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SUMMARY 

Transcription, the first step in gene expression, is initiated from a transcription start site and 

terminated some distance downstream of the cleavage site. In this thesis I attempt to identify 

and model different regulatory signals involved in the process of transcription, towards the 

development of a signal based ab initio gene predictor. 

 

First I attempt to identify regulatory signals in the sequence downstream of the cleavage site 

that may be responsible for transcription termination. Base compositional analyses reveal no 

significant bias in the nucleotide composition. An investigation based on free-energy 

minimisation Zuker algorithm indicates the possibility of a secondary structure in the 

sequence downstream of the cleavage site.  A probabilistic machine learning algorithm 

based on Bayes theorem and Generalised Linear Models, Eponine, used to scan for motifs, 

learns a model to classify termination sites from other sequences. The model captures a few 

multiplex signals that might be responsible for polymerase II pause and termination. An 

evaluation of this termination model against annotated human chromosomes shows that the 

model performs better than existing methods. However a significant number of predictions 

also appear near the annotated start site of genes. Approximately 10% of predictions lie 

within genes and their density is correlated with gene length and intron size.  I propose two 

hypotheses to explain these anomalies and discuss results from recent experiments. 

 

Splicing is now found to be interlinked temporally and spatially with transcription and I 

attempt to develop a donor and acceptor site model using Eponine. Comparisons of the 

models with annotated sites show the models have higher positional accuracy and perform 

comparably with existing programs, GeneSplicer and StrataSplice. 

 

Like transcription, translation machinery is influenced to a great extent by regulatory signals 

and I investigate them by scanning for motifs around translation start and stop sites using 

Eponine.  The start model learnt only the regulatory elements and not the coding potential of 

exons. Despite this it performs better than the existing program NetStart, although less well 

than the program ATGpr. 

 

The availability of these models creates the possibility to build an ab initio gene prediction 

program based purely on gene regulatory signals. 
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INTRODUCTION 

 

1.1 Motivation 

The last decade has seen a huge spurt of activity in genome sequencing. With improved 

technologies and reducing cost, more than 1000 viruses, 100 microbes and 11 eukaryotic 

whole genomes have been sequenced so far. Such a massive amount of data available in the 

public domain opens a whole array of possibilities to understand the mechanism of living 

organisms in detail. This revolution is likely to boost both the basic and applied science of 

various fields with opportunities for better food, health, and environment. 

 

The highlight of all sequencing efforts is undoubtedly the announcement of the finished 

human genome sequence in summer 2003 by the International Human Genome Sequencing 

Consortium (IHGSC, 2001). This landmark achievement of a species reading its own 

genomic content is just the beginning rather than the end. Already progress is underway to 

tap this potential and understand the making and working of this complex organism. 

However, our current understanding is more limited and even defining complete functions 

of a single celled microorganism remains an uphill task. Nevertheless, recent high-

throughput techniques, with supporting bioinformatics tools, have thrown out exciting 

results. Even complex human behaviours, like homosexuality and handedness are now 

linked to genes (Gibson and Dormor, 2003; Van Agtmael et al., 2003). These are great 

surprises as scientists traditionally correlated these characters to environmental, social and 

cultural factors than genes. Such results emphasise the old genetic understanding that 

phenotype is the result of both genotype and environment even in complex human 

behaviours. Genotyping the expression of genes and their functions at molecular, cellular 

and physiological levels will answer such enigmatic questions in biology. This was 

emphasised again with the availability of two complete genomes – Drosophila 

melanogaster (Celniker et al., 2002) and Caenorhabditis elegans (The C. elegans 

Sequencing consortium, 1998). Drosophila, having more complex developmental stage and 

nervous system, has fewer genes than the 1mm long soil nematode with only 959 cells in 

total. 

 



1.1 Motivation 
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To understand the functioning of organisms, it is necessary to know where and when a 

gene is expressed. The first step in this process is to identify the number of genes in the 

organism and map them in the genome. Unfortunately this has been a difficult task due to 

various issues such as intervening sequences (introns), pseudogenes and repetitive elements. 

In humans, we are still not clear about the exact number of genes. However research so far 

has helped to narrow down the number to around 30,000 (IHGSC, 2001). This is 

significantly lower than the 120,000 predicted sometime back (for discusssion, Ashurst and 

Collins, 2003; Ewing and Green, 2000; Liang et al., 2000). Although the number might 

seem to be low for a complex organism, the number of transcripts produced from these 

genes is quite high as a result of alternative promoters, splicing and polyadenylation. In 

humans, it is estimated that an average of 2.5 alternative transcripts are produced per locus 

(Ashurst and Collins, 2003). 

  

Until now, gene identification in the genomic sequence has been mainly focused on protein 

coding genes with less attention paid to pseudogenes, non-coding RNA genes and internal 

(embedded) genes. Non-coding RNA genes include an array of different types of regulatory 

RNA genes with newer types still appearing (Cawley et al., 2004; Mattick, 2001). 

 

Identifying, mapping and confirming the presence of these genes and different regulatory 

signals in the genomic sequence is referred to as annotation. This is done using an ensemble 

of different experimental and computational tools, with computational approaches usually 

facilitating the initial steps. Many gene prediction algorithms, such as Genewise (Birney and 

Durbin, 1997) rely on evidence from the alignment of EST, mRNA or protein sequences to 

the genome. Such algorithms generate accurate gene predictions, but only where expressed 

sequence data is available. Here, I am interested in ab initio methods that can predict from 

genome sequence alone. Ab initio gene prediction programs used in annotation can be 

broadly classified into comparative and non-comparative methods depending on whether 

they predict from an alignment of genome sequences or a single genome sequence. To date 

the majority of work was done using non-comparative ab initio algorithms and are based on 

different methods, namely neural networks (example programs include GRAIL (Uberbacher 

et al., 1996), GENEPARSER (Snyder and Stormo, 1995)), discriminant analysis (HEXON 

(Solovyev et al., 1995), MZEF (Zhang, 1997)) and hidden markov models (GENSCAN 

(Burge and Karlin, 1997)). Besides these, there are other old methods such as rule-based 
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methods (GENEID (Guigo et al., 1992), GENEFINDER (Wilson et al., 1990)), linguistic 

methods (GENLANG (Dong and Searls, 1994)) and decision trees (MORGAN (Salzberg et 

al., 1998)). Some programs were developed by combining different methods and GENIE, an 

example, combines hidden markov models and neural networks (Reese et al., 2000). Few 

other ab initio gene prediction programs, like QRNA, were developed to detect non-coding 

RNA genes (Rivas et al., 2001). Reviewing all these methods and programs is beyond the 

scope of this chapter and hence I refer the reader to these reviews (Mathe et al., 2002; 

Zhang, 2002). 

 

In general, ab initio gene prediction programs use sequence signals and coding measures to 

predict gene structures. Coding measure (a feature measured computationally but not used 

by the biological system) is the important component as it is likely to differentiate exons 

(coding sequences) from introns (intervening sequences). However, this limits the 

identification of pseudogenes and non-coding RNA genes and the performance of the gene 

prediction programs are poor even in simple cases (Rogic et al., 2001). So, a gene prediction 

program based purely on DNA regulatory signals is likely to overcome this problem. 

Towards this future objective, I attempt to develop prediction models that can efficiently 

detect signals from genomic sequence context. 

 

Before describing my research objectives, I devote the rest of this chapter to introduce the 

basics of gene structure, different regulatory signals in the DNA sequence and the process of 

transcription and translation. 

 

1.2 An overview of gene structure 

A typical higher eukaryotic protein coding gene, as depicted in Figure 1, has a defined 

promoter region with exons and introns splitting the transcription unit. Transcription 

initiates from a transcription start site and terminates a few hundred bases downstream of 

the cleavage site. Exon and intron boundaries are marked by the donor and acceptor splice 

site regions and on pre-mRNA maturation, introns get spliced out by the spliceosome 

complex. The 5’ cap and 3’ poly(A) tail added to the matured transcript play major roles in 

mRNA stability, export and translation initiation (Manley, 2002; Proudfoot et al., 2002). 

Processed and stable transcripts, exported to cytoplasm, are translated by the translation 

machinery in the cytoplasm with start and stop codon acting as its signals. Traditionally, as 
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noted in in vitro experiments, transcription, splicing, capping, polyadenylation, termination 

and export were considered to be independent of each other. However latest research 

suggests that all these processes occur co-transcriptionally with the carboxy-terminal 

domain (CTD) of RNA polymerase II playing a major role (for review see, Neugebauer, 

2002; Proudfoot et al., 2002). 

 
Figure 1. Schematic diagram showing (a) Typical gene structure of protein coding gene 
transcribed by RNA polymerase II (b) Matured RNA transcript with 5' cap and 3' poly(A) 
tail. 

1.3 Defining transcription termination 

Transcription termination has been defined to have two major steps: release of the transcript 

from the elongating polymerase and the dissociation of the polymerase complex from the 

DNA. An accurate and efficient system is required to pursue this function as the elongating 

polymerase would otherwise run-over into the adjacent transcription units. In yeast, many 

such cases have been reported in places where genes are closely spaced (Greger et al., 

1998). Also, terminating transcripts allow recycling of the polymerase and stops 

unnecessary transcription of intergenic regions. Various biological systems have been 

employed to understand this mechanism for many years now. All the results show 

termination can occur either depending upon bipartite or tripartite sequence components or 

on a stem-loop secondary structure basis. Here, I present a brief overview of the different 

termination systems identified so far. 
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1.4 Transcription termination in prokaryotes 

Most prokaryotic genes do not have introns and the DNA is not isolated as prokaryotes do 

not have nucleus. Therefore, coupled transcription and translation is a common mechanism. 

Also, unlike eukaryotes, prokaryotic genes are transcribed by a single RNA polymerase. 

 

Termination of transcription in prokaryotes is widely found to occur in two ways depending 

on the requirement of the protein factor, rho (reviewed in Henkin, 1996). In the ‘intrinsic’ or 

‘rho-independent termination’, a G+C rich stem-loop structure followed by a series of U 

residues at the end of the transcript, hinders the proceeding polymerase and thus pauses, 

destabilizes and releases from the DNA (Figure 2). In ‘rho-dependent termination’, the 

protein factor, rho hexamer binds to a rut (rho utilization) site on the 3’ end of the transcript. 

This RNA:protein interaction brings a change in the elongating polymerase resulting in the 

release of transcript and dissociation of polymerase by hydrolysing ATP as the energy 

source (Figure 3). 

 
Figure 2. Rho-factor independent transcription termination in prokaryotes. 



1.5 Transcription termination in eukaryotes 

  

6

 
Figure 3. Rho-factor dependent transcription termination in prokaryotes. 

 However, in both mechanisms, termination is due to pausing of RNA polymerase at a 

specific site followed by destabilization of the complex due to the formation of a 

RNA:DNA hybrid in the transcription bubble and changes in the processivity of the 

polymerase (Henkin, 1996). 

 

1.5 Transcription termination in eukaryotes 

Unlike prokaryotes, eukaryotic transcription termination is complicated as there are three 

different types of polymerases responsible for transcribing various types of RNA molecules. 

 

1.5.1 Polymerase I transcription termination 

Transcription termination of Polymerase I, that syntheses rRNA, is mediated by protein 

factors reb1p in yeast (Lang et al., 1994; Lang and Reeder, 1993) and TTF-I in mouse 

(Evers et al., 1995). Polymerase I terminator sequence has two components: a binding site 

for the protein factor and an upstream element that codes for the last 10-12 nucleotides of 

the terminated transcript (Figure 4). The reb1p/TTF-I factor binds the DNA sequence 

element in the correct orientation and pauses the elongating polymerase. This halt stimulates 

the release of the transcript and dissociation of the complex. TTF-I is also found to recruit 
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additional releasing factors for this process. However reb1p does not require any additional 

factors and the dissociation of the transcript depends only upon the instability of RNA:DNA 

hybrid in the active site of the polymerase due to stretches of A:U base pairing (Reeder and 

Lang, 1997). 

 
Figure 4. Structure of RNA polymerase I terminators from yeast and mouse. 

Reb1p binding site was also found to have partial pausing activity for Polymerase II in the 

forward orientation and no activity in the reverse orientation (Lang et al., 1994). 

 

Polymerase I gene terminators are found to behave as DNA replication terminators as well. 

Bi-directional replication forks proceeding from the nearby ori site are stopped by the 

barrier created with TTF-I:DNA interaction. This barrier function is orientation dependent 

but has opposite polarity to transcription termination (Gerber et al., 1997). However such a 

function is yet to be proved for yeast reb1p protein. 
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Polymerase I terminators are different from prokaryotic terminators as there are no 

inverted repeats and thus there is no hairpin structure formation and requirement of 

orientation-specific DNA binding proteins. 

 

1.5.2 Polymerase III transcription termination 

RNA Polymerase III responsible for transcription of tRNA, 5S rRNA and U6 snRNA can 

recognize termination sites accurately and efficiently without any requirement for protein 

factors (Cozzarelli et al., 1983) and bring about termination with a simple cluster of four or 

more T residues (Bogenhagen and Brown, 1981). However, efficiency of release of paused 

polymerase was shown to improve with the recruitment of PTRF factor. Attempts to prove 

the requirement of La auto-antigen in Polymerase III transcription termination remains 

inconclusive (Lin-Marq and Clarkson, 1998; Maraia et al., 1994; Yoo and Wolin, 1997). 

 

1.5.3 Polymerase II transcription termination 

RNA Polymerase II responsible for transcription of the remainder and vast majority of 

genes and is the subject of the work described in this thesis. 

 

Polymerase II transcription termination occurs at least in three different ways depending on 

the gene it is transcribing, namely, snRNA and snoRNA genes, histone genes and protein 

coding genes. Before embarking into the details of these mechanisms, it is necessary to 

understand the 3’-end processing signals of protein coding genes. 

 

The 3’-end processing involves an endonucleolytic cleavage of the nascent transcript and 

subsequent addition of poly(A) tail to the newly formed 3’-end. This process thought to 

occur for all transcribed genes along with capping and splicing of introns makes a nascent 

RNA matured. The 5’-cap and 3’-poly(A) tail have been found to have major roles in 

mRNA stability, export, translation initiation and other events. Endonucleolytic cleavage at 

the 3’-end of the transcript occurs at the  cleavage site that has a consensus sequence of CA 

dinucleotide (Sheets et al., 1990), flanked by a highly conserved poly(A) signal at the 12-30 

bases at the upstream region and U-rich and or GU-rich motif immediately at the 

downstream site (Zarudnaya et al., 2003) (Figure 5). In the majority of mammalian pre-

mRNAs, the poly(A) signal is found to be composed of AAUAAA or AUUAAA 
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(MacDonald and Redondo, 2002) and has been suggested to be required for effective 

splicing (Cooke et al., 1999) and transcription termination (Edwalds-Gilbert et al., 1993; 

Yeung et al., 1998) as well as for polyadenylation. The 160 kDa subunit of the cleavage and 

polyadenylation specificity factor (CPSF) binds to this hexamer element while the 64 kDa 

cleavage stimulation factor (CstF) binds to the U-rich sequence immediately downstream of 

the cleavage site. The binding of these factors is co-operative and each factor enhances the 

affinity of other factors towards its binding site. Once the processing site is recognized, two 

cleavage factors (CF I and CF II complex) get recruited and cleave the nascent transcript at 

the cleavage site. To the newly formed 3’-end, poly(A) polymerase (PAP) adds at least 250 

nucleotides of adenine. Poly(A) binding proteins (PABP II) bind to this stretch of adenine 

nucleotides which enhances the stability of the tail. Although release of the transcript occurs 

after the cleavage at the cleavage site, RNA polymerase does not get released from the DNA 

at this site, but several hundred bases downstream. 

 
Figure 5. Schematic representation of 3'-end processing signals in human and yeast. 

Determining the exact position of the polymerase release has been a challenge to study as 

the 3’-end product of the cleavage has very short half-life and the maturation of the 3’-end 

of the transcript (cleavage and polyadenylation) occurs co-transcriptionally. Fortunately, 

nuclear run-on assay can trap such nascent transcripts and help in analyzing transcription 

termination. 

 

In the nuclear run-on technique, the nuclei transcribing a specific gene is isolated and 

allowed to incubate with radiolabelled ribonucleotide triphosphates for incorporation in the 
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newly synthesized RNA molecules. This labeled nuclear RNA is then purified and 

hybridized to Southern blots of DNA probes carrying the gene sequence. The hybridization 

techniques equate directly to the polymerase density at the position of the probe and hence 

the point at which signal is no longer detectable corresponds to the site of termination. A 

gradual decrease in polymerase density always occurs downstream of the cleavage site. 

However in many instances before this decrease, a short higher polymerase density site is 

noticed. This is referred to as the pause site. 

 

Now it is understood that transcription termination requires the 3’-end processing signals 

and a pause site. However 3’-end maturation does not require termination of the transcribing 

polymerase. In fact, both transcription termination and 3’-end processing processes are 

found to be coupled in vivo (Birse et al., 1998; Dichtl et al., 2002b) and are largely 

facilitated by the carboxy-terminal domain (CTD) of rpb1, the largest sub unit of 

Polymerase II. 

 

Existence of pause site for termination has not been thoroughly accepted and there have 

been studies showing termination occurring without any requirement of pause site and with 

sole perturbation by poly(A) signal (Orozco et al., 2002). However, several attempts have 

been made to identify consensus pause elements that are responsible to create a transient 

pause and thus enhance poly(A) signal recognition and termination. 

 

Earlier studies identified an orientation-specific CCAAT element in the adenovirus late 

promoter that recruits CP1 protein and effectively terminates transcription from upstream 

genes (Connelly and Manley, 1989a, b). In yeast, Yhh1p, a subunit of CPF complex was 

identified to play this role (Dichtl et al., 2002b). 

 

In Saccharomyces pombe, both ura4 and nmt2 are found to possess downstream sequence 

elements that induce termination. These sequence elements are orientation specific and are 

composed of multiple and redundant signals. One of the sequence elements found in ura4 

gene having pause activity, has two copies of pentanucleotide ATGTA with the last GTA 

playing an important role for binding an unknown factor responsible for pausing. However 

in the nmt2 gene, the pause elements are less compact and there is no homology with ura4 
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gene elements (Aranda and Proudfoot, 1999; Birse et al., 1997). Similar pause sites were 

also found in α-globin genes and C2 and factor B genes (Yonaha and Proudfoot, 2000). 

 

A detailed run-on assay in the mouse β-major globin gene identified a 69 bp AT-rich 

sequence that is active based on its position from the cleavage site (Tantravahi et al., 1993). 

A similar experiment in human β-globin gene showed that a region 900 to 1600 bp 

downstream of the transcript cleavage site is essential for termination. Interestingly, it was 

also found that more cleavage of the nascent transcript occurs at this downstream 

termination region apart from the original cleavage site. These cleavages are termed as co-

transcriptional cleavage and found to be necessary in addition to the 3’ end processing 

signals for polymerase pause and release. However co-transcriptional cleavage was found to 

occur independent of 3’ processing signals and thus deleting termination region does not 

affect 3’ processing and vice versa. Nuclear run-on assay repeated on ε-globin genes found 

that the termination region is more diffuse than for the β-globin gene. Nevertheless the 

region is found to be as AT rich as the mouse globin gene, although the human region is 

longer (Dye and Proudfoot, 2001). Likewise, an A-rich 92 bp sequence at the 3’ flanking 

region of human α2 globin gene is found to improve efficiency of upstream signals and thus 

processing events (Enriquez-Harris et al., 1991). 

 

Transcriptional studies in the intergenic region between human complement C2 and B genes 

showed the sequence element, GGGGGAGGGGG and the zinc-finger regulatory protein, 

MAZ that binds the sequence, can effectively stop transcription run-over from upstream 

genes and bring termination (Ashfield et al., 1991). An upstream sequence element, mainly 

U-rich, was also found in human complement factor C2 and Lamin B2 gene (Moreira et al., 

1998). 

 

Thus these experiments define various signals (CCAAT, ATGTA, AT-rich sequence, A-rich 

sequence and G-rich sequence) and factors (CP1, SP1 and MAZ) responsible for 

polymerase II transcription termination. 
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1.5.4 Computational detection of transcription termination signals 

Apart from the experimental evidences mentioned above, a few related computational 

studies were also conducted around 500 bp upstream and downstream of cleavage and 

transcription start sites. Analysis on the cleavage site regions showed the common signals 

AATAAA and GT-rich sequence elements along with other signals. Prominent among them 

is CCCC, CCCTC and CCTCCC motifs. These motifs were also found peaking at -75 base 

pair and -200 to -100 bp upstream of transcription start site. Similarly the frequency of A4 

and G4 motifs is higher before transcription start sites and after cleavage sites. Thus homo-

oligomers A4-5, G4-5, T4-5 and C4-5, C3-4 interspersed with T (CCCTC and TTCTT) and 

alternations of T and G (TGTGT) and GGAGG are found peaked around the 5’ and 3’ ends 

of genes (Nussinov, 1986a, b). Among all these signals, GTG/CAC and CTC/GAG DNA 

sequences are more interesting as they are frequently encountered in the regulatory DNA 

sequences and are likely target sites for several regulatory protein factors (Nussinov, 

1986a). Another interesting result showed complementary signals on the same DNA strand 

have asymmetry behavior, i.e. the TGTGT peak patterns do not need to be the same for its 

complementary sequence, ACACA. This is more pronounced for complementary homo-

polymers around transcription start site and cleavage site. This suggests some directionality 

in DNA bending and orientation-specific recognition by protein factors (Nussinov, 1986a). 

Similar signals were found in non-mammalian vertebrate DNA sequences as well 

(Nussinov, 1986b). 

 

In another study (Nussinov, 1987) it was found that the distribution of the nucleotides 

showed opposite trends around the mammalian gene 5’ and 3’-ends i.e., R6 motifs (stretch 

of 6 purine residues) are found more frequently before transcription start sites, whereas Y6 

motifs (stretch of 6 pyrimidine residues) occur less frequently. In the 3’ termini, Y6 are less 

just before the end and R6 motifs are more following it. In the non-mammalian vertebrate 

genes, these conditions are more pronounced. Two Y6 peaks found at the 3’ termini might 

be due to poly(C) and poly(T) residues. The R6 peaks in the gene upstream might be due to 

high concentration of AGGG and GGGC and to a lesser extent of A4. This G runs might 

contribute to the bendability feature of the DNA molecule  (Figure 6, reproduced from 

Nussinov, 1987). 
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Figure 6. The nucleotide distribution of Y6 and R6 runs around transcription initiation and 
cleavage site. (a), (b) shows distribution in vertebrate mRNAs while (c) and (d) in mammals. 

Although all these studies show that RNA polymerase II transcription termination signals 

are quite complicated, in general the system appears to work mainly based on two sequence 

components: 3’-end processing signal and pause sites. However these are not universal for 

all Polymerase II transcribed genes, as alternatives are found in histone and snRNA genes. 

 

Histone genes are not spliced and the majority are not polyadenylated. The mature 3’-end of 

the transcript is formed by the endonucleolytic cleavage of the primary transcript and 

polymerase terminating in the A-rich sequence flanking the 3’-end (Briggs et al., 1989). 

This cleavage is enacted by the stem-loop structure formed upstream of the cleavage site 

(roughly, 600 bp in case of H2A gene). The sequence at the stem-loops are well conserved 

with GGYYYU  in the stem followed by a four-base loop, UYUN and the complementary 

sequence ARRRCC (Lanzotti et al., 2002). Specialized protein factors called SLBP bind to 

this structure and stabilize the transcript mimicking the role of a poly(A) tail (Johnson et al., 

1986; Lanzotti et al., 2002; Zanier et al., 2002). The cleavage site efficiency is improved by 

a downstream element interacting with the U7 snRNP. Thus, both SLBP and U7 snRNP 

together recruit a complex capable of performing pre-mRNA processing reactions. 

 

Polymerase II termination in snRNA genes require a 3’ box element located 9-19 nt 

downstream of the end of the nascent transcript. U1 transcripts terminate just after the 3’ 
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box whereas U2 snRNA nascent transcripts are found up to 250 nucleotides downstream. 

These results show a 3’ box, a RNA processing signal and a downstream signal where 

interaction between protein-DNA leads to termination (reviewed in, Hernandez, 1992). 

HeLa cells with transfected constructs of 3’ box and downstream sequence elements 

confirmed the termination activity of these signals (Cuello et al., 1999). This mechanism 

sounds similar to the mRNA bipartite termination process, requiring RNA processing 

signals and the termination elements. 

 

However, poly(A) signal or 3’ processing signals are not essential for all cases of 

termination and recently it was reported in yeast that there is poly(A)-independent 

Polymerase II termination mechanism for snRNA and snoRNA genes with protein factors 

Nrd1 and Nab3 complex, Sen1 helicase and the CTD domain of Polymerase II (Steinmetz et 

al., 2001). 

 

1.5.5 Transcription termination models 

Based on the available experimental evidence, three different models of Polymerase II 

transcription termination have been proposed. 

 

(i) In the ‘RNA cleavage’ or ‘torpedo’ model, cleavage occurs firstly at the cleavage site, 

leaving two products: the upstream RNA later forming a matured transcript and a 3’ 

product still attached to the elongation complex. Rapid degradation of this 3’ product by 

the 5’→3’ exonuclease aided by helicase, ‘catches up’ the elongating polymerase and 

triggers termination (Proudfoot, 1989). However, recent evidences suggests cleavage is 

not necessarily required for termination to occur (Osheim et al., 1999). 

 

(ii) In the ‘polymerase change’ or ‘anti-terminator’ model, Polymerase II complex upon 

passage and recognition of poly(A) signal, undergoes conformational changes in the 

complex making it termination competent; this results in pause and release from the 

DNA (Logan et al., 1987). 

 

(iii) Recent experiments show that both these models are not mutually exclusive and a 

combination of both might exist (Proudfoot et al., 2002). In the combined model, a co-

transcriptional cleavage occurs at the downstream termination site first, with still 
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interaction between the CTD of the polymerase and 3’ end processing signals 

remaining active. Subsequently, ‘polymerase change’ occurs in this interaction leading 

to cleavage at cleavage site and polymerase release. 

 

1.6 Splicing and transcription 

Recent experiments have clearly indicated that transcription and mRNA processing occur 

together and all the steps in the mechanisms are linked with each other, with the CTD of the 

RNA Polymerase II itself playing a major role. Therefore it is important to know about the 

splicing process, where intervening sequences were removed from the pre-mRNA to form 

mature mRNA, ready for translation. 

 

1.6.1 Splicing mechanism 

Exons and introns are determined by their boundary sequences with definite consensus 

patterns. Introns predominantly start with GT and end in AG dinucleotide. Figure 7 

(reproduced from www.sanger.ac.uk/HGP/Chr22/cwa_archive/splice_site_analysis.shtml) 

shows the nucleotide distribution calculated from 3,673 introns from human chromosome 

22. These predominant splice signals are called canonical splice sites and they form the 

basis for the GT-AG splicing rule (Mount, 1982). However, apart from the GT-AG rule, 

other intron boundaries, GC-AG and AT-AC, were also reported (Burset et al., 2001). Also 

along with the splicing boundary signal, another consensus pattern called Branch Point 

Sequence (BPS) was found to be present upstream of AG dinucleotide and shown to be 

required for the splicing process. 

 
Figure 7. Nucleotide Distribution at Donor and Acceptor site analysed from 3,673 introns 
from human chromosome 22 
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Splicing of introns is mediated by a mega-Dalton RNA-protein complex formed with 

snRNA (small nuclear RNA) and around 50 to 100 protein molecules. The details of this 

complex mechanism is beyond the scope of this chapter, however, I will briefly cover some 

important aspects of the splicing process (Figure 8). 

 
Figure 8. Splicing mechanism where introns are spliced and exons are linked. 

The splicing of an intron from a nascent RNA is a two step process requiring two distinct 

trans-esterification reactions. Initially, cleavage occurs at the donor splice site (the site 

where introns start) facilitating the first base of the intron to form a lariat structure with the 

BPS signal present upstream of the acceptor site (the site where introns end). This step is 

referred to as branching. Next, a new phosphodiester bond is formed between the last base 

of the upstream exon and the first base of the downstream exon. The intron is then released 

(Jurica and Moore, 2003). These reactions occur within the spliceosome complex, 
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responsible for recognizing splice sites and catalyzing the reactions. The spliceosome is 

largely made up of five RNA-protein complexes known as small nuclear ribonucleoproteins 

(snRNPs). 

 

Before cleavage at the donor site, the signals at this site are recognized by U1 snRNP with 

the formation of commitment complex (E complex). This process does not require any 

energy component like ATP and it was noted recently that the step is not a strict 

requirement, as introns were found spliced efficiently in vitro even in the absence of U1 

snRNP (Crispino et al., 1996). A key role of U1 snRNP complex is to promote the 

association of U2 snRNP complex with the BPS signal. This interaction is dependent on two 

other interactions – U2AF65 with the polypyrimidine tract of the BPS and U2AF35 with the 

intron terminal AG dinucleotide (reviewed in Reed, 2000).  This step is an ATP dependent 

process where six proteins, including DEAD box protein UAP56 and components of 

essential splicing factors, SF3a and SF3b, bind either upstream or downstream of the BPS. 

The association of U1 and U2 snRNPs defines complex A. 

 

Association of the tri-snRNP complex containing U4, U5 and U6 snRNPs with the complex 

A is required to form complex B. This interaction was recently found to be promoted by the 

splicing factor SPF30 although this transition remains poorly defined (Rappsilber et al., 

2001). This tri-snRNP complex interacts with the donor and acceptor splice sites, recruits 

other factors including the highly conserved Prp8 protein, and forms the catalytic core of the 

spliceosome (reviewed in Jurica and Moore, 2003). Although the complete role of this 

catalytic core is under investigation, it is understood that the tri-snRNP brings about a series 

of RNA-RNA rearrangements, with the displacement of U1 snRNP from the donor splice 

site by U6 snRNA, creating the catalytically competent C complex. These rearrangements 

have been found to be directed by an RNA helicase of the DExD/D box protein family 

(Schwer, 2001). 

 

The catalytically competent C complex facilitates the second trans-esterification reaction 

between the upstream and downstream exon with the excision of the spliced intron and 

mature mRNA.  
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In yeast, branching occurs with an almost invariant BPS signal UACUAAC (with branch 

A in bold letter), 20-30 nucleotide upstream of the acceptor splice site. The mammalian BPS 

is less well conserved but generally conforms to the consensus YNYURAY signal. 

Recognition of BPS is mediated by base pairing of an invariable sequence in U2 snRNA. It 

has been suggested that the Branch Point (BP) nucleotide is bulged out from this RNA 

duplex and this may activate the 2’ hydroxyl group for nucleophilic attack. The natural BP 

nucleotide is adenosine; however, exceptions have been reported. For example, branching of 

the first intron of the human growth hormone gene and the third intron of the human 

calcitonin/CGRP gene occur mainly at a cytosine and uridine residue respectively (Adema 

et al., 1988; Hartmuth and Barta, 1988). 

 

Branching in higher eukaryotes requires other elements found near BP nucleotide. In 

human, the branch sites map 18-37 nucleotide upstream from the highly conserved AG 

dinucleotide separated by a polypyrimidine tract of variable length. The length and uridine 

content of the tract are important factors for branching. At a very early step in spliceosome 

assembly (complex E formation) the U2AF65 and SF1 bind the polypyrimidine tract and the 

BPS signal. SF1 recognizes primarily the two most conserved nucleotides in the BP 

sequence YNYURAY.  In addition, a direct interaction between SF1 and U2AF65 has been 

demonstrated that may account for the coupled recognition of the BP sequence and 

polypyrimidine tract. 

 

For the second trans-esterification reaction, the conserved AG dinucleotide, at the acceptor 

splice site, plays a highly important role and usually the first AG dinucleotide downstream 

of the BPS is generally used. This is probably selected by a scanning mechanism. 

 

The limiting step in the whole splicing process lies in the recognition of the intron itself. In 

yeast, where introns are short, the spliceosome is thought to form directly on the intron 

through the process of intron recognition (Talerico and Berget, 1994). However, in human, 

where short exons are interrupted by long introns, recognition is thought to be based on an 

alternative model called exon recognition (Berget, 1995). Recognition in both models 

involves splicing associated SR proteins, which play a major role in bringing spliceosome 

components together (Graveley, 2000). 
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The splicing process explained so far obeys the normal GT-AG rule and the spliceosome 

is referred to as the U2-type. However, there is another set of donor and acceptor sites, 

which displays the AT-AC rule. These splice sites are utilized by a distinct spliceosome 

called U12 spliceosome that contains U11, U12, U4atac, U6atac and U5 snRNPs (Tarn and 

Steitz, 1996, 1997). Interestingly, U12-dependent system is lacking in Saccharomyces 

cerevisiae and Caenorhabditis elegans. 

 

Distinct differences have been observed between U2- and U12-dependent types of introns. 

U12-dependent signals exhibit strongly conserved and informative donor and branch signals 

whereas U2-dependent ones exhibit only moderately informative signals at the donor and 

acceptor sites and a highly degenerate BPS. Additionally, the polypyrimidine tract found in 

U2-dependent introns is either not present or weaker in U12-dependent introns (Will et al., 

1999). 

 

However, both the systems are not entirely independent of each other and are often found to 

evolve together. Recent results have found a strikingly high degree of similarity of overlap 

between the proteins and non-coding RNAs of both systems. These include U5, Prp8, 8 

snRNP Sm proteins, SF3b components and SR proteins. Moreover similarity in secondary 

structures and interactions between the set of non-coding RNAs U11, U12, U4atac and 

U6atac and the set of U1, U2, U4 and U6 in U2-dependent systems argue that both the 

systems are homologous to each other (Hastings and Krainer, 2001; Schneider et al., 2002; 

Will et al., 2001; Will et al., 1999).  

 

1.6.2 Roles of splicing 

In transcription: The role of introns in the genome and their probable function has been a 

fascinating area of study for quite sometime. Along with other functions reported, introns 

are considered to be a rich source of regulatory elements with the first introns having most 

elements (for details see, Le Hir et al., 2003; Mattick, 1994; Salamov et al., 1998a). For 

example, the 280 nucleotide regulatory elements in the first intron of the c-myc gene blocks 

transcription elongation (Pan and Simpson, 1999). In mice, intronless transgenes are 

transcribed 10-100 times less efficiently than their intron-containing counterparts (Brinster 

et al., 1988; Le Hir et al., 2003). In yeast, promoter proximal introns enhance transcription 
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initiation with the association of U1 snRNA and initiating factor, TFIIH (Kwek et al., 

2002).  

 

The role of CTD of RNA polymerase on the recruitment of processing factors and mRNA 

maturation has been well established. However, with the latest studies it was shown the 

communication actually goes both ways, with the assembling spliceosome providing 

positive feedback to the polymerase. The tat-specific factor (TAT-SF1) recruited on newly 

transcribed introns interacts with the kinase, pTEFb, capable of phosphorylating the C-

terminal domain. This increased CTD phosphorylation is necessary for both promoter 

clearance and efficient transcription elongation. 

 

Similarly, the interaction of spliceosome component with cap binding complex and poly(A) 

processing factors enhances the recognition of the 5’ most and 3’ most introns respectively. 

In vitro studies show an upstream 3’-splice site can significantly enhance use of a 

downstream polyadenylation site, and a downstream polyadenylation site can, likewise, 

increase excision of the 3’-most intron (Proudfoot et al., 2002). Protein-protein interaction 

experiments confirm that both the snRNP protein U1A and SRm160 (SR-related matrix 

protein of 160 kDa), a splicing co-activator, interacts with the cleavage-polyadenylation 

specificity factor, CPSF 160. Furthermore, interactions between the C terminus of poly(A) 

polymerase and the splicing factor U2AF65 and U1A can enhance upstream 3’-splice site 

recognition (Vagner et al., 2000). 

 

These interactions between splicing and transcription components are not only related 

physically but temporally too. In α-TM, constitutive splicing factors bind to the splice site 

signals of exon 3, committing it to the normal splicing pathway. In regulated splicing, an 

alternative set of factors are thought to bind to the URE and DRE in the flanking introns, 

forming an inhibitory complex for constitutive splicing. Delaying the transcription of the 

DRE element through the introduction of some spacer sequences and hindering the 

regulated splicing complex formation, and removed the inhibitory effect. This indicates that 

on transcription, splicing factors along with its regulators are available and the decision for 

constitutive or regulated transcription can occur due to the lag between the transcribing 

polymerase and splice site and the relative distance between competing elements. Thus, the 
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rate of transcription and the pausing of the polymerase while transcribing might decide 

the processing pathways (Roberts et al., 1998). 

 

In translation: In Xenopus, splicing was reported to influence translational efficiency as 

well without significantly altering the steady-state cytoplasmic mRNA levels. When a 

mature mRNA is injected directly into oocyte nuclei, it is translationally repressed after 

export to the cytoplasm. This repression can be overcome with a spliceable intron in the 3’ 

UTR. Splicing can apparently enable an mRNA to escape masking of mRNPs and to 

actively engage ribosomes (Braddock et al., 1994).  In another experiment, Matsumoto et al 

found that an intron placed in the 5’ UTR was highly stimulatory, whereas the same intron 

placed in the 3’ UTR repressed translation to below the level of the corresponding intronless 

mRNA (Matsumoto et al., 1998). 

 

In pre-mRNA processing: Apart from influencing transcription and translation processes, 

adjacent introns in a pre-mRNA affect one another’s splicing efficiency too. Results from 

related experiments form the basis for an exon recognition model, which depicts that the 

acceptor splice site of an upstream intron helps to increase the efficiency of recognition of 

the donor splice site of a downstream intron through components of the splicing machinery 

and vice versa. The interactions, which link the upstream acceptor splice site and the 

downstream donor splice sites, involve U1 snRNP and U2AF65 and these are thought to be 

mediated by SR proteins. SR proteins generally possess one or two RNA-binding domains 

(recognition motifs, RRM) and an arginine-and-serine rich region (the RS domain). RRMs 

often target SR proteins to exonic splice enhancers. The RS domain then appears to provide 

a molecular ‘glue’ allowing RS-RS interactions between interacting factors and thus 

facilitating the recognition of intron-exon boundary by the splicing apparatus (Graveley, 

2000). 

 

These SR proteins are also found associated with the CTD and are either referred to as 

CTD-associated SR-like protein or SR-like CTD-associated factor. The heptad-repeat 

sequence of CTD is micro-heterogeneous and that might result in different levels of 

phosphorylation and affect significant levels of SR-protein interaction with CTD (Graveley, 

2000). 
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Transcription and Splicing Rate: Using a well-documented alternatively spliced intron 

from the highly intronic gene for fibronectin, it was shown that different types of promoters 

initiate various splicing pattern of transcripts (Cramer et al., 1997). Over expressing various 

SR proteins are also found to affect the splicing patterns, sometimes antagonizing the 

promoter effects (Cramer et al., 1999). These results are consistent with a model in which 

SR-protein interactions with the CTD are set up early in the transcriptional initiation 

process. Also, the correlation between transcriptional rate and splicing was also shown 

previously (Roberts et al., 1998). When transcription slows down its rate on specific parts of 

the gene, it might influence the splicing patterns of nearby exon sequences. Thus these 

results emphasize, mRNA processing and transcription are interlinked. 

 

With this understanding, it is clear that analyzing the splicing mechanism is imperative 

while discussing RNA polymerase II transcription and translation. 

 

1.6.3 Computational detection of splicing signals 

Consensus signals for splice sites were quickly recognized and were used to determine the 

gene structure. However, it was recognized later that many functional splice sites shared 

only a few bases of similarity and more sophisticated models were required. 

 

Simple independent weight matrices or frequency tables that yield a probabilistic log-odds 

score for each base at each position in a sequence were initially developed and they are still 

used extensively (Staden, 1984). Weight matrices were derived from a training set of true 

sites to generate the frequency table and then score potential sites by summing the scores of 

individual bases in a pre-defined window. This was improved with the incorporation of 

first-order dependencies into the weight matrix framework (Zhang and Marr, 1993). 

 

The next set of improvements came with the components of a successful gene prediction 

system GENSCAN (Burge and Karlin, 1997). It uses a maximal dependence decomposition 

approach, where the donor sites are broken into a set of classes based on dependencies 

between bases in the splice site signal and then uses a simple weight matrix to model each 

class individually (Burge, 1998). For acceptor sites, it uses a windowed weight array 

method, which models BPS region using a modification of first-order dependencies 
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approaches that groups sets of neighboring bases together in order to avoid problems 

caused by limited data. 

 

Later, multiple signals were used to identify splice site regions. GeneSplicer (Pertea et al., 

2001) combines a traditional log-odds score based on a slight variant of maximal 

dependence decomposition, a measure of local coding potential and a local optimality 

requirement. But this approach did not yield improved results. 

 

Another approach was used to identify precise splice sites from among a number of nearby 

or proximal false positives. This approach used a decision tree to discriminate true and false 

sites and may prove useful for annotation purposes (Thanaraj, 2000). However, these 

models produce too many false positives per kb. Typically, if thresholds are set to detect 

99% TP, then 12 FP per kb and for thresholds to include 95% TP, 6 FP per kb were reported 

(Levine, 2001a). 

 

EST sequences have also been used to confirm the site signals on a large scale basis and in 

analysis of canonical and non-canonical introns (Burset et al., 2000), though their use means 

the algorithm is no longer truly ab initio. 

 

As an attempt to improve previous methods, another program, Stratasplice (Levine, 2001a) 

was developed in which true and false positives were differentiated using the base 

composition near the splice signals. The local GC content with a first-order dependence 

weight matrix combination model is used by the predictor to predict the human splice sites. 

This resulted in better prediction of splice sites of genes in GC-rich sequences. 

 

However, all the programs developed so far, are limited in that they produce excessive false 

positives when applied on a genome scale. Hence, I attempt to develop a few splice site 

models that will do fairly on the genomic sequence and will complement the transcription 

termination predictor in identifying real transcription terminators. 

 

1.7 Transcription and translation 

The protein coding mRNA, transcribed by RNA polymerase, is later used for coding for 

protein synthesis by a process called translation. Transcription and translation are coupled 
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in prokaryotes where there is no defined nucleus or nuclear membranes to separate 

genetic material from the cytoplasm. However, in eukaryotes it is traditionally believed that 

these processes occur separately with the transcribed RNA product processed and exported 

to the cytoplasm where the translation occurs. Also, it is often suggested that the membrane 

evolved to segregate splicing and translation so that they do not interfere with each other. 

This understanding was recently challenged with the recent finding of nuclear translation in 

mammalian cells (Hentze, 2001; Iborra et al., 2001). Three types of evidences supported the 

possibility of coupled transcription and translation in the eukaryotic cell just like in bacteria. 

(i) Nuclei contain all the components required for protein synthesis, (ii) Isolated nuclei can 

incorporate radiolabelled amino acids to make new protein molecule and (iii) Nonsense-

mediated Decay (NMD), which  is responsible for degradation of transcripts with 

termination codon near to the 5’-end support the transcription and translation coupling in 

eukaryotic nucleus (for details see, Hillman et al., 2004; Iborra et al., 2004). NMD, which 

mostly occurs in the cytoplasm, is also found in the nucleus and this poses a challenge to the 

current consensus. However, this phenomenon can be explained if some translation occurred 

within nuclei by the protein machinery present within the nuclei. So, the present model is 

that ribosomes are assembled within nucleoli and are exported to both nucleoplasm and 

cytoplasm, where they associate with transcripts and become active. Some nuclear 

ribosomes are incorporated into the transcription factories and proof-read the newly made 

transcripts as they emerge from polymerases. Any pre-mature codon in the transcript would 

trigger the NMD pathway and degrade the transcripts with nearby proteasomes. If no 

premature stop codons are found, the transcript would be exported to the cytoplasm where it 

could support multiple translation initiations. Thus, there is evidence that transcription and 

translation mechanisms are interlinked, so understanding translation signals and modeling 

them may complement the transcription start site and termination models in predicting the 

gene structure. 

 

One of the mechanisms by which pre-termination codons are incorporated in the transcript 

is a frame shift splicing mechanism, and this triggers the NMD pathway (Lewis et al., 

2003). This leads to the understanding that identifying translation termination codons will 

help to legitimate the correct splice sites and screen out the numerous splice site-like signals 

from the genomic DNA. Thus, translation models may supplement other models in 

predicting genes in the genomic DNA. 
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1.7.1 Translation mechanism 

Explaining the translation mechanism in detail is beyond the scope of this thesis. So I will 

give a brief overview of the mechanism in prokaryotes and eukaryotes instead. 

 

1.7.1.1 Translation initiation 

The translation initiation mechanism in prokaryotes differs from that in eukaryotes and the 

process in both is more than a mere assembly of protein components. The initiation phase 

sets the reading frame which is normally maintained throughout all subsequent steps in the 

translation process. Moreover, protein synthesis is regulated at the level of initiation, which 

adds to its importance. 

 

Initiation in prokaryotic polycistronic mRNA is usually selected via base pairing with 

ribosomal RNA. This initiation is regulated by cis- and trans-acting signals. In eukaryotes, 

translation initiation sites are reached via a scanning mechanism from the AUG codon near 

to the 5’ end of mRNA. However there are also other mechanisms through which initiation 

can occur. These are context dependent leaky scanning, reinitiation and internal initiation 

where translation initiation is directed from an AUG that is not the nearest to the 5’ end (for 

details refer, Gray and Wickens, 1998; Kozak, 1999, 2001; Kozak, 2002; Pain, 1996; 

Sonenberg and Dever, 2003).  

 

At the start codon, the 30S ribosomal subunit forms an initiation complex with a special 

form of tRNA (fMet-tRNA) and a GTP-binding protein IF2. IF1 and IF3 stabilize the 

binding of fMet-tRNA·IF2·30S complex and thus initiate polypeptide chain formation with 

addition of methionine. AUG is the common initiator codon because it forms a stable 

interaction with CAU anticodon in fMet-tRNA. GUG and UUG are also used as start 

codons in >10% of bacterial genes. AUU codon is used in a single Escherichia coli gene. 

The initiation phase is completed with the 50S ribosomal subunit forming a 70S unit with 

fMet-tRNA occupying the P-site of the ribosome. 

 

Start codons in prokaryotic mRNA are distinguished by an upstream purine-rich sequence 

that pairs with a complementary sequence in the 16S rRNA component of the small 
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ribosomal subunit. This sequence, called the Shine-Dalgarno (SD) sequence, consists of 

three to nine contiguous bases in the mRNA that form standard base pairs (not including 

G·U) with bases from 1534 to 1542 (ACCUCCUUA) at the 3’-end of 16S rRNA. This SD 

interaction augments initiation by anchoring the 30S subunit in the vicinity of the start 

codon. Apart from the SD signal present nearby the start codon, several trans-acting signals 

and factors have been reported. However, the SD sequence is not essential in all initiations 

as some AUG codons are found to initiate without SD augmentation. Similar cases were 

reported for chloroplast mRNAs as well. In these cases, the SD sequence is generally 

considered to be substituted by a low GC content (hence minimal secondary structure) in the 

5’ UTR region (for review see, Kozak, 1999). 

 

Efficient formation of initiation complexes requires the sequence immediately preceding the 

SD element to be devoid of any secondary structure. Some additional sequence elements 

present downstream of the AUG codon might substitute for the main SD element. These 

elements have patchy complementarity to 16S rRNA and include weak G·U pairings and so 

their significance remains inconclusive. Many prokaryotic mRNAs are polycistronic and 

ribosomes translating the first open reading frame will often, upon termination, slide a few 

bases upstream or downstream to reinitiate at the next start codon. 

 

The eukaryotic mechanism differs with the 40S ribosomal subunit entering near the 5’ end 

and sliding its way to identify the first AUG codon, which is recognized by base pairing 

with the anti-codon in Met-tRNAi. AUG is the most common initiating codon; however, 

ACG and CUG codons are also used. Methionine is the first amino acid even when the first 

codon is other than AUG. Eukaryotic initiation depends on the m7G cap added to the 5’ end 

of mRNA molecule. In vertebrate mRNAs, the initiation sites has a consensus sequence of 

GCCRCCAUGG with R (purine, mainly A) and G at -3 and +4 positions showing more 

active role (Iida and Kanagu, 2000; Kozak, 1987). Poly(A) tail and 3’ UTR might also 

influence translation initiation (Figure 9). 
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Figure 9. Translation initiation in eukaryotes 

Leaky scanning allows 40S ribosomal subunits to by-pass the first AUG codon and initiate 

instead at the second or rarely at the third AUG codon. This is mainly due to sub-optimal 

context near to the first AUG codon. There is some evidence that initiation can occur with 

non-AUG codons as well. Re-initiation in eukaryotes occurs if the initiation complex gets 

terminated at some distance near to the 5’ end. Scanning then continues until the next 

authentic AUG is reached. IRES (Internal Ribosome Entry Site) is another mechanism, 

wherein translation of mRNA occurs from an internal initiation site (Houdebine and Attal, 

1999). 

 

1.7.1.2 Translation termination 

Translation termination is due to stop codons in the mRNA sequence. When a stop codon 

has been translocated into the ribosomal A-site by the action of elongation factor EF-G or 

eEF2, a cleavage of the ester bond between the peptide and tRNA moieties of the peptidyl-

tRNA complex occurs at the peptidyl transferase centre of the ribosome. In prokaryotes, 

termination involves two different release factors recognizing UAA/UAG and UAA/UGA 

respectively, whereas in eukaryotes all the three stop codons are recognized by a single 

release factor. Eukaryotic release factor binding to the ribosomal A site is GTP dependent 
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and RF3·GTP binds at this site when it is occupied by a termination codon. Then, 

hydrolysis of the peptidyl-tRNA ester bond, hydrolysis of GTP, release of nascent 

polypeptide and deacylated tRNA and ribosome dissociation from mRNA ensue (Kisselev 

and Frolova, 1995) (Figure 10). 

 
Figure 10. Translation termination mechanism mediated by release factors 

Translation termination efficiency was found to be improved by the local context in yeast 

genes. The consensus sequence, CA(A/G)N(U/C/G)A, located downstream of the stop 

codon base pairs with the regions close to helix 18 and 44 of the 18S rRNA for augmenting 

translation termination efficiency (Namy et al., 2001). In higher eukaryotes, the stop codons 

are biased towards purines (Cavener and Ray, 1991). Also, the CpG dinucleotide patterns 

present immediately downstream of the stop codons are significantly suppressed (Cavener 

and Ray, 1991). 

