

 32

MATERIALS AND METHODS

2.1 Introduction

In this chapter I explain the different strategies used in learning regulatory signals from

DNA. Learning signals or motifs from nucleotide sequences has been quite a difficult task

and various methods have been adopted so far. Prominent among them is the Hidden

Markov Model (HMM) widely used in speech recognition, sequence alignment and gene

prediction. A Hidden Markov Model is a directed graph of states connected by transition

paths and throws emission and transition probabilities. Walking through these states and

probabilities, HMM models the features in the DNA sequence. However such methods were

found to be helpful only in cases where features in similar sequences were aligned with each

other.

This requirement makes it difficult to learn transcription termination signals as some motifs

downstream of the cleavage site, responsible for polymerase pause and release, are found

over a wide range of distances from cleavage site (Dye and Proudfoot, 2001). Hence, here I

used another method based on the sparse Bayesian principle that can accommodate the

distance variation. The method is a probabilistic generalized linear model which scans for

motifs that describe the given set of sequences and learns them by constructing a model.

This model can be later used to classify sequences with and without transcription

termination signals. Derivation of this model is based on the conditional probability of

Bayes theorem given below –

)(

)()|()|(
dataP

modelPmodeldataPdatamodelP = (1)

where, data represents a DNA or cDNA sequence. P(model|data) is the posterior

probability that gives the probability of a sequence derived from the model. The posterior

probability depends on the probability of the data given the model and probabilities of the

model and data.

2.1 Introduction

33

As estimating the real probabilities of the model and data are difficult, various

approaches have been adopted. One such approach depends on how best the Bayesian

model can fit the sequence compared with the chosen null model. Learning the Bayesian

models that best fit the given set of sequences with the regulatory motifs is possible with

different types of trainers, like Relevance and Support Vector Machines. Relevance Vector

Machine (RVM, Tipping, 2001a, b) is a Bayesian treatment of a Generalized Linear Model

(GLM) of identical functional form to the Support Vector Machine (SVM, Mackay, 2003;

Scholkopf et al., 1999; Vapnik, 1995). However, RVMs has the advantage of emitting a

probabilistic output unlike SVMs and using fewer kernel functions to classify the data. In

this project, I used an implementation of RVM called Eponine (Down and Hubbard, 2004)

to learn gene regulatory signals.

Initially I used Eponine to identify transcription termination motifs and then extended it to

learn translation start, translation stop and splice sites. During this process I tweaked the

default parameters of the trainer to suit the regulatory signals to be learnt. For example, the

Gaussian distribution employed to accommodate the positional distribution of motifs in the

sequences in learning the termination model was changed to a Delta distribution for splice

site models as the splice signals show less positional variation in their occurrence.

The features predicted by these sequence models are then linked together using a dynamic

programming based gene component assembler called GAZE. GAZE combines the features

and predicts a gene structure in the sequence consistent with a supplied gene structure

model (Howe et al., 2002).

After investigating the use of sequence models for detecting transcription termination sites, I

also tried secondary structure prediction algorithms with the objective of finding any stem-

loop structures that might influence transcription termination. I used two basic algorithms

developed by Nussinov (Nussinov, 1978) and Zuker (Zuker and Stiegler, 1981) for this

purpose.

The Nussinov algorithm is very simplistic and is based on base-pair maximisation metrics.

Whereas the Zuker algorithm, along with base pair metrics, uses a free energy minimisation

technique based on experimentally determined energy parameters. The minimal free energy

2.2 Hidden markov models

34

criterion helps the selection of the best possible structures out of the ensemble of folds

predicted.

None of these analyses would have been possible without the excellent databases in the

public domain. Here, I have used human chromosome 22 and 20 data widely as these were

the most accurately annotated chromosomes available at that time. The recently published

annotations on chromosome 22 with experimental support formed an excellent source to

derive training and test datasets (Collins et al., 2003). Likewise, manually curated high

quality annotation for chromosome 20 was extracted from the VEGA project (Ashurst,

2002). This project is an attempt to co-ordinate curated annotation process for the finished

vertebrate genomes. Likewise, ENSEMBL is another excellent database that contains

genome sequence data for organisms, automatically annotates it and serves the annotated

sequence through the internet (Birney et al., 2004). Various tools in ENSEMBL along with

the supporting evidence for annotation derived from different sources helped me in this

project. At other times I have used the RefSeq database (Pruitt and Maglott, 2001) and the

RIKEN mouse cDNA collection (Kiyosawa et al., 2003) as well .

