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GENEPRED – AN AB INITIO GENE PREDICTOR 

 
6.1 Introduction 

With the availability of models for transcription, splice site and translation, here I introduce 

an ab initio gene prediction system, GenePred, created using the regulatory signals 

identified by Eponine. As explained previously, almost all gene prediction programs use 

‘content’ information, such as codon bias and ORF length. The gene prediction system 

explained in this chapter is different in this respect as the system uses only ‘signal’ 

information. Such a gene prediction system has an advantage over existing gene prediction 

algorithms in that it has the potential to identify non protein coding RNAs as well as coding 

RNAs. Recent analyses (Cawley et al., 2004; Mattick, 2001) indicate that a huge amount of 

non coding transcription occurs within the cell and most of these RNAs are regulated in a 

similar way to protein coding genes. Various functions are attributed to these RNAs such as 

RNA interference, co-suppression, transgene silencing, imprinting and methylation. Few 

attempts (di Bernardo et al., 2003; Rivas and Eddy, 2001; Rivas et al., 2001) have been 

made to identify these RNAs computationally and so far with only limited success. A gene 

prediction program based on ‘signal’ information alone, and thus not biased due to ‘content’ 

information, should more closely mimic the biological system than existing gene prediction 

methods, as the in vivo transcriptional machinery does not use ‘content’ information while 

transcribing a genomic region. Content information has historically been used to assist 

computational detection of genes since signal based prediction alone has been insufficient 

(Guigo, 1997). 

 

The gene prediction model explained in this chapter was constructed using a dynamic 

programming framework called GAZE (Howe et al., 2002), which can combine features 

identified by predictive models, such as those described in the previous chapters. GAZE 

allows evidence for individual gene components to be assembled in order to predict entire 

gene structures. As explained in chapter 2, the method uses a dynamic programming 

algorithm to obtain (i) the highest scoring gene structure with the supplied features and (ii) 

posterior probabilities that each input feature is part of a gene.  
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In this chapter I explain the details of the features and gene models used in deriving 

various versions of the gene prediction system. Following this, I compare the performance 

of the system with the well established gene prediction program called GENSCAN (Burge 

and Karlin, 1997), as this program is assessed to be one of the best ab initio programs 

available in the public domain (Guigo et al., 2000; Parra et al., 2003). Towards the end of 

this chapter I revisit the performance of the transcription termination model given the 

context of splice site model predictions. 

 

6.2 GAZE gene structure models 

Many gene prediction programs have two common features – 

 

(i) signal and content measures are used to detect components and regions belonging to 

genes 

(ii) assemblage of these components into complete gene structure prediction for the 

sequence and scored against some measures 

 

For the first of these steps, different measures, say weight matrices, codon bias, pentamer 

and hexamer frequencies and splice site predictions can be used to distinguish the 

components of gene structure from the sequence. For the second of these steps, a choice 

must be made as to the model of gene structure over which the assembly is to be performed.  

One of the advantages of GAZE is that it decouples these two steps of assembly of signal 

and content data into gene structure predictions from the generation of the data itself. The 

inputs for both these steps are provided externally and GAZE does not work directly with 

genomic DNA. In this project, for the first step, I used Eponine predictions as signal 

features, which I explain in the next section. For the second step, I used the following 

models (Figure 61) to validate the assembled components of the gene signal features. 
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Figure 61. Schematic representation of the gene models used for predicting genes from 
features in the forward strand. Reverse complementation of the forward strand rules are 
used for reverse strand gene predictions. (a) Simple gene model without translation models 
and thus no protein information. (b) Gene model with translation features. Any introns 
within 5’ UTR region are not modeled.  Based on these gene structures, candidate genes are 
predicted on both strands at the same time. 

