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Abstract

The Intra-Tumour Heterogeneity Landscape of Human Cancers

Stefan Christiaan Dentro

Tumours accumulate many somatic mutations in their lifetime. Some of these mutations,
drivers, convey a selective advantage and can induce clonal expansions. Incomplete clonal
expansions give rise to intra-tumour heterogeneity. Somatic mutations can be measured
through massively parallel sequencing, where mutations that are supporting incomplete
expansions will appear as subclonal. These mutations can be used as a marker of the
existence of the expansion and allow for a window into the clonal and subclonal architecture
of the tumour at diagnosis.

During my Ph.D. I have developed computational methods to infer intra-tumour hetero-
geneity from massively parallel sequencing data and applied these to the 2,778 tumour whole
genome sequences in the International Cancer Genome Consortium Pan-Cancer Analysis of
Whole Genomes initiative to paint the pan-cancer landscape of intra-tumour heterogeneity.

I will first introduce the methods; a method to call somatic copy number alterations
(Battenberg) and a method to infer subclones from single nucleotide variants (DPClust). Both
are extensively validated on simulated and on real data, and I describe a rigorous quality
control procedure. The methods are then applied to a single sample to showcase what can
be learned about the life history of a cancer, before introducing additional computational
methods for a pan-cancer study of heterogeneity. Finally, I describe the findings.

I find that nearly all cancers, for which there is sufficient power, contain at least one
subclone (96.7% of 1,801 primary tumours). The subclones contain driver mutations that are
under positive selection, and known cancer genes contain subclonal driver mutations in low
proportions. 9.5% of tumours contain only subclonal drivers that are clinically actionable,
suggesting that heterogeneity could inform treatment choices. Finally, the analysis reveals
that activity of smoking and UV-light associated mutational signatures goes down as the
tumour evolves, while activity of the APOBEC associated signatures goes up.





Acknowledgements

I would like to thank my supervisors, Peter Van Loo, David Wedge and David Adams. I’m
very grateful to have had the opportunity to work with you and on this very exciting project!
Thank you very much for your guidance, thoughts, ideas and your patience. It has been
an enormous pleasure to learn from you and to work with you! Thank you for the great
discussions and for continuously pushing me to be a better scientist in a friendly and positive
environment.

During the PCAWG project I’ve been in the fortunate position to closely collaborate
with members of the Van Loo lab. Thank you Maxime Tarabichi, Kerstin Haase, Clem Jolly,
Jonas Demeulemeester and Matt Fittall for the fantastic collaboration and the many in-depth
discussions on tumour evolution and heterogeneity. I’d like to also thank the Van Loo lab for
being my ’home’ for the last few years. Annelien, Clem, Jonas, Kerstin, Lilly, Matt, Maxime
and Peter: it’s been an enormous pleasure!

Most of the work in this thesis was done as part of the international PCAWG collaboration,
I’d like to thank everyone of the PCAWG collaborators and in particular Quaid Morris, Moritz
Gerstung, Jeff Wintersinger, Ignaty Leshchiner, Amit Deshwar, Yulia Rubanova and Peter
Campbell.

I would like to extend my thanks to Jason J. Pitt for the fruitful collaboration on the
West-African breast cancer study and to members of the Adams lab, the Wedge lab and of
the Cancer Genome Project for stimulating discussions and continuous helpful feedback.

This thesis could not have happened without the love and support from my parents and
sister. Thank you for supporting me and believing in me!

Finally, I would like to thank the Wellcome Trust for generously funding this Ph.D.





Preface

During my Ph.D. I have been in the very fortunate position to heavily collaborate with
colleagues close by and far away. Nearly all of the work reported in this thesis was performed
as part of an international collaboration project to jointly analyse the cancer whole genome
sequencing samples that are part of the International Cancer Genome Consortium (ICGC) The
Pan-Cancer Analysis of Whole Genomes (PCAWG) initiative. As this data set is referenced
throughout this thesis I have included below a high level description of the project and data
set.

Nearly all of the work reported in this thesis is performed in collaboration with, or
building on top of the work done by others. Throughout this thesis I therefore systematically
refer to work that is solely to my credit with "I", and work that was done by others (with my
involvement) as "we". There is also the occasional reference to "a collaborator", where work
was done that I had no involvement with.

To help the story line I have spread the introduction across Chapters 1 and 2. Chapter 1
contains a brief review of the relevant literature, but descriptions of algorithms which were
already in advanced development when I started are described in Chapter 2. I have worked
on and with these algorithms throughout my Ph.D. and have made numerous improvements
and adjustments (of which improvements on computational resource requirements are not
reported as they are not of direct scientific interest). I felt it would make this thesis more
easily readable when the algorithms and updates are described in one chapter.

This setup was chosen to paint a comprehensive story that can hopefully be understood
from this thesis alone.

The ICGC Pan-Cancer Analysis of Whole Genomes initiative
The International Cancer Genome Consortium (ICGC) was created to coordinate cancer

genome sequencing projects spanning 50 different types of cancer, with the aim to sequence
over 25,000 cancer genomes (ICGC Consortium, 2010). ICGC is organised as a series of
projects based in countries spread all over the world that focus on analysis of a single cancer
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type. Over 17,000 cancers have now been sequenced, of which the majority through whole
exome sequencing.

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project was launched to compre-
hensively characterise those samples for which whole genome sequencing (WGS) is available
as a single data set (Campbell et al., 2017). The advantage of focussing on samples for
which WGS is available is that the full genome can be interrogated, including the full array
of single nucleotide variants (SNV), indels (short insertions and deletions) and structural
variants (SVs).

The project consists of 16 working groups with each their own distinct theme. I have
been a member of the working group that focusses on tumour evolution and heterogeneity,
which is a collaboration of about 60 scientists representing 12 different laboratories.

The tumours that are part of ICGC PCAWG had to meet a series of criteria to be included:
a minimal set of clinical annotations should be available, both tumour and normal samples
have to be paired-end sequenced from an Illumina machine to a coverage of at least 30x and
25x respectively (Campbell et al., 2017). The data set consists of primarily treatment-naive
primary tumours and nearly all matched normals are generated from blood samples.

Data from 2,834 donors was selected to be included in ICGC PCAWG, of which data from
2,658 donors passed quality control procedures (Whalley et al., 2017). The analysed data set
consists of 2,778 tumours, of which 2,605 are primary tumours and 173 from a metastasis or
relapse case, and spreads 39 histologically distinct types of cancer. Each sequencing sample
was processed using a standardised set of primary analysis pipelines, that includes alignment
of the sequencing reads and variant calling and filtering from pipelines provided by the
Sanger, Broad and EMBL/DKFZ (Yung et al., 2017). These pipelines were extended by
one additional SNV and one additional indel caller to further increase the reliable detection
of low allele frequency variants (Campbell et al., 2017). Clinical data was systematically
collected and standardised (Campbell et al., 2017).

Output from the three primary variant calling pipelines was combined into a high quality
set of somatic consensus SNVs (Campbell et al., 2017), indels (Campbell et al., 2017), SVs
(Campbell et al., 2017) and copy number alterations (CNAs) (Dentro et al., 2017, manuscript
in preparation), of which the latter is described in this thesis. The optimal strategy to find
consensus SNVs and indels was found by first running 19 different variant callers across a
selected set of 64 tumours. 250.000 calls were selected for validation through deep targeted
capture sequencing such that every combination of variant callers is represented and were
stratified by allele frequency, after which consensus strategy that maximises precision and
recall was then developed to generate the final PCAWG calls (Campbell et al., 2017).
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These steps have created the largest set of whole genome cancer sequences to date,
spreading a broad range of cancer types. The data set is uniformly processed and the variant
calling pipelines have been extensively validated. It therefore provides a unique opportunity
for a high quality, in-depth study of tumour heterogeneity.
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Chapter 1

Introduction

1.1 Cancer

Cancer is a family of over 100 diseases and it can originate from most cell types and in
nearly all organs (Stratton et al., 2009). In 2012 cancer was responsible for 8.2 million deaths
worldwide, while 14.1 million new cases were diagnosed (Ferlay et al., 2015). In the UK, it
is estimated that 1 in 2 people will be diagnosed with the disease at some point during their
lives (Ahmad et al., 2015). Decades of research have made tangible improvements to patient
outcome, in large part, due to the introduction of effective treatment strategies (Narod et al.,
2015). For example, breast and prostate cancer incidence rates in the UK have tripled from
1972 to 2013, but the number of mortalities attributed to these cancer types has decreased
over the same time frame 1.

1.2 Hallmarks

The body of accumulated research can be summarised into six hallmarks (Hanahan and
Weinberg, 2011), of which a brief summary is provided here.

(1) Tumours acquire and maintain chronic proliferation by activating signalling path-
ways. Somatic mutations that activate genes involved in growth-promoting and controlling
pathways deregulate growth signalling and allow cells to take control over its own des-
tiny. Alternatively, somatic mutations can disrupt negative-feedback mechanisms of cell
proliferation.

(2) Tumours can become adverse to growth-suppressors, either through losses of gene
copies or through deactivating somatic mutations (Klein, 1987). Tumour suppressor genes

1https://visual.ons.gov.uk/40-years-of-cancer
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as TP53 and RB1 play a pivotal role in pathways that control the decisions whether cells
proliferate, or activate senescence (a state where viable cells no longer proliferate) and
apoptosis (programmed cell death).

(3) Apoptosis is thought to be a protective measure against cancer. Tumour cells avoid
apoptosis to stay in a proliferative state, which allows a tumour to continue to grow. The
most common circumvention strategy is by deactivating TP53 that acts as a sensor and can
trigger apoptosis. Alternatively, apoptosis can be circumvented by altering the expression of
its regulators.

(4) Tumour cells acquire the ability to infinitely replicate. Cells escape senescence and
cell death, which allows tumours to grow to large sizes. The caps that protect the end of
chromosomes (telomeres) are thought to play an important role in this process. The length
of a cells’ telomeres corresponds to how many generations of offspring it can produce and
erode over time, triggering cell death when they have sufficiently shortened. Tumour cells
circumvent this process by extending telomeric DNA to prohibit the consequences of their
erosion. Germline variants and somatic mutations are implicated in telomere lengthening
(Robles-Espinoza et al., 2014).

(5) As the tumour grows bigger, it becomes more difficult to provide cells with the
required oxygen and nutrients. To prevent cells from starvation tumours can acquire new
blood vessels (angiogenesis) that allow for transportation of these requirements and for
removal of waste.

(6) Tumour cells acquire the ability to invade and metastasise to distant sites. Evidence
exists that the process of metastatic dissemination can occur late during tumour evolution
(late dissemination) (Yachida et al., 2010; Yates et al., 2017). But there is also evidence to
suggest that metastatic ability can arise early in tumour development (early dissemination)
(Coghlin and Murray, 2010).

1.3 Genetics

By observing the brief description of cancer hallmarks above it becomes apparent that
somatic mutation and genome instability play key roles in tumourigenesis.

1.3.1 Early observations suggest a role for the genome

Work in the late 19th and early 20th century reported on chromosomal alterations in cells of
various human cancers (Boveri, 2008; von Hansemann, 1890). Von Hansemann theorised
that the abnormal chromosome counts he observed were due to cellular defects and that
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the alterations could lead to the development of cancer (von Hansemann, 1890). Theodore
Boveri revived the idea in 1914 when he applied observations made in sea urchins to cancers.
He hypothesised that tumours may originate from a single cell, that tumour cell populations
are genetically unstable and that acquired aneuploidy is passed on to progenitor cells (Boveri,
2008). 16 years later Winge (1930) built on these theories and proposed that consecutive
chromosomal alterations could lead to disease progression.

1.3.2 Confirmation of a role in cancer

But it was only after DNA was identified as the molecule that conveys inheritance (Avery
et al., 1944; Franklin and Gosling, 1953; Watson and Crick, 1953; Wilkins et al., 1953)
that true confirmation came that genetics plays a key role in cancer development: with the
discovery of the Philadelphia chromosome (Nowell and Hungerford, 1960). The Philadelphia
chromosome is a translocation between chromosomes 9 and 22 in chronic myelogenous
leukemia that creates a fusion-gene between BCR and ABL1 (Rowley, 1973). Its finding lead
to more chromosome count abnormalities being reported in patients with advanced disease
(Sandberg, 1966).

But in the early 1980s it was thought more likely that cancer development was caused
by transposon activity, then by changes in the genetic sequence of genes (Cairns, 1981). It
wasn’t until 1982 that the first single sequence change was shown to be the activating event
of an oncogene when Reddy et al. (1982) showed that a single G>T substitution in HRAS is
enough to activate its oncogenic potential.

1.4 Evolution

Confirmation of a role for alterations in the genome lead to theories about how many
mutations would be required for a tumour to arise.

1.4.1 Estimates of the number of mutations to form a cancer

In 1953 Nordling combined observations reported in several papers from the 1940s into a
theory of a cancer-inducing mechanism. He reasoned that if cells were left a sufficiently
long time, a genetic mutation would occur and if the cell with a mutation produces daughter
cells, then it could acquire more mutations. If the mutation speeds up propagation of a cell,
then this process would occur more quickly. By examining the age distribution of cancer
patients from various countries he observed that cancer mortality increased "by a certain
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power (to the sixth) of age" and thus postulated that six mutations were required for tumour
development (Nordling, 1953).

In 1971 Knudson compared the ages of patients with sporadic and familial retinoblasoma
and observed that patients with the familial predisposition were much younger (Knudson,
1971). He speculated that familial retinoblastoma patients were already born with one muta-
tion and therefore required just a single mutation, while patients without the predisposition
required two, hence the difference in ages between the groups. The gene in question was
later shown to be RB1 (Murphree and Benedict, 1984).

1.4.2 An integrated theory of tumour evolution

For some time, the thought prevailed that tumour cell populations were underpinned by one
or multiple stem cells that drive the growth of each population (stemlines) (Roberts and
Trevan, 1960). But mounting evidence suggested that tumours could arise from a single cell
due to the similarity in karyotypes observed between cells of the same tumour (Ford and
Clarke, 1963; Hauschka, 1961; Levan and Biesele, 1958; Makino, 1957) and that tumours
progress as tumour-cell populations acquire additional mutations in a process termed clonal
evolution (Adam et al., 1970; de Grouchy et al., 1966; Foulds, 1957). Furthermore, it was
observed that neoplasms could give rise to malignant growths (Morson, 1974).

It was Peter Nowell (1976) who combined all these observations into a single theory of
tumour evolution. He proposed the following model: tumour initiation occurs when a normal
cell acquires a selective growth advantage, which allows its offspring to become neoplastic.
The cells proliferate and due to ongoing chromosomal and genetic instability they generate
mutant daughter cells. Nearly all the introduced mutations are eliminated due to a lack of
selective advantage, but a cell that acquires a mutation that does convey a selective advantage
becomes the precursor for a new subpopulation.

1.5 Drivers

Nowell suggested that tumours evolve through a process of clonal expansion, where ex-
pansions are initiated by the selective advantage gained through a driver mutation and that
process could eventually lead to metastasis and resistance to therapy (Nowell, 1976). Cairns
(1975) suggested that these driver mutations may be introduced as errors through cell renewal
programmes, solidifying that the process of carcinogenisis is an internal process.
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1.5.1 Oncogenes

By the mid-1980s there was evidence to support Nowell’s theory as 40 oncogenes (genes for
which their oncogenenic function is activated through a single mutation, i.e. are dominant)
had been identified (Weinberg, 1985) and there was evidence that oncogenes could be
activated through point mutations, amplification or deletions and translocations (Nowell,
1986). Meanwhile, Pegoraro et al. (1984) suggested that the successive activation of two
oncogenes could explain the aggressive clinical behaviour of ALL cases (first a t(14,18)
translocation (Tsujimoto et al., 1984), followed by a t(8,14) translocation (Dalla-Favera et al.,
1982) that fuse both BCL2 and MYC to the immune heavy IGH region on chromosome 14),
underpinning the theory of a decade earlier.

1.5.2 Tumour suppressor genes

The existence of tumour suppressor genes (TSGs), which require both copies to be deactivated
(i.e. are recessive), was confirmed shortly after. RB1 was the first to be identified (Morson,
1974). A number of other genomic regions were already suspected (Klein, 1987) and were
subsequently shown to contain TSGs, partly due to families with a germline predisposition
(Knudson, 1993), and included some of the most frequently mutated cancer genes: VHL
(Seizinger et al., 1988; Tory et al., 1989), TP53 (Nigro et al., 1989), WT1 (Haber et al., 1990),
APC (Nishisho et al., 1991) and BRCA2 (Wooster et al., 1995, 1994), among others.

1.5.3 Drivers and passenger mutations

We now know that tumours can acquire 1000s of mutations during their life time (Pleasance
et al., 2009). Not all of these mutations convey a selective advantage or disadvantage to
the cell in which they occur, which leads to the notion of driver and passenger mutations
(Stratton et al., 2009). Tumours often contain many more passenger mutations than drivers
and the passengers are thought not to contribute to cancer development (a thought that is not
entirely uncontested (Supek et al., 2014)), however, they have provided useful to study the
process of tumour evolution, as will be explained further below.

1.6 High throughput technology

The advent of high throughput technology to perform genome wide screening for genomic
alterations has proven to be a rich medium on which to measure somatic alterations. Somatic
alterations can be found by performing the same experiment on a tumour sample and a normal
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sample from the same donor. The normal sample is often taken from a blood sample, but
sometimes from adjacent tissue. By calling events in the matched normal against a reference
sample one obtains those that constitute the ’germline’ of the donor, which can then be
subtracted from those found in the tumour to obtain somatic events (Pleasance et al., 2009).
All the technology briefly described below operate on pooled DNA from many individual
cells. Which means the somatic mutations measured must be carried by a large proportion
(but not all, as will be covered later) of the cells that are prepared for the high throughput
procedure. Mutations that are available at the level of a single cell (or shared between small
proportions of cells) are not measured.

1.6.1 Array based technology

The first high throughput technology was comparative genomic hybridization (CGH) (Kallion-
iemi et al., 1992), for which the array development could be readily used to detect copy
number alterations down to 100kb in cancers (Pinkel and Albertson, 2005). Soon afterwards
SNP arrays arrived on the scene which had the advantage that they could detect regions of
loss of heterozygosity (LOH) (Pfeifer et al., 2007; Schaaf et al., 2011). The CGH platform
could only detect the total amount of DNA available (logR), SNP arrays also include the
b-allele frequency (BAF) measure that accounts the availability of the two alleles at the SNP
location. Heterozygous SNPs could therefore be used to quantify allele specific copy number.

1.6.2 Sequencing technology

But it wasn’t until massively parallel sequencing technology arrived that the full compendium
of somatic mutations could be measured (Margulies et al., 2005; Shendure et al., 2005).
As was demonstrated by Pleasance et al. (2009), and is detailed further below, sequencing
of exomes first provided access to all protein coding regions of the genome at base-pair
resolution, while genome sequencing also yielded mutations in intergenic regions, highly
detailed copy number and structural variation.

1.6.3 The emergence of sequencing consortia

The availability of these high throughput technologies, coupled with a drop in price, saw
the emergence of large cancer sequencing consortia in the American The Cancer Genome
Atlas (TCGA) and later the International Cancer Genome Consortium (ICGC). Both con-
sortia aimed to paint a complete picture across cancer types by collecting large numbers of
samples for exome (TCGA, although genomes were also sequenced) and whole genome
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(ICGC) sequencing. TCGA systematically collected DNA, RNA, methylation and clinical
data from over 10,000 cancer patients with the aim to improve diagnosis through a better
understanding of landscape of somatic alterations in cancers. ICGC aims to further increase
our understanding by coordinating the sequencing of 25,000 whole cancer genomes with the
participation of individual (national) projects that contribute particular cancer types.

The availability of these data sets allows researchers to paint an ever increasingly detailed
picture of what cancer genomes look like.

1.7 Copy number

The role of aneuploidy in cancer development has been long since known. When high
throughput technology became available to systematically measure aneuploidy across the
genome it was directly applied and provided further insight into the extent and the patterns
by which the cancer genome is altered.

1.7.1 Confirming classic knowledge

Pollack et al. (2002) reported that patterns of copy number alterations (CNAs) across 44
primary breast cancers and 10 breast cancer derived cell lines correspond well with what
was known from cytogenetic studies. This study also included micro-array based expression
profiling, which showed that CNAs can lead to big changes in gene expression. The authors
reported that a 2-fold change in copy number was associated with a 1.5-fold change in
expression and that the majority of highly amplified genes are highly to moderately high
expressed.

Expression arrays had already shown that the expression profiles of breast cancers
cluster in subtypes (Perou et al., 2000). Bergamaschi et al. (2006) then showed that copy
number alterations in breast cancers are linked to these new subtypes. Basal-like tumours
were associated with more gains and losses, while luminal-B tumours showed more high
amplifications. High level amplifications were associated with genes that could be drug
targets (Chin et al., 2006). These findings highlighted that breast cancer subtypes have
distinct copy number profiles that contain clues about the underlying differences in biological
process that shaped the cancer.

1.7.2 Pan-cancer overview of CNAs

SNP arrays were quickly shown to also detect regions of copy neutral LOH (Nannya et al.,
2005; Zhao et al., 2004) and therefore to provide a more complete picture of copy number
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alterations. The first landscape paper about CNAs used SNP arrays and reported on profiles
from 3,131 samples across 26 types of cancers (Beroukhim et al., 2010). The study revealed
that across cancer types copy number profiles have several characteristics in common. The
size distribution of copy number events appears bimodal: one mode represents arm level
events, the other focal events and the frequency at which focal events are observed is inverse
proportional to their size. Many tumours contain focal deletions in known tumour suppressor
genes, while the focal gains amplify known oncogenes, further strengthening the link between
CNAs and oncogenic function.

When the TCGA project was devised, it was set up such that SNP arrays were collected
for every tumour to perform copy number analysis. Zack et al. (2013) paint the emerging
picture across 4,934 cancers and report that 37% of cancers have a whole genome duplication
and that tumours with a duplication contained more CNAs. The authors speculate that the
bimodal CNA size distribution could be due to different mechanisms by which CNAs are
acquired. They observe that both focal and arm level events are larger if one end of the event
contained a telomere. Finally, they report that recurrent copy number events that do not affect
a known cancer gene. Some regions also contain significantly mutated genes suggesting
these regions may play an important role in tumour development.

1.8 Massively parallel sequencing of cancer genomes

The advent of massively parallel sequencing brought with it a new era in which the whole
cancer genome could be interrogated for single base substitutions, as well as larger scale
copy number alterations and rearrangements. A first large scale screening of all genes in
the RAS–RAF–MEK–ERK–MAP kinase pathway in the early 2000s had already shown the
potential of such approaches with the identification of BRAF as a cancer gene in melanoma
(Davies et al., 2002) and non-small cell lung cancer (Brose et al., 2002). And a screen of
all protein kinases in 25 breast cancers had already revealed that some tumours contain
no mutations in these genes, whilst some contained numerous mutations, suggesting the
existence of a mutator phenotype (Stephens et al., 2005).

1.8.1 Early findings from exome sequencing

Due to initial technical limitations, early sequencing studies focussed on the coding regions
of the genome, which means single nucleotide variants (SNVs) and short insertions and
deletions (indels) could be detected in about 3% of the genome. The early exome sequencing
studies nonetheless immediately revealed interesting insights. Wood et al. (2007) reported
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that only a handful of genes across 11 breast and 11 colorectal tumours were commonly
mutated, but that many other genes were mutated at low frequency. This finding was
corroborated by Ding et al. (2008) when they reported that 26 out of 623 sequenced genes
were significantly mutated across 188 lung adenocarcinomas. And the pilot of TCGA project
contained the exome sequences of 206 glioblastoma cases which revealed an unexpectedly
high number of mutations in PIK3R1 (TCGA Network, 2008), which was later confirmed to
be a glioblastoma driver (Weber et al., 2011).

1.8.2 The full compendium of somatic alterations

The first full catalogues of somatic mutations across the whole genome, and including copy
number and structural variations, arrived a little later. Pleasance et al. (2009) sequenced a cell
line that is derived from a metastatic melanoma case. The sample yielded 33,345 SNVs, 66
indels, 37 rearrangements and the copy number analysis yielded several highly amplified and
several homozygously deleted genes. Similar findings were reported on the whole genome
sequence of a cell line derived from a bone metastasis of a small-cell lung cancer patient;
22,910 SNVs (of which the majority in intergenic regions), 65 indels, 58 rearrangements and
a range of copy number alterations (Pleasance et al., 2010).

1.8.3 Whole genome sequencing reveals the extent of somatic alter-
ations in cancer genomes

Numerous sequencing studies have since found small numbers of recurrently mutated genes
in relatively small data sets (Ellis et al., 2012; Fujimoto et al., 2012; Puente et al., 2011;
Waddell et al., 2015; Wang et al., 2014). Larger sequencing studies have yielded larger
numbers of frequently mutated genes, but often a handful are shared among many samples
and the remaining genes are found mutated in only a few cases (Dulak et al., 2013; Nik-Zainal
et al., 2016; Stephens et al., 2012). The combined studies have given us a good idea of the
mutation rates in human cancers and have shown that mutation rate correlates with DNA
replication time (Lawrence et al., 2013).

Whole genome sequencing lead to the discovery of recurrent mutations in the TERT
promotor that are important for tumour development in a number of cancer types (Fujimoto
et al., 2012; Horn et al., 2013; Huang et al., 2013; Vinagre et al., 2013) and have shown
evidence of L1-retrotransposon activity in over half the tumours evaluated (Tubio et al.,
2014). Studies have reported on mutational patterns that correlate with subtypes (Ellis et al.,
2012; Puente et al., 2011; Waddell et al., 2015) and treatment outcome (Puente et al., 2011;
Wang et al., 2014), including chemotherapy resistance (Patch et al., 2015).
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1.9 Mutational processes

With the full catalogue of mutations now detectable it became possible to investigate the
processes by which these mutations are generated. Pleasance et al. (2009) observed that
a large proportion of mutations found in their melanoma case are C>T/G>A substitutions
as a result of exposure to UV light. The lung cancer case reported in Pleasance et al.
(2010) showed multiple signs of a smoking signature; for example, the mutation type
distribution showed a close correspondence to that observed in mutations within TP53 in
small cell lung cancer cases obtained from literature, and the mutations appeared more often
in unmethylated CpG dinucleotides, which confirmed earlier knowledge about smoking
associated carcinogens.

1.9.1 Automated extraction of mutational signatures

With more genomes sequenced it became possible to automatically extract signatures that
correspond to the mutational processes operative on cancer genomes. Nik-Zainal et al.
(2012b) reported on five signatures found across 21 breast cancers and observed that cancers
with a BRCA1 or BRCA2 mutations clustered together, suggesting the mutations are generated
by double-strand break-repair mechanisms. It also contained the first mention of localised
hypermutation known as kataegis, which appeared with a particular mutational spectrum that
suggested the mutations may be due to the APOBEC family of deaminases.

Characterisation of the mutational processes of over 7,000 exomes and genomes revealed
evidence of at least 21 mutational signatures (Alexandrov et al., 2013). Most cancer genomes
contain evidence of activity of more than one process, with some genomes containing signs
of activity of six signatures and many different combinations of signatures were observed to
be jointly active.

1.9.2 Linking signatures to mutational processes

By analysing the samples in which certain signatures were detected it became possible,
for some signatures, to suggest the processes by which they were generated. Signatures
1A/1B were strongly correlated with the age of diagnosis, and based on the accumulation of
prior evidence it was suggested these mutations might be due to spontaneous deamination
(Alexandrov et al., 2015), signature 4 corresponded to previous knowledge about the mutation
types generated by tobacco smoke and was predominantly found in the cancer genomes
from smokers and signature 7 conformed to prior knowledge about UV induced mutagenesis,
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suggesting a role of UV light exposure. Alexandrov et al. (2015) further increased the number
of signatures to 30 after analysing 10,250 cancer genomes.

These studies suggest that the underlying biological processes that generate the driver
and passenger mutations by which cancers evolve are varied and complex.

1.10 Heterogeneity

The ongoing activity of mutational processes in every tumour cell means that no two tumour
cells are genetically the same and that tumours are therefore heterogeneous. Driver mutations
allow cells to proliferate quicker and expand into a subpopulation of cells. If mutations in
these subpopulations can be measured, then one could use these mutations to assess the
extent of genetic heterogeneity in the tumour.

1.10.1 Detecting heterogeneity from sequencing data

A pilot project revealed that high-level heterogeneity can be measured through sequencing
data. Campbell et al. (2008) sequenced the IGH locus of 22 CLL cases and showed that sub-
clonal populations of tumour cells could be detected through massively parallel sequencing.
The IGH locus was chosen in particular because CLL patients show signs of hypermutation
within this region, and due to 264 base-pair long reads, it was possible to arrange the SNVs
in haplotypes and to arrange the haplotypes into phylogenetic trees. The results indicated
that tumours are heterogeneous and that intra-tumour heterogeneity can be detected from
sequencing data.

1.10.2 Cancer type specific studies highlight evolutionary properties

Nik-Zainal et al. (2012a) were the first to show that subclones can be detected through
bulk whole genome sequencing and that the uncovered evidence could be compiled into the
individual life history of a cancer. The authors developed algorithms to detect subclonal
copy number, construct haplotypes from nearby SNVs and devised theory that can be used to
construct the evolutionary trajectory of a tumour.

The authors reported that each of the 21 tumours in the data set contain a dominant
subclone and detect large scale subclonal CNAs in nearly every case. Timing of gains by
means of SNVs on one and two chromosome copies (Greenman et al., 2012) revealed the
evolutionary patterns that have given rise to each tumour and suggested that breast cancers of
the same subtype may evolve similarly. Inspection of the base substitution types showed that
mutational signature activity can change between clonal and subclonal mutations.
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Since then, various articles that focused on a single cancer type report vast differences in
heterogeneity between patients, in which known genes are mutated early in one case, but late
in another (Yates et al., 2015) and that some tumours can show evidence of rapid evolution,
while other tumours in the same cohort show a stable balance between subclones (Schuh
et al., 2012).

The application of treatment can introduce a phase of rapid tumour evolution (Landau
et al., 2013, 2015), in which mutations in known drivers are observed to be subclonal
(Gerlinger et al., 2014; Landau et al., 2013). Mechanisms of resistance can be acquired in
parallel in different lesions (Gerlinger et al., 2014; Gundem et al., 2015), subclones can
persist through treatment (Schuh et al., 2012) and the existence of a subclonal driver mutation
can be an independent risk factor for disease progression (Landau et al., 2013).

A primary tumour can contain observable signs of metastatic and treatment resistance
potential before onset (Yates et al., 2015) and in some cases can contain patterns that predict
the evolutionary progression (Landau et al., 2015). Mutational processes can differ between
clones and subclones through spatially (de Bruin et al., 2014) and temporally (Bolli et al.,
2014) separated samples from the same cancer. Gundem et al. (2015) reported metastasis-to-
metastasis seeding in a number of lethal metastatic prostate cancers and Cooper et al. (2015)
observed clonal expansions in morphologically normal cells in multifocal prostate tumours.

Two recent in-depth studies of ITH suggest that early tumour development is consistently
driven by point mutations, while later evolution contains more CNAs in both small cell lung
and colorectal cancers (Jamal-Hanjani et al., 2017; Mamlouk et al., 2017). Jamal-Hanjani
et al. (2017) further observe that genome doublings and ongoing genetic instability are
associated with ITH and could result in parallel evolution of CNAs. Mamlouk et al. (2017)
report on a 3D reconstruction of a single cancer revealed that point mutations in the APC and
TP53 genes were evenly distributed throughout the cancer, but gene copy numbers appeared
highly variable.

1.10.3 Pan-cancer studies reveal widespread ITH across cancer types

These separate studies hint that intra-tumour heterogeneity is widespread and that tumours
of the same cancer type can differ greatly. McGranahan and Swanton (2015a) analysed
somatic mutations across 2,694 exome-sequenced tumours representing 9 cancer types from
TCGA and found that protein altering mutations in known cancer genes that are possibly
actionable in the clinic are typically clonal, but can also be observed subclonal. Analysis of
mutational signatures suggested a link between subclonal driver mutations and APOBEC-
related mutagenesis.



1.11 Subclonal inference 13

Andor et al. (2016) performed subclonal reconstruction on 1,165 exome-sequenced
tumours from TCGA and report that 86% of tumours across 12 cancer types contain at
least one subclone. The authors report that subclones can contain driver mutations and that
subclone size correlates with treatment outcome.

These studies show that much can be learned about tumour evolution and heterogeneity
through massively parallel sequencing data.

1.11 Subclonal inference

The studies named in the previous section are possible due to the development of two types
of methods: Callers for somatic copy number and subclonal architectures. A subclonal
inference method, in general, first estimates the proportion of tumour cells that carry each
mutation (this is known as cancer cell fraction, CCF). Mutations carried by only a subset of
tumour cells can be used as a marker of the existence of the subpopulation, as these mutations
will appear with similar CCF values. The raw CCF values are therefore clustered to infer
subclones.

1.11.1 Clustering of mutations

Figure 1.1 illustrates how this can be done: (A) During cancer evolution, a tumour acquires
driver mutations (marked with a plus sign) that can initiate clonal expansions. (B) Over time,
a number of these clonal expansions can occur, resulting in the increase of subpopulations of
cells harbouring distinct sets of mutations. Tumour samples typically consist of a mixture of
tumour cells with mutations (solid lines) and normal cells without mutations (dashed lines).

(C) Some mutations are carried by all tumour cells (marked with a square), whereas
others are present in a subset of cells (triangle and circle). Using allele frequencies of
mutations obtained from sequencing data and accounting for copy number aberrations, an
estimate of the fraction of tumour cells carrying each mutation can be obtained. A set of
mutations can then be used as a marker for a population of cells, allowing estimation of the
fraction of tumour cells of the corresponding subclone. Clustering algorithms can be applied
to obtain the cancer cell fractions (CCFs) of each subclone. (D and E) The relationship
between subclones can be visualized as a tree. (D) Some methods perform this clustering in
fraction-of-tumour-cells space, and (E) others in the space of fraction of all cells.
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1.11.2 Statistical and computational strategies for subclonal reconstruc-
tion

Many subclonal inference methods are based on a Dirichlet Process (effectively a distribution
of statistical distributions with properties to estimate the composition), including PyClone
(Roth et al., 2014), PhyloSub (Jiao et al., 2014) and PhyloWGS (Deshwar et al., 2015). These
methods require Markov chain Monte Carlo (MCMC) during their estimation process, which
is computationally heavy.

Alternatively, one can model the data as a mixture of distributions and use variational
Bayesian methods to estimate the composition (SciClone, which requires specification of the
number of clusters (Miller et al., 2014)). CloneHD is based on a hidden Markov model and
can couple SNV and CNA data to perform subclonal reconstruction (Fischer et al., 2014).

The method that I have worked on, DPClust, is also based on a Dirichlet Process. The
method is explained in Chapter 2 and is shown to be amongst the best performing methods
in a comparison in Chapter 6.

1.12 Copy number calling

To calculate CCF values for SNVs, one must take into account copy number alterations (this
will be explained in Chapter 2). Copy number calling is therefore an important part of the
subclonal reconstruction pipeline.

Copy number calling consists of two major components: estimating the sample purity
(the proportion of tumour cells in the sample) and ploidy (the average number of chromosome
copies per tumour cell), and obtaining copy number states for each genomic segment. Callers
predominantly rely on the logR and BAF measures. The logR is a quantification of the amount
of DNA that is available (i.e. total copy number). The BAF of SNPs that are heterozygous in
the germline of the sample donor (identified from the matched normal sample) can be used
to quantify the contributions of the maternal and paternal allele to the total copy number.