In the remainder of this chapter, I explain the details of these algorithms and databases used

in this project and conclude the chapter by briefly describing the two open source projects,

Bioperl and Biojava that I used extensively from formatting sequences to building models.

2.2 Hidden markov models

Several methods have been attempted to model sequence signals around regulatory regions.

They range from simple sequence composition bias to complex probabilistic machine

learning methods like, Neural Networks (NN) and Hidden Markov Models (HMM).

HMM (Durbin et al., 1998) is one of the common modelling systems employed to learn

biological signals from DNA or protein sequences and forms the basis for many gene

prediction tools. The use of HMMs involves two components – model architecture and its

parameterization.

Figure 11 shows a schematic representation of a model architecture. This comprises a set

of states, which might be a match state (circles labelled M), insert states (diamonds labelled

2.2 Hidden markov models

35

I) or delete states (squares labelled D). The states are connected by arrows that represent

possible transitions between the states. A DNA sequence can be generated by moving

through the model following the arrows. For instance, starting with the state M0, which

generates a nucleotide (AGCT), the next move might be to any of M1, I0 or D2. M1 or I0

would generate a second nucleotide but D2 would not. From these states, the model

continues to the next state connected by arrows thus generating a state path and emitting a

DNA sequence. Self transition (looping) is allowed for insert states and they are shown as

arrows linking to themselves.

Figure 11. Schematic diagram showing a section of HMM architecture

After designing the architecture of HMM, transition and emission probabilities have to be

assigned between and within states respectively. The probability parameters can be easily

calculated by counting the number of times each particular transition and emission is used in

the set of training sequences when all the state paths are known. However, in cases where

the paths are unknown, an iterative method like, Baum-Welch algorithm, is used.

The name ‘Hidden Markov Model’ is used because the sequences are generated by a

Markov process, which is defined as a process in which the probability of a particular state

depends on the state immediately preceding it in a sequence. Since the state path of the

model that generates the sequence is not observed the term ‘hidden’ is used.

I attempted to use HMMs to learn transcription termination signals responsible for RNA

polymerase pause and release from the sequences of the end of the gene. These attempts

suggest that, HMMs are not a good choice of machine learning technique for use on this

problem because of two reasons. Firstly, the sequence motifs at the 3’-end of the gene

responsible for termination appear only to be loosely defined, without a strong consensus

2.3 Eponine

36

and thus are difficult to model with a simple HMM architecture. Secondly, the locations

of these termination motifs are present at greatly varying positions from the cleavage sites

and HMMs have difficulty in modelling such criteria. Although other methods have been

developed to model motifs separately with some flexibility on positions as in Meta-MEME

(Grundy et al., 1997), the complex architecture needed for such models needs to be built by

hand or heuristic methods. This limits the range of architectures that can be explored. So

here I have used the Eponine modelling system to learn transcription termination signals

positioned at variable points in the DNA sequences. This system allows model architectures

to be learnt from the dataset unlike most HMMs.

2.3 Eponine

Eponine is a supervised machine learning approach that can be applied to the training of a

wide range of model types and embodies the principle of selecting the simplest possible

model to explain the observed data. In this section I briefly explain the Eponine and its

implementation. For a detailed description of the tool refer (Down, 2003).

The Eponine package applies Bayesian theory and is able to learn complex models

comprised of one or more weighted constraints. Most models consist only of a simple type

of constraint called DNA matrices. These matrices are short, ungapped sequence motifs,

which contain a series of column distributions over the DNA alphabet. Parameterizations of

the model are learnt using an RVM based trainer which takes a positive dataset with the

interesting feature and a negative set without the feature. The trainer starts with an initial set

of working matrices and iteratively selects only those matrices that can classify the positive

dataset from the negative dataset. This tool comes in many flavours and the one I used here

is called Eponine Anchored Sequence (EAS) method. In this method, the ‘weighted’ matrix

(or constraint) is anchored from a particular ‘anchor point’ and is compounded by a

probability distribution that describes the distance relative to the anchor. Constraints with a

positional distribution are called Positioned Constraints (PC) (Figure 12a). Thus PCs

consist of –

2.3 Eponine

37

Figure 12. An example of Eponine model. (a) Position constraints along with Gaussian
width and position. The nucleotide distribution in the weight matrices are represented as
sequence logos. (b) Eponine model constructed from these constraints

• A preferred sequence motif, defined as a position-weight matrix.

• A probability distribution describing the localisation of the motif relative to the anchor

point, as described from the integer offsets observed. A Gaussian distribution is used for

this purpose as it is simple and less prone to ‘overfitting’ issues.

