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Abstract

In the malaria parasite Plasmodium falciparum, PfEMP1 (Plasmod-
ium falciparum erythrocyte membrane protein 1) is a protein that
is exported to the surface of infected human red blood cells and
encoded by ~60 var genes. PFEMP1 plays a crucial role in parasite
virulence and pathogenesis. It is also a target of host protective
antibody responses that are avoided by the parasite by transcrip-
tional switches between members of the var gene family resulting in
antigenic variation of the surface expressed PfEMP1.Thousands of
malaria patient samples are being sequenced at the Sanger Institute’s
Malaria Programme to identify common polymorphisms but para-
doxically some of the most variable sequences, such as var genes, are
intractable due to high levels of polymorphism. Our understanding
of var diversity in natural populations is thus limited to the DBL«
domain, a conserved 300-400 bp region found in the majority of
var genes studied so far. This thesis describes novel approaches
developed to assemble full-length var genes from short reads of the

[llumina sequencing platform.

The first part details an evaluation of existing assembly approaches
through a comparative assessment of representative assembly tools.
The results suggest that assembly of var genes in clinical samples
using current methods is not practicaldue to a combination of factors
including inherent sequence features (eg. high A+T content, low
complexity, repeats and duplicates) and technical issues that affect
quality of the raw sequence (eg. sequencing errors and uneven
coverage). An alternative assembly strategy based on conserved
sequence motifs was developed to address limitations of existing

methods.
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The second part investigates applications of short read sequenc-
ing to understand mechanisms of var gene diversity. Analysis of
sequences from five progeny of the first genetic cross in Plasmod-
ium falciparum between clones 3D7 and HB3 revealed evidence of

ectopic-recombination as a mechanism for var gene diversity.

In the third and final part of the thesis, the iterative assembly ap-
proach developed in the first part is applied to a global collection of
~800 clinical isolates resulting in the first and largest collection of
full-length sequences for ~50,000 var-contigs. Assembly results of
var genes from these clinical samples were shown to have a higher
repertoire-completeness (i.e. the number of contigs identified as var
genes was close to the expected number of var genes), and contigu-
ity (i.e. contig N50 size, largest contig size and open reading frame
sizes were comparable with the expected values from previously
completed genomes such as 3D7). Such availability of full-length
var genes is a major progress towards understanding the population

structure and diversity of var genes in natural populations with

Preliminarily analysis of var-contigs based on nucleotide and amino
acid similarities (Chapter 5) revealed distinct clusters of highly con-
served var-contigs within and between populations with percent-
identities of up to 100% over their full length (i.e a match length
of ~5-10 kb). The validity of these continent-transcending var-
contigs was confirmed by looking at the sizes of open reading frames
and aligning short reads back to var-contigs. Potential reasons for
such continent-transcending var-contigs are explored in Chapter 6.
These observations were surprising and potentially interesting as
the majority of continent-transcending var-contigs were members
of a group of var genes that are known to be associated with severe

malaria.
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Chapter 1

Introduction

1.1 Malaria

1.1.1 Overview

Malaria is a disease that is caused by Plasmodium parasites and one of the oldest
enemies of humanity, with a recorded history of its symptoms dating back for
~4,000 years (Neghina et al., 2010). It is believed to have originated in Africa in
the early days of human history and migrated to Euroasia as humans travelled
to look for a better life. Malaria found a more stable reservoir of infection as
early humans adopted a new lifestyle involving farming and agriculture, which
allowed them to settle in a single area for longer periods of time (Webb, 2008).

Plasmodium falciparum (P. falciparum) is the deadliest species of human
malaria parasites and claims over a million lives every year, of which nearly 80%
are children under the age of five. A recent study has also shown an increase
in number of adult deaths due to malaria, in both African and non-African
countries (Murray et al., 2012). The majority of cases (~60%) and deaths (>80%)
occur in regions of sub-Saharan Africa where the disease continues to have a
significant impact. There is an estimated ~1.3% average annual reduction in
economic growth for those countries with the highest disease burden (Green-
wood, 2005; RBM, 2010; WHO, 2011). Four other species of Plasmodium: P. vivax,
P. ovale, P. malariae and P. knowlesi, are also known to infect humans, although

rarely cause fatalities. P. knowlesi is a zoonotic species that primarily infects
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macaques, but has also been shown to cause severe infections in humans mainly
in South East Asia (Pain et al., 2008). P. falciparum is transmitted by the female
Anopheles mosquito, which is the definitive host.

Despite the current global efforts towards malaria elimination, over 200
million cases were estimated in 2010 (WHO, 2011) and nearly half of the world’s
population remains at risk (Figure 1.1). Insecticide and drug resistance are the
two major threats in malaria control (Anderson, 2009; Cheeseman et al., 2012;
Ranson et al., 2009).

P i |

| bt Frise
C LA
B APR
Bl AR, - s -
Bl AR, > A0

Figure 1.1: The spatial distribution of P. falciparum malarial endemicity in 2010.
The map shows endemicity predictions based on P. falciparum Parasite Rates
(PfPR). Predictions were categorized as low risk PfPR 2-10 < 5% light red;
intermediate risk PfPR_2-10>5% to <40%, medium red; and high risk PfPR_2-
10 > 40%, dark red. The rest of the land area was defined as unstable risk
(medium grey areas, where PfAPI<0.1 per 1,000 pa) or no risk (light grey).
Adapted from (Gething et al., 2011).

1.1.2 The Parasite: P. falciparum

The genome
The P. falciparum genome was one of the first eukaryotic pathogen genomes to
be sequenced, despite the challenges encountered due to its high A+T content

(80.6% in protein coding regions and ~90% in non-coding regions). The 3D7
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clone of P. falciparum, that is culturable throughout the bloodstream stages of
its life cycle was chosen for the sequencing project (Gardner et al., 2002). The
genome sequence revealed a total of ~23.3 Mb organized into 14 chromosomes
ranging in size from ~640 kb to ~3.3 Mb. The current annotation of the genome
has ~5,500 genes including 145 pseudogenes (Bohme, U. personal communica-
tion). A large proportion of the proteins lack similarity with known proteins
from other organisms, suggesting a Plasmodium-specific role (Gardner et al.,
2002). The presence of multi-copy gene families was also confirmed, and their
actual number revealed, from the genome sequence. The three major gene
families with confirmed and predicted expression properties on infected red
blood cells (iRBCs) include the var, rifn (repetitive interspersed family, (Kyes,
1999)) and stevor (subtelomeric variable open reading frame, (Cheng et al., 1998))
multigene families. These genes are mainly located in subtelomeric regions
and accounted for ~7% of the genes in genome. Var genes are the focus of this
thesis, as such; an overview of their organization, function and association with

disease phenotypes is given in the following sections.

Life Cycle

Human malaria parasites require both the mosquito and human hosts to com-
plete their life cycle (Figure 1.2). Development within the human host is initiated
by a mosquito bite that releases sporozoites from the mosquito’s salivary glands
(Figure 1.2,A). Malaria parasites migrate to the liver where they invade, differ-
entiate and multiply in hepatocyte liver cells. After ~6 days, hepatocytes burst
releasing merozoites into the blood stream (Figure 1.2, #3/4).

Once in the blood stream (Figure 1.2B), merozoites force themselves to enter
red blood cells (RBCs) using a gliding motion (Tilley et al., 2011). The process
creates a vacuole (Parasitophorous Vacuole) that expands to accommodate as the
parasite asexually multiplies inside the infected red blood cell (iRBC) (Baumeis-
ter et al., 2009). Initially, parasites assume flat disc-like structures leading to
the “ring stage” in their development, and further develop into “mature tropho-
zoites” where they actively modify iRBCs in order to evade the host immune
system and avoid clearance by the spleen (Haldar and Mohandas, 2007; Maier
et al., 2009; Pasternak and Dzikowski, 2009). Formation of schizonts signals the
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final stage of the intra-erythrocytic develpoment cycle, where parasites differen-
tiate producing 16-32 new merozoites that develop inside the parasitophorous
vacuole until ~48 hr post invasion. Rupture of Schizonts releases merozoites
that are able to infect new RBCs.

Some merozoites develop into male and female gametocytes (Figure 1.2,
#7), ready to be taken by a mosquito during a blood meal. In the “mosquito
stages” of the development (Figure 1.2C), fertilization of gametocytes within the
mosquito midgut results in formation of ookinetes, which in turn traverse the
gut wall to form oocysts. Oocysts rupture resulting in the release of sporozoites,
which migrate to salivary glands of the mosquito.

Disease pathology and symptoms of malaria such as fever, headache, chills
and muscle ache are a result of parasite development within the human blood
stages (Figure 1.2B), as liver stages are asymptomatic (Miller et al., 2002). Severe
complications of infection include anemia, respiratory distress and cerebral
malaria in highly endemic areas or single or multi-organ failure in areas of
very low endemicity (Andrej Trampuz, 2003; Miller et al., 2002; Milner et al.,
2008). The virulence of P. falciparum is partly explained by the ability of mature
parasites to export proteins to the surface of iRBCs in order to modify the iRBC
and mediate adhesion to a variety of host cell types (MacPherson et al., 1985;
Miller et al., 2002) as described in the following sections.
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Figure 1.2: The life cycle of the human malaria par-

asite P falciparum  within two hosts (Taken from CDC:
http://www.cdc.gov/malaria/about/biology)
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1.2 Plasmodium falciparum erythrocyte membrane
protein 1 (PfEMP1)

Approximately 18 hours post red cell infection, P. falciparum parasites express
variants of PfEMP1 on the surface of iRBCs (Leech et al., 1984). It was shown
that variants of this large surface protein (~200-400 kDa) are encoded by ~60
members of the var gene family (Baruch et al., 1995; Smith et al., 1995; Su et al.,
1995). PfEMP1 is regarded as a major virulence factor for two reasons; it is
responsible for cytoadherence (Hughes et al., 2009; Newbold et al., 1999), and
it undergoes antigenic variation (Newbold, 1999; Scherf et al., 1998; Sue Kyes

et al., 2001) as a means of immune evasion.

1.2.1 Cytoadherence

Cytoadherence is a process in which parasite proteins expressed on the surface
of iRBCs mediate binding to a number of host cell receptors (Biggs, 1990).
Parasites begin to alter the surface of the iRBC after 12-14 hours post-infection.
Modifications important for the parasite include changes in the shape of iRBCs
resulting in an increased rigidity that restricts the ease of movement in the
blood stream. An increased permeability of the cell membranes also occurs in
order to allow acquisition of nutrients. As parasites continue to mature, further
changes occur including appearance of electron dense protrusions (knobs) on
the surface of iRBCs (Figure 1.3). Knobs are mainly composed of proteins
known as knob-associated histidine rich proteins (KAHRP) (Sharma, 1991).
These knobs (Figure 1.3) and the proteins exposed on the surface of iRBCs play
a crucial role in pathogenesis (Fairhurst et al., 2012; Pasternak and Dzikowski,
2009).

The extracellular adhesive domains of PfEMP1 (see later for a detailed
description) bind to human endothelial cell receptors such as the scavenger
receptor protein “Cluster of Differentiation 36” (CD36) and “Intercellular adhe-
sion molecule 1”7 (ICAM-1) (Flick and Chen, 2004). As a result, iRBCs adhere
to endothelial cells lining the small vasculature, do not circulate in the blood,

and therefore avoid clearance by the spleen. When parasites are sequestered
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Figure 1.3: PfEMP1 mediates adhesion of the infected RBC. PfEMP1 is ex-
pressed by the malaria parasite P. falciparum on the knobs formed on the surface
of infected erythrocytes. The variable extracellular regions DBLs and CIDR
mediate adhesion through binding to several endothelial receptors such as
CD36, ICAM1 and CSA. In addition, PfEMP1 mediates adhesion to uninfected
erythrocytes forming rosettes. (PV, parasitophorous vacuole; MC, Maurer’s
cleft). Taken from Pasternak and Dzikowski (2009)
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in particular organs (such as the brain) then organ function is compromised
and specific syndromes (such as cerebral malaria) may result. In addition, some
iRBCs also bind to uninfected RBCs (a phenomenon known as rosetting) and
form clumps (autoagglutination) a phenotype that has been associated with
severe disease (Miller et al., 2002; Montgomery et al., 2007; Rowe et al., 2009)

1.2.2 Antigenic variation

Antigenic variation is used by a number of pathogens to continually change
the antigenic epitopes that are exposed to the immune system (Sue Kyes et al.,
2001). A common characteristic of parasites that undergo antigenic variation is
the expression of new sub-populations of antigens at regular intervals in order
to prolong the duration of infection.

First reported in the monkey malaria parasite P. knowlesi (using rhesus
macques), antigenic variation was then observed in other malaria causing
parasites such as P. fragile (in toque monkeys), P. chabaudi (in rodents) and later
in P. falciparum (Sue Kyes et al., 2001).

The parasite’s success in evading the host immune system is primarily
attributed to its ability to effectively maintain diversity via antigenic variation.
P. falciparum achieves such variation within a single genotype by transcriptional
switching between different var genes (Recker et al., 2011; Roberts et al., 1992;
Scherf et al., 1998). As a result, the parasite causes a chronic infection through
reduction or avoidance of detection by the host immune system (Chookajorn
et al., 2008; Frank and Deitsch, 2006; Kraemer and Smith, 2006; Scherf et al.,
2008).

1.2.3 Regulation of gene expression

In order for the process of antigenic variation to be advantageous to the parasite
itis evidently essential that the repertoire of potential variants are mostly hidden
from the host at any one time. Thus var genes are expressed in a mutually
exclusive fashion such that at any one time each parasite is only expressing one

member of the family (Scherf et al., 2008). This mutually exclusive expression



1.2 Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) 9

of the ~60 var genes is believed to be regulated by mechanisms that involve
genetic factors and epigenetic elements, including histone modification and
organization of var genes around the nuclear periphery (Kyes et al., 2007; Scherf
et al., 2008). Regulation at the genetic level is believed to involve the use of
two promoter regions, the first in the upstream regions of exon 1 of var genes
and the second in the introns (Calderwood et al., 2003; Swamy et al., 2011;
Voss et al., 2006). Epigenetic factors on the other hand involve modification
of chromatin around var genes in order to maintain an epigenetic memory
of the genes activated during successive cycles of cell division. Activated
var genes are particularly associated with a loosely-packed chromatin with
modifications including acetylated histone 3 lycine 9 (H3K9ac), di-methylated
H3K4 (H3K4me?2) and tri-methylated H3K4 (H3K4me3). Conversely, promoter
regions of non-activated genes are surrounded by a tightly packed chromatin
with tri-methylated H3K9 (H3K9me3) modifications (Chookajorn et al., 2007;
Enderes et al., 2011; Hernandez-Rivas et al., 2010).

The localisation of genes around the nuclear periphery is also believed to
provide additional epigenetic mechanisms for a mutually exclusive expression
(Freitas-Junior et al., 2000). Clusters of silent genes are primarily located in the
nuclear periphery surrounded by heterochromatin and only one gene moves
to a different area that facilitates transcription (Dzikowski et al., 2007). The
organisation of var genes in silent regions leads to bouquet like structures that
facilitate recombination and gene conversion events, thus contributing to the

generation of immense diversity in the var repertoire (Freitas-Junior et al., 2000).

1.2.4 Organization, chromosomal location and grouping of var

genes
1.2.4.1 Var gene organization and Protein architecture

The first complete view of a repertoire of var genes was obtained from the
genome of the reference isolate 3D7 (Gardner et al., 2002). Later, var genes from
the IT and HB3 genomes were also compared with 3D7, revealing a comparable
number of ~60 protein coding genes per genome (Kraemer et al., 2007). In
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the 3D7 genome, an additional ~30 genes are annotated as pseudogenes and
truncated exons of PFEMP1. Although not fully understood, there is increasing
evidence for pseudogene transcription (Otto et al., 2010b).

Var genes have a common structure that constitutes two exons. The first
exon (~3 to 9.4 kb) encodes the highly variable extracellular region of PFEMP1.
Exon 2 is shorter than exon 1 and encodes a semi-conserved intracellular region
and a trans-membrane domain. Introns separating the two exons have a high
A+T content and a size of up to ~1.2 kb.

The protein encoded by exon 1 is composed of an N-terminal segment
(NTS), variable numbers of the Duffy Binding like (DBL) and Cysteine Rich
Interdomain Region (CIDR) domains. Although the order in which these
domains appear is highly variable, the NTS is always found at the beginning of
the protein followed by DBL and CIDR domains. Because of the continuous
exposure of these domains to the immune system and their recombinogenic
nature, they are highly polymorphic (Taylor et al., 2000b). Further classification
of the DBL and CIDR domains using few conserved residues reflects the high
sequence diversity in the family. DBL domains are subdivided in to seven
classes: a, a1, B, 6, ¢,y and ) (six groups were defined by the genome project; the
group & was later sub classified into « and a1) (Kraemer et al., 2007). Similarly,
CIDR domains have four sub categories: «, a1, B,y (the initial definition only
contained « and not-&). The DBLa domain is the most abundant and found
in almost all var genes next to the N-terminal segment. The overall most
conserved var sequence can be found within the part of exon 1 that encodes
DBL« (Kraemer et al., 2007; Kyes et al., 2007). Taylor and colleagues (Taylor
et al., 2000a) described a set of universal primers that were able to amplify
this conserved region of DBLa from the majority of var genes. These primers
are routinely used to rapidly identify var genes in culture-adapted and clinical
isolates.

The second exon has higher A+T content and greater sequence conservation
than the first exon. The protein encoded by exon 2 is composed of a semi-
conserved acidic terminal segment (ATS), which was occasionally used in
detecting var genes before universal var primers from the DBLa domain were
adopted. Despite the extreme diversity within and between var genes of P.
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falciparum isolates studied so far (Barry, 2007; Bull et al., 2005; Chen et al.,
2011; Fowler et al., 2002; Trimnell et al., 2006), most var genes have a relatively
conserved head structure composed of NTS-DBL«-CIDR1 domains (Kraemer
and Smith, 2006). Depending on the total number of domains, var genes could
also be described as either short (with 2 to 4 domains) or long (with over 5
domains). There is a higher degree of variability in the number and order of
domains that constitute each gene. A total of ~17 different architectures were
originally described based on the var repertoire of the 3D7 genome (Figure 4).

A comparative study of var genes in three lab isolates 3D7, IT and HB3
subsequently revealed a total of 31 architecture types (Kraemer et al., 2007).
Although var genes could have a comparable number and order of domains, the
sequence similarity between genes even with the same architecture is extremely
low. The most conserved domain, DBL«, has a similarity of up to 50%. Of
the 31 different architectures defined in the three isolates (3D7, IT and HB3),
only seven were found to overlap. A recent analysis of var genes from seven
genomes by Rask and colleagues (Rask et al., 2010) used a combination of
phylogenetic trees and an iterative detection of homology blocks to define
regions with high similarity (homology blocks) and Domain Cassettes (DC) in
PfEMP1 sequence. Domain Cassettes are conserved sequence elements defined
by grouping genes that share a similar order of domain architectures. A total of
23 domain cassettes were identified from ~400 PFEMP1 sequences in the seven
genomes. This study has improved domain boundaries and provided some
unit of defining associations with disease phenotypes.

1.2.4.2 Chromosomal locations of var genes and their transcription

Subtelomeric regions are the most unstable parts of the genome, with recombi-
nation rates predicted to be approximately ten times higher than those of core
regions (Taylor et al., 2000b). The location of ~60% of var genes in subtelomeric
regions may thus play an important role in maintaining a genetic diversity es-
sential for the parasite’s survival (Gardner et al., 2002). Telomeric ends contain
one to three var genes per chromosome except in Chromosome 14, which only
contains a pseudogene. The remaining 40% of var genes are located in central
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Figure 1.4: Organization of multi-gene families in P. falciparum. a, Telomeric regions of
all chromosomes showing the relative positions of members of the multi-gene families:
rif (blue) stevor (yellow) and var (colour coded as indicated; see b and c). Grey boxes
represent pseudogenes or gene fragments of any of these families. The left telomere
is shown above the right. Scale: ~0.6 mm =1 kb. b, ¢, var gene domain structure. Var
genes contain three domain types: DBL, of which there are six sequence classes; CIDR,
of which there are two sequence classes; and conserved 2 (C2) domains (see text). The
relative order of the domains in each gene is indicated (c). Var genes with the same
domain types in the same order have been colour coded as an identical class and given
an arbitrary number for their type (b) and the total number of members of each class in
the genome of P. falciparum clone 3D7. d), Internal multi-gene family clusters. Key as in
a. (Taken from Gardner et al. (2002))
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clusters on chromosomes 4, 7, 8 and 12. Other multi-copy gene families that
are located in subtelomeres and known to be expressed on the surface of iRBCs
include rif and stevor genes, although their function is not fully understood
(Jemmely et al., 2010).

A detailed survey of the location and direction of transcription of var genes
showed that the majority of subtelomeric genes are positioned tail-to-tail sepa-
rated by one or more members of the rif gene family. A few remaining genes
assume a head-to-head or head-to-tail configuration (i.e. transcribed towards
and away from each other respectively). Conversely, central var genes are
almost always found in tandem arrays in a head-to-tail orientation (Gardner
et al., 2002).

Var genes of the subtelomeres are located in close proximity to telomeric
repeat units, specifically the six telomere-associated repeat elements (TARE 1
to TARE 6). A repeat unit known as rep20 is found next to var genes and its
association with higher rates of recombination has been proposed (Jiang et al.,
2011).

1.2.4.3 Grouping and classification of var genes

In order to better understand the sequence diversity, evolution and their associ-
ation with disease phenotype, there have been several attempts to classify var
genes into a small number of groups. In addition to domain architecture and
chromosomal locations, sequences of upstream regions of var genes (Ups) were
also used to group var genes (Lavstsen et al., 2003). Based on their sequence
similarity Ups regions are grouped into four types: UpsA, UpsB, UpsC and
UpsE (Kraemer et al., 2007). The original classification also contained another
group (UpsD) that was subsequently merged with UpsA (UpsA2).

A combination of Ups sequence similarity, chromosome location and di-
rection of transcription were used to define three major (A, B and C) and two
intermediate (B/A and B/C) groups of var genes (Gardner et al., 2002; Kraemer
et al., 2007). Type A and B var genes are both located in subtelomeric regions
with upstream sequences of UpsA and UpsB respectively. However, they are
transcribed in opposite directions (Type B to the center and Type A to telom-
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eres). Type C represents var genes in the central regions of chromosomes with
UpsC flanking sequence. The intermediate group B/A contains genes that
are transcribed towards the telomeres (similar to Type B) but they are located
towards the centromere end of subtelomeric regions. The remaining genes of
type B/C are located in central regions with a flanking region (Ups) similar to
UpsB sequences.

A different approach of var grouping that utilises DBLa tags was developed
by Bull and colleagues (Bull et al., 2007). This approach first grouped sequences
based on the number of cysteines into Cys2, Cys4 and CysX, representing DBL«
sequences that contain two, four and other (one, three, five or six) residues.
Four positions of limited variability (PoLVs), each containing four amino acid
residues were then defined and used together with cysteine counts to classify
sequences into six groups (groups 1 to 6). Although the classification was
dependent on a small portion of the gene, the result of this typing method was
highly comparable with existing groups defined using similarity of flanking
(Ups) sequences and chromosome location. Sequences in groups 1 to 3 contain
two cysteines (Cys2) and correspond with Types A, B/A and B. On the other
hand, sequences in groups 4 and 5 were Cys4 types and correspond with B/ A,
B, B/C and C. The remaining CysX sequences of group 6 mainly correspond
with type C and a small number of B/C and B genes.

1.2.4.4 Association with disease phenotypes

In vitro experiments conducted on parasites taken from mild and severe malaria
infections have shown distinct interactions of PFEMP1 domains and endothelial
receptors. For example, binding between CD36 and CIDR«a domains is observed
in most cases of mild malaria, whereas binding of some DBLSc2 domains to
ICAM1 was associated with severe complications (See Kraemer and Smith
(2006) for a review). Pregnancy-associated malaria is a well studied example of
cytoadherence and its complications (Fried and Duffy, 1996). It could lead to
low birth weight and premature delivery in endemic areas as iRBCs sequester
in the placenta of pregnant women that have not been exposed to antigens
encoded by the gene var2CSA (Salanti, 2004). Ligands of var2CSA bind to
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low-sulfate forms of Chondroitin Sulfate A (CSA) receptors in the placenta.
Despite the occurrence of pregnancy-associated malaria during first pregnancy,
immunity is quickly acquired for subsequent pregnancies. The high sequence
conservation of var2CSA compared to other members of the family has raised
hopes of a possible vaccine for pregnancy associated malaria (Chen, 2007;
Rogerson et al., 2007).

Earlier studies conducted on African children from regions with variable
levels of malaria transmission revealed that immunity to non-cerebral cases of
severe malaria could be acquired at a young age with one to three infections.
The time required for such immunity to develop may vary depending on
transmission intensity, taking up to five years in areas of low transmission.
Conversely, immunity to mild malaria takes longer and may never be achieved
as parasites maintain a large repertoire of antigens that continue to evolve
rapidly (Bull et al., 1998, 2000; Gupta et al., 1999). These observations have
motivated a number of studies that aimed to find specific PFEMP1 types that
are highly expressed during severe and mild malaria (Ariey et al., 2001; Bull
et al., 2005; Cham et al., 2010; Falk et al., 2009; Jensen, 2004; Kaestli et al., 2004,
2006; Kalmbach et al., 2010; Kirchgatter and Portilo, 2002; Kyriacou et al., 2006;
Lavstsen et al., 2005; Montgomery et al., 2007; Nielsen et al., 2002; Normark
et al., 2007; Rottmann et al., 2006).

A number of studies have shown that var genes that belong to groups Type
A and B/A are associated with severe malaria infections (Falk et al., 2009;
Kyriacou et al., 2006; Rottmann et al., 2006; Warimwe, 2009). However, binding
properties of iRBCs especially in cerebral malaria remain poorly understood.
Recently, three independent studies published in the same issue of the journal
Proceedings of National Academy of Sciences (Avril et al., 2012; Claessens et al.,
2012; Lavstsen et al., 2012) identified a group of mainly Type A var genes that
are associated with severe cases of malaria including cerebral malaria. Genes
that contained Domain Cassettes 8 and 13, as defined by Rask and colleagues
(Rask et al., 2010) were found to bind to brain endothelial cells. Domain Cassette
8 sequences were of the groups A and B/ A, while Domain Cassette 13 were
primarily Type A var genes. Despite the significance of such findings, most
studies still use the DBLa domain due to the difficulty of obtaining full length
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sequence information. There is thus a need for quickly obtaining full length
information of genes and transcripts for a better understanding of PFEMP1’s
association with severe disease phenotypes. Such understanding may facilitate
the search for intervention, especially for severe malaria infections (Chen, 2007;
Hviid, 2011). It is however important to note that due to the high polymorphism
in var genes, a great deal of further research is required to establish the feasibility

of such interventions for example in the form of a 'severe malaria vaccine’.

1.2.5 Polymorphism, sequence diversity and mechanisms of

generating diversity in var genes

Polymorphism and sequence diversity

Despite the importance of understanding the diversity of var genes in natural
populations, our knowledge is still limited primarily for two reasons. Firstly,
the highly recombinant nature of P. falciparum parasites in general and var
genes in particular makes analysing and describing diversity of the gene family
in natural populations extremely difficult (Bull et al., 2008; Conway, 1999;
Gardner et al., 2002; Kraemer et al., 2007). Secondly, the highly polymorphic
nature of var genes has hindered the possibility of obtaining full length regions
of the repertoire using existing laboratory based methods (eg. PCR based
amplification and capture of var genes). Universal var primers developed
to amplify the DBLa region (Taylor et al., 2000a) are used by all except two
(Kraemer et al., 2007; Rask et al., 2010) of the previous studies on var gene
diversity. Recently, a modified transformation-associated recombination (TAR)
cloning method was used to capture telomeric and central var gens (Gaida et al.,
2011). Although this constitutes a step forward towards analysing full length
genes compared to using DBLa tags, its application with large scale studies of
natural populations is very limited.

A few studies have however tried to explore the diversity of var genes within
these limitations. Evidence from all the studies points to the presence of extreme
diversity in the var gene family (Barry, 2007; Bull et al., 2008; Chen et al., 2011;
Mugasa et al., 2012; Ozarkar et al., 2009) with a very low sequence similarity
between PfEMP1 domains within and between isolates (typically below 50%).
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Although initially such extreme levels of diversity may appear to be a result
of random and potentially unlimited recombination between var genes (Barry,
2007), the idea of a recombination hierarchy (Kraemer and Smith, 2003) was
later confirmed revealing two recombinationally isolated groups (Type A and
non-type A) (Bull et al., 2008; Kraemer et al., 2007). Such a hierarchy is believed
to restrict recombination possibilities between domains in different groups.

An overview of mechanisms used to generate var diversity

Understanding the mechanisms employed by parasites to generate such im-
mense diversity in natural populations is one of the least explored topics in
the area of var genes. The complex lifecycle of the parasite involves multiple
stages of cell division in both the human and mosquito hosts, thus making such
studies extremely challenging. Diversity at the basic molecular level is mainly
generated by three major processes: mutation, homologous recombination and

non-homologous gene conversion.

Mutation

Mutation is known as the ultimate source of genetic diversity as it is the only
process capable of creating new sequences while the other two primarily shuffle
existing sequence fragments. The extent of changes may vary from substitutions
of a single nucleotide base and small insertions/deletions (indels) to large scale
complex changes. Single nucleotide polymorphisms (SNPs) are the commonly
studied events of mutation in natural populations of P. falciparum. The most
recent study by Manske and colleagues (Manske et al., 2012) presented SNPs
from a global collection of clinical isolates. Although new insights on popula-
tion structure and the extent of polymorphism were obtained from the study,
highly variable regions such as var genes were excluded due to the difficulty of
reliably aligning short reads in these regions.