 

In Appendix C, I have given the configuration files where the gene structure models used 

are presented in GAZE-XML format. A pictorial representation of these gene structures is 

given in Figure 61. The configuration file has five sections – 

 

(i) declarations – declares the Eponine features that GAZE is going to work with 

(ii) gff2gaze – dictates how the input files are used to obtain a list of features 
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(iii) dna2gaze – allows for the creation of features from simple sequence motifs 

observed in the input DNA sequence 

(iv) model – contains the gene structure rules 

(v) lengthfunctions – this section describes the length penalties used in defining exons, 

introns and intergenic regions in the model 

 

The gene structure rule I used here (Figure 61a) is simple and it starts with a transcription 

start site followed by the donor site. The region between these two predictions defines the 

initial exon segment. The introns that interrupt the coding region of the gene are modelled 

by allowing a transition from donor to acceptor site. Introns might occur between two 

codons or in the middle of a codon, either between first and second position or between 

second and third positions. However, since the aim is not to consider any coding 

information in constructing the gene model, the phase associated with intron interruption is 

not considered. The donor and acceptor site features are represented as 5ss and 3ss. The 

sequences between a 3ss and a 5ss feature forms the internal exon of the gene structure. The 

terminal exon is defined as that part of the sequences between an acceptor site and a 

transcription termination site. Transcription termination site defines the end of the candidate 

gene. Thus a gene structure is defined with the features from transcription and splice site 

signals. To form the next gene another list of features are sampled and analysed to fit the 

rules explained above. That part of the sequence between two genes defined between 

transcription termination and start features is referred to as intergenic. To predict genes in 

the reverse strand, reverse complementation of the above rules are employed. Single exon 

genes are not modeled in this case. This is due to the fact that a simple single exon gene 

model will use only transcription start and termination site without any splice site model 

predictions. Allowing this simple single exon gene transition will bias the gene structures to 

terminate just after the start site because of the unusual presence of termination signals near 

transcription initiation site (refer to chapter 3).   

 

Thus, this gene model without translation components more realistically mimics the 

biological transcriptome and spliceosome machinery that transcribes the DNA and 

processes the newly synthesized RNA respectively. 
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All the features are derived from Eponine models for predicting genes and I did not use 

the dna2gaze section to create a set of features from the DNA sequences. Similarly no 

constraints on the maximum length of exons and introns are placed in the gene model and 

thus no length penalty functions are used. 

 

Figure 61b shows a pictorial representation of a different gene model used in predicting 

genes. In this structure, I used Eponine translation start and stop models as well. The 

transcription start site is now allowed to transit to the translation start codon, thus defining a 

new segment called the 5’ UTR. The region between the translation start codon and donor 

site now defines the initial exon segment. Similarly, the translation stop model is 

incorporated after the acceptor site of the last exon before transition to the transcription 

termination site. This change will make the GenePred system emit the 3’ UTR segment. By 

adding translation models and thus start and stop codon signal information, some protein 

coding information is attached to the gene prediction system. This is done to analyse the 

influence of the translation models in the GenePred system. 

 

6.3 Eponine prediction models 

As explained earlier, given a candidate set of gene features, GAZE predicts genes by 

deriving a subset of features that according to the given gene structure is the most likely 

candidate. The gene structure scoring the highest value with the list of features is predicted 

as a candidate gene. In order to provide the list of features to GAZE, I used Eponine model 

predictions. The following models are used along with their respective thresholds (given in 

brackets) to obtain predictions from signals in the DNA sequences. 

 

(i) Transcription Start Site model (0.99) 

(ii) Translation Start model (0.99) 

(iii) Donor Site model (0.999) 

(iv) Acceptor Site model (0.9998) 

(v) Translation Termination model (0.999) 

(vi) Transcription Termination model (0.99) 
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Apart from Eponine models, I also used GeneSplicer predictions while testing the 

performance of the GenePred system. GeneSplicer was used with default options to predict 

splice site features from the DNA sequence.  

 

All the predictions were dumped in the General Feature Format (GFF, WTSI), a widely 

used standard for the exchange of gene prediction information. 

 

Here I used chromosome 20 for scanning features and predicting genes as all the Eponine 

models discussed in previous chapters are trained from chromosome 22.  

