

APPENDIX A: DOMAIN INSERTION

A.1 Introduction

Taking advantage of an evolutionary basis of domain classification, here I describe the

nature and characteristics of domain insertions in protein structures, a phenomenon that is

different from the usual pattern of sequential arrangement of domains in multi-domain

proteins.

Domains constitute the basic structural, functional and evolutionary unit of proteins (Holm

and Sander, 1996; Murzin et al., 1995; Orengo et al., 1997). Proteins can comprise a single

domain or a combination of domains. It is well established that multi-domain proteins with

widely diversified architecture and functions are generated from a limited repertoire of

domain families (Bork et al., 1996; Chothia, 1992). Structural assignments to complete

genomes revealed that almost two-thirds of prokaryotic proteins and 80% of eukaryotic

proteins are multi-domain proteins (Teichmann et al., 1998). In 1973, Donald Wetlaufer

introduced the classification of domains into continuous and discontinuous (Wetlaufer,

1973). A continuous domain is formed by one part of a polypeptide chain, while a

discontinuous domain is formed by two or more parts of a single polypeptide chain. Thus,

discontinuous domains are essentially formed by one-dimensionally non-contiguous

segments of a polypeptide. While most multi-domain proteins have continuous domains,

some proteins exhibit non-contiguous arrangement of their domains (Wetlaufer, 1973). In

this work, I focus on insertions (Russell, 1994), which are the cases of one domain being

inserted into another domain (Figure 67).

A.1 Introduction

202

Figure 67. Domain insertion in Escherichia coli enzyme RNA 3'-terminal phosphate cyclase
(PDB 1qmhA). The E. coli enzyme RNA 3'-terminal phosphate cyclase consists of two
domains, of which one is contained within the other. The parent domain (residues 5-184,
280-338, coloured purple) consists of three repeated folding units; each unit has two α-
helices and a four-stranded β-sheet. The folding unit resembles the C-terminal domain of
bacterial translation initiation factor 3 (IF3). Between an α-helix and a β-strand of the
third IF3-like repeat of the parent domain, there is a smaller inserted domain (residues 185-
279, coloured red). Although the inserted domain has the same secondary structural
elements as the parent domain, it has different topology and a different fold. Insert
resembles the fold observed in human thioredoxin.

I followed the definition of protein domains in the Structural Classification Of Proteins

(SCOP) database (version 1.61) (Murzin et al., 1995). Although there are several available

schemes of protein structure classification, I chose SCOP because it is a manually curated

classification of protein structures based on their structural and evolutionary relationship. In

SCOP, a protein domain is considered as a unit of evolution if it occurs independently or in

combination with other domains.

SCOP represents a hierarchical classification scheme with four principal levels: family,

superfamily, fold and class. Domains clustered into families are evolutionarily related and

can be detected at the sequence level. Domains grouped into superfamilies can have low

sequence identity but their structural and functional features suggest a common evolutionary

A.1 Introduction

203

origin. Superfamilies with similar topology are grouped under a fold. Folds are assigned

to classes based on their secondary structure. For my analysis, I considered the fold and

superfamily levels of SCOP hierarchy and the five major classes (all-α, all-β, α/β, α+β and

‘small proteins’). All-α and all-β classes include proteins with abundant α-helices or β-

sheets, respectively. The α/β class is distinguished mainly by parallel beta sheets (β-α-β

units), whereas the α+β class contains proteins with predominantly anti-parallel beta sheets

(segregated α and β regions). Small proteins are distinguished by their size rather than other

features.

Data for this analysis was obtained from the Protein Data Bank (PDB) (Berman et al.,

2002). To overcome the redundancy inherent in PDB, I chose a pre-computed list of non-

redundant protein chains provided by PDB_Select (April 2002 release obtained from

ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select) (Hobohm and

Sander, 1994). I used the set of proteins that had pair-wise sequence identities less than 90%

and designated this set as PDB_90. Out of the 6182 chains in PDB_90, only 5883 chains

were assigned SCOP domain definitions, extracted from the SCOP parseable file

dir.cla.scop.txt_1.61. Table 24 shows the distribution of SCOP folds, superfamilies, families

and domains in each class for chains present in PDB_90.

Table 24. SCOP (1.61 release) classification statistics for chains in PDB_90 (April 2002
release)

It is self-evident that insertions can only be found in multi-domain proteins, where one

domain (insert) is contained within another domain (parent). Parent and insert domains can

belong to the same or different SCOP superfamilies. Likewise, a combination of two

domains can be viewed as a combination of superfamily combinations. I obtained a total of

A.1 Introduction

204

140 proteins that conformed to this definition. When I considered the 140 pairs of

parent-insert superfamily combinations, I observed that several pairs were identical.

Whenever there was also the same topological relationship between the parent and insert

domains, I retained only one example of a pair of superfamily combinations. This procedure

left 40 unique parent-insert superfamily combinations. Variations on the simple scheme

‘one insert within one parent’ were present; they are shown in Figure 68.

Figure 68. Schematic representation of types of domain insertions observed in protein
structures. (a) Single insertion (e.g., 1qmhA). (b) Nested insertion (e.g., 1a6dA). 'insert1 N'
and 'insert1 C' represent the N- and C-terminus of insert, respectively. (c) Two-domain
insertion (e.g., 1zfjA). (d) Three-domain insertion (e.g., 1dq3A).

For all cases of identified domain insertions, I checked for artefacts arising from missing

coordinates. This was necessary because SCOP domain definitions are based on atomic

coordinates provided in PDB. To ascertain consistency, I compared atomic coordinates

(ATOM records) versus sequences (SEQRES records) that were obtained from the

ASTRAL compendium (Chandonia et al., 2002). In the majority of cases, sequences were

completely covered by coordinates, but in other cases, there were parts of sequences with

missing coordinates. However, in none of the latter cases did the absent coordinates obscure

the position of inserts.

I then calculated unique superfamily combinations for all multi-domain proteins and found

450 unique superfamily combinations for 5883 single or multi-domain proteins in SCOP.

Thus, domain insertions constitute 9% (40/450) of all unique superfamily occurrences.

A.2 Types of domain insertions

205

A.2 Types of domain insertions

Domain insertions can be categorized as either single or multiple depending on the number

of inserts (Figure 68). In single insertions, one domain is inserted into another domain, and

both domains can belong to the same or different superfamilies. For example, in Figure 68a,

the Escherichia coli enzyme RNA 3’-terminal phosphate cyclase (PDB: 1qmhA, Palm et al.,

2000) has two domains, a small insert and a larger parent that belong to different

superfamilies. Close to 90% (36/40) of observed insertions are single insertions. In multiple

insertions, more than one domain, either of the same or different superfamily, is inserted

into the parent domain. I observed three types of multiple insertions (i) Nested insertions:

In Thermoplasma acidophilum thermosome (PDB: 1a6dA, Ditzel et al., 1998), the archael

chaperonin, the apical domain is inserted into the intermediate domain, which is in turn

inserted into an ATPase domain (ii) Two-domain insertions: The type II inosine

monophosphate dehydrogenase from Streptococcus pyogenes (PDB: 1zfjA, Zhang et al.,

1999) contains two tandem cystathionine-β-synthase domains inserted into the catalytic

TIM-barrel domain. The second example is the Saccharomyces cerevisiae PI-SceI intein

(PDB: 1ef0A, Poland et al., 2000), a homing endonuclease with protein splicing activity,

which has the duplicated endonuclease domain inserted into the Hint domain (iii) Three-

domain insertions: In PI-PfuI, an intein-encoded homing endonuclease from the

archaebacteria Pyrococcus furiosus (PDB: 1dq3A, Ichiyanagi et al., 2000), the Hint domain

has three tandem inserts, two intein endonuclease domains with αββαββαα structural

motifs, and one Stirrup domain.

