assembly algorithm and its applications to singlecell sequencing. J Comput Biol, 2012. 19(5): p. 455-77.
127. Wick, R.R., et al., Bandage: interactive visualization of de novo genome assemblies. Bioinformatics, 2015. 31(20): p. 3350-2.
128. CLSI, Standards for antimicrobial susceptibility testing; twenty-fourth informational supplement, CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne, PA, 2014.
129. Drieux, L., et al., Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect, 2008. 14 Suppl 1: p. 90103.
130. Wickham, H., ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 2009.
131. Simms, A.N. and H.L. Mobley, PapX, a P fimbrial operon-encoded inhibitor of motility in uropathogenic Escherichia coli. Infect Immun, 2008. 76(11): p. 4833-41.
132. Raymond, K.N., E.A. Dertz, and S.S. Kim, Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3584-8.
133. Bugarel, M., et al., Virulence gene profiling of enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains: a basis for molecular risk assessment of typical and atypical EPEC strains. BMC Microbiol, 2011. 11: p. 142.
134. Petty, N.K., et al., Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A, 2014. 111(15): p. 5694-9.
135. Liu, Y.-Y., et al., Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016. 16(2): p. 161-168.
136. Tada, T., et al., Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr1 in Vietnam. Int J Infect Dis, 2017.
137. Dona, V., et al., Heterogeneous genetic location of mcr-1 in colistin-resistant Escherichia coli isolated from humans and retail chicken meat in Switzerland: Emergence of mcr-1-carrying IncK2 plasmids. Antimicrob Agents Chemother, 2017.
138. Rutherford, K., et al., Artemis: sequence visualization and annotation. Bioinformatics, 2000. 16(10): p. 944-5.
139. Josenhans, C. and S. Suerbaum, The role of motility as a virulence factor in bacteria. Int J Med Microbiol, 2002. 291(8): p. 605-14.
140. Kao, C.Y., et al., The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur J Clin Microbiol Infect Dis, 2014. 33(12): p. 2157-62.
141. Fischbach, M.A., et al., How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol, 2006. 2(3): p. 132-8.
142. Sakamoto, K., et al., IL-22 controls iron-dependent nutritional immunity against systemic bacterial infections. Sci Immunol, 2017. 2(8).
143. Antao, E.M., L.H. Wieler, and C. Ewers, Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog, 2009. 1(1): p. 22.
144. Lasaro, M.A., et al., F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol, 2009. 75(1): p. 246-51.
145. Cirl, C., et al., Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med, 2008. 14(4): p. 399-406.
146. Garcia, T.A., et al., Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect Immun, 2013. 81(1): p. 99-109.
147. Sugumar, M., et al., Detection of OXA-1 beta-lactamase gene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. PLoS One, 2014. 9(3): p. e91800.
148. Brynildsrud, O., et al., Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol, 2016. 17(1): p. 238.
149. Snitkin, E.S., et al., Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med, 2012. 4(148): p. 148ral 16.
150. Koser, C.U., et al., Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med, 2012. 366(24): p. 2267-75.
151. Stoesser, N., et al., Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting. Antimicrob Agents Chemother, 2014. 58(12): p. 7347-57.
152. Stoesser, N., et al., Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio, 2016. 7(2): p. e02162.
153. Reiss, D.J. and H.L. Mobley, Determination of target sequence bound by PapX, repressor of bacterial motility, in flhD promoter using systematic evolution of ligands by exponential enrichment (SELEX) and high throughput sequencing. J Biol Chem, 2011. 286(52): p. 4472638.
154. Stoesser, N., et al., Extensive within-host diversity in fecally carried extended-spectrum-beta-lactamase-producing Escherichia coli isolates: Implications for transmission analyses. J Clin Microbiol, 2015. 53(7): p. 2122-31.
155. Gorrie, C.L., et al., Gastrointestinal carriage is a major reservoir of K. pneumoniae infection in intensive care patients. Clin Infect Dis, 2017.
156. Martin, R.M., et al., Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae. mSphere, 2016. 1(5).
157. Stecher, B., et al., Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A, 2012. 109(4): p. 1269-74.
158. Ben Zakour, N.L., et al., Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio, 2016. 7(2): p. e00347-16.
159. Alhashash, F., et al., Multidrug-resistant Escherichia coli bacteremia. Emerg Infect Dis, 2013. 19(10): p. 1699-701.
160. Kallonen, T., et al., Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131. Genome Res, 2017.
161. Platel1, J.L., et al., Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob Agents Chemother, 2012. 56(7): p. 3898-904.
162. Chang, J., et al., Prevalence and characteristics of lactose non-fermenting Escherichia coli in urinary isolates. J Infect Chemother, 2014. 20(11): p. 738-40.
