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Abstract 

 
The adaptive immune response selectively expands B- and T-cell clones 

following antigen recognition by B- and T-cell receptors (BCR and TCR) 

respectively. Next-generation sequencing of these extensive, sequence-diverse 

repertoires is a powerful tool for dissecting these cell populations at high-resolution. 

In this thesis, we develop novel, robust, sensitive and reproducible computational 

approaches for analysing B-cell populations using high-throughput BCR sequencing. 

We show that BCR sequences can be organised into networks based on 

sequence diversity, with differences in network connectivity clearly distinguishing 

between diverse repertoires of healthy individuals and clonally expanded repertoires 

from individuals with clonal B-cell disorders, such as chronic lymphocytic leukaemia 

(CLL) and B-cell acute lymphocytic leukaemia (B-ALL). Network population 

measures quantify the BCR clonality status and are robust to sampling and 

sequencing depths. The detection of BCR sequences at levels as low as 1 in 107 RNA 

molecules highlights the clinical utility of BCR sequencing in both detecting and 

monitoring dynamics of malignant cells throughout treatment with exquisite 

sensitivity. We show that time-dependent evolution of BCR repertoire provides a 

powerful means of assessing B-cell tumor clone evolution and response to therapy, as 

well as revealing insights into the biology of these diseases through phylogenetic 

methods.  

Using this data, we integrated both theoretical and experimental frameworks 

of BCR sequencing to assess the biases and reproducibilities of different sequencing 

depths and technologies, amplification methods and starting material to confirm the 

biological insights gained from data interpretation. Mapping BCR and TCR 

repertoires promises to transform our understanding of adaptive immunity, with 

applications ranging from exploring infection and vaccination dynamics to 

determining evolutionary pathways for haematological malignancies and monitoring 

of minimal residual disease following chemotherapy. 
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Nomenclature 
 
 
5' RACE 5' ended Rapid Amplification of cDNA Ends  

AID Activation-induced DNA-cytosine deaminase 

ALL Acute lymphoblastic leukaemia 

BCR  B-cell receptor 

BLAST Basic Local Alignment Search Tool 

cDNA Complementary DNA (DNA synthesised from mRNA template) 

CDR1, 2, 3 Complementary determining region 1, 2, 3 

CLL Chronic lymphocytic leukaemia 

DNA Deoxyribonucleic acid 

FL Follicular lymphoma  

FWR1, 2, 3 Framework region 1, 2, 3 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

Ig Immunoglobulin 

IgH Heavy chain immunoglobulin 

IgHD Heavy chain diversity immunoglobulin gene 

IgHJ Heavy chain joining immunoglobulin gene 

IgHV Heavy chain variable immunoglobulin gene 

IgK Kappa (light) chain Immunoglobulin 

IgL Lambda (light) chain Immunoglobulin 

LCL Lymphoblastoid cell line  

LDA Linear discriminant analysis 

mRNA Messenger RNA 

MRD Minimal residual disease 

PCR Polymerase chain reaction 

qPCR Quantitative real-time PCR 

RNA Ribonucleic acid 

RT-PCR Reverse transcription polymerase chain reaction 

SHM Somatic hypermutation 

SLL Small lymphocytic lymphoma  

TCR T-cell receptor 

WBC White blood count 
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Chapter 1 
 

 

 

B-cells and T-cells are key to the immune response, and are crucial to the 

human body’s ability to protect against infection and cancer by producing antibodies 

that can bind to pathogens and removing infected cells. Dysregulation of B- and T-

cells can lead to life-threatening disorders, where understanding B- and T-cell 

population structures and dynamics are of considerable clinical importance 

(Tonegawa, 1983), particularly in response to infection (Foster, 2008), malignancies 

(Mao et al., 2007) and autoimmunity. 

The adaptive immune response selectively expands B- and T- cell clones 

following antigen recognition by B- or T- cell receptors respectively. B-cell receptors 

(BCRs) mediate the humeral adaptive immune response by the binding antigens 

licensing B-cell clonal proliferation and antibody production. B-cells play a pivotal 

role in preventing and clearing infection as well as offering protection against antigen 

re-challenge. T-cells also play an important role in the adaptive immune response by 

an number of mechanisms, including co-stimulation of B-cells to differentiate and 

produce antibodies, stimulating clearance of antigen by other cells of the immune 

system, direct killing of infected cells, and regulation of immune responses. This 

section describes antibody structures and functions, B-cell development and the 

generation of B-cell BCR diversity. 

 

The main function of a B-cell is to produce and secrete immunoglobulin (Ig). 

Immunoglobulins are glycoproteins that bind antigens with high specificity to 

facilitate the clearance of antigen either by binding other parts of the immune system 

or by direct binding of antigen thus inhibiting antigen activity, known as 

neutralisation. The basic structural units of all immunoglobulins are very similar, 

consisting of two identical heavy chain (IgH) and two identical light (IgL) chain 

proteins, linked by disulphide bridges ( ). The sites at the tip of the antigen-

binding (Fab) regions are highly diversified and formed from the variable domains of 

the heavy (IgH) and light chains (IgL), both generated during B-cell development by 
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highly regulated gene rearrangements in the B-cell receptor gene loci, addressed in 

detail in Section 1.1.3 (Woof and Burton, 2004b, Lydyard et al., 2000, Tonegawa, 

1983). The trunk of the heavy chain protein is known as the constant region, and is 

defined by the antibody isotype. Although the different isotypes of immunoglobulin 

have distinct biological activities, structures and distributions throughout the body, 

and trigger different effector mechanisms, all isotypes of immunoglobulin (IgA, IgD, 

IgE, IgG, and IgM) can be expressed as a membrane-associated form on the surface 

of the B-cell (B-cell receptor) or as a secreted form (antibody). The membrane-

associated and secreted Ig forms differ only at the carboxy-terminus of the heavy 

chain, where a hydrophobic anchor sequence forms part of the membrane-associated 

Ig protein, and a hydrophilic sequence forms part of the secreted Ig sequence. 

Differential RNA splicing of the same RNA transcript, known as alternative splicing, 

generates these two Ig forms (Alt et al., 1980).   
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The structure of the heavy chain constant (CH) gene defines the effector function of 

the immunoglobulin, and the paired IgH and IgL variable regions define the antigen 

specificity. The five isotypes of immunoglobulin (IgA, IgG, IgD, IgE, and IgM 

corresponding to α, γ, δ, ε and μ chains in the IgH gene locus) each form different 

effector functions. Despite the amino-acid differences between the isotypes, each CH 

gene folds into similar structures consisting of β sheet linked together by inter-chain 

disulphide bonds. Each CH gene is divided into domains defined as CH1, CH2 and CH3 

for IgA, IgD and IgG), and CH1, CH2, CH3 and CH4 for IgM and IgE. The CH2-CH3(-

CH4) domains comprise the region of the antibody, known as the Fc fragment, that 

mediates effector function by the binding of Fc receptors (FcRs) on effector cells or 

by activating other immune pathways such as complement activation. Each isotype 

differs in terms of size, complement fixation and receptor binding, such as to FcRs 

(Woof and Burton, 2004a). The immunoglobulin isotype also influences binding 

kinetics of the antibody by different binding efficiencies to the different FcRs. A 

summary of isotype properties is given in .  
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• IgM 

Monomeric IgM is expressed on the surface of naïve B-cells. After maturation 

and antigen stimulation, a pentameric form of IgM is secreted, where each unit is 

linked by disulphide bonds in the CH4 region. This pentameric form of IgM is linked 

to joining chains, known as J-chains, by disulphide bonds, which helps mucosal 

surface secretion. IgM functions by binding antigen for destruction, known as 

opsonisation, and fixing complement. The monomeric form of IgM generally has low 

affinity for antigen as the B-cells that produce IgM are early in differentiation and the 

V(-D)-J regions have not undergone somatic hypermutation. However, the pentameric 

form may have a high total binding strength, known as avidity, due to the multimeric 

interactions, which is particularly enhanced if the antigen itself has multiple repeating 

units, thus is very efficient at opsonisation (Matsuda et al., 1998). 

 

• IgD 

Low levels of circulating IgD are found in the serum, and the half-life of 

serum IgD is short. IgD antibodies have no known effector function, but IgD can react 

with specific bacterial proteins, such as Moraxella catarrhalis outer membrane 
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protein MID (Riesbeck and Nordstrom, 2006). Most B-cells expressing surface IgD 

also express surface IgM. It is thought that membrane-bound IgD contributes to the 

regulation of B-cell fate at particular developmental stages (Geisberger et al., 2006). 

 

• IgG 

The predominant immunoglobulin isotype is IgG, which has the longest serum 

half-life. There are four subclasses of IgG (IgG1, IgG2, IgG3, and IgG4), numbered 

in order of their serum levels in the blood of healthy individuals. Each subclass differs 

in terms of their antibody flexibility, as shown by crystal structure analysis, and their 

affinities to different Fc receptors, and ability to fix complement. For example, the 

different subtypes of IgG also differ in terms of their disulfide bond structures, where 

multiple disulfide bond structures have been observed for IgG2 and IgG4 subtypes 

(Liu and May, 2012). These subclasses also differ in terms of their trans-placental 

transport and participation in secondary immune responses (summarised in ). 

Response to protein antigens is generally facilitated by IgG1 and IgG3, whereas 

response to polysaccharide antigens is typically facilitated by IgG2 and IgG4. IgG 

antibodies directly neutralise toxins and viruses as well as activating other parts of the 

immune system, such as the classical pathway, which involves a cascade of immune 

protein production leading to antigen elimination (Cavacini et al., 2003, Scharf et al., 

2001).  

 

• IgA 

Although IgA antibodies have relatively high levels in the serum, they are 

predominantly observed on mucosal surfaces and in secretions, such as saliva and 

breast milk (Woof and Mestecky, 2005). Serum IgA generally exists as a monomer, 

but at the mucosal surfaces, secretary IgA is a dimer. The dimeric form associates 

with two other proteins, a J-chain and a secretary component chain, all linked by 

disulphide bonds. There are two subclasses of IgA (IgA1 and IgA2) that differ mainly 

in the hinge regions (indicated on ). The shorter hinge region in IgA2 

decreases sensitivity to bacterial proteases, and predominates in many mucosal 

secretions such as the genital tract, whereas over 90% of serum IgA is of the IgA1 

form. The main function of IgA is direct neutralisation of toxins, viruses and bacteria 

and the prevention of binding to mucosal surfaces. Intracellular IgA is thought to be 
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important in the prevention of bacterial and viral infections (Corthesy, 2007), where 

intracellularisation is thought to be mediated through polymeric immunoglobulin 

receptor (pIgR)-mediated endocytosis at the basolateral surfaces of epithelial cells 

followed by transcytosis (Mazanec et al., 1993, Lamm, 1997, Corthesy and 

Kraehenbuhl, 1999).  

 

• IgE 

IgE is a very potent immunoglobulin even though it has the lowest serum 

levels and the shortest half-life. This immunoglobulin is made in response to parasitic 

worm infections, but also associated with hypersensitivity and allergic reactions. The 

high potency is, in part, due to the high affinity to the FcɛRI receptor that is expressed 

on mast cells, eosinophils, basophils, and Langerhans cells (Corthesy, 2007). 

 

There are two different mechanisms for generating somatic diversity in B-cell 

receptor sequences: DNA rearrangement of the V, D and J germline segments and 

somatic mutation.  

 

 

B-cells develop from hematopoietic stem cells and differentiate through 

several maturation stages in the bone marrow, after which they migrate through the 

peripheral blood to the secondary lymphoid organs ( ). Survival and 

maturation of B-cells at each stage of development depends on signals transmitted 

through cell-surface ligands (Koopman et al., 1994, Mackay et al., 2005) and B-cell 

development requires the joint action of many cytokines and transcription factors that 

positively and negatively regulate gene expression (Milne and Paige, 2006, Hardy et 

al., 2007).   

Early progenitor B cells (pro-B cells) are the first stage of differentiation, that 

rearrange DNA segments of the Ig loci to generate unique IgH sequence. The 

germline IgH chain gene locus encodes for multiple distinct copies of the variable 

(V), diversity (D) and joining (J) genes, which are separated by over 100 kbp from a 

much smaller number of DNA segments encoding the constant genes (  and 

) (Lydyard et al., 2000). The total number of reportedly functional IgHV 
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genes in humans currently range from between 45 to 60 due to variable levels of gene 

loci heterozygosity (Boyd et al., 2010b), 27 IgHD genes and 6 IgHJ genes (Lefranc et 

al., 2009). This organisation is maintained in most somatic cell types, but in each 

individual mature B-cell a unique DNA rearrangement event has occurred. Functional 

immunoglobulin genes are generated by the process of site-specific recombination by 

recombination activating genes 1 (RAG1) and 2 (RAG2) through the deletion of 

intervening DNA (Schatz and Swanson, 2010), creating a IgH gene containing one V, 

one D and one J gene (VDJ) encoding the protein sequence for the antigen binding 

region of the IgH protein ( ) (Lydyard et al., 2000, Latchman, 2005). The 

order of recombination events is highly regulated, where first the IgHD and IgHJ 

genes are brought together forming the pro-B-cell. Then the IgHV is recombined to 

form IgHV-D-J gene recombination of the pre-B-cell. The imprecise joining of the V, 

D and J gene segments leads to the introduction of random deletions and insertions of 

nucleotides during recombination events, resulting in sequence diversification at the 

junctional regions (Tonegawa, 1983). Further mechanisms that contribute to the 

generation of diversity include alternative IgHD reading frames, IgHD-IgHD fusions, 

and imprecise joining at the IgHD-J and IgHV-D junctions (Kalinina et al., 2011). 

These pre-B-cells are selected for functional heavy chain by IgV-D-J μ exon protein 

expression and IgH assembly by pairing and cell-surface expression with a surrogate 

light chain protein and Igα/Igβ (Vettermann and Schlissel, 2010, ten Boekel et al., 

1998). This complex, along with the participation of the BCR signalling cascade, such 

as Syk, B-cell linker, and phosphoinositide 3-kinase, give the pre-B-cell signals for 

survival and proliferation (Fuentes-Panana et al., 2004).  

Likewise, each IgL chain locus encodes for multiple distinct copies of variable 

(V) gene segments and joining (J) gene segments, in addition to a gene segment 

encoding the λ chain and the κ chain for the λ and the κ gene loci respectively, 

creating an immature B-cell (Woof and Burton, 2004a). When a cell has successfully 

rearranged a IgH gene, the B-cell begins to rearrange the κ light chain genes to bring 

together a κV and κJ. If this produces a functional κ light chain, the B-cell expresses 

and transcribes the heavy and κ light chains, else it then attempts to rearrange the κ 

light chain genes on the other chromosome. If the cell is unsuccessful at producing a 

functional κ light chain BCR from both chromosome κ light chain loci, then the B-

cell attempts to rearrange the λ light chain genes to bring together a λV and λJ. 
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Likewise, if this produces a functional λ light chain, the B-cell expresses and 

transcribes the heavy and λ light chains. 

Each mature, but antigen naïve, B-cell expresses a single BCR sequence, 

where the B-cell population has sufficient BCR diversity for initial recognition of all 

potential antigens in their environment (Dorner et al., 1998, Lydyard et al., 2000). 

After functional V-(D)-J recombination of IgH and IgL chain genes, naïve B-cells 

transcribe the IgH and IgL genes and are able to produce IgD and IgM 

immunoglobulin isotype by alternative splicing of the transcript to fuse the μ and δ 

exon to the IgHJ exon respectively (Geisberger et al., 2006). Later in development 

and in response to stimulation, B-cells can be signalled to produce other isotypes 

(IgA, IgG and IgE) (Schroeder and Cavacini, 2010) by alternative transcript splicing 

and class switch recombination (Section 1.1.6). These naïve B-cells typically migrate 

to the s such as spleen and lymph nodes where they may encounter antigens (Honjo et 

al., 2002). Each recombination creates a B-cell clone that can expand to form a 

lineage expressing a clonal B-cell receptor (a plasma-membrane anchored IgH/L 

complex) consisting of a heavy and light (either λ or κ) chains. 

 

  



-10- 

 



-11- 

J genes       D genes  V genes 

Chromosome 14 Location: 14q32.33 

10
58

63
20

0

10
58

63
77

5

10
58

64
35

0

10
58

64
92

5

10
58

65
50

0

Chromosomal location (bp)

IG
H

J6

IG
H

J5

IG
H

J4

IG
H

J3

IG
H

J2

IG
H

J1

10
58

65
60

0

10
58

75
37

5

10
58

85
15

0

10
58

94
92

5

10
59

04
70

0

Chromosomal location (bp)

IG
H

D
7−

27

IG
H

D
1−

26
IG

H
D

6−
25

IG
H

D
5−

24
IG

H
D

4−
23

IG
H

D
3−

22

IG
H

D
2−

21

IG
H

D
1−

20
IG

H
D

6−
19

IG
H

D
5−

18
IG

H
D

4−
17

IG
H

D
3−

16

IG
H

D
2−

15

IG
H

D
1−

14
IG

H
D

6−
13

IG
H

D
5−

12
IG

H
D

4−
11

IG
H

D
3−

10
IG

H
D

3−
9

10
64

05
60

0

10
66

25
02

5

10
68

44
45

0

10
70

63
87

5

10
72

83
30

0

Chromosomal location (bp)

IG
H

V
6−

1

IG
H

V
1−

2

IG
H

V
1−

3
IG

H
V

4−
4

IG
H

V
2−

5

IG
H

V
3−

7

IG
H

V
1−

8
IG

H
V

3−
9

IG
H

V
3−

11
IG

H
V

3−
13

IG
H

V
3−

15
IG

H
V

3−
16

IG
H

V
1−

18

IG
H

V
3−

20

IG
H

V
3−

21

IG
H

V
3−

23
IG

H
V

1−
24

IG
H

V
2−

26

IG
H

V
4−

28
IG

H
V

3−
30

IG
H

V
4−

31
IG

H
V

3−
33

IG
H

V
4−

34
IG

H
V

3−
35

IG
H

V
3−

38
IG

H
V

4−
39

IG
H

V
3−

43

IG
H

V
1−

45
IG

H
V

1−
46

IG
H

V
3−

48

IG
H

V
3−

49

IG
H

V
5−

51
IG

H
V

3−
53

IG
H

V
1−

58
IG

H
V

4−
59

IG
H

V
4−

61

IG
H

V
3−

64

IG
H

V
3−

66

IG
H

V
1−

69
IG

H
V

2−
70

IG
H

V
3−

72
IG

H
V

3−
73

IG
H

V
3−

74

IG
H

V
7−

81



-12- 

IG
H
D
1−
1

IG
H
D
1−
14

IG
H
D
1−
20

IG
H
D
1−
26

IG
H
D
1−
7

IG
H
D
2−
15

IG
H
D
2−
2

IG
H
D
2−
21

IG
H
D
2−
8

IG
H
D
3−
10

IG
H
D
3−
16

IG
H
D
3−
22

IG
H
D
3−
3

IG
H
D
3−
9

IG
H
D
4−
11

IG
H
D
4−
17

IG
H
D
4−
23

IG
H
D
4−
4

IG
H
D
5−
12

IG
H
D
5−
18

IG
H
D
5−
24

IG
H
D
5−
5

IG
H
D
6−
13

IG
H
D
6−
19

IG
H
D
6−
25

IG
H
D
6−
6

IG
H
D
7−
27

II II II II III I I I III II II II III I

IG
H
V
1−
18

IG
H
V
1−
2

IG
H
V
1−
24

IG
H
V
1−
3

IG
H
V
1−
45

IG
H
V
1−
46

IG
H
V
1−
58

IG
H
V
1−
69

IG
H
V
1−
8

IG
H
V
2−
26

IG
H
V
2−
5

IG
H
V
2−
70

IG
H
V
3−
11

IG
H
V
3−
13

IG
H
V
3−
15

IG
H
V
3−
16

IG
H
V
3−
20

IG
H
V
3−
21

IG
H
V
3−
23

IG
H
V
3−
30

IG
H
V
3−
33

IG
H
V
3−
35

IG
H
V
3−
38

IG
H
V
3−
43

IG
H
V
3−
48

IG
H
V
3−
49

IG
H
V
3−
53

IG
H
V
3−
64

IG
H
V
3−
66

IG
H
V
3−
7

IG
H
V
3−
72

IG
H
V
3−
73

IG
H
V
3−
74

IG
H
V
3−
9

IG
H
V
4−
28

IG
H
V
4−
31

IG
H
V
4−
34

IG
H
V
4−
39

IG
H
V
4−
4

IG
H
V
4−
59

IG
H
V
4−
61

IG
H
V
5−
51

IG
H
V
6−
1

IG
H
V
7−
81

I II I II II II II I III II II II IIIII IIIIII II II III I II I



-13- 

V1 V2 Vn D1 D2 J1 Dn J2 Jn 

VH (n≈44) DH (n ≈ 27) JH (n ≈ 6) 

Translation 

Vx    Dy   Jz   

Germline DNA (IgH locus, chromosome 14 in humans)): 

DNA site specific recombination by RAG proteins 

Transcription, RNA processing, translation, 
glycosylation of protein 

Cμ Cδ 

C-regions 

Cμ Cδ 

V1 V2 Vn J1 J2 Jn 

VH (n≈44) JH (n ≈ 5) 

Vx    Jz   

DNA site specific recombination by RAG proteins 

Cκ or λ  

C-region 

Cκ or λ  

Germline DNA (Igκ or Igλ locus, chromosome 2 and 22 in 
humans respectively): 

Jn 

Jn 

Transcription, RNA processing, translation, 
glycosylation of protein 

Heavy chain protein 
Light chain protein 

Functional antibody 



 -14-  

 

If a maturing naïve B-cell has high affinity for self-antigens or does not form a 

functional BCR, the cells are removed by induced programmed cell death in the bone 

marrow, known as negative selection. B-cells committed to cell death can be rescued 

by modifying the V-J light chain recombination so that the B-cell receptor no longer 

recognises self-antigens or creates a functional reading frame (Dorner et al., 1998). 

This occurs by the process of receptor editing where renewed IgHV-D-J 

rearrangement can result in expression of a functional or non-auto-reactive BCR, 

rescued further by expression of a different IgL chain. Receptor editing is under 

genetic control, where PLCγ2 is thought to play a role in regulating the 

recombination-activating (rag) genes, and therefore receptor editing (Verkoczy et al., 

2007, Benschop et al., 1999, Derudder et al., 2009). Each mature B-cell typically 

expresses a single heavy chain and light chain allele. The expression of productive 

functional heavy and light chains suppresses subsequent immunoglobulin gene 

rearrangements as well as expression of other rearranged alleles, a process known as 

allelic exclusion (Kitamura and Rajewsky, 1992).  
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Naïve B-cells require multiple signals to become activated: the first signal is 

delivered through the binding of the IgM B-cell receptor to an antigen (a protein, 

peptide, carbohydrate or other substance that the immune system perceives as being 

foreign or harmful). IgM cross-linking on the cell surface causing localised IgM 

clustering. This assembly provides intracellular signalling to the B-cell through 

communication of the BCR complex via the Igα and Igβ complex. For T-cell 

dependent antigens (detailed in Section 1.1.5.1), the second signal is delivered 

through T-helper cell recognition of peptide fragments of antigen bound to MHC 

class II molecules on the B-cell surface, and the interaction between CD40 ligand 

(CD40L) on the T-cell surface and CD40 on the B-cell surface. For T-cell 

independent antigens (detailed in Section 1.1.5.2), the second signal is by interactions 

between the antigen itself and B-cell surface, or by non-T-cell accessory cells. The 

third signal is given by the binding of Toll-like receptors (TLRs), that are up-

regulated in naïve B-cells upon BCR activation, as well as other co-receptors, such as 

the CD19:CD21:CD81 protein complex. An example of this is the T-cell independent 

protein LPS, which binds LPS-binding protein and CD14, that subsequently 

associates with the receptor TLR-4 on the B-cell, leading to increased B-cell 

activation. A fourth signal can be delivered through cytokines (LeBien and Tedder, 

2008).  

