
 

   

APPENDIX B: PROTEIN EVOLUTION 

 

B.1 Introduction 

Divergence in structure and function of proteins is due to an evolutionary process driven by 

functional and environmental constraints. These constraints bring about changes in the 

protein sequence through mutations, insertions and deletions with the preservation of 

residues important for the structure and function of the protein (Chothia and Lesk, 1986). 

However, not all the sequence modifications are incorporated or maintained since some 

changes may be deleterious to the structure or function of the protein. Hence, the structural 

‘core’ (Chothia and Lesk, 1986) tends to be well conserved during evolution. When proteins 

evolve, the constraints on the protein structure are relaxed or rather replaced by new 

constraints and the sequence and structure can change more radically. These changes are 

generally slow processes and leave a trail of homologs. Homologs are proteins evolved from 

a common ancestor and their evolutionary relationship is evident from similarities in 

sequence, structure and function. Homologous proteins have been studied for a long time to 

understand their evolutionary relationships and to assign function or structure to new protein 

sequences. For homolog searches in the sequence databases, one needs an alignment 

algorithm, residue similarity matrix, scoring scheme and knowledge about scoring 

thresholds to identify true relationships. 

 

Among the available pairwise alignment algorithms, one of the most sensitive is the Smith-

Waterman algorithm (Smith and Waterman, 1981) adopted in the SSEARCH program 

(Pearson, 1991). Although this algorithm is more sensitive and rigorous, it is 

computationally expensive in comparison to FASTA (Pearson and Lipman, 1988) and 

BLAST (Altschul et al., 1990). The speed and convenience of BLAST made it the most 

popular program, although it compromises sensitivity. FASTA ranks between these two 

programs and can be run in two modes: either at greater speed (ktup = 2) or greater accuracy 

(ktup =1). Pearson (Pearson, 1991, 1995) did a comparison of these three methods and 

showed that the Smith-Waterman algorithm worked slightly better than FASTA, which was 

in turn much more effective than BLAST. 
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Although pairwise comparison methods are a common way to find sequence homologs, 

they have difficulty in detecting remote homologs when sequence identity falls below 30% 

(Brenner et al., 1998). Alternate methods like Profile Hidden Markov Models (Eddy, 1996; 

Krogh et al., 1994), psi-BLAST (Altschul et al., 1997) and Intermediate Sequence Search 

(Park et al., 1997) reduce this limitation and increase sensitivity. 

 

Intermediate Sequence Search (ISS) is a search technique, wherein two related sequences 

which cannot be detected directly by pairwise sequence comparison methods are matched 

using an intermediate sequence sharing close homology with the two distantly related 

sequences. This concept has been extended to include multiple intermediate sequences 

(MISS) between two distant sequences (Salamov et al., 1999). The disadvantage with ISS is 

that the errors caused in the intermediate are likely to propagate as it is not dependent on 

multiple sequence alignment. Errors caused by ISS when comparing multi-domain protein 

sequences, can be avoided by splitting query sequence to individual domains. Figure 71 

gives an overall idea on how different methods are exploring the sequence space (Lindahl 

and Elofsson, 2000). 

 
Figure 71. Schematic diagram showing performance of different sequence comparison 
methods. The filled circle represents the query sequence used in the database search and the 
open circles represent family members. The distance between two circles represents some 
arbitrary distance. 
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A comparison of these recent methods with pairwise sequence comparison methods, 

performed by searching remote homologs in a Structural Classification Of Proteins (SCOP, 

Murzin et al., 1995) sequence database having less than 40% identity, show that ISS 

performs one and half times better than FASTA. In sequences with less than 30% identity, a 

HMM-based SAM-T98 and psi-BLAST detected three times more relationships than 

pairwise sequence comparison methods (Park et al., 1998). Sauder et al. compared the 

quality of alignments produced by BLAST, psi-BLAST, ISS and ClustalW (Thompson et 

al., 1994) with structural alignments. ISS produced longer alignments than psi-BLAST with 

nearly comparable per-residue alignment quality. At 10-15% identity, BLAST correctly 

aligned 28%, psi-BLAST 40% and ISS 46% of residues to the structural alignment (Sauder 

et al., 2000). 

