
Chapter 5

Assembly of var genes from clinical
samples

5.1 Introduction

The study of var genes especially in clinical samples taken directly from patients
will significantly improve our understanding of their diversity and evolutionary
history. Previous studies that involve sequence analysis have mainly looked at
diversity and expression of var genes on a limited number of clinical isolates.
A number of studies have also shown association of sequence features with
specific disease phenotypes (Ariey et al., 2001; Bull et al., 2005; Cham et al.,
2010; Falk et al., 2009; Jensen, 2004; Kaestli et al., 2004, 2006; Kalmbach et al.,
2010; Kirchgatter and Portilo, 2002; Kyriacou et al., 2006; Lavstsen et al., 2005;
Montgomery et al., 2007; Nielsen et al., 2002; Normark et al., 2007; Rottmann
et al., 2006).

However, all except two of the previous studies that used a sequence analysis
approach of var genes have focused on the DBLa region (Kraemer et al., 2007;
Rask et al., 2010). Although it was possible to accurately classify var genes into
existing groups and make associations with disease severity using sequences
taken from the DBLa domain, a large proportion of the var repertoire is still
excluded. In the first comparative study to use full length genes, Kraemer and
colleagues (Kraemer et al., 2007) analysed a near complete var repertoire of
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three culture-adapted samples 3D7, IT and HB3. While 3D7 has a complete
set of genes (i.e. the expected 60 protein coding genes), the other two had an
incomplete repertoire. The results confirmed the presence of extreme diversity
in var genes with only three genes (var1CSA, var2CSA and Type 3 var) showing
a higher degree of conservation in all the three genomes. The second study by
Rask and colleagues (Rask et al., 2010) used an additional four genomes (DD2,
PFCLIN, RAJ116 and IGH) to provide a new definition of domain boundaries
and identify recombination hotspots. A combination of phylogenetic and
iterative homology block detection methods was used to define 628 homology
blocks that could represent var genes with a better resolution than existing
domain boundaries. However, due to the limits on the number and diversity of
sequences used (311), these blocks may not accurately represent var genes in
natural populations.

Understanding the order of sequence blocks and mosaic domains is of
great importance. Recent studies have associated specific domain cassettes
(as defined by Rask and colleagues (Rask et al., 2010)) with disease severity
and a rosetting phenotype (Avril et al., 2012; Claessens et al., 2012; Lavstsen
et al., 2012). Such association studies may facilitate the discovery of important
antigens that could be used as potential vaccine targets for severe malaria.
Obtaining full-length sequence information on var genes may thus be a step
forward in such attempts. Moreover, lack of full-length information continues
to be a major roadblock in understanding var gene diversity.

The focus of this thesis was to develop a new approach for the assembly
of var genes from short reads of second generation sequencing platforms. As
described in previous chapters, assembly of var genes using existing tools
was not practical due to high polymorphism and the mosaic nature of var
genes (Chapter 2). An iterative assembly approach that takes advantage of the
inherent mosaicism in var genes was thus developed (Chapter 3) and evaluated
on culture-adapted and a small number of clinical samples (50 samples). Here,
the new approach is applied on a larger number of clinical samples.

Assembly of clinical samples adds another layer of complexity due to a
number of difficulties associated with the quality of the input DNA and raw
sequence data. Contamination with host DNA could result in a lower amount
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of starting material, and therefore low yield of sequence data. In addition, sys-
tematic errors and bias towards certain sequence features due to the sequencing
chemistry may affect data quality and result in reads with errors. Multiple
genotypes circulating in a single individual contain highly similar as well as
polymorphic haplotypes that affect the structure of the de Bruijn graph and
quality of the resulting assembly. Although some of the challenges are being
addressed by improvements in library production protocols used for sample
preparation and sequencing (Oyola et al., 2013), the effect of poor quality data
and uneven coverage still poses a unique challenge in assembly of var genes.

In this chapter, the iterative assembly approach described in Chapter 3 was
applied to a larger collection of clinical isolates consisting of 743 samples taken
from Africa, South East Asia and South America.
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5.2 Methods

5.2.1 Sequence data

Clinical samples of P. falciparum were obtained from the Plasmodium Genome
Variation (PGV) project at the Sanger Institutes malaria programme (www.
sanger.ac.uk/research/areas/malariaprogramme/). Methods of sam-
ple preparation and the sequencing technology have seen a significant improve-
ment over the last few years. Samples sequenced during the early days of the
project were especially of low yield and poor quality with shorter read lengths
of 37 and 54 bp. It was therefore decided to exclude samples that had a read
length of below 76 bp. Samples that were not prepared using the PCR-free
protocol (Chapter 2) were also excluded.

5.2.2 Initial Motifs and iterative assembly of clinical samples

The assembly work flow for a large number of clinical samples is illustrated in
Figure 5.1. As described in Chapter 3, a total of 50 clinical samples were assem-
bled for 20 iterations to evaluate the iterative assembly approach developed in
this thesis (Chapter 3).

