Chapter 2

Evaluating existing short read

assembly methods

2.1 Introduction

Advances in next generation sequencing technologies have significantly im-
proved read length, yield and quality of whole genome shotgun sequencing
data. There has also been a considerable development of algorithms and soft-
ware to deal with the problem of piecing together sequence fragments into a
longer contiguous sequence. However, assembly attempts of whole genome
P. falciparum sequence data are faced with unique challenges due to the high
A+T content (~80% in coding and ~90% in non-coding regions) (Gardner et al.,
2002). De novo assembly of P. falciparum genomes in general and subtelomeric
gene families in particular is thus extremely challenging due to the base compo-
sition bias and presence of repeat sequences. Var genes are highly polymorphic
and composed of mosaic blocks that have regions of high similarity. The qual-
ity of the raw sequence data is often affected by systematic errors from the
sequencing instruments. Systematic errors and inherent sequence features are
thus expected to have a significant impact on the assembly of var genes.

The aim of this part of the thesis (year 1) was to see if it was possible to
assemble var genes using existing short read assembly tools. In this chapter,
I will evaluate the feasibility of existing approaches to assemble var genes
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followed by investigation of potential reasons for poor quality assembly in var

genes.

2.2 Methods

2.2.1 Library preparation and sequencing

Library preparation and sequencing of samples used in this thesis were done by
the Research and Development and Sequencing Production teams at the Sanger
Institute. The protocols used for library preparation and sequencing are briefly

summarised below.

Library preparation

Standard genomic DNA library preparation

DNA samples were initially quantified on the Invitrogen Qubit and then frag-
mented using the Covaris Adaptive Focused Acoustics technology (fragment
sizes of 200-300 bp and 300-400 bp). End-repairing of fragments and creation
of blunt-ends were done using T4 and Klenow DNA polymerases, and T4
polynucleotide kinase respectively. This was followed by A-tailing, addition
of a single 3" A nucleotide to the repaired ends using Klenow exo- and dATP.
Standard adapters were then ligated according to the manufacturers guidelines.
Size selection of ligated fragments was done using Agencourt AMPure XP
beads. The libraries were then enriched by 8 cycles of PCR and quantified using
Agilent Bioanalyser chip and Kapa Illumina SYBR Fast qPCR kit.

PCR-free Genomic DNA library (NoPCR) preparation

The PCR-free library preparation protocol (Kozarewa et al., 2009) was devel-
oped to minimize the effect of amplification artifacts especially in genomes
with G+C bias such as P. falciparum. However, it also requires more input
DNA. This method uses similar protocols of DNA qualification, shearing, end-
repairing and A-tailing. However, instead of the standard adapters, NoPCR
adapters were ligated (containing primer sites for sequencing and flowcell

surface annealing) according to the Amplification-free Illumina sequencing
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protocol (Kozarewa et al., 2009). Subsequent steps of size selection and DNA
extraction are similar to the standard library preparation protocol above. Both
standard and PCR-free libraries were used in this chapter (Table 2.1). Clinical
samples used in Chapters 3 and 5 were all prepared using the PCR-free protocol.

Cluster generation and Sequencing

Initially, in order to allow hybridization of template strands to adaptors that are
attached on the flowcell, libraries were denatured with sodium hydroxide and
diluted in a hybridisation buffer. Cluster amplification was performed on the
[llumina cluster station (changed to Illumina cBOT after April 2010) using the
V4 cluster generation kit following the manufacturer’s protocol. Cluster density
was measured using SYBRGreen to determine whether a flowcell had enough
DNA for sequencing. This was followed by consecutive linearization, blocking
and hybridisation of R1 and R2 sequencing primers for (i.e. for the forward
and reverse reads). Sequencing-by-synthesis was then performed for 75 to 150
cycles depending on the sequencing instrument. These steps were performed
using proprietary reagents according to manufacturer’s recommended protocol

(https://icom.illumina.com/)

Samples used in this chapter

Laboratory adapted and cultured clinical isolates of P. falciparum were used with
the aim of evaluating and optimising existing short read assembly methods in
polymorphic gene families, specifically the var gene family. Due to the availabil-
ity of a complete and nearly base-perfect reference genome, re-sequencing of
the 3D7 isolate provides an ideal benchmarking standard for new sequencing
technologies and protocols. DNA for the 3D7 isolate was obtained from Prof.
Chris Newbold’s lab in Oxford.

