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SUMMARY 

Transcription, the first step in gene expression, is initiated from a transcription start site and 

terminated some distance downstream of the cleavage site. In this thesis I attempt to identify 

and model different regulatory signals involved in the process of transcription, towards the 

development of a signal based ab initio gene predictor. 

 

First I attempt to identify regulatory signals in the sequence downstream of the cleavage site 

that may be responsible for transcription termination. Base compositional analyses reveal no 

significant bias in the nucleotide composition. An investigation based on free-energy 

minimisation Zuker algorithm indicates the possibility of a secondary structure in the 

sequence downstream of the cleavage site.  A probabilistic machine learning algorithm 

based on Bayes theorem and Generalised Linear Models, Eponine, used to scan for motifs, 

learns a model to classify termination sites from other sequences. The model captures a few 

multiplex signals that might be responsible for polymerase II pause and termination. An 

evaluation of this termination model against annotated human chromosomes shows that the 

model performs better than existing methods. However a significant number of predictions 

also appear near the annotated start site of genes. Approximately 10% of predictions lie 

within genes and their density is correlated with gene length and intron size.  I propose two 

hypotheses to explain these anomalies and discuss results from recent experiments. 

 

Splicing is now found to be interlinked temporally and spatially with transcription and I 

attempt to develop a donor and acceptor site model using Eponine. Comparisons of the 

models with annotated sites show the models have higher positional accuracy and perform 

comparably with existing programs, GeneSplicer and StrataSplice. 

 

Like transcription, translation machinery is influenced to a great extent by regulatory signals 

and I investigate them by scanning for motifs around translation start and stop sites using 

Eponine.  The start model learnt only the regulatory elements and not the coding potential of 

exons. Despite this it performs better than the existing program NetStart, although less well 

than the program ATGpr. 

 

The availability of these models creates the possibility to build an ab initio gene prediction 

program based purely on gene regulatory signals. 
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