 

Antigens can be classified as either T-cell dependent (Tdep) or T-cell 

independent (Tindep), depending on whether T-cell stimulation is required. The 

differences between T-cell dependent or independent immune responses are based on 

antigen size, structure, and nature. The majority of antigens are Tdep antigens that 

cannot induce B-cell proliferation without T-cell help, (i.e. activation signals from T-

helper cells that respond to the same antigen). Tdep antigen responses lead to the 

generation of high-affinity class-switched B-cell responses (i.e. antibodies with heavy 

chains classes of IgM to IgG, IgA or IgE, detailed in Section 1.1.6). However, naïve 

T-cells require co-stimulatory signals from professional antigen presenting cells 

(APCs), such as dendritic cells, B-cells and macrophages. For example, dendritic 

cells, on encounter with a pathogen or antigen, endocytose and display the processed 

antigen fragments or peptides on their cell surface complexed with MHC proteins. 
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These cells carry the peptides to local lymph nodes or organs, and undergo maturation 

in order to be able to active T-cells. However, activation of T-cells requires three 

protein signals from the APC. Firstly the MHC molecules with bound antigen or 

antigen fragment must be able to bind the T-cell receptor. Secondly, co-stimulatory 

proteins of the APC must be able to bind complementary receptors on the T-cell 

surface, and thirdly, the action of cell adhesion molecules of the T-cells and APCs to 

enable contact between the T-cell and APC for long enough for the T-cell to become 

active. However, if the T-cell does not receive all three signals, it may be triggered to 

apoptose or the activation suppressed, a process known as immunological tolerance. 

T-helper cells also act to regulate the immune response by cytokine secretion (Korn et 

al., 2009) 

During a Tdep response, a small proportion of activated B-cells differentiate 

into short-lived low-affinity plasma cells within the B-cell regions of the secondary 

lymphoid organs. Recruitment of the remaining activated B-cells to the B-cell 

follicular regions of the secondary lymphoid tissues lead to formation of germinal 

centres (GCs). GCs are micro-anatomical structures that support antigen specific B-

cell clonal expansion, positive selection based on antigen affinity and BCR 

diversification by somatic hypermutation (SHM) (McHeyzer-Williams and 

McHeyzer-Williams, 2005). SHM is a process that introduces point mutations and, 

occasionally, insertions and deletions into the variable regions of the heavy chain 

immunoglobulin, where some of the resulting populations are expanded through 

positive selection for higher affinity antigen binding (Gojobori and Nei, 1986). These 

lead to some B-cells improving their antigen specificity and affinity to the antigen, 

often by several orders of magnitude (Griffiths et al., 1984, Eisen and Siskind, 1964). 

These hypermutations occur only in B-cells expressing cell type-specific activation-

induced cytosine deaminase (AID) and actively transcribed Ig genes. AID is thought 

to act on both IgH and IgL strands of DNA by deaminating cytosines to uracils. The 

resulting uracils therefore base-pair with adenines during the next round of B-cell 

genome and cell division, leading to C to T, or G to A conversions. The additional 

process of uracil excision by uracil glycosylases and error prone repair of replication 

of abasic sites leads to transition and transversion mutations at C/G bases (Batrak et 

al., 2011). The immunoglobulin genes in B-cells are diversified by hypermutation at a 

significantly higher rate compared to non-immunoglobulin genes in B-cells, and have 

been found to occur at a significantly higher level within the complementary 
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determining  regions (CDRs) compared to the framework regions (FWRs) in the BCR 

(Lin et al., 1997). The estimated average rate of somatic hypermutation is 1.51% per 

nucleotide site, or 3.09% per amino acid (Gojobori and Nei, 1986), which is high 

enough for the mutation rate to play a significant role in generating antibody diversity 

(Baltimore, 1981, Tonegawa, 1983).  However, if the B-cell does not receive required 

activation signals after SHM, it may be triggered to apoptose or the activation 

suppressed as part of immunological tolerance to select only B-cells with the optimal 

antigen binding properties and to reduce the risk of generation of auto-reactive B-

cells. High-affinity B-cells in the GC are positively selected on the basis of antigen-

binding affinity. These cells rapidly proliferate to expand the size of the antigen-

reactive B-cell pool with more than 2x105 cells in the dark zone and differentiate into 

either long-lived plasma cells or memory B-cells. Plasma cells typically migrate to the 

bone marrow and spleen, and secrete high-affinity antibodies for extended periods of 

time leading to clearance of antigen (Manz et al., 1997, Bernasconi et al., 2002).  

 

Tindep antigens can induce B-cell responses directly. Two main types of Tindep 

antigens exist: type I (Tindep-I) polyclonal B-cell stimulants, typically soluble antigen, 

and type II (Tindep-II) large non-protein polymeric molecules with repeated epitopes, 

typically cell-bound antigen. The Tindep-II antigens are able to cross-link multiple B-

cell receptors on naïve B-cells leading to activation and stimulation of antibody 

production in the absence of T-cell help. However, TLR stimulation or complement 

activation with CD21 stimulation is typically additionally required for maximal 

stimulation. The development of long-term memory B-cells activated against Tindep 

antigens is limited (reviewed in Section 1.1.7.2) (Mond et al., 1995, Adderson, 2001), 

but Tindep antigens, such as polysaccharides, can be modified to produce T-cell 

dependent B-cell responses via conjugation to protein carriers, resulting in the 

initiation of longer-lived antibody memory responses (Kelly et al., 2006, Pollard et 

al., 2009). 

 

B-cell activation and isotype switching from IgM to IgG, IgA or IgE through 

recombination and deletion process is initiated by the encounter of antigens. This 

process is achieved through deletional recombination via the introduction of DNA 
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double-stranded breaks in two participating switch regions, rejoining of the broken 

regions to each other, and deletion of the intervening sequences containing the various 

CH genes, in a process known as class switch recombination (CSR) (Chaudhuri and 

Alt, 2004). The immunoglobulin heavy chain constant region locus consists of an 

ordered array of Ig CH region genes each flanked at the 5’ side by switch (S) regions. 

These S regions are composed of tandem repeat units. CSR occurs through the 

initiation of AID by looping and deletion of the genomic DNA. This generates an 

extra-chromosomal DNA recombination product, known as the switch circle (SC) 

(Muramatsu et al., 2000, Manis et al., 2002, Okazaki et al., 2002). As the Cμ gene is 

located in the most proximal to the IgHV-D-J exon, CSR between the Sμ and another 

S region at the 5’ side brings another CH gene adjacent to the IgHV-D-J exon (

). The specificity of CSR is determined by the chromatin accessibility of the target 

regions (Muramatsu et al., 2000). An alternative mechanism of CSR has been shown 

to occur through inter-chromosomal exchange between the target S regions in 

stimulated B-cells, which would give non-circular chromosomal products (Dougier et 

al., 2006). 
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The first exposure (the primary exposure) of a pathogen or antigen leads to the 

activation of naïve B- and T-cells. However, naïve B-cells require multiple signals to 

become activated (outlined in Section 1.1.5), but leads to the differentiation of 

antigen-specific antibody producing plasmablasts and memory B-cells, and 

differentiation of naïve T-cells to memory T-cells. These cells can persist for many 

years and maintained in a resting state in the absence of sustained antigen, thus 

immunological memory is established. Immunological memory allows the immune 

system to respond more rapidly to subsequent re-encounter to the same antigen. 

Resting memory B-cells are thought to have a low proliferation rate and the number 

of memory B-cells is highly regulated.  

 

Primary Tdep responses result in the interaction of antigen-stimulated B-cells 

with T-cells and other accessary cells (reviewed in Section 1.1.5.1), leading to the 

generation of short-lived plasma cells (PCs), GC-independent “early” memory B-cells 

and/or a GC reaction. The primary GC reactions persist following immunization for 

long periods (more than 8 months after initial antigen exposure) for certain types of 

antigen, as shown by monitoring memory B-cells over extended periods of time 

through the labelling of AID-expressing cells with yellow fluorescent protein (YFP) 

(Dogan et al., 2009). During this time in the GC, SHM and class-switch 

recombination can occur, resulting in the generation of high-affinity antigen-specific 

GC B-cells, that can differentiate into memory B-cells or long-lived PCs. 

High-affinity antibody-producing long-lived PCs are thought to be integral to 

immunological memory, and reside in the in paracortical areas (immediately 

surrounding the medulla of the lymph nodes) to mature (Mohr et al., 2009). These 

cells migrate to the medullary regions, where CD93 expression is required for plasma 

cell survival in the bone marrow (Chevrier et al., 2009). Circulating antibodies from 

post-GC plasma cells therefore contribute to ongoing immune protection (Bernasconi 

et al., 2002). These plasma cells can also engage in antigen-specific immune 

regulation by negatively regulating the expression of BCL-6 and IL-21 in antigen-

specific TFH cells (Pelletier et al., 2010), and therefore modulating T-helper cell 

responses. It is thought that signalling through the BCR or MHC class II molecules in 

these post-GC plasma cells regulate the ongoing production of serum high-affinity 



 -21-  

antibodies, but the mode of long-term antigen-presentation or regulation of post-GC 

plasma cells is not fully understood.  

Humans and mice have been shown to generate memory B-cells expressing 

surface IgM (IgM+ memory B-cells) as well as class-switched memory B-cells 

(expressing immunoglobulin isotypes other than IgM) (Weller et al., 2004, Tangye 

and Good, 2007). By tracking the murine memory B-cells during Tdep responses 

against sheep red blood cells (Dogan et al., 2009) and phycoerythrin (PE, a 

fluorescent Tdep antigen) (Pape et al., 2011), it was shown than IgM+ memory B-cells 

persist longer than IgG1+ memory B-cells. It has been shown in mice that, although 

the IgG memory B-cell population reduces in number over time, the number of IgM+ 

memory B-cells remains constant after resolution of the primary response (Pape et al., 

2011). In addition, IgM+ memory B-cells have a slower turnover rate and typically 

contain lower levels of SHM than IgG+ memory B-cells. Although IgM+ memory B-

cells are stimulated during subsequent antigen exposures, class-switched memory B-

cells more rapidly differentiate into plasmablasts. IgM+ memory B-cells can also be 

generated in Tindep responses in the presence of different adjuvants (molecular 

components that magnify or modulate response to antigen).  

 

Tindep-II antigen can generate long-lived PCs that secrete IgM or IgG 

antibodies from secondary lymphoid organs (Hsu et al., 2006) and the bone marrow 

(Taillardet et al., 2009, Foote et al., 2012). However, long-lived PCs generated from 

Tindep-II antigen have been shown to secrete lower antibody levels compared to their 

Tdep counterparts (Taillardet et al., 2009). Although immunological memory can be 

employed against Tindep-II antigen, generated memory B-cells exhibit shorter 

longevity and different cell-surface phenotypes in Tindep responses compared to that of 

the Tdep response.  

B-1 B-cells are a minor B-cell population and are able to contribute to the 

immune response against Tindep-II antigen. B1 B-cells express IgM and are thought to 

self-renew unlike “conventional” B2 B-cells. It has been shown in mice that B-1 B-

cell populations expressing BCRs consisting of IgHV12 and IgHV11 in combination 

with IgHJ1, with no or low levels of SHM, is thought to be responsible for major 

natural antibody response against phosphatidylcholine (PtC), a ubiquitously expressed 
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membrane phospholipid found in both bacteria and mammalian cells (Mercolino et 

al., 1988, Yoshikawa et al., 2009, Arnold et al., 1994, Popi et al., 2009, Rowley et al., 

2007). It is thought that anti-PtC antibodies comprise up to 15% of B-1 cells in the 

peritoneal cavity in most mouse strains (Arnold and Haughton, 1992), and the 

majority of B-1 B-cells are generated during foetal or neonatal development, and 

undergo self-renewal throughout life, thus considered a germline “memorised” B-cell 

response (Hardy and Hayakawa, 2001, Berland and Wortis, 2002). B1 B-cells can be 

divided into two subtypes, where B1-a B-cells make up the majority of the B-1 B-

cells population and express CD5, and B1-b B-cells are the minor B-1 B-cell 

population that do not express CD5. It has been shown that, a population of IgM+ 

mouse B1-b B-cells persists that confers protection against Borrelia hermsii infection 

on transfer to antigen naïve mice, suggesting that these are memory B-cells 

(Alugupalli et al., 2004). In addition, after immunisation with (4-hydroxy-3-

nitrophenyl)-acetyl (NP)-Ficoll, a Tindep-II antigen, mouse IgG+ and IgG− B1-b B-cells 

were shown to persist for more than 4 months, where these cells rapidly divided on 

adoptively transfer into antigen naïve mice (Obukhanych and Nussenzweig, 2006). 

However, it is unclear whether the precursors to these anti-NP-Ficoll B-cells were of 

B1 B-cell or B2 B-cell origin, whether aborted GCs could have been generated (de 

Vinuesa et al., 2000), and the human counterpart to the B1 B-cell population.  

 

The positioning of memory B-cells in the antigen-draining sites of secondary 

lymphoid tissues, such as the tonsil mucosal epithelium and splenic marginal zone, 

and the enhanced expression of co-stimulatory molecules assists rapid presentation of 

antigen to specific T-cells, thus promoting strong secondary adaptive immune 

responses (summarised in ) (Liu et al., 1988, Tangye et al., 1998, Liu et al., 

1995). Indeed, enhanced reactivity of memory B-cells over naïve B-cells is thought to 

be, in part, conveyed by the cytoplasmic domain of surface IgG, thus contribute to 

rapid secondary immune responses (Martin and Goodnow, 2002). Upon rechallenge 

with the same antigen, antigen-specific memory B-cells can return to the GCs, 

undergo further clonal expansion, and differentiate into effector cells, such as plasma 

cells that secrete high-affinity antibodies.  
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Healthy humans have approximately 3x109 B-cells in the peripheral blood, 

where the population of B-cells in an individual reflects both current B-cell responses 

and historical immune encounters from memory B-cell and plasma cell populations. 

As a B-cell clone expresses a unique BCR, the B-cell population structure can 

effectively be probed by analysing the repertoire of BCR sequences in a given B-cell 

sample, for example from peripheral blood or bone marrow sample. This section 

details the main advances in understanding B-cell population structures and dynamics 

in health and disease by B-cell BCR repertoire sequencing. 

 

 

Low-throughput analysis of the heavy and light chains in the 1990s has 

illuminated biological mechanisms involved in the generation of specific immune 

responses. The functional characterisation of antibodies was made possible by the 

cloning of immunoglobulin genes from single B-cells and the isolation of specific 

antibodies. An alternative route for expression of antibodies was made possible 

through B-cell immortalisation (Tiller et al., 2007, Corti et al., 2011, Corti and 

Lanzavecchia, 2013). These methods have led to the isolation of neutralising 

antibodies to a range of pathogens. A summary of six vaccine studies based on low-

resolution B-cell repertoire characterisation is given in . 
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As healthy peripheral blood contains 0.07-0.53 x106 B-cells per ml, high-

throughput sequencing, currently able to produce >107 sequencing reads per run 

covering the variable BCR gene sequence, is well suited for sampling this BCR 

repertoire (Dimitrov, 2010, Benichou et al., 2012). To ensure that the maximum 

number of sequencing reads correspond to fully rearranged BCRs and reduce the 

number of non-specific sequencing reads, B-cell DNA samples require PCR 

amplification, and B-cell RNA samples require both cDNA synthesis and PCR 

amplification. The three main BCR amplification methods for sequencing BCR 

repertoires are PCR using IgH-specific multiplex primers (van Dongen et al., 2003), 

5’ rapid amplification of cDNA ends (5’RACE) (Freeman et al., 2009, Bertioli, 1997, 

Warren et al., 2011, Varadarajan et al., 2011) and RNA-capture using RNA 

bait/capture probes (Choi et al., 2009, Mamanova et al., 2010) (summarised in 

).  

Three sets of human IgH-specific multiplex PCR primers have been designed 

(van Dongen et al., 2003), and validated (van Krieken et al., 2007, Evans et al., 2007, 

Vargas et al., 2008, Lukowsky et al., 2006, Bruggemann et al., 2007), known as 

BIOMED-2 FR1, FR2 and FR3 primer sets. These primer sets use a single IgHJ 

specific primer that can potentially bind any IgHJ gene, and 6-7 IgHV primers that 

can potentially bind any of the reference IgHV genes. The annealing sites of the 

BIOMED-2 FR1, FR2 and FR3 IgHV primers are in the highly conserved FR1, FR2 

and FR3 regions of the IgHV genes respectively ( ). PCR amplification 

using the BIOMED-2 FR1 primer set gives the longest PCR product, therefore is the 

most popularly used primer set for biological studies (Campbell et al., 2008, Boyd et 

al., 2009, Sanchez et al., 2003, Maletzki et al., 2012, Boyd et al., 2010a, Lev et al., 

2012, Jager et al., 2012, Krause et al., 2011, Bashford-Rogers et al., 2013). Similar 

primers have also been designed to amplify the B-cell light chains (van Dongen et al., 

2003). This multiplex PCR method can be performed on either RNA or DNA and 

sensitive enough to amplify BCRs from even single cells.  

RNA-capture is based around the methods used for human exome sequencing 

that uses RNA bait/capture probes and subsequent universal PCR amplification (Choi 

et al., 2009, Mamanova et al., 2010). Briefly, the cDNA is generated from RNA, 

typically using primers that allow for sample indexing and sequencer specific 
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adaptors. The resulting sampling is hybridised with 120bp biotinylated RNA-capture 

baits, designed to bind to any IgHV or IgH constant region (as well as, potentially, 

other regions, such as the light chains and T-cell receptors, B). The 

hybridised sequences are specifically bound to magnetic streptavidin beads, after 

which the sequences are universally amplified and sequenced. This allows for 

enrichment, amplification and sequencing of TCRs (α, β, γ and δ chains) and BCRs 

(heavy and light chains) simultaneously. PCR and RNA-capture methods can use 

RNA or DNA, but have the potential for sequence-based differential annealing and 

biased capture.  

5’RACE uses a single Ig-specific primers, either to the heavy or light chain J 

genes or constant regions, for first strand Ig cDNA synthesis and subsequent 

sequence-independent template switching primer for second strand cDNA synthesis 

( C). This eliminates potential multiplex primer bias, but can have low 

efficiency, high non-specific amplification, and short fragment contamination from 

RNA degradation or incomplete cDNA synthesis and template switching (Freeman et 

al., 2009, Bertioli, 1997, Warren et al., 2011, Varadarajan et al., 2011). Also, as the 

RNA bait probes and multiplex PCR primers are generated from reference Ig and 

TCR gene databases, they may lack the same efficiency as 5’RACE for capturing 

certain human allelic variants of TCR or BCR segments that are not represented in the 

reference database. 
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RNA capture 
 

B) RNA capture probes: 

cDNA from mRNA 
(generated by RT-PCR using 
random primers) 

Biotinylated RNA library “Baits” 
designed against TCR & BCR 
reference genes. 

Hybridization with biotinylated RNA library 
baits, selection using magnetic 

streptavidin beads and amplification. 

mRNA 

IgHJ primer or constant region primer(s) 

Forward IgH primers IgHJ primer or constant region primer(s) 

cDNA synthesis 

A) Multiplex PCR amplification from RNA: 

Multiplex RT-PCR 

IgHJ primer or constant region primer(s) 

Template switching primer IgHJ primer or constant region primer(s) 

cDNA synthesis & oligonucleotide tailing 

C) 5’ RACE amplification: 

Oligonucleotide 

5’ RACE RT-PCR 
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The limitation of sequencing of paired heavy and light chains from bulk cells 

in independent reactions is that information of the heavy and light pairings are lost. A 

solution to this is high-throughput single cell linkage PCR. This method can currently 

sequence more than 50,000 cells in a single experiment by depositing single cells in a 

high-density microwell plate and in situ lysis (DeKosky et al., 2013). mRNA is then 

captured in magnetic beads, on which RT-PCR is performed by emulsion VH:VL 

linkage PCR. These methods can be used to characterise antibodies of interest by 

generation of recombinant antibody by cloning the paired heavy and light chains into 

expression vectors, such as antibody variants of an isolated anti-HIV broadly 

neutralising antibody (Zhu et al., 2013a).  

 

 

One of the first studies of the B-cell repertoire was performed on zebrafish 

(Weinstein et al., 2009). Zebrafish are ideal organisms for trialling high-throughput 

sequencing methods as they have recognisable adaptive immune system similar to 

humans that undergo IgHV-D-J recombination to generation functional BCRs with 

junctional diversity and the potential for somatic hypermutation. However, the 

zebrafish immune system contains only about 300,000 B-cells that produce 

antibodies, thus can be exhaustively sampled in a single sequencing run. Weinstein et 

al. found that not all possible IgHV-D-J combinations were used per zebrafish, but 

IgHV-D-J frequency distributions were highly correlated between individual 

zebrafish. A summary of studies of B-cell repertoires in model species is given in 

. 
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The potential number of different IgHV-D-J combinations in humans is 7128 

(44 IgHVs x 27 IgHD x 6 IgHJs), and the number of light chain combinations is 200 

and 124 for the Igκ chains and Igλ chains respectively ( ). However, with the 

junctional diversity between the gene recombination regions comprising of non-

template additions and deletions greatly increases the number of potential unique 

BCRs that an individual can produce to over approximately 1014. Further 

diversification can occur during the process of somatic hypermutation. However, as 

each B-cell can only encode for a single BCR, the true number of unique BCRs in an 

individual is bounded by the number of B-cells present. With the healthy peripheral 

blood B-cell population contains approximately 80% naïve B-cells and 20% memory 

B-cells (Tangye and Good, 2007), where each naïve B-cell is antigen inexperienced 

so each naïve B-cell BCR is considered to be unique (i.e. not clonally expanded). 

Sequencing BCRs from only naïve B-cells therefore theoretically results in a diverse 

BCR population with all BCRs represented with equal probability. In fact, the number 

of unique BCRs in two healthy individuals was estimated to be 3x109 -3x1010 by high-

throughput sequencing of the CDR3 regions (Arnaout et al., 2011, Glanville et al., 

2009a). However, little is currently known about B-cell turnover, dynamics or the 

different tissue distributions or B-cell repertoires (Dimitrov, 2010).  

 

 

 

High-throughput BCR sequencing of different B-cell subsets can distinguish 

between human transitional, naive repertoires, switched memory B-cell and IgM 

memory populations (Wu et al., 2010). Previous studies have qualitatively shown 

diverse IgH repertoires in healthy patients contrasting with clonal populations in 
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malignancies (Boyd et al., 2009, Campbell et al., 2008, Logan et al., 2011, Sanchez et 

al., 2003, Maletzki et al., 2012, Carulli et al., 2011, Bashford-Rogers et al., 2013), and 

that distinct subsets of B-cells, defined by difference cell surface markers, within the 

same individual have distinct repertoires (Wu et al., 2010). Other significant studies 

of healthy BCR repertoires by high-throughput sequencing are summarised in 

. 

 

 

Historically, it was thought that BCRs and TCRs would not typically be 

shared between individuals due to the potential number of unique BCRs and TCRs 

compared to the limited number of B- and T-cells. However, it has been shown in 

multiple studies that certain BCRs and TCRs are shared significantly between 

individuals, known as public BCRs and TCRs respectively (exemplified in 

), and thought to be a result of germline encoded BCRs (i.e. gene combinations 

with no somatic hypermutations (Li et al., 2012, Agathangelidis et al., 2012, 

Darzentas and Stamatopoulos, 2013, Messmer et al., 2004, Rossi and Gaidano, 2010, 

Warren et al., 2013, Hoi and Ippolito, 2013). 
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The adaptive immune system is not fully functional in human infants, and 

therefore infants can receive maternal antibodies (IgG) through their mother’s milk. 

However, young infants are at increased risk of infectious diseases, such as influenza 

(Feeney et al., 2000). Although the Ig diversity is primarily thought to be a random 

process, evidence for deterministic, programmed repertoire development in foetal 

repertoires has been shown by overrepresentation of certain V segments in both 

mouse and humans (Perlmutter et al., 1985, Berman et al., 1991, Kalled and Brodeur, 

1990). Preferential IgHV gene use in the adult B-cell repertoire is distinct from that of 

foetal, and young infant B-cell repertoires. For example, very young infant respiratory 

syncytial virus (RSV)-specific B-cells (<3 years of age, purified by immunoaffinity 

purification using RSV F protein) exhibited a biased repertoire with preferential by 

use of the IgHV1, IgHV3, and IgHV4 gene families, and less common use of the four 

immunodominant genes seen in the adult RSV F-specific B-cell response (IgHV3–23, 

IgHV3–30, IgHV3–33 and IgHV4–04) (Williams et al., 2009). The BCRs from 

children under three months of age possessed significantly fewer somatic mutations 

than those of adults, thus suggesting that younger children produce a different and 

potentially less optimised or weaker immune response than adults. The most 

frequently observed rearranged BCRs in healthy adult humans included IgHV4-59, 

IgHV4-61, IgHV3-23, and IgHV3-48 genes, where only 10 different IgHV genes 

account for more than half of all observed BCRs (Arnaout et al., 2011, Glanville et 

al., 2009b, Lloyd et al., 2009). Similarly, IgHD2-2, IgHD3-3, IgHD3-10, and IgHD3-

22 were the highest observed IgHD genes and IgHJ4 and IgHJ6 the highest observed 

IgHJ genes in rearranged BCRs from healthy individuals, where this pattern of IgH 

gene recombination bias were shown to be consistent between multiple unrelated 

healthy adult individuals and in separate studies (Arnaout et al., 2011, Brezinschek et 

al., 1997).  