To obtain the maximum number of seed motifs for the clinical sample
assembly, the assembly of the 50 samples was repeated for another iteration.
Initial motifs to assemble 743 samples were thus obtained from the 21st iteration
by translating contigs with the DBLa tag (var-contigs). Although the open
reading frame (ORF) that contains the DBLa tag could be used to identify the
correct reading frame, presence of frame-shifts meant some of the long DBLa

may be excluded. Var-contigs were thus translated in all the six frames to
generate the initial set of shared motifs. Once started with these motifs, the
assembly of the clinical samples was repeated for three iterations, with each
iteration involving sub-iterations of scaffolding and extension. Seed contigs
were generated by optimising k-mer sizes for the assembly in two categories. For
reads with a length of 76 bp, k-mer sizes of 51, 65 and 71 were used. For reads
of length 100 bp and above, an additional k-mer size of 81 was used. Assembly
results with different k-mer values were compared based on the number and

www.sanger.ac.uk/research/areas/malariaprogramme/
www.sanger.ac.uk/research/areas/malariaprogramme/
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N50 sizes of var-contigs. For each sample the k-mer value that resulted in the
highest number of contigs with DBLa and the highest N50 value was chosen
to generate seed contigs. A final list of motifs (length=10 aa) was generated
from var-contigs of the third iteration by considering a single frame with the
longest Open Reading Frame (ORF) in either the forward or reverse strand. If
the longest frame does not contain the DBLa tag, ORFs longer than 300 aa from
the three frames on the strand of choice were chosen.

5.2.3 QC and filtering

Assembly quality was measured using the number of var-contigs, sum of var-
contigs, N50 and largest contig sizes. The number of var-contigs was used
as a measure of repertoire completeness for each assembled sample. Initially,
samples that had below 30 var-contigs were excluded as they were found to be
a result of low yield or poor quality sequence data. Samples with more than
70 var-contigs were defined as having multiple infections. Initially, these cutoff
values were determined based on the expected number of var genes (⇠60) from
previous studies on laboratory clones and clinical isolates. Additional quality
checks include comparing assembly statistics of var-contigs with expected
values from var genes of the reference genome 3D7. Using the method proposed
by Bull et al. (2007), var-contigs were grouped into one of the six groups. The
count of contigs in each group was compared with that of assembly results from
the 50 samples (Chapter 3) and the reference genome 3D7. The most reliable
method of checking assembly quality of var-contigs would be to compare with
var genes of the reference genome. However, as described in the previous
chapters, such approaches are not practical for the highly polymorphic var
gene family. One approach adopted in my thesis to overcome this limitation
was to look at ORFs instead of nucleotide sequences of contigs. In addition to
providing a better measure of contiguity, using ORFs could minimize the effect
of low complexity regions in introns and upstream and downstream regions of
var-contigs. ORFs with a minimum length of 300 aa were obtained from each
var-contig and stored as separate entries. For example, two ORFs of a var-contig
(VAR1) from Sample1 were represented as follows:
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Figure 5.1: Iterative assembly work flow for var genes in clinical samples.
Processes of the three stages of the var assembly are shown in boxes with cyan,
blue and green backgrounds. Decisions on further iterations are made based on
the quality of var-contigs from the current iteration. Assembly results of N=743
clinical samples are presented in this chapter (i=3).
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Sample1 VAR1.ORF1
Sample1 VAR1.ORF2

The ratio of ORFs to var-contigs was used as a further quality control mea-
sure. Ideally, a full length var-contig should result in two ORFs representing
each exon. It is however expected to find one ORF as most var-contigs may only
capture the first exon. Introns and second exons are likely to cause ambiguities
due to the high A+T content, and therefore generate smaller contigs that do not
contain the DBLa domain.

5.2.4 Similarity between var-contigs

Similarity and relatedness of var-contig were analysed on three levels. Initially,
we intended to use short-motifs generated from var-contigs during the assem-
bly process. However, as the quality of contigs improved, it was possible to
use longer matches using Pmatch (for perfect matches) and BLAST (allowing
mismatches) as described below.

5.2.4.1 Pmatch analysis

Perfectly matching sequences were detected between any two var-contigs using
Pmatch (minimum length=14 aa). Pmatch is written in C (Richard Durbin,
Sanger Institute; unpublished) and rapidly identifies pairwise identical matches
given two multi-fasta files of amino acid sequences. Amino acid translations of
var-contigs were used as both query and subject for the pmatch analysis (i.e. all
against all matching).

Var-contigs were translated by choosing the longest ORF in the strand where
the DBLa tag was found. As mentioned in the previous section, if the longest
ORF did not contain the DBLa tag, ORFs above 300 amino acids on the three
frames of the chosen strand were concatenated. This method of detecting
ORFs by jumping across the three frames of the main strand (i.e. the strand
with DBLa) minimised the risk of missing ORFs due to frame shifts caused by
misassemblies. Although this approach may also introduce the possibility of
chimeric ORFs, the minimum length requirement of 300 amino acids was used
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to account for such effect. The output of Pmatch required up to ⇠250 Gb of
storage disc space for a single analysis. It was thus necessary to convert the
results to a simple motif-sharing format as defined in Chapter 3.

5.2.4.2 BLAST

Initially, nucleotide and amino acid BLAST (Altschul et al., 1990) databases of
all var-contigs were generated using formatdb. In order to speed up the matching
process, var-contigs of each sample were separately stored in a file and used as
query during the BLAST search (blastall -p blastp/blastn -e 0.001 -F F -m 8). The
output was compressed (gzip -9) prior to storage for further analysis.

5.2.4.3 Defining similarity between var-contigs and repertoires

Mosaic blocks of var genes result in a fragmented alignment profile between var-
contigs. Similarity between two var-contigs was thus defined as a function of
the total number of positions matched (i.e. the proportion of identical positions
between the two var-contigs to the total length aligned). Similarity between var
repertories was then computed as the average of all pairwise similarity values.