Copy number callers can call subclonal copy number (Carter et al., 2012; Fischer et al.,
2014; Kleinheinz et al., 2017; Nik-Zainal et al., 2012a), of which the Battenberg algorithm
(Nik-Zainal et al., 2012a) is presented in the next chapter. Calling subclonal copy number
requires very precise BAF estimates as small deviations from a clonal state are used to detect
alterations. Many of these methods therefore perform haplotype reconstruction to order SNPs
correctly and improve the accuracy of the BAF estimate.

The principles outlined above are implemented in the Battenberg algorithm (Nik-Zainal
et al., 2012a). Other BAF-based methods apply similar metrics to detect deviation from
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Fig. 1.1 (A) During their lifetime, tumours acquire mutations, of which drivers can lead
to clonal expansions. (B) At any time, a tumour consists of multiple populations of cells,
tumour cells (circles with continuous line) and infiltrating normal cells (dashed circles). As
mutations are acquired gradually, some mutations will be carried by all tumour cells (marked
by a square), whilst other mutations are only available in a subset of cells (marked by a
triangle and circle). These subclonal mutations serve as a marker of the presence of subclonal
cellular populations when they are measured via massively parallel sequencing. (C) By
adjusting the measured allele frequency of each mutation for local copy number alterations
and the tumour purity one can estimate the fraction of tumour cells that carry each mutation,
of which a density is shown in this panel. The clonal mutations marked by a square in panel
(B) will appear at approximately 1 (100% of tumour cells), while subclonal mutations appear
at values smaller than 1. Mutations can be clustered in this fraction of tumour cell space to
estimate the presence of subclonal populations. (D and E) The relationship between obtained
mutation clusters can be visualized as a tree, in CCF space (D) or cellular prevalence (CP)
space (E).

clonal copy number. There are two different approaches to establish these values: event-based
or population-based. Event-based callers, such as the Battenberg algorithm, aim to establish
these values for each segment individually (Carter et al., 2012; Nik-Zainal et al., 2012a),
while population-based callers aim to explain as many segments as possible with a single
subclonal fraction (Fischer et al., 2014; Ha et al., 2014).
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It is also possible to estimate total copy number from read depth alone by binning reads
across the genome and comparing the relative differences between bins with a matched
normal sample. The advantage of methods such as Battenberg that rely heavily on BAF
values is that allele frequencies are less affected by various biases that affect read depth (such
as wave bias related to GC content and/or replication timing (Diskin et al., 2008; Koren et al.,
2012)), as these biases affect both alleles equally and will therefore be cancelled out in the
BAF calculation.

1.13 Tumour micro-environment

A tumour consists of a mixture of cancer and non-cancer cells, and with recent high through-
put measurements show that the mixture of cell types (the tumour micro-environment, TME)
plays an active role in shaping the tumour from neoplasm to advanced disease (Hanahan and
Coussens, 2012).

1.13.1 Carcinoma-associated fibroblasts

Fibroblasts can be permanently activated to support a growing tumour, where the cancer can
be thought of as a wound that does not heal (Wang et al., 2017). Typically, fibroblasts are
deactivated when a tissue lesion is repaired, however, when fibroblasts remain active (known
as carcinoma-associated fibroblasts (CAFs), or myofibroblasts) they can impact a growing
tumour. CAFs alter the extra cellular matrix (ECM), communicate with epithelial, endothelial
and immune cells by secreting growth factors (Kalluri and Zeisberg, 2006) and can induce
epithelial-mesenchymal transition (EMT) (Erez et al., 2010), enhance vascularisation and
promote inflammation (Orimo et al., 2005).

1.13.2 Tumour-associated macrophages

Macrophages can be recruited into a tumour supporting role, promoting angiogenesis, cell
migration, tumour cell intravasation and metastasis (Condeelis and Pollard, 2006). These
tumour-associated macrophages (TAMs) are typically abundant and are thought to contribute
to tumour evolution from neoplasia to invasive disease (Qian and Pollard, 2010). TAMs
are relevant for treatment choices and response: their abundance is associated with poor
prognosis (Bingle et al., 2002) and they are sensitive to checkpoint blockade immunotherapies
(Mantovani et al., 2017).
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1.13.3 Tumour-infiltrating lymphocytes

Many types T and B cells can be found within the TME (T cells) and at the tumour margin and
adjacent lymph nodes (B cells) (Balkwill et al., 2012). Both T and B cells can have a positive
or negative effect on prognosis: for example, CD4+ T cells that produce cytokines interleukin-
2 (IL-2) and interferon gamma (IFN-) are associated with good prognosis, but CD4+ cells that
produce IL-4, IL-5 and IL-13 are thought to promote tumour growth (Fridman et al., 2012).
Infiltrating B cells are generally thought to exhibit a positive effect on tumour prognosis
(Wouters and Nelson, 2018), sharp contrast exists however: B cells are a survival benefit
for HER2-positive and triple negative breast cancer, but have an adverse effect on HER2-
negative breast cancers (Denkert et al., 2018). T cells are a major target for immunotherapy by
blocking cytotoxic T lymphocyte–associated protein 4 (CTLA-4) or programmed cell death
1 (PD-1) expression, however treatment leads to resistance in approximately one-in-three
patients (Ribas and Wolchok, 2018; Sharma et al., 2017), leading to calls for combining
targeted and immune-based therapies (Gotwals et al., 2017).

1.13.4 Tumour-associated neutrophils

Neutrophils play an important role in tumour initiation, growth, proliferation, angiogenesis,
suppression of antitumour immunity (Coffelt et al., 2016) and metastasis establishment
(Wculek and Malanchi, 2015), and can exert pro- and anti-tumour functions (Galdiero et al.,
2013). A high neutrophil count has been shown to correlate with poor prognosis (Coffelt
et al., 2016), while a decline in neutrophils-to-lymphocytes ratio has been associated with
improved outcomes (Templeton et al., 2016).

1.13.5 Other cell types

The TME is host to a number of additional cell types that influence evasion of immune
destruction (NK cells), angiogenesis (myeloid-derived suppressor, dendritic and vascular
endothelial cells), cell death resistance (adipocytes) and invasion and metastasis (pericytes)
(Balkwill et al., 2012; Hanahan and Coussens, 2012; Joyce and Fearon, 2015).

1.13.6 Immune evasion

As a tumour grows, somatic mutations in tumour cells may introduce newly formed antigens
that could trigger a response from the immune system via immune cells present in the TME
(Schumacher and Schreiber, 2015). Tumours have been reported with evidence of, and have
shown signs of negative selection against neoantigens: through point mutations (Rizvi et al.,
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2015; Robbins et al., 2013), copy number loss (McGranahan et al., 2017) and promotor
hypermethylation (Rosenthal et al., 2019).

By separating these events into clonal and subclonal it is possible to observe selection
against neoantigens. Clonal analysis of neoantigens in lung and skin cancers suggested that
tumours with a high clonal neoantigen burden and low ITH have a longer disease-free survival
(McGranahan et al., 2016). And a recent study suggests that the immune microenvironment
actively shapes evolution of lung cancers (Rosenthal et al., 2019): Untreated tumours with
low tumour infiltrating lymphocytes (TIL) showed signs of earlier immune editing or copy
number loss of antigens that were previously carried by all tumour cells, while tumours with
high TIL contained evidence of continued editing and repression of neoantigens.

These findings highlight the importance of the tumour micro-environment for patient
care, as tumours treated with immunotherapy showed a better response when a high clonal
neoantigen burden was observed (McGranahan et al., 2016).

1.14 Clinical implications of heterogeneity

The realisation that a tumour is an ecosystem with its own unique properties has led to the
idea of prescribing treatment specifically based on a tumour’s characteristics, also known as
targeted therapy (Sawyers, 2004). These prescription of a targeted therapy based on genetic
profiling of the tumour has been shown to improve prognosis, for example for patients
with difficult to treat metastatic lung adenocarcinoma (Kris et al., 2014) and unresectable
metastatic gastrointestinal stromal tumours expressing KIT (Blanke et al., 2008).

A higher amount of heterogeneity is associated with poorer prognosis (Brioli et al.,
2014; Gerlinger et al., 2012; Jamal-Hanjani et al., 2017; Marusyk et al., 2012; Turner and
Reis-Filho, 2012). For example, Jamal-Hanjani et al. (2017) reported a 4.9 hazard ratio
for recurrence or death for patients with a high rate of subclonal CNAs, compared to those
with a low rate. However, current targeted therapy approaches do not take into account
whether the targeted event is clonal or subclonal (McGranahan and Swanton, 2015b), leaving
considerable room for improvement, as a therapy targeting a subclonal mutation will not
target all tumour cells.

Despite the successful application of targeted therapies, tumours can quickly develop
resistance (McGranahan and Swanton, 2015b; Misale et al., 2014; Russo et al., 2016), which
typically occurs within 1-2 years (Dagogo-Jack and Shaw, 2018). Mechanisms via which
resistance can arise include pre-existing or de novo mutations (Gainor et al., 2016; Jr et al.,
2012; Kwak et al., 2015; Sequist et al., 2011; Wagle et al., 2011), switching to alternative
pathways (Zhang et al., 2012) or change in cell lineage (Sequist et al., 2011). In light of
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the ease at which resistance occurs, there are several efforts to develop combination- or
serial-therapies with the aim to overcome resistance to a single drug (Bozic et al., 2013;
Duncan et al., 2012; Sharma and Allison, 2015; Szerlip et al., 2012).

It is currently unclear how often mechanisms of resistance are already present in low
proportions of cells within heterogeneous tumours. A recent study reported a comparison
between a single sample biopsy of a primary tumour and tumour DNA extracted from a blood
sample (also known as circulating tumour DNA (Mattos-Arruda et al., 2013) or cell-free
tumour DNA (ctDNA) ) at the same time-point (Parikh et al., 2019). The study consisted
of 42 cases of gastrointestinal adenocarcinoma which were enrolled in a targeted therapy
programme and showed signs of disease progression. The authors found that 76% of the
cases showed evidence of at least one active treatment resistance mechanism in obtained
ctDNA at disease progression, while multiple resistance mechanisms were identified in 17
cases (40% of all patients) (Parikh et al., 2019). These findings require confirmation in a
larger cohort spanning more tissue and cancer types, however it suggests understanding
intra-tumour heterogeneity is crucial to understand treatment effectiveness and is key to
developing successful targeted therapies.

1.15 Summary

From this brief review of the relevant literature it becomes apparent that intra-tumour
heterogeneity is an important component of tumour evolution, with clinical implications.
Throughout the life-time of a tumour, mutational processes generate mutations throughout
the genomes of cancer cells. By chance such a process can generate a driver mutation that
initiates a clonal expansion, also increasing the cellular frequency of the passenger mutations
that occurred in the cell with the new driver. Concurrently, the micro-environment co-evolves
and allows the tumour to expand. Massively parallel sequencing allows for detection of the
somatic mutations and of copy number alterations in tumour cells, and therefore provides
access to the life history of a tumour. Careful curation of subclonal architectures and life
histories across cancers can shed light on the pan-cancer landscape of ITH and on general
characteristics by which tumours develop.

To this end, in the next chapter I will provide an in-depth description of the algorithms
that I have maintained and developed further during my Ph.D. One algorithm for estimating
somatic copy number alterations (Battenberg, first used in Nik-Zainal et al. (2012a)) and one
for inferring the subclonal architecture of a cancer (DPClust, first used in Bolli et al. (2014)).
Chapter 3 contains an extensive validation of the methods on simulated data, while in Chapter
4 I will explain a thorough QC procedure for copy number and subclonal architecture calls.
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In Chapter 5 I apply the methods to a single tumour to illustrate what can be learned about the
life history of a cancer from its genome. Chapter 6 contains further computational methods
for a pan-cancer analysis of ITH, while in Chapter 7 I describe the results of applying those
methods to 2,778 cancer genomes. Finally, Chapter 8 contains the discussion.



Chapter 2

Methods

2.1 Principles of subclonal reconstruction

Reconstruction of the subclonal architecture of a tumour involves three main components:
Estimating copy number, adjusting SNV VAFs for copy number alterations to obtain CCF
values and inferring the subclonal architecture from the CCF data. This section contains a
description of all methods that I use for subclonal inference. These methods form the basis
of all results reported on in this thesis, sometimes as part of a much larger procedure as is
detailed in Chapter 6. This chapter also contains a description of avenues that have been
explored, but were deemed not an improvement. An earlier version of the text in this section
has appeared in Dentro et al. (2017).

2.2 The Battenberg algorithm

Battenberg was originally developed to study the unique PD4120 sample and was briefly
described in the supplement of Nik-Zainal et al. (2012a). Since then it has been adapted and
extended to run with whole genome sequencing and SNP 6.0 data from 1000s of genomes and
has become a standard part of the cancer genome analysis pipelines at the Sanger. This section
contains a complete description of the whole genome sequencing pipeline and algorithm.
In brief: Battenberg uses the 1000 Genomes SNP locations with B-allele frequency (BAF)
and relative amounts of DNA (logR) as input from either whole genome sequencing or SNP
6.0 arrays. Heterozygous SNPs are identified from the matched normal sample, after which
the SNPs are phased into haplotype blocks to obtain accurate BAF values. Battenberg then
performs segmentation, finds an initial purity and ploidy combination before fitting a global
copy number profile. Finally, it identifies segments for which the underlying BAF cannot be
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explained by clonal copy number and it will fit subclonal copy number as a mixture of two
separate major and minor allele states.

2.2.1 Pre-processing

Battenberg starts by reading in allele counts for all 1000 genomes SNPs, which are directly
obtained from the tumour and matched normal BAM. SNPs are removed from the pool if they
appear on the list of unreliable SNPs (identified in a panel of 200 normal genome sequences)
or when they are covered by fewer than 10 reads in the normal or 1 read in the tumour. The
normal is used to identify SNPs that are heterozygous in the germline of the patient and
therefore requires that the normal is from the same individual as the tumour. All SNPs then
go into haplotype reconstruction, after which the germline heteroygous SNPs are used for
segmentation and fitting.

2.2.2 Reconstructing haplotype blocks

Battenberg primarily uses allelic imbalances to estimate copy number. To observe these
imbalances, it is helpful to look at the B-allele frequency (BAF) of a germline heterozygous
SNP. For sequencing data the BAF can be calculated as:

BAFi =
rB,i

rA,i + rB,i
(2.1)

where rA,i and rB,i represent the total reads reporting allele A and B respectively. Alterna-
tively, the BAF can be expressed as a function of the number of chromosome copies of allele
A and B (nA and nB respectively):

BAFi =
nB,i

nA,i +nB,i
(2.2)

A germline heterozygous SNP will have a BAF of approximately 0.5 in the absence
of any copy number changes. Deviations from 0.5 therefore can be used to detect somatic
aberrations. As tumours are often admixed with normal cells, establishing the copy number
state of an aberration based on the deviation of BAF requires estimating the fraction of
tumour cells in the sample (the tumour purity). The number of chromosome copies in the
formula above should therefore be split into a contribution of ρ tumour cells and (1-ρ) normal
cells:
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BAFi =
ρnB,t +(1−ρ)nB,n

ρ(nA,t +nB,t)+(1−ρ)(nA,n +nB,n)
(2.3)

where ρ represents the tumour purity, nA,t and nB,t the number of chromosome copies in
tumour cells and nA,n and nB,n the number of chromosome copies in normal cells. Several
methods have been developed to co-estimate clonal copy number states and tumour purity
based on these allele-specific signals (Carter et al., 2012; Ha et al., 2014; Van Loo et al.,
2010).

Tumours that exhibit much clonal genomic instability will show deviation of the BAF
for large proportions of the genome. In such tumours, the BAF values show clear levels
corresponding to different clonal states, which translates into more usable signal for methods
that co-estimate copy number states and tumour purity. However, genomes that show large
amounts of subclonal genomic instability will show a range of different BAF values and will
be more difficult to fit.

Fig. 2.1 shows allele frequency values for a number of example cases that are affected by
copy number changes and different normal cell admixtures. Panel A shows a region with no
copy number alterations in a tumour that has no normal cell infiltration. One expects both
alleles to be present in equal proportions, resulting in allele frequencies of 0.5. Panel B shows
a region with a clonal gain. The bands representing allele A and B are clearly separated, with
allele A representing two thirds of the total chromosome copies and allele B one third. Panel
C contains a similar gain, but in a sample with 75% tumour purity, resulting in a smaller
difference between the bands. Panel D shows the gain, again with 75% tumour cells, but now
the coverage is reduced from 100X (as in panels A, B and C) to 40X. The bands appear to be
overlapping as lowering the depth increases the noise and widens the bands. Panel E shows
an example where the gain is subclonal in 60% of tumour cells resulting in further overlap of
both bands. And finally panel F shows a subclonal loss in 40% of tumour cells.

Fig. 2.1 illustrates that the allele frequencies of individual SNPs are subject to statistical
variation and this noise increases with lower coverage. Combining SNPs into haplotype
blocks through phasing can mitigate this effect (Carter et al., 2012; Nik-Zainal et al., 2012b).
Through haplotype phasing, information can be combined across multiple SNPs within a
region of copy number change, by matching alleles across SNPs. For example, for SNP i,
allele A may correspond to the maternal allele, while for SNP i+1, allele B may correspond
to the maternal allele. If these are combined appropriately, smaller deviations of the BAF
from the normal state can be detected, and higher precision copy number changes, including
subclonal copy number changes, can be inferred.
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2.2.3 Fitting a global copy number profile

Two main components must be taken into account when fitting a copy number profile:
Infiltration of normal cells (tumour purity) and tumour cell aneuploidy (tumour ploidy).
Battenberg takes a similar approach as ASCAT (Van Loo et al., 2010) by considering a range
of purity and ploidy combinations to pick a solution. After a combination is established, each
segment is then assigned allele specific copy number states.

The grid search procedure is performed twice, first with large steps to find an initial
optimum and then with small steps to refine the solution. The grid search procedure takes
a range of purity (ρ) and ploidy (ψt) values and calculates the proportion of the genome
fit with clonal copy number with each combination, through the steps described in the next
section. It then picks the ρ and ψt pair that maximises the proportion of the genome with
clonally altered copy number.

Finally, the copy number states of both alleles of a segment s are established through:

nA,s =
ρ −1− (1−bs)2ls(2(1−ρ)+ρψt)

ρ
(2.4)

nB,s =
ρ −1+bs2ls(2(1−ρ)+ρψt)

ρ
(2.5)

where nA,s is the copy number call for allele A of segment s, bs and ls are the BAF and logR
of the segment and ψt is the average ploidy of all tumour cells in the sequencing sample.

2.2.4 Testing whether a segment is clonal

After fitting clonal major and minor allele copy number states, we can test whether these
states accurately explain the observed BAF. If the BAF is not well explained by the best
clonal states, then the segment is subclonal. This section explains the details of the test, the
next section explains how the test is applied. The obtained nA and nB (through eqs. 2.4 and
2.5) can be non-integer values and therefore have to be rounded to obtain clonal copy number
states. This can be achieved by rounding either allele up or down, yielding four possible
options (explained further in the next section). For each option the expected BAF, given
rounded alleles n̂A,s and n̂B,s, is calculated using:
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b̂s =
1−ρ −ρ n̂A,s

2+2ρ +ρ(n̂A,s + n̂B,s)
(2.6)

A choice is made between the four options by taking the combination of alleles that
minimises the distance between the observed BAF bs and the expected BAF b̂s.

Finally, the b̂s value corresponding to the chosen allele combination is tested against the
observed BAF through a t-test and accepted as clonal if the p-value is not significant _using
0.05 as the significance cutoff.

2.2.5 Fitting subclonal copy number

Once exact allele frequencies of segments have been calculated and a clonal copy number
profile has been fit, subclonal copy number changes can be detected. As a first step, for each
segment, one can determine whether the BAF value of this segment can be explained by a
clonal copy number change (as detailed in the previous section). Deviation of the observed
exact allele frequency from the theoretical allele frequency can be used to identify a segment
having a subclonal copy number state, i.e. a combination of two or more populations of
tumour cells with different copy number states, in addition to a population of normal cells.

When such a segment is fit with a clonal copy number state, the multiple subclonal states
are combined into a single (integer) representation. For example, if the real copy number
state of the segment is 2+1 (2 copies of one parental allele and 1 copy of the other allele) in
80% and 1+1 in 20% of tumour cells (i.e. on average 1.8+1), its clonal fit will likely be 2+1
in 100% of tumour cells (1.8+1 rounded up). The observed allele frequency will therefore
deviate from the frequency expected under the clonal copy number fit, allowing us to infer
that the segment cannot be explained by a clonal copy number state.

The type of subclonal copy number depends on the different copy number states at the
locus and their respective fractions of tumour cells. This problem has multiple solutions, as
there can be any number of subclones with distinct subclonal copy number states. However,
for any given segment, the most parsimonious assumption is that there are only two distinct
copy number states, and that those copy number states differ at most by one chromosome
copy (i.e. are separated by only one copy number event). Battenberg therefore assumes two
distinct major and minor allele states, which are separated by one copy number event.

Under this assumption, given allele-specific copy number values nA and nB (integer
if clonal, non-integer if subclonal), there are four options for the theoretical clonal allele
frequency ĥ f (assuming diploid copy number in the normal cell population):
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Allele A and B are both rounded down:

ĥ f =
ρ⌊nB⌋+1−ρ

ρ(⌊nA⌋+ ⌊nB⌋)+2(1−ρ)
(2.7)

Allele A is rounded down and B is rounded up:

ĥ f =
ρ⌈nB⌉+1−ρ

ρ(⌊nA⌋+ ⌈nB⌉)+2(1−ρ)
(2.8)

Allele A is rounded up and B is rounded down:

ĥ f =
ρ⌊nB⌋+1−ρ

ρ(⌈nA⌉+ ⌊nB⌋)+2(1−ρ)
(2.9)

Allele A and B are both rounded up:

ĥ f =
ρ⌈nB⌉+1−ρ

ρ(⌈nA⌉+ ⌈nB⌉)+2(1−ρ)
(2.10)

Subclonal segments can be identified by testing the observed allele frequency h f against
the theoretical ĥ f of all four scenarios and accepting a segment as subclonal if the observed
h f is significantly different from ĥ f in all. If the segment is deemed to be subclonal we
choose one of the above four scenarios as the most likely explanation of how subclonal copy
number was rounded into clonal. The scenario that explains the observed h f best is picked,
providing two combinations of major and minor allele copy number states.

Finally, having obtained the states, we estimate the proportions of tumour cells that
contain each of the two major and minor allele combinations. Formally, if a fraction of
tumour cells τ shows copy number state nA,1 + nB,1 and a fraction of tumour cells 1-τ shows
copy number state nA,2 + nB,2, τ can be calculated as:

τ =
1−ρ +ρnB,2 +2h f (1−ρ)−h f ρ(nA,2 +nB,2)

h f ρ(nA,1 +nB,1)−h f ρ(nA,2 +nB,2)−ρnB,1 +ρnB,2
(2.11)

2.2.6 Extensions to segmentation

Segmentation of the phased BAF data is performed by piecewise constant fitting (PCF) in
Battenberg. PCF models the data as a step-function to explain the observed data by a number
of discrete copy number segments as described in (Nilsen et al., 2012). PCF is provided with
BAF data for heterozygous SNPs and requires two parameters: the penalty for starting a new
segment and a minimum segment length defined by the number of supporting SNPs. That
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means a new segment always starts with a heterozygous SNP and the startpoint may not be
precise as the parameters require sufficient evidence of a step in the BAF signal before a
new breakpoint is added. Finally, Battenberg does not use the logR for segmentation, which
means a region in which both alleles are gained are difficult to detect as the BAF does not
change.

I have therefore added the option to incorporate pre-defined breakpoints into the segmen-
tation procedure (see Fig. 2.2 for an example). This allows for inclusion of breakpoints with
base-pair resolution from SV calling. The approach starts with pre-segmenting the genome
with the supplied breakpoints. It assumes the breakpoints are clean and therefore performs
no further filtering. Then PCF is performed in each pre-segment to detect further breakpoints
not covered by a SV, such as a chromosome arm event. However, not every structural variant
constitutes a copy number change (inversions for example) and the SVs can therefore lead
to spurious segments. A segment merging step is therefore added that formally tests the
BAF and logR of each adjacent pair of segments through a t-test and merges the pair if the
BAF and logR are not significantly different or when the major and minor allele of both
segments have the same clonal values. An exception is made for segments between which
there is a gap of 3Mb or larger. The assumption is made that there is either missing data or a
centromere between the segments and as there is no data we make no call.

2.2.7 GC content correction

Coverage of sequencing data can be affected by artefacts that manifest themselves as a wave
pattern across the genome (Diskin et al., 2008). These artefacts are correlated with local
GC content and can be corrected for by a regression approach (Benjamini and Speed, 2012;
Diskin et al., 2008). I observed that a substantial set of tumours reported on in this thesis are
affected by this problem. Fitting an initial copy number profile was impossible as it yielded
whole chromosome homozygous deletions where the profile looked generally correct for
other chromosomes (Fig. 2.3, with details of chromosome 8 in Fig. 2.4). These deletions
would be surprising given that about 10% of genes are thought to be essential for cell function
(Wang et al., 2015), which makes it likely that every chromosome contains at least one gene
required for cell survival. I have therefore implemented an approach for Battenberg that
corrects the relative tumour coverage (logR) for wave patterns.

Similarly to the method implemented in ASCAT, the GC content correction function
considers each SNP given in the input as the centre-point of a window. The GC content for
window-sizes varying from 25kb to 10Mb have been pre-calculated. Similarly to ASCAT, we
consider two window sizes to correct for high and low frequency waves. After calculating
correlations the data with the GC content of the logR data we select a window < 1Mb
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(a) Without SV breakpoints (b) With SV breakpoints

Fig. 2.2 The above figures show the segmented data with a copy number fit on a chromosome
that consists of many small segments. The top plot in both figures contains the GC corrected
raw logR data (grey dots) with the segment boundaries overlayed (vertical lines). The bottom
plot contains the BAF with fit segments overlayed (green represents clonal copy number,
while red represents subclonal). a) The fit without inclusion of SV breakpoints misses a series
of consecutive breakpoints around 200Mb. b) After inclusion of the SV breakpoints (green
vertical lines) Battenberg is able to call all visible segments on this complex chromosome.

(denoted as w < 1) and one >= 1Mb (w >= 1) and perform regression on a model that
allows for both a linear and a non-linear effect of GC content:

l = Gw<1 +Gw>=1 +G2
w<1 +G2

w>=1 (2.12)

where G is the precalculated GC content data. The residuals (expected logR) are then
taken as the corrected logR value and saved for use further down the pipeline.

This approach corrects for the majority of the wave effect and has allowed a substantial
number of tumours to be included in the analysis described further into this thesis. It does
however not completely remove the artefacts (see Fig. 2.4b), which suggest that there are
additional factors that have not yet been accounted for.
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(a) Without GC correction

(b) With GC correction

Fig. 2.3 Whole copy number profile for sample SA514993, with in orange the total copy
number and in dark grey the minor allele. (a) A copy number profile with homozygous
deletions on chromosomes 4, 6, 8, 19 and 22. (b) The homozygous deletions disappear after
correction for GC content. The purity estimate also increases, which reduces the gains on
chromosomes 2 and 12 by one copy and on chromosome 7 by three copies.

2.3 Subclonal architecture inference with DPClust

A subclone is a population of tumour cells that carry a unique subset of mutations (SNVs,
indels or copy number). These mutations will appear in a similar fraction of tumour cells in
the sequenced sample and can therefore be used as a marker of the population. By clustering
the mutations, one can infer the existence of a subpopulation and therefore the subclonal
architecture contained within the sequencing sample.

For such an approach to work one must assume that mutations occur only once during
the life time of the tumour, which is referred to as the infinite sites assumption (Jiao et al.,
2014). For SNVs and indels that assumption holds true in general given the size of the human
genome, but for copy number alterations there is accumulating evidence that the same locus
can be mutated on multiple occasions (Jamal-Hanjani et al., 2017).

This section describes the approach implemented in the DPClust software package.

2.3.1 Estimating cancer cell fractions

To infer the subclonal architecture of a tumour one must first obtain an estimate of the fraction
of tumour cells (cancer cell fraction, CCF) for each mutation, which can be inferred from
VAFs of SNVs. Massively parallel sequencing results in short reads, which can then be
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(a) Without GC correction

(b) With GC correction

Fig. 2.4 LogR data of chromosome 8 from sample SA514993. Smoothing was performed
by applying a running median with a window-size of 101 SNPs to make the signal more
visible at this scale. (a) Raw logR before GC correction shows a long wave pattern with
a varying frequency. The homozygous deletion visible in Fig. 2.3a is situated at about
140Mb where the logR is clearly sloping downwards. (b) The big steps in logR are removed
after correcting for GC content. The sloping at around 140Mb is reduced dramatically, now
stopping Battenberg from calling a homozygous deletion (Fig. 2.3b). A light wave pattern is
still visible, suggesting further improvements can be made.

aligned to a reference genome, followed by SNV calling. Both the variant and reference
alleles of an SNV are supported by a number of reads, rmut and rre f respectively. The VAF
of SNV i, fi, can straightforwardly be calculated as:

fi =
rmut,i

rmut,i + rre f ,i
(2.13)

However, mutation clustering to identify (sub)clonal populations cannot be performed
directly using VAFs, as copy number changes impact allele frequencies. Fig. 2.5 shows
four SNVs in a sample that consists of 80% tumour cells and 20% normal cells. SNV 1
is clonal and occurs in a region with a normal diploid copy number state. This mutation
is therefore carried by approximately half the reads that represent tumour DNA. SNV 2 is
subclonal and also occurs in a region of normal diploid copy number. As both copy number
and normal cell contamination are equal for both SNV 1 and 2, their allele frequencies are
directly comparable and proportional to the fraction of tumour cells by which they are carried.
SNV 3 falls into an area that was subclonally lost. As the subclonal loss has occurred on the
other allele, this SNV’s VAF is increased compared to SNV 1. SNV 4 is clonal, falls into an



32 Methods

Fig. 2.5 Allele frequencies of SNVs must be transformed to Cancer Cell Fractions, accounting
for copy number changes, before they can be clustered to identify subclonal populations.
This illustration shows 4 SNVs in different (sub)clonal populations and in regions with
different copy number states, to illustrate this principle. SNVs 1 and 2 are clonal and
subclonal respectively and appear in a non-aberrated copy number state. SNV 3 coincides
with a subclonal deletion, with the SNV falling on the retained allele (i.e. the other allele
is subclonally deleted). SNV 4 has occurred before a gain and is therefore carried by two
chromosome copies. Even though SNV 1, 3 and 4 are clonal, their allele frequencies differ
due to copy number alterations.

area that is clonally gained and is on the gained allele. Its VAF is therefore higher than that
of SNV 1. If these SNVs were clustered in VAF space, SNVs 3 and 4 would be mistaken for
evidence of additional mutation clusters, while they in fact belong to the clonal cluster.

This example illustrates that the copy number state of an SNV, also called its multiplicity,
is key to understanding VAF distributions of mutations. Estimating the multiplicity of an
SNV is challenging, as it requires establishing the copy number state of a single base. Copy
number callers often estimate copy number states for large stretches of DNA, which might
not accurately represent the copy number state exactly at the base of the SNV. To assist with
resolving this issue, it is helpful to consider the product of mutation multiplicity mi of a
mutation i and its cancer cell fraction CCFi:
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ui =CCFimi (2.14)

Let us consider the properties of ui. A clonal SNV will have a CCF of 1.0 (i.e. 100% of
tumour cells) and in each cell the number of chromosome copies, mi is an integer. It follows
from the above equation that for clonal mutations ui ≥ 1. A subclonal mutation has a CCF
less than 1.0 (for example 0.4, or 40% of tumour cells) and can only be carried by a single
chromosome copy (unless also affected by a subclonal CNA), therefore mi = 1. It follows
that ui < 1 for subclonal mutations. We can use these observations to obtain mi from ui:

mi =

|ui|, if ui ≥ 1

1, if ui < 1
(2.15)

Furthermore, ui can be written as a function of the fraction of tumour cells ρ with a total
number of chromosome copies in tumour cells at locus i, ntot,t,i, and a fraction of normal
cells 1-ρ with a total number of chromosome copies in normal cells at locus i, ntot,n,i :

ui = fi
1
ρ
[ρntot,t,i +(1−ρ)ntot,n,i] (2.16)

In the formula above, ρ and ntot,t,i can be obtained through copy number analysis, fi can
be calculated from rmut and rre f using Eq. 2.13, and the ntot,n,i values are considered known
(typically 2). This equation therefore provides us with a way to calculate ui and by extension
to obtain the multiplicity of the SNV.

SNV 1 in Fig. 2.5 for example is clonal and has 4 reads reporting the variant and 6
reporting the reference allele. The purity is 0.8 (80% of total cells are tumour cells) and the
total copy number of both the tumour and normal cells is 2. Its ui therefore becomes:

4
4+6

× 1
0.8

× [0.8×2+0.2×2] = 1.000 (2.17)

Which translates into a CCF of 1.0 via Eq. 2.15. While for SNV 4 it yields:

11
11+9

× 1
0.8

× [0.8×3+0.2×2] = 1.925 (2.18)
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Which also translates into a CCF of 1. SNV 4 illustrates that ui must be rounded to obtain
the multiplicity of a clonal SNV. It differs slightly from the expected value 2 because of
variability in the number of reads due to limited sequencing depth. A similar mutation with
12 variant reads out of 20 would lead to an estimate of 2.100.

The accuracy of the multiplicity estimate in practice depends on the accuracy of the VAF
and local copy number. Slight deviation in the VAF due to read sampling can result in minor
deviation of the multiplicity estimates, as illustrated in the example above. Incorrect copy
number profiles may also result in large errors if, for example, the CNA profile has been
called diploid instead of tetraploid. Ambiguity in estimating whole genome duplications is a
difficult problem in copy number analysis. If a copy number profile is erroneously called as
diploid then SNVs carried by two chromosome copies will be estimated to have a multiplicity
of 1, while SNVs on 1 chromosome copy will become subclonal as they appear to be on 0.5
copies (e.g. exactly half of tumour cells). The CCF space will therefore show an SNV cluster
at exactly 0.5, while the copy number profile may also contain subclonal CNAs at exactly
50% of tumour cells. The uncertainty may be mitigated through the application of a key
assumption: a CNA profile is thought to be in its normal state (diploid) unless substantial
evidence of a whole genome duplication is available (i.e. the most parsimonious diploid state
is assumed unless there is evidence otherwise). However in rare cases, when whole genome
duplications occur late and are not followed by other copy number alterations, they leave no
traces in the data and it is mathematically impossible to infer from the data available that
they occurred.

We now have obtained a series of formulas to calculate CCF from a VAF and copy
number profile. First, we obtain ui through Eq. 2.16 and then calculate the multiplicity and
CCF using Eqs. 2.15 and 2.14 respectively.

Finally, we adjust the multiplicity to address SNVs that may appear subclonal due to a
subclonal deletion. In these cases it is unknown whether the SNV occurred first and was
then deleted in a fraction of cells, or the SNV occurred after the deletion. It is important to
account for such subclonal deletions (e.g. by appropriately adjusting multiplicity estimates),
and ensure that these subclonal deletions do not result in the inference of spurious subclonal
populations.

2.3.2 Filtering

Not all mutations that are provided as input are clustered. Mutations for which there is no
copy number are removed because it is not possible to estimate their CCF value. Mutations
in regions with fewer than 4 reads total coverage are also removed. Mutations in regions
identified with localised somatic hypermutation (kataegis) are also filtered out. Short read
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alignment in regions with kataegis can be difficult because of the many reads carrying one or
multiple variant alleles and the fact that kataegis is often observed close to a SV breakpoint.
These mutations are removed to reduce the opportunity for a spurious cluster to be inferred.