The mechanisms so far implicating determinism versus stochasticity in the 

foetal repertoire are two-fold. Firstly, variation in recombination signal sequences 

which flank the V, D and J genes leads to favoured gene segments to be recognised by 

the recombinase (Feeney et al., 2000). Secondly, the observation that the expression 

of the terminal deoxyribonucleotidyl transferase enzyme is supressed in infants, 

therefore reducing the diversity generated through non-templated random nucleotide 
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insertions and deletions at IgHV-D and IgHD-J junctions) (Schroeder et al., 2001). 

Changes in B-cell repertoire structure have been associated with age in multiple 

studies, where increases in clonality and delays in immune response correlate with 

age and immunosenescence (summarised in ). 

 

 

. 
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Sequencing the B-cell immune response to infectious diseases and vaccines, 

such as human immunodeficiency virus and influenza, have been used to understand 

better the development of an antigen specific immune response and for identification 

of antigen-specific antibodies. Key studies and their findings are summarised in 

 and . 
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The immune system is capable of continually learning and memorising 

immunological experiences. The study of B-cell dynamics by B-cell cell receptor 

sequencing has been useful in the understanding of affinity maturation and selection 

of resulting mutants. Initially, using small sequence datasets per clone, lineage 

analysis became a popular analytical tool to understand mutational processes (

) (Steiman-Shimony et al., 2006a, Dunn-Walters et al., 2004, Barak et al., 2008, 

Frumkin et al., 2005, Uduman et al., 2014, McIntyre et al., 2014, Messmer et al., 

2005b, Steiman-Shimony et al., 2006b, Bankoti et al., 2014, Sok et al., 2013, Green et 

al., 2013, Bergqvist et al., 2013, von Budingen et al., 2012, Seifert and Kuppers, 

2009, Spencer et al., 2009). Lineage trees describe the clonal relationships between 

related cells within a lineage, where the root of the tree is assumed to be the germline 

sequence. Both the internal nodes as well as the leaves can represent sequences, as 

intermediate sequences can be included in the sample. Furthermore, lineage trees are 

not necessarily binary as a single B-cell can produce a population of identical cells 

that can produce mutations (Barak et al., 2008).  
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Different phylogenetic methods are employed to analyse larger sequencing 

datasets, and using different hypotheses of evolution. Maximum likelihood methods 

estimate phylogenetic relationships by determining the theoretical likelihood of query 

sequences arising from a given ancestor by somatic hypermutation (Kepler et al., 

2014, Kepler, 2013, Liao et al., 2013, Zhu et al., 2013b, Wu et al., 2011, Doria-Rose 

et al., 2014). Neighbour-joining methods use agglomerative clustering to generate 

trees representing sequencing relationships, and is typically faster for large datasets 

(Liao et al., 2013, Wu et al., 2011, Logan et al., 2011). Maximum parsimony methods 

assume that populations of cells, such as tumour cells or B-cell clones, develop in a 

parsimonious manner, such that the evolutionary process to create the population is 

minimal. Maximum parsimony assumes minimal number of explicit assumptions, 

thus useful when the true evolutionary process in B-cells is unknown or temporally 

variable (Campbell et al., 2008, Sutton et al., 2009, Rossi et al., 2012, Dagklis et al., 

2012, Benichou et al., 2013). For example, Campbell et al. fitted unrooted parsimony 

models to generate phylogenetic trees for the malignant clones in 2 chronic 

lymphocytic leukaemia (CLL) samples to show the evolutionary relationships among 

the subclones and dominant clone of CLL cells ( ) (Campbell et al., 2008). 

Although bootstrapping shows uncertainty in the ancestral relationships between 

individual subclones, there is strong support for 3 different classes of subclones: B-

cells representing the intermediate stages between germline and the dominant clone, 

blind alleys representing divergent evolution away from the germline sequence, and 

ongoing evolution from the dominant clone. The persistence of B-cells from the 

intermediate stages suggest that initiating driver mutation(s) may have led to 

leukaemogenesis at the earliest branch-point of the tree. 
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Chronic lymphocytic leukaemia (CLL) is the most common form of 

leukaemia, representing 30% of all leukaemias. The incidence rate for CLL is 4.92 

per 100,000 per year in Europe (Sant et al., 2010). The rates of CLL vary between 

populations; 35-40% of all leukaemia in Denmark is CLL, but only 3-5% in Chinese 

and Japanese populations (Redaelli et al., 2004). Incidence rates are higher for men 

than women, and increase with age, with two thirds of patients older than 60 years of 

age (Zenz et al., 2007).  The clinical course of CLL is highly heterogeneous across 

individual patients (Morabito et al., 2011). Many CLL patients are asymptomatic, and 

remain treatment free for many decades, while an aggressive form of the disease can 

affect others. Patient conditions may deteriorate with the disease or may suffer from 

therapy related treatments (Morabito et al., 2011). Therefore, biological indicators of 

disease progression and prognosis are of great clinical importance. Identifying the risk 

factors associated with requirement early treatment or better prognosis estimation will 

decrease the treatments given to patients with the non-aggressive disease, with the 

majority of treatments carry significant toxicities.  

 

The diagnosis of CLL is made on two criteria. Firstly, if greater than 5×109 

cells/L peripheral blood B-cells for at least 3 months, where clonality of circulating 

B-cells needs to be confirmed by flow-cytometry (Eichhorst et al., 2011, Hallek et al., 

2008). CLL typically has preferential kappa or lambda immunoglobulin light chain 

usage at a ratio of greater than 3:1 or less that 1:0.3 respectively (Rozman and 

Montserrat, 1995, Cheson et al., 1996, Kilo and Dorfman, 1996). Secondly, leukaemia 

cells found in blood smears are small, mature B-cells with a narrow border of 

cytoplasm and dense nucleus with partially aggregated chromatin and lacking distinct 

nucleoli. CLL B-lymphocytes co-express CD19, CD5 and CD23, with weak or no 

expression of CD20, CD79b, FMC7 and surface immunoglobulin.  

Monoclonal B-cell lymphocytosis (MBL) is thought to be a pre-clinical 

manifestation of CLL. The diagnostic criteria for MBL is exhibiting less than 5×109 

cells/L peripheral blood B-cells for at least 3 months (Eichhorst et al., 2011, Hallek et 

al., 2008) along with either (a) kappa or lambda immunoglobulin light chain usage at 
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a ratio of greater than 3:1 or less that 1:0.3 respectively, (b) greater than 25% of B-

cells expressing low-level or no surface immunoglobulin, or (c) a disease-specific 

immunophenotype, such as CD5+. 

CLL manifests as an increasing collection of B-cells with related BCRs 

(malignant B-cell clone) that exhibit a wide range of phenotypic states, illustrated by 

the expression of different cell-surface proteins. Typical CLL is characterised by the 

accumulation of mature CD5+ B-cells in the blood, bone-marrow and secondary 

lymphoid organs (Chiorazzi et al., 2005). Unlike most tumour entities, only a small 

proportion of CLL cells proliferate, potentially acting as tumour stem cells (Messmer 

et al., 2005a), suggesting accumulation of CLL cells in vivo is not due to increased 

proliferation rates, but rather due to resistance to apoptosis (Chiorazzi et al., 2005). 

Evidence for CLL resistance to apoptosis includes both an anti-apoptotic expression 

profile, such as high expression of Bcl-2 protein (Inamdar and Bueso-Ramos, 2007, 

Mauro et al., 1999), and micro-environmental signals. Evidence for the latter is that 

CLL cells cultured without support in vitro rapidly undergo apoptosis, which can be 

prevented by co-culture with supporting stromal cells. Different types of stromal cells 

assist in survival of CLL cells in vitro and thought to be an integral part of the CLL 

microenvironment. These include monocyte-derived nurse-like cells (NLCs, a subset 

of large, round, adherent cells (CD14+ cells) that differentiate in vitro on co-culture 

with CLL or healthy B-cells) (Burger et al., 2000, Bhattacharya et al., 2011), 

CXCL12-expressing mesenchymal stromal cell (MSCs)(Burger et al., 2000, Eisele et 

al., 2009), or follicular dendritic cells (FDCs) (Pedersen et al., 2002). However, 

normal B-cells are not supported in this manner. It has recently been established that a 

signalling pathway for CLL B-cell survival and apoptotic resistance is activated by 

upregulation of protein kinase C (PKC)-βII expression on contact with stromal cells. 

Unregulated stromal PKC-βII in biopsies from patients with CLL, acute 

lymphoblastic leukaemia, and mantle cell lymphoma suggests that this pathway may 

commonly be activated in a variety of haematological malignancies (Lutzny et al., 

2013). 

The signs and symptoms of CLL gradually develop, therefore the onset of 

disease is difficult to identify. The disease is often discovered accidentally as a result 

of elevated lymphocyte counts during routine physician visits (Andritsos and Khoury, 

2002). Asymptomatic CLL is seen in about 25% of patients, where the duration of the 

asymptomatic phase is highly variable (Inamdar and Bueso-Ramos, 2007). The early 
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signs of disease include persistent lymphocytosis, mild cervical, supraclavicular, 

and/or axillary nodes lymphadenopathy and splenomegaly. Thrombocytopenia and 

mild anaemia is seen in approximately 25% and 50% of patients respectively. Nodular 

and diffuse skin infiltrations, exfoliative dermatitis, erythroderma, and secondary skin 

infections are seen in about 5% of patients (Bonvalet et al., 1984, Cerroni et al., 

1996). Disease progression can lead to organ infiltration, adenopathy with 

splenomegaly, hypersplenism, and peripheral cytopenias. These patients can present 

with weight loss, fever and night sweats. Advanced disease exhibits extensive bone 

marrow infiltration by neoplastic cells. Due to replacement of marrow by tumour 

cells, symptoms include severe anaemia, thrombocytopenia, and neutropenia 

(Inamdar and Bueso-Ramos, 2007). 

CLL patients have increased frequency of abnormal immune manifestations, 

including immunodeficiency and autoimmunity despite the increased number of B-

cells (Dearden, 2008). Approximately half of CLL patients have 

hypogammaglobulinemia (Hudson and Wilson, 1960). Bacterial infections are 

responsible for the majority of illnesses in patients with CLL, particularly infections 

of the respiratory tract, urinary tract, and skin, as well as viral infections. These 

infections contribute highly to patient morbidity and mortality. Many patients have 

poor responses to vaccination (Dearden, 2008, Shaw et al., 1960), where vaccine 

response is correlated with better CLL patient outcome and treatment-free survival 

(Dearden, 2008).  

CLL is frequently associated with autoimmune conditions. Coombs' positive 

autoimmune haemolytic anaemia is seen in up to 25% of patients at some point during 

the course of the disease (Dameshek and Schwartz, 1959, Pisciotta and Hirschboeck, 

1957). This condition involves the production of antibodies against red blood cells 

during or after developing CLL. Approximately 6% of patients develop red cell 

aplasia, and a subset of CLL patients develop auto-antibodies against platelets and 

neutrophils leading to thrombocytopenic purpura and neutropenia. Bence Jones 

paraproteinemia is seen in 65% of patients (Diehl and Ketchum, 1998).  

 

Monoclonal B-cell lymphocytosis (MBL) is thought to be a pre-clinical 

manifestation of CLL, characterised by asymptomatic B-cell clonal expansions with 

surface phenotypes similar to that of CLL (Marti et al., 2007, Marti et al., 2005). 
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MBL has been detected in older adults in good health (Shim et al., 2014). The 

prevalence has been reported in a number of studies, ranging from <1% (Rachel et al., 

2007, Shim et al., 2007) to 18%, depending on the detection methods and tested 

populations (Shim et al., 2010). MBL is more frequent in males, with prevalence 

significantly higher in individuals with relatives with CLL, and increases with age 

(Rawstron et al., 2002). However the incidence of MBL is approximately 100 times 

greater than that of CLL, and therefore cannot be taken to be a definitive sign of 

genuine neoplastic transformation (Ghia et al., 2000). Some CLL-like MBL clones 

can be present at much higher frequencies in the blood, with a 1-2% per year rate of 

progressing to symptomatic CLL (Rawstron et al., 2008, Shanafelt et al., 2009). The 

natural history of MBL is not well understood.  

 

The Rai stage was first prognostic staging process to be developed for CLL, 

using a combination of lymphadenopathy (abnormal enlargement of lymph nodes), 

organimegaly (abnormal enlargement of organs), and cytopenias (anaemia and 

thrombocytopenia (platelet number reduction)) to determine five prognostic groups 

with median survivals given in  (Rai et al., 1975). 

 

 

 

Rai Stage  Risk level Prognosis factors Median survival 

Stage 0 Low Lymphocytosis > 150 months 

Stage 1 Intermediate Lymphocytosis + Lymph node enlargement 101 months 

Stage 2 Intermediate Lymphocytosis + Spleen/liver enlargement 71 months 

Stage 3 High Lymphocytosis + anaemia 19 months 

Stage 4 High Lymphocytosis + thrombocytopenia 19 months 
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The Binet staging system was also developed for CLL, which relied on the 

number of affected lymphal areas and cytopenias, summarized in  (Binet et 

al., 1977). The Rai and Binet staging systems provide prognosis for the patient as well 

as the appropriate time for patient therapy. However, there is significant heterogeneity 

of outcomes at the different stages, so new and more accurate prognostic markers in 

CLL are of great clinical interest. 

 

 

 

 

Binet Stage  Risk level Prognosis factors 
Median 
survival 

Stage A Low Lymphocytosis + less than 3 enlarged lymphal areas > 12 years 

Stage B Intermediate Lymphocytosis + more than 3 enlarged lymphal areas 7 years 

Stage C Intermediate Lymphocytosis + anaemia or thrombocytopenia 2 years 
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Recurring genomic abnormalities with prognostic significance have been 

identified in genetic studies using interphase fluorescence in situ hybridisation (FISH) 

and chromosomal analysis in CLL (Oscier et al., 2002, Juliusson et al., 1990). Many 

reports have associated CLL prognosis with genomic aberrations, summarised in 

.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Marker 
type Genomic/chromosomal markers 

Relative 
prognosis Reference 

Deletions Deletions in 11q, 17p Poor (Krober et al., 2006) 

Deletions Deletions in 13q Good (Krober et al., 2006) 

Deletions Deletion in 6q Intermediate (Cuneo et al., 2004) 

Mutations 
TP53, ATM (tumour suppressor 
genes) Poor (Zenz et al., 2010) 

Mutations IRF4, Bcl-2 polymorphism Good (Havelange et al., 2011) 

Mutations Bcl-6 mutation Poor (Sarsotti et al., 2004) 

Mutations MDM2 SNP Poor (Gryshchenko et al., 2008) 
IgVH 
mutational 
status 

IgVH mutated Good (Schroeder and Dighiero, 1994, 
Fais et al., 1998, Damle et al., 
1999, Hamblin et al., 1999) IgVH unmutated Poor 

Gene 
expression 

ZAP-70 (correlates with mutational 
status) Poor (Krober et al., 2006) 

V3-21 gene usage Poor (Krober et al., 2006) 

Micro RNAs 
Micro RNA signature associated with 
prognosis - (Calin et al., 2005) 

Telomere 
length 

Longer telomere length (correlates 
with mutational status) Good (Grabowski et al., 2005) 
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There are four prognosis markers that are currently widely in clinical use:  

 

Studies of CLL in some patients have shown that CLL cells do not possess 

any somatic hypermutations in the complementary determining regions (CDRs) of the 

immunoglobulin genes, whereas other patients have highly mutated BCRs (Cai et al., 

1992). It has been suggested that the two different mutational statuses of CLL patients 

may be derived from two different stages of B-cell ontology, with the unmutated CLL 

cases corresponding to pre-antigenic stimulation, and the mutated cases 

corresponding to post-antigenic stimulation (Hamblin et al., 1999, Damle et al., 

1999). The examination of IgHV genes in CLL patients have shown that the two 

subsets of CLL that are prognostically significant, with studies suggesting an inferior 

survival and high likelihood of requiring early treatment in patients with unmutated 

IgHV. For example, Hamblin et al. found that the median survival for stage A patients 

with mutated CLL was 293 months (n=46) compared to 95 months for unmutated 

CLL (n=38) (p-value=0.0008) (Hamblin et al., 1999). Furthermore, leukemic cells 

from unmutated patients tend to produce polyreactive antibodies (Martin et al., 1992, 

Herve et al., 2005b), similar to natural autoantibodies (Caligaris-Cappio and Ghia, 

2008, Mouquet and Nussenzweig, 2011). 

Commercially available assays are used to determine mutational status of the 

CLL, which relies on capillary sequencing of reverse transcribed/PCR products of 

peripheral blood and bone marrow aspirate from each patient. The percentage BCR 

mutation is calculated by comparing the IgHV sequences to the germline sequence 

database (difference of > 2% from germline counterpart is classified as mutated 

BCR). 

 

 

Interphase fluorescence in-situ hybridization (iFISH) has shown that trisomy 

12, and deletions in 13q14 are correlated with IgHV mutational status in CLL 

(Hamblin et al., 1999, Damle et al., 1999). Trisomy 12, and chromosome 13 and 14 

abnormalities are the most common genomic aberrations associated with CLL. 
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Juliusson et al. found that CLL patient with a normal karyotype (n=173) had a median 

overall survival of greater than 15 years, compared to 7.7 years for karyotypic 

abnormalities (n=218) (Juliusson et al., 1990). In addition, patients with single 

karyotypic abnormalities (n=113) had better prognosis than those with complex 

karyotypes (p-value<0.001). Within the subset of patients with single karyotypic 

abnormalities, patients with trisomy 12 (n=67) had poorer survival than patients with 

chromosome 13q (n = 51) (p-value=0.01), where the latter has the same survival as 

those with a normal karyotype. Patients with chromosome 14q had significantly 

poorer survival than those with abnormalities of chromosome 13q (p-value<0.05). 

 

 

CD38 is a single chain type II transmembrane glycoprotein, which is 

expressed in a discontinuous manner in normal B-cell development. CD38 can be 

detected in high levels in B-cell precursors, germinal centre cells and plasma cells, 

and lower expression is usually seen in the peripheral blood and tonsillar B-cells of 

health individuals. CD38 function is thought to include complex ectoenzymatic 

activity and signal transduction for regulation of cell proliferation and survival 

(Kumagai et al., 1995). However, CD38 expression has been seen in a proportion of 

CLL patients, and is correlated with survival outcomes and a increase probability of 

requiring treatment, including continuous chemotherapy or chemotherapy with two or 

more agents or regimens (Durig et al., 2002). Specifically a CD38-negative patient 

group required minimal or no treatment, remained treatment-free for a longer time 

period and had prolonged survival (p-value<0.05 between CD38-negative CLL 

subgroup (<20% of the CLL cells expressed membrane CD38, n = 77) and CD38-

positive CLL subgroup ( 20% of the CLL cells expressed membrane CD38, n = 56)). 

 

 

Zeta-associated protein (ZAP-70) expression is involved in T-cell receptor 

signal transduction (Elder et al., 1994, Iwashima et al., 1994). Normal B-cells do not 

express ZAP-70, but has been shown to be overexpressed in IgHV unmutated CLL by 

microarray analyses, and serves as a surrogate marker for IgHV mutational status 

(Rosenwald et al., 2001, Klein et al., 2001, Wiestner et al., 2003). In vitro, ZAP-70 is 
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involved in the signal transduction cascade initiated by BCR stimulation in IgHV 

unmutated CLL (Chen et al., 2002, Chen et al., 2005, Crespo et al., 2003). 

Importantly, there is a statistically significant inferior clinical course for CLL patients 

with ZAP-70 expression (Krober et al., 2006, Schroers et al., 2005). 

 

 

B-cell signalling pathways have been found to be associated with proliferative 

potential in neoplastic cells in CD38-positive, ZAP-70-positive and unmutated CLL 

patients, and it has been suggested that stimulation may occur in the “pseudo-

follicular” proliferation centres (PCs) (Ferrarini and Chiorazzi, 2004). PCs are focal 

aggregates of variable sizes scattered in the lymph nodes, and their presence are 

observed in CLL (Ratech et al., 1988, Granziero et al., 2001, Schmid and Isaacson, 

1994, Soma et al., 2006). Similar proliferation centres have also been seen in the 

inflamed tissues of patients with systematic autoimmune and inflammatory disorders, 

such as rheumatoid arthritis (Takemura et al., 2001) and multiple sclerosis (Corcione 

et al., 2005). It is thought that the clustering of pro-lymphocytes and CLL cells forms 

pseudo-follicular proliferation centres, where small lymphocytes accumulate and 

overflow into the peripheral blood. The PC microenvironment consists of pro-

lymphocytes and CLL cells intermixed and surrounded by CD3+ T-cells (most of 

which are CD40 and CD40+), which are in close contact with the proliferating 

malignant B-cells (Ghia et al., 2002). Follicular dendritic cells have been observed in 

some PC (Ratech et al., 1988, Schmid and Isaacson, 1994), along with stromal cells 

and accessary cells interspersed with the small lymphocytes (Caligaris-Cappio, 2003, 

Burger and Kipps, 2006).  

 

 

In CLL, the decision to treat is guided by clinical staging, symptoms, and 

disease activity. Patients in early stages of disease (Rai 0-II or Binet A) are generally 

only monitored but not treated unless associated CLL symptoms occur. It has only 

been shown that treatment is beneficial for patients at later stages (Rai III-IV or Binet 

B-C), but no statistical difference in outcome has been found by treating patients at 

earlier stages (Rai I-II or Binet A). Disease activity is typically monitored by 
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lymphocyte doubling time (the time it takes for the number of lymphocytes to double) 

of less than 6 months or by the rapid growth of lymph nodes, and is often an 

indication to commence treatment (Hallek and German, 2005). Although the aim for 

treatment is disease eradication, most patients who have a complete response typically 

have minimal residual disease. The term minimal residual disease (MRD) refers to 

low-level disease, often after incompletely effective chemotherapy (Paietta, 2002). 

The general consensus for MRD level is between 0.01% and 0.035% leukemic cells 

within a morphologically normal appearing bone marrow, as the detection of less than 

0.01% of leukaemic cells by flow cytometry may not be reliably reached due to 

variability of technical expertise in different clinical laboratories (Campana, 2010, 

Coustan-Smith et al., 2000, Paietta, 2002). Detection of disease relapse after therapy 

is of great clinical importance, particularly to determine if further CLL therapy is 

required. Flow-cytometry and real-time quantitative polymerase chain reaction 

techniques are typically used for clinical monitoring of MRD (Moreton et al., 2005). 

The main therapies available to CLL patients are: 

 

• Alkylating agents ± prednisone (chlorambucil, cyclophosphamide) 

Chlorambucil and other alkylating agents can bind to cellular structures such 

as membranes, RNA, proteins and DNA. It is thought that DNA cross-linking is the 

most important mechanism for anti-tumour activity. Despite the relative benefit to 

some patients with the use of chlorambucil, drug resistance and relapse remains a 

problem. Furthermore, CLL cells are typically not highly proliferative, therefore 

raising questions about the anti-tumour activity of the drug (Begleiter et al., 1996). 

Prednisone is a corticosteroidal immunosuppressant drug which acts by repressing the 

activity of transcription factors such as activating protein-1 (AP-1) and nuclear factor-

κB (NF-κB), thus inhibiting cytokine production, changes the expression of various 

oncogenes, induces cell-cycle arrest and apoptosis (Inaba and Pui, 2010). 

 

• Combination chemotherapy with alkylating agents (COP, R-CHOP) 

R-CHOP is composed of rituximab, cyclophosphamide, hydoxydaunorubicin, 

oncovin, prednisone respectively for the letter abbreviations, and COP is composed of 

cyclophosphamide, vincristine, prednisone. Hydoxydaunorubicin prevents DNA and 

RNA from replicating, oncovin inhibits during the M phase of the cell cycle and 
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prednisone is anti-inflammatory. The synthetic corticosteroid drug, prednisone, is an 

immunosuppressant used in the treatment of some inflammatory diseases, such as 

allergies, as well as cancer in higher doses. Prednisone is converted via hepatic 

metabolism to prednisolone, which irreversibly binds to the alpha and beta 

glucocorticoid receptors. The glucocorticoid receptor-prednisone complexes dimerise, 

and interact with nucleic DNA leading to gene transcription alterations. However, the 

long-term use of prednisone and other steroids has been associated with development 

of osteoporosis, where bone loss is observed in approximately 50% of patients taking 

7.5mg prednisone for more than 3 months, and 25% of patients developed 

osteoporotic fractures, and further patients developed osteonecrosis (Van Staa et al., 

2000). Prednisone and other steroids have been shown to promote apoptosis of 

osteoblasts and osteoclasts, as well as reducing the recruitment of osteoblasts and 

osteoclasts from progenitor cells (Weinstein et al., 1998). Therefore, the suitability of 

these combination therapies need to assessed on an individual basis, particularly in 

reference to the risk of developing osteo-related complications. 