2.2.2 Choice of short read assemblers

Velvet (Zerbino and Birney, 2008) was one of the first short read assemblers to
popularise de Bruijn graphs. It is easy to install and run with a growing com-

munity of users. The major limitation is the large amount of Random Access


https://icom.illumina.com/
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Libraries  Insert Library type Read Machine Cow. (X)
size(bp) length(bp)
3D7 5.i200 200 Standard 76 GAII 58
NP_i200.1 200 NoPCR 76 GAII 163
NP_i200.2 200 NoPCR 76 GAIl 184
HS.i500.2 500 NoPCR 75 HiSeq2000 607
NP_i500 500 NoPCR 76 GAII 338
HS.i500.1 500 NoPCR 75 HiSeq2000 724
MS_i3k.1 3000 Large insert 75 MiSeq 34
MS_i3k.2 3000 Large insert 150 MiSeq 20
MS_i3k.3 3000 Large insert 150 MiSeq 70
MS_i3k.4 3000 Large insert 150 MiSeq 64
Field samples F1 200 Standard 76 GAIl
F2 200 Standard 76 GAIl
F3 200 Standard 76 GAII
F4 200 Standard 76 GAII
F5 200 Standard 76 GAIl
P. reichenowi Pr 200 Standard 76 GAIl

Table 2.1: Samples used to evaluate existing assembly approaches and deter-
mine error rates of the Illumina sequencing technology in P. falciparum. Libraries
were named according to the library preparation protocol (S for standard, NP
for NoPCR/PCR-free; HS for HiSeq and MS for MiSeq) and the insert sizes of
the libraries (eg. 1200 for 200 bp library)

Memory (RAM) required for large genome assemblies. However, assembly of
var genes and the P. falciparum genome are within the limits of Velvet’s memory
requirement. Velvet was therefore a good starting point for the purpose of com-
parisons. Abyss and SOAPdenovo were especially designed to address Velvet’s
limitation with large genomes. Li and colleagues (Li et al., 2010; Ruigiang Li,
2010) reported better assembly results for SOAPdenovo compared to Abyss
using both small (Ecoli) and large (African human) genomes. Velvet (version
1.1.04) and SOAPdenovo (version 1.05) were therefore chosen to represent exist-
ing short read assemblers with the intention of identifying a program that could

generate high quality assembly for polymorphic gene families in P. falciparum.



2.2 Methods 33

2.2.3 Assembly benchmarking using error free in silico reads

Error free reads were generated using a Python script written by Martin Hunt
in our laboratory (simulate_pe_reads.py). Reads were simulated assuming a
Gaussian distribution of fragment sizes given a mean fragment size, standard
deviation of the distribution and the average read coverage. This script is used
to generate in silico reads in this thesis unless stated otherwise.

To compare the performance of Velvet and SOAPdenovo, paired reads of
length 76 bp (coverage=80x; mean fragment size=200 bp, standard deviation=30)
were simulated from a total of 93 var genes of the 3D7 genome (including pseu-
dogenes and truncated exon 2 sequences). The two assemblers were compared
on the number and quality of contigs they produced. To obtain the best result
for each assembler prior to comparison, the two assemblers were first optimised
by running each tool at k-mer sizes of 51, 55, 61, 65 and 71. Ideally, the best as-
sembler will generate the least number of contigs, with high N50 values, a total
number of bases as close to the expected length of the target sequence (i.e. ~450
kb for var genes in the 3D7 genome), and the fewest errors. Assembly quality
was assessed based on the coverage of contigs and the repertoire completeness

of var genes as described below.

2.2.3.1 Accuracy and coverage of contigs

ABACAS (Algorithm Based Automatic Contiguation of Assembled Contigs)
was used to assess the quality of assembled contigs (Assefa et al., 2009). If a
good quality reference sequence is available, comparing assembled contigs to
the reference provides the best measure of completeness and accuracy. A similar
approach is used during the process of finishing genomes whereby contigs are
aligned to a reference sequence of a close or distant relative with the aim of
establishing a relative order of contigs using regions of conserved synteny.
However, there was no readily available software to automate the process. I
originally developed ABACAS to address this issue by rapidly aligning contigs
to a reference genome in order to determine the order and orientation of contigs
relative to a reference genome. A multi-FASTA file of contigs was first aligned

as nucleotide (option -p nucmer) or six-frame translated amino acid sequence
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(option -p promer). Based on the alignment output, contigs are then ordered
and orientated to generate the new reference, termed the pseudo-molecule.
Output files include an ordered FASTA file, a feature file and comparison files
for visualisation in the Artemis comparison tool (ACT) (Carver et al., 2005).
The comparison file displays an ordered list of contigs that were aligned to the
reference genome. The proportion of each contig aligned to the reference (i.e.
percent coverage) is reported alongside the percent identity of the match.
Additional use-cases of ABACAS such as checking the quality of assembled
contigs became apparent during the course of this project. Misassemblies were
therefore identified by looking for unordered contigs of length above 1 kb
and ordered contigs with a coverage and percent identity values lower than
95%. Despite the reliability of this approach, its application in the absence
of a reference sequence is very limited. It was thus necessary to develop an
alternative method to determine the completeness of var gene repertoires in a

wide range of assembly projects including de novo assembly of clinical samples.