 

The downstream context also plays a detrimental role for the UGA triplet in deciding 

whether it is used as a termination codon or selenocysteine codon. 

 

Analysis of full length RIKEN mouse cDNA and eukaryotic UniGene clusters (Ozawa et 

al., 2002) showed the following results – 

 

(i) The occurrence of guanine at position +1 (immediately after the stop codon) was high in 

mammals. Adenine was high at this position in plants and Zebrafish. 

(ii) The occurrence of cytosine at position +1 was low in plants. 

(iii) The occurrence of cytosine at position +4 was high in mammals. 
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(iv) The occurrence of cytosine at position +2 was high in plants. In human positions +2, 

+3, +4, +7 and +13 after stop codons have some information content. 

 

Apart from DNA signals, protein factors also influence translational efficiency. PABP1 

interacts with initiation factors eIF4G and eIF4B and promotes the synergistic effect of 

having both a cap and poly(A) tail on translation efficiency. The translation termination 

factor eRF3 also interacts with PABP1 and so could relay information from the termination 

complex to both ends of mRNA and thus regulate subsequent translation initiation (Cosson 

et al., 2002). 

 

1.7.2 Computational detection of translation signals 

Identifying translation start sites depends on the consensus signals identified near to the 

initiator codon. Several attempts have been made to correctly identify the translation start 

site and to screen true sites from the false sites in the genomic DNA. 

 

In 1987, Kozak developed the first weight matrix from an extended collection of vertebrate 

mRNA data (Kozak, 1987). The consensus motif derived from the matrix is 

GGGACCATGG, where a single G nucleotide following the ATG codon and three A 

nucleotides upstream are two highly conserved positions. 

 

Later prediction methods took the nucleotide context in the vicinity of the start site as well. 

These include the positional conditional probability matrix (Salzberg, 1997) and generalized 

second-order profile models (Agarwal and Bafna, 1998). In the Agarwal and Bafna model, 

an algorithmic idea of the ribosome scanning model was implemented. The search starts 

from the 5’ end of the mRNA and an AUG is defined as a putative start codon if followed 

by an ORF longer than 200 nucleotides. Likewise, in the Pederson and Nielson NetStart 

model, an Artificial Neural Network (ANN) was constructed with 100 bases upstream and 

downstream of AUG codon that recognizes the surrounding context (Pedersen and Nielsen, 

1997b). These approaches are significantly better than weight matrix models but still 

generate high false positive rates. 
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So, to improve the prediction accuracy, Salamov et al., developed a program called 

ATGpr, where the following six characteristics are applied to analyze the sequence around 

putative start sites: 

 

(a) Positional weight matrix around an ATG. 

(b) Hexanucleotide difference between upstream and downstream of ATG sequences. 

(c) Preference for longer reading frames downstream of ATG. 

(d) Signal peptide characteristic. 

(e) Presence of another upstream in-frame ATG. 

(f) Upstream cytosine nucleotide characteristic. 

 

Linear discriminate analysis was used to finalize the score from these properties. The 

important components in the ATGpr model are the positional triplet weight matrix around 

AUG and the hexanucleotide difference between the upstream and downstream of the AUG 

in a 50 nucleotide long window (Salamov et al., 1998a). Along with these properties, 

another program developed by Zhang et al. used 50 base pair downstream windows to 

screen for in-frame stop codons and local context to determine translation start site (Zhang 

et al., 2000). 

 

Recently, a method based on Support Vector Machines (SVM) (Cristianini and Shawe-

Taylor, 2000) has been introduced by Zien et al (Zien et al., 2000).  To add to this, Liu et al 

used SVM as classifiers with possible amino acid patterns around start sites to differentiate 

true and false sites (Liu et al., 2003). Similar to this, an ANN with the ability to determine 

coding/non-coding potential around the start codon and conversed motif was also developed 

(Hatzigeorgiou, 2002). 

 

Contrary to these various translation start models, not much computational analysis has been 

carried out on translation stop prediction as identifying them becomes relatively easy if the 

correct translation start site and ORF can be determined. 
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1.8 Objectives of this project 

With this understanding, it is clear that for a gene prediction program that works purely 

based on gene regulatory signals, it is necessary to have efficient methods to capture the 

complexity of regulatory signals linked to each process from the genomic sequences. 

 

As a transcription start site predictor is available (Down and Hubbard, 2002), modeling 

transcription termination is the next important step as the task has proved challenging for 

nearly 25 years now. Extensive research on transcription termination through these years 

has still not cleared the enigma and a clear mechanism of the process is yet to be realized. 

So, the major aim of this project is to build a transcription termination model using the 

genomic sequences available with the different techniques explained in chapter 2. A 

successful predictor will be useful to identify the point where RNA polymerase II stops 

transcription and exits from the DNA sequence, and thus helping to sketch the gene 

structure. This is explained in chapter 3 along with some interesting results found by the 

model.  

 

As explained previously, transcription is tightly linked with the splicing and translation 

process and thus identifying their regulatory signals may help to supplement the 

development of a transcription termination model. So I have set the objective of modeling 

splice site and translation start and stop signals as well. Chapters 4 and 5 detail the models 

trained to meet these objectives based on the learning techniques explained in chapter 2. 

 

Finally, in chapter 6, I meet the objective of creating an ab initio gene prediction system 

based on DNA regulatory signals by linking the predictions of the models using GAZE 

(Howe et al., 2002). 

 

Apart from this goal; I worked on two other project areas as well. These are explained in the 

Appendices. Appendix A gives an overall view of the project with the aim of identifying 

domain insertions in known protein structures. Appendix B details the analysis of protein 

evolution based on sequence and structure conservation. 
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MATERIALS AND METHODS 

 

2.1 Introduction 

In this chapter I explain the different strategies used in learning regulatory signals from 

DNA. Learning signals or motifs from nucleotide sequences has been quite a difficult task 

and various methods have been adopted so far. Prominent among them is the Hidden 

Markov Model (HMM) widely used in speech recognition, sequence alignment and gene 

prediction. A Hidden Markov Model is a directed graph of states connected by transition 

paths and throws emission and transition probabilities. Walking through these states and 

probabilities, HMM models the features in the DNA sequence. However such methods were 

found to be helpful only in cases where features in similar sequences were aligned with each 

other. 

 

This requirement makes it difficult to learn transcription termination signals as some motifs 

downstream of the cleavage site, responsible for polymerase pause and release, are found 

over a wide range of distances from cleavage site (Dye and Proudfoot, 2001). Hence, here I 

used another method based on the sparse Bayesian principle that can accommodate the 

distance variation. The method is a probabilistic generalized linear model which scans for 

motifs that describe the given set of sequences and learns them by constructing a model. 

This model can be later used to classify sequences with and without transcription 

termination signals. Derivation of this model is based on the conditional probability of 

Bayes theorem given below – 

 

 
)(

)()|()|(
dataP

modelPmodeldataPdatamodelP =  (1) 

 

where, data represents a DNA or cDNA sequence. P(model|data) is the posterior 

probability that gives the probability of a sequence derived from the model. The posterior 

probability depends on the probability of the data given the model and probabilities of the 

model and data. 
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As estimating the real probabilities of the model and data are difficult, various 

approaches have been adopted. One such approach depends on how best the Bayesian 

model can fit the sequence compared with the chosen null model. Learning the Bayesian 

models that best fit the given set of sequences with the regulatory motifs is possible with 

different types of trainers, like Relevance and Support Vector Machines. Relevance Vector 

Machine (RVM, Tipping, 2001a, b) is a Bayesian treatment of a Generalized Linear Model 

(GLM) of identical functional form to the Support Vector Machine (SVM, Mackay, 2003; 

Scholkopf et al., 1999; Vapnik, 1995). However, RVMs has the advantage of emitting a 

probabilistic output unlike SVMs and using fewer kernel functions to classify the data. In 

this project, I used an implementation of RVM called Eponine (Down and Hubbard, 2004) 

to learn gene regulatory signals. 

 

Initially I used Eponine to identify transcription termination motifs and then extended it to 

learn translation start, translation stop and splice sites. During this process I tweaked the 

default parameters of the trainer to suit the regulatory signals to be learnt. For example, the 

Gaussian distribution employed to accommodate the positional distribution of motifs in the 

sequences in learning the termination model was changed to a Delta distribution for splice 

site models as the splice signals show less positional variation in their occurrence.  

 

The features predicted by these sequence models are then linked together using a dynamic 

programming based gene component assembler called GAZE.  GAZE combines the features 

and predicts a gene structure in the sequence consistent with a supplied gene structure 

model (Howe et al., 2002). 

  

After investigating the use of sequence models for detecting transcription termination sites, I 

also tried secondary structure prediction algorithms with the objective of finding any stem-

loop structures that might influence transcription termination. I used two basic algorithms 

developed by Nussinov (Nussinov, 1978) and Zuker (Zuker and Stiegler, 1981) for this 

purpose. 

 

The Nussinov algorithm is very simplistic and is based on base-pair maximisation metrics. 

Whereas the Zuker algorithm, along with base pair metrics, uses a free energy minimisation 

technique based on experimentally determined energy parameters. The minimal free energy 
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criterion helps the selection of the best possible structures out of the ensemble of folds 

predicted. 

  

None of these analyses would have been possible without the excellent databases in the 

public domain. Here, I have used human chromosome 22 and 20 data widely as these were 

the most accurately annotated chromosomes available at that time. The recently published 

annotations on chromosome 22 with experimental support formed an excellent source to 

derive training and test datasets (Collins et al., 2003).  Likewise, manually curated high 

quality annotation for chromosome 20 was extracted from the VEGA project (Ashurst, 

2002). This project is an attempt to co-ordinate curated annotation process for the finished 

vertebrate genomes. Likewise, ENSEMBL is another excellent database that contains 

genome sequence data for organisms, automatically annotates it and serves the annotated 

sequence through the internet (Birney et al., 2004). Various tools in ENSEMBL along with 

the supporting evidence for annotation derived from different sources helped me in this 

project. At other times I have used the RefSeq database (Pruitt and Maglott, 2001) and the 

RIKEN mouse cDNA collection (Kiyosawa et al., 2003) as well . 

 

In the remainder of this chapter, I explain the details of these algorithms and databases used 

in this project and conclude the chapter by briefly describing the two open source projects, 

Bioperl and Biojava that I used extensively from formatting sequences to building models.  

 
2.2 Hidden markov models 

Several methods have been attempted to model sequence signals around regulatory regions. 

They range from simple sequence composition bias to complex probabilistic machine 

learning methods like, Neural Networks (NN) and Hidden Markov Models (HMM). 

 

HMM (Durbin et al., 1998) is one of the common modelling systems employed to learn 

biological signals from DNA or protein sequences and forms the basis for many gene 

prediction tools. The use of HMMs involves two components – model architecture and its 

parameterization.  

 

Figure 11 shows a schematic representation of a model architecture. This comprises a set 

of states, which might be a match state (circles labelled M), insert states (diamonds labelled 
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I) or delete states (squares labelled D). The states are connected by arrows that represent 

possible transitions between the states. A DNA sequence can be generated by moving 

through the model following the arrows. For instance, starting with the state M0, which 

generates a nucleotide (AGCT), the next move might be to any of M1, I0 or D2. M1 or I0 

would generate a second nucleotide but D2 would not. From these states, the model 

continues to the next state connected by arrows thus generating a state path and emitting a 

DNA sequence. Self transition (looping) is allowed for insert states and they are shown as 

arrows linking to themselves. 

 
Figure 11. Schematic diagram showing a section of HMM architecture 

After designing the architecture of HMM, transition and emission probabilities have to be 

assigned between and within states respectively. The probability parameters can be easily 

calculated by counting the number of times each particular transition and emission is used in 

the set of training sequences when all the state paths are known. However, in cases where 

the paths are unknown, an iterative method like, Baum-Welch algorithm, is used. 

  

The name ‘Hidden Markov Model’ is used because the sequences are generated by a 

Markov process, which is defined as a process in which the probability of a particular state 

depends on the state immediately preceding it in a sequence. Since the state path of the 

model that generates the sequence is not observed the term ‘hidden’ is used. 

 

I attempted to use HMMs to learn transcription termination signals responsible for RNA 

polymerase pause and release from the sequences of the end of the gene. These attempts 

suggest that, HMMs are not a good choice of machine learning technique for use on this 

problem because of two reasons. Firstly, the sequence motifs at the 3’-end of the gene 

responsible for termination appear only to be loosely defined, without a strong consensus 
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and thus are difficult to model with a simple HMM architecture. Secondly, the locations 

of these termination motifs are present at greatly varying positions from the cleavage sites 

and HMMs have difficulty in modelling such criteria. Although other methods have been 

developed to model motifs separately with some flexibility on positions as in Meta-MEME 

(Grundy et al., 1997), the complex architecture needed for such models needs to be built by 

hand or heuristic methods. This limits the range of architectures that can be explored. So 

here I have used the Eponine modelling system to learn transcription termination signals 

positioned at variable points in the DNA sequences. This system allows model architectures 

to be learnt from the dataset unlike most HMMs. 

 

2.3 Eponine 

Eponine is a supervised machine learning approach that can be applied to the training of a 

wide range of model types and embodies the principle of selecting the simplest possible 

model to explain the observed data. In this section I briefly explain the Eponine and its 

implementation. For a detailed description of the tool refer (Down, 2003). 

 

The Eponine package applies Bayesian theory and is able to learn complex models 

comprised of one or more weighted constraints. Most models consist only of a simple type 

of constraint called DNA matrices. These matrices are short, ungapped sequence motifs, 

which contain a series of column distributions over the DNA alphabet. Parameterizations of 

the model are learnt using an RVM based trainer which takes a positive dataset with the 

interesting feature and a negative set without the feature. The trainer starts with an initial set 

of working matrices and iteratively selects only those matrices that can classify the positive 

dataset from the negative dataset. This tool comes in many flavours and the one I used here 

is called Eponine Anchored Sequence (EAS) method. In this method, the ‘weighted’ matrix 

(or constraint) is anchored from a particular ‘anchor point’ and is compounded by a 

probability distribution that describes the distance relative to the anchor. Constraints with a 

positional distribution are called Positioned Constraints (PC) (Figure 12a). Thus PCs 

consist of – 
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Figure 12. An example of Eponine model. (a) Position constraints along with Gaussian 
width and position. The nucleotide distribution in the weight matrices are represented as 
sequence logos. (b) Eponine model constructed from these constraints 

• A preferred sequence motif, defined as a position-weight matrix. 

• A probability distribution describing the localisation of the motif relative to the anchor 

point, as described from the integer offsets observed. A Gaussian distribution is used for 

this purpose as it is simple and less prone to ‘overfitting’ issues. 

 

New PCs are constructed through training by the following algorithm – 

 

• Pick a sequence given for training. 

• Pick a point relative to the anchor point of the sequence. 

• Take a sequence motif of 3 to 6 bases at the point and construct a weight matrix. 

• Add a Gaussian distribution to the weight matrix of random width centred at the position 

of the sequence motif found. 

 

After creating the novel PCs from the given data, a range of sampling strategies given below 

are used in further training to select the PCs that model the training data. 

 

• Select an existing PC and adjust the emission spectrum of one column in the weight 

matrix by sampling from a Dirichlet distribution (Mackay, 2003) centred on current 

values. 
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• Add an extra column to the existing weight matrix till the threshold is reached. 

• Remove a column from the start or end of the weight matrix till the threshold is reached. 

• Adjust the width parameter of the Gaussian distribution. 

• Adjust the centre position for a Gaussian distribution 

 

The score for a PC for a given sequence, x is – 
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where, P is a positional probability and W(x ,i) is a DNA weight matrix probability for 

offset i relative to anchor point of x. 

 

These PCs are then linked together to form an EAS model (Figure 12b) in the form of a 

Generalised Linear Model (GLM, McCullagh and Nelder, 1983), commonly used for 

classification and regression problems. A Generalised linear function ( )(xη ) for variable x 

(such as DNA sequence) is represented as - 

 

 kxx m

M

m
m += ∑

=

)()(
1

φβη  (3) 

 

where, φ  is a set of M basis functions defining the variable x (for example, a set of motifs, 

PCs) and β is a vector of weights (for example, relative importance given to motifs). 

 

Finding an appropriate set of basis function to define the features of the dataset and finding 

a vector of weights for the given set of basis functions are the two issues to construct an 

EAS model. 

 

The first problem can be tackled using sparse learning methods like Support Vector 

Machine (Scholkopf et al., 1999; Vapnik, 1995). Sparsity is a desirable feature as they 

produce simple models and tend to make useful generalisation of the data. While SVMs 

have helped to solve biological problems, they are mainly used for numerical data. 

Nevertheless, deriving such functions is complex and problematic and poses a serious 
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problem in extending to biological data. Moreover SVMs allow training of GLMs only 

with limited functions that explain the dataset. So to tackle this, another sparse learning 

method called RVM was introduced (Tipping, 2001a, b). RVM is a Bayesian approach that 

can train a GLM with any collection of basis functions and thus opens new possibility of 

solving biological problems. 

 

In a binary classification problem, where each datum xn has a label tn (either 1 or 0, meaning 

positive or negative sequence respectively), the probability that a dataset is correctly 

labelled given a classifier EAS model )(xπ  can be given as – 
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where, β is a set of weights. 

 

Now the second problem can be tackled using the Bayes theorem explained before and 

),|( βxtP  by inferring likely values of weights given some labelled data. 
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The probability distribution P(β) is our prior belief in the values of weights, β.  The basic 

prior is an independent Gaussian distribution, N, over the weight of each basis function and 

can be derived by inferring the values of inverse of Gaussian, α. As the α values are 

inferred it is necessary to provide an additional hyperprior value and in this case a non-

informative a very broad gamma distribution is used. 
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When a basis function providing additional information to the model gets a non-zero value, 

the amount of information learnt about the labelled dataset increases and thus the probability 

of the model given the data. If the basis function provides no information either because of 

redundancy or irrelevancy, no weight is added that will lead to a significant increase in the 
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likelihood of the function. At this juncture, by setting the αm parameter to a large value 

will set the P(βm) to zero and thereby the posterior probability of the model is maximized. 

Thus a higher α makes the basis function irrelevant and removed from the model and thus 

simple models are derived resulting in generalisation. 

 

Incorporating as little prior knowledge about the dataset would be an ideal way of training a 

model. However this will end up exploring a large amount of features of the data for basis 

functions leading to a computationally expensive process. So a subset of basis function 

called, working set, is initialized from large sets of candidate basis functions. As described 

above, when the trainer is run, it calculates the α values for these basis functions and those 

that get a higher value are removed from the set. Once the size of the subset drops below a 

certain limit, new functions are added from the pool and the α and β values are initialized 

and set for training. This is continued until the basis functions from the pool get exhausted. 

The trainer stops training when there is no significant difference between priors and weights 

between cycles and converges to an optimal solution. 

 

2.4 Modifying Eponine parameters 

2.4.1 Distribution 

In splice site and transcription termination models the positional distribution model used to 

capture the offsets of the motifs; relative to the anchor point in a PC was extended. 

 

In the transcription termination models, the position of the downstream sequence motif from 

the anchor point (in this case, cleavage site) was found to be variable both form recent 

experimental results and various training runs. So to accommodate the large variation in the 

offset values the allowed Gaussian distribution width was modified significantly from the 

default parameters used for other models. The beauty of the trainer is that despite being 

allowed to use a broader distribution, it could still learnt both a broad distribution for 

downstream motifs and a tight Gaussian for the poly(A) and auxiliary signals. 

 

Similarly, in the case of splice site models, various trails lead to the conclusion that the 

model is simpler if a Delta rather than a Gaussian distribution is used to capture the offset 

values of the PC relative to the anchor point, so this function was implemented and the 
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modelling system configured to automatically select between Gaussian and Delta during 

training. Also, the model training was supplemented by providing simple weight matrices as 

a sample set of basis functions while training. 

 

2.4.2 Position weight matrix 

In a Weight Matrix (WM), each column represents the probability distribution of the 

nucleotides at a particular position in the sequence. A weight matrix can be treated as a 

probabilistic model M of fixed length sequence with no gaps. Then the probability of a 

sequence x fitting this model can be given as – 
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where, L is the length of the matrix and ei(xi) represents probability of observing base xi at 

position i. This model is considered as a zero order model as each position in the motif is 

assumed to be independent of all others. The probability is estimated as log odds score by 

comparing with the probability of observing x under a random model, q. The log-odds score 

is calculated using this formula – 
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Position weight matrix can be viewed as trivial HMM where a series of states are separated 

by transitions with probability of 1. This means, after observing an emission probability 

over the ACGT alphabets of each state (column in the matrix) the machine moves to the 

next state in a fixed manner. This simple WM can be wrapped as HMM by adding a few 

additional states to emit a variable number of flanking sequences of each side of the motif. 

This simple case can then be blown up to complex HMM by adding states to deal with 

insertions and deletions. With this model architecture, the maximum likelihood estimate of 

the parameters that explain the set of datasets can be found using trainers based on the 

Baum-Welch algorithm (Durbin et al., 1998). However in my case, instead of using these 

WM as HMM independently they form a set of working basis functions for the RVM to 

classify positive sequences from negative. I used this strategy for splice site training, as the 

default parameters in Eponine were not suited to derive a convergent model. Adding 
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external WM as a set of basis functions helped me to derive sparse splice site models. 

This strategy is commonly used in gene prediction programs as well. Position weight 

matrices were also used in HMMs before with allowance for small insertions and deletions 

to the expected consensus motif. Pfam protein models are built with this strategy (Bateman 

et al., 2004). 

 

2.5 Nussinov algorithm 

Single stranded RNA molecules tend to form higher order structures which are recognised 

by the proteins regulating various functions of the cell. The structures are mainly based on 

base pairing and hairpins are the most common structures found in RNA. The base pairings 

are conserved due to functional constraints on these RNA molecules. Secondary structures 

in RNA have various features and are represented in Figure 13. A stem is a double stranded 

(paired) region whereas a hairpin loop is where the RNA folds back on itself. An internal 

loop is where a short unpaired region exists between two stems. If the internal loop is 

asymmetrical and only one strand forms a loop, while the other continues directly from one 

stem to the other, it is referred to as a bulge. In a multi-branched loop, several stems come 

together. A pseudoknot is a long range interaction, where a loop pairs with another region. 

 
Figure 13. RNA secondary structure features. 

Predicting RNA secondary structures from a single sequence is a formidable task as a 

simple sequence of 200 bases long has the potential to form 1050 possible base-paired 

structures (Durbin et al., 1998). So there is a need to identify the correct structure from false 

and score them appropriately. 

 

The simplest approach to predict secondary structures is to find the configuration with the 

greatest number of paired bases as defined by Nussinov (Nussinov, 1978). Testing and 
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scoring each possible structure is numerically impossible and therefore a dynamic 

programming can be used to find an optimal solution. In the Nussinov algorithm this is done 

by extending a sub-optimal structure in four possible ways as shown in Figure 14. 

 
Figure 14. Four possible ways of extending a sub-optimal structure using Nussinov 
algorithm. (a) i unpaired (b) j unpaired (c) i, j pair (d) bifurcation. 

(a) Add an unpaired base i to the best structure for the subsequence i+1, j  

(b) Add an unpaired base j to the best structure for the subsequence i, j-1  

(c) Add paired bases i-j to the best structure for the subsequence i+1, j-1  

(d) Combine two optimal substructures i, k and k+1, j  

 

A recursive equation for this extension of sub-optimal structure is represented as below – 
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where, ),( jiγ is the score for the maximum number of base pairs that can be formed for 

sub-sequence ji xx ,.....,  and ),( jiδ is the score of a base pair ix  and jx . If ix  and jx  are 

complimentary, 1),( =jiδ  else 0),( =jiδ . 

 

Although the model is simple, it requires several improvements. Firstly, the algorithm 

allows for hairpin loops of any length. In reality, RNA is not that flexible and a minimum of 

about 3 nucleotides is needed to form a hairpin. Secondly, in the scoring matrix, bases that 
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lie on the diagonal correspond to the hairpin loops. Hence while traceback; any base-

pairing solution in proximity to the diagonal should be prevented. 

 

A further possibility of improving the Nussinov algorithm is to use Stochastic Context Free 

Grammar (SCFG) to generate a probabilistic model. The original algorithm is changed 

slightly to allow various probabilities in scoring and regarded as an adapted CYK algorithm. 

Details of this algorithm can be found in Biological sequence analysis by Durbin et al. 

 

I implemented this algorithm and used it for identifying secondary structures that are 

responsible for transcription termination. The implementation also formed a part of the 

Eponine trainer for sampling secondary structure constraints in the stem-loop model 

explained in chapter 3. 

 

2.6 Zuker algorithm 

An improvement over Nussinov algorithm was later developed by using free energy 

parameters apart from base pair metrics. Energy parameters are included to score base-pair 

stacking, single dangling nucleotides, terminal mismatches and the lengths of hairpin loops, 

bulge loops, interior loops and multi-branched loops. This was aided with results from wet-

lab experiments leading to different algorithms. 

 

The first algorithm based on energy minimization using nearest neighbour energy 

parameters was attempted by Tinoco et. al., and Delisi et. al. In this algorithm, free energies 

assigned to base pair stacks and loops and are summed to calculate the overall free energy 

difference of folding. Later new concepts like dynamic programming methods were 

incorporated and modified by many people. The popular among them is Zuker’s mfold (‘m’ 

stands for ‘multiple’) program. The algorithm predicts a minimum free energy, ∆G, as well 

as minimum free energies for foldings that contain any particular base pair. The success of 

the program depends on the accuracy of the energy parameter for base pairs and recent 

versions use the free energy data from Mathews et al., 1999 with the folding temperature 

of 37˚C and ionic conditions [Na+] = 1M and [Mg++] = 0M (Zuker, 2003). 

 

The secondary structure is a list of base pairs, denoted by i:j for a pairing between the ith and 

jth nucleotides, ri and rj, where i < j by convention. Generally only Watson-Crick base 
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pairings and G:U wobble pair are treated as base pair rules. However exceptions exist. 

RNA has A-form helices and two helices are said to form a pseudoknot if base pairs i:j from 

one and i’:j’ from the other satisfy i < i’ < j < j’ criterion. Pseudoknots are often excluded 

in the definition of secondary structures as current algorithms have difficulty in identifying 

them (Zuker, 2000). 

 

Free energy minimization programs generally analyse a large ensemble of structures (called 

suboptimal structures) at different stages. To reduce this range, auxiliary information might 

be useful and mfold program employs base-pair metrics. 

 

The base pair metrics defines RNA molecule as a collection of base pairs that occurs in its 

three dimensional structure. If R is represented as an RNA sequence then S is a set of 

ordered pairs, written as i:j (1 ≤ i < j ≤ n) satisfying these conditions - 

 

1. j – i > 3 

2. If i:j and i’:j’ are 2 base pairs, then either 

(a) i = i’ and j = j’  or 

(b) i < j < i’ <  j’  or 

(c) i < i’ < j’ < j (This condition excludes pseudoknots). 

 

The optimal structure will have the lowest free energy. Each of the various loops and 

stacked pairs will contribute a certain amount of energy to the secondary structure 

configuration. The energy of each base pair might be represented as e(ri, rj) and the energy 

of the whole structure as E(S) is then given by – 
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Reasonable values of e at 37˚ are -3,-2 and -1 kcal/mole for GC, AU and GU pairs 

respectively. However to capture the destabilizing effects of various loops or the nearest 

neighbour interactions in helices and loops a more sophisticated algorithm is required. 

 

So to achieve the minimum energy E(i, j) for nucleotides, i and j, the following recurrence 

relation is used – 
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In this relation, there are totally )()( 2 ⋅Wnφ  matrices and each of them takes )(nφ  time to 

calculate. Hence the running time of the algorithm is )( 3nφ  and the memory requirement to 

store the W matrices is )( 2nφ . 

 

If (i, i’) and (j, j’) are two base pairs in the optimal pairing then, 

1. i < i’ < j< j’, i.e. the i pair precedes the j pair 

2. i < j < j’< i’, i.e. the i pair includes the j pair 

 

The first case will be handled by the condition III in the recurrence relation whereas the 

second case by conditions Ia, Ib and II. 

 

The algorithm assumes constant energy for multi-branch loops and ignores single base 

stacking. If these issues are to be considered then some auxiliary information is added, at 

which point the algorithm gets complicated.  

 

With the free energy determined for each base pair, a traceback algorithm (Zuker, 2003) is 

used to find the minimum free energy for the folding. 

 

To predict RNA secondary structures in this project, I used the Vienna RNAfold package 

where Zuker algorithm is implemented. 

 

2.7 Biojava and Bioperl 

The open source bioinformatics toolkits Bioperl (http://www.bioperl.org) and Biojava 

(http://www.biojava.org) provided multiple functionalities that made my analysis much 

easier. 
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Bioperl (Stajich et al., 2002) is the oldest and most downloaded distribution. It is a toolkit 

of PERL modules useful in building bioinformatics solutions in PERL language. The 

modules have a wide array of functionality, including codes for handling and indexing most 

popular bio-specific database and flat-file formats; for auto-generating bio-related graphics 

for web pages, classes and methods and for describing and manipulating biological 

sequences, annotations, trees, alignments and maps. 

 

It is built in an object-oriented manner so that many modules depend on each other to 

achieve a task. I have extensively used the ‘Bio::Seq:IO’ and ‘Bio::Seq’ modules for 

accomplishing different tasks in this project. 

 

Likewise, Biojava is another toolkit developed using Java language for analysing and 

presenting biological sequence data (for overview, Mangalam, 2002; Pocock, 2003; Pocock 

et al., 2000). The toolkit has around 40 packages covering simple sequence manipulation to 

complex machine learning modules. The Eponine implementation is built using the Biojava 

package and hence in several cases I used relevant modules from Biojava to train and 

analyse the gene regulatory signals.  

 

2.8 Databases 

2.8.1 ENSEMBL 

Various genome projects release DNA sequences into the public domain from throughout 

the world, making the subsequent task of assembling and annotating it difficult. ENSEMBL 

(http://www.ensembl.org, Birney et al., 2004) is a joint project between EMBL-EBI and 

The Wellcome Trust Sanger Institute to develop a system which automatically tracks all the 

assemblies of a genome and annotates them by finding genes and other features of interest 

to biologists and medical researchers. This is done by taking sequences from the public 

domain and storing them in a large database. Automatic annotation using pmatch (Ohrt, 

2004), exonerate (Slater) and GENEWISE (Birney and Durbin, 1997) to build genes from 

protein and mRNA evidence detects most genes and the results are published over the web 

based interfaces. A separate automatic prediction using EST evidence is carried out, 

although, the resulting gene structures are less reliable. Any match to the candidate genes in 

the public databases forms the ‘supporting evidence’ suggesting the annotations are 
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accurate. All analysed data are stored in a relational database, which makes it easy to 

access. To facilitate the analysis process and access the results, ENSEMBL has created a set 

of PERL modules to connect to this database and query it. I have used these modules to 

access the data required for this project. ENSEMBL also has excellent web based interfaces 

and a sequence viewer (ContigView) that allowed me to add my own annotation of the 

region using the DAS protocol (Dowell et al., 2001). This helped me to view my predictions 

along with other annotations available in the public domains. 

 
2.8.2 VEGA 

The Vertebrate Genome Annotation (VEGA) database (Ashurst, 2002) is a central 

repository for manual annotation of several finished vertebrate genome sequence. As the 

data is manually curated the quality of annotation is high. Curation is done on a clone by 

clone basis using a combination of similarity searches against DNA and protein databases as 

well as a series of ab initio gene prediction programs like GENSCAN (Burge and Karlin, 

1997) and FGENESH (Salamov and Solovyev, 2000). Comparative genome analyses are 

also used for the annotation purposes. Thus the genomic features are added to the sequences 

based on supporting evidences.  

 

Based on the evidence available, each annotated gene has been classified into the following 

categories – 

 

(a) Known  – Identical to known human cDNAs or protein sequences with an entry in 

LocusLink (Pruitt and Maglott, 2001) or GDB (Harger et al., 2000). 

(b) Novel CDS – Containing an open reading frame determined based on spliced ESTs 

and/or similarity to known genes/proteins. 

(c) Novel transcript – Similar to novel CDS, however with an ambiguous ORF. 

(d) Putative - Based on spliced human ESTs but without an ORF. 

(e) Pseudogene – Similar to known proteins but with in-frame stop codons and/or frame 

shifts disrupting the open reading frame. 

 

I used ‘Known’, ‘Novel CDS’ and ‘Novel transcript’ annotations from this database to 

extract sequences and features from human chromosome 20 and 13 for various analyses. 
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I also used annotation for human chromosome 22. Chromosome 22 is also available from 

VEGA, however as a result of it being the first human chromosome to be sequenced and 

annotated (Dunham et al., 1999) the annotation has been extensively refined. The third 

generation gene annotation on chromosome 22 published in 2003 (Collins et al., 2003) is 

one of the high quality data available for human genome sequences. For annotations, 

Expressed Sequence Tags (EST), comparative sequence analysis and wet-lab experimental 

verifications were used. Availability of this high quality annotation helped me to derive 

datasets for various aspects of the project. 

 

2.8.3 RefSeq 

The Reference Sequence (RefSeq) project (Pruitt and Maglott, 2001) run by the National 

Center for Biotechnology Information (NCBI) provides a collection of non-redundant DNA, 

RNA and protein sequences along with available information for those sequences. Non-

redundancy is ensured by clustering identical or related sequences and representing one 

sequence out of each cluster. Based on the information available for a particular sequence, 

RefSeq records are available in four categories – 

 

(i) Genome annotation – This category includes contigs, modelled mRNAs and 

corresponding modelled proteins. 

(ii) Predicted – Predicted records represent genes of unknown function that are supported by 

full length mRNA, EST or homologous sequences. 

(iii) Provisional – Records with known or inferred function not subjected to review. 

(iv) Reviewed – Records with known function that are manually curated. 

 

Reviewed RefSeqs are richly annotated with publications, gene description, UTR sequences, 

transcript variants and cDNA sequence removed of any vector or linker contaminating 

sequences. Hence in this project I used only reviewed records for analyses. 

 

2.9 Other programs 

I used several programs available in the public domain to compare with the performance of 

the models I created using Eponine. Describing all of them is beyond the scope of this 

chapter and so I will limit myself in briefly explaining them when and where required. 
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However here, I will give a few details about the ERPIN poly(A) prediction program used 

to compare with my transcription termination model and the GAZE method used to predict 

genes with Eponine model features. 

 

2.9.1 ERPIN 

ERPIN (Easy RNA Profile IdentificatioN) is an RNA motif search program developed by 

Daniel Gautheret and Andre Lambert (Gautheret and Lambert, 2001). ERPIN reads a 

sequence alignment and secondary structure, and automatically infers a statistical 

‘secondary structure profile’ (SSP). A dynamic programming algorithm is used to scan any 

target sequence with this SSP to find matches and score them. SSP profiles are constructed 

using two weight matrices – one for single strand regions in the given sequence and another 

for helical regions. 

 

Helix profiles are 16-row matrices with a lod-score for each possible base-pair, while single 

strand profiles are generally five-row matrices with lod-scores for the four bases and the gap 

character. For a helix of size n, the profile has 16 rows and n columns in the matrix. For a 

single-strand of size n, the profile has five rows and n columns. The lod-score for a base at 

position i is given as – 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
i E

O
S log  (12) 

 

where, Oi and Ei are the observed and expected frequencies respectively for the base at 

position i. ERPIN treats gaps as another base rather than issuing penalties as done in 

sequence alignment.  

 

Likewise, a lod-score for each base-pair at position i and i+1 (consecutive bases) is given as 

– 
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where, Oi,i+1 is the observed frequency for the base-pair at position i and i+1 and Ei, Ei+1 

are the expected frequencies of individual bases. 

 

The helix profiles capture both Watson-Crick base pairs and non-canonical base pairs, 

however, gap character is not allowed in helical regions. 

 

In this project I used an ERPIN model, trained to predict poly(A) signals with the following 

command line – 
 

erpin polya.epn <database file> 2,3 -umask 2 -umask 2 3 -cutoff 70% 74% -

unifstat –smp 

 

I then compared the predictions of ERPIN with those of Eponine transcription termination 

model. 

 

2.9.2 GAZE 

GAZE (Howe et al., 2002) is a gene prediction tool that assembles evidences of gene 

components or features into complete gene structures. The gene features and the model 

structures are supplied by the user making it completely configurable.  

 

As described earlier, almost all the gene prediction methods first do an extensive search for 

signal and content information’s on the sequence to identify gene components. However, 

they differ in the subsequent mechanism of integration of this information’s to predict the 

gene structure. This unified two step process adapted by various programs introduces an 

inherent rigidity in extending them to incorporate new knowledge about gene structures. 

GAZE tackles this by separating the two steps and allowing to build a customised version of 

the ab initio gene prediction system with user defined features. In that way, GAZE is not 

tied to any specific signal or content sensors as well. Another key feature of GAZE is that it 

does not work directly with genomic DNA sequence. Instead it predicts gene structure from 

an input file with signal and content information marked in GFF format (WTSI). The 

configurations for integrating the features to form the gene are defined in another input file 

in XML format. Thus GAZE is a generic system that uses dynamic programming to obtain 

the highest scoring gene structure based on external features and configurations. 
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The algorithm also has a run time effectively linear with the length of the sequence without 

compromising accuracy. 

 

The gene structures are scored by taking a list of features ordered by their sequence position 

and the rules defined in the configuration file. For example, for a sequence of 1000 bp long 

with the features – transcription start site @ 100 bp, donor site @ 250 bp, acceptor site @ 

500 bp and Poly(A) signal @ 750 bp and a configuration allowing a gene to be formed with 

or without introns can lead to 2 gene structures. One, a single-exon gene without taking 

donor and acceptor sites and another with an intron defined with donor and acceptor site. A 

score of each of these gene structures are assigned and the highest scoring gene structure is 

defined to be the most probable given the features and configuration. Mathematically this is 

represented in the following equation - 
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where, )( it φ  defines the type of feature, iφ  and )( il φ  is the location of the feature, iφ , in the 

sequence and )( ig φ  is the respective score of the feature. )()( 1
Re

+→ ii ttg φφ  represents the 

region score for interval ),( 1+ii φφ  bordered on the left and right with the types of the 

features, referred as source (src) and target (tgt) features. 

 

The ‘target’ feature and its potential origins (‘source’ features) define the rules of the gene 

structure model. In the above example, the target feature, Poly(A) signal can be preceded by 

an acceptor site or transcription start site and thus allowing for 2 gene structures to be built. 

However, an acceptable gene structure cannot be formed by allowing Poly(A) signal 

preceded by the donor site and thus defining a set of rules how structures can be built. 

Additional constraints, given below, can also be added to these rules to define more 

stringency. 

 

(a) Distance constraint specifying the length of the segment defined by source and target 

features. 
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(b) Phase constraint specifying the source and target features that should occur - 0, 1 and 

2 bases apart. 

(c) Interruption constraint specifying an illegal occurrence of a feature between source and 

target. 

(d) DNA constraint specifying an illegal occurrence of a DNA sequence between source and 

target. 

 

A length penalty function and segment qualifier defined by these constraints add to the final 

score of the gene structure. The highest scoring gene structure with these rules and 

constraints is obtained by using dynamic programming. For more details about the scoring 

and algorithmic issues, please refer to this thesis (Howe, 2003). 

 

Taking advantage of the user configurable GAZE system, in this project, I used Eponine 

model features to predict gene structures with the rules and constraints defined in Appendix 

C. Two configurations with and without translation features are used in predicting Eponine 

based gene prediction. I employed phase constraint in gene configuration with the 

translation feature but no distance constraint in both the configurations thus kept no 

restrictions on the maximum length of exons and introns. 

 

2.10 Concluding remarks 

In this chapter I have given an overview of all the strategies, tools and databases used to 

find gene regulatory signals in this project. In the following chapters I will explain in detail 

how the package was employed to derive transcription termination, translation start and stop 

and splice site sequence models. Also apart from the sequence model from Eponine, in 

chapter 3, I have explained the results of Nussinov and Zuker algorithms used to search for 

stem-loop structures in the 3’ end of the genes. I implemented Nussinov algorithm using 

PERL modules for this purpose. RNAfold implementation of Zuker algorithm in Vienna 

package was used to find stem-loop structures based on free energy metrics. 
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MODELLING TRANSCRIPTION TERMINATION SIGNALS 

 

3.1 Introduction 

My initial objective here was to develop a transcription termination model and thereby 

determine the correct gene 3’-end. In general when annotating a genome, poly(A) signals 

and/or cleavage sites are generally considered to be the end of a gene. Almost all the gene 

prediction methods available so far use this principle. However predictions of poly(A) 

signals along the chromosomes are likely to be dense, as the probability of occurrence of the 

hexamer in 3 billion human sequences is high. Existing gene prediction programs screen out 

false poly(A) predictions by conditioning it on numerous other parameters like coding 

potential, exon-intron structure and ORF length. As here the objective is to construct an ab 

initio gene model purely based on gene regulatory signals without considering such 

parameters, it is imperative to consider other gene 3’-end motifs apart from the poly(A) 

signal to limit false predictions. 

In vivo and in vitro experiments to identify such 3’-end consensus motifs responsible for 

transcription termination have not been so far successful as discussed in chapter 1. However 

these experiments have established that the poly(A) signal and auxiliary sequences are 

essential for efficient termination of RNA polymerase II. 

Extensive computational analysis to identify transcription termination signals has not 

previously been attempted. Gene 3’-end identification programs, such as ERPIN, Polyadq 

and PolyAH depend only on poly(A) variants and auxiliary motifs. Here I discuss the results 

of the algorithms with which I tried to detect additional RNA polymerase II transcription 

termination signals. 

 

3.2 Datasets 

Given the difficulty in experimentally annotating the poly(A) signal and cleavage site of 

each gene in the human genome, extracting a large dataset with precise location of gene 3’-

ends has been a challenge. However with the recent publication of the latest version of 

human chromosome 22 (Collins et al., 2003), a set of 422 genes with high quality 



3.2 Datasets 

  

55

annotation was obtained. The methodology adapted for annotating chromosome 22 

included three main approaches – 

 

First, a variety of programs with different statistical methods were used to predict gene 

structures cautiously, as these methods are likely to produce incorrect and over predictions. 

Second, a match of Expressed Sequence Tags (EST) of transcribed genes with the genomic 

sequence gave direct evidence of expressed genes. Third, comparative genomics with 

related species helped to identify conserved gene structures.  

 

Gene structures were identified using evidence from transcribed sequences across their 

entire length. Full length cDNAs or assembled ESTs were aligned to genomic DNA to 

resolve the splice sites and confirm 3’-ends. A 3’ end was judged confirmed if it had a run 

of at least four adenine residues at the 3’ end of cDNA/EST not present in the genomic 

sequence. Thus the 3’-ends with the processing signals were manually verified and 

confirmed for in vivo biological function. 

 

Based on further evidence, this set of entries with confirmed 3’-ends were classified into 

complete protein coding genes, partial genes, non-coding genes and pseudogenes with the 

following definitions. 

  

(1) A complete protein-coding gene has sequence identity to human cDNAs or ESTs across 

its entire length and a predicted ORF of at least 300 bases. 

 

(2) A partial gene had sequence similarity to cDNA, EST or peptide sequence but did not 

comply with complete gene criteria.  

 

(3) Non-coding RNA genes included small RNAs and published complete genes that did not 

contain ORF of at least 300 bases. 

 

(4) A pseudogene had similarity to a known gene or protein but had evidence of disrupted 

function. 
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Using these criteria, 393 complete protein coding genes, 153 partial genes, 31 non-coding 

transcripts, 234 pseudogenes and 125 IGLV and J gene segments (Ig gene segments) were 

annotated for chromosome 22. Among all these categories, 376 protein coding genes, 56 

partial genes and 15 non-coding transcripts are found to have confirmed 3’-ends with the 

hexamer variant and cleavage site. Out of these 447 genes (376+56+15), I extracted 

sequences from 422 genes in the interval of -200 to +2000 bases relative to the cleavage site 

to form the positive dataset. The remaining 25 sequences (447-422) had an overlapping 

transcript within the 2000 base pair downstream sequence of the cleavage site. A set of 22 

sequences from these 422 entries were set aside and used as an independent test set, leaving 

the remaining 400 sequences for training purposes. 

 

For training Eponine Anchored Sequence (EAS) models, the RVM requires a negative 

dataset that does not have 3’-end processing signals. Choosing an appropriate negative set 

for training purposes is a determining criterion for making sensible Eponine models. So I 

extracted sequences from different sources and will briefly explain these sets while 

discussing the Eponine sequence models. 

 

3.3 Nucleotide composition analysis 

Figure 15 shows the average base composition of 422 sequences for 200 bases upstream and 

2000 bases downstream of the cleavage site. The undulations in the graph are seen 

concentrated near to the cleavage site then in other regions of the sequences. The zoomed 

figure (Figure 16) with base compositions for -100 to +50 bases from the cleavage site 

shows two significant peaks for adenine nucleotide distribution. The first broad peak spans -

30 to -5 base pairs while the second, peaks at position 0. Followed by the cleavage site the 

adenine concentration suddenly decreases with increase in thymine composition. The 

thymine level represents the U-rich sequence observed near cleavage sites. The guanine and 

cytosine concentration is generally relatively low and more equal to the background 

distribution. 
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Figure 15. Nucleotide composition spanning -200 to 2000 bases relative to the cleavage site 

 
Figure 16. Nucleotide composition spanning -100 to 50 bases relative to the cleavage site 
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There is no difference in base composition in the sequences 50 to 2000 bases downstream 

of the cleavage site (Figure 15). The termination signals responsible for RNA polymerase 

pause and release are expected to be present in this region. However the graph shows no 

difference in the nucleotide distribution from background. This might be due to the un-

alignable nature of termination motifs as they are known to occur at varied positions for 

different genes (Dye and Proudfoot, 2001). Even if there is a small bias in nucleotide 

composition for single sequences, by averaging, no bulk effect is seen. 

 

Thus the nucleotide composition analysis has identified the 3’-end processing signals known 

previously. However I find no significant compositional variation in the downstream region 

where the polymerase pauses before terminating. 

 

3.4 Secondary structure analysis 

As the simple nucleotide composition analysis does not reveal the pause signal at the 

downstream region, I decided to search for stem-loop secondary structures known to play a 

major role in prokaryotic transcription termination (Henkin, 1996). In the eukaryotic 

genome, stem-loop structures and their role in terminating transcription has been established 

for histone genes. Now the question is, whether similar structures are present in eukaryotic 

protein coding genes or not. If present, stem-loop structures are likely to be found at the 

downstream sequences of the cleavage site where actual pausing of RNA polymerase II 

occurs. This differs from histone stem-loops as in these genes the structure was found 

upstream of 3’-end processing signals. As explained in chapter 1, special proteins like SLBP 

bind to these structures, to stabilize them and hinder poly(A) tailed histone mRNA 

formation. Unlike this, a potential structure at the downstream region in the protein coding 

gene might explain the drag, pause and queuing of the polymerase before termination. So to 

search for any stem-loops I used two simple algorithms developed by Ruth Nussinov and 

Zuker (Nussinov, 1978; Zuker, 1994). 

 

3.4.1 Nussinov algorithm 

Nussinov algorithm (Nussinov, 1978) is one of the simplest approaches to predict secondary 

structure of RNA molecules. The method is based on finding the configuration with the 

greatest number of paired bases. Apart from normal Watson-Crick base pairing used for 
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calculation, G:U pairing is also allowed. Since testing and scoring each possible structure 

is computationally expensive, the algorithm uses a dynamic programming to find an 

appropriate solution. For details of the algorithm and implementation refer to chapter 2. 

 

I scanned the 422 sequences in the positive dataset with the overlapping window sizes of 15, 

25, 35 and 50 bases with an interval of 5 and 10 bases between each window. As explained 

in chapter 2, the initial algorithm was modified to consider the loop length parameter. The 

base pair metrics score was calculated for each window allowing at least 3, 5, 7 and 10 

bases in the loop region. Figure 17 shows the average metrics score of the sequences 

scanned with overlapping window sizes of 60 bases, 10 bases between each window and 

loop length of 5 nucleotides. 

 
Figure 17. Averaged score values of sequences around cleavage site calculated using 
Nussinov algorithm 

The X and Y-axis represents sequence length and score respectively with the cleavage site 

referred to as position 0. The graph shows the scores are spread out evenly with no 

significant peaks or troughs. This might be due to the following reasons – 
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(a) no stem-loop structure in protein coding genes. 

(b) the algorithm is simple and observing the base pair maximization metrics alone might 

not be sufficient to detect any secondary structure. 

(c) the algorithm does not consider non-Watson-Crick pairing except G:U base pairing. 

(d) base stacking metrics that explains the structure stabilization is not used. 

(e) position of stem-loops might be varied for each gene and averaged metrics score did not 

show any bulk effect. 

 

The result emphasis the need for an algorithm with additional metrics and thus I used the 

one published by Zuker. 

 

3.4.2 Zuker algorithm 

 Zuker algorithm (Zuker and Stiegler, 1981) is one of the most well-known algorithm to 

predict RNA secondary structures based on the free energy minimization principle. The 

algorithm is optimal for predicting secondary structures of RNAs with no pseudoknots. 

According to the algorithm, all the structures of RNAs can be decomposed into either 

sequential or nested structures. This algorithm is implemented in the well known RNA 

secondary structure programs like RNAfold, mfold and ViennaRNA. 

 

Here I used the ViennaRNA implementation to look for the presence of secondary structures 

in the positive dataset. The algorithm calculates free energies for all possible structures and 

determines the one with the least value to be the most probable structure. The lower the 

predicted free energy value, the more likely the structure is thermodynamically stable and 

likely to persist. 

 

I scanned the 2200 base sequence with overlapping window sizes of 20, 30, 40, 50, 60, 70 

and 80 bases, skipping 5 or 10 bases between each window. The free energy scores for each 

window size (with a gap of 10 bases between windows) along the length of the sequences 

are plotted in Figure 18.  
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Figure 18. Averaged free energy values of sequences around cleavage site calculated using 
Zuker algorithm 

The Y-axis represents free energy values measured as kcal/mol while the X-axis shows 

sequence length as nucleotides. Here, I analyse the plot by splitting it into four regions and 

comparing the energy values to the average value of the negative set of sequence. 