Previous work on intron-encoded homing endonucleases, from the dodecapeptide family,

showed that for their folding, dimerisation and catalysis, they should form a dimer that has

two copies of the LAGLIDADG motif (one copy per subunit of a dimer), or alternatively

they could be monomeric if a monomer has both copies of the motif (Jurica and Stoddard,

1999). I found that in PI-SceI (case [ii] above) and PI-PfuI (case [iii] above), two

monomeric domains were tandemly inserted into one parent domain. The previous

observation that motifs are only functional as a dimer suggests that during the course of

evolution, there was a simultaneous insertion of two monomeric domains into the parent

domain, rather than an insertion of one monomeric domain followed by its duplication.

A.3 Nature and characteristics of domain insertions: Class level

206

In this analysis, I treated multiple insertions as several separate parent-insert

combinations, resulting in the total of 45 such combinations within 40 protein chains. There

were 41 unique parent-insert superfamily combinations. Upon examination of relationships

among proteins containing insertions, levels of SCOP hierarchy, and superfamily

participation of parent and inserted domains, I identified several biologically meaningful

patterns. These findings are discussed below.

A.3 Nature and characteristics of domain insertions: Class level

As mentioned before, I considered five SCOP classes, leading to a maximum of 25 (5*5)

pair-wise combinations. From the data, I observed only 15 combinations when investigating

class participation of parent-insert pairs. The combination of α/β-parent-α+β-insert was

predominant, while 50% of all parents belonged to α/β class and 40% of all inserts belonged

to α+β class. Domains from α/β class were parent domains, which were two and four fold

more often than domains from all-β and all-α class respectively. Domains from the class of

small proteins were seen only as inserts. This bias could be explained, at least to a certain

extent, by taking into consideration the size and function of parents and inserts, which is

discussed in the next section.

A.3.1 Size and function of domains involved in insertions

Figure 69a shows the domain length distribution for proteins from PDB_90 set across the

five SCOP classes. The average domain length was longest for α/β class followed by the

all-β, α+β, and all-α class. When I calculated distribution of average domain lengths for 41

parent domains, I observed the same trend (Figure 69b). However, the average length of

parent domains was noticeably larger than the average length of domains from PDB_90 set;

this was true for each SCOP class (compare Figure 69a and Figure 69b). Thus, combining

the fact that α/β parent domains are the most abundant with the fact that α/β domains are

the longest on average, I arrived at the explanation that longer domains more readily accept

insertions during evolution. As for the inserted domains, α+β and all-α class were equal and

major contributors to the number of domains. Therefore, the trend observed for parents is

not applicable for inserts.

A.3 Nature and characteristics of domain insertions: Class level

207

Figure 69. (a) Domain length distribution for all domains in the non-redundant set of
proteins (PDB_90). (b) Domain length distribution for parent domains.

In most cases, inserted domains were shorter than parent domains. This is despite the fact

that inserted domains could belong to SCOP classes with the longest average domain length

(Figure 70a). Parents comprised 50-80% of protein length, while inserts comprised 20-50%.

Close to 80% of inserts were shorter than 175 residues, which is the average length of a

protein domain calculated from crystal structures (Gerstein, 1997). More than 60% of

inserts were shorter than 130 residues. This observation is consistent with the heuristic logic

that smaller domains are less likely to disturb the structure and folding of parent domains; it

could explain short lengths of inserted domains. This explanation does not contradict an

important experiment by Doi and colleagues (Doi et al., 1997). They were able to show that

when random sequences of 120-130 amino acid residues were inserted into a surface loop

region of Escherichia coli RNase HI, about 10% of the clones retained >1% of the wild-type

RNase HI activity (Doi et al., 1997).

The high proportion of α/β class domains, as parents, can be correlated with their

biochemical function. Previous work showed that more than a half of PDB families are

enzymes and close to one half of all enzyme families contain multi-domain proteins. Multi-

domain enzymes often consist of a catalytic domain and a nucleotide binding domain

(Hegyi and Gerstein, 1999). It is therefore possible to predict that domain insertions are

likely to occur in enzymes. Indeed, in the dataset, 39 out of 40 parent-insert pairs conform to

this prediction. The remaining non-enzymatic protein is the bluetongue virus capsid protein

vp-7, which has the central domain from all-β class inserted into the multi-helical parent

domain. A genome-scale analysis of the structural features of proteins revealed that proteins

A.4 Nature and characteristics of domain insertions: Fold and superfamily level

208

with α/β fold are frequently involved in fusion events (Hua et al., 2002). α/β folds are

also known to be disproportionately associated with enzymatic function (Hegyi and

Gerstein, 1999), which lends further credence to the prominent role of α/β folds in

accepting insertions.

Figure 70. (a) Proportion of residues in parent and insert domains in parent-insert
combinations. (b) Point of insertion in parent domain. Insert position is given as a fraction
of total length of parent domain.

A.4 Nature and characteristics of domain insertions: Fold and superfamily level

Out of 57 folds in the class of small proteins, two domains with one fold (Rubredoxin fold)

were found as inserts; both inserted domains belong to the same superfamily. Within the

α+β class, the 18 inserted domains (from 15 superfamilies) spanned 11 folds; there are 204

different folds in the α+β class (Table 25). The trend was the same for the other SCOP

classes, where folds of inserted domains constituted minor fractions of all known folds. In

contrast to the inserts, all parent domains had different folds. Thus, I observed another

distinction between parents and inserts at the fold level.

Similarly, parent superfamilies were found to be more versatile than insert superfamilies

(most insert superfamilies combine with only one parent superfamily). There are merely 3

out of 45 insert superfamilies that combine with two different parent superfamilies. These

A.4 Nature and characteristics of domain insertions: Fold and superfamily level

209

insert superfamilies are NAD(P)-binding Rossmann superfamily, FAD/NAD(P)-binding

superfamily and C-terminal domain of FAD-linked reductases superfamily.

Table 25. Distribution of inserted and parent domains at the SCOP class and fold level. The
number of domains and the number of folds they come from is given for inserted and parent
domains across the five different classes in the SCOP hierarchy. Percentage gives the
number of folds contributing to insertions over total number of folds under the class.

While many parent superfamilies conservatively combine with one insert superfamily, there

are conspicuous exceptions. There are three parent superfamilies each combining two

different insert superfamilies. The three parent superfamilies in question are Zn-dependent

exopepetidases superfamily, nucleotidyl transferase superfamily, and nucleotide-binding

domain superfamily. Moreover, there are two parent superfamilies each combining with

three different insert superfamilies. The two parent superfamilies are P-loop containing NTP

hydrolases superfamily, and FAD/NAD(P)-binding domain superfamily.

Two further observations at the superfamily level are worth mentioning. Firstly, all parents

and inserts belong to different superfamilies. There is only one exception: in Escherichia

coli enzyme glutathione reductase (PDB: 1gesB), the parent and insert belong to the same

superfamily of FAD/NAD(P)-binding domains. Secondly, superfamilies that are popular in

the parent or insert context also appear to be popular in the sequential domain combination

context (Apic et al., 2001). They were found combining with more than one superfamily in

the sequential domain order. One exception to this correlation is the superfamily of C-

terminal domains of FAD-linked reductases; this superfamily is popular in the insert

context, but does not tandemly combine with other superfamilies.