2.2.3.2 Estimating var gene repertoire completeness

As described in Chapter 1, the DBLa domain is present in nearly all var genes
of the 3D7 genome and other sequenced isolates (Kraemer et al., 2007; Rask
et al., 2010). The number of contigs that have a complete DBLx domain were
counted using a customised Perl-script (getDBL.pl). The script was initially
written for DBL«a sequence tags by Dr. Pete Bull of Kemri-Wellcome Research
Unit, Kilifi Kenya and improved to look for DBLa start and end motifs in all
the six frames instead of one frame each from the forward and reverse strands.
Outputs of the script include amino acid sequence file of DBL« tags and a
FASTA-format file of contigs that contain DBLx. Counting such contigs will
therefore rsult in the closest approximation of repertoire completeness that is
robust in clinical samples. Although the var2CSA genes (gene that encodes a
PfEMP1 variant responsible for pregnancy associated malaria) do not contain
the DBLx domain, they are highly conserved and could easily be identified
using their 3D7 homologues.
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2.2.4 Evaluating the velvet assembler on real and simulated

reads

In order to evaluate Velvet on real data, a PCR-free library of 3D7 (Table 2.1,
libraries NP_i200.1 and NP_i200.2) was sequenced on Illimina’s GAII platform.
One aim of this analysis was to investigate the quality of assembled contigs
while decreasing the dataset from the whole-genome to a chromosome and
finally to reads that belong to var genes.

2.24.1 Whole genome assembly

First, to find optimal results, a whole genome de novo assembly was done by
varying the k-mer size and coverage cutoff values. A k-mer of 61 and coverage
cutoff dynamically determined by Velvet (i.e. coverage_cutoff=auto) resulted in
the best assembly results as determined by the highest N50 and least number
of contigs. Other parameters were kept to the default settings. In order to
investigate the effect of poor quality reads on assembly, a filtered set of reads
was generated by aligning raw reads to the 3D7 reference genome (version 2.1.4)
using Bowtie (Langmead et al., 2009) (using the -v alignment mood, -v 2) allowing
a maximum of two mismatches. Bowtie is a memory efficient and fast short
read alignment tool that uses the Burrows-Wheeler Transformation (BWT) to
index the reference genome. The version of Bowtie used in this thesis (version
1) did not support gapped alignment, which contributed to its increased speed
compared with other BWT based aligners such as BWA (Li and Durbin, 2009).

Filtered reads were then assembled using a similar set of parameters as the
raw reads (velveth -k=61; velvetg -cov_cutoff auto).

2.24.2 Chromosome 1 assembly

To further investigate the effect of errors and reducing the dataset to a single
chromosome, sequences that aligned to chromosome 1 were obtained from the
filtered set of reads generated in the previous section (library NP_i200.1). These
reads were assembled using velvet (velveth -k 61; velvetg -cov_cutoff auto). In

addition, error free synthetic reads were evenly generated with a similar number
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of reads and mean fragment size as the real data (mean=166 bp, standard
deviation=35). A second set of synthetic reads was generated by mimicking the
coverage of real data over chromosome 1 followed by a random introduction of
mismatch errors. Both sets of simulated reads were assembled using similar
parameters as the real data (velveth -k=61; velvetg -cov_cutoff auto).

2.2.4.3 Assembly of var genes

In order to evaluate the performance of Velvet on var genes from the real data,
reads that aligned to var genes of the 3D7 genome were obtained from a PCR-
free library (Table 2.1, Library NP_i200.1) and assembled (Velvet, k-mers 25 - 65,
cov-cutoff=auto). Potential reasons for a poor quality assembly of var genes were
investigated in two steps.

First, raw reads were aligned to a concatemer of 3D7 var genes with the
aim of assessing the effect of sequencing errors and uneven coverage. The
alignment output was stored in the Binary Alignment/Map (BAM) (Li et al.,
2009a) format and visualised in ACT using the BamView utility (Carver et al.,
2010). A graphical representation of read coverage and SNPs (errors) was used
to look at their correlations with assembly quality.

Second, to look at the effect of repeats in assembly, shared sequences within
var genes of the 3D7 genome were identified using a pairwise blast search
(all-against-all blast; blastn, -F F, -e=1x103). Regions of genes that have a perfect
match with a length above the fragment size of the library (200 bp) were iden-
tified as repeat regions. Reads that aligned to such regions were excluded to
generate a second set of var reads. Assembly of the two sets were compared
by looking at the underlying de Bruijn graphs which were visualised using a

python script contributed to the Velvet package by Paul Harrison (graph2.py) .

2.2.5 Evaluating mapping based assembly approaches

To assess the feasibility of a reference guided assembly approach, short reads
from the 3D7 clone, three field samples and Plasmodium reichenowi (Pr) (Table 2.1)
were aligned to the 3D7 reference genome (BWA; version 0.5.5, default parameters).