 

All these results show that ISS performs as well as psi-BLAST in identifying distant 

homologs. However it is not yet clear how ISS is able to detect remote relationships. 

Moreover, I was interested to determine whether intermediates identified by ISS can provide 

any knowledge about protein evolution. This study tries to find answers to these questions. 

  

To aid this objective, I also used structure comparisons to understand relationships between 

proteins. The degree of fitness between structures is usually calculated by a scoring scheme. 

The common way to represent the structural fitness is Root Mean Square Deviation 

(RMSD) for all residues of the two protein structures. The RMSD gives a measure of the 

average level of deviations over the superposed atoms. 
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Where, D refers to deviation of the atoms and N refers to the number of atoms matched. 

 

There are different structural alignment methods adopting the aforementioned algorithms. 

Amongst the common implementations are DALI (Holm and Sander, 1993), Combinatorial 

Extension (CE) (Shindyalov and Bourne, 1998), and Protein Informatics System for 

Modelling (PrISM) (Yang and Honig, 2000). Here, I used PrISM to compare the structures. 

 

Protein evolution may occur in two ways: divergent or convergent evolution. When a 

protein structure diverges to form a new fold or function, it results in divergent evolution 
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(e.g., P-loops). However if two evolutionarily independent folds converge to represent 

similar structure or function it becomes convergent evolution (e.g., serine proteases). 

Proteins evolved through a divergent mechanism are likely to have a trail of homologs and 

can be detected using sequence and structure comparisons. Here, I attempt to study this 

using two well known protein families – Cytochrome c and P-loops and answer the 

following questions. 

 

(1) Is it possible to understand the evolutionary pattern of any protein family or superfamily 

based solely on its structure and sequence divergence? 

(2) Whether understanding this will help us in assigning hierarchies for a protein in the 

existing classification of protein structures? 

 

B.2 Datasets 

I used SCOP database for this study (please refer to Appendix A for details of SCOP). The 

All-α  protein class contains a fold level called cytochrome c, which in turn is composed of a 

single superfamily named cytochrome c. This superfamily has four families. The Di-haem 

cytochrome c peroxidase family has only synthetic protein structures and, therefore, only 

domains from the other families (39 sequences) were used in this analysis. 

 

P-loop domains are found in the class α/β and fold/superfamily P-loop containing 

nucleotide triphosphate hydrolases (this fold has only one superfamily). The superfamily 

has domains composed of parallel beta sheets of varied sizes connected by helices. For 

example, the Nucleoside and nucleotide kinases family has 5 strands with architecture type 

23145 and Nitrogenase iron-protein like group family has 7 strands with architecture type 

3241567. The superfamily is composed of 14 families. I used all the domains (85 sequences, 

excluding domains involving multiple chains) from these 14 families for this analysis. 

 

From these datasets, I then found sequence homologs and structure homologs that can be 

detected by the above described methods. 
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B.3 Intermediate sequence search 

I collected homologs for each of the domains in the two superfamily datasets using FASTA 

3.3 (with BLOSUM 62 matrix, ktup = 1) by searching against the pdb90d_1.53 database. 

The pdb90d_1.53 database is derived from sequences of SCOP domains (version 1.53) 

sharing 90% or less sequence identity. 

 

Domains (query and target), with scores better than the threshold value 0.01, are referred as 

‘direct hits’. For domains that cannot be detected directly, I used the ISS procedure 

described above to link the query and target. 

 

A comparison of ISS hits with psi-BLAST shows that psi-BLAST can detect all the remote 

homologs identified by ISS in P-loops superfamily and only about half of them in 

cytochrome c superfamily. The advantage ISS has in some cases might be due to the match 

score it gains by producing longer alignments around conserved regions of the protein. 