A.5 Point of insertion

210

A.5 Point of insertion

I did not find any bias in the distribution of insertion points within 41 unique parent-insert

combinations. However, a significant bias in the location of the insertion point was observed

when I considered a subset of 28 parent-insert combinations, where either the parent or

insert superfamily also participated in sequential combination with other superfamilies. As

shown in Figure 70b, for the 28 cases in question, the insertion point occurred in the last

third part of the parent domain sequence (confidence level 98%). Spatially, all 41 insertions

were observed in loop regions of the 3D structure of parent domains.

Though it may not be feasible to provide a definitive explanation for the observation of bias

towards C-terminus for insertion in the parent domain, an event in the N-terminus or the

middle of the domain are likely to disrupt the gene structure and pose a problem during

transcription or translation.

Also insertions in the C-terminus indicate most of the insertions seen in the database are not

strictly insertions but normal sequential combinations with the second domain starting

before the end of the first domain. This stem from the fact, C-terminus bias in insertion is

found only in cases of parent-insert combinations, where either the parent or insert also

occur in sequential combinations with other superfamilies. Further research on the domain

insertions involving the core structure of the parent and insert domains can throw more light

on this view.

A.6 Proximity of N- and C-termini in inserts

I wanted to determine how the insertion context affects the distance between N- and C-

terminus of an inserted domain. The distance between termini was defined as the distance

between C-alpha atoms of the first and the last residue of the domain. I first calculated

distances for domains that do not participate in insertions. In order to do this, I considered

1000 domains, each representative of one SCOP superfamily. I obtained sequences and

coordinates for the domains from the ASTRAL compendium (Chandonia et al., 2002). Only

687 domain sequences were completely covered by coordinates. Using AEROSPACI scores

(Chandonia et al., 2002), I was able to find 60 substitutes for the 313 representative domains

that were not entirely covered by coordinates. Altogether, I obtained complete coordinate

A.6 Proximity of N- and C-termini in inserts

211

information for 747 domains (687 + 60). Because I confined the analysis to five major

SCOP classes, I calculated distances between termini for the 711 domains, which belong to

the five classes being investigated. The average distance for representative domains was 25

Å.

Calculation of distances between the termini of inserted domains was less straightforward.

Domain boundaries reported in SCOP are human defined. Therefore, I compared SCOP

domain boundaries for 41 inserted domains against the domain boundaries reported in

CATH database (Orengo et al., 2002). In contrast to SCOP, CATH structural classification

of proteins has been produced automatically. However, only 28 out of 41 inserted domains

were available in CATH, whereas the other 13 have either differences in domain

classification or the corresponding proteins were absent from CATH classification. For 28

inserted domains, boundaries were identical between SCOP and CATH. The average

distance between domain termini of inserted domains was 8 Å (confidence level 99%),

which is two-thirds shorter than the distance between termini in normal domains.

There are two superfamilies that occur in both parent and insert context. This example

allowed me to compare distances between termini for a parent and an insert from the same

superfamily. In case of FAD/NAD(P)-binding domain superfamily, the distances were 30 Å

and 5 Å for parent and an insert, respectively. These figures were 11 Å and 8 Å for NAD-

binding Rossmann domain superfamily. Thus, this analysis shows that the ends of inserted

domains are significantly closer than ends of parent domains or domains not participating in

insertions. However one must be cautious in interpreting the results as the N and C termini

distances for the parent domain is not calculated for the core structure.

It is interesting to speculate how the distance between domain termini can affect stability

and conformational flexibility of a protein domain. While insertion context might generally

reduce conformational freedom of the domain, it can simultaneously contribute to the

stability of the domain, which would in turn affect its function. One can also imagine how

the close proximity of domain termini can restore protein conformational flexibility by

mimicking an inter-domain link observed in sequentially ordered domains.

A.7 Conclusions

212

A.7 Conclusions

Utilising an evolutionary basis of domain classification, I described the nature and

characteristics of domain insertions in protein structures. Domain insertions represent an

unusual but abundant case of multi-domain proteins. This analysis gave several novel

insights into the nature and characteristics of domain insertions.

(1) Close to 9% multi-domain proteins contain insertions.

(2) The majority of insertions are the single domain insertions. Also found there were two-

domain, three-domain, and nested insertions in PDB.

(3) α/β class has a higher propensity to accept insertions. This could be correlated to the size

and function of proteins within the class.

(4) Parent domains were found to be longer than the inserted domains in most cases.

(5) When fold and superfamily combinations were considered for parents and inserts, the

former was found to be more versatile than the latter, in that the parent domains

combined with more partners.

(6) The point of insertion is biased towards the C-terminus of parents whenever the parent

domain belongs to the superfamily that sequentially combines with other superfamilies.

(7) Inserted domains have juxtaposed termini compared to parent domains.

Perhaps, domains are more viable in the insert context when their termini are close in space;

small size can further contribute to their viability.

These results clearly indicate that despite the structural and functional constraints inherent

in the process of domain insertion, this process is an effective way of creating multi-domain

proteins. This description of the many features of domain insertions could be used in protein

engineering for producing novel multi-functional fusion proteins. Betton and co-workers

(Betton et al., 1997) created hybrid proteins by inserting a penicillin-hydrolysing enzyme

TEM beta-lactamase (Bla) into the maltodextrin-binding protein (MalE); they used the

permissive insertion sites identified before (Duplay et al., 1987). Two insertions resulted in

the functional hybrids, one insertion occurred in the first quarter of the MalE protein, while

the other occurred in the last quarter. The parent protein (MalE) belongs to the α/β class,

and the authors experimentally showed the 5 Å distance between the termini of the inserted

A.7 Conclusions

213

domain (Bla). Thus, there is recent experimental data that nicely fit into the picture of

insertions found in natural multi-domain proteins.

APPENDIX B: PROTEIN EVOLUTION

B.1 Introduction

Divergence in structure and function of proteins is due to an evolutionary process driven by

functional and environmental constraints. These constraints bring about changes in the

protein sequence through mutations, insertions and deletions with the preservation of

residues important for the structure and function of the protein (Chothia and Lesk, 1986).

However, not all the sequence modifications are incorporated or maintained since some

changes may be deleterious to the structure or function of the protein. Hence, the structural

‘core’ (Chothia and Lesk, 1986) tends to be well conserved during evolution. When proteins

evolve, the constraints on the protein structure are relaxed or rather replaced by new

constraints and the sequence and structure can change more radically. These changes are

generally slow processes and leave a trail of homologs. Homologs are proteins evolved from

a common ancestor and their evolutionary relationship is evident from similarities in

sequence, structure and function. Homologous proteins have been studied for a long time to

understand their evolutionary relationships and to assign function or structure to new protein

sequences. For homolog searches in the sequence databases, one needs an alignment

algorithm, residue similarity matrix, scoring scheme and knowledge about scoring

thresholds to identify true relationships.

Among the available pairwise alignment algorithms, one of the most sensitive is the Smith-

Waterman algorithm (Smith and Waterman, 1981) adopted in the SSEARCH program

(Pearson, 1991). Although this algorithm is more sensitive and rigorous, it is

computationally expensive in comparison to FASTA (Pearson and Lipman, 1988) and

BLAST (Altschul et al., 1990). The speed and convenience of BLAST made it the most

popular program, although it compromises sensitivity. FASTA ranks between these two

programs and can be run in two modes: either at greater speed (ktup = 2) or greater accuracy

(ktup =1). Pearson (Pearson, 1991, 1995) did a comparison of these three methods and

showed that the Smith-Waterman algorithm worked slightly better than FASTA, which was

in turn much more effective than BLAST.