163. Xia, S., et al., Dominance of CTX-M-type extended-spectrum beta-lactamase (ESBL)producing Escherichia coli isolated from patients with community-onset and hospital-onset infection in China. PLoS One, 2014. 9(7): p. e100707.
164. Xia, L., et al., Prevalence of ST1 193 clone and IncII/ST16 plasmid in E. coli isolates carrying blaCTX-M-55 gene from urinary tract infections patients in China. Sci Rep, 2017. 7: p. 44866.
165. Chen, S.L., et al., Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med, 2013. 5(184): p. 184ra60.
166. Watts, R.E., et al., Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun, 2012. 80(1): p. 33344.
167. Panigrahi, P., et al., A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature, 2017. 548(7668): p. 407-412.
168. Ferrieres, L., V. Hancock, and P. Klemm, Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains. Microbiology, 2007. 153(Pt 6): p. 1711-9.
169. Abraham, S.N. and Y. Miao, The nature of immune responses to urinary tract infections. Nat Rev Immunol, 2015. 15(10): p. 655-63.
170. Spaulding, C.N., et al., Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017. 546(7659): p. 528-532.
171. Roberts, J.A., et al., Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol, 2004. 171(4): p. 1682-5.
172. Brumbaugh, A.R. and H.L. Mobley, Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine. Expert Rev Vaccines, 2012. 11(6): p. 663-76.

			$\begin{array}{\|c} \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\underset{\sim}{*}} \\ \underset{\sim}{c} \\ \underset{\sim}{\omega} \\ \underset{\sim}{c} \end{array}$																									$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \stackrel{\sim}{\oplus} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \underset{\sim}{n} \end{gathered}\right.$				䍖													（en
								$\left\lvert\, \begin{gathered} \sim \\ \underset{\sim}{\infty} \\ \underset{\sim}{o} \\ \underset{\sim}{o} \\ \stackrel{\#}{\#} \\ \underset{\sim}{\omega} \end{gathered}\right.$						21836_4\#85										Nor																					－
			$\left\|\begin{array}{c} \frac{m}{\omega} \\ \underset{\sim}{n} \\ \frac{\pi}{\pi} \end{array}\right\|$	$\left\|\begin{array}{c} \frac{m}{\sim} \\ N \\ i \underline{2} \\ \frac{2}{\pi} \end{array}\right\|$			$\left\|\begin{array}{c} \frac{m}{9} \\ \stackrel{\rightharpoonup}{s} \\ \frac{1}{\pi} \end{array}\right\|$	$\begin{array}{\|c\|} \hline \frac{m}{n} \\ \perp \\ \perp \\ \frac{1}{\pi} \end{array}$	$\left\|\begin{array}{l} \frac{m}{\pi} \\ \frac{n}{\Delta} \\ \frac{1}{n} \\ \frac{2}{\pi} \end{array}\right\|$					$\left\|\begin{array}{c} \frac{m}{A} \\ \underset{\sim}{n} \\ \sim \\ M \\ n \end{array}\right\|$		$\left\|\begin{array}{c} \frac{m}{N} \\ N \\ N \\ \vdots \\ \frac{2}{7} \\ i \end{array}\right\|$					$\begin{array}{\|c} c \\ \cdots \\ \hline \end{array} \frac{m}{\omega}$			$\begin{gathered} \underset{\sim}{\omega} \\ \stackrel{y}{\omega} \\ \underset{\sim}{v} \\ \vdots \\ \underset{T}{c} \end{gathered}$				$\begin{gathered} \underset{y}{\mathrm{n}} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$							$\begin{gathered} \stackrel{m}{y} \\ \underset{y}{2} \\ 1 \\ \frac{\pi}{7} \end{gathered}$	$\begin{array}{\|l} \hline \frac{m}{\omega} \\ 0 \\ \underset{y}{2} \\ 1 \\ \underset{N}{N} \end{array}$							$\left\|\begin{array}{c} \frac{m}{N} \\ 0 \\ 0 \\ 1 \\ -7 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \frac{m}{N} \\ & 0 \\ & \infty \\ & \underset{\pi}{2} \\ & \underset{T}{2} \end{aligned}\right.$	0