 

6.4 Gene prediction with Eponine features 

With the availability of features from chromosome 20, I combined them to create a gene 

prediction system by inputting the features and the gene model structure (Figure 61a) into 

GAZE. 

 

Figure 62 and Figure 63 show the genes predicted using GenePred as red tracks (the first red 

track in Figure 62 and the last red track in Figure 63) for a 1 mega base region (57.35 to 

58.35 bases) of chromosome 20. For ease of comparison, in Figure 64, I removed all the 

annotation tracks and kept only VEGA, ENSEMBL annotations and GENSCAN (Burge and 

Karlin, 1997) predictions. 
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Figure 62. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in the forward stand. Annotations from VEGA, ENSEMBL, EST 
transcripts, UNIGENE and Human cDNAs are shown as tracks along with GENSCAN 
predictions (both on masked and unmasked sequence). The comparison is possible with the 
ENSEMBL ContigView which can load predictions from external source as DAS tracks. 
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Figure 63. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in the reverse stand. Annotations from VEGA, ENSEMBL, EST 
transcripts, UNIGENE and Human cDNAs are shown as tracks along with GENSCAN 
predictions (both on masked and unmasked sequence). This figure is reproduced from 
ENSEMBL ContigView viewer. 

 GENSCAN predictions are derived by scanning repeat masked chromosome 20 sequence.  

This is done by splitting the chromosome sequence into 200 kb overlapping blocks and 

GENSCAN predictions on each block are then merged together using a merging algorithm 

(Hubbard, T., personal communication) to derive the final list of predictions. 

 

I compared the performance of GenePred with that of GENSCAN using the following 

definition of coverage and accuracy – 

 

(i) Coverage is defined as the number of genes identified over the total number of 

annotated genes. 

(ii) Accuracy is calculated as the number of predictions matching the annotation over the 

total number of predictions. Predictions that fuse or split the gene are considered as false 

positives (Figure 65). This included a few predictions matching genes that have an 

internal gene in the same strand. 
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Figure 64. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in both strands. VEGA annotations are shown as black bars. The 
region covered by a bar includes all the alternative transcripts of a gene. GenePred 
predictions are given in red color. The figure also shows GENSCAN predictions and 
ENSEMBL annotations in different tracks. 

  
Figure 65. Pictorial representation of (a) split and (b) fused predictions in comparison with 
annotation. (c) Few annotated genes have internal genes in the same strand. Predictions 
matching these genes are ignored while calculating accuracy. Annotations are given in 
black while predictions are drawn in red. 
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I extracted annotations from the VEGA database (Ashurst, 2002) and found that 

chromosome 20 had 959 annotated genes (includes, Known, Novel CDS, Novel Transcripts, 

Pseudogene, Processed pseudogene, Unprocessed pseudogene and Putative categories). 

GenePred predicted 669 genes while GENSCAN made 1086 predictions after scanning the 

chromosome 20 sequence (Table 12). GenePred covered 592 genes (61.8%) of the total 

annotated genes while GENSCAN coverage was roughly 13% higher, identifying 722 genes 

(75.3%). Accuracy of GenePred and GENSCAN was found to be similar. GenePred made 

230 correct predictions (34.4%) while GENSCAN predicted 369 (34.0%). However, 

GENSCAN made relatively higher number of split predictions (255 predictions). In 

contrast, GenePred made relatively more fused predictions (198 predictions compared to 

149 by GENSCAN) and a smaller number of split predictions (97 predictions). However, 

GenePred had difficulty in identifying the annotated exon and intron boundaries when 

compared to GENSCAN (Table 13). Any prediction that overlaps an annotated exon is 

included in calculating coverage and accuracy. However, split and merge predictions are 

counted as false positives while deriving accuracy. Out of 6441 exons annotated by VEGA, 

GenePred predictions overlapped with 2869 (44.5%) while GENSCAN predicted 4132 

(64.2%). GENSCAN’s coverage is achieved from fewer predictions than GenePred and 

hence accuracy of GENSCAN (46.3%) is significantly higher than GenePred (12.7%). 