B.1 Introduction

215

Although pairwise comparison methods are a common way to find sequence homologs,

they have difficulty in detecting remote homologs when sequence identity falls below 30%

(Brenner et al., 1998). Alternate methods like Profile Hidden Markov Models (Eddy, 1996;

Krogh et al., 1994), psi-BLAST (Altschul et al., 1997) and Intermediate Sequence Search

(Park et al., 1997) reduce this limitation and increase sensitivity.

Intermediate Sequence Search (ISS) is a search technique, wherein two related sequences

which cannot be detected directly by pairwise sequence comparison methods are matched

using an intermediate sequence sharing close homology with the two distantly related

sequences. This concept has been extended to include multiple intermediate sequences

(MISS) between two distant sequences (Salamov et al., 1999). The disadvantage with ISS is

that the errors caused in the intermediate are likely to propagate as it is not dependent on

multiple sequence alignment. Errors caused by ISS when comparing multi-domain protein

sequences, can be avoided by splitting query sequence to individual domains. Figure 71

gives an overall idea on how different methods are exploring the sequence space (Lindahl

and Elofsson, 2000).

Figure 71. Schematic diagram showing performance of different sequence comparison
methods. The filled circle represents the query sequence used in the database search and the
open circles represent family members. The distance between two circles represents some
arbitrary distance.

B.1 Introduction

216

A comparison of these recent methods with pairwise sequence comparison methods,

performed by searching remote homologs in a Structural Classification Of Proteins (SCOP,

Murzin et al., 1995) sequence database having less than 40% identity, show that ISS

performs one and half times better than FASTA. In sequences with less than 30% identity, a

HMM-based SAM-T98 and psi-BLAST detected three times more relationships than

pairwise sequence comparison methods (Park et al., 1998). Sauder et al. compared the

quality of alignments produced by BLAST, psi-BLAST, ISS and ClustalW (Thompson et

al., 1994) with structural alignments. ISS produced longer alignments than psi-BLAST with

nearly comparable per-residue alignment quality. At 10-15% identity, BLAST correctly

aligned 28%, psi-BLAST 40% and ISS 46% of residues to the structural alignment (Sauder

et al., 2000).

All these results show that ISS performs as well as psi-BLAST in identifying distant

homologs. However it is not yet clear how ISS is able to detect remote relationships.

Moreover, I was interested to determine whether intermediates identified by ISS can provide

any knowledge about protein evolution. This study tries to find answers to these questions.

To aid this objective, I also used structure comparisons to understand relationships between

proteins. The degree of fitness between structures is usually calculated by a scoring scheme.

The common way to represent the structural fitness is Root Mean Square Deviation

(RMSD) for all residues of the two protein structures. The RMSD gives a measure of the

average level of deviations over the superposed atoms.

∑
=

n

i

i

N
D

1

2

Where, D refers to deviation of the atoms and N refers to the number of atoms matched.

There are different structural alignment methods adopting the aforementioned algorithms.

Amongst the common implementations are DALI (Holm and Sander, 1993), Combinatorial

Extension (CE) (Shindyalov and Bourne, 1998), and Protein Informatics System for

Modelling (PrISM) (Yang and Honig, 2000). Here, I used PrISM to compare the structures.

Protein evolution may occur in two ways: divergent or convergent evolution. When a

protein structure diverges to form a new fold or function, it results in divergent evolution

B.2 Datasets

217

(e.g., P-loops). However if two evolutionarily independent folds converge to represent

similar structure or function it becomes convergent evolution (e.g., serine proteases).

Proteins evolved through a divergent mechanism are likely to have a trail of homologs and

can be detected using sequence and structure comparisons. Here, I attempt to study this

using two well known protein families – Cytochrome c and P-loops and answer the

following questions.

(1) Is it possible to understand the evolutionary pattern of any protein family or superfamily

based solely on its structure and sequence divergence?

(2) Whether understanding this will help us in assigning hierarchies for a protein in the

existing classification of protein structures?

B.2 Datasets

I used SCOP database for this study (please refer to Appendix A for details of SCOP). The

All-α protein class contains a fold level called cytochrome c, which in turn is composed of a

single superfamily named cytochrome c. This superfamily has four families. The Di-haem

cytochrome c peroxidase family has only synthetic protein structures and, therefore, only

domains from the other families (39 sequences) were used in this analysis.

P-loop domains are found in the class α/β and fold/superfamily P-loop containing

nucleotide triphosphate hydrolases (this fold has only one superfamily). The superfamily

has domains composed of parallel beta sheets of varied sizes connected by helices. For

example, the Nucleoside and nucleotide kinases family has 5 strands with architecture type

23145 and Nitrogenase iron-protein like group family has 7 strands with architecture type

3241567. The superfamily is composed of 14 families. I used all the domains (85 sequences,

excluding domains involving multiple chains) from these 14 families for this analysis.

From these datasets, I then found sequence homologs and structure homologs that can be

detected by the above described methods.

B.3 Intermediate sequence search

218

B.3 Intermediate sequence search

I collected homologs for each of the domains in the two superfamily datasets using FASTA

3.3 (with BLOSUM 62 matrix, ktup = 1) by searching against the pdb90d_1.53 database.

The pdb90d_1.53 database is derived from sequences of SCOP domains (version 1.53)

sharing 90% or less sequence identity.

Domains (query and target), with scores better than the threshold value 0.01, are referred as

‘direct hits’. For domains that cannot be detected directly, I used the ISS procedure

described above to link the query and target.

A comparison of ISS hits with psi-BLAST shows that psi-BLAST can detect all the remote

homologs identified by ISS in P-loops superfamily and only about half of them in

cytochrome c superfamily. The advantage ISS has in some cases might be due to the match

score it gains by producing longer alignments around conserved regions of the protein.

However, both the methods fail to detect remote homologs from P-loops superfamily than

found from cytochrome c superfamily. This might be due to the extensive divergence of

sequences in P-loops superfamily (they are quoted to have some converged domains

(Bossemeyer, 1994) and differences in sequence length (average length of P-loops is ≈ 230

amino acids, twice the size of cytochrome c).

Intermediate searches based on structural information could find new remote homologs that

ISS could not detect. This is expected because it is known that different sequences can have

similar folds. Therefore, by comparing structures it is more likely to detect remote

homologs. I suggest that by using intermediate structural search, even more distant

relationships can be detected.

Then I used the alignments obtained from the query-intermediate and target-intermediate to

generate a “progressive alignment” (i.e., a multiple sequence alignment generated by

progressively aligning pairwise alignments using ClustalW alignments and structure

information) of query-intermediate-target or query-intermediate-intermediate-target.

These progressive alignments show that the intermediates can improve the quality of

alignments between query and target. An example of this alignment is shown in Figure 72.

B.3 Intermediate sequence search

219

The figure shows the improvement in alignment between query-target (SCOP Ids:

d1a56__ - d1c75a_) produced by FASTA (Figure 72a) and the progressive alignment

generated manually after introducing one (d451c__) and two intermediate (d1ayg__ and

d451c__) sequences (Figure 72b and Figure 72c). The alignment shows that there are some

residues common in all the sequences and some between query-intermediate, target-

intermediate and intermediate-intermediate.

Figure 72. Comparison of alignments of two distant proteins with and without
intermediates. (a) Alignment of the two domain produced by FASTA 3.3. (b) The
progressive alignment generated by including one intermediate. (c) The progressive
alignment generated by including two intermediates.