In a randomised study of 287 stage B CLL patients, treatment response was 

improved with CHOP (n=147) compared to chlorambucil plus prednisone (n=140) (p-

value=0.007, chi-square test), but showed no difference in survival (p-value=0.33, 

score test). However, for stage C CLL patients, there were no significant differences 

treatment response and survival between CHOP (n=44) or CHOP plus methotrexate 

(n=46). Therefore, even though CHOP has been shown to improve therapy response, 

questions remain about its effectiveness at treating advanced CLL patients (Binet, 

1994). These treatments are used in other B-cell malignancies, where 2-year and 5-

year follow-up studies have shown that the outcome of elderly diffuse large B-cell 

lymphoma (DLBCL) patients on R-CHOP therapy regimens have shown significant 

increases the rate of complete response, decreases the rates of treatment failure and 

relapse, better event-free survival and overall survival compared to CHOP alone 

(Coiffier et al., 2002, Feugier et al., 2005). 

 

• Purine analogs 

Fludarabine, pentostatin, and cladribine are the three purine analogs currently 

used in CLL. Pentostatin inhibits adenosine deaminase by mimicking adenosine, thus 

reducing the cell’s capability to process DNA (Sauter et al., 2008) and typically used 

in patients who have relapsed as well as those with acute graft-versus-host disease 
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(Bolanos-Meade et al., 2005). Cladribine works by a similar manner as pentostatin, 

with complete response and overall response rates similar to fludarabine (Robak, 

2001), although 18-42% of patients experience fever side-effects after cladribine 

infusion (Van Den Neste et al., 1996, Saven et al., 1999). Cladribine is also used in 

the treatment of treatment of symptomatic hairy cell leukaemia, and is in clinical trials 

for use in the treatment of multiple sclerosis (Giovannoni et al., 2010). Fludarabine 

inhibits DNA synthesis by hindering ribonucleotide reductase and DNA polymerase. 

Fludarabine affects both resting and dividing cells, therefore works on both cancerous 

and healthy cells. Fludarabine monotherapy produces the best longer overall survival 

rates, but combination with Chlorambucil has shown some increased benefit (Rai et 

al., 2000, Johnson et al., 1996). Fludarabine has been combined with purine analogs 

(such as low-dose fludarabine with cyclophosphamide ± mitoxantrone), that have 

been shown to be effective in a subset of elderly CLL patients while with low 

infectious complications and negligible toxic side-effects (Marotta et al., 2000). 

 

• Monoclonal antibodies (campath-1H, rituximab) 

Campath-1H (alemtuzumab) is a humanised anti-CD52 antibody, an antigen 

on the surface of normal and malignant lymphocytes. This treatment has also been 

approved for the treatment of multiple sclerosis. However, the exact mechanism of 

campath-1H is not fully defined (Hu et al., 2009). 

Rituximab is a CD20-specific monoclonal antibody that causes potent 

antibody-mediated B-cell cytotoxicity. Depletion of circulating B-cells from the pre-

B-cell stage to the pre-plasma cell stage can lead to reduction and, in some cases, 

remission of CLL (Grillo-Lopez et al., 2002, Cragg et al., 2005). However, germinal 

centre B-cells have been found to be resistant to killing, potentially due to poor tissue 

penetration by rituximab (Grillo-Lopez et al., 2002). Rituximab is now being used in 

patients with autoimmune disease (Buch et al., 2011). Sometimes, a combination of 

chemotherapy and immunotherapy is used, such as fludarabine, cyclophosphamide, 

rituximab, fludarabine and campath-1H.  

 

• Transplantation (auto, allo, RIC) 

The use of auto-grafting in CLL is being an increasingly frequent treatment 

option. However, complications can be caused by fludarabine in stem-cell harvesting. 
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Hematopoietic stem cell transplantation (SCT) has been explored in clinical trials in 

younger patients with associated adverse disease risk factors. Although autologous 

SCT is not curative, it has a low treatment-associated mortality rate. Only a small 

number of patients are offered myeloablative allogeneic SCT due to high treatment-

associated morbidity and mortality (Gribben, 2009). 

 

B-cell malignancies have been found to typically express dominant clonal IgH 

receptors (Arber, 2000), and a variety of assays have been developed to assess B-cell 

clonality for diagnosis of B-cell cancers, such as in CLL and mantle cell lymphoma 

(MCL) (Campbell et al., 2008).  

The suggestion that CLL B-cells are selected by antigenic pressure is 

reinforced by a number of studies showing highly restricted and biased IgHV gene 

usage in the B-cell repertoire of CLL patients compared to normal adult repertoire 

(Kipps et al., 1989, Herve et al., 2005a, Schroeder and Dighiero, 1994, Fais et al., 

1998, Chiorazzi and Ferrarini, 2003, Stevenson and Caligaris-Cappio, 2004, Tobin et 

al., 2004a, Ghiotto et al., 2004, Messmer et al., 2004, Widhopf et al., 2004, Tobin et 

al., 2004b). Similar CLL BCRs are expressed between different CLL patients arising 

from common V-(D-)J gene usage in the heavy and light chains that share structural 

features such as CDR3 length, amino acid composition and joining regions, such as 

IgHV1-69 with IgHJ6 in the unmutated CLL, and IgHV4-34 in the mutated CLL. 

These stereotyped BCRs in CLL supports the hypothesis that BCR reactivity may 

play an important role in the CLL leukaemogenesis, potentially through activation by 

common antigen or auto-antigen (Tobin et al., 2004a, Ghiotto et al., 2004, Messmer et 

al., 2004, Widhopf et al., 2004, Tobin et al., 2004b).  

CLL B-cells have been shown to express more than one IgHV allele in about 

3.1% patients (Visco et al., 2013). This phenomenon can be explained either by the 

expression of two productive BCRs in a monoclonal CLL clone, or the presence of 

two distinct clonal expansions, known as bi-clonal CLL (Langerak et al., 2011). The 

prevalence of dual BCR expression in a single CLL clone has been reported in up to 

5% of CLL cases, and thought to be due to incomplete allelic exclusion or secondary 

rearrangements of the IgH locus (Visco et al., 2013, Katayama et al., 2001, Rassenti 

and Kipps, 1997). Bi-clonal CLL is defined as the presence of two or more 
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phenotypically or morphologically distinct leukemic populations (Sanchez et al., 

2003).  

Multiple B-cell neoplasms are frequently encountered in patients, with 

associations of CLL with small lymphocytic lymphoma (SLL) follicular lymphoma 

(FL) (Boiocchi et al., 2012, Sanchez et al., 2006), and hairy cell leukaemia with CLL 

and SLL (Gine et al., 2002). Indolent B-cell lymphomas can develop into more 

aggressive disease, such as by Richter transformation or the transformation of FL to 

diffuse large B-cell lymphoma (DLBCL) (Boiocchi et al., 2012). Composite 

neoplasms can be clonally related, as suggested by related IgV gene rearrangements 

in cells from two lymphomas. Many of such cases have been shown to exhibit both 

shared and distinct somatic mutations, suggesting separate development of the 

lymphomas from a common premalignant precursor (Rosenquist et al., 2004b, 

Rosenquist et al., 2004a, Tinguely et al., 2003, van den Berg et al., 2002, Kuppers et 

al., 2001, Marafioti et al., 1999, Brauninger et al., 1999, Schmitz et al., 2005). 

Therefore, multiple B-cell neoplasms represent models to understand the 

transformation process in tumourigenesis and development of heterogeneous tumour 

populations from shared cancer precursors. Therefore, detection and monitoring of B-

cell populations in lymphoid malignancies is of great clinical importance.  
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Acute lymphoblastic leukaemia (ALL) is the most common childhood 

leukaemia, where children account for two thirds of all ALL cases. Typically, 

children with ALL have a better prognosis than adult patients with ALL. Through the 

use of combinations of drug therapies, outlined in Section 1.4.4, between 80-90% of 

children are cured (Pui et al., 2008, Fielding, 2008), but the cure rate in adults is 30-

40% (Pui et al., 2008). Relapse remains the leading cause of morbidity and mortality 

in children. The reasons for the difference in cure rates between children and adults is 

not fully understood, but thought to comprised of multiple factors including different 

therapeutic protocols between these groups and differences in biology between the 

disease groups. 

 

ALL is thought to develop from a single leukaemic progenitor cell with the 

capability of indefinite clonal expansion. Different subtypes of ALL are based on the 

stage of lymphoid differentiation at which leukaemogenesis occurred, either in the 

committed lymphoid B-cell (1-2%) or T-cell lineage (15-20%), or an early precursor 

B-cell (80%) or early precursor T-cell (~2%) (Reaman, 2002).  

Diagnosis is confirmed by the presence of lymphoblasts on a bone marrow 

biopsy or aspirate, or peripheral blood smear, containing more than 20-25% of cells 

with the immunophenotype for ALL (Sabattini et al., 2010). Lymphoid lineage cells 

can be confirmed by immunophenotyping, which also distinguishes between B-cell 

and T-cell lineages as well as stage of differentiation (Huh and Ibrahim, 2000). 

Distinguishing acute myeloid leukemia (AML) from ALL is routinely achieved by 

staining leukemic cells for myeloperoxidase (MPO), where ALL is typically MPO-

negative (Bennett et al., 1981, Bennett et al., 1976). Additional risk stratification and 

prognostic estimation of patients presenting with ALL include complete blood count, 

bone marrow and CNS involvement, cytogenetic studies, and tests for additional 

infections.  

Common symptoms of ALL include fatigue (50%), fever (60%), pallor (skin 

paleness, 25%) and weight loss (26%). Bone pain caused by infiltration of blast cells 
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into the marrow cavity and periosteum occurs in 23% of patients (Dworzak and 

Panzer-Grumayer, 2003, Silverman and Sallan, 2003). The large burden of leukemic 

cells in patients with B- or T- cell ALL or B-cell precursor leukaemia commonly 

results in blood hyperkalemia (excess potassium), hyperuricemia (excess uric acid), 

and hyperphosphatemia (phosphate excess) with secondary hypocalcemia (low serum 

calcium). Therefore, intravenous hydration and sodium bicarbonate are often used to 

alkalise the urine, and hyperuricemia is treated with allopurinol, and 

hyperphosphatemia is treated with aluminum hydroxide or calcium carbonate (Pui et 

al., 1997). The peripheral blast-cell count can be reduced before chemotherapy by 

allopurinol, a purine synthesis inhibitor (Masson et al., 1996). Infiltration and 

involvement of the central nervous system (CNS) is found in <5% of children with 

ALL at presentation. The symptoms of CNS involvement include vomiting, headache, 

papilledema (swelling of the optic disc) and abducens nerve palsy (cranial nerve VI 

dysfunction) (Craig, 2003, Ma et al., 1997, Downing and Shannon, 2002). Fever is 

presented in at least half of ALL patients, either due to pyrogenic cytokines released 

from leukemic cells, including IL-1, IL-6 and tumor necrosis factor (Dinarello and 

Bunn, 1997) or from infection. These symptoms are often treated with broad-

spectrum antibiotics until infection can be excluded (Hughes et al., 1987). 

 

Individuals with Down’s syndrome or ataxia telangiectasia have an increased 

risk of developing ALL (Hasle et al., 2000, Morrell et al., 1986). A number of 

prognostic factors in ALL have been determined, where some are co-associated with 

age (summarised in ). Furthermore, additional genetic modifications have 

been found in relapsed ALL different to that seen in patients at presentation. Of 

significance are mutations in the histone acetyl transferase domain of cyclic adenosine 

monophosphate (cAMP) response element-binding protein found in approximately 

20% of relapsed ALL cases, particularly in hyperdiploid ALL (seen in 60% of 

relapsed patients), thought to be a result of clonal selection during disease course 

rather than clonal evolution (Inthal et al., 2012).   
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Genomic aberration Risk association* Reference 
Hyperdiploidy Younger age and better 

prognosis 
(Aguiar et al., 1996, 

Burmeister et al., 2010) 
t(12;21) [ETV6/RUNX1] translocation Younger age and better 

prognosis 
(Aguiar et al., 1996, 

Burmeister et al., 2010) 
t(9;22) [BCR/ABL1] Older age and worse 

prognosis 
(Secker-Walker et al., 

1991) 
Complex karyotype Older age and worse 

prognosis 
(Secker-Walker et al., 

1991) 
Hypodiploidy Older age and worse 

prognosis 
(Secker-Walker et al., 

1991) 
Janus kinase 1 and 2 mutations Poor prognosis and associated 

with T-cell precursor ALL in 
adults 

(Mullighan et al., 2009) 

Ikaros family zinc finger protein 1 
mutations 

Worse prognosis (Kuiper et al., 2010) 

Cytokine receptor-like factor 2 
translocations 

Older age and worse 
prognosis 

(Chen et al., 2012) 

BCR-ABL1 translocations Worse prognosis (Roberts et al., 2012) 

Intra-chromosomal amplifications of 
chromosome 21 (the gain of at least 
three copies of the RUNX1 region) 

Worse prognosis (Moorman et al., 2007) 

Philadelphia chromosome Worse prognosis (Fielding et al., 2009) 

   

Other risk factors Risk association* Reference 
T-cell ALL Worse prognosis (Neumann et al., 2012) 

B-cell ALL Better prognosis (Neumann et al., 2012) 

Early T-cell precursor ALL (CD3+, 
CD5weak, CD8-, CD1a- expression) 

Worse prognosis (Neumann et al., 2012) 

 

 

The ALL treatment regimen is typically determined by patient age and the 

Philadelphia chromosome status. Philadelphia chromosome is a chromosomal 

abnormality with the reciprocal translocation between chromosome 9 and 22 that has 

a statistically poor prognosis (Fielding et al., 2009). Children and young adults are 

treated with paediatric regimens, and Philadelphia chromosome-positive ALL patients 

receive tyrosine kinase inhibitor (TKI, such as such as imatinib) in addition to 

chemotherapy. Typically there are three treatment phases: (a) induction phase, (b) 

consolidation phase and (c) maintenance phase. The outline of these phases are 

discussed below (Larson et al., 1995, Kantarjian et al., 2004, Thomas et al., 2004, 

Rowe et al., 2005, Cortes et al., 1995). 
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Induction phase treatment 

The aim of the induction phase is patient remission, defined by healthy blood 

cell counts, the absence of leukemic cells in the bone marrow and repopulation of the 

bone marrow with healthy cells. Combinations of chemotherapy drugs are used in this 

stage according to patient risk profile (such as defined in ), but typically 

including vincristine (a mitotic inhibitor), dexamethasone or prednisone (as an anti-

inflammatory and immunosuppressant drug), and doxorubicin, daunorubicin, or 

another anthracycline drug (DNA intercalating agent that inhibits DNA and RNA 

synthesis). Treatment of leukemic cells that have entered the CNS or to prevent 

leukaemic cells from entering CNS includes intrathecal chemotherapy often involving 

methotrexate (an antimetabolite). Radiation therapy may be used directly to the brain 

or spinal cord. 

 

Consolidation phase treatment 

For patients that achieve remission, a short course of chemotherapy is 

performed lasting a few months. Typically the same drugs are used as in the induction 

phase given in high doses. For high relapse risk patients (as defined in ) and 

those with poor prognostic factors, allogeneic or autologous stem cell transplant can 

be given. CNS prophylaxis may be continued. 

 

Maintenance phase treatment 

A maintenance chemotherapy program of methotrexate and 6-mercaptopurine 

(an immunosuppressive drug) is given to patients after the consolidation phase. This 

phase usually lasts about 2 years. Additional drugs, such as imatinib, are given to 

Philadelphia chromosome-positive ALL patients, and CNS prophylaxis may be 

continued.  

 

 

MRD testing is routinely used in most paediatric ALL protocols and an 

increasing number of adult ALL trial protocols. The risk stratification and clinical 

significance of MRD depends intrinsically on the MRD assays used and time points 

tested (Bruggemann et al., 2010, Borowitz et al., 2003).  
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The clinical evaluation of treatment responses in ALL patients is achieved 

with a range of MRD assays. B-ALL and T-ALL cells have distinct clonal 

rearrangements in their B- or T-cell receptors respectively, and are often associated 

with the expression of gene fusions and leukaemia-associated immunophenotypes. 

Assays based on PCR or flow cytometry have the sensitivity to detect one ALL cell in 

at least 104-105 healthy cells from clinical samples (summarised in ) 

(Campana, 2010). However, this may not be sensitive enough to detect MRD 

considering only a single or small number of B-cells is required for disease relapse 

and >106 B-cells are taken in a typical 10ml blood sample. 

MRD is currently most frequently quantified using real-time quantitative PCR 

(qPCR) (van der Velden et al., 2007). Using immunoglobulin rearrangements in B-

ALL patients or TCR rearrangements in T-ALL patients has proven to be sensitive 

and quantitative. However, in some patients, ongoing immunoglobulin or TCR 

rearrangements occur generating leukaemic subclones with distinct sequences, which 

can be undetected at diagnosis but become the dominant clone subsequently. 

Therefore, recommendations have been made to monitor two or more different 

rearrangement from diagnosis or to use additional MRD assays such as flow 

cytometry (van der Velden et al., 2007, Faham et al., 2012). 

Genetic abnormalities are carried in most ALL cells. qPCR of gene fusions are 

most frequently used for MRD detection, such as BCR-ABL1, ETV6-RUNX1, MLL-

AFF1, and TCF3-PBX1. These recurrent abnormalities are present and suitable for 

MRD monitoring in about 40% of ALL patients (Campana, 2010, Bruggemann et al., 

2010). The benefits of qPCR are the rapidity of the procedure that does not require 

sequencing or patient-specific primer design, and the stable association of the gene 

fusion and the ALL clone. Although the use of mRNA for qPCR is typically more 

sensitive than DNA due to the higher copy number per cell, mRNA is prone to 

degradation leading to potential false negative results and the number of transcripts 

per cell for a fusion gene may be variable between patients, thus quantification is 

difficult (Gabert et al., 2003).  

ALL cells express cell surface markers that resemble closely the origin of B- 

or T-lymphoid precursors. Healthy T-lymphoid precursors typically do not circulate 

but instead occupy the thymus. Therefore blood or bone marrow cells with cell 

surface markers resembling that of T-lymphoid precursors is sufficient to identify T-
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ALL (Coustan-Smith et al., 2006). Detection of B-ALL cells typically relies on the 

aberrant expression of cell markers known as the leukaemia-associated 

immunophenotypes, which can be identified in more than 95% of B-ALL cases and 

typical for each ALL disease subtype (Campana, 2010).  

An alternative MRD assay is next-generation sequencing of the BCR or TCR 

repertoires in B-ALL and T-ALL respectively. ALL cells typically arise from the 

leukaemic transformation of a single lymphoid precursor, therefore each B- or T-ALL 

cell has a unique B- or T-cell receptor rearrangement respectively that is a unique 

marker for the leukaemic clone in high-throughput sequencing data (Bruggemann et 

al., 2010). Markers for MRD in B-ALL can be determined at the time of diagnosis 

when the leukaemic B-cell load is greatest and the peripheral blood exhibits 

significant B-cell clonal expansion. B-cell BCR repertoire analysis has been used to 

identify IgHV-D-J gene usage in the leukaemic B-cell clone(s). Subsequent 

monitoring of the patient can be used to follow the leukemic B-cell population during 

and after therapy, enabling early detection of minimal residual disease (Brisco et al., 

2009). This approach overcomes the requirement of patient-specific reagents while 

achieving a sensitivity of >1 in 106 cells (Logan et al., 2011, Faham et al., 2012, 

Gawad et al., 2012). Furthermore, this approach allows for the assessment of the total 

diversity of the B- or T-cell populations, thus able to follow the ALL sub-clonal 

evolution as well as the major malignant clone (Ladetto et al., 2013). 
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Mapping of BCR and TCR repertoires promises to transform our understanding of 

adaptive immune dynamics, with applications ranging from identifying novel 

antibodies and determining evolutionary pathways for haematological malignancies to 

monitoring of minimal residual disease following chemotherapy (Weinstein et al., 

2009, Woof and Burton, 2004b, Tonegawa, 1983). The aim of this thesis is to 

investigate B-cell diversity in health and disease as follows: 

1. Investigating and developing robust methods for analysing high-throughput 

B-cell receptor sequencing repertoires.  

2. Determining robust methods for deep-sequencing B-cell receptor populations. 

3. Investigating B-cell repertoire dynamics following treatment of acute 

lymphoblastic leukaemia and investigating MRD and relapse. 

 
 

 
 
 
 
 
 
 
 

 
 
  



 -65-  

Chapter 2 
 

 

Peripheral blood mononuclear cells (PBMCs) were isolated from 10ml of 

whole blood from healthy volunteers and CLL patients using Ficoll gradients (GE 

Healthcare), summarised in . For the B-ALL peripheral blood samples, DNA 

and RNA extraction was performed by incubation with erythrolysis buffer for 15 

minutes, centrifugation, discarding supernatant (repeated twice), and resuspension of 

cells in PBS. Total RNA was isolated using TRIzol® and purified using RNeasy Mini 

Kit (Qiagen) including on-column DNase digestion according to manufacturer’s 

instructions. Total RNA was also isolated from 1x106 cells from Human 

lymphoblastoid cell lines (LCLs) from the HapMap project (Frazer et al., 2007), 

where the number of passages was unknown. DNA extraction was isolated using 

TRIzol® and the MiniPrep kit (Qiagen) according to manufacturer’s instructions. 

CLL and B-ALL samples were approved by the relevant institutional review boards 

and ethics committees (07/MRE05/44 and EEBK/EΠ/2014/15 respectively).  
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RT-PCR reagents were purchased from Invitrogen. The FR1 and FR2 primer 

sets used (supplied by Sigma Aldrich) are described by Van Dongen et al. (van 

Dongen et al., 2003) and in . Reverse transcription was performed using 

500ng of total RNA mixed with 1μl JH reverse primer (10μM), 1μl dNTPs (0.25mM), 

and RNase free water added to make a total volume of 11μl. This was incubated for 5 

minutes at 65oC, and 4μl First strand buffer, 1μl DTT (0.1M), 1μl RNaseOUT™ 

Recombinant Ribonuclease Inhibitor and 1μl SuperScript™ III reverse transcriptase 

(200units/μl) was added. RT was performed at 50oC for 60 minutes before heat-

inactivation at 70oC for 15 minutes ( ). PCR amplification of cDNA (5μl of 

the RT product) was performed with the JH reverse primer and the FR1 or FR2 

forward primer set pools (0.25 μM each), using 0.5μl Phusion® High-Fidelity DNA

Polymerase (Finnzymes), 1μl dNTPs (0.25mM), 1μl DTT (0.25mM), per 50μl 

reaction. For multiplex PCR amplification of DNA, 30ng of DNA was mixed with the 

JH reverse primer and the FR1 forward primer set (0.25 μM each), using 0.5μl 

Phusion® High-Fidelity DNA Polymerase (Finnzymes), 1μl dNTPs (0.25mM), 1μl 

DTT (0.25mM), per 50μl reaction. The following PCR program was used: 3 minutes 

at 94oC, 35 cycles of 30 seconds at 94oC, 30 seconds at 60oC and 1 minute at 72 oC, 

with a final extension cycle of 7 minutes at 72 oC on an MJ Thermocycler.  