Similarity between two var-contigs V1 and V2 with n different blocks of
matching sequences m1 . . . mn is defined as:

Sv1,v2 =
2 ⇤ Â mi
L1 + L2

; (5.1)

where mi is length of match i, i 2 [1,n];
and L1 L2 are the full lengths of the two var contigs

5.2.5 Network analysis and clustering

Analysis of social networks was first used in var gene studies by Bull and
colleagues (Bull et al., 2008). It was shown to be a better approach to study
population structures and recombination hierarchies in the DBla region than
the phylogenetic tree based approaches which were shown to be impractical
due to higher rates of recombination (Barry et al., 2007). The results of BLAST
matching between var-contigs were processed to generate a graph of connected
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var-contigs. The first set of samples that have a single infection (i.e. samples
that contain below 70 var-contigs) were analysed. A graph was constructed
by considering var-contigs as nodes. An edge between two nodes was added
to the graph if two contigs have a match that fulfills the minimum identity
and length requirements (eg. 99% and 1000 aa respectively for amino acid
networks shown in the results section). A pairwise similarity index for two
var-contigs was computed as described in the previous section. Each edge
was thus updated according to weights obtained from the pairwise similarity
values. These values range from 0 (no match) to 1 (two contigs are identical).
A customised script (blast2Gex f .pl) was written to convert BLAST output files
to the Graph Exchange XML Format (GEXF) (http://gexf.net/format/).
First developed at the Gephi project in 2007, the GEXF format is widely used in
representing a complex graph structure in terms of nodes and edges of a graph.
In addition, a number of attributes such as weight and colour of nodes could
be included in the graph file. Node colours were defined according to country
of origin. In addition to visualising clusters, the Markov Clustering Algorithm
(http://micans.org/mcl/) was used to generate clusters of var-contigs
that share identical sequence blocks (Inflation parameter was tested at I=0.2,
1.2, 2, 4 and 6; final choice=1.2).

http://gexf.net/format/
http://micans.org/mcl/
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5.3 Results

5.3.1 Samples and sequence data

A total of 725 samples passed the selection criteria (i.e. samples prepared using
PCR-free protocol and with a minimum read length 76 bp) at the beginning
of this analysis (Figure 5.2, Table 5.1). These samples represented 13 countries
from West Africa, East Africa, South East Asia and South America. The majority
of samples came from The Gambia, Ghana and Cambodia. An overview of
samples used in this chapter and their geographical origins are shown in Figure
5.2 and Table 5.1.

Figure 5.2: A global map of clinical samples used in this chapter. 725 samples
were obtained from 13 countries representing West Africa (WA), East Africa
(EA), South East Asia (SEA) and South America (SA). In addition to the 725
samples with known countries of origin, 18 samples from various countries
that became available during the course of the study were also included.

5.3.2 Initial Motifs

Assembly of the 50 clinical samples of Chapter 3 plus an additional iteration (10
countries; 21 iterations) resulted in a total of 10.7x106 motifs from var-contigs.
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These motifs were used to initiate the assembly process on the 743 samples
(Table 5.1).

5.3.3 Iterations and additional motifs

The initial set of motifs were generated using amino acid translations in all the
six frames. Although it was important to have a large number of motifs during
assembly in order to increase the efficiency of the iterative process, such a high
number is not required for the final analysis of shared motifs, as it will lead to
unnecessary redundancy and an inflated count of overlapping genes.

At the end of the third iteration, a final list of 3.5 x106 motifs (10 aa long
sequences as described in Chapter 3) were obtained from var-contigs using the
longest ORF with the DBLa tag. Compared to generating motifs from amino
acid translations of all the six frames, this approach reduced the number of
motifs by ⇠70%.

ID Country Region #samples
PA Gambia WA 168
PF Ghana WA 122
PM Mali WA 32
PK Burkina Faso WA 3
PT Malawi EA 55
PC Kenya EA 25
PE Tanzania EA 15
PR Bangladesh SEA 3
PD Thailand SEA 82
PH Cambodia SEA 191
PN Papua New Guinea SEA 7
PV Vietnam SEA 11
PP Peru SA 11

Others 18
Total 743

Table 5.1: Samples used for initial assembly of var genes in clinical samples. A
total of 743 samples were obtained from 13 countries as shown in Figure 5.1
(725 samples). Additional 18 samples from various countries became available
during the course of the project and were also included.
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5.3.4 Results of the initial assembly

Assembly results for the 743 samples were summarised by four commonly used
assembly metrics: sum of contigs, N50 size of contigs, number of contigs and
largest contig size (Figure 5.3). The variation observed in the quality of each
assembly is shown by the distribution of values for these four measures. The
sum and N50 of var-scaffolds show a wider distribution range reflecting the
poor quality assembly on the extreme left side of the distribution as well as
a mixture of genotypes (multiple infections) on the far right end of the distri-
bution. Conversely, the number of var-scaffolds and the largest scaffold size
were narrowly distributed with median values of ⇠60 and ⇠10 kb respectively,
reflecting a high quality assembly in terms of repertoire completeness.