New PCs are constructed through training by the following algorithm –

• Pick a sequence given for training.

• Pick a point relative to the anchor point of the sequence.

• Take a sequence motif of 3 to 6 bases at the point and construct a weight matrix.

• Add a Gaussian distribution to the weight matrix of random width centred at the position

of the sequence motif found.

After creating the novel PCs from the given data, a range of sampling strategies given below

are used in further training to select the PCs that model the training data.

• Select an existing PC and adjust the emission spectrum of one column in the weight

matrix by sampling from a Dirichlet distribution (Mackay, 2003) centred on current

values.

2.3 Eponine

38

• Add an extra column to the existing weight matrix till the threshold is reached.

• Remove a column from the start or end of the weight matrix till the threshold is reached.

• Adjust the width parameter of the Gaussian distribution.

• Adjust the centre position for a Gaussian distribution

The score for a PC for a given sequence, x is –

 ∑
∞

−∞=

=
i

ixWiP
W

x),()(log
||

1)(φ (2)

where, P is a positional probability and W(x ,i) is a DNA weight matrix probability for

offset i relative to anchor point of x.

These PCs are then linked together to form an EAS model (Figure 12b) in the form of a

Generalised Linear Model (GLM, McCullagh and Nelder, 1983), commonly used for

classification and regression problems. A Generalised linear function ()(xη) for variable x

(such as DNA sequence) is represented as -

 kxx m

M

m
m += ∑

=

)()(
1

φβη (3)

where, φ is a set of M basis functions defining the variable x (for example, a set of motifs,

PCs) and β is a vector of weights (for example, relative importance given to motifs).

Finding an appropriate set of basis function to define the features of the dataset and finding

a vector of weights for the given set of basis functions are the two issues to construct an

EAS model.

The first problem can be tackled using sparse learning methods like Support Vector

Machine (Scholkopf et al., 1999; Vapnik, 1995). Sparsity is a desirable feature as they

produce simple models and tend to make useful generalisation of the data. While SVMs

have helped to solve biological problems, they are mainly used for numerical data.

Nevertheless, deriving such functions is complex and problematic and poses a serious

2.3 Eponine

39

problem in extending to biological data. Moreover SVMs allow training of GLMs only

with limited functions that explain the dataset. So to tackle this, another sparse learning

method called RVM was introduced (Tipping, 2001a, b). RVM is a Bayesian approach that

can train a GLM with any collection of basis functions and thus opens new possibility of

solving biological problems.

In a binary classification problem, where each datum xn has a label tn (either 1 or 0, meaning

positive or negative sequence respectively), the probability that a dataset is correctly

labelled given a classifier EAS model)(xπ can be given as –

 ∏
=

−−=
N

n

t
n

t
n

nn xxxtP
1

1))(1()(),|(ππβ (4)

where, β is a set of weights.

Now the second problem can be tackled using the Bayes theorem explained before and

),|(βxtP by inferring likely values of weights given some labelled data.

)(

),|()(),|(
xP

xtPPtxP βββ = (5)

The probability distribution P(β) is our prior belief in the values of weights, β. The basic

prior is an independent Gaussian distribution, N, over the weight of each basis function and

can be derived by inferring the values of inverse of Gaussian, α. As the α values are

inferred it is necessary to provide an additional hyperprior value and in this case a non-

informative a very broad gamma distribution is used.

 ∑
=

−=
M

m
mmNP

1

1),0|()(αββ (6)

When a basis function providing additional information to the model gets a non-zero value,

the amount of information learnt about the labelled dataset increases and thus the probability

of the model given the data. If the basis function provides no information either because of

redundancy or irrelevancy, no weight is added that will lead to a significant increase in the

2.4 Modifying Eponine parameters

40

likelihood of the function. At this juncture, by setting the αm parameter to a large value

will set the P(βm) to zero and thereby the posterior probability of the model is maximized.

Thus a higher α makes the basis function irrelevant and removed from the model and thus

simple models are derived resulting in generalisation.

Incorporating as little prior knowledge about the dataset would be an ideal way of training a

model. However this will end up exploring a large amount of features of the data for basis

functions leading to a computationally expensive process. So a subset of basis function

called, working set, is initialized from large sets of candidate basis functions. As described

above, when the trainer is run, it calculates the α values for these basis functions and those

that get a higher value are removed from the set. Once the size of the subset drops below a

certain limit, new functions are added from the pool and the α and β values are initialized

and set for training. This is continued until the basis functions from the pool get exhausted.

The trainer stops training when there is no significant difference between priors and weights

between cycles and converges to an optimal solution.