$\begin{array}{\|l\|} \hline \vec{D} \\ \underset{\sim}{U} \\ \frac{U}{n} \\ \sum_{0}^{U} \\ \hline \end{array}$		$\begin{aligned} & \overrightarrow{\mathrm{D}} \\ & \underset{\sim}{\mathbf{N}} \\ & \frac{\mathrm{~N}}{\mathrm{~N}} \\ & \sum_{0}^{U} \\ & \hline \end{aligned}$					$\begin{aligned} & \overrightarrow{\mathrm{D}} \\ & \underset{\sim}{\mathbf{U}} \\ & \frac{\mathrm{~N}}{\mathrm{~N}} \\ & \sum_{\mathrm{U}} \end{aligned}$																$\left\lvert\, \begin{aligned} & \vec{\infty} \\ & \left.\begin{array}{l} \hat{U} \\ \frac{U}{n} \\ \sum_{0} \\ 0 \\ 0 \end{array} \right\rvert\, \end{aligned}\right.$				$\begin{aligned} & \overrightarrow{\mathrm{D}} \\ & \underset{\sim}{U} \\ & \frac{\mathrm{U}}{\mathrm{~N}} \\ & \sum_{0}^{\mathrm{U}} \\ & \hline \end{aligned}$																		（1）
$\stackrel{\rightharpoonup}{心}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\omega} \\ \infty \\ \stackrel{0}{2} \end{array}$	$\left\lvert\, \begin{array}{\|c} v \\ \stackrel{\rightharpoonup}{c} \\ \hline \end{array}\right.$	$\stackrel{\rightharpoonup}{V}$	$\left\lvert\, \begin{array}{\|c} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}} \\ \stackrel{\rightharpoonup}{\omega} \end{array}\right.$		$\stackrel{\sim}{+}$	$\begin{array}{\|l\|} \hline N \\ \tilde{N} \\ \infty \end{array}$	$\underset{\sim}{\omega}$	$\stackrel{\sim}{\omega}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\sim}$	$\begin{aligned} & \hline 9 \\ & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\underset{+}{\infty}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\rightharpoonup}{\stackrel{0}{0}} \\ \stackrel{0}{0} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & N \\ & \underset{\sim}{A} \\ & \mid \end{aligned}\right.$	\bigcirc	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\mid} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\omega}{2} \end{aligned}\right.$	\cdots	\cdots	¢	$\left\lvert\, \begin{aligned} & 9 \\ & \infty \\ & \infty \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \omega \\ & \underset{\sim}{\sim} \\ & \sim \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}\right.$	$\underset{\infty}{\stackrel{\rightharpoonup}{\infty}}$	io웅	$\begin{aligned} & \vec{\omega} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{9}{9}$	$\left\lvert\, \begin{gathered} \omega \\ \sim \\ \sim \end{gathered}\right.$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\mapsto}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \omega \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \infty \\ \infty \\ \infty \end{array}$	W	$\underset{\infty}{\infty}$	N	$\underset{\infty}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	∞	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{0}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	驷		N｜c｜c	ω		¢