GenePred is not suited for predicting exact exon-intron boundaries (5512 annotated splice 

sites) as the donor and acceptor site coverage and accuracy is significantly less than 

GENSCAN (refer to Table 13). These results are expected as GenePred does not use any 

‘content’ information like other ab initio gene prediction systems. Thus, GenePred is good 

for identifying gene blocks in the DNA sequences, which could be later annotated for exon-

intron structure using other algorithms. The high number of fused predictions by GenePred 

indicates the potential to improve the model by tweaking the parameters and the feature 

models used to predict genes. 

 

For the above comparison, I used GENSCAN predictions on repeat masked sequence since 

GENSCAN was known to perform better in masked than unmasked sequence. GENSCAN 

predictions on unmasked chromosome 20 (2108 predictions) shows significantly less 

accuracy (19.7%, compared to 34.0% reported earlier) although the coverage remains 

similar (masked: 75.3%, unmasked: 77.3%). This might be due to the difficulty of 

GENSCAN in ruling out coding regions in repeat sequences. However, such problems are 
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not observed with GenePred, as predictions on both masked and unmasked sequence 

showed similar coverage (masked: 60.8%, unmasked: 61.8%) and accuracy (masked: 

36.6%, unmasked: 34.4%). 

Table 12. Performance of GenePred and GENSCAN in predicting VEGA annotated genes. 
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Table 13. Performance of GenePred and GENSCAN in predicting VEGA annotated 
exons and splice sites. 

 

 

Out of total predictions from both GenePred and GENSCAN, nearly 40% of predictions 

(excluding, 34% correct predictions and approximately 26% fused/split predictions) are not 

correlated with VEGA annotations. A number of these may turn out to represent real 

transcripts missing from the existing annotation. As GAZE predictions are based on 

regulatory signals, some of the predictions that do not match the annotation are likely to be 

non-coding transcripts. Recent experiments by Affymetrix on chromosome 20 and 22 

emphasise this fact (Cawley et al., 2004). They found that a significant number of 
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transcription factor binding sites are correlated with non-coding RNAs and that they are 

regulated by a mechanism similar to that of protein coding genes. Thus, the excess 

predictions by GAZE are potential sequence blocks for hunting genes. 

 

6.5 Tweaking GenePred gene prediction system 

Having shown that the performance of GenePred is comparable with GENSCAN, I then 

tweaked Eponine models and configuration files used in making the GenePred prediction 

system to try to find improvements. I adopted three main approaches, which are explained 

below. 

 

6.5.1 With Eponine translation models 

With the availability of translation start and stop models, I decided to include them in the 

GenePred system in order to determine if this additional information might help in 

improving the performance. For this purpose, as explained earlier (Figure 61b), from the 

transcription start feature the model is allowed to transit to the translation start codon 

emitting the 5’ UTR segment. Likewise, between the acceptor site of the last exon and the 

transcription termination site, the translation stop signal features are introduced.  

 

I tested this modified gene prediction system with the annotation from chromosome 20 and 

found that there is no significant change in coverage and accuracy when compared to 

GenePred without Eponine translation models (Table 14). However, the number of genes 

predicted by the system increased (886 predictions compared to 669 predictions reported 

previously) and because of it the coverage increased by a small proportion (64.9%, 622 

annotated genes were correctly identified) and accuracy decreased by a small proportion 

(32.0%, 284 predictions are accurate). As there is a trade-off between coverage and 

accuracy, the values are comparable with the GenePred system without translation models. 

However, adding translation models to GenePred created less fused (155 predictions) and 

more split predictions (170). Thus, Eponine splice sites bias the gene prediction system to 

extend the gene rather than terminate the extending prediction. This issue is addressed in 

case (iii) below. 
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Table 14. Performance of GenePred constructed with translation start and stop features. 

 

Thus, adding translation models to the GenePred did not affect the performance in 

identifying annotated genes from the genomic DNA but modified the number of fused and 

split predictions. 