2.4 Modifying Eponine parameters

2.4.1 Distribution

In splice site and transcription termination models the positional distribution model used to

capture the offsets of the motifs; relative to the anchor point in a PC was extended.

In the transcription termination models, the position of the downstream sequence motif from

the anchor point (in this case, cleavage site) was found to be variable both form recent

experimental results and various training runs. So to accommodate the large variation in the

offset values the allowed Gaussian distribution width was modified significantly from the

default parameters used for other models. The beauty of the trainer is that despite being

allowed to use a broader distribution, it could still learnt both a broad distribution for

downstream motifs and a tight Gaussian for the poly(A) and auxiliary signals.

Similarly, in the case of splice site models, various trails lead to the conclusion that the

model is simpler if a Delta rather than a Gaussian distribution is used to capture the offset

values of the PC relative to the anchor point, so this function was implemented and the

2.4 Modifying Eponine parameters

41

modelling system configured to automatically select between Gaussian and Delta during

training. Also, the model training was supplemented by providing simple weight matrices as

a sample set of basis functions while training.

2.4.2 Position weight matrix

In a Weight Matrix (WM), each column represents the probability distribution of the

nucleotides at a particular position in the sequence. A weight matrix can be treated as a

probabilistic model M of fixed length sequence with no gaps. Then the probability of a

sequence x fitting this model can be given as –

)()|(
1

ii

L

i
xeMxP

=
∏= (7)

where, L is the length of the matrix and ei(xi) represents probability of observing base xi at

position i. This model is considered as a zero order model as each position in the motif is

assumed to be independent of all others. The probability is estimated as log odds score by

comparing with the probability of observing x under a random model, q. The log-odds score

is calculated using this formula –

 ∑
=

=
L

i ii

ii

xq
xe

S
1)(

)(
log (8)

Position weight matrix can be viewed as trivial HMM where a series of states are separated

by transitions with probability of 1. This means, after observing an emission probability

over the ACGT alphabets of each state (column in the matrix) the machine moves to the

next state in a fixed manner. This simple WM can be wrapped as HMM by adding a few

additional states to emit a variable number of flanking sequences of each side of the motif.

This simple case can then be blown up to complex HMM by adding states to deal with

insertions and deletions. With this model architecture, the maximum likelihood estimate of

the parameters that explain the set of datasets can be found using trainers based on the

Baum-Welch algorithm (Durbin et al., 1998). However in my case, instead of using these

WM as HMM independently they form a set of working basis functions for the RVM to

classify positive sequences from negative. I used this strategy for splice site training, as the

default parameters in Eponine were not suited to derive a convergent model. Adding

2.5 Nussinov algorithm

42

external WM as a set of basis functions helped me to derive sparse splice site models.

This strategy is commonly used in gene prediction programs as well. Position weight

matrices were also used in HMMs before with allowance for small insertions and deletions

to the expected consensus motif. Pfam protein models are built with this strategy (Bateman

et al., 2004).

2.5 Nussinov algorithm

Single stranded RNA molecules tend to form higher order structures which are recognised

by the proteins regulating various functions of the cell. The structures are mainly based on

base pairing and hairpins are the most common structures found in RNA. The base pairings

are conserved due to functional constraints on these RNA molecules. Secondary structures

in RNA have various features and are represented in Figure 13. A stem is a double stranded

(paired) region whereas a hairpin loop is where the RNA folds back on itself. An internal

loop is where a short unpaired region exists between two stems. If the internal loop is

asymmetrical and only one strand forms a loop, while the other continues directly from one

stem to the other, it is referred to as a bulge. In a multi-branched loop, several stems come

together. A pseudoknot is a long range interaction, where a loop pairs with another region.

Figure 13. RNA secondary structure features.

Predicting RNA secondary structures from a single sequence is a formidable task as a

simple sequence of 200 bases long has the potential to form 1050 possible base-paired

structures (Durbin et al., 1998). So there is a need to identify the correct structure from false

and score them appropriately.

The simplest approach to predict secondary structures is to find the configuration with the

greatest number of paired bases as defined by Nussinov (Nussinov, 1978). Testing and

2.5 Nussinov algorithm

43

scoring each possible structure is numerically impossible and therefore a dynamic

programming can be used to find an optimal solution. In the Nussinov algorithm this is done

by extending a sub-optimal structure in four possible ways as shown in Figure 14.

Figure 14. Four possible ways of extending a sub-optimal structure using Nussinov
algorithm. (a) i unpaired (b) j unpaired (c) i, j pair (d) bifurcation.