 

(i) Region 1 extending from -200 to 0 bases shows a statistically significant peak at the 

poly(A) region. The higher energy value means there is less probability of a secondary 

structure at this region. 

 

(ii) Region 2 from 0 to +100 bases from the cleavage site covering the U-rich sequences of 

the 3’-end processing signals has a free energy value less than the average at 95% 

confidence level. However the significance of the energy scores is not prevalent when 

the window size is reduced to 20 bases. 

 

(iii) Region 3 comprising +100 to +650 bases from the cleavage site shows the energy 

values are less than the average value at 99% significance level when the sliding 
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window parameter was fixed at 60 bases. The condition was found true even at lower 

window sizes. This shows there is possibility of a RNA secondary structure in this 

region. However the broad distribution of free energy scores indicate the possible stem-

loops are distributed at varied positions for different genes. On averaging energy values 

for the 422 sequences at this region, the overall distribution is likely to get flattened 

rather than appearing as a sharp trough. This agrees with earlier understanding of the 

presence of termination related pause signals at varied distances from cleavage site (Dye 

and Proudfoot, 2001). 

 

(iv) Region 4 from +950 to +1350 shows a decrease in free energy values from the average 

at 95% significant level in the window size of 60 bases. However the significance score 

reduced with diminishing window sizes indicating there might not be any secondary 

structure in this region. 

 

The free energy parameters used for calculating the scores were derived from recent 

experiments and the values are likely to be influenced by sequence artifacts. Hence, I have 

plotted the GC and GT densities along the sequence calculated with the 60 bases sliding 

window (Figure 19 and Figure 20). GC and GT richness in the sequence affect DNA base 

pairing and emit low free energy values. These low energy values based on the sequence 

composition bias need not necessarily mean there is a RNA secondary structure. So to avoid 

this misinterpretation, I did correlation studies of GC and GT density with free energy 

values of the corresponding regions. 

 

For region 1, I found a strong negative correlation between the free energy values and GC 

and GT density. Guanine and cytosine compositions are expected to be less around this 

region as the poly(A) signal and the cleavage site increases richness in A and somewhat in T 

density. This increased adenine and reduced guanine and cytosine concentration might be 

the reason why the free energy values in this region are remarkably high. 
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Figure 19. Percentage of GC residues in the sequences around cleavage site 

 
Figure 20. Percentage of GT residues in the sequences around cleavage site 
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Region 2 does not have any correlation between GC densities and free energy values, 

whereas GT density has a strong positive correlation coefficient. This is due to the U-rich 

sequence of the 3’-end processing signals followed by the cleavage site. Thus the energy 

values at this region are influenced by the base composition. 

 

Region 4 has positive correlation between GC density and free energy values, whereas the 

GT density does not show any. Thus the lower than average free energy found at a 95% 

confidence level in this region might be due to the influence of GC base stacking. 

 

Unlike other regions, sequences in region 3 have no correlation between GC/GT densities 

and free energy metrics scores. So the likely secondary structure present between +100 to 

+650 bases may not be due to nucleotide composition bias. However the significance of 

lower free energy values decreases with the size of the sliding window. Hence the results 

show there is scope for stem-loops in the region, however detailed biochemical experiments 

are required to confirm their existence. 

 

Thus the Zuker algorithm predicts there is a possibility of RNA secondary structure from 

100 to 650 bases from the cleavage site and that they are less likely to be caused by 

sequence artefacts. Further experiments can confirm the presence of any such structure and 

help us to understand the polymerase pause and release from the DNA. 

 

3.5 Eponine transcription termination model 

With the results from nucleotide composition and secondary structure analysis, I then 

resorted to Eponine described in chapter 2 to train a transcription termination model. 

Eponine is a probabilistic sequence classifier based on a relevance vector machine and 

requires a set of positive and negative sequences to learn informative basis functions to 

classify them. As explained earlier, the major positive dataset for training an Eponine model 

was derived from human chromosome 22. Similarly the major negative dataset was 

extracted from random sequences from the transcription units. However, apart from these 

datasets, various others were also used. Here I explain in detail how the model was 

constructed and cross-validated. Following it, I compare the performance of the model to 

the poly(A) prediction program, ERPIN. The Eponine model, apart from detecting the 

annotated gene 3’-ends, made other predictions, which are referred to as false positives. 
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Towards the end of this chapter I explain the distribution of these false positives and two 

hypotheses explaining the possible role of such predictions in gene regulation. 

 

3.5.1 Training the transcription termination model 

One important criterion while learning any classification model is to choose an appropriate 

negative set. This set of sequences forms the basis for differentiating it from the positive set 

provided for training. Here I attempted different sets of negative sequences which are 

explained below – 
 
 
(i) I extracted sequences of 2200 bases each from chromosome 1 by choosing random 

points. A pseudo-random number was generated using PERL rand() function and  2200 

bases from that point was dumped from ENSEMBL database in FASTA format. 

Similarly, another set of random sequences from chromosome 20 was extracted by 

generating a number between 1 and 62 x 106, as the length of chromosome 20 is 

approximately 62 mega bases. 

 

(ii) Another set of random sequences were extracted from chromosome 1, as described 

earlier, after repeat masking of the whole chromosome using Repeat Masker (Smit and 

Green, 1996). Random regions of the chromosome are chosen in such a way as that no 

repeat masked bases were part of the 2200 base negative sequence. 

  

(iii) RNA polymerase is not expected to terminate in exon sequences and thus another set of 

negative sequences was derived from chromosome 22 exons. With the quality 

annotation available, sequences of all the exons annotated in chromosome 22 were 

extracted after leaving 100 bases near the donor and acceptor splice sites. These 

sequences were then concatenated together to form a single sequence. Then as explained 

previously for random sequences, a set of sequences of 2200 bases each were randomly 

dumped from this single sequence.  

 

(iv) Similarly intron sequences were extracted from all annotated last introns in 

chromosome 20 and 22. Intron sequences from these two chromosomes were dumped 

after removing the 100 bases near the donor and acceptor splice sites. This is done to 
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avoid representing the splice signals in the negative dataset. A set of sequences, each 

of 2200 bases in length, was randomly picked from the concatenated intron sequences. 

 

(v) With the gene annotation of chromosome 22, sequences from the transcription units 

(including exons and introns) were extracted after leaving 250 bases near to the gene 3’ 

end. The extracted sequences were concatenated and from it, 422 random sequences of 

2200 bases each were dumped to form a negative set. Although weak terminators or 

pause signals are likely to be present in the transcription unit and thus in the negative 

set, they formed one of the best training sets for learning transcription termination 

models. 

 

These different sets of negative sequences along with the positive dataset were used for 

training the transcription model. In each case of training an equal number of positive and 

negative sequences were used. The cleavage site formed the anchor point for the EAS 

model. The models were trained for approximately 10000 cycles using the VRVM trainer as 

described in chapter 2. At various points in the training process, I dumped ‘checkpoint’ 

models to identify the basis functions learnt. Initial models picked more basis functions and 

as training progressed they gradually converged leaving fewer basis functions explaining the 

dataset. One such final model is shown in Figure 21. The models have generally two sets of 

basis functions. The positively weighted position constraints, represented in black and 

negatively weighted position constraints, coloured in blue. The positive constraints are cases 

where the motif presence is likely to determine the termination site, whereas negative 

constraint makes the possibility less likely. 

 
Figure 21. Transcription termination model trained from chromosome 22 sequences 

Various models gave a consistent set of motifs learnt from the datasets. The poly(A) 

hexamer, AAUAAA was represented in the model around -20 to -30 bases as expected. 
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Similarly the GT/T-rich region found earlier through various studies can be found in the 

model immediately after the anchor site. The most interesting part I found in the models is 

the consistent appearance of the downstream motifs, which hereafter I refer as Pause 

Elements (PE), as such elements had earlier been shown experimentally to pause 

transcribing polymerase (Aranda and Proudfoot, 1999; Enriquez-Harris et al., 1991; Yonaha 

and Proudfoot, 1999). The motif’s positions varied with different models and training, 

however the sequence of the motifs did not change much. Various motifs found in these 

regions are listed in Table 1. Although there is diversity in the motifs, the positive 

constraints can be generalized into two types - Poly-C variants (CCCC, C with intermittent 

A or G) and GGAGG variants (GGAGG with intermittent A and C).  Negative constraints 

as explained above are motifs not expected in the termination region and thus a non-T rich 

motif or its variants (with intermittent A/C) are likely to be present downstream of the 

cleavage site. The stretch of non-T residues in the downstream region is interesting as 

prokaryotic and polymerase I termination are likely to occur with a run of T residues. 

However the model indicates polymerase II termination requires the opposite and this 

agrees with results from experiments done on human β-globin and α2 globin genes (Dye 

and Proudfoot, 2001; Enriquez-Harris et al., 1991). Table 2 lists the occupancy value of top 

15 motifs learnt in different runs of training in a scale of 0 to 1. A value more than 1 

indicates the motif is represented more than once in few models. 

Table 1. Consensus motifs found in sequences between 50 and 2000 bases from cleavage 
site 
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Table 2. Occupancy value for motifs detected in the transcription termination models. 
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Also the position constraints found in the sequences 2 kb downstream of the cleavage site 

are repetitive (Table 1). This emphasize that the signals are present in multiplex and 

effective termination might depend on the cumulative effect of all the signals, agreeing with 

the experimental results found earlier (Aranda and Proudfoot, 1999). 

 

3.5.2 Window size 

I focused on a 2 kb window downstream of the cleavage site for modeling as the detailed 

experiments in human β-globin and ε-globin genes showed 2000 bp is enough for 

termination of polymerase II (Dye and Proudfoot, 2001). However I also tried sequences of 

varied lengths - 500, 1000, 1500, 2000, 3000 and 4000 bases downstream of the cleavage 

site. As I increased the downstream window size from 500 to 2000 bases the performance of 

the models improved. However there was no improvement when the window size moved 

from 2000 to 4000 bp. This suggests that 2000 bases are enough for termination in most 

cases. What signals found downstream in the 2000 to 4000 base sequences appear to be 

repetitions of the positive and negative constraints explained before. Even if a larger 

window is included, the trainer did not learn any position constraints beyond 2600 bases 

from cleavage site and thus model a compact transcription termination region. 

 

3.5.3 Cross validation 

As explained above, the inherent problem with most comparison based classifiers is the use 

of a proper negative dataset sequence while training. The motifs detected by the models may 

represent biases in the negative dataset used, rather than signals in the positive dataset. So to 

cross check if the position constraints discussed in the earlier models are consistent with 

signals in the positive dataset, I used different negative datasets for the training. Different 

training parameters gave similar motifs and the positions of the motifs are also found to be 

conserved. This suggests that the motifs learnt by the classifier are not biased by the training 

datasets used and are conserved in the sequences and may have some biological function. 

 

The positive dataset for the model discussed above is derived from chromosome 22. To 

cross validate the PE detected by the earlier model and to provide evidence that they are not 

just due to some strange distribution of chromosome specific sequences; new models were 

trained using a positive dataset from chromosome 20. Gene annotation from VEGA 
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database was used to extract 200 bases upstream and 2000 bases downstream of the 

cleavage site from chromosome 20. One of the models trained with this dataset is given in 

Figure 22. The signals detected by this training are similar to the motifs described in Figure 

21 and Table 1. The similarities between these two independently trained models suggest 

that these PE motifs may be a general feature of human gene 3’-ends. 

 
Figure 22. Transcription termination model trained from chromosome 20 sequences 

To investigate whether the PE motifs detected by the model were likely to be due to 

repetitive elements found in the human genome, the positive and negative datasets were 

repeat masked using Repeat Masker and training was done on a masked set. Models from 

various training cycles still learnt the PE discussed above. Thus the pause elements are not 

part of any repeat sequence although they occur multiple times in the 2000 bases 

downstream of the cleavage site. 

 

Chromosome 22 has a higher GC content than the average for human chromosomes and the 

PE represented in the model might mimic the CpG island in the training datasets. To rule 

out this possibility, the positive dataset was scanned for CpG island using CpG Report 

(Micklem) with the default parameters of 100 bases sliding window, minimum length of 

200 bases CpG island, 0.6 ratio for observed-expected value and 50% of G and C 

composition in the window. The scanning found that only 62 sequences out of 422 

sequences had CpG island-like sequences even at a conservative threshold score of 80. Thus 

with the maximum of only 14.69% of the positive dataset containing CpG island-like 

sequences, the likelihood of learning a CpG motif is less. Hence the PEs are not mimics of 

CpG island signals. 
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3.5.4 Model refinement 

Different training cycles showed the PE sequence motifs are present at varied positions 

downstream of the cleavage site. Hence I decided to try to refine the models by optimizing 

parameters to better by capture the position distribution of the PE. Important among the 

parameters modified is the Gaussian distribution width. As explained in chapter 2, the 

position of the basis function relative to the anchor point is captured as a Gaussian 

distribution. Since the default width allowed for the maximum expansion of the Gaussian 

distribution was found not to be ideal for learning the multiplex motifs of the PE, the width 

was optimized with various training cycles. Models trained with the new parameters gave 

PE with wider distribution and higher constraint weights. One such model is shown in 

Figure 23. The parameter file used to create the model is given in Appendix C. The new 

optimized parameters also removed the negative constraints present in earlier models and 

replaced them with positive constraints. Table 3 lists the positional constraints and Gaussian 

widths of the motifs seen in Figure 23. 

Table 3. Position contraints learnt while training chromosome 22 sequences 
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Figure 23. Transcription termination model trained from chromosome 22 sequences with 
modified parameters 

Eponine package is available in different flavours apart from the anchored sequence model 

widely used in this project. I tried three different versions for learning transcription 

termination signals and those are – 

 

(i) Windowed Sequence Model – In this method, an ‘anchor point’, positioned in EAS 

training on the cleavage site, is not used. Position constraints that are learnt from the set of 

training sequences using the same principles of the EAS are only between basis functions. I 

used an equal number of sequences (422 sequences) from confirmed 3’- gene ends of 

chromosome 22 and transcription unit as positive and negative set for training respectively. 

The trainer was allowed to run for approximately 4000 cycles and a model for every 500 

cycles was dumped and tested for its performance. Interestingly, the motifs represented by 

the basis functions are different to those of the EAS model and the model performed poorly. 

This indicates that the windowed sequence model might not be suitable for the problem 

under consideration. 

 

(ii) Hierarchical Sequence Model – This method works similarly to EAS except that 

position constraints are allowed to form anchor points for other position constraints in a 

hierarchical manner. This extension to the basic classifier may be helpful to better model 

situations where there are minor positional differences between features for given sets of 

sequences. For instance, TATA box might be used as a major constraint to classify 

promoters from other sequences. However, there are variations within different types of 

promoter sequences and few constraints can in turn be used to capture different promoter 

elements, say different transcription factor binding sites. Each transcription factor binding 

site has variations between different cell lines and few constraints can distinguish them 

(Figure 24). Thus the overall model with major constraints classify the dataset; and each 
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major constraint is made from minor position constraints; and each minor constraint is 

made of other constraints capturing the few differences within the different set of sequences, 

making a hierarchical structure. This method was used to train models from the 422 positive 

and negative sequences as before, allowing the trainer to run for 9000 cycles. The model 

captured similar signals as the anchored model and a hierarchy structure was learnt near the 

cleavage site. However no hierarchical structure was found in the sequences downstream of 

the cleavage site. 

 
Figure 24. Schematic representation of hierarchical sequence model. Most promoter 
sequences have TATA box and CpG islands. Each promoter element can have specific DNA 
binding site for transcription factors to dock (represented as TFBS). Variations in each 
TFBS can in turn be modeled giving a hierarchical view of classifying different promoter 
types. 

(iii) Dinucleotide Sequence Model – This classifier model capture features using the same 

strategy as that used in EAS except that the basis functions can also be derived based on 

dinucleotide compositions. The model found similar signals as those identified earlier by the 

anchored model. 

 

(iv) Stem-Loop Model – As noted earlier, there is a possibility of there being secondary 

structure in the downstream region where RNA polymerase is likely to terminate and the 

algorithms have difficulty in capturing them as they are likely to vary its position for 

different genes. To address this I exploited the Eponine positional variance constraint by 

implementing the Nussinov algorithm with the Eponine trainer to detect secondary 
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structures. However, training on the chromosome 22 datasets with this combination turns 

out to be very computationally expensive. However, the combination worked for histone 

genes where a stem-loop structure at the end of the gene is known to terminate transcription. 

I collected 100 histone stem-loop structures from Rfam database (Griffiths-Jones et al., 

2003) and trained it against random sequences. The Eponine trainer with the use of 

Nussinov algorithm basis function successfully picked a constraint that distinguished 

histone 3’-ends from other sequences. 

 

Likewise, in the earlier analysis, I tested the model with a toy dataset of 100 sequences of 

180 bases each. Each sequence is designed by using a known sequence of 60 bases with 

potential to form stem-loop structure, flanked with random sequences extracted from 

chromosome 20. This set of sequence is trained against a random sequence dataset to learn 

stem-loop constraints that can classify both the data. The trainer picked 3 constraints – 1 

positive flanked by 2 negative constraints on training. The positive constraint is due to the 

higher base pair metrics score for the known sequence (than the random sequence) in the 

positive dataset. However the base-pair metrics score flanking the known sequence is lower 

than the random sequence and hence these differences between positive and negative 

sequences were captured as two negative constraints by the trainer. 

 

Although the stem-loop model was successful in picking secondary structure constraints that 

were able to distinguish positive and negative sequences in the two cases described, the 

method was found to be computationally expensive for training on transcription termination 

datasets. Scanning 2000 bases downstream of cleavage site to identify a secondary structure 

constraint that can classify it from random sequences was found to be computationally 

expensive when implemented using Nussinov algorithm. Future work to improve the 

algorithm or adapt a different algorithm for scanning might prove to be useful in 

constructing higher order models. 

 

3.6 Performance of the model 

To test the performance of the model, it is necessary to define true positives and false 

positives. Any predictions with higher score value among the predictions made on the 

transcription unit and lying within 2500 bases from the cleavage site in the same strand as 

the gene are considered to be True Positives (TP). Any predictions within the transcription 
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unit in the same strand as the gene but not within 2500 bases from the cleavage site are 

considered as False Positives (FP). Internal predictions on the reverse strand, intergenic 

predictions and predictions within 2500 bases of the cleavage site but in the reverse strand 

are ignored (Figure 25). 

 

With these definitions, I tested the EAS model on chromosome 20 annotations and Figure 

26 shows the performance as a Receiver Operating Characteristics (ROC) curve (ROC-

Curve). ROC curve was plotted using the values given in Table 4. 

Table 4. Coverage and accuracy values of transcription termination model along 
chromosome 20. ROC curve was constructed using these values. 
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Figure 25. Schematic diagram showing criteria used for determining True positives (TP), False Positives (FP) and Ignored Predictions (IP). 
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Figure 26. ROC curve on transcription termination sites in chromosome 20 for Eponine 
model. 

 
Figure 27. ROC curves on transcription termination sites for Polyadq, ERPIN and Eponine 
in comparison with random model. 
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 I compared the performance with two other existing programs (ERPIN and Polyadq) to 

predict 3’-processing signals and a random model (Figure 27). Before discussing the 

performance I will briefly explain how random predictions are made. 

 

Chromosome 20 without contig gaps is roughly 59 Mbp in length and hence 59,000,000 

pseudo-random numbers between 0 and 1 were generated using PERL rand() function. The 

number generated is the score for each nucleotide in the chromosome and if the value 

exceeded 0.99 (threshold used in EAS model), it was recorded as a random prediction and 

the corresponding position in the chromosome was dumped. The strand for the predictions 

are generated using another rand() function. This procedure resulted in 294485 forward 

strand and 295229 reverse strand random predictions being collected. All the predictions are 

dumped in GFF format and compared with annotations of chromosome 20. 

Figure 27 shows the ROC curve for Eponine, ERPIN, Polyadq and the random model. Both 

Polyadq and to lesser extent ERPIN have the highest accuracy at low coverage, however 

their performance drops to random at about 20% and 40% respectively. The accuracy of 

Eponine predictions seems less correlated with score, with no high accuracy peak at low 

coverage, however Eponine predictions remain at twice the accuracy of random at about 

70% coverage. For comparable level of coverage, Eponine makes approximately 41% and 

38% less false positives compared to Polyadq and ERPIN respectively, since at this level of 

coverage it is the only algorithm still performing better than random. 

 

To determine if the genes identified by ERPIN, Polyadq and Eponine are same or different; 

I took predictions of the models at cut-off values of 9 (default threshold), 0.1 (default 

threshold) and 0.99 (comparable Eponine threshold) respectively. The result showed most of 

the gene termination sites were identified by all the three programs (might due to high 

coverage) and Eponine has detected all the predictions of EPRIN and misses only 14 genes 

predicted by Polyadq. 

 

Among the positional constraints learnt by the EAS model, the 3’-end processing signals 

(poly(A) signal and GT rich motif) play an important role as can be seen from the constraint 

weight in Table 3. This is consistent with the results from experiments where upon deletion 

of the poly(A) signal the elongating polymerase failed to terminate and caused a run-over 
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(Edwalds-Gilbert et al., 1993; Yeung et al., 1998). To investigate the poly(A) signal 

requirement, I made a few models without DNA sequences spanning the 3’-end processing 

signals. Comparison of models developed from DNA sequences spanning 100 to 2000, 300 

to 2000, 500 to 2000, 1000 to 2000 and 300 to 3000 bases from the cleavage site showed all 

the models performed less well than the models with 3’-processing signals. Thus the 

poly(A) signal appears to be a significant constraint in the model and required to make valid 

predictions along the chromosome. However the PE found by the model should not be 

underestimated as they are found to improve prediction accuracy. 

  

3.7 Positional accuracy of the model 

The density of predictions along the chromosome with respect to the annotated cleavage 

sites is shown in the Figure 28. As it can be noted, most of the predictions are associated 

with the annotated sites. Apart from the huge peak, there are predictions on either side of the 

peak with a distribution equal to the background prediction density. The model is good in 

detecting the directionality of the transcription termination site and the figure shows only 

the predictions matching the same strand as that of the annotation. Likewise, positional 

accuracy of ERPIN and Polyadq are shown in Figure 29. These methods are also good in 

predicting the transcription termination sites accurately. 
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Figure 28. Prediction density for transcription termination model along chromosome 20. 
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Figure 29. Prediction density along chromosome 20 for (a) ERPIN and (b) Polyadq. 
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3.8 Internal predictions 

I hereafter concentrate on the distribution of predictions made within the gene as 

termination-like signals lying within the transcription unit are likely to challenge the 

transcription machinery leading to premature termination. Understanding the features of 

these predictions will help to differentiate them from correct gene ends and increase the 

accuracy of the model. Nearly 10% of total predictions along the chromosome are found 

within the gene in the same strand. To investigate whether the internal predictions made 

with Eponine model are linked with its learning protocol, an independent program, ERPIN 

was used for comparison. To facilitate this comparison, values are reported as predictions 

per 100 kb of genome sequence, subdivided into gene feature categories (Table 5). 

Table 5. Distribution of false positives within transcripts, exons and introns. 
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The predictions per 100 kb of gene are 19.86 and 32.00 for Eponine (threshold: 0.99) and 

ERPIN (default parameters) respectively indicating the good performance of Eponine model 

assuming most of these predictions represent true false positives. The predictions were then 

subdivided into those present in exons and introns of the gene. The predictions per 100 kb of 

intron were found significantly higher than in the exons. The reason for this huge bias 

towards introns is unknown. On further classifying the distribution of predictions in exons 

between single (gene with just one exon), first, internal and last exons, showed internal 

exons have more predictions. However, since the number of predictions per 100 kb of exons 

is low, deriving conclusions from these small figures holds no importance. 

  

In the same way, distribution of predictions found in introns, were classified between single 

(genes with just one intron), first, internal and last introns. The numbers indicate that first 

introns have significantly more predictions compared to internal and last introns. This holds 

true for ERPIN program predictions as well. The bias towards first introns is puzzling and 

so far there is no experimental evidence to explain the phenomenon. The table shows last 

introns have dramatically lower prediction rate as I excluded any predictions within 2500 

bases from the cleavage site for this analysis. The average ERPIN predictions per 100 kb of 

single and first intron was calculated to be 39.26 and this value is equal to the 39 false 

positives per 100 kb specificity reported by the authors of the program earlier (Gautheret 

and Lambert, 2001). 

 

Thus almost all internal predictions found within gene are present in introns and first introns 

have more predictions than internal and single introns. 

 

Interesting experimental results were found in a recent chromatin immuno-precipitation 

assay by Affymetrix using high-density oligonucleotide arrays representing all nonreptitive 

sequences on human chromosomes 21 and 22 for Transcription Factor Binding Sites 

(TFBS) (Cawley et al., 2004).  The assay was designed to identify TFBS for Sp1, cMyc and 

p53 factors and found a minimal of 12,000 sites for Sp1, 25000 sites for cMyc and 1600 

sites for p53 in the human genome. Only 22% of these predictions are found near 5’ termini 

of the gene while 36% lie within or near 3’ to well characterized genes and remaining 24% 

in intergenic regions. The TFBS not linked to 5’ termini of the gene are found correlated 

with noncoding RNAs. A significant proportion of these RNAs are co-regulated with 
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protein coding genes and activated by retinoic acid. The unexpected number of TFBS 

with just 3 transcription factors observed under one environmental induction condition 

suggests that there may be a large number of transcription units still to be identified in the 

genome. As the novel transcripts identified are found to be regulated by the same 

mechanism as protein-coding genes, they are expected to have similar transcription 

termination sites indicating that some of the excess predictions made by EAS model along 

the chromosome might be biologically significant. 

 

The Sp1 transcription factor is known to bind G-rich elements (resembling PE) and is able 

to pause the elongating polymerase (Yonaha and Proudfoot, 1999). Identification of Sp1 

TFBS within genes supports the idea that some of the internal predictions may be functional 

pause sites (Cawley et al., 2004). Likewise, the PE in the EAS model resemble the MAZ 

(Myc-Associated Zinc Finger Protein) binding site (GGGGAGGGGAC) and MAZ sites 

have been shown to pause polymerase better than Sp1 sites. Also, MAZ protein has been 

found to be necessary but not sufficient for efficient 3’ end formation (Yonaha and 

Proudfoot, 1999). 

 

All of the experiments described above support the idea that some of the internal predictions 

made by the EAS model may not be false positive predictions but may be functional in vivo. 

 

The EAS model has poly(A) signal as its major constraint and an internal prediction means 

similar signals are present within the transcription unit. A SELEX experiment to determine 

the branch point sequence from HeLa cell nuclear extract yielded a sequence motif 

AAUAAAG, that proved to be functional both as polyadenylation and branch site in a 

competitive manner (Lund et al., 2000). Earlier experiments have also shown the 

competition between spliceosome and polyadenylation factors while the RNA polymerase is 

elongating the gene (Takagaki and Manley, 1998; Takagaki et al., 1996). The complexes 

compete for the branch point signal in the acceptor site and depending on the local 

concentration of factors and strength of the signal either splicing or polyadenylation occurs. 

Thus the conserved branch point signal and its associated poly(T) tract might mimic the 

poly(A) signal and the poly(T) tract of the 3’-processing signals. I suspected that this could 

have caused the EAS model to make internal predictions. However I found no significant 

increase in the density of predictions near branch point signals.  
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I also suspect that in at least in a few cases, the internal predictions made by the model are 

not really false positives and may instead act as terminator signals for alternative transcripts 

of the same gene. As the number of alternative transcripts is difficult to quantify, even for 

well annotated chromosomes, further analysis will be needed to clarify this. 

 
3.9 GO correlation 

Initial observations of lists of genes having internal predictions showed they are enriched in 

a subset of genes. To investigate the nature of genes having high number of internal 

predictions, I used the Gene Ontology (GO) database (Gene Ontology Consortium, 2004). 

From the annotations of chromosome 20, 176 genes were mapped to a GO identifier and 45 

of these genes have 10 or more internal predictions so I used GO to find their biological 

role. The analyses showed, 32 out of 45 genes have Cell growth and or maintenance 

function corresponding to GO identifier, GO: 0008151. Thirty two (32/45) is higher than the 

random expectation of 24 from 91 genes with the same GO id in the 176 genes dataset. 

There were much smaller differences in the use of more specific GO terms, and hence no 

functional annotation of genes with large number of internal predictions could be 

determined. 

 

Figure 30 shows the wide variation in the density of internal predictions with an average of 

10-18 internal predictions per 100 kb of transcription unit. This number is less than the 

prediction made by a comparable program, ERPIN. I did another GO ontology search for a 

set of 27 genes that have 20 or more internal predictions per 100 kb but found no common 

functional annotation. Unsurprisingly, the number of internal predictions was found to be 

correlated with transcript and intron length. Figure 31 shows transcript length and internal 

prediction rate has a linear correlation. However Figure 32 shows shorter introns of less than 

1000 bases have high propensity to have more internal predictions. In introns of less than 1 

kb, an average 18 internal predictions per 10 kb is present. This is significantly higher than 

2.5 internal predictions per 10 kb of large introns. The reason for such bias is not known 

although manual investigation of some predictions suggested that they might be terminators 

of alternative transcripts. 
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Figure 30. Internal predictions per 100 kb of gene sequence in chromosome 20 for Eponine 
model. 

 
Figure 31. Internal predictions per transcript in chromosome 20 for Eponine model. 
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Figure 32. Internal predictions of Eponine model in introns of chromosome 20 (a) Number 
of internal predictions versus intron length (b) Number of internal predictions normalised 
over intron length. 
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3.10 Predictions near annotated gene start sites 

Analysis of the density of predictions with respect to different gene features shows an 

unexpected concentration near the start of genes. The predictions found near the annotated 

gene start site are found to be close to its promoter elements and are unlikely to be a 

transcription termination site of the preceding gene. This was confirmed by considering only 

genes with no known annotated genes in the 2500 bases upstream of the start site and a 

minimum transcription unit length of 2500 bases. With this criterion, I selected 399 genes 

from the 584 annotated genes in chromosome 20, and 639 genes from the 1003 annotated 

genes of chromosome 6. The position density graphs shown here are calculated for these 

subsets of annotated genes. Figure 33 shows the density of predictions near annotated gene 

start sites of chromosome 20 in the same and opposite strand of the gene. A significant 

number of predictions are found just upstream (within 500 bases) of gene start site in the 

same strand orientation as the gene and the density is generally higher upstream than within 

the transcription unit (Figure 33a). Density predictions in the opposite strand show a 

significantly reduced number of predictions at the start site (position 0) and no significant 

increase in predictions elsewhere (Figure 33b). These results were generally consistent 

across different trained Eponine models, however predictions of two other transcription 

termination models also showed a number of predictions in the opposite strand just 

downstream of the annotated start site (Figure 34).  Similar results were obtained on a 

different independent dataset of chromosome 6 (Figure 35a and Figure 35b). Also to 

investigate whether the predictions near gene start site are specific to models derived using 

the Eponine package, or more generally predicted, results form the two independent 

programs, Polyadq and ERPIN were similarly analysed for chromosome 20 sequences 

(Figure 35c; Figure 35d; Figure 35e; Figure 35f). Although there is no significant same 

strand prediction peak in the upstream region as seen for Eponine models, the density of 

predictions do appear to be relatively higher in the upstream region than in the transcription 

unit. 
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Figure 33. Prediction densities for transcription termination model near chromosome 20 
annotated gene start sites. (a) Density of predictions in the same strand as of the gene (b) 
Density of predictions in the reverse strand as of the gene. 

 
Figure 34. Prediction densities for two other transcription termination models near 
chromosome 20 annotated gene start sites (a), (c)  Densities of predictions in the same 
strand as of the gene. (b), (d) Densities of predictions in the reverse strand as of the gene. 
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Figure 35. Prediction densities near chromosome 20 and 6 annotated gene start sites. (a) Density of predictions in the same strand as of the 
gene in chromosome 6 predicted by Eponine (b) Density of predictions in the reverse strand as of the gene in chromosome 6 predicted by 
Eponine (c) Density of predictions in the same strand as of the gene in chromosome 20 predicted by ERPIN (d) Density of predictions in the 
reverse strand as of the gene in chromosome 20 predicted by ERPIN (e) Density of predictions in the same strand as of the gene in chromosome 
20 predicted by Polyadq (f) Density of predictions in the reverse strand as of the gene in chromosome 20 predicted by Polyadq. 
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Thus the plots show a higher than expected number of predictions just upstream of 

annotated gene start sites and on the assumption that this effect is real it is interesting to 

speculate on possible biological functions.  

 

3.11 Hypotheses 

Here, I have attempted to explain this unusual set of predictions by proposing a hypothesis 

assigning biological function based on previous knowledge from experiments. 

 

Hypothesis I: As promoter detection by the RNA polymerase complex depends on a 

scanning mechanism, a terminator-like sequence positioned just upstream of a gene start site 

(referred hereafter as FP-TSS) might help the complex to prevent long regions of scanning 

and recruit the factors to the promoter elements and localize them. 

 

The FP-TSS in the promoter region just 500 bases upstream of the annotated gene start site 

in the same strand as that of the gene might act as a guiding signal for the transcription 

factors to bind to its corresponding DNA binding domains. This will reduce the range of 

nucleotides need for scanning and help the factors to identify its binding site. If any case, if 

the factors gets recruited far upstream of the start site, then they are likely to get dissociated 

and the scanning terminated due to the FP-TSS signals. Thus the FP-TSS might help in 

positioning the initiation complex close to promoters. 

  

Experimental evidences published recently support this view. Joseph Martens (Martens, 

2003) reported a novel transcription interference assisted gene regulation process in the 

‘Mechanisms of Eukaryotic Transcription’ conference held at CSHL, New York. In this 

case, a short transcript initiated from an upstream TATA box overlaps a downstream TATA 

site that is responsible for transcription of the downstream gene, SER3 in Saccharomyces 

cerevisiae. The upstream TATA site and transcript lies within the promoter elements of the 

SER3 gene and transcription of this short transcript is dependent on Snf2 chromatin-

remodeling complex. The short transcript interferes with SER3 transcription by masking the 

overlapping activator elements of SER3. The interference was confirmed with the 

derepression of SER3 transcription when the upstream TATA site was mutated. 

Interestingly, apart from having a fully functional TATA box, the upstream short transcript 
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has a poly(A) signal just like a normal gene. The positional occurrence of this poly(A) 

signal correlates with the prediction identified earlier by the Eponine model near gene start 

sites. Thus this experiment confirms the poly(A)/terminator-like  signals found upstream of 

the gene start site are likely to have biological functions. 

 

Evidence for the hypothesis also stems from more unexpected discoveries of interaction 

between RNA polymerase II and processing machineries. As described in chapter 1, the 

interaction between polyadenylation machinery factors (CPSF, CstF) and CTD of RNA 

polymerase II has now been well established (Dichtl et al., 2002b; Osheim et al., 2002). 

Interestingly this interaction begins right from the promoter and apart from CTD, even 

general transcription factors like TFIID associate with CPSF (Dantonel et al., 1997) making 

it a component of the transcription initiation complex. This study adds support to the 

presence of termination like sequences in the upstream region of gene start sites as predicted 

by the EAS model. Although the role of CPSF in the promoter region is not known, the 

presence of it in the initiation complex emphasizes that the FP-TSS are likely to have 

biological functions. 

 

In a recent review, Calvo and Manley have discussed the interaction between 3’ processing 

factors and initiation complex do not stop with CPSF but includes other factors like 

symplekin (Pta1 in yeast), Ssu72 and PC4 (Calvo and Manley, 2003). There is no definite 

answer for such growing presence of polyadenylation factors near to the promoter region 

although the conditions are explained by linking the factors to different roles when present 

in promoter and termination regions. However such strategies have created only confusing 

explanations. For example, Ssu72, a phosphatase that interacts with TFIIB and present in 

elongating polymerase (Sun and Hampsey, 1996) is expected to have anti-terminator 

activity. However in other experiments it was found Ssu72 is necessary for 3’-end formation 

and/or termination (Dichtl et al., 2002a; Gavin et al., 2002; He et al., 2003). Similarly PC4, 

a co-activator protein that binds single and double stranded DNA displays anti-terminator 

activity (Aranda and Proudfoot, 2001; Ge and Roeder, 1994) but interacts with CPSF and 

CstF at the 3’ processing signals (Calvo and Manley, 2001). Both PC4 and Ssu72, which are 

unrelated in primary structure, share a common function of helping transcriptional 

machinery to identify the gene start site by interacting with the general transcription factor, 

TFIIB (Sun and Hampsey, 1996; Woychik and Hampsey, 2002). Also the factors interact 
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with symplekin, a component of CPSF, mutually exclusive with PC4 binding at the 5’ 

end of the gene and Ssu72 at the 3’-end (He et al., 2003). However recent studies show 

Ssu72 possesses protein phosphatase activity and may be required for both ends for the gene 

(Ganem et al., 2003; Meinhart et al., 2003). Like other factors, symplekin also facilitates 

interaction of transcription initiation factors with CTD of polymerase at the time of 

transcription initiation (Rodriguez et al., 2000). Thus the experiments show the functions of 

the protein molecules are conflicting and have different roles within the transcription 

machinery. 

 

However the above studies confirm the unexpected discoveries of huge number of 

polyadenylation factors near promoter elements and that the poly(A) signal near to the 

promoter might be functional. This forms the basis for my hypothetical model that 

recruitment of polyadenylation factors at the promoter regions, might in turn, recruit other 

general transcription factors and thus help in localizing the initiation complex just upstream 

of gene start sites. Also, the predicted signals may help in avoiding the unnecessary 

scanning required to find the start site and take part in gene regulation as described earlier 

(Martens, 2003). A related puzzling question which remains to be tested is, if FP-TSS is 

functional, are they similar in activity to the 3’-processing signals? This can be verified by 

cloning the FP-TSS and surrounding sequences to the end of the gene and expect for 

termination of RNA polymerase II to occur. If polymerase terminates it will unambiguously 

confirm the upstream predictions are similar to 3’-processing signals found at the end of 

genes. 

 

The hypothetical model also fits the transcription machinery model (Cook, 1999) wherein 

transcription factors and RNA polymerase associate together to form a machinery through 

which the DNA passes when a particular gene needs to be transcribed. Given the model is 

true, it is not a surprise to find so many polyadenylation factors in the promoter elements as 

all the factors are likely to participate in the machinery. Presence of FP-TSS at the promoter 

region in this machinery model will define the start of a gene by terminating any 

transcription starts initiated far upstream from promoter. 

 

Hypothesis II: The unusual condition of significantly high number of predictions in the first 

intron compared to other introns is explained in this hypothesis. The polymerase queuing 
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model (Heinemann and Wagner, 1997; Wagner, 2000) explained in prokaryotes forms the 

basis for this. Prokaryotic genes are transcribed by multiple polymerases at any given time, 

and this leads to a trail of polymerase transcribing a single gene. If the rate of transcription 

is slow when compared to entry of new polymerase complexes at the promoter region, the 

transcription complexes are likely to queue all along the gene. I contemplate the same 

mechanism might act in eukaryotic gene transcription as well. In cases of genes with high 

expression levels and strong promoter motifs, there is a high probability of more 

transcription initiation complexes getting assembled and initiating transcription. However if 

the rate of transcription is likely to be less than the rate of assemblage and initiation then the 

complexes are likely to be queued. Having a terminator like sequences at the first intron 

might act as a strong pause signal and induce weak or incompetent complexes to terminate 

initiation and dissociate from the DNA. However if the complex is competent enough then 

its likely to continue the transcription process past the pause signals in the first intron and 

complete the whole gene transcription. Presence of predictions at the first intron compared 

to other internal introns might save energy from unnecessary transcription as the cell can 

abandon it just after initiation. 

 

This hypothesis depends on the assumption that transcription of a gene is carried out by 

multiple polymerases at a given time. However there are split views on this. Supporters of 

the transcription machinery model argue gene transcription is done by a single polymerase 

at a given time. However there is no consensus so far. Even if the transcription machinery 

model holds true, the terminator like signals at the first intron might act as check point to 

evaluate the processivity of the machinery complex in transcribing the gene. 

 

Experimental evidences support this hypothesis and reports premature termination occurs in 

the 5’ region of many viral and cellular genes (reviewed in Spencer and Groudine, 1990). 

Such intragenic termination occurs efficiently near gene start sites. This was shown in c-

myc gene where terminator like sequence present 310 bases from the start site when moved 

to 600 bases resulted in more than five fold decrease in termination efficiency. This 

emphasizes that the evaluation of processivity of complexes occur early in the transcription 

process and influenced by the distance from start site (Roberts and Bentley, 1992). Similar 

observation in c-myc, c-myb, c-fos, β-globin, adenosine deaminase and porphobilinogen 

deaminase genes show that all intragenic terminations occur in the 5’ region of the genes 
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usually within 1 kb from the start site (Beaumont et al., 1989; Bentley and Groudine, 

1986; Chinsky et al., 1989; Lois et al., 1990; Mechti et al., 1991; Watson, 1988). These 

experimental results show the predictions in the first intron might have biological function 

and help in classifying the transcription complexes that initiate from promoters into two 

heterogeneous sets based on their processivity. Thus the predictions might act as an 

attenuator and thereby allow only read-through complexes to complete transcription. 

 

The read-through of RNA polymerase II can be assisted by various complexes. One such 

complex extensively studied in phage, called N and Q anti-termination system involves at 

least six proteins (Das, 1993; Friedman and Court, 1995; Greenblatt et al., 1993). A similar 

mechanism is present in eukaryotes as well and so far 5 factors were reported. The first 

factor, S-II was originally discovered in mouse and found to suppress pausing of 

polymerase and activate reinitiation (Reines, 1994). The second factor, TFIIF (factor 5) is 

required for initiation and stimulation of elongation rate of polymerase (Wiest et al., 1992). 

The third factor, TFIIX, identified in HeLa cell extract stimulates elongation of polymerase 

II (Bengal et al., 1991). The fourth factor, a yeast protein YES stimulates the elongation rate 

of polymerase II (Chafin et al., 1991). Finally, a factor, P-TEF stimulates elongation by 

forming part of productive elongation complexes and restores initiation of paused 

polymerase (Orphanides and Reinberg, 2002). DmS-II and Factor 5 forms part of the late 

elongation complex while P-TEF plays role in the early elongation complex (Marshall and 

Price, 1992). P-TEF phosphorylates DSIF and CTD of polymerase and thus increase the 

processivity of the elongation complexes (Renner et al., 2001).  

 

Thus the predictions near to the gene start site and first intron are likely to have biological 

functions and experimental evidence evaluating it will add new knowledge to the 

understanding of the transcription machinery. 

 

3.12 Concluding remarks 

With Eponine transcription termination models, I identified few multiplex pause elements 

present in the sequences downstream of the cleavage site. Occurrence of these signals 

repetitively indicates they might complement each other in pausing polymerase before 

release.  The signals are similar to the sequences found in yeast ura4, α-globin, C2, factor B 

and nmt2 genes (Aranda and Proudfoot, 1999; Birse et al., 1997; Yonaha and Proudfoot, 
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2000). The A-richness found in human β and α2 globin genes are represented as negative 

positional constraint (TTTT motif) in the model (Dye and Proudfoot, 2001; Enriquez-Harris 

et al., 1991). Likewise the G-richness found in the pause elements (Table 1) agree with 

experimental results from human C2 and factor B genes (Ashfield et al., 1991).  MAZ and 

Sp1 transcription factors bind to these G-rich elements and interestingly in a recent 

experiment by Affymetrix (Cawley et al., 2004), 34% Sp1 TFBS are found internal or 

proximal to the 3’ end of the gene. These TFBS show a possible correlation with internal 

predictions identified by Eponine model. Detailed analyses of internal predictions indicate 

they are not randomly distributed and significantly present in longer genes and shorter 

introns (less than 1000 bp). 

 

Earlier computational analyses by Nussinov (Nussinov, 1987, 1990) indicated the presence 

of TATAAA, AGGG and GGGC motifs in the sequences upstream of the transcription 

initiation site. These motifs resemble the AATAAA and pause elements of the model and 

thus correlate with significant number of predictions found proximal to the gene start sites.  

 

Thus identification of transcription termination signals in the first intron and proximal to 

gene start sites encourages future mechanistic investigations and discussions concerning the 

transcriptional machinery and the possible reconsideration of current concepts of gene 

regulation in the eukaryotic genome. 
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MODELLING DONOR AND ACCEPTOR SITES 

 

4.1 Introduction 

Recent in vivo experiments show splicing or RNA processing events are found to be 

temporally and spatially related to the transcription process and that the CTD of the RNA 

polymerase II itself initiates such interactions (refer chapter 1, Cramer et al., 2001; Manley, 

2002). Hence while studying transcription termination, it is natural to consider splice sites 

and investigate whether modelling them is required to create an ab initio gene prediction 

system based on regulatory signals. Combining transcription termination models with splice 

site models may remove some of the internal predictions by the termination model and 

thereby help in predicting the correct gene structure. 

 

In existing ab initio gene prediction systems splice site determination has formed a major 

role as they define the exons and introns of a gene.  The first exon differs from internal 

exons as it lacks an acceptor site as the 5’ end of the mRNA is capped with 7-methyl 

guanosine. Likewise, the last exon is different from other internal exons as it lacks a donor 

site as the mRNA is terminated with a poly(A) tail attached to the cleavage site. Each 

internal exon has an acceptor and donor site at its 5’ and 3’ ends. 

 

These sites along with other regulatory elements recruit an array of protein and RNA factors 

depending on the splicing signals and remove the intervening sequences or introns from the 

nascent RNA and stitch the exons together. This process is referred as Splicing and details 

of this process are explained in chapter 1. Recognition of donor sites is relatively easy as the 

donor signals are more conserved than acceptor signals (for details refer reviews, Black, 

2003; Jurica and Moore, 2003; Reed, 2000). 

 

Several programs are available in the public domain that can detect donor and acceptor sites 

in the mRNA sequences. They function either as a stand-alone splice site finder or as part of 

gene prediction programs. The performance of most of the gene finding systems is greatly 

influenced by their accuracy at determining splice sites. In theory, a program that could 

identify all splice sites would do a nearly perfect job of ab initio gene finding as it would 

determine all protein coding regions correctly given the transcription start site (Brendel and 
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Kleffe, 1998; Burge and Karlin, 1997; Solovyev and Salamov, 1997). However 

identifying all the potential splice sites and gene structures is difficult, in particular because 

each gene may be spliced in a number of different ways. Recent experimental data suggests 

that in human at least one-third of genes are alternatively spliced (Ashurst and Collins, 

2003). This increases the complexity of predicting donor and acceptor splice sites in the 

RNA sequences and the identification of gene structure by ab initio programs. 

 

Thus in order to meet the objective of developing an ab initio gene prediction program 

based on regulatory signals, here I attempt to create a donor and acceptor site model using 

the EAS system explained in chapter 2. 

 

4.2 Datasets 

For the purpose of training and testing the model, I used annotated splice sites from human 

genomic sequences from the database, SpliceDB (Burset et al., 2001). From this database, 

28468 canonical and non-canonical human splice pairs were extracted. After removing 

splice site sequences with undetermined base pairs (denoted as ‘N’), 24808 donor and 

24894 acceptor splice sites were dumped to derive a positive dataset. From the 24808 donor 

sites, 500 sequences of 82 bases (40 bases on either direction of the consensus site + the 2 

consensus bases at the donor site) each were extracted randomly to form a training set for 

donor sites. Likewise, 500 sequences of 82 bases (40 bases on either direction of the 

consensus site + the 2 consensus bases at the acceptor site) each picked randomly from 

24894 acceptor sites formed the training set. GT and AG of donor and acceptor site 

respectively formed the anchor point and both the sets of sequences are collectively referred 

as positive datasets. 

 

Eponine classifier requires another set of sequences where donor and acceptor signals are 

unlikely to occur. As this is the critical step in deriving the model, I tried different set of 

negative sequences – random, exonic and intronic sequences. A set of 946 random 

sequences of 82 bases each were dumped from chromosome 20 to form a negative set. 

Using BLASTN, an all-against-all search was done and sequences were removed such that 

none had more than 90% sequence identity with any of the others. This left a set of 561 

sequences, which was referred as randneg negative dataset. 
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A list of 781 exons of at least 500 bases was dumped from chromosome 20 and 22 to 

derive the exonic negative dataset. After removing 52 redundant exons (with same 

identifiers), 82 base sequences from the centre of each exon were extracted. Then I did an 

all against all search on these 729 (781-52) sequences using BLASTN and again sequences 

were removed such that none had more than 90% sequence identity to any other. This 

formed a set of 500 sequences, exonneg. By extracting sequences from the middle of the 

exon, any sequence elements near exon-intron and intron-exon boundaries are excluded 

from the negative dataset. 

 

Likewise, 1000 introns from chromosome 20 of at least 500 bases were used to form the 

intronic negative dataset. Redundant introns with same identifiers were removed leaving 

891 introns. From this set, 82 base sequences from the centre of each intron were extracted. 

After removing any sequence with more than 90% sequence identity to any other as 

detected using BLASTN, a set of 507 sequences were dumped to form the intronneg 

dataset. 

 

Another set of 500 sequences were created from randneg, exonneg and intronneg datasets 

by picking random sequences. This set was referred to as combneg. 

 

4.3 Training the splice site models 

With the availability of positive and negative datasets for training and testing, I used 900 

sequences (450 positive + 450 negative) for training and the remaining 100 sequences (50 

positive + 50 negative) for testing the models. The test sequences are unseen while training 

and used only for initial testing of the models. I trained an Eponine donor site model by 

allowing the trainer to run for 6000 cycles. Each cycle took a few seconds in a 256MB 

RAM PIII Pentium laptop. The anchor point for the training is fixed at the first base of the 

donor consensus sequence - i.e. G in GT consensus signal. The window size for training the 

model was restricted to 35 bases on either side of the anchor point as any constraints 

selected near to the edges of the sequence are likely to cause the trainer to trip, leading to 

problems in determining the Gaussian distribution for the constraint. As we are interested in 

capturing only the donor consensus signals rather than all regulatory elements conserved in 

exon or intron, the window size of 35 bases was found sufficient. During the training, 

models were dumped at various checkpoints to analyse the performance of the trainer and 
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determine the convergence of the model. Figure 36 shows a typical donor site model 

learnt by the EAS system. The model seems to be complex with positive and negative 

overlapping constraints. Different training cycles with modified parameters and negative 

datasets showed similar results and the model did not converge even at varied numbers of 

training cycles.  