$\stackrel{\square}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\perp}$	ω	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\sim}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\perp}$	$\stackrel{+}{+}$	\checkmark	去	$\stackrel{\text { N }}{\sim}$	－	－	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{ }$	$\stackrel{\rightharpoonup}{\sim}$	－	$\stackrel{\text { ® }}{\omega}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	0	\bigcirc	ω	$\stackrel{\text { ¢ }}{ }$	－	$\stackrel{\rightharpoonup}{\bullet}$	\checkmark	$\stackrel{+}{+}$	\sim	N	$\stackrel{\square}{\omega}$	\bigcirc	v	ω	の	\bigcirc	\checkmark	－	\checkmark	－	N	－	\sim	ω	0	宕
\bigcirc	ว		$\left\lvert\, \begin{array}{\|c} \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \end{array}\right.$			○	－	\％	$\begin{aligned} & \underset{\sim}{\omega} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	○			ठ	O	ठ	ठ	○	O		$\begin{array}{\|l\|} \hline \boldsymbol{m} \\ \boldsymbol{\sim} \\ \boldsymbol{\sim} \end{array}$		$\begin{array}{\|c} \mathbf{M} \\ \underset{\sim}{\sim} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \underset{\sim}{\sim} \\ \mathbf{\sim} \\ \hline \end{array}$	$\begin{array}{\|l\|} \underset{\sim}{\sim} \\ \mathbf{\sim} \end{array}$	O	O	$\begin{aligned} & \underset{\sim}{\underset{\sim}{0}} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \mathbf{m} \\ \mathbf{\sim} \\ \hline \end{array}$	O	\％	○	O	O	$\begin{array}{\|c} \underset{\sim}{\infty} \\ \underset{\sim}{0} \end{array}$	$\begin{array}{\|l\|} \hline \boldsymbol{\omega} \\ \underset{\sim}{\sim} \\ \hline \end{array}$	\bigcirc	O		$$	$\begin{array}{\|l\|l\|} \hline \underset{\sim}{\aleph} & \underset{\sim}{\infty} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ \hline \underset{\sim}{\infty} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\sim} \\ \underset{\sim}{0} \end{array}$	岗
\sim	～～	\sim	\sim	\sim	\sim	\sim	\sim		\sim		\sim				\sim					\sim	\sim	\sim			刀	\sim	\sim	刀	\sim	\cdots	us	\sim	\sim	\sim	\sim	\sim	$0 \sim$	\sim	\sim	\sim	n \sim	心～	\sim		N
ग	0	刀	刀	\％	ס	\sim	\sim	\sim	刀	\sim	ס	ס	\sim	\sim	\sim	\sim	\sim	\cdots	刀	刀	刀	刀	刀	万	刀	\sim	\sim	刀	ס	\％	\sim	\sim	\sim	\sim	\sim	ס	刀0	\sim	\sim	ס	ס	ס	ग	刀	［
刀	0	刀	7	刀	ग	0	\sim	\cdots	0	\sim	0	刀	\sim	\sim	\sim	\sim	n		ग	T	0	0	0	ग	刀	\sim	\sim	ग	ग	\％	\sim	\sim	\sim	\sim	\sim	\％	0	\sim	\sim	ס	万万	0	0		－
n	～s	\sim	\％	万	刀	0	\sim	\sim	\sim	\sim	ग	\％			\sim	ग			\％	0	0	\sim	ग	ग	刀	\sim	0	\％	J	0	\sim	\sim	\sim	刀	\％	0	0	\sim	\sim	万	ס $>$	刀心	ग		$\underline{\square}$
刀	$0 \sim$	刀	刀	万	ग	\sim	\sim	\sim	刀	\sim	刀	万	\sim	\sim	\sim	\sim	\sim		万	ग	ग	ग	ग	ग	0	\sim	\sim	ग	0	万	\sim	\sim	n	\sim	\sim	ग	刀	\sim	\sim	ग	刀0	刀	刀		O
\sim	～～	\sim	\cdots	\sim		\sim	\％	\sim	n	\sim	心n	\sim		苛																															
\sim	\sim	万	万	万	万			\sim	刀	0	刀				\sim	\sim	\sim		万	ग	万	J	ग	万	0	\sim	\sim	ग	ग	万	\sim	\sim	\sim	\sim	\sim	刀	\％	\sim	\sim	0	万 0	万	ग	0	学
n	$\sim \sim$	\sim	\sim	\sim				\sim	\sim	\sim	\sim	\cdots		\sim	ग	\sim	\sim	\sim	\sim	\cdots	\sim	\sim	n	\sim	no	心n	\sim		－																
\sim	～～	\sim	\sim	u				\sim	\sim	\sim		\sim			\sim	ग	\sim	\sim	\sim	\sim	n	\sim	$\sim \sim$	\cdots	\sim		［3																		
\sim	\sim	\sim	刀	万				\sim	\sim	\sim	刀	万		\sim	\sim	万	\sim		万	万	ग	\sim	ס	ग	ग	\sim	ग	ग	万	万	\sim	\sim	\sim	ס	\％	0	\sim	\sim	\sim	万	ס	刀心	ग		－
ग	0	\sim	刀	万	0	刀	刀	ग	\％	0	刀	万		\sim	\sim	0	ग	\％	万	万	ग	\sim	\sim	\％	ग	J	0	ग	刀	\％	万	万	\％	ס	ס	\sim	\sim	\％	ס	ס	万 0	刀	0		N
	\sim	ग	刀	万	ग	\sim	－	－	刀	\sim		\％	\sim	\sim	\sim	\sim	\sim	\sim	刀	ग	ग	ग	ग	ग	ग	\sim	－	0	0	\％	\sim	\sim	n	\sim		ס	ס	\sim	\sim	刀	ס	刀	刀		$\widehat{\widehat{3}}$