Homologous recombination (HR) and Gene conversion (GC)
HR refers to the reciprocal exchange of genetic material between two allelic
regions of the genome. Although HR does not create new sequences as in the

case of mutation, it plays a crucial role during both meiosis and mitosis. In
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meiosis, the eukaryotic HR machinery is activated following a double strand
break (DSB) as a result of actions of the enzyme spol1 (San Filippo et al., 2008).
The main functions of HR include allowing proper segregation of chromosomes
during cell division and generating diversity in progeny by providing a means
of genetic exchange. In mitosis, HR is primarily used to repair DSBs due to
damages and as a result of stalled replication forks. Enzymes responsible
for the proper pairing of homologous regions during HR include Rad51 and
Dmcl. The Double Strand Break Repair (DSBR) model was the first attempt to
understand the process of HR (Lieber, 2010; Szostak et al., 1983) . Despite its
limitations in explaining mitotic events where the majority of DSB repairs do
not result in homologous cross-overs, the DSBR is still widely accepted model
for meiotic HR. The Synthesis Dependent Strand Annealing (SDSA) model was
proposed to account for mitotic non-cross over events (Figure 1.5). The HR
machinery in P. falciparum and the genes involved are not well understood.
A Rad51 homologue in P. falciparum, PfRad51, was the first Rad51 gene to
be characterised in apicomplexan parasites(Kantibhattacharyya et al., 2004).
Conversely, gene conversion is a non-reciprocal transfer of genetic material
between non allelic (ectopic) regions where a homologous sequence from a
donor region is used to replace a damaged region (acceptor).

In P. falciparum, three genetic cross experiments were used to better under-
stand mechanisms and rates of recombination. The first genetic cross was made
in 1987 between clones 3D7 and HB3 (Walliker et al., 1987). The two other
crosses were later reported: HB3 with DD2 (wellems et al., 1990) and GB4 with
7G8 (Hayton et al., 2008). Such studies require a complex experimental setup to
capture the complete life cycle in the mosquito (where sexual development and
homologous recombination takes place) and a mammalian model organism
(where asexual reproduction takes place). Both homologous recombination
and gene conversion are believed to generate var gene diversity (Frank et al.,
2008; Freitas-Junior et al., 2000; Taylor et al., 2000b). However, there is yet no

evidence of mitotic ectopic gene conversion events.
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Figure 1.5: Pathways of DNA double-strand break repair by homologous recom-
bination. Double-strand breaks (DSBs) can be repaired by distinctive homologous
recombination (HR) pathways, such as synthesis-dependent strand annealing (SDSA)
and double-strand break repair (DSBR). (a) After DSB formation, the DNA ends are
resected to yield 3" single-strand DNA (ssDNA) overhangs, which become the substrate
for the HR protein machinery to execute strand invasion of a partner chromosome.
After a successful homology search, strand invasion occurs to form a nascent D-loop
structure. DNA synthesis then ensues. (b) In the SDSA pathway, the D loop is unwound
and the freed ssDNA strand anneals with the complementary ssDNA strand that is
associated with the other DSB end. The reaction is completed by gap-filling DNA
synthesis and ligation. Only noncrossover products are formed. (c) Alternatively, the
second DSB end can be captured to form an intermediate that harbours two Holliday
junctions (HJ)s, accompanied by gap-filling DNA synthesis and ligation. The resolution
of HJs by a specialized endonuclease can result in either noncrossover ((horizontal
triangles) or crossover products ((vertical triangles).(Taken from San Filippo et al. (2008))
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1.3 New frontiers and existing challenges

Advances in DNA sequencing technologies have enabled a better understand-
ing of the parasite biology via "re-sequencing’ and ‘de novo sequencing” applica-
tions (Bentley, 2006; Mardis, 2008). Re-sequencing is where a reference sequence
is available and the aim is comparison of the new sequences (whole genome or
parts of a genome) with the existing sequence. Alternatively, de novo sequencing
does not assume the presence of a reference sequence. It is therefore applicable
in the sequencing of a new genetic material or when the material is significantly
different from what is already known.

Re-sequencing of parasites sampled from clinical patients is being used to
understand the diversity and structures of natural populations. Nonetheless,
existing challenges of drug resistance, insecticide resistance and lack of effec-
tive vaccine continue to pose major threats to malaria control efforts. DNA
sequencing technologies may help us monitor outbreaks and emergence of drug
resistance more effectively than traditional methods (Le Roch et al., 2012)

1.4 Next generation sequencing technologies and short

read assembly

1.4.1 Second generation sequencing technologies

The most commonly used second generation instruments such as those pro-
vided by Roche (454 platform http://www.roche.com) and [llumina (GA1,
GA2, HiSeq, MiSeq platforms: htp://www.illumina.com) are able to se-
quence millions of DNA fragments using a highly parallel Sequencing-by-
synthesis process. In this thesis, the Illimina’s GA2, HiSeq and MiSeq platforms

were used to sequence laboratory clones and clinical isolates of P. falciparum.

Illumina sequencing
The Illumina sequencing technology uses cyclic reversible termination chem-
istry described by (Bentley et al., 2008). The length of short sequences (reads)

generated by the platform is determined by the number of cycles. The sequencing-
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by-synthesis process used by Illumina involves three main steps: library prepa-
ration, cluster generation and sequencing.

Initially, the sample DNA is fragmented using nebulization or sonication
followed by an end-repairing step to generate blunt-ended fragments. Addition
of a single nucleotide Adenine (A) base to the 3" end of both DNA strands pro-
duces A-tailed fragments that are ready to be ligated with sequencing adaptors.
The adaptors have a 3' Thymine (T) overhang that complements the A-tails
of template fragments. The final stages of library preparation include size-
selection and quantification of fragments that contain the sequencing adaptor.
The sequencing library is then transferred to flow cells. Flow cells contain
oligonucleotides that are complementary to the sequencing adaptors ligated
at the end of the templates such that template fragments bind to the surface
where both cluster generation and sequencing take place. Paired-end reads are
generated by sequencing the template from both ends, resulting in reads that
are separated by a known fragment size. Illumina’s flow cells contain eight
lanes that are capable of taking independent samples (libraries) or up to 96
multiplexed libraries.

The cluster generation step first denatures fragments into single stranded
templates followed by cycles of a bridge-amplification step, where each tem-
plate is clonally amplified resulting in thousands of templates per cluster and
millions of clusters per lane. Each cluster corresponds to a single template
molecule.

The cyclic sequencing process involves the use of four fluorescently labeled
nucleotides (dANTPs), which are added to the growing chain of sequenced
(synthesised) bases for each template of a cluster. After each incorporation, the
intensity of the fluorescent dye is measured via imaging techniques and used
to determine the exact base for each cluster. Finally, the terminator containing
the fluorophore are removed to allow another cycle of incorporation.

The [llumina system is distributed with a base calling software, Bustard, that
analyses the signal from each template in a cluster in order to determine the
correct base call after each incorporation cycle. Three major issues were reported
to affect accuracy of base calls in the Illumina system (Erlich et al., 2008; Wei-
Chun Kao, 2009). Firstly, incorporation of multiple bases per cycle or missed-
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incorporation may result in longer (leading) or shorter (lagging) synthesised
strands than the majority of the templates. As the frequency of templates that
are affected by such phasing issues increases, the accuracy of base calls reduces.
Secondly, with an increase in cycle number, the intensity of fluorescent signals
decays resulting higher error rates towards the ends of reads. Finally, the cross-
talk effect may also cause substitution errors towards read-ends. For these
reasons, the maximum read length of the Illumina data presented here is 100 bp
(HiSeq). In addition, studies in our group have shown a higher concentration of
[llumina sequencing errors immediately after a homopolymer tract (Otto et al.,
2010a).

1.4.2 Short read assembly
1.4.2.1 Overview of algorithms

Sequences obtained from the Sanger/Capillary sequencing platforms had fewer
fragments covering larger stretches of genomic regions. The advantages of such
data include the ease of reconstructing the genome due to longer reads span-
ning across difficult regions such as repeats. Data storage and run-time memory
requirements are also minimal during the assembly process. Despite the high
cost and slow sequencing time, read lengths of up to 1 kb were obtained from
Sanger sequencing methods (Shendure and Ji, 2008). The Illumina platform on
the other hand generates millions of short reads (~100 bp) at a fraction of the
cost. Although the significant increase in the number of reads could provide
additional benefits in terms of enhancing the sequence information for a given
region (i.e. coverage), it also introduces new challenges of data storage and
sequence analysis especially in alignhment and assembly of short reads. De novo
assembly of sequence fragments is among the most difficult computational
problems (also known as Non-deterministic polynomial hard /NP-hard prob-
lems) that do not currently have efficient solutions (Myers, 1995). The most
common formalisation of the assembly problem is to consider short reads as
strings and solve the problem of ‘shortest common superstring” where the aim
is to find the minimal superstring that contains all fragments (short strings).

Because such approximations are known to be computationally intractable (NP
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hard), a number of assembly (Li et al., 2009b, 2010; Simpson, 2009; Zerbino and
Birney, 2008) and scaffolding (Boetzer et al., 2011; Dayarian et al., 2010; Pop,
2003) tools apply algorithms that generate the best possible solution within an
acceptable time.

Grouping assembly tools

Assembly tools could be grouped as greedy or graph-based based on the under-
lying strategy employed to process sequence fragments (Narzisi and Mishra,
2011).

Greedy algorithms have an incremental search strategy where they identify
overlaps and sequentially extend sequences starting from the overlap with the
highest score. Assembly tools developed for long capillary reads such as TIGR
(Sutton et al., 1995), CAP3 (Huang and Madan, 1999), PCAP (Huang, 2003) and
Phusion (Mullikin and Ning, 2002) employ a greedy searching algorithm and
fall into this category.

Graph-based assembly tools use a string graph to represent overlapping
sequence fragments prior to generating optimal solutions for the assembly prob-
lem (i.e. finding a path that passes through all nodes). Two main approaches
have been used to construct overlap graphs in sequence assembly tools. The
first method uses an overlap-layout-consensus approach where the vertices
are full length sequences (reads) and edges represent overlaps between them.
Due to the requirement for an all-against-all pairwise similarity check between
input reads, this method was mainly used by assemblers developed for longer
sequences such as Atlas (Havlak et al., 2004), ARACHNE (Batzoglou et al.,,
2002) and Celera (Myers et al., 2000). The Edena (Hernandez, 2008) short read
assembler also used overlap-layout-consensus methods together with a graph-
cleaning step that removes erroneous nodes before the assembly. Removing of
nodes that are believed to be spurious is also known as pruning the assembly
graph. SGA (String Graph Assembler) was the most recent short read assem-
bler to use an overlap graph (Simpson and Durbin, 2012) with efficient data
compression in order to handel large genomes. The second approach considers
sub-fragments of length k (k-mers) instead of the full length of reads to construct

the assembly graph. In most short read assembly tools, reads are first broken
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into overlapping k-mers that are then represented by edges on a de Bruijn graph
(Figure 1.6.d).

Implementations of the Eulerian path approach include EulerSR (Chaisson
MyJ, 2008), Velvet (Zerbino and Birney, 2008), ABySS (Simpson, 2009) and SOAP-
denovo (Li et al., 2009b; Ruiqgiang Li, 2010). A k-mer-based approach is generally
preferred over full-length overlap graphs for high throughput sequence data
due to its potential in dealing with large sequence data. Such efficiency in
storage and processing is achieved by representing identical fragments (eg.
repeats) in a single node (i.e. overlapping k-mers) on the assembly graph. Al-
though the number of nodes is effectively minimised, the significant number
of connections between shared k-mers adds complexity to the assembly graph.
Memory requirements and quality of the final assembly vary with choice of
k-mer size. While larger k-mer values require less run time memory (Random
Access Memory, RAM) and could generate high quality assembly, a higher read
coverage is also required.

Repeats pose a significant challenge in assembling of short reads. De Bruijn
graph representations of sequences collapse repeat units into a single node that
has multiple incoming and outgoing connections with other nodes (Treangen
and Salzberg, 2011). Such sequences are the primary cause of ambiguities in
searching for the single shortest path that connects all nodes and result in a
highly fragmented assembly. Kingsford et al. (2010) show the limitations of
short reads in reconstructing genomes using graphs constructed from complete
bacterial chromosomes. Although the data are far from ideal in terms of rep-
resenting real sequencing output, it provides an insight into the theoretically
achievable (upper limit) quality of assemblies. Genomes of eukaryotes have
higher degrees of complexity due to their size, repeats and presence of gene
families that have identical stretches of sequences (Pop, 2009; Pop and Salzberg,
2008).

In order to overcome repetitive regions, assemblers need to make use of
paired-end read information where a sequencing template is sequenced from
both ends resulting in two reads in opposite orientation and separated by a
known fragment size. In addition to the increase in sequence data, paired-end
(PE) sequencing provides a way of jumping over difficult regions. Such evi-



1.4 Next generation sequencing technologies and short read assembly 25

a ' b > - '
R . - [
L O - 3 3 o
] 'l & *,I.._;nr.;:j ‘x‘ff i L= - Liiat
k._,-/ AOTUCRINT [ = FE i
i o Y SOQuUCRLng H

Ganamg: ATGROGTGCA

Viertces are K-mers Tre., Vertices are (k=1)mers

Edges ané pairdse abgnments . gLt = Edges mie K-ris

AAT ATE
(¢ =10 H'“'H-.
ik TG
: / Voo
A Fa
CGT ."' Ili
TG s aa CA | GO
H ke-rrs Pl edges .
TGL T T
i '.'.I
o) ?
i ¢
AN
- GT G
GLGT
Hamiltonian cycle Eulorian cycle
Visi] sach veriex oncs Wil each o000 once
(harder to sobre) (easier to sohve)

Figure 1.6: Example of graph-based assembly approaches (a) An example of a
small circular genome. (b) Most assemblers developed to assemble reads from
traditional Sanger sequencing platforms represent reads as nodes in a graph,
and edges represented alignments between reads. Walking along a Hamiltonian
cycle by following the edges in numerical order allows for a reconstruction of
the circular genome by combining alighments between successive reads. At the
end of the cycle, the sequence wraps around to the start of the genome. The
repeated part of the sequence is grayed out in the alignment diagram. (c) An
alternative assembly technique first splits reads into all possible k-mers: with k
=3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamil-
tonian cycle (indicated by red edges) allows one to reconstruct the genome by
forming an alignment in which each successive k-mer (from successive nodes) is
shifted by one position. This procedure recovers the genome but does not scale
well to large graphs. (d) Modern short-read assembly algorithms construct a de
Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then
drawing edges that represent k-mers having a particular prefix and suffix. For
example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian
cycle allows one to reconstruct the genome by forming an alignment in which
each successive k-mer (from successive edges) is shifted by one position. This
generates the same cyclic genome sequence without performing the computa-
tionally expensive task of finding a Hamiltonian cycle. (Taken from Compeau
et al. (2011))
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dence is valuable in resolving ambiguous overlaps due to repetitive regions
in subtelomeres and multi-gene families such as var genes. Short read assem-
blers that did not support paired reads such as SSAKE (Warren et al., 2006),
VCAKE (Jeck, 2007), SHARCGS (Dohm et al., 2007) and Edena (Hernandez,
2008) had limited applications in assembling var genes. On the other hand,
assemblers including Velvet (Zerbino and Birney, 2008), EulerSR (Chaisson M]J,
2008), AllPaths (Butler, 2008), ABySS (Simpson, 2009) and SOAPdenovo (Li
et al., 2009b; Ruigiang Li, 2010) supported paired reads and hence were better
equipped to deal with multi-gene families (Imelfort and Edwards, 2009). It is
however important to mention that none of the current assembly tools use PE
reads from the initial stages of constructing the overlap graph. The first tool
to take advantage of read pairs from the beginning was published nearly four
years after the introduction of PE sequencing protocols (Pop, 2009). Despite the
importance of such approaches, one reason for the slow pace of development is
the difficulty of defining a pair of k-mers (from the forward and reverse reads)
when the exact distance between them is unknown.

In addition to inherent features of genomes such as G+C content and repeats,
random and systematic sequencing errors contribute to challenges in assembly
of short reads. Second generation sequencing technologies are prone to differ-
ent types of systematic errors. For instance, the 454 platform has issues with
homopolymer tracks (Prabakaran et al., 2011) while Illumina’s sequencing plat-
forms are reported to have mismatch errors (Abnizova et al., 2012) and errors
found downstream of homopolymeric tracts (Otto et al., 2010a). Identifying
sequencing errors and accounting for their bias is an active area of research in
such topics as indexing, aligning of short reads (Frith et al., 2010; Giladi et al.,
2010), and de novo assembly (Zhao et al., 2010).

Sequencing errors lead to changes in graph topology causing erroneous
structures such as tips, bubbles and chimeric connections (Zerbino and Birney,
2008). Errors at read-ends result in a chain of nodes where one of the ends has
no connections leading to the formation of tips. Bubbles on the other hand,
may result from overlaps between neighbouring tips or due to errors in the
middle of reads. In the velvet assembler, tips and bubbles are first detected and

removed in the assembly process. Chimeric connections are more complicated
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as they are not easy to detect from the topology of the graph and may be caused
by genuine biological events such as polymorphism.

The problem of scaffolding

The assembly process rarely produces a single complete sequence (for each
chromosome) from short read fragments. Instead, the target sequence is repre-
sented in a set of contiguous fragments also known as contigs. During or after
the assembly process, additional information from read-pairs (usually refers
to standard fragment libraries) and mate-pairs (some providers use this term
referring to long insert libraries ) is used to assign contigs to scaffolds. Scaf-
folding involves determining the relative order of contigs and estimating gap
sizes between them based on availability of mate-pairs that connect separate
contigs. As in the case of assembly, the complexity of scaffolding is increased
due to contig-ends that could be joined with multiple other contigs resulting in
an NP-hard problem (Huson et al., 2002). A simplified approach is often used
which involved the implementation of greedy heuristic algorithms to resolve
ambiguities (Huson et al., 2002; Kim et al., 2008; Pop, 2003). However, such
simplifications lead to mis-scaffolding in gene families due to the presence
of highly identical segments. Although most short read assemblers include
built-in scaffolding options, there is a growing number of stand alone scaffold-
ing tools such as Bambus (Pop, 2003) and SSPACE (Boetzer et al., 2011) that
focus on post assembly genome improvements steps. These tools may have a
better performance than built-in scaffolders of short read assemblers due to the

availability of options that could be tuned by the user.

1.5 Overview of thesis

The Illumina platform is being used to sequence thousands of parasite genomes
at the Sanger Institute. However, the high A+T content and the frequent pres-
ence of multiple genotypes within an infection make it extremely challenging to
reliably map or de novo assemble short reads in subtelomeric regions where most

of the var genes are located. This thesis is therefore focused on the development
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of algorithms to assemble var genes from second generation sequencing reads
of clinical samples.

Chapter 2 describes tests performed to evaluate how well existing assembly
tools reconstruct var genes from short reads of the Illumina platform. A new
iterative assembly approach developed to assemble var genes is presented
in Chapter 3. Chapter 4 describes application of short read sequencing to
understand mechanisms used by parasites to generate new var genes. Finally,
Chapter 5 presents applications of the new assembly approach (developed in
Chapter 3) to a global collection of clinical samples. Concluding remarks and
future directions are detailed in Chapter 6.



Chapter 2

Evaluating existing short read

assembly methods

2.1 Introduction

Advances in next generation sequencing technologies have significantly im-
proved read length, yield and quality of whole genome shotgun sequencing
data. There has also been a considerable development of algorithms and soft-
ware to deal with the problem of piecing together sequence fragments into a
longer contiguous sequence. However, assembly attempts of whole genome
P. falciparum sequence data are faced with unique challenges due to the high
A+T content (~80% in coding and ~90% in non-coding regions) (Gardner et al.,
2002). De novo assembly of P. falciparum genomes in general and subtelomeric
gene families in particular is thus extremely challenging due to the base compo-
sition bias and presence of repeat sequences. Var genes are highly polymorphic
and composed of mosaic blocks that have regions of high similarity. The qual-
ity of the raw sequence data is often affected by systematic errors from the
sequencing instruments. Systematic errors and inherent sequence features are
thus expected to have a significant impact on the assembly of var genes.

The aim of this part of the thesis (year 1) was to see if it was possible to
assemble var genes using existing short read assembly tools. In this chapter,
I will evaluate the feasibility of existing approaches to assemble var genes
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followed by investigation of potential reasons for poor quality assembly in var

genes.

2.2 Methods

2.2.1 Library preparation and sequencing

Library preparation and sequencing of samples used in this thesis were done by
the Research and Development and Sequencing Production teams at the Sanger
Institute. The protocols used for library preparation and sequencing are briefly

summarised below.

Library preparation

Standard genomic DNA library preparation

DNA samples were initially quantified on the Invitrogen Qubit and then frag-
mented using the Covaris Adaptive Focused Acoustics technology (fragment
sizes of 200-300 bp and 300-400 bp). End-repairing of fragments and creation
of blunt-ends were done using T4 and Klenow DNA polymerases, and T4
polynucleotide kinase respectively. This was followed by A-tailing, addition
of a single 3" A nucleotide to the repaired ends using Klenow exo- and dATP.
Standard adapters were then ligated according to the manufacturers guidelines.
Size selection of ligated fragments was done using Agencourt AMPure XP
beads. The libraries were then enriched by 8 cycles of PCR and quantified using
Agilent Bioanalyser chip and Kapa Illumina SYBR Fast qPCR kit.

PCR-free Genomic DNA library (NoPCR) preparation

The PCR-free library preparation protocol (Kozarewa et al., 2009) was devel-
oped to minimize the effect of amplification artifacts especially in genomes
with G+C bias such as P. falciparum. However, it also requires more input
DNA. This method uses similar protocols of DNA qualification, shearing, end-
repairing and A-tailing. However, instead of the standard adapters, NoPCR
adapters were ligated (containing primer sites for sequencing and flowcell

surface annealing) according to the Amplification-free Illumina sequencing
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protocol (Kozarewa et al., 2009). Subsequent steps of size selection and DNA
extraction are similar to the standard library preparation protocol above. Both
standard and PCR-free libraries were used in this chapter (Table 2.1). Clinical
samples used in Chapters 3 and 5 were all prepared using the PCR-free protocol.

Cluster generation and Sequencing

Initially, in order to allow hybridization of template strands to adaptors that are
attached on the flowcell, libraries were denatured with sodium hydroxide and
diluted in a hybridisation buffer. Cluster amplification was performed on the
[llumina cluster station (changed to Illumina cBOT after April 2010) using the
V4 cluster generation kit following the manufacturer’s protocol. Cluster density
was measured using SYBRGreen to determine whether a flowcell had enough
DNA for sequencing. This was followed by consecutive linearization, blocking
and hybridisation of R1 and R2 sequencing primers for (i.e. for the forward
and reverse reads). Sequencing-by-synthesis was then performed for 75 to 150
cycles depending on the sequencing instrument. These steps were performed
using proprietary reagents according to manufacturer’s recommended protocol

(https://icom.illumina.com/)

Samples used in this chapter

Laboratory adapted and cultured clinical isolates of P. falciparum were used with
the aim of evaluating and optimising existing short read assembly methods in
polymorphic gene families, specifically the var gene family. Due to the availabil-
ity of a complete and nearly base-perfect reference genome, re-sequencing of
the 3D7 isolate provides an ideal benchmarking standard for new sequencing
technologies and protocols. DNA for the 3D7 isolate was obtained from Prof.
Chris Newbold’s lab in Oxford.

2.2.2 Choice of short read assemblers

Velvet (Zerbino and Birney, 2008) was one of the first short read assemblers to
popularise de Bruijn graphs. It is easy to install and run with a growing com-

munity of users. The major limitation is the large amount of Random Access
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Libraries  Insert Library type Read Machine Cow. (X)
size(bp) length(bp)
3D7 5.i200 200 Standard 76 GAII 58
NP_i200.1 200 NoPCR 76 GAII 163
NP_i200.2 200 NoPCR 76 GAIl 184
HS.i500.2 500 NoPCR 75 HiSeq2000 607
NP_i500 500 NoPCR 76 GAII 338
HS.i500.1 500 NoPCR 75 HiSeq2000 724
MS_i3k.1 3000 Large insert 75 MiSeq 34
MS_i3k.2 3000 Large insert 150 MiSeq 20
MS_i3k.3 3000 Large insert 150 MiSeq 70
MS_i3k.4 3000 Large insert 150 MiSeq 64
Field samples F1 200 Standard 76 GAIl
F2 200 Standard 76 GAIl
F3 200 Standard 76 GAII
F4 200 Standard 76 GAII
F5 200 Standard 76 GAIl
P. reichenowi Pr 200 Standard 76 GAIl

Table 2.1: Samples used to evaluate existing assembly approaches and deter-
mine error rates of the Illumina sequencing technology in P. falciparum. Libraries
were named according to the library preparation protocol (S for standard, NP
for NoPCR/PCR-free; HS for HiSeq and MS for MiSeq) and the insert sizes of
the libraries (eg. 1200 for 200 bp library)

Memory (RAM) required for large genome assemblies. However, assembly of
var genes and the P. falciparum genome are within the limits of Velvet’s memory
requirement. Velvet was therefore a good starting point for the purpose of com-
parisons. Abyss and SOAPdenovo were especially designed to address Velvet’s
limitation with large genomes. Li and colleagues (Li et al., 2010; Ruigiang Li,
2010) reported better assembly results for SOAPdenovo compared to Abyss
using both small (Ecoli) and large (African human) genomes. Velvet (version
1.1.04) and SOAPdenovo (version 1.05) were therefore chosen to represent exist-
ing short read assemblers with the intention of identifying a program that could

generate high quality assembly for polymorphic gene families in P. falciparum.
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2.2.3 Assembly benchmarking using error free in silico reads

Error free reads were generated using a Python script written by Martin Hunt
in our laboratory (simulate_pe_reads.py). Reads were simulated assuming a
Gaussian distribution of fragment sizes given a mean fragment size, standard
deviation of the distribution and the average read coverage. This script is used
to generate in silico reads in this thesis unless stated otherwise.

To compare the performance of Velvet and SOAPdenovo, paired reads of
length 76 bp (coverage=80x; mean fragment size=200 bp, standard deviation=30)
were simulated from a total of 93 var genes of the 3D7 genome (including pseu-
dogenes and truncated exon 2 sequences). The two assemblers were compared
on the number and quality of contigs they produced. To obtain the best result
for each assembler prior to comparison, the two assemblers were first optimised
by running each tool at k-mer sizes of 51, 55, 61, 65 and 71. Ideally, the best as-
sembler will generate the least number of contigs, with high N50 values, a total
number of bases as close to the expected length of the target sequence (i.e. ~450
kb for var genes in the 3D7 genome), and the fewest errors. Assembly quality
was assessed based on the coverage of contigs and the repertoire completeness

of var genes as described below.

2.2.3.1 Accuracy and coverage of contigs

ABACAS (Algorithm Based Automatic Contiguation of Assembled Contigs)
was used to assess the quality of assembled contigs (Assefa et al., 2009). If a
good quality reference sequence is available, comparing assembled contigs to
the reference provides the best measure of completeness and accuracy. A similar
approach is used during the process of finishing genomes whereby contigs are
aligned to a reference sequence of a close or distant relative with the aim of
establishing a relative order of contigs using regions of conserved synteny.
However, there was no readily available software to automate the process. I
originally developed ABACAS to address this issue by rapidly aligning contigs
to a reference genome in order to determine the order and orientation of contigs
relative to a reference genome. A multi-FASTA file of contigs was first aligned

as nucleotide (option -p nucmer) or six-frame translated amino acid sequence
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(option -p promer). Based on the alignment output, contigs are then ordered
and orientated to generate the new reference, termed the pseudo-molecule.
Output files include an ordered FASTA file, a feature file and comparison files
for visualisation in the Artemis comparison tool (ACT) (Carver et al., 2005).
The comparison file displays an ordered list of contigs that were aligned to the
reference genome. The proportion of each contig aligned to the reference (i.e.
percent coverage) is reported alongside the percent identity of the match.
Additional use-cases of ABACAS such as checking the quality of assembled
contigs became apparent during the course of this project. Misassemblies were
therefore identified by looking for unordered contigs of length above 1 kb
and ordered contigs with a coverage and percent identity values lower than
95%. Despite the reliability of this approach, its application in the absence
of a reference sequence is very limited. It was thus necessary to develop an
alternative method to determine the completeness of var gene repertoires in a

wide range of assembly projects including de novo assembly of clinical samples.

2.2.3.2 Estimating var gene repertoire completeness

As described in Chapter 1, the DBLa domain is present in nearly all var genes
of the 3D7 genome and other sequenced isolates (Kraemer et al., 2007; Rask
et al., 2010). The number of contigs that have a complete DBLx domain were
counted using a customised Perl-script (getDBL.pl). The script was initially
written for DBL«a sequence tags by Dr. Pete Bull of Kemri-Wellcome Research
Unit, Kilifi Kenya and improved to look for DBLa start and end motifs in all
the six frames instead of one frame each from the forward and reverse strands.
Outputs of the script include amino acid sequence file of DBL« tags and a
FASTA-format file of contigs that contain DBLx. Counting such contigs will
therefore rsult in the closest approximation of repertoire completeness that is
robust in clinical samples. Although the var2CSA genes (gene that encodes a
PfEMP1 variant responsible for pregnancy associated malaria) do not contain
the DBLx domain, they are highly conserved and could easily be identified
using their 3D7 homologues.
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2.2.4 Evaluating the velvet assembler on real and simulated

reads

In order to evaluate Velvet on real data, a PCR-free library of 3D7 (Table 2.1,
libraries NP_i200.1 and NP_i200.2) was sequenced on Illimina’s GAII platform.
One aim of this analysis was to investigate the quality of assembled contigs
while decreasing the dataset from the whole-genome to a chromosome and
finally to reads that belong to var genes.