 
Figure 36. Donor site model trained from SpliceDB sequences 

Likewise, the acceptor splice site model was also found to be complex with more negative 

constraints (Figure 37). Here, A of AG in the consensus acceptor site was used as the anchor 

point with a window size of 35 bases. 
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Figure 37. Acceptor site model trained from SpliceDB sequences 

 

4.4 Refining the models 

So to refine the models explained earlier, I adopted two strategies – 

 

Eponine models are created by linking positional weight matrices scanned while training 

from the positive sequences. As explained in chapter 2, an initial set of constraints or weight 

matrices are sourced from the training set and on training, informative constraints are kept, 

removing the uninformative ones. This process continues until the datasets can be modelled 

using a set of sequence motifs. Thus in the EAS model, the complex natural data are 

simplified to a sparse model by projecting the data into feature space. However in some 

instances, selecting those few constraints that can effectively define the feature space of the 
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datasets might be difficult and hence the models are unlikely to converge. Here donor 

and acceptor site models have reached this point and hence to facilitate the learning process, 

I used weight matrices calculated from donor and acceptor sites of chromosome 22 as an 

input along with the DNA sequences. This reduced the difficulty in learning an appropriate 

set of constraints that can optimally classify positive from negative sequences. From 

chromosome 22, experimentally annotated 2348 donor and acceptor sites were dumped 

from coding genes and weight matrices showing the probability distribution of the 

nucleotides at each position of the sequence was constructed. Figure 38 shows the 

probability distribution for 30 nucleotides around donor and acceptor sites. The donor 

weight matrix has captured the canonical consensus sequences reported earlier. Likewise, 

the acceptor site matrix has captured the consensus sequence along with the polypyrimidine 

motif preceding the signal. These weight matrices are used as input along with DNA 

sequences to learn a sparse EAS model by including the following lines in the parameter 

file. 

 
Figure 38. Nucleotide Distribution at (a) Donor and (b) Acceptor site  from chromosome 22 
sequences 

<child jclass="eponine.model.WMFileBasisSource"> 

<string name="fileName" value="./donorORacceptorWMfile.xml" /> 

<int name="position" value="-25" /> 

 <double name="minDistWidth" value="2.5" /> 

<double name="maxDistWidth" value="50.0" /> 

<boolean name="reversible" value="false" /> 

</child> 

 

Positional distribution of the constraints learnt by Eponine is usually captured as a Gaussian 

distribution. However, the system allows for various other distributions to be used 

depending on the conditions of the problem. Here as the consensus sequence of the donor 
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and acceptor sites in the training sequences are less likely to vary in their position, a 

Delta distribution (instead of Gaussian distribution) is appropriate in modelling the 

positional variations. Thus for learning splice site models I implemented a Delta distribution 

along with the Gaussian for capturing the offset values of the constraints relative to the 

anchor point. I added the following lines to the parameter file – 

 
<child jclass="eponine.model.MakeDeltaBasisSource" /> 

<child jclass="eponine.model.BreakDeltaBasisSource" /> 

 

With these changes I retrained the model with a new set of data derived from chromosome 

22. From chromosome 22, 550 donor site sequences of 350 bases each (50 bases upstream 

and 300 downstream of GT signal. 300 bases downstream of GT is used in the aim to find 

out any unknown signals in this region) were dumped to form the positive dataset. Likewise, 

550 acceptor site sequences of 350 bases each (300 bases upstream and 50 bases 

downstream of AG signal. 300 bases upstream of AG signal will include the well known 

Branch Point region) formed the acceptor site positive dataset. An equal number of random 

sequences from chromosome 22 formed the negative set. From the positive and negative 

datasets, 1000 sequences (500 positive + 500 negative) were used for training and the 

remaining 100 sequences (50 positive + 50 negative) for initial testing of the model. G of 

GT and A of AG in donor and acceptor signals respectively were used as anchor points. For 

donor site mode, the window size limits are set to 42 bases upstream and 290 bases 

downstream of the anchor point whereas for the acceptor model, the limits are 290 bases 

upstream and 40 bases downstream of the anchor point. Although the window size spans to 

290 bases, the positional constraints learnt by both models are within 30 bases from anchor 

points, emphasising the fact that regulatory elements determining splice sites are closely 

linked with donor and acceptor signals. 

 

Figure 39 and Figure 40 show the refined models with new parameters and datasets for 

donor and acceptor sites respectively. Figure 41 shows the position, constraint weight and 

Gaussian width of each constraint learnt by the donor model. The consensus signal at the 

donor sites are captured by 3 positive constraints. One of the constraints had a Delta 

distribution meaning no positional variation in the motif. All the constraints emphasize the 

importance of the GT bases in the consensus motif. From the intronic sequences, a 
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constraint rich in G nucleotides was learnt and positioned at 28 bases downstream of the 

anchor point. The biological importance of the motif is not known. Table 6 shows the 

occupancy value of the top 15 motifs represented in various donor site models. 

Table 6. Occupancy value for motifs detected in the donor site models. 
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Figure 39. Donor site model trained from chromosome 22 sequences and donor site weight 
matrix 

 
Figure 40. Position constraints of donor site model learnt while training chromosome 22 
sequences 
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Figure 41. Acceptor site model trained from chromosome 22 sequences and acceptor site 
weight matrix 

Figure 42 shows the properties of positional constraints learnt by the acceptor model. The 

consensus AG signal is well captured along with the polypyrimidine motif known earlier. A 

CG rich motif was found 22 bases downstream of the acceptor site (in exonic sequence) 

with a Gaussian distribution width of 10.96 and constraint weight of 9.42. The values 

emphasise the signal is important but the role of the motif is not known. The frequency of 

distribution of these motifs and other top 15 motifs in different regions of the model are 

shown in Table 7. A value of more than 1 indicates the motif is represented more than once 

in few models. 

 

Thus, this second training approach, seeding the training with a position distribution and 

making use of a Delta function, was able to generate simple models containing only positive 

weights (Figure 39 and Figure 41) compared to the earlier training approach (Figure 36 and 

Figure 37). 
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Table 7. Occupancy value for motifs detected in the acceptor site models. 
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Figure 42. Position constraints of acceptor site model learnt while training chromosome 22 
sequences 

  

4.5 Validating and testing the models 

I tested the performance of these refined models of donor and acceptor sites using datasets 

derived from chromosome 20. From the VEGA annotation of chromosome 20 (on build 

NCBI 33) (Ashurst, 2002), I extracted 614 genes. These genes are defined as ‘Known’ or 

‘Novel_CDS’ and ‘Novel_transcript’ in the database. ‘Putative’ and ‘Pseudogene’ 

categories are not considered. Constitutive and alternative exons known in these 614 genes 

totalled to 8771 and they were dumped to extract donor and acceptor sites. Out of 614, 42 

genes are single exon genes and are thus omitted in this study. From the remaining 572 

genes, 8037 and 8141 constitutive and alternative donor and acceptor sites are extracted 

respectively. After removing the redundancy present in the set of donor and acceptor sites, 

5835 and 6166 unique donor and acceptor sites are found and I used this set to test the 

performance of the models. 

 

Coverage is defined as the set of genes with at least one prediction within it. The value is 

calculated from the number of the genes with a prediction over the total number of genes 

(572). Accuracy is defined as the set of predictions that matches the annotated sites over 

total predictions within the gene. Any predictions (in the same strand matching the 
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annotation, prediction on the opposite strand are considered as false positives) present 

within 10 bases of the centre point of annotated sites are considered as true predictions. Any 

other predictions, within transcription unit or intragenic region, are considered as false 

positives. 

 

Coverage was calculated at exon level as well and in this case, exons with predictions are 

counted as predicted. 

  

Figure 43 and Figure 44 show the coverage and accuracy of the donor and acceptor site 

model respectively as a ROC curve. The donor site model registers higher accuracy at low 

coverage rate. Comparatively the performance of the acceptor site model is less than the 

donor site model. This is expected as the acceptor sites are less conserved and they are 

relatively more difficult to identify than donor sites. 

 
Figure 43. ROC curve for Eponine donor site model on chromosome 20 dataset 
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Figure 44. ROC curve for Eponine acceptor site model on chromosome 20 dataset 

 

4.6 Position accuracy of the models 

I calculated the densities of predictions of the donor and acceptor site model in relation to 

the annotated donor and acceptor sites in chromosome 20. The histograms of the densities 

calculated are shown in Figure 45 and Figure 46. The X-axis represents the position of the 

sequence relative to the annotated sites and the Y-axis represents the density of predictions 

at each position. In both figures the densities are drawn for 100 bases upstream and 

downstream of the annotated site. 
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Figure 45. Prediction density for donor site model relative to annotated sites 

 
Figure 46. Prediction density for acceptor site model relative to annotated sites 
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The results show a clear peak exactly on the site of annotated donor and acceptor sites. The 

accuracy of the predictions by the donor site model corresponds to within 5 bases from the 

annotated site whereas acceptor site model predictions are within 10 bases. Figure 46 shows 

few predictions on either side of the peak: this might correspond to the false positives of the 

model but some of them might be due to alternative acceptor sites in the sequence. 

 

Both the models are good at detecting the directionality of the sites and the figures shown 

here are for predictions in the same strand as the annotation. Density histograms of the 

predictions on the reverse strand show no peak at the annotated site. 

 

4.7 Comparison with other models 

I compared the Eponine splice site models with two other splice site programs available in 

the public domain. They are – 

 

StrataSplice (Levine, 2001a) – This program uses a new splice site prediction model that 

combines the local GC content (80 bases upstream and downstream of the splice site) with a 

standard probabilistic pattern recognition technique. The method predicts both canonical 

(GT-AG) and minor variant (GC-AG) splice sites and is designed to integrate easily into a 

variety of gene prediction and annotation systems. The performance of the model is better in 

gene-rich high GC regions. 

 

GeneSplicer (Pertea et al., 2001) – This program uses a decision tree method called 

maximal dependence decomposition, first developed by Burge and Karlin (Burge and 

Karlin, 1997), enhanced with markov models that capture additional dependencies (16 bases 

around donor site and 29 bases around acceptor sites) surrounding the splice sites. This 

method considers only a small window around the splice junctions, which contains most of 

the information recognised by the spliceosome. It also takes into account the coding and 

non-coding sequence switch at the splice junctions and the local score optimality feature 

developed by Brendel and Kleffe. (Brendel and Kleffe, 1998). 

 

I used the test set described earlier – 5835 donor and 6166 acceptor splice sites from 572 

genes from chromosome 20 to compare the performance of the methods. As both programs 
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are available in the public domain  (Levine, 2001b; Pertea, 2001), I downloaded them 

and scanned chromosome 20 sequence locally in a 1GB Compaq Tru64 UNIX machine. 

Donor sites are predicted with higher accuracy by StrataSplice than acceptor sites. I 

collected the StrataSplice predictions for donor sites at posterior probabilities: 0.04, 0.05, 

0.06, 0.07, 0.08, 0.09, 0.10, 0.12, 0.14, 0.18, 0.20, 0.24, 0.26, 0.30, 0.34, 0.38, 0.42, 0.44, 

0.48, 0.50, 0.54 and 0.58 while for acceptor sites at 0.02, 0.03, 0.04, 0.05 and 0.06. No 

acceptor site predictions are made for probabilities above 0.06. Likewise donor and acceptor 

predictions of GeneSplicer are extracted at score thresholds: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 

and 22. Again donor site predictions by GeneSplicer had higher score values than acceptor 

site predictions. 

 

Figure 47 and Figure 48 shows the performance of Eponine, StrataSplice and GeneSplicer 

on chromosome 20. Predictions within 10 bases from the annotated donor and acceptor site 

predictions are considered as true predictions. Coverage and accuracy are measured as 

described above. Figure 47 shows the performance of Eponine is comparable with 

StrataSplice although less than GeneSplicer. However coverage and accuracy of Eponine 

acceptor site model and StrataSplice are significantly less than GeneSplicer (Figure 48). To 

analyse the coverage of exons by the three programs, I did a ROC curve taking only exons 

having a prediction within 10 bases from donor or acceptor sites as true predictions while 

calculating coverage. 5835 exons from 572 transcripts are used for this analysis. Figure 49 

and Figure 50 shows the exon coverage and accuracy for donor and acceptor sites 

respectively. GeneSplicer again performs better in detecting the exons boundaries better 

than Eponine and StrataSplice. 
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Figure 47. ROC curves on donor sites in chromosome 20 for Eponine, GeneSplicer, 
StrataSplice and Weight matrix. 

 
Figure 48. ROC curves on acceptor sites in chromosome 20 for Eponine, GeneSplicer, 
StrataSplice and Weight matrix. 
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Figure 49. Exon coverage and accuracy on donor sites in chromosome 20 for Eponine, 
GeneSplicer, StrataSplice and Weight matrix. 

 
Figure 50. Exon coverage and accuracy on acceptor sites in chromosome 20 for Eponine, 
GeneSplicer, StrataSplice and Weight matrix. 
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The results are not particularly surprising, as Eponine model is based only on positional 

weight matrices, whereas, StrataSplice uses local variation in GC content to differentiate 

true and false signals. The performance of StrataSplice has been shown to be higher at gene-

rich regions of chromosomes (Levine, 2001a). GeneSplicer, apart from modelling sequence 

elements present near splice sites, uses coding/non-coding potential present in exons/introns 

near splice sites. A significant number of false positives by GeneSplicer are removed by 

choosing a splice site in a favourable sequence context. The context includes first, the 

availability of an appropriately spaced complementary splice site such that this pair of sites 

defines a potential intron and second, absence of nearby sites of the same type with higher 

score which could favourably compete with the given site for splicing factors (for details 

refer, Brendel and Kleffe, 1998). Employing both the favourable sequence context strategy 

and the coding potential is against the objective of developing an ab initio gene prediction 

system purely based on gene regulatory signals. Hence, although informative these 

strategies are not included in the Eponine models.  

 

However, Eponine splice site models are shown to have significantly better performance 

than using donor and acceptor site weight matrices only (Figure 47 and Figure 48). These 

matrices are derived from chromosome 22 splice sites and are described in Figure 38. I 

scanned chromosome 20 sequence with the donor and acceptor site weight matrices and 

compared the predictions with the test set of 5835 donor and 6166 acceptor sites described 

earlier.  Predictions extracted at different thresholds in both donor and acceptor site scan 

indicates weight matrices alone are not informative in predicting the splice sites. Similar 

results are found in predicting exon boundaries as well (Figure 49 and Figure 50). Thus 

Eponine splice site models although perform less well than GeneSplicer, they are found 

better than weight matrices. 

 

Figure 51 shows the positional accuracy of Eponine models (Figure 45 and Figure 46) are 

equivalent to the predictions of StrataSplice and GeneSplicer. 
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Figure 51. Prediction densities for StrataSplice and GeneSplicer donor and acceptor site 
predictions (a), (b) Densities for StrataSplice and GeneSplicer donor site predictions 
relative to the annotated site respectively (c), (d) Densities for StrataSplice and GeneSplicer 
acceptor site predictions relative to the annotated site respectively 

 

Thus the comparison shows that the performance of Eponine is comparable with 

StrataSplice and GeneSplicer given the amount of information used to process DNA 

sequences in identifying splice sites. Also, it reveals the scope for improvement of Eponine 

predictions using local GC content in the gene rich regions. 

 

 

4.8 Concluding remarks 

With the requirement of splice site models to meet the objective of developing an ab initio 

model based on regulatory elements, I created donor and acceptor site models. Initial 

training cycles did not yield a sparse model and hence I used weight matrices derived from 

chromosome 22 as an input to the EAS system along with DNA sequences. A Delta 

distribution was used to capture the positional variation as it suits the problem better than a 
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Gaussian distribution. The models learnt the known consensus signals and they are used 

to predict splice sites in chromosome 20. On comparison, the performance of the Eponine 

model was found better than using weight matrices alone. Availability of these models 

facilitates construction of a gene prediction program and to determine the structure of the 

predicted genes. 
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MODELLING TRANSLATION START AND STOP SITES 

 

5.1 Introduction 

As explained in chapter 1, transcription and translation, understood to be coupled together in 

prokaryotic organisms, have now been found to be interlinked in eukaryotes as well. Non-

sense Mediated Decay (NMD) and protein synthetic capability in the nucleus add support 

for this view (for review, Cook, 1999). NMD is triggered due to the encounter of a pre-

termination codon by the translating ribosome machinery (for details refer, Hillman et al., 

2004; Iborra et al., 2004). So just like transcription, the translation mechanism is also under 

the control of regulatory elements on the RNA (transcribed from DNA). Translation start 

and stop signals are important regulatory signals and so far various methodologies have 

been used to study them. 

 

With detailed knowledge of translation regulatory elements and machinery, computational 

detection of translation start and stop codons and their auxiliary sequences has been 

relatively easy and techniques from simple positional weight matrices to artificial neural 

networks to support vector machine have been used for this purpose. Almost all the 

translation start models are based on the important Kozak consensus sequence (Kozak, 

1987) at the translation initiation site in detecting the start codon. However later algorithms, 

in an effort to improve prediction coverage and accuracy, used other features as well. 

Among them, detecting the coding potential of the sequence following the start codon, open 

reading frame length (the distance between the predicted start and stop codon) and distance 

of first ATG from the start of the sequence took a serious role. In addition, a few techniques 

even analysed the density of trimers, tetramers and pentamers in the sequences before the 

start codon and its property for non-coding potential. These properties, although improving 

the prediction system, giving it better accuracy and coverage, have limited it to be used 

successfully in cDNA and EST sequences or incorporated into an ab initio gene prediction 

system.  However as standalone programs for prediction on genomic sequences they are 

likely to make numerous errors. So to address this issue, here I attempted to use the Eponine 

model trainer to learn translation start and stop signals. Also, the translation models can be 

used with other Eponine models in devising an ab initio gene prediction system like splice 

site models explained in the previous chapter. 
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In the remainder of this chapter, I will explain the datasets and parameters used to derive 

translation models and compare their performance with existing programs. 

 

5.2 Datasets 

5.2.1 Translation start model 

Deriving a reasonable dataset with better annotation is one of the key factors in deriving any 

prediction models. Screening for such data from a massive amount of unannotated and 

incomplete cDNAs and ESTs is a formidable task. With annotated data the issue of 

upstream ATGs has to be addressed. Translation as explained earlier is known to occur by a 

cap dependent scanning mechanism or cap independent internal initiation process. The 

common cap dependent process helps the ribosome to start translation from the first ATG it 

encounters from the 5’ end. However it is not always the case and at times ATGs further 

downstream can be used. The presence of multiple ATGs at the 5’ end may confuse 

annotators leading to the identification of wrong ATGs as translation initiation sites. One 

estimate shows about 37% of human and 36% of mouse sequences in the 5’ UTR database 

(Pesole et al., 1996) have upstream ATGs with reference to annotated translation start sites 

(Rogozin et al., 2001). Thus deriving a dataset with correctly annotated translation start sites 

is one of the most difficult steps. 

 

As explained earlier, Eponine trainer requires two kinds of dataset – A positive dataset 

having DNA sequences that are likely to have translation start sites and a negative dataset 

with sequences of no such sites. Here I used two sets of positive sequences – one from 

genomic and another from cDNA for training an EAS model. 

 

(A) Genomic sequences – Using the annotation of coding sequences in human chromosome 

22 by (Collins et al.), 330 sequences with translation start sites and at least 200 bases of 5’ 

UTR were extracted. Two hundred nucleotides upstream and downstream of the ATG codon 

formed the positive set, pos-1. 

 

Likewise, 200 bases on either side of the start codon from 506 transcripts of 327 genes in 

chromosome 20 were dumped from VEGA database (Ashurst, 2002). This dataset formed 
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another positive set, pos-2. Only transcripts from the ‘known’ gene category from the 

VEGA database were used here. 

 

Combining both pos-1 and pos-2 datasets, a set of 836 transcripts with annotated translation 

start sites was formed pos-3. 

 

Random and intergenic sequences of 400 nucleotides from chromosome 20 and 

chromosome 22 were dumped to form negative datasets for training the EAS model from 

pos-1, pos-2 and pos-3. Equal numbers of positive and negative sequences were used for 

each training cycle. 

 

(B)  cDNA sequences – From the Reference Sequence database (RefSeq, Pruitt and Maglott, 

2001), 14038 cDNA sequences were dumped in EMBL format. Out of this 5693 sequences 

were categorised as ‘provisional’, 2350 as ‘predicted’, 2523 as ‘curated’ and 3472 as 

‘genome annotation’ based on the types of evidences and annotation done on these 

sequences. Reviewed RefSeq records represent full length cDNA sequences with manual 

curation of gene features. Hence I took the 2523 sequences and screened for the ones with at 

least 200 bases of 5’ UTR and resulted in a subset of 676 sequences. Out of these 676 

sequences, only 563 sequences have annotations in the ENSEMBL database (Birney et al., 

2004) and thus were used for training purposes. The positive dataset, mpos-1 was derived by 

extracting 200 bases on either side of the ATG codon present in these 563 sequences. An 

against all BLAST (Altschul et al., 1990) search was carried out on the mpos-1 set to make 

sure no identical sequences were present in the positive dataset. The remaining 113 (676-

563) sequences were used for testing the models. 

 

As training on cDNA sequences will tend to be biased towards learning coding potential of 

the sequences downstream of the ATG codon, two types of negative datasets were 

synthesized to tackle it. Two hundred nucleotides of noncoding or intronic sequence (from 

intergenic or intron regions of chromosome 22) and 200 nucleotides of coding or exonic 

sequence (from exon regions of chromosome 22) were concatenated together to form a 400 

base pair negative sequence. This way, both the positive and negative set had exonic 

sequences downstream of ATG and hence the trainer is less likely to model the coding 
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potential in the positive set. A set of 563 such sequences (equal to the positive set) 

formed the negative set, mneg-1. 

 

In another negative set (563 sequences), mneg-2, the intronic (196 bases) and exonic (197 

bases) sequences are concatenated together with AXXATGG sandwiched between them. 

AXXATGG resembles the consensus sequence near translation initiation sites and by 

incorporating it in the negative set; the trainer is restricted to learn other position constraints 

that can meaningfully classify the sequences. 

  

With these different positive and negative datasets I trained the EAS translation start model. 

 

5.2.2 Translation stop model 

I used the sequences from the ‘PolyA site’ database (Tabaska and Zhang, 1999) to derive a 

positive set  for training the translation stop model. The database was formed by aligning 

ESTs of a UniGene cluster (Wheeler et al., 2004) with all of its DNA and non-EST RNA 

sequences (for details, read Tabaska and Zhang, 1999). A hundred bases upstream and 

downstream of the stop codon were dumped from 124 sequences from the database to form 

a positive set. For a negative set of sequences where translation is unlikely to terminate, I 

extracted 124 sequences of 200 bases each from random regions of chromosome 20. Thus 

the randomly picked sequences are equal in length to the positive sequences. Out of 248 

sequences (124 positive and 124 negative), I kept apart 28 sequences (14 positive and 14 

negative) for initial testing of the model. These 28 sequences are randomly picked during 

different training runs. The remaining 220 sequences were used for training the model. The 

113 human RefSeq cDNA sequences (explained earlier) set apart for testing the translation 

start model were also used for determining the performance of the translation stop model. 

The first base in the termination codon was used as the anchor point. Models were also 

trained with a training set derived from 200 bases upstream and downstream of this anchor 

point. 

 



5.3 Training the translation models 

  

123

5.3 Training the translation models 

5.3.1 Translation start model 

With the datasets available, I initially used pos-1, pos-2, pos-3 positive datasets and random 

negative sequences to train the EAS translation start model. The nucleotide A in the first 

codon, ATG was set as the anchor point. As explained earlier each positive and negative 

sequence is of 400 bases length, spanning 200 nucleotides upstream and downstream of this 

anchor point. During training the trainer is likely to fish out informative positional 

constraints from these sequences to identify positive from negative sequences. However 

selection of any constraints near to the edges of the sequence is likely to cause the trainer to 

cross the boundary, as it will be difficult to estimate a Gaussian distribution for such motifs. 

So to avoid such cases, I have limited the window size for screening for constraints to 160 

bases either side of the anchor point. This appears to be sufficient to capture any regulatory 

motifs that determine the translation start site as training done with increased window sizes 

did not find any new constraints. However reducing the window size from 160 bases to 50 

bases (-50 to +50 bases from anchor point) and 20 bases (-20 to +20 bases from anchor 

point) produced models with only ATG and Kozak motifs and thus had less predictive 

power than previous models. 

 

The trainer with these datasets and default parameters was allowed to run for a maximum of 

6000 cycles to learn a simplistic model that can significantly classify translation start site 

from other sequences. Typically each training run took nearly 1 hour in a personal computer 

with 1GHz Pentium CPU and 256 MB RAM. 

 

A typical model learnt from the pos-1 positive dataset and random sequences as the negative 

dataset was shown in Figure 52a. Different training cycles showed that positional 

constraints, especially those present downstream of the ATG codon, are not converging and 

the trainer tended to learn negative constraints. Likewise, models trained from the pos-2 

dataset also showed similar results (Figure 52b). The models from the pos-2 dataset are even 

more complex with more negative constraints. Intergenic sequences as the negative dataset 

did not improve the model. 
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Figure 52. Translation start model trained from (a) chromosome 22 (b) chromosome 20 
genomic sequences 

Non-convergence of positional constraints might be due to existence of intronic sequences 

in the positive dataset. While extracting 200 bases downstream of the ATG codon to form 

the positive set, in cases where sequences followed by the start codon are less than 200 

bases, nucleotides from introns are likely to be dumped and added to the positive set. Thus 

the variation present in the sequences downstream of ATG might be the cause for non-

convergence of the model. 

 

Hence to avoid this problem, I switched to training models from cDNA sequences using 

datasets mpos-1 and mneg-1. A of ATG is again set as the anchor point with the trainer 

allowed for scanning positional constraints within 160 bases from it. The trainer ran 

between 5000 and 8000 cycles during various training trials. Examining different trained 
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models showed constraints that are positioned between 140 bases upstream and 120 

bases downstream of the anchor point. This suggests that motifs that can identify translation 

start sites are closely associated with the start codon. Figure 53 shows a typical model 

trained from cDNA sequences. 

 
Figure 53. Translation start model trained from RefSeq cDNA sequences 

Similar to the results found for genomic sequences, training Eponine models on cDNA 

datasets with window sizes - -20:+20, -50:+50, -75:+50, -75:+75, -100:+100, -150:+150, -

170:+170 and -180:+180 did not yield better models. Models trained from window sizes less 

than 160 bases produced complex models and those with increased window sizes do not 

learn any new constraints. 

 

A list of motifs found while training cDNA sequences along with their frequency of 

distribution is given in Table 8. ATG codon is represented in all the models and in few they 

are found more than once as indicated by the occupancy score. 

 

The position, constraint weight and the Gaussian distribution width of the motifs 

represented in the above model is given in Table 9. The model obtained a strong signal for 

the ATG codon at position 0 with a narrow Gaussian distribution. A distribution width of 

1.10 means most of the positional variation of the ATG constraint is within 3 bases from the 

point given in the table. This signal also has a bigger weight than the other constraints 

meaning the first codon is the strongest signal to determine the translation start site. Another 

strong constraint with a narrow Gaussian width is the Kozak motif positioned 3 bases 

upstream of the anchor point. The motif agrees with the previously reported consensus 

sequence (Kozak, 1987). 
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Table 8. Occupancy value for motifs detected in the translation start site models. 
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The sequence logo of the Kozak motif shows the interesting distribution of nucleotides 

at each position. The 1st and 7th position in the motif has higher distribution for A and G 

nucleotides respectively and this agrees with the importance previous computational 

methods have given for those positions in identifying translation start sites (Cavener and 

Ray, 1991; Hatzigeorgiou, 2002; Zeng et al., 2002). The two other motifs found in the 

region upstream of the anchor point may capture the CG richness in the sequence between 

transcription start site and translation initiation site. The CG motif at position 134 bases 

upstream of the anchor point notably has a broad Gaussian distribution and may represent so 

called CpG islands, known to be associated with the 5’ end of genes. An interesting 

constraint in the model is the AATG motif centred at 116 bases downstream of the anchor 

point. This motif has not been reported previously by other machine learning algorithms. It 

is not clear if this motif can act as another ATG codon and serve as an alternative translation 

start site. The Gaussian width for this motif is 13.19, meaning that most motifs would occur 

between 75 and 150 bases downstream of the start codon. It will be interesting to test if this 

constraint is involved in the leaky scanning mechanism of the translation machinery. 

Table 9. Position constraints of translation start model learnt while training RefSeq cDNA 
sequences 
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Overall the model given in Figure 53 appears to have captured both previously known 

regulatory motifs and the additional interesting AATG motif positioned downstream of the 

anchor point. Unlike other methods the model does not rely on constraints based on the 

distance between the 5’ end of a cDNA sequence and the ATG codon. This means the 

model can be used effectively on the genomic sequences as a standalone program to predict 

translation start sites. Also, the model should be less constrained upon the coding potential 

of the sequence following the start codon. 

 

5.3.2 Translation stop model 

The translation stop model was trained for nearly 5000 cycles and it took less than 1 hour in 

a PIII laptop. A typical model is shown in Figure 54 along with the sequence logo of motifs, 

position, constraint weight and Gaussian width in Table 10.  Like the translation start model, 

the stop model is also sparse and informative.  The model learnt the stop codon along with a 

few other sequence motifs. Two position constraints with positive weights were found 

upstream of the anchor point. The signal positioned at 57 bases upstream of the stop codon 

has relatively higher constraint weight (20.97) indicating the importance of the signal in 

determining the stop codon. The role of these signals and others shown with their occupancy 

score in Table 11 in determining the translation stop mechanism is not known. 

 

Interestingly in this model, there is a position constraint with negative weight (-2.74) just 

upstream of the stop codon. This constraint – ‘TTT’ motif represented in blue, simply 

means, the motif is expected not to be present near the stop codon. However the stretch of U 

residues is likely to behave as positive signal downstream of the stop codon in the 3’ UTR 

region. This can be inferred from the CCTTT motif positioned 63 bases downstream of the 

anchor point. Thus poly U residues are less likely to be seen in the upstream than in the 

downstream of a functional stop codon. 

 

The genetic code table has 3 stop codons – UAG, UGA and UAA. However not all the 3 

stop codons are used equally and most organisms have a preference for one of them. In 

humans, UAA stop codon is the most commonly used. The sequence logo of the TAACC 

motifs shows, the model has learnt all the three stop codons with preference for UAA. The 

A and G nucleotide in UAG and UGA stop codons are also modelled separately with a 

distribution of AG motif at the anchor point. The nucleotide distribution of two bases 
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following the stop codon is almost equal and hence warrants no emphasis. However the 

biological implications of the two bases are not known. 

 

Models trained with 200 bases upstream and downstream of the anchor point did not show 

any improvement over this model. This emphasizes the constraints near to the stop codon 

are more informative, making the model compact. 

Table 10. Position constraints of translation stop model learnt while training RefSeq cDNA 
sequences 
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Table 11. Occupancy value for motifs detected in the translation stop site models. 
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Figure 54. Translation stop model trained from chromosome 22 cDNA sequences 

 

5.4 Validating and testing the models 

I tested the performance of both the translation start and stop models in different datasets as 

explained below – 

 

For quantification purposes, I defined a prediction as accurate if it is positioned within 200 

bases upstream or downstream of the annotated start codon. Accuracy is calculated as the 

number of annotated start sites predicted over total number of predictions. Whereas 

coverage is number of annotated start sites predicted over total number of annotated start 

sites. Initial testing of the models was done on the set of sequences set apart while training. 

As explained before during each run, 226 (113 positive + 113 negative) sequences were kept 

apart from the trainer to be unseen while training. These 226 sequences were randomly 

picked up from the positive and negative set and thus vary for each run. So these test sets 

are fairly representative of the sequences available in the database and the model was tested 

on it. The performance of the model on this set was found to have good coverage and 

accuracy. However in this case, testing was done by scanning only the few bases around the 

anchor point to determine whether the sequence is a positive or negative. Hence, I used 

three independent test sets to analyse the performance of the models by allowing them to 

scan the whole cDNA sequence. 
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I took human reviewed RefSeq human and mouse and Riken mouse cDNA with at least 

200 bases upstream to test the models. RefSeq database has cDNAs with different levels of 

annotation and thus they are not of equal degree. Among the different levels, manually 

reviewed cDNA are of high quality and I limited my test sets to these sequences alone. The 

113 sequences used here were human cDNAs of this quality with at least 200 bases 

upstream. Predictions are made by scanning the sequence moving from left to right and 

evaluating the probability of the fit of the sequence motifs in the model in the cDNA 

sequence. The model found 3169 predictions (same strand) covering 87% (99 start codons 

out of 113, at threshold of 0.99) of annotated translation initiation sites. Figure 55 shows the 

ROC curve for the translation start model for predictions in the same (prediction in the same 

direction as of the gene), opposite (prediction in the reverse direction compared to 

annotation) and both (strand details are ignored) strands. Although the model predicted the 

strand of the annotated site correctly in most cases, few predictions are found in the opposite 

strand compared to the start codon. Combining predictions in both strands shows better 

coverage and accuracy than strand specific predictions. 

 
Figure 55. ROC curve on human RefSeq cDNA dataset for Eponine translation start site 
predictions in same, opposite and both strands 
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A set of similar quality entries from RefSeq was extracted for mouse cDNAs. This set 

resulted only in 37 sequences. The translation start model predicted 65% of the annotated 

start codons with 1537 predictions in total at a relatively less stringent threshold score of 

0.95. The low coverage may be due to the requirement of 200 bases upstream of the 

translation start site by the model for scanning and only few sequences in the dataset met 

this criterion. Also some of the predictions might be true start sites and annotations are not 

available at present to validate them. In cases where the annotated sites are identified 

correctly, the positions of the predictions are limited to -2 to +2 bases from the annotated 

site. An ROC plot of the performance of model for this dataset is given in Figure 56a and 

Figure 56b for same and both strand predictions respectively. 
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Figure 56. ROC curve for translation start model on human RefSeq, mouse RefSeq and 
mouse Riken cDNA datasets (a) Predictions in the same strand (b) Predictions in both 
strands 
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I extracted another set of mouse cDNA sequences of comparable quality from the 

RIKEN database. This set had 1593 sequences with each sequence having at least 200 bases 

upstream of the annotated start codon. The scanning of all these sequences using the model 

shown in Figure 53 gave 20400 predictions with a threshold value of 0.992. The predictions 

(same strand) covered 1287 translation initiation sites (80% coverage). ROC plots 

calculated from predictions in the same and both strands are given in Figure 56a and Figure 

56b respectively. 

 

Like the start model, the translation stop model was first tested on the test sequences set 

apart while training. As the test sequences are randomly selected from positive and negative 

sequences and they are different with each run of training, the trainer has less chance to 

‘overfit’ the positive dataset. 

 

Accuracy and coverage was calculated as explained above with 200 base tolerance in the 

prediction position relative to the annotated stop codon. Figure 57 shows the ROC curve for 

translation stop sites in human RefSeq dataset (113 sequences). The performance of the stop 

model is worse compared to the start model. 

 
Figure 57. ROC curve on translation stop sites in human RefSeq cDNAs for Eponine model 
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5.5 Position accuracy of the models 

5.5.1 Translation start model 

As well as predicting most of the annotated start codon, the translation start model showed 

reasonable performance in determining the exact position of the start codon. The model is 

anchored on the A in ATG codon and any point in the sequence predicted by the model 

correlates with this nucleotide. I calculated the density of the predictions relative to the start 

codon and plotted the histogram for human RefSeq and mouse RIKEN datasets (Figure 58). 

 
Figure 58. Prediction densities for translation start site model relative to annotated 
initiation sites (a), (b) Density of predictions in the same strand for human RefSeq and 
mouse RIKEN data respectively (c), (d) Density of predictions in both strands for human 
RefSeq and mouse RIKEN data respectively 

 The results show a clear peak, with many of the predictions centred within 20 bases from 

the annotated start codon. In some cases, the prediction positions are highly accurate and 

anchored at +1/-1 bases relative to the initiation site. However the majority of predictions 

are between -5 and +7 nucleotides relative to the anchor point. Figure 58 shows most of the 
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predictions are in the same strand as of the annotation although few predictions lie in the 

opposite direction. Even in cases, where the predictions are in the opposite strand, the 

predictions are concentrated within 20 bases from the start codon. 

 

5.5.2 Translation stop model 

The density of predictions made by this model on the human RefSeq set of sequences is 

shown in Figure 59. This model cannot predict the position of the stop codon correctly and 

there is no significant peak near annotated sites. I was surprised to note this result, as the 

model seems sparse and informative and captured known consensus signals. Further 

analysis might yield better results in predicting translation stop sites. Nevertheless, the 

results here simply indicate that the end of translation is determined solely by the stop codon 

itself and not by any motifs in the surrounding sequence. 

 
Figure 59. Prediction density for translation stop model relative to annotated stop sites 
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5.6 Comparison with other models 

I compared the performance of Eponine predictions with two other translation initiation 

prediction programs, NetStart and ATGpr available in the public domain.  

 

NetStart (Pedersen and Nielsen, 1997b) – This program was created as an improvement 

over using weight matrices to determine translation initiation sites. The program uses 

Artificial Neural Network (ANN) and was trained on 100 bases upstream and downstream 

of the start codon. The information surrounding the AUG codon was used primarily for 

prediction. 

 

ATGpr  (Salamov et al., 1998a) – This program along with sequence context used six other 

characteristics to identify putative start sites. These characteristics are – 

 

(a) Positional weight matrix around an ATG. 

(b) Hexanucleotide difference between sequences upstream and downstream of the ATG 

codon. 

(c) Preference for longer reading frames downstream of ATG 

(d) Signal peptide characteristic 

(e) Presence of another upstream in-frame ATG 

(f) Upstream cytosine nucleotide characteristic 

 

Linear discriminate analysis was used to generate a single score from the combination of 

these properties. 

 

As neither of the programs is available for download, I used their web interfaces to scan 

human RefSeq test sequences. The NetStart (Pedersen and Nielsen, 1997a) web interface 

has a restrictions on the number of sequences submitted to the server (at most 50 sequences) 

and hence I split the dataset (113 sequences) into 3 sets and scanned them separately. The 

results from the three sets are then combined together for comparison. I used default 

parameters for vertebrate sequence given in the web-based predictor. 

 

The ATGpr web interface (Salamov et al., 1998b) has even more severe restrictions and it 

cannot take any sequence longer than 1300 bases and hence I split each sequence into 1150 
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base chunks with overlapping window size of 10 bases. These chunks were submitted to 

the server and predictions for a cDNA sequence were obtained by merging the predictions 

of each chunk. Default parameters for human sequence were used for prediction. 

 

Figure 60 shows the performance of Eponine model compared to these two programs. The 

ROC curve shows, Eponine performs better than NetStart although less well than ATGpr. 

This was expected, as ATGpr uses additional information apart from regulatory elements to 

screen out false positives. NetStart which uses only sequence elements performs less well 

than Eponine. 

 

5.7 Concluding remarks 

Machine learning techniques assume the ribosomes operate in a linear fashion. NetStart 

developed by Pedersen and Nielsen (Pedersen and Nielsen, 1997a, b) based on a ANN was 

trained on a 203 nucleotide window centred on the AUG codon. The same dataset was used 

to train a Support Vector Machine model by Zien et al. and an improvement was obtained 

by using a kernel function to detect the codon bias in the downstream sequence of AUG. 

Likewise, Salzberg used a conditional positional probability kernel function to improve the 

ANN model using SVMs (Salzberg, 1997). More recently, Hatzigeorgiou  reported a 

prediction program called DIANA-TIS based on a ANN trained on human sequences. This 

program combined a consensus ANN with a coding ANN together with the ribosome 

scanning model. Zeng et al.. used similar techniques by combining various informative 

features generated by different machine learning techniques. They found the following 

features useful: -3 and -1 position in the sequence relative to AUG; upstream k-grams for k 

= 3, 4 and 5; stop-codon frequency; downstream in-frame 3-gram; and the distance of AUG 

to the beginning of the sequence. The k-grams count the frequency of occurrence of a 

particular pattern in a window of length k that slides upstream and downstream of the AUG 

codon. Downstream in-frame 3 gram gives measure of the coding potential of the 

downstream sequences. 
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Figure 60. ROC curves for Eponine, NetStart and ATGpr on human translation start sites in 
RefSeq cDNA sequences without (a) and with (b) strand information 
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Thus these programs use a significant amount of ‘content’ information from the cDNA 

sequences to predict translation start codons. Here I attempted to make a translation stop and 

stop model that can scan genomic sequences and predict start and stop codons respectively 

purely based on regulatory signals. Despite using only signal information, the Eponine 

translation start model performed better than NetStart. The positional accuracy of the start 

model in cDNA sequences is good and few of the predictions are in the opposite stand 

relative to the annotated site. 

 

With transcription, splicing and translation models learnt so far I show the advantage of 

making an ab initio gene prediction program combining them using GAZE in the next 

chapter. 
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GENEPRED – AN AB INITIO GENE PREDICTOR 

 
6.1 Introduction 

With the availability of models for transcription, splice site and translation, here I introduce 

an ab initio gene prediction system, GenePred, created using the regulatory signals 

identified by Eponine. As explained previously, almost all gene prediction programs use 

‘content’ information, such as codon bias and ORF length. The gene prediction system 

explained in this chapter is different in this respect as the system uses only ‘signal’ 

information. Such a gene prediction system has an advantage over existing gene prediction 

algorithms in that it has the potential to identify non protein coding RNAs as well as coding 

RNAs. Recent analyses (Cawley et al., 2004; Mattick, 2001) indicate that a huge amount of 

non coding transcription occurs within the cell and most of these RNAs are regulated in a 

similar way to protein coding genes. Various functions are attributed to these RNAs such as 

RNA interference, co-suppression, transgene silencing, imprinting and methylation. Few 

attempts (di Bernardo et al., 2003; Rivas and Eddy, 2001; Rivas et al., 2001) have been 

made to identify these RNAs computationally and so far with only limited success. A gene 

prediction program based on ‘signal’ information alone, and thus not biased due to ‘content’ 

information, should more closely mimic the biological system than existing gene prediction 

methods, as the in vivo transcriptional machinery does not use ‘content’ information while 

transcribing a genomic region. Content information has historically been used to assist 

computational detection of genes since signal based prediction alone has been insufficient 

(Guigo, 1997). 

 

The gene prediction model explained in this chapter was constructed using a dynamic 

programming framework called GAZE (Howe et al., 2002), which can combine features 

identified by predictive models, such as those described in the previous chapters. GAZE 

allows evidence for individual gene components to be assembled in order to predict entire 

gene structures. As explained in chapter 2, the method uses a dynamic programming 

algorithm to obtain (i) the highest scoring gene structure with the supplied features and (ii) 

posterior probabilities that each input feature is part of a gene.  
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In this chapter I explain the details of the features and gene models used in deriving 

various versions of the gene prediction system. Following this, I compare the performance 

of the system with the well established gene prediction program called GENSCAN (Burge 

and Karlin, 1997), as this program is assessed to be one of the best ab initio programs 

available in the public domain (Guigo et al., 2000; Parra et al., 2003). Towards the end of 

this chapter I revisit the performance of the transcription termination model given the 

context of splice site model predictions. 

 

6.2 GAZE gene structure models 

Many gene prediction programs have two common features – 

 

(i) signal and content measures are used to detect components and regions belonging to 

genes 

(ii) assemblage of these components into complete gene structure prediction for the 

sequence and scored against some measures 

 

For the first of these steps, different measures, say weight matrices, codon bias, pentamer 

and hexamer frequencies and splice site predictions can be used to distinguish the 

components of gene structure from the sequence. For the second of these steps, a choice 

must be made as to the model of gene structure over which the assembly is to be performed.  

One of the advantages of GAZE is that it decouples these two steps of assembly of signal 

and content data into gene structure predictions from the generation of the data itself. The 

inputs for both these steps are provided externally and GAZE does not work directly with 

genomic DNA. In this project, for the first step, I used Eponine predictions as signal 

features, which I explain in the next section. For the second step, I used the following 

models (Figure 61) to validate the assembled components of the gene signal features. 
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Figure 61. Schematic representation of the gene models used for predicting genes from 
features in the forward strand. Reverse complementation of the forward strand rules are 
used for reverse strand gene predictions. (a) Simple gene model without translation models 
and thus no protein information. (b) Gene model with translation features. Any introns 
within 5’ UTR region are not modeled.  Based on these gene structures, candidate genes are 
predicted on both strands at the same time. 

 

In Appendix C, I have given the configuration files where the gene structure models used 

are presented in GAZE-XML format. A pictorial representation of these gene structures is 

given in Figure 61. The configuration file has five sections – 

 

(i) declarations – declares the Eponine features that GAZE is going to work with 

(ii) gff2gaze – dictates how the input files are used to obtain a list of features 
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(iii) dna2gaze – allows for the creation of features from simple sequence motifs 

observed in the input DNA sequence 

(iv) model – contains the gene structure rules 

(v) lengthfunctions – this section describes the length penalties used in defining exons, 

introns and intergenic regions in the model 

 

The gene structure rule I used here (Figure 61a) is simple and it starts with a transcription 

start site followed by the donor site. The region between these two predictions defines the 

initial exon segment. The introns that interrupt the coding region of the gene are modelled 

by allowing a transition from donor to acceptor site. Introns might occur between two 

codons or in the middle of a codon, either between first and second position or between 

second and third positions. However, since the aim is not to consider any coding 

information in constructing the gene model, the phase associated with intron interruption is 

not considered. The donor and acceptor site features are represented as 5ss and 3ss. The 

sequences between a 3ss and a 5ss feature forms the internal exon of the gene structure. The 

terminal exon is defined as that part of the sequences between an acceptor site and a 

transcription termination site. Transcription termination site defines the end of the candidate 

gene. Thus a gene structure is defined with the features from transcription and splice site 

signals. To form the next gene another list of features are sampled and analysed to fit the 

rules explained above. That part of the sequence between two genes defined between 

transcription termination and start features is referred to as intergenic. To predict genes in 

the reverse strand, reverse complementation of the above rules are employed. Single exon 

genes are not modeled in this case. This is due to the fact that a simple single exon gene 

model will use only transcription start and termination site without any splice site model 

predictions. Allowing this simple single exon gene transition will bias the gene structures to 

terminate just after the start site because of the unusual presence of termination signals near 

transcription initiation site (refer to chapter 3).   

 

Thus, this gene model without translation components more realistically mimics the 

biological transcriptome and spliceosome machinery that transcribes the DNA and 

processes the newly synthesized RNA respectively. 
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All the features are derived from Eponine models for predicting genes and I did not use 

the dna2gaze section to create a set of features from the DNA sequences. Similarly no 

constraints on the maximum length of exons and introns are placed in the gene model and 

thus no length penalty functions are used. 

 

Figure 61b shows a pictorial representation of a different gene model used in predicting 

genes. In this structure, I used Eponine translation start and stop models as well. The 

transcription start site is now allowed to transit to the translation start codon, thus defining a 

new segment called the 5’ UTR. The region between the translation start codon and donor 

site now defines the initial exon segment. Similarly, the translation stop model is 

incorporated after the acceptor site of the last exon before transition to the transcription 

termination site. This change will make the GenePred system emit the 3’ UTR segment. By 

adding translation models and thus start and stop codon signal information, some protein 

coding information is attached to the gene prediction system. This is done to analyse the 

influence of the translation models in the GenePred system. 

 

6.3 Eponine prediction models 

As explained earlier, given a candidate set of gene features, GAZE predicts genes by 

deriving a subset of features that according to the given gene structure is the most likely 

candidate. The gene structure scoring the highest value with the list of features is predicted 

as a candidate gene. In order to provide the list of features to GAZE, I used Eponine model 

predictions. The following models are used along with their respective thresholds (given in 

brackets) to obtain predictions from signals in the DNA sequences. 

 

(i) Transcription Start Site model (0.99) 

(ii) Translation Start model (0.99) 

(iii) Donor Site model (0.999) 

(iv) Acceptor Site model (0.9998) 

(v) Translation Termination model (0.999) 

(vi) Transcription Termination model (0.99) 
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Apart from Eponine models, I also used GeneSplicer predictions while testing the 

performance of the GenePred system. GeneSplicer was used with default options to predict 

splice site features from the DNA sequence.  

 

All the predictions were dumped in the General Feature Format (GFF, WTSI), a widely 

used standard for the exchange of gene prediction information. 

 

Here I used chromosome 20 for scanning features and predicting genes as all the Eponine 

models discussed in previous chapters are trained from chromosome 22.  

 

6.4 Gene prediction with Eponine features 

With the availability of features from chromosome 20, I combined them to create a gene 

prediction system by inputting the features and the gene model structure (Figure 61a) into 

GAZE. 

 

Figure 62 and Figure 63 show the genes predicted using GenePred as red tracks (the first red 

track in Figure 62 and the last red track in Figure 63) for a 1 mega base region (57.35 to 

58.35 bases) of chromosome 20. For ease of comparison, in Figure 64, I removed all the 

annotation tracks and kept only VEGA, ENSEMBL annotations and GENSCAN (Burge and 

Karlin, 1997) predictions. 
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Figure 62. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in the forward stand. Annotations from VEGA, ENSEMBL, EST 
transcripts, UNIGENE and Human cDNAs are shown as tracks along with GENSCAN 
predictions (both on masked and unmasked sequence). The comparison is possible with the 
ENSEMBL ContigView which can load predictions from external source as DAS tracks. 
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Figure 63. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in the reverse stand. Annotations from VEGA, ENSEMBL, EST 
transcripts, UNIGENE and Human cDNAs are shown as tracks along with GENSCAN 
predictions (both on masked and unmasked sequence). This figure is reproduced from 
ENSEMBL ContigView viewer. 

 GENSCAN predictions are derived by scanning repeat masked chromosome 20 sequence.  