2.3.3 Algorithm

DPClust clusters SNVs with a similar CCF, derived from VAF values as described in the last
section. However, the VAF of a SNV - and therefore also its CCF - can be a relatively coarse
measure and is a function of local sequencing depth, which should be taken into account
when clustering SNVs. For example, if the SNV falls in a region of diploid copy number
with a depth of 20 reads in a sample with 50% tumour cells, its CCF changes by 0.2 when a
variant read is added or removed (e.g. 3 mutant reads correspond to a CCF of 0.6, while 4
mutant reads correspond to a CCF of 0.8). If the same SNV is sequenced to 80X depth, one
additional variant read would change the CCF by only 0.05. Tumours are often sequenced at
30X average coverage or higher, but this coverage is not constant across the genome. Due to
this discrete sampling of mutant and non-mutant reads, and the variability of the sequencing
depth, CCF estimates of mutations from specific (sub)clones will show a distribution of
values. For example, clonal mutations will display a range of CCF values around 1.0 (Fig.
1.1C).

A suitable error model can account for this variability. The number of variant reads can
be seen as the number of successes of n independent coin tosses, where n is the total read
depth. The number of successes (variant reads) can therefore be modelled through a binomial
distribution with ri the number of reads reporting the variant at location i, rtot,i the total depth
at location i and rtot,i the probability of observing a mutant read:

ri ∼ Bin(rtot,i, pi) (2.19)

Both ri and rtot,i are observed in the data. pi can be considered the product of two factors:
the proportion of reads one expects to see if the mutation is fully clonal, ζi, and the true
fraction of tumour cells carrying the mutation πi:

pi = ζiπi (2.20)

ζi can be calculated from the tumour purity and the copy number state of the locus, as
detailed above. Take for example a clonal SNV in a balanced diploid copy number region in
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a sequencing sample consisting of 80% tumour cells. The SNV is heterozygous and therefore
expected to be carried by half the reads that represent tumour DNA. The expected proportion
of reads is therefore 0.5 * 0.8, i.e. 0.4. If the region has three copies and the SNV is carried
by two copies, one expects two thirds of the reads representing tumour DNA to be carrying
the variant allele, making the expected fraction 2 * 0.8 / (3 * 0.8 + 2 * 0.2), i.e. 0.57.

The key estimate in subclonal reconstruction is the true fraction of tumour cells that are
carrying mutation i, πi. Many methods (Deshwar et al., 2015; Jiao et al., 2014; Landau et al.,
2013; Roth et al., 2014) use a Dirichlet Process, which models subclonal fractions as:

πi ∼ DP(αP0) (2.21)

where DP(P0) is a Dirichlet Process with a given probability distribution P0 and a
dispersion parameter α . A realisation of a Dirichlet Process (DP) can be seen as a distribution
over a (possibly) infinite sample space, or alternatively as a sampling from an unknown
number of unknown distributions (Dunson, 2010). This approach allows for co-estimating
both the number of contributing distributions K (the number of cellular populations) and their
properties (fraction of tumour cells and number of mutations they contain). The observed
sampling represents of the (possibly) infinite number of distributions and can be used to
estimate K (i.e. cellular populations) through the stick-breaking representation (Sethuraman,
1994). Stick-breaking implies that the real probability distribution P can be expressed as
follows:

P =
∞

∑
h=1

ωhπθh , θh ∼ P0 (2.22)

where πθh is a location in CCF space and ωh represents the probability weight of cluster
h

ωh =Vh ∏
l<h

(1−Vh) (2.23)

with

Vh ∼ Beta(1,α) (2.24)
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Fig. 2.6 The stick-breaking property of the Dirichlet Process is used to estimate the number
of mutation clusters in the data. For each mutation, a stick of arbitrary length is broken
into randomly sized bits that represent a cluster. At point A, breaks have been introduced,
corresponding to clusters c1-c4. B shows the stick after introducing break 5, while C shows
the completed stick-breaking procedure. The size of each broken part represents the weight
associated with a cluster and influences the mutation assignments, where a high weight makes
it more likely that a mutation is assigned to that cluster. These weights are updated after
probabilities for each cluster have been obtained for each mutation, eventually converging on
a solution.

The Vh represent parts of a unit length stick that are iteratively broken off from the
remaining stick. The Vh get increasingly smaller as more parts are broken off, providing a
discrete representation of an infinite space.

Fig. 2.6 symbolizes the stick at various iterations of the stick-breaking procedure. Fig.
2.6A and 2.6B show the stick after 4 and 5 breaks respectively, while Fig. 2.6C shows it after
completion. Each substick represents a fraction of the total weight (number of SNVs) of a
cluster and can be assigned a CCF through resampling using the assigned SNVs. Then for
each SNV and for each substick, a likelihood can be calculated representing the probability
that that SNV is generated by that substick, taking the characteristics of the SNV, the stick
location and its associated weight into account. After assigning all SNVs, the weights are
updated such that they reflect the overall likelihood across SNVs.

The DP models an appropriate number of clusters because the assigned SNVs (influenced
by the cluster weight) are used to resample the cluster CCF and the weight represents the
fraction of total SNVs assigned to the cluster. By repeating this process over many iterations,
the weight and SNV assignments will accumulate in certain locations that correspond to the
estimated clusters. Therefore, the DP has the advantage that the number of clusters does not
have to be specified a priori, making it ideally suited to this problem.
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Fig. 2.7 Main output figure from a DPClust run. The grey histogram represents the input
SNV data. In front of the histogram is a density line in purple with a turqoise 95% confidence
interval. The density line is built up by carefully recording where each SNV is assigned
throughout the MCMC iterations. The number of clusters is obtained by obtaining all
peaks in the density (vertical black lines). To assign mutations to clusters, first the local
minimum density between each pair of cluster locations is obtained. Mutation assignment
probabilities are then obtained by going back to the MCMC iterations to record how often
each mutation would have been assigned to the final clusters if those were the clusters
available at that iteration. The mutation is finally assigned to the cluster with the highest
number of assigments.

2.3.4 Post-processing

After completing the MCMC iterations we aim to obtain three estimates: (1) An estimate of
the finite number of distributions (cell populations), K, that are present in the input data, (2)
the proportion of tumour cells that each population consists of (CCFk) and (3) likelihoods of
each SNV belonging to each population. The number of cell populations K is determined by
finding peaks in the posterior weight density Fig. 2.7. In each iteration j the stick-breaking
procedure assigns a weight ωk, j to each cluster that represents its size and the cluster has a
CCFk, j. Over many iterations weight accumulates in the CCF space, where a large amount of
weight corresponds to a high likelihood of the existence of a mutation cluster. We then obtain
an estimate of the number of clusters K (cell populations) by obtaining all local maxima in
the weight density.
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With the K clusters and their locations (CCFk) established, SNVs can be assigned to
clusters. We first establish the CCF area covered by each k ∈ K by finding the CCF location
between each pair of neighbouring clusters that corresponds to the minimum density. The
minimum density on either side of a cluster represents its upper and lower CCF bound.
Probabilities of a mutation belonging to a cluster are then established by accounting how
often a SNV would have been assigned to each k throughout the MCMC iterations. Finally,
small clusters smaller than 30 SNVs are removed.

2.3.5 Extension to multi-sample cases

Obtaining multiple samples from the same donor allows for extraction of more detailed
subclonal reconstructions. These datasets can consist of multiple tumours taken from different
sites (e.g. multiple primary sites, primary and metastasis), multiple samples from the same
tumour or multiple samples from the same cancer that represent different time points (e.g.
primary and relapse).

Multiple sampling strategies provide a series of advantages. Consider a tumour that has
two subclones that each comprise 20% of tumour cells. A single sample analysis will not be
able to separate the two groups of mutations as both occur in 20% of tumour cells. But if
in another sample the cellular prevalence of the two subclones does vary, one can separate
the two groups of mutations. In addition, having multiple samples may help resolve tree
topologies. In single sample cases it is often not possible to resolve phylogeny, as more
rare subclones may be placed in multiple positions in the tree. By applying the pigeonhole
principle across the samples for each subclone, one can often rule out various configurations
where a subclone may fit in multiple places in one sample, but not the other. Finally, with
multiple sampling strategies, mutations with low allele fractions in one sample can be
confirmed (or detected) in another sample where they have higher allele fractions due to
higher tumour purity or higher CCF.

Approaches based on a DP can be extended into multiple dimensions (Bolli et al., 2014).
The read counts across samples can be modelled as independent draws from n Binomial
distributions.

ri,1 ∼ Bin(rtot,i,1, pi,1)

ri,n ∼ Bin(rtot,i,n, pi,n)
(2.25)

The stick-breaking procedure is performed across the samples where a cluster has a single
weight (representing the number of mutations), but a separate location in each of the samples.
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Posteriors are obtained across samples by calculating the total probability for each mutation
for each cluster under consideration. Finally, the DP can be used to jointly perform clustering
and infer phylogenetic relationships between the clusters by interleaving two stick-breaking
procedures (Ghahramani et al., 2010).

Several methods for single sample analysis, including PyClone (Roth et al., 2014), Sci-
Clone (Miller et al., 2014) and CloneHD (Fischer et al., 2014), can be used to analyse multiple
samples. Furthermore, automated tree inference has been implemented in PhyloSub (Jiao
et al., 2014) and extended to include SNVs in copy number aberrant regions in PhyloWGS
(Deshwar et al., 2015).

2.3.6 Co-clustering of indels and CNAs

Up until now CNAs have only been used to adjust the allele frequency of point mutations.
CNAs can also be used to identify cellular populations. The Battenberg algorithm estimates
CCF values for each subclonal alteration and it is therefore possible in principle to reconstruct
the subclonal architecture through CNAs only, or jointly with SNVs. However, unlike SNVs,
there are often far fewer subclonal CNAs measured, which leads to a sparser CCF space and
therefore to a reconstruction with less detail. Jointly clustering SNVs and CNAs is preferred

(a) SNV only reconstruction (b) SNV, indel and CNA combined reconstruction

Fig. 2.8 Subclonal reconstruction on tumour SA6164 (also known as PD4120 and 097a7d36-
905b-72be-e050-11ac0d482c9a) using (a) only SNVs and (b) SNVs, indels and CNAs.
There are relatively few indels (blue bars) measured in this tumour, but those available are
automatically assigned to mutation clusters. The addition of CNAs (red bars) has a more
profound effect, but it does not alter the inferred subclonal architecture substantially. The
CNAs provide additional support for clusters 1, 2 and 4 (counted from the left edge of the
figure).
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as the SNVs will anchor the cluster locations, while CNAs are then assigned to their most
likely cluster.

To include CNAs in the clustering process they must be encoded with properties that
the DPClust algorithm can understand. The CNA is therefore encoded as an artificial SNV,
termed pseudo-SNV. But with a single pseudo-SNV representation it is not immediately
clear how many reads should support the pseudo-variant and pseudo-wild-type alleles. A
very high coverage could represent a large CNA event, but it would create an artificially high
amount of confidence in the VAF, while low read counts do not reflect the size of the CNA
events accurately. It is also not directly clear how to balance the evidence between SNVs and
CNAs such that one does not dominate the other.

To resolve this issue I encode the CNAs as groups of pseudo-SNVs. First the mutation
rate of the tumour is calculated using the measured SNVs. Each CNA covers a certain area
of the genome and the equivalent number of mutations that a stretch of DNA would contain
given the mutation rate is calculated. Each pseudo-SNV is then assigned a number of mutant
and wild-type reads such that the CCF of the SNV corresponds to the CCF of the subclonal
CNA.

To mimick read sampling variability the total number of reads are drawn from a Poisson
distribution that takes as input the exact depth and the mutant reads are drawn from a binomial
that takes the inexact depth and the exact probability of success mandated by the CCF of
the CNA. By introducing read sampling variability we transform the pseudo-SNVs into an
independent estimate of the CCF of the CNA. The exact total depth is set to either the median
depth of all measured SNVs or, if the CNAs cannot be represented by pseudo-SNVs due to
insufficient reads per chromosome copy, by 90 reads.

The Battenberg algorithm also provides a measure of confidence in the CCF of each
subclonal CNA in the form of a standard deviation on the CCF obtained through bootstrapping.
The tighter the standard deviation, the more confident we are in the accuracy of the CCF
estimate. The binomial can be used to take this certainty into account by increasing or
decreasing the number of trials undertaken. If the number of trials is lower the number of
successes given the same probability of success will be more coarse, giving rise to a wider
distribution. The total depth is therefore scaled down by the amount of uncertainty, which is
represented by the standard deviation. As the standard deviation for the most certain cases is
close to 0 we add 1 to it before scaling down the total depth. Finally, the copy number status
of each pseudo-SNV is irrelevant and is set to 1 chromosome copy out of 2.

It is important to balance the evidence obtained from SNVs and CNAs such that one does
not dominate the other. I have implemented the balancing using the following observation:
tumours often have more SNVs than CNAs and each subclonal SNV or CNA is an indepen-
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dent measure of the CCF of a subpopulation of cells. With more samples the estimate of the
sampled value becomes more accurate, which gives SNVs an advantage. CNAs however
stretch much larger regions of the genome. The evidence is therefore balanced such that
the CNAs can provide support for an (extra) cluster, but not dominate the CCF space. For
this reason clonal CNAs are represented by a single pseudo-SNV and assigned to the cluster
to which the pseudo-SNV is assigned afterwards. Fig. 2.8 shows an example run on the
PD4120 tumour that was first described in Nik-Zainal et al. (2012a).

Co-clustering of indels is performed by including the indels as pseudo-SNVs into the
input to DPClust. CCF estimates are obtained from the number of reads carrying the variant
and wild-type using the procedure described for SNVs. That approach assumes the VAF
estimates of the indels are recalibrated by local assembly. Due to alignment difficulties
around indels the raw VAF values are often an underestimate. By assembling the local
sequence and local realignment of the reads a less biased VAF estimate can be obtained that
is useful for subclonal architecture inference.

Fig. 2.9 The MPEAR cluster finding approach often finds many small mutation clusters. In
this randomly generated example the truth (top left) contains three clusters: A small clone in
grey (behind the blue density), a large subclone in blue and a large subclone in orange that
falls below the detection limit given this tumours’ purity, ploidy and coverage combination.
The default density (top right) and binomial assigment (bottom right) approaches find a
single cluster in between the major subclone and the clone, effectively merging the two
clusters. The size of the clone and its close proximity to the subclone makes it impossible to
disentangle the two clusters. MPEAR (bottom left) returns two small additional superclonal
clusters in an incorrect position and therefore often requires an additional merging step, more
often than the default density approach.
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2.3.7 Alternative post-processing steps

In search for increased sensitivity to real clusters I have implemented alternative strategies
for obtaining the number of clusters and their contents from the MCMC chain and developed
additional procedures for assigning mutations to clusters. The current assignment approach
is prone to find small clusters that need to be filtered from the output. It is not easy to come
up with a list of criteria that capture these clusters without removing real results. The current
implementation of the filtering step removes all clusters below 30 mutations. Often these
clusters appear at the end of the data histogram, in the far tail of a large mutation distribution.
As the MCMC chain progresses it places a cluster where the large mutation distribution
belongs, but depending on its exact placement it leaves the need to explain the far tail with
an extra cluster in some iterations. This process is part of the mixing required by a clustering
method and it allows the chain to find evidence for extra clusters, but it has the side effect
of yielding spurious small clusters. I have therefore attempted to find alternative methods
for obtaining clusters that do not have this property. However, none of these new strategies
yielded an improvement in performance from evaluation on real and simulated data and have
therefore not been used in production.

A new method for obtaining clusters is using hierarchical clustering of mutations followed
by a cut of the tree using the MPEAR (maximal posterior expected Rand index) criterion

Fig. 2.10 The approach that assigns mutations using the most likely cluster based on the
cluster that yields the maximum binomial probability often has the effect of assigning a
mutation to its closest cluster. In this example there are three mutation clusters (top left) and
all approaches find only two. Both the default density and MPEAR approaches underestimate
the size of the subclone slightly (top right and bottom left), while the binomial approach
estimates it to be nearly twice the actual size (bottom right).
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(Fritsch and Ickstadt, 2009), also used by PyClone (Roth et al., 2014) and BitPhylogeny
(Yuan et al., 2015). For this approach I first build a mutation similarity matrix through co-
assignment probabilities. Each cell contains the probability that a pair of mutations belong to
the same cluster. This matrix is build from the MCMC chain by counting how often the pair
is assigned to the same cluster and dividing by the total number of iterations, after excluding
the burn-in. After performing hierarchical clustering the MPEAR criterion is applied to k
cuts of the tree, with k < (⌈ mutations/8 ⌉). The cut that yields the maximum score is chosen
as the optimum solution. This approach however yields more spurious clusters, it often splits
clear existing clusters found by the DPClust default approach into multiple (Fig. 2.9), and
the co-assignment matrix cannot easily be constructed for large numbers of mutations.

I have also experimented with an alternative mutation assignment approach. The DPClust
default approach is to calculate likelihoods of a mutation belonging to a cluster by counting
how often the mutation would have been assigned to that cluster if it had been available
in each MCMC iteration. That tends to yield very high probabilities of one cluster, which
may not reflect the uncertainty correctly. I therefore wondered if calculating the binomial
likelihood would provide a more accurate reflection:

ℓi,c = rmut,i logE( fi,c)+ rre f ,i log(1−E( fre f ,c)) (2.26)

Equation 2.26 contains the total number of reads supporting the variant and reference
alleles (rmut,i and rre f ,i) and the expected allele frequency (E( fre f ,c) if the mutation belongs
to cluster c, calculated using Eq. 2.16. The binomial likelihood however effectively works
as assigning the mutation to its closest cluster and therefore tends to overestimate the size
of small clusters (Fig. 2.10). It is also a point estimate and does not take into account the
cluster size, which the default DPClust assignment approach does. The mutation assignment
approach used by Gerstung et al. (2017) calculates beta-binomial probabilities with the
inclusion of the cluster size and may be an interesting option in the future.

2.3.8 A downsampling strategy

Clustering a large number of mutations can take a very long time with MCMC based
approaches. DPClust uses Gibbs sampling, which means it has to execute a routine for all
mutations in every iteration. To improve on runtime and resource usage I have implemented
a downsampling strategy that samples mutations and is capable of assigning the mutations
not used for clustering afterwards. The routine performs uniform sampling of a specified
number of mutations. Large clusters therefore have a higher chance of being sampled from
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over small clusters, keeping their relative sizes intact. For every mutation not used during
clustering I find the mutation with the most similar allele frequency (referred to as its mate)
that is clustered. By using the allele frequency the selection process is biased towards finding
a mate in a similar copy number configuration. After clustering the mutation is assigned to
the same cluster as its mate.

I have considered alternative strategies. Selecting copy number segments and using
only the mutations in those genomic regions for clustering, but that does not leave fine-
grained control over the number of sampled mutations. A biased sampling approach was also
considered. It operated by first creating bins across the CCF space and then sampling equally
from each bin. That approach changes the shape of the cluster distributions, which detriments
the ability to correctly identify clusters. The idea was to perform the biased sampling a
number of times and then combine the results from multiple MCMC runs. But preference
was given to the unbiased selection due to its simplicity.

Downsampling initially started with 5,000 mutations, which affects nearly half of the
tumours reported in this thesis. Later the number of sampled mutations was scaled up to
50,000 after various performance improvements had been implemented, which only affects
134 tumours reported on in this thesis.

2.4 Automated post-hoc tree building

For practical applications it is useful to have an overview of the possible trees that can be
built from a given subclonal reconstruction. Nearly all data that I’ve worked with consists of
single sample cases where the tree is difficult to derive, often multiple options are possible
and multiple, disjoint, low CCF clusters cannot be disentangled. But for multi-sample cases
it is informative and the tree represents the evolutionary story that links the multiple samples
together.

I have therefore developed a procedure that builds all possible trees using the DPClust
output, which operates regardless of the number of samples. First it classifies each pair of
mutation clusters into categories that denote the possible pair-wise relationships. Then the
classification is used to iterate over all possible trees, which are provided as a tree structured
figure.

2.4.1 Cluster-pair classification

Clusters a and b can have the following relationships: (1) The CCF of a can be strictly greater
than b, (2) it can be greater or equal than b, (3) it can be equal, (4) smaller or equal, (5)
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strictly smaller or (6) it can be unknown. Pairs of clusters are classified into these categories
by first establishing the support for each cluster from the MCMC iterations and then sampling
pairs of mutations to establish per category.

The classification procedure starts by recording a mutation preferences matrix after
mutations are assigned to clusters (Fig. 2.11a and b). This matrix contains a row for each
mutation and a column for each cluster and cell (i,j) contains the proportion of MCMC
iterations mutation i would have been assigned to cluster j if the final clusters were available.

The approach then iterates over all cluster pairs (Fig. 2.11c). When considering clusters
a and b we first sample 1000 mutations from a and b separately to create 1000 mutation pairs.
The sampling is performed with replacement to reduce the effect of the different sizes of
clusters a and b. Probabilities are calculated by, for each mutation pair (k,l), obtaining how
often mutation k is assigned to a lower CCF than mutation l and then aggregating the counts
across pairs. The same procedure holds for the greater-than and equals relationships.

Fig. 2.11 Before trees are constructed all pairs of clusters are classified into pre-defined
relationships. (a) The procedure starts with the cluster locations and the mutation assignments
during MCMC. (b) For each mutation it is recorded how often it would have been assigned to
each cluster during the MCMC iterations if that the final cluster locations had been available,
yielding a probability per cluster per mutation. (c) Then for each pair of clusters 1000
mutation pairs are sampled with replacement and it is counted how often the pair are assigned
to the same cluster or to a different cluster, providing support for five different scenarios.
(d) Finally, the scenario that yields support from greater than 95% of sampled SNV pairs is
chosen as the final classification. If no scenario yields a 95% support the pair of clusters is
classified as unknown.
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Having obtained a probability that clusters (a,b) have a greater-than, lesser-than or equal
CCF we can classify the pair into a category with a threshold at 0.95 (Fig. 2.11d). If a pair
does not pass the threshold for any category, or for multiple categories, it is assigned the
label unknown.

2.4.2 Tree building

The tree building process begins with creating a full inventory of all possible edges by
obtaining all possible parents for each mutation cluster. The trees are then built in two phases:
In the first phase all clusters that fit into a single location are placed on the tree, starting
with the cluster that has the highest CCF. The pigeonhole principle is not enforced in this
phase, so the phase is followed by a screening that yields an error if a the combined CCF of
daughter nodes exceeds the CCF of the parent.

Then in the second phase, all clusters that fit in multiple places are considered. For each
cluster, we iterate over all the possible edges involving that cluster from the inventory and
over all trees obtained so far. Clusters are added to the tree in a greedy fashion on first-come
first-serve basis. The pigeonhole principle is strictly enforced during this process. Some
clusters may therefore not fit on the tree, which results in warnings which point to clusters
that cannot coexist and warrant further investigation. If a cluster can fit in multiple places,
then new trees are recorded for each configuration. This process yields a list of possible trees
after all iterations are complete.

Single sample cases do not yield any warnings, because it is always possible to construct
a linear tree. Multi-sample cases are more complicated however. In such cases there are two
possible options to be considered: (1) The data is not clean enough and an artefact cluster
is prohibiting the tree building and (2) the number of whole genome duplications is not
correctly accounted for and clonal mutations have become subclonal. The output of the tree
builder is useful for automated checking for violations and it will point to the clusters that
are problematic.





Chapter 3

Validation of methods

3.1 Introduction

In the previous chapter I have introduced the Battenberg algorithm for calling (subclonal)
copy number from whole genome sequencing data, an approach to estimate the CCF values
for SNVs and indels, and the DPClust method to infer the subclonal architecture from the
distribution of CCF values measured in a single cancer. In this chapter, I will focus on
validating the performance of these methods in silico. To this end, I have developed a
subclonal architecture simulator called SimClone and metrics are introduced to evaluate
the performance of a subclonal architecture caller. These metrics have a theoretical lower
bound of performance, but a realistic upper bound does not exist (apart from the worst
possible score). To set a realistic upper bound for a subclonal architecture caller, I introduce
a series of simple, naive methods (termed RandomClone) that produce random subclonal
architectures. An edited version of the text and figures describing SimClone, it’s simulated
data set and RandomClone will appear in the supplement of the PCAWG consensus subclonal
architecture calling paper (Yu et al. 2017, manuscript in preparation). The simulated data
set will be further used in Chapter 6 to compare the performance of subclonal architecture
callers. Figure 3.6 is created by Maxime Tarabichi and is used with permission.

3.2 Simulating subclonality with SimClone

3.2.1 Introduction

SimClone was developed to evaluate the performance of DPClust. It can be used to generate
subclonal architectures with underlying data that can test specific scenarios, or to build a
set of random samples that can be used to evaluate overall performance. For it to be a



50 Validation of methods

true evaluation it is important for the simulator to generate problems that are as realistic
as possible. I have therefore aimed to build SimClone such that it can take high level
characteristics of real data as input.

A typical workflow goes as follows: (1) A subclonal architecture is generated in the
form of a phylogenetic tree with subclones and their locations. Relationships between nodes
(mutation clusters) are created, where each node has a parent and sits at a particular level
in the tree (the level of a node is determined as the minimum number of steps required to
"walk" from the root of the tree to the node). (2) Each node on the tree is assigned a number
of mutations. (3) Then a genome wide copy number profile is simulated, after which (4)
mutations are simulated separately for each node, which requires the user to also specify
a tumour purity value that is used for all mutation clusters. The user can provide input for
steps 1, 2 and 3 to have full control over the solution to be simulated.

3.2.2 Assumptions

Both the mutation and wild type alleles are supported by a number of reads. I assume that
the distribution of the number of mutation-supporting-reads takes on the shape of a binomial
distribution. To model variation on the total number of reads covering the locus where the
mutation has occurred, I assume that the depth can be modelled as a Poisson distribution.
The mutation is carried by a number of chromosome copies (multiplicity). The shape of
this distribution is partly determined by the copy number profile, that bounds the possible
multiplicity states, and by cancer type specific development, i.e. if gains occur late there
will be many SNVs on multiple copies, while if gains occur early there will be few. I model
multiplicity through a Poisson, and learn the parameter that determines the shape of the
distribution from real data. Finally, as a simplification, subclonal mutations cannot be carried
by more or less than 1 chromosome copy.

3.2.3 Simulating a tree

A tree consists of nodes and edges, and each node has a parent that is either another node or the
root. The tree simulation step generates a tree independently of other sample characteristics
such as coverage, cluster sizes, etc. The procedure is provided with a number of nodes to
place on the tree and the number of tries allowed to place each node.

The procedure starts by placing a root node, that represents mutations that are clonal.
Then, iteratively, new nodes are placed until the required number is reached. Before a new
node can be inserted SimClone first selects the new nodes parent, that resides in the tree at a
level and in a branch. The level is selected by a draw from a uniform distribution that covers
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all levels below the root in the current tree and a node at that level is selected to determine
the parent with uniform probability.

For the new node to fit on the tree it must be assigned a CCF value such that the total
CCF at the level of insertion does not exceed the CCF of the parent. The possible CCF space
is therefore constrained. A further constraint can be placed (this is a user setting) in requiring
that the new node position must be at least a minimum CCF away from its parent because
clusters that are too close cannot be separated during clustering.

A CCF is then selected for the node between the max possible value and 0 as the CCF of
the new node and the node is placed if it doesn’t violate any of the constraints. The addition
is retried with a new sampling of parameters if no suitable location is found, but the insertion
is aborted if no location can be found after a specified maximum number of tries, resulting in
one fewer node on the tree. This particular scenario is more likely when large numbers of
clusters are requested as placed nodes will constrain the allowed space for new nodes. The
user can then opt to either work with fewer nodes, rerun the procedure for an alternative tree
or manually add extra nodes afterwards. Alternatively, a function is provided where a custom
tree can be created.

3.2.4 Determining cluster sizes

The cluster size determination procedure takes the minimum and maximum total number
of mutations in the tumour as input and an optional proportion of those mutations that
are clonal. The total number of mutations is drawn from a uniform distribution between
the minimum and maximum. I then determine cluster sizes by applying a stick breaking
procedure where iteratively a randomly sized chunk is broken of the remaining stick. Each
chunk then represents the proportion of total mutations that belong to a cluster. If a minimum
proportion of clonal mutations is specified, then the first chunk will be constrained to be at
least that specified size.

3.2.5 Simulating mutations

With node locations and sizes determined or provided as input SimClone now simulates the
mutations per node. Further input is required in a copy number profile (the copy number
simulation procedure is explained in the next section), a tumour purity value, coverage
and a multiplicity λ parameter (also explained in the next section). These parameters are
sample specific and clusters are therefore simulated independently per sample. Mutations are
generated by calculating the expected number of reads reporting the mutation and wild-type
alleles. But the multiplicity must first be determined before those can be calculated.
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The multiplicity (mm) is drawn from a Poisson distribution with the provided λ parameter
as input.

mm ∼ Pois(λ ) (3.1)

The mutations are randomly assigned to a copy number segment in the provided profile.
If the multiplicity is not possible given the major and minor allele of the selected segment I
adjust it to the copy number of the major allele.

Then the number of reads per chromosome copy for the tumour (ct) and normal (cn) cells
are calculated from the total coverage (C), tumour purity (ρ) and tumour ploidy (ψt). The
total copy number of the normal cells is assumed to be 2:

ct =C
ρ

ρψt +2(1−ρ)
(3.2)

cn =C
1−ρ

ρψt +2(1−ρ)
(3.3)

Then expected number of mutant alleles rm is determined by the multiplicity of the
mutation, the mutations fraction of tumour cells ( f ) and the number of reads per tumour
chromosome copy (ct):

E(rm) = mm f ct (3.4)

The expected number of wild type alleles rw consists of three components: (1) Reads
from normal cells (can be zero when the sample is pure and does not contain normal cells),
(2) reads from whole chromosome copies from tumour cells that are not carrying the mutation
(can also be zero when the copy number is 1+0) and (3) if the mutation is subclonal, an
additional number of reads from cells that are not part of the subclone that carries the
mutation:

E(rw) = 2cn +mwct +mm(1− f )ct (3.5)

The total number of observed reads are then drawn from a Poisson distribution:
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rd ∼ Pois(E(rm)+E(rw)) (3.6)

And the final mutant and wild type alleles are determined by a draw from a binomial
distribution:

rm ∼ Bin(rd,
E(rm)

E(rm)+E(rw)
) (3.7)

3.2.6 Extension to simulating multi-sample cases

The above procedure is already extended to simulate multi-sample cases. During my Ph.D. I
have mostly worked with single-sample cases and this thesis contains results on that type of
data only. I have therefore opted not to include any multi-sample simulations and validations.

The tree building step can be provided with an additional parameter that specifies the
number of samples a multi-sample case should contain. It then simulates mutation clusters
with (potentially different) CCF values in all the samples. However, it does require one
single node that is clonal in all, but that node does not need to contain any mutations (i.e. to
simulate multi-focal tumours). The procedure to simulate mutations for each cluster can take
a multi-sample tree as input and it then simulates the mutations belonging to that cluster with
CCF values for all the requested samples.

It is currently not possible to simulate multi-sample copy number profiles. One could use
the same copy number profile or run the copy number simulator a number of times on the
same input data. The method can be adapted in the future to simulate copy number profiles
for multi-sample cases where the samples share a number of common alterations.

3.2.7 Simulating copy number

A copy number profile consists of segments and a certain number of copies are available for
every segment. SimClone simulates copy number in three steps: (1) it selects a segmentation
from a catalogue, (2) then it models the total copy number profile and (3) it breaks down the
total copy number into allele specific contributions. Fig. 3.1 shows an example of a real copy
number profile (top) and a simulation inspired by it (bottom). The described approach is
simulating clonal copy number only.

A segmentation is selected either randomly from a catalogue of real segmentations, or can
be chosen as containing only whole chromosome or whole chromosome arm segments. The
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total copy number is then modelled through a Poisson distribution, where the λ parameter is
learned from a real copy number profile. Before learning the λ parameter I first subtract 1
from the total copy number and after drawing from the learned distribution I add one to the
simulated total copy number because the Poisson distribution often draws many zeroes. This
means SimClone does not simulate homozygous deletions.

ntot ∼ Pois(λ ) (3.8)

Total copy number is drawn from the learned distribution and assigned to randomly
selected copy number segments, until the fraction of the genome covered by total copy
number distribution looks similar to that of the real tumour (Fig. 3.2 shows the total copy
number distributions of the real and simulated profiles shown in Fig. 3.1). Often there is a
minor discrepancy between the distribution from real and simulated data inspired by the real
sample due to the random assignment of total copy number to segments. The real distribution
can often only be obtained by recreating the real profile exactly, which is what SimClone
aims to avoid.

The total copy number is then broken down into separate contributions from two alleles to
obtain allele specific copy number by using the multiplicity distribution of the SNVs from the
real sample. Multiplicity values are drawn from a Poisson distribution with its λ parameter

Fig. 3.1 Genome wide overview of a real copy number profile (top) and a simulation that is
inspired by the real profile (bottom).
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Fig. 3.2 Comparison of real distributions (left) with distributions of simulated data. The
figures on the top row show that the copy number states distribution of the simulated data
follows that of the real data, but there is a noticeable discrepancy. The algorithm aims
to approximate the total copy number states distribution in the real tumour as closely as
possible by iterating over the observed copy number states and assigning the state to a
randomly selected segment until similar proportions of the genome are covered. But due
to the variability in segment lengths it is not always possible to exactly match the real
distribution. The multiplicity distribution (bottom) closely resembles that of the real sample.

learned from the real data (Fig. 3.2). A multiplicity value is drawn for each SNV and SNVs
are assigned to segments (this assignment is purely for establishing copy number) where
the total copy number is greater than or equal to the multiplicity of the SNV. The maximum
multiplicity, mi, assigned to segment i is then used to determine the one allele, nA,i.

nA,i = max(mi) (3.9)

The other allele, nB,i, is then determined by subtracting the copy number of nA,i from the
total copy number ntot,i:
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nB,i = ntot,i −nA,i (3.10)

Finally, the major allele for each segment is established as the allele with the highest
copy number state, the minor allele is the allele with the lowest copy number state.

This procedure ensures that if many SNVs have a high multiplicity state, then many
segments will be created with an allele specific copy number configuration that can support
them. If, for example, the multiplicity and total copy number distributions are very similar,
then the profile will have many major alleles that closely follow the multiplicity, leading to a
profile with much loss of heterozygosity (Fig. 3.3). By randomly distributing copy number
states across the genome it becomes possible to create very difficult and truly chaotic profiles
to test a methods’ limits (Fig. 3.4)

The procedure however doesn’t restrict particular copy number states to particular chro-
mosomal areas. That means the actual copy number profile will most likely not resemble the
profile used as inspiration. But it should be covered by the same allele specific copy number
state combinations in similar proportions, if the same segmentation is used.

A different choice in segmentation can cause a bigger discrepancy between the real
and simulated distributions of total copy number and multiplicity. Fig. 3.5 shows three
simulations inspired by the same real profile, but with segmentations that are restricted to
whole chromosome arms (middle) or whole chromosomes (bottom). The real tumour consists
for large parts of normal copy number with a few large and small scale alterations. When
restricting segments to whole chromosomes, many segments are too large for a reasonable
approximation of the proportion of the genome covered by total copy number. SimClone
therefore tends to pick small segments, that reside on the small chromosomes.

In the future it could be interesting to experiment with an additional catalogue of cancer
type specific common events to create more biologically accurate copy number profiles.
However, currently the aim is to simulate the effect of copy number on the VAF of SNVs, for
which it does not matter where on the genome the alterations are placed.
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Fig. 3.3 A copy number profile simulation that is inspired by a real tumour with loss of
heterozygosity and a whole genome duplication.