2.24.1 Whole genome assembly

First, to find optimal results, a whole genome de novo assembly was done by
varying the k-mer size and coverage cutoff values. A k-mer of 61 and coverage
cutoff dynamically determined by Velvet (i.e. coverage_cutoff=auto) resulted in
the best assembly results as determined by the highest N50 and least number
of contigs. Other parameters were kept to the default settings. In order to
investigate the effect of poor quality reads on assembly, a filtered set of reads
was generated by aligning raw reads to the 3D7 reference genome (version 2.1.4)
using Bowtie (Langmead et al., 2009) (using the -v alignment mood, -v 2) allowing
a maximum of two mismatches. Bowtie is a memory efficient and fast short
read alignment tool that uses the Burrows-Wheeler Transformation (BWT) to
index the reference genome. The version of Bowtie used in this thesis (version
1) did not support gapped alignment, which contributed to its increased speed
compared with other BWT based aligners such as BWA (Li and Durbin, 2009).

Filtered reads were then assembled using a similar set of parameters as the
raw reads (velveth -k=61; velvetg -cov_cutoff auto).

2.24.2 Chromosome 1 assembly

To further investigate the effect of errors and reducing the dataset to a single
chromosome, sequences that aligned to chromosome 1 were obtained from the
filtered set of reads generated in the previous section (library NP_i200.1). These
reads were assembled using velvet (velveth -k 61; velvetg -cov_cutoff auto). In

addition, error free synthetic reads were evenly generated with a similar number
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of reads and mean fragment size as the real data (mean=166 bp, standard
deviation=35). A second set of synthetic reads was generated by mimicking the
coverage of real data over chromosome 1 followed by a random introduction of
mismatch errors. Both sets of simulated reads were assembled using similar
parameters as the real data (velveth -k=61; velvetg -cov_cutoff auto).

2.2.4.3 Assembly of var genes

In order to evaluate the performance of Velvet on var genes from the real data,
reads that aligned to var genes of the 3D7 genome were obtained from a PCR-
free library (Table 2.1, Library NP_i200.1) and assembled (Velvet, k-mers 25 - 65,
cov-cutoff=auto). Potential reasons for a poor quality assembly of var genes were
investigated in two steps.

First, raw reads were aligned to a concatemer of 3D7 var genes with the
aim of assessing the effect of sequencing errors and uneven coverage. The
alignment output was stored in the Binary Alignment/Map (BAM) (Li et al.,
2009a) format and visualised in ACT using the BamView utility (Carver et al.,
2010). A graphical representation of read coverage and SNPs (errors) was used
to look at their correlations with assembly quality.

Second, to look at the effect of repeats in assembly, shared sequences within
var genes of the 3D7 genome were identified using a pairwise blast search
(all-against-all blast; blastn, -F F, -e=1x103). Regions of genes that have a perfect
match with a length above the fragment size of the library (200 bp) were iden-
tified as repeat regions. Reads that aligned to such regions were excluded to
generate a second set of var reads. Assembly of the two sets were compared
by looking at the underlying de Bruijn graphs which were visualised using a

python script contributed to the Velvet package by Paul Harrison (graph2.py) .

2.2.5 Evaluating mapping based assembly approaches

To assess the feasibility of a reference guided assembly approach, short reads
from the 3D7 clone, three field samples and Plasmodium reichenowi (Pr) (Table 2.1)
were aligned to the 3D7 reference genome (BWA; version 0.5.5, default parameters).

Reads that aligned to var genes in proper pairs (i.e. read pairs aligned in the
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correct orientation and within the expected insert size) were counted for each
gene. The number of mapped reads per thousand bases (kb) was used as
a measure of mappability over var genes and computed by normalizing the

number of properly aligned paired reads over a gene by the length of the gene.

2.2.6 Sequencing errors

A total of 10 genomic DNA libraries were used for error profiling of Illumina’s
GAZ2, HiSeq and MiSeq instruments (Table 2.1). In order to assess the improve-
ments and changes in error rates, libraries from early Illumina (GAII) runs and
the latest MiSeq runs were used. Raw reads from the reference genome were
aligned to the most recent version of the genome (version 3) using Bowtiel
allowing a maximum of three mismatches. The output file was processed us-
ing a purposely written Perl-script to identify mismatch/error positions and
tind error rates at low (Q5), medium (Q15) and high (Q25) quality thresholds.
Quality values represent a confidence score assigned by Illumina’s base calling
algorithm (Bustard) which assigns quality scores (Q) based on an expected error
probability P such that :

Qsolexa prior to v.1.3 = —10log1o(P/(1 = P)) (2.1)

or

Qllumina v.1.3+ = —10/0g10(P). (2.2)

It is not unusual to observe incorrect base calls or unknown bases (Ns) with
high quality score. It was therefore important to look at sequencing errors
at low and high quality cutoff values. First, the overall error rate (E) for the
forward and reverse reads were computed over the full length of each read R at

a quality cutoff Q as follows:

ER = (mismatched bases above Q )/ (mapped bases above Q) (2.3)

Similarly, error rates were computed for each position P on the population

of forward and reverse reads at a quality cutoff Q as follows:
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ERP = (mismatched bases above Q at P)/ (mapped bases above Q at P)  (2.4)

Finally, substitution profiles were obtained for the 12 mismatch types (A-C,
A-G, A-T, C-A, CG, C-T, G-A, G-C, G-T, T-A, T-C and T-G) by computing the
average number of mismatches that exhibited a given patterns across all cycles.

2.3 Results

The standard approach to any assembly problem would be to use de novo or
reference guided assembly on all fragments (reads). This chapter presents tests
performed to evaluate the feasibility of reconstructing var genes from short reads
using existing assembly tools. A comparison of two representative assemblers,
Velvet and SOAPdenovo, is presented using synthetic reads simulated from
var genes followed by further evaluations on real and simulated data. An
investigation into the potential reasons of low quality assembly is also presented

with a focus on errors specific to P. falciparum sequences.

2.3.1 Comparing de novo assembly tools

A total of 507,812 read-pairs were simulated from var genes of the 3D7 reference
isolate to compare SOAPdenovo and Velvet. To account for the variability in
assembly quality with changes in k-mer size, both assemblers were first run with
k-mer sizes of 51, 61, 65 and 71. Optimal assembly values were obtained at a k-
mer size of 65 for both assemblers (Figure 2.1). Assembly results from k-mer sizes
of smaller and larger than 65 were highly fragmented. In addition to generating
the highest number of contigs, a k-mer of 71 resulted in the shortest size for the
Largest-contig (Table 2.2). The highest contig N50 size (5,713 bp) was obtained
from the Velvet assembly with 252 contigs compared to SOAPdenovo’s N50 of
2,346 bp and 1,398 contigs.

The number of contigs aligned to the reference set of 93 var genes (by
ABACAS) was higher in Velvet (72% vs SOAPdenovo’s 45%) (Table 2.3). No
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Figure 2.1: Comparing SOAPdenovo and Velvet on synthetic reads simulated
from var genes of the 3D7 genome. Optimal assembly results were obtained at
a k-mer size of 65 with Velvet generating a better assembly with the highest N50
and least number of contigs.
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SOAPdenovo Velvet

k | Sum N50 Num.contigs Largest | Sum N50 Num.contigs Largest

(kb)  (bp) (bp) (kb)  (bp) (bp)
51 | 514 1648 2027 9517 21 5543 324 10418
55 | 514 1831 1841 9525 425 5567 291 10422
61 | 512 1963 1560 10489 | 430 5586 258 10489
65 | 509 2346 1398 10493 | 433 5713 252 10493
71 | 464 471 1422 3842 420 612 804 4521

Table 2.2: Assembly statistics of Velvet and SOAPdenovo at different k-mer
sizes. Optimal assembly results were found at k-mer size of 65.

Sum (kb) N50 (bp) #contigs with DBL«
SOAPdenovo 192 5277 47
Velvet 293 6738 50

Table 2.3: Assembly statistics of contigs with the DBLa domain. Velvet gener-
ated the highest number of contigs with the DBLa domain suggesting a better
assembly with better representation of the var repertoire.

misassembled contigs were detected in both assemblies. A total of 50 contigs
contained a complete DBLa domain in the Velvet assembly. The sum of these
contigs accounted for ~68% of the expected sum of var sequences with DBL« in
the 3D7 genome as determined by our method (~428 kb, 54 genes). Conversely,
SOAPdenovo assembled 47 contigs with the DBLa domain that only contained
45% of the expected total sequence (192 kb compared to Velvet’s 293 kb).
Velvet was therefore chosen as a better tool to further optimise assembly
of var genes in P. falciparum. The main objective of these experiments was to
establish a robust method that could be used in the context of clinical samples.
However, the initial comparisons were done using simulated data and real reads
from the reference genome as separating out the complete var-specific reads
would not be possible for a real clinical sample due to high polymorphism.
Having established Velvet as a better choice, the following sections present
further tests on real and simulated data from the 3D7 genome. Assembly results
were examined in a decreasing order of complexity from the whole genome to

a single chromosome and finally the var gene family.
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2.3.2 Velvet assembly of whole genome data

A whole genome de novo assembly of 26.6 million reads (paired 76 bp, two lanes)
from a PCR-free library (Table 2.1, NP_i200.1 and NP_i200.2) of the reference
clone 3D7 was extremely fragmented (Table 2.4). Assembly results from the
two lanes were comparable in the number and size distribution of the contigs
generated. The number of contigs was ~20,000 with an average N50 size of
1,370 bp. The total number of assembled bases (i.e. sum of contigs) was however
closer to the expected genome size of ~23 Mb (~18 Mb to 19 Mb).

A filtered set of reads was obtained by excluding reads that aligned to the
reference genome with more than two mismatches. Reads that passed the
mapping-based filtering accounted for 73% of the total and covered 97% of the
genome with at least one read (94% covered with at least 5 reads). The assembly
of filtered reads was slightly better after removing 27% of the reads that were
either contaminants or had a lower quality (Table 2.4). However, the results
show that whole genome de novo assembly of short reads is still impractical for

P. falciparum.
NP_i200.1 NP_i200.2
All reads Filtered reads Allreads Filtered reads
Total bases (Mb) 18.87 18.25 19.59 19.2
Num. contigs 19676 18276 19899 18508
N50 (bp) 1361 1442 1387 1491
Average (bp) 958.9 998.8 984.7 1037.6
Largest (bp) 20771 16989 19471 23005
Unused reads (%) 31.22 18.1 41.3 16.87

Table 2.4: Whole genome Velvet assembly of real data from two PCR-free li-
braries of 3D7. The second data set of "filtered reads” was obtained by removing
reads that aligned to the genome with more than two mismatches. Assembly
results were highly fragmented for both libraries.

2.3.3 Velvet assembly on Chromosome 1 of 3D7

Reads that aligned to chromosome 1 of the reference genome were obtained

from the ’filtered set” described in the previous section. A mapping coverage
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of 94% was observed on comosome 1. The average fragment size (166 bp) was
shorter than the expected standard library fragment size of 200 bp. Assembly
of these reads was highly fragmented (N50=1 kb, sum of contigs=402 kb)
compared to assembly of error free simulated data with a similar number of
reads and insert size distribution (N50=15 kb, sum of contigs=614 kb). However,
introducing errors and uneven coverage to simulated reads had a significant
effect on assembly quality dropping the N50 contig size to 1.3 kb (Table 2.5).
These results suggest that sequencing errors and uneven coverage may explain
the low quality assemblies.

Real reads Simulated with error Error free simulation

N50 1076 1255 15278
Average 849 1019 3593

Larges 4979 5457 40793
Total bases 401616 637948 614369

Table 2.5: Assembly results of simulated and real reads on chromosome 1
of 3D7. Real reads and uneven-simulated reads with errors (column 3) had
comparable results. Reads simulated without errors and with even-coverage
(column 4) resulted in better assembly.

2.3.4 Velvet assembly on var genes

Initially, 1.9 million read-pairs where one or both of the reads aligned to var
genes were assembled generating the best assembly at a k-mer size of 65 with
N50 contig size of ~1.7 kb (sum of contigs=457 kb, Number of contigs=603,
Largest contig=9.85 kb). The number of contigs that contained the DBLx domain
was 40 (~74% of the expected) generating a total of 165 kb bases (~37% of the
expected ~450 kb) lower than reported for simulated reads (Num. contigs with
DBL&=50, sum of contigs=293 kb). A closer look at errors and read coverage
shows that regions with highest errors correspond with contig breakpoints
(Figure 2.2). In addition, low and uneven coverage also affected assembly
quality. Next, the effect of repeated sequences on var assembly was investigated.
Although the most commonly shared sequences were smaller than 100 bp,
stretches of above 1 kb were also identified from the pairwise blast search of

3D7 var genes (Figure 2.3). A visual inspection of the underlying de Bruijn graph
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revealed extremely dense nodes which represented highly similar sequences
within members of the family (Figure 2.4A). The effect of repetitive sequences
on the var assembly graph was examined by removing reads that aligned to
genes that contained shared sequences above the fragment size of 200 bp. The

graph was significantly simplified although still far from ideal (Figure 2.4B).

However, such simplifications are likely to affect quality by generating gaps in
the final assembly.
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Figure 2.2: The effect of sequencing errors and uneven coverage on assembly
of var genes. A comparative view of assembled contigs with var genes of
the reference genome is shown. The top panel shows mismatch (error) count
plot (red) and read mapping coverage plots (black). The bottom panel shows
assembled contigs (bottom) that were ordered and orientated against a 3D7 var
gene (top). The red and yellow blocks represent synteny matches. The color
of contigs indicates whether they align in the forward (green) or reverse (blue)
strands and if there is an overlap between neighboring contigs (cyan). Black
bars represent stop codons.
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Figure 2.3: A histogram of shared sequences in 3D7 var genes identified by a
pairwise blast alignment. Perfectly matching sequence blocks of length up to 4
kb were found between var genes of the 3D7 genome.
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Figure 2.4: Visualizing the assembly graph of all var genes from a velvet assem-
bly (real reads, k=61). In these plots, node sequences were represented as lines
and curves that are joined with other nodes at their tips. The dense regions
(nodes) on the graph represent repetitive sequences that have multiple connec-
tions with other nodes A) The assembly graph of real reads that align to var
genes of the the 3D7 genome. B) A simplified assembly graph after removing
reads that align to shared sequences between var genes with a match length of
above 200 bp (as shown in Figure 2.3).
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2.3.5 Reference guided assembly

In addition to de novo assembly, a possibility of using mapping based assembly
approaches was investigated. The challenge to genome assembly posed by the
inherent features of the genome (particularly the high A+T bias) is illustrated
using a k-mer-based uniqueness plot computed by counting the frequency
of sequences of length 30 bp. The uniqueness plot indicates how well short
reads could be uniquely mapped to genomic regions. The correlation between
sequence complexity, read coverage and G+C content is shown for chromosome
1 (Figure 2.5) and the left subtelomeric region of chromosome 8 (Figure 2.6). The
increase in G+C indicates higher information content and therefore mappabiliy.
Although both alignment and assembly benefit from paired-end information,
current assemblers construct graphs using k-mers from all reads independently.
Read pair information is used at later stages of the assembly to simplify the
graph and resolve repeats. A k-mer-based uniqueness plot therefore shows
regions of the genome where the assembly would terminate contigs due to
ambiguity. The subtelomeres of P. falciparum contain repeat blocks which have
a lower uniqueness compared to core regions of the genome. The overall
spikiness of uniqueness and G+C content affects mapping coverage across the
genome more specifically in subtelomeric regions (Figures 2.5 and 2.6).
Despite the problem of uniqueness in the sub-telomeric regions, at first sight
it appears that the relatively high G+C content and uniqueness of the var genes
should aid their assembly by mapping. However the extreme polymorphism
of these genes presents a much greater additional problem when sequence
reads from different genotypes are used. Figure 2.7 demonstrates this point by
comparing the homologous mapping coverage of the reference genotype 3D7
to the coverage of the reference from three field isolates of P. falciparum and to

its closest known relative, the chimpanzee parasite P. reichenowi.
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Figure 2.5: A plot of G+C content and uniqueness (based on a k-mer size of 30 bp) on Chromosome 1 of the 3D7
genome. An Artemis view of G+C content (top panel) and a uniqueness plot (middle panel). The bottom panel
shows annotation information with the different blocks representing protein coding genes, pseudogenes and
repeats in all the six reading frames.
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Figure 2.6: Read mapping coverage plots over var genes on the left subtelomere of Chromosome 8. Illumina reads
from 3D7, three field samples and P. reichenowi were aligned to the 3D7 genome.This figure shows the difficulty of
reliably aligning reads obtained from clinical samples to var genes (shown in red over the forward and reverse
strands) of the reference genome 3D?7.
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Figure 2.7: Number of reads mapped per kb over var genes of the 3D7 genome. Reads from 3D7, three field
samaples and P. reichenowi (P.r) were uniquely aligned to version 2.1.4 of the reference genome 3D7. A count of
reads mapped per kb is shown for the five genomes. The effect of repetitive sequences (shared matches between
var genes) is shown by the lack of coverage over some var genes. Read mapping was very poor for field samples
due to high polymorphism in var genes.
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2.3.6 Understanding sequencing errors in P. falciparum

Following observations that suggest a role for sequencing errors in assembly
quality, one aim of this section was to look at the extent and distribution of
substitution errors in P. falciparum sequencing.

2.3.6.1 Overall sequencing errors

Initially, sequencing errors were independently computed for the forward and
reverse reads at low (Q5), medium (Q15) and high (Q25) quality bins. Error
rates were variable between runs and lanes (Figure 2.8). Low quality bins
had higher error rates in all libraries. The variation in errors on the forward
and reverse reads was not consistent between instruments. For examples, the
Genome Analyser showed higher error rates on the second read at low (Q5)
quality bins with the exception of NP_i500. On the other hand, error rates were
comparable between the forward and reverse reads in HiSeq and MiSeq at all
quality bins.

Libraries from the HiSeq 2000 instrument had the lowest error rates (~0.7%)
compared to the Genome Analyser and MiSeq. The four MiSeq libraries
(MS_i3K.1-4) had the highest error rates (~1 to 1.3%) in both the forward and
reverse reads across all quality bins. However, these were part of a research
and development experiment on long insert protocols and had a lower yield
(Table 2.1). They were therefore excluded from further comparisons, as they
may not reflect the quality of standard production libraries. The remaining six

libraries were used for the analyses described in the following sections.

2.3.6.2 Per-cycle error rates

In order to identify positions that are particularly prone to errors in P. falciparum,
error rates were computed for each position on both the forward and reverse
reads (Figures 2.9 and 2.10).
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Figure 2.8: Overall error rates at low (Q5), medium (Q15) and high (Q25)
quality bins for forward (eg. Q5 1) and reverse (eg/ Q5 2) reads. Error rates
were computed for 10 libraries sequenced on GAII, HiSeq and MiSeq platforms
representing standard and PCR-free library preparation protocols.
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The highest proportion of errors was found on the final five to seven posi-
tions. Surprisingly, a similar trend of increased errors were also observed at
the beginning of reads in all libraries affecting both low (Q5) and high (Q25)
quality bins. In five of the six libraries, errors in the first five bases accounted
for ~1 to ~17% of the total while the last seven bases contributed a higher
24 to 43% of the total. The second read of the HiSeq library HS_i500.2 had an
exceptionally high error rate in the first three bases causing ~92% of all errors.
Although error rate in the rest of the positions was very low, high error rates
concentrated around a few bases will still affect the overall quality of the read.
The occasional spikes in error rates such as those found on base 33 of the first
read in library NP_i500.1 were potential indicators of random errors due to a
number of reasons including tile-specific problems and issues associated with
imaging. Despite the decrease in values as quality increases, the trends of error
rates per cycle were consistent at low and high quality bins.

In addition to quantifying the extent of errors for each cycle of the sequenc-
ing process, patterns of substitution were investigated in order to understand
systematic sources of bias. Proportion of errors due to the 12 potential substi-
tutions ( A+ C,A—+ G A—=T... T - AT — C,T — G)were computed for
each read of the six libraries (Figure 2.11A and 2.11B). Substitutions A-T, T-G
and A-G were over-represented at low quality bins while T-G, A-T, A-G and
T-C dominated high quality substitutions.
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Figure 2.11: Overall substitution patterns of Illumina reads from six libraries.
Substitution profiles of the forward and reverse reads of five libraries (as shown
on the x-axis) and the rate of such substitutions were plotted for lower base
quality of 5 (A) and a higher base quality cutoff of 25 (B).

2.4 Discussion

This chapter was aimed at evaluating the feasibility of using existing short read
assembly methods to reconstruct the var gene family in P. falciparum. A method
that works on var genes is expected to be effective on other gene families of P.
falciparum such as the rif and stevor gene families.

Conclusion 1: A comparison of short read assembly programs suggested that Velvet
is a better choice than SOAPdenovo. However, assembly results from Velvet were not
satisfactory.
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A larger proportion of the sequencing and analysis for this chapter was done
in 2009 where development of short read assembly tools was in its early days.
Assemblers that employ a de Bruijn graph structure were preferred over those
with the traditional overlap-layout-consensus approach due to their potential
to deal with the increase in sequence yield from next generation sequencing
technologies. Although the underlying algorithm used to represent sequences
is similar, de Bruijn graph-based assemblers have subtle differences in their
pre and post graph processing of reads. For instance, SOAPdenovo applies a
read filtering and error correction step based on a predefined k-mer frequency
cutoff prior to building the graph. On the other hand, Velvet uses a similar
approach to remove erroneous reads without correcting base calling errors. In
addition, Velvet puts an extra effort in simplifying the assembly graph during
both the construction stage and the assembly process by removing singletons.
Further reduction in graph complexity and error correction is achieved by
removing tips (a node or chain of nodes that have one loose end), bursting
bubbles (i.e. merging paths based on sequence similarity and minimum number
of reads represented by each path), removing paths that have fewer than the
minimum cutoff and using read pair information. The extremely high A+T
content of P. falciparum poses unique challenges in short read assembly and
requires advanced heuristics of resolving ambiguous paths at various stages of
the process.

Velvet’s superior assembly results compared to SOAPdenovo were therefore
attributed to its ability to simplify the assembly graph and remove erroneous
paths. However, further evaluation of Velvet on real reads from whole genome,
chromosome 1 and var genes of the 3D7 genome revealed that the results are
not satisfactory as they are highly fragmented. The k-mer size was found to be a
very important parameter that needs optimisation for a good quality assembly.
Smaller k-mer values cause potential false overlaps that lead to ambiguities and
assembly breaks. Conversely, larger k-mer sizes could generate assemblies with
a higher contiguity, they require long overlaps and a higher read coverage.

Filtering reads with mismatches did not significantly improve the whole
genome de novo assembly. This is due to a number of potential problems asso-

ciated with read length, fragment size, low complexity, uneven coverage and
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ambiguous overlaps from repeats that could not be resolved by the assembler.
In addition, the decrease in coverage due to the filtering may also affect assem-
bly quality. The overall results are consistent with previous whole genome de
novo assembly attempts using a PCR-free sample preparation (Kozarewa, et al.,
2009). A whole genome de novo assembly from a PCR-free library of P. chabaudi
- a Plasmodium species with a higher G+C content - was substantially better
(Thomas Otto, personal communication). Therefore low G+C content is one of

the primary limiting factors in short read assemblies of P. falciparum.

Conclusion 2: A reference-guided assembly was also not feasible due to a higher level
of polymorphism than is acceptable by methods that employ a comparative assembly
approach.

In order for a reference-guided (or mapping based) assembly approach
to work, a nucleotide similarity of above ~90% is required (Pop, 2009). Sub-
telomeric regions of and var genes of P. falciparum are very divergent and not
positionally conserved. The concept of using a fixed linear reference to guide
the assembly of new sequences is thus not relevant. One consequence of the
lack of mapping of reads from different genotypes to the telomeres is that all
the reads that do not map to the reference will include those that cover the most
polymorphic regions. It is therefore clear that assembly by mapping will be of
little value when dealing with such highly polymorphic regions of the genome.

Conclusion 3: Poor quality assembly of short reads was caused by a combination of
technical/systematic reasons from the sequencing process and inherent features of the
genome. Technical reasons include sequencing errors and uneven coverage due to an
enzyme’s limited capability to amplify certain regions of the genome. On the other hand,
inherent genome features include biased A+T content and repeated sequences.

Standard quality control pipelines of the Illumina platform often report
error rates computed from a fraction of sequenced reads. Such reports provide
a quick overview of quality in order to decide whether the data could be
used for downstream analyses. However, the information is not enough to

understand where the errors occur and whether some of the data could be
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recovered. For instance, a closer look at a lane labeled as "failed” may identify a
subset of reads or cycles that contribute to the increased error rate which could
then be excluded from further analysis. It is therefore important to further
investigate error profiles for each position on the reads at low and high quality
cutoff. Although sequencing errors are known to accumulate towards read-
ends (Abnizova et al., 2012), it was surprising to see increased error rates at the
beginning of reads.

In addition, unexpected high quality substitution errors specific to P. fal-
ciparum sequences were observed. The Illumina platform uses two lasers to
initiate emission of fluorescence from four channels (A, G, C, T) where A,C
and G,T pairs share each laser. Although Illumina’s base calling algorithm,
Bustard, uses a 16-parameter correction matrix (the cross talk matrix) to account
for responses from sources other than incorporation of the intended base, cross
talk effects are still visible at lower quality errors particularly for transversions
(A-C and G-T). The observed high frequency of substitutions A <+ G, C <+ T
and A < T is therefore less likely to be due to the crosstalk effect. This is
potentially due to the extreme base composition and requires a special attention
in applications such as variant calling. However, it is difficult to measure the
effect of high /low quality substitution errors in assembly as short read assem-
blers have yet to take advantage of base quality information. Currently, such
errors could be accounted for during the assembly process by trimming-off
the first and last error prone bases. However, assembly tests performed by
trimming read-ends did not improve the quality of contigs for two potential
reasons. Firstly, the Velvet assembler has an efficient algorithm of removing
erroneous nodes created due to sequencing errors that accumulate towards
read-ends. Trimming of reads may thus have very little improvement over
the initial assembly. Secondly, as trimming shortens the effective read length,
the size of k-mers that could be used for assembly also becomes smaller. As
described previously, shorter k-mer sizes are likely to generate false overlaps
and poor quality assembly.

Conclusion 4: A slightly different approach to reference guided and whole genome
or whole chromosome de novo assembly was required to reconstruct var genes and
subtelomeric regions from the current sequence data.
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In summary, even when the best available methods were used, var genes
could not be reliably assembled. Optimizing for assembling gene-families
in particular and removing technical errors improved the results. Even so,
technical and inherent bias meant that the assembly remains challenging, and
we conclude that none of the current methods can effectively assemble highly
polymorphic gene-families.



Chapter 3

New approaches to assemble var

genes from short reads

3.1 Introduction

As described in Chapter 2, de novo assembly of var genes is challenging mainly
due to high A+T content, shared sequence blocks and uneven read coverage.
The polymorphic and mosaic nature of var genes adds further complexity to
the problem of short read assembly. Despite the high sequence polymorphism
in var genes, the presence of highly conserved short motifs was reported (Bull
et al., 2007; Rask et al., 2010). For example the motif LARSFADIG is located
on the DBL« region and found in nearly all var genes. Although the frequent
recombination events that shuffle sequence blocks play an important role in
the evolution of var genes (Frank et al., 2008; Kraemer et al., 2007; Rask et al.,
2010; Taylor et al., 2000b), they also make use of existing short read assembly
approaches inadequate. This chapter focuses on two major challenges in assem-
bling var genes: identifying reads that belong to var genes and performing a
targeted assembly on the collated reads.

Currently, there are no established methods for a targeted assembly of a
gene, a group of genes or gene families. One approach could be to run a
whole genome assembly followed by identifying contigs that resemble the
genes of interest. However, in chapter 2, I demonstrated that this approach had
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serious limitations; whole genome de novo assemblies of P. falciparum are highly
fragmented, with the potential to collapse highly similar regions. Due to the
high A+T content and low complexity, the uniqueness of most regions is also
extremely low, resulting in false joins during the assembly or scaffolding stages.
The problem becomes complicated while dealing with sequences from clinical
isolates due to the presence of multiple infections, poor data quality and uneven
read coverage. Although the blood-stage parasites are haploid, presence of
multiple infections results in multiple haplotypes in individual patient samples.
As a result, the complexity of the assembly graph increases for example due to
bubbles and chimeric connections leading to a highly fragmented assembly. A
new approach is thus required to rapidly identify short reads that come from
the var gene family in order to perform a targeted assembly of short reads.
The problem of genome assembly could be illustrated with the analogy of
solving a jigsaw puzzle where short reads are the pieces of the puzzle that need
to be organized in order to reconstruct a complete genome or region of the
genome. Assembling the var gene family could therefore be seen as solving ~60
related puzzles from a mixture of millions of pieces including pieces from non-
var puzzles (var genes are ~0.2% of the genome). Thus a plausible approach
would be to first identify the pieces that belong to the ~60 puzzles as a whole

and then to find a way to solve each puzzle from the mix.

This chapter aims to develop an alternative assembly approach for var genes
that:

e addresses limitations of existing assembly approaches, specifically the

two challenges described in the previous section:

— rapidly identifying reads that belong to the var gene family, and

— reconstructing members of the family
e is scalable to thousands of parasite isolates

e builds on existing methods already developed in our laboratory when

applicable.
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3.2 Methods: Proposed assembly approach

The assembly approach proposed in this chapter has two components. Firstly,
identical regions of the var mosaic blocks were identified as shared motifs
and used to assist with identification of reads that belong to the var genes.
Secondly, an iterative assembly approach, that takes advantage of de Bruijn
graph-based and overlap-layout-consensus assembly approaches, was intro-
duced. The three main stages: pre-processing, generating seed contigs and
iterative scaffolding/extension (Figure 3.1A-C) and six processes (1-6) comprise
the new approach developed to address the assembly problem of var genes.

3.2.1 Preprocessing sequence data
3.2.1.1 BAM to preFasta

The purpose of this stage (Figure 3.1A. 1) is to reduce the dataset by excluding
sequence reads that do not come from defined “regions of interest”. In addition
to minimizing the physical storage requirements (i.e. disk space), this step will
eventually improve assembly quality by reducing data complexity as a result of
the removal of reads from unwanted regions.