This is done by splitting the chromosome sequence into 200 kb overlapping blocks and 

GENSCAN predictions on each block are then merged together using a merging algorithm 

(Hubbard, T., personal communication) to derive the final list of predictions. 

 

I compared the performance of GenePred with that of GENSCAN using the following 

definition of coverage and accuracy – 

 

(i) Coverage is defined as the number of genes identified over the total number of 

annotated genes. 

(ii) Accuracy is calculated as the number of predictions matching the annotation over the 

total number of predictions. Predictions that fuse or split the gene are considered as false 

positives (Figure 65). This included a few predictions matching genes that have an 

internal gene in the same strand. 
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Figure 64. Genes predicted by linking Eponine models using GenePred compared with 
annotations available in both strands. VEGA annotations are shown as black bars. The 
region covered by a bar includes all the alternative transcripts of a gene. GenePred 
predictions are given in red color. The figure also shows GENSCAN predictions and 
ENSEMBL annotations in different tracks. 

  
Figure 65. Pictorial representation of (a) split and (b) fused predictions in comparison with 
annotation. (c) Few annotated genes have internal genes in the same strand. Predictions 
matching these genes are ignored while calculating accuracy. Annotations are given in 
black while predictions are drawn in red. 
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I extracted annotations from the VEGA database (Ashurst, 2002) and found that 

chromosome 20 had 959 annotated genes (includes, Known, Novel CDS, Novel Transcripts, 

Pseudogene, Processed pseudogene, Unprocessed pseudogene and Putative categories). 

GenePred predicted 669 genes while GENSCAN made 1086 predictions after scanning the 

chromosome 20 sequence (Table 12). GenePred covered 592 genes (61.8%) of the total 

annotated genes while GENSCAN coverage was roughly 13% higher, identifying 722 genes 

(75.3%). Accuracy of GenePred and GENSCAN was found to be similar. GenePred made 

230 correct predictions (34.4%) while GENSCAN predicted 369 (34.0%). However, 

GENSCAN made relatively higher number of split predictions (255 predictions). In 

contrast, GenePred made relatively more fused predictions (198 predictions compared to 

149 by GENSCAN) and a smaller number of split predictions (97 predictions). However, 

GenePred had difficulty in identifying the annotated exon and intron boundaries when 

compared to GENSCAN (Table 13). Any prediction that overlaps an annotated exon is 

included in calculating coverage and accuracy. However, split and merge predictions are 

counted as false positives while deriving accuracy. Out of 6441 exons annotated by VEGA, 

GenePred predictions overlapped with 2869 (44.5%) while GENSCAN predicted 4132 

(64.2%). GENSCAN’s coverage is achieved from fewer predictions than GenePred and 

hence accuracy of GENSCAN (46.3%) is significantly higher than GenePred (12.7%). 

GenePred is not suited for predicting exact exon-intron boundaries (5512 annotated splice 

sites) as the donor and acceptor site coverage and accuracy is significantly less than 

GENSCAN (refer to Table 13). These results are expected as GenePred does not use any 

‘content’ information like other ab initio gene prediction systems. Thus, GenePred is good 

for identifying gene blocks in the DNA sequences, which could be later annotated for exon-

intron structure using other algorithms. The high number of fused predictions by GenePred 

indicates the potential to improve the model by tweaking the parameters and the feature 

models used to predict genes. 

 

For the above comparison, I used GENSCAN predictions on repeat masked sequence since 

GENSCAN was known to perform better in masked than unmasked sequence. GENSCAN 

predictions on unmasked chromosome 20 (2108 predictions) shows significantly less 

accuracy (19.7%, compared to 34.0% reported earlier) although the coverage remains 

similar (masked: 75.3%, unmasked: 77.3%). This might be due to the difficulty of 

GENSCAN in ruling out coding regions in repeat sequences. However, such problems are 
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not observed with GenePred, as predictions on both masked and unmasked sequence 

showed similar coverage (masked: 60.8%, unmasked: 61.8%) and accuracy (masked: 

36.6%, unmasked: 34.4%). 

Table 12. Performance of GenePred and GENSCAN in predicting VEGA annotated genes. 
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Table 13. Performance of GenePred and GENSCAN in predicting VEGA annotated 
exons and splice sites. 

 

 

Out of total predictions from both GenePred and GENSCAN, nearly 40% of predictions 

(excluding, 34% correct predictions and approximately 26% fused/split predictions) are not 

correlated with VEGA annotations. A number of these may turn out to represent real 

transcripts missing from the existing annotation. As GAZE predictions are based on 

regulatory signals, some of the predictions that do not match the annotation are likely to be 

non-coding transcripts. Recent experiments by Affymetrix on chromosome 20 and 22 

emphasise this fact (Cawley et al., 2004). They found that a significant number of 
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transcription factor binding sites are correlated with non-coding RNAs and that they are 

regulated by a mechanism similar to that of protein coding genes. Thus, the excess 

predictions by GAZE are potential sequence blocks for hunting genes. 

 

6.5 Tweaking GenePred gene prediction system 

Having shown that the performance of GenePred is comparable with GENSCAN, I then 

tweaked Eponine models and configuration files used in making the GenePred prediction 

system to try to find improvements. I adopted three main approaches, which are explained 

below. 

 

6.5.1 With Eponine translation models 

With the availability of translation start and stop models, I decided to include them in the 

GenePred system in order to determine if this additional information might help in 

improving the performance. For this purpose, as explained earlier (Figure 61b), from the 

transcription start feature the model is allowed to transit to the translation start codon 

emitting the 5’ UTR segment. Likewise, between the acceptor site of the last exon and the 

transcription termination site, the translation stop signal features are introduced.  

 

I tested this modified gene prediction system with the annotation from chromosome 20 and 

found that there is no significant change in coverage and accuracy when compared to 

GenePred without Eponine translation models (Table 14). However, the number of genes 

predicted by the system increased (886 predictions compared to 669 predictions reported 

previously) and because of it the coverage increased by a small proportion (64.9%, 622 

annotated genes were correctly identified) and accuracy decreased by a small proportion 

(32.0%, 284 predictions are accurate). As there is a trade-off between coverage and 

accuracy, the values are comparable with the GenePred system without translation models. 

However, adding translation models to GenePred created less fused (155 predictions) and 

more split predictions (170). Thus, Eponine splice sites bias the gene prediction system to 

extend the gene rather than terminate the extending prediction. This issue is addressed in 

case (iii) below. 

 



6.5 Tweaking GenePred gene prediction system 

  

155

Table 14. Performance of GenePred constructed with translation start and stop features. 

 

Thus, adding translation models to the GenePred did not affect the performance in 

identifying annotated genes from the genomic DNA but modified the number of fused and 

split predictions. 

 

6.5.2 Eponine Splice site predictions replaced with GeneSplicer predictions 

In another attempt, I replaced Eponine splice site model predictions with GeneSplicer 

predictions while making GenePred. As explained in chapter 4, GeneSplicer performed 

better than Eponine splice site models by using more information from the DNA sequence. 

Since splice sites form the essential part in determining the gene structure by any gene 

predictor, I attempted GeneSplicer predictions with GenePred in predicting genes. Since 

GeneSplicer predictions are given in bit scores (x), they are first converted to log scores (z) 

using the expression given below before usage. 

 

 xe
z −+

=
1

1  (15) 

 

GeneSplicer predictions with log scores are combined with both cases – with all Eponine 

models and with only Eponine transcription models (without translation models) – to derive 

a gene prediction system. 

 

With the GeneSplicer features (along with transcription and translation features), the 

coverage (68.4%) and accuracy (35.6%) improved in comparison with GenePred using 

Eponine splice site features (Table 15). The increase in accuracy is due to the reduced 

number of predictions (778 predictions compared to 886) by the model. However, the 

number of fused predictions increased (196 compared to 155 predictions) when GeneSplicer 

splice site features are used. The results are similar, except that the number of predictions 
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increased (709 predictions compared to 669) when translation model predictions were 

not used along with GeneSplicer. Including GeneSplicer predictions, however significantly 

improved exon and splice sites coverage by GenePred (Exon: 61.5%, Donor: 19.0%, 

Acceptor: 19.6%). This improvement in coverage is due to the increase in the number of 

predictions (44050 predictions compared to 11145, refer to Table 13) and hence the 

accuracy decreased by a small proportion.   

Table 15. Performance of GenePred constructed with and without translation features 
along with GeneSplicer features instead of Eponine splice sites. 

 

Thus, the increase in coverage using features of GeneSplicer features narrowed the margin 

between the GenePred and the GENSCAN while keeping the high accuracy of the GenePred 

system. 
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6.5.3 Scaled down Eponine feature scores 

As noted earlier Eponine donor and acceptor site model features are screened for scores 

above 0.999 and 0.9998 respectively, for constructing GenePred using GAZE. 

 

On evaluating different gene structures from the DNA sequence based on the given model, 

GAZE tries to balance between splice sites and transcription termination features in 

extending or terminating the gene. This might be compared to the in vivo competition 

between transcriptome and spliceosome in transcribing a gene. At least in two cases – IgM 

heavy chain genes and Calcitonin genes – the competing nature of splicing and transcription 

is shown experimentally. An internal weak poly(A) signal present within an intron of the 

IgM heavy chain gene under the low amount of CstF-64 transcription factor, misses the 

poly(A) signal and hence the transcription continues with the influence of the donor splice 

site present downstream. In cases where CstF-64 is available in relatively high 

concentrations, as in plasma cells, the transcriptome has the advantage and terminates the 

transcription (Takagaki and Manley, 1998; Takagaki et al., 1996). Similarly in Calcitonin 

gene transcription, a weak internal poly(A) signal is used by the transcriptome, if the  SRp 

20 protein, a splice regulatory factor, fails to get recruited to the nearby splice sites (Zhao et 

al., 1999). 

 

A high number of fused gene predictions by GenePred might be due to the higher score of 

splice sites than transcription termination features predicted by the Eponine models. To test 

this hypothesis, here I attempt to scale down the values of splice site features. This is done 

by taking the inverse logit of the Eponine score and multiplying it with a scaling factor and 

reconverting back to the logit score. Inverse logit of the Eponine score was done using the 

formula – 

 

 )
1

log(
z

zx
−

=  (16) 

 

The inverse logit score (x) for donor and acceptor sites are scaled down by multiplying the 

values with 0.67 and 0.54 respectively. These values were found to be optimum after 

different runs and the scaled down scores are more equivalent to the transcription start and 

termination model scores (0.99). Likewise, the scores for translation stop model features 
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(0.999) are also scaled down by multiplying the inverse logit scores with a factor of 

0.67. Before incorporating the donor and acceptor and translation stop features into 

GenePred the scores are converted back to logit values using equation 20 explained above. 

 

Table 16 shows the GenePred system with the scaled down feature scores predicted more 

split predictions (208 and 151 predictions compared to 170 and 97 by GenePred with no 

scaled down features) and less fused predictions (144 and 165 predictions compared to 155 

and 198 predictions by GenePred without scaled down scores). The scenario is similar for 

exons as well (657 split predictions compared to 212 predictions without scaled down 

scores). Overall the number of predictions also increased (997 and 824 predictions). 

Although there is a small increase in coverage (66.7% and 64.1%), it was compensated with 

a small decrease in accuracy (30.2% and 32.2%) and hence the coverage and accuracy are 

not significantly different from the above models. However, this tweak showed that the high 

number of fused predictions by GenePred is due to the splice site score values fed into the 

gene prediction system. 

Table 16. Performance of GenePred system constructed with and without translation after 
scaling down splice site and translation stop scores. 
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6.6 Revisiting transcription termination predictions 

In chapter 3, I showed that the Eponine model works better than existing programs, ERPIN 

and Polyadq, in predicting transcription termination sites. However, the model made a huge 

number of false positive predictions and nearly 10% of them lie within the genes. Ruling out 

these false positive predictions within the gene will increase the accuracy of the model. This 

is possible by defining the exon-intron structure of a gene and removing any transcription 

termination predictions lying within exons or introns. The exon-intron structure can be 

defined using GenePred and thus might help to pin-point the false transcription termination 

model predictions. 

 

To achieve this objective, I used the GenePred system developed by omitting Eponine 

translation models (included Eponine transcription start site, donor, acceptor and 

transcription termination models only) for this purpose. The system predicted genes by 

including only appropriate transcription termination sites after defining the exon-intron 

structure using the splice site features given. Transcription termination sites selected by 

GenePred are then dumped to find the coverage and accuracy of the model by comparing it 

with the VEGA annotated gene ends in chromosome 20 (Table 17). Out of 98 predictions 

matching the 213 annotated genes of chromosome 20, 24 predictions lie within 2500 bases 

from the annotated gene end showing an accuracy of 24.5% with coverage of 40.4%. For a 

comparable coverage the earlier analysis (refer to chapter 3) showed only 16.6% accuracy 

for the transcription termination model. 

Table 17. Performance of transcription termination model with the support of GenePred 
prediction system. 
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Thus, by defining the exon-intron structure, some of the internal predictions of 

transcription termination can be removed giving the model better accuracy with no 

compromise on coverage. 

 

6.7 Concluding remarks 

In this chapter, I tried to build a gene prediction system by taking advantage of the sequence 

features predicted by Eponine models explained in previous chapters and GAZE, a dynamic 

programming based gene assembler. Various versions of the gene prediction system, 

GenePred, showed that the coverage and accuracy are comparable with GENSCAN. This is 

respectable given no protein information is used by GenePred unlike GENSCAN. However, 

GenePred should be treated as complementary to GENSCAN rather than a replacement, 

given the following facts: firstly the coverage of the union of predictions of GENSCAN and 

GenePred is higher than the coverage by the individual programs (Figure 66) and secondly 

the very poor performance of GenePred in predicting exon-intron structures compared to 

GENSCAN. Figure 66 shows that out of 959 VEGA annotated genes, 490 genes are 

predicted both by GenePred and GENSCAN. Twenty percent (102/592) of GenePred 

predictions and 32% (232/722) of GENSCAN predictions do not overlap with each other. 

This indicates that by using GenePred and GENSCAN together a better coverage of the 

annotation can be attained. 

 
Figure 66. Venn diagram showing the coverage of GenePred and GENSCAN. 

The accuracy of GENSCAN can also be improved by supplementing with the predictions of 

GenePred as indicated below. Table 18 and Table 19 show the accuracy of GENSCAN with 
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and without GenePred in predicting VEGA annotated genes and exons respectively. A 

GENSCAN scan on the GenePred predicted regions of chromosome 20 improved its 

accuracy compared to using it alone on the unmasked chromosome sequence.  These results 

again emphasise that GenePred should be treated as a complement to GENSCAN. 

 

Detailed analysis of the predictions of GenePred as a percentage of nucleotides covered 

reveal that 97.6% of nucleotides in chromosome 20 are annotated by GenePred (Table 20). 

This number is very high and significantly higher than the fraction of genome covered by 

GENSCAN (68.5%, 43654921 bases) or by VEGA annotations (28632433 bases, 44.9%) of 

chromosome 20. 

Table 18. Performance of GENSCAN with and without GenePred in predicting VEGA 
annotated genes. 
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Table 19. Performance of GENSCAN with and without GenePred in predicting VEGA 
annotated exons. 

 

Table 20. Nucleotide coverage by predictions of GenePred and GENSCAN. 

 

 

These results indicate that GenePred’s prediction accuracy comes mainly by determining the 

correct strand to transcribe, yet it is performing better than random: Random prediction 
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accuracy was evaluated by offsetting the predictions of GenePred and GENSCAN by 1, 

2 and 3 mega bases (predictions exceeding the length of the chromosome are rotated round 

to the beginning) and recalculating the coverage and accuracy with respect to VEGA 

annotation (Table 21). GenePred predictions offset by 3 mega bases shows 42.6% coverage 

and 16.6% accuracy, which is significantly less than for the original predictions (coverage: 

61.8%, accuracy: 34.4%). Similar results are found for GENSCAN predictions as well. 

Table 21. Coverage and accuracy of GenePred and GENSCAN for predictions offset by 1, 2 
and 3 mega bases. 

 

 

Although GENSCAN coverage is better than GenePred overall, it is less likely than 

GenePred to predict VEGA ‘Novel_transcripts’ and ‘Putative’ genes. This may be partly 

due to GENSCAN’s reliance on protein information. Novel_transcripts are genes annotated 

from RNA that have weak evidence for being coding transcripts. Likewise, Putative genes 

are annotated using EST evidence and these genes also have no clear open reading frame. 

As the protein information content of this set of transcripts is less than for known genes, this 

may explain GENSCAN predicting few cases than GenePred (Table 22). For 

Novel_transcripts, all versions of GenePred discussed above show better coverage 

percentage with twice the accuracy of GENSCAN. Similarly for Putative genes, GenePred 

predicted at least 15% more genes with twice the accuracy of GENSCAN or more. On the 

combined dataset (Novel_transcripts + Putative genes), GenePred’s coverage was at least 
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10% more than GENSCAN with twice the accuracy or more. Table 22 details the 

coverage and accuracy of various versions of GenePred (with and without splice site and 

translation models) compared to GENSCAN. The low accuracy values are a consequence of 

considering predictions matching only Novel_transcripts and Putative genes as true and the 

rest as false predictions. 

Table 22. Performance of GenePred and GENSCAN in identifying VEGA Novel_transcripts 
and Putative genes. Coverage and accuracy for each annotation is given for GenePred with 
and without translation models. Each of these GenePred systems is combined with either 
Eponine splice site or GeneSplicer features. Numbers in brackets shows the absolute values. 

 

 Thus, in this project I was able to develop a gene prediction system based purely on gene 

regulatory signals and show that its performance is encouraging considering that it does not 

rely on protein coding information. In terms of gene coverage it performs similarly for 

protein coding genes and better for genes with no coding evidence. At present the major 

problem is the very poor exon prediction accuracy despite including a splicing model. For 

easy comparison, in the table below (Table 23), I summarise the results of various versions 

of GenePred compared to GENSCAN in annotating chromosome 20 VEGA annotated 

genes. 
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Table 23. Summary of performance of various versions of GenePred and GENSCAN in 
identifying VEGA annotated genes in human chromosome 20 
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CONCLUSIONS 

 

Current genomic revolution has unlocked the potential to understand the gene regulation at 

molecular, cellular and physiological levels. The first step in this process is to identify the 

genes present in a genome and study the expression patterns of the gene influenced by 

regulatory signals. Several programs are available in the public domain that can identify 

genes from the DNA sequence using ‘signals’ and ‘contents’ of the DNA sequence. Gene 

prediction programs using ‘contents’ information are limited from identifying only protein 

coding genes in the genome. So in order to derive an ab initio gene prediction system purely 

based on signals, in this project I attempted to create models for gene regulatory elements. 

 

The start and end of any gene is marked by their promoter and termination signals where 

from RNA polymerases begin and terminate transcription. The transcription start site was 

initially identified by Down and Hubbard using generalised linear model based probabilistic 

algorithm called Eponine (Down and Hubbard, 2004; Down and Hubbard, 2002). In this 

project, I attempted a number of methods including Eponine to identify transcription 

termination signals responsible for RNA polymerase stop and release from DNA. 

 

Termination of polymerase does not happen at the cleavage site and the RNA polymerase 

transcribes DNA even 2 kb downstream before releasing from the DNA. Recent 

experiments confirm the presence of a pause site downstream of the cleavage site required 

for transcription termination. In chapter 1, I have detailed the mechanism of transcription 

termination and compared with other systems known to occur in vivo.  Attempts to identify 

the pause elements have so far not been successful in deriving a consensus sequence. 

However experimental and computational analyses indicate the sequence might be A-rich 

and G-rich and bind MAZ and Sp1 protein to stop transcription from running-over to the 

neighbouring genes. 

 

In this project, I first used base compositional analysis to study any significant changes in 

the nucleotide distribution in the sequences around cleavage site. The differences in the 

composition were found concentrated within 100 and 50 bases upstream and downstream of 

cleavage site and these are linked to the poly(A) signal and GT rich region known earlier. 
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No significant changes were found in the sequences where polymerase is likely to pause. 

Then, I investigated for the presence of any secondary structures that can potentially stop 

polymerase as a similar mechanism is found in prokaryotes and histone genes. So to analyse 

this, I used Nussinov and Zuker algorithms. Base pair maximisation principle-based 

Nussinov algorithm did not find any stem-loop structures. Free energy minimization based 

Zuker algorithm, however, predicted the possibility of RNA secondary structure in the 

sequences 100 to 650 bases downstream of cleavage site. Correlation with GC and GT 

percentage showed they are unlikely to be caused by sequence artefacts. Confirming these 

structures using biochemical experiments will help us to understand the mechanism of 

transcription termination of protein coding genes and correlate them with histone and 

prokaryotic gene transcription termination. 

 

After analysing for secondary structures in DNA, I used the probabilistic machine learning 

algorithm based on Bayes theorem and Generalized Linear Models, Eponine, for scanning 

motifs responsible for transcription termination. The model captured poly(A) signal and 

auxiliary sequence motifs along with a few multiplex signals that might be responsible for 

polymerase II pause and termination. An evaluation of this termination model against 

annotated human chromosomes shows that the model performs better than existing methods. 

However a significant number of predictions also appear near the annotated start site and 

first intron of genes. In chapter 3, I have tried to explain these biases and false positives at 

this region using hypothesis derived from previous knowledge. I propose that a significant 

number of predictions made by the model that are not correlated with available annotations 

are not really false predictions and they are likely to have biological functions. It would be 

interesting to test these hypotheses by devising appropriate molecular and biochemical 

experiments. 

 

Apart from the bias towards transcription start site and first intron, I found approximately 

10% of predictions lie within genes and their density is correlated with gene length and 

intron size. Interestingly shorter introns were found to have higher prediction density and 

most of them are likely to be alternative termination or polyadenylation site of the gene. 

Early experiments show this is possible as at least 22% of mRNAs was recorded to undergo 

alternative polyadenylation often in a tissue- and time-specific manner (Legendre and 

Gautheret, 2003). Previous programs developed to find the end of the gene and alternative 
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polyadenylation site are mainly dependent on poly(A) signals and Eponine differs from 

them by using other downstream signals. A comparison with one such previous program, 

ERPIN (Legendre and Gautheret, 2003), showed Eponine performed better in identifying 

transcription termination sites. 

 

I then extended the application of Eponine to develop splice site and translation models to 

meet the objective of creating an ab initio gene prediction system. These models are 

explained in chapters 4 and 5. Donor and acceptor site models were trained from sequences 

from chromosome 22 along with appropriate negative datasets. Positional variations in 

splice site models were captured using a Delta distribution rather than the usual Gaussian 

distribution. The models picked the known signals near donor and acceptor sites. Acceptor 

sites, as expected, were difficult to predict relative to the donor site as acceptor sites show 

variation in the regulatory elements (Lund et al., 2000). Moreover, the Eponine acceptor site 

model did not capture branch point signal where lariat formation occurs. A comparison of 

the models with annotated sites of chromosome 20 showed the models have good positional 

accuracy and performed comparably with GeneSplicer (Pertea et al., 2001) and StrataSplice 

(Levine, 2001a). I also noticed that there is a scope for improvement of performance of 

Eponine splice site models by using local GC variation as employed by StrataSplice. 

 

Likewise, I attempted to identify translation start and stop codons and regulatory elements 

near by that determine translation initiation and termination by the ribosomal machinery. 

Translation start model learnt the famous Kozak sequence and performed better than 

NetStart (Pedersen and Nielsen, 1997b) although less well than ATGpr (Salamov et al., 

1998a). 

 

After training all the Eponine models, I combined them using the dynamic programming 

framework based GAZE (Howe et al., 2002) to develop a gene prediction system called 

GenePred. Various versions of GenePred developed by tweaking the input features and 

score values showed all the models are comparable with GENSCAN (Burge and Karlin, 

1997) in identifying genes from the genomic sequence. In cases of Novel_transcripts and 

Putative genes, GenePred was found to be better than GENSCAN in identifying these genes. 

However, GenePred had difficulty in determining the annotated exon-intron structure of the 
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genes. This is expected as the GenePred uses only signal information in predicting the 

candidate genes. 

 

Thus in this project, I developed various models that influence gene regulatory elements and 

linked them together to derive an ab initio gene prediction system that uses only these gene 

regulatory signals and not dependent on protein coding information. During this attempt, I 

found interesting observations like distribution of termination sites near transcription start 

site, first intron and short introns. Results from experiments confirming these observations 

will help us to discern the transcriptional machinery and reconsider the current concepts of 

gene regulation in the eukaryotic genome. 



 

   

BIBLIOGRAPHY 
 

Adema, G.J., Bovenberg, R.A., Jansz, H.S. and Baas, P.D. (1988) Unusual branch point 

selection involved in splicing of the alternatively processed Calcitonin/CGRP-I pre-

mRNA. Nucleic Acids Research, 16, 9513-9526. 

Agarwal, P. and Bafna, V. (1998) The ribosome scanning model for translation initiation: 

implications for gene prediction and full-length cDNA detection. Proceedings of the 

International Conference on Intelligent Systems for Molecular Biology, 6, 2-7. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local 

alignment search tool. J Mol Biol, 215, 403-410. 

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, 

D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database 

search programs. Nucleic Acids Res, 25, 3389-3402. 

Apic, G., Gough, J. and Teichmann, S.A. (2001) Domain combinations in archaeal, 

eubacterial and eukaryotic proteomes. J Mol Biol, 310, 311-325. 

Aranda, A. and Proudfoot, N. (2001) Transcriptional termination factors for RNA 

polymerase II in yeast. Molecular Cell, 7, 1003-1011. 

Aranda, A. and Proudfoot, N.J. (1999) Definition of transcriptional pause elements in 

fission yeast. Molecular and Cellular Biology, 19, 1251-1261. 

Ashfield, R., Enriquez-Harris, P. and Proudfoot, N.J. (1991) Transcriptional termination 

between the closely linked human complement genes C2 and factor B: common 

termination factor for C2 and c-myc? EMBO Journal, 10, 4197-4207. 

Ashurst, J. (2002) http://vega.sanger.ac.uk 

Ashurst, J.L. and Collins, J.E. (2003) Gene Annotation: Prediction and Testing. Annual 

Review of Genomics and Human Genetics, 4, 69-88. 



Bibliography  

  

171

Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, 

A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C. and 

Eddy, S.R. (2004) The Pfam protein families database. Nucleic Acids Research, 32, 

D138-141. 

Beaumont, C., Porcher, C., Picat, C., Nordmann, Y. and Grandchamp, B. (1989) The mouse 

porphobilinogen deaminase gene. Structural organization, sequence, and 

transcriptional analysis. Journal of Biological Chemistry, 264, 14829-14834. 

Bengal, E., Flores, O., Krauskopf, A., Reinberg, D. and Aloni, Y. (1991) Role of the 

mammalian transcription factors IIF, IIS, and IIX during elongation by RNA 

polymerase II. 11, 1195-1206. 

Bentley, D.L. and Groudine, M. (1986) A block to elongation is largely responsible for 

decreased transcription of c-myc in differentiated HL60 cells. Nature, 321, 702-706. 

Berget, S.M. (1995) Exon recognition in vertebrate splicing. Journal of Biological 

Chemistry, 270, 2411-2414. 

Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, 

Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., 

Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D. and 

Zardecki, C. (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr, 58, 

899-907. 

Betton, J.M., Jacob, J.P., Hofnung, M. and Broome-Smith, J.K. (1997) Creating a 

bifunctional protein by insertion of beta-lactamase into the maltodextrin-binding 

protein. Nat Biotechnol, 15, 1276-1279. 

Birney, E., Andrews, D., Bevan, P., Caccamo, M., Cameron, G., Chen, Y., Clarke, L., 

Coates, G., Cox, T., Cuff, J., Curwen, V., Cutts, T., Down, T., Durbin, R., Eyras, E., 

Fernandez-Suarez, X.M., Gane, P., Gibbins, B., Gilbert, J., Hammond, M., et al. 

(2004) Ensembl 2004. Nucleic Acids Research, 32, D468-470. 



Bibliography  

  

172

Birney, E. and Durbin, R. (1997) Dynamite: a flexible code generating language for 

dynamic programming methods used in sequence comparison. Proceedings of the 

International Conference on Intelligent Systems for Molecular Biology, 5, 56-64. 

Birse, C.E., Lee, B.A., Hansen, K. and Proudfoot, N.J. (1997) Transcriptional termination 

signals for RNA polymerase II in fission yeast. EMBO Journal, 16, 3633-3643. 

Birse, C.E., Minvielle-Sebastia, L., Lee, B.A., Keller, W. and Proudfoot, N.J. (1998) 

Coupling termination of transcription to messenger RNA maturation in yeast. 

Science, 280, 298-301. 

Black, D.L. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annual Review 

of Biochemistry, 72, 291-336. 

Bogenhagen, D.F. and Brown, D.D. (1981) Nucleotide sequences in Xenopus 5S DNA 

required for transcription termination. Cell, 24, 261-270. 

Bork, P., Downing, A.K., Kieffer, B. and Campbell, I.D. (1996) Structure and distribution 

of modules in extracellular proteins. Q Rev Biophys, 29, 119-167. 

Bossemeyer, D. (1994) The glycine-rich sequence of protein kinases: a multifunctional 

element. Trends Biochem Sci, 19, 201-205. 

Braddock, M., Muckenthaler, M., White, M.R., Thorburn, A.M., Sommerville, J., 

Kingsman, A.J. and Kingsman, S.M. (1994) Intron-less RNA injected into the 

nucleus of Xenopus oocytes accesses a regulated translation control pathway. 

Nucleic Acids Research, 22, 5255-5264. 

Brendel, V. and Kleffe, J. (1998) Prediction of locally optimal splice sites in plant pre-

mRNA with applications to gene identification in Arabidopsis thaliana genomic 

DNA. Nucleic Acids Research, 26, 4748-4757. 



Bibliography  

  

173

Brenner, S.E., Chothia, C. and Hubbard, T.J. (1998) Assessing sequence comparison 

methods with reliable structurally identified distant evolutionary relationships. Proc 

Natl Acad Sci U S A, 95, 6073-6078. 

Briggs, D., Jackson, D., Whitelaw, E. and Proudfoot, N.J. (1989) Direct demonstration of 

termination signals for RNA polymerase II from the sea urchin H2A histone gene. 

Nucleic Acids Research, 17, 8061-8071. 

Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. and Palmiter, R.D. (1988) Introns 

increase transcriptional efficiency in transgenic mice. Proceedings of the National 

Academy of Sciences of the United States of America, 85, 836-840. 

Burge, C. (1998) Modeling dependencies in pre-mRNA splicing signals. Elsevier, 

Amsterdam, Netherlands. 

Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic 

DNA. Journal of Molecular Biology, 268, 78-94. 

Burset, M., Seledtsov, I.A. and Solovyev, V.V. (2000) Analysis of canonical and non-

canonical splice sites in mammalian genomes. Nucleic Acids Research, 28, 4364-

4375. 

Burset, M., Seledtsov, I.A. and Solovyev, V.V. (2001) SpliceDB: database of canonical and 

non-canonical mammalian splice sites. Nucleic Acids Research, 29, 255-259. 

Calvo, O. and Manley, J.L. (2001) Evolutionarily conserved interaction between CstF-64 

and PC4 links transcription, polyadenylation, and termination. Molecular Cell, 7, 

1013-1023. 

Calvo, O. and Manley, J.L. (2003) Strange bedfellows: polyadenylation factors at the 

promoter. Genes and Development, 17, 1321-1327. 

Cavener, D.R. and Ray, S.C. (1991) Eukaryotic start and stop translation sites. Nucleic 

Acids Research, 19, 3185-3192. 



Bibliography  

  

174

Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., 

Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., 

Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, 

K. and Gingeras, T.R. (2004) Unbiased Mapping of Transcription Factor Binding 

Sites along Human Chromosomes 21 and 22 Points to Widespread Regulation of 

Noncoding RNAs. Cell, 116, 499-509. 

Celniker, S.E., Wheeler, D.A., Kronmiller, B., Carlson, J.W., Halpern, A., Patel, S., Adams, 

M., Champe, M., Dugan, S.P., Frise, E., Hodgson, A., George, R.A., Hoskins, R.A., 

Laverty, T., Muzny, D.M., Nelson, C.R., Pacleb, J.M., Park, S., Pfeiffer, B.D., 

Richards, S., et al. (2002) Finishing a whole-genome shotgun: release 3 of the 

Drosophila melanogaster euchromatic genome sequence. Genome Biol, 3, 

RESEARCH0079. 

Chafin, D.R., Claussen, T.J. and Price, D.H. (1991) Identification and purification of a yeast 

protein that affects elongation by RNA polymerase II. 266, 9256-9262. 

Chandonia, J.M., Walker, N.S., Lo Conte, L., Koehl, P., Levitt, M. and Brenner, S.E. (2002) 

ASTRAL compendium enhancements. Nucleic Acids Res, 30, 260-263. 

Chinsky, J.M., Maa, M.C., Ramamurthy, V. and Kellems, R.E. (1989) Adenosine 

deaminase gene expression. Tissue-dependent regulation of transcriptional 

elongation. Journal of Biological Chemistry, 264, 14561-14565. 

Chothia, C. (1992) Proteins. One thousand families for the molecular biologist. Nature, 357, 

543-544. 

Chothia, C. and Lesk, A.M. (1986) The relation between the divergence of sequence and 

structure in proteins. Embo J, 5, 823-826. 

Collins, J.E., Goward, M.E., Cole, C.G., Smink, L.J., Huckle, E.J., Knowles, S., Bye, J.M., 

Beare, D.M. and Dunham, I. (2003) Reevaluating human gene annotation: a second-

generation analysis of chromosome 22. Genome Research, 13, 27-36. 



Bibliography  

  

175

Connelly, S. and Manley, J.L. (1989a) A CCAAT box sequence in the adenovirus major 

late promoter functions as part of an RNA polymerase II termination signal. Cell, 57, 

561-571. 

Connelly, S. and Manley, J.L. (1989b) RNA polymerase II transcription termination is 

mediated specifically by protein binding to a CCAAT box sequence. Molecular and 

Cellular Biology, 9, 5254-5259. 

Cook, P.R. (1999) The organization of replication and transcription. Science, 284, 1790-

1795. 

Cooke, C., Hans, H. and Alwine, J.C. (1999) Utilization of splicing elements and 

polyadenylation signal elements in the coupling of polyadenylation and last-intron 

removal. Molecular and Cellular Biology, 19, 4971-4979. 

Cosson, B., Couturier, A., Chabelskaya, S., Kiktev, D., Inge-Vechtomov, S., Philippe, M. 

and Zhouravleva, G. (2002) Poly(A)-Binding Protein Acts in Translation 

Termination via Eukaryotic Release Factor 3 Interaction and Does Not Influence 

[PSI+] Propagation. Molecular and Cellular Biology, 22, 3301-3315. 

Cozzarelli, N.R., Gerrard, S.P., Schlissel, M., Brown, D.D. and Bogenhagen, D.F. (1983) 

Purified RNA polymerase III accurately and efficiently terminates transcription of 

5S RNA genes. Cell, 34, 829-835. 

Cramer, P., Caceres, J.F., Cazalla, D., Kadener, S., Muro, A.F., Baralle, F.E. and Kornblihtt, 

A.R. (1999) Coupling of transcription with alternative splicing: RNA pol II 

promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. 

Molecular Cell, 4, 251-258. 

Cramer, P., Pesce, C.G., Baralle, F.E. and Kornblihtt, A.R. (1997) Functional association 

between promoter structure and transcript alternative splicing. Proceedings of the 

National Academy of Sciences of the United States of America, 94, 11456-11460. 



Bibliography  

  

176

Cramer, P., Srebrow, A., Kadener, S., Werbajh, S., de la Mata, M., Melen, G., Nogues, 

G. and Kornblihtt, A.R. (2001) Coordination between transcription and pre-mRNA 

processing. FEBS Letters, 498, 179-182. 

Crispino, J.D., Mermoud, J.E., Lamond, A.I. and Sharp, P.A. (1996) Cis-acting elements 

distinct from the 5' splice site promote U1-independent pre-mRNA splicing. RNA, 2, 

664-673. 

Cristianini, N. and Shawe-Taylor, J. (2000) An introduction to support vector machines. 

Cambridge University Press, Cambridge. 

CSC. (1998) Genome sequence of the nematode C. elegans: a platform for investigating 

biology. The C. elegans Sequencing Consortium. Science, 282, 2012-2018. 

Cuello, P., Boyd, D.C., Dye, M.J., Proudfoot, N.J. and Murphy, S. (1999) Transcription of 

the human U2 snRNA genes continues beyond the 3' box in vivo. EMBO Journal, 

18, 2867-2877. 

Dantonel, J.C., Murthy, K.G., Manley, J.L. and Tora, L. (1997) Transcription factor TFIID 

recruits factor CPSF for formation of 3' end of mRNA. Nature, 389, 399-402. 

Das, A. (1993) Control of transcription termination by RNA-binding proteins. Annual 

Review of Biochemistry, 62, 893-930. 

di Bernardo, D., Down, T. and Hubbard, T. (2003) ddbRNA: detection of conserved 

secondary structures in multiple alignments. Bioinformatics, 19, 1606-1611. 

Dichtl, B., Blank, D., Ohnacker, M., Friedlein, A., Roeder, D., Langen, H. and Keller, W. 

(2002a) A role for SSU72 in balancing RNA polymerase II transcription elongation 

and termination. Molecular Cell, 10, 1139-1150. 

Dichtl, B., Blank, D., Sadowski, M., Hubner, W., Weiser, S. and Keller, W. (2002b) 

Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II 

transcription termination. EMBO Journal, 21, 4125-4135. 



Bibliography  

  

177

Ditzel, L., Lowe, J., Stock, D., Stetter, K.O., Huber, H., Huber, R. and Steinbacher, S. 

(1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of 

CCT. Cell, 93, 125-138. 

Doi, N., Itaya, M., Yomo, T., Tokura, S. and Yanagawa, H. (1997) Insertion of foreign 

random sequences of 120 amino acid residues into an active enzyme. FEBS Lett, 

402, 177-180. 

Dong, S. and Searls, D.B. (1994) Gene structure prediction by linguistic methods. 

Genomics, 23, 540-551. 

Dowell, R.D., Jokerst, R.M., Day, A., Eddy, S.R. and Stein, L. (2001) The Distributed 

Annotation System. BMC Bioinformatics, 2, 7. 

Down, T. (2003) Computational localization of promoters and transcription start sites in 

mammalian genomes. The Wellcome Trust Sanger Institute. University of 

Cambridge, Cambridge, p. 149. 

Down, T. and Hubbard, T. (2004) Relevance Vector Machines for classifying points and 

regions in biological sequences. 

Down, T.A. and Hubbard, T.J. (2002) Computational detection and location of transcription 

start sites in mammalian genomic DNA. Genome Research, 12, 458-461. 

Dunham, I., Shimizu, N., Roe, B.A., Chissoe, S., Hunt, A.R., Collins, J.E., Bruskiewich, R., 

Beare, D.M., Clamp, M., Smink, L.J., Ainscough, R., Almeida, J.P., Babbage, A., 

Bagguley, C., Bailey, J., Barlow, K., Bates, K.N., Beasley, O., Bird, C.P., Blakey, 

S., et al. (1999) The DNA sequence of human chromosome 22. Nature, 402, 489-

495. 

Duplay, P., Szmelcman, S., Bedouelle, H. and Hofnung, M. (1987) Silent and functional 

changes in the periplasmic maltose-binding protein of Escherichia coli K12. I. 

Transport of maltose. Journal of Molecular Biology, 194, 663-673. 



Bibliography  

  

178

Durbin, R., Eddy, S.R., Krogh, A. and Mitchison, G. (1998) Biological Sequence 

Analysis. Cambridge University Press. 

Dye, M.J. and Proudfoot, N.J. (2001) Multiple transcript cleavage precedes polymerase 

release in termination by RNA polymerase II. Cell, 105, 669-681. 

Eddy, S.R. (1996) Hidden Markov models. Curr Opin Struct Biol, 6, 361-365. 

Edwalds-Gilbert, G., Prescott, J. and Falck-Pedersen, E. (1993) 3' RNA processing 

efficiency plays a primary role in generating termination-competent RNA 

polymerase II elongation complexes. Molecular and Cellular Biology, 13, 3472-

3480. 

Enright, A.J., Van Dongen, S. and Ouzounis, C.A. (2002) An efficient algorithm for large-

scale detection of protein families. Nucleic Acids Res, 30, 1575-1584. 

Enriquez-Harris, P., Levitt, N., Briggs, D. and Proudfoot, N.J. (1991) A pause site for RNA 

polymerase II is associated with termination of transcription. EMBO Journal, 10, 

1833-1842. 

Evers, R., Smid, A., Rudloff, U., Lottspeich, F. and Grummt, I. (1995) Different domains of 

the murine RNA polymerase I-specific termination factor mTTF-I serve distinct 

functions in transcription termination. EMBO Journal, 14, 1248-1256. 

Ewing, B. and Green, P. (2000) Analysis of expressed sequence tags indicates 35,000 

human genes. Nature Genetics, 25, 232-234. 

Friedman, D.I. and Court, D.L. (1995) Transcription antitermination: the lambda paradigm 

updated. Molecular Microbiology, 18, 191-200. 

Ganem, C., Devaux, F., Torchet, C., Jacq, C., Quevillon-Cheruel, S., Labesse, G., Facca, C. 

and Faye, G. (2003) Ssu72 is a phosphatase essential for transcription termination of 

snoRNAs and specific mRNAs in yeast. EMBO Journal, 22, 1588-1598. 



Bibliography  

  

179

Gautheret, D. and Lambert, A. (2001) Direct RNA motif definition and identification 

from multiple sequence alignments using secondary structure profiles. Journal of 

Molecular Biology, 313, 1003-1011. 

Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, 

J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., 

Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, 

T., et al. (2002) Functional organization of the yeast proteome by systematic 

analysis of protein complexes. Nature, 415, 141-147. 

Ge, H. and Roeder, R.G. (1994) Purification, cloning, and characterization of a human 

coactivator, PC4, that mediates transcriptional activation of class II genes. Cell, 78, 

513-523. 

Gene Ontology Consortium. (2004) The Gene Ontology (GO) database and informatics 

resource. Nucleic Acids Research, 32, D258-261. 

Gerber, J.K., Gogel, E., Berger, C., Wallisch, M., Muller, F., Grummt, I. and Grummt, F. 

(1997) Termination of mammalian rDNA replication: polar arrest of replication fork 

movement by transcription termination factor TTF-I. Cell, 90, 559-567. 

Gerstein, M. (1997) A structural census of genomes: comparing bacterial, eukaryotic, and 

archaeal genomes in terms of protein structure. Journal of Molecular Biology, 274, 

562-576. 

Gibson, W.T. and Dormor, D.J. (2003) Searching for the 'natural': the case for the gene 'for' 

homosexuality. Journal of Human Reproduction and Genetic Ethics, 9, 30-35. 

Graveley, B.R. (2000) Sorting out the complexity of SR protein functions. RNA, 6, 1197-

1211. 

Gray, N.K. and Wickens, M. (1998) Control of translation initiation in animals. Annual 

Review of Cell and Developmental Biology, 14, 399-458. 



Bibliography  

  

180

Greenblatt, J., Nodwell, J.R. and Mason, S.W. (1993) Transcriptional antitermination. 

Nature, 364, 401-406. 

Greger, I.H., Demarchi, F., Giacca, M. and Proudfoot, N.J. (1998) Transcriptional 

interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids 

Research, 26, 1294-1301. 

Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. and Eddy, S.R. (2003) Rfam: an 

RNA family database. Nucleic Acids Research, 31, 439-441. 

Grundy, W.N., Bailey, T.L. and Elkan, C.P. (1997) Meta-MEME: Motif-based Hidden 

Markov Models of Protein Families. Computer Applications in the Biosciences, 13, 

397-406. 

Guigo, R. (1997) Computational gene identification. Journal of Molecular Medicine, 75, 

389-393. 

Guigo, R., Agarwal, P., Abril, J.F., Burset, M. and Fickett, J.W. (2000) An assessment of 

gene prediction accuracy in large DNA sequences. Genome Research, 10, 1631-

1642. 

Guigo, R., Knudsen, S., Drake, N. and Smith, T. (1992) Prediction of gene structure. J Mol 

Biol, 226, 141-157. 

Harger, C., Chen, G., Farmer, A., Huang, W., Inman, J., Kiphart, D., Schilkey, F., Skupski, 

M.P. and Weller, J. (2000) The Genome Sequence DataBase. Nucleic Acids 

Research, 28, 31-32. 

Hartmuth, K. and Barta, A. (1988) Unusual branch point selection in processing of human 

growth hormone pre-mRNA. Molecular and Cellular Biology, 8, 2011-2020. 

Hastings, M.L. and Krainer, A.R. (2001) Functions of SR proteins in the U12-dependent 

AT-AC pre-mRNA splicing pathway. RNA, 7, 471-482. 



Bibliography  

  

181

Hatzigeorgiou, A.G. (2002) Translation initiation start prediction in human cDNAs with 

high accuracy. Bioinformatics, 18, 343-350. 

He, X., Khan, A.U., Cheng, H., Pappas, D.L., Jr., Hampsey, M. and Moore, C.L. (2003) 

Functional interactions between the transcription and mRNA 3' end processing 

machineries mediated by Ssu72 and Sub1. Genes and Development, 17, 1030-1042. 

Hegyi, H. and Gerstein, M. (1999) The relationship between protein structure and function: 

a comprehensive survey with application to the yeast genome. J Mol Biol, 288, 147-

164. 

Heinemann, M. and Wagner, R. (1997) Guanosine 3',5'-bis(diphosphate) (ppGpp)-

dependent inhibition of transcription from stringently controlled Escherichia coli 

promoters can be explained by an altered initiation pathway that traps RNA 

polymerase. European Journal of Biochemistry, 247, 990-999. 

Henkin, T.M. (1996) Control of transcription termination in prokaryotes. Annual Review of 

Genetics, 30, 35-57. 

Hentze, M.W. (2001) Protein synthesis. Believe it or not-translation in the nucleus. Science, 

293, 1058-1059. 

Hernandez, N. (1992) Transcription of verterbrate snRNA genes and related genes. Cold 

Spring Harbor Laboratory, New York. 

Hillman, R.T., Green, R. and Brenner, S. (2004) An unappreciated role for RNA 

surveillance. Genome Biology, 5, R8. 

Hobohm, U. and Sander, C. (1994) Enlarged representative set of protein structures. Protein 

Sci, 3, 522-524. 

Holm, L. and Sander, C. (1993) Protein structure comparison by alignment of distance 

matrices. J Mol Biol, 233, 123-138. 



Bibliography  

  

182

Holm, L. and Sander, C. (1996) Mapping the protein universe. Science, 273, 595-603. 

Houdebine, L.M. and Attal, J. (1999) Internal ribosome entry sites (IRESs): reality and use. 

Transgenic Research, 8, 157-177. 

Howe, K.L. (2003) Gene Prediction using a configurable system for the integration of data 

by dyanmic programming. The Wellcome Trust Sanger Institute. University of 

Cambridge, Cambridge, p. 209. 

Howe, K.L., Chothia, T. and Durbin, R. (2002) GAZE: a generic framework for the 

integration of gene-prediction data by dynamic programming. Genome Research, 12, 

1418-1427. 

Hua, S., Guo, T., Gough, J. and Sun, Z. (2002) Proteins with class alpha/beta fold have 

high-level participation in fusion events. J Mol Biol, 320, 713-719. 

Hubbard, T. (1994) Measuring distance between structural aligned residues. Cambridge. 

Personal Communication. 

Iborra, F.J., Escargueil, A.E., Kwek, K.Y., Akoulitchev, A. and Cook, P.R. (2004) 

Molecular cross-talk between the transcription, translation, and nonsense-mediated 

decay machineries. Journal of Cell Science, 117, 899-906. 

Iborra, F.J., Jackson, D.A. and Cook, P.R. (2001) Coupled transcription and translation 

within nuclei of mammalian cells. Science, 293, 1139-1142. 

Ichiyanagi, K., Ishino, Y., Ariyoshi, M., Komori, K. and Morikawa, K. (2000) Crystal 

structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J Mol Biol, 

300, 889-901. 

Iida, Y. and Kanagu, D. (2000) Quantification analysis of translation initiation signal in 

vertebrate mRNAs: effect of nucleotides at positions +4(-)+6 upon efficiency of 

translation initiation. Nucleic Acids Symposium Series, 77-78. 



Bibliography  

  

183

Johnson, M.R., Norman, C., Reeve, M.A., Scully, J. and Proudfoot, N.J. (1986) 

Tripartite sequences within and 3' to the sea urchin H2A histone gene display 

properties associated with a transcriptional termination process. Molecular and 

Cellular Biology, 6, 4008-4018. 

Jurica, M.S. and Moore, M.J. (2003) Pre-mRNA splicing: awash in a sea of proteins. 

Molecular Cell, 12, 5-14. 

Jurica, M.S. and Stoddard, B.L. (1999) Homing endonucleases: structure, function and 

evolution. Cell Mol Life Sci, 55, 1304-1326. 

Kisselev, L.L. and Frolova, L. (1995) Termination of translation in eukaryotes. 

Biochemistry and Cell Biology, 73, 1079-1086. 

Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. and Hayashizaki, Y. (2003) Antisense 

transcripts with FANTOM2 clone set and their implications for gene regulation. 

Genome Research, 13, 1324-1334. 

Kozak, M. (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger 

RNAs. Nucleic Acids Research, 15, 8125-8132. 

Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene, 234, 187-

208. 

Kozak, M. (2001) New ways of initiating translation in eukaryotes? Molecular and Cellular 

Biology, 21, 1899-1907. 

Kozak, M. (2002) Pushing the limits of the scanning mechanism for initiation of translation. 

Gene, 299, 1-34. 

Krogh, A., Brown, M., Mian, I.S., Sjolander, K. and Haussler, D. (1994) Hidden Markov 

models in computational biology. Applications to protein modeling. J Mol Biol, 235, 

1501-1531. 



Bibliography  

  

184

Kwek, K.Y., Murphy, S., Furger, A., Thomas, B., O'Gorman, W., Kimura, H., 

Proudfoot, N.J. and Akoulitchev, A. (2002) U1 snRNA associates with TFIIH and 

regulates transcriptional initiation. Nature Structural Biology, 9, 800-805. 