Reads that aligned to var genes in proper pairs (i.e. read pairs aligned in the
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correct orientation and within the expected insert size) were counted for each
gene. The number of mapped reads per thousand bases (kb) was used as
a measure of mappability over var genes and computed by normalizing the

number of properly aligned paired reads over a gene by the length of the gene.

2.2.6 Sequencing errors

A total of 10 genomic DNA libraries were used for error profiling of Illumina’s
GAZ2, HiSeq and MiSeq instruments (Table 2.1). In order to assess the improve-
ments and changes in error rates, libraries from early Illumina (GAII) runs and
the latest MiSeq runs were used. Raw reads from the reference genome were
aligned to the most recent version of the genome (version 3) using Bowtiel
allowing a maximum of three mismatches. The output file was processed us-
ing a purposely written Perl-script to identify mismatch/error positions and
tind error rates at low (Q5), medium (Q15) and high (Q25) quality thresholds.
Quality values represent a confidence score assigned by Illumina’s base calling
algorithm (Bustard) which assigns quality scores (Q) based on an expected error
probability P such that :

Qsolexa prior to v.1.3 = —10log1o(P/(1 = P)) (2.1)

or

Qllumina v.1.3+ = —10/0g10(P). (2.2)

It is not unusual to observe incorrect base calls or unknown bases (Ns) with
high quality score. It was therefore important to look at sequencing errors
at low and high quality cutoff values. First, the overall error rate (E) for the
forward and reverse reads were computed over the full length of each read R at

a quality cutoff Q as follows:

ER = (mismatched bases above Q )/ (mapped bases above Q) (2.3)

Similarly, error rates were computed for each position P on the population

of forward and reverse reads at a quality cutoff Q as follows:
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ERP = (mismatched bases above Q at P)/ (mapped bases above Q at P)  (2.4)

Finally, substitution profiles were obtained for the 12 mismatch types (A-C,
A-G, A-T, C-A, CG, C-T, G-A, G-C, G-T, T-A, T-C and T-G) by computing the
average number of mismatches that exhibited a given patterns across all cycles.

2.3 Results

The standard approach to any assembly problem would be to use de novo or
reference guided assembly on all fragments (reads). This chapter presents tests
performed to evaluate the feasibility of reconstructing var genes from short reads
using existing assembly tools. A comparison of two representative assemblers,
Velvet and SOAPdenovo, is presented using synthetic reads simulated from
var genes followed by further evaluations on real and simulated data. An
investigation into the potential reasons of low quality assembly is also presented

with a focus on errors specific to P. falciparum sequences.

2.3.1 Comparing de novo assembly tools

A total of 507,812 read-pairs were simulated from var genes of the 3D7 reference
isolate to compare SOAPdenovo and Velvet. To account for the variability in
assembly quality with changes in k-mer size, both assemblers were first run with
k-mer sizes of 51, 61, 65 and 71. Optimal assembly values were obtained at a k-
mer size of 65 for both assemblers (Figure 2.1). Assembly results from k-mer sizes
of smaller and larger than 65 were highly fragmented. In addition to generating
the highest number of contigs, a k-mer of 71 resulted in the shortest size for the
Largest-contig (Table 2.2). The highest contig N50 size (5,713 bp) was obtained
from the Velvet assembly with 252 contigs compared to SOAPdenovo’s N50 of
2,346 bp and 1,398 contigs.

The number of contigs aligned to the reference set of 93 var genes (by
ABACAS) was higher in Velvet (72% vs SOAPdenovo’s 45%) (Table 2.3). No
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Figure 2.1: Comparing SOAPdenovo and Velvet on synthetic reads simulated
from var genes of the 3D7 genome. Optimal assembly results were obtained at
a k-mer size of 65 with Velvet generating a better assembly with the highest N50
and least number of contigs.
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SOAPdenovo Velvet

k | Sum N50 Num.contigs Largest | Sum N50 Num.contigs Largest

(kb)  (bp) (bp) (kb)  (bp) (bp)
51 | 514 1648 2027 9517 21 5543 324 10418
55 | 514 1831 1841 9525 425 5567 291 10422
61 | 512 1963 1560 10489 | 430 5586 258 10489
65 | 509 2346 1398 10493 | 433 5713 252 10493
71 | 464 471 1422 3842 420 612 804 4521

Table 2.2: Assembly statistics of Velvet and SOAPdenovo at different k-mer
sizes. Optimal assembly results were found at k-mer size of 65.