Fig. 3.4 Example of a simulation based on a very fragmented and messy real copy number
profile. The random assignment of copy number to segments creates a chaotic simulated
profile.
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(a) Segments from reference profile

(b) Chromosome arm segments

(c) Whole chromosome segments

Fig. 3.5 Simulations using the same real sample as inspiration, but with different segmenta-
tions: (a) The segmentation of the real sample (b) segmentation where each segment is a full
chromosome arm and (c) segmentation where each segment is a whole chromosome. The
simulator aims to approximate the proportion of the genome covered by certain copy number
states. The real tumour (shown in figure 3.1) contains a few large scale and a few small scale
alterations, but consists mostly of normal copy number. Due to the large segment sizes in (b)
and (c) it therefore tends to place alterations in the smaller segments that reside on smaller
chromosomes.
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Fig. 3.6 The simulated data set was created as a grid with four axis. Each axis represents a
type of measurement that can be obtained from real data. This figure shows the histogram of
these four measurements from the PCAWG data and the colours represent bins along each
grid axis. A simulated tumour falls somewhere on the grid, which amounts to a combination
of 4 bins (one on each axis). The parameters for this sample are then generated by sampling
a single value from each of the 4 bins.

3.3 SimClone1000, a validation data set for PCAWG

SimClone was used to simulate 1000 tumours with the aim to evaluate the performance of
subclonal architecure callers within PCAWG. The data set consists of 700 unique subclonal
architecture simulations and 300 cases where the exact subclonal architecture was simulated
a second time on a copy number profile without any alterations. The 300 paired cases allow
us to investigate whether subclonal architecture callers perform better without having to
adjust for copy number alterations. We created a grid with four key parameters by which
tumours vary when considering their subclonal architectures: Purity, the fraction of clonal
SNVs, the number of clonal SNVs and the number of subclones. Of the 1000 tumours 36
yielded too few mutations (less than 20) or did not complete the simulation process due to
time constraints. The data set therefore contains 964 tumours.

The axis of the grid were determined based on the distribution of each of these values
in the PCAWG data set, shown in Fig. 3.6. By applying k-means clustering we obtained 6



60 Validation of methods

purity clusters, 5 clusters for the number of clonal mutations (with one cluster fixed at 105 to
represent hypermutators) and 5 clusters for the fraction of clonal mutations (one cluster was
fixed at 0.995 to represent a typical hypermutator). The grid axis for the number of subclones
was determined by creating 4 classes corresponding to 0, 1, 2 and 3+ subclones, where the 3+
category contains tumours with 3 to 7 subclones. A single tumour is then assigned a purity
drawn from a bin on the purity axis, a number of clonal mutations from a bin on the clonal
mutations axis, etc. This results in combinations of real parameters, but they may not have
been observed as a combination. The 6-by-5-by-5-by-4 grid yields 600 unique combinations
of parameters, which we extended by sampling another 100 combinations to reach 700.

Copy number profiles were chosen at random from the PCAWG data set. Once a real
purity is selected for a particular simulation we also assigned it the copy number profile of
the real tumour. We simulated 300 tumours a second time without copy number alterations
and therefore only allowed tumours with at least 10% of their genome altered to be included
in the grid to not inflate the number of quiet diploid tumours. From the 700 simulations we
selected 300 at random for another simulation with normal diploid copy number. A change in
ploidy affects the number of reads per chromosome copy, when purity and coverage remain
equal, potentially altering the CCF space of the simulation substantially and making the
envisaged comparison difficult.

In the regular simulation we, for example, do not have sufficient power to simulate SNVs
at a CCF below 0.3. This means that a the distributions of mutations belonging to a subclone
at 0.4 CCF will be truncated as some of its mutations cannot be represented by a number
of supporting reads greater than 0. When the number of reads per chromosome copy is
increased we gain power to simulate subclonal mutations, resulting in a lower CCF cutoff
point. That means we can simulate more mutations of the 0.4 CCF subclone, making it
potentially easier to correctly identify it by subclonal architecture callers, and rendering a
comparison between the diploid and non-diploid simutations uninformative.

We therefore opted to adjust the purity of the non-diploid copy number profile (ρn) to
correct for the reads per chromosome copy shift when changing the ploidy from the real
sample (ψn) to create a purity for the diploid simulation ρd:

ρd = ρn
2

ψn
(3.11)

Subclone positions and sizes were determined as described in the previous section about
SimClone. And coverage was fixed to the PCAWG average of 48.46621.
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3.4 Metrics to evaluate a subclonal reconstruction

To aid the large scale performance evaluation of tumours on simulated data we developed
three metrics around two key descriptions of a subclonal architecture: Clusters (location and
size) and assignments of mutations to clusters. The metrics compare a provided subclonal
architecture against a known truth. It’s also possible to use these metrics to measure how
similar a pair of solutions are, which is used later in this thesis to compare performance of
subclonal architecture callers.

The overall subclonal architecture can be roughly described by the number of subclones
(π) and the proportion of clonal mutations (θ ). Eqs. 3.12 and 3.13 capture the absolute
difference between solutions k and l. For both metrics, the lower the score, the better.

|πk −πl|
πk +πl

(3.12)

2|θk −θl|
θk +θl

(3.13)

Comparing the cluster locations is more complicated, because the solutions to be com-
pared may not contain the same number of clusters. Instead, we use the mutation assignments.
Each mutation is hard-assigned to a cluster, and each cluster has a location. For each mutation
i we compare the CP of the assigned cluster between solutions k and l. A small distance
across all mutations reflects a good concordance between the solutions. Eq. 3.14 calculates
the average difference in CP (ϕi,k is the cellular prevalence assigned to mutation i by method
k), where a lower value is better. The score is divided by the tumour purity (ρ) to correct for
purity differences between tumours.√

1
N ∑

N
i=1(ϕi,k −ϕi,l)2

ρ
(3.14)

3.5 A lower bound generated by RandomClone

3.5.1 Introduction

The metrics described above can be used to assess the performance of a subclonal architecture
caller, where low scores mean a method is performing well. Often methods will not get the
perfect solution and therefore their scores will deviate from the perfect score. What is not
clear however is when performance can be described as poor. I reasoned that a caller should
be able to outperform a simple random method. Running a random method on the same
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data as the caller would then provide an upper bound of what can be considered reasonable
performance. To this end I have developed three simple methods that generate random
subclonal reconstructions and one method that returns only clonal tumours.

3.5.2 RC – Stick breaking

The stick breaking method starts with drawing a random number between 0 and 6 to determine
the number of clusters. It then orders the mutations by their CCF and iteratively breaks a
randomly sized chunk of the ordered mutations. Each of these chunks represents a mutation
cluster and its location is obtained by taking the mean CCF of the mutations in the chunk.
Mutations are automatically assigned by belonging to a particular chunk. The advantage of
this approach is that it is more likely to place a cluster where there are large real clusters, but
it does also tend to place multiple clusters within large real clusters.

3.5.3 RC – Informed

The downside of the stick breaking approach described above is that it performs a single
series of breaks and returns that as a solution. I wondered whether the method could be
improved by selecting the best solution from a series of random models. The informed
method runs the stick breaking implementation described above 100 times. Contrary to the
above approach, the informed method records the size and locations of clusters, but does not
record the assignments. It runs the MutationTimer approach (used in Gerstung et al. (2017)
to assign mutations), which models each mutation cluster as a beta-binomial and takes into
account the size of the cluster. MutationTimer then calculates the proportion of mutations
that are poorly explained (i.e. fall in the outermost 5% of the beta-binomial distributions).
This proportion is calculated for all 100 runs, after which the run that yields the lowest value
is selected as the returned subclonal architecture.

3.5.4 RC – Uniform

The uniform approach is an alternative to stick breaking. It starts with drawing a random
number between 0 and 6 to determine the number of clusters to be found. Then that number
of draws are made from a uniform distribution that has as minimum the lowest 5% of the
mutation CCF space and as maximum the highest 5%. That means cluster locations are
drawn from within the CCF space that is occupied by mutations. Mutations are then assigned
to clusters by calculating the binomial likelihood per mutation and cluster, and assign to the
most likely cluster. This approach does not utilise the shape of the CCF space and therefore
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usually places clusters in unexpected locations. As it is nearly always outperformed by the
stick breaking approach I omit results from this method.

3.5.5 RC – Single cluster

This approach places a single cluster to explain the data. It can obtain the single cluster by
taking the mean mutation CCF, or it can be forced to place a clonal cluster at a CCF of 1. All
mutations are assigned to the single cluster.

3.6 Validation of multiplicity calls

DPClust takes as input a fixed multiplicity value for every mutation. That value is obtained
during pre-processing using the equations from the previous chapter. Incorrect multiplicity
values could artificially alter the CCF space, which DPClust may explain through extra
mutation clusters. I therefore used the over 42 million mutations from the 964 simulations to
validate the performance of this pre-processing step. Table 3.1 contains the proportion of
mutations with a correct multiplicity for four different splits of the data and shows that over
99% of mutations are assigned the correct multiplicity.

The subset of mutations that are gained (i.e. have a multiplicity greater than one) has a
lower success rate at just over 93%. For most of these mutations there is not much ambiguity
about their multiplicity, but some will fall between two multiplicity states. The addition
of binomial noise to the reads supporting the mutation and reference alleles can cause the
mutation to shift away from the correct multiplicity. The DPClust pre-processing considers
the evidence provided and assigns the most likely multiplicity, which, due to the noise, can
be incorrect.

3.7 Assesment of a subclonal architecture through resimu-
lations

In addition to the metrics described earlier I have developed a measurement that aims to
capture how well a subclonal architecture explains the raw CCF space it is provided as input.
The idea is that if the subclonal architecture called by a method is the true architecture, then
their corresponding CCF spaces should be very similar. A distance metric can then be used
to calculate the difference, where a small deviation would serve as a good score because the
called subclonal architecture describes the observed input data very well.
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Evaluation of multiplicity calls across 964 simulations
Type Total 1st Qu. Median Mean 3rd Qu. S.D.
All 42,536,567 0.9915 0.9992 0.9917 1.0000 0.0186
Gained 2,125,495 0.9195 0.9808 0.9336 0.9987 0.1071
CNA 11,869,768 0.9800 0.9946 0.9840 1.0000 0.0277
CNA & Gained 1,756,994 0.9121 0.9762 0.9311 0.9973 0.1014

Table 3.1 Multiplicity values are compared between the truth and the DPClust calls. Propor-
tions of mutations correct (1st quartile, median, mean and 3rd quartile) are shown for four
different splits of the data: All mutations, mutations on more than one chromosome copy
(Gained), mutations in regions of aberrant copy number (CNA) and mutations that are in a
region of aberrant copy number and are gained (CNA & Gained). The table shows that over
99% of mutations are assigned a correct multiplicity value. Most mistakes are made with
gained mutations. This pertains to mutations that fall exactly between two multiplicity values
and the binomial noise pushes the mutation away from the correct multiplicity. Even in that
scenario over 93% of mutations are assigned the correct value.

Fig. 3.7 (a) SimClone generates a true subclonal architecture and its associated CCF space.
(b) The mutations that make up the true CCF space are provided as input to DPClust, which
returns a subclonal reconstruction. (c) That reconstruction serves as input to SimClone for
resimulations, which returns a number of CCF spaces. (d) The EMD is calculated between
each resimulation and the true CCF space that measures how well the DPClust subclonal
reconstruction is explaining the true CCF space. The EMD distribution is summarised by
the median, resulting in a single similarity value per sample. This similarity value can be
compared across methods and across samples.
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The approach is illustrated in Fig. 3.7. For a single tumour SimClone returns (among
other things) a subclonal architecture with cluster locations and sizes, and the simulated
mutations form a CCF space. DPClust takes the CCF space as input and returns a subclonal
architecture. That obtained architecture is then fed back into SimClone a 100 times (this
process is referred to as resimulation), yielding 100 CCF spaces. The earth movers distance
(EMD) is then calculcated between each resimulated CCF space and the true CCF space. A
summary of the resulting histogram can then be used as a metric of performance.

When provided with a subclonal architecture SimClone simulates mutations with binomial
noise on the number of supporting reads and Poisson noise on the coverage. It is therefore
expected that a pair of resimulations also differ, hence 100 resimulations are performed for
every called subclonal architecture by DPClust, the RandomClone methods and for the truth.
The distribution of EMDs obtained from resimulating the truth can then be compared with
the EMDs from the DPClust and RandomClone solutions.

Figure 3.8 shows the EMD distributions for a selected simulated tumour for the truth,
DPClust and the three RandomClone methods, while table 3.2 contains the raw results and
scores. It shows that the stick variant of RandomClone comes closest to the expected number
of subclones and DPClust does best on the fraction of clonal mutations. The RMSE scores
are very close, suggesting the CCFs of the clusters to which mutations are assigned in general
are close to the expected value. The median EMD (dashed horizontal line) tells us that
DPClust explains the CCF space best, followed by the informed RandomClone variant.

To summarise the EMDs (for a whole data set comparison in the next section), relative to
the variation obtained from resimulating the truth, I then calculate the following score:

1− 1
n

n

∑
i=1

I(et ,em) (3.15)

This score is obtained by sampling n pairs of values with replacement from the truth and from
one of the methods’ EMD distributions and determining whether the EMD of the method
(em) is greater than the EMD from the truth (et). The index function in eq. 3.15 returns a 1
when em is greater than et . n is set to 1000.

If the method has returned a subclonal architecture that explains the CCF space very well,
then a score of 0.5 is returned. A value greater than 0.5 means the method has not perfectly
described the true CCF space, with a higher value meaning a bigger discrepancy. Finally, a
lower value means the method is better at explaining the true CCF space than resimulations
of the truth do (i.e. the method is overfitting on the input data).
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Fig. 3.8 Earth movers distance (EMD) of the CCF space between the truth and resimulations
of solutions found by DPClust and the randomclone methods. Resimulating the truth provides
a lower bound of what is obtainable, while the random methods provide an upper bound. The
similar median (dashed lines) EMD that of the truth suggests DPClust has found a solution
that explains the true CCF space quite well.

Evaluation of performance on sample simslclmg
Method Calls Scores

Num. subcl. Frac. clonal Num. subcl. Frac. clonal RMSE EMD
Truth 4 0.196 0.030
DPClust 2 0.235 0.491 0.197 0.007 0.036
RC single 0 0.000 0.999 1.000 0.011 0.199
RC stick 3 0.000 0.221 0.931 0.006 0.175
RC informed 1 0.312 0.822 0.592 0.008 0.065

Table 3.2 A comparison of the scores on simulated tumour simslclmg reveals that the scores
capture different characteristics of the reported solutions. RandomClone-stick, for example,
comes closest to the true number of subclones and therefore receives the best score in that
category. However, it assigns very few mutations to the clonal cluster and therefore attains a
poor fraction of clonal mutations score.

3.8 Validation of DPClust

Figure 3.9 shows the outcome for DPClust and the RandomClone methods for the three
PCAWG scores and the resimulation metric on the SimClone1000 data set. For the three
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PCAWG metrics a lower score means better, with zero being perfect. DPClust comfortably
outperforms the three random methods on number of subclones, fraction of clonal mutations
and mutation assignments. The resimulation score is expected to be 0.5 when DPClust finds
a perfect solution. A value higher than 0.5 represents a drop in performance, while values
below 0.5 can be considered overfitting. DPClust also outperforms the random methods on
the resimulation score. DPClust is evaluated on the three PCAWG scores against 10 other
subclonal architecture callers in Chapter 6.

The scores indicate that DPClust performs well. However, it does not always find the
exact true subclonal architecture. Figure 3.10 is an attempt to explore where the differences
lie. In nearly half the tumours DPClust calls the correct number of subclones and in those
cases the proportion of clonal mutations is close to the truth, indicating cluster locations
have been called in roughly the correct locations. For the other cases DPClust nearly always
undercalls the number of subclones. Where undercalling occurs, DPClust often calls a larger
proportion of mutations clonal. This suggests it merges a nearby subclone into the clone.

Fig. 3.9 General overview of the four scores obtained on the SimClone1000 comparing
DPClust against the the truth and performance by a random method. The best score is 0 in the
first three metrics and 0.5 in the fourth. All four scores show that DPClust easily outperforms
the random callers and does well on calling the fraction of clonal mutations (top right), the
mutation assignments (bottom right) and explaining the true CCF space (bottom left). The
discrepancy in the number of called subclones is further explored in figures 3.10 and 3.11.
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Fig. 3.10 The trend across the 964 simulated tumours is that DPClust calls the correct number
of subclones in nearly half of the cases, in the other half it nearly always undercalls by
one or more subclones (left). Undercalling occurs in two major scenarios: Cases where in
reality there are two subclones, but DPClust calls a single subclone and cases where the
true number of subclones is 3 or more (middle). This affects estimates of the fraction of
clonal mutations, where in cases where DPClust undercalls it often overestimates the fraction
of clonal mutations (right). Combined these results suggest DPClust can be considered
conservative in its statements about the amount of subclonality found in a data set. An
explanation where the number of subclones discrepancy comes from is explored in Fig. 3.11.

Fig. 3.11 The results in Fig. 3.10 suggest that subclones are merged in about half of the cases
within the SimClone1000 data set. This figure compares the distance between the closest
pair of clusters (x-axis) and the size of the smallest subclone within that pair (y-axis) for
cases where DPClust finds the correct number of subclones (left, clonal tumours omitted)
and where it finds a single subclone where two are expected. The data show that merging of
clusters occurs when a pair of clusters are within 0.25 CCF of each other, regardless of their
size.
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Figure 3.11 shows this phenomenon, with on the x-axis the CCF difference of the two
closest mutation clusters and on the y-axis the number of mutations that belong to the smallest
cluster of the selected pair of clusters. When comparing these data between cases where
DPClust finds the correct number of subclones (clonal tumours are excluded) and cases
where it finds a one subclone where two are expected, it is clearly visible that in the latter
category merging occurs frequently when the distance between a pair of clusters goes below
0.25 CCF. The size of the cluster (and the size difference, data not shown) plays little to no
role in the separability of clusters.

DPClust assumes each of these clusters is its own statistical distribution influenced by
binomial noise. In this merging scenario a pair of clusters are significantly overlapping
and DPClust cannot find sufficient evidence of there being two clusters. It therefore takes
the conservative approach and calls one fewer subclones, protecting against overstating the
amount of heterogeneity.

These analysis explain that discrepancy between the truth and the DPClust solutions can
be explained by clusters that are too close to separate. It shows that tumour heterogeneity
estimates based on DPClust are reliable, yet a conservative underestimate of the true amount
of heterogeneity.

3.9 Validation of assignments of gained mutations

A gained mutation (i.e. a mutation on more than 1 one chromosome copy) is assumed to
be clonal by the described procedure to establish a mutation’s multiplicity in the previous
chapter. It is the maximum parsimony explanation when, for example, a mutation appears to
be reliably carried by two chromosome copies, and the local copy number allows for this to
occur (there are two copies of at least one of the two alleles). In such a scenario one would
expect DPClust to assign this mutation to the clonal cluster, but DPClust is not constrained
and can assign a gained mutation to a subclone. I therefore set out to investigate how often
this occurs.

Across the SimClone1000 data set an average 10% of mutations are gained (Fig. 3.12,
top and middle). Nearly all these gained mutations are correctly assigned, with an average
of 94% of mutations assigned to the clone (Fig. 3.12, bottom). However, in some samples
this percentage is much higher, in some cases nearly all gained mutations are incorrectly
assigned. Furthermore, samples in which a very high proportion of gained mutations are
assigned incorrectly contain a large number of mutations overall.

Investigation revealed that in many cases clearly clonal mutations (i.e. mutations with
a CCF near or greater than 1) were assigned to a subclone (sample sim01bxzd is provided
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Fig. 3.12 The figure shows the total number of mutations (x1,000) at the top, the number
of gained mutations (x1,000) in the middle and the fraction of those gained mutations that
are correctly assigned to the clone at the bottom. A high proportion of incorrectly assigned
mutations is concentrated in the samples with a high number of mutations, which lead to the
exploration of a number of DPClust runs with different parameters.

as an example in Fig. 3.13), often forming a clear cluster around the location of the clone.
Combined with the observation that samples with poor performance often contain many
mutations, I postulated that these represent cases where the MCMC chain had not yet
converged. At each MCMC iteration a mutation is assigned to the most likely cluster and
after all iterations are complete these assignments are amalgamated into the most likely call.
If the chain has not yet converged it is still in a state of flux, where mutation assignments can
be volatile, leading to an increased likelihood of assignment to an incorrect cluster.

I therefore performed additional runs on a number of samples that show a poor assignment
performance. I increased the total number of iterations and also altered the number of
iterations that are discarded as burn-in, leading to the following combinations: 1,250 iterations
with 250 burn-in (default), 2,000 iterations with 1,000 burn-in, and to runs of 5,000 with 4000
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burn-in and 10,000 with 9,000 burn-in. The proportion of incorrectly assigned mutations
for sample sim01bxzd (Fig. 3.13) directly decreases from 16% to 0.4% when increasing to
2,000 iterations and 1,000 discarded as burn-in. This behaviour is consistent across nearly all
selected samples (Fig. 3.14), highlighting that the number of iterations the MCMC chain is
run for by default is too short and should be increased to at least 2,000 and 1,000 iterations
should be used for burn-in.

More iterations did not have the desired effect on all samples. Figure 3.15 shows one
such cases, sample sim6zrlr0 as an example. It contains a vast subclone, that is truncated on
one side, while it engulfs the clonal cluster on the other side (top row). In such an extreme
case it becomes difficult to separate a pair of clusters, which causes a good number of clonal
mutations to be assigned to the subclone (middle and bottom). in a scenario where clusters are
within each others space it will be difficult to reliably assign mutations. A further adjustment
should be made that prohibits gained mutations to be assigned a subclone.

3.10 Validation of Battenberg

The SimClone1000 data set cannot be used to assess the performance of Battenberg, because
SimClone simulates just the final copy number profile and not the underlying data. For this
validation I therefore introduce a separate data set that contains manually created subclonal
architectures and copy number profiles that have subsequently been embedded into a BAM
file using BAMsurgeon (Ewing et al., 2015). These tumours have been created for the Somatic
Mutation Calling - heterogeneity (SMC-het) project that aimed to evaluate performance of
subclonal reconstruction algorithms, where Battenberg copy number profiles were provided
to all participants. The organisers of SMC-het used the high coverage NA12878 (Zook et al.,
2016) and the previously sequenced parents of NA12878 (NA12891 and NA12892) as part
of the 1000 Genomes project (1000 Genomes Consortium, 2012) to obtain the maternal
and paternal genome that make up the genome of NA12878, which allows for creation of
haplotype correct copy number profiles (details will be available in Salcedo et al. (2017,
manuscript in preparation)).

In total 50 tumours were designed by the SMC-het team, inspired by real tumours reported
in literature and from PCAWG. The copy number profiles were limited to whole chromosome
alterations, as this is a requirement for BAMsurgeon, and subsequently 50 BAMs were
generated. For the purposes of this validation I have excluded 8 cases that were designed as
subclonal architecture corner cases as these all have the exact same copy number profile.

Figure 3.16 shows a comparison of the expected and measured raw data (BAF and logR,
top panels), total estimated copy number and the cancer cell fraction estimates of subclonal
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Fig. 3.13 Overview of the truth (top) and the output of multiple DPClust runs (middle and
bottom rows) with varying numbers of MCMC iterations and burn-in. The top row shows the
full true CCF space where bars are coloured to represent clonal and subclonal mutations, the
black dashed lines represent the true cluster locations. The middle and bottom rows show all
gained mutations that are clonal and offers a breakdown of these mutations into whether they
are correctly assigned to the clone in green or incorrectly assigned to the subclone in red,
while the dashed lines represent the found cluster locations. The figure shows that increasing
the parameters to 2,000 iterations and 1,000 burn-in yields a reduction in the number of
incorrectly assigned mutations.

copy number segments, where each dot represents a segment. Both BAF and logR show
very high R2 values, with only a few segments just of the diagonal. This means that the
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Fig. 3.14 The fraction of incorrectly assigned gained mutations across a number of selected
samples showing poor performance. Three additional DPClust runs were performed beyond
the original (1,250 iterations and 250 burn-in): 2,000 iterations and 1,000 burn-in, 5,000
iterations and 4,000 burn-in and 10,000 iterations with 9,000 burn-in. The results show that
increasing the number of iterations yields considerable improvement, therefore the number
of iterations should be increased.

Battenberg phasing and logR creation and correction steps are performing well and are able
to adequately recreate the data that goes into copy number calling.

The total copy number estimates for these segments also show a very high correlation
with the expected values (bottom left in Fig. 3.16), albeit slightly lower than the correlations
obtained on the BAF and logR. One major source of discrepancy is caused by Battenberg
calling clonal copy number, where subclonal copy number was expected. This occurs because
Battenberg performs a t-test on the BAF and calls subclonal copy number only when the
observed BAF is significantly different from the expected BAF of a clonal copy number state.
A comparison of the CCFs (bottom right in Fig. 3.16) of the subclonal segments reveals that
this affects a low proportion of all subclonal segments and most of these have low expected
CCF values, which means the BAF is very similar to that of the closest clonal state.

A comparison of the CCF values reveals a strong correspondence between the observed
and expected output (bottom right in Fig. 3.16). There is however a larger discrepancy
than observed on the other three measures. In part this is caused by the aforementioned
segments that are fit with clonal copy number. The data appears on a slightly discrepant
diagonal, where the observed CCF is consistently higher than the expected. This effect is
most likely explained by deviations in the purity estimate. The correlation between observed
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Fig. 3.15 Overview of a sample for which increasing the DPClust parameters had no effect
on the number of incorrectly assigned mutations. This particular sample contains a very
large and very broad subclone that contains the clone in its tail (top). In this scenario the
mutations within the two clusters are split incorrectly, leading to a consistent number of
gained mutations assigned to the subclone. A post-hoc step to reassign these mutations would
resolve the issue, as there always is considerable uncertainty for mutations in between two
subclones.

and expected CCF values is still strong however, but this result shows the CCF estimates of
subclonal copy number are under the influence of some variation.

Finally, the bottom panels of Fig. 3.16 suggest that the Battenberg purity estimate may
play a role in whether estimates of total copy number and CCF deviate from the diagonal. Fig.
3.17 contains the purity estimates for all samples and shows that Battenberg systematically
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Fig. 3.16 The correlations between observed and expected BAF and logR per segment (each
dot represents a segment) are very high, suggesting the Battenberg pipeline does well at
obtaining the raw data required for copy number fitting (top panels). These correct raw values
result in high correlations on the total copy number estimates per segment (bottom left) and
strong correlations on the CCFs of subclonal copy number segments (bottom right). One
source of discrepancy are cases where Battenberg calls clonal copy number, where subclonal
was expected, due to the BAF not being significantly different from the closest clonal state.
The slight bias in the bottom right panel is most likely explained by the deviations observed
in purity estimates.

underestimates the purity (left panel). However, when the simulated BAF is replaced by
the true BAF (while keeping the simulated logR), Battenberg calls the correct purity (right
panel). This shows that the fitting algorithm works correctly and the small deviations of the
BAF (the simulated BAF is on average 0.003 lower than it should be) are responsible for the
purity discrepancy.
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Fig. 3.17 A comparison of Battenberg purity calls (y-axis) from the simulated data with the
true purity (x-axis) shows that Battenberg systematic underestimates (left). A run of the
Battenberg fitting using the true BAF and simulated logR however shows that the fitting
algorithm works as expected and yields the almost exact purity values (right). This means
the very small deviations of the simulated BAF are responsible for the offset and shows how
sensitive Battenberg is to correct BAF data.



Chapter 4

A rigorous quality control procedure

4.1 Introduction

During my projects I have developed a rigorous quality control (QC) procedure for copy
number profiles. In the previous chapter there was always a ground-truth available for the
simulated cases, but for real data that is not available. Furthermore, my experience of working
with Battenberg and other somatic copy number callers across 1000s of cases has revealed
that whole genome duplication calling and handling various types of noise on the input data
are difficult problems. For the ICGC pan-cancer project we therefore developed a consensus
copy number calling approach (described later in this thesis) that is robust against outlier
calls. However, the effect can be mitigated for a single caller by a quality control review and
refitting procedure.

The procedure consists of a series of QC failure criteria, which can be assessed using a
series of figures and are described further below. Once a profile fails QC it must go through
a refit procedure that either involves an automatic or a manual refit (see Section 4.3). The
profile then either passes QC or it will fail again, resulting in another refit. Most profiles that
require this procedure pass after one refit, but for some samples it is impossible to find a fit
that does not violate any of the criteria highlighted below. In such a scenario the QC violation
could be unexpected interesting biology and requires further investigation. Examples of such
violations can be multi-focal tumours or cases with a pre-malignant lesion.

The QC procedure is based on the expectation that a cancer sample contains the clone
(the most recent common ancestor) that contained SNVs and, depending on the cancer type,
CNAs that are shared by all cancer cells and are therefore clonal. The expectation is that the
sequencing data shows those clonal mutations by means of a clonal mutation cluster and
a large proportion of clonal CNAs. Furthermore, clonal SNVs are carried by a number of
chromosome copies, which distribution should roughly follow the proportion of the genome
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covered by different copy number states. Those three expectations link the SNV and CNA
data together and they should fit as a trio as they are different views of the same cancer.

In an ideal world, every copy number profile is backed by independent validation. How-
ever, for the data described in this thesis there is very little validation data available. The
samples described also provide the most heterogeneous data set that Battenberg has seen to
date, with samples sequenced on different platforms and protocols, at different time points, to
different specifications and as part of different projects. The diversity of these data required
curation to obtain information about data quality and method performance.

A series of metrics have been developed that aim to capture the QC metrics described
below. However, at the time of writing there is no substantial analysis on those metrics
available. With the ICGC pan-cancer consensus copy number profiles available however, it
should now in theory be possible to create a set of metrics that capture every QC failure.

4.2 Quality control metrics

The quality of a subclonal architecture is addressed by inspection of the copy number profile,
the subclonal reconstruction and the estimated copy number states from the SNV data. In
general, most samples pass after the first fit, but the success rate can be variable depending
on the type of cancer (biology) or the sequencing project (data or biology).

I use Fig. 4.1 for initial assessment of the criteria highlighted below. In general one
expects the copy number profile to be without any of the fail criteria, for the copy number
estimate of SNVs to show peaks at integers (i.e. if there are 2 copies of a particular allele,
then in general it is expected that some mutations are present on two copies) and the mutation
clustering should normally show a peak at 1 for the clonal cluster.
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Fig. 4.1 The main quality control figure used to assess the copy number fit and subclonal
reconstruction initially. The top figure contains the copy number profile with the major
allele in orange and the minor allele in dark grey. The middle figure shows the copy number
estimate of the SNV data (which is calculated through Eq. 2.16). The bottom figure shows
the subclonal architecture for this tumour with the mutation data as a histogram in the
background and the clustering result in the foreground as a purple line with a turquoise
confidence interval. The vertical lines represent found cluster locations.

4.2.1 Large homozygous deletions

Large homozygous deletions are an instant QC fail. As previously discussed, it would be
unexpected if a whole chromosome was lost completely. But it is not directly clear where the
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cutoff lies for a homozygous deletion to be believable. To be conservative I flag homozygous
or subclonal homozygous deletions of 10Mb or greater, which means they are clearly visible
in the copy number figure. In some cases the homozygous deletion should then be accepted
as real, after closer inspection.

The case shown in Fig. 4.2 contains two subclonal homozygous deletions, of which one
covers the majority of chromosome 18. This example also shows that multiple QC metrics
can be triggered as it also contains a large number of chromosomes with subclonal states
that would become clonal by doubling. This profile therefore also triggers a failure for the
metric described in section 4.2.2. The mutation copy number and CCF space do not trigger
any failures. With a purity of 17% one expects the clonal peak to appear somewhat shifted
because with the relatively low coverage a sizeable number of clonal mutations fall below the
detection limit. The shift is therefore the result of the winner’s curse, which is addressed in
Chapter 6. The solution for this sample is to add a whole genome duplication, which makes
the homozygous deletions become a mixture of 1+0 and 2+0 (Fig. 4.3).
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Fig. 4.2 QC failure case because of large (subclonal) homozygous deletions on chromosomes
5 and 18. This copy number profile also contains a number of subclonal copy number
segments near 50% of tumour cells (detailed in Section 4.2.2).
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Fig. 4.3 The sublonal homozygous deletions on chromosomes 5 and 18 are resolved by
adding a whole genome duplication (normal diploid 1+1 regions become 2+2). The subclonal
segments near 50% tumour cells on chromosomes 1, 10, 12 and 19 become clonal. This
tumour is of very low purity (13% of the sequencing sample contains tumour cells, according
to this copy number fit), which in this case means a number of clonal SNVs fall below the
detection limit. In the DPClust output figure (bottom) we therefore identify the clonal cluster
shifted to a CCF higher than one (the shifting due to what is referred to as the winner’s curse,
which is briefly addressed in Chapter 6). This is a characteristic of the data and cannot be
reverted by adjusting the copy number profile.
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4.2.2 50% subclone in copy number

Beyond the subclonal homozygous deletions, Fig. 4.2 contains segments covering nearly
the whole of a number of chromosomes that appear right in between two clonal states. The
profile would initially fail and closer inspection of the detailed copy number figures that
Battenberg produces reveals that the segments on chromosomes 11 and 16 have estimates
close to 50% of tumour cells (Fig. 4.4). A whole chromosome arm or multiple large segments
on different chromosomes is enough to trigger a fail. The next step is to refit the profile
by doubling one of the clonal alterations (in this case for example the large segment on
chromosome 13). A refit is accepted if the identified subclonal segments become clonal and
no other failure criteria are triggered.

4.2.3 Empty odd numbered copy number state

A whole genome duplication can always be added to a copy number profile, and it produces
an equally likely explanation of the data. But when a duplication too many is added it
sometimes leaves a copy number state empty. In Fig. 4.5 there is no segment that takes on
copy number state 1. Furthermore, in the mutation copy number figure there is no clear peak
at 1 either. That suggests that either the whole genome duplication was the last event that
became clonal, or that the duplication was added erroneously. Without further evidence it is
not possible to distinguish between the former and latter, but the profile without a duplication
provides a simpler explanation of the observed data and is considered a maximum parsimony
explanation. The approach taken with samples reported in this thesis is that a whole genome
duplication must be supported by clear evidence, preferably from the copy number and SNV
data. The solution for this sample is therefore to halve the ploidy, as there is no information
to support the duplication (Fig. 4.6).
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Fig. 4.4 Detailed copy number fit of chromosome 11. The top figure shows the relative copy
number (logR), which is not informative for these purposes. The bottom figure contains
the BAF and the copy number fit where subclonal copy number is plot by a red line. The
subclonal segments on this chromosome are fit with CCF values close to 50% of tumour cells.
This QC fail can be resolved by adding a whole genome duplication to this copy number
profile.
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Fig. 4.5 This case fails QC because there are no segments fit with copy number state 1. In
this scenario a whole genome duplication has been added that has not yielded an increase in
the proportion of clonal copy number.
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Fig. 4.6 The whole genome duplication is removed by refitting chromosome 1 with a 1+0
copy number state. This adjustment creates a clear mutation copy number peak at 1. Note
that in the bottom figure Cluster 2 is not called at 50% of tumour cells and therefore does not
fail that criteria (see Section 4.2.6).
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4.2.4 No clonal copy number alteration

In some cases Battenberg does not find a solution with a single clonal copy number alteration.
Battenberg requires at least one clonal alteration to estimate the purity, hence in cases like the
one shown in Fig. 4.7 the purity estimate is incorrect. If there are no alterations in the profile
then an alternative source must be used to estimate purity (for example from clonal SNVs).
But in this case Battenberg has not been able to fit the segments on chromosomes 7 or 8 with
a clonal copy number state, and in this scenario, the purity estimate is too high. This has
affected the mutation copy number and CCF spaces by shifting the clonal peak to the left.
There are two possible solutions for cases like this: force Battenberg to fit a selected segment
with a particular copy number state, or obtain a purity estimate by other means (from SNVs
in normal diploid 1+1 regions for example). The former approach focusses on the belief that
there must be at least one clonal CNA, the latter on the belief that there might not be a single
CNA.
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Fig. 4.7 Battenberg has not fit a segment with a clonal alteration. That means the purity
estimate is most likely incorrect, supported by the shifted peaks in mutation copy number
and CCF space.
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4.2.5 Shifted clonal mutation cluster

The example highlighted in Fig. 4.7 would require attention due to its shifted clonal peak.
In some cases a clonal peak can be shifted towards the right. That shift is caused by the
winner’s curse (see Chapter 6) where a number of clonal SNVs fell below the detection limit
and that has caused the weight of the clonal distribution to shift. However, in cases where the
clonal cluster is either seemingly fully sampled or the cluster is shifted to the left, the shift
could be an indication that the purity estimate is incorrect. That can have different reasons
for different profiles. For example, in Fig. 4.7 it is due to no segments being fit with a clonal
alteration, but it can also be the effect of the wrong segment fit with a clonal state. In Fig. 4.7
fitting the altered segment on chromosome 1 as 2+1 will yield a very different purity and
ploidy then fitting the chromosome 7 as 2+1. In cases of a shifted clonal cluster and no other
QC violations the solution is often to look for an alternative clonal segment until the shift is
resolved.