Input file 1: BAM files

Initially, raw FASTQ files of the samples will be stored in the BAM (Li et al,,
2009a) file format. BAM files could be obtained as a result of an alignment pro-
cess to a reference genome or alternatively, in the absence of a reference genome,
BAM files will only store raw reads. Although the methods developed in this
chapter are applicable in the absence of a reference genome, here, availability of

a reference is assumed.

Input file 2: A file with regions of interest

A tab delimited file representing regions of interest is required to identify re-
gions of the genome that will be included in the raw data. The format is shown
below:
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FASTQ reads were
stored in the BAM format

'

Mon core (NC) reads were obtained l
by excluding reads in core regions | & || 1. Bam2preFastN || 2. GenerateMotifs r

PreFastM (i.e. PreFASTA and
preFASTQ) files were generated
and stored for further analysis

| 3. MotifScan
MNC reads were scanned for var- 8
motifs; reads that contain motifs and 4. SeedContigs
their mates were stored used to

generate
seed contigs (using velvet)

1 5. Iterative scaflolding

Seed-contigs were iteratively-
seaffalded and extended wsing
SS5PACE and IMAGE respectively

6. lterative extension
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KEY:

Pre-processing
[ |
| e |

Figure 3.1: A work flow diagram of the iterative assembly approach developed
to assemble var genes. The three stages and six processes of the iterative
assembly approach developed to assemble var genes are shown. Conserved
regions of var genes that were found in a minimum of two culture adapted
samples were identified as initial motifs. Similarly, motifs for consecutive
iterations were generated by finding conserved regions that were common
in var-contigs of two or more samples. Core-regions were defined as central
regions of the genome except the central var-clusters. Non-core reads were thus
defined as reads that align to non-core regions of the genome and reads that
did not align to the reference genome. See text for further details.
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Ch1_Telo.01 MAL1 1 91653
Chl_Telo.02 MAL1 565425 643292
Ch2_Telo.01 MAL2 1 67545

Ch2 Telo.02 MAL2 860464 947102

where columns 1 to 4 represent regionID, Chromosome, Start and End posi-
tions, respectively.

Defining regions of interest
First, a working definition of Subtelomeric regions was obtained by taking
regions of the genome from chromosome-ends to the last subtelomeric copy of
a var, rif, or stevor gene family. The genome was then divided into subtelomeric
regions, central var gene clusters and the remaining core regions of the genome.
Regions of interest for assembly of the var gene family were defined by
combining subtelomeric regions and central var clusters resulting in ~2 Mb
(10% of the genome) of non-core regions. In addition, reads that did not align to
the genome were also included as they contain potentially novel sequences and
highly polymorphic regions. The reads from non-core regions of the genome
(i.e. subtelomeric reads, reads in central var regions and unmapped reads) are
required during the iterative assembly process. It was therefore necessary to
define a new file format that allowed efficient data storage.

Defining the preFasta and preFastq file formats
The FASTQ file format used to represent short read sequences from the Illumina
platforms is shown below:

@Root_ID/1
Forward_read

+
Forward_quality
@Root_ID/2
Reverse_read

_|_
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Reverse_quality
The FASTA file format has no quality values and is defined as:

>Root_ID/1
Forward_read
>Root_ID/2

Reverse_read

A file format suitable for storing large number samples was adopted in
this thesis to store reads from non-core regions of the genome. In order to
increase efficiency in data storage, preFasta and preFastq files contain the minimal
sequence information required for subsequent storage and iterative assembly
stages. The quality information in FASTQ files is still not used by assembly tools
and could be discarded in the preFasta files. In addition, the standard FASTQ
and FASTA indicators such as “@”, “>",“/1”,*/2” could also be discarded
during storage and generated in real time while processing the data.

The preFasta file was therefore defined with three columns containing the

minimum required information for a FASTA file:
Root_ID Forward_read Reverse_read

Similarily, a preFastq fill will contain additional two columns to include

quality values for the forward and reverse reads:
Root_ID Forward_read Reverse_read Forward_Q Reverse_Q

This format ensured a significant saving in storage compared to the original
FASTA and FASTQ files, which required four and eight lines respectively com-
pared to the single line representation of preFasta and preFastq files. Finally,
preFasta/preFastq files were compressed using the Unix command “gzip -9” to

ensure additional savings in storage space.
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3.2.1.2 Generate motifs

The next step in the pre-processing stage of the assembly pipeline was to
generate a list of conserved or shared sequence elements, also known as motifs
(Figure 3.1A.2). Initially, a BLAST search was done on a union file of var genes
from three laboratory-adapted samples (i.e. all against all). However, this
approach was not scalable with respect to the number of genes and size of input
files.

A k-mer based hashing approach was developed to count the frequency of
exact matches of sequences with a length of 'k’ (k=10 for amino acids and k=30
for nucleotides). Motifs were then grouped according to the number of samples
(or genomes) they came from. A ‘shared motif’ was defined as a motif found
in a minimum of two samples. In order to avoid motifs from low-complexity
regions that could potentially cause spurious matches, shared motifs that were
also present in core regions of the genome were discarded. The information on
motifs and motif sharing was represented in the following format:

ID #Populations #Samples #Genes GeneInfo SampleInfo PopInfo

Genelnfo, Samplelnfo and PopInfo contain comma-separated lines listing
the names and frequency of genes, samples and populations that share the
motif.

The process of identifying motifs was repeated after each iteration of assem-
bly and extension of contigs (described in sections 3.2.2 and 3.2.3). Addition of
new motifs was expected to increase the motif database, enhancing the potential

of capturing new sequences and novel variants of the var gene family.

3.2.2 Generating seed contigs
3.2.21 Scanning raw reads for motifs

Once a set of shared motifs (nucleotide or amino acid) were identified from
members of the var gene family, raw reads were examined for the presence
of the motifs. An exact match of a motif to either the forward or reverse read
of a read pair was required prior to storing both reads for the initial stages of

generating seed contigs (see next section).
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Initially, identifying reads that contained a motif was done via a BLAST
search using motifs and raw reads as database and query respectively. However,
it became obvious that a BLAST-based scanning approach was too slow and not
scalable as the number of motifs increased from a few thousands to millions.

A motifs scanning tool, MotifScan, that rapidly identified exact matches was
developed to address this limitation. MotifScan was written in C++ and could
be used to quickly scan for the presence of motifs in a large number of FASTA or
FASTQ reads. Furthermore, motifs could be in amino acid or nucleotide formats.
For amino acid motifs, reads were translated in all the six reading frames during
the scanning process. MotifScan slides by one position over the length of each
read or its amino acid translation until a match to the motif database is found.
It is important to note that scanning until the sixth frame is the worst case
scenario as a match to the motif database could be identified earlier. The result
of this step was a FASTA /FASTQ formatted list of reads and their mates where
the forward, reverse or both reads contained a motif. Including a read where
its mate has a motif is an important aspect of the motif-scanning process as it
provided additional information that could be used to extend and join seed
regions in subsequent stages of the assembly process.

3.2.2.2 Generating seed contigs

Using the reads obtained from the motif scanning process, seed contigs were
produced that could then be extended in the next steps. Velvet (Zerbino and
Birney, 2008) was used to generate initial contigs as it was shown to have a better
assembly quality when compared with other short read assemblers (Chapter 2).
The scaffolding option was not used to minimise the risk of potential false joins.
As described in chapter 2, choice of a k-mer size is an important parameter that
needs optimisation for each iteration of assembly. Although Velvet was used
in this thesis, the assembly approach described here is able to use a different
assembler to generate seed contigs.
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3.2.3 Iterative scaffolding and extension

The final stages of the pipeline (Figure 3.1C) involved sub-iterations of joining

and extension of seed contigs.

3.2.3.1 Scaffolding

Seed contigs generated in the previous step were expected to be highly frag-
mented as the initial set of reads represented a very small fraction of the total.
The scaffolding step was therefore important to join contigs that had strong
read-pair support. At the beginning of this project, there was no stand-alone
scaffolder that could be used independently. Short read assembly tools have
built-in scaffolding modules that have a very limited flexibility. In order to
address these limitations, a scaffolding tool was developed that took advantage
of read pair information from standard sequencing libraries. The distribution
of fragment sizes was used to estimate gap sizes and join contigs into scaffolds
where there was sufficient and unambiguous evidence. SSPACE (Boetzer et al.,
2011), a scaffolding software with similar principles became available during
the course of development. After testing the performance, I decided to optimize
SSPACE instead of continuing working on our scaffolder.

3.2.3.2 Iterative extension

Contigs and scaffolds generated in the previous steps account for less than the
total nucleotide content of the gene family. In addition, scaffolds are expected
to have gaps with unknown bases (Ns) that need to be filled during an iterative
extension step described here. This step is intended to close gaps in scaffolds
and extend contig-ends primarily using read pair information (Figure 3.1C.6).

Reads obtained from non-core regions of the genome were aligned to seed
contigs generated in the previous steps and used as raw reads to initiate the
extension process. By aligning reads to the seed contigs, it was possible to
iteratively walk out of seed regions. The process involved a number of sub-
iterations of mapping reads to seed contigs, identifying reads that align to

contig-ends and performing a local assembly using Velvet. These principles
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were implemented in IMAGE (Tsai et al., 2010), a tool developed in our labora-
tory by Jason Tsai for the purpose of closing gaps in draft assemblies. It was
decided to optimize IMAGE for the iterative extension step of the assembly
process. IMAGE begins by aligning short reads to contigs given a list of contigs,
scaffolding information and raw FASTQ reads. After a number of optimisation
steps on IMAGE's various options, the best extension and gap-closure results
were obtained from choosing optimal parameters for the number of iterations,
k-mer values used for local assembly and the minimum alignment score of
reads when mapped to seed-contigs. A k-mer value of 41 was used over 5 to 7
iterations to obtain good quality gap closure and contig extension. Decisions to
stop at 5 iterations or continue to 7 were made based on the number of gaps
closed and the improvement in N50 contig size. A minimum alignment score
of 70 for 76 bp reads (i.e. use reads that aligned with a score of above 70) was
found to be critical as it minimised the effect of erroneous joins between contigs

due to poor quality matches.

3.2.4 Evaluating the assembly approach
3.2.4.1 Testing on culture-adapted samples

Sequence data

In order to evaluate the performance and accuracy of the new assembly ap-
proach, a total of four laboratory adapted samples were used. DNA for se-
quencing of the reference isolate 3D7 and the IT sample was obtained from Prof.
Chris Newbold'’s laboratory in Oxford (Chapter 2, section 2.2). Sequences for
DD2 and HB3 were obtained from Prof. Dominic Kwiatkowski’s laboratory at
the Sanger Institute. The PCR-free library preparation protocol described in
chapter 2 was used. Raw reads of the four samples were aligned to the 3D7
reference genome version 2.1.4 using SMALT http://www.sanger.ac.uk/
resources/software/smalt/ (A python script written by Martin Hunt in
our laboratory was used to align on the following SMALT parameters: -i 500
-r 10 -x -k 13 -s 6). Reads are referred to be mapped in proper-pairs if both
the forward and reverse reads align to the reference genome facing each other
within the expected fragment size range (200-300 bp).


http://www.sanger.ac.uk/resources/software/smalt/
http://www.sanger.ac.uk/resources/software/smalt/
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Var genes

Var genes for the 3D7 and IT genomes were obtained from GeneDB (http:
/ /www.genedb.org/). As described in the previous chapter, 3D7 is the ref-
erence isolate with a complete genome whereas the other genomes are still
highly fragmented with a limited coverage of the var repertoire. Supercontigs
of HB3 and DD2 genomes were obtained from the Broad Institute (http://
www.broadinstitute.org/). Sequences annotated as VAR/PfEMP1 were
identified resulting in 47 and 25 genes for HB3 and DD2 respectively.

Initial Motifs

Initially, var genes from 3D7, IT and HB3 genomes were used to generate motifs
using Pmatch. However, due to the minimum length requirement of 14 aa, we
decided to develop a k-mer-basd hashing approach to generate motifs. For the
assembly of culture-adapted samples, initial motifs were generated from var
genes of HB3 and DD2 genomes for two reasons. First, these samples have
incomplete var repertoire and motifs generated from them would represent
a minimal set of starting motifs. It is thus a good indicator of the approach’s
success in clinical samples. Second, initiating the process on motifs obtained
from the other genomes will provide a means to evaluate the completeness and

accuracy of the var repertoire produced for the 3D7 genome.

Iterations
The process was run for a total of 10 iterations. New motifs were generated at

the end of each iteration and used as input for the next iteration.

Evaluating assembly

Assembly quality was evaluated by four commonly used measures: N50 contig
size, sum of contigs and largest contig sizes. The completeness of the var
repertoire was estimated by counting the number of contigs with the DBL«
domain. In order to test the accuracy of the contigs generated by the process,
the 3D7 genome was used as a reference. All contigs from the 3D7 assembly
were aligned against var genes of the 3D7 genome.


http://www.genedb.org/
http://www.genedb.org/
http://www.broadinstitute.org/
http://www.broadinstitute.org/
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3.2.4.2 Testing on clinical samples

Sequence data

A total of 50 samples were randomly selected from the Plasmodium Genome
Variation (PGV) project at the Sanger Institute. Clinical samples were initially
collected and sequenced by Prof. Dominic Kwiatkowski’s lab at the Sanger
Institute. The samples were randomly selected from 10 different countries
representing West Africa, East Africa and South East Asia.

Initial motifs and iterations

Initial motifs for the assembly of 50 clinical samples were generated from var
genes of 3D7, HB3 and IT genomes. Var genes for the three samples were
obtained as described in the previous section. Amino acid motifs of length 10
aa were generated and checked for uniqueness. Motifs shared by a minimum
of two samples and that were unique to non-core regions and the flanking
upstream and downstream regions of 2 kb of the 3D7 genome were selected to
initiate the process. The performance of the iterative assembly was enhanced
by generating motifs from a six frame translation of contigs that contain the
DBLu tag. In order to determine the number of iterations required to gather an
optimal number of motifs (i.e. the iteration where the number of shared motifs
reaches a saturation), the assembly was run for a total of 20 iterations. Shared
motifs obtained at the end of each iteration were checked for quality and used

as inputs for the next iteration.

Assembly statistics and quality check

Contigs that contain the DBLa domain were obtained from the 20" iteration
and assessed on how close they are from the expected assembly statistics (based
on var genes of the 3D7 genome). In addition, the size distribution of open
reading frames was examined to evaluate the accuracy of the assembly.
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3.2.4.3 Additional evaluation using samples from the Illumina HiSeq plat-

form

In order to further evaluate the assembly process, five clinical samples from
the latest runs of the Illumina HiSeq platform were selected. These runs have a
higher yield and longer read lengths (100 bp, paired end reads ) compared to

the previous samples used to test the assembly process.

Comparing with de novo assembly

Initially, the five samples were assembled using motifs generated at the end
of the 20" iteration. After running the iterative assembly process for three
iterations, assembly quality of contigs that contained the DBL« tag were exam-
ined and compared with scaffolds of a de novo assembly (made by Velvet and
obtained from Thomas Otto in our laboratory).

Mixed assembly

In order to test the performance of the new assembly approach in parasite
samples that have multiple infections, raw reads from four of the five samples
were selected. These samples were shown to have a single infection based
on the number of contigs that contain the DBLx domain (i.e. expecting 60
genes per genome). Raw reads from non-core regions of the genome were
tirst individually assembled for each sample (k=71, cov-cutoff=auto). The reads
were then mixed and assembled using identical assembly parameters as the
individual assembly. Open reading frames (ORFs) of contigs that contain the
DBLa were obtained by translating to all six frames and choosing the frame
with DBLa. The contigs from the two sets of assemblies were compared at the
protein level using BLAST (blastp - F F -m §). This provided a better assessment
than a nucleotide based comparison as regions of extremely low G+C content

such as introns and intragenic regions were excluded.
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3.3 Results

3.3.1 Defining regions of interest

Regions of interest were defined using the reference genome 3D7 as described
in section 3.2.1.1. A simple definition of subtelomeric regions was sought for the
purpose of this thesis resulting in a total of ~2Mb (10% of the genome) from the
28 subtelomeres. An example of the working definition of subtelomeric regions
on chromosome 1 is shown in Figure 3.2. Analysis of the size distribution of
subtelomeric regions in the P. falciparum genome using this working definition
revealed that chromosomes 4 and 7 had the longest subtelomeric regions (Figure
3.3).

Although the working definition of subtelomeric regions adopted for this
thesis may be different from that of the original genome annotation (defined
using synteny with closely related species), it was possible to capture highly
polymorphic regions that are currently being excluded in studies that rely on a
unique alignment of short reads to call single nucleotide polymorphisms and
copy number variations.
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Figure 3.2: A working definition of subtelomeric regions adopted for this
thesis: Regions of the genome from the end of each chromosome to the last
subtelomeric copy of a var, rif or stevor family were identified as subtelomeric.
The red blocks represent coding genes, grey boxes represent pseudo-genes,
cyan blocks at the left-end represent repeats. The two plots on the top panel
show the G+C content and k-mer-based uniqueness plots.
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Figure 3.3: Size distribution of subtelomeric regions in the reference genome
3D7 by Chromosome. Sizes range from 17.5 to 170 kb covering ~10% of the
genome.

3.3.2 Evaluating the new assembly approach using culture-adapted

samples
3.3.2.1 Sequence data

A summary of raw reads for the four culture-adapted samples are shown in
Table 3.1. The number and proportion of non-core reads varied in the four
samples from ~9 to 34% depending on the number of reads aligned to the
genome and reads that did not align (eg. due to poor read quality).

The HB3 genome had a significantly higher number of non-core reads due
to the higher number of reads that did not align to the 3D7 genome (~33%).
This could be due to a decrease in base quality of the second read after the
~50" cycle (Appendix B, Figure B-2).
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Total read pairs %All reads aligned to 3D7 Non-core read pairs

(Aligned in proper pair) (%total)
3D7 12,488,019 96(93) 3,453,588(28%)
DD2 20,650,235 91(84) 2,327,890 (11%)
HB3 18,501,446 67(73) 6,369,447(34%)
IT 27,013,569 97(86) 2,477,392 (9%)

Table 3.1: A summary of the four culture-adapted samples and non-core reads
used to evaluate the iterative assembly approach. Reads that aligned in the
correct orientation (facing each other) and within the expected insert size range
are defined as "aligned in proper pair’

3.3.2.2 Motif generation and iterative assembly

A total of 17,719 motifs (10 aa overlapping k-mers) were found to be shared
between var genes of HB3 and DD2 genomes. After excluding motifs that
were also found in the core regions of the 3D7 genome, a total of 7,353 motifs
remained to initiate the iterative assembly process. As the number of iterations
increased, the number of motifs shared by a minimum of two of the four samples
also increased (Figure 3.4). However, the rate of increase in new motifs declined
after the ~4" iteration due to a potential saturation in the motif space. The
highest improvement was found in the first two iterations where the number of
motifs increased from the initial ~7,000 to ~180,000.

Assembly quality improved with more iterations (Figure 3.5). The most
notable improvement was on the 2" iteration of the process. Overall, while the
sum of contigs as well as N50 and largest contigs sizes increased with subse-
quent iterations, the number of contigs decreased indicating an improvement
in assembly quality.

Although 3D7 had the best N50 contig size (~5 kb), it also had the least
number of contigs with DBLx and least value in sum of contigs compared
to the other three samples. The N50 contig size is affected by the number of
contigs available and thus may give a wrong impression of quality if not taken
together with other measures as described here. The sum of contigs ranged
from under 300 kb for 3D7 to ~500 kb in the IT assembly. The number of contigs
was comparable between samples during the first iteration (~150 contigs per
sample). However, in subsequent iterations the contig count for 3D7 stayed
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below 100 while the other samples generated ~300 contigs. This variation
in the number of contigs is reflected in the N50 contig sizes as the highest
N50 values for 3D7 correspond with the fewest contigs. The efficiency of the
iterative extension process was also shown by the sizes of the largest contigs
which increased from ~5 kb to ~12 kb during the course of the iterations. The
number of contigs that contained the DBLa tag also showed improvement from
the second iteration and converged to ~40 to 50.

In summary, the iterative assembly generated a substantially higher num-
ber of var-contigs (i.e. contigs with the DBL« tag) compared to the original
number of genes found in the HB3 and DD2 genomes used to initiate the motif
generation process. It was possible to recover up to ~80% of the expected var
repertoire in the test samples by starting from a very limited set of initial motifs.
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Figure 3.4: The cumulative number of shared motifs for 10 iterations of the four
lab adapted samples 3D7, IT, HB3 and DD2. Initial motifs were obtained from
HB3 and DD2 in order to test the assembly approach with a limited number of
starting motifs.

Evaluating var contigs of the 3D7 genome
Optimal assembly results for 3D7 were obtained at the 5! iteration (Table 3.2).
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Figure 3.5: Assembly statistics of the four lab adapted samples for 10 iterations.
Five assembly measures Sum of contigs, N50, Number of all contigs, largest
contig and number of var-contigs were used to asses the assembly quality with
an increase in iteration. A). Sum of contigs was used to measure the coverage
of the var repertoire. The N50 contig size (B), the number of contigs (C) and
the largest contig size (D) measure assembly contiguity. Completeness of the
var repertoire is measured by counting contigs that contain the DBL« tag (E).
The 3D7 assembly had the highest N50 and fewer contigs, but also had the least
contig coverage as shown in A.
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Comparing contigs generated from the iterative assembly to the 3D7 genome
provided a measure of completeness and accuracy. Of the 46 contigs that
contained the DBLa domain, only one misassembly was detected due to a
chimeric connection between two genes of the central var cluster. Although
it does not contain the DBLx domain, var2CSA was assembled in one contig
producing a full length (intact) gene. The completeness of the repertoire in the
3D7 genome was therefore estimated to be ~75% (i.e. expecting 61 var genes in
the genome). Coverage of the var repertoire in 3D7 was evaluated by aligning all
93 contigs to the genome. Inspection of comparisons performed using BLAST
and Abacas revealed that 46 of the 61 var genes in 3D7 were covered by contigs
(Table 3.3). A total of 21 genes were partially covered (minimum coverage of
50% at 99% identity) and the remaining 25 genes were fully covered by one
or more contigs. The majority of the genes were fully or partially covered by
single contigs (intact).

All contigs Contigs with DBL«

Sum 277761 196368
N50 5039 5540
Num. 93 45(1%)
Largest 9223 9223

*mis-assembeled contigs

Table 3.2: Iterative assembly results for var genes of the 3D7 genome.

Fully covered Partially covered

Exonl only 1 7

Exon1(+ Ups) 2 3
Exon1(+ Intron) 7 6
Exon1(+Ups +Intron) 15 5
Total 25 21

Intact 21 16

Fragmented 4 5

Table 3.3: Coverage of var genes in the 3D7 genome. A total of 46 (of the
expected 61) genes were covered by one or more contigs.

The iterative assembly approach was able to recover ~75% of var genes in
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the 3D7 genome. As described earlier, the initial motifs were obtained from HB3
and DD2. The results were thus very promising as they illustrate the potential of
this approach in reconstructing a large proportion of the repertoire in unrelated
clinical samples. The missing genes are expected to be due to insufficient seed
motifs as the assembly was performed using motifs generated from HB3 and
DD2. The single misassembled contig was a result of chimeric join between two
genes of the central cluster. These genes share identical regions of larger than 1
kb and could not be resolved using a standard library (200-300 bp). In addition,
the smaller fragment sizes in the 3D7 library (quartiles: 143,163,188) may also
contribute to poor quality assembly.

3.3.3 Evaluating new assembly approach using clinical sam-

ples

The iterative assembly approach was further evaluated using 50 clinical samples
from 10 countries (Table 3.4). Samples were chosen from standard PCR-free
libraries (insert size 200-300 bp) with a read length of 76 bp.

The three laboratory clones 3D7, HB3 and IT were used to generate initial
motifs. A total of 8,766 motifs were shared by at least two of the three samples
and also passed quality control steps. The number of motifs increased with each
iteration as observed in the lab-adapted samples. However, the rate of increase
in motif acquisition was slower after the 10" iteration (Figure 3.6). Each iteration
involved sub-iterations of scaffolding and extension that helped improve the
quality of assembly. Assembly results of the 50 samples are summarised in
Figure 3.7. At the end of the 20" iteration, the average number of contigs
that contain the DBLa (n=2,793) was close to the expected value of ~3,000
(i.e. expecting ~60 per genome). In addition, the N50 contig length (6.4 kb)
and the largest contig (~14 kb) sizes were also within the expected range
of values for var genes with the DBL« tag in the 3D7 genome (sum=428 kb
N50=7.7 kb; Number of contigs =54; Largest contig=12.5 kb). Box plots showing
the distribution of 2,769 var-contigs within the 6 groups (Figure 3.7) show a
similar distribution with the 3D7 and other clinical samples studies by Bull and
colleagues (Bull et al., 2007).
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Figure 3.6: Number of motifs shared by at least two samples (i.e. var-contigs
from two different samples) per iteration for 50 clinical samples. A). The
increase in number of shared motifs for the first 11 iterations is shown separately
in A. The rate of increase in shared motifs was higher for the first ~5 iterations.
B). The number of shared motifs continued to increase at a slower rate after the
12/ iteration as shown by the scale of the y-axis.
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B. Distribution of var-contigs within the 6 groups
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Figure 3.7: Assembly statistics of 50 clinical samples. A). A total of 2,769
contigs had the DBLa tag representing ~92% of the expected var repertoire. The
number of contigs represented by the N assembly measures were also shown.
For example N50 of 6.4 kb; n=894 indicates that a total of 894 contigs are above
6.4 kb in size. The sum of these contigs is equivalent to ~7.5 Mb (i.e. half of the
total sum of contigs). B). Var-contigs were grouped into one of the six groups
using the ‘Cys-POLV’ grouping method of Bull and colleagues (2007) (Bull et al.,
2007).
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Figure 3.8: A histogram of the number of contigs with DBLa (var-contigs)
per sample for the 50 clinical isolates. Two samples (PP0011 from Peru and
PMO0096 from Mali) were found on either end of the distribution with 26 and 78
var-contigs respectively.
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Sample Origin Sample IDs
Gambia PA0012 PA0032 PAQ0066 PA0081 PA0091
Kenya PC0057 PC0070 PC0075 PC0080 PCO0083
Thailand PD0126 PDO0127 PD0133 PD0134 PD0138
Ghana PF0211 PF0231 PF0263 PF0288  PF0290
Cambodia PH0142 PHO0145 PHO0380 PH0479 PHO0483
Mali PMO0048 PMO0090 PMO009% PM0132 PMO0162
PNG PN0027 PNO0054 PN0056 PNO0057 PNO0059
Peru PP0005 PP0006 PP0010 PP0011  PP0012
Bangladesh PR0001 PR0002 PRO005 PRO006 PR0008
Uganda PWO0003 PWO0009 PWO0010 PWO0013 PWO0016

Table 3.4: Clinical samples used to test the iterative assembly approach. A total
of 50 samples were chosen from 10 countries representing Africa, South East
Asia and South America.

The average number of contigs with DBLx was ~56 (Standard Devia-
tion/SD=10) indicating that most samples contain the expected number of
var genes. Isolates PM0096 and PP0011 were at the two extreme ends of the
normal distribution with 78 and 26 var-contigs respectively (Figure 3.8). The
sample with least number of var-contigs (PP0011) had poor data quality that af-
fected the assembly (Appendix B). On the other hand, an increase in the number
of var-contigs beyond the expected assuming a normal distribution (~76; con-
sidering 56+2SD) may indicate the presence of multiple infections. Additional
challenges are envisaged with poor quality sequence data and mixed infections.
Further evaluations taken to specifically look at these issues are described in
the following sections.

3.3.4 Additional evaluations
3.3.4.1 Comparisons with de novo assembly

The sequencing technology and assembly tools have improved since the begin-
ning of this thesis. It was thus important to evaluate if a de novo assembly of
field isolates is practical due to significant improvements in yield and sequence
quality. Although the assembly results were better than found in 2009, the

iterative assembly approach described in this chapter generated the greatest
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number of var-contigs (Table 3.5).

Clinical DBLa count
Sample 3iterations De novo
1 57 48
2 56 45
3 54 39
4 61 48
5 97 86

Table 3.5: Comparing iterative assembly with de novo assembly using 5 clinical
samples (read length =100 bp; Velvet used for de novo assembly). The iterative
assembly approach generated more var-contigs than a simple de novo assembly.

The iterative assembly approach was able to generate N50 contig sizes of up
to 7.9 kb (Table 3.6) for Sample 1 (57 var-contigs) indicating both the efficiency
of the method and benefits of long reads in assembling var genes.

Sample Sum(bp) N50(bp) wvar-contigs Largest(bp)

1 423,521 7,902 57 13,813
2 418,299 7,478 56 13,740
3 314,747 6,236 54 10,229
4 401,616 7,139 61 12,715
5 610,588 6,708 97 12,457

Table 3.6: Assembly statistics of the five clinical samples using the iterative
assembly approach.

Sample 5 had the highest number of var-contigs suggesting presence of

multiple infections. It was thus excluded from subsequent comparisons.

3.3.4.2 Mixed assembly

Reads from the first four of the five clinical samples (previous section) were first
assembled individually for one iteration resulting in 58 to 67 var-contigs (Table
3.7). The assembly results were different from those shown in the previous
section (comparisons with de novo assembly), as expected from the iterative
process. The completeness of the var repertoire (i.e. number of contigs) and

coverage (the sum of contigs) varies with each iteration due to the increase
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in reads that are available to perform the iterative assembly. Concatenating
contigs from the four samples resulted in a total of 249 var-contigs. Conversely,
assembly of mixed reads generated in a total of 230 contigs with DBL«.

As these samples were obtained directly from patients, evaluating the qual-
ity of the assembly by comparing to the reference genome was not informative.
We therefore compared Open Reading Frames (ORFs) from the two sets of as-
semblies using BLAST. The results revealed that ORFs from the mixed assembly
overlapped with 33 to 84% of ORFs in the individual assembly (99%, match
length of 300 aa) (Table 3.8).