Likewise, I selected closely clustered domains from each of the four SCOP protein groups

(mitochondrial cytochrome, cytochrome c2, cytochrome c551 and cytochrome c6) to make a

progressive alignment. These groups were used due to the fact that they represent most of

the members of the superfamily. From the progressive alignment made for each of the

protein groups, I derived a consensus (Figure 73). This consensus was then used to derive an

overall consensus shown in Figure 74. The figure shows that there are 10 invariable residues

in the consensus and it agrees with the consensus derived by Ptitsyn by aligning 164

sequences from the cytochrome c superfamily (Ptitsyn, 1998). His alignments were

generated using the PileUP program and manually edited taking functional residues into

consideration.

B.4 Structural homologs

220

Figure 73. Consensus sequences derived for the four SCOP protein group in monodomain
cytochrome c family

Figure 74. Consensus of consensus for sequences in monodomain cytochrome c family

The conserved residues were involved in heme binding and needed for functional role of the

protein. The other conserved residues do not have any functional role and are found to be

key residues needed to maintain structural fold of cytochromes. The key residues reported

here agree well with the results found in the literature (Ptitsyn, 1998). Figure 74 shows the

key residues identified by Ptitsyn. The differences include two additional residues

conserved at position 3 (aliphatic residue) and position 10 (aliphatic residue), the presence

of a proline at position 1 and a phenyalanine instead of an isoleucine at position 8. These

discrepancies might be due to number of sequences compared and the kind of alignment

generated. Ptitsyn used 164 sequences whereas here only 19 sequences were used. Although

comparatively very few sequences were used, the result seems to be almost the same. This is

a promising result opening opportunities in extending the procedure to other superfamilies.

However, an attempt on P-loops failed primarily due to the fact that the superfamily is much

more diverged and only very few sequences form distinct clusters.

B.4 Structural homologs

I did an all-against-all structural comparison of the domains using PrISM. Then I used the

alignment from PrISM as input to another program called MSARMS (Hubbard, 1994) that

measures the distance in Angstrom between the matched residues in the superposition.

These RMSD values from PrISM and MSARMS programs were used for this study.

B.5 Clustering

221

B.5 Clustering

With these homologs and their relationship (given as E-value for sequences and RMSD for

structures), I represented proteins as clusters in two-dimensional space. This was done using

the procedure given in Figure 75 using sequence/structure distance matrices (or similarity

matrices).

Figure 75. Flow chart describing steps used in clustering and visualisation of data.

I did initial clustering based on the sequence based distance matrix using single and

complete linkage methods with a threshold E-value of 0.001 and 0.05 respectively. Then I

merged the resulting sets of clusters based on the RMSD values using the Unweighted Pair

Group Method using Arithmetic average approach. A threshold value of 4.00Å was used for

the P-loops superfamily and a threshold of 2.00Å was used for the cytochrome c

superfamily. I also applied the complete linkage approach to merge the initial set of clusters

using a threshold value of 6.00Å for both superfamilies.

To find co-ordinates of the data set in 2D space, I used Principal Co-ordinate Analysis

(PCoA). For a problem of N objects, there could be N*(N-1) distances and displayed in (N-

1) dimensional space. This (N-1) dimensional space was reduced to 2D/3D space and

plotted.

A manual plotting of the data gave a cluster map for both cytochrome c (Figure 76) and P-

loops superfamilies (Figure 77). Figure 78 shows the demarcation of clusters into family

and protein levels based on the SCOP classification for cytochrome c. Similarly, Figure 79

shows the demarcation of family levels in P-loops. The protein levels were not marked in P-

loops to avoid the complexity in the figure.

B.5 Clustering

222

Figure 76. Cluster map of cytochrome c superfamily

B.5 Clustering

223

Figure 77. Cluster map of P-loops superfamily

B.5 Clustering

224

Figure 78. Cluster map of cytochrome c superfamily with demarcation of SCOP
superfamily, family and protein levels

B.5 Clustering

225

Figure 79. Cluster map of P-loops superfamily with demarcation of SCOP superfamily,
family levels

B.5 Clustering

226

The maps (Figure 76 and Figure 77) show domain relationships either by solid lines or

dashed lines. The solid lines indicate domains having strong relationship between them (E-

value < 0.4 and RMSD < 4 Å). Also, the length of the solid line represents real Euclidean

distance in the cluster map. The dashed lines show there is a relationship between the

connected domains. However, the position of domains in the map is not true. This is due to

the non-availability of a relationship between the connected domains and its neighbors.

Also, the length of the broken line does not represent real Euclidean space in the map.

The cytochrome maps (Figure 76 and Figure 78) show that two SCOP protein groups,

mitochondrial cytochrome c and cytochrome c2, were well separated from other protein

groups. The domains forming the cytochrome c552 cluster show that they have diverged

more than any other SCOP protein group. Also, it can be seen that most of the domains from

the cytochrome c6 and cytochrome c551 SCOP protein groups form closer clusters while

some of them get away from this cluster and act as outliers.

P-loops cluster maps (Figure 77 and Figure 79) show that the domains have diverged more

when compared to the cytochrome c domains. The maps show a number of domains

represented as singletons or as small groups not connected to each other. As stated earlier,

absence of a line between domains means no relationship can be identified among them

(with score below the threshold limit), although some of the singletons belong to SCOP

family. Only members of two families (Nucleoside and nucleotide kinase and G-proteins)

were found to be grouped together on the map. This may be due to more environmental

constraints and less active site requirements on P-loop superfamily or may be due to a

convergence phenomena as seen in phosphate binding proteins (Bossemeyer, 1994).

These cluster maps are a useful tool to aid in understanding of the relationship between

protein members of a family:

(1) It gives an overall picture of the divergence of a protein superfamily.

(2) It shows the relationships between SCOP families.

(3) The method could be used as an initial automated classification procedure of protein

structures. A new protein structure can be used as a query to find its sequence or

structure homologs. Then based on the sequence and structural relationship (E-value and

B.5 Clustering

227

RMSD), the protein can be added in the cluster map. Such a map will give a good

idea to which of the superfamily or family the new protein belongs. Then with detailed

knowledge, the protein can be allocated in a specific family (manual curation). The

clustering approach can be exploited to assign function to an unknown protein

(Sternberg, 2001), but it cannot be trusted fully as a similar structure does not always

represent the same function.

(4) It gives a clear picture about any particular SCOP family and allows the identification of

any outliers in it. In the P-loops cluster map (Figure 79), there are two clusters one with

domains d1d2ja__, d1qf5a__ and d1dj3a_ and another with d2nipa_, d1cp2a_, d1ffh__,

d1byi__ and d1fts__ (boxed). But all of these domains are placed in the same family in

SCOP. On discussion with Alexey Murzin (the primary curator of SCOP database), he

recalled he considered that it might be better to keep these two clusters in two separate

groups, say as, two different sub-families/families. He only kept them together due to

limitations in the current SCOP classification system.

Likewise the domain d1qhia_, classified in the Nucleotide and nucleoside kinase family in

SCOP, are positioned separately from the main cluster. The outlier was later cross-checked

with structural analysis (Morea, 2001). The analysis also agreed that the domain is distinct

from its family members. The probable reason for the isolated cluster of d1qhia__ is that it

is a chimeric protein and does not exist naturally i.e. it does not have sequence or structure

homology with other Nucleotide and nucleoside kinase proteins even though it retains the

same function. It was for this reason and since the domain satisfied minimal the P-loop

topology, that Alexey Murzin classified the domain under the same family.

Thus, cluster maps might help us to be aware of outliers in a particular superfamily/family

classification before starting any kind of detailed analysis on it.