However, both the methods fail to detect remote homologs from P-loops superfamily than 

found from cytochrome c superfamily. This might be due to the extensive divergence of 

sequences in P-loops superfamily (they are quoted to have some converged domains 

(Bossemeyer, 1994) and differences in sequence length (average length of P-loops is ≈ 230 

amino acids, twice the size of cytochrome c). 

 

Intermediate searches based on structural information could find new remote homologs that 

ISS could not detect. This is expected because it is known that different sequences can have 

similar folds. Therefore, by comparing structures it is more likely to detect remote 

homologs. I suggest that by using intermediate structural search, even more distant 

relationships can be detected.  

 

Then I used the alignments obtained from the query-intermediate and target-intermediate to 

generate a “progressive alignment” (i.e., a multiple sequence alignment generated by 

progressively aligning pairwise alignments using ClustalW alignments and structure 

information) of query-intermediate-target or query-intermediate-intermediate-target.  

 

These progressive alignments show that the intermediates can improve the quality of 

alignments between query and target. An example of this alignment is shown in Figure 72. 
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The figure shows the improvement in alignment between query-target (SCOP Ids: 

d1a56__ - d1c75a_) produced by FASTA (Figure 72a) and the progressive alignment 

generated manually after introducing one (d451c__) and two intermediate (d1ayg__ and 

d451c__) sequences (Figure 72b and Figure 72c). The alignment shows that there are some 

residues common in all the sequences and some between query-intermediate, target-

intermediate and intermediate-intermediate. 

 

Figure 72. Comparison of alignments of two distant proteins with and without 
intermediates. (a) Alignment of the two domain produced by FASTA 3.3. (b) The 
progressive alignment generated by including one intermediate. (c) The progressive 
alignment generated by including two intermediates. 

 

Likewise, I selected closely clustered domains from each of the four SCOP protein groups 

(mitochondrial cytochrome, cytochrome c2, cytochrome c551 and cytochrome c6) to make a 

progressive alignment. These groups were used due to the fact that they represent most of 

the members of the superfamily. From the progressive alignment made for each of the 

protein groups, I derived a consensus (Figure 73). This consensus was then used to derive an 

overall consensus shown in Figure 74. The figure shows that there are 10 invariable residues 

in the consensus and it agrees with the consensus derived by Ptitsyn  by aligning 164 

sequences from the cytochrome c superfamily (Ptitsyn, 1998). His alignments were 

generated using the PileUP program and manually edited taking functional residues into 

consideration. 
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Figure 73. Consensus sequences derived for the four SCOP protein group in monodomain 
cytochrome c family 

 
Figure 74. Consensus of consensus for sequences in monodomain cytochrome c family 

The conserved residues were involved in heme binding and needed for functional role of the 

protein. The other conserved residues do not have any functional role and are found to be 

key residues needed to maintain structural fold of cytochromes. The key residues reported 

here agree well with the results found in the literature (Ptitsyn, 1998). Figure 74 shows the 

key residues identified by Ptitsyn. The differences include two additional residues 

conserved at position 3 (aliphatic residue) and position 10 (aliphatic residue), the presence 

of a proline at position 1 and a phenyalanine instead of an isoleucine at position 8. These 

discrepancies might be due to number of sequences compared and the kind of alignment 

generated. Ptitsyn used 164 sequences whereas here only 19 sequences were used. Although 

comparatively very few sequences were used, the result seems to be almost the same. This is 

a promising result opening opportunities in extending the procedure to other superfamilies. 

However, an attempt on P-loops failed primarily due to the fact that the superfamily is much 

more diverged and only very few sequences form distinct clusters.  

 

B.4 Structural homologs 

I did an all-against-all structural comparison of the domains using PrISM. Then I used the 

alignment from PrISM as input to another program called MSARMS (Hubbard, 1994) that 

measures the distance in Angstrom between the matched residues in the superposition. 

These RMSD values from PrISM and MSARMS programs were used for this study. 



B.5 Clustering 

  

221

 

B.5 Clustering 

With these homologs and their relationship (given as E-value for sequences and RMSD for 

structures), I represented proteins as clusters in two-dimensional space. This was done using 

the procedure given in Figure 75 using sequence/structure distance matrices (or similarity 

matrices). 