IgHV degenerate 
primers 

J consensus 
primer 

Vx     Dy        Jz            Constant region 

Sequencing 
RT-PCR amplification 

Sequenci
R

Functional BCR 
sequence (mRNA) 
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Primer Sequence 

JH reverse CTTACCTGAGGAGACGGTGACC 

  

VH1-FR1 forward GGCCTCAGTGAAGGTCTCCTGCAAG   

VH2-FR1 forward GTCTGGTCCTACGCTGGTGAAACCC   

VH3-FR1 forward CTGGGGGGTCCCTGAGACTCTCCTG FR1 primer set* 

VH4-FR1 forward CTTCGGAGACCCTGTCCCTCACCTG 

VH5-FR1 forward CGGGGAGTCTCTGAACATCTCCTGT   

VH6-FR1 forward TCGCAGACCCTCTCACTCACCTGTG   

VH1-FR2 forward CTGGGTGCGACAGGCCCCTGGACAA   

VH2-FR2 forward TGGATCCGTCAGCCCCCAGGGAAGG   

VH3-FR2 forward GGTCCGCCAGGCTCCAGGGAA   

VH4-FR2 forward TGGATCCGCCAGCCCCCAGGGAAGG FR2 primer set* 

VH5-FR2 forward GGGTGCGCCAGATGCCCGGGAAAGG   

VH6-FR2 forward TGGATCAGGCAGTCCCCATCGAGAG   

VH7-FR2 forward TTGGGTGCGACAGGCCCCTGGACAA   

B-actin forward CGCCTTTGCCGATCCGCCG 

B-actin reverse CTTCTCGCGGTTGGCCTTGGG 

GAPDH forward GAAGGTGAAGGTCGGAGTC  

GAPDH reverse GAAGATGGTGATGGGATTTC  

B-globin forward CTGCCGTTACTGCCCTGTGGG 

B-globin reverse GGACAGCAAGAAAGCGAGCTTAGTG 
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Total RNA was initially processed for target enrichment using the NEBNext 

kit (NEB) according to manufacturers protocol. Briefly, mRNA was isolated by 

polyA+ selection and converted to cDNA. cDNA at 0.3 to 0.7ng/μl was fragmented to 

200bp (Covaris), ligated to sequencing adaptors (Illumina) and size selected at 200bp 

(Life Technologies E-Gel). Samples were then indexed for pre-capture pooling 

(NEBNext Multiplex Oligos for Illumina Index Primers 1 to 12). A pre-capture 

library was generated using 12 cycles of PCR (KAPA Biosystems Library 

Amplification Kit). Libraries were pooled and hybridised to biotinylated RNA-

capture baits (custom design (Fisher et al., 2014), full protocol available on request), 

Agilent SureSelect) at 65°C for 24 h. Hybridised fragments were selected using 

streptavidin magnetic beads, washed and eluted for multiplexed sequencing on 

Illumina Miseq. 

 

 

5’RACE was performed using SMARTer™ Pico PCR cDNA Synthesis Kit 

(Clontech) according to Clontech protocols, using the JH-reverse primer (Table S3) 

and SMARTer 5’ primer for PCR amplification. 

 

 

454-libraries were prepared using standard Roche-454 Rapid Prep protocols 

incorporating 10-base multiplex identifier (MID) tags and sequenced using an FLX 

Titanium Genome Sequencer (Roche/454 Life Sciences). MiSeq libraries were 

prepared using Illumina protocols and sequenced by 250bp or 300bp paired-ended 

MiSeq (Illumina) as indicated. Raw 454 or MiSeq reads were filtered for base quality 

(median >32) using the QUASR program (http://sourceforge.net/projects/quasr/) 

(Watson et al., 2013). MiSeq forward and reverse reads were merged together if they 

contained identical overlapping region of >65bp, or otherwise discarded. The 250bp 

reads from the 5’RACE experiment were retained if they contained a JH-reverse 

primer sequence and orientated to begin with IgHV gene. Reads from RNA-capture 

were BLAST aligned to reference IgH genes, and trimmed if the reads extended 

outside the IgHV-D-J region, and filtered for length (>160bp). Non-immunoglobulin 
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sequences were removed and only reads with significant similarity to reference IgHV 

genes from the IMGT database (Lefranc et al., 2009) using BLAST (Altschul et al., 

1990) were retained (1x10-10 E-value threshold). Primer sequences were trimmed 

from the reads, and sequences retained for analysis only if both primer sequences 

were identified and if sequence lengths were greater than 255bp or 195bp for FR1 and 

FR2 primed samples respectively for 454, or both forward and reverse reads greater 

than 110 bp for MiSeq. FR1 primed PCR samples from CLL patients were also 

Sanger-sequenced. 

 

 

The same PCR protocol and read quality filtering was used to amplify beta-

actin, beta-globin and GAPDH genes from two healthy individuals (amplicon sizes of 

150bp, 340bp respectively). The sequence representing the majority of the reads for 

each sample was classified as the ‘true’ gene sequence for that individual to account 

for individual allelic variation. Any differences between this sequence and the reads 

were considered to be PCR and/or sequencing error and classified as homopolymeric 

indels (occurring in a region of two or more consecutive identical bases), non-

homopolymeric indels, or mismatches.  

 

 

BLAST (Altschul et al., 1990) was used to align the 454 sequences against 

known BCR sequences from the ImMunoGeneTics (IMGT) database (Lefranc et al., 

2009). Due to the difference in length of the different gene families, different BLAST 

e-value thresholds were used for the IgHV, IgHD, and IgHJ-genes (10-70, 10-3 and 10-

20 respectively).  

 

 

The network generation algorithm is summarised in . Briefly, each 

vertex represents a unique sequence, where the relative size of the vertex is 

proportional to the number of sequence reads identical to the vertex sequence. Edges 

were calculated between vertices that differed by single nucleotide non-indel 

differences. The network generation was performed using custom Python scripts 
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using CD-Hit (Li and Godzik, 2006) and analyses were performed using igraph 

implemented in R (http://igraph.sourceforge.net/index.html). The distribution of 

mismatches within a single network cluster were determined by aligning the sequence 

representing the largest vertex with the sequences to which it is connected and the 

positions of mismatches were determined along the sequences. Two-sided t-tests were 

performed in R.  

 

454 
sequencing 

reads 

Quality control and read filtering 
for IgH similarity, length, primer 

sequences, and read trimming to 
remove primer sequences 

Grouping of sequences using 
CD-Hit (95% sequence 

similarity within each group) 

Within each group: all-against-all 
pairwise alignment to generate 
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The Gini index was calculated by ordering the cluster sizes from largest to 

smallest and creating a cumulative frequency distribution, where ,  

is the cumulative size of the all the largest clusters until the ith largest cluster and 

normalized such that . The Gini index is , 

where  is the number of clusters (Morrow, 1977). 

 

 

The Poisson distribution can estimate the expected number of reads containing 

i errors from the (central) vertex of size n reads, given an estimated error rate. The 

expected number of sequences with i errors is n.pi, where , and 

 is the expected number of mutations per read. A cluster is defined as a set of 

interconnected vertices, in which edges are generated between vertices that differ by a 

single base. A vertex v is only included in a cluster when the minimum distance from 

v to any of the sequences in the cluster containing the central vertex is one. Thus, all 

the sequencing errors at i=1 generate vertices that have edges connecting to the 

central vertex. At i >1, a vertex with set of mutations  will be connected to the 

cluster only if there exists a vertex in the cluster with a set of mutations  such that 

 (i.e. there is only one mutation in  that is not in 

). Therefore the probability of vertices due to i sequencing errors is estimated by 

drawing  samples from a multinomial distribution, for which the probability of 

the possible vertices that could connect to the cluster is given by 

, where l is the length of the sequence and  is the 

estimated number of vertices that are in the cluster which are at distance of j from the 

central node. 1000 independent samples were drawn from the multinomial 

distribution to estimate the average number of vertices at distances i from the central 

vertex, and therefore the cluster size due to sequencing error can be estimated by 

summing over the expected number of vertices at all i, .  
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BCR sequences related to the largest cluster were aligned using Mafft (Katoh 

and Standley, 2013) and a maximum parsimony tree was fitted using Paup* 

(Wilgenbusch and Swofford, 2003). The branch lengths represent the evolutionary 

distance between BCR sequences and bootstrapping was performed to evaluate the 

reproducibility of the trees, showing strong tree support (>95% certainty for all 

branches) as determined by phangorn in R (Schliep, 2011). 

 

 

Each numerical B-cell repertoire feature was normalised to sum to one over all 

samples. The lda function in R was performed to find a linear combination of features 

that best separates sample types (Rindskopf, 1997), projected over the first and 

second LDA dimensions. Hierarchical clustering of samples was performed using 

hclust in R (Murtagh and Contreras, 2012), where the distance measures between any 

two samples i and j was determined by: 

 

Where  and  are the first and second LDA dimension values for sample i 

respectively. 
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Chapter 3 
 

 

 

To date next-generation sequencing (NGS) of BCRs have primarily focused 

on classifying the IgHV, D and J recombination frequencies to understand the 

diversity of the BCR repertoire (Boyd et al., 2009, Campbell et al., 2008, Maletzki et 

al., 2012, Lev et al., 2012, Jager et al., 2012, Weinstein et al., 2009). However, 

computational assignment of V-D-J sequences to reference databases results in many 

incompletely identified IgHV, D and J genes even when the germline alleles are 

known (Weinstein et al., 2009). This is most likely due to somatic hypermutation 

(SHM) masking the identity of the germline genes present in the NGS, or the 

existence of new diverse IgH gene alleles not present in the reference database. 

Further, investigation of V-D-J gene usage frequencies utilises only part of the BCR 

sequence diversity with important information about the V-D-J joining regions and 

somatic hypermutations not considered. 

This chapter describes the development of analysis methods for BCR 

sequence data using the full BCR V-D-J sequence variation and that does not rely on 

prior V-D-J gene classification. It was previously shown that zebrafish BCR 

repertoire diversity can be interpreted through full V-D-J genotype diversity using 

BCR networks, and that these are an intuitive way for understanding B-cell 

repertoires (Ben-Hamo and Efroni, 2011). In such networks, the lowest level of 

organisation in a population of B-cells, namely unique B-cells, are represented by 

sparse networks whereas highly developed (connected) networks most likely result 

from clonal expansions of B-cells, arising through antigenic exposure or B-cell 

malignancies (Ben-Hamo and Efroni, 2011). However, such analyses have never been 

applied to mammals, or during infection or disease. In this chapter, network methods 

were developed to provide a robust framework for analysing vast NGS sequencing 

repertoires from B-cell populations. This chapter aimed to distinguish between 



 -75-  

diverse B-cell populations and clonal B-cell populations both qualitatively and 

quantitatively.  

 

 

 

RT-PCR amplification of the expressed rearranged IgHV-D-J loci from 

mRNA from human B-cell populations was performed using the consensus IgHJ 

primer and FR1 or FR2 IgHV family primers (  and ) (van Dongen 

et al., 2003). Peripheral blood (PB) samples from thirteen healthy individuals, eleven 

CLL patients, and eight LCLs yielded PCR products of expected sizes (310-360bp for 

FR1 and 250-295bp for FR2 primed samples) and were 454 sequenced ( ). 

Samples yielded an average of 42,324 sequencing reads after filtering for quality and 

presence of IgH sequence ( ). Briefly, only reads were retained with median 

base quality Phred scores of greater than 32, with significant similarity to reference 

IgHV genes (E-value <1x10-10), and with identifiable primer sequences. Two 

additional samples from CLL patient A (pre and post treatment) were sequenced on 

the MiSeq platform ( ). The BCR 454 sequence datasets from Boyd et al. 

(Boyd et al., 2009) were also analysed, which includes three healthy individuals and 

five patients with clonal blood disorders ( ).  
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Sample Patient type 
Age, 
years Gender 

Time since CLL diagnosis, 
years 

CLL 1 CLL 77 Male 7 

CLL 2 CLL 58 Male 2 

CLL 3 CLL 78 Male 1.5 

CLL 4 CLL+HCC 77 Male 2.5 

CLL 5 CLL 59 Female 1.25 

CLL 6 CLL 67 Male 2 

CLL7 CLL 69 Male 13 

CLL 8 CLL 64 Male 4.5 

CLL 9 CLL 77 Male 5.25 

CLL 10 CLL 81 Male 8 

CLL 11 CLL 81 Male 10 

Healthy 1 Age matched control 1 74 Female - 

Healthy 2 Age matched control 2 62 Female - 

Healthy 3 Age matched control 3 75 Female - 

Healthy 4 Age matched control 4 67 Female - 

Healthy 5 Age matched control 5 68 Female - 

Healthy 6 Healthy 6 55 Male - 

Healthy 7 Healthy 7 23 Male - 

Healthy 8 Healthy 8 23 Male - 

Healthy 9 Healthy 9 25 Male - 

Healthy 10 Healthy 10 24 Female - 

Healthy 11 Healthy 11 24 Female - 

Healthy 12 Healthy 12 24 Female - 

Healthy 13 Healthy 13 24 Female - 
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Primer Type* ID Platform 
Number 
of reads 

Number of reads 
(after filtering**) 

Average read 
length (bp) Multiplex 

FR1 CLL CLL 1 454 58700 51311 290.4 Multiplex half plate C 
FR1 CLL CLL 2 454 54937 31694 290.6 Multiplex half plate C 
FR1 CLL CLL 3 454 46657 26828 310.2 Multiplex half plate C 
FR1 CLL CLL 4 454 45632 27126 287.9 Multiplex half plate C 
FR1 CLL CLL 5 454 40780 26086 294.6 Multiplex 7/8 plate D 
FR1 CLL CLL 6 454 59847 54761 310.6 Multiplex 7/8 plate D 
FR1 CLL CLL 7 454 22036 18273 303.9 Multiplex 7/8 plate D 
FR1 CLL CLL 8 454 44079 37208 308.5 Multiplex 7/8 plate D 
FR1 CLL CLL 9 454 34139 29401 305.9 Multiplex 7/8 plate D 
FR1 CLL CLL 10 454 55331 51018 311.9 Multiplex 7/8 plate D 
FR1 CLL CLL 11 454 33950 27650 301.8 Multiplex 7/8 plate D 
FR1 Healthy Healthy 1 454 56105 28638 288.4 Multiplex half plate A 
FR1 Healthy Healthy 2 454 77698 40556 288.5 Multiplex half plate A 
FR1 Healthy Healthy 3 454 45539 23848 286.6 Multiplex half plate A 
FR1 Healthy Healthy 4 454 132359 59456 286.5 Multiplex half plate A 
FR1 Healthy Healthy 5 454 53350 40435 315.9 Multiplex half plate C 
FR1 Healthy Healthy 6 454 60637 41878 292.5 Multiplex half plate C 
FR1 Healthy Healthy 7 454 50600 35852 291.8 Multiplex half plate C 
FR1 Healthy Healthy 8 454 35163 25454 296.5 Multiplex half plate C 
FR1 Healthy Healthy 9 454 34796 26849 289.3 Multiplex half plate C 
FR1 Healthy Healthy 10 454 44991 34248 291.4 Multiplex half plate C 
FR1 Healthy Healthy 11 454 33085 25083 291.9 Multiplex half plate C 
FR1 Healthy Healthy 12 454 45134 36828 299.2 Multiplex 7/8 plate D 
FR1 Healthy Healthy 13 454 40984 33792 296.2 Multiplex 7/8 plate D 
FR1 LCL LCL 1 454 65182 58117 290.5 Multiplex whole plate B 
FR1 LCL LCL 2 454 64483 53894 305 Multiplex whole plate B 
FR1 LCL LCL 3 454 24473 17285 302 Multiplex whole plate B 
FR1 LCL LCL 4 454 101156 82317 295.4 Multiplex whole plate B 
FR1 LCL LCL 5 454 53964 45325 298.3 Multiplex whole plate B 
FR1 LCL LCL 6 454 47691 40233 301 Multiplex whole plate B 
FR1 LCL LCL 7 454 43047 32340 290.4 Multiplex whole plate B 
FR1 LCL LCL 8 454 59503 50617 308.1 Multiplex whole plate B 
FR2 Healthy Healthy 1 454 43209 33628 229.3 Multiplex half plate A 
FR2 Healthy Healthy 2 454 27379 20904 228.3 Multiplex half plate A 
FR2 Healthy Healthy 3 454 23379 19009 228.1 Multiplex half plate A 
FR2 Healthy Healthy 4 454 36846 27756 226.9 Multiplex half plate A 
FR2 LCL LCL 1 454 81271 55741 239.4 Multiplex whole plate B 
FR2 LCL LCL 2 454 106236 88253 257.3 Multiplex whole plate B 
FR2 LCL LCL 3 454 117359 107230 247.4 Multiplex whole plate B 
FR2 LCL LCL 4 454 96943 88771 249.6 Multiplex whole plate B 
FR2 LCL LCL 5 454 69621 61840 240.1 Multiplex whole plate B 
FR2 LCL LCL 6 454 55010 48408 234.2 Multiplex whole plate B 
FR2 LCL LCL 7 454 57697 50834 222.1 Multiplex whole plate B 
FR2 LCL LCL 8 454 50789 45501 250.9 Multiplex whole plate B 

FR1 CLL 
Patient A Pre-

treatment MiSeq 56864 40414 264.3 Multiplex 1/74 lane 

FR1 CLL 

Patient A 
Post-

treatment MiSeq 42053 36197 265.4 Multiplex 1/74 lane 
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Primer Type*   ** ID 
Number of reads 

(after filtering) 
Average read 

length (bp) 

FR2 Healthy donor 1, time 0 Healthy 12 a1 12316 228 

FR2 Healthy donor 1, time 0 Healthy 12 a2 17943 227.9 

FR2 Healthy donor 1, time 14 months Healthy 12 b1 13189 227.3 

FR2 Healthy donor 1, time 14 months Healthy 12 b2 10361 227.6 

FR2 Patient 1; CLL/SLL time 0 months CLL/SLL 1a 2774 216.4 

FR2 Patient 1; CLL/SLL time 3 months CLL/SLL 1b 2353 213.9 

FR2 Patient 2; FL FL1 11293 228.4 

FR2 Patient 3; FL and SLL in Lymph node FL/SLL 30391 215.5 

FR2 Patient 4; CLL/SLL CLL/SLL 2 31201 227.2 

FR2 Healthy donor 2 Healthy 13 24545 226 

FR2 Patient 6; CLL CLL 12 17438 225.9 

FR2 Healthy donor 3 Healthy 14 29883 223 

FR2 Patient 6 CLL diluted 1:10 CLL 12 1:10 13362 223.2 

FR2 Patient 6 CLL diluted 1:100 CLL 12 1:100 26966 222.9 

FR2 Patient 6 CLL diluted 1:1000 CLL 12 1:1000 22063 222.9 

FR2 Patient 6 CLL diluted 1:10000 CLL 12 1:10000 26464 222.7 

FR2 Patient 6 CLL diluted 1:100000 CLL 12 1:100000 26635 222.8 
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Firstly, the 454 NGS error rate was determined to assess the number of 

sequencing errors to expect in BCR sequencing. To achieve this, reverse transcription 

and PCR was performed to amplify universally expressed genes, beta-actin, beta-

globin and GAPDH, from two healthy individuals (amplicon sizes of 150bp, 150bp 

and 340bp respectively, ). After sequencing by either 454 or MiSeq, the 

same read quality filtering was performed as with the BCR sequences. The sequence 

representing the majority of the reads for each sample was classified as the ‘true’ gene 

sequence for that individual to account for individual allelic variation. Any 

differences between this sequence and the reads were considered to be RT-PCR 

and/or sequencing error and classified as homopolymeric indels (occurring in a region 

of two or more consecutive identical bases), non-homopolymeric indels, or 

mismatches. The distribution of mismatches and indels was random across the genes. 

By counting the base-pair differences between the true gene sequence and sequence 

variants, the combined per-base error-rate for the RT-PCR and sequencing process for 

the 454 platform was 1.74x10-4 ( , of which homopolymeric indels and non-

homopolymeric errors accounted for 59.7% (1.04x10-4) and 40.3% (7.04x10-5) of the 

total error-rate respectively). These error rates were consistent between repeats of the 

same genes. Of note is the high homopolymeric error-rate, which has been previously 

reported with 454 sequencing at similar levels (Luo et al., 2012, Wang et al., 2007, 

Boyd et al., 2009, Gall et al., 2013). Similarly the combined per-base error-rate for 

RT-PCR and MiSeq sequencing was 1.70x10-4 ( ), where, again, the error 

rates are consistent between repeats of the same genes and similar to previously 

reported error rates of 5.9x10-4 (Lou et al., 2013). This means for every 4,070bp 

sequenced, there is a 50% chance that there is at least one sequencing error using 

MiSeq sequencing, and for every 3,980bp sequenced there is a 50% chance that there 

is at least one sequencing error using 454 sequencing.   

 

 



 -80-  

Sample 
name** Gene Platform 

Number of 
gene specific 

reads 

Number of 
reads after 
filtering* 

% of original reads 
retained after 

filtering Multiplexing 

Healthy 1 Beta-Actin 454 7673 7671 99.97 Multiplex 1/8th plate D 

Healthy 2 Beta-Actin 454 2109 2105 99.81 Multiplex 1/8th plate D 

Healthy 1 Beta-Globin  454 6983 4871 69.76 Multiplex 1/8th plate D 

Healthy 2 Beta-Globin 454 5361 3387 63.18 Multiplex 1/8th plate D 

Healthy 1 GAPDH MiSeq 93213 89821 96.36 Multiplex 1/74 Lane 

Healthy 2 GAPDH MiSeq 50386 48242 95.74 Multiplex 1/74 Lane 

Healthy 1 Beta-Actin MiSeq 21551 13696 63.55 Multiplex 1/74 Lane 

Healthy 2 Beta-Actin MiSeq 86899 56909 65.49 Multiplex 1/74 Lane 

Healthy 1 GAPDH MiSeq 187923 179831 95.69 Multiplex 1/74 Lane 

Healthy 2 GAPDH MiSeq 181150 172914 95.45 Multiplex 1/74 Lane 
 
* Reads were filtered for homology with the corresponding target gene and 
subsequently filtered for intact primer sequences and for complete primer sequences 
and length (reads shorter than 150bp for beta-actin, and shorter than 340bp for beta-
globin were removed).  
High read filtering in the beta-globin samples are due to non-specific PCR 
amplifications. 
 
** Amplification of beta-actin, beta-globin and GAPDH genes from two healthy 
individual samples. 
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*Amplicon lengths were 104bp for beta-actin, and 295bp for beta-globin. 
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Sample Gene Overall error rate 

Healthy 1 GAPDH 2.78E-04 

Healthy 2 GAPDH 2.71E-04 

Healthy 1 (repeat) GAPDH 2.80E-04 

Healthy 2 (repeat) GAPDH 2.81E-04 

Healthy 1 Beta-Actin 6.34E-05 

Healthy 2 Beta-Actin 6.30E-05 

Average 1.70E-04 
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The percentage of reads identical to the most abundant BCR sequence in each 

sample was determined to make an initial assessment of the differences in B-cell 

clonality of the PB and LCL samples. The percentage of reads corresponding to the 

most abundant BCR sequence in each of the CLL and LCL samples (range 39.3%-

87.8% and 35.2%-78.7% respectively) were significantly higher than that of PB from 

healthy individuals (range 0.10% -14.0%) with a p-value <0.001 ( ). There 

was no significant difference in the percentage of identical reads between the LCL 

and CLL patient samples (p-value=0.0594). Therefore, the healthy individuals 

represent diverse BCR populations, whereas the LCL and CLL samples represent 

more restricted or clonal BCR populations. Sanger and MiSeq sequencing confirmed 

that the dominant clonal sequences from the CLL samples were identical to that from 

454 sequencing (excluding homopolymeric indels) indicating that there are no 

significant differences between sequencing platforms for high abundance sequences. 
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To determine the proportion of BCRs that cannot be classified in terms of 

IgHV, D and J gene usage, each BCR sequence was aligned to the germline 

sequences from the ImMunoGeneTics database (IMGT) (Lefranc et al., 2009) by 

BLAST ( ). Due to the difference in length of the different gene families, 

different BLAST E-value thresholds were used for the IgHV, IgHD, and IgHJ-genes 

(10-70, 10-3 and 10-20 respectively). The majority of sequences could be classified to 

their most closely related reference sequences for IgHV and IgHJ genes (an average 

of 99.8% and 96.1% of BCR sequences were classified respectively). Substantially 

fewer IgHD were identifiable (average of 40.5%) due to the shorter sequence length 

and potential insertions and deletions within the joining regions between the V-D-J 

boundaries, which has been noted in previous studies (Weinstein et al., 2009). 