Sum (kb) N50 (bp) #contigs with DBL«
SOAPdenovo 192 5277 47
Velvet 293 6738 50

Table 2.3: Assembly statistics of contigs with the DBLa domain. Velvet gener-
ated the highest number of contigs with the DBLa domain suggesting a better
assembly with better representation of the var repertoire.

misassembled contigs were detected in both assemblies. A total of 50 contigs
contained a complete DBLa domain in the Velvet assembly. The sum of these
contigs accounted for ~68% of the expected sum of var sequences with DBL« in
the 3D7 genome as determined by our method (~428 kb, 54 genes). Conversely,
SOAPdenovo assembled 47 contigs with the DBLa domain that only contained
45% of the expected total sequence (192 kb compared to Velvet’s 293 kb).
Velvet was therefore chosen as a better tool to further optimise assembly
of var genes in P. falciparum. The main objective of these experiments was to
establish a robust method that could be used in the context of clinical samples.
However, the initial comparisons were done using simulated data and real reads
from the reference genome as separating out the complete var-specific reads
would not be possible for a real clinical sample due to high polymorphism.
Having established Velvet as a better choice, the following sections present
further tests on real and simulated data from the 3D7 genome. Assembly results
were examined in a decreasing order of complexity from the whole genome to

a single chromosome and finally the var gene family.
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2.3.2 Velvet assembly of whole genome data

A whole genome de novo assembly of 26.6 million reads (paired 76 bp, two lanes)
from a PCR-free library (Table 2.1, NP_i200.1 and NP_i200.2) of the reference
clone 3D7 was extremely fragmented (Table 2.4). Assembly results from the
two lanes were comparable in the number and size distribution of the contigs
generated. The number of contigs was ~20,000 with an average N50 size of
1,370 bp. The total number of assembled bases (i.e. sum of contigs) was however
closer to the expected genome size of ~23 Mb (~18 Mb to 19 Mb).

A filtered set of reads was obtained by excluding reads that aligned to the
reference genome with more than two mismatches. Reads that passed the
mapping-based filtering accounted for 73% of the total and covered 97% of the
genome with at least one read (94% covered with at least 5 reads). The assembly
of filtered reads was slightly better after removing 27% of the reads that were
either contaminants or had a lower quality (Table 2.4). However, the results
show that whole genome de novo assembly of short reads is still impractical for

P. falciparum.
NP_i200.1 NP_i200.2
All reads Filtered reads Allreads Filtered reads
Total bases (Mb) 18.87 18.25 19.59 19.2
Num. contigs 19676 18276 19899 18508
N50 (bp) 1361 1442 1387 1491
Average (bp) 958.9 998.8 984.7 1037.6
Largest (bp) 20771 16989 19471 23005
Unused reads (%) 31.22 18.1 41.3 16.87

Table 2.4: Whole genome Velvet assembly of real data from two PCR-free li-
braries of 3D7. The second data set of "filtered reads” was obtained by removing
reads that aligned to the genome with more than two mismatches. Assembly
results were highly fragmented for both libraries.

2.3.3 Velvet assembly on Chromosome 1 of 3D7

Reads that aligned to chromosome 1 of the reference genome were obtained

from the ’filtered set” described in the previous section. A mapping coverage
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of 94% was observed on comosome 1. The average fragment size (166 bp) was
shorter than the expected standard library fragment size of 200 bp. Assembly
of these reads was highly fragmented (N50=1 kb, sum of contigs=402 kb)
compared to assembly of error free simulated data with a similar number of
reads and insert size distribution (N50=15 kb, sum of contigs=614 kb). However,
introducing errors and uneven coverage to simulated reads had a significant
effect on assembly quality dropping the N50 contig size to 1.3 kb (Table 2.5).
These results suggest that sequencing errors and uneven coverage may explain
the low quality assemblies.

Real reads Simulated with error Error free simulation

N50 1076 1255 15278
Average 849 1019 3593

Larges 4979 5457 40793
Total bases 401616 637948 614369

Table 2.5: Assembly results of simulated and real reads on chromosome 1
of 3D7. Real reads and uneven-simulated reads with errors (column 3) had
comparable results. Reads simulated without errors and with even-coverage
(column 4) resulted in better assembly.

2.3.4 Velvet assembly on var genes

Initially, 1.9 million read-pairs where one or both of the reads aligned to var
genes were assembled generating the best assembly at a k-mer size of 65 with
N50 contig size of ~1.7 kb (sum of contigs=457 kb, Number of contigs=603,
Largest contig=9.85 kb). The number of contigs that contained the DBLx domain
was 40 (~74% of the expected) generating a total of 165 kb bases (~37% of the
expected ~450 kb) lower than reported for simulated reads (Num. contigs with
DBL&=50, sum of contigs=293 kb). A closer look at errors and read coverage
shows that regions with highest errors correspond with contig breakpoints
(Figure 2.2). In addition, low and uneven coverage also affected assembly
quality. Next, the effect of repeated sequences on var assembly was investigated.
Although the most commonly shared sequences were smaller than 100 bp,
stretches of above 1 kb were also identified from the pairwise blast search of

3D7 var genes (Figure 2.3). A visual inspection of the underlying de Bruijn graph
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revealed extremely dense nodes which represented highly similar sequences
within members of the family (Figure 2.4A). The effect of repetitive sequences
on the var assembly graph was examined by removing reads that aligned to
genes that contained shared sequences above the fragment size of 200 bp. The

graph was significantly simplified although still far from ideal (Figure 2.4B).