Figure 5.3: Assembly stats of the initial 743 samples. Green shades represent
all samples while dark red shades represent samples with above 30 var-contigs.
Sum of scaffolds, N50 and largest scaffold sizes were measured in base pairs
(bp). An additional summary of the four measures is shown in Table 5.2.
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In addition, summary of assembly results were shown by the range, mean
and median values of five assembly statistics (Table 5.2). Sum of var-contigs
was used as a measure of overall coverage of the var repertoire. The N50 and
number of var-contigs measure the contiguity and repertoire completeness of
var-contigs respectively. Mean values for the sum of var-contigs, N50 size and
number of var-contigs for the 743 samples (⇠351 kb, ⇠5 kb and 68 respectively)
revealed an overall highly representative assembly. The initial histogram plots
of all 743 samples were shown in green bars in Figure 5.3. A total of 647 samples
had above 30 var-contigs (i.e. 647 of the 725 samples of interest). The remaining
78 samples had a poor quality assembly with as few as one contig containing
the DBLa tag. The count of non-core reads was investigated to find a reason for
such fewer number of var-contigs in the 78 samples. Overall, there was a posi-
tive correlation between non-core read count and the four assembly measures
(R2 = ⇠0.5; p<0.0001). The number of non-core reads was also noticeably low
for the 78 samples (Figure 5.4 E, F). Samples with the least non-core read count
came either from very recent multiplexed libraries (eg. PH0553-C, PH0581-C,
PF0539-C had less than 300,000 read-pairs) or libraries that were sequenced at
the beginning of the project (eg. PP0011-C, PF0007-C, PK0032-C and PC0034-C
had over 1 Million read-pairs but with poor read quality). Multiplexed libraries
were observed to generate inconsistent yield within the different samples that
are sequenced in one lane (Magnus Manske, personal communication and
preliminary assessment of recent multiplexed libraries). Conversely, sample
PC0034-C had the fourth largest number of non-core reads (⇠75% of total reads)
suggesting issues with data quality instead of yield. Further investigation re-
vealed unusually long insert sizes and a large number of duplicates (⇠8% of
total reads) and reads where the mate aligns to a different chromosome (⇠10%
of total reads).

A closer look at the assembly results was obtained by breaking the analysis
down to regions (Figure 5.5) and countries (Figure 5.6). The total number of
bases in each assembly provided a measure of how well the var repertoire is
covered. Sum of var-contigs for each region revealed that samples from West
Africa and East Africa had the largest range (733 bp to 835 kb and 1.1 kb to 640
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Figure 5.4: Scatter plots of non-core read counts with the four assembly statistics.
A-D). Sum of var-contigs, N50 contig size, number of var-contigs and Largest
contig size for all samples. E-F). Sum and number of var-contigs are separately
shown for samples with less than 30 var-contigs.
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Min Median Mean Max
Sum(bp) 477 288,500 350,800 835,100
N50(bp) 477 5,599 4,893 8,362

Num. contigs 1 61 68 262
Largest(bp) 477 10,420 9,705 37,040
N-count(bp) 0 2 403 15,010

Table 5.2: Summary of assembly results for the initial 743 samples. A graphical
representation of the Sum, N50, Number of var-contigs and Largest contig size
is shown in the four histograms of Figure 5.3.

kb respectively) compared to samples from South East Asia and South America.
At first sight this may appear to be due to the large number of samples from
West Africa (n=325) and East Africa (n=95). However, the narrow distribution
in South East Asia can not be accounted for as they have a comparable number
of samples (n=294). It is therefore likely that the distribution of sum of contigs
as well as var-scaffolds is indicative of multiplicity of infection (MOI). West and
East African populations were found to display higher values of multiplicity of
infection, with up to a five-fold increase in the number of var-scaffolds (Figure
5.6). In addition, a visual inspection of aligned reads over the MSP1 gene
for samples with the highest number of var-contigs confirmed more than one
haplotype (Appendix B, Figure B-4). Samples that contain less than 30 var-
contigs were excluded from further analysis in this chapter. However, they will
be included in the future when improving the assembly by, for example, using
additional iterative steps.

5.3.5 Initial quality control steps

Quality of assembled contigs was initially assessed using three approaches:
count of ambiguous (unknown) bases, size of ORFs, and distribution of var-
contigs in to the six groups (Bull et al., 2007).

Number of ‘N’s
Firstly, the total count of ‘N’s in each sample (i.e. number of gaps in the sum
of var-scaffolds) was considered and found to be extremely low (median=2,
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Figure 5.5: Box plots showing assembly statistics by geographical region. The
four statistics were separately shown for West Africa, East Africa, South East
Asia and South America. Box limits represent median, first and third quantiles;
whiskers represent the upper and lower bounds while outliers are shown by
the dots. A). Sum of contigs represents the total number of bases in var-contigs
for the four regions B). N50 contig size distribution of var-contigs was ⇠5 kb on
average and consistent across the four regions. C). The number of var-contigs
showed a similar pattern of variation with West African samples displaying a
higher degree of variability compared to South East Asia and South American
samples.
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Figure 5.6: Number of var-contigs by country of origin. A better resolution on
the distribution of the number of var-contigs is shown using box plots on a
country level. Box limits represent median, first and third quantiles; whiskers
represent the upper and lower bounds while outliers are shown by the dots.
West African (WA) and East African (EA) samples had higher variability in
the number of var-contigs than samples from South East Asia (SEA) and South
America (SA).
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mean=⇠200). Together with the high N50 values (mean=⇠5 kb), the fewer gaps
observed in the assembly are indicative of a higher level of contiguity. The top
ten samples with the highest number of Ns were found in The Gambia. How-
ever, these samples also had above 120 var-scaffolds and a sum of var-scaffolds
between ⇠500 kb and ⇠840 kb suggesting the presence of multiple genotypes
in the samples. The size of the largest var-scaffold was between ⇠9 kb and
⇠13 kb. In order to make sure the largest contigs are segregated by individual
genotypes instead of creating false joins, a further quality cheek was conducted
by investigating ORFs.