Because of these advantages of the cluster maps, I automated the clustering process to

extend the study later for other families. A comparison between manual and automated

clustering procedures shows that the automated method performed equally well with the

manual method (Figure 80 and Figure 81). Also, the automated methods provide similar

results with another automated clustering procedure based on the MCL algorithm (Enright

et al., 2002).

B.5 Clustering

228

Figure 80. A cluster produced by the automated method for cytochrome c superfamily

Figure 81. A cluster produced by automated method for P-loops superfamily

B.6 Orthology and paralogy

229

In both manual and automated processes, clustering was done using sequence and

structural relationships, but it is possible to be done with sequence information alone.

However, this will give only the number of clusters that can be formed from the superfamily

and members in each cluster. A two dimensional representation of data is difficult with

sequence information alone due to the fact that the data needs to undergo significant

normalization procedures before it can be used to find co-ordinates.

B.6 Orthology and paralogy

The sequence and structural information, used above to generate cluster maps, can also form

the basis for detecting orthologous relationships within protein families in the study of

protein evolution. Such a group of ortholog domains was found in P-loops superfamily. The

group comprises adenylate kinases from Escherichia coli, Bacillus stermathermophilus and

Saccharomyces cerevisiae. Using species as a time scale, it can be said that adenylate kinase

of Escherichia coli and Bacillus stermathermophilus appeared earlier than yeast protein.

However, it does not mean that yeast protein evolved from Escherichia coli or Bacillus and

it would be extremely difficult in assessing the proper time scale for these proteins based on

sequence and structure information alone.

All the three adenylate kinases clustered close to each other on the map. So, from tightly

clustering domains, it can be presumed that they are possibly to be orthologous to each

other.

The TOPS (Westhead et al., 1999) diagrams of these three proteins (Figure 82) shows that

Escherichia coli and yeast adenylate kinases are identical whereas in Bacillus, there is an

extra β strand and its orientation is reversed. Interestingly, this part of the protein is not

under SCOP domain definition, which means that there is no functional or structural role for

this part of the protein. Since this part does not have structural or functional constraints, it is

more likely to be subject to mutations and may be influenced by environmental factors of

Bacillus compared with yeast or Escherichia coli. From this, I conclude that the evolution of

adenylate kinase would have more likely started from a common ancestor and given rise to

Escherichia coli and or Bacillus and later to yeast protein. Later, Bacillus adenylate kinase

would have acquired some changes in its protein.

B.6 Orthology and paralogy

230

Figure 82. Topology diagram for adenylate kinase

Likewise, from the cytochrome map, two SCOP protein groups form distinct clusters from

the rest of the cytochrome members. The overall topology of the cytochrome superfamily

members were analyzed using TOPS (Figure 83). Generally, cytochrome c fold has 5

helices. However, some members of cytochrome c551 group have 6 helices and cytochrome

c2 group has 5 helices and 2 β strands except d3c2c__, which has only 5 helices. The

topology of cytochrome c552 group (5 helices) remains the same, although its sequence has

diverged greatly. However, the domains of this group (cytochrome c552) forms close cluster

with domains of different cytochrome c protein groups than among itself. It might be one of

the typical cases, where orthology/homology cannot be resolved based on sequence identity

because an extensive sequence divergence has occurred. However, it can also be argued that

cytochrome c552 proteins were actually formed from convergence of different cytochrome c

proteins. But this is highly unlikely to occur given the clear picture of overall divergence of

cytochrome proteins and absence of any convergence reports in the cytochrome c fold.

B.7 Conclusions

231

Figure 83. Topology diagram for cytochrome c proteins

Mitochondrial cytochrome c was seen later in the time-scale when compared to bacterial

cytochrome c. Given the endosymbiotic hypothesis, it is likely that any bacterial

cytochrome c would have given rise to mitochondrial cytochrome. Here, it can be seen that

cytochrome c2 clustered closely with mitochondrial cytochrome (Figure 78). So it is likely

that cytochrome c2 would have been the ancestral protein for mitochondrial cytochrome.

This was confirmed with expertise knowledge of Alexey Murzin. The topology study of

these two SCOP protein groups also confirmed this. The general topology of cytochrome c2

and mitochondrial cytochrome are 5 helices + 2 β strands and 5 or 6 helices respectively.

However, some of the domains of cytochrome c2 (e.g., d3c2c__), clustering near to

mitochondrial cytochrome lack the two β strands, confirming that the earlier forms of

cytochrome c2 with β strands, later lost the β strands and have given rise to mitochondrial

cytochrome.

Thus, cluster maps made with sequence and structural homology is useful in understanding

the ancestry of proteins.

B.7 Conclusions

Protein evolution, driven by structural and functional constraints, may leave a trail of

homologs. Homologs are identified using sequence comparison methods like BLAST,

FASTA, psi-BLAST and ISS. A comparison of ISS with psi-BLAST was made in two

B.7 Conclusions

232

protein superfamilies: cytochrome c and P-loops. The result showed that psi-BLAST

detected all the remote homologs identified by ISS in P-loops and only half in cytochrome c

superfamily. Although, I cannot generalize using these limited results, it can be said that ISS

performs better in some cases than psi-BLAST. The advantage ISS has in some cases might

be due to the match score it gains by producing longer alignments around conserved regions

of the protein. Intermediate search conducted using structural information revealed that

more remote homologs that could not be identified with sequence information alone. So

structures might be useful in intermediate search when sequence information is inadequate

in detection. From the progressive alignments generated using most of the domains in four

SCOP protein groups (mitochondrial cytochrome, cytochrome c2, cytochrome c551 and

cytochrome c6), an overall consensus was generated. The highly conserved residues found in

the overall consensus are in tandem with the key structural and functional residues needed

for the cytochrome c fold (Ptitsyn, 1998). Thus ISS alignments might be useful in

understanding highly conserved residues in a protein fold.

Along with sequence information, I used structural comparisons by PrISM to produce a

manual cluster map. The cluster map showed a useful representation of the general

evolutionary relationships within P-loops and cytochromes. These might be helpful in

depicting the relationship between SCOP families, assigning hierarchies to a new protein

structure in the existing structural classification and understanding the likely ancestor of a

protein. For example, in cytochrome c superfamily, it was shown that the cytochrome c2

protein is likely to be an ancestor for mitochondrial cytochrome. The manual process has

been automated and can now be used as a tool in exploring evolutionary relationships of any

protein family.

APPENDIX C

C.1 Eponine transcription termination parameters

The parameters used to create Eponine transcription termination model –

<? xml version="1.0" ?>

<app xmlns=http://www.sanger.ac.uk/Users/td2/specs/epoapps/0/2
jclass="eponine.TrainingCore">

<bean name="dataSource" jclass="eponine.datasource.XMLDataSource">
<string name="fileName" value="Datasets/trainingdata.xml " />

</bean>

<bean name="basisSource" jclass="eponine.model.MultiplexedBasisSource">
<int name="reweightFrequency" value="15" />
<double name="reweightPseudocounts" value="10.0" />

<child jclass="eponine.model.NewBasisSource">

<boolean name="maximize" value="false" />
<double name="stringency" value="0.55" />
<double name="stringencyVariance" value="0.03" />
<int name="minLength" value="4" />
<int name="maxLength" value="8" />
<double name="minDistWidth" value="2.5" />
<double name="maxDistWidth" value="200.0" />
<boolean name="reversible" value="false" />
<string name="name" value="nbs1_narrow" />
<int name="minPos" value="-190" />
<int name="maxPos" value="1990" />