			0	万												\sim			7	0	0	ग		万			\sim	ग	0	\％			n	\sim		ग	ग		\sim	\％	刀	刀	ס		N

y	y	y	y	S	S	y	S	y	y	y	y	S	78S 3	ヤI	L9T	qems｜eqjad		0عโ\＃t 9 98ıIZ	9t\＆IStISy
y	y	S	S	S	S	y	S	y	S	y	y	S	78S	OI		qems ןeqวə入		8IT\＃才－9と8Iて	
y	y	S	y	S	S	y	S	y	y	y	y	S	$78 \mathrm{~S} \mathrm{\exists}$	6	8t9	qems｜eqjad	ป7N－${ }^{-186 巾 19}$	SIT\＃t 9 －${ }^{\text {dit }}$	IદદISヤTSy
S	1	y	y	S	S	S	S	S	y	S	S	S	ou	†I	OT	qems｜eqวa入	でフ ${ }^{-8 \mathrm{tbtig}}$	78T\＃t 9 988て	TOTIStISY
S	1	y	y	S	S	S	S	S	y	S	S	S	ou	ヤI	0	qems ןeqวə入	โป7 8 86t19	9LI\＃t ${ }^{-988 亡 2}$	ع6EIStISy
S	1	y	S	S	S	S	S	S	S	S	S	S	ou	II	\sim SOZ	qems｜eұวa入	－ 7^{-}LT6t1］	0โโ\＃${ }^{-}$โ¢9「て	92EIStISY
S	S	S	S	S	S	S	S	S	S	S	S	S	ou	5	ILIS	qems｜eұวə入		ャعโ\＃t 9 98ヶて	ISEIStISY
y	y	y	y	S	S	y	S	y	y	y	y	S	78S3	6	8t9	qems ןеұวәл	－ 7 N－598t1日		668ISカTSy
y	y	y	y	S	5	y	S	y	y	y	y	S	78S3	ε	8ε	qems ןeqjad	－7790671	S0T\＃${ }^{-9} 988$ IZ	Iz\＆ISヤISy
y	y	y	y	S	S	y	S	y	y	y	y	S	7853	ε	8ε	qems｜eұวə入	」7＂てと8ャ1日	99T\＃t 9 98ıて	ع8EIStISY
S	S	S	S	S	S	S	S	S	S	S	S	S	ou	†I	［69t	qems｜eqวa入		I8さ\＃t 9 988て	86ETStISY
y	y	y	y	S	S	y	S	y	y	y	y	S	78S3	$\varepsilon \tau$	ع6II	qems ןeqวə入	－ 7 N ${ }^{\text {－} 682 \text { 旧 }}$	LてT\＃T－โを9Iて	عも¢IStISy
y	y	y	y	S	S	y	S	y	y	¢	y	S	78S	ヤI	$\sim 8 \mathrm{btr}$	qems｜eqวə入		ع＜T\＃t ${ }^{-9} 98$ IZ	06\＆ISヤTSy
y	y	y	y	S	S	y	S	y	y	\％	y	S	7853	カI	$\sim 876 \mathrm{t}$	qems｜eұวə入		6IT\＃t 9 9812	SعદIStISy
S	1	S	S	S	S	S	S	S	S	S	S	S	Ou	カI	$\varepsilon 6$	qems｜eqวan	17 ${ }^{-67 \angle \text { 扫 }}$	と0โ\＃t－9と8โて	6IEIStISY

Supplementary table S3. Reference genomes included in this study

No	Reference	Genbank accession
1	Ecoli_O26H11_11368_EHEC	AP010953.1
2	Ecoli_SECEC_SMS35	CP000970.1
3	Escherichia_coli_0127_H6_E2348_69_v1	FM180568.1
4	Escherichia_coli_042_v1	FN554766.1
5	Escherichia_coli_AA86_v1	AFET01000001.1
6	Escherichia_coli_CFT073_v1	AE014075.1
7	Escherichia_coli_D5_v1	CP010145.1
8	Escherichia_coli_ETEC_H10407_v2	FN649414.1
9	Escherichia_coli_IAI1	GCF_000026265_1
10	Escherichia_coli_IAI39	GCF_000026345_1
11	Escherichia_coli_IHE3034_v1	NC_017628.1
12	Escherichia_coli_IMT2125_v1	NZ_HE964769.1
13	Escherichia_coli_JJ1886_v1	CP006784.1
14	Escherichia_coli_NA114_v2	GCF_000214765.2
15	Escherichia_coli_NCTC13351_v1	SAMEA2709031
16	Escherichia_coli_SE11	NC_011419.1
17	Escherichia_coli_SE15_v1	AP009378.1
18	Escherichia_coli_ST131_strain_EC958_v1	HG941718.1
19	Escherichia_coli_UMN026_v2	CU928149.2
20	Escherichia_coli_chi7122_v1	NZ_HE962388.1
21	Escherichia_coli_str_K-12_substr_MG1655_v2	GCF_000005845.2
22	Escherichia_coli_str_K12_substr_W3110_v1	GCF_000010245.2
23	Escherichia_fergusonii_ATCC_35469	GCF_000026225.1
24	Escherichia_albertii_EC0_170	GCF_001549955.1
25	Escherichia_albertii_KF1	GCF_000512125.1
10		

－－әиохе！иұวว	วиохе！มษวう		วร¢！！ueग	0	9929โ－SITIOE	SItS	S8\＃ち－9を8Iて	17 ${ }^{-}$S2971］	87d	0LLO－EO
－－әuохе！иłวว	วบохセ！มฟวว		ә8¢！ハие	0	9929โ－SITLOE	69	LL\＃t ${ }^{\text {－}}$ 9と8して	」7N－¢ ${ }^{\text {－}}$	8てd	0LLO－EO
－－әuохе！壮	วนохセ！入ねวう		poolq	0	9929โ－SITLOE	と6II	8S\＃ち－9と8して	9929โ－SILIOE	8てd	0LLO－EO
－－məuəd！${ }^{\text {mim }}$	шəuәd！w｜		әรฺ！ハи土	0	T60ヤโ－SITILO	Z09	て6\＃ち－9と8して	$\mathrm{m}^{-} \mathrm{l}^{-}$¢ธとも1ヨ	Lてd	ヤTLO－EO
－－məuəd！${ }^{\text {min }}$	məuәd！w｜		poolq	0	T60ヤT－SITILO	Z09	68\＃ち－9を8して	โ60カI－SITILO	Lてd	ヤTLO－EO