 

6.5.2 Eponine Splice site predictions replaced with GeneSplicer predictions 

In another attempt, I replaced Eponine splice site model predictions with GeneSplicer 

predictions while making GenePred. As explained in chapter 4, GeneSplicer performed 

better than Eponine splice site models by using more information from the DNA sequence. 

Since splice sites form the essential part in determining the gene structure by any gene 

predictor, I attempted GeneSplicer predictions with GenePred in predicting genes. Since 

GeneSplicer predictions are given in bit scores (x), they are first converted to log scores (z) 

using the expression given below before usage. 

 

 xe
z −+

=
1

1  (15) 

 

GeneSplicer predictions with log scores are combined with both cases – with all Eponine 

models and with only Eponine transcription models (without translation models) – to derive 

a gene prediction system. 

 

With the GeneSplicer features (along with transcription and translation features), the 

coverage (68.4%) and accuracy (35.6%) improved in comparison with GenePred using 

Eponine splice site features (Table 15). The increase in accuracy is due to the reduced 

number of predictions (778 predictions compared to 886) by the model. However, the 

number of fused predictions increased (196 compared to 155 predictions) when GeneSplicer 

splice site features are used. The results are similar, except that the number of predictions 
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increased (709 predictions compared to 669) when translation model predictions were 

not used along with GeneSplicer. Including GeneSplicer predictions, however significantly 

improved exon and splice sites coverage by GenePred (Exon: 61.5%, Donor: 19.0%, 

Acceptor: 19.6%). This improvement in coverage is due to the increase in the number of 

predictions (44050 predictions compared to 11145, refer to Table 13) and hence the 

accuracy decreased by a small proportion.   

Table 15. Performance of GenePred constructed with and without translation features 
along with GeneSplicer features instead of Eponine splice sites. 

 

Thus, the increase in coverage using features of GeneSplicer features narrowed the margin 

between the GenePred and the GENSCAN while keeping the high accuracy of the GenePred 

system. 
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6.5.3 Scaled down Eponine feature scores 

As noted earlier Eponine donor and acceptor site model features are screened for scores 

above 0.999 and 0.9998 respectively, for constructing GenePred using GAZE. 

 

On evaluating different gene structures from the DNA sequence based on the given model, 

GAZE tries to balance between splice sites and transcription termination features in 

extending or terminating the gene. This might be compared to the in vivo competition 

between transcriptome and spliceosome in transcribing a gene. At least in two cases – IgM 

heavy chain genes and Calcitonin genes – the competing nature of splicing and transcription 

is shown experimentally. An internal weak poly(A) signal present within an intron of the 

IgM heavy chain gene under the low amount of CstF-64 transcription factor, misses the 

poly(A) signal and hence the transcription continues with the influence of the donor splice 

site present downstream. In cases where CstF-64 is available in relatively high 

concentrations, as in plasma cells, the transcriptome has the advantage and terminates the 

transcription (Takagaki and Manley, 1998; Takagaki et al., 1996). Similarly in Calcitonin 

gene transcription, a weak internal poly(A) signal is used by the transcriptome, if the  SRp 

20 protein, a splice regulatory factor, fails to get recruited to the nearby splice sites (Zhao et 

al., 1999). 

 

A high number of fused gene predictions by GenePred might be due to the higher score of 

splice sites than transcription termination features predicted by the Eponine models. To test 

this hypothesis, here I attempt to scale down the values of splice site features. This is done 

by taking the inverse logit of the Eponine score and multiplying it with a scaling factor and 

reconverting back to the logit score. Inverse logit of the Eponine score was done using the 

formula – 

 

 )
1

log(
z

zx
−

=  (16) 

 

The inverse logit score (x) for donor and acceptor sites are scaled down by multiplying the 

values with 0.67 and 0.54 respectively. These values were found to be optimum after 

different runs and the scaled down scores are more equivalent to the transcription start and 

termination model scores (0.99). Likewise, the scores for translation stop model features 
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(0.999) are also scaled down by multiplying the inverse logit scores with a factor of 

0.67. Before incorporating the donor and acceptor and translation stop features into 

GenePred the scores are converted back to logit values using equation 20 explained above. 