 
Figure 75. Flow chart describing steps used in clustering and visualisation of data. 

I did initial clustering based on the sequence based distance matrix using single and 

complete linkage methods with a threshold E-value of 0.001 and 0.05 respectively. Then I 

merged the resulting sets of clusters based on the RMSD values using the Unweighted Pair 

Group Method using Arithmetic average approach. A threshold value of 4.00Å was used for 

the P-loops superfamily and a threshold of 2.00Å was used for the cytochrome c 

superfamily. I also applied the complete linkage approach to merge the initial set of clusters 

using a threshold value of 6.00Å for both superfamilies. 

 

To find co-ordinates of the data set in 2D space, I used Principal Co-ordinate Analysis 

(PCoA). For a problem of N objects, there could be N*(N-1) distances and displayed in (N-

1) dimensional space. This (N-1) dimensional space was reduced to 2D/3D space and 

plotted. 

 

A manual plotting of the data gave a cluster map for both cytochrome c (Figure 76) and P-

loops superfamilies (Figure 77). Figure 78 shows the demarcation of clusters into family 

and protein levels based on the SCOP classification for cytochrome c. Similarly, Figure 79 

shows the demarcation of family levels in P-loops. The protein levels were not marked in P-

loops to avoid the complexity in the figure. 
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Figure 76. Cluster map of cytochrome c superfamily 
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Figure 77. Cluster map of P-loops superfamily 
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Figure 78. Cluster map of cytochrome c superfamily with demarcation of SCOP 
superfamily, family and protein levels 
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Figure 79. Cluster map of P-loops superfamily with demarcation of SCOP superfamily, 
family levels 
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The maps (Figure 76 and Figure 77) show domain relationships either by solid lines or 

dashed lines. The solid lines indicate domains having strong relationship between them (E-

value < 0.4 and RMSD < 4 Å). Also, the length of the solid line represents real Euclidean 

distance in the cluster map. The dashed lines show there is a relationship between the 

connected domains. However, the position of domains in the map is not true. This is due to 

the non-availability of a relationship between the connected domains and its neighbors.  

Also, the length of the broken line does not represent real Euclidean space in the map.  

 

The cytochrome maps (Figure 76 and Figure 78) show that two SCOP protein groups, 

mitochondrial cytochrome c and cytochrome c2, were well separated from other protein 

groups. The domains forming the cytochrome c552 cluster show that they have diverged 

more than any other SCOP protein group. Also, it can be seen that most of the domains from 

the cytochrome c6 and cytochrome c551 SCOP protein groups form closer clusters while 

some of them get away from this cluster and act as outliers. 

 

P-loops cluster maps (Figure 77 and Figure 79) show that the domains have diverged more 

when compared to the cytochrome c domains. The maps show a number of domains 

represented as singletons or as small groups not connected to each other. As stated earlier, 

absence of a line between domains means no relationship can be identified among them 

(with score below the threshold limit), although some of the singletons belong to SCOP 

family. Only members of two families (Nucleoside and nucleotide kinase and G-proteins) 

were found to be grouped together on the map. This may be due to more environmental 

constraints and less active site requirements on P-loop superfamily or may be due to a 

convergence phenomena as seen in phosphate binding proteins (Bossemeyer, 1994). 

 

These cluster maps are a useful tool to aid in understanding of the relationship between 

protein members of a family: 

 

(1) It gives an overall picture of the divergence of a protein superfamily. 

(2) It shows the relationships between SCOP families. 

(3) The method could be used as an initial automated classification procedure of protein 

structures. A new protein structure can be used as a query to find its sequence or 

structure homologs. Then based on the sequence and structural relationship (E-value and 
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RMSD), the protein can be added in the cluster map. Such a map will give a good 

idea to which of the superfamily or family the new protein belongs. Then with detailed 

knowledge, the protein can be allocated in a specific family (manual curation). The 

clustering approach can be exploited to assign function to an unknown protein 

(Sternberg, 2001), but it cannot be trusted fully as a similar structure does not always 

represent the same function. 