Sample Sum N50 Num. scaffolds Largest
1 316,696 5,984 67 10,745
2 323,601 6,263 65 10,990
3 134,458 4,011 58 8,420
4 317,902 6,915 59 11,271
Total 1,092,657 6,163 249 11,271
Mixed assembly 813,249 5,348 230 11,114

Table 3.7: Comparing individual assembly with mixed assembly of four clinical
samples: Assembly statistics. Sample 3 had a relatively poor quality assembly
compared to the other three samples.

As these samples were obtained directly from patients, evaluating the qual-
ity of the assembly by comparing to the reference genome was not informative.
We therefore compared Open Reading Frames (ORFs) from the two sets of as-
semblies using BLAST. The results revealed that ORFs from the mixed assembly
overlapped with 33 to 84% of ORFs in the individual assembly (99%, match
length of 300 aa) (Table 3.8).

ORFs with the DBLax domain were first extracted from contigs of the two
sets of assemblies (i.e. mixed and individual assemblies). ORFs of the mixed
assembly were then compared with ORFs from the four samples resulting
in an overlap of 33 to 84% of the total in each sample (99% identity and 300
aa). The fewer ORFs in Sample 3 are indicative of a poor quality assembly.
Although 300 aa was a reasonable size to compare the two sets of ORFs, the
results presented in Table 3.8 do not reveal the extent of overlap between the
OREFs (i.e. the proportion of each ORF aligned at 99% identity, also called the
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Samplel Sample2 Sample3 Sample4

Found in mixed assembly 48(62) 52(68) 14(42) 48(57)
(total)

%Total 77 76 33 84

Table 3.8: Comparing ORFs of individually assembled contigs with ORFs of
the mixed assembly. ORFs from the mixed assembly were compared with the
OREFs obtained from the four samples. This table shows the count of ORFs of
the individual assemblies that overlapped with ORFs of the mixed assembly
with a minimum match length of 300 aa and a minimum identity of 99%.

coverage of ORFs). Therefore, additional comparisons were made based on the
coverage of ORFs by varying the threshold from 5 to 100% (Figure 3.9). Up to
30% of contigs in the individual assembly were matched to mixed assembly
over the full length of their ORFs. The remaining contigs were only partially
covered with break points potentially caused by repetitive or shared sequence
blocks. Aligning raw reads back to the contigs allowing multiple mapping
for non unique reads revealed regions of excess coverage that correlated with
contig-ends (i.e. break-points) in the mixed assembly (Figure 3.10).
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Figure 3.9: Comparing ORFs obtained from individual and mixed assembly
by varying the proportion of ORFs covered. ORFs from the mixed assembly
had a higher overlap with ORFs from individual assemblies at lower coverage
thresholds. As the coverage requirement increased, the number of ORFs (from
each individual assembly) that overlapped with ORFs from the mixed assembly
decreased.
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Figure 3.10: An ACT view of read coverage over var-contigs generated from
individual and mixed assemblies. This example shows a BLAST comparison
of var-contigs from the individual assemblies (top panel) against the mixed
assembly (middle panel). Contigs are shown in alternating orange and brown
blocks. The yellow, red and blue blocks (vertical) show synteny matches. Black
bars in the middle panel represent stop codons. The contig on the top panel
is partially covered (shown by the yellow match) by a contig from the mixed
assembly with the breakpoint corresponding to a repetitive region (shown by
the increased read coverage).
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3.4 Discussion

The aim of this chapter was to develop an alternative approach that will ad-
dress the limitations of existing assembly approaches in polymorphic gene
families. This section presents a discussion of the findings in the following four
conclusions.

Conclusion 1: An iterative assembly approach based on conserved motifs provides a
better way of reconstructing the var gene family in P. falciparum

Gene families have blocks of highly similar and polymorphic regions and
continue to evolve by accumulating additional polymorphism as well by re-
combination within these families. This ongoing microevolution leads to the
maintenance of an extremely diverse gene repertoire. The var gene family is
especially known to contain mosaic blocks that are highly recombinogenic and
polymorphic (Bull et al., 2008; Frank et al., 2008; Kraemer et al., 2007). These
regions pose significant challenges to standard short read assembly approaches.
We have developed an assembly approach that takes advantage of the mosaic
nature of var genes such that short conserved are used to initiate an iterative
assembly. The new approach produced var-contigs (contigs that contain the
universal DBL« tag) that were accurate and had high repertoire coverage. The
efficiency, coverage and accuracy of the approach were demonstrated using
sequences from four culture-adapted and 50 clinical samples. The potential of
our approach to accurately assemble clinical samples was demonstrated first by
assembling var genes of the 3D7 genome where initial motifs were generated
from unrelated samples with incomplete var repertoire. The single misassembly
detected in the 3D7 var assembly was due to a merge in two highly identical
regions of var genes on chromosome 12 (central cluster). Such wrong joins are
expected as identical segments between var genes of the 3D7 genome could be
as long as ~5 kb (Chapter 2). Resolving ambiguities in the assembly graph of
such long shared segments is not possible with the standard library size of 200 -
300 bp. A fragment size longer than the shared unit is required to accurately
assemble the full length of var genes that share long sequence stretches. Such
cases of misassembly result in frame shifts during aminoacid translations and
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were detected as part of the quality control process. Additional quality checks
that take advantage of read-mapping coverage of raw reads are also being in-
corporated in the assembly pipeline. Examination of the read coverage patterns
will reveal drops in paired-end coverage as potential signs of false joins.

Conclusion 2: Motifs are an important part of this approach

Motifs provided an important part of the assembly process. Identifying
conserved (shared) elements across the length of var genes and including the
mates of reads that contained motifs made it possible to generate sequence
islands at the initial stages of the assembly process. These islands were con-
sidered as points of initiation for further iterative extension. A combination of
iterative scaffolding and extension was used to close gaps between seed regions
by walking-in and out of the sequence islands. Assembly quality was affected
by data quality, yield and the coverage of motifs used to initiate the process.
The increase in motif space at the beginning is characteristic of the initial stages
of the assembly process where new motifs are being added to the collection. On
the other hand, at later iterations, the majority of the motif would already be in

the collection resulting in a decrease in the rate of accumulation.

Conclusion 3: Iterations provide the mechanism for a controlled extension of the var
gene repertoire

Extremely low and extremely high read coverage are potential reasons for
poor quality assembly. An iterative extension approach provided a means for
identifying reads that could be used for a gradual extension of seed contigs.
As the number of iterations increases the number of motifs identified also in-
creased. A limited number of iterations was required to attain motif saturation
(~5 for culture-samples and ~7-10 for 50 clinical samples). This observation has
implications on the number of iterations required to gather motifs in order to
assemble a given set of samples. Motifs generated from the 50 clinical samples
are representative of different geographical regions. Conditions for terminat-
ing iterations are determined based on the assembly quality (i.e. repertoire
completeness as measured by the count of var-contigs, contiguity of assembled
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contigs as measured by N50 and largest contig sizes, and repertoire coverage
as measured by sum of var-contigs). Once an optimal number of iterations is
achieved, assembly quality will stop improving or begin to deteriorate signaling
an exit condition from the iterations.

Conclusion 4: This approach provides a way of reconstructing var genes from clinical
samples and get a complete view of the var repertoire for the first time

Assembly results of 50 clinical samples resulted in the largest collection of
var genes so far. The total number of contigs (n=2,769) found with the DBL«
tag (N50=5.5 kb; Largest=14 kb; sum of contigs = ~15 Mb) represented over
92% of the expected ~3,000 contigs (expecting 60 var genes per genome). Sam-
ples with below 30 var-contigs were associated with poor quality in the raw
data. Conversely, samples with over 70 var-contigs were shown to have mul-
tiple infections by a visual inspection of MSP1 genes. Assembly test of mixed
samples resulted in shorter contigs than in the case of individual assemblies.
However, within the majority of cases that were visually inspected, the break-
points corresponded with the regions of high read coverage as expected. These
regions are known to cause breaks in assembly due to ambiguities that could
not be resolved using standard sized libraries (as discussed in the previous
chapter). Samples used for mixed assembly tests were not normalised for cov-
erage in order to represent over-representation of some genotypes in natural
populations.

In summary, this chapter presented an alternative assembly approach to ef-
fectively reconstruct the var gene family from short reads of second-generation
sequencing platforms. Applications of the method to perform a targeted as-
sembly of the family were demonstrated using culture-adapted and clinical
samples of P. falciparum.



Chapter 4

Understanding mechanisms of var
gene diversity using next generation

sequencing

4.1 Introduction

The constant exposure of surface antigens to the host immune system requires
parasites to actively generate and display new variants of PFEMP1 in order
to effectively evade host defense mechanisms. In addition, the repertoire of
PFEMP1 sequences within the parasite population as a whole needs to be
sufficiently diverse such that infection with one genotype does not induce an
effective response to other genotypes that may later infect the same patient.
Understanding the mechanisms that generate the high level of diversity in
var genes is therefore a critical step in elucidating the forces that drive their
evolution (Frank et al., 2008).

One of the mechanisms suggested as a potential source of var diversity is
ectopic gene conversion, a non-reciprocal transfer of genetic material between
two non-allelic regions of high sequence similarity (Frank et al., 2008; Freitas-
Junior et al., 2000). Gene conversion is usually initiated by a double strand
break, where homologous recombination is used as a repair mechanism (Chen
et al., 2007; Holliday, 1964) (See Chapter 1 for details). Our understanding of



4.1 Introduction 93

gene conversion in eukaryotes is primarily derived from studies in yeast which
show the presence of such events during both the meiotic and mitotic stages
of cell division (Gao et al., 2005; Hicks, 2010; Symington et al., 1991). Despite
the potentially deleterious effects (Chen et al., 2001, 2007), gene conversion
could be advantageous for evolution of gene families and potentially their
functional diversification (Maizels, 2005; Nielsen, 2003; Santoyo and Romero,
2005). It is also used by a number of pathogens to generate antigenic variation
(Al-Khedery and Allred, 2005; Brayton et al., 2002; Santoyo and Romero, 2005)
and also eliminate diversity (Jackson et al., 2012). In P. falciparum, double strand
break and repair may take place at various points of cell division during both
the sexual and asexual stages, providing a platform for meiotic and mitotic
recombination events. The haploid nature of the parasite for the most part
of its life cycle makes it relatively easy to study rates and mechanisms of
recombination.

One method to study how new var genes are created would be to monitor the
changes that take place on var genes as the disease progresses in human patients.
However, this is not practical due to the short time scale. A number of genetic
cross experiments between a series of parasite clones have been conducted in
Chimpanzies. These studies have provided mechanistic and functional insights
into the biology of P. falciparum parasites (Freitas-Junior et al., 2000; Jiang et al.,
2011; Samarakoon et al., 2011; Walliker et al., 1987). Nonetheless, var genes pose
a great challenge as over 60% are located in subtelomeric regions, where the
application of existing laboratory-based and informatics methods is limited.

Previous attempts to understand mechanisms of var diversity within a
genetic cross were focused on the DBL« region (Taylor et al., 2000a). Presence or
absence of hybridisation bands on a Southern blot probed with parental DBL«
amplicons to parental and five progeny clones was used to identify recombinant
var genes. The results revealed 24 non-parental bands in the five progeny, ~10
times more than the expected 2-3 events. However, most array hybridisation
based studies exclude markers in subtelomeric regions and hyper variable
multigene families to avoid potentially spurious results.

Recently, the 454 sequencing platform was used to study two progeny from
a genetic cross between HB3 and DD2 (Samarakoon et al., 2011). The study
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used a sliding window approach where a window of 15 SNPs was considered
to compute allele frequencies and assign genotypes to either parent. A total of
24 and 27 crossover events were reported for the two progeny. Although this
showed an increase from a previously reported number of 20 and 23 events
respectively, it was based on ~30% of the genome as it was not possible to
reliably call SNPs form the rest of the genome. Conversely, a total of 25 and 22
non-crossover events were reported for the two progeny. The results demon-
strate the value of a sequencing based approach to obtain higher resolution
recombination maps. However, var genes and other hyper-variable regions
were excluded.

In this chapter, five progeny from the original cross between 3D7 and HB3
parental clones (Walliker et al., 1987) were sequenced using Illumina’s GAII
platform to evaluate the rate of genome wide recombination events and distin-
guish large scale crossovers from non-cross over gene conversion events. Here,
I will explore applications of short read sequencing and the Illumina technology
in understanding mechanisms of var gene diversity.

4.2 Methods

4.2.1 Sample preparation and sequencing

Five clonal samples of the first genetic cross in P. falciparum between 3D7 and
HB3 isolates (Walliker et al., 1987) were obtained from Prof. Chris Newbold’s
laboratory in Oxford. According to Walliker and colleagues, a mixture of infec-
tive gametocytes from the two parental clones were fed to ~1500 mosquitoes
which were then used to infect a splenectomized chimpanzee through 500
mosquito bites and intravenous injection. Recombinant parasites were then
isolated from the infected chimpanzee and either cloned or passed through
Pyrimethamine treatment followed by cloning followed by genotyping to iden-
tify recombinant progeny. Five progeny of these cloned progeny and two
parental samples were prepared for sequencing on the Illumina GAII plat-
form according to the PCR-free paired-end protocol (Kozarewa et al., 2009) as
described in Chapter 2.
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4.2.2 Reference genomes
4.2.2.1 Whole genome reference genomes

Reference genomes for the two parental clones 3D7 (version 3) and HB3 were
obtained from geneDB (http://www.genedb.org) and the Broad Institute
(http://www.broadinstitute.org) respectively. The HB3 genome is still
in thousands of contigs that are joined to create larger sequence fragments (also
called Supercontigs). Supercontigs are used to represent the state of a genome
assembly that is highly fragmented and potentially incomplete. In order to
obtain a better representation for HB3, supercontigs were ordered against the
3D7 genome using ABACAS (Assefa et al., 2009) as described in Chapter 2.

Draft genomes are particularly prone to inaccuracies that could be intro-
duced at any point during the sequencing, assembly or scaffolding stages of
the genome finishing process. Iterative Correction Of Reference Nucleotides
(ICORN) (Otto et al., 2010a) was developed by Thomas Otto in our group to
make use of the high sequence coverage of second generation sequencing plat-
forms in order to detect and correct errors in a reference genome. The process
involves iteratively aligning short reads to the reference genome and inspecting
aligned reads with mismatches to detect high quality discrepancies. If the
majority of the reads supports such discrepancies, a correction step is applied to
replace the reference nucleotide by the base called from the reads. Subsequent
mapping steps are used for further quality control based on the coverage of
mapped reads. ICORN was used to generate a new reference genome for HB3
by iteratively correcting errors using Illumina reads of the HB3 isolate. Illumina
reads (76 bp; paired-end reads; coverage ~100X) were obtained from Prof.
Dominic Kwiatkowski’s group at the Sanger Institute. A combined reference
genome of the two parents was generated by concatenating sequences from the
3D7 genome and the new HB3 reference.

4.2.2.2 Var gene sequences of 3D7 and HB3 genomes

Var genes of 3D7 were obtained from the latest annotation of version 3 of
the genome (http://www.genedb.orq). A total of 93 genes were obtained
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including pseudo-genes and truncated Exon 2 genes. In addition to the var
genes found from the annotation, HB3 genes were scanned for known conserved
var motifs that were obtained from three lab adapted P. falciparum samples 3D7,
HB3 and IT as described in Chapter 3. A multi-FASTA file of a combined var
reference was generated by concatenating var genes from the two parents (93
from 3D7 and 97 from HB3).

4.2.3 Alignment and processing of sequence data

Raw reads were aligned to individual parental genomes and combined refer-
ences (combined reference genome and combined var reference) using SMALT
(-1 500 -r 10 -x -k 13 -s 6). SMALT is a fast and memory-efficient alignment
tool that uses a traditional k-mer-based hashing method to index the reference
genome. Reads that have a match to indices will then be aligned using a Smith-
Waterman algorithm to ensure a highly sensitive output. In our experience,
SMALT produces better alignment for P. falciparum genomes where the biased
A+T content is a major challenge for short read aligners. Although the under-
lying principle is similar to its predecessor SSAHA (Ning et al., 2001), SMALT
is more accurate, faster and user friendly. Special emphasis was given to the
parameter x in order to map individual reads of a read pair to their best posi-
tions irrespective of the insert size between them. This property is unique to
SMALT and important in identifying recombination breakpoints. The default
option and other aligners will force read pairs to be aligned within the read-pair
constraint leading to incorect alignment especially around breakpoints. Raw
alignment results were stored in the Sequence Alignment/Map (SAM/BAM)
format and processed using Samtools (version 0.1.18) (Li et al., 2009a).

Read pairs that did not align to a single position were excluded due to
the difficulty of reliably determining where they should be placed. The Pi-
card Suite from the Broad Institute (http://www.broadinstitute.orq)
was used to mark duplicate reads in the BAM file that were subsequently ex-
cluded from further analysis. Samtool’s mpileup command and BCF tools
(http://www.vcftools.sourceforge.net) were used for SNP calling
(samtools mpileup). SNPs were then filtered based on quality (Q> 30), number
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of reads calling the SNP on each strand (read-depth> 2) and position on the

genome (eg. SNPs in low complexity regions are less reliable).

4.2.4 Genome-wide scan for recombination breakpoints
4.24.1 Detecting homologous recombination using comparative SNP maps

In order to identity regions of the genome that are involved in a reciprocal
exchange (crossing-over), reads from the five progeny and the two parental
samples were independently aligned to 3D7 and HB3 genomes using SMALT
as described in the previous section. High quality SNPs (Q > 30) generated
from uniquely aligned reads were used to construct comparative SNP maps for
each chromosome.

First, parental chromosomes were aligned to each other using BLAST (blastn
-F F -m 8). The alignment output was then visualized in the Artemis Compar-
ision Tool (ACT) (Carver et al., 2005). SNP files of the progeny and parental
genomes were then uploaded to ACT using the Bamview utility (Carver et al.,
2010). Recombination breakpoints and regions of homologous exchange were
identified by visually inspecting these comparative maps for each chromo-
some. Regions of high and low SNP density were used to assign segments of
chromosomes to either the 3D7 or HB3 genotypes. Accumulation of SNPs on
one parent was expected to result in lack of SNPs on the other. Although this
approach provides a simple and effective way of detecting regions of interest,
it has major limitations in highly polymorphic regions, due to the difficulty
of reliably calling SNPs. Differentiating real signals from background noise is

therefore a major challenge in relying on visual inspection.

4.2.4.2 Usingsliding windows to detect crossover and non-crossover recom-

bination

In order to systematically identify breakpoints at a higher resolution and ac-
count for low complexity regions, a sliding window approach was developed.
In addition to SNPs used in the previous section, supplementary evidence

drawn from paired-end coverage of uniquely mapping reads was considered
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prior to assigning genotypes.

Sliding windows of various sizes were analysed to assign regions of the
genome to either 3D7 or HB3 based on the number of SNPs and proportion
of each window covered by read-pairs. The following sections outline the
approaches used to improve the signal to noise ratio while detecting recombi-

nation breakpoints.

Overlapping vs non-overlapping windows

Initially, non-overlapping sliding windows were considered to count SNPs and
compute average paired-end coverage values. However, non-overlapping win-
dows were found to underestimate breakpoints as described below (Figure 4.1).
Assuming a minimum number of three SNPs (shown as red arrows), windows
a and b (Figure 4.1A) will not be considered as they have below the expected
number (two and one respectively). Conversely, window e of the overlapping
panel is able to capture all three SNPs (Figure 4.1B).

Improving signal-to-noise ratio for smaller window sizes

In order to improve the signal-to-noise ratio for small windows, it was necessary
to use a number of consecutive windows (1) instead of considering single
windows. The minimum number of such windows was determined by the
fragment size of the sequencing library (F) and the chosen window size (w). In
order to capture small gene conversion events using paired reads, the length of
the region covered by n windows (L) should not be greater than the fragment
size, F. Assuming the length of the slide (s) to be half of the window size, the

minimum number of windows could be obtained as follows:

s = % 4.1)
%(nﬂ) = L<F (4.2)
n o< 2Ly 43)
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Figure 4.1: Breakpoint detection using SNPs and paired end coverage. A).
If a minimum of three SNPs were required to determine breakpoints, non-
overlapping windows a, b and c are likely to miss genuine regions of recom-
bination and gene conversion. B). A sliding window approach overcomes
limitations of non-overlapping windows. The window e is able to capture a
region with three SNPs (red arrows) that would otherwise be missed by win-
dows a and b in the non-overlapping approach. w represents the size of the
window and s represent the sliding length. C). Genome-wide scans for coverage
drops are used to detect signal of recombination. However, it was necessary
to distinguish between genuine coverage drops (precise coverage drops) and
those with a gradual decrease in coverage. D). The ratio of slopes over two
regions length 50 bp and 100 bp was used to differentiate between precise and
gradual coverage drops. (See below for details).
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Gradient filter on coverage drops
While a decrease in coverage below the threshold could be an indication of a
break-point, it could also be a result of poor-mapping due to the low complexity
of the region in consideration. Distinguishing between precise and gradual
coverage drops (Figure 4.1C) in a systematic way was thus adopted to minimise
false positive calls. A filter based on differences in gradient (slope of the
coverage plot) was developed as described below.

Two windows of lengths w; (50 bp) and w, (100 bp) were arbitrarily defined
to the left of a given drop-point (Shown by the red arrows, Figure 4.1D). The x-
axis represents position on the genome, while the y-axis represents paired-read
coverage. The average mate pair coverage for windows w; and w, (i.e. c; and

cp); are represented by y; and y, on the y-axis of Figure 4.1D.

The slopes over windows w; and w, are defined as:

slope; = % 4.4)
1

slope, = % 4.5)
2

The ratio of the two slopes, rs is therefore:

slope;
rs =
slope;

w1
w1 Y2
1
= 2(= 4.6
) (4.6)
To determine whether a drop in coverage is gradual or precise, three possible

values are considered for y; and y;

1.y =1

e This represents the ideal case and shows no gradual drop in coverage
(Figure 4.1C).
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e Ratio of slopes (r5) =2

2. Y1 > Y2

e The second scenario represents cases where there is an increase in

coverage before the breakpoint.
e Such cases are also acceptable.

e Ratio of slopes (rs) > 2

3. y1 <2
e There is a gradual drop in coverage.
e Ratio of slopes (rg) < 2

e These events will be ignored.

Defining ambiguous regions and further quality filters

Ambiguous regions were defined as windows where both SNP count and cov-
erage are below the minimum cutoff of three and five respectively. Such regions
were grouped as non-unique (NU) or ambiguous and excluded from further
analyses. In addition, polymorphic and low quality SNPs (Q<30), SNPs that
have a strand bias (i.e. SNPs found on only one strand) and those common to

all five progeny were excluded.

Final choice of window size

After evaluating the number of breakpoints at various window sizes (the results
are shown in Figure 4.4), a window size of 20 kb was chosen to capture both
homologous and non-homologous recombination breakpoints. Average Paired
End Coverage (PEC), uniqueness (determined using a frequency count of k-
mers, k=30), and number of SNPs were computed over 20 kb windows (sliding
by 10 kb). Windows that have over three SNPs were assigned to the HB3 parent

and the boundaries were identified as break-points. Average PEC of above 5
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was used to decide whether windows with less than three SNPs belong to the

3D7 parent or grouped as ambiguous (non-unique).

4.2.4.3 Detection and filtering of breakpoints in var genes

Initially, the iterative de novo assembly approach developed in Chapter 3 was
applied with the aim of obtaining full length var genes for the five progeny.
However, it was not possible to generate valid contigs due to the poor quality
of raw data and the short read length (54 bp). The following sections describe
alternative methods used to detect breakpoints in var genes.

Visual inspection

BAMview (Carver et al., 2010) was used to visualise coverage of uniquely and
perfectly mapping read-pairs over parental var genes. Observed coverage plots
were compared to expected patterns of recombination (Figure 4.2).

Mapping based detection of breakpoints

Raw reads were aligned to the combined var reference using SMALT and BWA
to obtain a mapping output that contains uniquely and non-uniquely aligning
reads respectively. The BAM files from both aligners were further processed
to look for read pairs that map to different var genes on the same or different
parents. However, the BWA output was used for the final analysis as the strict
alignment criteria used in the SMALT mapping was found to exclude reads that
align to homologous regions. Although the BWA mapping ensured inclusion of
reads that are genuinely located on the var genes, the short read length (54 bp)
makes it difficult to avoid spurious alignment of reads. Genes were therefore
identified as potentially recombinant if they were bridged by a minimum of 50
read pairs. Initially, this cutoff may seem too high, however, it was chosen to
account for the effect of spurious alignments. De novo assembly of reads that
aligned to the genes bridged by paired-reads was then used to reconstruct var
genes of the progeny and validate events (velvet v.1.2.03, (Zerbino and Birney,
2008)). Finally, the new contigs were ordered using ABACAS (Assefa et al.,
2009) against parental genes and manually checked for formation of a valid var



4.2 Methods

103

Var gene from 3D7 Var gene from HB3
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Expected PEC pattern over a 3D7
var gene inherited by progeny

Expected PEC pattern over a 3D7
var gene absent from progeny

Expected PEC pattern over a 3D7 var gene
for a recombinant progeny var gene
(gene conversion)

Expected PEC pattern over a 3D7 var gene
for a recombinant progeny var gene
(cross over with breakpoint on exon 1)

Figure 4.2: Patterns of Paired end coverage (PEC) over a 3D7 var gene
with/without recombination. A). Parental var genes from the 3D7 and HB3 are
represented in blue and red respectively. B). PEC over a 3D7 var gene suggests
that the progeny had inherited the gene from the 3D7 parent. C). Conversely,
lack of coverage may suggest that the 3D7 var gene was not inherited by the
progeny. D and E show potential signals of recombination in the form of gene
conversion and crossing over respectively. The drop in coverage on the first
exon is expected to extend to the left for kb or Mb of sequence to establish a
crossing-over event.
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molecule.

4.3 Results

4.3.1 Sequence data and mapping to reference genomes

Five progeny obtained from the first genetic cross in P. falciparum between 3D7
and HB3 parental clones were sequenced using the Illumina GAII platform
to a depth of 60- to 80-fold (paired reads of length of 54 bp; expected insert
size of 200 bp). Raw reads were aligned to the two parental genomes and a
combined reference genome. The 3D7 genome is the reference isolate (Gardner
et al., 2002) with near-perfect base accuracy while HB3 is still highly fragmented
and incomplete. A total of 93 and 47 genes were annotated as var (including
pseudogenes and truncated exons) in 3D7 and HB3 respectively. Additional 50
genes were identified for HB3 using conserved var motifs resulting in 97 var
genes for HB3.

During the initial whole genome analysis, reads that aligned to multiple
positions were excluded, resulting in 34 to 60% of paired-reads mapping to
the 3D7 parent (Table 4.1). The number of reads aligned to the HB3 reference
was lower (26 to 52%) compared to 3D7 reflecting the poorer state of the HB3
reference rather than potential allelic bias. On the other hand, the reduction
in mapping against the combined reference is primarily attributed to the high

sequence similarity in the central regions of the parental genomes.

X1 X2 X3 X4 X5

Raw reads (x10°) 33.4 34.7 34.1 26.3 29.2
% Mapped [52,46,26]* 39,29,22 47,3821 68,58,29 61,52,30

% Mapped in pairs 44,3923 34,2620 42,34,19 60,5227 52,46,27
Read length 54 54 54 54 54
Original ID X33 XP8 X10 X4 XP2

*[3D7 HB3,Combined reference]

Table 4.1: Raw reads and mapping statistics to 3D7, HB3 and combined refer-
ence genomes. X1, X2, X3, X4 and X5 represent the five progeny.
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4.3.2 Detecting genome wide crossover events
4.3.2.1 Visual identification

Initially, high quality SNPs (excluding SNPs with a quality score of below 30
and SNPs that were identified as heterozygous) generated by aligning progeny
reads to the 3D7 parent were visualised using bamview. Figure 4.3 shows SNP

views of the five progeny for chromosomes 1-5.
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Figure 4.3: Visualising SNPs of the five progeny using the 3D7 parent as a
reference. Here, SNPs are shown for the chromosomes 1 to 5. The quality of
each SNP is reflected by the intensity of the red bars. The white horizontal
blocks represent regions where no SNPs are called.

Although the red bars represented regions of chromosomes that were in-
herited from the HB3 parent, the white regions could either be inherited from
the 3D7 parent or were ambiguous (i.e. non unique regions where reads could

not be reliably aligned). In order to address this limitation, additional informa-
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tion obtained from the reciprocal alignment (i.e. aligning reads from the five
progeny to the HB3 reference) was used. In addition, Illumina reads of the 3D7
and HB3 clones were aligned to the 3D7 and HB3 reference genomes and used
as control samples.

Comparative chromosome maps were thus constructed using the five progeny
and both parental genomes (see Figure 4.4 for a map of Chromosome 3). A
visual analysis of such maps at a chromosome level revealed regions of high
(red bars) and low (white regions) SNP density. In most cases, regions of high
SNP density on the 3D7 parent were found to have a lower density against the
HB3 parent due to the reciprocal nature of homologous recombination during
a crossover. SNP dense areas of a progeny against the 3D7 parent could be
easily assigned to HB3 and vice versa. A total of 15 to 21 large-scale crossing
over events were detected in each progeny with an average of ~1 event per

chromosome (Table 4.2).

Chr X1 X2 X3 X4 X5

1 1 1 0 1 0
2 2 1 0 2 2
3 O 0 1 0 O
4 1 0 0 0 O
5 1 0 1 2 2
6 3 0 1 1 O
7 1 2 1 1 0
8 2 0 1 2 O
9 o 0 1 1 3
10 3 3 1 2 0
11 2 2 2 3 3
12 2 2 0 0 1
13 2 0 3 1 2
14 1 4 3 2 5
Total 21 15 15 18 18

Table 4.2: Number of cross-over events per chromosome. Large scale cross over
events were detected using a visual inspection of comparative chromosome
maps as shown in Figure 4.4.