 

Table 16 shows the GenePred system with the scaled down feature scores predicted more 

split predictions (208 and 151 predictions compared to 170 and 97 by GenePred with no 

scaled down features) and less fused predictions (144 and 165 predictions compared to 155 

and 198 predictions by GenePred without scaled down scores). The scenario is similar for 

exons as well (657 split predictions compared to 212 predictions without scaled down 

scores). Overall the number of predictions also increased (997 and 824 predictions). 

Although there is a small increase in coverage (66.7% and 64.1%), it was compensated with 

a small decrease in accuracy (30.2% and 32.2%) and hence the coverage and accuracy are 

not significantly different from the above models. However, this tweak showed that the high 

number of fused predictions by GenePred is due to the splice site score values fed into the 

gene prediction system. 

Table 16. Performance of GenePred system constructed with and without translation after 
scaling down splice site and translation stop scores. 
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6.6 Revisiting transcription termination predictions 

In chapter 3, I showed that the Eponine model works better than existing programs, ERPIN 

and Polyadq, in predicting transcription termination sites. However, the model made a huge 

number of false positive predictions and nearly 10% of them lie within the genes. Ruling out 

these false positive predictions within the gene will increase the accuracy of the model. This 

is possible by defining the exon-intron structure of a gene and removing any transcription 

termination predictions lying within exons or introns. The exon-intron structure can be 

defined using GenePred and thus might help to pin-point the false transcription termination 

model predictions. 

 

To achieve this objective, I used the GenePred system developed by omitting Eponine 

translation models (included Eponine transcription start site, donor, acceptor and 

transcription termination models only) for this purpose. The system predicted genes by 

including only appropriate transcription termination sites after defining the exon-intron 

structure using the splice site features given. Transcription termination sites selected by 

GenePred are then dumped to find the coverage and accuracy of the model by comparing it 

with the VEGA annotated gene ends in chromosome 20 (Table 17). Out of 98 predictions 

matching the 213 annotated genes of chromosome 20, 24 predictions lie within 2500 bases 

from the annotated gene end showing an accuracy of 24.5% with coverage of 40.4%. For a 

comparable coverage the earlier analysis (refer to chapter 3) showed only 16.6% accuracy 

for the transcription termination model. 

Table 17. Performance of transcription termination model with the support of GenePred 
prediction system. 
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Thus, by defining the exon-intron structure, some of the internal predictions of 

transcription termination can be removed giving the model better accuracy with no 

compromise on coverage. 

 

6.7 Concluding remarks 

In this chapter, I tried to build a gene prediction system by taking advantage of the sequence 

features predicted by Eponine models explained in previous chapters and GAZE, a dynamic 

programming based gene assembler. Various versions of the gene prediction system, 

GenePred, showed that the coverage and accuracy are comparable with GENSCAN. This is 

respectable given no protein information is used by GenePred unlike GENSCAN. However, 

GenePred should be treated as complementary to GENSCAN rather than a replacement, 

given the following facts: firstly the coverage of the union of predictions of GENSCAN and 

GenePred is higher than the coverage by the individual programs (Figure 66) and secondly 

the very poor performance of GenePred in predicting exon-intron structures compared to 

GENSCAN. Figure 66 shows that out of 959 VEGA annotated genes, 490 genes are 

predicted both by GenePred and GENSCAN. Twenty percent (102/592) of GenePred 

predictions and 32% (232/722) of GENSCAN predictions do not overlap with each other. 

This indicates that by using GenePred and GENSCAN together a better coverage of the 

annotation can be attained. 

 
Figure 66. Venn diagram showing the coverage of GenePred and GENSCAN. 