(a) Add an unpaired base i to the best structure for the subsequence i+1, j

(b) Add an unpaired base j to the best structure for the subsequence i, j-1

(c) Add paired bases i-j to the best structure for the subsequence i+1, j-1

(d) Combine two optimal substructures i, k and k+1, j

A recursive equation for this extension of sub-optimal structure is represented as below –

[]⎪
⎪
⎩

⎪
⎪
⎨

⎧

++
+−+
+

+

=

<<),1(),(max
),()1,1(

)1,(
),1(

max),(

jkki
jiji

ji
ji

ji

jki γγ
δγ

γ
γ

γ (9)

where,),(jiγ is the score for the maximum number of base pairs that can be formed for

sub-sequence ji xx ,....., and),(jiδ is the score of a base pair ix and jx . If ix and jx are

complimentary, 1),(=jiδ else 0),(=jiδ .

Although the model is simple, it requires several improvements. Firstly, the algorithm

allows for hairpin loops of any length. In reality, RNA is not that flexible and a minimum of

about 3 nucleotides is needed to form a hairpin. Secondly, in the scoring matrix, bases that

2.6 Zuker algorithm

44

lie on the diagonal correspond to the hairpin loops. Hence while traceback; any base-

pairing solution in proximity to the diagonal should be prevented.

A further possibility of improving the Nussinov algorithm is to use Stochastic Context Free

Grammar (SCFG) to generate a probabilistic model. The original algorithm is changed

slightly to allow various probabilities in scoring and regarded as an adapted CYK algorithm.

Details of this algorithm can be found in Biological sequence analysis by Durbin et al.

I implemented this algorithm and used it for identifying secondary structures that are

responsible for transcription termination. The implementation also formed a part of the

Eponine trainer for sampling secondary structure constraints in the stem-loop model

explained in chapter 3.

2.6 Zuker algorithm

An improvement over Nussinov algorithm was later developed by using free energy

parameters apart from base pair metrics. Energy parameters are included to score base-pair

stacking, single dangling nucleotides, terminal mismatches and the lengths of hairpin loops,

bulge loops, interior loops and multi-branched loops. This was aided with results from wet-

lab experiments leading to different algorithms.

The first algorithm based on energy minimization using nearest neighbour energy

parameters was attempted by Tinoco et. al., and Delisi et. al. In this algorithm, free energies

assigned to base pair stacks and loops and are summed to calculate the overall free energy

difference of folding. Later new concepts like dynamic programming methods were

incorporated and modified by many people. The popular among them is Zuker’s mfold (‘m’

stands for ‘multiple’) program. The algorithm predicts a minimum free energy, ∆G, as well

as minimum free energies for foldings that contain any particular base pair. The success of

the program depends on the accuracy of the energy parameter for base pairs and recent

versions use the free energy data from Mathews et al., 1999 with the folding temperature

of 37˚C and ionic conditions [Na+] = 1M and [Mg++] = 0M (Zuker, 2003).

The secondary structure is a list of base pairs, denoted by i:j for a pairing between the ith and

jth nucleotides, ri and rj, where i < j by convention. Generally only Watson-Crick base

2.6 Zuker algorithm

45

pairings and G:U wobble pair are treated as base pair rules. However exceptions exist.

RNA has A-form helices and two helices are said to form a pseudoknot if base pairs i:j from

one and i’:j’ from the other satisfy i < i’ < j < j’ criterion. Pseudoknots are often excluded

in the definition of secondary structures as current algorithms have difficulty in identifying

them (Zuker, 2000).

Free energy minimization programs generally analyse a large ensemble of structures (called

suboptimal structures) at different stages. To reduce this range, auxiliary information might

be useful and mfold program employs base-pair metrics.

The base pair metrics defines RNA molecule as a collection of base pairs that occurs in its

three dimensional structure. If R is represented as an RNA sequence then S is a set of

ordered pairs, written as i:j (1 ≤ i < j ≤ n) satisfying these conditions -

1. j – i > 3

2. If i:j and i’:j’ are 2 base pairs, then either

(a) i = i’ and j = j’ or

(b) i < j < i’ < j’ or

(c) i < i’ < j’ < j (This condition excludes pseudoknots).

The optimal structure will have the lowest free energy. Each of the various loops and

stacked pairs will contribute a certain amount of energy to the secondary structure

configuration. The energy of each base pair might be represented as e(ri, rj) and the energy

of the whole structure as E(S) is then given by –

 ∑
∈

=
Sji

ji rreSE
,

),()((10)

Reasonable values of e at 37˚ are -3,-2 and -1 kcal/mole for GC, AU and GU pairs

respectively. However to capture the destabilizing effects of various loops or the nearest

neighbour interactions in helices and loops a more sophisticated algorithm is required.