However, such simplifications are likely to affect quality by generating gaps in
the final assembly.
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Figure 2.2: The effect of sequencing errors and uneven coverage on assembly
of var genes. A comparative view of assembled contigs with var genes of
the reference genome is shown. The top panel shows mismatch (error) count
plot (red) and read mapping coverage plots (black). The bottom panel shows
assembled contigs (bottom) that were ordered and orientated against a 3D7 var
gene (top). The red and yellow blocks represent synteny matches. The color
of contigs indicates whether they align in the forward (green) or reverse (blue)
strands and if there is an overlap between neighboring contigs (cyan). Black
bars represent stop codons.
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Figure 2.3: A histogram of shared sequences in 3D7 var genes identified by a
pairwise blast alignment. Perfectly matching sequence blocks of length up to 4
kb were found between var genes of the 3D7 genome.
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Figure 2.4: Visualizing the assembly graph of all var genes from a velvet assem-
bly (real reads, k=61). In these plots, node sequences were represented as lines
and curves that are joined with other nodes at their tips. The dense regions
(nodes) on the graph represent repetitive sequences that have multiple connec-
tions with other nodes A) The assembly graph of real reads that align to var
genes of the the 3D7 genome. B) A simplified assembly graph after removing
reads that align to shared sequences between var genes with a match length of
above 200 bp (as shown in Figure 2.3).
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2.3.5 Reference guided assembly

In addition to de novo assembly, a possibility of using mapping based assembly
approaches was investigated. The challenge to genome assembly posed by the
inherent features of the genome (particularly the high A+T bias) is illustrated
using a k-mer-based uniqueness plot computed by counting the frequency
of sequences of length 30 bp. The uniqueness plot indicates how well short
reads could be uniquely mapped to genomic regions. The correlation between
sequence complexity, read coverage and G+C content is shown for chromosome
1 (Figure 2.5) and the left subtelomeric region of chromosome 8 (Figure 2.6). The
increase in G+C indicates higher information content and therefore mappabiliy.
Although both alignment and assembly benefit from paired-end information,
current assemblers construct graphs using k-mers from all reads independently.
Read pair information is used at later stages of the assembly to simplify the
graph and resolve repeats. A k-mer-based uniqueness plot therefore shows
regions of the genome where the assembly would terminate contigs due to
ambiguity. The subtelomeres of P. falciparum contain repeat blocks which have
a lower uniqueness compared to core regions of the genome. The overall
spikiness of uniqueness and G+C content affects mapping coverage across the
genome more specifically in subtelomeric regions (Figures 2.5 and 2.6).
Despite the problem of uniqueness in the sub-telomeric regions, at first sight
it appears that the relatively high G+C content and uniqueness of the var genes
should aid their assembly by mapping. However the extreme polymorphism
of these genes presents a much greater additional problem when sequence
reads from different genotypes are used. Figure 2.7 demonstrates this point by
comparing the homologous mapping coverage of the reference genotype 3D7
to the coverage of the reference from three field isolates of P. falciparum and to

its closest known relative, the chimpanzee parasite P. reichenowi.
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Figure 2.5: A plot of G+C content and uniqueness (based on a k-mer size of 30 bp) on Chromosome 1 of the 3D7
genome. An Artemis view of G+C content (top panel) and a uniqueness plot (middle panel). The bottom panel
shows annotation information with the different blocks representing protein coding genes, pseudogenes and
repeats in all the six reading frames.
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Figure 2.6: Read mapping coverage plots over var genes on the left subtelomere of Chromosome 8. Illumina reads
from 3D7, three field samples and P. reichenowi were aligned to the 3D7 genome.This figure shows the difficulty of
reliably aligning reads obtained from clinical samples to var genes (shown in red over the forward and reverse
strands) of the reference genome 3D?7.
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Figure 2.7: Number of reads mapped per kb over var genes of the 3D7 genome. Reads from 3D7, three field
samaples and P. reichenowi (P.r) were uniquely aligned to version 2.1.4 of the reference genome 3D7. A count of
reads mapped per kb is shown for the five genomes. The effect of repetitive sequences (shared matches between
var genes) is shown by the lack of coverage over some var genes. Read mapping was very poor for field samples
due to high polymorphism in var genes.
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2.3.6 Understanding sequencing errors in P. falciparum

Following observations that suggest a role for sequencing errors in assembly
quality, one aim of this section was to look at the extent and distribution of
substitution errors in P. falciparum sequencing.