Although initially the comparative chromosome maps as shown in Figure

4.4 may appear to clearly identify breakpoints, the white regions are still highly
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Figure 4.4: Comparative SNP-map of Chromosome 3: The top and bottom
panels show SNPs called from progeny reads against Chromosome 3 of 3D7 and
HB3 genomes respectively. The middle panel shows an Artemis Comparison
Tool (ACT) view of synteny blocks (red lines) between the two chromosomes
(generated by aligning the two chromosomes using blastn -F F -m 8). Copies of
chromosome 3 in progeny X1, X4 and X5 are inherited from HB3; in progeny
X2 it is inherited from 3D7; and in progeny X3, chromosome 3 is a result of a
cross-over event. Although this figure looks cleaner compared to Figure 4.3 and
the informatics approach described in the next section (Figure 4.6), assigning
genotypes to the ‘white’ regions remains to be a challenge as they could either
be from the 3D7 parent or non-unique regions.
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ambiguous as they represent either the 3D7 genotype or non-unique regions.
An informatic approach was therefore developed to merge the evidence from
SNPs, paired-read coverage and reciprocal chromosome maps in order to detect

large-scale crossover events as well as smaller gene conversion events.

4.3.2.2 Informatic identification

Genome-wide breakpoints were identified using a combination of high quality
SNPs and paired-end coverage over overlapping sliding windows on the 3D7
genome. One aim of this experiment was to see if the shape of the distribution
could be used to differentiate false positives from real events. The number of
breakpoints detected was a function of window size and dropped from ~500 to
~14 per progeny with an increase in window size from 10 kb to 300 kb (Figure
4.5). The right tailed distribution was indicative of small scale gene conversion
events (left tail) and the large scale crossover events (right tail). Although
smaller window sizes (< 20 kb) may provide a better resolution on the number
and position of breakpoints, it was not possible to reliably assign genotypes
mainly due to the poor data quality.

A window size of 20 kb was thus chosen to visualise patterns of recombina-

tion and gene conversion events across the 14 chromosomes (Figure 4.6)
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Figure 4.5: Genome wide breakpoints per window size. Breakpoints detected
at larger window sizes were comparable with results of the visual identification.



| ==
>

IR E W T TN T T - IR T TR T T ST N -
R | | I ! e e - 2| ¢ s | SRR |1 NI N N
N BRIE IR D . LM TR b M T R e

MEDST RonoeeerRogEReln AR e B USRI RIRRITE (Wi T .

..
=
=
-
=

5 g ||
=

@
&y ||
= w
-'.IJ|

I T - i o 1 Ji8 L. g I 1 JiH

. IS B TR T D T NN SEEE

T I _hMmie 4 R T e

oo RRimmm . L ek I E] -

& | [ SEEN . . (AN WETEE

L_LE A LB AR

T 1 L} ] T 1] 1] L] Ll 1] ] 1]
D+ a0 PaeDE Ja0fl O} 1w+D6 Jae0i Ja=08 O+ (10 1ae e 2w+08 T O

Chremasoms: Chromossms Chromoscms

X4 X

N - WU | 1 |

M o T TTETEET TTETTENTEY T 07 O

ecoe ot I N ] .-

T T [ EH IEEE T S !

[ IR IIET W . - e

L i N . ]

ITETE 1T - e

L1 i

b RO BT (7% e

1 I m

e L e IR <L

CCERITTT o MBS BITIEOEE Sl

10N mim - BBl e

ETET o

T T T T T T T T
Da+00 A0 Pa=08 Ja0l [ B i) 1e+08 Thawilil Ja=08

Chmematama [l TR R TR

Figure 4.6: Breakpoints per chromosome at a window size of 20 kb (sliding by 10 kb) for the five progeny X1 to X5:

Blue blocks show regions of chromosomes that were inherited from the 3D7 parent; red blocks show regions that

were inherited from the HB3 parent; black regions represent non-unique (ambiguous) regions. Smaller window E
sizes provided a better resolution to identify large scale recombination events as well as potential non-crossover

events.
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Breakpoints detected at higher window sizes of ~300 kb (Figure 4.6) were
comparable to crossover events identified using a visual inspection of chro-
mosome maps (Table 4.2). However, the numbers were not identical as the
informatics identification included additional filtering and was done using slid-
ing windows. Non-unique regions were also separately identified making the
informatics approach more reliable instead of immediately assigning regions of
low SNP density to the 3D7 parent. A smaller window size of 20 kb (sliding by
10 kb) was used to gain a better resolution of both crossover and putative gene
conversion events (Figure 4.6).

Fewer breakpoints were observed in X2(183) compared to other progeny
(X1 =563, X3 = 478, X4 = 568, X5 = 465) due to lower read mapping (Table
4.1), which resulted in a larger proportion of non-unique regions. Further
analysis of breakpoints at a window size of 20 kb revealed that most of the
breakpoints (~51%) were unique to one progeny compared to breakpoints
shared by two (~28%), three (~18%) and four (~3%) progeny. After excluding 7
breakpoints that were common to all, a total of 1,304 breakpoints were identified
of which 270 were found in three or four of the five progeny.

In order to detect biases in inheritance, the proportion of the progeny
genome assigned to each parent was analysed (Figure 4.7). The average inheri-
tance over the progeny (Figure 4.7F and G) shows that chromosomes 5, 7 and 12
were predominantly inherited from 3D7 whereas the majority of chromosomes
2,6, 8 and 9 came from HB3.

4.3.3 Signature of recombination in var genes

This section focuses on identifying crossovers and gene conversion events in
var genes. As described previously, approaches based on read coverage and
SNPs have a limited application in highly polymorphic regions such as var
genes. Here, both a visual inspection and informatics approaches of detecting
breakpoints are explored.
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Figure 4.7: Per-chromosome inheritance patterns for each progeny and aver-
age inheritance profiles with / without progeny 2 to see the effect of poor
quality data on the results. Blue and red blocks represent the proportion of
chromosomes inherited from the 3D7 and HB3 parents respectively. Yellow
bars represent regions of chromosomes that could not be reliably assigned to
either parent.
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4.3.3.1 Visual inspection of paired-read coverage

Firstly, BAM files of the five progeny were visualised and ambiguous patterns
such as those characterised by lack of uniqueness and loss of coverage in all
five progeny were excluded. Paired end coverage (PEC) plots for each var gene
of the 3D7 genome were compared to expected patterns of recombination and
gene conversion as shown in Figure 4.2. Regions of a gene that exhibited a
clear loss of PEC were identified as breakpoints. Ideally, loss of PEC around a
breakpoint is accompanied by an increased proportion of orphaned reads i.e.
reads whose mates map to a different gene. Mates of orphaned reads were then
investigated to find other genes that were involved in forming the recombinant
in the progeny (Figure 4.8).

Although detecting regions of higher orphaned read coverage could be used
to identify potential signature of recombination (Figure 4.8A), flanking regions
of breakpoints often have higher levels of homology with donor and acceptor
regions. Such homology, however essential to initiate recombination, may result
in reads that align to multiple locations. It was therefore not possible to use this
test in a genome-wide context. A closer look at read coverage over var genes in
the 3D7 parent revealed that 24-50% of the genes were inherited from the 3D7
parent (Figure 4.9, Table 4.3).

A total of four genes in two progeny fulfilled both criterion i.e. loss of PEC
and presence of unique orphaned reads that span two different genes (Table
4.3). The four genes with non-parental patterns of coverage were located on
opposite ends of chromosomes one (PFA0005w, PFA0765c) and two (PFB1055c,
PFB0010w) (Figure 4.10) in close proximity to telomeric-associated repetitive ele-
ments (TAREs). All four genes were of the group Type A, as they are transcribed
away from the telomeres.

A detailed investigation of reads and their mates that mapped to these genes
revealed that sequence blocks from two parental var genes were ordered to

generate new genes in the progeny (Figures 4.11 and 4.12).
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Figure 4.8: Paired and Orphaned read coverage over 3D7 var genes. A) Cov-
erage pattern on progeny 5 shows a drop in PEC accompanied by an increase
in orphaned read coverage indicating signatures of recombination for a gene
located on Chromosome 1 of 3D7 (PFA005w). B). Coverage over a chromosome
4 var gene, PFD0005. The paired end coverage plot for progeny 3 (X3) indicated
that PFD0005w was inherited from the 3D7 parent. Lack of coverage from other
progeny may suggest that the gene was inherited from HB3 for progeny X1, X2,
X4 and X5. No evidence of recombination is shown from the coverage plots.
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Figure 4.9: Chromosome view of var genes for progeny 4 and 5. The majority
of var genes were inherited from either the 3D7 (shown in blue) or HB3 (shown
in red) parents. The var genes on chromosomes 1 and 2 were involved in a
non-homologous recombination (gene conversion) as indicated by the green
bars. The results are consistent with the crossover data shown in Figure 4.6.
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Var gene ID chr. X1 X2 X3 X4 X5
PFA0005w 1 3D7 3D7 HB3 3D7 GC
PFA0765¢ 1 HB3  HB3 HB3 GC HB3
PFB0010w 2 HB3  HB3 HB3 GC HB3
PFB0020c 2 HB3  HB3 HB3 HB3  HB3
PFB0045¢ 2 HB3  HB3 HB3 HB3  HB3
PFB0974c 2 HB3 3D7 HB3 HB3 3D7
PFB0975¢ 2 HB3 HB3 HB3 HB3 HB3
PFB1025¢ 2 HB3 HB3 HB3 HB3 HB3
PFB1045w 2 HB3 3D7 HB3 HB3 3D7
PFB1055¢ 2 HB3 3D7 HB3 HB3 GC
PFC0005w 3 HB3 3D7 HB3 HB3 HB3
PEC1120c 3 HB3 HB3 HB3 HB3 HB3
PFD0005w 4 HB3 HB3 3D7 HB3 HB3
PFD0020c 4 HB3 HB3 3D7 HB3 HB3
PFD0615¢ 4 HB3 HB3 3D7 HB3 HB3
PFD0625¢ 4 HB3 HB3 3D7 HB3 HB3
PFD0630c 4 HB3  HB3 3D7 HB3  HB3
PFD0635¢ 4 HB3  HB3 3D7 HB3  HB3
PFD0995¢ 4 HB3  HB3 3D7 HB3  HB3
PFD1000c 4 HB3  HB3 HB3 HB3  HB3
PFD1005¢ 4 HB3  HB3 3D7 HB3  HB3
PFD1015¢ 4 HB3  HB3 3D7 HB3  HB3
PFD1235w 4 HB3  HB3 HB3 HB3  HB3
PFD1254c 4 3D7 HB3 3D7 HB3 HB3
PFE0005w 5 HB3 3D7 3D7 HB3 HB3
PFE1640w 5 3D7 3D7 HB3 HB3 HB3
PFF0010w 6 HB3 HB3 3D7 HB3 HB3
PFF0030c 6 HB3 HB3 3D7 HB3 HB3
PFF0845¢ 6 HB3 HB3 HB3 HB3 HB3
PFF1580c 6 3D7 HB3 HB3 3D7 HB3
PFF1595¢ 6 3D7 HB3 HB3 3D7 HB3
MAL7P1.212 7 HB3 HB3 HB3 HB3 HB3
PF07.0048 7 HB3 3D7 HB3 3D7 3D7
PF07_0049 7 HB3 3D7 HB3 3D7 3D7
MAL7P1.50 7 HB3 3D7 HB3 3D7 3D7
PF07_0050 7 HB3 3D7 HB3 3D7 3D7
PF07_0051 7 HB3 3D7 HB3 3D7 3D7
MAL7P1.55 7 HB3 3D7 HB3 3D7 3D7
MAL7P1.56 7 HB3 3D7 HB3 3D7 3D7
MAL7P1.187 7 3D7 3D7 3D7 3D7 3D7
PF08.0142 8 HB3 HB3 3D7 HB3 HB3
PF08_0141 8 HB3 HB3 3D7 HB3 HB3
PF08_0140 8 HB3 HB3 3D7 HB3 HB3
PF08.0107 8 HB3 HB3 3D7 HB3 HB3
PF08.0106 8 HB3 HB3 3D7 HB3 HB3
PF08.0103 8 HB3 HB3 3D7 HB3 HB3
MALS8P1.207 8 HB3 HB3 HB3 HB3 HB3
MALS8P1.220 8 HB3 3D7 HB3 HB3 3D7
PFI0005w 9 HB3 HB3 3D7 3D7 3D7
PFI1820w 9 HB3 HB3 HB3 HB3 HB3
PFI1830¢c 9 HB3  HB3 HB3 HB3  HB3
PF10-0001 10 HB3 3D7 HB3 HB3 3D7
PF10_0406 10 3D7 HB3 3D7 HB3 3D7
PF11.0007 11 3D7 3D7 HB3 HB3  HB3
PF11.0008 11 3D7 3D7 HB3 HB3  HB3
PF11.0521 11 3D7 3D7 HB3 3D7 3D7
PFL0005w 12 3D7 3D7 3D7 3D7 3D7
PFL0020w 12 3D7 3D7 3D7 3D7 3D7
PFL0030c 12 3D7 3D7 3D7 3D7 3D7
PFL0935¢ 12 HB3 3D7 3D7 3D7 3D7
PFL0940c 12 HB3 3D7 3D7 3D7 3D7
PFL0947¢ 12 HB3 3D7 3D7 3D7 3D7
PFL1950w 12 HB3 3D7 3D7 3D7 3D7
PFL1955w 12 HB3 3D7 3D7 3D7 3D7
PFL1960w 12 HB3 3D7 3D7 3D7 3D7
PFL1970w 12 HB3 3D7 3D7 3D7 3D7
PFL2665¢ 12 3D7 3D7 3D7 3D7 HB3
MALI13P1.1 13 3D7 3D7 HB3 HB3 HB3
MAL13.0003 13 3D7 3D7 HB3 HB3  HB3
MAL13P1.356 13 3D7 3D7 3D7 3D7 3D7
PF14.0001 14 HB3 3D7 3D7 3D7 HB3

Table 4.3: Assigning var genes of the progeny to either the 3D7 or HB3 parent
based on a visual inspection of paired read coverage. Four genes that were

involved in a non-reciprocal recombination event were shown as GC.
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Figure 4.10: Subtelomeric var genes involved in ectopic recombination in
progeny 4 and 5. Var genes on chromosomes 1 and 2 of the 3D7 parent showed
evidence of a non-homologous recombination. The four genes were found to

be of the group Type A.
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Figure 4.11: Evidence of gene conversion in progeny 4 (X4) from paired end coverage analysis. Coverage of paired
reads is represented by a pileup of reads (blue and green stacks). A new var gene was formed by acquiring small
blocks (1 to 4) from two genes on chromosomes 1 (PFA(0765c) and 2 (PFB0019w). The upstream region and first half

of Exon 1 was inherited from PFB0019w as shown by the increase in coverage over block 1 (red) on chromosome 2.

Similarly, alternating blocks inherited from the two genes constituted the remaining regions of the new gene.
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Figure 4.12: Evidence of gene conversion in progeny 5 (X5) from paired end coverage analysis. Description as
above (Figure 4.11). Here, six alternating blocks from two var genes on chromosomes 1 and 2 of the 3D7 parent

were used to generate a new var gene.
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4.3.3.2 Reads mapping and de novo assembly to detect recombination in

oar genes

In order to systematically identify recombination breakpoints in var genes,
progeny reads were aligned to a combined var reference (i.e. a multi-FASTA
file containing var genes from both parents) allowing for a random placement
of non-unique reads to one of the matching positions. Reads from the 3D7
parent were also aligned to the combined var reference and used as controls
to detect false positive results. In addition to the previously identified two
events: PFA0005w X PFB1055c and PFA0765¢ X PFBO010w (Table 4.3), a number
of putative recombination events were detected (Table 4.4) by looking for read
pairs that bridge two var genes of the same or different parent. Central var gene
clusters on chromosomes 4 and 12 were also found in the putative list.

Events found in all or most of the progeny as well as those found in the
3D7 control sample were excluded, as they are likely to be caused by regions of
high sequence similarity between var genes. The remaining events were further
evaluated using de novo assembly of raw reads that align to both genes. The
two events previously identified in progeny X4 and X5 were confirmed by de
novo assembly of short reads (Figures 4.13 and 4.14). Lack of evidence from the
control samples and formation of contigs with long open reading frames prove
that the events are genuine.

The two events previously identified in progeny X4 and X5 (Figures 4.11 and
4.12) were confirmed by de novo assembly of short reads as shown in Figures
4.13 and 4.14. Lack of evidence from the control samples and formation of
contigs with long open reading frames prove that the events are genuine. Both
cases represent non-allelic gene conversions between telomeric var genes of
chromosomes one and two of the 3D7 parent. Recombinant var genes were
made of four to six alternating sequence blocks obtained from the parental genes.
Block sizes as short as ~200 bp were detected in both events. It was however
not possible to determine whether these events were mieotic or mitotic as the
parental clones underwent both sexual and asexual development stages. Gene
conversion events could thus be a result of mieotic or mitotic non-homologous

recombination exchanges.
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Figure 4.13: De novo assembly of reads that map to PFA0765¢c and PFB0010w in
progeny 4 (X4). The top panel shows sequences of the two genes PFA0765¢c and
PFB0010w in the forward strand. The three frames of the forward strand are
shown where black lines indicate stop codons and long white regions indicate
open reading frames. The bottom panel shows four contigs that were generated
by the de novo assembly of reads that mapped to PFA0765c and PFB0010w. The
red and blue bars indicate matches between sequences from the top and bottom
panels (blue bars for reverse complement matches).
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Figure 4.14: De novo assembly of reads that map to PFA0005w and PFB1055c in
progeny 5 (X5). See description for Figure 4.13
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Gene 1 Gene2 X1 X2 X3 X4 X5 3D7
PFA0005w PFB1055c - - - - 3295 -
PFA0765c PFB0010w - - - 1071 - -
PFC0115c¢ PFD1025w 87 97 - 92 84 -
PFD0140w PFD0615¢ - - 216 - - -
PFD0615¢ PFD0625¢ - - 217 - - -
PFD0625¢c  PFHG_02419 - - 302 - - -
PFD0630c ~ PFHG_02419 - - 214 - - -
PFD0635¢c  PFHG.02419 - - 93 - - -
PFD0655w PFD0995c - - 69 - - -
PFD0995¢ PFD1015¢ - - 129 - - -
PFD1000c PFD1015¢ - - 122 - - -
PFD1005¢ PFD1015¢ - - 493 - - -
PFD1235w PFL1955w - 62 - - - -
PFF1580c PFF1595¢ - - - 171 - -
PF08.0107  PFHG_02419 - - 77 - - -
PFLOOOSw  PFHG.04770 71 69 - - 58 -
PFLO00Sw PFLO020w 240 - - - 64 -

PFL1955w PFL1960w - 483 724 379 404 395
PFL1960w  PFHG.02419 - 321 480 228 325 -

PFL1960w PFL1970w - 540 69 306 265 136
MAL13P1.1 PF13.0003 83 70 . - - -
PF13.0003 PFHG.03234 56 - - - - -
PFHG_02272 PFHG_04910 - 68 - - - -
PFHG_02429 PFHG_ 04081 94 80 - - - -
PFHG_03234 PFHG.05483 - 125 - - - -
PFHG_03671 PFHG_05483 - 406 - 215 - -
PFHG. 03839 PFHG_03999 244 138 - 163 253 -
PFHG_03839 PFHG_04859 242 128 - 206 269 -
PFHG_03999 PFHG_04859 236 204 - 300 260 -
PFHG_04081 PFHG_04368 160 180 - 109 - -
PFHG_04081 PFHG_04928 105 130 - 101 82 -
PFHG_05483 PFHG_05502 - 86 . - - -

Table 4.4: Genes bridged by mate-pairs
different genes (mismatch < 2). Reads from the 3D7 parent were also aligned
to var parental genes and used as a control. Gene-pairs that were bridged by
mate-pairs in all progeny or in the 3D7 were thus excluded.Gene pairs shown
in boldface were recombinant genes that were confirmed by de novo assembly
as shown in Figure 4.13. Values shown in boldface represent gene pairs that
were bridged by a minimum of 50 read-pairs and not common to all progeny.

: Number of reads where mates map to

The remaining potential recombination events shown in Table 4.4 could
not be confirmed using de novo assembly due to the formation of two or more

separate contigs representing individual genes instead of a recombinant gene.
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4.4 Discussion

This chapter explored applications of the Illumina sequencing technology to
investigate the mechanisms used by parasites to generate diversity in var genes.
The following conclusions summarise the results of sequence analysis on five
progeny from a genetic cross experiment between the 3D7 and HB3 parental

clones.

Conclusion 1: Despite challenges of using very short (54 bp) reads, it was possible to
obtain a global view of recombination, even in subtelomeric regions.

The main challenge in using short reads for progeny sequence analysis was
mappability. On average, the number of reads mapped to individual parental
genomes is expected to be ~50% of the total. However, variation from the
expected value was observed due to recombination events that favor over-
representation of one parent. The lowest percentage of read mapping to the
combined reference genome was primarily due to the high sequence identity
between core regions of parental chromosomes. A lower proportion of reads
aligned to the HB3 reference (26 to 52%) compared to 3D7 potentially due to
the incomplete nature of the genome.

Similar results were obtained from the two complementary methods of
detecting genome wide crossover events (15 to 21 events). These observations
are in agreement with the expected number of meiotic crossover events and
previous reports (Jiang et al., 2011). An approach based on detecting SNP dense
areas of a progeny may provide a quick overview of large-scale breakpoints.
However, shorter fragments of low SNP density may also be caused by lack
of coverage as a result of low complexity and the difficulty of reliably calling
variants. It is therefore crucial to understand the genomic context of the region
and decide whether a region is ambiguous prior to assigning genotypes. While
some of such ambiguous regions may be common to all progeny due to inherent
sequence features of the genomes, others are specific to a given sample as a
result of the issues with the library preparation and the sequencing.

Despite the advantages of using short reads to obtain a nucleotide level
resolution of breakpoints, notable limitations were observed in detecting sub-

telomeric breakpoints with a read length of 54 bp. The synteny between core
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regions of 3D7 and HB3 allows reads to be aligned to either parent with mis-
matches (SNPs) that could be analysed to identify regions inherited from each
parent. This approach was found to be adequate for detection of larger crossing
over events. However, due to high polymorphism in var genes and subtelom-
eres, aligning short reads within tolerable allowance of mismatches was not
possible. A different approach was thus required to detect smaller gene con-
version events. For conversion tracts larger than the fragment size, following
mates of reads that map near breakpoints was a better way of identifying donor
and acceptor regions. Longer reads and larger insert libraries will be needed
to reliably detect breakpoints as well as indels in subtelomeric regions where
recombination rate is ~10X higher than core regions of the genome (Taylor
et al., 2000c).

Conclusion 2: This chapter demonstrates the use of short-read sequencing to obtain a
detailed resolution of ectopic gene conversion and shuffling of sequence blocks employed
by parasites to generate new var genes (Figures 4.11 to 4.14)

In addition to chromosome level breakpoints, short reads were used to
identify segments of var genes that were inherited by each progeny. Regions of
high read coverage when aligned to the 3D7 genome represented segments of
the genome that were transferred to the progeny. Low (or zero) coverage on
the other hand may imply a genuine absence of those regions in the progeny,
implying they were inherited from the HB3 parent. However, lack of coverage
could also be a result of low-complexity and repeats that prevent short reads
from uniquely aligning in the subtelomeric regions where most var genes reside
(Gardner et al., 2002). Signatures of recombination within and between parental
var genes were thus detected using a combination of paired-end coverage
inspection and targeted mapping of reads.

Although ectopic gene conversion was reported as a potential mechanism of
generating new variants (Frank et al., 2008; Freitas-Junior et al., 2000), previous
approaches based on hybridisation of the DBLx domain offered a limited insight
on the extent of shuffling over the full length of genes.

Var genes that were involved in recombination via shuffling of sequence

blocks were identified in two of the five progeny on chromosomes 1 and 2 of the
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3D7 parent. The genes on Chromosome 1 were located adjacent to telomeric-
associated repetitive elements (TAREs), which may be involved in initiating
homologous recombination. This finding is consistent with previous studies
that associated repeats and low complexity regions with hot-spots and elevated
rates of recombination (Jiang et al., 2011). Random clustering of telomeres,
during both the sexual and asexual stages of the parasite, is believed to provide
a means for enhanced shuffling of sequence blocks in var genes (Freitas-Junior
et al., 2000).

The genes that were identified to be recombining were members of the
group Type A in both progeny. In addition, the genes were located on the
3D7 parent and between chromosomes 1 and 2. Recombination in var genes
is believed to occur within defined hierarchies, such that members of Type A
genes recombine more often with other type A than non-Type A genes (Bull
et al., 2008; Kraemer et al., 2007). Our findings are also consistent with this
observation, and also shed a new light on the extent of recombination via
shuffling of blocks. However, understanding mechanisms of such frequent
events (up to six recombining blocks were detected between two var genes in
progeny 5) at the molecular level needs further investigation.

Central var clusters are known to be involved in spontaneous recombination
(Deitsch et al., 1999), and may be ideal regions for gene conversion due to their
organisation and high sequence similarity. We thus expected to see central var
gene clusters in our putative list of recombinant genes (Table 4.4). However, it
was not possible to reliably confirm these recombination events due to limita-
tions imposed by the short read length. In addition, the fragment size (200-300
bp) was shorter than identical sequence fragments (repeated sequences) that
are characteristic of these genes as described in Chapter 2.

In terms of absolute numbers, fewer than expected non-parental var genes
were identified to be involved in recombination (only two of the progeny var
genes were confirmed to have signatures of recombination) compared to an
earlier study by Taylor and colleagues (Taylor et al., 2000a) that identified 24
events. The short read length (54 bp) and small fragment size of the library (200
bp) were major limiting factors. It was also not possible to de novo assemble var
genes using approaches described in Chapter 3. Additional potential reasons
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include low complexity, high percent identity between parental genomes and

poor sequence quality resulting in unreliable read mapping.



Chapter 5

Assembly of var genes from clinical

samples

5.1 Introduction

The study of var genes especially in clinical samples taken directly from patients
will significantly improve our understanding of their diversity and evolutionary
history. Previous studies that involve sequence analysis have mainly looked at
diversity and expression of var genes on a limited number of clinical isolates.
A number of studies have also shown association of sequence features with
specific disease phenotypes (Ariey et al., 2001; Bull et al., 2005; Cham et al.,
2010; Falk et al., 2009; Jensen, 2004; Kaestli et al., 2004, 2006; Kalmbach et al.,
2010; Kirchgatter and Portilo, 2002; Kyriacou et al., 2006; Lavstsen et al., 2005;
Montgomery et al., 2007; Nielsen et al., 2002; Normark et al., 2007; Rottmann
et al., 2006).

However, all except two of the previous studies that used a sequence analysis
approach of var genes have focused on the DBLa region (Kraemer et al., 2007;
Rask et al., 2010). Although it was possible to accurately classify var genes into
existing groups and make associations with disease severity using sequences
taken from the DBLx domain, a large proportion of the var repertoire is still
excluded. In the first comparative study to use full length genes, Kraemer and
colleagues (Kraemer et al., 2007) analysed a near complete var repertoire of
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three culture-adapted samples 3D7, IT and HB3. While 3D7 has a complete
set of genes (i.e. the expected 60 protein coding genes), the other two had an
incomplete repertoire. The results confirmed the presence of extreme diversity
in var genes with only three genes (var1CSA, var2CSA and Type 3 var) showing
a higher degree of conservation in all the three genomes. The second study by
Rask and colleagues (Rask et al., 2010) used an additional four genomes (DD2,
PFCLIN, RAJ116 and IGH) to provide a new definition of domain boundaries
and identify recombination hotspots. A combination of phylogenetic and
iterative homology block detection methods was used to define 628 homology
blocks that could represent var genes with a better resolution than existing
domain boundaries. However, due to the limits on the number and diversity of
sequences used (311), these blocks may not accurately represent var genes in
natural populations.

Understanding the order of sequence blocks and mosaic domains is of
great importance. Recent studies have associated specific domain cassettes
(as defined by Rask and colleagues (Rask et al., 2010)) with disease severity
and a rosetting phenotype (Avril et al., 2012; Claessens et al., 2012; Lavstsen
et al., 2012). Such association studies may facilitate the discovery of important
antigens that could be used as potential vaccine targets for severe malaria.
Obtaining full-length sequence information on var genes may thus be a step
forward in such attempts. Moreover, lack of full-length information continues
to be a major roadblock in understanding var gene diversity.

The focus of this thesis was to develop a new approach for the assembly
of var genes from short reads of second generation sequencing platforms. As
described in previous chapters, assembly of var genes using existing tools
was not practical due to high polymorphism and the mosaic nature of var
genes (Chapter 2). An iterative assembly approach that takes advantage of the
inherent mosaicism in var genes was thus developed (Chapter 3) and evaluated
on culture-adapted and a small number of clinical samples (50 samples). Here,
the new approach is applied on a larger number of clinical samples.

Assembly of clinical samples adds another layer of complexity due to a
number of difficulties associated with the quality of the input DNA and raw

sequence data. Contamination with host DNA could result in a lower amount
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of starting material, and therefore low yield of sequence data. In addition, sys-
tematic errors and bias towards certain sequence features due to the sequencing
chemistry may affect data quality and result in reads with errors. Multiple
genotypes circulating in a single individual contain highly similar as well as
polymorphic haplotypes that affect the structure of the de Bruijn graph and
quality of the resulting assembly. Although some of the challenges are being
addressed by improvements in library production protocols used for sample
preparation and sequencing (Oyola et al., 2013), the effect of poor quality data
and uneven coverage still poses a unique challenge in assembly of var genes.
In this chapter, the iterative assembly approach described in Chapter 3 was
applied to a larger collection of clinical isolates consisting of 743 samples taken

from Africa, South East Asia and South America.
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5.2 Methods

5.2.1 Sequence data

Clinical samples of P. falciparum were obtained from the Plasmodium Genome
Variation (PGV) project at the Sanger Institutes malaria programme (www.
sanger.ac.uk/research/areas/malariaprogramme/). Methods of sam-
ple preparation and the sequencing technology have seen a significant improve-
ment over the last few years. Samples sequenced during the early days of the
project were especially of low yield and poor quality with shorter read lengths
of 37 and 54 bp. It was therefore decided to exclude samples that had a read
length of below 76 bp. Samples that were not prepared using the PCR-free
protocol (Chapter 2) were also excluded.