Incomplete V-D-J gene classification may be due to SHM masking the identity of the 

germline genes present in individuals and/or the existence of allelic variants of 

reference IgH (Boyd et al., 2010a). There was no significant difference between the 

percentage of classified V, D and J genes of our dataset compared to that of Boyd et 

al. (2009) ( ).  To overcome the limitations of IgH V-D-J gene classification, 

the use of sequence-based network analysis is proposed next. Network analysis makes 

use of complete V-D-J sequence information and mutational relationships. Without 

the requirement of reference gene classification, network analysis is proposed to be 

more informative and robust framework for BCR repertoire analysis.  
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It is reasonable to consider each different BCR sequence as a distinct product 

from amplification of a rearranged BCR from a B-cell. Therefore the B-cell repertoire 

can be represented as a network representing BCR sequence space. Networks are 

powerful tools for understanding the overall structure of large multidimensional 

datasets, where information is represented in the form of vertices and edges between 

vertices. Here, networks are able to represent the BCR sequence repertoire in the 

following way: a vertex represents a different sequence, and the number of identical 

BCR sequences defines the vertex size. Edges are created between vertices that differ 

by one nucleotide, i.e. highly related BCR sequences. Clusters are groups of 

interconnected vertices, where any two vertices in a cluster are related by the set of 

point mutations indicated by the edge-path between them ( ). Therefore, 

code was developed here in python to analyse high-throughput BCR sequencing data 

to generate the networks. 
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To test the analysis of high-throughput BCR sequencing data by networks, 

filtered and trimmed 454 or MiSeq sequences for each sample were used directly to 

generate a sequence network ( ). Differences in network architectures are 

clearly seen by comparing B-cell populations from healthy individuals and LCLs. In 

LCLs, the majority of BCR sequences fall within a small number of clusters (greater 

than 40% of all sequencing reads form the largest cluster in each sample), as these 

samples are predominantly comprised of a small number of large B-cell clone types 

( Ai). In contrast, healthy individuals have sparsely connected networks 

where most sequences are unique, thus yielding small vertices indicative of high 

overall BCR sequence diversity in the sampled repertoire ( Aii). From 

healthy individuals, the largest cluster representing 16.7% (4023 reads) of the total 

population in healthy individual 10.  

The maximum CLL vertex sizes differ between samples (39.2-99.5% of total 

sequences) suggesting that large but variable-sized subsets of B-cells express the 

predominant BCR sequence(s), surrounded by BCR variants (including total process 

errors) of the dominant sequence. Of note, the extent of cluster size diversity is 

different between CLL samples, with some displaying extensive clonal enlargement 

( Bi) whereas others have more limited clonal expansion ( Bii) or 

expansion of two dominant clusters ( C). Although the clinical relevance of 

dual clonal expansions are not known, previous studies have shown that the presence 

of two expanded IgH rearrangements can be either due to multiple productive gene 

rearrangements or the co-existence of two expanded clones with the CLL phenotype 

(Plevova et al., 2014). Therefore, the magnitude of connectivity of different samples 

varies between individual patients with CLL. However, in all cases, the CLL 

sequence networks are clearly distinct from the sparsely connected age-matched 

healthy individual BCR networks.  
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It is proposed that sequences within a cluster are most likely related to a single 

rearranged, unique IgHV-D-J BCR progenitor that has undergone proliferation and 

somatic hypermutation, but also potentially contains BCRs with sequencing error(s). 

Somatic hypermutation has been found previously to preferentially occur within the 

CDRs of the BCR compared to the FRW regions (Lin et al., 1997), whereas 

sequencing errors would be distributed randomly along the length of the BCR. This 

could be due to either preferential AID targeting to the CDRs, or to selection of B-

cells with fewer mutations in the FRW regions, such as those that would negatively 

change the BCR structure. To test this, sequences within clusters were aligned, and 

the distribution of base-pair changes was determined ( ). Although base-pair 

differences are distributed along the length of the 454 sequences ( A-C), in 

all the healthy individual samples, mutations significantly occur within the CDR 

regions, known to be hotspots for somatic hypermutation (Lin et al., 1997), compared 

to the FWR regions (p-value=0.000338, D), suggesting that these are a 

result of SHM rather than errors.  
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Several parameters were investigated to describe the quantitative features of 

the sequenced BCR repertoire from B-cell populations, including the Gini Index, 

maximum and second maximum cluster sizes. The Gini index is an unevenness 

measure, that can take a value between 0 and 1. A Gini index of 0 reflects complete 

equality and Gini index values close to 1 indicates high inequality or unevenness. 

When applied to the vertex size distribution for a given sample, these measures 

quantify the overall clonal nature of a sample. When the Gini index is applied to the 

cluster size distributions, these measures quantify the overall clustering of the sample. 

As shown in the previous section (Section 3.2.5), clustered sequences represent highly 

related BCRs with the hallmarks of SHM. Therefore, the cluster Gini index relates to 

the overall SHM of a sample. A high cluster Gini index is indicative of some clusters 

with high numbers of connected and related vertices, whereas a cluster Gini index 

suggests that all the clusters have more equal and lower numbers of connected and 

related vertices. The maximum cluster size measure is the percentage of reads 

corresponding to the largest cluster and indicates the degree of clonal expansion of a 

sample. To assess the possibility of dual clonal expansions, a measure of the second 

maximum cluster size as a percentage of reads in a sample was also included.  

The LCL samples, due to the more restricted BCR repertoires and highly 

connected clusters yield high cluster and vertex Gini Indices (averages of 0.94 and 

0.80, range 0.91-0.97 and 0.62-0.91 respectively) ( A) showing high 

unevenness of the size distributions. By contrast, B-cell networks of healthy 

individuals occupy a distinct region of Gini Index vertex and cluster space (averages 

of 0.21 and 0.05, range 0.10-0.39 and 0.03-0.11 respectively). The low vertex Gini 

indices shows that the healthy samples have more even distributions of vertex sizes, 

where each unique BCR sequence is observed a small number of times, and no BCR 

sequences dominate the repertoire. The low vertex Gini indices shows that the healthy 

samples have no clusters that dominate the repertoire. The CLL samples occupy a 

spatial range between healthy individuals and LCL B-cell population extremes with 

low vertex (between 0.62 and 0.97), and cluster Gini Indices (between 0.15 and 0.83), 

due to their B-cell clonal expansions. There is however considerable variation 

between the cluster Gini Indices, with CLL patients 1, 10 and 11 having low cluster 

Gini Indices, indicative of a highly expanded dominant cluster or dominant clones.  
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Of note, one healthy individual (healthy individual 10) has a more developed 

network as defined by an increase in connectivity and vertex sizes resulting in higher 

vertex and cluster Gini Indices ( A point (a)). This increased clonality was 

verified by independent sequencing using the BIOMED-2 FR2 primer set (strong 

linear correlation between BIOMED-2 FR1 and FR2 primed samples, R2-

value>0.996,  and ). These strong correlations also indicate no 

significant primer amplification bias, which has been the major caution of PCR based 

approaches. Further, the highest expressed BCR sequence for healthy individual 10 

has 90.6% sequence identity with the closest germline IgHV gene (16 mismatches in 

243bp of alignment) suggesting that this B-cell clone has undergone SHM, therefore 

could potentially be antigen driven.  

Networks were generated from the sequences derived from Boyd et al. (Boyd 

et al., 2009) to validate these population measures on independent BCR sequence 

data. This showed that the clonal populations of the patients with CLL, small 

lymphocytic lymphoma (SLL) and/or follicular lymphoma (FL) are distinct from the 

diverse populations of healthy individuals ( B), occupying equivalent 

regions of the cluster and vertex Gini Index graphs to CLL samples within this study. 

Therefore, the Gini Index population measure robustly separates distinct B-cell 

populations into different regions based on the clonal nature of the sample and is 

applicable to data from other laboratories. 
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Next, separation of monoclonal expansions, biclonal expansions and diverse 

B-cell populations was investigated using the maximum cluster sizes and second 

maximum cluster sizes ( A). The CLL and LCL samples have maximum 

cluster sizes >30% of the total reads compared to maximum cluster sizes of healthy 

individual samples of <20%. However, the LCLs and CLLs collectively occupy two 

distinct regions in this space. One group exhibits a single dominant clonal sequence 

(monoclonal), where all remaining clusters are <5% of the total reads ( A 

surrounded by the dashed line).  

The second group of samples has two dominant clusters above 40% and 20% 

of the total reads respectively (bi-clonal). To determine whether the two dominant 

clusters are derived from the same B-cell lineage, alignments between the cluster 

sequences can be used. Firstly, if the two clusters derived from the same B-cell 

progenitor, they would exhibit the same IgHV-D-J rearrangement. If the two clusters 

came from different B-cell progenitors but have undergone the same IgHV-D-J 

rearrangement, the joining regions between the rearranged genes should be different. 

Therefore, to test whether the two dominant clusters in CLL patient 5 ( D) 

originate from the same B-cell progenitor the IgHV-D-J combinations were 

determined using IgBLAST. The two dominant clusters use different V-D-J genes 

([IGHV3-66*03/IGHD6-19*01/IGHJ3*02] and [IGHV6-1*01/IGHD3-

3*01/IGHJ4*02] respectively), and the alignment between the most abundant BCR 

sequences within these clusters show poor sequence similarity ( ). Together 

this indicates that the two dominant clusters in CLL patient 5 originate from two 

different B-cell progenitors, or secondary rearrangements within the CLL clone. This 

could potentially be clarified by determining whether the B-cells from these two 

clusters share identical light chain sequences.  

Limited polyclonal expansions were observed also in 5/8 of the LCL samples 

reflecting that EBV transformation of peripheral B-cells frequently results in 

polyclonal LCLs. Using the dataset from Boyd et al. (Boyd et al., 2009), the same 

phenomenon of polyclonal expansions in a subset of samples was shown (patients 

with CLL/SLL and FL/SLL, Eiii) where the maximum cluster sizes are 

>35% and second maximum cluster sizes are >19% of the total reads ( B). 

Therefore the polyclonal status of the tumour samples can be determined using B-cell 

network reconstruction and analysis. 
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To robustly compare B-cell populations between samples, the population 

measures used must reflect differences in population structure rather than variations in 

depth of sequencing (scale invariant) and volume of PB sample. If a given diversity 

measure is scale invariant for B-cell networks then the network diversity measure 

should be the same regardless of the depth of sampled sequences, i.e. a subset of 

sequences should yield the same network diversity measure as the full set of 

sequences. All the proposed population measures were tested as a function of 

sequencing depth by randomly sampling different proportions of the sequence data for 

each sample followed by calculation of the corresponding network parameters for 

both the vertex and cluster size distributions for the LCL, CLL and healthy samples. 

All the proposed measures showed little variation at different sample sizes even when 

sub-sampling as low as 20% of the original total data ( A-D). Below 20%, 

small deviations in the Gini Index measures are seen, which is due to low sampling 

depth leading to higher relative sampling stochasticity. Therefore, this suggests a 

minimal read depth of ~8,000 for use in comparing populations. As these network 

measures had minimal standard deviation over all sub-sampling ranges, they are 

therefore robust parameters for inter-sample comparison. 

Secondly, it was hypothesised that generating networks to allow edges to join 

BCR sequences with greater than one base-pair difference would not greatly influence 

the network architecture. This hypothesis is based on the assertion that any two B-

cells derived from different progenitor B-cells would yield IgHV-D-J rearrangements 

or non-template insertions and deletions that would differ by only a few base-pairs. 

To test this, networks were generated to include edge lengths of up to 5 base-pair 

changes ( ). It is shown that networks with edges between BCR sequences 

that differ by up to 5 base-pairs faithfully retain the network architecture for both the 

clonal and diverse samples (from LCLs and healthy individuals respectively).  
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Next, it was investigated whether the diversity of sequences within clusters 

were likely to be due to the process of somatic hypermutation or sensitive to or 

generated through sequencing error of a unique amplified BCR sequences. For a 

given BCR sequenced multiple times, such as when multiple B-cells express identical 

BCRs, the expected number of vertices comprising a cluster that could be due to 

sequencing error was estimated, given the experimentally derived PCR and 

sequencing error-rates (described in Section 2.12). All the samples have cluster sizes 

greater than that expected due to per-base error alone of 1.74x10-4 ( ), even at 

twice the measured error-rate ( ). Therefore, the connectivity patterns of 

networks predominantly reveal differences in clonal expansions of B-cell populations 

rather than total sequencing errors. The clusters identified in BCR networks are 

derived from B-cells that share a common pro-B-cell progenitor with rearranged V-D-

J that have subsequently expanded and diversified.   
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To assess the sensitivity of BCR sequencing using multiplex PCR 

amplification, the titration experiment from Boyd et al. (Boyd et al., 2009) in which 

serial 10-fold dilutions of a known clonal CLL PB sample into normal peripheral 

blood was used. 90.9% of all reads in the undiluted sample fall within the leukemic 

cluster ( A-B). Using these methods, the leukemic clonal sequences can be 

detected at dilutions as low as 1:100,000 when the sequence is known and pre-

defined. (A MiSeq BCR dilution series was also performed in chapter 7 giving 

sensitivity of >1:107). When the leukemic cluster sequences are unknown, detection 

of expanded clones relies on detecting the maximum cluster size that is significantly 

different from that of healthy individuals. Significant increases in maximum cluster 

size were seen above that of the healthy individual in CLL dilutions of 1:100 or less.  

The relationship between the BCR population measures and the CLL clinical 

information for each patient was next determined. Interestingly, there was a strong 

correlation between the length of time since CLL diagnosis with the vertex Gini Index 

( A) and the maximum cluster size ( B). This suggests longer 

disease times lead to larger vertices representing larger tumor clonal populations, in 

agreement with previous studies (Hayes et al., 2010, Kelly et al., 2002).  
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It was hypothesised that BCR sequencing can be used to follow the dynamics 

of B-cell clones in samples taken multiple time points from patients. To test this, 

samples were taken from patients separated by a period of time in which the patient 

had either (a) not undergone any treatment prior to or during sampling (12 samples, 

denoted no treatment samples), (b) before and after a round of Chlorambucil 

treatment (5 samples, denoted during treatment samples) or (c) patients who had 

previously undergone Chlorambucil treatment, but not treatment was given during 

sampling (4 samples, denoted after treatment samples), summarised in  and 

. The BCRs from these samples were amplified by multiplex PCR and 

sequenced by MiSeq sequencing.  
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The largest (malignant) cluster was the same at each time point, where the 

higher frequency sequences are always retained between time points. However, the 

maximum (malignant) cluster size changes over the time intervals were distinct 

between clinical groups (range 2.52-95.77% of total sequences, Ai). 

Notably, only the malignant clusters in samples taken during treatment significantly 

decreased in size over the time interval of sampling (p-value<0.005), whereas the no 

treatment and after treatment samples did not significantly increase or decrease in 

cluster sizes.  The maximum cluster sizes from samples taken during treatment were 

significantly reduced compared to the no treatment samples (p-value=0.00445, 

Aii). This reflects the white blood cell count (WBC) for these patients, where the 

WBC was significant reduced during treatment compared to the no treatment samples 

(p-value=0.00812, B). Interestingly, the after therapy samples exhibited a 

mixed response to therapy, where the change in maximum cluster sizes range from a 

reduction by 10.14% to an increase by 10.60%, reflecting the change in WBC, which 

ranged from a reduction of -0.4x109cells/L to an increase of 60.2x109cells/L.  

In addition, the vertex and cluster Gini indices derived in Section 3.2.6 that 

describe the B-cell clonalities of the samples were shown to change in a similar 

fashion ( ). In patients that were undergoing active treatment, the vertex 

Gini indices significantly decreased over time, suggesting that the overall clonality of 

these patients were decreasing  (p-value<0.005, Ai). However, in patients 

that were not undergoing active treatment, the vertex Gini indices did not significantly 

increase or decrease (p-values>0.0759, Ai) suggesting stable overall 

clonality in these patients. In fact, the vertex Gini indices from samples taken during 

treatment were significantly reduced compared to the no treatment samples (p-

value=1.71x10-5, Aii), suggesting significant changes in the overall B-cell 

population clonality during treatment. For samples taken after treatment (i.e. no active 

treatment given between sampling, p-value = 0.288, Ai), there was no 

significant increase or decrease in vertex Gini index, and the changes were not 

significantly different from that of the no treatment samples (p-value=0.813, 

Aii). This suggests that when active treatment is discontinued in CLL patients, 

the overall PB B-cell clonality remains stable.  

The cluster Gini index indicates the overall sample SHM, where an increase in 

the cluster index means a higher unevenness of the number of unique BCRs in 
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between the clusters in a sample. Therefore, the significantly increase in the cluster 

Gini indices for the patients who had never undergone therapy (p-value<0.005, 

Bi), indicating that there is significant diversification in these patients even 

though the CLL clone is not significantly enlarging, as indicated by Ai and 

Ai. During treatment, the cluster Gini index typically reduces (p-

value=0.0177, Bi), most likely as a result of reducing the cluster size. 

However, this does not reach significance, therefore may be indicative of clonal 

diversification even when the clone is actively being reduced in size. However, the 

change in cluster Gini indices from samples taken during treatment were significantly 

reduced compared to the no treatment samples (p-value=0.0077, Bii), 

suggesting that therapy significantly reduces CLL clonal. After therapy, 3/4 of the 

patients had stable cluster Gini indices, and only a single patient had 2-fold increase 

in cluster Gini index ( Bi), corresponding to an increase in WBC from 

12.9x109cells/L to 35.1x109cells/L, thus further confirming a mixed post-therapy CLL 

response. 

Together these data can be interpreted as, in the absence of treatment, the 

clone sizes are stable in frequency and undergo CLL clonal diversification. However, 

during active Chlorambucil treatment, the dominant CLL clone reduces in frequency, 

with suppressed diversification. This means that Chlorambucil treatment not only 

reduces the WBC, but also the proportion of the white blood cell population 

consisting of CLL cells. Once therapy is removed, there appears to be a mixed 

outcome, where some patients retain a stably low WBC and clonality, whereas others 

exhibit re-expansion of the CLL clone.  
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Clonal evolution in CLL as exemplified by the presence of mutations in the 

genome and by multiple BCRs related to the dominant CLL BCR sequence (Landau 

et al., 2013, Schuh et al., 2012). Mutations in the BCR may be used to infer the 

mutational route from a CLL B-cell ancestor to the rest of the leukaemic clone by 

phylogenetic analysis. Phylogenetic analysis can be used to reconstruct the 

evolutionary history of organisms (Pybus et al., 2002). However, to date, no B-cell 

specific evolutionary model of BCR diversification have been developed, hampered 

primarily by (a) a BCR evolutionary tree is not strictly bifurcating due to the 

expansion of multiple B-cells with identical BCRs, that can each independently 

diversify, (b) non-constant mutation rate, dependent on co-stimulation from multiple 

sources, such as T-cell activation, and (c) ongoing or secondary rearrangements can 

lead to the replacement of IgHV gene segment while retaining the same IgHD-J 

region, thus leading to different evolutionary histories in different regions in the BCR 

(Marshall et al., 1995, Steenbergen et al., 1993, Gawad et al., 2012, Choi et al., 1996).   

However, despite these drawbacks, the phylogenetic relationships between 

BCR sequences can inform about the process of B-cell clonal diversification, such as 

by the tree shape, such as star shapes of each of phylogenetic trees suggest unselected 

clonal expansion, compared to antigenic drift seen in, for example, influenza virus 

(Steinbruck and McHardy, 2012, Bedford et al., 2014). Therefore, using the patient 

samples in section 3.2.10, all the sequences from the dominant clusters were 

extracted, to determine the maximum parsimony phylogenetic tree structures of the 

leukaemic clone, and to infer the process of diversification. Maximum parsimony was 

chosen as the phylogenetic model as this imposes the fewest number of explicit 

assumptions on the data. For each patient, all the BCR sequences related to the CLL 

clone were aligned using Mafft (Katoh and Standley, 2013) and a maximum 

parsimony tree was fitted using Paup* (Wilgenbusch and Swofford, 2003). The 

branch lengths represent the evolutionary distance between BCR sequences and 

bootstrapping was performed to evaluate the reproducibility of the trees, showing 

strong tree support (>95% certainty for all branches). The majority of the trees from 

patients have a star-like structure ( ), suggesting that the CLL clone 

emerged from a single common ancestor (Martins and Housworth, 2002), represented 

by the central BCR, which was the most frequently observed BCR. The concentric 
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rings of BCR variants represent incremental increases in base pair differences from 

the central dominant BCR sequence. However, the phylogenetic trees in patients 6, 10 

and 13 show small outgrowths, suggesting potential growth and diversification 

advantages in the B-cells corresponding to these branches, potentially reflecting 

genomic variations in these B-cells.  
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The aim of this chapter is to discriminate between healthy and malignant B-

cell expansions through BCR repertoire sequencing. To do this, methods must be 

robust to noise, such as PCR and sequencing error, as well as sequencing depth. The 

effects of amplification and sequencing error are often of concern for BCR deep 

sequencing. However, the strong linear correlations of the network parameters 

between samples that have been amplified using independent primer sets suggest 

limited amplification bias and no significant effect on the overall population structure. 

In all samples tested from healthy and haematological cancer patients, the cluster 

sizes are notably greater than that expected due to the process error alone, suggesting 

that the network structures represent the population structures of the B-cell sample.  

The observation of frequent multiple identical BCR sequences in malignant B-

cell samples and only low frequency identical BCR sequences from healthy 

individuals suggests that multiple identical RNA molecules from a single B-cell are 

rarely sequenced. Therefore, clusters of related sequences are likely to represent 

BCRs from clonal expansions of evolutionarily related B-cells, whereas naïve B-cell 

populations form singletons in sparsely connected networks. The probabilities of 

resampling BCRs from a population is revisited in more detail in Chapter 4.  

If the B-cell network from limited sequencing is a random sample of the entire 

circulating peripheral blood BCR repertoire, then a scale invariant diversity measure 

should also capture the predominant structure of the unsampled network. Here, it has 

been shown that network structures, combined with these population measures 

discriminate between B-cell repertoires of different clonalities in health and disease. 

These measures are robust to variations in sequencing and sampling depth and 

different filtering strategies and are applicable to independently produced datasets 

(Boyd et al., 2009). Using different primer sets, sequencing depths and sequencing 

technologies, the samples still cluster according to the clonal nature of the samples, 

occupying the equivalent distinct regions of Gini Index and maximum/second 

maximum graphs. Therefore this analytical strategy is applicable to any BCR deep 

sequencing technology. 

Deep sequencing of BCR repertoires potentially allows the detection of a 

clonal lymphoid population in a background of polyclonal cells without prior 

knowledge of the leukemic sequence (Sayala et al., 2007). Here, the limit of de novo 
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detection of malignant clonality is at least 1 in 100 dilution of CLL cells into healthy 

blood. In addition, the vertex Gini Index is strongly correlated with the time an 

individual has been living with CLL. This has potential applications in the detection 

of clonal B-cell disorders and malignancies, particularly as the early stages of these 

diseases are asymptomatic, such as in CLL. When there is prior knowledge of a BCR 

of interest, such as in leukaemia, the limit of detection is much greater (>1 in 105 

cells). In practice, this has important potential uses in monitoring disease during 

therapy (addressed in Chapter 4) and minimal residual disease detection (addressed in 

Chapter 5). 

An important result of this framework to assess B-cell repertoire structure is to 

understand the changes involved in a healthy immune repertoire, such as during 

vaccination, compared to malignant B-cell expansion. There was variation between 

the network-based diversity measures of a “normal” BCR repertoires between the 

healthy individuals, where a larger-scaled assessment of the primary immune 

response compared to early stage leukaemia could provide clinically important early 

diagnostic or prognostic information to patients. For example, one healthy individual 

(healthy individual 10) exhibited a more clonal BCR repertoire compared to the other 

healthy individuals, defined by an increase in connectivity. Further work could be 

performed to determine the likelihood of this clonality resulting from an antigen 

specific memory B-cell expansion or an undiagnosed malignant transformation in an 

otherwise asymptomatic individual.  

Similarly, the presence of more than one BCR clonal expansion in CLL and 

other blood cancers has unknown clinical implications. These enlarged clusters 

representing BCRs with different V-D-J gene combinations may be due to either the 

expansion of two distinct malignant B-cell transformations, or separate antigen-

stimulated B-cell clonal expansion unrelated to CLL. These methods used in time-

series may allow the distinction between antigen-driven positive selections in CDRs 

compared to malignant-driven expansion.  

B-cells form dynamic populations of cells. Here it is shown that these 

populations expand and potentially evolve over time. For the first time it is possible to 

observe the specifics of a short-term effect of therapy on the B-cell repertoire in CLL, 

and demonstrates how networks lend themselves to phylogenetic approaches. During 

therapy, there was a significant reduction in B-cell clonality and the percentage of 

BCRs relating to the malignant B-cell cluster. Work here therefore provides a 
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framework for analysing deep high-throughput BCR sequencing datasets to probe B-

cell population changes between serial samples or individuals. 

 

  



 -126-  

Chapter 4 

 

 

For immune repertoire sequencing to be useful, it is therefore vital that sample 

preparation and sequencing approaches give reproducible, unbiased and sensitive 

representations of BCR repertoires. However, there is concern over the validity and 

biases of biological insights gained from the different BCR and TCR enrichment, 

amplification and sequencing methods, particularly whether the sequencing data truly 

represents the corresponding B-cell populations. As the B-cell receptor is highly 

diversified, there is potential for some immunoglobulin rearrangements to be 

preferentially captured and amplified, leading to biased sequencing data.  