－－məuəd！u｜	məuวd！w｜	ә！р оұ әшоч рәвлечวธ！ด	әรฺ！儿ムе	0	80SLT－STOTIE	ع6IT	て9\＃ち－9と8して		97d	6690－E0
－－məuəd！u｜	məuวd！w｜	ә！р оұ әшоч рәвıечวs！ด	әรฺ！儿גе	0	80¢	ャع	ヤS\＃ち－9と8して	」プ と9てもاコ	9てd	6690－E0
－－məuəd！u｜	məuวd！u｜	ә！р оұ әшоч рә8лечวs！0	poola	0	80SLT－STOTIE	\＆6II		80SLT－STOLTE	97d	6690－E0

Supplementary table S5. Pairwise SNPs distance between isolates taken from the same patients

Taxon1_name	Taxon2_name	SNPs	ID	taxon1_st	taxon2_st	group	sameST
141214_16448	El191_LF	67679	71.11229	1722	10	intra-patient	no
131114_64463	El32_NLF	3	99.99873	1193	1193	intra-patient	yes
141114_14352	El36 LF	36597	84.27045	224	167	intra-patient	no
101214_16015	El138_LF	64020	72.06331	38	515	intra-patient	no
101214_16015	El138_NLF	64582	72.12544	38	4381	intra-patient	no
El3185_Ecoli	210815-15032	0	100	448	448	intra-patient	yes
El3185_Ecoli	El3127_LF	0	100	448	448	intra-patient	yes
El4381_NLF	El4341_BhaeNLF	65958	71.98427	648	1193	intra-patient	no
El4381_NLF	061115-28103	65928	71.99154	648	1193	intra-patient	no
El4381_NLF	El4381_LF	58231	75.32428	648	69	intra-patient	no
100115-14032	EI298_NLF	2	99.99915	648	648	intra-patient	yes
100115-14032	El298_LF	57918	75.32769	648	38	intra-patient	no
210815-15032	EI3127_LF	0	100	448	448	intra-patient	yes
311015-17508	El4263_LF	70080	69.80117	1193	34	intra-patient	no
311015-17508	El4263_NLF	1	99.99958	1193	1193	intra-patient	yes
El4341_BhaeNLF	061115-28103	0	100	1193	1193	intra-patient	yes
El4341_BhaeNLF	El4381_LF	73711	68.76441	1193	69	intra-patient	no
El1537_BhaeNLF	El1564_LF	76212	67.29127	6698	43	intra-patient	no
El1537_BhaeNLF	El1537_LF	32748	85.95176	6698	131	intra-patient	no
El1537_BhaeNLF	El1605_NLF	0	100	6698	6698	intra-patient	yes
El1537_BhaeNLF	El1605_BhaeLF	32749	85.95139	6698	131	intra-patient	no
El1537_BhaeNLF	El1761_NLF	2	99.99914	6698	6698	intra-patient	yes
El1537_BhaeNLF	El1864_LF	32749	85.95133	6698	131	intra-patient	no
El1537_BhaeNLF	El1761_LF2	32748	85.95182	6698	131	intra-patient	no
El1537_BhaeNLF	010615-16405	32749	85.95133	6698	131	intra-patient	no
El1537_BhaeNLF	El1564_Bhae	32748	85.95176	6698	131	intra-patient	no
El1537_BhaeNLF	El1705_LF2	32748	85.95182	6698	131	intra-patient	no
El138_LF	El138_NLF	40589	82.40349	515	4381	intra-patient	no
El1564_LF	El1537_LF	75022	68.00358	43	131	intra-patient	no
El1564_LF	El1605_NLF	76131	67.312	43	6698	intra-patient	no
El1564_LF	El1605_BhaeLF	75022	68.00358	43	131	intra-patient	no
El1564_LF	El1761_NLF	76111	67.30431	43	6698	intra-patient	no
El1564_LF	El1864_LF	75021	68.00401	43	131	intra-patient	no
El1564_LF	El1761_LF2	75023	68.00316	43	131	intra-patient	no
El1564_LF	010615-16405	75022	68.00358	43	131	intra-patient	no
El1564_LF	El1564_Bhae	75023	68.00316	43	131	intra-patient	no
El1564_LF	El1705_LF2	75022	68.00358	43	131	intra-patient	no
010815-34451	El2793_NLF	65168	71.96436	NA	354	intra-patient	no
010815-34451	El2793_LF2	74971	67.84238	NA	167	intra-patient	no
061115-28103	El4381_LF	73701	68.76256	1193	69	intra-patient	no
201114-14705	El103_NLF	4	99.99831	5150	5150	intra-patient	yes
250315-63665	El950_LF	58833	74.89085	69	354	intra-patient	no
El2619_LF4	El2619_LF2	61995	73.5816	23	38	intra-patient	no
El2619_LF4	210715-16270	61995	73.5816	23	38	intra-patient	no
El534_LF	310115-63575	1	99.99958	3052	3052	intra-patient	yes
El1537_LF	El1605_NLF	32670	85.9792	131	6698	intra-patient	no