So to achieve the minimum energy E(i, j) for nucleotides, i and j, the following recurrence

relation is used –

2.7 Biojava and Bioperl

46

⎪
⎪

⎩

⎪
⎪

⎨

⎧

++

−++
−

+

=
−

+=
)()),1(),((min

)()1,1(),(
)()1,(
)(),1(

min),(
1

1
IIIjkEkiE

IIjiErre
IbjiE
IajiE

jiE
j

ik

ji

L

LL

LLLLLLL

LLLLLLL

 (11)

In this relation, there are totally)()(2 ⋅Wnφ matrices and each of them takes)(nφ time to

calculate. Hence the running time of the algorithm is)(3nφ and the memory requirement to

store the W matrices is)(2nφ .

If (i, i’) and (j, j’) are two base pairs in the optimal pairing then,

1. i < i’ < j< j’, i.e. the i pair precedes the j pair

2. i < j < j’< i’, i.e. the i pair includes the j pair

The first case will be handled by the condition III in the recurrence relation whereas the

second case by conditions Ia, Ib and II.

The algorithm assumes constant energy for multi-branch loops and ignores single base

stacking. If these issues are to be considered then some auxiliary information is added, at

which point the algorithm gets complicated.

With the free energy determined for each base pair, a traceback algorithm (Zuker, 2003) is

used to find the minimum free energy for the folding.

To predict RNA secondary structures in this project, I used the Vienna RNAfold package

where Zuker algorithm is implemented.

2.7 Biojava and Bioperl

The open source bioinformatics toolkits Bioperl (http://www.bioperl.org) and Biojava

(http://www.biojava.org) provided multiple functionalities that made my analysis much

easier.

2.8 Databases

47

Bioperl (Stajich et al., 2002) is the oldest and most downloaded distribution. It is a toolkit

of PERL modules useful in building bioinformatics solutions in PERL language. The

modules have a wide array of functionality, including codes for handling and indexing most

popular bio-specific database and flat-file formats; for auto-generating bio-related graphics

for web pages, classes and methods and for describing and manipulating biological

sequences, annotations, trees, alignments and maps.

It is built in an object-oriented manner so that many modules depend on each other to

achieve a task. I have extensively used the ‘Bio::Seq:IO’ and ‘Bio::Seq’ modules for

accomplishing different tasks in this project.

Likewise, Biojava is another toolkit developed using Java language for analysing and

presenting biological sequence data (for overview, Mangalam, 2002; Pocock, 2003; Pocock

et al., 2000). The toolkit has around 40 packages covering simple sequence manipulation to

complex machine learning modules. The Eponine implementation is built using the Biojava

package and hence in several cases I used relevant modules from Biojava to train and

analyse the gene regulatory signals.

2.8 Databases

2.8.1 ENSEMBL

Various genome projects release DNA sequences into the public domain from throughout

the world, making the subsequent task of assembling and annotating it difficult. ENSEMBL

(http://www.ensembl.org, Birney et al., 2004) is a joint project between EMBL-EBI and

The Wellcome Trust Sanger Institute to develop a system which automatically tracks all the

assemblies of a genome and annotates them by finding genes and other features of interest

to biologists and medical researchers. This is done by taking sequences from the public

domain and storing them in a large database. Automatic annotation using pmatch (Ohrt,

2004), exonerate (Slater) and GENEWISE (Birney and Durbin, 1997) to build genes from

protein and mRNA evidence detects most genes and the results are published over the web

based interfaces. A separate automatic prediction using EST evidence is carried out,

although, the resulting gene structures are less reliable. Any match to the candidate genes in

the public databases forms the ‘supporting evidence’ suggesting the annotations are

2.8 Databases

48

accurate. All analysed data are stored in a relational database, which makes it easy to

access. To facilitate the analysis process and access the results, ENSEMBL has created a set

of PERL modules to connect to this database and query it. I have used these modules to

access the data required for this project. ENSEMBL also has excellent web based interfaces

and a sequence viewer (ContigView) that allowed me to add my own annotation of the

region using the DAS protocol (Dowell et al., 2001). This helped me to view my predictions

along with other annotations available in the public domains.