4.2.6 Mutation cluster at 50% of tumour cells

A clear mutation cluster at 50% of tumour cells can be a QC violation. But by chance one
can observe a tumour with a subclone that takes up exactly half of the tumour. It is therefore
not always clear whether a sample should pass or fail QC. In the example depicted in Fig.
4.8 there is a clear SNV cluster at 0.5 visible and the copy number profile also violates the
subclone at 50% QC criterion (Section 4.2.2). Furthermore, DPClust finds an SNV cluster
at a CCF of 1, but from the histogram it is not clearly there. The fact that Battenberg fits
this profile with only chromosome 1q as a clonal alteration is suspicious as it would appear
that chromosomes 6, 7, 8p, 8q, 11 and 18 could become clonal by ’stretching’ the profile
(i.e. 8p is 1+0, 8q is 5+1). That solution possibly shifts the 50% mutation cluster to become
clonal. In such a scenario, a solution that yields a large proportion of the alterations as clonal
is preferable as it one of the foundations upon which Battenberg is based. For the purpose of
describing heterogeneity it would also lead to a conservative estimate if the clonal solution
is incorrect. Fig. 4.9 shows that this provides a coherent fit that does not violate any of the
criteria listed in this Chapter.
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Fig. 4.8 Example of a case with a clear large mutation cluster at a CCF of about 0.5. In this
particular scenario there are other QC violations, most notably the copy number segments in
between two clonal states. The mutation cluster at 0.5 could be a sign that the ploidy needs
doubling, in this case one could also try to choose another clonal segment over chromosome
1q.
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Fig. 4.9 The refit copy number profile does not contain any QC violations. The mutation
cluster at 50% of tumour cells is removed, as are the copy number segments exactly in
between two clonal states.
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4.2.7 Empty mutation copy number state

In some cases the addition of an incorrect whole genome duplication or of an extra copy to
some alleles can yield an empty mutation copy number state. Fig. 4.10 shows no clear peak
at a mutation copy number state of 1, suggesting there are very few SNVs that are clonal
and carried by a single chromosome copy. In this case the peak at mutation copy number 3
contains mutations on chromosome segments that are 3+0, whilst the peak at mutation copy
number 2 contains mutations on the balanced 2+2 chromosomes. This particular example
also contains an empty copy number state (see Section 4.2.3).

In this scenario the raw data can be equally likely explained by subtracting copies from
every segment that does not have a copy number count of 0. One could refit with for example
chromosome 2 as 2+0 or 1+0. This compresses the profile and will adjust the mutations with
copy number states 2 and 3 to 1 and 2. That leads to a maximum parsimony explanation of
the data as the additional duplication in the current profile does not allow for much more
of the alterations to be explained as clonal and hence the data can be explained without the
duplication. Fig. 4.11 shows the refit with chromosome 2 fit as 1+0, which yields a clean
mutation copy number and DPClust figure and no QC criteria are violated.
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Fig. 4.10 An empty mutation copy number state can be an indication that additional chromo-
some copies have been added that do not help in explaining the largest possible proportion of
the alterations as clonal. In this case there is no peak at mutation copy number 1, and the
copy number profile also contains an empty state at 1.
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Fig. 4.11 A refit with chromosome 2 as 1+0 yields a clean CNA profile, mutation copy
number figure and DPClust result.
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4.3 Resolving a quality control failure

A QC fail can be resolved in multiple ways. An automatic procedure for Battenberg exists
that obtains a purity estimate from SNVs, but leaves the ploidy unchanged. There is also
a manual approach where one can request Battenberg to fit a copy number profile with a
certain segment with a particular combination of major and minor allele states.

4.3.1 Automatic correction

An automatic correction is currently possible for cases where the purity should be estimated
from another source because there are no clear clonal copy number alterations. A purity
estimate can be obtained from SNVs in balanced copy number regions (preferably 1+1)
where the VAF of clonal SNVs can be directly used. An estimate can be obtained by running
DPClust in VAF space and to take the location of the SNV cluster closest to 1 and multiply it
by 2 for a purity estimate. If SNVs in 2+2 regions are taken, the estimate should be adjusted
appropriately. This approach does not make any adjustments to the ploidy and is therefore
best suited for types of cancer with very quiet copy number profiles.

4.3.2 Manual correction

Manual correction is possible for copy number profiles that contain clonal alterations. One
can hypothesize that a particular segment should have a particular combination of major and
minor allele states, for example, chromosome 8p 1+0.

The ASCAT equations can be rewritten to obtain Eqs. 4.1 and 4.2 that convert the
hypothesis into a suggested ρ and ψ parameter combination that Battenberg takes in when it
fits a profile. Battenberg then skips the first fitting step to obtain an initial global fit, and it
will start with the local optimisation to find the best solution.

In Eqs. 4.1 and 4.2, nA,i, nB,i are the major and minor allele copy number states suggested
for segment i and bi and li are the BAF and logR respectively of segment i.

ρ =
2bi −1

2bi −bi(nA,i +nB,i)−1+nA,i
(4.1)

ψ =
ρ(nA,i +nB,i)+2−2ρ

2li
(4.2)
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After a refit suggestion, Battenberg produces a new profile, which is followed by a
DPClust run and a new QC procedure.

4.4 Inventory of metric triggers in the PCAWG data set

I have attempted to incorporate the above metrics into a series of automated checks, through
which a profile can be automatically flagged as either pass or fail. And applying these metrics
to Battenberg profiles where no refitting has taken place can reveal how often these scenarios
occur. I have therefore performed a rerun across all samples in the data set without refit
suggestions of the copy number fitting pipeline, with the Battenberg version (2.2.5) that was
used for PCAWG.

There are two main reasons why an additional run was required and these numbers
could not be extracted from notes taken during the Battenberg PCAWG QC, or by simply
comparing Battenberg with the PCAWG consensus. First, Battenberg has received a range of
upgrades over the course of PCAWG. Most notably GC correlated wave correction and the
inclusion of SV breakpoints. Both these additions were essential to increase performance on
this heterogeneous data set. Second, a comparison against the PCAWG consensus profiles
(detailed in section 6.2) would be imperfect as the PCAWG consensus consists of only clonal
copy number states. This means that an unknown percentage of copy number segments is
represented with a slightly different fit than the data suggests, which affects the calculated
ploidy. A rerun of the exact same version of Battenberg with and without refitting is not
affected by these downsides.

The comparison of two Battenberg runs reveals that refitting causes a discrepancy in
either purity or ploidy in 15.2% of 2,748 samples for which output of both runs was available
(Fig. 4.12). Nearly half of these are caused by the lack of a clonal copy number alteration
(Table 4.1), while the other metrics trigger either between 20-30% or 10% or fewer cases.
A total of 14 samples did not trigger any of the metrics. Manual inspection of the profiles
revealed that in 7 cases the refit profile may be incorrect, as it triggered one or more metrics.
The other 7 are the result of a bug that has been fixed at the time of writing, but was still
prevalent in Battenberg version 2.2.5. This bug caused a slight discrepancy in the stored
ploidy value, which could occasionally push subclonal gains into losses or vice versa.

It is often a single metric that causes the bulk of the triggers in a cancer type. Many cancer
types with often quiet copy number profiles (pilo-astrocytoma, thyroid adenocarcinoma,
benign bone cancers and AML) therefore often trigger the "No clonal CNA" metric. In
this scenario one can use SNVs to estimate the purity and, without further evidence of a
whole genome duplication available, set the ploidy to equal 2. It is for this scenario that
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Fig. 4.12 Comparison of purity and ploidy values generated by Battenberg with and without
refitting. The top figures compare the purity (left) and ploidy (right) where a discordant
sample is coloured red. The bottom figures show a distribution of the difference between
purity (left) and ploidy (right) between the two runs.

the automatic refitting pipeline was developed (see section 4.3.1), which should be a future
extension of the Battenberg pipeline.

Pancreatic endocrine cancers often trigger scenario C (empty copy number state). This
may also reflect the underlying biology. Pancreatic endocrine tumours often show very
little subclonal copy number alterations, often contain whole chromosome LOH and (to a
lesser extent) whole chromosome gains and relatively frequent whole genome duplications.
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Metric Num. cases Frac. different Frac. total
A. No clonal CNA 207 49.2% 7.4%
B. CNA subclone at 50% 108 25.77% 3.8%
C. Empty CN state 98 23.3% 3.5%
D. Shifted clone 88 20.9% 3.2%
E. SNV cluster at 50% 43 10.2% 1.5%
F. Large hom del 32 7.6% 1.1%

Table 4.1 Overview of QC metric triggers between Battenberg with and without refitting.
Almost half the cases with a discrepancy in either purity or ploidy contain copy number
profiles without a clonal CNA. Between 20-30% of cases trigger a CNA subclone at near
50% of tumour cells, an empty copy number state or a shifted clonal cluster. Around 10% of
cases contain an SNV cluster near 50% of tumour cells or a large homozygous deletion.

Histology A B C D E F Samples Samples diff. Frac. diff.
CNS-PiloAstro 64 2 3 2 1 2 88 69 0.78
Prost-AdenoCA 44 15 5 6 5 2 284 65 0.22
Liver-HCC 7 19 5 8 7 4 326 34 0.10
CNS-Medullo 4 8 12 12 4 6 139 31 0.22
Panc-Endocrine 0 2 26 1 2 2 85 27 0.31
Thy-AdenoCA 20 0 4 1 1 0 48 23 0.47
Lymph-BNHL 8 5 5 8 0 1 106 19 0.17
Kidney-RCC.clearcell 4 2 6 6 1 1 111 14 0.12
Lymph-CLL 8 2 7 4 2 0 90 14 0.15
Kidney-ChRCC 2 1 6 0 0 1 45 11 0.24
Bone-Benign 9 0 1 0 0 0 16 10 0.62
Myeloid-AML 7 2 0 0 0 0 16 7 0.43
Kidney-RCC.papillary 3 2 3 3 1 2 33 6 0.18
Bone-Osteosarc 2 3 1 0 2 0 38 6 0.15
Myeloid-MPN 4 0 1 1 1 0 45 5 0.11

Table 4.2 The number of samples triggering the six metrics, split per cancer type: A=No
clonal CNA, B=CNA subclone at 50%, C=Empty CN state, D=Shifted clone, E=SNV cluster
at 50%, F=Large hom del.

This means that for the Battenberg metric (the proportion of the genome that is fit with a
clonal state) is often extremely similar between a profile with and without a whole genome
duplication.

Furthermore, it is possible that some pancreatic cancers indeed contain an empty copy
number state. Such a scenario can occur if the last copy number alteration to occur is a
whole genome doubling. Sample SA570847, shown in Fig. 4.13, contains many SNVs on
1 and many SNVs on 2 chromosome copies. During the PCAWG expert panel review (see
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Fig. 4.13 The copy number profile of PCAWG tumour SA570847 (top), with the total copy
number in orange and the minor allele in grey. The bottom figure shows mutation copy
number (MCN, the raw estimated number of chromosome copies an SNV is carried by) for
all SNVs detected in this tumour. SA570847 clearly shows a large number of SNVs on 1 and
on 2 chromosome copies, justifying the addition of a whole genome doubling to the copy
number profile, even though it leaves almost no segment at 1 chromosome copy.

section 6.2.6) we have occasionally allowed an empty copy number state based on convincing
evidence of a genome doubling.

This example suggests that, even though these metrics capture the essence of what a
manual QC captures, there can be exceptions due to specific characteristics of a particular type
of cancer. It also highlights that a combination of metrics can sometimes lead to convincing
evidence that contradicts a single metric. This is a sign that a combination of metrics could
be a fruitful approach. It is unclear however, how to adequately weight multiple metrics
against each other. A machine learning approach may be able to learn weights between the
metrics by using the metrics from the PCAWG data set. This may be an interesting direction
to explore in the future in order to further improve the metrics system.





Chapter 5

The subclonal architecture and life
history of a single cancer

5.1 Introduction

In the previous chapters I have described methods to call copy number, infer the subclonal
architecture of a tumour and quality control the results. In this chapter I explore what the
inferred architecture reveals about the events that took place during a tumour’s development
and what can be learned about a single cancer from these data. The aim of this chapter is to
visibly show what the previously introduced methods do, without a deep understanding of
their internal workings.

To this end I have selected a single breast cancer sample of which the copy number profile
and subclonal architecture are very clear. The sample however originates from a project that
is not yet complete and therefore not described in this thesis. This project comprises the
whole genome sequencing of breast cancers from patients in Nigeria with the aim to explore
the tumours’ subclonal architecture and life history, the background of this project is briefly
described in the next section. For the purposes of this chapter I present the selected tumour as
’a cancer’ and therefore do not consider its additional unique features, such as the germline
context, occurrence rates of breast cancer subtypes and differences in (access to) healthcare
when compared to tumours from patients in the Western world.

The sequencing read alignment and variant calling work described in section 5.3 was
performed by Jason Pitt.
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5.2 Background

Over the last few decades, enormous progress has been made in treatment of breast cancer.
In the UK, between 1988 and 2013 mortality has dropped from 60 per 100,000 to below
40, even though incidence rate has gone up from 120 to 170 per 100,000 1. However, a big
discrepancy remains between women of different ethnic backgrounds. American women
of African American ancestry consistently showing lower treatment success, even though
survival rates show a similar improvement obtained for American women of European
descent (Servick, 2014).

The reasons behind this disparity are thought to be a complex interplay between socio-
economic and tumour biology differences (Daly and Olopade, 2015). American women of
African ancestry are less likely to be diagnosed with breast cancer, however tumours are
diagnosed at an earlier age and at higher tumour stage compared to American women of
European descent (Iqbal et al., 2015). Breast tumours are more often of the triple negative
subtype (Ray and Polite, Feb) and there is a higher prevalence of BRCA1 and BRCA2
germline carriers among African women (Fackenthal et al., 2012). Meanwhile, several social
boundaries (Jones et al., 2014) and differences in patterns of referral have been described
(Daly and Olopade, 2015), including that African American women with a family history of
breast cancer are less likely to undergo genetic counselling (Armstrong et al., 2005).

The West African Breast Cancer Study (WABCS) was set up to further investigate the
tumour biology and genetics of breast cancers from western Africa and is aimed to provide a
comprehensive overview by sourcing and sequencing tumours (WXS or WGS of DNA and
RNA-seq) from West Africa. The study consists of various projects focussing on predisposing
germline loci, a landscape of somatic alterations and unveiling patterns tumour evolution. I
am part of the tumour evolution project where we aim to describe the life history of breast
cancers from Africa and investigate whether there are different patterns of evolution, when
compared to those obtained from women in North America. At the point of writing, the study
is in progress, with no finalised results. The sample described in this chapter is one of 98
whole genome sequenced tumours that are part of the study and was specifically picked for
its clear copy number profile and subclonal architecture to aid the purpose of this chapter.

5.3 Methods

Sample N010985 was resected from a 54 year old patient in Nigeria (Fig. 5.1). Six needle
biopsy samples were taken, of which one was prepared for whole genome sequencing. The

1https://visual.ons.gov.uk/40-years-of-cancer
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Fig. 5.1 General annotations of breast cancer case N010985 (left column) and identified
potential drivers (right column). The top left table contains information about the donor,
including age, ethnicity, project (WABCS stands for West African Breast Cancer Study),
the type of sequencing and the inferred ER/PR/HER2 status. The bottom left table shows
statistics about the tumour sample: coverage, purity and ploidy. It also shows the number
of reads per chromosome copy (labelled as power), which determines the power to detect
subclones (see Chapter 6 for a description of the metric).

tumour biopsy and a blood sample from the same patient were sequenced on an Illumina
X10 machine to a coverage of 100x and 30x respectively. Histology of the tumour was
examined by pathologists in Nigeria and at the University of Chicago, after which it was
classified as a ductal carcinoma. Accompanying RNA-seq data was used to infer that the
tumour ER-negative and HER2-positive.

After passing initial sequencing quality control metrics the obtained reads were aligned to
the GRCh37 reference genome using BWA (Li and Durbin, 2009), after which SNV calling
was performed using Strelka (Saunders et al., 2012) and Mutect (Cibulskis et al., 2013), indel
calling using Strelka and SVs were obtained by applying Delly (Rausch et al., 2012) and
Lumpy (Layer et al., 2014). To obtain reliable SNV and SV calls the results from the two
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methods were intersected and filtered by an unmatched normal panel. For indels only the
filtering by panel was applied.

5.4 Subclonal architecture

The sequencing yielded 18,813 SNVs, 382 indels and 335 SVs. A copy number profile was
fit using the Battenberg algorithm, which yields a relatively quiet profile with a ploidy just
over 2 and a purity of 81% (Fig. 5.2a). The tumour consists of a clone with an estimated
9,794 SNVs and two subclones with 2,792 and 5,530 SNVs (Fig. 5.2b). At the time of
writing the VAF adjustment pipeline for indels is not ready, hence indels are not assigned to
mutation clusters.

The mutations (SNVs, indels, SVs, amplifications and homozygous deletions) were inter-
sected with a putative list of 149 genes thought to be involved in breast cancer development
(Fig. 5.1). This list consists of genes taken as the top hits reported in (Nik-Zainal et al., 2016)
and all genes in which a driver was found in a breast cancer in the ICGC pan-cancer dataset
(Sabarinathan et al., 2017).

This analysis yields a clonal missense variant in CUX1, which is carried by 1 chromosome
copy in a balanced copy number region and a subclonal missense variant in RB1, which falls
in a region of clonal LOH where only a single copy of the locus is available. It’s unclear
whether the RB1 mutation deactivates the remaining copy of RB1.

Analysis of indels yields deletions of 11 bases in MAP2K4 and 14 in NCOR1 in a region
of LOH where there are 3 copies of one allele and an insertion of a single base into GATA3
in a region of balanced copy number. Raw CCF values for these variants are 1.00, 1.07 and
1.05 respectively, all three are therefore most likely clonal. The MAP2K4 deletion is reported
by 104 out of 124 reads and the NCOR1 deletion by 132 out of 159, which suggests the
mutations are clonal and carried by multiple chromosome copies.

Amplifications and homozygous deletions were obtained from the copy number data by
selecting focal segments (< 1Mb). A segment is classified as an amplification when the total
copy number exceeds 2*ploidy+1 and as a homozygous deletion when both alleles have been
lost (clonally or subclonally). This results in three genes on chromosome 17 (ERBB2, TOB1
and RNF43) and two on chromosome 20 (ZNF217 and GNAS) being classified as amplified.
The ERBB2 is also known as HER2 and is a primary driver of this tumour.

A copy number or SV breakpoint is found within the CBFB and NF1 genes (Fig. 5.3).
CBFB contains a copy number breakpoint where the first 3 exons are deleted. No other
disrupting event is found, which suggests one copy of CBFB remains intact. NF1 contains
multiple breakpoints, which results in gaps in the local copy number as segments in Bat-



5.4 Subclonal architecture 105

(a) Copy number profile with in orange the total copy number and in grey the minor allele. Subclonal
copy number can be identified as a deviation from an integer on the y-axis. This is a relatively quiet
tumour with few alterations and a ploidy of 2.07. Nearly all alterations are clonal (97.6% of the
altered genome is clonal) and the purity is high at 81%.

(b) Summary of the subclonal architecture with a row for each mutation cluster identified. The left
column shows the number of SNVs per chromosome, the middle column counts for each of the six
possible base substitutions and the right column the raw CCF values of the SNVs assigned to the
cluster. This tumour consists of three mutation clusters, a clone and two subclones. All three contain
a high number of C>G and C>T mutation types.

Fig. 5.2 Subclonal architecture and copy number profile of N010985.

tenberg start and end at a germline heterozygous SNP. The copy number fit suggests there
are three copies of NF1, of which one contains a deletion of exons 6-16. The SVs suggest
the whole gene up to 200kb was duplicated, and both regions marked with subclonal copy
number are supported by deletion calls. Regardless, given the copy number, there is at least
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(a)

(b)

Fig. 5.3 Detailed figures showing the mutations measured in NF1 and CBFB. The figures
contain the copy number profile in orange and grey (total copy number and minor allele),
raw total copy number calculated from the coverage in the background in black, SNVs as
X-es (grey when non-coding, black when coding, there are no coding mutations found in
either gene), copy number breakpoints as grey vertical lines and SV breakpoints as green
dashed lines. Below the mutations is a track that shows the exons of the default transcript
from Ensembl.

one working copy of NF1 remaining as no other disrupting events have been found. NF1 is
unlikely to be a driver of this tumour as it is a tumour suppressor gene (Cichowski and Jacks,
2001). One copy of CBFB remains in tact, and without evidence of a fusion with MYH11 or
deactivation of RUNX1 this gene is also unlikely to be a driver (Banerji et al., 2012).

5.5 Mutational Signatures

Mutational signature analysis was restricted to nine selected signatures that have been called
de novo by Jason Pitt on a large set of breast cancer exomes from Nigerian patients, also part
of the WABCS project (Pitt et al., 2018). The signatures found have been matched against the
COSMIC signatures to determine the labels (Forbes et al., 2017). I subsequently quantified
the activity of each of the nine signatures using the MutationalPatterns R package (Blokzijl
et al., 2018).
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The signatures reveal strong APOBEC activity in the clone and both subclones (Fig. 5.4).
There is a larger relative contribution of the C>T APOBEC signature in both subclones when
compared to the clone, which may be an indication that the C>T signature has a later onset
in this tumour or that the activity rate of the two APOBEC signatures varies. The other seven
signatures do not contribute substantially and their detected presence in low proportions
could be noise.

Fig. 5.4 Mutational signature analysis of SNVs assigned to the three mutation clusters reveals
steady APOBEC C>G and C>T signature activity.

Kataegis events in N010985
Region Chromosome Size (bp) Num SNVs C>A C>G C>T T>G

1 2 12356 23 3 10 10 0
2 17 1063 11 2 0 7 2
3 19 6079 13 1 6 6 0
4 20 10666 35 3 22 10 0

Table 5.1 Four regions containing kataegis have been identified in N010985. All four regions
contain a large proportion of C>G and C>T mutations associated with APOBEC activity.
Regions 1 and 3 contain an equal number of C>Gs and C>Ts, while regions 2 and 4 show an
imbalance between the two types of substitutions. No T>A and T>C substitutions have been
identified in any of the regions.

5.6 Kataegis

APOBEC activity is associated with local hypermutation, known as kataegis (Nik-Zainal et al.,
2012b). Regions containing kataegis are obtained by first segmenting the intermutational
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Fig. 5.5 Overview of four kataegis regions found in N010985. Regions 2 and 3 appear to be
subclonal, while regions 1 and 4 may consist of multiple kataegis events. All four regions
predominantly contain SNVs in APOBEC C>G and C>T contexts.

distance using (i.e. grouping mutations in stretches of similar distance) and subsequently
selecting regions with a consistent short distance. The distance threshold is set depending on
the mutation rate of the tumour: it must be below an average of 100 base-pair in tumours
with over 90,000 SNVs, 250 in tumours with between 50,000 and 90,000 SNVs, 500 when
between 10,000 and 50,000 and the threshold is set to 1,000 base-pair below 10,000 SNVs.

I identify four regions are with local hypermutation in this tumour (Table 5.1). All four
regions contain SNVs that can be explained as the result of APOBEC signature activity. Two
regions show an imbalance between the number of C>G and C>T substitutions, with region
2 containing no C>Gs and region 4 containing more than double the number of C>Gs. This
suggest that both APOBEC signatures can independently generate kataegis events and that
some of the regions identified may be a combination of multiple events.

SNVs in kataegis regions are routinely excluded from subclonal architecture inference.
The localised hypermutation causes reads to contain multiple variants, which may impact
the read alignment quality and result in more variable VAFs. However, analysis of the raw
CCF estimates of the SNVs in the four regions suggests regions 2 and 3 contain subclonal
kataegis events (Fig. 5.5). There appears to be separation between C>G and C>T SNVs in
region 4, with the C>G SNVs possibly belonging to cluster 2.
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Fig. 5.6 Timing of gains analysis showing all gains with at least 10 SNVs. The y-axis
represents the relative ordering, with a low value meaning the gain occurred relatively early
according to the mutation data on the segment. The thin vertical lines are confidence intervals.

5.7 The life history of N010985

Analysis of the timing of gains (Fig. 5.6) reveals that gains on chromosome 17, 20 and 1q
are early, followed by a gain of chromsome arm 5p. This analysis utilises the ratio of SNVs
that are on multiple copies and on a single chromosome copy, where a low ratio indicates the
gain is early. Timing of gains was performed using cancerTiming (Purdom et al., 2013), with
segments restricted to those with 10 or more SNVs.

Previously I have split events measured in this tumour into clonal and subclonal. The
timing of gains analysis allows for splitting clonal events into clonal early, late or undefined.
Meanwhile, potential driver mutations can also be classified by taking into account the
multiplicity.

The tumour’s life history can now be compiled from the accumulated evidence (Fig. 5.7).
It starts with deletions in NCOR1 and MAP2K4, which are subsequently gained. The loss of
17p is most likely also early as it deletes the remaining intact copy of both genes, but the loss
cannot be timed. Gains of chromosomes 1q and 20 are also early. These events appear in the
first 150 measured SNVs. Mutational signature analysis suggests both APOBEC mutational
signatures are already active.

Then follows a range of events that cannot be accurately timed. This phase contains an
SNV in CUX1 and an insertion into GATA3, in both cases on one of two available copies,
and a loss of one copy of RB1. It also contains amplifications of ERBB2 and other genes
on chromsome 17p and 20q and losses of 1p, 11 and 16q. This period represents a large
proportion of the tumour’s life history consisting of 9,647 SNVs. APOBEC signatures remain
constantly active. Multiple kataegis events with an APOBEC context are observed.

Finally, subclonally there is the second deactivating event for RB1, which suggests RB1
is the driver of a subclonal expansion. Also observed are further gains of segments on
chromosomes 11 and 17 and multiple kataegis events associated with APOBEC activity.
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The subclonal architecture leaves two possible tree representations, a branching and a
linear tree (Fig. 5.8). Phasing of SNVs did not yield a mutually exclusive pair that could
have ruled out the linear tree. It is therefore not possible to resolve the tree topology.

This life history can be put in perspective by comparing it to the combined life history
of all breast cancers (which is available as Appendix B, as it is part of the supplementary
figures of Gerstung et al. (2017)). N010985 does not have a whole genome duplication.
PCAWG tumours without a genome doubling event typically contain early gains, which is
also observed in N010985 (Appendix B Fig. A).

The overall breast cancer life history (Appendix B Fig. B) shows that loss of 17p and
13q (RB1) are indeed most likely early. The gain of 1q and driver mutations in GATA3 are
typically early, but later than losses of 17p and 13q. Mutational signature analysis of the
PCAWG breast cancers suggests that APOBEC activity is highly variable between cancers,
with some tumours showing high early or late activity, while in others APOBEC activity
remains constant (signatures 2+13 in Appendix B Fig. D/E).

These findings highlight what a subclonal reconstruction can tell about the life history of
a single cancer.

Fig. 5.7 The compiled life history for N010985. Early drivers are NCOR1 and MAP2K4
(blue square). A range of events cannot be timed and could be early or late (red square). An
RB1 mutation and two gains are subclonal (green square). APOBEC mutational signatures
are active throughout the life history of this tumour.
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Fig. 5.8 Possible trees reconstructed from the subclonal architecture. The numbers on each
node refer to the cluster number, cluster 3 is the clone. The cluster locations provide the
option of either a linear or a branching tree. Mutation phasing information did not provide
evidence to rule out one of the scenarios.





Chapter 6

Methods for a pan-cancer study of
tumour heterogeneity

6.1 Introduction

In the previous chapter I described what can be learned about a single cancer through the
application of subclonal architecture and life history methods. In this chapter I introduce
methods to scale the analysis up to many tumours. These methods have been applied to
tumours in the International Cancer Genome Consortium (ICGC) Pan-cancer Analysis of
Whole Genomes (PCAWG) project. Results obtained from the application of these methods
are described in the next chapter.

The work described in this chapter is the result of a long standing collaboration that has
occupied my whole Ph.D. This chapter therefore contains that is not solely mine; however
this additional work is essential to make this into a complete chapter. My main contribution
is the procedure that combines copy number profiles from six different methods into a robust
profile. It was also my responsibility to deliver the profiles of all PCAWG tumours. The text
describing the consensus breakpoints is based on text by Jeff Wintersinger for the Dentro et
al. manuscript. Jeff developed the consensus breakpoints component of the consensus copy
number workflow.

I have also helped lead the development of the consensus subclonal architecture procedure
that combines eleven subclonal architectures into a consensus. I was involved in calibration
of the eleven callers by extensive comparisons on real and simulated data, was involved in the
development of a simulation data set to validate the approaches and delivered the PCAWG-
wide release of the results. The brief methods described in the section about consensus
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subclonal architecture procedure below however contain methods developed by Kaixian Yu,
Maxime Tarabichi and Amit Deschwar, which included here to create a complete story.

The chapter covers a range of methods and contains text that will serve as a basis for
methods descriptions in different manuscripts, including Dentro et al. (2017, manuscript in
preparation) and Yu et al. (2017, manuscript in preparation). Fig. 6.1 is inspired by a figure
made by Jeff Wintersinger for Dentro et al.

6.2 Consensus copy number

ICGC PCAWG relied on a consensus strategy for SNVs, SVs, and indels. Calls made
separately by algorithms that are based on different principles were understood to be high-
confidence predictions. For copy number calls, we relied on a similar consensus approach,
which combined results from six individual copy number callers: ABSOLUTE (Carter
et al., 2012), ACEseq (Kleinheinz et al., 2017), Battenberg (Nik-Zainal et al., 2012b),
CloneHD (Fischer et al., 2014), JaBbA (manuscript in preparation) and Sclust (manuscript in
preparation).

Each copy number caller uses a two-step process, first segmenting the genome into
regions assumed to have a constant copy number status, then determining the clonal and
subclonal copy number states of each segment. Disagreement amongst copy number callers
arises primarily from two factors: differences in genome segmentation, and uncertainty
concerning whether a whole-genome duplication (WGD) occurred. Thus, our consensus
strategy resolved both factors for each sample, allowing us to determine a consensus copy
number state for much of the genome across samples.

6.2.1 Assumptions behind different copy number callers

Copy number callers differ in their implementation choices and underlying assumptions,
which contribute to differences in their output (Table 6.1). The copy number callers used in
this project come in two different flavours: Event based, that fit copy number per segment
(ABSOLUTE, Aceseq, Battenberg, and Sclust), and state based, that aim to explain the
observed data by the least number of copy number states (cloneHD). The former group are
more flexible to fit different copy number states, but in principle more sensitive to noise,
while the latter group is generally more conservative as it aims to minimise the number of
different copy number states.

Methods also utilise different approaches perform the fitting itself. Some callers first
fit total copy number to the coverage ratio data and then break that into allele specific calls
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(Sclust), others perform a grid-search across a range of purity and ploidy values to jointly
fit allele frequencies of heterozygous SNPs and coverage data (ABSOLUTE, Aceseq and
Battenberg) or train hidden markov models separately to each type of data (cloneHD). The
order of events, and how much trust is put in the allele frequency or coverage data determines
how sensitive the method is to noise.

Noise levels, however, will be different between methods due to differing processing
steps. Some methods perform phasing of heterozygous SNPs to reduce noise on allele
frequency data (ABSOLUTE, Aceseq and Battenberg), some count reads in 1kb bins across
the genome to obtain a smoothed out coverage track (ABSOLUTE, Aceseq, cloneHD and
Sclust) or use coverage at single SNP positions (Battenberg). Some methods correct coverage
data to remove potential wave artifacts for GC content and replication timing (ABSOLUTE
and Aceseq), just GC content (Battenberg and cloneHD) or not at all (Sclust). Noise therefore
does not only affect methods differently due to the fitting choices, noise itself will be different
due to processing choices.

Finally, approaches differ in how subclonal copy number is considered to transform a
problem of potentially millions of subclonal copy number profiles per tumour sample into
a tractable problem for which a solution can be found. To do so, assumptions are made on
the number of copy number states per segment (2 or 3 for ABSOLUTE, Battenberg and
Sclust) and how much the separate states can differ (1 copy for Battenberg and Sclust). For
the JaBbA caller there currently is neither code nor a manuscript available currently and it is
therefore omitted from this comparison.
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Fig. 6.1 Number of breakpoints for each of the methods used to create the consensus
breakpoints (the JaBbA calls are plot for reference) and the consensus structural variants
(black). cloneHD and ACEseq call more breakpoints than the other methods, hence their
characterisation as liberal methods. This figure is inspired by one made by Jeff Wintersinger.

6.2.2 Determining consensus segment breakpoints

Copy number callers segment a sample’s genome into regions assumed to have constant
copy number. Each segment is bounded by a breakpoint at either end, where breakpoints
correspond to a change in copy number. The collection of segments is then used to infer
purity and ploidy and fit to copy number states.

We observed substantial disagreement in segmentation between the different algorithms
and aimed to develop a consensus set of breakpoints, which the six callers subsequently used
to call copy number.

Jeff Wintersingers consensus strategy aims to maximise "true positive" breakpoints at
the potential cost of increasing "false negatives". Orthogonal evidence of copy number
breakpoints from structural variants was used to quantify the "true positive" and "false
negative" rate of our consensus approach. When fitting the copy number profile callers are
allowed to merge adjacent segments, therefore the cost of introducing spurious breakpoints
was less than that of missing breakpoints.

Copy number methods differed substantially in the number of breakpoints they defined
(Fig. 6.1), with some methods calling an order-of-magnitude more breakpoints than others.
Broadly speaking, these can be broken into two classes: liberal methods (ACEseq and
cloneHD) called, on average, a great many more breakpoints than conservative methods
(ABSOLUTE, Battenberg, JaBbA, and Sclust).
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Copy number methods determine breakpoints based on data derived from the sequencing
output. Methods use the BAF, logR or coverage for such purposes, sometimes in combination.
These three views have their advantages and disadvantages, as was explained in the sections
about Battenberg earlier in this thesis, which is a source of the observed differences in
segmentation between methods Furthermore, methods differ in how BAF, logR or coverage
is obtained from the sequencing data. LogR, for example, can be obtained through windows
placed across the genome (overlapping or non-overlapping) or through a set of predefined sin-
gle base genomic locations, while GC content can be corrected for using different approaches
(Benjamini and Speed, 2012; Diskin et al., 2008).

Finally, methods can call the same segment with different breakpoints. Here the imple-
mentation matters: the exact location of a breakpoint can correspond to the edge of a window,
to a known SNP or to a measured SV breakpoint. That means the called breakpoints for the
same segment can be ambiguous, especially in regions with many small segments.

The algorithm that was developed for determining consensus breakpoints draws on the
insight that regions between adjacent segments can be used to quantify a method’s uncertainty
in the exact location of the breakpoint. The segmentation released by each method consists of
a set of regions defined by the genomic loci Si and Ei, with the interval (Si,Ei) representing a
region of constant copy number. On a given chromosome, however, the region (Ei−1,Si) has
undefined copy number—the segmentation method inferred that CN status changed at some
point within this interval, but cannot pinpoint the location.