El1537_LF	El1605_BhaeLF	3	99.99873	131	131	intra-patient	yes
El1537_LF	El1761_NLF	32648	85.98167	131	6698	intra-patient	no
El1537_LF	El1864_LF	1	99.99958	131	131	intra-patient	yes

El1537_LF	El1761_LF2	2	99.99915	131	131	intra-patient	yes
El1537_LF	010615-16405	3	99.99873	131	131	intra-patient	yes
El1537_LF	El1564_Bhae	2	99.99915	131	131	intra-patient	yes
El1537_LF	El1705_LF2	0	100	131	131	intra-patient	yes
El1888_LF2	El1787_NLF	64670	72.23713	93	130	intra-patient	no
El1888_LF2	El1749_NLF	64670	72.23713	93	130	intra-patient	no
El1888_LF2	El1787_LF2	66560	71.61584	93	648	intra-patient	no
El1888_LF2	El1749_LF2	66560	71.6179	93	648	intra-patient	no
El1888_LF2	El1830_LF2	1	99.99957	93	93	intra-patient	yes
El1888_LF2	260515-15968	66561	71.61747	93	648	intra-patient	no
050915-16464	El3449_NLF	72878	68.98122	73	38	intra-patient	no
050915-16464	El3449_LF1	75451	67.81375	73	88	intra-patient	no
050915-16464	El3399_NLF	33547	85.67206	73	131	intra-patient	no
050915-16464	El3449_LF2	65796	71.99348	73	1722	intra-patient	no
050915-16464	El3399_LF	75587	67.74514	73	155	intra-patient	no
El298_NLF	El298_LF	57896	75.3316	648	38	intra-patient	no
El2619_LF2	210715-16270	0	100	38	38	intra-patient	yes
El3892_LF	061015-15322	65654	72.03595	648	131	intra-patient	no
El3892_LF	El3892_Bhae	1	99.99958	648	648	intra-patient	yes
El3892_LF	El3892_LF1	66451	71.65809	648	44	intra-patient	no
080215-16203	El644_LF	34393	85.20489	410	5208	intra-patient	no
El544_NLF	El544_LF	74625	67.88748	131	31	intra-patient	no
El544_NLF	010215-15680	2	99.99915	131	131	intra-patient	yes
El1787_NLF	El1749_NLF	0	100	130	130	intra-patient	yes
El1787_NLF	El1787_LF2	58363	75.08814	130	648	intra-patient	no
El1787_NLF	El1749_LF2	58362	75.09038	130	648	intra-patient	no
El1787_NLF	El1830_LF2	64656	72.23694	130	93	intra-patient	no
El1787_NLF	260515-15968	58363	75.08995	130	648	intra-patient	no
160815-14563	El3097_LF2	74848	68.20431	126	4040	intra-patient	no
160815-14563	El3097_LF4	74848	68.20431	126	4040	intra-patient	no
160815-14563	El3097_LF1	76218	67.45949	126	58	intra-patient	no
061015-15322	El3892_Bhae	65643	72.03444	131	648	intra-patient	no
061015-15322	El3892_LF1	74745	68.01231	131	44	intra-patient	no
El1749_NLF	El1787_LF2	58363	75.08814	130	648	intra-patient	no
El1749_NLF	El1749_LF2	58362	75.09038	130	648	intra-patient	no
El1749_NLF	El1830_LF2	64656	72.23694	130	93	intra-patient	no
El1749_NLF	260515-15968	58363	75.08995	130	648	intra-patient	no
El3892_Bhae	El3892_LF1	66433	71.65949	648	44	intra-patient	no
El544_LF	010215-15680	74585	67.88216	31	131	intra-patient	no
El1787_LF2	El1749_LF2	2	99.99915	648	648	intra-patient	yes
El1787_LF2	El1830_LF2	66570	71.60589	648	93	intra-patient	no
El1787_LF2	260515-15968	3	99.99873	648	648	intra-patient	yes
El3097_LF2	El3097_LF4	0	100	4040	4040	intra-patient	yes
El3097_LF2	El3097_LF1	64433	72.55437	4040	58	intra-patient	no
240815-15273	El3217_LF2	63636	72.93928	69	58	intra-patient	no
240815-15273	El3217_LF3	63654	72.93714	69	58	intra-patient	no
El815_LF	160315-63225	0	100	394	394	intra-patient	yes
El1749_LF2	El1830_LF2	66570	71.60794	648	93	intra-patient	no
El1749_LF2	260515-15968	1	99.99958	648	648	intra-patient	yes
El1830_LF2	260515-15968	66571	71.60752	93	648	intra-patient	no
El2793_NLF	El2793_LF2	68040	70.6385	354	167	intra-patient	no