This chapter integrates both the theoretical and experimental frameworks for 

BCR sequencing to determine whether the B-cell sequencing data represents that 

expected theoretically. Then, the utilities, biases and reproducibilities of different 

sequencing depths, sequencing technologies, amplification methods, read lengths and 

starting material are assessed using samples of diverse B-cell populations from 

healthy peripheral blood (PB), clonal B-cell populations from lymphoblastoid cell 

lines (LCL) and PB from chronic lymphocytic leukaemic (CLL) patients. 

 

 

 

Experimental BCR sequencing datasets were generated through the 

amplification of LCLs and PB B-cell BCRs from healthy individuals, and CLL 

patients by the three main BCR amplification methods; multiplex PCR, 5’ Rapid 

amplification of cDNA ends (5’RACE), and RNA-capture, and sequenced by 454 

Roche and Illumina MiSeq (summarised in ). Each sample generated an 

average of 40,763 reads (summarised in ). For each sample, reads were 

filtered for immunoglobulin similarity and length, and, where relevant, primer 

sequences were removed according to Methods (Section 2.2.4). IgHV classifications 

were performed on each BCR sequence by determining the best alignment to the 

ImMunoGeneTics (IMGT) database (Lefranc et al., 2009) using BLAST (Altschul et 
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al., 1990). For each sample, the reference IgHV gene frequencies and clonality 

measures developed in Chapter 3, namely the vertex and cluster Gini indices and 

maximum cluster sizes, were determined for the comparisons in this chapter. These 

diversity measures correspond to that seen in equivalent sample types in previous 

studies ( , (Bashford-Rogers et al., 2013)). 
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Sample 
type* ID Multiplex (454) Multiplex 

(MiSeq) 
5' RACE 
(MiSeq) 

RNA capture 
(MiSeq) 

CLL Sample 1 Y Y Y Y 

CLL Sample 2 Y Y Y - 

CLL Sample 3 Y Y - - 

CLL Sample 4 Y Y Y - 

CLL Sample 5 Y Y Y - 

CLL Sample 6 Y Y Y - 

CLL Sample 7 Y Y Y - 

CLL Sample 8 Y Y Y - 

Healthy Sample A Y - Y - 

Healthy Sample B Y - Y - 

Healthy Sample C Y Y Y - 

Healthy Sample D Y - Y - 

Healthy Sample E Y Y Y - 

Healthy Sample F Y Y - - 

Healthy Sample G Y Y - - 

Healthy Sample H Y Y - - 

Healthy Sample I Y Y - Y 

LCL LCL 1 Y - - - 

LCL LCL 2 Y - - - 

LCL LCL 3 Y - - - 

LCL LCL 4 Y - - - 

LCL LCL 5 Y - - - 

LCL LCL 6 Y - - - 

LCL LCL 7 Y - - - 

LCL LCL 8 Y - - - 

LCL LCL 9 Y - - - 

LCL LCL 10 Y - - - 
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As exhaustive sampling of total B-cells is not possible in humans, the “true” 

extent of the total BCR repertoire in humans can only be estimated. To understand the 

BCR sequencing data properly, it is first important to estimate the types of B-cells 

sampled, and the proportion of total B-cells from a patient in each sample. This will 

give a theoretical estimate for the expected percentage of BCRs to be shared between 

technical repeats and the expected sampling stochasticity in any given BCR sample, 

which will then be tested experimentally. 

A typical PB sample (10-20ml) accounts for ~0.4% of the total PB (average of 

5L of blood in a healthy adult), from which only a fraction is used in current BCR 

sequencing methods with approximately 0.012% of all B-cells being represented in 

the material that is sequenced, . The healthy peripheral blood B-cell 

population contains approximately 80% naïve B-cells and 20% memory B-cells 

(Tangye and Good, 2007). As naïve B-cells are antigen inexperienced, each naïve B-

cell BCR is often considered to be unique. This means that sequencing BCRs from 

only naïve B-cells theoretically result in a diverse BCR population, with all BCRs 

represented with equal probability. Therefore the distribution of BCR frequencies 

should follow approximately a binomial distribution, where parameters depend on the 

number of RNA molecules per cell, the number of B-cells represented and 

efficiencies of the RT-PCR, PCR and sequencing steps. Under the assumption that 

each naïve B-cell is unique, it therefore is theoretically impossible to resample 

identical BCRs from a population of naïve cells. The memory B-cell population, 

however, consists of cells that have undergone proliferation and potentially somatic 

hypermutation. This means that it is possible to sample multiple memory B-cells 

exhibiting identical BCR sequences or highly related BCRs after somatic mutation 

that originate from the same pre-B-cell.  
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  Number of cells 
% of total B-cell 

repertoire Notes 

Total B-cells in blood* 1,500,000,000 100 Average adult has 5L of blood 

B-cells in sample 3,000,000 0.4 10 ml blood sample 

RNA extraction 3,000,000 0.4 Assume 100 % efficiency 

RT-PCR** 300,000 0.04 
Average 10ug RNA extracted per 
sample, 1000ng RNA used in RT-PCR 

PCR 90,000 0.012 
6ul out of 20ul of RT-product used in 
PCR 

 
 

To achieve a theoretical estimation of the percentage of BCRs that should 

overlap between any two samples from the same peripheral blood aliquot from a 

single individual, simulations were generated as follows: the total B-cells in the 

sample is N, from which each RT-PCR sample taken contains n B-cells equivalent. 

The proportion of memory B-cells in the peripheral blood is given by pm, and the 

proportion of naïve B-cells is 1- pm (assuming no plasma B-cell in the blood). 

Therefore the number of memory B-cells in the total population is N* pm. The number 

of memory B-cells per unique BCR can be modelled as a normal distribution , 

with a mean  and standard deviation . Each simulation draws a random sample of 

N* pm BCRs where the probability of resampling a specific BCR follows . 

From this, two random samples from this simulated total B-cell populations are 

drawn, and the percentage overlap between the samples is determined.  

Three such simulations were generated, where the parameters are summarised 

in . All three simulations begin with the estimation of total and sampled B-

cells from  and . Simulations A and B assume that the proportion 

of memory B-cells is 20%, whereas simulation C models the proportion of memory 

B-cells as a normal distribution with mean of 20% and standard deviation of 8% to 

reflect inter-individual differences in the memory-to-naïve B-cell ratios (Tangye and 

Good, 2007). The percentage of overlapping BCRs between samples in simulations 

A, B and C determined for 1000 simulation repeats was 6.185%, 18.29%, and 19.71% 

respectively ( , blue box plots). The lower overlap in simulation A is 
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explained by the lower number of memory B-cells per BCR, therefore a lower 

probability of re-sampling B-cells with the same BCR. The higher variance of 

overlapping BCR percentages in simulation C is explained by the higher variance of 

percentage of memory B-cells in the PB. 

 

 

 

 

Parameter Simulation A Simulation B Simulation C 

N 3000000 3000000 3000000 

n 90000 90000 90000 

pm 0.2 0.2 N(20, 8) 

μ 1 1 1 

σ 10 100 100 

Number of simulation repeats 1000 1000 1000 
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Chapter 5 

 

 

Many of the therapies for ALL cause significant toxicities and carry the 

potential of long-term complications including secondary malignancies. Additionally, 

the majority of treatment failures occur as a result of disease relapse occurring either 

during or after completion of treatment. Therefore, improved detection and 

monitoring of minimal residual disease in B-cell ALL (B-ALL) is of great clinical 

importance, particularly for tailoring therapeutic dosing and strategies (Biondi and 

Masera, 1998). Here, the BCR repertoire was sequenced in a set of B-ALL patients to 

determine whether BCR sequencing can be used to (a) monitor B-ALL residual 

disease load and (b) decipher the ontogeny and B-cell population dynamics in relapse 

patients? 

 

 

Longitudinal samples from six B-ALL patients over the course of therapy 

were analysed for the presence of residual leukaemic cells by both a routine clinical 

MRD monitoring method of quantifying qPCR transcript levels of fusion genes 

associated with individual leukaemias (performed by the molecular diagnostic 

laboratory of the Karaiskakio Foundation), and also by sequencing the BCR repertoire 

and mining leukaemia-specific BCR sequences. For each patient, a “primary sample” 

was studied with high leukemic load, as indicated by a qPCR T/C transcript (T/C) 

ratio greater than 1.66; a ratio which was reduced to zero in subsequent samples taken 

over the course of therapy (summarised in ). Additionally, BCR sequencing 

was performed on peripheral blood samples from 18 healthy individuals within the 

range of 20-75 years of age. BCR sequencing yielded 124,302 to 2,972,494 filtered 

BCR sequences per sample ( ). BCR network analysis was applied to the 

sequencing datasets, to identify clusters representing groups of highly related BCR 

sequences (Bashford-Rogers et al., 2013). Clonality was observed in all B-ALL 

primary samples, as indicated by largest cluster sizes greater than 2.796% of the total 
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BCR repertoire. In comparison, the largest cluster sizes from the 18 healthy 

individuals averaged 0.618% (standard deviation of 0.641%, range 0.14-2.5%). 
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Patient 
ID 

Sample 
ID 

Time since 
first sample 

(days) 
Target/ control 
transcript ratio 

Total BCR 
sequences 
in sample 

Target 
transcript 

type** 
Sample 
source* 

Largest cluster 
(% of BCR 

sequences) 

527 527_A 0 13.95 124,302 E2A-PBX1 BM 43.733 

527 527_B 8 0.02 270,572 E2A-PBX1 BM 0.696 

527 527_C 15 0.00 756,674 E2A-PBX1 BM 0.320 

527 527_D 30 0.00 698,592 E2A-PBX1 BM 0.097 

527 527_E 109 0.00 2,320,485 E2A-PBX1 BM 6.818 

527 527_F 889 0.00 2,301,914 E2A-PBX1 BM 0.580 

859 859_A 0 1.66 454,071 TEL-AML1 PB 2.796 

859 859_B 7 0.03 786,283 TEL-AML1 BM 0.179 

859 859_C 84 0.00 737,736 TEL-AML1 BM 0.738 

859 859_D 374 0.00 1,929,858 TEL-AML1 BM 2.159 

859 859_E 1241 0.00 2,025,955 TEL-AML1 BM 0.219 

1592 1592_A 0 34.60 259,439 E2A-PBX1 BM 26.600 

1592 1592_B 12 12.98 264,698 E2A-PBX1 BM 26.105 

1592 1592_C 33 0.02 216,356 E2A-PBX1 BM 0.192 

1592 1592_D 554 0.00 129,923 E2A-PBX1 PB 1.040 

1611 1611_A 0 35.04 189,634 E2A-PBX1 BM 27.843 

1611 1611_B 12 0.00 264,128 E2A-PBX1 BM 0.448 

1611 1611_D 510 0.00 284,526 E2A-PBX1 BM 0.175 

1611 1611_F 944 0.00 346,134 E2A-PBX1 PB 1.751 

1703 1703_A 0 0.12 2,972,494 TEL-AML1 PB 0.390 

1703 1703_B 18 0.00 2,209,688 TEL-AML1 BM 1.049 

1703 1703_C 336 0.00 1,861,228 TEL-AML1 BM 0.131 

1703 1703_D 567 0.00 1,475,750 TEL-AML1 BM 0.353 

1703 1703_E 567 3.12 1,237,270 TEL-AML1 CSF 3.833 

3243 3243_A 0 1.75 297,165 BCR-ABL BM 10.196 

3243 3243_B 20 0.02 372,194 BCR-ABL BM 0.194 

3243 3243_C 31 0.01 340,706 BCR-ABL BM 0.331 

3243 3243_D 56 0.00 315,718 BCR-ABL BM 0.320 

3243 3243_E 91 0.00 319,850 BCR-ABL BM 0.451 
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B-ALL is thought to arise from a malignant transformation of immature 

hematopoietic progenitor at one of several stages of early B-cell development. The 

BCR repertoire in B-ALL has been shown to be distinct from that of later-stage B-cell 

leukaemias, such as chronic lymphocytic leukaemia (CLL), where the preferential 

IgHV-J gene usage in B-ALL has been shown to reflect early B-cell repertoires in B-

ALL (Duke et al., 2003). To determine whether B-ALL B-cells have undergone less 

maturation and diversification than both the mutated and unmutated subtypes of CLL, 

we compared the BCR clusters in the B-ALL samples to those seen in 9 CLL patients 

from Chapter 3.  

Firstly, the mutational distance of the dominant leukaemic BCR sequences in 

each CLL and B-ALL patient were compared to confirm that the B-ALL sequences 

represent an earlier stage of B-cell development than CLL. For each patient the 

dominant BCR sequence of the B-ALL or CLL cluster was aligned to the IMGT 

reference database and the percentage sequence identity to reference IgHV genes was 

determined using IgBLAST (Ye et al., 2013) ( A). The dominant BCR 

sequences in each B-ALL patient were either identical or within 3bp from a reference 

germline sequence (mean 99.52% of nucleotides identical to reference), supporting 

the hypothesis that B-ALL arises from B-cells that have not undergone somatic 

hypermutation (SHM). The sequences that were not identical to the reference 

germline sequences may be accounted for by allelic variation of the IgHV locus not 

present in the reference BLAST database. CLL can be defined into two subtypes, 

where two different mutational statuses of CLL patients are thought to be derived 

from two different stages of B-cell ontology, with the unmutated CLL cases 

corresponding to pre-antigenic stimulation, and the mutated cases corresponding to 

post-antigenic stimulation (Hamblin et al., 1999, Damle et al., 1999). Therefore, the 

CLL patients were subgrouped into unmutated (where the dominant BCR had >98% 

sequence similarity with reference germline IgHV-D-J sequences) or mutated CLL 

(dominant BCR <98% sequence similarity with reference germline IgHV-D-J 

sequences). The unmutated subtype CLL patients exhibited no significant difference 

in sequence similarity to the reference IgHV BLAST database (mean 98.9% identical 

to reference, p-value=0.478), whereas the mutated subtype CLL patients had 
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significantly lower sequence similarity to the reference IgHV BLAST database (mean 

92.5% identical to reference). 

Secondly, the diversification of the malignant clusters in B-ALL and CLL 

were compared to determine whether B-ALL has a lower propensity to diversify than 

CLL. For each patient, all BCR sequences within the malignant cluster were aligned 

and for the sequences not identical to the dominant vertex of the cluster, the numbers 

of mutations away from this highest-observed BCR sequence were determined 

( B). The B-ALL malignant clusters showed a lower mutational distances 

from the dominant BCR sequence than CLL (means distances of 2.017bp, 2.277 and 

2.694bp for B-ALL unmutated CLL and mutated CLL respectively, p-values<0.005), 

suggesting lower levels of SHM within the B-ALL B-cell population compared to 

both CLL mutational subtypes. Together, this data supports the idea that B-ALL 

arises from earlier stages of B-cell differentiation than the mutated CLL subtype, and 

as such displays lower, albeit detectable, levels of SHM and clonal diversification 

than both CLL mutational subtypes. 
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Minimal residual disease detection by BCR sequencing requires the accurate 

detection of B-ALL- associated BCR sequences within a large sequencing dataset. 

Therefore a Python code, named MRD Assessment and Retrieval Code in pYthon 

(MRDARCY), was developed to identify malignant BCR sequences from a diagnostic 

B-ALL sample represented by sequences in the largest cluster, and to search samples 

at later time points for identical or related BCRs allowing for a specified number of 

base-pair mismatches (here a threshold of 8 bp is used).  

To assess the sensitivity of BCR sequencing for detecting specific B-cell 

clones from RNA, we performed a titration experiment using serial 10-fold dilutions 

of a known clonal B-ALL PB sample RNA (sample 1592_A) into normal peripheral 

blood RNA. The IgH multiplex PCR primer set used in the PCR amplification of the 

B-cell repertoire consists of six primers, with each primer binding to a different subset 

of IgHV genes. Therefore it was hypothesized that the primer from this set that binds 

best to the leukaemic BCRs in the dilution series, denoted IgHV-specific primer, 

would amplify the leukaemic BCRs preferentially, thus increasing sensitivity of 

detecting leukaemic BCR compared to the multiplex approach. To test this, multiplex 

PCR amplification and singleplex IgHV-specific PCR amplification were performed 

on these samples. Each dilution series sample yielded an average of 125,642 filtered 

BCR sequences (range of 18,970-294,354, A-B). 31.41% of all BCR 

sequences in the undiluted sample are related to the leukaemic cluster as identified by 

MRDARCY, where the percentages of leukaemic BCRs detected approximated to a 

log-log correlation with dilution. Leukaemia-specific BCR sequences were detected 

in dilutions as low as 1 in 107 RNA molecules for both the multiplex and singleplex 

IgHV-specific PCR strategies ( B when the BCR identity of the tumour 

clone was known a priori). In contrast to this, qPCR has been shown to have a 

sensitivity of 1 cell in 105-106 (Campana, 2010). Interestingly, there was an increase 

in sensitivity of an average of 13.57x using the singleplex IgHV-specific PCR 

strategy across the dilution range, suggesting that this patient specific MRD 

monitoring approach, where multiplex BCR sequencing is used on the initial sample 

and followed by specific clonotypic IgHV primer, could be adapted into a powerful 

clinical MRD monitoring tool. In fact, with this sensitivity, if only 1 B-ALL cell is 

present in a typical 5ml blood sample containing ~1.5x106 B-cells, a read depth of 
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only 4.5x106 is required to give a >95% probability of detection (using the Poisson 

distribution and assuming that all BCRs were amplified). Therefore, BCR sequencing 

has unparalleled sensitivity to capture specific sequences with an important 

application in MRD monitoring of B-ALL and potentially other B-cell leukaemias. 

However, when the leukemic cluster BCR sequences are unknown, detection 

of expanded clones relies on detecting the maximum cluster size that is significantly 

different from that of healthy individuals, i.e. when there the leukaemic B-cell 

population represents 1 in 100-500 RNA molecules (light green line, B), 

and is consistent with the dilution series in Section 3.2.9. Therefore, the sequencing of 

BCR repertoires at diagnosis of B-ALL may be critical to the subsequent detection 

and tracking of small clonal lymphoid populations in a background of polyclonal 

cells. 
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It is possible, but unlikely, that the same IgHV-D-J rearrangement and joining 

regions can be generated by chance in independent B-cell clones, particularly as the 

B-ALL clonal BCRs are typically unmutated. To determine the false positive-rate for 

B-ALL BCR sequence detection, MRDARCY was used to detect B-ALL BCR 

sequences from the 6 B-ALL patients in 13 unrelated healthy BCR sequencing 

datasets using the same parameters ( ). A total of 23,480,661 BCR sequences 

were tested from unrelated samples, with only a single BCR match to a B-ALL cluster 

in B-ALL patient 5. This sequence was unmutated with short non-template additions 

(4bp) with 100% identity to a minor BCR clone in the B-ALL cluster (observed 219 

times on the B-ALL patient). Therefore the presence of unrelated sequences matching 

the B-ALL-specific BCR sequence by chance occurs at a rate of 1 in 2x107 BCR 

sequences/cells. 

 
 
 
 
 
 

B-ALL 
patient  

Number of unrelated healthy BCRs 
tested against B-ALL cluster 

Number of reads 
matched* 

B-ALL 1 3,730,269 0 

B-ALL 2 4,098,690 0 

B-ALL 3 4,097,093 0 

B-ALL 4 3,836,054 0 

B-ALL 5 3,922,068 1 

B-ALL 6 3,796,487 0 

Total 23,480,661 1 
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Having shown the sensitivity of BCR sequencing, it was hypothesised that B-

ALL clonal sequences will be detected in all the samples that were defined as qPCR 

T/C ratio MRD positive. Therefore, for each B-ALL patient, MRDARCY was used to 

identify BCR sequences in the largest cluster in the primary qPCR positive samples 

(highlighted in ) and the percentage of matched BCR sequences in 

longitudinal samples was determined (allowing a maximum of 8 bp mismatches, 

). Each of the six patients’ samples showed a strong correlation between the 

fusion qPCR transcript levels (blue lines, ) and the frequencies of B-ALL 

sequences related to the largest cluster, known as clonotypic sequences (red lines, 

), where the Pearson product-moment correlation coefficients between the 

percentage of B-ALL BCRs matched per sample and T/C ratios are >0.87 ( ). 

All samples that were qPCR positive were also positive for B-ALL BCR sequences. 

As the BCR sequencing sensitivity for detecting BCR sequences in RNA is greater 

than 1 in 107 and the qPCR result was very low, the lack of detection of B-ALL in 

patient 859 day 84 is likely to be due to the lack of sampling a B-ALL cell in the BM 

RNA aliquot used for PCR rather than failure of RNA detection. To determine 

whether detecting low-level B-ALL sequences is subject to sampling stochasticity, the 

low-level B-ALL RNA samples were re-amplified and re-sequenced ( ).  

Detection of B-ALL sequences were reproducible in samples where the number of B-

ALL matched sequences was greater than 0.0016% of the BCR repertoire confirming 

that MRD above this level can be reliably detected using BCR sequencing. However, 

below this level detection of very low-level B-ALL sequences was subject to 

sampling stochasticity. Furthermore, some patient samples were positive for B-ALL 

BCR sequences where MRD was undetected using qPCR, such as patient 527 (day 

15), indicating that the sensitivity of the BCR sequencing method equal to or better 

than that of qPCR, with the additional advantage that BCR sequencing based MRD 

monitoring can be done without gene fusion knowledge.  
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BCR sequencing 
(initial sample)* 

BCR sequencing  
(re-amplified)** 

Patient 
ID 

qPCR T/C 
level 

Time since first 
sample (days) 

% of B-ALL 
sequences 

% of B-ALL 
sequences 

527 13.9510 0 41.21494 - 

527 0.0197 8 0.81457 - 

527 0.0000 15 0.00249 0.00056 

527 0.0000 30 0.00140 0.00000 

527 0.0000 109 0.00000 0.00000 

527 0.0000 889 0.00016 0.00000 

859 1.6612 0 2.89096 - 

859 0.0292 7 0.21739 0.18325 

859 0.0001 84 0.00159 0.00028 

859 0.0000 374 0.00065 0.00032 

859 0.0000 1241 0.00029 0.00031 

1592 34.6048 0 31.45017 - 

1592 12.9828 12 27.33152 - 

1592 0.0211 33 0.24774 - 

1592 0.0000 554 0.00000 - 

1611 35.0403 0 26.48259 - 

1611 0.0013 12 0.90122 0.12890 

1611 0.0000 19 0.06560 0.00000 

1611 0.0000 33 0.00000 0.00000 

1611 0.0000 510 0.00000 - 

1611 0.0000 944 0.00000 - 

1703 0.1211 0 0.00266 0.00329 

1703 0.0000 18 0.00005 0.00000 

1703 0.0000 336 0.00000 0.00000 

1703 0.0002 567 0.00033 0.00148 

1703 3.1218 567 3.38261 - 

3243 1.7453 0 10.73040 - 

3243 0.0219 20 0.08141 - 

3243 0.0102 31 0.02319 - 

3243 0.0006 56 0.00063 - 

3243 0.0000 91 0.00000 - 
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For patient 859, the two largest clusters had similar sizes (2.807% and 2.891% 

of total reads) corresponding to IgHV gene rearrangements of [IgHV4-34, IgHD4-11, 

IgHJ6] and [IgHV1-2, IgHD4-11, IgHJ6] ( E, red and green lines 

respectively). The identical IgHD-IgHJ gene usage may be indicative of IgH 

secondary rearrangements. Although the second largest cluster (indicated in green) 

became undetectable after day 7, the largest cluster (indicated in red) was never fully 

eradicated over the 1241 days of sampling. Ongoing IgHV rearrangements have been 

shown to occur as the result of either of two processes. Firstly an ancestral B-ALL 

clone may undergo partial IgH gene rearrangement firstly of the IgHD-J genes, with 

multiple B-cells in this clone able to recombine the IgHD-J with different IgHV 

segments to become fully rearranged, thus generating multiple IgHV-D-J 

combinations sharing the same IgHD-J region. Secondly, in a secondary 

rearrangement, an existing IgHV in a full IgHV-D-J rearrangement may be exchanged 

for a 5’ germline IgHV while retaining the same IgHD-J region (Marshall et al., 1995, 

Steenbergen et al., 1993, Gawad et al., 2012, Choi et al., 1996, Liu et al., 2013). 

Therefore, to assess whether these clusters may have originated from secondary 

rearrangements of a single ancestral BCR, the most frequently observed BCR 

sequence from both clusters were aligned to each other ( B). Although there 

is only 61% alignment identity between the two BCR sequences representing the two 

clusters, the 55 nucleotides spanning the IgHD-IgHJ region and, notably, 3pb of the 

3’ end of the IgHV gene in the cluster 2 BCR sequence is identical to IgHV-D joining 

region (consisting of random nucleotide additions during IgH gene rearrangement) 

were identical, which is consistent with the hypothesis of secondary rearrangements. 