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., 

Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., 

Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., et al. 

(2001) Initial sequencing and analysis of the human genome. Nature, 409, 860-921. 

Lang, W.H., Morrow, B.E., Ju, Q., Warner, J.R. and Reeder, R.H. (1994) A model for 

transcription termination by RNA polymerase I. Cell, 79, 527-534. 

Lang, W.H. and Reeder, R.H. (1993) The REB1 site is an essential component of a 

terminator for RNA polymerase I in Saccharomyces cerevisiae. Molecular and 

Cellular Biology, 13, 649-658. 

Lanzotti, D.J., Kaygun, H., Yang, X., Duronio, R.J. and Marzluff, W.F. (2002) 

Developmental control of histone mRNA and dSLBP synthesis during Drosophila 

embryogenesis and the role of dSLBP in histone mRNA 3' end processing in vivo. 

Molecular and Cellular Biology, 22, 2267-2282. 

Le Hir, H., Nott, A. and Moore, M.J. (2003) How introns influence and enhance eukaryotic 

gene expression. Trends in Biochemical Sciences, 28, 215-220. 

Legendre, M. and Gautheret, D. (2003) Sequence determinants in human polyadenylation 

site selection. BMC Genomics, 4, 7. 

Levine, A. (2001a) Bioinformatics Approcahes to RNA splicing. The Wellcome Trust 

Sanger Institute. University of Cambridge, Cambridge, p. 74. 

Levine, A. (2001b) http://www.sanger.ac.uk/Software/analysis/stratasplice/ 



Bibliography  

  

185

Lewis, B.P., Green, R.E. and Brenner, S.E. (2003) Evidence for the widespread coupling 

of alternative splicing and nonsense-mediated mRNA decay in humans. Proceedings 

of the National Academy of Sciences of the United States of America, 100, 189-192. 

Liang, F., Holt, I., Pertea, G., Karamycheva, S., Salzberg, S.L. and Quackenbush, J. (2000) 

Gene index analysis of the human genome estimates approximately 120,000 genes. 

Nature Genetics, 25, 239-240. 

Lindahl, E. and Elofsson, A. (2000) Identification of related proteins on family, superfamily 

and fold level. J Mol Biol, 295, 613-625. 

Lin-Marq, N. and Clarkson, S.G. (1998) Efficient synthesis, termination and release of RNA 

polymerase III transcripts in Xenopus extracts depleted of La protein. EMBO 

Journal, 17, 2033-2041. 

Liu, H., Hao, H., Li, J. and Wong, L. (2003) A New Method to Predict Translation Initiation 

sites. Proceedings - European Conference on Computational Biology. 

Logan, J., Falck-Pedersen, E., Darnell, J.E., Jr. and Shenk, T. (1987) A poly(A) addition site 

and a downstream termination region are required for efficient cessation of 

transcription by RNA polymerase II in the mouse beta maj-globin gene. Proceedings 

of the National Academy of Sciences of the United States of America, 84, 8306-8310. 

Lois, R., Freeman, L., Villeponteau, B. and Martinson, H.G. (1990) Active beta-globin gene 

transcription occurs in methylated, DNase I-resistant chromatin of nonerythroid 

chicken cells. Molecular and Cellular Biology, 10, 16-27. 

Lund, M., Tange, T.O., Dyhr-Mikkelsen, H., Hansen, J. and Kjems, J. (2000) 

Characterization of human RNA splice signals by iterative functional selection of 

splice sites. RNA, 6, 528-544. 

MacDonald, C.C. and Redondo, J.L. (2002) Reexamining the polyadenylation signal: were 

we wrong about AAUAAA? Molecular and Cellular Endocrinology, 190, 1-8. 



Bibliography  

  

186

Mackay, D.J.C. (2003) Information Theory, Inference and Learning algorithms. 

Cambridge University Press, Cambridge. 

Mangalam, H. (2002) The Bio* toolkits--a brief overview. Brief Bioinform, 3, 296-302. 

Manley, J.L. (2002) Nuclear coupling: RNA processing reaches back to transcription. 

Nature Structural Biology, 9, 790-791. 

Maraia, R.J., Kenan, D.J. and Keene, J.D. (1994) Eukaryotic transcription termination factor 

La mediates transcript release and facilitates reinitiation by RNA polymerase III. 

Molecular and Cellular Biology, 14, 2147-2158. 

Marshall, N.F. and Price, D.H. (1992) Control of formation of two distinct classes of RNA 

polymerase II elongation complexes. Molecular and Cellular Biology, 12, 2078-

2090. 

Martens, J.A. (2003) Expression of an intergenic RNA represses transcription of the 

adjacent gene. New York. Personal Communication. 

Mathe, C., Sagot, M.F., Schiex, T. and Rouze, P. (2002) Current methods of gene 

prediction, their strengths and weaknesses. Nucleic Acids Research, 30, 4103-4117. 

Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H. (1999) Expanded sequence 

dependence of thermodynamic parameters improves prediction of RNA secondary 

structure1, *1. Journal of Molecular Biology, 288, 911-940. 

Matsumoto, K., Wassarman, K.M. and Wolffe, A.P. (1998) Nuclear history of a pre-mRNA 

determines the translational activity of cytoplasmic mRNA. EMBO Journal, 17, 

2107-2121. 

Mattick, J.S. (1994) Introns: evolution and function. Current Opinion in Genetics and 

Development, 4, 823-831. 



Bibliography  

  

187

Mattick, J.S. (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO 

Reports, 2, 986-991. 

McCullagh, P. and Nelder, J.A. (1983) Generalized Linear Models. Chapman and Hall, 

London. 

Mechti, N., Piechaczyk, M., Blanchard, J.M., Jeanteur, P. and Lebleu, B. (1991) Sequence 

requirements for premature transcription arrest within the first intron of the mouse c-

fos gene. Molecular and Cellular Biology, 11, 2832-2841. 

Meinhart, A., Silberzahn, T. and Cramer, P. (2003) The mRNA transcription/processing 

factor Ssu72 is a potential tyrosine phosphatase. Journal of Biological Chemistry, 

278, 15917-15921. 

Micklem, G. http://www.rfcgr.mrc.ac.uk/Software/EMBOSS/Apps/cpgreport.html 

Morea, V. (2001) Structural analysis of P-loops proteins. Cambridge. Personal 

Communication. 

Moreira, A., Takagaki, Y., Brackenridge, S., Wollerton, M., Manley, J.L. and Proudfoot, 

N.J. (1998) The upstream sequence element of the C2 complement poly(A) signal 

activates mRNA 3' end formation by two distinct mechanisms. Genes and 

Development, 12, 2522-2534. 

Mount, S.M. (1982) A catalogue of splice junction sequences. Nucleic Acids Research, 10, 

459-472. 

Murzin, A.G., Brenner, S.E., Hubbard, T. and Chothia, C. (1995) SCOP: a structural 

classification of proteins database for the investigation of sequences and structures. J 

Mol Biol, 247, 536-540. 

Namy, O., Hatin, I. and Rousset, J.P. (2001) Impact of the six nucleotides downstream of 

the stop codon on translation termination. EMBO Reports, 2, 787-793. 



Bibliography  

  

188

NCBI. http://www.ncbi.nlm.nih.gov 

Neugebauer, K.M. (2002) On the importance of being co-transcriptional. Journal of Cell 

Science, 115, 3865-3871. 

Nussinov, R. (1978) Algorithms for loop matching. Journal of Applied Mathematics, 35, 68-

92. 

Nussinov, R. (1986a) Sequence signals which may be required for efficient formation of 

mRNA 3' termini. Nucleic Acids Research, 14, 3557-3571. 

Nussinov, R. (1986b) TGTG, G clustering and other signals near non-mammalian vertebrate 

mRNA 3' termini: some implications. Journal of Biomolecular Structure and 

Dynamics, 3, 1145-1153. 

Nussinov, R. (1987) Asymmetry in the distributions of the four nucleotides at mRNA 

initiation and 3' termini sites: some geometrical implications. Biochimica et 

Biophysica Acta, 908, 143-149. 

Nussinov, R. (1990) Sequence signals in eukaryotic upstream regions. Critical Reviews in 

Biochemistry and Molecular Biology, 25, 185-224. 

Ohrt, M. (2004) http://www.phpinsider.com/php/code/pmatch/ 

Orengo, C.A., Bray, J.E., Buchan, D.W., Harrison, A., Lee, D., Pearl, F.M., Sillitoe, I., 

Todd, A.E. and Thornton, J.M. (2002) The CATH protein family database: a 

resource for structural and functional annotation of genomes. Proteomics, 2, 11-21. 

Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B. and Thornton, J.M. 

(1997) CATH--a hierarchic classification of protein domain structures. Structure, 5, 

1093-1108. 

Orozco, I.J., Kim, S.J. and Martinson, H.G. (2002) The Poly(A) Signal, without the 

Assistance of Any Downstream Element, Directs RNA Polymerase II to Pause in 



Bibliography  

  

189

Vivo and Then to Release Stochastically from the Template. Journal of 

Biological Chemistry, 277, 42899-42911. 

Orphanides, G. and Reinberg, D. (2002) A unified theory of gene expression. Cell, 108, 

439-451. 

Osheim, Y.N., Proudfoot, N.J. and Beyer, A.L. (1999) EM visualization of transcription by 

RNA polymerase II: downstream termination requires a poly(A) signal but not 

transcript cleavage. Molecular Cell, 3, 379-387. 

Osheim, Y.N., Sikes, M.L. and Beyer, A.L. (2002) EM visualization of Pol II genes in 

Drosophila: most genes terminate without prior 3' end cleavage of nascent 

transcripts. Chromosoma, 111, 1-12. 

Ozawa, Y., Hanaoka, S., Saito, R., Washio, T., Nakano, S., Shinagawa, A., Itoh, M., 

Shibata, K., Carninci, P. and Konno, H. (2002) Comprehensive sequence analysis of 

translation termination sites in various eukaryotes. Gene, 300, 79-87. 

Pain, V.M. (1996) Initiation of protein synthesis in eukaryotic cells. European Journal of 

Biochemistry, 236, 747-771. 

Palm, G.J., Billy, E., Filipowicz, W. and Wlodawer, A. (2000) Crystal structure of RNA 3'-

terminal phosphate cyclase, a ubiquitous enzyme with unusual topology. Structure 

Fold Des, 8, 13-23. 

Pan, Q. and Simpson, R.U. (1999) c-myc intron element-binding proteins are required for 1, 

25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and 

the involvement of HOXB4. Journal of Biological Chemistry, 274, 8437-8444. 

Park, J., Karplus, K., Barrett, C., Hughey, R., Haussler, D., Hubbard, T. and Chothia, C. 

(1998) Sequence comparisons using multiple sequences detect three times as many 

remote homologues as pairwise methods. J Mol Biol, 284, 1201-1210. 



Bibliography  

  

190

Park, J., Teichmann, S.A., Hubbard, T. and Chothia, C. (1997) Intermediate sequences 

increase the detection of homology between sequences. J Mol Biol, 273, 349-354. 

Parra, G., Agarwal, P., Abril, J.F., Wiehe, T., Fickett, J.W. and Guigo, R. (2003) 

Comparative gene prediction in human and mouse. Genome Research, 13, 108-117. 

Pearson, W.R. (1991) Searching protein sequence libraries: comparison of the sensitivity 

and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11, 635-

650. 

Pearson, W.R. (1995) Comparison of methods for searching protein sequence databases. 

Protein Sci, 4, 1145-1160. 

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. 

Proc Natl Acad Sci U S A, 85, 2444-2448. 

Pedersen, A.G. and Nielsen, H. (1997a) http://www.cbs.dtu.dk/services/NetStart 

Pedersen, A.G. and Nielsen, H. (1997b) Neural network prediction of translation initiation 

sites in eukaryotes: perspectives for EST and genome analysis. Proceedings of the 

International Conference on Intelligent Systems for Molecular Biology, 5, 226-233. 

Pertea, M. (2001) http://www.tigr.org/tdb/GeneSplicer/index.shtml 

Pertea, M., Lin, X. and Salzberg, S.L. (2001) GeneSplicer: a new computational method for 

splice site prediction. Nucleic Acids Research, 29, 1185-1190. 

Pesole, G., Grillo, G. and Liuni, S. (1996) Databases of mRNA untranslated regions for 

metazoa. Computers and Chemistry, 20, 141-144. 

Pocock, M.R. (2003) Computational Analysis of Genomes. The Wellcome Trust Sanger 

Institute. University of Cambridge, Cambridge, p. 170. 



Bibliography  

  

191

Pocock, M.R., Down, T. and Hubbard, T. (2000) BioJava: open source components for 

bioinformatics. ACM SIGBIO Newsletter, 20, 10-12. 

Poland, B.W., Xu, M.Q. and Quiocho, F.A. (2000) Structural insights into the protein 

splicing mechanism of PI-SceI. Journal of Biological Chemistry, 275, 16408-16413. 

Proudfoot, N.J. (1989) How RNA polymerase II terminates transcription in higher 

eukaryotes. Trends in Biochemical Sciences, 14, 105-110. 

Proudfoot, N.J., Furger, A. and Dye, M.J. (2002) Integrating mRNA processing with 

transcription. Cell, 108, 501-512. 

Pruitt, K.D. and Maglott, D.R. (2001) RefSeq and LocusLink: NCBI gene-centered 

resources. Nucleic Acids Research, 29, 137-140. 

Ptitsyn, O.B. (1998) Protein folding: nucleation and compact intermediates. Biochemistry 

(Mosc), 63, 367-373. 

Rappsilber, J., Ajuh, P., Lamond, A.I. and Mann, M. (2001) SPF30 is an essential human 

splicing factor required for assembly of the U4/U5/U6 tri-small nuclear 

ribonucleoprotein into the spliceosome. Journal of Biological Chemistry, 276, 

31142-31150. 

Reed, R. (2000) Mechanisms of fidelity in pre-mRNA splicing. Current Opinion in Cell 

Biology, 12, 340-345. 

Reeder, R.H. and Lang, W.H. (1997) Terminating transcription in eukaryotes: lessons 

learned from RNA polymerase I. Trends in Biochemical Sciences, 22, 473-477. 

Reese, M.G., Kulp, D., Tammana, H. and Haussler, D. (2000) Genie--gene finding in 

Drosophila melanogaster. Genome Research, 10, 529-538. 



Bibliography  

  

192

Reines, D. (1994) Transcription: Mechanisms and Regulation. In Conaway, J.W. and 

Conaway, R.C. (eds.), Transcription: Mechanisms and Regulation. Raven Press, 

New York, pp. 263-278. 

Renner, D.B., Yamaguchi, Y., Wada, T., Handa, H. and Price, D.H. (2001) A highly 

purified RNA polymerase II elongation control system. Journal of Biological 

Chemistry, 276, 42601-42609. 

Rivas, E. and Eddy, S.R. (2001) Noncoding RNA gene detection using comparative 

sequence analysis. BMC Bioinformatics, 2, 8. 

Rivas, E., Klein, R.J., Jones, T.A. and Eddy, S.R. (2001) Computational identification of 

noncoding RNAs in E. coli by comparative genomics. Current Biology, 11, 1369-

1373. 

Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J. and Smith, C.W. (1998) Co-

transcriptional commitment to alternative splice site selection. Nucleic Acids 

Research, 26, 5568-5572. 

Roberts, S. and Bentley, D.L. (1992) Distinct modes of transcription read through or 

terminate at the c-myc attenuator. EMBO Journal, 11, 1085-1093. 

ROC-Curve. http://gim.unmc.edu/dxtests/ROC1.htm 

Rodriguez, C.R., Cho, E.J., Keogh, M.C., Moore, C.L., Greenleaf, A.L. and Buratowski, S. 

(2000) Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the 

recruitment of mRNA processing machinery to RNA polymerase II. Molecular and 

Cellular Biology, 20, 104-112. 

Rogic, S., Mackworth, A.K. and Ouellette, F.B. (2001) Evaluation of gene-finding programs 

on mammalian sequences. Genome Research, 11, 817-832. 



Bibliography  

  

193

Rogozin, I.B., Kochetov, A.V., Kondrashov, F.A., Koonin, E.V. and Milanesi, L. (2001) 

Presence of ATG triplets in 5' untranslated regions of eukaryotic cDNAs correlates 

with a 'weak' context of the start codon. Bioinformatics, 17, 890-900. 

Russell, R.B. (1994) Domain insertion. Protein Eng, 7, 1407-1410. 

Salamov, A.A., Nishikawa, T. and Swindells, M.B. (1998a) Assessing protein coding region 

integrity in cDNA sequencing projects. Bioinformatics, 14, 384-390. 

Salamov, A.A., Nishikawa, T. and Swindells, M.B. (1998b) http://www.hri.co.jp/atgpr/ 

Salamov, A.A. and Solovyev, V.V. (2000) Ab initio gene finding in Drosophila genomic 

DNA. Genome Research, 10, 516-522. 

Salamov, A.A., Suwa, M., Orengo, C.A. and Swindells, M.B. (1999) Combining sensitive 

database searches with multiple intermediates to detect distant homologues. Protein 

Eng, 12, 95-100. 

Salzberg, S., Delcher, A.L., Fasman, K.H. and Henderson, J. (1998) A decision tree system 

for finding genes in DNA. Journal of Computational Biology, 5, 667-680. 

Salzberg, S.L. (1997) A method for identifying splice sites and translational start sites in 

eukaryotic mRNA. Computer Applications in the Biosciences, 13, 365-376. 

Sauder, J.M., Arthur, J.W. and Dunbrack, R.L., Jr. (2000) Large-scale comparison of 

protein sequence alignment algorithms with structure alignments. Proteins, 40, 6-22. 

Schneider, C., Will, C.L., Makarova, O.V., Makarov, E.M. and Luhrmann, R. (2002) 

Human U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein 

compositions. Molecular and Cellular Biology, 22, 3219-3229. 

Scholkopf, C., Burges, C. and Smola, A.J. (1999) Advances in kernel methods - Support 

Vector Learning. MIT Press, Cambridge. 



Bibliography  

  

194

Schwer, B. (2001) A new twist on RNA helicases: DExH/D box proteins as RNPases. 

Nature Structural Biology, 8, 113-116. 

Sheets, M.D., Ogg, S.C. and Wickens, M.P. (1990) Point mutations in AAUAAA and the 

poly (A) addition site: effects on the accuracy and efficiency of cleavage and 

polyadenylation in vitro. Nucleic Acids Research, 18, 5799-5805. 

Shindyalov, I.N. and Bourne, P.E. (1998) Protein structure alignment by incremental 

combinatorial extension (CE) of the optimal path. Protein Eng, 11, 739-747. 

Slater, G. http://www.ebi.ac.uk/~guy/exonerate/exonerate.man.1.html 

Smit, A.F.A. and Green, P. (1996) http://www.repeatmasker.org 

Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences. 

J Mol Biol, 147, 195-197. 

Snyder, E.E. and Stormo, G.D. (1995) Identification of protein coding regions in genomic 

DNA. Journal of Molecular Biology, 248, 1-18. 

Solovyev, V. and Salamov, A. (1997) The Gene-Finder computer tools for analysis of 

human and model organisms genome sequences. Proceedings of the International 

Conference on Intelligent Systems for Molecular Biology, 5, 294-302. 

Solovyev, V.V., Salamov, A.A. and Lawrence, C.B. (1995) Identification of human gene 

structure using linear discriminant functions and dynamic programming. 

Proceedings of the International Conference on Intelligent Systems for Molecular 

Biology, 3, 367-375. 

Sonenberg, N. and Dever, T.E. (2003) Eukaryotic translation initiation factors and 

regulators. Current Opinion in Structural Biology, 13, 56-63. 

Spencer, C.A. and Groudine, M. (1990) Transcription elongation and eukaryotic gene 

regulation. Oncogene, 5, 777-785. 



Bibliography  

  

195

Staden, R. (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic 

Acids Research, 12, 505-519. 

Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, 

G., Gilbert, J.G., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C.J., 

Osborne, B.I., Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., 

Wilkinson, M.D., et al. (2002) The Bioperl toolkit: Perl modules for the life 

sciences. Genome Research, 12, 1611-1618. 

Steinmetz, E.J., Conrad, N.K., Brow, D.A. and Corden, J.L. (2001) RNA-binding protein 

Nrd1 directs poly(A)-independent 3'-end formation of RNA polymerase II 

transcripts. Nature, 413, 327-331. 

Sternberg. (2001) Clustering can be used to assign function to unknown protein. Cambridge. 

Personal Communication. 

Sun, Z.W. and Hampsey, M. (1996) Synthetic enhancement of a TFIIB defect by a mutation 

in SSU72, an essential yeast gene encoding a novel protein that affects transcription 

start site selection in vivo. Molecular and Cellular Biology, 16, 1557-1566. 

Tabaska, J.E. and Zhang, M.Q. (1999) Detection of polyadenylation signals in human DNA 

sequences. Gene, 231, 77-86. 

Takagaki, Y. and Manley, J.L. (1998) Levels of polyadenylation factor CstF-64 control IgM 

heavy chain mRNA accumulation and other events associated with B cell 

differentiation. Molecular Cell, 2, 761-771. 

Takagaki, Y., Seipelt, R.L., Peterson, M.L. and Manley, J.L. (1996) The polyadenylation 

factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA 

during B cell differentiation. Cell, 87, 941-952. 

Talerico, M. and Berget, S.M. (1994) Intron definition in splicing of small Drosophila 

introns. Molecular and Cellular Biology, 14, 3434-3445. 



Bibliography  

  

196

Tantravahi, J., Alvira, M. and Falck-Pedersen, E. (1993) Characterization of the mouse 

beta maj globin transcription termination region: a spacing sequence is required 

between the poly(A) signal sequence and multiple downstream termination 

elements. Molecular and Cellular Biology, 13, 578-587. 

Tarn, W.Y. and Steitz, J.A. (1996) A novel spliceosome containing U11, U12, and U5 

snRNPs excises a minor class (AT-AC) intron in vitro. Cell, 84, 801-811. 

Tarn, W.Y. and Steitz, J.A. (1997) Pre-mRNA splicing: the discovery of a new spliceosome 

doubles the challenge. Trends in Biochemical Sciences, 22, 132-137. 

Teichmann, S.A., Park, J. and Chothia, C. (1998) Structural assignments to the Mycoplasma 

genitalium proteins show extensive gene duplications and domain rearrangements. 

Proc Natl Acad Sci U S A, 95, 14658-14663. 

Thanaraj, T.A. (2000) Positional characterisation of false positives from computational 

prediction of human splice sites. Nucleic Acids Research, 28, 744-754. 

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence weighting, 

position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22, 

4673-4680. 

Tipping, M.E. (2001a) The Relevance Vector Machine. Advances in Neural Information 

Processing Systems, 12, 652-658. 

Tipping, M.E. (2001b) Sparse Bayesian Learning and the Relevance Vector Machine. 

Journal of Machine Learning Research, 1, 211-244. 

Uberbacher, E.C., Xu, Y. and Mural, R.J. (1996) Discovering and understanding genes in 

human DNA sequence using GRAIL. Methods in Enzymology, 266, 259-281. 



Bibliography  

  

197

Vagner, S., Vagner, C. and Mattaj, I.W. (2000) The carboxyl terminus of vertebrate 

poly(A) polymerase interacts with U2AF 65 to couple 3'-end processing and 

splicing. Genes and Development, 14, 403-413. 

Van Agtmael, T., Forrest, S.M., Del-Favero, J., Van Broeckhoven, C. and Williamson, R. 

(2003) Parametric and nonparametric genome scan analyses for human handedness. 

European Journal of Human Genetics, 11, 779-783. 

Vapnik, V.N. (1995) The nature of Statistical Learning Theory. Springer-Verlag, New 

York. 

Wagner, R. (2000) Transcription Regulation in Prokaryotes. Oxford University Press, 

Oxford. 

Watson, R.J. (1988) A transcriptional arrest mechanism involved in controlling constitutive 

levels of mouse c-myb mRNA. Oncogene, 2, 267-272. 

Westhead, D.R., Slidel, T.W., Flores, T.P. and Thornton, J.M. (1999) Protein structural 

topology: Automated analysis and diagrammatic representation. Protein Sci, 8, 897-

904. 

Wetlaufer, D.B. (1973) Nucleation, rapid folding, and globular intrachain regions in 

proteins. Proc Natl Acad Sci U S A, 70, 697-701. 

Wheeler, D.L., Church, D.M., Edgar, R., Federhen, S., Helmberg, W., Madden, T.L., 

Pontius, J.U., Schuler, G.D., Schriml, L.M., Sequeira, E., Suzek, T.O., Tatusova, 

T.A. and Wagner, L. (2004) Database resources of the National Center for 

Biotechnology Information: update. Nucleic Acids Research, 32, D35-40. 

Wiest, D.K., Wang, D. and Hawley, D.K. (1992) Mechanistic studies of transcription arrest 

at the adenovirus major late attenuation site. Comparison of purified RNA 

polymerase II and washed elongation complexes. Journal of Biological Chemistry, 

267, 7733-7744. 



Bibliography  

  

198

Will, C.L., Schneider, C., MacMillan, A.M., Katopodis, N.F., Neubauer, G., Wilm, M., 

Luhrmann, R. and Query, C.C. (2001) A novel U2 and U11/U12 snRNP protein that 

associates with the pre-mRNA branch site. EMBO Journal, 20, 4536-4546. 

Will, C.L., Schneider, C., Reed, R. and Luhrmann, R. (1999) Identification of both shared 

and distinct proteins in the major and minor spliceosomes. Science, 284, 2003-2005. 

Wilson, C., Hilyer, L. and Green, P. (1990) http://cgap.nci.nih.gov/Genes/GeneFinder 

Woychik, N.A. and Hampsey, M. (2002) The RNA polymerase II machinery: structure 

illuminates function. Cell, 108, 453-463. 

WTSI. http://www.sanger.ac.uk/Software/GFF 

Yang, A.S. and Honig, B. (2000) An integrated approach to the analysis and modeling of 

protein sequences and structures. I. Protein structural alignment and a quantitative 

measure for protein structural distance. J Mol Biol, 301, 665-678. 

Yeung, G., Choi, L.M., Chao, L.C., Park, N.J., Liu, D., Jamil, A. and Martinson, H.G. 

(1998) Poly(A)-driven and poly(A)-assisted termination: two different modes of 

poly(A)-dependent transcription termination. Molecular and Cellular Biology, 18, 

276-289. 

Yonaha, M. and Proudfoot, N.J. (1999) Specific transcriptional pausing activates 

polyadenylation in a coupled in vitro system. Molecular Cell, 3, 593-600. 

Yonaha, M. and Proudfoot, N.J. (2000) Transcriptional termination and coupled 

polyadenylation in vitro. EMBO Journal, 19, 3770-3777. 

Yoo, C.J. and Wolin, S.L. (1997) The yeast La protein is required for the 3' endonucleolytic 

cleavage that matures tRNA precursors. Cell, 89, 393-402. 



Bibliography  

  

199

Zanier, K., Luyten, I., Crombie, C., Muller, B., Schumperli, D., Linge, J.P., Nilges, M. 

and Sattler, M. (2002) Structure of the histone mRNA hairpin required for cell cycle 

regulation of histone gene expression. RNA, 8, 29-46. 

Zarudnaya, M.I., Kolomiets, I.M., Potyahaylo, A.L. and Hovorun, D.M. (2003) 

Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, 

secondary and higher-order structures. Nucleic Acids Research, 31, 1375-1386. 

Zeng, F., Yap, R.H. and Wong, L. (2002) Using feature generation and feature selection for 

accurate prediction of translation initiation sites. Genome Inform Ser Workshop 

Genome Inform, 13, 192-200. 

Zhang, M.Q. (1997) Identification of protein coding regions in the human genome by 

quadratic discriminant analysis. Proceedings of the National Academy of Sciences of 

the United States of America, 94, 565-568. 

Zhang, M.Q. (2002) Computational prediction of eukaryotic protein-coding genes. Nature 

Review Genetics, 3, 698-709. 

Zhang, M.Q. and Marr, T.G. (1993) A weight array method for splicing signal analysis. 

Computer Applications in the Biosciences, 9, 499-509. 

Zhang, R., Evans, G., Rotella, F.J., Westbrook, E.M., Beno, D., Huberman, E., Joachimiak, 

A. and Collart, F.R. (1999) Characteristics and crystal structure of bacterial inosine-

5'-monophosphate dehydrogenase. Biochemistry, 38, 4691-4700. 

Zhang, X., Dong, G. and Wong, L. (2000) Using CAEP to Predict Translation Initiation 

Sites from Genomic DNA Sequences. Manuscript. 

Zhao, J., Hyman, L. and Moore, C. (1999) Formation of mRNA 3' ends in eukaryotes: 

mechanism, regulation, and interrelationships with other steps in mRNA synthesis. 

Microbiology and Molecular Biology Reviews, 63, 405-445. 



Bibliography  

  

200

Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T. and Muller, K.R. (2000) 

Engineering support vector machine kernels that recognize translation initiation 

sites. Bioinformatics, 16, 799-807. 

Zuker, M. (1994) Prediction of RNA secondary structure by energy minimization. Methods 

in Molecular Biology, 25, 267-294. 

Zuker, M. (2000) Calculating nucleic acid secondary structure. Current Opinion in 

Structural Biology, 10, 303-310. 

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. 

Nucleic Acids Research, 31, 3406-3415. 

Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using 

thermodynamics and auxiliary information. Nucleic Acids Research, 9, 133-148. 



 

   

APPENDIX A: DOMAIN INSERTION 

 

A.1 Introduction 

Taking advantage of an evolutionary basis of domain classification, here I describe the 

nature and characteristics of domain insertions in protein structures, a phenomenon that is 

different from the usual pattern of sequential arrangement of domains in multi-domain 

proteins. 

 

Domains constitute the basic structural, functional and evolutionary unit of proteins (Holm 

and Sander, 1996; Murzin et al., 1995; Orengo et al., 1997). Proteins can comprise a single 

domain or a combination of domains. It is well established that multi-domain proteins with 

widely diversified architecture and functions are generated from a limited repertoire of 

domain families (Bork et al., 1996; Chothia, 1992). Structural assignments to complete 

genomes revealed that almost two-thirds of prokaryotic proteins and 80% of eukaryotic 

proteins are multi-domain proteins (Teichmann et al., 1998). In 1973, Donald Wetlaufer 

introduced the classification of domains into continuous and discontinuous (Wetlaufer, 

1973). A continuous domain is formed by one part of a polypeptide chain, while a 

discontinuous domain is formed by two or more parts of a single polypeptide chain. Thus, 

discontinuous domains are essentially formed by one-dimensionally non-contiguous 

segments of a polypeptide. While most multi-domain proteins have continuous domains, 

some proteins exhibit non-contiguous arrangement of their domains (Wetlaufer, 1973). In 

this work, I focus on insertions (Russell, 1994), which are the cases of one domain being 

inserted into another domain (Figure 67). 
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Figure 67. Domain insertion in Escherichia coli enzyme RNA 3'-terminal phosphate cyclase 
(PDB 1qmhA). The E. coli enzyme RNA 3'-terminal phosphate cyclase consists of two 
domains, of which one is contained within the other. The parent domain (residues 5-184, 
280-338, coloured purple) consists of three repeated folding units; each unit has two α-
helices and a four-stranded β-sheet. The folding unit resembles the C-terminal domain of 
bacterial translation initiation factor 3 (IF3). Between an α-helix and a β-strand of the 
third IF3-like repeat of the parent domain, there is a smaller inserted domain (residues 185-
279, coloured red). Although the inserted domain has the same secondary structural 
elements as the parent domain, it has different topology and a different fold. Insert 
resembles the fold observed in human thioredoxin. 

I followed the definition of protein domains in the Structural Classification Of Proteins 

(SCOP) database (version 1.61) (Murzin et al., 1995). Although there are several available 

schemes of protein structure classification, I chose SCOP because it is a manually curated 

classification of protein structures based on their structural and evolutionary relationship. In 

SCOP, a protein domain is considered as a unit of evolution if it occurs independently or in 

combination with other domains.  

 

SCOP represents a hierarchical classification scheme with four principal levels: family, 

superfamily, fold and class. Domains clustered into families are evolutionarily related and 

can be detected at the sequence level. Domains grouped into superfamilies can have low 

sequence identity but their structural and functional features suggest a common evolutionary 
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origin. Superfamilies with similar topology are grouped under a fold. Folds are assigned 

to classes based on their secondary structure. For my analysis, I considered the fold and 

superfamily levels of SCOP hierarchy and the five major classes (all-α, all-β, α/β, α+β and 

‘small proteins’). All-α and all-β classes include proteins with abundant α-helices or β-

sheets, respectively. The α/β class is distinguished mainly by parallel beta sheets (β-α-β 

units), whereas the α+β class contains proteins with predominantly anti-parallel beta sheets 

(segregated α and β regions). Small proteins are distinguished by their size rather than other 

features. 

 

Data for this analysis was obtained from the Protein Data Bank (PDB) (Berman et al., 

2002). To overcome the redundancy inherent in PDB, I chose a pre-computed list of non-

redundant protein chains provided by PDB_Select (April 2002 release obtained from 

ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select) (Hobohm and 

Sander, 1994). I used the set of proteins that had pair-wise sequence identities less than 90% 

and designated this set as PDB_90. Out of the 6182 chains in PDB_90, only 5883 chains 

were assigned SCOP domain definitions, extracted from the SCOP parseable file 

dir.cla.scop.txt_1.61. Table 24 shows the distribution of SCOP folds, superfamilies, families 

and domains in each class for chains present in PDB_90. 

Table 24. SCOP (1.61 release) classification statistics for chains in PDB_90 (April 2002 
release) 

 

It is self-evident that insertions can only be found in multi-domain proteins, where one 

domain (insert) is contained within another domain (parent). Parent and insert domains can 

belong to the same or different SCOP superfamilies. Likewise, a combination of two 

domains can be viewed as a combination of superfamily combinations. I obtained a total of 
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140 proteins that conformed to this definition. When I considered the 140 pairs of 

parent-insert superfamily combinations, I observed that several pairs were identical. 

Whenever there was also the same topological relationship between the parent and insert 

domains, I retained only one example of a pair of superfamily combinations. This procedure 

left 40 unique parent-insert superfamily combinations. Variations on the simple scheme 

‘one insert within one parent’ were present; they are shown in Figure 68. 

 
Figure 68. Schematic representation of types of domain insertions observed in protein 
structures. (a) Single insertion (e.g., 1qmhA). (b) Nested insertion (e.g., 1a6dA). 'insert1 N' 
and 'insert1 C' represent the N- and C-terminus of  insert, respectively. (c) Two-domain 
insertion (e.g., 1zfjA). (d) Three-domain insertion (e.g., 1dq3A). 

For all cases of identified domain insertions, I checked for artefacts arising from missing 

coordinates. This was necessary because SCOP domain definitions are based on atomic 

coordinates provided in PDB. To ascertain consistency, I compared atomic coordinates 

(ATOM records) versus sequences (SEQRES records) that were obtained from the 

ASTRAL compendium (Chandonia et al., 2002). In the majority of cases, sequences were 

completely covered by coordinates, but in other cases, there were parts of sequences with 

missing coordinates. However, in none of the latter cases did the absent coordinates obscure 

the position of inserts. 

 

I then calculated unique superfamily combinations for all multi-domain proteins and found 

450 unique superfamily combinations for 5883 single or multi-domain proteins in SCOP. 

Thus, domain insertions constitute 9% (40/450) of all unique superfamily occurrences. 
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A.2 Types of domain insertions 

Domain insertions can be categorized as either single or multiple depending on the number 

of inserts (Figure 68). In single insertions, one domain is inserted into another domain, and 

both domains can belong to the same or different superfamilies. For example, in Figure 68a, 

the Escherichia coli enzyme RNA 3’-terminal phosphate cyclase (PDB: 1qmhA, Palm et al., 

2000) has two domains, a small insert and a larger parent that belong to different 

superfamilies. Close to 90% (36/40) of observed insertions are single insertions. In multiple 

insertions, more than one domain, either of the same or different superfamily, is inserted 

into the parent domain.  I observed three types of multiple insertions (i) Nested insertions: 

In Thermoplasma acidophilum thermosome (PDB: 1a6dA, Ditzel et al., 1998), the archael 

chaperonin, the apical domain is inserted into the intermediate domain, which is in turn 

inserted into an ATPase domain  (ii) Two-domain insertions: The type II inosine 

monophosphate dehydrogenase from Streptococcus pyogenes (PDB: 1zfjA, Zhang et al., 

1999) contains two tandem cystathionine-β-synthase domains inserted into the catalytic 

TIM-barrel domain. The second example is the Saccharomyces cerevisiae PI-SceI intein 

(PDB: 1ef0A, Poland et al., 2000), a homing endonuclease with protein splicing activity, 

which has the duplicated endonuclease domain inserted into the Hint domain  (iii) Three-

domain insertions: In PI-PfuI, an intein-encoded homing endonuclease from the 

archaebacteria Pyrococcus furiosus (PDB: 1dq3A, Ichiyanagi et al., 2000), the Hint domain 

has three tandem inserts, two intein endonuclease domains with αββαββαα structural 

motifs, and one Stirrup domain. 

 

Previous work on intron-encoded homing endonucleases, from the dodecapeptide family, 

showed that for their folding, dimerisation and catalysis, they should form a dimer that has 

two copies of the LAGLIDADG motif (one copy per subunit of a dimer), or alternatively 

they could be monomeric if a monomer has both copies of the motif (Jurica and Stoddard, 

1999). I found that in PI-SceI (case [ii] above) and PI-PfuI (case [iii] above), two 

monomeric domains were tandemly inserted into one parent domain. The previous 

observation that motifs are only functional as a dimer suggests that during the course of 

evolution, there was a simultaneous insertion of two monomeric domains into the parent 

domain, rather than an insertion of one monomeric domain followed by its duplication.  
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In this analysis, I treated multiple insertions as several separate parent-insert 

combinations, resulting in the total of 45 such combinations within 40 protein chains. There 

were 41 unique parent-insert superfamily combinations. Upon examination of relationships 

among proteins containing insertions, levels of SCOP hierarchy, and superfamily 

participation of parent and inserted domains, I identified several biologically meaningful 

patterns. These findings are discussed below. 

 

A.3 Nature and characteristics of domain insertions: Class level 

As mentioned before, I considered five SCOP classes, leading to a maximum of 25 (5*5) 

pair-wise combinations. From the data, I observed only 15 combinations when investigating 

class participation of parent-insert pairs. The combination of α/β-parent-α+β-insert was 

predominant, while 50% of all parents belonged to α/β class and 40% of all inserts belonged 

to α+β class. Domains from α/β class were parent domains, which were two and four fold 

more often than domains from all-β and all-α class respectively. Domains from the class of 

small proteins were seen only as inserts. This bias could be explained, at least to a certain 

extent, by taking into consideration the size and function of parents and inserts, which is 

discussed in the next section. 

 

A.3.1 Size and function of domains involved in insertions  

Figure 69a shows the domain length distribution for proteins from PDB_90 set across the 

five SCOP classes. The average domain length was longest for α/β class followed by the 

all-β, α+β, and all-α class. When I calculated distribution of average domain lengths for 41 

parent domains, I observed the same trend (Figure 69b). However, the average length of 

parent domains was noticeably larger than the average length of domains from PDB_90 set; 

this was true for each SCOP class (compare Figure 69a and Figure 69b). Thus, combining 

the fact that α/β parent domains are the most abundant with the fact that α/β domains are 

the longest on average, I arrived at the explanation that longer domains more readily accept 

insertions during evolution. As for the inserted domains, α+β and all-α class were equal and 

major contributors to the number of domains. Therefore, the trend observed for parents is 

not applicable for inserts. 
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Figure 69. (a) Domain length distribution for all domains in the non-redundant set of 
proteins (PDB_90). (b) Domain length distribution for parent domains. 

In most cases, inserted domains were shorter than parent domains. This is despite the fact 

that inserted domains could belong to SCOP classes with the longest average domain length 

(Figure 70a). Parents comprised 50-80% of protein length, while inserts comprised 20-50%. 

Close to 80% of inserts were shorter than 175 residues, which is the average length of a 

protein domain calculated from crystal structures (Gerstein, 1997). More than 60% of 

inserts were shorter than 130 residues. This observation is consistent with the heuristic logic 

that smaller domains are less likely to disturb the structure and folding of parent domains; it 

could explain short lengths of inserted domains. This explanation does not contradict an 

important experiment by Doi and colleagues (Doi et al., 1997). They were able to show that 

when random sequences of 120-130 amino acid residues were inserted into a surface loop 

region of Escherichia coli RNase HI, about 10% of the clones retained >1% of the wild-type 

RNase HI activity (Doi et al., 1997). 

 

The high proportion of α/β class domains, as parents, can be correlated with their 

biochemical function. Previous work showed that more than a half of PDB families are 

enzymes and close to one half of all enzyme families contain multi-domain proteins. Multi-

domain enzymes often consist of a catalytic domain and a nucleotide binding domain 

(Hegyi and Gerstein, 1999). It is therefore possible to predict that domain insertions are 

likely to occur in enzymes. Indeed, in the dataset, 39 out of 40 parent-insert pairs conform to 

this prediction. The remaining non-enzymatic protein is the bluetongue virus capsid protein 

vp-7, which has the central domain from all-β class inserted into the multi-helical parent 

domain. A genome-scale analysis of the structural features of proteins revealed that proteins 
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with α/β fold are frequently involved in fusion events (Hua et al., 2002). α/β folds are 

also known to be disproportionately associated with enzymatic function (Hegyi and 

Gerstein, 1999), which lends further credence to the prominent role of α/β folds in 

accepting insertions. 

 

 
Figure 70. (a) Proportion of residues in parent and insert domains in parent-insert 
combinations. (b) Point of insertion in parent domain. Insert position is given as a fraction 
of total length of parent domain. 

 

A.4 Nature and characteristics of domain insertions: Fold and superfamily level  

Out of 57 folds in the class of small proteins, two domains with one fold (Rubredoxin fold) 

were found as inserts; both inserted domains belong to the same superfamily. Within the 

α+β class, the 18 inserted domains (from 15 superfamilies) spanned 11 folds; there are 204 

different folds in the α+β class (Table 25). The trend was the same for the other SCOP 

classes, where folds of inserted domains constituted minor fractions of all known folds. In 

contrast to the inserts, all parent domains had different folds. Thus, I observed another 

distinction between parents and inserts at the fold level. 

 

Similarly, parent superfamilies were found to be more versatile than insert superfamilies 

(most insert superfamilies combine with only one parent superfamily). There are merely 3 

out of 45 insert superfamilies that combine with two different parent superfamilies. These 
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insert superfamilies are NAD(P)-binding Rossmann superfamily, FAD/NAD(P)-binding 

superfamily and C-terminal domain of FAD-linked reductases superfamily. 

Table 25. Distribution of inserted and parent domains at the SCOP class and fold level. The 
number of domains and the number of folds they come from is given for inserted and parent 
domains across the five different classes in the SCOP hierarchy. Percentage gives the 
number of folds contributing to insertions over total number of folds under the class. 

 

While many parent superfamilies conservatively combine with one insert superfamily, there 

are conspicuous exceptions. There are three parent superfamilies each combining two 

different insert superfamilies. The three parent superfamilies in question are Zn-dependent 

exopepetidases superfamily, nucleotidyl transferase superfamily, and nucleotide-binding 

domain superfamily. Moreover, there are two parent superfamilies each combining with 

three different insert superfamilies. The two parent superfamilies are P-loop containing NTP 

hydrolases superfamily, and FAD/NAD(P)-binding domain superfamily.  

 

Two further observations at the superfamily level are worth mentioning. Firstly, all parents 

and inserts belong to different superfamilies. There is only one exception: in Escherichia 

coli enzyme glutathione reductase (PDB: 1gesB), the parent and insert belong to the same 

superfamily of FAD/NAD(P)-binding domains. Secondly, superfamilies that are popular in 

the parent or insert context also appear to be popular in the sequential domain combination 

context (Apic et al., 2001). They were found combining with more than one superfamily in 

the sequential domain order. One exception to this correlation is the superfamily of C-

terminal domains of FAD-linked reductases; this superfamily is popular in the insert 

context, but does not tandemly combine with other superfamilies. 
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A.5 Point of insertion  

I did not find any bias in the distribution of insertion points within 41 unique parent-insert 

combinations. However, a significant bias in the location of the insertion point was observed 

when I considered a subset of 28 parent-insert combinations, where either the parent or 

insert superfamily also participated in sequential combination with other superfamilies. As 

shown in Figure 70b, for the 28 cases in question, the insertion point occurred in the last 

third part of the parent domain sequence (confidence level 98%). Spatially, all 41 insertions 

were observed in loop regions of the 3D structure of parent domains. 

 

Though it may not be feasible to provide a definitive explanation for the observation of bias 

towards C-terminus for insertion in the parent domain, an event in the N-terminus or the 

middle of the domain are likely to disrupt the gene structure and pose a problem during 

transcription or translation. 

 

Also insertions in the C-terminus indicate most of the insertions seen in the database are not 

strictly insertions but normal sequential combinations with the second domain starting 

before the end of the first domain. This stem from the fact, C-terminus bias in insertion is 

found only in cases of parent-insert combinations, where either the parent or insert also 

occur in sequential combinations with other superfamilies. Further research on the domain 

insertions involving the core structure of the parent and insert domains can throw more light 

on this view. 

 

A.6 Proximity of N- and C-termini in inserts  

I wanted to determine how the insertion context affects the distance between N- and C- 

terminus of an inserted domain. The distance between termini was defined as the distance 

between C-alpha atoms of the first and the last residue of the domain. I first calculated 

distances for domains that do not participate in insertions. In order to do this, I considered 

1000 domains, each representative of one SCOP superfamily. I obtained sequences and 

coordinates for the domains from the ASTRAL compendium (Chandonia et al., 2002). Only 

687 domain sequences were completely covered by coordinates. Using AEROSPACI scores 

(Chandonia et al., 2002), I was able to find 60 substitutes for the 313 representative domains 

that were not entirely covered by coordinates. Altogether, I obtained complete coordinate 
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information for 747 domains (687 + 60). Because I confined the analysis to five major 

SCOP classes, I calculated distances between termini for the 711 domains, which belong to 

the five classes being investigated. The average distance for representative domains was 25 

Å. 

 

Calculation of distances between the termini of inserted domains was less straightforward. 

Domain boundaries reported in SCOP are human defined. Therefore, I compared SCOP 

domain boundaries for 41 inserted domains against the domain boundaries reported in 

CATH database (Orengo et al., 2002). In contrast to SCOP, CATH structural classification 

of proteins has been produced automatically. However, only 28 out of 41 inserted domains 

were available in CATH, whereas the other 13 have either differences in domain 

classification or the corresponding proteins were absent from CATH classification. For 28 

inserted domains, boundaries were identical between SCOP and CATH. The average 

distance between domain termini of inserted domains was 8 Å (confidence level 99%), 

which is two-thirds shorter than the distance between termini in normal domains. 

 

There are two superfamilies that occur in both parent and insert context. This example 

allowed me to compare distances between termini for a parent and an insert from the same 

superfamily. In case of FAD/NAD(P)-binding domain superfamily, the distances were 30 Å 

and 5 Å for parent and an insert, respectively. These figures were 11 Å and 8 Å for NAD-

binding Rossmann domain superfamily. Thus, this analysis shows that the ends of inserted 

domains are significantly closer than ends of parent domains or domains not participating in 

insertions. However one must be cautious in interpreting the results as the N and C termini 

distances for the parent domain is not calculated for the core structure. 

 

It is interesting to speculate how the distance between domain termini can affect stability 

and conformational flexibility of a protein domain. While insertion context might generally 

reduce conformational freedom of the domain, it can simultaneously contribute to the 

stability of the domain, which would in turn affect its function. One can also imagine how 

the close proximity of domain termini can restore protein conformational flexibility by 

mimicking an inter-domain link observed in sequentially ordered domains. 
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A.7 Conclusions 

Utilising an evolutionary basis of domain classification, I described the nature and 

characteristics of domain insertions in protein structures. Domain insertions represent an 

unusual but abundant case of multi-domain proteins. This analysis gave several novel 

insights into the nature and characteristics of domain insertions. 

 

(1) Close to 9% multi-domain proteins contain insertions. 

(2) The majority of insertions are the single domain insertions. Also found there were two-

domain, three-domain, and nested insertions in PDB. 

(3) α/β class has a higher propensity to accept insertions. This could be correlated to the size 

and function of proteins within the class. 

(4) Parent domains were found to be longer than the inserted domains in most cases. 

(5) When fold and superfamily combinations were considered for parents and inserts, the 

former was found to be more versatile than the latter, in that the parent domains 

combined with more partners. 

(6) The point of insertion is biased towards the C-terminus of parents whenever the parent 

domain belongs to the superfamily that sequentially combines with other superfamilies. 

(7) Inserted domains have juxtaposed termini compared to parent domains. 

 

Perhaps, domains are more viable in the insert context when their termini are close in space; 

small size can further contribute to their viability. 

 

These results clearly indicate that despite the structural and functional constraints inherent 

in the process of domain insertion, this process is an effective way of creating multi-domain 

proteins. This description of the many features of domain insertions could be used in protein 

engineering for producing novel multi-functional fusion proteins. Betton and co-workers 

(Betton et al., 1997) created hybrid proteins by inserting a penicillin-hydrolysing enzyme 

TEM beta-lactamase (Bla) into the maltodextrin-binding protein (MalE); they used the 

permissive insertion sites identified before (Duplay et al., 1987). Two insertions resulted in 

the functional hybrids, one insertion occurred in the first quarter of the MalE protein, while 

the other occurred in the last quarter. The parent protein (MalE) belongs to the α/β class, 

and the authors experimentally showed the 5 Å distance between the termini of the inserted 
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domain (Bla). Thus, there is recent experimental data that nicely fit into the picture of 

insertions found in natural multi-domain proteins. 

 



 

   

APPENDIX B: PROTEIN EVOLUTION 

 

B.1 Introduction 

Divergence in structure and function of proteins is due to an evolutionary process driven by 

functional and environmental constraints. These constraints bring about changes in the 

protein sequence through mutations, insertions and deletions with the preservation of 

residues important for the structure and function of the protein (Chothia and Lesk, 1986). 