(4) It gives a clear picture about any particular SCOP family and allows the identification of 

any outliers in it. In the P-loops cluster map (Figure 79), there are two clusters one with 

domains d1d2ja__, d1qf5a__ and d1dj3a_ and another with d2nipa_, d1cp2a_, d1ffh__, 

d1byi__ and d1fts__ (boxed). But all of these domains are placed in the same family in 

SCOP. On discussion with Alexey Murzin (the primary curator of SCOP database), he 

recalled he considered that it might be better to keep these two clusters in two separate 

groups, say as, two different sub-families/families. He only kept them together due to 

limitations in the current SCOP classification system. 

 

Likewise the domain d1qhia_, classified in the Nucleotide and nucleoside kinase family in 

SCOP, are positioned separately from the main cluster. The outlier was later cross-checked 

with structural analysis (Morea, 2001). The analysis also agreed that the domain is distinct 

from its family members. The probable reason for the isolated cluster of d1qhia__  is that it 

is a chimeric protein  and does not exist naturally i.e. it does not have sequence or structure 

homology with other Nucleotide and nucleoside kinase proteins even though it retains the 

same function. It was for this reason and since the domain satisfied minimal the P-loop 

topology, that Alexey Murzin classified the domain under the same family. 

 

Thus, cluster maps might help us to be aware of outliers in a particular superfamily/family 

classification before starting any kind of detailed analysis on it. 

 

Because of these advantages of the cluster maps, I automated the clustering process to 

extend the study later for other families. A comparison between manual and automated 

clustering procedures shows that the automated method performed equally well with the 

manual method (Figure 80 and Figure 81). Also, the automated methods provide similar 

results with another automated clustering procedure based on the MCL algorithm (Enright 

et al., 2002). 
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Figure 80. A cluster produced by the automated method for cytochrome c superfamily 

 
Figure 81. A cluster produced by automated method for P-loops superfamily 
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In both manual and automated processes, clustering was done using sequence and 

structural relationships, but it is possible to be done with sequence information alone. 

However, this will give only the number of clusters that can be formed from the superfamily 

and members in each cluster. A two dimensional representation of data is difficult with 

sequence information alone due to the fact that the data needs to undergo significant 

normalization procedures before it can be used to find co-ordinates. 

 

B.6 Orthology and paralogy 

The sequence and structural information, used above to generate cluster maps, can also form 

the basis for detecting orthologous relationships within protein families in the study of 

protein evolution. Such a group of ortholog domains was found in P-loops superfamily. The 

group comprises adenylate kinases from Escherichia coli, Bacillus stermathermophilus and 

Saccharomyces cerevisiae. Using species as a time scale, it can be said that adenylate kinase 

of Escherichia coli and Bacillus stermathermophilus appeared earlier than yeast protein. 

However, it does not mean that yeast protein evolved from Escherichia coli or Bacillus and 

it would be extremely difficult in assessing the proper time scale for these proteins based on 

sequence and structure information alone. 

 

All the three adenylate kinases clustered close to each other on the map. So, from tightly 

clustering domains, it can be presumed that they are possibly to be orthologous to each 

other. 

 

The TOPS (Westhead et al., 1999) diagrams of these three proteins (Figure 82) shows that 

Escherichia coli and yeast adenylate kinases are identical whereas in Bacillus, there is an 

extra β strand and its orientation is reversed. Interestingly, this part of the protein is not 

under SCOP domain definition, which means that there is no functional or structural role for 

this part of the protein. Since this part does not have structural or functional constraints, it is 

more likely to be subject to mutations and may be influenced by environmental factors of 

Bacillus compared with yeast or Escherichia coli. From this, I conclude that the evolution of 

adenylate kinase would have more likely started from a common ancestor and given rise to 

Escherichia coli and or Bacillus and later to yeast protein. Later, Bacillus adenylate kinase 

would have acquired some changes in its protein. 
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Figure 82. Topology diagram for adenylate kinase 