5.2.2 Initial Motifs and iterative assembly of clinical samples

The assembly work flow for a large number of clinical samples is illustrated in
Figure 5.1. As described in Chapter 3, a total of 50 clinical samples were assem-
bled for 20 iterations to evaluate the iterative assembly approach developed in
this thesis (Chapter 3).

To obtain the maximum number of seed motifs for the clinical sample
assembly, the assembly of the 50 samples was repeated for another iteration.
Initial motifs to assemble 743 samples were thus obtained from the 21st iteration
by translating contigs with the DBLa tag (var-contigs). Although the open
reading frame (ORF) that contains the DBL« tag could be used to identify the
correct reading frame, presence of frame-shifts meant some of the long DBL«
may be excluded. Var-contigs were thus translated in all the six frames to
generate the initial set of shared motifs. Once started with these motifs, the
assembly of the clinical samples was repeated for three iterations, with each
iteration involving sub-iterations of scaffolding and extension. Seed contigs
were generated by optimising k-mer sizes for the assembly in two categories. For
reads with a length of 76 bp, k-mer sizes of 51, 65 and 71 were used. For reads
of length 100 bp and above, an additional k-mer size of 81 was used. Assembly
results with different k-mer values were compared based on the number and
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N50 sizes of var-contigs. For each sample the k-mer value that resulted in the
highest number of contigs with DBL«x and the highest N50 value was chosen
to generate seed contigs. A final list of motifs (length=10 aa) was generated
from var-contigs of the third iteration by considering a single frame with the
longest Open Reading Frame (ORF) in either the forward or reverse strand. If
the longest frame does not contain the DBL« tag, ORFs longer than 300 aa from
the three frames on the strand of choice were chosen.

5.2.3 QC and filtering

Assembly quality was measured using the number of var-contigs, sum of var-
contigs, N50 and largest contig sizes. The number of var-contigs was used
as a measure of repertoire completeness for each assembled sample. Initially,
samples that had below 30 var-contigs were excluded as they were found to be
a result of low yield or poor quality sequence data. Samples with more than
70 var-contigs were defined as having multiple infections. Initially, these cutoff
values were determined based on the expected number of var genes (~60) from
previous studies on laboratory clones and clinical isolates. Additional quality
checks include comparing assembly statistics of var-contigs with expected
values from var genes of the reference genome 3D7. Using the method proposed
by Bull et al. (2007), var-contigs were grouped into one of the six groups. The
count of contigs in each group was compared with that of assembly results from
the 50 samples (Chapter 3) and the reference genome 3D7. The most reliable
method of checking assembly quality of var-contigs would be to compare with
var genes of the reference genome. However, as described in the previous
chapters, such approaches are not practical for the highly polymorphic var
gene family. One approach adopted in my thesis to overcome this limitation
was to look at ORFs instead of nucleotide sequences of contigs. In addition to
providing a better measure of contiguity, using ORFs could minimize the effect
of low complexity regions in introns and upstream and downstream regions of
var-contigs. ORFs with a minimum length of 300 aa were obtained from each
var-contig and stored as separate entries. For example, two ORFs of a var-contig

(VAR1) from Samplel were represented as follows:
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Figure 5.1: Iterative assembly work flow for var genes in clinical samples.
Processes of the three stages of the var assembly are shown in boxes with cyan,
blue and green backgrounds. Decisions on further iterations are made based on
the quality of var-contigs from the current iteration. Assembly results of N=743
clinical samples are presented in this chapter (i=3).
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Samplel_VAR1.ORF1
Samplel_VAR1.ORF2

The ratio of ORFs to var-contigs was used as a further quality control mea-
sure. Ideally, a full length var-contig should result in two ORFs representing
each exon. It is however expected to find one ORF as most var-contigs may only
capture the first exon. Introns and second exons are likely to cause ambiguities
due to the high A+T content, and therefore generate smaller contigs that do not

contain the DBLa domain.

5.2.4 Similarity between var-contigs

Similarity and relatedness of var-contig were analysed on three levels. Initially,
we intended to use short-motifs generated from var-contigs during the assem-
bly process. However, as the quality of contigs improved, it was possible to
use longer matches using Pmatch (for perfect matches) and BLAST (allowing

mismatches) as described below.

5.2.4.1 Pmatch analysis

Perfectly matching sequences were detected between any two var-contigs using
Pmatch (minimum length=14 aa). Pmatch is written in C (Richard Durbin,
Sanger Institute; unpublished) and rapidly identifies pairwise identical matches
given two multi-fasta files of amino acid sequences. Amino acid translations of
var-contigs were used as both query and subject for the pmatch analysis (i.e. all
against all matching).

Var-contigs were translated by choosing the longest ORF in the strand where
the DBLa tag was found. As mentioned in the previous section, if the longest
ORF did not contain the DBL« tag, ORFs above 300 amino acids on the three
frames of the chosen strand were concatenated. This method of detecting
ORFs by jumping across the three frames of the main strand (i.e. the strand
with DBLx) minimised the risk of missing ORFs due to frame shifts caused by
misassemblies. Although this approach may also introduce the possibility of

chimeric ORFs, the minimum length requirement of 300 amino acids was used
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to account for such effect. The output of Pmatch required up to ~250 Gb of
storage disc space for a single analysis. It was thus necessary to convert the
results to a simple motif-sharing format as defined in Chapter 3.

5.2.4.2 BLAST

Initially, nucleotide and amino acid BLAST (Altschul et al., 1990) databases of
all var-contigs were generated using formatdb. In order to speed up the matching
process, var-contigs of each sample were separately stored in a file and used as
query during the BLAST search (blastall -p blastp/blastn -e 0.001 -F F -m §). The

output was compressed (gzip -9) prior to storage for further analysis.

5.2.4.3 Defining similarity between var-contigs and repertoires

Mosaic blocks of var genes result in a fragmented alignment profile between var-
contigs. Similarity between two var-contigs was thus defined as a function of
the total number of positions matched (i.e. the proportion of identical positions
between the two var-contigs to the total length aligned). Similarity between var
repertories was then computed as the average of all pairwise similarity values.

Similarity between two var-contigs Vi and V; with n different blocks of

matching sequences m; ...m, is defined as:

Z*Zmi.
L1+L2’

5'01102 -

(5.1)

where m; is length of match i, i € [1,n];
and Ly L, are the full lengths of the two var contigs

5.2.5 Network analysis and clustering

Analysis of social networks was first used in var gene studies by Bull and
colleagues (Bull et al., 2008). It was shown to be a better approach to study
population structures and recombination hierarchies in the DBIla region than
the phylogenetic tree based approaches which were shown to be impractical
due to higher rates of recombination (Barry et al., 2007). The results of BLAST
matching between var-contigs were processed to generate a graph of connected
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var-contigs. The first set of samples that have a single infection (i.e. samples
that contain below 70 var-contigs) were analysed. A graph was constructed
by considering var-contigs as nodes. An edge between two nodes was added
to the graph if two contigs have a match that fulfills the minimum identity
and length requirements (eg. 99% and 1000 aa respectively for amino acid
networks shown in the results section). A pairwise similarity index for two
var-contigs was computed as described in the previous section. Each edge
was thus updated according to weights obtained from the pairwise similarity
values. These values range from 0 (no match) to 1 (two contigs are identical).
A customised script (blast2Gex f.pl) was written to convert BLAST output files
to the Graph Exchange XML Format (GEXF) (http://gexf.net/format/).
First developed at the Gephi project in 2007, the GEXF format is widely used in
representing a complex graph structure in terms of nodes and edges of a graph.
In addition, a number of attributes such as weight and colour of nodes could
be included in the graph file. Node colours were defined according to country
of origin. In addition to visualising clusters, the Markov Clustering Algorithm
(http://micans.org/mcl/) was used to generate clusters of var-contigs
that share identical sequence blocks (Inflation parameter was tested at I=0.2,
1.2, 2, 4 and 6; final choice=1.2).


http://gexf.net/format/
http://micans.org/mcl/

5.3 Results 137

5.3 Results

5.3.1 Samples and sequence data

A total of 725 samples passed the selection criteria (i.e. samples prepared using
PCR-free protocol and with a minimum read length 76 bp) at the beginning
of this analysis (Figure 5.2, Table 5.1). These samples represented 13 countries
from West Africa, East Africa, South East Asia and South America. The majority
of samples came from The Gambia, Ghana and Cambodia. An overview of
samples used in this chapter and their geographical origins are shown in Figure
5.2 and Table 5.1.

Figure 5.2: A global map of clinical samples used in this chapter. 725 samples
were obtained from 13 countries representing West Africa (WA), East Africa
(EA), South East Asia (SEA) and South America (SA). In addition to the 725
samples with known countries of origin, 18 samples from various countries
that became available during the course of the study were also included.

5.3.2 Initial Motifs

Assembly of the 50 clinical samples of Chapter 3 plus an additional iteration (10
countries; 21 iterations) resulted in a total of 10.7x10° motifs from var-contigs.
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These motifs were used to initiate the assembly process on the 743 samples
(Table 5.1).

5.3.3 Iterations and additional motifs

The initial set of motifs were generated using amino acid translations in all the
six frames. Although it was important to have a large number of motifs during
assembly in order to increase the efficiency of the iterative process, such a high
number is not required for the final analysis of shared motifs, as it will lead to
unnecessary redundancy and an inflated count of overlapping genes.

At the end of the third iteration, a final list of 3.5 x10° motifs (10 aa long
sequences as described in Chapter 3) were obtained from var-contigs using the
longest ORF with the DBL« tag. Compared to generating motifs from amino
acid translations of all the six frames, this approach reduced the number of
motifs by ~70%.

ID Country Region #samples
PA Gambia WA 168
PF Ghana WA 122
PM  Mali WA 32
PK Burkina Faso WA 3
PT Malawi EA 55
PC  Kenya EA 25
PE Tanzania EA 15
PR Bangladesh SEA 3
PD Thailand SEA 82
PH Cambodia SEA 191
PN  Papua New Guinea  SEA 7
PV Vietnam SEA 11
PP Peru SA 11
Others 18
Total 743

Table 5.1: Samples used for initial assembly of var genes in clinical samples. A
total of 743 samples were obtained from 13 countries as shown in Figure 5.1
(725 samples). Additional 18 samples from various countries became available
during the course of the project and were also included.
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5.3.4 Results of the initial assembly

Assembly results for the 743 samples were summarised by four commonly used
assembly metrics: sum of contigs, N50 size of contigs, number of contigs and
largest contig size (Figure 5.3). The variation observed in the quality of each
assembly is shown by the distribution of values for these four measures. The
sum and N50 of var-scaffolds show a wider distribution range reflecting the
poor quality assembly on the extreme left side of the distribution as well as
a mixture of genotypes (multiple infections) on the far right end of the distri-
bution. Conversely, the number of var-scaffolds and the largest scaffold size
were narrowly distributed with median values of ~60 and ~10 kb respectively,

reflecting a high quality assembly in terms of repertoire completeness.
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Figure 5.3: Assembly stats of the initial 743 samples. Green shades represent
all samples while dark red shades represent samples with above 30 var-contigs.
Sum of scaffolds, N50 and largest scaffold sizes were measured in base pairs
(bp). An additional summary of the four measures is shown in Table 5.2.
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In addition, summary of assembly results were shown by the range, mean
and median values of five assembly statistics (Table 5.2). Sum of var-contigs
was used as a measure of overall coverage of the var repertoire. The N50 and
number of var-contigs measure the contiguity and repertoire completeness of
var-contigs respectively. Mean values for the sum of var-contigs, N50 size and
number of var-contigs for the 743 samples (~351 kb, ~5 kb and 68 respectively)
revealed an overall highly representative assembly. The initial histogram plots
of all 743 samples were shown in green bars in Figure 5.3. A total of 647 samples
had above 30 var-contigs (i.e. 647 of the 725 samples of interest). The remaining
78 samples had a poor quality assembly with as few as one contig containing
the DBL« tag. The count of non-core reads was investigated to find a reason for
such fewer number of var-contigs in the 78 samples. Overall, there was a posi-
tive correlation between non-core read count and the four assembly measures
(R? = ~0.5; p<0.0001). The number of non-core reads was also noticeably low
for the 78 samples (Figure 5.4 E, F). Samples with the least non-core read count
came either from very recent multiplexed libraries (eg. PH0553-C, PH0581-C,
PF0539-C had less than 300,000 read-pairs) or libraries that were sequenced at
the beginning of the project (eg. PP0011-C, PF0007-C, PK0032-C and PC0034-C
had over 1 Million read-pairs but with poor read quality). Multiplexed libraries
were observed to generate inconsistent yield within the different samples that
are sequenced in one lane (Magnus Manske, personal communication and
preliminary assessment of recent multiplexed libraries). Conversely, sample
PCO0034-C had the fourth largest number of non-core reads (~75% of total reads)
suggesting issues with data quality instead of yield. Further investigation re-
vealed unusually long insert sizes and a large number of duplicates (~8% of
total reads) and reads where the mate aligns to a different chromosome (~10%
of total reads).

A closer look at the assembly results was obtained by breaking the analysis
down to regions (Figure 5.5) and countries (Figure 5.6). The total number of
bases in each assembly provided a measure of how well the var repertoire is
covered. Sum of var-contigs for each region revealed that samples from West
Africa and East Africa had the largest range (733 bp to 835 kb and 1.1 kb to 640
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Figure 5.4: Scatter plots of non-core read counts with the four assembly statistics.
A-D). Sum of var-contigs, N50 contig size, number of var-contigs and Largest
contig size for all samples. E-F). Sum and number of var-contigs are separately
shown for samples with less than 30 var-contigs.
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Min Median Mean Max
Sum(bp) 477 288,500 350,800 835,100
N50(bp) 477 5,599 4,893 8,362

Num. contigs 1 61 68 262
Largest(bp) 477 10,420 9,705 37,040
N-count(bp) 0 2 403 15,010

Table 5.2: Summary of assembly results for the initial 743 samples. A graphical
representation of the Sum, N50, Number of var-contigs and Largest contig size
is shown in the four histograms of Figure 5.3.

kb respectively) compared to samples from South East Asia and South America.
At first sight this may appear to be due to the large number of samples from
West Africa (n=325) and East Africa (n=95). However, the narrow distribution
in South East Asia can not be accounted for as they have a comparable number
of samples (n=294). It is therefore likely that the distribution of sum of contigs
as well as var-scaffolds is indicative of multiplicity of infection (MOI). West and
East African populations were found to display higher values of multiplicity of
infection, with up to a five-fold increase in the number of var-scaffolds (Figure
5.6). In addition, a visual inspection of aligned reads over the MSP1 gene
for samples with the highest number of var-contigs confirmed more than one
haplotype (Appendix B, Figure B-4). Samples that contain less than 30 var-
contigs were excluded from further analysis in this chapter. However, they will
be included in the future when improving the assembly by, for example, using
additional iterative steps.

5.3.5 Initial quality control steps

Quality of assembled contigs was initially assessed using three approaches:
count of ambiguous (unknown) bases, size of ORFs, and distribution of var-
contigs in to the six groups (Bull et al., 2007).

Number of ‘N’s
Firstly, the total count of ‘N’s in each sample (i.e. number of gaps in the sum

of var-scaffolds) was considered and found to be extremely low (median=2,
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Figure 5.5: Box plots showing assembly statistics by geographical region. The
four statistics were separately shown for West Africa, East Africa, South East
Asia and South America. Box limits represent median, first and third quantiles;
whiskers represent the upper and lower bounds while outliers are shown by
the dots. A). Sum of contigs represents the total number of bases in var-contigs
for the four regions B). N50 contig size distribution of var-contigs was ~5 kb on
average and consistent across the four regions. C). The number of var-contigs
showed a similar pattern of variation with West African samples displaying a
higher degree of variability compared to South East Asia and South American
samples.
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Figure 5.6: Number of var-contigs by country of origin. A better resolution on
the distribution of the number of var-contigs is shown using box plots on a
country level. Box limits represent median, first and third quantiles; whiskers
represent the upper and lower bounds while outliers are shown by the dots.
West African (WA) and East African (EA) samples had higher variability in
the number of var-contigs than samples from South East Asia (SEA) and South
America (SA).
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mean=~200). Together with the high N50 values (mean=~5 kb), the fewer gaps
observed in the assembly are indicative of a higher level of contiguity. The top
ten samples with the highest number of Ns were found in The Gambia. How-
ever, these samples also had above 120 var-scaffolds and a sum of var-scaffolds
between ~500 kb and ~840 kb suggesting the presence of multiple genotypes
in the samples. The size of the largest var-scaffold was between ~9 kb and
~13 kb. In order to make sure the largest contigs are segregated by individual
genotypes instead of creating false joins, a further quality cheek was conducted

by investigating ORFs.

Size of ORFs
Secondly, in order to evaluate the effects of misassembly on assembly contiguity,
the number and size of ORFs was examined. The number of ORFs for each
sample was expected to be higher than the number of var-contigs (or var-
scaffolds; but the term var-contigs is used here after in this section for simplicity)
as var-contigs may have multiple ORF entries. If the ORF of a given var-contig
is not interrupted by stop codons due to false joins that result in frame shifts,
the upper limit for the number of ORFs is expected to be twice the number
of contigs. A total of 51,140 ORFs were obtained with a minimum length of
300 amino acids. The ratio of ORFs to var-contigs was expected to be between
one and two for samples with a good quality assembly. A ratio lower than
one indicates that most contigs are shorter than ~900bp. Conversely, a ratio of
above two is a sign of frame-shifts as a result of potential mis-assembly. The
overall ratio of ORFs (n=51,140) to var-contigs (n=50,131) was nearly one as
the assembly process mainly captures exon 1 of the var repertoire. The sum
of ORFs was equivalent to ~91% of the sum of var-contigs (~205 Mb). The
remaining 9% of sequence is due to UTRs, introns and exon 2 sequences. N50
size of ORFs (1,761 aa) was also comparable with the N50 size of var-contigs
(5,705 bp). The size distribution of ORFs from the assembled clinical sample
was also comparable with ORFs from 3D7 and IT genomes (Figure 5.7).

In addition to the overall ORF distribution for all var-contigs, a closer look
at the ratio of ORFs to var-contigs for each sample revealed that two samples
PA0106 and PA0107 had the highest number of ORFs (170 and 156 respectively),
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Figure 5.7: Density plots of ORF sizes for clinical samples, 3D7 and IT. The
size distribution of ~50,000 ORFs (red) is shown together with two culture-
adapted samples 3D7 and IT with complete repertoires containing 83 and 74
OREFs respectively. The mean ORF sizes were 1217, 1484 and 2168 for all, 3D7
and IT respectively.
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although the number of var-contigs was 59 and 56 respectively. The remaining
samples showed no evidence of excessive frame shifts as the ratio of ORFs to

var-contigs was within the expected range of one and two.

Grouping var-contigs
Finally, the number of var-contigs that are represented by the six groups (as
defined by Bull et al. (2007)) followed a similar distribution as that of the 50
samples (Chapter 3) and the three culture-adapted samples 3D7, IT and HB3
where the majority of the genes fall into group 4 (Figure 5.8).

Taken together, these results confirm that the contigs and scaffolds generated

from clinical samples were of a high quality.

5.3.6 A first look at the motif sharing var-contigs

Motifs generated from var-contigs of the third assembly iteration revealed that
~40% of the total were unique to single samples. The remaining motifs were
shared by a minimum of two samples with a heavily right-tailed distribution
(Figure 5.9A).

5.3.7 Using full length sequences
5.3.7.1 Pmatch

The pmatch output file was converted to a shared-motif format, revealing
perfect amino acid matches of length 14 to 3,404 aa. A large proportion (~98%)
of shared motifs were between 14 and 100 aa (Figure 5.10), and shared by the
majority of var-contigs (Figure 5.11).

However, unexpected long perfect matches of length above 1,000 aa were
also observed (~600 motifs). Interestingly, these long motifs were shared
between var-contigs of the same population as well as different populations.
The longest motif shared by samples from different countries was 3,404 aa
long and found in three samples (PA0036, PA0020 and PHO0136), two from The
Gambia and one from Cambodia.
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Figure 5.8: Grouping ~50,000 var-contigs using the method proposed by Bull
et al. (2007). A) Box plots show the distribution of var-contigs in the six groups.
B) Correlation of the six groups with existing classification (A, B, C, BC) based
on three culture-adapted samples (Adapted from Bull et al. (2007)).
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Figure 5.11: Motif sharing var-contigs from a pmatch analysis of all-vs-all var-
contigs. The scatter plot shows a negative correlation (R?>=-0.2; p-value <
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Initially, we hypothesised that the three identical var-contigs were a result
of contamination during sample handling. In order to verify this, raw reads
from the three samples (PA0036, PA0020 and PH0136) and an additional control
sample (from Thailand) were aligned to all var-contigs of the sample PA0036
(Figure 5.12). If there was contamination, non-core reads of the other samples
would align to var-contigs other than PA0036_VAR1. However, the alignment
results showed a distinct full coverage signal over PA0O036_VARI1 from all the
three samples. Other var-contigs of PA0O036 were only covered by non-core reads
of PA0036 (i.e. mapping to itself as expected). It was reassuring to confirm that
non-core reads from a control sample (from Thailand) did not align to any of
the var-contigs. The long perfect matches between single genes therefore appear
to represent genuine biological events. It is expected to see a higher degree
of conservation between var genes of the central clusters. It is thus intuitive
to assume var-contigs with long perfect matches come from a central region
of chromosomes. However, aligning the 10 largest motifs to the P. falciparum
genome (via BLAST (Altschul et al., 1990)) revealed top matches to subtelomeric
var genes such as PF3D7_0632500 on chromosome 6 (Figure 5.13). It is important
to note that this may not be the best way of identifying central var clusters as
the target (i.e. 3D7) is only one genome. A flanking sequence of var genes could
provide a better marker to identify central var genes based on similarities of
Ups sequences (see Chapter 1 for details).

To investigate whether the long motifs are associated with specific var groups
(1 to 6), we looked at the number of distinct var-groups that are represented
by a motif. The results show that the majority of var-contigs that share longer
motifs were represented by fewer groups (1 to 2) than shorter motifs which can
contain up to all six groups (Figure 5.14).

Next, analysis of the six groups represented by var-contigs that share a motif
revealed that the majority of var-contigs that shared long motifs were of groups
1,2 and 3 (~60% of var-contigs for a motif length of above 500 aa and ~75% for
motifs above 1,000 aa). These three groups are shown to contain a DBLx with
two cysteine residues and correspond with Type A var genes (Bull et al., 2005,
2007, 2008).
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Figure 5.12: Artemis view of non-core reads from four samples (PA0036,
PA0020,PH0136 and Control sample) aligned to var-contigs of PA0036. The
top panel shows paired-read coverage plots for PA0036 (red), PA0020 (blue),
PHO0136 (green) and the Control sample. The middle panel shows the three read-
ing frames of the forward strand for var-contigs of PA0036. Black bars represent
stop codons, ORFs are represented by long open white blocks. The bottom
panel shows var-contigs of PA0036 starting at PAO0O36_VAR1. Read coverage
from samples PA0020 (blue), PH0136(green) was visible over PA0036_VAR1
while the remaining var-contigs of PAO036 remain uncovered.
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Figure 5.13: A screen shot of PF3D7_0632500 from PlasmoDB: The subtelomeric
gene PF3D7_0632500 was the closest match (~47% identity over the full length)
to the long motif shared by three samples from different geographical regions.
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Figure 5.14: Number of groups represented by var-contigs that share a pmatch
motif for 426 samples that had a minimum of 30 var-contigs. Long motifs were
shared by var-contigs that belong to one or two distinct groups. Conversely, the
short motifs are shared by var-contigs from all groups.



5.3 Results 155

5.3.7.2 Amino acid and nucleotide BLAST matches

The pmatch analysis was only able to show perfect matches between var-contigs
or conserved blocks within var-contigs. In order to investigate similarity be-
tween var-contigs while allowing mismatches, a BLAST search of all-against-all
var-contigs was conducted. The results revealed long identical matches over
the full length of var-contigs, confirming observations of the pmatch analysis.
A closer look at nucleotide alighments of var-contigs also showed long identical
matches that span over exons, introns and upstream regions. The observed
sequence similarity between var-contigs of the same and different geographical
origins(match lengh >5 kb; identity >99%) was higher than expected from
previous studies. The results of the BLAST search provided a better way of
processing the output and quickly identify matches of a given var-contig. For
example, var-contig PA0036_VAR1 had a match with total of 59 var-contigs from
57 samples in 6 countries at a minimum identity of 99% and match length of
5 kb. The 59 var-contigs represented The Gambia (n=21), Ghana (n=6), Mali
(n=4), Burkina Faso (n=1), Thailand (n=2) and Cambodia (n=25). 54 of the 59
var-contigs were of group 3 var genes, while the remaining five were of group 1.

As mentioned previously, these two groups belong to Type A var genes.

Match length vs percent identity of a match

A scatter plot of nucleotide matches of PA0036_VAR1 to other var-contigs re-
vealed a positive correlation (R? = 0.3; p — value < 2.2x10~ 1) between match
length and the percent identity of a match (Figure 5.15). As the match length
decreased, the identity of a match also decreased. The observed relationship be-
tween match length and percentage identity of a match was further investigated
by looking at all var-contigs at various identity cutoff values. Longer matches
were predominantly found at higher percent identity thresholds (Figure 5.16).
These results are interesting as they have implications on the time-scale of
events that contributed to maintaining diversity in var genes. For example, the
long perfect matches may be a result of recent population expansion events
where there was not enough time for recombination to break these long haplo-

type blocks. Conversely, shorter matches indicate a longer time scale since the
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event allowing more SNPs to accumulate.
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Figure 5.15: A scatter plot of match length and percent identity for the var-
contig PA0036_VAR _1. Longer matches had the highest percent-identity (R?>=0.3,
p-value < 2.2x10716)

In both cases (Figure 5.15 and Figure 5.16), the highest match length values
were observed at high identity thresholds.

BLAST matches of ORFs
To minimize the effect of low complexity regions, such as introns, amino acid

translations of var contigs (using the longest ORF with DBLx) were used to
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Figure 5.16: Box plots of match length (bp) for different cutoff values of percent
identity using all var-contigs. Box limits represent median, first and third
quantiles; whiskers represent the upper and lower bounds while outliers are
shown by the dots.
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generate a list of potential matches between var-contigs. Long and perfect amino
acid matches, similar to those observed from Pmatch, were also identified using
the BLAST search. Previous studies have identified three strain-transcending
var genes: varlCSA, var2CSA and Type 3 var genes, that were found in clinical
and culture-adapted isolates studied so far including 3D7 and IT (Kraemer
et al., 2007). In the 3D7 genome, three var genes were identified as Type 3 var
genes: PFA0015¢ (PF3D7-0100300), PFF0020c (PF3D7_0600400) and PFI1820w
(PF3D7-0937600).

In order to test if the long-perfect matches were homologues of the known
strain-transcending var genes, ORFs from var genes of the 3D7 genome were
aligned to ORFs of the ~50,000 var-contigs. As var2CSA (PFL0030c/PF3D7_1200600)
does not have the DBL« tag, it was not included in the current list of var-contigs.
We expected the Type 3 var genes and varlCSA (PFE1640w-ps/PF3D7_0533100)
to have sequence homology with the highly conserved var-contigs. However, no
match was observed at higher identity and length thresholds of 99% and 1,000
aa respectively. Lowering the match length cutoff to 50 aa identified matches
between 13 var-contigs and two of the three Type 3 var genes (PFF0020c had a
match with two var-contigs and PFI1820w to 11 var-contigs). The 13 var-contigs
represented samples from The Gambia, Ghana, Mali, Kenya, Thailand and
Cambodia, but they were not part of the long perfect matching var-contigs
described earlier in this section.

The longest identical ORF matches of length 4,668 aa were observed be-
tween var-contigs of Thailand and Cambodia. Similarly, var-contigs from other
countries including Kenya and The Gambia were also found to have perfect
matches of up to ~4,000 aa. The Markov Clustering Algorithm was able to
detect distinct clusters of var-contigs based on a pairwise similarity measure
derived from the BLAST matches of ORFs. A social network analysis was
then used to visualise the population level structure of the global collection of

var-contigs as described in the following section.
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5.3.8 Clustering var-contigs and detecting population structure

There is no established method for the analysis of diversity and population
structure in the var gene family. This is mainly due to high levels of recombina-
tion that prevent orthology /ancestry from being established. A social network
analysis was used a better approach to deal with the complexity resulting from
a highly polymorphic nature of var genes (Bull et al., 2008). Here results of a
preliminary analysis of amino acid similarity networks were presented as an
exemplar method of establishing structures in populations of var genes.

To simplify the analysis, samples with over 70 var-contigs were excluded, as
they are likely to have multiple infections (Table 5.3). Populations from Burkina
Faso and Bangladesh were also excluded, as they were represented by single
samples (Table 5.3). In addition, two of the 102 Gambian samples (PA0106 and
PA0107) were excluded, as they had a high ratio of ORFs to var-contigs due to a
highly fragmented assembly. A total of 424 samples from 11 countries remained
for subsequent analysis.