However, not all the sequence modifications are incorporated or maintained since some 

changes may be deleterious to the structure or function of the protein. Hence, the structural 

‘core’ (Chothia and Lesk, 1986) tends to be well conserved during evolution. When proteins 

evolve, the constraints on the protein structure are relaxed or rather replaced by new 

constraints and the sequence and structure can change more radically. These changes are 

generally slow processes and leave a trail of homologs. Homologs are proteins evolved from 

a common ancestor and their evolutionary relationship is evident from similarities in 

sequence, structure and function. Homologous proteins have been studied for a long time to 

understand their evolutionary relationships and to assign function or structure to new protein 

sequences. For homolog searches in the sequence databases, one needs an alignment 

algorithm, residue similarity matrix, scoring scheme and knowledge about scoring 

thresholds to identify true relationships. 

 

Among the available pairwise alignment algorithms, one of the most sensitive is the Smith-

Waterman algorithm (Smith and Waterman, 1981) adopted in the SSEARCH program 

(Pearson, 1991). Although this algorithm is more sensitive and rigorous, it is 

computationally expensive in comparison to FASTA (Pearson and Lipman, 1988) and 

BLAST (Altschul et al., 1990). The speed and convenience of BLAST made it the most 

popular program, although it compromises sensitivity. FASTA ranks between these two 

programs and can be run in two modes: either at greater speed (ktup = 2) or greater accuracy 

(ktup =1). Pearson (Pearson, 1991, 1995) did a comparison of these three methods and 

showed that the Smith-Waterman algorithm worked slightly better than FASTA, which was 

in turn much more effective than BLAST. 
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Although pairwise comparison methods are a common way to find sequence homologs, 

they have difficulty in detecting remote homologs when sequence identity falls below 30% 

(Brenner et al., 1998). Alternate methods like Profile Hidden Markov Models (Eddy, 1996; 

Krogh et al., 1994), psi-BLAST (Altschul et al., 1997) and Intermediate Sequence Search 

(Park et al., 1997) reduce this limitation and increase sensitivity. 

 

Intermediate Sequence Search (ISS) is a search technique, wherein two related sequences 

which cannot be detected directly by pairwise sequence comparison methods are matched 

using an intermediate sequence sharing close homology with the two distantly related 

sequences. This concept has been extended to include multiple intermediate sequences 

(MISS) between two distant sequences (Salamov et al., 1999). The disadvantage with ISS is 

that the errors caused in the intermediate are likely to propagate as it is not dependent on 

multiple sequence alignment. Errors caused by ISS when comparing multi-domain protein 

sequences, can be avoided by splitting query sequence to individual domains. Figure 71 

gives an overall idea on how different methods are exploring the sequence space (Lindahl 

and Elofsson, 2000). 

 
Figure 71. Schematic diagram showing performance of different sequence comparison 
methods. The filled circle represents the query sequence used in the database search and the 
open circles represent family members. The distance between two circles represents some 
arbitrary distance. 
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A comparison of these recent methods with pairwise sequence comparison methods, 

performed by searching remote homologs in a Structural Classification Of Proteins (SCOP, 

Murzin et al., 1995) sequence database having less than 40% identity, show that ISS 

performs one and half times better than FASTA. In sequences with less than 30% identity, a 

HMM-based SAM-T98 and psi-BLAST detected three times more relationships than 

pairwise sequence comparison methods (Park et al., 1998). Sauder et al. compared the 

quality of alignments produced by BLAST, psi-BLAST, ISS and ClustalW (Thompson et 

al., 1994) with structural alignments. ISS produced longer alignments than psi-BLAST with 

nearly comparable per-residue alignment quality. At 10-15% identity, BLAST correctly 

aligned 28%, psi-BLAST 40% and ISS 46% of residues to the structural alignment (Sauder 

et al., 2000). 

 

All these results show that ISS performs as well as psi-BLAST in identifying distant 

homologs. However it is not yet clear how ISS is able to detect remote relationships. 

Moreover, I was interested to determine whether intermediates identified by ISS can provide 

any knowledge about protein evolution. This study tries to find answers to these questions. 

  

To aid this objective, I also used structure comparisons to understand relationships between 

proteins. The degree of fitness between structures is usually calculated by a scoring scheme. 

The common way to represent the structural fitness is Root Mean Square Deviation 

(RMSD) for all residues of the two protein structures. The RMSD gives a measure of the 

average level of deviations over the superposed atoms. 

∑
=

n

i

i

N
D

1

2

 

Where, D refers to deviation of the atoms and N refers to the number of atoms matched. 

 

There are different structural alignment methods adopting the aforementioned algorithms. 

Amongst the common implementations are DALI (Holm and Sander, 1993), Combinatorial 

Extension (CE) (Shindyalov and Bourne, 1998), and Protein Informatics System for 

Modelling (PrISM) (Yang and Honig, 2000). Here, I used PrISM to compare the structures. 

 

Protein evolution may occur in two ways: divergent or convergent evolution. When a 

protein structure diverges to form a new fold or function, it results in divergent evolution 
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(e.g., P-loops). However if two evolutionarily independent folds converge to represent 

similar structure or function it becomes convergent evolution (e.g., serine proteases). 

Proteins evolved through a divergent mechanism are likely to have a trail of homologs and 

can be detected using sequence and structure comparisons. Here, I attempt to study this 

using two well known protein families – Cytochrome c and P-loops and answer the 

following questions. 

 

(1) Is it possible to understand the evolutionary pattern of any protein family or superfamily 

based solely on its structure and sequence divergence? 

(2) Whether understanding this will help us in assigning hierarchies for a protein in the 

existing classification of protein structures? 

 

B.2 Datasets 

I used SCOP database for this study (please refer to Appendix A for details of SCOP). The 

All-α  protein class contains a fold level called cytochrome c, which in turn is composed of a 

single superfamily named cytochrome c. This superfamily has four families. The Di-haem 

cytochrome c peroxidase family has only synthetic protein structures and, therefore, only 

domains from the other families (39 sequences) were used in this analysis. 

 

P-loop domains are found in the class α/β and fold/superfamily P-loop containing 

nucleotide triphosphate hydrolases (this fold has only one superfamily). The superfamily 

has domains composed of parallel beta sheets of varied sizes connected by helices. For 

example, the Nucleoside and nucleotide kinases family has 5 strands with architecture type 

23145 and Nitrogenase iron-protein like group family has 7 strands with architecture type 

3241567. The superfamily is composed of 14 families. I used all the domains (85 sequences, 

excluding domains involving multiple chains) from these 14 families for this analysis. 

 

From these datasets, I then found sequence homologs and structure homologs that can be 

detected by the above described methods. 
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B.3 Intermediate sequence search 

I collected homologs for each of the domains in the two superfamily datasets using FASTA 

3.3 (with BLOSUM 62 matrix, ktup = 1) by searching against the pdb90d_1.53 database. 

The pdb90d_1.53 database is derived from sequences of SCOP domains (version 1.53) 

sharing 90% or less sequence identity. 

 

Domains (query and target), with scores better than the threshold value 0.01, are referred as 

‘direct hits’. For domains that cannot be detected directly, I used the ISS procedure 

described above to link the query and target. 

 

A comparison of ISS hits with psi-BLAST shows that psi-BLAST can detect all the remote 

homologs identified by ISS in P-loops superfamily and only about half of them in 

cytochrome c superfamily. The advantage ISS has in some cases might be due to the match 

score it gains by producing longer alignments around conserved regions of the protein. 

However, both the methods fail to detect remote homologs from P-loops superfamily than 

found from cytochrome c superfamily. This might be due to the extensive divergence of 

sequences in P-loops superfamily (they are quoted to have some converged domains 

(Bossemeyer, 1994) and differences in sequence length (average length of P-loops is ≈ 230 

amino acids, twice the size of cytochrome c). 

 

Intermediate searches based on structural information could find new remote homologs that 

ISS could not detect. This is expected because it is known that different sequences can have 

similar folds. Therefore, by comparing structures it is more likely to detect remote 

homologs. I suggest that by using intermediate structural search, even more distant 

relationships can be detected.  

 

Then I used the alignments obtained from the query-intermediate and target-intermediate to 

generate a “progressive alignment” (i.e., a multiple sequence alignment generated by 

progressively aligning pairwise alignments using ClustalW alignments and structure 

information) of query-intermediate-target or query-intermediate-intermediate-target.  

 

These progressive alignments show that the intermediates can improve the quality of 

alignments between query and target. An example of this alignment is shown in Figure 72. 
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The figure shows the improvement in alignment between query-target (SCOP Ids: 

d1a56__ - d1c75a_) produced by FASTA (Figure 72a) and the progressive alignment 

generated manually after introducing one (d451c__) and two intermediate (d1ayg__ and 

d451c__) sequences (Figure 72b and Figure 72c). The alignment shows that there are some 

residues common in all the sequences and some between query-intermediate, target-

intermediate and intermediate-intermediate. 

 

Figure 72. Comparison of alignments of two distant proteins with and without 
intermediates. (a) Alignment of the two domain produced by FASTA 3.3. (b) The 
progressive alignment generated by including one intermediate. (c) The progressive 
alignment generated by including two intermediates. 

 

Likewise, I selected closely clustered domains from each of the four SCOP protein groups 

(mitochondrial cytochrome, cytochrome c2, cytochrome c551 and cytochrome c6) to make a 

progressive alignment. These groups were used due to the fact that they represent most of 

the members of the superfamily. From the progressive alignment made for each of the 

protein groups, I derived a consensus (Figure 73). This consensus was then used to derive an 

overall consensus shown in Figure 74. The figure shows that there are 10 invariable residues 

in the consensus and it agrees with the consensus derived by Ptitsyn  by aligning 164 

sequences from the cytochrome c superfamily (Ptitsyn, 1998). His alignments were 

generated using the PileUP program and manually edited taking functional residues into 

consideration. 
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Figure 73. Consensus sequences derived for the four SCOP protein group in monodomain 
cytochrome c family 

 
Figure 74. Consensus of consensus for sequences in monodomain cytochrome c family 

The conserved residues were involved in heme binding and needed for functional role of the 

protein. The other conserved residues do not have any functional role and are found to be 

key residues needed to maintain structural fold of cytochromes. The key residues reported 

here agree well with the results found in the literature (Ptitsyn, 1998). Figure 74 shows the 

key residues identified by Ptitsyn. The differences include two additional residues 

conserved at position 3 (aliphatic residue) and position 10 (aliphatic residue), the presence 

of a proline at position 1 and a phenyalanine instead of an isoleucine at position 8. These 

discrepancies might be due to number of sequences compared and the kind of alignment 

generated. Ptitsyn used 164 sequences whereas here only 19 sequences were used. Although 

comparatively very few sequences were used, the result seems to be almost the same. This is 

a promising result opening opportunities in extending the procedure to other superfamilies. 

However, an attempt on P-loops failed primarily due to the fact that the superfamily is much 

more diverged and only very few sequences form distinct clusters.  

 

B.4 Structural homologs 

I did an all-against-all structural comparison of the domains using PrISM. Then I used the 

alignment from PrISM as input to another program called MSARMS (Hubbard, 1994) that 

measures the distance in Angstrom between the matched residues in the superposition. 

These RMSD values from PrISM and MSARMS programs were used for this study. 
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B.5 Clustering 

With these homologs and their relationship (given as E-value for sequences and RMSD for 

structures), I represented proteins as clusters in two-dimensional space. This was done using 

the procedure given in Figure 75 using sequence/structure distance matrices (or similarity 

matrices). 

 
Figure 75. Flow chart describing steps used in clustering and visualisation of data. 

I did initial clustering based on the sequence based distance matrix using single and 

complete linkage methods with a threshold E-value of 0.001 and 0.05 respectively. Then I 

merged the resulting sets of clusters based on the RMSD values using the Unweighted Pair 

Group Method using Arithmetic average approach. A threshold value of 4.00Å was used for 

the P-loops superfamily and a threshold of 2.00Å was used for the cytochrome c 

superfamily. I also applied the complete linkage approach to merge the initial set of clusters 

using a threshold value of 6.00Å for both superfamilies. 

 

To find co-ordinates of the data set in 2D space, I used Principal Co-ordinate Analysis 

(PCoA). For a problem of N objects, there could be N*(N-1) distances and displayed in (N-

1) dimensional space. This (N-1) dimensional space was reduced to 2D/3D space and 

plotted. 

 

A manual plotting of the data gave a cluster map for both cytochrome c (Figure 76) and P-

loops superfamilies (Figure 77). Figure 78 shows the demarcation of clusters into family 

and protein levels based on the SCOP classification for cytochrome c. Similarly, Figure 79 

shows the demarcation of family levels in P-loops. The protein levels were not marked in P-

loops to avoid the complexity in the figure. 
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Figure 76. Cluster map of cytochrome c superfamily 
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Figure 77. Cluster map of P-loops superfamily 
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Figure 78. Cluster map of cytochrome c superfamily with demarcation of SCOP 
superfamily, family and protein levels 
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Figure 79. Cluster map of P-loops superfamily with demarcation of SCOP superfamily, 
family levels 
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The maps (Figure 76 and Figure 77) show domain relationships either by solid lines or 

dashed lines. The solid lines indicate domains having strong relationship between them (E-

value < 0.4 and RMSD < 4 Å). Also, the length of the solid line represents real Euclidean 

distance in the cluster map. The dashed lines show there is a relationship between the 

connected domains. However, the position of domains in the map is not true. This is due to 

the non-availability of a relationship between the connected domains and its neighbors.  

Also, the length of the broken line does not represent real Euclidean space in the map.  

 

The cytochrome maps (Figure 76 and Figure 78) show that two SCOP protein groups, 

mitochondrial cytochrome c and cytochrome c2, were well separated from other protein 

groups. The domains forming the cytochrome c552 cluster show that they have diverged 

more than any other SCOP protein group. Also, it can be seen that most of the domains from 

the cytochrome c6 and cytochrome c551 SCOP protein groups form closer clusters while 

some of them get away from this cluster and act as outliers. 

 

P-loops cluster maps (Figure 77 and Figure 79) show that the domains have diverged more 

when compared to the cytochrome c domains. The maps show a number of domains 

represented as singletons or as small groups not connected to each other. As stated earlier, 

absence of a line between domains means no relationship can be identified among them 

(with score below the threshold limit), although some of the singletons belong to SCOP 

family. Only members of two families (Nucleoside and nucleotide kinase and G-proteins) 

were found to be grouped together on the map. This may be due to more environmental 

constraints and less active site requirements on P-loop superfamily or may be due to a 

convergence phenomena as seen in phosphate binding proteins (Bossemeyer, 1994). 

 

These cluster maps are a useful tool to aid in understanding of the relationship between 

protein members of a family: 

 

(1) It gives an overall picture of the divergence of a protein superfamily. 

(2) It shows the relationships between SCOP families. 

(3) The method could be used as an initial automated classification procedure of protein 

structures. A new protein structure can be used as a query to find its sequence or 

structure homologs. Then based on the sequence and structural relationship (E-value and 
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RMSD), the protein can be added in the cluster map. Such a map will give a good 

idea to which of the superfamily or family the new protein belongs. Then with detailed 

knowledge, the protein can be allocated in a specific family (manual curation). The 

clustering approach can be exploited to assign function to an unknown protein 

(Sternberg, 2001), but it cannot be trusted fully as a similar structure does not always 

represent the same function. 

(4) It gives a clear picture about any particular SCOP family and allows the identification of 

any outliers in it. In the P-loops cluster map (Figure 79), there are two clusters one with 

domains d1d2ja__, d1qf5a__ and d1dj3a_ and another with d2nipa_, d1cp2a_, d1ffh__, 

d1byi__ and d1fts__ (boxed). But all of these domains are placed in the same family in 

SCOP. On discussion with Alexey Murzin (the primary curator of SCOP database), he 

recalled he considered that it might be better to keep these two clusters in two separate 

groups, say as, two different sub-families/families. He only kept them together due to 

limitations in the current SCOP classification system. 

 

Likewise the domain d1qhia_, classified in the Nucleotide and nucleoside kinase family in 

SCOP, are positioned separately from the main cluster. The outlier was later cross-checked 

with structural analysis (Morea, 2001). The analysis also agreed that the domain is distinct 

from its family members. The probable reason for the isolated cluster of d1qhia__  is that it 

is a chimeric protein  and does not exist naturally i.e. it does not have sequence or structure 

homology with other Nucleotide and nucleoside kinase proteins even though it retains the 

same function. It was for this reason and since the domain satisfied minimal the P-loop 

topology, that Alexey Murzin classified the domain under the same family. 

 

Thus, cluster maps might help us to be aware of outliers in a particular superfamily/family 

classification before starting any kind of detailed analysis on it. 

 

Because of these advantages of the cluster maps, I automated the clustering process to 

extend the study later for other families. A comparison between manual and automated 

clustering procedures shows that the automated method performed equally well with the 

manual method (Figure 80 and Figure 81). Also, the automated methods provide similar 

results with another automated clustering procedure based on the MCL algorithm (Enright 

et al., 2002). 
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Figure 80. A cluster produced by the automated method for cytochrome c superfamily 

 
Figure 81. A cluster produced by automated method for P-loops superfamily 
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In both manual and automated processes, clustering was done using sequence and 

structural relationships, but it is possible to be done with sequence information alone. 

However, this will give only the number of clusters that can be formed from the superfamily 

and members in each cluster. A two dimensional representation of data is difficult with 

sequence information alone due to the fact that the data needs to undergo significant 

normalization procedures before it can be used to find co-ordinates. 

 

B.6 Orthology and paralogy 

The sequence and structural information, used above to generate cluster maps, can also form 

the basis for detecting orthologous relationships within protein families in the study of 

protein evolution. Such a group of ortholog domains was found in P-loops superfamily. The 

group comprises adenylate kinases from Escherichia coli, Bacillus stermathermophilus and 

Saccharomyces cerevisiae. Using species as a time scale, it can be said that adenylate kinase 

of Escherichia coli and Bacillus stermathermophilus appeared earlier than yeast protein. 

However, it does not mean that yeast protein evolved from Escherichia coli or Bacillus and 

it would be extremely difficult in assessing the proper time scale for these proteins based on 

sequence and structure information alone. 

 

All the three adenylate kinases clustered close to each other on the map. So, from tightly 

clustering domains, it can be presumed that they are possibly to be orthologous to each 

other. 

 

The TOPS (Westhead et al., 1999) diagrams of these three proteins (Figure 82) shows that 

Escherichia coli and yeast adenylate kinases are identical whereas in Bacillus, there is an 

extra β strand and its orientation is reversed. Interestingly, this part of the protein is not 

under SCOP domain definition, which means that there is no functional or structural role for 

this part of the protein. Since this part does not have structural or functional constraints, it is 

more likely to be subject to mutations and may be influenced by environmental factors of 

Bacillus compared with yeast or Escherichia coli. From this, I conclude that the evolution of 

adenylate kinase would have more likely started from a common ancestor and given rise to 

Escherichia coli and or Bacillus and later to yeast protein. Later, Bacillus adenylate kinase 

would have acquired some changes in its protein. 
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Figure 82. Topology diagram for adenylate kinase 

Likewise, from the cytochrome map, two SCOP protein groups form distinct clusters from 

the rest of the cytochrome members. The overall topology of the cytochrome superfamily 

members were analyzed using TOPS (Figure 83).  Generally, cytochrome c fold has 5 

helices. However, some members of cytochrome c551 group have 6 helices and cytochrome 

c2 group has 5 helices and 2 β strands except d3c2c__, which has only 5 helices. The 

topology of cytochrome c552 group (5 helices) remains the same, although its sequence has 

diverged greatly. However, the domains of this group (cytochrome c552) forms close cluster 

with domains of different cytochrome c protein groups than among itself. It might be one of 

the typical cases, where orthology/homology cannot be resolved based on sequence identity 

because an extensive sequence divergence has occurred. However, it can also be argued that 

cytochrome c552 proteins were actually formed from convergence of different cytochrome c 

proteins. But this is highly unlikely to occur given the clear picture of overall divergence of 

cytochrome proteins and absence of any convergence reports in the cytochrome c fold. 
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Figure 83. Topology diagram for cytochrome c proteins 

Mitochondrial cytochrome c was seen later in the time-scale when compared to bacterial 

cytochrome c. Given the endosymbiotic hypothesis, it is likely that any bacterial 

cytochrome c would have given rise to mitochondrial cytochrome. Here, it can be seen that 

cytochrome c2 clustered closely with mitochondrial cytochrome (Figure 78). So it is likely 

that cytochrome c2 would have been the ancestral protein for mitochondrial cytochrome. 

This was confirmed with expertise knowledge of Alexey Murzin.  The topology study of 

these two SCOP protein groups also confirmed this. The general topology of cytochrome c2 

and mitochondrial cytochrome are 5 helices + 2 β strands and 5 or 6 helices respectively. 

However, some of the domains of cytochrome c2 (e.g., d3c2c__), clustering near to 

mitochondrial cytochrome lack the two β  strands, confirming that the earlier forms of 

cytochrome c2 with β strands, later lost the β strands and have given rise to mitochondrial 

cytochrome.  

 

Thus, cluster maps made with sequence and structural homology is useful in understanding 

the ancestry of proteins. 

 

B.7 Conclusions 

Protein evolution, driven by structural and functional constraints, may leave a trail of 

homologs. Homologs are identified using sequence comparison methods like BLAST, 

FASTA, psi-BLAST and ISS. A comparison of ISS with psi-BLAST was made in two 
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protein superfamilies: cytochrome c and P-loops. The result showed that psi-BLAST 

detected all the remote homologs identified by ISS in P-loops and only half in cytochrome c 

superfamily. Although, I cannot generalize using these limited results, it can be said that ISS 

performs better in some cases than psi-BLAST. The advantage ISS has in some cases might 

be due to the match score it gains by producing longer alignments around conserved regions 

of the protein. Intermediate search conducted using structural information revealed that 

more remote homologs that could not be identified with sequence information alone. So 

structures might be useful in intermediate search when sequence information is inadequate 

in detection. From the progressive alignments generated using most of the domains in four 

SCOP protein groups (mitochondrial cytochrome, cytochrome c2, cytochrome c551 and 

cytochrome c6), an overall consensus was generated. The highly conserved residues found in 

the overall consensus are in tandem with the key structural and functional residues needed 

for the cytochrome c fold (Ptitsyn, 1998). Thus ISS alignments might be useful in 

understanding highly conserved residues in a protein fold. 

 

Along with sequence information, I used structural comparisons by PrISM to produce a 

manual cluster map. The cluster map showed a useful representation of the general 

evolutionary relationships within P-loops and cytochromes.  These might be helpful in 

depicting the relationship between SCOP families, assigning hierarchies to a new protein 

structure in the existing structural classification and understanding the likely ancestor of a 

protein. For example, in cytochrome c superfamily, it was shown that the cytochrome c2 

protein is likely to be an ancestor for mitochondrial cytochrome. The manual process has 

been automated and can now be used as a tool in exploring evolutionary relationships of any 

protein family. 



 

   

APPENDIX C 

 
C.1 Eponine transcription termination parameters 

 
The parameters used to create Eponine transcription termination model – 
 
 
<? xml version="1.0" ?> 
 
<app xmlns=http://www.sanger.ac.uk/Users/td2/specs/epoapps/0/2 
jclass="eponine.TrainingCore"> 
 

<bean name="dataSource" jclass="eponine.datasource.XMLDataSource"> 
<string name="fileName" value="Datasets/trainingdata.xml " /> 

</bean> 
 

<bean name="basisSource" jclass="eponine.model.MultiplexedBasisSource"> 
<int name="reweightFrequency" value="15" /> 
<double name="reweightPseudocounts" value="10.0" /> 

 
<child jclass="eponine.model.NewBasisSource"> 

<boolean name="maximize" value="false" /> 
<double name="stringency" value="0.55" /> 
<double name="stringencyVariance" value="0.03" /> 
<int name="minLength" value="4" /> 
<int name="maxLength" value="8" /> 
<double name="minDistWidth" value="2.5" /> 
<double name="maxDistWidth" value="200.0" /> 
<boolean name="reversible" value="false" /> 
<string name="name" value="nbs1_narrow" /> 
<int name="minPos" value="-190" /> 
<int name="maxPos" value="1990" /> 

</child> 
 

<child jclass="eponine.model.SampleWMBasisSource"> 
<double name="nullModelWeighting" value="7.0" /> 
<double name="nullModelPerMarginalColumn" value="1.0" /> 
<int name="sampleCounts" value="203" /> 
<double name="nullModelWeightingN" value="9.0" /> 
<int name="sampleCountsN" value="120" /> 
<string name="name" value="samplewm2" /> 

</child> 
 

<child jclass="eponine.model.DropColumnBasisSource" /> 
 

<child jclass="eponine.model.DistributionBasisSource"> 
<double name="distChangeWidth" value="3.0" /> 
<double name="distChangeGamma" value="3.0" /> 
<double name="distChangeScale" value="25.0" /> 
<double name="distChangeBias" value="0.06" /> 
<!-- double name="shapeChangeProbability" value="0.05" / --> 
<double name="flipEnvelopeProbability" value="0.00" /> 
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<string name="name" value="distwidth" /> 
</child> 

 
<child jclass="eponine.model.PositionBasisSource"> 

<double name="shiftWidth" value="4" /> 
</child> 

 
<child jclass="eponine.model.CrossWMBasisSource" /> 

 
<child jclass="eponine.model.AppendColumnBasisSource" /> 

 
<child jclass="eponine.model.FlipMaxBasisSource" /> 

</bean> 
 

<bean name="trainer" jclass="stats.glm.VRVMTrainer"> 
<int name="numThreads" value="4" /> 
<int name="maxCycles" value="11000" /> 
<!--int name="cleaningCycles" value="0" /--> 
<int name="maxWorkingSet" value="28" /> 
<int name="minWorkingSet" value="25" /> 
<int name="initialWorkingSet" value="50" /> 
<double name="initialAlpha" value="1.0" /> 
<boolean name="unityHack" value="true" /> 
<double name="unityHackThreshold" value="1.0" /> 
<boolean name="resetAlphaHack" value="true" /> 
<boolean name="insertUnity" value="true" /> 

</bean> 
 

<bean name="retrainer" jclass="stats.glm.VRVMTrainer"> 
<int name="maxCycles" value="100" /> 
<!--int name="cleaningCycles" value="0" /--> 
<double name="initialAlpha" value="1.0" /> 
<boolean name="unityHack" value="true" /> 
<double name="unityHackThreshold" value="1.0" /> 

</bean> 
 

<string name="fileName" value="Models/terminationmodel.xml" /> 
<int name="checkpointFrequency" value="500" /> 

</app> 
 
 
C.2 GAZE gene structure models 

The configuration file explaining the gene model with translation features for predicting 
genes using GenePred – 

 
<? xml version="1.0" encoding="US-ASCII" ?> 

 
<gaze> 

<declarations> 
<feature id="tss" st_off="0" en_off="1" /> 
<feature id="tis" st_off="0" en_off="3"/> 
<feature id="5ss" st_off="1" en_off="1" />  
<feature id="3ss" st_off="1" en_off="1" />  
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<feature id="tts" st_off="3" en_off="0"/> 
<feature id="polyA" st_off="1" en_off="1"/> 
 
<feature id="tss_rev" st_off="1" en_off="0" /> 
<feature id="tis_rev" st_off="3" en_off="0" /> 
<feature id="5ss_rev" st_off="1" en_off="1" />  
<feature id="3ss_rev" st_off="1" en_off="1" />  
<feature id="tts_rev" st_off="0" en_off="3" /> 
<feature id="polyA_rev" st_off="1" en_off="1"/> 
 
<!--lengthfunction id="intron_pen" /> 
<lengthfunction id="intergene_pen" /> 
<lengthfunction id="inital_exon_pen" /> 
<lengthfunction id="internal_exon_pen" /> 
<lengthfunction id="terminal_exon_pen" /> 
<lengthfunction id="single_exon_gene_pen" /--> 

</declarations> 
 

<gff2gaze>  
<!-- Features --> 
<gfffeat feature="TSS" strand="+" source="Eponine"> 

<feat id="tss"/> 
</gfffeat> 
 
<gfffeat feature="TSS" strand="-" source="Eponine"> 
 <feat id="tss_rev"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="+" source="Eponine"> 
 <feat id="tis"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="-" source="Eponine"> 
 <feat id="tis_rev"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="+" source="Eponine"> 
 <feat id="5ss"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="-" source="Eponine"> 
 <feat id="5ss_rev"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="+" source="Eponine"> 
 <feat id="3ss"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="-" source="Eponine"> 
 <feat id="3ss_rev"/> 
</gfffeat> 
 
<gfffeat feature="TTS" strand="+" source="Eponine"> 
 <feat id="tts"/> 
</gfffeat> 



C.2 GAZE gene structure models 

  

236

 
<gfffeat feature="TTS" strand="-" source="Eponine"> 
 <feat id="tts_rev"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="+" source="Eponine"> 
 <feat id="polyA"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="-" source="Eponine"> 
 <feat id="polyA_rev"/> 
</gfffeat> 

</gff2gaze> 
 

<dna2gaze> 
<!--dnafeat pattern="tataaa"> 

<feat id="tss" /> 
</dnafeat> 
 
<dnafeat pattern="atg" score="0.001"> 
 <feat id="tis" /> 
</dnafeat> 
 
<dnafeat pattern="taa" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tag" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tga" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="aataaa" score="0.001"> 
 <feat id="polyA" /> 
</dnafeat> 
 
<dnafeat pattern="tttata"> 
 <feat id="tss_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cat" score="0.001"> 
 <feat id="tis_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
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<dnafeat pattern="tca" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tttatt" score="0.001"> 
 <feat id="polyA_rev" /> 
</dnafeat--> 
 
<!--takedna id="5ss_1" st_off="0" en_off="1"/> 
<takedna id="3ss_1" st_off="1" en_off="-1"/> 
<takedna id="5ss_2" st_off="-1" en_off="1"/> 
<takedna id="3ss_2" st_off="1" en_off="0"/> 
<takedna id="5ss_1_rev" st_off="1" en_off="0"/> 
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/> 
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/> 
<takedna id="3ss_2_rev" st_off="0" en_off="1"/--> 

</dna2gaze> 
 

<model> 
<target id="END"> 
 <source id="BEGIN" out_feat="No_genes"/> 
 <source id="polyA" out_feat="GEN_DNA" /> 
 <source id="tss_rev" out_feat="GEN_DNA"/> 
</target> 
 
<!--Forward strand gene--> 
  
<target id="tss"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" mindis="1" out_feat="intergenic"/> 
    <source id="tss_rev" mindis="1" out_feat="intergenic"/> 
</target> 
 
<target id="tis"> 
    <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/> 
</target> 
 
<target id="5ss"> 
 <!--killfeat id="tts"/--> 
 <source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+" /> 
 <source id="3ss" out_feat="internal_exon"  mindis="6" maxdis= "10000" out_str="+" 
/> 
</target> 
 
<target id="3ss"> 
 <source id="5ss" out_feat="intron"  mindis="6" out_str="+"/> 
</target> 
 
<target id="tts"> 
 <!--killfeat id="tts" /--> 
    <!--source id="tis" out_feat="single_exon_gene" mindis="60"out_str="+"/--> 
    <source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target> 
 
<target id="polyA"> 
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    <source id="tts" out_feat="3UTR" mindis="1" out_str="+"/> 
</target> 
 
<!--Reverse strand gene--> 
   
<target id="polyA_rev"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" out_feat="intergenic" mindis="1"/> 
    <source id="tss_rev" out_feat="intergenic" mindis="1"/> 
</target> 
 
<target id="tts_rev"> 
    <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/> 
</target> 
 
<target id="3ss_rev"> 
 <!--killfeat id="tts_rev"/--> 
 <source id="tts_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000" 
out_str="-"/> 
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000" 
out_str="-"/> 
</target> 
 
<target id="5ss_rev"> 
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/> 
</target> 
 
<target id="tis_rev"> 
 <!--killfeat id="tts_rev" phase="0"/--> 
    <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/--> 
    <source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/> 
</target> 
 
<target id="tss_rev"> 
    <source id="tis_rev" out_feat="5UTR" mindis="1" out_str="-"/> 
</target> 

</model> 
 
<lengthfunctions> 

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/> 
<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/> 
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/> 
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/--> 
 
<!--lengthfunc id="single_exon_gene_pen"> 
 <point x="500" y ="0.001"/> 
 <point x="20000" y="0.2"/> 
</lengthfunc--> 
 
<!--lengthfunc id="intergene_pen"> 
 <point x="200000" y ="0.01"/> 
 <point x="200001" y="0.01"/> 
</lengthfunc --> 

</lengthfunctions> 
</gaze> 
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The configuration file explaining the gene model without translation features for predicting 
genes using GenePred – 
 
<?xml version="1.0" encoding="US-ASCII"?> 

 
<gaze> 

<declarations> 
<feature id="tss" st_off="0" en_off="1" /> 
<!--feature id="tis" st_off="0" en_off="3"/--> 
<feature id="5ss" st_off="1" en_off="1" />  
<feature id="3ss" st_off="1" en_off="1" />  
<!--feature id="tts" st_off="3" en_off="0"/--> 
<feature id="polyA" st_off="1" en_off="1"/> 
 
<feature id="tss_rev" st_off="1" en_off="0" /> 
<!--feature id="tis_rev" st_off="3" en_off="0" /--> 
<feature id="5ss_rev" st_off="1" en_off="1" />  
<feature id="3ss_rev" st_off="1" en_off="1" />  
<!--feature id="tts_rev" st_off="0" en_off="3" /--> 
<feature id="polyA_rev" st_off="1" en_off="1"/> 
 
<!--lengthfunction id="intron_pen" /> 
<lengthfunction id="intergene_pen" /> 
<lengthfunction id="inital_exon_pen" /> 
<lengthfunction id="internal_exon_pen" /> 
<lengthfunction id="terminal_exon_pen" /> 
<lengthfunction id="single_exon_gene_pen" /--> 

</declarations> 
 

<gff2gaze>  
<!-- Features --> 
<gfffeat feature="TSS" strand="+" source="Eponine"> 

<feat id="tss"/> 
</gfffeat> 
 
<gfffeat feature="TSS" strand="-" source="Eponine"> 
 <feat id="tss_rev"/> 
</gfffeat> 
 
<!--gfffeat feature="TIS" strand="+" source="Eponine"> 
 <feat id="tis"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="-" source="Eponine"> 
 <feat id="tis_rev"/--> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="+" source="Eponine"> 
 <feat id="5ss"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="-" source="Eponine"> 
 <feat id="5ss_rev"/> 
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</gfffeat> 
 
<gfffeat feature="3SS" strand="+" source="Eponine"> 
 <feat id="3ss"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="-" source="Eponine"> 
 <feat id="3ss_rev"/> 
</gfffeat> 
 
<!--gfffeat feature="TTS" strand="+" source="Eponine"> 
 <feat id="tts"/> 
</gfffeat> 
 
<gfffeat feature="TTS" strand="-" source="Eponine"> 
 <feat id="tts_rev"/--> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="+" source="Eponine"> 
 <feat id="polyA"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="-" source="Eponine"> 
 <feat id="polyA_rev"/> 
</gfffeat> 

</gff2gaze> 
 

<dna2gaze> 
<!--dnafeat pattern="tataaa"> 
 <feat id="tss" /> 
</dnafeat> 
 
<dnafeat pattern="atg" score="0.001"> 
 <feat id="tis" /> 
</dnafeat> 
 
<dnafeat pattern="taa" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tag" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tga" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="aataaa" score="0.001"> 
 <feat id="polyA" /> 
</dnafeat> 
 
<dnafeat pattern="tttata"> 
 <feat id="tss_rev" /> 
</dnafeat> 
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<dnafeat pattern="cat" score="0.001"> 
 <feat id="tis_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tca" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tttatt" score="0.001"> 
 <feat id="polyA_rev" /> 
</dnafeat--> 
 
<!--takedna id="5ss_1" st_off="0" en_off="1"/> 
<takedna id="3ss_1" st_off="1" en_off="-1"/> 
<takedna id="5ss_2" st_off="-1" en_off="1"/> 
<takedna id="3ss_2" st_off="1" en_off="0"/> 
<takedna id="5ss_1_rev" st_off="1" en_off="0"/> 
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/> 
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/> 
<takedna id="3ss_2_rev" st_off="0" en_off="1"/--> 

</dna2gaze> 
 
<model> 

<target id="END"> 
 <source id="BEGIN" out_feat="No_genes"/> 
 <source id="polyA" out_feat="GEN_DNA" /> 
 <source id="tss_rev" out_feat="GEN_DNA"/> 
</target> 
 
<!--Forward strand gene--> 
<target id="tss"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" mindis="1" out_feat="intergenic"/> 
    <source id="tss_rev" mindis="1" out_feat="intergenic"/> 
</target> 
 
<!--target id="tis"> 
    <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/> 
</target--> 
 
<target id="5ss"> 
 <!--killfeat id="tts"/--> 
 <!--source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+" 
/--> 
    <source id="tss" mindis="1" out_feat="initial_exon" out_str="+"/> 
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 <source id="3ss" out_feat="internal_exon"  mindis="6" maxdis= "10000" 
out_str="+" /> 
</target> 
 
<target id="3ss"> 
 <source id="5ss" out_feat="intron"  mindis="6" out_str="+"/> 
</target> 
 
<!--target id="tts"--> 
 <!--killfeat id="tts" /--> 
    <!--source id="tis" out_feat="single_exon_gene" mindis="60" out_str="+"/--> 
    <!--source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target--> 
 
<target id="polyA"> 
    <!--source id="tts" out_feat="3UTR" mindis="1" out_str="+"/--> 
    <source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target> 
 
<!--Reverse strand gene--> 
   
<target id="polyA_rev"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" out_feat="intergenic" mindis="1"/> 
    <source id="tss_rev" out_feat="intergenic" mindis="1"/> 
</target> 
 
<!--target id="tts_rev"> 
    <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/> 
</target--> 
 
<target id="3ss_rev"> 
 <!--killfeat id="tts_rev" phase="0"/--> 
 <source id="polyA_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000" 
out_str="-"/> 
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000" 
out_str="-"/> 
</target> 
 
<target id="5ss_rev"> 
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/> 
</target> 
 
<!--target id="tis_rev"--> 
 <!--killfeat id="tts_rev" phase="0"/--> 
    <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/--> 
    <!--source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/> 
</target--> 
 
<target id="tss_rev"> 
    <source id="5ss_rev" out_feat="initial_exon" mindis="1" out_str="-"/> 
</target> 

</model> 
<lengthfunctions> 

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/> 
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<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/> 
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/> 
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/--> 
 
<!--lengthfunc id="single_exon_gene_pen"> 
 <point x="500" y ="0.001"/> 
 <point x="20000" y="0.2"/> 
</lengthfunc--> 
 
<!--lengthfunc id="intergene_pen"> 
 <point x="200000" y ="0.01"/> 
 <point x="200001" y="0.01"/> 
</lengthfunc --> 

</lengthfunctions> 
</gaze> 

 



 

   

APPENDIX A: DOMAIN INSERTION 

 

A.1 Introduction 

Taking advantage of an evolutionary basis of domain classification, here I describe the 

nature and characteristics of domain insertions in protein structures, a phenomenon that is 

different from the usual pattern of sequential arrangement of domains in multi-domain 

proteins. 

 

Domains constitute the basic structural, functional and evolutionary unit of proteins (Holm 

and Sander, 1996; Murzin et al., 1995; Orengo et al., 1997). Proteins can comprise a single 

domain or a combination of domains. It is well established that multi-domain proteins with 

widely diversified architecture and functions are generated from a limited repertoire of 

domain families (Bork et al., 1996; Chothia, 1992). Structural assignments to complete 

genomes revealed that almost two-thirds of prokaryotic proteins and 80% of eukaryotic 

proteins are multi-domain proteins (Teichmann et al., 1998). In 1973, Donald Wetlaufer 

introduced the classification of domains into continuous and discontinuous (Wetlaufer, 

1973). A continuous domain is formed by one part of a polypeptide chain, while a 

discontinuous domain is formed by two or more parts of a single polypeptide chain. Thus, 

discontinuous domains are essentially formed by one-dimensionally non-contiguous 

segments of a polypeptide. While most multi-domain proteins have continuous domains, 

some proteins exhibit non-contiguous arrangement of their domains (Wetlaufer, 1973). In 

this work, I focus on insertions (Russell, 1994), which are the cases of one domain being 

inserted into another domain (Figure 67). 
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Figure 67. Domain insertion in Escherichia coli enzyme RNA 3'-terminal phosphate cyclase 
(PDB 1qmhA). The E. coli enzyme RNA 3'-terminal phosphate cyclase consists of two 
domains, of which one is contained within the other. The parent domain (residues 5-184, 
280-338, coloured purple) consists of three repeated folding units; each unit has two α-
helices and a four-stranded β-sheet. The folding unit resembles the C-terminal domain of 
bacterial translation initiation factor 3 (IF3). Between an α-helix and a β-strand of the 
third IF3-like repeat of the parent domain, there is a smaller inserted domain (residues 185-
279, coloured red). Although the inserted domain has the same secondary structural 
elements as the parent domain, it has different topology and a different fold. Insert 
resembles the fold observed in human thioredoxin. 

I followed the definition of protein domains in the Structural Classification Of Proteins 

(SCOP) database (version 1.61) (Murzin et al., 1995). Although there are several available 

schemes of protein structure classification, I chose SCOP because it is a manually curated 

classification of protein structures based on their structural and evolutionary relationship. In 

SCOP, a protein domain is considered as a unit of evolution if it occurs independently or in 

combination with other domains.  

 

SCOP represents a hierarchical classification scheme with four principal levels: family, 

superfamily, fold and class. Domains clustered into families are evolutionarily related and 

can be detected at the sequence level. Domains grouped into superfamilies can have low 

sequence identity but their structural and functional features suggest a common evolutionary 
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origin. Superfamilies with similar topology are grouped under a fold. Folds are assigned 

to classes based on their secondary structure. For my analysis, I considered the fold and 

superfamily levels of SCOP hierarchy and the five major classes (all-α, all-β, α/β, α+β and 

‘small proteins’). All-α and all-β classes include proteins with abundant α-helices or β-

sheets, respectively. The α/β class is distinguished mainly by parallel beta sheets (β-α-β 

units), whereas the α+β class contains proteins with predominantly anti-parallel beta sheets 

(segregated α and β regions). Small proteins are distinguished by their size rather than other 

features. 

 

Data for this analysis was obtained from the Protein Data Bank (PDB) (Berman et al., 

2002). To overcome the redundancy inherent in PDB, I chose a pre-computed list of non-

redundant protein chains provided by PDB_Select (April 2002 release obtained from 

ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select) (Hobohm and 

Sander, 1994). I used the set of proteins that had pair-wise sequence identities less than 90% 

and designated this set as PDB_90. Out of the 6182 chains in PDB_90, only 5883 chains 

were assigned SCOP domain definitions, extracted from the SCOP parseable file 

dir.cla.scop.txt_1.61. Table 24 shows the distribution of SCOP folds, superfamilies, families 

and domains in each class for chains present in PDB_90. 

Table 24. SCOP (1.61 release) classification statistics for chains in PDB_90 (April 2002 
release) 

 

It is self-evident that insertions can only be found in multi-domain proteins, where one 

domain (insert) is contained within another domain (parent). Parent and insert domains can 

belong to the same or different SCOP superfamilies. Likewise, a combination of two 

domains can be viewed as a combination of superfamily combinations. I obtained a total of 
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140 proteins that conformed to this definition. When I considered the 140 pairs of 

parent-insert superfamily combinations, I observed that several pairs were identical. 

Whenever there was also the same topological relationship between the parent and insert 

domains, I retained only one example of a pair of superfamily combinations. This procedure 

left 40 unique parent-insert superfamily combinations. Variations on the simple scheme 

‘one insert within one parent’ were present; they are shown in Figure 68. 

 
Figure 68. Schematic representation of types of domain insertions observed in protein 
structures. (a) Single insertion (e.g., 1qmhA). (b) Nested insertion (e.g., 1a6dA). 'insert1 N' 
and 'insert1 C' represent the N- and C-terminus of  insert, respectively. (c) Two-domain 
insertion (e.g., 1zfjA). (d) Three-domain insertion (e.g., 1dq3A). 

For all cases of identified domain insertions, I checked for artefacts arising from missing 

coordinates. This was necessary because SCOP domain definitions are based on atomic 

coordinates provided in PDB. To ascertain consistency, I compared atomic coordinates 

(ATOM records) versus sequences (SEQRES records) that were obtained from the 

ASTRAL compendium (Chandonia et al., 2002). In the majority of cases, sequences were 

completely covered by coordinates, but in other cases, there were parts of sequences with 

missing coordinates. However, in none of the latter cases did the absent coordinates obscure 

the position of inserts. 

 

I then calculated unique superfamily combinations for all multi-domain proteins and found 

450 unique superfamily combinations for 5883 single or multi-domain proteins in SCOP. 

Thus, domain insertions constitute 9% (40/450) of all unique superfamily occurrences. 
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A.2 Types of domain insertions 

Domain insertions can be categorized as either single or multiple depending on the number 

of inserts (Figure 68). In single insertions, one domain is inserted into another domain, and 

both domains can belong to the same or different superfamilies. For example, in Figure 68a, 

the Escherichia coli enzyme RNA 3’-terminal phosphate cyclase (PDB: 1qmhA, Palm et al., 

2000) has two domains, a small insert and a larger parent that belong to different 

superfamilies. Close to 90% (36/40) of observed insertions are single insertions. In multiple 

insertions, more than one domain, either of the same or different superfamily, is inserted 

into the parent domain.  I observed three types of multiple insertions (i) Nested insertions: 

In Thermoplasma acidophilum thermosome (PDB: 1a6dA, Ditzel et al., 1998), the archael 

chaperonin, the apical domain is inserted into the intermediate domain, which is in turn 

inserted into an ATPase domain  (ii) Two-domain insertions: The type II inosine 

monophosphate dehydrogenase from Streptococcus pyogenes (PDB: 1zfjA, Zhang et al., 

1999) contains two tandem cystathionine-β-synthase domains inserted into the catalytic 

TIM-barrel domain. The second example is the Saccharomyces cerevisiae PI-SceI intein 

(PDB: 1ef0A, Poland et al., 2000), a homing endonuclease with protein splicing activity, 

which has the duplicated endonuclease domain inserted into the Hint domain  (iii) Three-

domain insertions: In PI-PfuI, an intein-encoded homing endonuclease from the 

archaebacteria Pyrococcus furiosus (PDB: 1dq3A, Ichiyanagi et al., 2000), the Hint domain 

has three tandem inserts, two intein endonuclease domains with αββαββαα structural 

motifs, and one Stirrup domain. 

 

Previous work on intron-encoded homing endonucleases, from the dodecapeptide family, 

showed that for their folding, dimerisation and catalysis, they should form a dimer that has 

two copies of the LAGLIDADG motif (one copy per subunit of a dimer), or alternatively 

they could be monomeric if a monomer has both copies of the motif (Jurica and Stoddard, 

1999). I found that in PI-SceI (case [ii] above) and PI-PfuI (case [iii] above), two 

monomeric domains were tandemly inserted into one parent domain. The previous 

observation that motifs are only functional as a dimer suggests that during the course of 

evolution, there was a simultaneous insertion of two monomeric domains into the parent 

domain, rather than an insertion of one monomeric domain followed by its duplication.  
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In this analysis, I treated multiple insertions as several separate parent-insert 

combinations, resulting in the total of 45 such combinations within 40 protein chains. There 

were 41 unique parent-insert superfamily combinations. Upon examination of relationships 

among proteins containing insertions, levels of SCOP hierarchy, and superfamily 

participation of parent and inserted domains, I identified several biologically meaningful 

patterns. These findings are discussed below. 

 

A.3 Nature and characteristics of domain insertions: Class level 

As mentioned before, I considered five SCOP classes, leading to a maximum of 25 (5*5) 

pair-wise combinations. From the data, I observed only 15 combinations when investigating 

class participation of parent-insert pairs. The combination of α/β-parent-α+β-insert was 

predominant, while 50% of all parents belonged to α/β class and 40% of all inserts belonged 

to α+β class. Domains from α/β class were parent domains, which were two and four fold 

more often than domains from all-β and all-α class respectively. Domains from the class of 

small proteins were seen only as inserts. This bias could be explained, at least to a certain 

extent, by taking into consideration the size and function of parents and inserts, which is 

discussed in the next section. 

 

A.3.1 Size and function of domains involved in insertions  

Figure 69a shows the domain length distribution for proteins from PDB_90 set across the 

five SCOP classes. The average domain length was longest for α/β class followed by the 

all-β, α+β, and all-α class. When I calculated distribution of average domain lengths for 41 

parent domains, I observed the same trend (Figure 69b). However, the average length of 

parent domains was noticeably larger than the average length of domains from PDB_90 set; 

this was true for each SCOP class (compare Figure 69a and Figure 69b). Thus, combining 

the fact that α/β parent domains are the most abundant with the fact that α/β domains are 

the longest on average, I arrived at the explanation that longer domains more readily accept 

insertions during evolution. As for the inserted domains, α+β and all-α class were equal and 

major contributors to the number of domains. Therefore, the trend observed for parents is 

not applicable for inserts. 
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Figure 69. (a) Domain length distribution for all domains in the non-redundant set of 
proteins (PDB_90). (b) Domain length distribution for parent domains. 

In most cases, inserted domains were shorter than parent domains. This is despite the fact 

that inserted domains could belong to SCOP classes with the longest average domain length 

(Figure 70a). Parents comprised 50-80% of protein length, while inserts comprised 20-50%. 

Close to 80% of inserts were shorter than 175 residues, which is the average length of a 

protein domain calculated from crystal structures (Gerstein, 1997). More than 60% of 

inserts were shorter than 130 residues. This observation is consistent with the heuristic logic 

that smaller domains are less likely to disturb the structure and folding of parent domains; it 

could explain short lengths of inserted domains. This explanation does not contradict an 

important experiment by Doi and colleagues (Doi et al., 1997). They were able to show that 

when random sequences of 120-130 amino acid residues were inserted into a surface loop 

region of Escherichia coli RNase HI, about 10% of the clones retained >1% of the wild-type 

RNase HI activity (Doi et al., 1997). 