</child>

<child jclass="eponine.model.SampleWMBasisSource">
<double name="nullModelWeighting" value="7.0" />
<double name="nullModelPerMarginalColumn" value="1.0" />
<int name="sampleCounts" value="203" />
<double name="nullModelWeightingN" value="9.0" />
<int name="sampleCountsN" value="120" />
<string name="name" value="samplewm2" />

</child>

<child jclass="eponine.model.DropColumnBasisSource" />

<child jclass="eponine.model.DistributionBasisSource">
<double name="distChangeWidth" value="3.0" />
<double name="distChangeGamma" value="3.0" />
<double name="distChangeScale" value="25.0" />
<double name="distChangeBias" value="0.06" />
<!-- double name="shapeChangeProbability" value="0.05" / -->
<double name="flipEnvelopeProbability" value="0.00" />

C.2 GAZE gene structure models

234

<string name="name" value="distwidth" />
</child>

<child jclass="eponine.model.PositionBasisSource">

<double name="shiftWidth" value="4" />
</child>

<child jclass="eponine.model.CrossWMBasisSource" />

<child jclass="eponine.model.AppendColumnBasisSource" />

<child jclass="eponine.model.FlipMaxBasisSource" />

</bean>

<bean name="trainer" jclass="stats.glm.VRVMTrainer">
<int name="numThreads" value="4" />
<int name="maxCycles" value="11000" />
<!--int name="cleaningCycles" value="0" /-->
<int name="maxWorkingSet" value="28" />
<int name="minWorkingSet" value="25" />
<int name="initialWorkingSet" value="50" />
<double name="initialAlpha" value="1.0" />
<boolean name="unityHack" value="true" />
<double name="unityHackThreshold" value="1.0" />
<boolean name="resetAlphaHack" value="true" />
<boolean name="insertUnity" value="true" />

</bean>

<bean name="retrainer" jclass="stats.glm.VRVMTrainer">
<int name="maxCycles" value="100" />
<!--int name="cleaningCycles" value="0" /-->
<double name="initialAlpha" value="1.0" />
<boolean name="unityHack" value="true" />
<double name="unityHackThreshold" value="1.0" />

</bean>

<string name="fileName" value="Models/terminationmodel.xml" />
<int name="checkpointFrequency" value="500" />

</app>

C.2 GAZE gene structure models

The configuration file explaining the gene model with translation features for predicting
genes using GenePred –

<? xml version="1.0" encoding="US-ASCII" ?>

<gaze>

<declarations>
<feature id="tss" st_off="0" en_off="1" />
<feature id="tis" st_off="0" en_off="3"/>
<feature id="5ss" st_off="1" en_off="1" />
<feature id="3ss" st_off="1" en_off="1" />

C.2 GAZE gene structure models

235

<feature id="tts" st_off="3" en_off="0"/>
<feature id="polyA" st_off="1" en_off="1"/>

<feature id="tss_rev" st_off="1" en_off="0" />
<feature id="tis_rev" st_off="3" en_off="0" />
<feature id="5ss_rev" st_off="1" en_off="1" />
<feature id="3ss_rev" st_off="1" en_off="1" />
<feature id="tts_rev" st_off="0" en_off="3" />
<feature id="polyA_rev" st_off="1" en_off="1"/>

<!--lengthfunction id="intron_pen" />
<lengthfunction id="intergene_pen" />
<lengthfunction id="inital_exon_pen" />
<lengthfunction id="internal_exon_pen" />
<lengthfunction id="terminal_exon_pen" />
<lengthfunction id="single_exon_gene_pen" /-->

</declarations>

<gff2gaze>
<!-- Features -->
<gfffeat feature="TSS" strand="+" source="Eponine">

<feat id="tss"/>
</gfffeat>

<gfffeat feature="TSS" strand="-" source="Eponine">
 <feat id="tss_rev"/>
</gfffeat>

<gfffeat feature="TIS" strand="+" source="Eponine">
 <feat id="tis"/>
</gfffeat>

<gfffeat feature="TIS" strand="-" source="Eponine">
 <feat id="tis_rev"/>
</gfffeat>

<gfffeat feature="5SS" strand="+" source="Eponine">
 <feat id="5ss"/>
</gfffeat>

<gfffeat feature="5SS" strand="-" source="Eponine">
 <feat id="5ss_rev"/>
</gfffeat>

<gfffeat feature="3SS" strand="+" source="Eponine">
 <feat id="3ss"/>
</gfffeat>

<gfffeat feature="3SS" strand="-" source="Eponine">
 <feat id="3ss_rev"/>
</gfffeat>

<gfffeat feature="TTS" strand="+" source="Eponine">
 <feat id="tts"/>
</gfffeat>

C.2 GAZE gene structure models

236

<gfffeat feature="TTS" strand="-" source="Eponine">
 <feat id="tts_rev"/>
</gfffeat>

<gfffeat feature="POLYA" strand="+" source="Eponine">
 <feat id="polyA"/>
</gfffeat>

<gfffeat feature="POLYA" strand="-" source="Eponine">
 <feat id="polyA_rev"/>
</gfffeat>

</gff2gaze>

<dna2gaze>
<!--dnafeat pattern="tataaa">

<feat id="tss" />
</dnafeat>

<dnafeat pattern="atg" score="0.001">
 <feat id="tis" />
</dnafeat>

<dnafeat pattern="taa" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="tag" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="tga" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="aataaa" score="0.001">
 <feat id="polyA" />
</dnafeat>

<dnafeat pattern="tttata">
 <feat id="tss_rev" />
</dnafeat>

<dnafeat pattern="cat" score="0.001">
 <feat id="tis_rev" />
</dnafeat>

<dnafeat pattern="tta" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

<dnafeat pattern="cta" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

C.2 GAZE gene structure models

237

<dnafeat pattern="tca" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

<dnafeat pattern="tttatt" score="0.001">
 <feat id="polyA_rev" />
</dnafeat-->

<!--takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/-->

</dna2gaze>

<model>
<target id="END">
 <source id="BEGIN" out_feat="No_genes"/>
 <source id="polyA" out_feat="GEN_DNA" />
 <source id="tss_rev" out_feat="GEN_DNA"/>
</target>

<!--Forward strand gene-->

<target id="tss">
 <source id="BEGIN" out_feat="GEN_DNA"/>
 <source id="polyA" mindis="1" out_feat="intergenic"/>
 <source id="tss_rev" mindis="1" out_feat="intergenic"/>
</target>

<target id="tis">
 <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/>
</target>

<target id="5ss">
 <!--killfeat id="tts"/-->
 <source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+" />
 <source id="3ss" out_feat="internal_exon" mindis="6" maxdis= "10000" out_str="+"
/>
</target>

<target id="3ss">
 <source id="5ss" out_feat="intron" mindis="6" out_str="+"/>
</target>

<target id="tts">
 <!--killfeat id="tts" /-->
 <!--source id="tis" out_feat="single_exon_gene" mindis="60"out_str="+"/-->
 <source id="3ss" out_feat="terminal_exon" mindis="3" out_str="+"/>
</target>

<target id="polyA">

C.2 GAZE gene structure models

238

 <source id="tts" out_feat="3UTR" mindis="1" out_str="+"/>
</target>

<!--Reverse strand gene-->

<target id="polyA_rev">
 <source id="BEGIN" out_feat="GEN_DNA"/>
 <source id="polyA" out_feat="intergenic" mindis="1"/>
 <source id="tss_rev" out_feat="intergenic" mindis="1"/>
</target>

<target id="tts_rev">
 <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/>
</target>