In addition, these BCR sequences show no mutations in the IgHV genes compared to 

the reference germline database, thus reinforcing the hypothesis that these two clonal 

B-ALL BCRs are indeed from the same progenitor B-ALL B-cells from early stages 

of B-cell differentiation that have not undergone SHM but where a secondary 

rearrangement of the IgHV has occurred. This could potentially be determined 

through the sequencing of the light chain BCR sequences. 
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Alignment position (bp)

0 50 100 150 200 250

IgBLAST alignment 
for cluster 2

IgBLAST alignment 
for cluster 1

Cluster 1 vs Cluster 2 
sequence alignment

61% alignment 
identity

100% alignment 
identity

IGHV4−34 IGHD4−11 IGHJ6

100% alignment 
identity

IGHV1−2 IGHD4−11 IGHJ6

Identical sequence

                                        T  A  A  D  T  A  V  F  R  G  L  A  T  T  V  I  T  T  T  T  T  W  T  S  G  A  K  G  P 
Cluster 1 BCR sequence            181  ACCGCCGCGGACACGGCTGTGTTCCGGGGGCTCGCAACTACAGTAATTACTACTACTACTACATGGACGTCTGGGGCCAAGGGACCA  267
V  100.0% (202/202)  IGHV4-34*01  256  ......................-----------------------------------------------------------------  277
D  100.0% (10/10)    IGHD4-11*01  3    ------------------------------------..........-----------------------------------------  12
J  97.6% (40/41)     IGHJ6*03     6    -----------------------------------------------..............................A.........  45

                                        L  R  S  D  D  T  A  V  Y  Y  C  A  T  T  V  I  T  T  T  T  T  W  T  S  G  A  K  G  P
Cluster 2 BCR sequence            151  CTGAGATCTGACGACACGGCCGTGTATTACTGTGCAACTACAGTAATTACTACTACTACTACATGGACGTCTGGGGCCAAGGGACCA  236
V  100.0% (185/185)  IGHV1-2*02   286  ...................................----------------------------------------------------  290
D  100.0% (10/10)    IGHD4-11*01  3    ------------------------------------..........-----------------------------------------  12
J  97.4% (38/39)     IGHJ6*03     6    -----------------------------------------------..............................A.........  44

......................-

....................................

..........

..........

..............................A......... 

..............................A......... 
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In addition, these clusters display similar properties, including the mean 

distance from the most frequently observed BCR within each cluster (2.281bp and 

2.135bp for clusters 1 and 2 respectively, ). However, MRD was observed 

only for cluster 1 throughout the 1241 days of sampling, suggesting that these clusters 

were differentially affected by therapy. Therefore, BCR sequencing can detect 

multiple disease subclones irrespective of their composition of driver mutations and 

individual proliferative properties.  

 

 

 
 
 
 

 

The BCR RNA expression in mature B-cells is greater than that of pre-B-cells 

or immature B-cells (Hoffmann et al., 2002). To account for the possibility that B-cell 

receptor expression in B-ALL cells/samples may be lower than in non-malignant 

mature B-cells, which may lead to the under-estimation of the number of malignant 

B-cells in a given sample, the DNA and RNA BCR repertoires were compared in 

three patient samples ( ). For every patient time point, B-ALL-derived BCR 

sequences were detected in the DNA sample at a higher percentage of total BCR 

sequences compared to the percentage derived from studying the matched RNA 

sample. Therefore, although BCR sequencing is highly sensitive for the detection of 

B-ALL-derived sequences, the RNA BCR repertoire may be significantly 

underestimating the true percentage of B-ALL cells in the sample and the use of DNA 

repertoires in B-ALL may further increase the sensitivity for MRD detection. 

However, DNA is more stable in plasma than RNA so detection of plasma DNA may 
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be more indicative of lysed or dead cells, whereas plasma RNA is more readily 

degraded (El-Hefnawy et al., 2004, Garcia-Olmo et al., 2013). As the difference is 

very striking between the RNA and DNA clonotype frequencies in B-ALL samples, 

DNA BCR sequencing should be used as an MRD marker rather than RNA.  
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Increased clonality is observed in B-ALL samples with high levels of 

leukaemic load (i.e. when the qPCR T/C transcript ratio is greater than 1.66, 

). However, it is possible that the B-cell populations in B-ALL patients after 

therapy would still be distinct from healthy B-cell populations. If so, features of the 

B-cell repertoire would distinguish between B-ALL patient samples with high 

leukaemic loads (B-ALL high, T/C qPCR transcript ratio>1), B-ALL patient samples 

with low levels of leukaemic loads (B-ALL low, T/C qPCR transcript ratio<1), B-

ALL patient samples with undetectable MRD after therapy (B-ALL undetectable, T/C 

qPCR transcript ratio=0) and healthy B-cell samples. Therefore, for each B-ALL 

sample and the 18 healthy individual samples, nine features of the B-cell sequencing 

data were calculated to distinguish between these different sample types, namely: 

(a) The vertex and cluster Gini index: measurements of overall clonality and 

cluster size heterogeneity respectively.  

(b) The largest cluster size (as a percentage): to distinguish between samples 

with different maximum cluster sizes. 

(c) The sum of the largest two cluster sizes (as a percentage): measurement to 

incorporate the second largest cluster size, which may distinguish between 

samples with secondary rearrangements.  

(d) The percentage of unique BCRs in largest cluster: to distinguish between 

samples with different levels of SHM in the largest cluster.  

(e) The percentage of sequences representing the most frequently observed 

BCR sequence: to distinguish between samples with or without dominant 

BCR sequences. 

(f) The percentage of sequences representing the first and second most 

frequently observed IgHV-J rearrangement: measurement to distinguish 

between samples with specific rearrangements, irrespective of the largest 

cluster sizes.   

(g) The ratio of the number of unique CDR3 sequences to unique full length 

BCR sequences: as the CDR3 length is shorter than the full length BCR 

sequence, but B-cells sharing the same CDR3 sequence are likely to 

originate from a single pre-B-all precursor, then lower ratios of unique 
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CDR3 sequences to unique full length BCR sequences suggests lower B-

cell clonal complexity. 

Each of these features describes different aspects of the B-cell repertoire. 

Linear discriminant analysis (LDA) was performed to find a linear combination of 

features that best separates sample types ( A) (Rindskopf, 1997). The first 

LDA dimension (LDA 1) separates the B-ALL high samples from the B-ALL low, B-

ALL undetectable and healthy samples. The features that contribute most to 

distinguishing between these sample groups are the largest cluster size (contribution: -

219.4), the sum of the largest two cluster sizes (denoted 1st + 2nd largest cluster (%), 

contribution: 302.8), the percentage of sequences corresponding the most frequently 

observed BCR sequence (denoted max. vertex, contribution: -189.0), and the 

percentage of sequences corresponding the first and second most frequently observed 

IgHV-J rearrangement (denoted Max. VJ Gene freq and 2nd max. VJ Gene freq 

contribution respectively: contributions of 204.7 and -165.4). The second LDA 

dimension (LDA 2) separates the healthy samples from the B-ALL low/undetectable 

samples. The features that contribute most to distinguishing between these sample 

groups are the vertex Gini index (contribution: 517.2), and cluster Gini index 

(contribution: -293.7), as indicated by the highest magnitude of the corresponding 

variable contributions for LDA2 ( B). Therefore, two-dimensional LDA 

successfully distinguishes B-ALL high, B-ALL low/undetectable and healthy 

samples.  

To test whether the resulting LDA 1 and LDA2 linear combinations can be 

used as a linear classifier of sample type, hierarchical clustering was performed using 

the Euclidean distances between the LDA 1 and LDA 2 coordinates of each sample 

(as defined in Section 2.2.11, C). This shows clear separation of B-ALL 

high samples (branch A, C) from healthy samples (branch B, C). 

The B-ALL low/undetectable samples were indistinguishable by these methods, but, 

interestingly, distinct from the other two groups (branch C, C). 2 out of 18 

healthy samples were misclassified into branch C, indicating that some healthy 

individuals may exhibit a range of B-cell repertoire features that can overlap with that 

of B-ALL low/undetectable.  

These data show that patient B-ALL B-cell repertoires differ significantly 

from those of healthy individuals during maximum tumour burden, which is 
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unsurprising. Notably however, patient B-ALL B-cell repertoires during and after 

maximum tumour removal by therapy differ significantly from those of healthy 

individuals. Such a difference of low or undetectable B-ALL BCR repertoires may 

represent an effect of the prior presence of a large B-ALL clone or an effect of anti-

leukaemic therapy, as patients remain on maintenance treatment for 2-3 years after 

diagnosis including lymphotoxic drugs such as corticosteroids and antimetabolites 

(e.g. Methotrexate). Overall, two-dimensional LDA in BCR sequencing repertoires 

successfully distinguished between B-ALL high samples, B-ALL low/undetectable 

samples and healthy samples and can effectively classify such samples. Whether 

subsets of the B-ALL low/undetectable clusters of patients, perhaps those without a 

“healthy” cluster member (branch C’, C), are more likely to relapse would 

be interesting to pursue. Alternatively, these “healthy” individuals that co-cluster with 

the B-ALL patients may have more clonal features of their B-cell repertoires for 

reasons that are unclear. 

 

  



-192- 

H
ealthy 1

H
ealthy 2

H
ealthy 3

H
ealthy 4

H
ealthy 5

H
ealthy 6

H
ealthy 7

H
ealthy 8

H
ealthy 9

H
ealthy 10

H
ealthy 11

H
ealthy 12

H
ealthy 13

H
ealthy 14

H
ealthy 15

H
ealthy 16

H
ealthy 17

H
ealthy 18

A
LL

A
−

high 1

A
LL

A
−

high 2
A

LL
A

−
high 3
h

h

A
LL

A
−

high 4
h

h

A
LL

A
−

high 5
h

h
A

LL
A

−
high 6

g

h
h

A
LL

A
−

low
 1

A
LL

A
−

low
 2

A
LL

A
−

low
 3

A
LL

A
−

low
 4

A
LL

A
−

low
 5

A
LL

A
−

low
 6

A
LL

A
−

low
 7

A
LL−

undetectable 1

A
LL−

undetectable 2

A
LL−

undetectable 3

A
LL−

undetectable 4

A
LL−

undetectable 5
A

LL−
undetectable 6

A
LL−

undetectable 7

A
LL−

undetectable 8

A
LL−

undetectable 9

A
LL−

undetectable 10
A

LL−
undetectable 11

A
LL−

undetectable 12

A
LL−

undetectable 13

A
LL−

undetectable 14

A
LL−

undetectable 15

HHHH HH HHHH HH HHHH HHHH HHHH HHHH HHHHHHHH AAAAAA AAA AAA AAAAAAAAAAAA AAAAAA AAAAAA AAA AAAAA A A AA AAA A AA

−10 −6 −4 −2 0 2 4

5
6

7
8

9

LDA1

LD
A

2

B−ALL high
B−ALL low
B−ALL undetectable
Healthy

−400 −200 0 200 400
−

20
0

0
20

0
40

0

LDA1

LD
A

2

Vertex Gini Index

Cluster Gini Index

Largest Cluster (%)

1st + 2nd Largest Cluster (%)

Vertices in max. cluster (%)
Max. vertex (%)

Max. VJ Gene freq (%)

2nd max. VJ Gene freq (%)

N. CDR3s:N. seqs



 -193-  

 

 

 

 

  



 -194-  

 

One of the patients in this cohort, patient 1703, unfortunately developed CSF 

relapse after more than 2 years from initial therapy (summarised in ). The sample 

taken on day 0 was taken more than one week after therapy had started and likely 

after a significant reduction in disease bulk, therefore the B-ALL qPCR T/C transcript 

level was relatively low. B-ALL was undetectable by day 18 (by qPCR MRD 

monitoring), but re-emerged at day 567 predominantly in the CSF, although it was 

also detectable in the BM. In this patient, both the B-cell were amplified and 

sequenced to understand the adaptive immune dynamics of relapse in B-ALL.  
 

Source* 
Target/control transcript 

level** 
% B-ALL BCR reads  

(from RNA) 
% B-ALL BCR reads 

(from DNA) 
Day 0, PB 0.121 0.00266 28.63019 

Day 18, BM 0 5.42E-05 0.804093 

Day 336, BM 0 0 - 

Day 567, BM 0.000222 0.000332 - 

Day 567, CSF 3.122 3.38 - 

 
 

The largest clone in the patient 1703 day 0 DNA sample, representing 28.63% 

of all BCR sequences, was identified as the B-ALL clone. This clone was detected as 

the largest cluster in the day 567 CSF sample (from RNA), representing 3.38% of 

BCR sequences ( ). However, 80% of cells in this sample resembled the 

leukaemia-associated immunophenotype of lymphoblasts (CD10+, CD19+, CD45low/-) 

by flow cytometry. The reason for a low representation of B-ALL BCRs in the RNA 

sample compared to flow-cytometry is unclear but could be explained by the lower 

expression of immunoglobulin in B-ALL cells compared to mature B-cells (addressed 

in Section 5.2.5).  

Clonal evolution has been observed in B-ALL as exemplified by the presence 

of tumour mutations in the genome (Mullighan, 2012) and by multiple BCRs related 

to the dominant B-ALL BCR sequence. Although expression of AID, which is 
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required for somatic hypermutation, has been detected only in some B-ALL patients 

(Feldhahn et al., 2007, Messina et al., 2011, Iacobucci et al., 2010, Hardianti et al., 

2005), the accumulation of non-AID-mediated or mutations caused by low-level AID 

expression in these cells can result in clonal diversification in B-ALL (Jiao et al., 

2014). These mutations may be used to infer the mutational route from a B-ALL B-

cell ancestor to the rest of the leukaemic clone by phylogenetic analysis. To infer the 

phylogenetic relationships between B-ALL sequences before and after relapse, all the 

BCR sequences related to the B-ALL clone at day 0 derived by combining both RNA 

and DNA sequencing datasets and day 567 relapse (from RNA sequencing dataset) 

were identified (including identical or related BCRs within a threshold of 8 bp of the 

using MRDARCY) and aligned using Mafft (Katoh and Standley, 2013) and a 

maximum parsimony tree was fitted using Paup* (Wilgenbusch and Swofford, 2003). 

The branch lengths represent the evolutionary distance between BCR sequences. 

Bootstrapping was performed to evaluate the reproducibility of the trees, showing 

strong tree support (>95% certainty for all branches), and the tree tips were coloured 

according to whether the BCRs were observed at day 0 (BM) and/or day 567 (CSF) 

( A). The tree has a star-like structure, suggesting that the original B-ALL 

BCR clone emerged from a single common ancestor (Martins and Housworth, 2002), 

represented by the central BCR, which was the most frequently observed BCR at day 

0 (BM) (making up 40.0% and 74.6% of total related B-ALL sequences for BCR 

repertoires derived from RNA and DNA respectively) and day 567 (CSF) (40.0% and 

63.0% of total related B-ALL sequences for BM and CSF respectively). Interestingly, 

there was high BCR sequence overlap between the day 0 (BM) and day 567 (CSF) 

samples (86.08%), even at distances of 7 nucleotides from the central BCR (

B). Furthermore, there is a strong linear correlation between the B-ALL BCR 

frequencies the day 0 (BM) and day 567 (CSF) samples (R2-value=0.9993 for all 

BCRs), suggesting that some of the population structure of this B-ALL cluster is 
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Chapter 6 
 

 

 

Healthy humans have approximately 3x109 B-cells in the peripheral blood and 

this population encompasses the repertoire of distinct B-cells expressing different B-

cell receptors (BCRs) necessary to bind diverse antigens and produce an effective 

humoral immune response. B-cells are dynamic populations of immune cells that 

evolve over time. The aim of this thesis was to investigate B-cell population diversity 

and dynamics in health and disease using the sequence diversity and population 

structure of the B-cell BCR repertoire. This required the development of novel, 

robust, sensitive and reproducible high-throughput B-cell receptor sequencing 

methods.  

This thesis demonstrates that human BCR repertoire diversity can be 

interpreted through full V-D-J genotype diversity using networks. BCR sequences can 

be organised into networks based on sequence diversity, with differences in network 

connectivity providing clinically useful B-cell repertoire structure information. An 

important result of this framework is the ability to determine how B-cell repertoire 

structures differ between health and disease. Samples from clonal B-cell populations, 

such as from CLL, B-ALL and other clonal blood disorders, can readily be 

distinguished from healthy samples by an increase in BCR clonality and decrease in 

BCR diversity. For example, different features of the B-cell repertoire can be used to 

distinguish between patients with B-ALL patients with high leukaemic cell loads, B-

ALL patients with low or undetectable levels of leukaemic cell loads and healthy 

individuals, and can be used as a sample classifier. Interestingly, the B-ALL samples 

remain largely distinct from healthy B-cell repertoires even after years of undetectable 

disease, suggesting a long-term B-cell repertoire impact of either the disease or, more 

likely, the anti-leukaemic therapy. Similarly, even though CLL therapy by 

Chlorambucil results in significant reduction in peripheral blood B-cell clonality, CLL 

patient samples remain distinct from equivalent samples from healthy individuals. 

Long-term effects of B-cell depletion therapy have been observed in previous studies, 

where SHM rate is reduced in rheumatoid arthritis patients even 6 years after 
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rituximab treatment (Dorner et al., 2010, Muhammad et al., 2009, Stolz and Schuler, 

2009). There was variation between the diversity measures of the BCR repertoires 

between the healthy individuals, thus indicating a range representing healthy B-cell 

clonality and diversity. A larger-scaled assessment of primary immune responses 

compared to early stage leukaemias could provide clinically important diagnostic or 

prognostic information to patients. 

The utility of this method can extended to clinical monitoring of disease, 

MRD and relapse. Unparalleled sensitivity of BCR sequencing for detecting MRD 

was demonstrated here compared to conventional clinical methods, where detection of 

leukaemic BCR RNA is greater than 1 in 107 RNA molecules, which is increased 

13.57-fold by using only a single IgHV-specific primer corresponding to the specific 

BCR of interest. In practice, when there is prior knowledge of a BCR of interest, such 

as in leukaemia, the limit of detection is dependent on the number of cells sampled 

and the sequencing depth. However, the limit of de novo detection of malignant 

clonality is at least 1 in 100 dilution of CLL or ALL cells into healthy blood. When 

the clone of interest is small (i.e. less than 1 in 100 cells), diversity measures alone 

cannot directly be used to distinguish from healthy samples.. Therefore, detection of 

MRD is achievable as long as the clinical sample contains malignant cells, sequencing 

is performed at an adequate depth and the malignant clonal sequence is known a 

priori. In addition to increased sensitivity, the ability to detect multiple subclones in 

leukaemias by BCR sequencing highlights its advantages over qPCR methods, 

thought to occur between 1.38-2.70% in CLL (Plevova et al., 2014, Kern et al., 2014), 

19.35-27% in ALL (Beishuizen et al., 1991, Kitchingman et al., 1986), and 10% in 

lymphomas (Sklar et al., 1984). This is particularly relevant in diseases where B-cell 

clones can undergo secondary rearrangements or in cases of two independent B-cell 

malignancies (Boyd et al., 2009, Bashford-Rogers et al., 2013). Enlarged clusters 

representing BCRs with different IgHV-D-J gene combinations may be due to either 

the expansion of two distinct malignant B-cell transformations, or separate antigen-

stimulated B-cell clonal expansion unrelated to the malignancy. The presence of more 

than one BCR clonal expansion has unknown clinical implications in CLL and B-

ALL, but with the risk of secondary malignancies in these patients, monitoring these 

bi-clonal B-cell disorders is of great clinical importance.  
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The utility of these methods could extend further to autoimmunity, 

immunodeficiency, response to infection and vaccination, thus potentially improving 

the understanding and clinical practices of a vast realm of diseases.  
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Using this thesis as a framework for immune repertoire analysis, it is apparent 

that there are many biological and clinical applications to the methods described here. 

The utility of these methods extend beyond malignancy to autoimmunity, 

immunodeficiency, response to infection and vaccination. However, this section will 

cover directions of future work directly derived from the findings in this thesis.  

Firstly the full human allelic variation in the heavy and light Ig V, (D) and J 

genes is still unknown, where population differences in gene sequences may result in 

differential susceptibility of diseases. Biases in immunoglobulin gene recombination 

patterns have been shown to affect influenza susceptibility, where a polymorphism in 

the recombination signal sequence of IgKV locus in the Navajo population is 

associated with increased influenza susceptibility. This polymorphism reduces 

recombination of a commonly used IgKV gene by about 4.5-fold (Feeney et al., 

1996). Therefore, future work should include determining the association between 

allelic variation in the heavy and light IgV, (D) and J genes and corresponding 

promoter regions. This could potentially be achieved through the analysis of the 

immunoglobulin loci of large-scale datasets, such as exome or whole genome 

sequencing of large numbers of individuals from the UK10K and 1000 Genome 

datasets and by a large scale analysis of IgH and IgL productive rearrangement 

frequencies in the peripheral blood of diverse populations of people.  

Further experiments should include determining the B-cell repertoire 

differences between different anatomical locations within an individual, such as 

between lymph nodes and peripheral blood. Model systems, such as mice, can be used 

to investigate the development and spatial structure of immune responses during 

vaccination or infectious challenge. However, the availability of some anatomical 

regions from humans is limited, for example, bone marrow biopsies are typically only 

taken in individuals with blood abnormalities, such as anaemia, leukopenia, 

thrombocytopenia and leukaemia. However, even these samples, when paired with 

peripheral blood, could give valuable information on the spatial arrangement of 

specific B-cell populations. For example, this thesis has shown important potential 

uses of BCR sequencing in monitoring disease during therapy (Chapter 4) and 

minimal residual disease detection (in Chapter 5). However, it is of great clinical 

benefit to defining optimal anatomical locations for detecting minimal residual B-cell 
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and, potentially, T-cell populations during leukaemia therapy. In particular, it would 

be clinically useful to determine if single or multiple peripheral blood draws are more 

effective at sampling malignant B-cells for detection of MRD compared to bone 

marrow biopsies in B-ALL. Additionally, the mode of relapse remains a question in 

many leukaemias, such as where B-ALL MRD cells reside during therapy and what 

circumstances lead to relapse, particularly to certain anatomical sites such as CSF. 

Therefore, multiple sampling of different anatomical sites may give information on 

which regions are less readily accessible to therapy and potential reservoirs of cancer 

cells. 

Multiple B-cell clonal expansions were observed in some of the CLL and B-

ALL patients in this thesis, which opens the question of whether these clones are 

distinct malignant B-cell transformations, or separate antigen-stimulated B-cell clonal 

expansion unrelated to the malignancy. This may be answered by two different 

approaches. Firstly, BCR sequencing of longitudinal samples from these patients may 

be used to determine whether there is reduction in the sizes of any of the clones in the 

absence of therapy, suggesting antigen-driven clonal expansion and subsequent 

reduction. Secondly, single-cell whole-genome or exome sequencing may be 

performed on cells from the expanded clones to determine whether there are shared 

genomic features or aberrations that may be indicative of single or multiple malignant 

expansions. An alternative to this would be single-cell transcriptomic analysis, which 

would give information on the differences between cells from different clonal 

expansions on an RNA-expression level, potentially shedding light on the similar or 

different processes that have led to their clonal growth. 

Previous studies have shown that non-B- and non-T-cell malignancies are 

often marked by profound defects in B-cell and T-cell function, such as in melanoma 

and solid tumors in mice (Baitsch et al., 2011, Ahmadzadeh et al., 2009, Sakuishi et 

al., 2010)). B- and T-cell exhaustion prevents optimal control of infection and 

malignancy, and therefore understanding the structure and dynamics of the normal B- 

and T-cell repertoires in patients with different malignancies may help identify 

common underlying principles of immune-dysfunction, to assess potential for 

diagnostic or prognostic marker for disease development and to identify therapeutic 

opportunities. This is achievable by cell sorting of activated memory B-cells or 

plasma cells, paired heavy and light chain sequencing and screening for reactivity 

against the malignant cell populations of interest. Next, the question of which B-cell 
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subsets produce these anti-malignant BCRs could be addressed by BCR high-

throughput sequencing of flow sorted B-cell populations. This may determine whether 

anti-malignant B-cells are indeed prone to immunological exhaustion, and the 

dynamics of such a process may be determined using longitudinal samples. 

Importantly, an exhaustive phenotype of B-cells that specifically bind malignant cells 

may be a useful biomarker for relapse risk.  
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