The algorithm uses the space between segments and a fixed window size to create leeway
on calls from the individual copy number methods and then looks for overlaps between
methods to define consensus breakpoints. The algorithm consists of six steps, which are
executed for each chromosome separately:

1. For each copy number segmentation method M, take each reported segment (Si,Ei),
and generate an interval spanning the end point of the current segment and the start
point of the next, (Ei − δ ,Si+1 + δ ). This interval indicates the belief of M that a
breakpoint lies somewhere in this interval, permitting the breakpoint to move δ bases
upstream or downstream beyond the reported boundaries. Here, we set δ = 50 kb,
which we selected after manually comparing the breakpoints generated by a range
of δ values to the underlying signal in the data. δ = 50 kb achieved a reasonable
balance between false-positive consensus breakpoints (when δ was too large) and
false-negative consensus breakpoints (when δ was too small).

2. Compute the intersection of intervals between the methods. Scanning from the start of
the chromosome, find the first intersection Is supported by the threshold methods T .
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We defined T to be any combination of at least three of the six copy number methods,
or any combination of two of the conservative methods (i.e., ABSOLUTE, Battenberg,
JaBbA, and Sclust). This avoided calling consensus breakpoints supported by only the
two liberal methods (ACEseq and cloneHD).

3. For a given intersection Is: select all reported breakpoints falling within Is. Score each
breakpoint according to the size of the associated gap Gi = rank(Si+1 −Ei), where Gi

corresponds to the rank in the empirical cumulative distribution of all gaps generated by
the given method. Thus, if a method assigns a large gap between two segments relative
to the other segments it generates, its uncertainty in breakpoint placement is understood
to be relatively large; conversely, a relatively small gap indicates high certainty. The
consensus breakpoint of the intersection is then the breakpoint with the smallest Gi.
In the case that two breakpoints in the intersection have the same Gi (which occurs,
e.g., because both Ei and Si+1 fell in the intersection), arbitrarily prefer end locus to
start locus and record this as the single consensus breakpoint. Otherwise, in the rare
case that no input start and end loci fall in the intersection, report the upstream-most
end of the intersection as the consensus breakpoint. Such cases arise when only the δ

bases padding each input segment intersect, meaning that the intersection as a whole is
relatively small, and that either end of the intersection can be taken as a reasonable
representation of a breakpoint’s position.

4. Remove all intervals that contributed to the intersection. Return to step 2. Repeat until
no intersections passing the threshold remain on the chromosome.

5. Add PCAWG consensus SVs to the consensus breakpoint set. To do so, find all
consensus breakpoints within 100 kb of a consensus SV. Replace the consensus BP
with the consensus SV, as the SV presumably represents the same mutational event,
but with greater precision concerning position. For any SVs lacking a consensus BP
within 100 kb, add the SV as an additional consensus breakpoint.

6. Add breakpoints at centromeres and telomeres as necessary, as copy number status
cannot be called across these boundaries. Use the chromosome lengths and centromere
start and end locations reported in the hg19 human reference genome. If any centromere
start or end lacks a consensus breakpoint within 1 Mb, add an additional consensus BP
at that location; if a consensus breakpoint occurs within the centromere, move it to the
start or end of the centromere, according to whichever point is closer. Likewise, if no
breakpoint occurs within 1 Mb of a chromosome start or end position (representing
telomere locations), add an additional breakpoint at the chromosome start or end.
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The output of this approach is a list of breakpoints per chromosome. Each pair of adjacent
breakpoints corresponds to a consensus segment, for which the six methods produced copy
number calls. The next step is to combine those calls into a consensus profile.

6.2.3 Constructing consensus copy number

The consensus copy number profile should contain a call for every consensus segment, if
there are enough calls. To do so I first identified 6 ways of extracting agreement between the
CNA callers on a single segment (summarised in table 6.2):

(a) All methods agree on a clonal copy number call (both major and minor alleles).

(b) A single method disagrees on the copy number state of a single segment, leaving the call
from this method out creates agreement.

(c) A single method disagrees on the ploidy of a sample, leaving the profile out creates
agreement.

(d) The strict majority of available methods agree on clonal copy number.

(e) Complete or leave-one-out agreement is achieved by rounding subclonal copy number.

(f) Majority vote is achieved after rounding subclonal copy number.

For each sample, every segment goes through the list starting at a, until agreement is
reached. On average, that obtains consensus on 90% of the genome in 86% of samples after
reaching level f (Fig. 6.2). The segments that remain without a consensus call go through a
second approach that is designed to find a call from a single method to be selected into the
consensus profile.

To select a call I first calculate, for every CNA method, what proportion of the consensus
profile it agrees with after reaching level f . This allows ranking of the methods, where an
excluded profile (due to disagreement on the ploidy) is not included (see filtering below).
The following additional levels were then devised:

(g) Take the call from the best method. If there is consensus for the copy number state of
one of the alleles we require the best method to agree with it (see rounding below).

(h) Take the call from another method, iterating from the best to the worst performing
method.
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Consensus copy number levels
Star Level Description

3 a Complete clonal agreement
b Clonal agreement of n-1 methods
c Clonal agreement excluding ploidy outliers

2 d Strict majority vote on clonal copy number
e Complete agreement after rounding subclonal copy number
f Strict majority vote after rounding subclonal copy number

1 g Best method, one allele with consensus
h Best method, no consensus on either allele
i No ploidy consensus from panel of experts

Table 6.2 Each consensus copy number segment is assigned a star quality and a confidence
level. The level is based on how the consensus is obtained and can be used as a measure
of the amount of confidence in the call. The star assignment is aimed to capture the quality
of the copy number call in a broad scale that can be understood without details of how the
consensus was established.

A special level was added to distinguish between samples where the expert panel did not
reach consensus on the ploidy of a sample during a review of all the profiles and raw data
for that sample. These copy number profiles were assigned copy number states through the
procedure detailed above and each segment received assignment of the level corresponding
to how consensus was obtained. But segments were later re-marked as level i to denote the
extra uncertainty about the assigned copy number states.

I then devised a star rating system that denotes the amount of confidence in each of the
calls. Levels a, b and c are the most strict and require all-but-one methods to agree at the
least. These segments are therefore assigned 3 stars. Segments for which a majority of the
methods agree on either clonal or rounded clonal copy number are assigned 2 stars (levels d,
e, f ). The remaining levels (g, h, i) receive 1 star to denote the lowest confidence.

6.2.4 Rounding subclonal copy number

Subclonal copy number is reported in three different ways across the 6 methods. ABSOLUTE
reports up to 3 different copy number states per segment, of which 1 is termed the ancestral
state. Battenberg and Sclust report subclonal copy number as a mixture of two states, while
ACEseq returns a single non-integer state (i.e. a mixture). Both cloneHD and JaBbA provided
clonal calls only.

Rounded profiles were obtained in the following way:
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Fig. 6.2 The fraction of the genome for which a consensus can be created increases as more
levels are added. Levels correspond to how consensus was obtained. In general levels a-c
are the highest confidence, levels d-f medium and levels g-i low (not show in this figure).
Agreement on over 90% of the genome is reached for 2406 out of 2778 samples (86%).

• ABSOLUTE: 6 ways, corresponding to rounding both alleles up and down of the
ancestral state, the highest CCF state and the lowest CCF state.

• Battenberg and Sclust: 4 ways, the highest CCF state and the lowest CCF state.

• ACEseq: 4 ways, rounding both alleles up and down.

To create a consensus call for a segment I first obtain an inventory of the available copy
number states across all roundings and the clonal calls from cloneHD and JaBbA are included.
If there is a major/minor allele combination that satisfies the minimum number of methods
criterion (either leave-one-out or majority vote) we select that state as the consensus.

If no agreement is reached I attempt to establish consensus by voting for the major and
minor allele separately. An allele is accepted if it passes the minimum number of methods
threshold. In some cases this leads to consensus on one of the alleles. The state of that allele
is saved and fed into levels g and h, where a call is selected where one of the alleles agrees
with the established consensus allele.

6.2.5 Chromosomes X and Y

Fewer methods report on X and Y chromosomes:

• X: ABSOLUTE, Battenberg (females), ACEseq, cloneHD and JaBbA

• Y: ABSOLUTE, ACEseq and JaBbA

The required number of methods to agree for the separate levels are adjusted accordingly.
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6.2.6 Panel of experts review

For a range of samples the copy number callers did not unanimously agree on the ploidy.
An initial computational analysis developed by Jeff Wintersinger revealed up to 361 profiles
where affected. Jeff’s approach was developed to automatically adjust a copy number profile
in two ways: Halve the ploidy (the effect of removing a whole genome duplication), or
subtracting 1 copy from each allele (the effect of removing a normal genome from the profile).
A sample name was saved if an adjustment yielded a larger agreement between the methods.
An additional 315 tumours did not reach over 20% agreement in a first run of the consensus
approach, these tumours were also reviewed.

The samples have been put through a panel of experts review procedure. Initially to
understand where the discrepancy lay between the profiles, and later to resolve the differences.
The discrepancy cases can be grouped into two categories: Erroneous addition or omission
of a genome doubling, or a method specific error scenario. We opted to use the manual
approach after initial inspection of 100 samples because fixing the method specific scenarios
would have set the process back for months, while there was only a short timeline possible to
make the consensus copy number calls available PCAWG-wide.

The expert panel consisted of three core and five alternating members and sat down
for four afternoon sessions. Each member prepared a figure per sample with all possibly
interesting information. A central figure was used to feed the discussion contained: Copy
number profiles from all methods and raw BAF, copy ratio (logR) and multiplicity values from
ABSOLUTE. My personal figures contained the Battenberg profile, DPClust reconstruction,
multiplicity (Fig. 6.3) and copy ratio (Fig. 6.4); an assembly of figures shown in the QC
chapter of this thesis.

During the review a sample was marked as WGD or no_WGD to reflect a high or low
ploidy solution the panel agreed upon. A sample was only marked on unanimous agreement
amongst the panel and a maximum of roughly two minutes was maintained to discuss a
sample. A sample was marked unkown if no agreement could be obtained within the set time.
Over time, we observed that methods often show similar behaviour in particular scenarios,
which made it easy to determine the disagreeing method as an outlier.

For example, Aceseq showed difficulty calling a copy number profiles with a low purity,
which has since been improved. It will not only call a much higher purity, it also shifts the
copy number profile up leaving a profile without losses and with empty copy number states.
Figures 6.3 and 6.4 show an example, lung squamous cell carcinoma SA305293. The copy
number profiles plot it showed Aceseq as calling a higher ploidy by adding an extra copy to
every allele on every chromosome. The ABSOLUTE allele specific copy ratio plot clearly
showed four separate states, suggesting a genome doubling. Adding a copy to every allele on
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chromsome 17 would leave one copy of either allele active, and it would remove all other
LOH (the Battenberg QC figure shows LOH at chromosome 17p, where TP53 resides (Fig.
6.3). Finally, the Battenberg raw data figure shows that this is a low purity tumour (separation
of purple and blue lines in the bottom plot) and it confirms that, for example, chromosome 4
has the lowest coverage (top) and lowest minor allele frequency (bottom), suggesting that
chromosome 4 holds the profile up. There was little discussion about this case, it is clearly
whole genome doubled and should have LOH on chromosomes 4 and 17p.

Another example are cases with very heavy, wave-like, coverage artifacts where some
methods experienced difficulties. Figures 6.5 and 6.6 show an example, liver cancer
SA529774. cloneHD calls a large number of segments that have been fit with an addi-
tional gain, creating a much more fragmented genome as compared to the other methods. The
Battenberg profile (Fig. 6.5) shows a clean fit (bottom), with a clear clonal mutation cluster
(top) and mutation copy number states at integer values (middle), while the raw coverage log
ratio plot (Fig. 6.6, top) confirms very noisy signal. Here the panel decided that one method
gained a better fit by following the noise, whilst there is no clear evidence of additional gains,
which could have lead to the calling of a whole genome doubling.

The above two examples occurred commonly enough for the panel to recognise the sce-
nario and quickly resolve the discrepancy. In some cases however, the panel could not agree
within the time limit we set for discussing a sample (which was set to 2 minutes). Figures
6.7 and 6.8 show such an example, pancreatic adenocarcinoma SA533746. ABSOLUTE
and cloneHD disagree with Aceseq, Battenberg and Sclust about whether there has been a
whole genome doubling. The discussion focussed on whether the allele ratio plot showed
4 distinct states and whether the subclonal segments on chromosome 4 could be fit with a
clonal state when the ploidy was doubled (bottom plot Fig. 6.7). I maintain that neither of
these segments would become clonal when doubling the ploidy and see no evidence of a
clear mutation cluster centered around 50% of tumour cells (top and middle plots Fig. 6.7).
However, within the group there was considerable doubt. We did not reach consensus within
the time limits and therefore marked it as unknown.

Overall, the panel did not manage to agree on the WGD status of 38 cases. All segments
of these genomes have been re-marked with confidence level i accordingly.

6.2.7 Determining consensus purity

To obtain a consensus purity I extended the calls from the 6 CNA methods with calls from a
number of SNV based approaches: CliP, CTPsingle, PhyloWGS, cloneHD (on SNVs) and
Ccube. Outlier calls are first removed for CNA and SNV methods separately (see filtering
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Fig. 6.3 The Battenberg QC figure for sample SA305293. It contains the mutation clustering
result (top) with a histogram containing the raw CCF values of SNVs in the background
and a density through where weight occurs in the foreground, SNV cluster locations are
marked. The middle plot shows a histogram of mutation copy number, the raw estimate of
the number of chromosomes an SNV is thought to be carried by. The bottom figure contains
the Battenberg copy number profile with total copy number in orange and the minor allele in
grey. This sample does not violate any of the QC metrics, and the three views of the same
tumour correspond well (i.e. a clear clonal SNV cluster, SNV peaks at integer mutation copy
number states 1 and 2 and a lot of allele specific copy number states at 2 that explain the ratio
of SNVs on 1 and 2 chromosome copies.)

below). For each sample I establish a density over the combined data. Analogous to taking
the mode we select the call that is closest to the highest peak in the density as the consensus.

There is a larger discrepancy in purity calls from CNA methods on samples with few
copy number alterations. I therefore calculate the density over the calls from SNV based
methods only for samples where less than 8% of the genome is altered by CNAs.
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Fig. 6.4 The raw data that Battenberg produces for sample SA305293. The top figure shows
the copy ratio (the R in logR), the bottom figure shows the allele specific copy ratio (R
multiplied by the BAF). The top figure shows that the coverage of this sample is clean (SNP
dots fall in clear straight green lines) and it shows which genomic regions correspond to the
lowest relative coverage in this sample, which can be used to identify which segments are
of the lowest total copy number. The bottom figure contains information on how the total
copy number is relatively split into major (purple) and minor allele (blue). Focussing on
chromosome 4, the figure shows it has the lowest relative coverage and the BAF of the alleles
is split. That means this segment is a candidate for a 1+0 or 2+0 fit. Such reasoning helps to
read a copy number profile from the raw data.

Finally, the median absolute deviation of the purity calls on a sample is calculated to
capture the amount of agreement between the methods and is used as a measure of confidence.

6.2.8 Filtering

After the expert panel review of ploidy-uncertain cases, a rough reference ploidy can be
obtained for almost all samples. The methods either all agreed on large portions of the
genome and therefore, by extension, on the ploidy or certain ploidy calls were overruled by
the expert panel.

With the accepted ploidies in hand it became possible to calculate a rough reference
ploidy that serves to overrule calls from individual CNA callers. This is necessary because
copy number callers can return a different ploidy in different runs and I required a way to
automatically accept or reject a ploidy call. A method is allowed to deviate from the reference
ploidy by a relative amount to allow for larger discrepancies on higher ploidy calls. I set the
threshold at 0.25 times the reference ploidy. If a profile differed by more than this threshold,
it was automatically overruled and excluded from the procedure for both consensus copy
number and purity creation.
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Fig. 6.5 The DPClust and Battenberg results show a clean CCF (top) and mutation copy
number (middle) space which corresponds to a large clonal peak, consisting of mostly SNVs
on one chromosome copy and a much smaller number of SNVs on two copies. The copy
number profile (bottom) shows a relatively clean fit, with quite a few small segments that are
fit with a near clonal copy number state. It shows Battenberg accounts for the noise in this
sample.

Filtering on the purity calls was performed to remove outliers. A purity call was filtered
out if it differed from all other non-ploidy-overruled purity calls by more than 0.2. This
method was applied separately to SNV based purity values.

Finally, I also excluded calls on complex regions chromosomes 13p, 14p, 15p and 21p
from some methods as they consistently appeared as losses across the entire data set.

6.3 Consensus subclonal architecture

With consensus copy number profiles established we sought to construct consensus subclonal
architectures. A similar philosophy to the consensus copy number is applied: combine
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Fig. 6.6 The raw Battenberg data show what is causing problems when fitting a copy number
profile for sample SA529774. The relative coverage ratio (top) is very messy and affects the
allele ratio space by adding noise to the dots (bottom). This effect is most likely due to either
the tumour or the normal containing strong coverage bias across the genome.

the output from multiple methods, which allows for recovery from a mistake by a single
method. We have developed three orthogonal approaches that combine output from eleven
individual callers (Bayclone (Sengupta et al., 2015), Ccube (manuscript in preparation), CliP
(manuscript in preparation), CloneHD (Fischer et al., 2014), CTPsingle (Donmez et al., 2016),
DPClust (Nik-Zainal et al., 2012b), Phylogic (Landau et al., 2013), PhyloWGS (Deshwar
et al., 2015), PyClone (Roth et al., 2014), Sclust (Cun et al., 2018) and SVclone (Cmero
et al., 2017)) into a consensus. We show through simulated data that the three approaches are
equivalent and are consistently ranked amongst the top performing methods.

6.3.1 Three consensus approaches

Weighted Median (WeMe, by Amit Deshwar) - takes the cluster location and sizes reported
by the individual methods and combines the output by minimising the earth movers distance
(EMD) to the median clustering. Where the median clustering is defined as the clustering
minimises its EMD to all input clusterings. To constrain the number of clusters it then
performs a grid search over cluster location and size parameters to fit the median number of
clusters obtained from the provided input.

Cluster ID Consensus Clustering (CICC, by Maxime Tarabichi) - uses groups of
SNVs that are consistently assigned to the same cluster across methods. It first creates a
vector for each mutation with as contents the cluster to which the eleven methods have
assigned the mutation. Then, for each pair of vectors, a distance is calculated, resulting in a
distance matrix. Hierarchical clustering is performed to cluster the mutations. The resulting
tree is then cut to the median number of clusters that the eleven methods reported, rounding
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Fig. 6.7 During the review it was suggested that segments on chromosome 4 could be a
separate clonal state when sample SA533746 is fit with a whole genome doubling. In that
case one would expect these segments to be fit with subclonal copy number in exactly 50% of
tumour cells if the profile is fit without a doubling. This figure shows that subclonal segments
on chromosome 4 are not exactly within two clonal copy number states, which supports the
theory that this sample has not had a whole genome duplication.

up when that number is not an integer, which results in a number of consensus clusters
with their mutation assignments. Cluster locations are then determined by first calculating
a consensus CCF estimate through the equations 2.14 and 2.16 in chapter 2, and then per
cluster taking the median CCF of the SNVs assigned to the cluster.

Sparse Clustering for Subclonal Reconstruction (CSR, by Kaixian Yu) - starts from
a mutation-to-mutation co-clustering matrix, in which cell (i, j) contains the probability that
mutation i belongs to the same cluster as mutation j. The input matrix M is deconvolved
using dictionary learning into a dictionary matrix D and a sparse code matrix A. A contains a
sparse representation of the structure in M by its most essential components, which makes
the mutations better separable. k-means clustering is then applied to A with k set to the
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Fig. 6.8 The raw Battenberg data for sample SA533746 shows that the coverage ratio is clean
(top).

median number of clusters called by the eleven methods. Cluster locations are obtained by
first calculating the median cellular prevalence (CP) of each SNV across the eleven methods
and then taking the average per cluster.

6.3.2 Performance comparison

To asses the performance of the consensus methods we compare the three consensus ap-
proaches with the eleven input methods and three methods that produce random solutions,
that do not serve as input to the consensus, on the simulated data that was introduced in
section 3.3 as part of the validation chapter.

In the validation chapter I also introduced three metrics that can be used to compare the
results of a method to the truth or to another method: number of subclones, fraction of clonal
mutations and the root-mean-squared-error (RMSE) between mutation assignments. The
three metrics can be combined into a single measure by calculating the rank sum across the
metrics for each method. The rank sums are normalised for whether the ranking is increasing
or decreasing, resulting sum values between a best case 3/17 and worst case 3*17 as there
are 17 methods.

Figure 6.10 shows the rank sums of all samples across the 17 methods when they are
compared to the truth, with a black bar indicating the median rank of the results of that
method and the red bar denoting the mean. A dashed line is drawn that corresponds to the
lowest median rank across the methods.

In general there are a number of methods that show a very similar performance. Phylogic,
DPClust, CCube, PyClone, PhyloWGS and all three consensus methods have similar median
ranks, with cloneHD and SVclone and CTPsingle not far off. The first group is followed
by a second group that includes Sclust, CliP, BayClone and the informed method from
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(a) Good agreement on purity for sample SA6251.

(b) Methods disagree on the purity for sample SA528952.

Fig. 6.9 Consensus purity establishment for two example cases. Each figure contains the
purity calls from the CNA methods on the left and all methods on the right. The top table on
the far right contains information about where the peaks in density are for CNA methods only,
SNV methods only and all methods. The bottom contains information about which method
agrees best with the consensus. The dashed line in the CNA purity figure contains the median
purity from CNA methods (labelled as current consensus in the table). In scenario (a) there
is a good agreement between the methods and a good agreement between CNA and SNV
purities. This represents most tumours. I therefore opted to establish a consensus based on
the overall density peak, which amounts to the mode across all CNA and SNV methods. The
purity value that is closest to the peak location is then chosen as the consensus. Scenario (b)
can occur when a copy number profile contains no clonal alterations. Not all CNA methods
are capable of handling these cases, which results in disagreement and possibly an incorrect
call. Inclusion of the SNV data leads shows that SNV methods agree with the lower purity
value. To remove the uncertainty that CNA methods introduce in this scenario I establish
consensus by evaluating the SNV methods only.

RandomClone. Finally, the third group contains the remaining two RandomClone methods
that perform considerably worse on this dataset.

These results show that the three consensus approaches have a performance comparable to
the best individual methods. It also shows that all eleven methods comfortably outperform a
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Fig. 6.10 Ranksum comparison of subclonal reconstructions across the methods. The three
consensus approaches systematically perform comparable to the best individual method.
There appear to be two groups of individual callers: Those that perform comparable to the
consensus or are close to it, and those that perform similar to the RandomClone informed
method. All methods comfortably outperform simple random approaches. These findings
show that the consensus are not sensitive to an outlier solution or a poorly performing caller.

simple random approach (RandomClone stick) and assigning all mutations to a single cluster
(RandomClone single). However, not all methods outperform a slightly more sophisticated
random method (RandomClone informed) and these methods have been included into the
consensus approaches. That the consensus methods show a comparable performance to the
best methods shows that the consensus is invariant to the inclusion of a poor solution when it
is constructed.

Figure 6.11 contains a pairwise comparison between the 17 methods. Each square
contains a matrix with a comparison between a pair of methods (i, j) that is sorted by number
of subclones (columns) and number of reads per chromosome copy (rows). A cell in the
matrix is coloured blue if the column method has a higher ranking than the row method on a
sample, it’s coloured red if the row method performs better, while it’s white if there is not
much difference. These figures allow for exploration of performance in relation to increasing
number of subclones and increasing number of reads per chromosome copy.

Similar to fig. 6.10, there appear to be three groups of methods, but their members
are slightly different. Phylogic, DPClust, CCube, PyClone and PhyWGS form a block of
white or lightly coloured squares in relation to each other, meaning these methods correlate
very well. The second group is formed of SVclone, Sclust, CliP, CTPsingle, BayClone and
the informed RandomClone method. The third group contains the final two RandomClone
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methods that contain nearly completely blue squares on their rows indicating they are nearly
always outperformed by the callers.
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The consensus methods again show a very similar performance to each other and all three
perform comparable to the methods in the first group. It does however appear that CICC
performs better than CSR on low numbers of subclones. The squares comparing WM to CSR
and CICC appear more pale, indicating that their solutions are very similar in general.

Combined, these findings show that a consensus approach is robust against an outlier
solution. And because WM appears to correspond best to both other consensus methods we
opted to use that for further analysis of which results are reported in the next chapter.

6.4 Purity, ploidy and sequencing coverage determine abil-
ity to detect subclones

Subclonal reconstruction depends on the ability to call subclonal SNVs in a sequenced
tumour. The number of reads required to call a SNV depends on the properties of the SNV
caller, and on the sequencing error rate distribution. As a rough rule of thumb, three mutant
reads are typically required to detect an SNV, and mutations present in small fractions of
tumour cells may be missed. The coverage at which the tumour was sequenced, the admixture
of tumour and normal cells in the sequencing sample and the total amount of DNA from
each tumour cell all contribute to the ability to detect clonal and subclonal mutations. The
following formula combines these three factors into a power metric

ps = cs
ρ

ρψt +(1−ρ)ψn
(6.1)

Here, cs is the sequencing coverage of the tumour sample, ρ is the tumour purity, and ψt

and ψn are the ploidy of the tumour and normal cells respectively (the amount of genomic
material per cell, expressed in number of haploid genome copies). ps is equivalent to the
number of reads per chromosome copy and represents the expected number of reads reporting
a clonal SNV. If, for example, ps equals 10 and an SNV can be detected when there are three
mutant reads, then (as an approximation) mutations present a subclone taking up 30% of
tumour cells can be detected.

Figure 6.12 shows that this theoretical bound roughly corresponds to what is possible in
real data. Each dot represents a tumour in the ICGC PCAWG data set. The left hand plot
shows that the ability to detect subclones goes up as the number of reads per chromosome
copy increases, with tumours without subclones, with 1, 2 and more subclones showing
clearly visible ’bands’. The right hand plot shows the minimum CCF of the detected mutation
clusters, plot against the number of reads per chromosome copy. The dashed line represents
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Fig. 6.12 The number of reads per chromosome copy, calculated by combining tumour purity,
ploidy and sequencing coverage, determines the power to detect subclones (left). 10 reads
per chromosome copy allows for detection of a subclone at 30% of tumour cells.

our theoretical bound of 10. The figure indicates that at 10 reads per chromosome copy we
almost have the power to detect a subclone at 30% of tumour cells.

6.5 Correcting for the winner’s curse

Figure 6.13 shows the CCF space for the same subclonal architecture and copy number
profile, simulated four times with different coverage values. As coverage, and therefore the
number of reads per chromosome copy, increases the light green vertical lines move closer
to the black vertical lines, which indicates that the mean CCF of mutations visible in the
plot moves closer to the true CCF of the clusters from which they were generated. This
shifting of the weight of the clusters is caused by the winner’s curse due to the clusters being
represented by the mutations that by chance made it over the threshold of minimum number
of supporting reads required.

As the weight of the clusters is shifted, subclonal reconstruction algorithms will also
infer a shifted cluster location (if the clusters can be disentangled at all, see the top left plot
in Fig 6.13). To obtain the true cluster locations and their sizes Amit Deshwar and Ignaty
Leshchiner developed approaches to correct for this winner’s curse effect. One approach
simulates additional mutations and iteratively adjusts the cluster location depending on how
much the cluster location changes. The process converges when the true cluster location has
been obtained, with a corresponding size estimate from the simulated mutations. A second
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Fig. 6.13 The number of reads per chromosome copy determines the power to detect sub-
clones. This figure shows the same tumour simulated four times with the same purity and
ploidy, with a range of coverage values: 30x, 60x, 90x and 120x. The dashed black lines
represent the true cluster locations, while the light green lines represent the mean CCF
per cluster of mutations shown. The histogram clearly shows the effect of increasing the
reads per chromosome copy: the left hand tail extends further towards 0. As the power
goes up the three clusters are more fully represented, resulting in the light green bars (mean
CCF of mutations present) moving towards the true cluster locations (black dashed lines).
This shifting of the weight of the clusters is called the winner’s curse as clusters are only
represented by the mutations that by chance are supported by enough reads to be called.

approach uses moment matching to match the observed distribution to a library of available
shapes and picks the shape that best corresponds to the observed CCF distribution. In the
next chapter we correct the ICGC PCAWG data set for the winner’s curse effect by taking
the average adjustment between the two methods.





Chapter 7

A pan-cancer overview of tumour
heterogeneity

7.1 Introduction

In the previous chapters I have introduced methods to analyse copy number and the subclonal
architecture of cancers. Individual methods were introduced as well as approaches to
construct a consensus copy number profile and a consensus subclonal architecture. These
approaches were applied to the 2,778 cancer genomes contained within the ICGC PCAWG
project (a description of how the consensus subclonal architecture was obtained can be
found in the next section). This chapter describes the pan-cancer landscape of intra-tumour
heterogeneity and evolution, as it emerges from the consensus results. The chapter, for the
most part, covers the results that will be reported in Dentro et al. (manuscript in preparation)
and also contains a high-level overview of results described in Gerstung et al. (2017), which is
attached to this thesis as Appendix A. The results reported in this chapter are the culmination
of my Ph.D. and are the result of a process in which I have been deeply involved over the last
3.5 years. These results also represent the outcome of a long standing collaboration between
members of the PCAWG Evolution and Heterogeneity working group, without whom this
project could not have succeeded. The figures in this chapter will appear in Dentro et al.
Figs. 7.1 and 7.2 have been created by Kerstin Haase and Figs. 7.7 and 7.8 are by Maxime
Tarabichi. All figures are used with permission. Fig. 7.4 is inspired by the driver figure made
by Ignaty Leshchiner for the Dentro et al. manuscript.
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7.2 Methods

We set out to obtain a robust consensus subclonal architecture for every tumour based on the
consensus approaches introduced previously. We first applied the consensus copy number
procedure to combine profiles from the six different copy number callers (ABSOLUTE,
Carter et al. (2012); ACEseq, Kleinheinz et al. (2017); Battenberg, Nik-Zainal et al. (2012a);
cloneHD, Fischer et al. (2014), Sclust Cun et al. (2018) and JaBbA (manuscript in prepa-
ration)) into a robust, high confidence consensus. Every copy number profile consists of
a series of segments with each an assigned confidence level. Not every segment in every
genome is of high confidence and an incorrect copy number call for a single segment could
cause a subclonal architecture method to call a spurious mutation cluster, as the CCF values
of mutations on that copy number segment would be incorrectly calculated from the VAF.
I therefore created a subset of high confidence segments by ordering the segments of each
tumour by their confidence level and select segments from the top until at least 75% of
the genome was covered. The 11 subclonal architecture callers were restricted to use copy
number and SNVs in the selected regions only.

The 11 subclonal architecture callers (BayClone-C, Sengupta et al. (2015); cloneHD,
Fischer et al. (2014); CTPSingle, Donmez et al. (2016); DPClust, Bolli et al. (2014), Phylogic,
Landau et al. (2013); PhyloWGS, Deshwar et al. (2015); PyClone, Roth et al. (2014);
SVclone, Cmero et al. (2017), Ccube (manuscript in preparation), CliP (manuscript in
preparation) and Sclust, Cun et al. (2018)) produced three key features to describe every
tumour in the data set: The number of mutation clusters identified, properties of those clusters
(the estimated number of mutations and the proportion of tumour cells that each cluster
represents) and mutation assignments (either probabilistic or hard assignments). The three
consensus subclonal architecture procedures were applied to produce a consensus set of
mutation clusters described by a location (proportion of tumour cells estimate) and size
(number of SNVs that the cluster contains).

I then applied the MutationTimer pipeline (Gerstung et al., 2017) to assign all available
consensus SNVs (including the SNVs that were previously excluded when selecting highly
confident copy number segments) and all indels and SVs for which allele frequencies were
available. MutationTimer assumes each mutation cluster can be modelled by a beta-binomial
and calculates probabilities for each mutation belonging to each cluster whilst also taking
into account the size of the mutation clusters. It produced the final consensus subclonal
architecture with the aforementioned key features, while also performing timing of mutations
relative to gains to classify mutations in clonal early, clonal not specified, clonal late and
subclonal. MutationTimer does this by evaluating the multiplicity state of a mutation and the
copy number of the segment on which the mutation resides. If the mutation is on a gained
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Fig. 7.1 A pan-cancer overview of intra-tumour heterogeneity. The top bar shows the total
number of tumours per cancer type and the proportion of tumours where we identify zero
(orange), one, two or three+ subclones (shades of blue). Below are the proportion of subclonal
SNVs and CNAs, where the CNAs represent tumours with at least 5 whole chromosome arm
CNA events. Whole genome duplication rate is show in boxes coloured red (high duplication
rate) to white (low) and average reads per chromosome copy (introduced in section 6.4) is
shown in shades of green. The most changing mutational signature is shown in purple, where
the number refers to the COSMIC signature.

chromosome and has a multiplicity greater than one it is clonal early, if the mutation is on a
gained chromosome and has a multiplicity equal to one it is clonal late, if the mutation falls
in a region that has normal diploid copy number or is a loss it will classify clonal mutations
as clonal not specified and if the cluster with the highest assignment probabality is subclonal,
then the mutation is assigned subclonal.

The results reported in this chapter are from the WeMe consensus method, but due to
the high similarity between the consensus subclonal reconstruction methods we could have
chosen CSR or CICC and have shown the same basic results (Yu et al. 2017, manuscript in
preparation).

7.3 Nearly all primary tumours contain detectable subclones

Figure 7.1 shows the pan-cancer overview of intra-tumour heterogeneity (ITH) that our
analysis reveals. The figure contains all tumours with a number of reads per chromosome
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copy of 10 or more (which allows us to find a subclone at 30% of tumour cells or higher)
to exclude tumours where not enough subclonal signal is obtained due to a combination of
purity, ploidy and sequencing coverage. We selected all primary tumours and reduced multi-
sample cases to their preferred tumour (a label that is provided by the PCAWG consortium).
As there are only 2 primary melanoma tumours available in PCAWG, we instead included
melanoma metastasis. The remaining metastasis and relapse tumours are discussed in the
next section. The figure shows fractions of subclonal SNVs and CNAs. The fraction of
subclonal CNAs indicates the number of arm-level subclonal CNAs over the total number
of arm-level CNAs per tumour. A tumour is only included in the CNA plot if it’s profile
contains at least 5 arm-level events in total. Cancer types are sorted by the median proportion
of subclonal SNVs.

The overview across 36 histologically distinct cancer types reveals that 96.7% of the 1,801
primary tumours contain at least one subclone. Patterns of ITH differ markedly between types
of cancer: Prostate, uterus and esophageal adenocarcinomas show high proportions of both
subclonal SNVs and CNAs. Kidney chromophobe and pancreatic endocrine tumours also
show high proportions of subclonal SNVs, but differ from the previous group by containing
few subclonal CNAs. On the other hand, hepatocellular carcinomas and squamous cell
carcinomas of head-and-neck and lung contain low proportions of subclonal SNVs, but high
proportions of subclonal CNAs. Finally, in osteosarcomas we find a high proportion of
subclonal CNAs and varying degrees of subclonal SNVs. These findings suggest that tumour
types exhibit their own, distinct, evolutionary narratives.

7.4 Metastatic melanomas are often clonal

In stark contrast to the high proportion of primary tumours with at least one subclone, we
observe that over half of metastatic melanomas are clonal (Fig. 7.1). A comparison to
metastasis of other cancer types available in this data set suggests that this might be a unique
property (Fig. 7.2, left), although, the other cancer types are represented by a low number
of cases and the observation would need to be verified in a larger cohort. There are only
two breast and ten prostate metastasis cases available (the prostate tumours are from the
multi-sample study Gundem et al. (2015)).

In contrast, melanoma relapse tumours are as heterogeneous as relapse cases from other
types of cancer (Fig. 7.2, right). These findings may highlight properties of metastatic
melanomas, for example that these metastasis belong to a group of rapidly developing
melanoma tumours (Liu et al., 2006).
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Fig. 7.2 The proportions of subclones, fraction of subclonal SNVs and CNAs found in
metastasis and relapse tumours.

7.5 Subclonal driver mutations in known cancer genes

I used the catalogue of driver mutations identified in the PCAWG cohort by Sabarinathan
et al. (2017) to obtain an overview of clonal and subclonal drivers in the PCAWG cohort.
A number of filters have been applied to obtain the pan-cancer picture of subclonal drivers
(Fig. 7.3). I excluded CNA drivers, as they are not assigned in our consensus subclonal
architectures, and also excluded SV assignments, as their CCF values tend to be of quite
variable quality. Furthermore, tumours with low reads per chromosome copy have been
removed, multi-sample cases have been reduced to their PCAWG preferred sample and
relapse and metastasis cases have been filtered out (apart from melanomas). After filtering
there are 4,152 identified drivers remaining, spanning 362 different genes. 1,423 of 1,865
(76%) tumours contain an identified driver, but only 24% of tumours and 20% of subclones
contain at least one subclonal driver.

Figure 7.4 provides a pan-cancer overview of the top 30 genes with subclonal drivers,
identified by summing their probability of being subclonal. Each square is sized depending
on the proportion of tumours of that cancer type containing a driver in that gene and the
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Fig. 7.3 Flow diagram showing the filters applied to obtain the driver overview. Each square
shows two values, separated by a divider: First the number of unique tumours that are left in
the data set after a filter has been applied and second the number of driver contained within
those samples.

square is coloured depending on the proportion of tumours in which the driver is subclonal
(again identified by summing probabilities of being clonal and subclonal), where darkblue
means high proportion subclonal and lightblue means a high proportion clonal. Figure 7.5
shows the same data that is provided in each square in Fig. 7.4, but instead of showing the
proportion of subclonal drivers, they are provided as counts to show the total number of
tumours that support each square. Bars have been greyed out when they represent fewer than
six tumours.

TP53, TERT and VHL show large, light squares for a number of cancer types, which
means that these drivers are often activated early and are thus frequently observed as clonal.
The figure does not contain any large, dark squares, which means that no gene is primarily
identified as a subclonal driver in large numbers of tumours. The presence of small dark
squares shows that driver mutations in known cancer genes can appear late during tumour
evolution, but only in small proportions of tumours. This suggests that early drivers may be
constrained to a select number of genes, while the spectrum of drivers becomes more diverse
as tumours evolve further.



7.5 Subclonal driver mutations in known cancer genes 145

0/1

0/1

0/3

0/2

0.6/2

0/1

0.7/2

0.8/1

0.2/1

0/1

3.1/16

0/1

0.8/2

0.2/2

0/3

1.5/6

0/2

0/1

0/1

0/1

0/1

0.8/1

0.8/2

0/2

0.6/1

0.1/1

1/4

0/1

3.8/16

0.4/1

0.3/2

17.5/69

4.2/32

0.9/1

0.1/5

1.2/3

2.5/3

7.6/57

0/2

0.9/1

0.6/1

4.9/13

0.5/2

0/1

0.6/1

0.2/1

0.7/2

3.9/24

1.3/2

0/2

0.1/4

0.9/1

0/1

0/1

0/1

0.4/3

1.6/4

1/2

0/1

1/6

3.3/12

1.5/2

23.2/88

1.1/2

0.4/2

0/1

2.5/5

0/1

0.5/1

1/14

1/1

5.3/18

0/1

1.1/5

0.6/1

9.8/54

1/1

0.6/4

0/2

3.8/10

1/6

0/1

2/11

1.9/7

0/1

1.1/2

0.8/1

1/1

3.6/23

32/106

0.9/1

5/24

3.2/4

2.6/6

0.8/1

1.2/8

1/3

3.8/23

1.5/6

2.4/7

0/1

0/2

1.5/5

0.5/3

0/1

1/1

0.7/1

0.3/3

0.2/1

6.2/28

0/2

1.5/6

0.6/3

3.1/9

0.3/1

4.5/46

0/2

0.8/2

0/1

0.3/8

0.4/2

0/3

0/1

0.9/10

4.7/27

0/1

2.8/8

1.3/25

0.9/5

1.5/2

1.9/6

2.1/8

1.1/6

0/2

3.6/23

6.5/38

0.5/1

1.8/4

4.9/13

0.3/1

0.1/3

10.3/56

0/1

0/1

0/2

0/1

2/9

0/1

0.8/1

0/1

0/2

0.1/1

0/1

4.3/24

1.6/4

0/1

4.3/14

4.7/15

0/1

1.2/9

0.3/3

11.7/63

0/2

0/3

1.8/2

0.1/1

0.9/1

28.5/149

1/1

0/2

0.5/1

1/2

1/2

0.4/2

0.4/1

6.4/54

0/1

0/1

0.4/2

0/1

0.7/2

1.3/21

0.3/1

0/1

0/3

0/2

0/2

0.5/2

0/1

1.2/11

1.8/10

1/3

0/1

0.7/9

0/1

1.6/14

9/51

0.3/6

0/2

0.2/2

0.6/33

1.1/9

3.2/14

3.4/27

7.2/29

36.2/231

0/1

0/3

0.1/6

1.8/22

4.7/10

0.1/1

0/1

9.2/43

1/1

3/9

2.6/5

0.1/2

1.2/2

0/1

0/1

1/1

0/1

0.3/2

0/1

1.1/3

1.2/3

0.3/1

0/1

20.8/95

0.9/7

0/1

0/2

0/1

1.7/2

0/1

1.1/2

1.2/20

0/2

0.5/1

0.3/1

0/1

0.3/1

0.2/1

7.7/49

0.5/2

0/1

0/1

2.2/76

0.9/1

1.9/4

1.1/4

2.3/17

0.8/1

0/5

1/1

8.8/40

0/1

1/2

0.6/5

0.2/2

11.2/164

0.3/1

23.9/124

1.1/2

0.7/4

2/2

1.5/6

1.5/5

11.3/43

1/2

9.8/126

0/1

0/2

0/1

0/1

1/1

6/27

0.2/1

11.8/47

2.4/6

5.3/7

0.2/1

1.4/2

0.4/3

0/1

0.9/2

0/1

0/2

2.5/4

1/2

0.3/1

0.9/1

1.9/2

1/4

21.5/51

1.4/2

1.8/6

1/4

0.7/3

3.3/8

0.4/1

0.1/1

0/1

0.5/15

0/1

0.6/3

0/3

0/2

6.5/119

0.6/1

0/1

0.1/10

0.3/1

1/13

0.5/1

0/1

1.7/10

0.9/2

0/1

0.2/7

0/2

1.2/5

0.4/2

1/1

0/1

0.5/4

0/1

1.5/4

0.9/3

0.4/1

0/1

8.5/29

2.2/7

0.9/1

0.8/1

1.1/4

0.5/3

1.5/10

0/1

0/1

5.7/23

1/1

2.3/8

2.4/9

0.5/1

0/1

0.5/1

0.8/4

1.1/4

0.9/1

0/1

1/2

0/3

1.1/4

11.3/43

1.7/18

1.7/11

3.7/18

0.6/2

3.1/28

1/1

Other
KRAS
TP53

CREBBP
CDKN2A
CTNNB1

ARID2
VHL

PBRM1
IDH1
APC

PIK3CA
ALB
B2M

NOTCH1
ARHGAP35

MEN1
FBXW7

PTEN
BAP1

ARID1A
KMT2D

MAP3K1
SMARCA4

SMAD4
KMT2C

ATM
KDM5C
PIK3R1
SF3B1
SETD2

Skin
−M

ela
no

m
a

Lu
ng

−A
de

no
CA

Ova
ry

−A
de

no
CA

Lu
ng

−S
CC

Hea
d−

SCC

Kidn
ey

−R
CC.p

ap
illa

ry

Pan
c−

Ade
no

CA

Sof
tT

iss
ue

−L
eio

m
yo

Ly
m

ph
−B

NHL

Bilia
ry

−A
de

no
CA

CNS−G
BM

Eso
−A

de
no

CA

Liv
er

−H
CC

Bre
as

t−
Ade

no
CA

Kidn
ey

−R
CC.cl

ea
rc

ell

Ute
ru

s−
Ade

no
CA

CNS−O
lig

o

Colo
Rec

t−
Ade

no
CA

Thy
−A

de
no

CA

Sto
m

ac
h−

Ade
no

CA

CNS−M
ed

ull
o

Pan
c−

End
oc

rin
e

Ly
m

ph
−C

LL

Cer
vix

−S
CC

Pro
st−

Ade
no

CA
Oth

er

1524

209

589

43

93

94

31

59

47

28

79

131

29

25

34

29

31

31

80

25

80

74

24

30

79

28

45

22

22

27

38

172 33 137 152 90 21 573 22 343 47 36 128 359 208 168 163 42 302 26 83 136 101 71 20 96 151

Fig. 7.4 A pan-cancer overview of subclonal drivers. Each cell contains two values, separated
by a divider: The sum of the subclonal probabilities and the total number of drivers identified
in the gene and the cancer type. Bars at the edges show the proportions of tumours with
clonal (grey) and subclonal (dark blue) drivers for cancer types (top) and genes (side). The
top 30 genes are shown, obtained by summing the subclonal probability of all drivers per
gene.
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Figure 7.5 shows that several genes are subclonal in high proportions of relatively few
tumours: SETD2 in pancreatic endocrine tumours, ATM in CLL cases and PTEN and TP53
in prostate cancers. Other genes are at the top of the list of subclonal driver genes pan-cancer
wide, but are supported by low numbers across cancer types: GATA3, KMT5C and CDH1.

These findings suggest that a large proportion of late drivers have yet to be identified.
They show that known driver genes can be active late during tumour evolution, which may
suggest that a particular environment is required for a driver to be effective.

If is likely however that the picture painted in this section is just the tip of the iceberg.
Mutations identified as clonal in the sequencing sample may in fact not be carried by all
tumour cells. In the scenario of small biopsies one may be painting a picture of the small
biopsy only and therefore overestimate the number of mutations that are clonal, and what is
determined to be subclonal to consist of relatively minor subclones. When a large portion of
the tumour is obtained for sequencing one can be more confident about whether it represents
the whole tumour, however subclones will represent major cellular populations at this scale.
How the sequencing samples were obtained exactly has not been recorded as part of the
PCAWG effort and it is therefore unclear how this affects the painted picture.

It is important to note however that what is subclonal at any point within the tumour, is in
fact subclonal in the whole tumour. The painted picture therefore represents a conservative
estimate of the amount of subclonality, regardless of the sampling strategy. Finally, our
findings have been partially reported elsewhere, with SETD2 often appearing as subclonal in
a detailed study of kidney cancers (Turajlic et al., 2018) and driver mutations in chromatin
remodellers shown to correlate with later transitions between tumour progression states in
melanomas (Shain et al., 2018).

7.6 14% of mutations are undetected

We applied our methods to correct for the winner’s curse (which were introduced in section
6.5) and estimate the number of mutations that are unaccounted for given a tumour’s subclonal
architecture. Figure 7.6 shows the correction applied for cluster position (left) and cluster
size (right). Clonal clusters (shown in grey) often are corrected very little, highlighting
that typically (nearly) all clonal mutations are detectable above 30X sequencing coverage.
Subclonal clusters however can be corrected extensively with many mutations falling below
the detection limit, in line with the observations on simulated data in the previous chapter.
The average correction across all tumours (i.e. the difference between total detected mutations
and total estimated mutations) is 14%, suggesting that 14% of mutations have been missed
because they fell below the detection limit.
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7.7 Clear signs of positive selection in subclonal mutations

We observe clear signs of positive selection within clonal and subclonal mutations and for
missense, nonsense and splice-site SNVs (Fig. 7.7). Inspection of driver mutations reveals
that the detected subclones contain driver mutations in known cancer genes (Fig. 7.4).

We next looked for signs of positive selection in both the clonal and subclonal mutations
by analysing the ratio of non-synonymous and synonymous mutations, an approach often
referred to as dN/dS. A ratio larger than 1 is considered a sign of positive selection, a
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Fig. 7.6 The correction applied to cluster location (left) and cluster size (right). The average
correction across all tumours is 14%. Clonal clusters are often adjusted very little, while
subclonal clusters can be adjusted considerably, in line with observations on simulations in
the previous chapter.
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ratio below 1 represents negative selection, while a ratio of 1 can mean either no selection
(neutral) or an equal amount of positive and negative selection. dN/dS ratios have been used
extensively in the field of evolutionary biology and have recently been adapted to study
selection in cancer genomes (Greenman et al., 2006; Martincorena et al., 2016). We used
the approach published in Martincorena et al. (2017) that models tri-nucleotide contexts
and considers additional non-synonymous mutations beyond missense mutations, such as
nonsense and splice-site mutations and indels, and has been shown to accurately recapitulate
existing knowledge about cancer drivers (Martincorena et al., 2017). The analysis was
performed on the 192 cancer genes in the COSMIC Cancer Gene Census v80 (Futreal et al.,
2004) to provide a conservative estimate of positive selection.

Recently there has been discussion in the field of tumour evolution about whether positive
selection may no longer be present and that further evolution of these tumours occurs due to
genetic drift (Sottoriva et al., 2015; Williams et al., 2016). Williams et al. (2016) recently
proposed a test that can be used on bulk whole genome sequencing data to identify tumours
for which this is the case. The test is based on the principle that the further one zooms into a
neutrally evolving tumour, the number of subclones and mutations increases at an exponential
rate. If these neutral subclones are captured in a sequencing sample, one therefore expects
the number of mutations to increase at an exponential rate as the VAF distribution goes to
zero. Williams et al. (2016) propose to test the mutation VAF space of a sequencing sample
against an exponential curve (which I’ll denote as a "1/f" tail) and a high correlation between
the VAF tail and the "1/f" tail would indicate the tumour is evolving neutrally. Williams et al.
(2016) recommend a correlation of over 0.98 indicates neutral evolution.

The test and results are however not without controversy (Noorbakhsh and Chuang, 2017;
Tarabichi et al., 2017). We therefore applied this principle to the PCAWG data set to identify
neutrally evolving tumours and did so separately for all mutations and for mutations in
unaltered copy number regions (one copy of the maternal and paternal alleles). A tumour
was called neutral when the cumulative VAF space yielded a correlation of over 0.98 with a
"1/f" tail. This test identified 557 tumours as neutrally evolving (531 on all mutations and
499 tumours when considering only mutations in normal copy number). The tumours that
are identified as neutrally evolving have significantly higher reads per chromosome copies
(p-value 8.74*10−90, Mann-Whitney-U test), which may suggest the number identified is an
underestimate, as many tumours in the PCAWG dataset it is not possible to identify sufficient
subclonal mutations.

We next applied the dN/dS pipeline to the mutations in these tumours, which identified
positive selection in both clonal and subclonal mutations in neutral and non-neutral tumours
(Fig. 7.8). Tumours identified as neutrally evolving also contain subclonal driver mutations
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Fig. 7.8 Tumours were classified into neutral and non-neutral according to the rationale
described by Williams et al. (2016) dN/dS values for clonal and subclonal SNVs were derived
separately across all primary tumours in those two groups, as described by Martincorena
et al. (2017). Values for missense, nonsense and all mutations are shown, along with the
95% percentage intervals. The same figure is shown after grouping neutral and non-neutral
tumours based on SNVs in the diploid genome only.

in known cancer genes. 345 of the 557 identified tumours contain at least one identified
driver. The tumours contain a total of 893 driver mutations, of which 114 have a probability
> 0.95 of being subclonal. We find subclonal driver mutations in TP53 and PTEN (6 each),
SETD2 (4), ATM, FBXW7, KIT, NF1, SF3B1 and TGFBR2 (3), 16 genes with 2 subclonal
drivers and 48 with 1.

These findings show that tumours identified by the "1/f"-tail test contain subclones under
positive selection and that the identified clonal expansions contain driver mutations in known
cancer genes.

7.8 Subclonal clinically actionable events

I considered driver mutations (SNVs and indels) in genes and pathways for which drugs are
either developed or in development to look specifically for tumours with subclonal targetable
driver mutations (as predicted by Cancer Genome Interpreter (Tamborero et al., 2018)). A
patient with a targetable driver mutation could in the near future be prescribed a targeted
therapy, but the therapy is inherently flawed if the targetable mutation is not shared by
all tumour cells. In this analysis we excluded all metastasis and relapse tumours, except
melanomas. For multi-sample cases we only considered the PCAWG provided preferred
sample for each donor.

Our consensus subclonal architecture approach produces probabilistic cluster assignments
for each mutation and identifies a mutation cluster as clonal (the clonal cluster has CCF
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Fig. 7.9 Clinically actionable driver mutations were surveyed across the cohort (Sabarinathan
et al., 2017) and assigned a probability of being clonal or subclonal. Per cancer type
probabilities are combined to provide a fraction of tumours that contain only clonal actionable
drivers, only subclonal actionable drivers or both (see supplementary methods). On average
11.7% of tumours contain at least one subclonal actionable driver, while in 5.1% of tumours
we found that all actionable drivers are subclonal. Cancer types show markedly different
proportions, ranging from 4.3% of thyroid cancers with at least one subclonal actionable
driver to 29.7% of kidney clear cell carcinoma cases.

of 1, while a subclonal cluster has a CCF < 1). Through the consensus I can establish the
probability whether a mutation is clonal or subclonal. The procedure is as follows: For each
sample, I establish the probability that all actionable mutations are clonal, all actionable
mutations are subclonal and the probability of observing at least one pair of clonal and
subclonal targetable events.

The probability (p) of observing all n actionable mutations as clonal is:

n

∏
i=1

pi,clonal (7.1)

The probability of (p) of observing all n actionable mutations as subclonal is:

n

∏
i=1

pi,subclonal (7.2)
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Then the probability of observing at least one pair of actionable mutations where one is
clonal and one is subclonal is:

1−
( n

∏
i=1

pi,clonal +
n

∏
i=1

pi,subclonal

)
(7.3)

The three probabilities were summed to create the three classes per type of cancer: Clonal,
Subclonal and Both.

Through this analysis I find that 11.7% of tumours have an identified subclonal driver
mutation that is clinically actionable (Fig. 7.9). In 5.1% of tumours, I find targetable driver
mutations only in subclones and 6.6% of tumours contain both a clonal and a subclonal target.
These estimates are likely a lower bound as tumours are only represented by a single sample,
which likely shows (depending on how the samples were obtained) either local heterogeneity
or large subclones, and mutations that appear to be clonal in one area of the tumour may in
fact be subclonal overall when they are not present in another region.

These findings suggest it is important to consider the clonal status of a targetable mutation
before treatment is started. Prescribing a drug that targets a mutation not carried by all tumour
cells is certain to be ineffective. Meanwhile, in 6.6% both a clonal and a subclonal targetable
mutation is found. In this scenario, clonality assessment would highlight the clonal mutation
as the best candidate.

However, for clonality analysis to be truly informative in clinical application, one must
be highly confident that a mutation that appears clonal is indeed carried by all tumour cells.
Ultimately, it may prove impossible to truly establish a mutation is carried by every tumour
cell as it would require assessing every tumour cell. Clonality assessment strategies may
therefore be limited to identifying subclonal targetable mutations (a mutation that is subclonal
in one region of the tumour is subclonal overall) that would provide ineffective treatment
options.

7.9 Evidence of additional heterogeneity

Several studies have shown (Jamal-Hanjani et al., 2017; Sun et al., 2017) that multi-region
sequencing is better powered to detect subclones, compared to single-region sequencing
approaches. We reasoned that some of the subclones that cannot be reliably disentangled
on single-region sequencing may leave a trace that can be detected in a single sample.
Mutation clusters may be merged during a single-region based subclonal reconstruction when
multiple subclones appear at a similar CCF. We therefore explored two aspects that could be
informative about the number of additional subclones within a sequencing sample: Subclonal



7.9 Evidence of additional heterogeneity 153

26 12 14 10 31 18 34 51

0.00

0.25

0.50

0.75

1.00

Eso
−A

de
no

CA

Liv
er

−H
CC

Lu
ng

−S
CC

Pro
st−

Ade
no

CA

Ly
m

ph
−B

NHL

Colo
Rec

t−
Ade

no
CA

Skin
−M

ela
no

m
a

Oth
er

P
ro

po
rt

io
n 

of
 tu

m
ou

rs

In−cis pairs
10 13 25 36

0.00

0.25

0.50

0.75

1.00

Pro
st−

Ade
no

CA

Eso
−A

de
no

CA

Skin
−M

ela
no

m
a

Oth
er

P
ro

po
rt

io
n 

of
 tu

m
ou

rs

In−trans pairs

Fig. 7.10 Fraction of tumours where phased mutations provide evidence of additional het-
erogeneity for tumours where the mutations are in-cis (left, co-linear) or in-trans (right,
branching) Error bars represent the binomial standard deviation of the total number of
tumours for each type of cancer and the associated ratios.

mutational signature changes that are not close to a boundary between mutation clusters and
evidence of mutations assigned to the same subclone that cannot have occurred in the same
cell.

Within our working group, Yulia Rubanova has developed an approach (termed Tracksig)
to estimate changes in mutational signature activity in approximate-time ordered mutations.
Tracksig bins mutations and orders the bins by pseudo-time (mutations on two chromosome
copies have occurred before mutations on the same segment carried by one chromosome copy,
subclonal mutations occur after clonal mutations, etc) and subsequently detects in which
pseudo-time bin mutational signature exposures change (Rubanova et al. 2017, manuscript
in preparation). Yulia has applied her algorithm to the PCAWG data, which reveals that
37.4% of tumours had a signature exposure change of at least 10%, while 30.1% of signature
changes correspond to a boundary between the mutations from a clone / subclone and 39.7%
represent boundaries between subclones. We further find that an average of about 0.5 changes
per sample are not within a subclone boundary, which suggests that additional subclones are
measured by the sequencing data but have not been detected.

Within our working group Amit Deshwar has looked into pairs of mutations that cannot
have occurred in the same cell, building on data that I generated. I generated counts for
mutation pairs that fall within 700bp that could be spanned by a single read pair. For these
mutations, it is possible to determine whether both mutations fall on the same chromosome
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copy (i.e. are phased) by examining the read pairs that cover both. A mutually exclusive pair
of mutations (mutations are in-trans) that cannot have occurred in a single cell is measured as
a pair of mutations (a,b) without a read-pair that report both variant alleles, while some reads
report the variant allele of a and the reference allele of b and vice-versa, and the pair fall in a
genomic region where only a single chromosome copy is available. In contrast, mutations
where some read-pairs report both variant alleles and some pairs report only one (mutations
are in-cis) the mutations represent clusters in an ancestral relationship. When considering
phased mutation pairs Amit finds that in 44% (86 of 196) of tumours there is evidence of
mutually exclusive mutations (Fig. 7.10).

These findings highlight that the found amounts of ITH, as is reported in Fig. 7.1, are an
lower bound for the amount of ITH available in the sequencing samples.

7.10 Cancer types follow individual evolutionary narratives

We next characterised the evolutionary histories of the 2,658 tumour cases in the PCAWG
dataset, described in full in Gerstung et al. (2017) and attached to this thesis as Appendix A.
This section describes results that are the culmination of work by Moritz Gerstung, Clemency
Jolly, Ignaty Leshchiner and Santiago Gonzalez. In brief: three different mutation timing
analysis were performed. (1) A classification of mutations into clonal early (gained mutations,
on more than 1 chromosome copy), clonal late (mutations on a gained chromosome, but on 1
copy only), clonal unspecified (mutations in non-gained copy number regions) or subclonal.

(2) Timing of copy number gains was performed by accounting for multiplicity states (for
example, a high ratio of multiplicity two mutations on a gained chromosome suggests the
gain was late (Fig. A1.3)) and (3) CNAs were timed relatively against each other by league
model analysis (these models pitch every pair of detected CNAs against each other, and like
a sports league, build a league table out of all the matchups). We also overlayed mutational
signature activity, and through the use of clock-like signatures we convert timing analysis
into real time estimates.

We find that driver mutations predominantly occur early and are therefore observed as
clonal (Fig. 7.11a and b). Drivers in TP53 and KRAS, for example, are 5-9x more likely to
occur early than late clonal. For TP53 this effect is independent of tumour type (Fig. 7.11c).
In general, the diversity in driver genes increases as tumour evolution progresses: 50% of all
early driver mutations are found in 12 genes, while late clonal and subclonal drivers occur
across 39 and 36 genes respectively (Fig. 7.11d). These findings suggest that early drivers
occur within a specific set of genes, while late drivers are more diverse, giving rise to the
"long tail" of driver genes active in low proportions of tumours.
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Our relative timing of events (Fig. 7.11e) reveals that in colorectal adenocarcinoma APC
has the highest odds of occurring early, followed by KRAS, loss of 17p, TP53, loss of 8p, gain
of 8q, in concordance with the progression model proposed by Fearon and Vogelstein (1990).
For pancreatic endocrine cancers the relative timing suggests that in these tumours losses
are frequently early, followed by driver mutations in MEN1 and DAXX and a whole genome
duplication (Fig. 7.11f). In glioblastoma cases we find that loss of chromosome 10 and driver
mutations in TP53 and EGFR are typically early, preceding early gains of chromosomes 7,
19 and 20 (Fig. 7.11g).

The timing of gains reveals that, pan-cancer wide, copy number gains typically occur
during the second half of tumour evolution. But cancer types show marked differences (Fig.
A2): Glioblastoma tumours show consistent early gains of chromosomes 7, 19 and 20, while
medulloblastomas contain early gains of 17q. Gains are typically early in glioblastoma,
medulloblastoma and pancreatic neuroendocrine cancers, late in squamous cell lung cancers
and melanomas, while they occur during broad periods in other cancers.

Analysis of mutational process activity early, clonal and late reveals that signature activity
typically changes by less than 30%, which indicates that signature activity is relatively
constant during tumour evolution (Fig. 7.12a). Life style associated signatures, such as 4
(smoking associated) in lung adenocarcinoma, 7 (UV-light) in melanoma and 12 (aetiology
unknown) in liver cancers, typically decrease in activity late, while signatures 2 and 13
typically increase in activity (Fig. A4b). The clock-like mutational signature 1 was used
to infer real time estimates: whole genome duplications typically appear 2-11 years before
diagnosis (Fig. 7.12b), while the most recent common ancestor appears six months to six
years before we observe the tumour (Fig. 7.12c).

These analysis combined confirm previous knowledge about the distribution of driver
genes and the classic progression model of colorectal adenocarcinoma, and reveal that cancer
types follow distinct evolutionary patterns.
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Fig. 7.11 This is Figure 3 from Gerstung et al. (2017), which is also available in Appendix A.
Timing of driver mutations and relative ordering of somatic events (a-d) Timing of driver
point mutations. (a) Top: distribution of point mutations over different mutations periods in
2,583 samples from unique donors. Middle: timing distribution of driver point mutations in
the 50 most recurrent lesions. Bottom: distribution of driver mutations across cancer types;
colour as defined in the inset. (b) Relative timing of the 50 most recurrent driver lesions,
calculated as the odds ratio of early versus late clonal driver mutations versus background
(green, purple) or clonal versus subclonal (blue, red). Odds ratios overlapping 1 in less than
5% of bootstrap samples are considered significant and have been coloured. (c) Relative
timing of TP53 mutations across cancer types, coloured as in (b). (d) Estimated number of
unique lesions (genes) contributing 50% of all driver mutations in different timing epochs.
Error bars denote the range between 0 and 1 pseudocounts. (e, f, g) Relative ordering of
somatic events. Preferential ordering diagrams of somatic copy number events and driver
point mutations within tumour types, for (e) colorectal adenocarcinoma, (f) pancreatic neuro-
endocrine cancer and (g) glioblastoma. Probability distributions show the uncertainty of
timing for specific events in the cohort. Events with odds above 10 (either earlier or later) are
highlighted.
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Fig. 7.12 This figure is a combination of various figures from Gerstung et al. (2017). (a)
Fold changes in signature exposures between early and late clonal stages for all tumours.
Each violin shows the distribution of exposure changes across tumour types in one signature.
Signatures are sorted by the ratio of tumours with a positive signature change. (b) Time
of occurrence of whole genome duplications in individual patients, split by tumour type,
based on CpG>TpG mutations and patient age. Results are shown for a 5x acceleration
of the mutation rate. (c) Timing of subclonal diversification using CpG>TpG mutations in
individual patients.





Chapter 8

Discussion

8.1 Overall summary

In this thesis I have introduced computational methods to unravel the life history of a tumour
from massively parallel sequencing data and applied them to the 2,778 cancer genomes in
the ICGC PCAWG project. To aid with the subclonal reconstruction of tumours I introduced
algorithms to estimate subclonal copy number, multiplicity and cancer cell fraction values
for SNVs and indels and to infer the subclonal architecture.

The methods have been extensively validated using different simulated data sets and
cross-compared to those from other labs. The validation shows that, even though DPClust is
one of the best performing methods on the simulated data within the PCAWG consortium and
that performance is consistent with the results on real data, it is not perfect. The observation
that methods are not perfect lead to the development of consensus procedures for both copy
number and subclonal architectures. I showed that the output of the consensus is more
consistent across methods, and for the subclonal architectures that corresponded well to the
patterns observed on simulated data.

The copy number consensus procedure first combines breakpoints from six CNA calling
methods with SV calls into a single, complete consensus. By synchronising the segmentations
across the six callers we achieve six profiles that are complete and directly comparable.
There is substantial complete agreement between the callers, but agreement on the near
full genome is only achieved through a strict majority vote. This highlights that there is
still substantial disagreement between some of the methods, which has already resulted in
method improvements. Consensus subclonal architectures were obtained across 11 individual
subclonal inference methods. Three consensus approaches were developed based on different
representations of the input data and validation showed that they are consistently comparable
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to the best individual caller, while assigning all SNVs, indels and SVs for which allele
frequencies were available.

When these methods are applied to the PCAWG data set we find that nearly all tumours
contain at least one subclone, that subclones contain driver mutations in known cancer genes
and those drivers are under positive selection. These findings show that tumours are still
evolving at the point of diagnosis. Furthermore, the PCAWG data set covers 36 histologically
distinct cancer types and donors cover a wide range of ages, while recruitment has occurred in
Europe, North America and Asia, resulting in a diverse population that covers many germline
genetic backgrounds. The fact that we observe subclones in nearly all tumours across this
range of variables may suggest that tumours are in a continuous process of clonal expansion.

Recent work suggests that tumours could evolve neutrally through genetic drift. We
applied the concepts from Williams et al. (2016) and found signs of positive selection in
subclonal mutations from tumours identified as evolving neutrally and these tumours can
contain driver mutations for which we are highly confident that they are subclonal. However,
dN/dS ratios were used to estimate the amount of positive selection, and dN/dS analysis
pools mutations across samples. It is therefore possible that a subset of tumours is indeed
no longer under the influence of positive selection, or that the VAF tail that is used to detect
neutrality contains subclones that are under positive selection and those that don’t. But that
subset is sufficiently small to not affect the dN/dS ratios obtained on the pooled mutations.

Analysis of clinically actionable driver mutations reveals that the detected clones can be
informative in the clinic. 11% of tumours contain at least one subclonal actionable event,
which means a prescribed treatment is inherently flawed as it would not target all tumour
cells. However, over half these tumours also contain a clonal actionable event. That may
provide a route to apply more effective treatment as clones could be targeted separately.

Evaluation of mutational signatures shows that activity of life-style associated signatures
decreases during tumour evolution, although this signal could also be explained by the
increase of a combination of other signatures. Meanwhile, APOBEC activity typically
increases. Finally, cancer timelines were created by combining the evolutionary histories of
tumours within a cancer type. The analysis confirms classic knowledge and suggests that
cancer types follow distinct patterns of tumour evolution.
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8.2 Future directions

8.2.1 A more in-depth view of intra-tumour heterogeneity

The single sample whole genome sequencing data presented in this thesis ultimately provides
only a high level view of intra-tumour heterogeneity. Work by others based on multiple
samples from the same cancer (Jamal-Hanjani et al., 2017) shows that there is more high level
heterogeneity, and our analysis about additional heterogeneity corroborates that. It’s possible
that the view obtained by these bulk sequencing approaches is just the tip of the iceberg and
that tumours consist of many 100s to 1000s of clones. Bigger and deeper sequencing studies
will reveal the true extend of intra-tumour heterogeneity.

Larger sequencing studies, that cover more cases of the same cancer type, such as the
Pan Prostate Genomics Consortium, are needed to extend our knowledge of late drivers. The
work in this thesis suggests that tumours become more diverse as they evolve, with a larger
set of genes acting as late drivers. A complete overview of late drivers may lead to new
treatment options and it may shed light on drivers that are rarely early.

A currently mostly unexplored angle in these kinds of heterogeneity studies is expression
data, which could be overlayed onto the subclonal architectures. Subclonal inference is
focussed on establishing the genotype of evolution. What effect these additional mutations
contained within the cells in the subclone have on the expression profile remains unclear.
Using matched RNAseq data it should be possible to observe expressed transcripts with a
subclonal mutation. This kind of analysis will however not provide a complete overview of
the expression profile of a subclone. Single cell sequencing technology, especially sequencing
of the genome and transcriptome from the same cell, does give access to that information
(Macaulay et al., 2015).

Single cell technology also provides access to the lower levels of heterogeneity that are
not visible with current bulk sequencing approaches. One could paint the 3D landscape of
tumour heterogeneity by carefully sampling cells from the tumour environment (Mamlouk
et al., 2017). However, single cell genome and transcriptome technology is still too expensive
and cannot easily be scaled up to the numbers required to paint a comprehensive picture,
while the genomic data is hampered by factors such as allele dropout and sequencing errors
(Van Loo and Voet, 2014).

Higher sample counts per tumour can not only lengthen the branches of the evolutionary
trees, it may also provide a more fine grained picture of the tree trunk. SNVs that appear as
clonal in one tumour region, may in fact appear subclonal in another. A more fine grained
trunk will provide a better view of the very early events that have given rise to the tumour
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and provides a clearer sequence of events. A clearer picture can then lead to cancer type
evolutionary histories with smaller confidence intervals.

8.2.2 Tumour evolution

Recent work on normal tissue from healthy individuals reported many small clones at an
in-depth view of epithelial tissue and showed complex clonal dynamics, containing clones
with driver mutations in well known cancer genes (Martincorena et al., 2016). Given these
observations, and assuming they can be extrapolated to other tissues, it is surprising that the
cancer evolutionary timelines reported in this thesis suggest that cancers develop over decades.
The process of clonal expansion may appear similarly in healthy tissues and in tumours. More
detailed experiments are required to understand the dynamics of the environment in which
the tumour grows and why the malignant growth can escape while many early clones cannot.
Ultimately, we cannot easily observe the micro-environment in vivo when a driver mutation
has its selective advantage. Normal tissue observational experiments will be required to
better understand the dynamics of clones that provides the breeding ground for malignant
lesions.

More detailed experimental data will also facilitate those who work on mathematical
models of tumour evolution. So far this field has been held back by the lack of a bridge
between models of early evolution and the tumours observed in the clinic that represent a
much later evolutionary phase. Projects are needed where model development is provided
with measurements of input variables, and longitudinal follow-up of clonal dynamics of the
populations that provided the input variables could provide the ground truth for intermediate
predictions made by developed models (for example, clone sizes and distributions at various
time-points). Scenarios should include the introduction of driver mutations, through CRISPR
for example, or population bottlenecks as created by the application of drugs. A combination
of these two should lead to closing of the gap between those that study tumour evolution
top-down (as is reported in this thesis) and those that study it bottom-up.

8.2.3 Towards clinical application

The findings reported in this thesis reveal that tumour evolution continues up to (shortly
before) diagnosis. This has profound clinical implications as it suggests every tumour can
in principle become resistant to treatment (Holohan et al., 2013), which can be unlocked
via a single mutation (Nazarian et al., 2010; Zaretsky et al., 2016). In cancer types with a
high mutation burden it is therefore not implausible that every conceivable somatic mutation
is available. The resistance mechanism may therefore already be available and will be
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selected for via treatment application. It is therefore important to assess how ubiquitous the
resistance mechanism has to be before treatment becomes inevitably unsuccessful. If a large
subpopulation of cells with the resistance mechanism is required (as opposed to a single cell
with a single mutation), then a routine screening could be facilitated to rule out certain types
of treatment. Large scale collection and deep profiling of pre- and post-resistance cancers is
required, along with a more complete list of resistance mechanism markers, is required to
see whether heterogeneity profiling can be a useful clinical application.

The findings also suggest that broad timelines exist across cancers of a certain type. It has
recently been suggested ctDNA provides a complete picture of the major clonal populations
within a tumour, and a blood test could therefore in principle be used to not only detect a
tumour, but to also assess and follow its progression (Abbosh et al., 2017). A non-invasive
blood test could help detect cancers more easily and potentially earlier. If one can classify
a tumour as to be on a evolutionary ‘pathway‘, then it may be possible to predict how it
will develop further and choose treatments that slow tumour progression by closing possible
evolutionary routes. However, even though evidence is beginning to emerge that overall
timelines may exist within cancer types (Fearon and Vogelstein, 1990; Gerstung et al., 2017;
Makohon-Moore et al., 2018), it is currently not clear whether individual tumours truly follow
such a pathway, or whether the observed order of driver mutations is one out-of-many ways
to malignancy. A more detailed picture is required of evolutionary paths that tumours take,
but it is equally important to assess which other evolutionary paths arise during a tumours’
life time and are outcompeted.

The emergence of ctDNA based tumour tracking potentially allows for much earlier diag-
nosis via routine testing. However, it will increasingly emphasise that better understanding of
the difference between normal and malignant tissue evolution is required. Driver mutations
in TP53 in morphologically normal epithelial have been described and are suggesting that
just the acquisition of these driver mutations is not enough for a cancer to arise (Martincorena
et al., 2018). A more comprehensive overview of normal somatic evolution is required to
demarcate the crossover point to malignancy more clearly, and to show that somatic mutations
alone (as measured via ctDNA) can clearly differentiate between the two states.

8.2.4 Methods

Within the PCAWG consortium there has been a great emphasis on consensus strategies
that build confident calls by combining evidence from multiple methods. These ensemble
methods perform well, however they come at considerable computational cost. Our copy
number consensus procedure required six methods to run across the full data set to obtain a
complete set of breakpoints, followed by another full run to obtain calls on the consensus
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segmentation. It is interesting that the review sessions, where copy number was discussed
in great detail, has already yielded improvements to methods and has sparked additional
development.

There is not only a need for more accurate methods, there is also a need for public bench-
marking data sets where performance can be validated and to aid the development process.
The extensive comparison of subclonal architecture callers that was performed internally
and lead to the development of three consensus procedures also lead to improvements to
individual methods. Efforts like the DREAM somatic variant calling - heterogeneity project
are an important part of this, as are simulators like BAMsurgeon (Ewing et al., 2015) and
SimClone.

More real data with multiple samples of the same tumour are also required to aid further
benchmarking. As is discussed in this thesis, multi-region approaches can be more powerful
to detect intra-tumour heterogeneity, as it allows for a larger area of the tumour to be sampled
and mutation clusters with a similar CCF in one sample can be more easily separated if their
CCF differs in another sample. The richer view that is obtained via multi-region sequencing
can be used for validation purposes by applying subclonal architecture callers on just a
single sample. So far however, comparatively little multi-region whole genome sequencing
data has been published. The PCAWG project did include cases where multiple samples
(primary-primary, primary-metastasis, primary-relapse) were available. However, these cases
span few cancer types, each cancer type is represented by low numbers of cases and the cases
are further split by multi-focality and whether they were obtained before or after start of
treatment. A large cohort, with multi-region whole genome sequencing is required to help
further validate performance of subclonal architecture callers.

My analysis of performance of DPClust on the SimClone1000 data set highlights limits of
what can be detected. Subclones that are within 0.25 CCF of each other stand a good chance
of being merged. Other methods may have a lower threshold for disentangling subclones,
but there is always a limit. The subclone distance limit however is much less likely to
affect cases with multi-region sequencing where a pair of mutation clusters may appear in
similar proportions in one sample, but different in another. It is important to understand these
limits when interpreting the output of subclonal architecture callers. Simulations will help to
discover the limits and could ultimately be used to understand their impact on interpretation.

There is considerable scope to develop subclonal inference methods that use SNVs, indels,
CNAs and SVs. There should be more signal to detect subclones by considering evidence
across all types of mutations. In this thesis I have presented an approach that includes CNAs
as pseudo-SNVs, based on CCF values estimated by Battenberg. This approach however
does not take into account the characteristics of the underlying data upon which the copy



8.2 Future directions 165

number estimates are based. A combined approach should take those into account, should
have a suitable error model for the CNA CCFs and should include a step that detects whether
the assumptions required to estimate CCF values for CNAs are violated.
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TME Tumour micro-environment

TSG Tumour suppressor gene

UV Ultraviolet

VAF Variant allele frequency

WABCS West African Breast Cancer Study

WGS Whole genome sequencing

WXS Whole exome sequencing





Appendix A

The evolutionary history of 2,658 cancers

This thesis describes my Ph.D. work that was undertaken for the ICGC PCAWG project.
The working group that I am part of has produced two papers, at the point of writing, on
both of which I am a shared first author. The bulk of my work however has focussed on the
pan-cancer description of intra-tumour heterogeneity. I have participated in the evolutionary
history of 2,658 cancers story to a lesser extend, where my role was to deliver the right
input data required for the evolutionary history analysis. I have therefore opted to attach the
manuscript of the evolutionary history paper in this appendix and include a brief overview of
the results in Chapter 7.
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Summary 

Cancer develops through a process of somatic evolution. Here, we reconstruct the 

evolutionary history of 2,778 tumour samples from 2,658 donors spanning 39 cancer 

types. Characteristic copy number gains, such as trisomy 7 in glioblastoma or 

isochromosome 17q in medulloblastoma, are found amongst the earliest events in 

tumour evolution. The early phases of oncogenesis are driven by point mutations in a 

restricted set of cancer genes, often including biallelic inactivation of tumour 

suppressors. By contrast, increased genomic instability, a more than three-fold 

diversification of driver genes, and an acceleration of mutational processes are 

features of later stages. Clock-like mutations yield estimates for whole genome 

duplications and subclonal diversification in chronological time. Our results suggest 

that driver mutations often precede diagnosis by many years, and in some cases 

decades. Taken together, these data reveal common and divergent trajectories of 

cancer evolution, pivotal for understanding tumour biology and guiding early cancer 

detection. 
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Introduction 

Cancer arises through natural selection: initiated by mutations in a single cell, the 

accumulation of subsequent aberrations and the effects of selection over time result in 

the clonal expansions of cells, ultimately leading to the formation of a genomically 

aberrant tumour1. This model has been underpinned by genetic studies, starting with 

classical work on retinoblastoma2 and the sequence of APC, KRAS and TP53 

mutations during colorectal adenoma to adenocarcinoma progression3. Establishing a 

particular order of mutations during the somatic evolution of cancers systematically 

across cancer types, however, has proven to be complicated due to small sample sizes 

and the stochastic nature of evolution between individuals. 

Deep sequencing of bulk tumour samples makes it possible to examine the 

evolutionary history of individual tumours, based on the catalogue of somatic 

mutations they have accumulated4. Many studies have reconstructed the phylogenetic 

relationships between tumour samples and metastases from individual patients5-8, 

corroborating the clonal evolution model. From single samples, the timing of 

chromosomal gains can be estimated using point mutations within duplicated 

regions9,10. In addition, the relative ordering of events within a tumour type can be 

determined by aggregating pairwise timing estimates of genomic changes (for 

example clonal vs. subclonal) across many samples using preference models11,12. 

While these approaches provide insights into tumour development, they have only 

been applied to a limited number of cancers.  

Here, we use the Pan-Cancer Analysis of Whole Genomes (PCAWG)13 dataset, as 

part of the International Cancer Genome Consortium (ICGC)14 and The Cancer 

Genome Atlas (TCGA)15 to characterise the evolutionary history of 2,778 cancers 

from 2,658 unique donors across 39 cancer types. We determine the order and timing 

of mutations in cancer development to delineate the patterns of chromosomal 

evolution across and within different cancer types. We then define broad periods of 

tumour evolution and examine how drivers and mutational signatures vary between 

these stages. Finally, using CpG>TpG mutations, we convert timing estimates into 

approximate real time, and create typical timelines of tumour evolution.  
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Results  

Reconstructing the life history of single tumours  

A cancer cell’s genome is the cumulative result of the somatic aberrations that have 

arisen during its evolutionary past, and part of this history can be reconstructed from 

deep whole genome sequencing data (Fig. 1a)4. Initially, each point mutation occurs 

on a single chromosome in a single cell. If that chromosomal locus is subsequently 

duplicated, the point mutation will be co-amplified with the gained allele, which can 

be detected in deep sequencing data. Likewise, mutations found in a subset of tumour 

cells have not swept through the population, and must have occurred after most recent 

common ancestor (MRCA) of the tumour cells in the sequenced sample.  

Mapping point mutations to the proportion of cells and chromosomes enables us to 

define three categories, which we term early clonal, late clonal and subclonal, each 

associated with broad epochs of tumour evolution (Fig. 1a). Clonal mutations have 

occurred before the occurrence of the MRCA and are common to all cancer cells. 

These can often be further subdivided as either early clonal if they occurred before 

copy number gains, or late clonal otherwise. Additionally, subclonal mutations are 

only observed in a fraction of cancer cells. Importantly, the number of early (and late) 

clonal mutations provides information about the timing of the underlying copy 

number segment. For example, there would be few, if any, coamplified early clonal 

mutations if the gain had occurred right after fertilisation (Fig. 1a and Online 

Methods)9.  

These analyses are illustrated in Fig. 1b. As expected, the frequency of somatic point 

mutations cluster tightly around the values imposed by the purity of the sample, local 

copy number configuration and identified subclones. As the sample pictured has 

undergone whole genome duplication (WGD), the mutation time estimates of all copy 

number segments scatter narrowly around a single time-point, independently of the 

exact copy number state, confirming that WGD is a single catastrophic event. 

 

Timing patterns of copy number gains 

To systematically explore the timing of copy number gains pan-cancer, we applied 
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mutational timing analysis to all 2,778 samples from 2,658 distinct donors across the 

PCAWG dataset (see Supplementary Methods). We find that chromosomal gains 

are typically acquired during the second half of clonal evolution (median value 0.76, 

IQR = 0.43-0.94), with systematic differences between tumour types (Fig. 2a, 

Supplementary Fig. 1). In glioblastoma, medulloblastoma and pancreatic 

neuroendocrine cancers, a substantial fraction of gains occurs early in mutational 

time. Conversely, in squamous cell lung cancers and melanomas, gains arise towards 

the end of the mutational time scale. Most tumour types, including breast, ovarian and 

colorectal cancer, show relatively broad periods of chromosomal instability, rather 

than staggered events throughout clonal evolution. 

There are, however, certain tumour types with consistently early gains of specific 

chromosomal regions. Most pronounced is glioblastoma, where single copy gains of 

chromosomes 7, 19 and/or 20 are present in 90% of tumours (Fig. 2a-b). Strikingly, 

these gains are consistently timed within the first 10% of clonal mutational time. 

Similarly, the duplications leading to isochromome 17q in medulloblastoma are timed 

exceptionally early. Although less pronounced, gains of chromosome 18 in B-cell 

non-Hodgkin lymphoma, as well as gains of the q arm of chromosome 5 in clear cell 

renal cell carcinoma, often have a distinctively early timing within the first 50% of 

mutational time. 

We observed that co-occurring gains in the same tumour often appear to occur at a 

similar time, pointing towards punctuated bursts of copy number gains involving the 

majority of gained segments (Fig. 2c). While this is expected in tumours with WGD 

(Fig. 1b), it may seem surprising to observe synchronous gains (defined as more than 

80% of gained segments in a single event) in near-diploid tumours. Still, synchronous 

gains are frequent, occurring in a striking 58% (469/814) of informative near-diploid 

tumours, 61% more frequently than expected by chance (p < 0.01, permutation test; 

Fig. 2d). These data indicate that tumour evolution is often driven in short bursts 

involving multiple chromosomes, confirming earlier observations in breast cancer16. 

 

Timing of mutations in driver genes 

As outlined above, point mutations can be qualitatively assigned to different time 
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categories, allowing the timing of driver mutations (Fig. 1a, 3a). Using a panel of 453 

cancer driver genes17, we find that the timing distribution of pathogenic mutations in 

the 50 most common drivers is predominantly clonal, and often early clonal (Fig. 3a-

b). For example, TP53 and KRAS are 5-9x more likely to be mutated in the early than 

in the late clonal stage. For TP53, this trend is independent of tumour type (Fig. 3c). 

Mutations in PIK3CA are 4x more frequently clonal than subclonal, while non-coding 

changes near the TERT gene are 8x more frequently early clonal than expected. In 

contrast, SETD2 mutations are frequently subclonal, in agreement with previous 

reports5. Mutations in the non-coding RNA RMRP appear to be frequently late and 

subclonal.  

Overall, common driver mutations predominantly occur early during tumour 

evolution. To understand how the entire landscape of all 453 driver genes changes 

over time, we calculated how the number of driver mutations relates to the number of 

driver genes in each of the evolutionary stages. This reveals an increasing diversity of 

driver genes mutated at later stages of tumour development: 50% of all early clonal 

driver mutations are found in only 12 different genes, whereas the corresponding 

proportion of late and subclonal mutations occur in approximately 39 and 36 different 

genes, respectively, a more than 3-fold increase (Fig. 3d). These results are consistent 

with previous findings in non-small-cell lung cancers18, and suggests that, across 

cancer types, the very early carcinogenic events occur in a constrained set of common 

drivers, while a more diverse array of drivers is involved in late tumour development.  

 

Relative timing of somatic driver events  

Next, we sought to better understand the sequence and timing of events during tumour 

evolution by integrating the timing of driver point mutations and recurrent copy 

number changes across cancer samples. We calculated an overall probabilistic ranking 

of lesions, detailing whether each lesion occurs preferentially early or late during 

tumour evolution, by aggregating order relations between pairs of lesions from 

individual samples within each cancer type (Supplementary Methods, section 3.2, 

Supplementary Fig. 2). 

In colorectal adenocarcinoma, for example, we find APC mutations to have the 
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highest odds of occurring early, followed by KRAS, loss of 17p and TP53, and 

SMAD4 (Fig. 3e). Whole-genome duplications have an intermediate ranking, 

indicating a variable timing, while many chromosomal gains and losses are typically 

late. These results are in agreement with the classical progression of APC-KRAS-

TP53 proposed by Vogelstein and Fearon3, but add considerable detail.  

In other cancer types, the sequence of events in cancer progression has not previously 

been studied in as much detail as colorectal cancer. For example, in pancreatic 

neuroendocrine cancers, we find that many chromosomal losses, including those of 

chromosomes 2, 6, 11 and 16, occur early, followed by driver mutations in MEN1 and 

DAXX (Fig. 3f). WGD events occur late, after many of these tumours have reached a 

pseudo-haploid state due to wide-spread chromosomal losses. In glioblastoma, we 

find that loss of chromosome 10 and driver mutations in TP53 and EGFR are very 

early, often preceding early gains of chromosomes 7, 19 and 20 (as described above) 

(Fig. 3g). TERT promoter mutations tend to occur at early to intermediate time points, 

while other driver mutations and copy number changes tend to be later events.  

Across cancer types, we typically find TP53 mutations early, as well as losses of 

chromosome 17 (Supplementary Fig. 1). WGD events usually have an intermediate 

ranking and the majority of copy number changes occur after WGD. We also find that 

losses typically precede gains, and consistent with the results above, we find that 

common drivers typically occur earlier than rare drivers. 

 

Timing of mutational signatures 

Mutagenic processes acting on the tumour genome often leave characteristic 

signatures of their activity19,20. In order to quantify how these processes change over 

time, we estimated the intensity of active signatures within each sample, across the 

qualitative epochs of tumour evolution (early clonal, late clonal and subclonal). The 

changes in proportion of mutations associated with a given signature in each of these 

epochs provide a measure of the dynamics of relative signature activity (Fig. 4, 

Supplementary Fig. 3). 

Overall, we find that signature activities typically change during clonal evolution by 

less than 30% (median fold change 0.98, IQR [0.70-1.36]), indicating that mutational 
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processes act at a rather constant rate during tumour progression. This is in contrast 

with the variation of signatures across patients, which varies 10 to 100-fold. There 

are, however, particular signatures that show consistent trends over time, both pan-

cancer and within certain tumour types (Fig. 4). For example, the relative activity of 

the mutational signature associated with DNA damage caused by tobacco smoking 

(signature 4) decreases at least 1.2-fold in 70% of cancers where it is active clonally, 

consistent with previous reports in lung adenocarcinoma21,22. 

Other signatures, including UV light (signature 7) in melanoma (40% of samples with 

clonally active signature), and signature 12, of unknown aetiology, in liver cancer 

(83% of samples) show a similar ≥1.2-fold decrease in activity towards the later 

stages of clonal evolution (Fig. 4). We also observe that some signatures increase in 

late clonal evolution, most notably signatures 2 and 13, which are associated with the 

activity of APOBEC enzymes and increase by more than 1.2-fold in 58% of samples 

that have this signature. Similarly, the signature associated with BRCA mutations and 

defective double strand break repair (signature 3) increases in late clonal evolution in 

35% of the samples where it is active. Similar trends also hold between clonal and 

subclonal phases of tumour evolution (Supplementary Fig. 3). 

 

Chronological time estimates of whole genome duplications and subclonal 

diversification 

Any changes in the mutation rate of cancers influence timing estimates made from 

mutational data. Due to increased proliferation and in some cases acquired 

hypermutation, one would generally expect an increase in the mutation rate (per year) 

in cancer, yet some mutational processes appear more variable than others. 

The above analysis of signature changes revealed that the relative contribution of 

signature 1 usually decreases as other mutational processes become more active (Fig. 

4). Mutational signature 1, characterised by CpG>TpG mutations, is a promising 

candidate for a clock-like process, as it is ubiquitously active in all tissues and has 

been described as correlating with age in normal tissues23,24 and multiple tumour 

types25. The latter implies not only that it is fairly constant in a given cell lineage, but 

also that it varies little across patients. For the purpose of timing mutations in 
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chronological time, only the former property is required, as the age at diagnosis 

provides a reference by which relative timing estimates are scaled. 

The acceleration of overall mutation rate and CpG>TpG rate can be directly estimated 

from sequencing data of matched primary and relapse samples from the same donor 

by comparing the rates of mutations that have accumulated between fertilisation and 

primary diagnosis to those accumulated between diagnosis and relapse. Suitable 

samples are publicly available for ovarian cancer26, breast cancer27 and acute myeloid 

leukaemia28. While for all point mutations, the median acceleration ranges between 

3.3 for AML and 11.7 for ovarian cancer, CpG>TpG mutations display lower values 

and less variability (ranging from 2.8 to 6.7; Fig. 5a). To some extent this 

acceleration may be driven by treatment, but we may use it as a conservative 

reference for other tumour types.  

Accounting for the acceleration above, we inferred the chronological time of whole-

genome duplications based on CpG>TpG mutations (Supplementary Methods, 

section 5; Fig. 5b). While the typical timing of WGD is about one decade before 

diagnosis (assuming a 5x CpG>TpG mutation acceleration), we observe substantial 

variability among samples of a given tumour type, with many cases dating back more 

than two decades. Ovarian adenocarcinoma shows very early occurrences of WGD 

with approximately half of the samples having WGD more than two decades before 

diagnosis (Fig. 5b). A similar phenomenon is seen for breast adenocarcinoma. 

Without any acceleration, the estimated median occurrence of WGD would be 15-

25yrs for the majority of cancer types; this value decreases with greater values of 

CpG>TpG acceleration (Fig. 5c). 

We used a similar approach to calculate the timing of the emergence of the MRCA, 

and therefore the onset of subclonal diversification. The typical timing is considerably 

closer to diagnosis although, interestingly, there are also cases dating back more than 

ten years before diagnosis (Fig. 5d). We note, however, that timing the occurrence of 

the MRCA is more difficult, as it is not always possible to calculate the phylogenetic 

relationship between subclones. The MRCA may date back longer if subclones arise 

sequentially.  

While the exact timing of individual samples remains challenging due to low 
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mutation numbers and unknown mutation rates for individual tumours, on average, a 

picture emerges where across tumour types, the median MRCA ranges between six 

months and six years before diagnosis, while WGD typically occurs 2-11 years before 

diagnosis (Fig. 5e). These findings dovetail with epidemiological observations: cancer 

generally arises past the age of 5029, and the typical latency between carcinogen 

exposure and cancer detection, most notable in tobacco-associated cancers, is several 

years to multiple decades30. Furthermore the progression of most known precancerous 

lesions to carcinomas occurs usually over multiple years, if not decades31-38. The data 

presented here corroborate that these time scales hold also in cases without detectable 

premalignant conditions, raising hopes that these tumours could also be detected in 

precancerous stages. 

 

Discussion 

Taken together, these analyses begin to build an overall picture of tumour 

development. Across cancer types, early tumour development is characterised by 

mutations in a handful of canonical driver genes, and biallelic inactivation of tumour 

suppressor genes, such as TP53. Copy number gains during this time are relatively 

infrequent in many tumour types, but can be distinctive in others. Throughout the later 

stages of tumour evolution, increased genetic instability, a greater diversity of drivers, 

and an acceleration of mutational processes shape the final subclonal diversification. 

Our combined approaches allow us to draw timelines of tumour development over 

different cancer types (Fig. 6; Supplementary Fig. 1). We see that many years before 

a tumour is diagnosed, endogenous and exogenous mutational processes have resulted 

in key driver mutations and chromosomal instability. An intriguing finding is that 

large somatic events, such as WGD, can occur decades before the appearance and 

diagnosis of a tumour. Thus, the process of tumour development may span an entire 

lifetime.  

Our findings raise the possibility of early detection, if cells carrying early mutations 

can be detected and distinguished from cells not progressing further. The discovery of 

distinctive, early mutations in certain tumour types, such as gains of chromosomes 7, 
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losses of chromosome 10, and EGFR mutations in glioblastoma, and isochromosome 

17q in medulloblastoma, begin to unveil possible candidate lesions. 

Individual tumour types show characteristic sets of evolutionary trajectories, 

reflecting differences in the underlying biology of tumorigenesis (Fig. 6; 

Supplementary Fig. 1). Where applicable, these trajectories agree with previous 

studies of genomic aberrations acquired at different stages of tumour progression (e.g. 

in colorectal cancer3). Unlike most other cancers, high grade serous ovarian 

adenocarcinomas typically acquire chromosomal gains within the first half of clonal 

evolution (Fig. 6d). Our findings are consistent with these tumours being the most 

genomically unstable of all solid cancers39, and with their high frequency of TP53 and 

homologous recombination repair defects40. Both across and within cancer types, 

these typical evolutionary trajectories and their correlations with clinical features may 

provide an opportunity to develop prognostic markers and more effective therapies. 

Our findings provide insight into the process of selection acting on tumours 

throughout their development. The genetic canalization in early tumour development, 

and increased diversity of driver mutations later in tumour evolution, is striking. It 

suggests a strong epistasis of fitness effects constraining evolution initially to a small 

set of mutational events that are able to initiate neoplastic transformation. Over time, 

as tumours evolve, the small- and large-scale somatic changes they subsequently 

accumulate propel them towards increasingly specialised developmental paths driven 

by individually rare, atypical driver mutations. 

In summary, we present the first pan-cancer analysis of the evolutionary history of 

tumours. The timelines we derive from this analysis show that in a wide range of 

cancer types, tumour evolution often follows a typical pattern. This can begin decades 

before diagnosis, thus providing a window for early diagnosis and clinical 

intervention.   
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Figure Legends 

Figure 1. Principles of timing mutations 

(a) Principles of timing mutations based on deep whole genome sequencing. 

According to the clonal evolution model of cancer, tumour cells evolve in multiple 

selective sweeps. During some of these sweeps, copy number gains are acquired, 

which can be used for timing analyses (green and purple epochs). Mutations acquired 

after the last clonal expansion are present in distinct subclonal populations (red 

epoch). The number of sequencing reads reporting point mutations can be used to 

discriminate variants as early or late clonal (green/purple) in cases of specific copy 

number gains, as well as clonal (blue) or subclonal (red) in cases without (right). The 

distribution of the number of early and late clonal mutations carries information about 

the timing of the copy number gains with the exact relation depending on the resulting 

copy number configuration (bottom). (b) Example case illustrating the annotation of 

point mutations based on the variant allele frequency (VAF, top) and copy number 

configuration (middle), each shown as a function of genomic coordinate (x-axis). The 

resulting timing estimates for each copy number segment are shown at the bottom, 

indicating that all segments were gained at a similar time (whole genome duplication).  

 

Figure 2. Pan-cancer timing patterns of arm-level gains 

(a) Overview of timing arm-level copy number gains across different cancer types. 

Depicted are the smoothened histograms (y-axes; scale bar 5% recurrence) of the 

timing estimates of large gains at decile resolution (x-axes), split by tumour type and 

chromosome on which gains are detected. (b) Heatmaps representing timing estimates 

of gains on different chromosome arms (x-axis) for individual samples (y-axis) for 

selected tumour types. (c) Two near-diploid example cases illustrating synchronous 

gains with a single peak in amplification activity (top) and asynchronous gains with 

multiple amplification periods (bottom). (d) Distribution of synchronous and 

asynchronous gain patterns across samples, split by whole genome duplication status 

(left). Uninformative samples carry too few or too small gains to be timed accurately. 

Systematic permutation tests reveal a 61% enrichment of synchronous gains in near-

diploid samples (right). 
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Figure 3. Timing of driver mutations and relative ordering of somatic events 

(a-d) Timing of driver point mutations. (a) Top: distribution of point mutations 

over different mutations periods in 2,583 samples from unique donors. Middle: timing 

distribution of driver point mutations in the 50 most recurrent lesions. Bottom: 

distribution of driver mutations across cancer types; colour as defined in the inset. (b) 

Relative timing of the 50 most recurrent driver lesions, calculated as the odds ratio of 

early versus late clonal driver mutations versus background (green, purple) or clonal 

versus subclonal (blue, red). Odds ratios overlapping 1 in less than 5% of bootstrap 

samples are considered significant and have been coloured. (c) Relative timing of 

TP53 mutations across cancer types, coloured as in (b). (d) Estimated number of 

unique lesions (genes) contributing 50% of all driver mutations in different timing 

epochs. Error bars denote the range between 0 and 1 pseudocounts. (e, f, g) Relative 

ordering of somatic events. Preferential ordering diagrams of somatic copy number 

events and driver point mutations within tumour types, for (e) colorectal 

adenocarcinoma, (f) pancreatic neuro-endocrine cancer and (g) glioblastoma. 

Probability distributions show the uncertainty of timing for specific events in the 

cohort. Events with odds above 10 (either earlier or later) are highlighted.  

 

Figure 4. Timing of signatures 

(a) Fold changes in signature exposures between early and late clonal stages for all 

tumours. Each violin shows the distribution of exposure changes across tumour types 

in one signature. Signatures are sorted by the ratio of tumours with a positive 

signature change. (b) Fold changes in signature exposures in individual tumours 

(early vs. late clonal). Within cancer types, tumours are ordered according to 

hierarchical clustering. White indicates inactive signatures. 

 

Figure 5. Real-time estimation of mutational landmarks 

(a) Mutation rate acceleration inferred from paired samples. CpG>TpG mutations 

(right) display a lower acceleration rate compared to all point mutations (left). (b) 
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Time of occurrence of whole genome duplications in individual patients, split by 

tumour type, based on CpG>TpG mutations and patient age. Results are shown for a 

5x acceleration of the mutation rate. (c) Median time of WGD occurrence per cancer 

type, as a function of CpG>TpG acceleration. (d) Timing of subclonal diversification 

using CpG>TpG mutations in individual patients. (e) Comparison of inferred median 

occurrence of WGD and subclonal diversification. 

 

Figure 6. Cancer timelines 

Typical timelines of tumour development, for (a) glioblastoma, (b) colorectal 

adenocarcinoma, (c) squamous cell lung cancer, (d) ovarian adenocarcinoma, and (e) 

pancreatic adenocarcinoma. Each timeline represents the length of time, in years, 

between the fertilised egg and the median age of diagnosis per cancer type. Point 

estimates for major events, such as WGD and the emergence of the MRCA are used 

to define early, intermediate, late and subclonal stages of tumour evolution 

approximately in chronological time. Driver mutations and copy number aberrations 

are shown in each stage according to their preferential timing, as defined by relative 

ordering. Mutational signatures that fluctuate during tumour evolution, either 

considerably (median change +/- 20%), or consistently (75% samples change in the 

same direction) are annotated as well.  
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Methods 

Timing of gains 

We used three related approaches to calculate the timing of copy number gains (see 

Supplementary Methods, section 1). In brief, the common feature is that the 

expected variant allele frequency of a mutation is related to the underlying number of 

alleles carrying a mutation according to the formula 

 

E[X] = n m f / [N (1- ρ) + C ρ]  

 

Here X is the number of reads, n denotes the coverage of the locus, the mutation copy 

number m is the number of alleles carrying the mutation (which is usually inferred), f 

is the frequency of the clone carrying the given mutation (f = 1 for clonal mutations). 

N is the normal copy number (2 on autosomes, 1 or 2 for chromosome X and 0 or 1 

for chromosome Y), C the total copy number of the tumour and ρ the purity of the 

sample.   

 

The number of mutations at each allelic copy number then informs about the time 

when the gain has occurred. The basic formulae for timing each gain are, depending 

on the copy number configuration: 

 

Copy number 2+1: T = 3 n2 / (2n2 + n1) 

Copy number 2+2: T = 2 n2 / (2n2 + n1) 

Copy number 2+0: T = 2 n2 / (2n2 + n1) 

 

Here 2+1 refers to major and minor copy number of 2 and 1, respectively. Methods 

differ slightly in how the number of mutations present on each allele are calculated 

and how uncertainty is handled. 
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Timing of mutations 

The mutation copy number m and the clonal frequency f is calculated according to the 

principles indicated above. Details can be found in Supplementary Methods, section 

1.2. Mutations with f = 1 are denotes as clonal, and mutations with f < 1 as subclonal. 

Mutations with f = 1 and m > 1 are denoted as early clonal (coamplified). In cases 

with f = 1, m = 1 and C > 2, mutations were annotated as late clonal, if the minor 

copy number was 0, otherwise clonal [unspecified] (Supplementary Methods, 

section 1.2.) 

 

Timing of driver mutations 

A catalogue of driver point mutations was provided by the PCAWG Drivers and 

Functional Interpretation Group17. The timing category was calculated as above. From 

the four timing categories, odds ratios of early/late clonal and clonal (early, late or 

unspecified clonal)/subclonal were calculated for driver mutations against the 

distribution of all other mutations in the samples with each particular driver. The 

background distribution of these odds ratios was assessed with 1000 bootstraps 

(Supplementary Methods, section 3.1.) 

 

Integrative timing 

For each pairs of driver point mutations and recurrent copy number variants it was 

established what the ordering of the given pair was (earlier, later or unspecified). The 

information underlying this decision was derived from the timing of each driver point 

mutation, as well as from the timing status of clonal and subclonal copy number 

segments. These tables were aggregated across all samples and a sports statistics 

model was employed to calculate the overall ranking of driver mutations. A full 

description is given in Supplementary Methods, section 3.2. 

 

Timing of mutational signatures 

Mutational trinucleotide substitution signatures, as defined by the PCAWG 

Mutational Signatures Working Group20, were refit to samples with observed 
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signature activity, after splitting point mutations into either of the 4 timing categories. 

Time-resolved exposures were calculated using non-negative linear least squares. Full 

details are given in Supplementary Methods, section 4. 

 

Real-time estimation of copy number gains 

For tumours with multiple time points, the set of mutations shared between diagnosis 

and relapse (nD) and those specific to the relapse (nR) was calculated. The rate 

acceleration was calculated as a = nR / nD × tD / tR. This analysis was performed 

separately for all substitutions and for CpG>TpG mutations. 

The correction for transforming an estimate of a copy number gain in mutation time 

into chronological time depends not only on the rate acceleration, but also on the time 

at which this acceleration occurred. As this is generally unknown, we performed 

Monte Carlo simulations of rate accelerations spanning an interval of 0.66 to 1.0 of 

relative time and averaged the results. Subclonal mutations were assumed to occur at 

full acceleration. The proportion of subclonal mutations was divided by the number of 

identified subclones, thus conservatively assuming branching evolution. Full details 

are given in Supplementary Methods, section 5. 
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Supplementary Figure Legends 

Supplementary Figure 1. Summary of all results obtained per cancer type 

(a) Clustered heatmaps of mutational timing estimates for gained segments, per 

patient. Colours as indicated in main text: green represents early clonal events, purple 

represents late clonal. (b) Relative ordering of copy-number events and driver 

mutations across all samples per cancer type. (c) Distribution of mutations across 

early clonal, late clonal and subclonal stages, for the most common driver genes per 

cancer type. A maximum of 10 driver genes are shown. (d) Clustered mutational 

signature fold changes between early clonal and late clonal stages, per patient. Green 

and purple indicate, respectively, a signature decrease and increase in late clonal from 

early clonal mutations. Inactive signatures are coloured white. (e) As in (d) but for 

clonal vs. subclonal stages. Blue indicates a signature decrease and red an increase in 

subclonal from clonal mutations. (f) Typical timeline of tumour development, per 

cancer type.   

 

Supplementary Figure 2. Correlation between league model and Bradley-Terry 

model order of events. 

The two approaches for determining the order of recurrent somatic mutations and 

copy number events are compared directly for each tumour type. We show how the 

order derived from the league model compares to that derived from the Bradley-Terry 

model, quantified by Spearman's rank correlation coefficient.  

 

Supplementary Figure 3. Timing of signatures 

(a) Fold changes in signature exposures between clonal and subclonal stages for all 

tumours. Each violin shows the distribution of exposure changes across tumour types 

in one signature. Signatures are sorted by the ratio of tumours with a positive 

signature change. (b) Fold changes in signature exposures in individual tumours 

(clonal vs. subclonal). Within cancer types, tumours are ordered according to 

hierarchical clustering. White indicates inactive signatures. 
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Figure 5: Real-time estimates
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Appendix B

The evolutionary history of breast
adenocarcinoma

This appendix contains the evolutionary history of breast adenocarcinoma, which was con-
structed as part of Gerstung et al. (2017). It is referenced in Chapter 5.

The figure on the next page shows the summary of all results obtained per cancer type (a)
Clustered heatmaps of mutational timing estimates for gained segments, per patient. Colours
as indicated in main text: green represents early clonal events, purple represents late clonal.
(b) Relative ordering of copy-number events and driver mutations across all samples per
cancer type. (c) Distribution of mutations across early clonal, late clonal and subclonal
stages, for the most common driver genes per cancer type. A maximum of 10 driver genes
are shown. (d) Clustered mutational signature fold changes between early clonal and late
clonal stages, per patient. Green and purple indicate, respectively, a signature decrease and
increase in late clonal from early clonal mutations. Inactive signatures are coloured white.
(e) As in (d) but for clonal vs. subclonal stages. Blue indicates a signature decrease and red
an increase in subclonal from clonal mutations. (f) Typical timeline of tumour development,
per cancer type.
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