2.8.2 VEGA

The Vertebrate Genome Annotation (VEGA) database (Ashurst, 2002) is a central

repository for manual annotation of several finished vertebrate genome sequence. As the

data is manually curated the quality of annotation is high. Curation is done on a clone by

clone basis using a combination of similarity searches against DNA and protein databases as

well as a series of ab initio gene prediction programs like GENSCAN (Burge and Karlin,

1997) and FGENESH (Salamov and Solovyev, 2000). Comparative genome analyses are

also used for the annotation purposes. Thus the genomic features are added to the sequences

based on supporting evidences.

Based on the evidence available, each annotated gene has been classified into the following

categories –

(a) Known – Identical to known human cDNAs or protein sequences with an entry in

LocusLink (Pruitt and Maglott, 2001) or GDB (Harger et al., 2000).

(b) Novel CDS – Containing an open reading frame determined based on spliced ESTs

and/or similarity to known genes/proteins.

(c) Novel transcript – Similar to novel CDS, however with an ambiguous ORF.

(d) Putative - Based on spliced human ESTs but without an ORF.

(e) Pseudogene – Similar to known proteins but with in-frame stop codons and/or frame

shifts disrupting the open reading frame.

I used ‘Known’, ‘Novel CDS’ and ‘Novel transcript’ annotations from this database to

extract sequences and features from human chromosome 20 and 13 for various analyses.

2.9 Other programs

49

I also used annotation for human chromosome 22. Chromosome 22 is also available from

VEGA, however as a result of it being the first human chromosome to be sequenced and

annotated (Dunham et al., 1999) the annotation has been extensively refined. The third

generation gene annotation on chromosome 22 published in 2003 (Collins et al., 2003) is

one of the high quality data available for human genome sequences. For annotations,

Expressed Sequence Tags (EST), comparative sequence analysis and wet-lab experimental

verifications were used. Availability of this high quality annotation helped me to derive

datasets for various aspects of the project.

2.8.3 RefSeq

The Reference Sequence (RefSeq) project (Pruitt and Maglott, 2001) run by the National

Center for Biotechnology Information (NCBI) provides a collection of non-redundant DNA,

RNA and protein sequences along with available information for those sequences. Non-

redundancy is ensured by clustering identical or related sequences and representing one

sequence out of each cluster. Based on the information available for a particular sequence,

RefSeq records are available in four categories –

(i) Genome annotation – This category includes contigs, modelled mRNAs and

corresponding modelled proteins.

(ii) Predicted – Predicted records represent genes of unknown function that are supported by

full length mRNA, EST or homologous sequences.

(iii) Provisional – Records with known or inferred function not subjected to review.

(iv) Reviewed – Records with known function that are manually curated.

Reviewed RefSeqs are richly annotated with publications, gene description, UTR sequences,

transcript variants and cDNA sequence removed of any vector or linker contaminating

sequences. Hence in this project I used only reviewed records for analyses.

2.9 Other programs

I used several programs available in the public domain to compare with the performance of

the models I created using Eponine. Describing all of them is beyond the scope of this

chapter and so I will limit myself in briefly explaining them when and where required.

2.9 Other programs

50

However here, I will give a few details about the ERPIN poly(A) prediction program used

to compare with my transcription termination model and the GAZE method used to predict

genes with Eponine model features.

2.9.1 ERPIN

ERPIN (Easy RNA Profile IdentificatioN) is an RNA motif search program developed by

Daniel Gautheret and Andre Lambert (Gautheret and Lambert, 2001). ERPIN reads a

sequence alignment and secondary structure, and automatically infers a statistical

‘secondary structure profile’ (SSP). A dynamic programming algorithm is used to scan any

target sequence with this SSP to find matches and score them. SSP profiles are constructed

using two weight matrices – one for single strand regions in the given sequence and another

for helical regions.

Helix profiles are 16-row matrices with a lod-score for each possible base-pair, while single

strand profiles are generally five-row matrices with lod-scores for the four bases and the gap

character. For a helix of size n, the profile has 16 rows and n columns in the matrix. For a

single-strand of size n, the profile has five rows and n columns. The lod-score for a base at

position i is given as –

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
i E

O
S log (12)

where, Oi and Ei are the observed and expected frequencies respectively for the base at

position i. ERPIN treats gaps as another base rather than issuing penalties as done in

sequence alignment.

Likewise, a lod-score for each base-pair at position i and i+1 (consecutive bases) is given as

–

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

=
+

+
+

1

1,
1, log

ii

ii
ii EE

O
S (13)

2.9 Other programs

51

where, Oi,i+1 is the observed frequency for the base-pair at position i and i+1 and Ei, Ei+1

are the expected frequencies of individual bases.

The helix profiles capture both Watson-Crick base pairs and non-canonical base pairs,

however, gap character is not allowed in helical regions.