2.3.6.1 Overall sequencing errors

Initially, sequencing errors were independently computed for the forward and
reverse reads at low (Q5), medium (Q15) and high (Q25) quality bins. Error
rates were variable between runs and lanes (Figure 2.8). Low quality bins
had higher error rates in all libraries. The variation in errors on the forward
and reverse reads was not consistent between instruments. For examples, the
Genome Analyser showed higher error rates on the second read at low (Q5)
quality bins with the exception of NP_i500. On the other hand, error rates were
comparable between the forward and reverse reads in HiSeq and MiSeq at all
quality bins.

Libraries from the HiSeq 2000 instrument had the lowest error rates (~0.7%)
compared to the Genome Analyser and MiSeq. The four MiSeq libraries
(MS_i3K.1-4) had the highest error rates (~1 to 1.3%) in both the forward and
reverse reads across all quality bins. However, these were part of a research
and development experiment on long insert protocols and had a lower yield
(Table 2.1). They were therefore excluded from further comparisons, as they
may not reflect the quality of standard production libraries. The remaining six

libraries were used for the analyses described in the following sections.

2.3.6.2 Per-cycle error rates

In order to identify positions that are particularly prone to errors in P. falciparum,
error rates were computed for each position on both the forward and reverse
reads (Figures 2.9 and 2.10).
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Figure 2.8: Overall error rates at low (Q5), medium (Q15) and high (Q25)
quality bins for forward (eg. Q5 1) and reverse (eg/ Q5 2) reads. Error rates
were computed for 10 libraries sequenced on GAII, HiSeq and MiSeq platforms
representing standard and PCR-free library preparation protocols.
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The highest proportion of errors was found on the final five to seven posi-
tions. Surprisingly, a similar trend of increased errors were also observed at
the beginning of reads in all libraries affecting both low (Q5) and high (Q25)
quality bins. In five of the six libraries, errors in the first five bases accounted
for ~1 to ~17% of the total while the last seven bases contributed a higher
24 to 43% of the total. The second read of the HiSeq library HS_i500.2 had an
exceptionally high error rate in the first three bases causing ~92% of all errors.
Although error rate in the rest of the positions was very low, high error rates
concentrated around a few bases will still affect the overall quality of the read.
The occasional spikes in error rates such as those found on base 33 of the first
read in library NP_i500.1 were potential indicators of random errors due to a
number of reasons including tile-specific problems and issues associated with
imaging. Despite the decrease in values as quality increases, the trends of error
rates per cycle were consistent at low and high quality bins.

In addition to quantifying the extent of errors for each cycle of the sequenc-
ing process, patterns of substitution were investigated in order to understand
systematic sources of bias. Proportion of errors due to the 12 potential substi-
tutions ( A+ C,A—+ G A—=T... T - AT — C,T — G)were computed for
each read of the six libraries (Figure 2.11A and 2.11B). Substitutions A-T, T-G
and A-G were over-represented at low quality bins while T-G, A-T, A-G and
T-C dominated high quality substitutions.
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Figure 2.11: Overall substitution patterns of Illumina reads from six libraries.
Substitution profiles of the forward and reverse reads of five libraries (as shown
on the x-axis) and the rate of such substitutions were plotted for lower base
quality of 5 (A) and a higher base quality cutoff of 25 (B).

2.4 Discussion

This chapter was aimed at evaluating the feasibility of using existing short read
assembly methods to reconstruct the var gene family in P. falciparum. A method
that works on var genes is expected to be effective on other gene families of P.
falciparum such as the rif and stevor gene families.

Conclusion 1: A comparison of short read assembly programs suggested that Velvet
is a better choice than SOAPdenovo. However, assembly results from Velvet were not
satisfactory.
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A larger proportion of the sequencing and analysis for this chapter was done
in 2009 where development of short read assembly tools was in its early days.
Assemblers that employ a de Bruijn graph structure were preferred over those
with the traditional overlap-layout-consensus approach due to their potential
to deal with the increase in sequence yield from next generation sequencing
technologies. Although the underlying algorithm used to represent sequences
is similar, de Bruijn graph-based assemblers have subtle differences in their
pre and post graph processing of reads. For instance, SOAPdenovo applies a
read filtering and error correction step based on a predefined k-mer frequency
cutoff prior to building the graph. On the other hand, Velvet uses a similar
approach to remove erroneous reads without correcting base calling errors. In
addition, Velvet puts an extra effort in simplifying the assembly graph during
both the construction stage and the assembly process by removing singletons.
Further reduction in graph complexity and error correction is achieved by
removing tips (a node or chain of nodes that have one loose end), bursting
bubbles (i.e. merging paths based on sequence similarity and minimum number
of reads represented by each path), removing paths that have fewer than the
minimum cutoff and using read pair information. The extremely high A+T
content of P. falciparum poses unique challenges in short read assembly and
requires advanced heuristics of resolving ambiguous paths at various stages of
the process.