Size of ORFs
Secondly, in order to evaluate the effects of misassembly on assembly contiguity,
the number and size of ORFs was examined. The number of ORFs for each
sample was expected to be higher than the number of var-contigs (or var-
scaffolds; but the term var-contigs is used here after in this section for simplicity)
as var-contigs may have multiple ORF entries. If the ORF of a given var-contig
is not interrupted by stop codons due to false joins that result in frame shifts,
the upper limit for the number of ORFs is expected to be twice the number
of contigs. A total of 51,140 ORFs were obtained with a minimum length of
300 amino acids. The ratio of ORFs to var-contigs was expected to be between
one and two for samples with a good quality assembly. A ratio lower than
one indicates that most contigs are shorter than ⇠900bp. Conversely, a ratio of
above two is a sign of frame-shifts as a result of potential mis-assembly. The
overall ratio of ORFs (n=51,140) to var-contigs (n=50,131) was nearly one as
the assembly process mainly captures exon 1 of the var repertoire. The sum
of ORFs was equivalent to ⇠91% of the sum of var-contigs (⇠205 Mb). The
remaining 9% of sequence is due to UTRs, introns and exon 2 sequences. N50
size of ORFs (1,761 aa) was also comparable with the N50 size of var-contigs
(5,705 bp). The size distribution of ORFs from the assembled clinical sample
was also comparable with ORFs from 3D7 and IT genomes (Figure 5.7).

In addition to the overall ORF distribution for all var-contigs, a closer look
at the ratio of ORFs to var-contigs for each sample revealed that two samples
PA0106 and PA0107 had the highest number of ORFs (170 and 156 respectively),
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Figure 5.7: Density plots of ORF sizes for clinical samples, 3D7 and IT. The
size distribution of ⇠50,000 ORFs (red) is shown together with two culture-
adapted samples 3D7 and IT with complete repertoires containing 83 and 74
ORFs respectively. The mean ORF sizes were 1217, 1484 and 2168 for all, 3D7
and IT respectively.
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although the number of var-contigs was 59 and 56 respectively. The remaining
samples showed no evidence of excessive frame shifts as the ratio of ORFs to
var-contigs was within the expected range of one and two.

Grouping var-contigs
Finally, the number of var-contigs that are represented by the six groups (as
defined by Bull et al. (2007)) followed a similar distribution as that of the 50
samples (Chapter 3) and the three culture-adapted samples 3D7, IT and HB3
where the majority of the genes fall into group 4 (Figure 5.8).

Taken together, these results confirm that the contigs and scaffolds generated
from clinical samples were of a high quality.

5.3.6 A first look at the motif sharing var-contigs

Motifs generated from var-contigs of the third assembly iteration revealed that
⇠40% of the total were unique to single samples. The remaining motifs were
shared by a minimum of two samples with a heavily right-tailed distribution
(Figure 5.9A).

5.3.7 Using full length sequences

5.3.7.1 Pmatch

The pmatch output file was converted to a shared-motif format, revealing
perfect amino acid matches of length 14 to 3,404 aa. A large proportion (⇠98%)
of shared motifs were between 14 and 100 aa (Figure 5.10), and shared by the
majority of var-contigs (Figure 5.11).

However, unexpected long perfect matches of length above 1,000 aa were
also observed (⇠600 motifs). Interestingly, these long motifs were shared
between var-contigs of the same population as well as different populations.
The longest motif shared by samples from different countries was 3,404 aa
long and found in three samples (PA0036, PA0020 and PH0136), two from The
Gambia and one from Cambodia.
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Figure 5.8: Grouping ⇠50,000 var-contigs using the method proposed by Bull
et al. (2007). A) Box plots show the distribution of var-contigs in the six groups.
B) Correlation of the six groups with existing classification (A, B, C, BC) based
on three culture-adapted samples (Adapted from Bull et al. (2007)).
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Figure 5.9: A histogram of samples (A) and populations (B) that share 10 aa
long motifs. The majority of motifs were shared by one or two samples and
populations with a heavy right-tailed distribution.
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Figure 5.10: Frequency of shared motifs. This plot shows the number of shared
motifs as a function of motif-length (x-axis). A large proportion of shared motifs
were below 100 aa.
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Figure 5.11: Motif sharing var-contigs from a pmatch analysis of all-vs-all var-
contigs. The scatter plot shows a negative correlation (R2=-0.2; p-value <
2.2x10�16) between motif length and the number of var-contigs that share a
motif.
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Initially, we hypothesised that the three identical var-contigs were a result
of contamination during sample handling. In order to verify this, raw reads
from the three samples (PA0036, PA0020 and PH0136) and an additional control
sample (from Thailand) were aligned to all var-contigs of the sample PA0036
(Figure 5.12). If there was contamination, non-core reads of the other samples
would align to var-contigs other than PA0036 VAR1. However, the alignment
results showed a distinct full coverage signal over PA0036 VAR1 from all the
three samples. Other var-contigs of PA0036 were only covered by non-core reads
of PA0036 (i.e. mapping to itself as expected). It was reassuring to confirm that
non-core reads from a control sample (from Thailand) did not align to any of
the var-contigs. The long perfect matches between single genes therefore appear
to represent genuine biological events. It is expected to see a higher degree
of conservation between var genes of the central clusters. It is thus intuitive
to assume var-contigs with long perfect matches come from a central region
of chromosomes. However, aligning the 10 largest motifs to the P. falciparum
genome (via BLAST (Altschul et al., 1990)) revealed top matches to subtelomeric
var genes such as PF3D7 0632500 on chromosome 6 (Figure 5.13). It is important
to note that this may not be the best way of identifying central var clusters as
the target (i.e. 3D7) is only one genome. A flanking sequence of var genes could
provide a better marker to identify central var genes based on similarities of
Ups sequences (see Chapter 1 for details).

To investigate whether the long motifs are associated with specific var groups
(1 to 6), we looked at the number of distinct var-groups that are represented
by a motif. The results show that the majority of var-contigs that share longer
motifs were represented by fewer groups (1 to 2) than shorter motifs which can
contain up to all six groups (Figure 5.14).

Next, analysis of the six groups represented by var-contigs that share a motif
revealed that the majority of var-contigs that shared long motifs were of groups
1, 2 and 3 (⇠60% of var-contigs for a motif length of above 500 aa and ⇠75% for
motifs above 1,000 aa). These three groups are shown to contain a DBLa with
two cysteine residues and correspond with Type A var genes (Bull et al., 2005,
2007, 2008).
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Figure 5.12: Artemis view of non-core reads from four samples (PA0036,
PA0020,PH0136 and Control sample) aligned to var-contigs of PA0036. The
top panel shows paired-read coverage plots for PA0036 (red), PA0020 (blue),
PH0136 (green) and the Control sample. The middle panel shows the three read-
ing frames of the forward strand for var-contigs of PA0036. Black bars represent
stop codons, ORFs are represented by long open white blocks. The bottom
panel shows var-contigs of PA0036 starting at PA0036 VAR1. Read coverage
from samples PA0020 (blue), PH0136(green) was visible over PA0036 VAR1
while the remaining var-contigs of PA0036 remain uncovered.

Figure 5.13: A screen shot of PF3D7 0632500 from PlasmoDB: The subtelomeric
gene PF3D7 0632500 was the closest match (⇠47% identity over the full length)
to the long motif shared by three samples from different geographical regions.
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Figure 5.14: Number of groups represented by var-contigs that share a pmatch
motif for 426 samples that had a minimum of 30 var-contigs. Long motifs were
shared by var-contigs that belong to one or two distinct groups. Conversely, the
short motifs are shared by var-contigs from all groups.
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5.3.7.2 Amino acid and nucleotide BLAST matches

The pmatch analysis was only able to show perfect matches between var-contigs
or conserved blocks within var-contigs. In order to investigate similarity be-
tween var-contigs while allowing mismatches, a BLAST search of all-against-all
var-contigs was conducted. The results revealed long identical matches over
the full length of var-contigs, confirming observations of the pmatch analysis.
A closer look at nucleotide alignments of var-contigs also showed long identical
matches that span over exons, introns and upstream regions. The observed
sequence similarity between var-contigs of the same and different geographical
origins(match lengh >5 kb; identity >99%) was higher than expected from
previous studies. The results of the BLAST search provided a better way of
processing the output and quickly identify matches of a given var-contig. For
example, var-contig PA0036 VAR1 had a match with total of 59 var-contigs from
57 samples in 6 countries at a minimum identity of 99% and match length of
5 kb. The 59 var-contigs represented The Gambia (n=21), Ghana (n=6), Mali
(n=4), Burkina Faso (n=1), Thailand (n=2) and Cambodia (n=25). 54 of the 59
var-contigs were of group 3 var genes, while the remaining five were of group 1.
As mentioned previously, these two groups belong to Type A var genes.

Match length vs percent identity of a match
A scatter plot of nucleotide matches of PA0036 VAR1 to other var-contigs re-
vealed a positive correlation (R2 = 0.3; p � value < 2.2x10�16) between match
length and the percent identity of a match (Figure 5.15). As the match length
decreased, the identity of a match also decreased. The observed relationship be-
tween match length and percentage identity of a match was further investigated
by looking at all var-contigs at various identity cutoff values. Longer matches
were predominantly found at higher percent identity thresholds (Figure 5.16).
These results are interesting as they have implications on the time-scale of
events that contributed to maintaining diversity in var genes. For example, the
long perfect matches may be a result of recent population expansion events
where there was not enough time for recombination to break these long haplo-
type blocks. Conversely, shorter matches indicate a longer time scale since the
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event allowing more SNPs to accumulate.

Figure 5.15: A scatter plot of match length and percent identity for the var-
contig PA0036 VAR 1. Longer matches had the highest percent-identity (R2=0.3,
p-value < 2.2x10�16)

In both cases (Figure 5.15 and Figure 5.16), the highest match length values
were observed at high identity thresholds.

BLAST matches of ORFs
To minimize the effect of low complexity regions, such as introns, amino acid
translations of var contigs (using the longest ORF with DBLa) were used to
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Figure 5.16: Box plots of match length (bp) for different cutoff values of percent
identity using all var-contigs. Box limits represent median, first and third
quantiles; whiskers represent the upper and lower bounds while outliers are
shown by the dots.
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generate a list of potential matches between var-contigs. Long and perfect amino
acid matches, similar to those observed from Pmatch, were also identified using
the BLAST search. Previous studies have identified three strain-transcending
var genes: var1CSA, var2CSA and Type 3 var genes, that were found in clinical
and culture-adapted isolates studied so far including 3D7 and IT (Kraemer
et al., 2007). In the 3D7 genome, three var genes were identified as Type 3 var
genes: PFA0015c (PF3D7 0100300), PFF0020c (PF3D7 0600400) and PFI1820w
(PF3D7 0937600).

In order to test if the long-perfect matches were homologues of the known
strain-transcending var genes, ORFs from var genes of the 3D7 genome were
aligned to ORFs of the ⇠50,000 var-contigs. As var2CSA (PFL0030c/PF3D7 1200600)
does not have the DBLa tag, it was not included in the current list of var-contigs.
We expected the Type 3 var genes and var1CSA (PFE1640w-ps/PF3D7 0533100)
to have sequence homology with the highly conserved var-contigs. However, no
match was observed at higher identity and length thresholds of 99% and 1,000
aa respectively. Lowering the match length cutoff to 50 aa identified matches
between 13 var-contigs and two of the three Type 3 var genes (PFF0020c had a
match with two var-contigs and PFI1820w to 11 var-contigs). The 13 var-contigs
represented samples from The Gambia, Ghana, Mali, Kenya, Thailand and
Cambodia, but they were not part of the long perfect matching var-contigs
described earlier in this section.

The longest identical ORF matches of length 4,668 aa were observed be-
tween var-contigs of Thailand and Cambodia. Similarly, var-contigs from other
countries including Kenya and The Gambia were also found to have perfect
matches of up to ⇠4,000 aa. The Markov Clustering Algorithm was able to
detect distinct clusters of var-contigs based on a pairwise similarity measure
derived from the BLAST matches of ORFs. A social network analysis was
then used to visualise the population level structure of the global collection of
var-contigs as described in the following section.
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5.3.8 Clustering var-contigs and detecting population structure

There is no established method for the analysis of diversity and population
structure in the var gene family. This is mainly due to high levels of recombina-
tion that prevent orthology /ancestry from being established. A social network
analysis was used a better approach to deal with the complexity resulting from
a highly polymorphic nature of var genes (Bull et al., 2008). Here results of a
preliminary analysis of amino acid similarity networks were presented as an
exemplar method of establishing structures in populations of var genes.

To simplify the analysis, samples with over 70 var-contigs were excluded, as
they are likely to have multiple infections (Table 5.3). Populations from Burkina
Faso and Bangladesh were also excluded, as they were represented by single
samples (Table 5.3). In addition, two of the 102 Gambian samples (PA0106 and
PA0107) were excluded, as they had a high ratio of ORFs to var-contigs due to a
highly fragmented assembly. A total of 424 samples from 11 countries remained
for subsequent analysis.

ID Country Region #samples #PasseedQC1 #PassedQC2
(DBL � 30) ( 70)

PA Gambia WA 168 162 102
PF Ghana WA 122 108 43
PM Mali WA 32 32 13
PK Burkina faso WA 3 2 1
PT Malawi EA 55 43 13
PC Kenya EA 25 25 20
PE Tanzania EA 15 15 11
PR Bangladesh SEA 3 2 1
PD Thailand SEA 82 79 63
PH Cambodia SEA 191 153 138
PN Papua New Guinea SEA 7 7 5
PV Vietnam SEA 11 9 8
PP Peru SA 11 10 10

725 647 428

Table 5.3: A list of samples used for initial assembly (Column 4), pmatch
/BLAST analysis (Column 5) and social network analysis (Column 6). Burkina
faso and Bangladesh were excluded from the final list as they were represented
by a single sample. Two of the 102 Gambian samples were also excluded due to
a poor quality assembly.
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A total of 26,832 ORFs were obtained from var-contigs of the 424 samples.
Using a minimum match length of 1,000 aa (identity cutoff of 99%), a total of
1,553 clusters were identified. The majority of clusters (⇠68%) only contained 2
or 3 var-contigs. They were thus excluded from the network diagram in Figure
5.17. Conversely, the largest cluster (Figure 5.17. Cluster 1) had 141 var-contigs
representing 127 samples and 10 populations (The Gambia=26, Ghana=14,
Mali=4l, Vietnam=2, Thailand=30, Kenya=4, Malawi=2, Peru=4, Thailand=53
and PNG=2). Other clusters contained var-contigs that represented variable
numbers of samples and populations.

The network diagram (Figure 5.17) represented a total of 6,985 nodes (i.e.
⇠26% of the total ORFs in 424 samples) that overlap with other ORFs at a
minimum percent identity of 99% and a match length of at least 1,000 aa. In
addition to results from the clustering algorithm, the visual inspection revealed
interesting identity matches as shown by the five clusters (Figure 5.17, 1-5). The
second cluster has a single var-contig from Kenya (PC0016 VAR27) clustered
with var-contigs from Thailand and Cambodia. Similarly, cluster 4 has single
var-contigs from The Gambia, Malawi and Vietnam mixed with contigs from
Thailand and Cambodia. Conversely, most of the var-contigs in cluster 3 were
from The Gambia and Cambodia, while mixed with single var-contigs from
Thailand, Ghana and Mali. Finally, in cluster 5, single var-contigs from Tanzania,
Mali and Thailand were clustered with samples from Peru, Kenya and The
Gambia. These observations highlight the widespread distribution of highly
conserved var-contigs.

A higher degree of overlap between var-contigs is observed with the majority
of clusters representing samples primarily from South East Asia. These samples
also form some of the largest cluster sizes (connected components) compared
to African samples. A larger proportion of var-contigs from African samples
formed smaller clusters and were excluded during the filtering based on degree
of a node (i.e. number of connections<4). This is an interesting observation as
samples from Africa have much older var repertoires that have been exposed
to natural forces such as mutation and recombination. As a result, a lower
degree of similarity is expected in African samples compared to Thailand and
Cambodia.
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Figure 5.17: Amino acid identity network of var-contigs from 424 samples. The
main figure shows var-contigs that share highly similar sequence blocks (above
1,000aa and a minimum identity of 99%). Var-contigs that have fewer than 4
connections with other contigs were excluded to simplify the graph. The num-
ber of connections of a node (var-contig) is represented by the size of each circle.
A closer view of five representative clusters is also shown (1-5). Cluster 1 con-
tained 141 ORFsvar-contigs representing 127 samples and 10 populations (The
Gambia=26, Ghana=14, Mali=4l, Vietnam=2, Thailand=30,Kenya=4, Malawi=2,
Peru=4, Thailand=53, and PNG=2). Other clusters contained var-contigs that
represented variable numbers of samples and populations (See text for details).
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Country-specific clustering analysis was done on 138 Cambodian samples
revealing sub-populations of var-contigs as shown in Figure 5.18. 42% of the
total ORFs (n=8,065) were grouped into 629 clusters containing 2 to 55 var-
contigs. Initially, such clusters may appear to be a result of clonal expansion
events. However, there was a very strong positive correlation (R2 > 0.99)
between number of var-contigs and the number of unique samples in each
cluster (Figure 5.19) suggesting a wider distribution of highly conserved var-
contigs.
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Figure 5.18: A network of var-contigs from Cambodian samples (degree > 3).
A total of 3,380 var-contigs (nodes) were represented in this network (number
of edges=15,598). Initially, the distinct sub-groups of var-contigs may seem due
to a clonal expansion event. However, as shown in Figure 5.19, each cluster
contains different samples suggesting the presence of long and unexpected
conserved sequences in a large number of samples.
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Figure 5.19: Scatter plots of cluster size vs the number of unique samples
represented in each cluster. A very strong correlation is observed (as shown
by R2 values) between cluster size and number of distinct samples. A). Scatter
plot for samples with a minimum of 30 var-contigs and a maximum count of
70 var-contigs. These samples are considered to have a single infection with a
multiplicity of infection (MOI) of 1. B) Scatter plot for samples that have above
70 var-contigs (MOI>1). C). Scatter plot for all samples.
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5.4 Discussion

This chapter presented assembly results of var genes from clinical samples. The
following two conclusions summarise the results obtained and their implica-
tions.

Conclusion 1: The results show the first full length assembly of var genes and the
largest collection of var genes from clinical samples.

It was possible to generate the largest collection of full length var-contigs
using an iterative assembly approach developed to specifically assemble var
genes. Although the assembly was initiated with a small number of motifs from
three lab-adapted samples, it was able to generate high quality assembly of
var genes on over 700 samples. The increase in the number of samples used to
iteratively generate seed motifs is one reason for high quality assembly with as
few as three iterations. The results show the first report of a targeted assembly
of highly polymorphic gene families in general and of the var gene family in
particular.

As expected, sequence quality and yield affect quality of the final assem-
bly. This effect is likely to be pronounced in the iterative assembly approach
compared to a simple de novo assembly of all reads due to the need to have
enough reads that contain seed motifs to initiate the process. However, it could
also be seen as an early quality check as samples with poor quality and low
yield will not have enough reads to proceed with the assembly. Despite the
continual improvement in sequencing yield and protocols developed to remove
contaminants, variability in quality and yield are characteristics of sequences
obtained from natural populations.

The expected number of var genes with the presence of a single genotype
provided a simple measure of assembly quality during the initial stages of
the assembly. Excluding samples with assembled var-contigs of below 30 was
further justified by looking at the number of non-core reads and quality of the
raw data.

As described in Chapter 2, the Illumina platform is prone to substitution
errors at the beginning and ends of reads. Initially, we intended to incorporate



5.4 Discussion 166

trimming of reads in the assembly workflow. However, assembly attempts by
trimming reads at error-prone ends did not improve the assembly of var genes.
Although Velvet was chosen to generate seed contigs, the assembly approach
is modular such that a different assembly tool could easily be used if future
tests justify the choice. Additional iterations and quality control steps could be
included by simply restarting the assembly process from where it stopped (i.e.
start from iteration 4).

In summary, the iterative assembly approach together with the quality
control steps applied in this chapter were shown to be effective in producing
high quality full length draft var genes.

Conclusion 2: Unexpected cross-continental var-contigs were identified between sam-
ples of unrelated countries.

Preliminarily analysis of similarity between var-contigs obtained from the de
novo assembly of clinical samples revealed unexpected and long sequences of
high similarity. Nucleotide and amino acid alignments as well as perfect-match
searches confirmed the presence of continent-transcending var-contigs (CTVs).

We have established that these similarities were not because of DNA con-
tamination and informatics issues (eg. misassemblies). Potential explanations
for the existence of continent-transcending var-contigs in such diverse parasite
populations and their implications are presented in the next chapter.