The accuracy of GENSCAN can also be improved by supplementing with the predictions of 

GenePred as indicated below. Table 18 and Table 19 show the accuracy of GENSCAN with 
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and without GenePred in predicting VEGA annotated genes and exons respectively. A 

GENSCAN scan on the GenePred predicted regions of chromosome 20 improved its 

accuracy compared to using it alone on the unmasked chromosome sequence.  These results 

again emphasise that GenePred should be treated as a complement to GENSCAN. 

 

Detailed analysis of the predictions of GenePred as a percentage of nucleotides covered 

reveal that 97.6% of nucleotides in chromosome 20 are annotated by GenePred (Table 20). 

This number is very high and significantly higher than the fraction of genome covered by 

GENSCAN (68.5%, 43654921 bases) or by VEGA annotations (28632433 bases, 44.9%) of 

chromosome 20. 

Table 18. Performance of GENSCAN with and without GenePred in predicting VEGA 
annotated genes. 
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Table 19. Performance of GENSCAN with and without GenePred in predicting VEGA 
annotated exons. 

 

Table 20. Nucleotide coverage by predictions of GenePred and GENSCAN. 

 

 

These results indicate that GenePred’s prediction accuracy comes mainly by determining the 

correct strand to transcribe, yet it is performing better than random: Random prediction 
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accuracy was evaluated by offsetting the predictions of GenePred and GENSCAN by 1, 

2 and 3 mega bases (predictions exceeding the length of the chromosome are rotated round 

to the beginning) and recalculating the coverage and accuracy with respect to VEGA 

annotation (Table 21). GenePred predictions offset by 3 mega bases shows 42.6% coverage 

and 16.6% accuracy, which is significantly less than for the original predictions (coverage: 

61.8%, accuracy: 34.4%). Similar results are found for GENSCAN predictions as well. 

Table 21. Coverage and accuracy of GenePred and GENSCAN for predictions offset by 1, 2 
and 3 mega bases. 

 

 

Although GENSCAN coverage is better than GenePred overall, it is less likely than 

GenePred to predict VEGA ‘Novel_transcripts’ and ‘Putative’ genes. This may be partly 

due to GENSCAN’s reliance on protein information. Novel_transcripts are genes annotated 

from RNA that have weak evidence for being coding transcripts. Likewise, Putative genes 

are annotated using EST evidence and these genes also have no clear open reading frame. 

As the protein information content of this set of transcripts is less than for known genes, this 

may explain GENSCAN predicting few cases than GenePred (Table 22). For 

Novel_transcripts, all versions of GenePred discussed above show better coverage 

percentage with twice the accuracy of GENSCAN. Similarly for Putative genes, GenePred 

predicted at least 15% more genes with twice the accuracy of GENSCAN or more. On the 

combined dataset (Novel_transcripts + Putative genes), GenePred’s coverage was at least 
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10% more than GENSCAN with twice the accuracy or more. Table 22 details the 

coverage and accuracy of various versions of GenePred (with and without splice site and 

translation models) compared to GENSCAN. The low accuracy values are a consequence of 

considering predictions matching only Novel_transcripts and Putative genes as true and the 

rest as false predictions. 

Table 22. Performance of GenePred and GENSCAN in identifying VEGA Novel_transcripts 
and Putative genes. Coverage and accuracy for each annotation is given for GenePred with 
and without translation models. Each of these GenePred systems is combined with either 
Eponine splice site or GeneSplicer features. Numbers in brackets shows the absolute values. 

 

 Thus, in this project I was able to develop a gene prediction system based purely on gene 

regulatory signals and show that its performance is encouraging considering that it does not 

rely on protein coding information. In terms of gene coverage it performs similarly for 

protein coding genes and better for genes with no coding evidence. At present the major 

problem is the very poor exon prediction accuracy despite including a splicing model. For 

easy comparison, in the table below (Table 23), I summarise the results of various versions 

of GenePred compared to GENSCAN in annotating chromosome 20 VEGA annotated 

genes. 
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Table 23. Summary of performance of various versions of GenePred and GENSCAN in 
identifying VEGA annotated genes in human chromosome 20 

 

 

 

 