Velvet’s superior assembly results compared to SOAPdenovo were therefore
attributed to its ability to simplify the assembly graph and remove erroneous
paths. However, further evaluation of Velvet on real reads from whole genome,
chromosome 1 and var genes of the 3D7 genome revealed that the results are
not satisfactory as they are highly fragmented. The k-mer size was found to be a
very important parameter that needs optimisation for a good quality assembly.
Smaller k-mer values cause potential false overlaps that lead to ambiguities and
assembly breaks. Conversely, larger k-mer sizes could generate assemblies with
a higher contiguity, they require long overlaps and a higher read coverage.

Filtering reads with mismatches did not significantly improve the whole
genome de novo assembly. This is due to a number of potential problems asso-

ciated with read length, fragment size, low complexity, uneven coverage and
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ambiguous overlaps from repeats that could not be resolved by the assembler.
In addition, the decrease in coverage due to the filtering may also affect assem-
bly quality. The overall results are consistent with previous whole genome de
novo assembly attempts using a PCR-free sample preparation (Kozarewa, et al.,
2009). A whole genome de novo assembly from a PCR-free library of P. chabaudi
- a Plasmodium species with a higher G+C content - was substantially better
(Thomas Otto, personal communication). Therefore low G+C content is one of

the primary limiting factors in short read assemblies of P. falciparum.

Conclusion 2: A reference-guided assembly was also not feasible due to a higher level
of polymorphism than is acceptable by methods that employ a comparative assembly
approach.

In order for a reference-guided (or mapping based) assembly approach
to work, a nucleotide similarity of above ~90% is required (Pop, 2009). Sub-
telomeric regions of and var genes of P. falciparum are very divergent and not
positionally conserved. The concept of using a fixed linear reference to guide
the assembly of new sequences is thus not relevant. One consequence of the
lack of mapping of reads from different genotypes to the telomeres is that all
the reads that do not map to the reference will include those that cover the most
polymorphic regions. It is therefore clear that assembly by mapping will be of
little value when dealing with such highly polymorphic regions of the genome.

Conclusion 3: Poor quality assembly of short reads was caused by a combination of
technical/systematic reasons from the sequencing process and inherent features of the
genome. Technical reasons include sequencing errors and uneven coverage due to an
enzyme’s limited capability to amplify certain regions of the genome. On the other hand,
inherent genome features include biased A+T content and repeated sequences.

Standard quality control pipelines of the Illumina platform often report
error rates computed from a fraction of sequenced reads. Such reports provide
a quick overview of quality in order to decide whether the data could be
used for downstream analyses. However, the information is not enough to

understand where the errors occur and whether some of the data could be
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recovered. For instance, a closer look at a lane labeled as "failed” may identify a
subset of reads or cycles that contribute to the increased error rate which could
then be excluded from further analysis. It is therefore important to further
investigate error profiles for each position on the reads at low and high quality
cutoff. Although sequencing errors are known to accumulate towards read-
ends (Abnizova et al., 2012), it was surprising to see increased error rates at the
beginning of reads.

In addition, unexpected high quality substitution errors specific to P. fal-
ciparum sequences were observed. The Illumina platform uses two lasers to
initiate emission of fluorescence from four channels (A, G, C, T) where A,C
and G,T pairs share each laser. Although Illumina’s base calling algorithm,
Bustard, uses a 16-parameter correction matrix (the cross talk matrix) to account
for responses from sources other than incorporation of the intended base, cross
talk effects are still visible at lower quality errors particularly for transversions
(A-C and G-T). The observed high frequency of substitutions A <+ G, C <+ T
and A < T is therefore less likely to be due to the crosstalk effect. This is
potentially due to the extreme base composition and requires a special attention
in applications such as variant calling. However, it is difficult to measure the
effect of high /low quality substitution errors in assembly as short read assem-
blers have yet to take advantage of base quality information. Currently, such
errors could be accounted for during the assembly process by trimming-off
the first and last error prone bases. However, assembly tests performed by
trimming read-ends did not improve the quality of contigs for two potential
reasons. Firstly, the Velvet assembler has an efficient algorithm of removing
erroneous nodes created due to sequencing errors that accumulate towards
read-ends. Trimming of reads may thus have very little improvement over
the initial assembly. Secondly, as trimming shortens the effective read length,
the size of k-mers that could be used for assembly also becomes smaller. As
described previously, shorter k-mer sizes are likely to generate false overlaps
and poor quality assembly.

Conclusion 4: A slightly different approach to reference guided and whole genome
or whole chromosome de novo assembly was required to reconstruct var genes and
subtelomeric regions from the current sequence data.
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In summary, even when the best available methods were used, var genes
could not be reliably assembled. Optimizing for assembling gene-families
in particular and removing technical errors improved the results. Even so,
technical and inherent bias meant that the assembly remains challenging, and
we conclude that none of the current methods can effectively assemble highly
polymorphic gene-families.