El1808_NLF	El1808_LF2	33725	85.63035	1193	131	intra-patient	no

El1808_NLF	300515-16242	33778	85.62491	1193	131	intra-patient	no
El3217_LF2	El3217_LF3	0	100	58	58	intra-patient	yes
El4263_LF	El4263_NLF	70083	69.80313	34	1193	intra-patient	no
El1605_NLF	El1605_BhaeLF	32671	85.97883	6698	131	intra-patient	no
El1605_NLF	El1761_NLF	2	99.99914	6698	6698	intra-patient	yes
El1605_NLF	El1864_LF	32671	85.97877	6698	131	intra-patient	no
El1605_NLF	El1761_LF2	32670	85.97926	6698	131	intra-patient	no
El1605_NLF	010615-16405	32671	85.97877	6698	131	intra-patient	no
El1605_NLF	El1564_Bhae	32670	85.9792	6698	131	intra-patient	no
El1605_NLF	El1705_LF2	32670	85.97926	6698	131	intra-patient	no
El3449_NLF	El3449_LF1	65163	72.28746	38	88	intra-patient	no
El3449_NLF	El3399_NLF	74236	68.33489	38	131	intra-patient	no
El3449_NLF	El3449_LF2	58710	75.06678	38	1722	intra-patient	no
El3449_NLF	El3399_LF	64892	72.37768	38	155	intra-patient	no
301115-16266	El4625_NLF	71486	69.65699	1193	69	intra-patient	no
301115-16266	El4625_LF	72945	68.99269	1193	5415	intra-patient	no
El1808_LF2	300515-16242	40	99.98298	131	131	intra-patient	yes
El1605_BhaeLF	El1761_NLF	32649	85.9813	131	6698	intra-patient	no
El1605_BhaeLF	El1864_LF	2	99.99915	131	131	intra-patient	yes
El1605_BhaeLF	El1761_LF2	1	99.99958	131	131	intra-patient	yes
El1605_BhaeLF	010615-16405	0	100	131	131	intra-patient	yes
El1605_BhaeLF	El1564_Bhae	1	99.99958	131	131	intra-patient	yes
El1605_BhaeLF	El1705_LF2	3	99.99873	131	131	intra-patient	yes
El3449_LF1	El3399_NLF	74810	68.04685	88	131	intra-patient	no
El3449_LF1	El3449_LF2	67711	71.1971	88	1722	intra-patient	no
El3449_LF1	El3399_LF	24842	89.41962	88	155	intra-patient	no
210515-15556	El1676_NLF	40	99.98306	1193	1193	intra-patient	yes
El3399_NLF	El3449_LF2	65978	71.87051	131	1722	intra-patient	no
El3399_NLF	El3399_LF	75429	67.77048	131	155	intra-patient	no
El772_LF2	100315-17879	4	99.9983	354	354	intra-patient	yes
EI772_LF2	EI746_LF1	65753	71.83543	354	617	intra-patient	no
El1761_NLF	El1864_LF	32649	85.98124	6698	131	intra-patient	no
El1761_NLF	El1761_LF2	32648	85.98173	6698	131	intra-patient	no
El1761_NLF	010615-16405	32649	85.98124	6698	131	intra-patient	no
El1761_NLF	El1564_Bhae	32648	85.98167	6698	131	intra-patient	no
El1761_NLF	El1705_LF2	32648	85.98173	6698	131	intra-patient	no
El3449_LF2	El3399_LF	67636	71.22044	1722	155	intra-patient	no
100315-17879	EI746_LF1	65753	71.83604	354	617	intra-patient	no
El4625_NLF	El4625_LF	62371	73.47687	69	5415	intra-patient	no
El1864_LF	El1761_LF2	3	99.99873	131	131	intra-patient	yes
El1864_LF	010615-16405	2	99.99915	131	131	intra-patient	yes
El1864_LF	El1564_Bhae	3	99.99873	131	131	intra-patient	yes
El1864_LF	El1705_LF2	1	99.99958	131	131	intra-patient	yes
El1761_LF2	010615-16405	1	99.99958	131	131	intra-patient	yes
El1761_LF2	El1564_Bhae	0	100	131	131	intra-patient	yes
El1761_LF2	El1705_LF2	2	99.99915	131	131	intra-patient	yes
290915-14739	El3807_LF	43452	81.55429	69	4306	intra-patient	no
010615-16405	El1564_Bhae	1	99.99958	131	131	intra-patient	yes
010615-16405	El1705_LF2	3	99.99873	131	131	intra-patient	yes
El3097_LF4	El3097_LF1	64431	72.55417	4040	58	intra-patient	no
El1564_Bhae	El1705_LF2	2	99.99915	131	131	intra-patient	yes
071115-14091	El4355_LF_m	0	100	602	602	intra-patient	yes

[^0]:

