
Chapter 3

New approaches to assemble var

genes from short reads

3.1 Introduction

As described in Chapter 2, de novo assembly of var genes is challenging mainly
due to high A+T content, shared sequence blocks and uneven read coverage.
The polymorphic and mosaic nature of var genes adds further complexity to
the problem of short read assembly. Despite the high sequence polymorphism
in var genes, the presence of highly conserved short motifs was reported (Bull
et al., 2007; Rask et al., 2010). For example the motif LARSFADIG is located
on the DBLa region and found in nearly all var genes. Although the frequent
recombination events that shuffle sequence blocks play an important role in
the evolution of var genes (Frank et al., 2008; Kraemer et al., 2007; Rask et al.,
2010; Taylor et al., 2000b), they also make use of existing short read assembly
approaches inadequate. This chapter focuses on two major challenges in assem-
bling var genes: identifying reads that belong to var genes and performing a
targeted assembly on the collated reads.

Currently, there are no established methods for a targeted assembly of a
gene, a group of genes or gene families. One approach could be to run a
whole genome assembly followed by identifying contigs that resemble the
genes of interest. However, in chapter 2, I demonstrated that this approach had
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serious limitations; whole genome de novo assemblies of P. falciparum are highly
fragmented, with the potential to collapse highly similar regions. Due to the
high A+T content and low complexity, the uniqueness of most regions is also
extremely low, resulting in false joins during the assembly or scaffolding stages.
The problem becomes complicated while dealing with sequences from clinical
isolates due to the presence of multiple infections, poor data quality and uneven
read coverage. Although the blood-stage parasites are haploid, presence of
multiple infections results in multiple haplotypes in individual patient samples.
As a result, the complexity of the assembly graph increases for example due to
bubbles and chimeric connections leading to a highly fragmented assembly. A
new approach is thus required to rapidly identify short reads that come from
the var gene family in order to perform a targeted assembly of short reads.

The problem of genome assembly could be illustrated with the analogy of
solving a jigsaw puzzle where short reads are the pieces of the puzzle that need
to be organized in order to reconstruct a complete genome or region of the
genome. Assembling the var gene family could therefore be seen as solving ⇠60
related puzzles from a mixture of millions of pieces including pieces from non-
var puzzles (var genes are ⇠0.2% of the genome). Thus a plausible approach
would be to first identify the pieces that belong to the ⇠60 puzzles as a whole
and then to find a way to solve each puzzle from the mix.

This chapter aims to develop an alternative assembly approach for var genes
that:

• addresses limitations of existing assembly approaches, specifically the
two challenges described in the previous section:

– rapidly identifying reads that belong to the var gene family, and

– reconstructing members of the family

• is scalable to thousands of parasite isolates

• builds on existing methods already developed in our laboratory when
applicable.
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3.2 Methods: Proposed assembly approach

The assembly approach proposed in this chapter has two components. Firstly,
identical regions of the var mosaic blocks were identified as shared motifs
and used to assist with identification of reads that belong to the var genes.
Secondly, an iterative assembly approach, that takes advantage of de Bruijn
graph-based and overlap-layout-consensus assembly approaches, was intro-
duced. The three main stages: pre-processing, generating seed contigs and
iterative scaffolding/extension (Figure 3.1A-C) and six processes (1-6) comprise
the new approach developed to address the assembly problem of var genes.

3.2.1 Preprocessing sequence data

3.2.1.1 BAM to preFasta

The purpose of this stage (Figure 3.1A. 1) is to reduce the dataset by excluding
sequence reads that do not come from defined “regions of interest”. In addition
to minimizing the physical storage requirements (i.e. disk space), this step will
eventually improve assembly quality by reducing data complexity as a result of
the removal of reads from unwanted regions.

Input file 1: BAM files
Initially, raw FASTQ files of the samples will be stored in the BAM (Li et al.,
2009a) file format. BAM files could be obtained as a result of an alignment pro-
cess to a reference genome or alternatively, in the absence of a reference genome,
BAM files will only store raw reads. Although the methods developed in this
chapter are applicable in the absence of a reference genome, here, availability of
a reference is assumed.

Input file 2: A file with regions of interest
A tab delimited file representing regions of interest is required to identify re-
gions of the genome that will be included in the raw data. The format is shown
below:
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Figure 3.1: A work flow diagram of the iterative assembly approach developed
to assemble var genes. The three stages and six processes of the iterative
assembly approach developed to assemble var genes are shown. Conserved
regions of var genes that were found in a minimum of two culture adapted
samples were identified as initial motifs. Similarly, motifs for consecutive
iterations were generated by finding conserved regions that were common
in var-contigs of two or more samples. Core-regions were defined as central
regions of the genome except the central var-clusters. Non-core reads were thus
defined as reads that align to non-core regions of the genome and reads that
did not align to the reference genome. See text for further details.
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Ch1 Telo.01 MAL1 1 91653
Ch1 Telo.02 MAL1 565425 643292
Ch2 Telo.01 MAL2 1 67545
Ch2 Telo.02 MAL2 860464 947102

where columns 1 to 4 represent regionID, Chromosome, Start and End posi-
tions, respectively.

Defining regions of interest
First, a working definition of Subtelomeric regions was obtained by taking
regions of the genome from chromosome-ends to the last subtelomeric copy of
a var, rif, or stevor gene family. The genome was then divided into subtelomeric
regions, central var gene clusters and the remaining core regions of the genome.

Regions of interest for assembly of the var gene family were defined by
combining subtelomeric regions and central var clusters resulting in ⇠2 Mb
(10% of the genome) of non-core regions. In addition, reads that did not align to
the genome were also included as they contain potentially novel sequences and
highly polymorphic regions. The reads from non-core regions of the genome
(i.e. subtelomeric reads, reads in central var regions and unmapped reads) are
required during the iterative assembly process. It was therefore necessary to
define a new file format that allowed efficient data storage.

Defining the preFasta and preFastq file formats
The FASTQ file format used to represent short read sequences from the Illumina
platforms is shown below:

@Root_ID/1

Forward_read

+

Forward_quality

@Root_ID/2

Reverse_read

+
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Reverse_quality

The FASTA file format has no quality values and is defined as:

>Root_ID/1

Forward_read

>Root_ID/2

Reverse_read

A file format suitable for storing large number samples was adopted in
this thesis to store reads from non-core regions of the genome. In order to
increase efficiency in data storage, preFasta and preFastq files contain the minimal
sequence information required for subsequent storage and iterative assembly
stages. The quality information in FASTQ files is still not used by assembly tools
and could be discarded in the preFasta files. In addition, the standard FASTQ
and FASTA indicators such as “@”, “>”, “/1”, “/2” could also be discarded
during storage and generated in real time while processing the data.

The preFasta file was therefore defined with three columns containing the
minimum required information for a FASTA file:

Root_ID Forward_read Reverse_read

Similarily, a preFastq fill will contain additional two columns to include
quality values for the forward and reverse reads:

Root_ID Forward_read Reverse_read Forward_Q Reverse_Q

This format ensured a significant saving in storage compared to the original
FASTA and FASTQ files, which required four and eight lines respectively com-
pared to the single line representation of preFasta and preFastq files. Finally,
preFasta/preFastq files were compressed using the Unix command ”gzip -9” to
ensure additional savings in storage space.
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3.2.1.2 Generate motifs

The next step in the pre-processing stage of the assembly pipeline was to
generate a list of conserved or shared sequence elements, also known as motifs
(Figure 3.1A.2). Initially, a BLAST search was done on a union file of var genes
from three laboratory-adapted samples (i.e. all against all). However, this
approach was not scalable with respect to the number of genes and size of input
files.

A k-mer based hashing approach was developed to count the frequency of
exact matches of sequences with a length of ‘k’ (k=10 for amino acids and k=30
for nucleotides). Motifs were then grouped according to the number of samples
(or genomes) they came from. A ‘shared motif’ was defined as a motif found
in a minimum of two samples. In order to avoid motifs from low-complexity
regions that could potentially cause spurious matches, shared motifs that were
also present in core regions of the genome were discarded. The information on
motifs and motif sharing was represented in the following format:

ID #Populations #Samples #Genes GeneInfo SampleInfo PopInfo

GeneInfo, SampleInfo and PopInfo contain comma-separated lines listing
the names and frequency of genes, samples and populations that share the
motif.

The process of identifying motifs was repeated after each iteration of assem-
bly and extension of contigs (described in sections 3.2.2 and 3.2.3). Addition of
new motifs was expected to increase the motif database, enhancing the potential
of capturing new sequences and novel variants of the var gene family.

3.2.2 Generating seed contigs

3.2.2.1 Scanning raw reads for motifs

Once a set of shared motifs (nucleotide or amino acid) were identified from
members of the var gene family, raw reads were examined for the presence
of the motifs. An exact match of a motif to either the forward or reverse read
of a read pair was required prior to storing both reads for the initial stages of
generating seed contigs (see next section).
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Initially, identifying reads that contained a motif was done via a BLAST
search using motifs and raw reads as database and query respectively. However,
it became obvious that a BLAST-based scanning approach was too slow and not
scalable as the number of motifs increased from a few thousands to millions.

A motifs scanning tool, MotifScan, that rapidly identified exact matches was
developed to address this limitation. MotifScan was written in C++ and could
be used to quickly scan for the presence of motifs in a large number of FASTA or
FASTQ reads. Furthermore, motifs could be in amino acid or nucleotide formats.
For amino acid motifs, reads were translated in all the six reading frames during
the scanning process. MotifScan slides by one position over the length of each
read or its amino acid translation until a match to the motif database is found.
It is important to note that scanning until the sixth frame is the worst case
scenario as a match to the motif database could be identified earlier. The result
of this step was a FASTA/FASTQ formatted list of reads and their mates where
the forward, reverse or both reads contained a motif. Including a read where
its mate has a motif is an important aspect of the motif-scanning process as it
provided additional information that could be used to extend and join seed
regions in subsequent stages of the assembly process.

3.2.2.2 Generating seed contigs

Using the reads obtained from the motif scanning process, seed contigs were
produced that could then be extended in the next steps. Velvet (Zerbino and
Birney, 2008) was used to generate initial contigs as it was shown to have a better
assembly quality when compared with other short read assemblers (Chapter 2).
The scaffolding option was not used to minimise the risk of potential false joins.
As described in chapter 2, choice of a k-mer size is an important parameter that
needs optimisation for each iteration of assembly. Although Velvet was used
in this thesis, the assembly approach described here is able to use a different
assembler to generate seed contigs.
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3.2.3 Iterative scaffolding and extension

The final stages of the pipeline (Figure 3.1C) involved sub-iterations of joining
and extension of seed contigs.

3.2.3.1 Scaffolding

Seed contigs generated in the previous step were expected to be highly frag-
mented as the initial set of reads represented a very small fraction of the total.
The scaffolding step was therefore important to join contigs that had strong
read-pair support. At the beginning of this project, there was no stand-alone
scaffolder that could be used independently. Short read assembly tools have
built-in scaffolding modules that have a very limited flexibility. In order to
address these limitations, a scaffolding tool was developed that took advantage
of read pair information from standard sequencing libraries. The distribution
of fragment sizes was used to estimate gap sizes and join contigs into scaffolds
where there was sufficient and unambiguous evidence. SSPACE (Boetzer et al.,
2011), a scaffolding software with similar principles became available during
the course of development. After testing the performance, I decided to optimize
SSPACE instead of continuing working on our scaffolder.

3.2.3.2 Iterative extension

Contigs and scaffolds generated in the previous steps account for less than the
total nucleotide content of the gene family. In addition, scaffolds are expected
to have gaps with unknown bases (Ns) that need to be filled during an iterative
extension step described here. This step is intended to close gaps in scaffolds
and extend contig-ends primarily using read pair information (Figure 3.1C.6).

Reads obtained from non-core regions of the genome were aligned to seed
contigs generated in the previous steps and used as raw reads to initiate the
extension process. By aligning reads to the seed contigs, it was possible to
iteratively walk out of seed regions. The process involved a number of sub-
iterations of mapping reads to seed contigs, identifying reads that align to
contig-ends and performing a local assembly using Velvet. These principles
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were implemented in IMAGE (Tsai et al., 2010), a tool developed in our labora-
tory by Jason Tsai for the purpose of closing gaps in draft assemblies. It was
decided to optimize IMAGE for the iterative extension step of the assembly
process. IMAGE begins by aligning short reads to contigs given a list of contigs,
scaffolding information and raw FASTQ reads. After a number of optimisation
steps on IMAGE’s various options, the best extension and gap-closure results
were obtained from choosing optimal parameters for the number of iterations,
k-mer values used for local assembly and the minimum alignment score of
reads when mapped to seed-contigs. A k-mer value of 41 was used over 5 to 7
iterations to obtain good quality gap closure and contig extension. Decisions to
stop at 5 iterations or continue to 7 were made based on the number of gaps
closed and the improvement in N50 contig size. A minimum alignment score
of 70 for 76 bp reads (i.e. use reads that aligned with a score of above 70) was
found to be critical as it minimised the effect of erroneous joins between contigs
due to poor quality matches.

3.2.4 Evaluating the assembly approach

3.2.4.1 Testing on culture-adapted samples

Sequence data
In order to evaluate the performance and accuracy of the new assembly ap-
proach, a total of four laboratory adapted samples were used. DNA for se-
quencing of the reference isolate 3D7 and the IT sample was obtained from Prof.
Chris Newbold’s laboratory in Oxford (Chapter 2, section 2.2). Sequences for
DD2 and HB3 were obtained from Prof. Dominic Kwiatkowski’s laboratory at
the Sanger Institute. The PCR-free library preparation protocol described in
chapter 2 was used. Raw reads of the four samples were aligned to the 3D7
reference genome version 2.1.4 using SMALT http://www.sanger.ac.uk/

resources/software/smalt/ (A python script written by Martin Hunt in
our laboratory was used to align on the following SMALT parameters: -i 500
-r 10 -x -k 13 -s 6). Reads are referred to be mapped in proper-pairs if both
the forward and reverse reads align to the reference genome facing each other
within the expected fragment size range (200-300 bp).

http://www.sanger.ac.uk/resources/software/smalt/
http://www.sanger.ac.uk/resources/software/smalt/
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Var genes
Var genes for the 3D7 and IT genomes were obtained from GeneDB (http:
//www.genedb.org/). As described in the previous chapter, 3D7 is the ref-
erence isolate with a complete genome whereas the other genomes are still
highly fragmented with a limited coverage of the var repertoire. Supercontigs
of HB3 and DD2 genomes were obtained from the Broad Institute (http://
www.broadinstitute.org/). Sequences annotated as VAR/PfEMP1 were
identified resulting in 47 and 25 genes for HB3 and DD2 respectively.

Initial Motifs
Initially, var genes from 3D7, IT and HB3 genomes were used to generate motifs
using Pmatch. However, due to the minimum length requirement of 14 aa, we
decided to develop a k-mer-basd hashing approach to generate motifs. For the
assembly of culture-adapted samples, initial motifs were generated from var
genes of HB3 and DD2 genomes for two reasons. First, these samples have
incomplete var repertoire and motifs generated from them would represent
a minimal set of starting motifs. It is thus a good indicator of the approach’s
success in clinical samples. Second, initiating the process on motifs obtained
from the other genomes will provide a means to evaluate the completeness and
accuracy of the var repertoire produced for the 3D7 genome.

Iterations
The process was run for a total of 10 iterations. New motifs were generated at
the end of each iteration and used as input for the next iteration.

Evaluating assembly
Assembly quality was evaluated by four commonly used measures: N50 contig
size, sum of contigs and largest contig sizes. The completeness of the var
repertoire was estimated by counting the number of contigs with the DBLa

domain. In order to test the accuracy of the contigs generated by the process,
the 3D7 genome was used as a reference. All contigs from the 3D7 assembly
were aligned against var genes of the 3D7 genome.

http://www.genedb.org/
http://www.genedb.org/
http://www.broadinstitute.org/
http://www.broadinstitute.org/
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3.2.4.2 Testing on clinical samples

Sequence data
A total of 50 samples were randomly selected from the Plasmodium Genome
Variation (PGV) project at the Sanger Institute. Clinical samples were initially
collected and sequenced by Prof. Dominic Kwiatkowski’s lab at the Sanger
Institute. The samples were randomly selected from 10 different countries
representing West Africa, East Africa and South East Asia.

Initial motifs and iterations
Initial motifs for the assembly of 50 clinical samples were generated from var
genes of 3D7, HB3 and IT genomes. Var genes for the three samples were
obtained as described in the previous section. Amino acid motifs of length 10
aa were generated and checked for uniqueness. Motifs shared by a minimum
of two samples and that were unique to non-core regions and the flanking
upstream and downstream regions of 2 kb of the 3D7 genome were selected to
initiate the process. The performance of the iterative assembly was enhanced
by generating motifs from a six frame translation of contigs that contain the
DBLa tag. In order to determine the number of iterations required to gather an
optimal number of motifs (i.e. the iteration where the number of shared motifs
reaches a saturation), the assembly was run for a total of 20 iterations. Shared
motifs obtained at the end of each iteration were checked for quality and used
as inputs for the next iteration.

Assembly statistics and quality check
Contigs that contain the DBLa domain were obtained from the 20th iteration
and assessed on how close they are from the expected assembly statistics (based
on var genes of the 3D7 genome). In addition, the size distribution of open
reading frames was examined to evaluate the accuracy of the assembly.
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3.2.4.3 Additional evaluation using samples from the Illumina HiSeq plat-
form

In order to further evaluate the assembly process, five clinical samples from
the latest runs of the Illumina HiSeq platform were selected. These runs have a
higher yield and longer read lengths (100 bp, paired end reads ) compared to
the previous samples used to test the assembly process.

Comparing with de novo assembly
Initially, the five samples were assembled using motifs generated at the end
of the 20th iteration. After running the iterative assembly process for three
iterations, assembly quality of contigs that contained the DBLa tag were exam-
ined and compared with scaffolds of a de novo assembly (made by Velvet and
obtained from Thomas Otto in our laboratory).

Mixed assembly
In order to test the performance of the new assembly approach in parasite
samples that have multiple infections, raw reads from four of the five samples
were selected. These samples were shown to have a single infection based
on the number of contigs that contain the DBLa domain (i.e. expecting 60
genes per genome). Raw reads from non-core regions of the genome were
first individually assembled for each sample (k=71, cov-cutoff=auto). The reads
were then mixed and assembled using identical assembly parameters as the
individual assembly. Open reading frames (ORFs) of contigs that contain the
DBLa were obtained by translating to all six frames and choosing the frame
with DBLa. The contigs from the two sets of assemblies were compared at the
protein level using BLAST (blastp - F F -m 8). This provided a better assessment
than a nucleotide based comparison as regions of extremely low G+C content
such as introns and intragenic regions were excluded.



3.3 Results 73

3.3 Results

3.3.1 Defining regions of interest

Regions of interest were defined using the reference genome 3D7 as described
in section 3.2.1.1. A simple definition of subtelomeric regions was sought for the
purpose of this thesis resulting in a total of ⇠2Mb (10% of the genome) from the
28 subtelomeres. An example of the working definition of subtelomeric regions
on chromosome 1 is shown in Figure 3.2. Analysis of the size distribution of
subtelomeric regions in the P. falciparum genome using this working definition
revealed that chromosomes 4 and 7 had the longest subtelomeric regions (Figure
3.3).

Although the working definition of subtelomeric regions adopted for this
thesis may be different from that of the original genome annotation (defined
using synteny with closely related species), it was possible to capture highly
polymorphic regions that are currently being excluded in studies that rely on a
unique alignment of short reads to call single nucleotide polymorphisms and
copy number variations.

Figure 3.2: A working definition of subtelomeric regions adopted for this
thesis: Regions of the genome from the end of each chromosome to the last
subtelomeric copy of a var, rif or stevor family were identified as subtelomeric.
The red blocks represent coding genes, grey boxes represent pseudo-genes,
cyan blocks at the left-end represent repeats. The two plots on the top panel
show the G+C content and k-mer-based uniqueness plots.



3.3 Results 74

Figure 3.3: Size distribution of subtelomeric regions in the reference genome
3D7 by Chromosome. Sizes range from 17.5 to 170 kb covering ⇠10% of the
genome.

3.3.2 Evaluating the new assembly approach using culture-adapted
samples

3.3.2.1 Sequence data

A summary of raw reads for the four culture-adapted samples are shown in
Table 3.1. The number and proportion of non-core reads varied in the four
samples from ⇠9 to 34% depending on the number of reads aligned to the
genome and reads that did not align (eg. due to poor read quality).

The HB3 genome had a significantly higher number of non-core reads due
to the higher number of reads that did not align to the 3D7 genome (⇠33%).
This could be due to a decrease in base quality of the second read after the
⇠50th cycle (Appendix B, Figure B-2).
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Total read pairs %All reads aligned to 3D7 Non-core read pairs
(Aligned in proper pair) (%total)

3D7 12,488,019 96(93) 3,453,588(28%)
DD2 20,650,235 91(84) 2,327,890 (11%)
HB3 18,501,446 67(73) 6,369,447(34%)

IT 27,013,569 97(86) 2,477,392 (9%)

Table 3.1: A summary of the four culture-adapted samples and non-core reads
used to evaluate the iterative assembly approach. Reads that aligned in the
correct orientation (facing each other) and within the expected insert size range
are defined as ’aligned in proper pair’

3.3.2.2 Motif generation and iterative assembly

A total of 17,719 motifs (10 aa overlapping k-mers) were found to be shared
between var genes of HB3 and DD2 genomes. After excluding motifs that
were also found in the core regions of the 3D7 genome, a total of 7,353 motifs
remained to initiate the iterative assembly process. As the number of iterations
increased, the number of motifs shared by a minimum of two of the four samples
also increased (Figure 3.4). However, the rate of increase in new motifs declined
after the ⇠4th iteration due to a potential saturation in the motif space. The
highest improvement was found in the first two iterations where the number of
motifs increased from the initial ⇠7,000 to ⇠180,000.

Assembly quality improved with more iterations (Figure 3.5). The most
notable improvement was on the 2nd iteration of the process. Overall, while the
sum of contigs as well as N50 and largest contigs sizes increased with subse-
quent iterations, the number of contigs decreased indicating an improvement
in assembly quality.

Although 3D7 had the best N50 contig size (⇠5 kb), it also had the least
number of contigs with DBLa and least value in sum of contigs compared
to the other three samples. The N50 contig size is affected by the number of
contigs available and thus may give a wrong impression of quality if not taken
together with other measures as described here. The sum of contigs ranged
from under 300 kb for 3D7 to ⇠500 kb in the IT assembly. The number of contigs
was comparable between samples during the first iteration (⇠150 contigs per
sample). However, in subsequent iterations the contig count for 3D7 stayed
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below 100 while the other samples generated ⇠300 contigs. This variation
in the number of contigs is reflected in the N50 contig sizes as the highest
N50 values for 3D7 correspond with the fewest contigs. The efficiency of the
iterative extension process was also shown by the sizes of the largest contigs
which increased from ⇠5 kb to ⇠12 kb during the course of the iterations. The
number of contigs that contained the DBLa tag also showed improvement from
the second iteration and converged to ⇠40 to 50.

In summary, the iterative assembly generated a substantially higher num-
ber of var-contigs (i.e. contigs with the DBLa tag) compared to the original
number of genes found in the HB3 and DD2 genomes used to initiate the motif
generation process. It was possible to recover up to ⇠80% of the expected var
repertoire in the test samples by starting from a very limited set of initial motifs.

Figure 3.4: The cumulative number of shared motifs for 10 iterations of the four
lab adapted samples 3D7, IT, HB3 and DD2. Initial motifs were obtained from
HB3 and DD2 in order to test the assembly approach with a limited number of
starting motifs.

Evaluating var contigs of the 3D7 genome
Optimal assembly results for 3D7 were obtained at the 5th iteration (Table 3.2).



3.3 Results 77

Figure 3.5: Assembly statistics of the four lab adapted samples for 10 iterations.
Five assembly measures Sum of contigs, N50, Number of all contigs, largest
contig and number of var-contigs were used to asses the assembly quality with
an increase in iteration. A). Sum of contigs was used to measure the coverage
of the var repertoire. The N50 contig size (B), the number of contigs (C) and
the largest contig size (D) measure assembly contiguity. Completeness of the
var repertoire is measured by counting contigs that contain the DBLa tag (E).
The 3D7 assembly had the highest N50 and fewer contigs, but also had the least
contig coverage as shown in A.
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Comparing contigs generated from the iterative assembly to the 3D7 genome
provided a measure of completeness and accuracy. Of the 46 contigs that
contained the DBLa domain, only one misassembly was detected due to a
chimeric connection between two genes of the central var cluster. Although
it does not contain the DBLa domain, var2CSA was assembled in one contig
producing a full length (intact) gene. The completeness of the repertoire in the
3D7 genome was therefore estimated to be ⇠75% (i.e. expecting 61 var genes in
the genome). Coverage of the var repertoire in 3D7 was evaluated by aligning all
93 contigs to the genome. Inspection of comparisons performed using BLAST
and Abacas revealed that 46 of the 61 var genes in 3D7 were covered by contigs
(Table 3.3). A total of 21 genes were partially covered (minimum coverage of
50% at 99% identity) and the remaining 25 genes were fully covered by one
or more contigs. The majority of the genes were fully or partially covered by
single contigs (intact).

All contigs Contigs with DBLa
Sum 277761 196368
N50 5039 5540

Num. 93 45(1*)
Largest 9223 9223
*mis-assembeled contigs

Table 3.2: Iterative assembly results for var genes of the 3D7 genome.

Fully covered Partially covered
Exon1 only 1 7

Exon1(+ Ups) 2 3
Exon1(+ Intron) 7 6

Exon1(+Ups +Intron) 15 5
Total 25 21

Intact 21 16
Fragmented 4 5

Table 3.3: Coverage of var genes in the 3D7 genome. A total of 46 (of the
expected 61) genes were covered by one or more contigs.

The iterative assembly approach was able to recover ⇠75% of var genes in
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the 3D7 genome. As described earlier, the initial motifs were obtained from HB3
and DD2. The results were thus very promising as they illustrate the potential of
this approach in reconstructing a large proportion of the repertoire in unrelated
clinical samples. The missing genes are expected to be due to insufficient seed
motifs as the assembly was performed using motifs generated from HB3 and
DD2. The single misassembled contig was a result of chimeric join between two
genes of the central cluster. These genes share identical regions of larger than 1
kb and could not be resolved using a standard library (200-300 bp). In addition,
the smaller fragment sizes in the 3D7 library (quartiles: 143,163,188) may also
contribute to poor quality assembly.

3.3.3 Evaluating new assembly approach using clinical sam-
ples

The iterative assembly approach was further evaluated using 50 clinical samples
from 10 countries (Table 3.4). Samples were chosen from standard PCR-free
libraries (insert size 200-300 bp) with a read length of 76 bp.

The three laboratory clones 3D7, HB3 and IT were used to generate initial
motifs. A total of 8,766 motifs were shared by at least two of the three samples
and also passed quality control steps. The number of motifs increased with each
iteration as observed in the lab-adapted samples. However, the rate of increase
in motif acquisition was slower after the 10th iteration (Figure 3.6). Each iteration
involved sub-iterations of scaffolding and extension that helped improve the
quality of assembly. Assembly results of the 50 samples are summarised in
Figure 3.7. At the end of the 20th iteration, the average number of contigs
that contain the DBLa (n=2,793) was close to the expected value of ⇠3,000
(i.e. expecting ⇠60 per genome). In addition, the N50 contig length (6.4 kb)
and the largest contig (⇠14 kb) sizes were also within the expected range
of values for var genes with the DBLa tag in the 3D7 genome (sum=428 kb
N50=7.7 kb; Number of contigs =54; Largest contig=12.5 kb). Box plots showing
the distribution of 2,769 var-contigs within the 6 groups (Figure 3.7) show a
similar distribution with the 3D7 and other clinical samples studies by Bull and
colleagues (Bull et al., 2007).
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Figure 3.6: Number of motifs shared by at least two samples (i.e. var-contigs
from two different samples) per iteration for 50 clinical samples. A). The
increase in number of shared motifs for the first 11 iterations is shown separately
in A. The rate of increase in shared motifs was higher for the first ⇠5 iterations.
B). The number of shared motifs continued to increase at a slower rate after the
12th iteration as shown by the scale of the y-axis.
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Figure 3.7: Assembly statistics of 50 clinical samples. A). A total of 2,769
contigs had the DBLa tag representing ⇠92% of the expected var repertoire. The
number of contigs represented by the N assembly measures were also shown.
For example N50 of 6.4 kb; n=894 indicates that a total of 894 contigs are above
6.4 kb in size. The sum of these contigs is equivalent to ⇠7.5 Mb (i.e. half of the
total sum of contigs). B). Var-contigs were grouped into one of the six groups
using the ‘Cys-POLV’ grouping method of Bull and colleagues (2007) (Bull et al.,
2007).
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Figure 3.8: A histogram of the number of contigs with DBLa (var-contigs)
per sample for the 50 clinical isolates. Two samples (PP0011 from Peru and
PM0096 from Mali) were found on either end of the distribution with 26 and 78
var-contigs respectively.
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Sample Origin Sample IDs
Gambia PA0012 PA0032 PA0066 PA0081 PA0091

Kenya PC0057 PC0070 PC0075 PC0080 PC0083
Thailand PD0126 PD0127 PD0133 PD0134 PD0138

Ghana PF0211 PF0231 PF0263 PF0288 PF0290
Cambodia PH0142 PH0145 PH0380 PH0479 PH0483

Mali PM0048 PM0090 PM0096 PM0132 PM0162
PNG PN0027 PN0054 PN0056 PN0057 PN0059
Peru PP0005 PP0006 PP0010 PP0011 PP0012

Bangladesh PR0001 PR0002 PR0005 PR0006 PR0008
Uganda PW0003 PW0009 PW0010 PW0013 PW0016

Table 3.4: Clinical samples used to test the iterative assembly approach. A total
of 50 samples were chosen from 10 countries representing Africa, South East
Asia and South America.

The average number of contigs with DBLa was ⇠56 (Standard Devia-
tion/SD=10) indicating that most samples contain the expected number of
var genes. Isolates PM0096 and PP0011 were at the two extreme ends of the
normal distribution with 78 and 26 var-contigs respectively (Figure 3.8). The
sample with least number of var-contigs (PP0011) had poor data quality that af-
fected the assembly (Appendix B). On the other hand, an increase in the number
of var-contigs beyond the expected assuming a normal distribution (⇠76; con-
sidering 56+2SD) may indicate the presence of multiple infections. Additional
challenges are envisaged with poor quality sequence data and mixed infections.
Further evaluations taken to specifically look at these issues are described in
the following sections.

3.3.4 Additional evaluations

3.3.4.1 Comparisons with de novo assembly

The sequencing technology and assembly tools have improved since the begin-
ning of this thesis. It was thus important to evaluate if a de novo assembly of
field isolates is practical due to significant improvements in yield and sequence
quality. Although the assembly results were better than found in 2009, the
iterative assembly approach described in this chapter generated the greatest
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number of var-contigs (Table 3.5).

Clinical DBLa count
Sample 3 iterations De novo

1 57 48
2 56 45
3 54 39
4 61 48
5 97 86

Table 3.5: Comparing iterative assembly with de novo assembly using 5 clinical
samples (read length =100 bp; Velvet used for de novo assembly). The iterative
assembly approach generated more var-contigs than a simple de novo assembly.

The iterative assembly approach was able to generate N50 contig sizes of up
to 7.9 kb (Table 3.6) for Sample 1 (57 var-contigs) indicating both the efficiency
of the method and benefits of long reads in assembling var genes.

Sample Sum(bp) N50(bp) var-contigs Largest(bp)
1 423,521 7,902 57 13,813
2 418,299 7,478 56 13,740
3 314,747 6,236 54 10,229
4 401,616 7,139 61 12,715
5 610,588 6,708 97 12,457

Table 3.6: Assembly statistics of the five clinical samples using the iterative
assembly approach.

Sample 5 had the highest number of var-contigs suggesting presence of
multiple infections. It was thus excluded from subsequent comparisons.

3.3.4.2 Mixed assembly

Reads from the first four of the five clinical samples (previous section) were first
assembled individually for one iteration resulting in 58 to 67 var-contigs (Table
3.7). The assembly results were different from those shown in the previous
section (comparisons with de novo assembly), as expected from the iterative
process. The completeness of the var repertoire (i.e. number of contigs) and
coverage (the sum of contigs) varies with each iteration due to the increase
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in reads that are available to perform the iterative assembly. Concatenating
contigs from the four samples resulted in a total of 249 var-contigs. Conversely,
assembly of mixed reads generated in a total of 230 contigs with DBLa.

As these samples were obtained directly from patients, evaluating the qual-
ity of the assembly by comparing to the reference genome was not informative.
We therefore compared Open Reading Frames (ORFs) from the two sets of as-
semblies using BLAST. The results revealed that ORFs from the mixed assembly
overlapped with 33 to 84% of ORFs in the individual assembly (99%, match
length of 300 aa) (Table 3.8).

Sample Sum N50 Num. scaffolds Largest
1 316,696 5,984 67 10,745
2 323,601 6,263 65 10,990
3 134,458 4,011 58 8,420
4 317,902 6,915 59 11,271

Total 1,092,657 6,163 249 11,271
Mixed assembly 813,249 5,348 230 11,114

Table 3.7: Comparing individual assembly with mixed assembly of four clinical
samples: Assembly statistics. Sample 3 had a relatively poor quality assembly
compared to the other three samples.

As these samples were obtained directly from patients, evaluating the qual-
ity of the assembly by comparing to the reference genome was not informative.
We therefore compared Open Reading Frames (ORFs) from the two sets of as-
semblies using BLAST. The results revealed that ORFs from the mixed assembly
overlapped with 33 to 84% of ORFs in the individual assembly (99%, match
length of 300 aa) (Table 3.8).

ORFs with the DBLa domain were first extracted from contigs of the two
sets of assemblies (i.e. mixed and individual assemblies). ORFs of the mixed
assembly were then compared with ORFs from the four samples resulting
in an overlap of 33 to 84% of the total in each sample (99% identity and 300
aa). The fewer ORFs in Sample 3 are indicative of a poor quality assembly.
Although 300 aa was a reasonable size to compare the two sets of ORFs, the
results presented in Table 3.8 do not reveal the extent of overlap between the
ORFs (i.e. the proportion of each ORF aligned at 99% identity, also called the
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Sample1 Sample2 Sample3 Sample4
Found in mixed assembly 48(62) 52(68) 14(42) 48(57)

(total)
%Total 77 76 33 84

Table 3.8: Comparing ORFs of individually assembled contigs with ORFs of
the mixed assembly. ORFs from the mixed assembly were compared with the
ORFs obtained from the four samples. This table shows the count of ORFs of
the individual assemblies that overlapped with ORFs of the mixed assembly
with a minimum match length of 300 aa and a minimum identity of 99%.

coverage of ORFs). Therefore, additional comparisons were made based on the
coverage of ORFs by varying the threshold from 5 to 100% (Figure 3.9). Up to
30% of contigs in the individual assembly were matched to mixed assembly
over the full length of their ORFs. The remaining contigs were only partially
covered with break points potentially caused by repetitive or shared sequence
blocks. Aligning raw reads back to the contigs allowing multiple mapping
for non unique reads revealed regions of excess coverage that correlated with
contig-ends (i.e. break-points) in the mixed assembly (Figure 3.10).
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Figure 3.9: Comparing ORFs obtained from individual and mixed assembly
by varying the proportion of ORFs covered. ORFs from the mixed assembly
had a higher overlap with ORFs from individual assemblies at lower coverage
thresholds. As the coverage requirement increased, the number of ORFs (from
each individual assembly) that overlapped with ORFs from the mixed assembly
decreased.
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Figure 3.10: An ACT view of read coverage over var-contigs generated from
individual and mixed assemblies. This example shows a BLAST comparison
of var-contigs from the individual assemblies (top panel) against the mixed
assembly (middle panel). Contigs are shown in alternating orange and brown
blocks. The yellow, red and blue blocks (vertical) show synteny matches. Black
bars in the middle panel represent stop codons. The contig on the top panel
is partially covered (shown by the yellow match) by a contig from the mixed
assembly with the breakpoint corresponding to a repetitive region (shown by
the increased read coverage).
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3.4 Discussion

The aim of this chapter was to develop an alternative approach that will ad-
dress the limitations of existing assembly approaches in polymorphic gene
families. This section presents a discussion of the findings in the following four
conclusions.

Conclusion 1: An iterative assembly approach based on conserved motifs provides a
better way of reconstructing the var gene family in P. falciparum

Gene families have blocks of highly similar and polymorphic regions and
continue to evolve by accumulating additional polymorphism as well by re-
combination within these families. This ongoing microevolution leads to the
maintenance of an extremely diverse gene repertoire. The var gene family is
especially known to contain mosaic blocks that are highly recombinogenic and
polymorphic (Bull et al., 2008; Frank et al., 2008; Kraemer et al., 2007). These
regions pose significant challenges to standard short read assembly approaches.
We have developed an assembly approach that takes advantage of the mosaic
nature of var genes such that short conserved are used to initiate an iterative
assembly. The new approach produced var-contigs (contigs that contain the
universal DBLa tag) that were accurate and had high repertoire coverage. The
efficiency, coverage and accuracy of the approach were demonstrated using
sequences from four culture-adapted and 50 clinical samples. The potential of
our approach to accurately assemble clinical samples was demonstrated first by
assembling var genes of the 3D7 genome where initial motifs were generated
from unrelated samples with incomplete var repertoire. The single misassembly
detected in the 3D7 var assembly was due to a merge in two highly identical
regions of var genes on chromosome 12 (central cluster). Such wrong joins are
expected as identical segments between var genes of the 3D7 genome could be
as long as ⇠5 kb (Chapter 2). Resolving ambiguities in the assembly graph of
such long shared segments is not possible with the standard library size of 200 -
300 bp. A fragment size longer than the shared unit is required to accurately
assemble the full length of var genes that share long sequence stretches. Such
cases of misassembly result in frame shifts during aminoacid translations and
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were detected as part of the quality control process. Additional quality checks
that take advantage of read-mapping coverage of raw reads are also being in-
corporated in the assembly pipeline. Examination of the read coverage patterns
will reveal drops in paired-end coverage as potential signs of false joins.

Conclusion 2: Motifs are an important part of this approach

Motifs provided an important part of the assembly process. Identifying
conserved (shared) elements across the length of var genes and including the
mates of reads that contained motifs made it possible to generate sequence
islands at the initial stages of the assembly process. These islands were con-
sidered as points of initiation for further iterative extension. A combination of
iterative scaffolding and extension was used to close gaps between seed regions
by walking-in and out of the sequence islands. Assembly quality was affected
by data quality, yield and the coverage of motifs used to initiate the process.
The increase in motif space at the beginning is characteristic of the initial stages
of the assembly process where new motifs are being added to the collection. On
the other hand, at later iterations, the majority of the motif would already be in
the collection resulting in a decrease in the rate of accumulation.

Conclusion 3: Iterations provide the mechanism for a controlled extension of the var
gene repertoire

Extremely low and extremely high read coverage are potential reasons for
poor quality assembly. An iterative extension approach provided a means for
identifying reads that could be used for a gradual extension of seed contigs.
As the number of iterations increases the number of motifs identified also in-
creased. A limited number of iterations was required to attain motif saturation
(⇠5 for culture-samples and ⇠7-10 for 50 clinical samples). This observation has
implications on the number of iterations required to gather motifs in order to
assemble a given set of samples. Motifs generated from the 50 clinical samples
are representative of different geographical regions. Conditions for terminat-
ing iterations are determined based on the assembly quality (i.e. repertoire
completeness as measured by the count of var-contigs, contiguity of assembled
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contigs as measured by N50 and largest contig sizes, and repertoire coverage
as measured by sum of var-contigs). Once an optimal number of iterations is
achieved, assembly quality will stop improving or begin to deteriorate signaling
an exit condition from the iterations.

Conclusion 4: This approach provides a way of reconstructing var genes from clinical
samples and get a complete view of the var repertoire for the first time

Assembly results of 50 clinical samples resulted in the largest collection of
var genes so far. The total number of contigs (n=2,769) found with the DBLa

tag (N50=5.5 kb; Largest=14 kb; sum of contigs = ⇠15 Mb) represented over
92% of the expected ⇠3,000 contigs (expecting 60 var genes per genome). Sam-
ples with below 30 var-contigs were associated with poor quality in the raw
data. Conversely, samples with over 70 var-contigs were shown to have mul-
tiple infections by a visual inspection of MSP1 genes. Assembly test of mixed
samples resulted in shorter contigs than in the case of individual assemblies.
However, within the majority of cases that were visually inspected, the break-
points corresponded with the regions of high read coverage as expected. These
regions are known to cause breaks in assembly due to ambiguities that could
not be resolved using standard sized libraries (as discussed in the previous
chapter). Samples used for mixed assembly tests were not normalised for cov-
erage in order to represent over-representation of some genotypes in natural
populations.

In summary, this chapter presented an alternative assembly approach to ef-
fectively reconstruct the var gene family from short reads of second-generation
sequencing platforms. Applications of the method to perform a targeted as-
sembly of the family were demonstrated using culture-adapted and clinical
samples of P. falciparum.