ID Country Region #samples #PasseedQC1 #PassedQC2
(DBL > 30) (£ 70)
PA Gambia WA 168 162 102
PF Ghana WA 122 108 43
PM Mali WA 32 32 13
PK  Burkina faso WA 3 2 1
PT Malawi EA 55 43 13
PC Kenya EA 25 25 20
PE Tanzania EA 15 15 11
PR Bangladesh SEA 3 2 1
PD Thailand SEA 82 79 63
PH Cambodia SEA 191 153 138
PN Papua New Guinea SEA 7 7 5
PV  Vietham SEA 11 9 8
PP Peru SA 11 10 10
725 647 428

Table 5.3: A list of samples used for initial assembly (Column 4), pmatch
/BLAST analysis (Column 5) and social network analysis (Column 6). Burkina
faso and Bangladesh were excluded from the final list as they were represented
by a single sample. Two of the 102 Gambian samples were also excluded due to
a poor quality assembly.
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A total of 26,832 ORFs were obtained from var-contigs of the 424 samples.
Using a minimum match length of 1,000 aa (identity cutoff of 99%), a total of
1,553 clusters were identified. The majority of clusters (~68%) only contained 2
or 3 var-contigs. They were thus excluded from the network diagram in Figure
5.17. Conversely, the largest cluster (Figure 5.17. Cluster 1) had 141 var-contigs
representing 127 samples and 10 populations (The Gambia=26, Ghana=14,
Mali=4l, Vietnam=2, Thailand=30, Kenya=4, Malawi=2, Peru=4, Thailand=53
and PNG=2). Other clusters contained var-contigs that represented variable
numbers of samples and populations.

The network diagram (Figure 5.17) represented a total of 6,985 nodes (i.e.
~26% of the total ORFs in 424 samples) that overlap with other ORFs at a
minimum percent identity of 99% and a match length of at least 1,000 aa. In
addition to results from the clustering algorithm, the visual inspection revealed
interesting identity matches as shown by the five clusters (Figure 5.17, 1-5). The
second cluster has a single var-contig from Kenya (PC0016_VAR27) clustered
with var-contigs from Thailand and Cambodia. Similarly, cluster 4 has single
var-contigs from The Gambia, Malawi and Vietnam mixed with contigs from
Thailand and Cambodia. Conversely, most of the var-contigs in cluster 3 were
from The Gambia and Cambodia, while mixed with single var-contigs from
Thailand, Ghana and Mali. Finally, in cluster 5, single var-contigs from Tanzania,
Mali and Thailand were clustered with samples from Peru, Kenya and The
Gambia. These observations highlight the widespread distribution of highly
conserved var-contigs.

A higher degree of overlap between var-contigs is observed with the majority
of clusters representing samples primarily from South East Asia. These samples
also form some of the largest cluster sizes (connected components) compared
to African samples. A larger proportion of var-contigs from African samples
formed smaller clusters and were excluded during the filtering based on degree
of a node (i.e. number of connections<4). This is an interesting observation as
samples from Africa have much older var repertoires that have been exposed
to natural forces such as mutation and recombination. As a result, a lower
degree of similarity is expected in African samples compared to Thailand and
Cambodia.



5.3 Results 161

PA (Gambia)
PF (Ghana)

PM (Mali)

PT (Malawi)
PC (Kenya)

PF (Tanzania)
PD (Thailand)
PH (Cambodia)

PV (Vietham)

Figure 5.17: Amino acid identity network of var-contigs from 424 samples. The
main figure shows var-contigs that share highly similar sequence blocks (above
1,000aa and a minimum identity of 99%). Var-contigs that have fewer than 4
connections with other contigs were excluded to simplify the graph. The num-
ber of connections of a node (var-contig) is represented by the size of each circle.
A closer view of five representative clusters is also shown (1-5). Cluster 1 con-
tained 141 ORFsvar-contigs representing 127 samples and 10 populations (The
Gambia=26, Ghana=14, Mali=4l, Vietnam=2, Thailand=30,Kenya=4, Malawi=2,
Peru=4, Thailand=53, and PNG=2). Other clusters contained var-contigs that
represented variable numbers of samples and populations (See text for details).
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Country-specific clustering analysis was done on 138 Cambodian samples
revealing sub-populations of var-contigs as shown in Figure 5.18. 42% of the
total ORFs (n=8,065) were grouped into 629 clusters containing 2 to 55 var-
contigs. Initially, such clusters may appear to be a result of clonal expansion
events. However, there was a very strong positive correlation (R> > 0.99)
between number of var-contigs and the number of unique samples in each
cluster (Figure 5.19) suggesting a wider distribution of highly conserved var-
contigs.
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Figure 5.18: A network of var-contigs from Cambodian samples (degree > 3).
A total of 3,380 var-contigs (nodes) were represented in this network (number
of edges=15,598). Initially, the distinct sub-groups of var-contigs may seem due
to a clonal expansion event. However, as shown in Figure 5.19, each cluster
contains different samples suggesting the presence of long and unexpected
conserved sequences in a large number of samples.
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Figure 5.19: Scatter plots of cluster size vs the number of unique samples
represented in each cluster. A very strong correlation is observed (as shown
by R? values) between cluster size and number of distinct samples. A). Scatter
plot for samples with a minimum of 30 var-contigs and a maximum count of
70 var-contigs. These samples are considered to have a single infection with a
multiplicity of infection (MOI) of 1. B) Scatter plot for samples that have above
70 var-contigs (MOI>1). C). Scatter plot for all samples.
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5.4 Discussion

This chapter presented assembly results of var genes from clinical samples. The
following two conclusions summarise the results obtained and their implica-

tions.

Conclusion 1: The results show the first full length assembly of var genes and the
largest collection of var genes from clinical samples.

It was possible to generate the largest collection of full length var-contigs
using an iterative assembly approach developed to specifically assemble var
genes. Although the assembly was initiated with a small number of motifs from
three lab-adapted samples, it was able to generate high quality assembly of
var genes on over 700 samples. The increase in the number of samples used to
iteratively generate seed motifs is one reason for high quality assembly with as
few as three iterations. The results show the first report of a targeted assembly
of highly polymorphic gene families in general and of the var gene family in
particular.

As expected, sequence quality and yield affect quality of the final assem-
bly. This effect is likely to be pronounced in the iterative assembly approach
compared to a simple de novo assembly of all reads due to the need to have
enough reads that contain seed motifs to initiate the process. However, it could
also be seen as an early quality check as samples with poor quality and low
yield will not have enough reads to proceed with the assembly. Despite the
continual improvement in sequencing yield and protocols developed to remove
contaminants, variability in quality and yield are characteristics of sequences
obtained from natural populations.

The expected number of var genes with the presence of a single genotype
provided a simple measure of assembly quality during the initial stages of
the assembly. Excluding samples with assembled var-contigs of below 30 was
further justified by looking at the number of non-core reads and quality of the
raw data.

As described in Chapter 2, the Illumina platform is prone to substitution

errors at the beginning and ends of reads. Initially, we intended to incorporate
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trimming of reads in the assembly workflow. However, assembly attempts by
trimming reads at error-prone ends did not improve the assembly of var genes.
Although Velvet was chosen to generate seed contigs, the assembly approach
is modular such that a different assembly tool could easily be used if future
tests justify the choice. Additional iterations and quality control steps could be
included by simply restarting the assembly process from where it stopped (i.e.
start from iteration 4).

In summary, the iterative assembly approach together with the quality
control steps applied in this chapter were shown to be effective in producing
high quality full length draft var genes.

Conclusion 2: Unexpected cross-continental var-contigs were identified between sam-
ples of unrelated countries.

Preliminarily analysis of similarity between var-contigs obtained from the de
novo assembly of clinical samples revealed unexpected and long sequences of
high similarity. Nucleotide and amino acid alignments as well as perfect-match
searches confirmed the presence of continent-transcending var-contigs (CTVs).

We have established that these similarities were not because of DNA con-
tamination and informatics issues (eg. misassemblies). Potential explanations
for the existence of continent-transcending var-contigs in such diverse parasite
populations and their implications are presented in the next chapter.



Chapter 6

Final discussion, conclusions and

future directions

The aim of this thesis was to explore applications of second-generation sequenc-

ing to address the following three questions:

1. Can we assemble (reconstruct) var genes from short reads of the Illumina

sequencing platforms?

2. What are the mechanisms used by human malaria parasites to generate

extreme diversity in var genes?
3. What is the global diversity of var genes?

In this chapter I aim to explore to what extent the above three objectives

have been achieved and the contributions made by this thesis.
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6.1 Assembly of var genes

AsIdescribed in Chapters 1 and 5, previous studies have suggested the presence
of extreme sequence diversity in var genes. However, these studies used a very
small proportion of the var repertoire as they relied on the DBL« region, a short
conserved domain that accounted for ~5% of the var repertoire per isolate. This
thesis proposes that a better understanding of the global diversity of var genes
and the mechanisms used by parasites to generate diversity could be achieved
by studying full-length var sequences of natural populations.

In 2007/8, the malaria programme at the Wellcome Trust Sanger Institute
initiated the Plasmodium Genome Variation project with the aim of sequencing
thousands of clinical samples taken directly from patients in endemic areas. As
described in Chapter 2, despite developments in algorithms for alignment and
de novo assembly of short reads, subtelomeric regions and highly polymorphic
gene families such as var genes were excluded from analyses, as they were
intractable. The first report of whole-genome re-sequencing of hundreds of
parasite isolates (Manske et al., 2012) focused solely on the core genome, calling
the final genotypes from ~40% the genome.

The increase in the number of sequenced samples and limitations of cur-
rently available de novo and reference-guided assembly approaches, thus cer-
tainly meant that further research was necessary and thus facilitated the re-
search detailed in this thesis. As shown in Chapter 2, initial attempts to use
existing de novo and reference-guided assembly tools were not successful due
to a number of factors associated with inherent sequence features (such as high
A+T content, high polymorphism and repeated sequences) as well as technical
artefacts in the sequencing process (such as sequencing errors, poor quality of
sequence data and uneven read coverage). An iterative assembly approach was
therefore developed in Chapter 3 to assemble var genes from short reads of
clinical samples.

An initial concern at the onset of the project was that it might not be possible
to assemble var genes due to limitations of read-lengths and insert sizes. It was
also suggested that the problem of assembling var genes could be solved in time
with improvements in sequencing technologies. At the beginning of my project,
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[llumina’s GA2 platforms were able to routinely generate 54 bp reads with test
runs of 76 cycles (76 bp paired-reads). Over the three-year period, read lengths
have increased to ~100 bp, although fragment sizes remained at 200-300 bp on
standard production-level sequencing libraries.

The iterative assembly approach developed in this thesis was thus a viable
alternative to address limitations of existing short read sequencing platforms
and assembly methods. Thousands of clinical samples are already sequenced
using [lluman’s platforms with a read length of below 100 bp. Although it is
likely that future improvements in sequencing technologies may improve read
length and fragment sizes, re-sequencing of these clinical samples would not
be possible due to the limitations in the initial starting DNA. A primary reason
for this limitation being that there is no leftover DNA for most samples. This
project includes description of new approaches developed to address assembly
of highly polymorphic gene families during the last 3-4 years.

As future developments in sequencing platforms that promise longer reads
(eg. oxford nanopore: http://www.nanoporetech.comand PacBio: http:
//www.pacificbiosciences.com) become viable, assembly tools devel-
oped for long capillary reads may serve as alternatives to the iterative assembly
approaches described in this thesis. However, the time-scale of their commercial
availability is not yet known at the time of writing.

Contributions
The two main contributions of the assembly approach described in this thesis
are:

1. The introduction of a targeted-assembly method for gene families using

conserved amino acid motifs and

2. The use of an iterative-assembly strategy that combines de Bruijn graph

and overlap-layout-consensus (OLC)-based assembly approaches.

The first part takes advantage of the higher degree of conservation in amino
acid sequences of polymorphic gene families compared to their DNA sequences.
One previous approach that used amino acid sequences (Salzberg et al., 2008)

relied on the presence of full-length gene models that were used to guide
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the assembly process. However, this method was only tested on bacterial
genomes. In addition, its application to highly polymorphic var genes was not
practical due to the difficulty of obtaining closely related genomes that could
be used to assemble var genes from clinical samples. The assembly approach
described here is different as it only uses conserved regions instead of full-
length sequences and these regions are only used to collect reads rather than as
a template for the assembly process.

The second part combined advantages of the de Bruijn graph and OLC-
based approaches to assemble var genes from short reads. Until recently, de
Bruijn graph-based assemblers were the only tools available to efficiently han-
dle the large sequence data generated by high-throughput second generation
sequencing platforms. The Velvet assembler was thus used to generate seed
contigs. However, the iterative extension steps use the OLC principle as contig-
ends were gradually extended based on the overlap between the contig-ends
and newly generated contigs. The process first identifies read-pairs where one
or both reads align to contig-ends. These reads were then assembled to generate
new contigs that could extend contig-ends or close a gap between two contigs
as determined by the overlap step.

Additional applications of the assembly approach developed in this thesis
include assembly of other multigene families in P. falciparum (eg. rif and strvor
genes) and other pathogens (eg. VSG genes in Trypanosomes). Future work
includes evaluating assembly and scaffolding methods that have become avail-
able recently (eg. SGA (Simpson and Durbin, 2012) and Cortex (Igbal et al.,
2012)).
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6.2 Var gene diversity via ectopic gene conversion

Results from sequence analysis of a genetic cross (Chapter 2) confirmed ectopic
gene conversion as a mechanism for var gene diversity. Recombinant genes
were identified in two of the five progeny. The genes involved were located
on Chromosomes 1 and 2 of the 3D7 parent and were of the group Type A.
In addition, analysis of var-contigs using nucleotide and amino acid identity
matches revealed that highly conserved var-contigs tend to be within the same
group. These two observations provide additional evidence for the presence
of recombination hierarchies in var genes. The quality of the raw data used (as
described in Chapter 4) was not optimal. This presented a limitation as the read
length and insert size were too short for analysis of recombination and gene

conversion in var genes based on de novo assembly.

6.3 Global diversity of var genes

Two major contributions have been made towards understanding the global

diversity of var genes:

1. The first assembly of full-length var-contigs.

2. Discovery of unexpected and long identical var-contigs.

6.3.1 The first full-length assembly of var genes from clinical

samples

The first full-length assembly of var genes from clinical isolates was presented in
this thesis (Chapter 5). Assembly results from a large number of clinical samples
(~800 isolates) were shown to have a higher repertoire-completeness (i.e. the
number of contigs identified as var genes was close to the expected number
of var genes), and contiguity (i.e. contig N50 size, largest contig size and ORF
sizes were comparable with the expected values from previously completed
genomes such as 3D7). Such availability of full-length var genes is a major

progress towards understanding the population structure and diversity of var
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genes in natural populations. One aim of sequencing large numbers of parasites
from clinical samples is to determine changes in population structure and detect
regions of the genome under selection as a result of external pressures such as
drugs and vaccines. Current methods of analysis that use SNPs obtained from
less polymorphic coding regions of the genome (Manske et al., 2012) do not take
the rapidly changing subtelomeres and var genes into account. Investigating
the diversity and population structure of var genes is therefore an immediate
next step to my thesis project.

One challenge associated with assembly of var genes in clinical samples was
ensuring that assembled contigs had an acceptable quality. Measuring assembly
quality is not straightforward due to the various parameters that need to be
considered. For example, recent efforts of benchmarking assembly tools such as
Asemblathon 1 (Earl et al., 2011) have illustrated the need to consider multiple
metrics in measuring assembly quality. In this thesis, in addition to the four
commonly used metrics (i.e. number of contigs or scaffolds, sum of contigs,
N50 and largest contig sizes), the size of ORFs was used to check the quality of
var-contigs. Frame-shifts are often signs of a misassembled contig while dealing
with protein coding genes. The lengths of ORFs from var-contigs in clinical
samples were therefore compared with ORF sizes of var-genes from the 3D7
and IT genomes.

Although the new approach generated high quality contigs, genes that
contain duplicated regions larger than the fragment size of the library will
remain difficult to assemble in one piece. Developments towards large insert

libraries and longer read lengths will thus improve assembly of such var genes.

6.3.2 Discovery of unexpected and highly conserved var-contigs

Preliminarily analysis of var-contigs based on nucleotide and amino acid simi-
larities (Chapter 5) revealed distinct clusters of highly conserved var-contigs
within and between populations. The validity of these contigs was confirmed
by looking at the sizes of ORFs (Figure 5.7) and aligning short reads back to
var-contigs (Figure 5.12). Clusters that contain var-contigs from as many as 6
countries were identified. These observations were surprising as the var-contigs
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had percent-identities of up to 100% over a match length of ~5-10 kb. Previous
studies may have missed such highly conserved long sequences due to the
focus on the DBLa region. Here, two potential reasons are explored as expla-
nations for the presence of highly conserved var-contigs within and between
populations.

Recent transmission via a traveller

Initially, we hypothesized that continent-transcending var-contigs (CTVs) may
have been a result of recent transmission events, perhaps carried from one
location to another by a traveller. It is important to note that the conservation
in these var-contigs does not extend to the rest of the var repertoire between
any two samples. In addition, a single CTV could be found in as many as 57
samples from six populations. Parasites undergo a number of cell division steps
within both the human and mosquito hosts that may lead to mutations, crossing
over and gene conversion events. It is thus likely for a mutation to accumulate
over time unless the transmission was a very recent event. Therefore, for a CTV
to have been recently transferred to a new location via a traveller and to be
found in the isolates sampled by our team, we assume that parasites that carry a
CTV are circulating at a reasonably high frequency in the population. Recently
transmitted or acquired alleles are expected to have high frequencies when
they are associated with advantageous mutations such as drug resistant alleles.
As parasites that carry the advantageous mutation spread across populations,
neutral regions in the vicinity of the beneficial allele also rise to prominence.
This phenomenon, also known as hitchhiking, is reported in a number of
pathogens including P. falciparum (Walliker, 2005).

A closer look at known drug resistance genes (and regions) in P. falciparum
revealed two genes that are in close proximity to var genes of the central cluster
on chromosomes 4 and 7. The genes pfcrt (P. falciparum chloroquine resistance
reporter gene) and dhfr (dihydrofolate reductase) were identified to confer
resistance to quinolone-based (eg. Chloroquine) and antifolate antimalarial
drugs respectively. The distance between var genes and the two drug resistance
genes were ~105 kb and ~134 kb on Chromosomes 7 and 4 respectively. It
was thus likely that central var genes on chromosomes 4 and 7 may have been
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linked with drug resistance genes and spread around the world. Fowler and
colleagues (Fowler et al., 2006) have reported a similar observation suggesting
a potential linkage between central var clusters and drug resistance genes (pfcrt
and dhfr). However, other drug resistance genes such as dhps (On chromosome
8) and mdr1 (On Chromosome 5) were ~400 kb to ~900 kb away from var genes.
A recently identified drug resistance region on chromosome 13 (Cheeseman
et al., 2012) was also ~1 Mb away from var genes on either subtelomere. It
was therefore less likely for subtelomeric var genes and central var clusters on
chromosomes 6, 8 and 12 to have a strong linkage with drug resistance genes.
In summary, a higher degree of conservation between central var genes of
chromosomes 4 and 7 may be expected as they are in close proximity to drug
resistance genes. Ideally, genes that have a higher degree of linkage could be
detected by scanning genomic regions for reduced levels of heterozygosity or
formation of highly segregating haplotypes across multiple populations. How-
ever, the data presented in chapter 5 do not extend beyond the var gene regions.
Further confirmation of this hypothesis thus requires analysing additional in-
formation on the core regions of the genomes (eg. read coverage over central
var genes and look for read-pairs that connect to the rest of the chromosome on

the edge of the var arrays) and the use of meta-data such as the dates of isolation.

Functional importance
The second explanation assumes a functional relevance for highly conserved
var-contigs. In a recent study using full length genes from the seven genomes
(Rask et al., 2010), Buckee and Recker (Buckee and Recker, 2012) noted that rare
PfEMP1 domains, primarily of the group Type A, were highly conserved and
longer than genes from other groups. The high sequence conservation in type
A genes is believed to be due to binding related functional constraints. The
most recent reports associating type A genes with severe and cerebral malaria
have shown evidence of their involvement in binding to brain endothelium
cells (Avril et al., 2012; Claessens et al., 2012; Lavstsen et al., 2012).

The results presented in chapter 5 showed that the majority of highly con-
served continent-transcending var-contigs were of the groups 1 to 3 according
to the grouping by Bull and colleagues (Bull et al., 2007). As groups 1 to 3
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correspond with type A var genes, it is likely that the high similarity between
these genes is maintained due to their functional importance, specifically their
role in parasite virulence. It is however important to note that the definition
and measurement of virulence is not straightforward as it refers to the result
of a complex interactions between parasites and their hosts. In this context,
we define virulence as the parasites ability to cause damage with the aim of
reducing the fitness of the host (Schmid-Hempel, 2011).

Understanding the underlying drive towards an increased level of virulence
is also challenging as a highly virulent parasite may kill the host resulting in no
adaptive advantage for the parasite. It was therefore suggested that virulence
could be a simple side effect of host-parasite interactions whereby there was
not enough time for adaptive evolution to take place (Schmid-Hempel, 2011).
Alternatively, virulence may also emerge as a result of short-term adaptations
(also known as short-sighted evolution) where parasites gain advantage in the
short term, for example by colonizing specific tissues as in the case of cerebral
malaria. Such increased virulence leads to severe forms of the disease leading
to the death of the host and may not be advantageous in the long term. As the
majority of CTVs are associated with severe malaria, their presence may be as a
result of short-sighted evolution. However, the detailed mechanisms of their
emergence, the speed of their spread and maintenance of such genes across
populations requires further investigation.

If these were bacteria, the phenomena would be explainable by lateral gene
transfer as bacteria have specialized mechanisms to facilitate capture of foreign
DNA. However, as the events reported here must involve recombination, it
is harder to come up with a plausible explanation for the spread across a
global population. One potential explanation for how virulent genes may be
maintained in a given population may be via recurrent mutations or unusual
gene conversions. To explore this further, it is important to note that any positive
selective pressure on parasites should be associated with an advantageous trait.
Initially, it may appear that highly virulent parasites are at a disadvantage as
they are likely to kill their host. Although this may certainly be the case, it is
however likely that such virulent parasites may also multiply rapidly, hence
balancing the negative effects of virulence. It is worth noting that reproduction
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and transmission are the two major objectives of infective parasites. In P.
falciparum, gametocytes are produced in the asexual stages of the life cycle
where they remain in the blood stream to be taken by mosquitoes for the sexual
stages of the parasite’s development. Despite the potential damage to the
host, higher degree of virulence may have a direct impact on gametogenesis as
increased virulence (and parasitaemia) could lead to higher rates of production
in male and female gametocytes. Highly virulent parasites may thus have an
increased transmission ability.

In summary, highly similar continent-transcending var-contigs of the central
cluster on Chromosomes 4 and 7 may have been transmitted via a traveller and
raised to high frequency due to drug resistance genes. However, this did not
account for the higher degree of conservation in other var genes. The strong
association of most conserved var-contigs with Type A var genes suggests that
their cross-continental conservation of telomeric var genes may be due to the
role they play in causing severe malaria infections which may have a fitness
advantage by increasing transmission of parasites via enhancing gametogenesis.

Because members of the var gene family are prone to higher rates of recombi-
nation, selective sweeps and population structure could be visible by comparing
the full length var repertoire within and between samples of populations. The
results presented in Chapter 5 suggest the potential of studying full-length var
genes as potential markers for more recent evolutionary changes. It is also raises
the question whether there really is “extreme diversity” in var genes globally.
Ongoing work will focus on determining how diverse or ‘extremely diverse’
var genes are by continuing the comparative analysis on full-length var-contigs
generated in Chapter 5.

Our interest in understanding global var repertories from field-isolated par-
asite samples is motivated by the potential of associating expression profiles of
PfEMP1 variants with disease phenotypes. The unexpected and long continent-
transcending var-contigs were found to correspond with Type A var genes.
These results are very interesting as type A var genes are associated with severe
malaria infections. Future analyses could thus focus on assembling full-length
var transcripts from patients with different levels of disease severity and looking
at the number of gametocytes.
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6.4

Future directions

On going and future work towards addressing the three main objectives are

outlined below.

e We are currently working on further quality control measures on var

6.5

gene assemblies include PCR-confirmation of var-contigs. In addition,
investigating the diversity and population structure of var genes is also
on going as an immediate next step to my thesis project.

I will explore additional applications of the assembly approach developed
in this thesis including assembly of other multigene families in P. falci-
parum (eg. rif and strvor genes) and other pathogens (eg. VSG genes in
Trypanosomes).

Our interest in understanding global var repertories from field-isolated
parasite samples is motivated by the potential of associating expression
profiles of PFEMP1 variants with disease phenotypes. The unexpected and
long continent-transcending var-contigs were found to correspond with
Type A var genes. These results are very interesting as type A var genes are
associated with severe malaria infections. Future analyses will focus on
assembling full-length var transcripts from patients with different levels

of disease severity and looking at additional phenotypic information.

Publications and press releases

Some of the tools used in the assembly and quality control of contigs
were described in two software packages: ABACAS (Assefa et al., 2009,
Bioinformatics) and PAGIT (Swain et al., 2012, Nature Protocols).

The method described in Chapters 3 and the results from Chapter 5 were
presented at the 8! international BioMalPar Conference (14-16!" May 2012,
Heidelberg, Germany) where I was awarded the ‘best oral presentation’

prize.
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e The work detailed in Chapters 4 and 5 are currently under preparation

for separate publications.

e My PhD project was also featured by the Wellcome Trust Sanger Institute’s
press office (http://www.sanger.ac.uk/about/press/features/

assefa.html)


http://www.sanger.ac.uk/about/press/features/assefa.html
http://www.sanger.ac.uk/about/press/features/assefa.html
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Appendices

Appendix A:
Storage space estimates for an iterative assembly of var genes

in P. falciparum

ID (from Process Disc Space per process Temporary Sum
Figure A-1) (Gb) storage (Gb) (Gb)
1 Get non-core reads 1.5 0 1.5
2 Get var-reads 0.4 0.4
3 Assembly 15 15
4 Scaffolding 15 15
5 IMAGE 12 12
6 Scaffolding 15 15
7 IMAGE 12 12
Output files 0.5
(Permanent storage) 2

Table A-1: Storage (Disc) space estimates for one lane of sequence data per
iteration. Disc space required for each step of the seven processes are shown
for one iteration. Although temporary files were deleted after each process (as
shown in column 4), processing ~800 samples (Chapter 5) required up to ~12
Tb of temporary storage space at a given time.
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BAM 1 *Reads that map to: * A typical lane requires ~5 Gb of disc space
Non-cors * Subtelomers = =30% of reads will be in this set
ds *Central var genes + =15 Gb of disc space required for raw
s | __-anppcd reads reads
2
Scan reads « ~25% of reads contain a var motif
for MOTIFS * An additional ~0.4 Gb required
L
3 Assembly + Graph files, sequence files etc. requine ~10X the space in
[velvet) 4] Next
* l.e ~15 Gb of storage required at this stage. Iteration
w
Scaffolding + Multiple iterations reguire ~10X the initial space in (1)
(multi-stage with + ie. ~15 Gb of space required for this stage
SS5PACE)
IMAGE - FASTQ files, SAM files and assembly files for each iteration
require ~8X the space in (1)
|5 iterations) * Le. ~12 Gb required for this stage
Scaffolding
#  (multi-stage with > (s :"MGEM' =
6 SSPACE) i

7

Figure A-1: Storage (Disc space) estimates for one iteration of var assembly per
sample. Temporaty and permanent storage required for a single iteration of
assembly is shown (red boxes) for each process. Additional information on the
temporary and permanent storage estimates is shown in Table A-1.
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Appendix B:

Quality of raw data and its effect on assembly

Quality and insert size plots were obtained from the Sanger Institute’s raw data

quality control archives.

run 5255 lane 3, percent of bases at and above guality threshold | PPO0OL1-C 400055 << PPOD11-C << Plasmodium falciparum genome variation 1

B
EFEE IR T

Duality

1 5 W0 15 20 23 W ¥ & 43 5 5 & & N 73 1 9 10 1% 20 23 3 ¥ 4 43 5 0 & & W T
Cpcle ramber (Forward read) Cycle number (reverse readd

Figure B-1: Base quality plot for the forward (left panel) and reverse (right
panel) reads of sample PP0011. Assembly results for PP0011 (Chapter 3, 50
clinical samples) were affected by the drop in quality on cycles 55 and 73. The
number of var-contigs was 26 for PP0011 (Chapter 3, section 3.3.3). The quality
of each base (y-axis) is shown for the 76 cycles (x-axis). The colors represent the
percentage of bases that have a quality value shown on the y-axis.

Bases, I
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Figure B-2: Base quality plot for the HB3 genome used in Chapter 3. The second
read (right panel) shows a decay in quality from cycle ~45 onwards. See Figure
B-1 for description. The HB3 genome had a significantly higher number of
non-core reads due to the larger proportion of reads that did not align to the
3D7 genome (~33%). The decrease in quality on the second read has affected
the number of reads that aligned to the reference genome (Chapter 3, section
3.3.2.1).

Insert sizes: run 4062, position 1

210

168

Ha

42
.-.......n.n|||||I||II.I||I|||||“|““|| ||||“‘||II||I
72 100 156 184 212 240 268 286

128

Figure B-3: Hb3 insert sizes (normal sizes)
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Insert sizes: run 3501, position 6

171

210

-3

16

P
&

=
o

dn
ol

(k]

m 151

181 2n 23

:
,_..|||.I|I||III|II|||
Fal M

Figure B-4: A distribution of insert sizes for the 3D7 genome used in Chapters
2 and 3. The poor quality assembly for var genes of the 3D7 genome (Chapter 3,
testing the iterative assembly approach on culture-adapted samples) was partly
due to the shorter than the expected insert sizes. As shown here, the actual
insert sizes were ~160 bp, while the expected sizes were 200-300 bp.

Figure B-5: Number of var-contigs is indicative of multiplicity of infection:
Samples PF0134-C and PF0136-C had 262 and 65 var-contigs respectively. This
tigure shows a LookSeq view of SNPs (shown in red) for the two samples
(Top panel for PF0134-C and bottom panel for PF0136-C). Read coverage and
SNPs over the MSP1 gene show segregating haplotypes for sample PC0134-C
suggesting multiple infections.
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Appendix C:

Availability of Software developed to assemble var genes

Software developed in this thesis, additional scripts and documentation are

available from:

https://sourceforge.net/projects/varassembly/


https://sourceforge.net/projects/varassembly/