<target id="3ss_rev">
 <!--killfeat id="tts_rev"/-->
 <source id="tts_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000"
out_str="-"/>
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000"
out_str="-"/>
</target>

<target id="5ss_rev">
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/>
</target>

<target id="tis_rev">
 <!--killfeat id="tts_rev" phase="0"/-->
 <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/-->
 <source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/>
</target>

<target id="tss_rev">
 <source id="tis_rev" out_feat="5UTR" mindis="1" out_str="-"/>
</target>

</model>

<lengthfunctions>

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/>
<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/>
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/>
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/-->

<!--lengthfunc id="single_exon_gene_pen">
 <point x="500" y ="0.001"/>
 <point x="20000" y="0.2"/>
</lengthfunc-->

<!--lengthfunc id="intergene_pen">
 <point x="200000" y ="0.01"/>
 <point x="200001" y="0.01"/>
</lengthfunc -->

</lengthfunctions>
</gaze>

C.2 GAZE gene structure models

239

The configuration file explaining the gene model without translation features for predicting
genes using GenePred –

<?xml version="1.0" encoding="US-ASCII"?>

<gaze>

<declarations>
<feature id="tss" st_off="0" en_off="1" />
<!--feature id="tis" st_off="0" en_off="3"/-->
<feature id="5ss" st_off="1" en_off="1" />
<feature id="3ss" st_off="1" en_off="1" />
<!--feature id="tts" st_off="3" en_off="0"/-->
<feature id="polyA" st_off="1" en_off="1"/>

<feature id="tss_rev" st_off="1" en_off="0" />
<!--feature id="tis_rev" st_off="3" en_off="0" /-->
<feature id="5ss_rev" st_off="1" en_off="1" />
<feature id="3ss_rev" st_off="1" en_off="1" />
<!--feature id="tts_rev" st_off="0" en_off="3" /-->
<feature id="polyA_rev" st_off="1" en_off="1"/>

<!--lengthfunction id="intron_pen" />
<lengthfunction id="intergene_pen" />
<lengthfunction id="inital_exon_pen" />
<lengthfunction id="internal_exon_pen" />
<lengthfunction id="terminal_exon_pen" />
<lengthfunction id="single_exon_gene_pen" /-->

</declarations>

<gff2gaze>
<!-- Features -->
<gfffeat feature="TSS" strand="+" source="Eponine">

<feat id="tss"/>
</gfffeat>

<gfffeat feature="TSS" strand="-" source="Eponine">
 <feat id="tss_rev"/>
</gfffeat>

<!--gfffeat feature="TIS" strand="+" source="Eponine">
 <feat id="tis"/>
</gfffeat>

<gfffeat feature="TIS" strand="-" source="Eponine">
 <feat id="tis_rev"/-->
</gfffeat>

<gfffeat feature="5SS" strand="+" source="Eponine">
 <feat id="5ss"/>
</gfffeat>

<gfffeat feature="5SS" strand="-" source="Eponine">
 <feat id="5ss_rev"/>

C.2 GAZE gene structure models

240

</gfffeat>

<gfffeat feature="3SS" strand="+" source="Eponine">
 <feat id="3ss"/>
</gfffeat>

<gfffeat feature="3SS" strand="-" source="Eponine">
 <feat id="3ss_rev"/>
</gfffeat>

<!--gfffeat feature="TTS" strand="+" source="Eponine">
 <feat id="tts"/>
</gfffeat>

<gfffeat feature="TTS" strand="-" source="Eponine">
 <feat id="tts_rev"/-->
</gfffeat>

<gfffeat feature="POLYA" strand="+" source="Eponine">
 <feat id="polyA"/>
</gfffeat>

<gfffeat feature="POLYA" strand="-" source="Eponine">
 <feat id="polyA_rev"/>
</gfffeat>

</gff2gaze>

<dna2gaze>
<!--dnafeat pattern="tataaa">
 <feat id="tss" />
</dnafeat>

<dnafeat pattern="atg" score="0.001">
 <feat id="tis" />
</dnafeat>

<dnafeat pattern="taa" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="tag" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="tga" score="0.001">
 <feat id="tts" />
</dnafeat>

<dnafeat pattern="aataaa" score="0.001">
 <feat id="polyA" />
</dnafeat>

<dnafeat pattern="tttata">
 <feat id="tss_rev" />
</dnafeat>

C.2 GAZE gene structure models

241

<dnafeat pattern="cat" score="0.001">
 <feat id="tis_rev" />
</dnafeat>

<dnafeat pattern="tta" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

<dnafeat pattern="cta" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

<dnafeat pattern="tca" score="0.001">
 <feat id="tts_rev" />
</dnafeat>

<dnafeat pattern="tttatt" score="0.001">
 <feat id="polyA_rev" />
</dnafeat-->

<!--takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/-->

</dna2gaze>

<model>

<target id="END">
 <source id="BEGIN" out_feat="No_genes"/>
 <source id="polyA" out_feat="GEN_DNA" />
 <source id="tss_rev" out_feat="GEN_DNA"/>
</target>

<!--Forward strand gene-->
<target id="tss">
 <source id="BEGIN" out_feat="GEN_DNA"/>
 <source id="polyA" mindis="1" out_feat="intergenic"/>
 <source id="tss_rev" mindis="1" out_feat="intergenic"/>
</target>

<!--target id="tis">
 <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/>
</target-->

<target id="5ss">
 <!--killfeat id="tts"/-->
 <!--source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+"
/-->
 <source id="tss" mindis="1" out_feat="initial_exon" out_str="+"/>

C.2 GAZE gene structure models

242

 <source id="3ss" out_feat="internal_exon" mindis="6" maxdis= "10000"
out_str="+" />
</target>

<target id="3ss">
 <source id="5ss" out_feat="intron" mindis="6" out_str="+"/>
</target>

<!--target id="tts"-->
 <!--killfeat id="tts" /-->
 <!--source id="tis" out_feat="single_exon_gene" mindis="60" out_str="+"/-->
 <!--source id="3ss" out_feat="terminal_exon" mindis="3" out_str="+"/>
</target-->

<target id="polyA">
 <!--source id="tts" out_feat="3UTR" mindis="1" out_str="+"/-->
 <source id="3ss" out_feat="terminal_exon" mindis="3" out_str="+"/>
</target>

<!--Reverse strand gene-->

<target id="polyA_rev">
 <source id="BEGIN" out_feat="GEN_DNA"/>
 <source id="polyA" out_feat="intergenic" mindis="1"/>
 <source id="tss_rev" out_feat="intergenic" mindis="1"/>
</target>

<!--target id="tts_rev">
 <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/>
</target-->

<target id="3ss_rev">
 <!--killfeat id="tts_rev" phase="0"/-->
 <source id="polyA_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000"
out_str="-"/>
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000"
out_str="-"/>
</target>

<target id="5ss_rev">
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/>
</target>

<!--target id="tis_rev"-->
 <!--killfeat id="tts_rev" phase="0"/-->
 <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/-->
 <!--source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/>
</target-->

<target id="tss_rev">
 <source id="5ss_rev" out_feat="initial_exon" mindis="1" out_str="-"/>
</target>

</model>
<lengthfunctions>

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/>

C.2 GAZE gene structure models

243

<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/>
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/>
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/-->

<!--lengthfunc id="single_exon_gene_pen">
 <point x="500" y ="0.001"/>
 <point x="20000" y="0.2"/>
</lengthfunc-->

<!--lengthfunc id="intergene_pen">
 <point x="200000" y ="0.01"/>
 <point x="200001" y="0.01"/>
</lengthfunc -->

</lengthfunctions>
</gaze>