In this project I used an ERPIN model, trained to predict poly(A) signals with the following

command line –

erpin polya.epn <database file> 2,3 -umask 2 -umask 2 3 -cutoff 70% 74% -

unifstat –smp

I then compared the predictions of ERPIN with those of Eponine transcription termination

model.

2.9.2 GAZE

GAZE (Howe et al., 2002) is a gene prediction tool that assembles evidences of gene

components or features into complete gene structures. The gene features and the model

structures are supplied by the user making it completely configurable.

As described earlier, almost all the gene prediction methods first do an extensive search for

signal and content information’s on the sequence to identify gene components. However,

they differ in the subsequent mechanism of integration of this information’s to predict the

gene structure. This unified two step process adapted by various programs introduces an

inherent rigidity in extending them to incorporate new knowledge about gene structures.

GAZE tackles this by separating the two steps and allowing to build a customised version of

the ab initio gene prediction system with user defined features. In that way, GAZE is not

tied to any specific signal or content sensors as well. Another key feature of GAZE is that it

does not work directly with genomic DNA sequence. Instead it predicts gene structure from

an input file with signal and content information marked in GFF format (WTSI). The

configurations for integrating the features to form the gene are defined in another input file

in XML format. Thus GAZE is a generic system that uses dynamic programming to obtain

the highest scoring gene structure based on external features and configurations.

2.9 Other programs

52

The algorithm also has a run time effectively linear with the length of the sequence without

compromising accuracy.

The gene structures are scored by taking a list of features ordered by their sequence position

and the rules defined in the configuration file. For example, for a sequence of 1000 bp long

with the features – transcription start site @ 100 bp, donor site @ 250 bp, acceptor site @

500 bp and Poly(A) signal @ 750 bp and a configuration allowing a gene to be formed with

or without introns can lead to 2 gene structures. One, a single-exon gene without taking

donor and acceptor sites and another with an intron defined with donor and acceptor site. A

score of each of these gene structures are assigned and the highest scoring gene structure is

defined to be the most probable given the features and configuration. Mathematically this is

represented in the following equation -

 ∑
=

++→ +=
+

n

i
iiitt gllgE

ii
0

11)()()())(),((Re)(
1

φφφφ φφ (14)

where,)(it φ defines the type of feature, iφ and)(il φ is the location of the feature, iφ , in the

sequence and)(ig φ is the respective score of the feature.)()(1
Re

+→ ii ttg φφ represents the

region score for interval),(1+ii φφ bordered on the left and right with the types of the

features, referred as source (src) and target (tgt) features.

The ‘target’ feature and its potential origins (‘source’ features) define the rules of the gene

structure model. In the above example, the target feature, Poly(A) signal can be preceded by

an acceptor site or transcription start site and thus allowing for 2 gene structures to be built.

However, an acceptable gene structure cannot be formed by allowing Poly(A) signal

preceded by the donor site and thus defining a set of rules how structures can be built.

Additional constraints, given below, can also be added to these rules to define more

stringency.

(a) Distance constraint specifying the length of the segment defined by source and target

features.

2.10 Concluding remarks

53

(b) Phase constraint specifying the source and target features that should occur - 0, 1 and

2 bases apart.

(c) Interruption constraint specifying an illegal occurrence of a feature between source and

target.

(d) DNA constraint specifying an illegal occurrence of a DNA sequence between source and

target.

A length penalty function and segment qualifier defined by these constraints add to the final

score of the gene structure. The highest scoring gene structure with these rules and

constraints is obtained by using dynamic programming. For more details about the scoring

and algorithmic issues, please refer to this thesis (Howe, 2003).

Taking advantage of the user configurable GAZE system, in this project, I used Eponine

model features to predict gene structures with the rules and constraints defined in Appendix

C. Two configurations with and without translation features are used in predicting Eponine

based gene prediction. I employed phase constraint in gene configuration with the

translation feature but no distance constraint in both the configurations thus kept no

restrictions on the maximum length of exons and introns.

2.10 Concluding remarks

In this chapter I have given an overview of all the strategies, tools and databases used to

find gene regulatory signals in this project. In the following chapters I will explain in detail

how the package was employed to derive transcription termination, translation start and stop

and splice site sequence models. Also apart from the sequence model from Eponine, in

chapter 3, I have explained the results of Nussinov and Zuker algorithms used to search for

stem-loop structures in the 3’ end of the genes. I implemented Nussinov algorithm using

PERL modules for this purpose. RNAfold implementation of Zuker algorithm in Vienna

package was used to find stem-loop structures based on free energy metrics.