 

The high proportion of α/β class domains, as parents, can be correlated with their 

biochemical function. Previous work showed that more than a half of PDB families are 

enzymes and close to one half of all enzyme families contain multi-domain proteins. Multi-

domain enzymes often consist of a catalytic domain and a nucleotide binding domain 

(Hegyi and Gerstein, 1999). It is therefore possible to predict that domain insertions are 

likely to occur in enzymes. Indeed, in the dataset, 39 out of 40 parent-insert pairs conform to 

this prediction. The remaining non-enzymatic protein is the bluetongue virus capsid protein 

vp-7, which has the central domain from all-β class inserted into the multi-helical parent 

domain. A genome-scale analysis of the structural features of proteins revealed that proteins 
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with α/β fold are frequently involved in fusion events (Hua et al., 2002). α/β folds are 

also known to be disproportionately associated with enzymatic function (Hegyi and 

Gerstein, 1999), which lends further credence to the prominent role of α/β folds in 

accepting insertions. 

 

 
Figure 70. (a) Proportion of residues in parent and insert domains in parent-insert 
combinations. (b) Point of insertion in parent domain. Insert position is given as a fraction 
of total length of parent domain. 

 

A.4 Nature and characteristics of domain insertions: Fold and superfamily level  

Out of 57 folds in the class of small proteins, two domains with one fold (Rubredoxin fold) 

were found as inserts; both inserted domains belong to the same superfamily. Within the 

α+β class, the 18 inserted domains (from 15 superfamilies) spanned 11 folds; there are 204 

different folds in the α+β class (Table 25). The trend was the same for the other SCOP 

classes, where folds of inserted domains constituted minor fractions of all known folds. In 

contrast to the inserts, all parent domains had different folds. Thus, I observed another 

distinction between parents and inserts at the fold level. 

 

Similarly, parent superfamilies were found to be more versatile than insert superfamilies 

(most insert superfamilies combine with only one parent superfamily). There are merely 3 

out of 45 insert superfamilies that combine with two different parent superfamilies. These 
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insert superfamilies are NAD(P)-binding Rossmann superfamily, FAD/NAD(P)-binding 

superfamily and C-terminal domain of FAD-linked reductases superfamily. 

Table 25. Distribution of inserted and parent domains at the SCOP class and fold level. The 
number of domains and the number of folds they come from is given for inserted and parent 
domains across the five different classes in the SCOP hierarchy. Percentage gives the 
number of folds contributing to insertions over total number of folds under the class. 

 

While many parent superfamilies conservatively combine with one insert superfamily, there 

are conspicuous exceptions. There are three parent superfamilies each combining two 

different insert superfamilies. The three parent superfamilies in question are Zn-dependent 

exopepetidases superfamily, nucleotidyl transferase superfamily, and nucleotide-binding 

domain superfamily. Moreover, there are two parent superfamilies each combining with 

three different insert superfamilies. The two parent superfamilies are P-loop containing NTP 

hydrolases superfamily, and FAD/NAD(P)-binding domain superfamily.  

 

Two further observations at the superfamily level are worth mentioning. Firstly, all parents 

and inserts belong to different superfamilies. There is only one exception: in Escherichia 

coli enzyme glutathione reductase (PDB: 1gesB), the parent and insert belong to the same 

superfamily of FAD/NAD(P)-binding domains. Secondly, superfamilies that are popular in 

the parent or insert context also appear to be popular in the sequential domain combination 

context (Apic et al., 2001). They were found combining with more than one superfamily in 

the sequential domain order. One exception to this correlation is the superfamily of C-

terminal domains of FAD-linked reductases; this superfamily is popular in the insert 

context, but does not tandemly combine with other superfamilies. 
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A.5 Point of insertion  

I did not find any bias in the distribution of insertion points within 41 unique parent-insert 

combinations. However, a significant bias in the location of the insertion point was observed 

when I considered a subset of 28 parent-insert combinations, where either the parent or 

insert superfamily also participated in sequential combination with other superfamilies. As 

shown in Figure 70b, for the 28 cases in question, the insertion point occurred in the last 

third part of the parent domain sequence (confidence level 98%). Spatially, all 41 insertions 

were observed in loop regions of the 3D structure of parent domains. 

 

Though it may not be feasible to provide a definitive explanation for the observation of bias 

towards C-terminus for insertion in the parent domain, an event in the N-terminus or the 

middle of the domain are likely to disrupt the gene structure and pose a problem during 

transcription or translation. 

 

Also insertions in the C-terminus indicate most of the insertions seen in the database are not 

strictly insertions but normal sequential combinations with the second domain starting 

before the end of the first domain. This stem from the fact, C-terminus bias in insertion is 

found only in cases of parent-insert combinations, where either the parent or insert also 

occur in sequential combinations with other superfamilies. Further research on the domain 

insertions involving the core structure of the parent and insert domains can throw more light 

on this view. 

 

A.6 Proximity of N- and C-termini in inserts  

I wanted to determine how the insertion context affects the distance between N- and C- 

terminus of an inserted domain. The distance between termini was defined as the distance 

between C-alpha atoms of the first and the last residue of the domain. I first calculated 

distances for domains that do not participate in insertions. In order to do this, I considered 

1000 domains, each representative of one SCOP superfamily. I obtained sequences and 

coordinates for the domains from the ASTRAL compendium (Chandonia et al., 2002). Only 

687 domain sequences were completely covered by coordinates. Using AEROSPACI scores 

(Chandonia et al., 2002), I was able to find 60 substitutes for the 313 representative domains 

that were not entirely covered by coordinates. Altogether, I obtained complete coordinate 
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information for 747 domains (687 + 60). Because I confined the analysis to five major 

SCOP classes, I calculated distances between termini for the 711 domains, which belong to 

the five classes being investigated. The average distance for representative domains was 25 

Å. 

 

Calculation of distances between the termini of inserted domains was less straightforward. 

Domain boundaries reported in SCOP are human defined. Therefore, I compared SCOP 

domain boundaries for 41 inserted domains against the domain boundaries reported in 

CATH database (Orengo et al., 2002). In contrast to SCOP, CATH structural classification 

of proteins has been produced automatically. However, only 28 out of 41 inserted domains 

were available in CATH, whereas the other 13 have either differences in domain 

classification or the corresponding proteins were absent from CATH classification. For 28 

inserted domains, boundaries were identical between SCOP and CATH. The average 

distance between domain termini of inserted domains was 8 Å (confidence level 99%), 

which is two-thirds shorter than the distance between termini in normal domains. 

 

There are two superfamilies that occur in both parent and insert context. This example 

allowed me to compare distances between termini for a parent and an insert from the same 

superfamily. In case of FAD/NAD(P)-binding domain superfamily, the distances were 30 Å 

and 5 Å for parent and an insert, respectively. These figures were 11 Å and 8 Å for NAD-

binding Rossmann domain superfamily. Thus, this analysis shows that the ends of inserted 

domains are significantly closer than ends of parent domains or domains not participating in 

insertions. However one must be cautious in interpreting the results as the N and C termini 

distances for the parent domain is not calculated for the core structure. 

 

It is interesting to speculate how the distance between domain termini can affect stability 

and conformational flexibility of a protein domain. While insertion context might generally 

reduce conformational freedom of the domain, it can simultaneously contribute to the 

stability of the domain, which would in turn affect its function. One can also imagine how 

the close proximity of domain termini can restore protein conformational flexibility by 

mimicking an inter-domain link observed in sequentially ordered domains. 
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A.7 Conclusions 

Utilising an evolutionary basis of domain classification, I described the nature and 

characteristics of domain insertions in protein structures. Domain insertions represent an 

unusual but abundant case of multi-domain proteins. This analysis gave several novel 

insights into the nature and characteristics of domain insertions. 

 

(1) Close to 9% multi-domain proteins contain insertions. 

(2) The majority of insertions are the single domain insertions. Also found there were two-

domain, three-domain, and nested insertions in PDB. 

(3) α/β class has a higher propensity to accept insertions. This could be correlated to the size 

and function of proteins within the class. 

(4) Parent domains were found to be longer than the inserted domains in most cases. 

(5) When fold and superfamily combinations were considered for parents and inserts, the 

former was found to be more versatile than the latter, in that the parent domains 

combined with more partners. 

(6) The point of insertion is biased towards the C-terminus of parents whenever the parent 

domain belongs to the superfamily that sequentially combines with other superfamilies. 

(7) Inserted domains have juxtaposed termini compared to parent domains. 

 

Perhaps, domains are more viable in the insert context when their termini are close in space; 

small size can further contribute to their viability. 

 

These results clearly indicate that despite the structural and functional constraints inherent 

in the process of domain insertion, this process is an effective way of creating multi-domain 

proteins. This description of the many features of domain insertions could be used in protein 

engineering for producing novel multi-functional fusion proteins. Betton and co-workers 

(Betton et al., 1997) created hybrid proteins by inserting a penicillin-hydrolysing enzyme 

TEM beta-lactamase (Bla) into the maltodextrin-binding protein (MalE); they used the 

permissive insertion sites identified before (Duplay et al., 1987). Two insertions resulted in 

the functional hybrids, one insertion occurred in the first quarter of the MalE protein, while 

the other occurred in the last quarter. The parent protein (MalE) belongs to the α/β class, 

and the authors experimentally showed the 5 Å distance between the termini of the inserted 
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domain (Bla). Thus, there is recent experimental data that nicely fit into the picture of 

insertions found in natural multi-domain proteins. 

 



 

   

APPENDIX B: PROTEIN EVOLUTION 

 

B.1 Introduction 

Divergence in structure and function of proteins is due to an evolutionary process driven by 

functional and environmental constraints. These constraints bring about changes in the 

protein sequence through mutations, insertions and deletions with the preservation of 

residues important for the structure and function of the protein (Chothia and Lesk, 1986). 

However, not all the sequence modifications are incorporated or maintained since some 

changes may be deleterious to the structure or function of the protein. Hence, the structural 

‘core’ (Chothia and Lesk, 1986) tends to be well conserved during evolution. When proteins 

evolve, the constraints on the protein structure are relaxed or rather replaced by new 

constraints and the sequence and structure can change more radically. These changes are 

generally slow processes and leave a trail of homologs. Homologs are proteins evolved from 

a common ancestor and their evolutionary relationship is evident from similarities in 

sequence, structure and function. Homologous proteins have been studied for a long time to 

understand their evolutionary relationships and to assign function or structure to new protein 

sequences. For homolog searches in the sequence databases, one needs an alignment 

algorithm, residue similarity matrix, scoring scheme and knowledge about scoring 

thresholds to identify true relationships. 

 

Among the available pairwise alignment algorithms, one of the most sensitive is the Smith-

Waterman algorithm (Smith and Waterman, 1981) adopted in the SSEARCH program 

(Pearson, 1991). Although this algorithm is more sensitive and rigorous, it is 

computationally expensive in comparison to FASTA (Pearson and Lipman, 1988) and 

BLAST (Altschul et al., 1990). The speed and convenience of BLAST made it the most 

popular program, although it compromises sensitivity. FASTA ranks between these two 

programs and can be run in two modes: either at greater speed (ktup = 2) or greater accuracy 

(ktup =1). Pearson (Pearson, 1991, 1995) did a comparison of these three methods and 

showed that the Smith-Waterman algorithm worked slightly better than FASTA, which was 

in turn much more effective than BLAST. 
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Although pairwise comparison methods are a common way to find sequence homologs, 

they have difficulty in detecting remote homologs when sequence identity falls below 30% 

(Brenner et al., 1998). Alternate methods like Profile Hidden Markov Models (Eddy, 1996; 

Krogh et al., 1994), psi-BLAST (Altschul et al., 1997) and Intermediate Sequence Search 

(Park et al., 1997) reduce this limitation and increase sensitivity. 

 

Intermediate Sequence Search (ISS) is a search technique, wherein two related sequences 

which cannot be detected directly by pairwise sequence comparison methods are matched 

using an intermediate sequence sharing close homology with the two distantly related 

sequences. This concept has been extended to include multiple intermediate sequences 

(MISS) between two distant sequences (Salamov et al., 1999). The disadvantage with ISS is 

that the errors caused in the intermediate are likely to propagate as it is not dependent on 

multiple sequence alignment. Errors caused by ISS when comparing multi-domain protein 

sequences, can be avoided by splitting query sequence to individual domains. Figure 71 

gives an overall idea on how different methods are exploring the sequence space (Lindahl 

and Elofsson, 2000). 

 
Figure 71. Schematic diagram showing performance of different sequence comparison 
methods. The filled circle represents the query sequence used in the database search and the 
open circles represent family members. The distance between two circles represents some 
arbitrary distance. 
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A comparison of these recent methods with pairwise sequence comparison methods, 

performed by searching remote homologs in a Structural Classification Of Proteins (SCOP, 

Murzin et al., 1995) sequence database having less than 40% identity, show that ISS 

performs one and half times better than FASTA. In sequences with less than 30% identity, a 

HMM-based SAM-T98 and psi-BLAST detected three times more relationships than 

pairwise sequence comparison methods (Park et al., 1998). Sauder et al. compared the 

quality of alignments produced by BLAST, psi-BLAST, ISS and ClustalW (Thompson et 

al., 1994) with structural alignments. ISS produced longer alignments than psi-BLAST with 

nearly comparable per-residue alignment quality. At 10-15% identity, BLAST correctly 

aligned 28%, psi-BLAST 40% and ISS 46% of residues to the structural alignment (Sauder 

et al., 2000). 

 

All these results show that ISS performs as well as psi-BLAST in identifying distant 

homologs. However it is not yet clear how ISS is able to detect remote relationships. 

Moreover, I was interested to determine whether intermediates identified by ISS can provide 

any knowledge about protein evolution. This study tries to find answers to these questions. 

  

To aid this objective, I also used structure comparisons to understand relationships between 

proteins. The degree of fitness between structures is usually calculated by a scoring scheme. 

The common way to represent the structural fitness is Root Mean Square Deviation 

(RMSD) for all residues of the two protein structures. The RMSD gives a measure of the 

average level of deviations over the superposed atoms. 

∑
=
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Where, D refers to deviation of the atoms and N refers to the number of atoms matched. 

 

There are different structural alignment methods adopting the aforementioned algorithms. 

Amongst the common implementations are DALI (Holm and Sander, 1993), Combinatorial 

Extension (CE) (Shindyalov and Bourne, 1998), and Protein Informatics System for 

Modelling (PrISM) (Yang and Honig, 2000). Here, I used PrISM to compare the structures. 

 

Protein evolution may occur in two ways: divergent or convergent evolution. When a 

protein structure diverges to form a new fold or function, it results in divergent evolution 
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(e.g., P-loops). However if two evolutionarily independent folds converge to represent 

similar structure or function it becomes convergent evolution (e.g., serine proteases). 

Proteins evolved through a divergent mechanism are likely to have a trail of homologs and 

can be detected using sequence and structure comparisons. Here, I attempt to study this 

using two well known protein families – Cytochrome c and P-loops and answer the 

following questions. 

 

(1) Is it possible to understand the evolutionary pattern of any protein family or superfamily 

based solely on its structure and sequence divergence? 

(2) Whether understanding this will help us in assigning hierarchies for a protein in the 

existing classification of protein structures? 

 

B.2 Datasets 

I used SCOP database for this study (please refer to Appendix A for details of SCOP). The 

All-α  protein class contains a fold level called cytochrome c, which in turn is composed of a 

single superfamily named cytochrome c. This superfamily has four families. The Di-haem 

cytochrome c peroxidase family has only synthetic protein structures and, therefore, only 

domains from the other families (39 sequences) were used in this analysis. 

 

P-loop domains are found in the class α/β and fold/superfamily P-loop containing 

nucleotide triphosphate hydrolases (this fold has only one superfamily). The superfamily 

has domains composed of parallel beta sheets of varied sizes connected by helices. For 

example, the Nucleoside and nucleotide kinases family has 5 strands with architecture type 

23145 and Nitrogenase iron-protein like group family has 7 strands with architecture type 

3241567. The superfamily is composed of 14 families. I used all the domains (85 sequences, 

excluding domains involving multiple chains) from these 14 families for this analysis. 

 

From these datasets, I then found sequence homologs and structure homologs that can be 

detected by the above described methods. 
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B.3 Intermediate sequence search 

I collected homologs for each of the domains in the two superfamily datasets using FASTA 

3.3 (with BLOSUM 62 matrix, ktup = 1) by searching against the pdb90d_1.53 database. 

The pdb90d_1.53 database is derived from sequences of SCOP domains (version 1.53) 

sharing 90% or less sequence identity. 

 

Domains (query and target), with scores better than the threshold value 0.01, are referred as 

‘direct hits’. For domains that cannot be detected directly, I used the ISS procedure 

described above to link the query and target. 

 

A comparison of ISS hits with psi-BLAST shows that psi-BLAST can detect all the remote 

homologs identified by ISS in P-loops superfamily and only about half of them in 

cytochrome c superfamily. The advantage ISS has in some cases might be due to the match 

score it gains by producing longer alignments around conserved regions of the protein. 

However, both the methods fail to detect remote homologs from P-loops superfamily than 

found from cytochrome c superfamily. This might be due to the extensive divergence of 

sequences in P-loops superfamily (they are quoted to have some converged domains 

(Bossemeyer, 1994) and differences in sequence length (average length of P-loops is ≈ 230 

amino acids, twice the size of cytochrome c). 

 

Intermediate searches based on structural information could find new remote homologs that 

ISS could not detect. This is expected because it is known that different sequences can have 

similar folds. Therefore, by comparing structures it is more likely to detect remote 

homologs. I suggest that by using intermediate structural search, even more distant 

relationships can be detected.  

 

Then I used the alignments obtained from the query-intermediate and target-intermediate to 

generate a “progressive alignment” (i.e., a multiple sequence alignment generated by 

progressively aligning pairwise alignments using ClustalW alignments and structure 

information) of query-intermediate-target or query-intermediate-intermediate-target.  

 

These progressive alignments show that the intermediates can improve the quality of 

alignments between query and target. An example of this alignment is shown in Figure 72. 
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The figure shows the improvement in alignment between query-target (SCOP Ids: 

d1a56__ - d1c75a_) produced by FASTA (Figure 72a) and the progressive alignment 

generated manually after introducing one (d451c__) and two intermediate (d1ayg__ and 

d451c__) sequences (Figure 72b and Figure 72c). The alignment shows that there are some 

residues common in all the sequences and some between query-intermediate, target-

intermediate and intermediate-intermediate. 

 

Figure 72. Comparison of alignments of two distant proteins with and without 
intermediates. (a) Alignment of the two domain produced by FASTA 3.3. (b) The 
progressive alignment generated by including one intermediate. (c) The progressive 
alignment generated by including two intermediates. 

 

Likewise, I selected closely clustered domains from each of the four SCOP protein groups 

(mitochondrial cytochrome, cytochrome c2, cytochrome c551 and cytochrome c6) to make a 

progressive alignment. These groups were used due to the fact that they represent most of 

the members of the superfamily. From the progressive alignment made for each of the 

protein groups, I derived a consensus (Figure 73). This consensus was then used to derive an 

overall consensus shown in Figure 74. The figure shows that there are 10 invariable residues 

in the consensus and it agrees with the consensus derived by Ptitsyn  by aligning 164 

sequences from the cytochrome c superfamily (Ptitsyn, 1998). His alignments were 

generated using the PileUP program and manually edited taking functional residues into 

consideration. 
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Figure 73. Consensus sequences derived for the four SCOP protein group in monodomain 
cytochrome c family 

 
Figure 74. Consensus of consensus for sequences in monodomain cytochrome c family 

The conserved residues were involved in heme binding and needed for functional role of the 

protein. The other conserved residues do not have any functional role and are found to be 

key residues needed to maintain structural fold of cytochromes. The key residues reported 

here agree well with the results found in the literature (Ptitsyn, 1998). Figure 74 shows the 

key residues identified by Ptitsyn. The differences include two additional residues 

conserved at position 3 (aliphatic residue) and position 10 (aliphatic residue), the presence 

of a proline at position 1 and a phenyalanine instead of an isoleucine at position 8. These 

discrepancies might be due to number of sequences compared and the kind of alignment 

generated. Ptitsyn used 164 sequences whereas here only 19 sequences were used. Although 

comparatively very few sequences were used, the result seems to be almost the same. This is 

a promising result opening opportunities in extending the procedure to other superfamilies. 

However, an attempt on P-loops failed primarily due to the fact that the superfamily is much 

more diverged and only very few sequences form distinct clusters.  

 

B.4 Structural homologs 

I did an all-against-all structural comparison of the domains using PrISM. Then I used the 

alignment from PrISM as input to another program called MSARMS (Hubbard, 1994) that 

measures the distance in Angstrom between the matched residues in the superposition. 

These RMSD values from PrISM and MSARMS programs were used for this study. 



B.5 Clustering 

  

221

 

B.5 Clustering 

With these homologs and their relationship (given as E-value for sequences and RMSD for 

structures), I represented proteins as clusters in two-dimensional space. This was done using 

the procedure given in Figure 75 using sequence/structure distance matrices (or similarity 

matrices). 

 
Figure 75. Flow chart describing steps used in clustering and visualisation of data. 

I did initial clustering based on the sequence based distance matrix using single and 

complete linkage methods with a threshold E-value of 0.001 and 0.05 respectively. Then I 

merged the resulting sets of clusters based on the RMSD values using the Unweighted Pair 

Group Method using Arithmetic average approach. A threshold value of 4.00Å was used for 

the P-loops superfamily and a threshold of 2.00Å was used for the cytochrome c 

superfamily. I also applied the complete linkage approach to merge the initial set of clusters 

using a threshold value of 6.00Å for both superfamilies. 

 

To find co-ordinates of the data set in 2D space, I used Principal Co-ordinate Analysis 

(PCoA). For a problem of N objects, there could be N*(N-1) distances and displayed in (N-

1) dimensional space. This (N-1) dimensional space was reduced to 2D/3D space and 

plotted. 

 

A manual plotting of the data gave a cluster map for both cytochrome c (Figure 76) and P-

loops superfamilies (Figure 77). Figure 78 shows the demarcation of clusters into family 

and protein levels based on the SCOP classification for cytochrome c. Similarly, Figure 79 

shows the demarcation of family levels in P-loops. The protein levels were not marked in P-

loops to avoid the complexity in the figure. 
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Figure 76. Cluster map of cytochrome c superfamily 
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Figure 77. Cluster map of P-loops superfamily 
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Figure 78. Cluster map of cytochrome c superfamily with demarcation of SCOP 
superfamily, family and protein levels 
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Figure 79. Cluster map of P-loops superfamily with demarcation of SCOP superfamily, 
family levels 
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The maps (Figure 76 and Figure 77) show domain relationships either by solid lines or 

dashed lines. The solid lines indicate domains having strong relationship between them (E-

value < 0.4 and RMSD < 4 Å). Also, the length of the solid line represents real Euclidean 

distance in the cluster map. The dashed lines show there is a relationship between the 

connected domains. However, the position of domains in the map is not true. This is due to 

the non-availability of a relationship between the connected domains and its neighbors.  

Also, the length of the broken line does not represent real Euclidean space in the map.  

 

The cytochrome maps (Figure 76 and Figure 78) show that two SCOP protein groups, 

mitochondrial cytochrome c and cytochrome c2, were well separated from other protein 

groups. The domains forming the cytochrome c552 cluster show that they have diverged 

more than any other SCOP protein group. Also, it can be seen that most of the domains from 

the cytochrome c6 and cytochrome c551 SCOP protein groups form closer clusters while 

some of them get away from this cluster and act as outliers. 

 

P-loops cluster maps (Figure 77 and Figure 79) show that the domains have diverged more 

when compared to the cytochrome c domains. The maps show a number of domains 

represented as singletons or as small groups not connected to each other. As stated earlier, 

absence of a line between domains means no relationship can be identified among them 

(with score below the threshold limit), although some of the singletons belong to SCOP 

family. Only members of two families (Nucleoside and nucleotide kinase and G-proteins) 

were found to be grouped together on the map. This may be due to more environmental 

constraints and less active site requirements on P-loop superfamily or may be due to a 

convergence phenomena as seen in phosphate binding proteins (Bossemeyer, 1994). 

 

These cluster maps are a useful tool to aid in understanding of the relationship between 

protein members of a family: 

 

(1) It gives an overall picture of the divergence of a protein superfamily. 

(2) It shows the relationships between SCOP families. 

(3) The method could be used as an initial automated classification procedure of protein 

structures. A new protein structure can be used as a query to find its sequence or 

structure homologs. Then based on the sequence and structural relationship (E-value and 
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RMSD), the protein can be added in the cluster map. Such a map will give a good 

idea to which of the superfamily or family the new protein belongs. Then with detailed 

knowledge, the protein can be allocated in a specific family (manual curation). The 

clustering approach can be exploited to assign function to an unknown protein 

(Sternberg, 2001), but it cannot be trusted fully as a similar structure does not always 

represent the same function. 

(4) It gives a clear picture about any particular SCOP family and allows the identification of 

any outliers in it. In the P-loops cluster map (Figure 79), there are two clusters one with 

domains d1d2ja__, d1qf5a__ and d1dj3a_ and another with d2nipa_, d1cp2a_, d1ffh__, 

d1byi__ and d1fts__ (boxed). But all of these domains are placed in the same family in 

SCOP. On discussion with Alexey Murzin (the primary curator of SCOP database), he 

recalled he considered that it might be better to keep these two clusters in two separate 

groups, say as, two different sub-families/families. He only kept them together due to 

limitations in the current SCOP classification system. 

 

Likewise the domain d1qhia_, classified in the Nucleotide and nucleoside kinase family in 

SCOP, are positioned separately from the main cluster. The outlier was later cross-checked 

with structural analysis (Morea, 2001). The analysis also agreed that the domain is distinct 

from its family members. The probable reason for the isolated cluster of d1qhia__  is that it 

is a chimeric protein  and does not exist naturally i.e. it does not have sequence or structure 

homology with other Nucleotide and nucleoside kinase proteins even though it retains the 

same function. It was for this reason and since the domain satisfied minimal the P-loop 

topology, that Alexey Murzin classified the domain under the same family. 

 

Thus, cluster maps might help us to be aware of outliers in a particular superfamily/family 

classification before starting any kind of detailed analysis on it. 

 

Because of these advantages of the cluster maps, I automated the clustering process to 

extend the study later for other families. A comparison between manual and automated 

clustering procedures shows that the automated method performed equally well with the 

manual method (Figure 80 and Figure 81). Also, the automated methods provide similar 

results with another automated clustering procedure based on the MCL algorithm (Enright 

et al., 2002). 
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Figure 80. A cluster produced by the automated method for cytochrome c superfamily 

 
Figure 81. A cluster produced by automated method for P-loops superfamily 
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In both manual and automated processes, clustering was done using sequence and 

structural relationships, but it is possible to be done with sequence information alone. 

However, this will give only the number of clusters that can be formed from the superfamily 

and members in each cluster. A two dimensional representation of data is difficult with 

sequence information alone due to the fact that the data needs to undergo significant 

normalization procedures before it can be used to find co-ordinates. 

 

B.6 Orthology and paralogy 

The sequence and structural information, used above to generate cluster maps, can also form 

the basis for detecting orthologous relationships within protein families in the study of 

protein evolution. Such a group of ortholog domains was found in P-loops superfamily. The 

group comprises adenylate kinases from Escherichia coli, Bacillus stermathermophilus and 

Saccharomyces cerevisiae. Using species as a time scale, it can be said that adenylate kinase 

of Escherichia coli and Bacillus stermathermophilus appeared earlier than yeast protein. 

However, it does not mean that yeast protein evolved from Escherichia coli or Bacillus and 

it would be extremely difficult in assessing the proper time scale for these proteins based on 

sequence and structure information alone. 

 

All the three adenylate kinases clustered close to each other on the map. So, from tightly 

clustering domains, it can be presumed that they are possibly to be orthologous to each 

other. 

 

The TOPS (Westhead et al., 1999) diagrams of these three proteins (Figure 82) shows that 

Escherichia coli and yeast adenylate kinases are identical whereas in Bacillus, there is an 

extra β strand and its orientation is reversed. Interestingly, this part of the protein is not 

under SCOP domain definition, which means that there is no functional or structural role for 

this part of the protein. Since this part does not have structural or functional constraints, it is 

more likely to be subject to mutations and may be influenced by environmental factors of 

Bacillus compared with yeast or Escherichia coli. From this, I conclude that the evolution of 

adenylate kinase would have more likely started from a common ancestor and given rise to 

Escherichia coli and or Bacillus and later to yeast protein. Later, Bacillus adenylate kinase 

would have acquired some changes in its protein. 
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Figure 82. Topology diagram for adenylate kinase 

Likewise, from the cytochrome map, two SCOP protein groups form distinct clusters from 

the rest of the cytochrome members. The overall topology of the cytochrome superfamily 

members were analyzed using TOPS (Figure 83).  Generally, cytochrome c fold has 5 

helices. However, some members of cytochrome c551 group have 6 helices and cytochrome 

c2 group has 5 helices and 2 β strands except d3c2c__, which has only 5 helices. The 

topology of cytochrome c552 group (5 helices) remains the same, although its sequence has 

diverged greatly. However, the domains of this group (cytochrome c552) forms close cluster 

with domains of different cytochrome c protein groups than among itself. It might be one of 

the typical cases, where orthology/homology cannot be resolved based on sequence identity 

because an extensive sequence divergence has occurred. However, it can also be argued that 

cytochrome c552 proteins were actually formed from convergence of different cytochrome c 

proteins. But this is highly unlikely to occur given the clear picture of overall divergence of 

cytochrome proteins and absence of any convergence reports in the cytochrome c fold. 
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Figure 83. Topology diagram for cytochrome c proteins 

Mitochondrial cytochrome c was seen later in the time-scale when compared to bacterial 

cytochrome c. Given the endosymbiotic hypothesis, it is likely that any bacterial 

cytochrome c would have given rise to mitochondrial cytochrome. Here, it can be seen that 

cytochrome c2 clustered closely with mitochondrial cytochrome (Figure 78). So it is likely 

that cytochrome c2 would have been the ancestral protein for mitochondrial cytochrome. 

This was confirmed with expertise knowledge of Alexey Murzin.  The topology study of 

these two SCOP protein groups also confirmed this. The general topology of cytochrome c2 

and mitochondrial cytochrome are 5 helices + 2 β strands and 5 or 6 helices respectively. 

However, some of the domains of cytochrome c2 (e.g., d3c2c__), clustering near to 

mitochondrial cytochrome lack the two β  strands, confirming that the earlier forms of 

cytochrome c2 with β strands, later lost the β strands and have given rise to mitochondrial 

cytochrome.  

 

Thus, cluster maps made with sequence and structural homology is useful in understanding 

the ancestry of proteins. 

 

B.7 Conclusions 

Protein evolution, driven by structural and functional constraints, may leave a trail of 

homologs. Homologs are identified using sequence comparison methods like BLAST, 

FASTA, psi-BLAST and ISS. A comparison of ISS with psi-BLAST was made in two 
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protein superfamilies: cytochrome c and P-loops. The result showed that psi-BLAST 

detected all the remote homologs identified by ISS in P-loops and only half in cytochrome c 

superfamily. Although, I cannot generalize using these limited results, it can be said that ISS 

performs better in some cases than psi-BLAST. The advantage ISS has in some cases might 

be due to the match score it gains by producing longer alignments around conserved regions 

of the protein. Intermediate search conducted using structural information revealed that 

more remote homologs that could not be identified with sequence information alone. So 

structures might be useful in intermediate search when sequence information is inadequate 

in detection. From the progressive alignments generated using most of the domains in four 

SCOP protein groups (mitochondrial cytochrome, cytochrome c2, cytochrome c551 and 

cytochrome c6), an overall consensus was generated. The highly conserved residues found in 

the overall consensus are in tandem with the key structural and functional residues needed 

for the cytochrome c fold (Ptitsyn, 1998). Thus ISS alignments might be useful in 

understanding highly conserved residues in a protein fold. 

 

Along with sequence information, I used structural comparisons by PrISM to produce a 

manual cluster map. The cluster map showed a useful representation of the general 

evolutionary relationships within P-loops and cytochromes.  These might be helpful in 

depicting the relationship between SCOP families, assigning hierarchies to a new protein 

structure in the existing structural classification and understanding the likely ancestor of a 

protein. For example, in cytochrome c superfamily, it was shown that the cytochrome c2 

protein is likely to be an ancestor for mitochondrial cytochrome. The manual process has 

been automated and can now be used as a tool in exploring evolutionary relationships of any 

protein family. 



 

   

APPENDIX C 

 
C.1 Eponine transcription termination parameters 

 
The parameters used to create Eponine transcription termination model – 
 
 
<? xml version="1.0" ?> 
 
<app xmlns=http://www.sanger.ac.uk/Users/td2/specs/epoapps/0/2 
jclass="eponine.TrainingCore"> 
 

<bean name="dataSource" jclass="eponine.datasource.XMLDataSource"> 
<string name="fileName" value="Datasets/trainingdata.xml " /> 

</bean> 
 

<bean name="basisSource" jclass="eponine.model.MultiplexedBasisSource"> 
<int name="reweightFrequency" value="15" /> 
<double name="reweightPseudocounts" value="10.0" /> 

 
<child jclass="eponine.model.NewBasisSource"> 

<boolean name="maximize" value="false" /> 
<double name="stringency" value="0.55" /> 
<double name="stringencyVariance" value="0.03" /> 
<int name="minLength" value="4" /> 
<int name="maxLength" value="8" /> 
<double name="minDistWidth" value="2.5" /> 
<double name="maxDistWidth" value="200.0" /> 
<boolean name="reversible" value="false" /> 
<string name="name" value="nbs1_narrow" /> 
<int name="minPos" value="-190" /> 
<int name="maxPos" value="1990" /> 

</child> 
 

<child jclass="eponine.model.SampleWMBasisSource"> 
<double name="nullModelWeighting" value="7.0" /> 
<double name="nullModelPerMarginalColumn" value="1.0" /> 
<int name="sampleCounts" value="203" /> 
<double name="nullModelWeightingN" value="9.0" /> 
<int name="sampleCountsN" value="120" /> 
<string name="name" value="samplewm2" /> 

</child> 
 

<child jclass="eponine.model.DropColumnBasisSource" /> 
 

<child jclass="eponine.model.DistributionBasisSource"> 
<double name="distChangeWidth" value="3.0" /> 
<double name="distChangeGamma" value="3.0" /> 
<double name="distChangeScale" value="25.0" /> 
<double name="distChangeBias" value="0.06" /> 
<!-- double name="shapeChangeProbability" value="0.05" / --> 
<double name="flipEnvelopeProbability" value="0.00" /> 
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<string name="name" value="distwidth" /> 
</child> 

 
<child jclass="eponine.model.PositionBasisSource"> 

<double name="shiftWidth" value="4" /> 
</child> 

 
<child jclass="eponine.model.CrossWMBasisSource" /> 

 
<child jclass="eponine.model.AppendColumnBasisSource" /> 

 
<child jclass="eponine.model.FlipMaxBasisSource" /> 

</bean> 
 

<bean name="trainer" jclass="stats.glm.VRVMTrainer"> 
<int name="numThreads" value="4" /> 
<int name="maxCycles" value="11000" /> 
<!--int name="cleaningCycles" value="0" /--> 
<int name="maxWorkingSet" value="28" /> 
<int name="minWorkingSet" value="25" /> 
<int name="initialWorkingSet" value="50" /> 
<double name="initialAlpha" value="1.0" /> 
<boolean name="unityHack" value="true" /> 
<double name="unityHackThreshold" value="1.0" /> 
<boolean name="resetAlphaHack" value="true" /> 
<boolean name="insertUnity" value="true" /> 

</bean> 
 

<bean name="retrainer" jclass="stats.glm.VRVMTrainer"> 
<int name="maxCycles" value="100" /> 
<!--int name="cleaningCycles" value="0" /--> 
<double name="initialAlpha" value="1.0" /> 
<boolean name="unityHack" value="true" /> 
<double name="unityHackThreshold" value="1.0" /> 

</bean> 
 

<string name="fileName" value="Models/terminationmodel.xml" /> 
<int name="checkpointFrequency" value="500" /> 

</app> 
 
 
C.2 GAZE gene structure models 

The configuration file explaining the gene model with translation features for predicting 
genes using GenePred – 

 
<? xml version="1.0" encoding="US-ASCII" ?> 

 
<gaze> 

<declarations> 
<feature id="tss" st_off="0" en_off="1" /> 
<feature id="tis" st_off="0" en_off="3"/> 
<feature id="5ss" st_off="1" en_off="1" />  
<feature id="3ss" st_off="1" en_off="1" />  
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<feature id="tts" st_off="3" en_off="0"/> 
<feature id="polyA" st_off="1" en_off="1"/> 
 
<feature id="tss_rev" st_off="1" en_off="0" /> 
<feature id="tis_rev" st_off="3" en_off="0" /> 
<feature id="5ss_rev" st_off="1" en_off="1" />  
<feature id="3ss_rev" st_off="1" en_off="1" />  
<feature id="tts_rev" st_off="0" en_off="3" /> 
<feature id="polyA_rev" st_off="1" en_off="1"/> 
 
<!--lengthfunction id="intron_pen" /> 
<lengthfunction id="intergene_pen" /> 
<lengthfunction id="inital_exon_pen" /> 
<lengthfunction id="internal_exon_pen" /> 
<lengthfunction id="terminal_exon_pen" /> 
<lengthfunction id="single_exon_gene_pen" /--> 

</declarations> 
 

<gff2gaze>  
<!-- Features --> 
<gfffeat feature="TSS" strand="+" source="Eponine"> 

<feat id="tss"/> 
</gfffeat> 
 
<gfffeat feature="TSS" strand="-" source="Eponine"> 
 <feat id="tss_rev"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="+" source="Eponine"> 
 <feat id="tis"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="-" source="Eponine"> 
 <feat id="tis_rev"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="+" source="Eponine"> 
 <feat id="5ss"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="-" source="Eponine"> 
 <feat id="5ss_rev"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="+" source="Eponine"> 
 <feat id="3ss"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="-" source="Eponine"> 
 <feat id="3ss_rev"/> 
</gfffeat> 
 
<gfffeat feature="TTS" strand="+" source="Eponine"> 
 <feat id="tts"/> 
</gfffeat> 
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<gfffeat feature="TTS" strand="-" source="Eponine"> 
 <feat id="tts_rev"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="+" source="Eponine"> 
 <feat id="polyA"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="-" source="Eponine"> 
 <feat id="polyA_rev"/> 
</gfffeat> 

</gff2gaze> 
 

<dna2gaze> 
<!--dnafeat pattern="tataaa"> 

<feat id="tss" /> 
</dnafeat> 
 
<dnafeat pattern="atg" score="0.001"> 
 <feat id="tis" /> 
</dnafeat> 
 
<dnafeat pattern="taa" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tag" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tga" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="aataaa" score="0.001"> 
 <feat id="polyA" /> 
</dnafeat> 
 
<dnafeat pattern="tttata"> 
 <feat id="tss_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cat" score="0.001"> 
 <feat id="tis_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
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<dnafeat pattern="tca" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tttatt" score="0.001"> 
 <feat id="polyA_rev" /> 
</dnafeat--> 
 
<!--takedna id="5ss_1" st_off="0" en_off="1"/> 
<takedna id="3ss_1" st_off="1" en_off="-1"/> 
<takedna id="5ss_2" st_off="-1" en_off="1"/> 
<takedna id="3ss_2" st_off="1" en_off="0"/> 
<takedna id="5ss_1_rev" st_off="1" en_off="0"/> 
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/> 
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/> 
<takedna id="3ss_2_rev" st_off="0" en_off="1"/--> 

</dna2gaze> 
 

<model> 
<target id="END"> 
 <source id="BEGIN" out_feat="No_genes"/> 
 <source id="polyA" out_feat="GEN_DNA" /> 
 <source id="tss_rev" out_feat="GEN_DNA"/> 
</target> 
 
<!--Forward strand gene--> 
  
<target id="tss"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" mindis="1" out_feat="intergenic"/> 
    <source id="tss_rev" mindis="1" out_feat="intergenic"/> 
</target> 
 
<target id="tis"> 
    <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/> 
</target> 
 
<target id="5ss"> 
 <!--killfeat id="tts"/--> 
 <source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+" /> 
 <source id="3ss" out_feat="internal_exon"  mindis="6" maxdis= "10000" out_str="+" 
/> 
</target> 
 
<target id="3ss"> 
 <source id="5ss" out_feat="intron"  mindis="6" out_str="+"/> 
</target> 
 
<target id="tts"> 
 <!--killfeat id="tts" /--> 
    <!--source id="tis" out_feat="single_exon_gene" mindis="60"out_str="+"/--> 
    <source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target> 
 
<target id="polyA"> 
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    <source id="tts" out_feat="3UTR" mindis="1" out_str="+"/> 
</target> 
 
<!--Reverse strand gene--> 
   
<target id="polyA_rev"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" out_feat="intergenic" mindis="1"/> 
    <source id="tss_rev" out_feat="intergenic" mindis="1"/> 
</target> 
 
<target id="tts_rev"> 
    <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/> 
</target> 
 
<target id="3ss_rev"> 
 <!--killfeat id="tts_rev"/--> 
 <source id="tts_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000" 
out_str="-"/> 
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000" 
out_str="-"/> 
</target> 
 
<target id="5ss_rev"> 
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/> 
</target> 
 
<target id="tis_rev"> 
 <!--killfeat id="tts_rev" phase="0"/--> 
    <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/--> 
    <source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/> 
</target> 
 
<target id="tss_rev"> 
    <source id="tis_rev" out_feat="5UTR" mindis="1" out_str="-"/> 
</target> 

</model> 
 
<lengthfunctions> 

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/> 
<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/> 
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/> 
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/--> 
 
<!--lengthfunc id="single_exon_gene_pen"> 
 <point x="500" y ="0.001"/> 
 <point x="20000" y="0.2"/> 
</lengthfunc--> 
 
<!--lengthfunc id="intergene_pen"> 
 <point x="200000" y ="0.01"/> 
 <point x="200001" y="0.01"/> 
</lengthfunc --> 

</lengthfunctions> 
</gaze> 
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The configuration file explaining the gene model without translation features for predicting 
genes using GenePred – 
 
<?xml version="1.0" encoding="US-ASCII"?> 

 
<gaze> 

<declarations> 
<feature id="tss" st_off="0" en_off="1" /> 
<!--feature id="tis" st_off="0" en_off="3"/--> 
<feature id="5ss" st_off="1" en_off="1" />  
<feature id="3ss" st_off="1" en_off="1" />  
<!--feature id="tts" st_off="3" en_off="0"/--> 
<feature id="polyA" st_off="1" en_off="1"/> 
 
<feature id="tss_rev" st_off="1" en_off="0" /> 
<!--feature id="tis_rev" st_off="3" en_off="0" /--> 
<feature id="5ss_rev" st_off="1" en_off="1" />  
<feature id="3ss_rev" st_off="1" en_off="1" />  
<!--feature id="tts_rev" st_off="0" en_off="3" /--> 
<feature id="polyA_rev" st_off="1" en_off="1"/> 
 
<!--lengthfunction id="intron_pen" /> 
<lengthfunction id="intergene_pen" /> 
<lengthfunction id="inital_exon_pen" /> 
<lengthfunction id="internal_exon_pen" /> 
<lengthfunction id="terminal_exon_pen" /> 
<lengthfunction id="single_exon_gene_pen" /--> 

</declarations> 
 

<gff2gaze>  
<!-- Features --> 
<gfffeat feature="TSS" strand="+" source="Eponine"> 

<feat id="tss"/> 
</gfffeat> 
 
<gfffeat feature="TSS" strand="-" source="Eponine"> 
 <feat id="tss_rev"/> 
</gfffeat> 
 
<!--gfffeat feature="TIS" strand="+" source="Eponine"> 
 <feat id="tis"/> 
</gfffeat> 
 
<gfffeat feature="TIS" strand="-" source="Eponine"> 
 <feat id="tis_rev"/--> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="+" source="Eponine"> 
 <feat id="5ss"/> 
</gfffeat> 
 
<gfffeat feature="5SS" strand="-" source="Eponine"> 
 <feat id="5ss_rev"/> 
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</gfffeat> 
 
<gfffeat feature="3SS" strand="+" source="Eponine"> 
 <feat id="3ss"/> 
</gfffeat> 
 
<gfffeat feature="3SS" strand="-" source="Eponine"> 
 <feat id="3ss_rev"/> 
</gfffeat> 
 
<!--gfffeat feature="TTS" strand="+" source="Eponine"> 
 <feat id="tts"/> 
</gfffeat> 
 
<gfffeat feature="TTS" strand="-" source="Eponine"> 
 <feat id="tts_rev"/--> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="+" source="Eponine"> 
 <feat id="polyA"/> 
</gfffeat> 
 
<gfffeat feature="POLYA" strand="-" source="Eponine"> 
 <feat id="polyA_rev"/> 
</gfffeat> 

</gff2gaze> 
 

<dna2gaze> 
<!--dnafeat pattern="tataaa"> 
 <feat id="tss" /> 
</dnafeat> 
 
<dnafeat pattern="atg" score="0.001"> 
 <feat id="tis" /> 
</dnafeat> 
 
<dnafeat pattern="taa" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tag" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="tga" score="0.001"> 
 <feat id="tts" /> 
</dnafeat> 
 
<dnafeat pattern="aataaa" score="0.001"> 
 <feat id="polyA" /> 
</dnafeat> 
 
<dnafeat pattern="tttata"> 
 <feat id="tss_rev" /> 
</dnafeat> 
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<dnafeat pattern="cat" score="0.001"> 
 <feat id="tis_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="cta" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tca" score="0.001"> 
 <feat id="tts_rev" /> 
</dnafeat> 
 
<dnafeat pattern="tttatt" score="0.001"> 
 <feat id="polyA_rev" /> 
</dnafeat--> 
 
<!--takedna id="5ss_1" st_off="0" en_off="1"/> 
<takedna id="3ss_1" st_off="1" en_off="-1"/> 
<takedna id="5ss_2" st_off="-1" en_off="1"/> 
<takedna id="3ss_2" st_off="1" en_off="0"/> 
<takedna id="5ss_1_rev" st_off="1" en_off="0"/> 
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/> 
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/> 
<takedna id="3ss_2_rev" st_off="0" en_off="1"/--> 

</dna2gaze> 
 
<model> 

<target id="END"> 
 <source id="BEGIN" out_feat="No_genes"/> 
 <source id="polyA" out_feat="GEN_DNA" /> 
 <source id="tss_rev" out_feat="GEN_DNA"/> 
</target> 
 
<!--Forward strand gene--> 
<target id="tss"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" mindis="1" out_feat="intergenic"/> 
    <source id="tss_rev" mindis="1" out_feat="intergenic"/> 
</target> 
 
<!--target id="tis"> 
    <source id="tss" mindis="1" out_feat="5UTR" out_str="+"/> 
</target--> 
 
<target id="5ss"> 
 <!--killfeat id="tts"/--> 
 <!--source id="tis" out_feat="inital_exon" mindis="3" maxdis= "10000" out_str="+" 
/--> 
    <source id="tss" mindis="1" out_feat="initial_exon" out_str="+"/> 
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 <source id="3ss" out_feat="internal_exon"  mindis="6" maxdis= "10000" 
out_str="+" /> 
</target> 
 
<target id="3ss"> 
 <source id="5ss" out_feat="intron"  mindis="6" out_str="+"/> 
</target> 
 
<!--target id="tts"--> 
 <!--killfeat id="tts" /--> 
    <!--source id="tis" out_feat="single_exon_gene" mindis="60" out_str="+"/--> 
    <!--source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target--> 
 
<target id="polyA"> 
    <!--source id="tts" out_feat="3UTR" mindis="1" out_str="+"/--> 
    <source id="3ss" out_feat="terminal_exon"  mindis="3" out_str="+"/> 
</target> 
 
<!--Reverse strand gene--> 
   
<target id="polyA_rev"> 
    <source id="BEGIN" out_feat="GEN_DNA"/> 
    <source id="polyA" out_feat="intergenic" mindis="1"/> 
    <source id="tss_rev" out_feat="intergenic" mindis="1"/> 
</target> 
 
<!--target id="tts_rev"> 
    <source id="polyA_rev" out_feat="3UTR" mindis="1" out_str="-"/> 
</target--> 
 
<target id="3ss_rev"> 
 <!--killfeat id="tts_rev" phase="0"/--> 
 <source id="polyA_rev" out_feat="terminal_exon" mindis="3" maxdis= "10000" 
out_str="-"/> 
 <source id="5ss_rev" out_feat="internal_exon" mindis="6" maxdis= "10000" 
out_str="-"/> 
</target> 
 
<target id="5ss_rev"> 
 <source id="3ss_rev" out_feat="intron" mindis="6" out_str="-"/> 
</target> 
 
<!--target id="tis_rev"--> 
 <!--killfeat id="tts_rev" phase="0"/--> 
    <!--source id="tts_rev" out_feat="single_exon_gene" mindis="60" out_str="-"/--> 
    <!--source id="5ss_rev" out_feat="initial_exon" mindis="3" out_str="-"/> 
</target--> 
 
<target id="tss_rev"> 
    <source id="5ss_rev" out_feat="initial_exon" mindis="1" out_str="-"/> 
</target> 

</model> 
<lengthfunctions> 

<!-- lengthfunc id="intron_pen" file="./tables/intron_penalty"/> 
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<lengthfunc id="initial_exon_pen" file="./tables/exon_penalty.initial"/> 
<lengthfunc id="terminal_exon_pen" file="./tables/exon_penalty.terminal"/> 
<lengthfunc id="internal_exon_pen" file="./tables/exon_penalty.internal"/--> 
 
<!--lengthfunc id="single_exon_gene_pen"> 
 <point x="500" y ="0.001"/> 
 <point x="20000" y="0.2"/> 
</lengthfunc--> 
 
<!--lengthfunc id="intergene_pen"> 
 <point x="200000" y ="0.01"/> 
 <point x="200001" y="0.01"/> 
</lengthfunc --> 

</lengthfunctions> 
</gaze> 

 