Likewise, from the cytochrome map, two SCOP protein groups form distinct clusters from 

the rest of the cytochrome members. The overall topology of the cytochrome superfamily 

members were analyzed using TOPS (Figure 83).  Generally, cytochrome c fold has 5 

helices. However, some members of cytochrome c551 group have 6 helices and cytochrome 

c2 group has 5 helices and 2 β strands except d3c2c__, which has only 5 helices. The 

topology of cytochrome c552 group (5 helices) remains the same, although its sequence has 

diverged greatly. However, the domains of this group (cytochrome c552) forms close cluster 

with domains of different cytochrome c protein groups than among itself. It might be one of 

the typical cases, where orthology/homology cannot be resolved based on sequence identity 

because an extensive sequence divergence has occurred. However, it can also be argued that 

cytochrome c552 proteins were actually formed from convergence of different cytochrome c 

proteins. But this is highly unlikely to occur given the clear picture of overall divergence of 

cytochrome proteins and absence of any convergence reports in the cytochrome c fold. 
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Figure 83. Topology diagram for cytochrome c proteins 

Mitochondrial cytochrome c was seen later in the time-scale when compared to bacterial 

cytochrome c. Given the endosymbiotic hypothesis, it is likely that any bacterial 

cytochrome c would have given rise to mitochondrial cytochrome. Here, it can be seen that 

cytochrome c2 clustered closely with mitochondrial cytochrome (Figure 78). So it is likely 

that cytochrome c2 would have been the ancestral protein for mitochondrial cytochrome. 

This was confirmed with expertise knowledge of Alexey Murzin.  The topology study of 

these two SCOP protein groups also confirmed this. The general topology of cytochrome c2 

and mitochondrial cytochrome are 5 helices + 2 β strands and 5 or 6 helices respectively. 

However, some of the domains of cytochrome c2 (e.g., d3c2c__), clustering near to 

mitochondrial cytochrome lack the two β  strands, confirming that the earlier forms of 

cytochrome c2 with β strands, later lost the β strands and have given rise to mitochondrial 

cytochrome.  

 

Thus, cluster maps made with sequence and structural homology is useful in understanding 

the ancestry of proteins. 

 

B.7 Conclusions 

Protein evolution, driven by structural and functional constraints, may leave a trail of 

homologs. Homologs are identified using sequence comparison methods like BLAST, 

FASTA, psi-BLAST and ISS. A comparison of ISS with psi-BLAST was made in two 
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protein superfamilies: cytochrome c and P-loops. The result showed that psi-BLAST 

detected all the remote homologs identified by ISS in P-loops and only half in cytochrome c 

superfamily. Although, I cannot generalize using these limited results, it can be said that ISS 

performs better in some cases than psi-BLAST. The advantage ISS has in some cases might 

be due to the match score it gains by producing longer alignments around conserved regions 

of the protein. Intermediate search conducted using structural information revealed that 

more remote homologs that could not be identified with sequence information alone. So 

structures might be useful in intermediate search when sequence information is inadequate 

in detection. From the progressive alignments generated using most of the domains in four 

SCOP protein groups (mitochondrial cytochrome, cytochrome c2, cytochrome c551 and 

cytochrome c6), an overall consensus was generated. The highly conserved residues found in 

the overall consensus are in tandem with the key structural and functional residues needed 

for the cytochrome c fold (Ptitsyn, 1998). Thus ISS alignments might be useful in 

understanding highly conserved residues in a protein fold. 

 

Along with sequence information, I used structural comparisons by PrISM to produce a 

manual cluster map. The cluster map showed a useful representation of the general 

evolutionary relationships within P-loops and cytochromes.  These might be helpful in 

depicting the relationship between SCOP families, assigning hierarchies to a new protein 

structure in the existing structural classification and understanding the likely ancestor of a 

protein. For example, in cytochrome c superfamily, it was shown that the cytochrome c2 

protein is likely to be an ancestor for mitochondrial cytochrome. The manual process has 

been automated and can now be used as a tool in exploring evolutionary relationships of any 

protein family. 


