

Computational Analysis of Genomes

Matthew R. Pocock

This dissertation is submitted for the degree of Doctor of

Philosophy.

April 2003

Supervisors: Dr T. J. P. Hubbard, Dr N. Goldman

The Sanger Centre, Cambridge; Darwin College, Cambridge

 i

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration.

The work in this thesis has not been submitted in whole, or in part, for a degree,

diploma, or any other qualification at any other university.

Matthew R. Pocock,

April 2003, Cambridge, United Kingdom

 ii

Dedication

I would like to thank all of those who have supported me through the process of

producing this dissertation. Particular thanks must go to Tim Hubbard, who has been

a source of great help and provided direction where needed without smothering me

with micro-management. Nick Goldman and Ed Griffiths have both been valuable

sounding boards throughout. Thomas Down has been my staunchest ally as we

developed BioJava and also the DAS protocol from embryonic beginnings to the well-

respected projects they are now. It would be unfair not to thank all of those who have

helped with BioJava, as coders, testers and users. In particular, a mention must go to

Chris Dagdigian for managing the hardware. I have enjoyed my time here, and this is

in no small part due to the friendliness of those I meet daily in the Sanger Centre, the

EBI and from the Ensembl project. Lastly, I must dedicate this work with heartfelt

gratitude to Caroline. Without her love all academic achievements would be

worthless.

Fate is unmoved by one’s pitiful hopes; what changes, bowing to fate, is

what one hopes for.

(Liza Dalby, The Tale of Murasaki p239)

 iii

Abstract

Recently we have been blessed with a simultaneous rise in the volume of biological

data and the power of computers. This has necessarily led to the emergence of the

field of Bioinformatics, where the study of entire genomes rather than individual

genes is the norm.

This dissertation describes the development and application of the software

framework BioJava, designed from the outset to provide a strong foundation for the

implementation of different machine learning algorithms. BioJava allows genomic

size datasets to be efficiently manipulated in a range of hardware environments.

A variety of supervised and unsupervised learning techniques were applied to data

sets on the scale of whole genomes taking advantage of the BioJava framework.

Firstly, unsupervised learning was used to look for underlying structure in the

genome sequence of whole Malaria chromosomes. Time-reversible 1st order Hidden

Markov Models (HMMs) learned signals based on sequence composition that appear

to correlate closely with biological units, such as exons, introns, repeats and non-

coding genomic regions. This demonstrates the ability of unsupervised methods to

discover biologically meaningful information within genomic sequence.

Secondly, supervised learning was used to develop a regression method able to

predict recombination rate within human chromosomes. Support Vector Machines

(SVMs) using suffix tree kernels were trained on human chromosome 22 sequence

and were able to learn a signal reproducibly, although it was not clear how well this

models recombination rate.

 iv

Finally, supervised learning was used to develop a classification method able to

detect subtle signals in noisy and small sets of micro-array expression data. A

Bayesian technique for training linear models was applied to learn sparse models.

These were able to distinguish between tumour samples that had been treated with a

drug and those that had not. The models produced by this method can be readily

interpreted in terms of individual genes, and in this case made good biological sense.

This dissertation illustrates how a framework of modular and reusable software

components can be used together with advances in artificial intelligence to help us

interpret the data flowing from high throughput projects in the post genomic era.

 v

Table of Contents

Dedication ..ii

Abstract .. iii

Table of Contents ...v

Table of Figures ..ix

List of Tables ..xi

Table of Equations ...xii

Chapter 1 Introduction..1

1.1 Existing Software Development Frameworks for Bioinformatics.................2

1.1.1 The NCBI Toolkit ..3

1.1.2 Bioperl..4

1.1.3 EMBOSS..5

1.2 BioJava...6

1.3 Machine Learning ..8

1.3.1 Clustering, Classification and Regression for Single Items...................9

1.3.2 Signal Analysis with Hidden Markov Models.....................................18

1.4 Implementation and Use of BioJava ..24

Chapter 2 The BioJava Core Interfaces..24

2.1 Java as a Language for Bioinformatics..24

2.2 Nested Exceptions and Assertions ...24

 vi

2.3 Changeability ...24

2.4 Symbols, Alphabets and SymbolList ...24

2.5 Locations, Sequences and Features..24

2.6 Probability Distributions and Hidden Markov Models................................24

2.7 Query..24

2.7.1 Motivations ..24

2.7.2 Initial Implementation..24

2.7.3 Limitations of This System..24

2.8 Recent Developments ..24

2.8.1 The Tag-Value Parser ..24

2.8.2 Flat File Indexing...24

2.8.3 Annotation Types...24

2.8.4 Enhanced Feature Filters..24

2.8.5 Change Hubs..24

2.8.6 Bit Packed Sequences ..24

2.9 Conclusions..24

Chapter 3 HMMs for whole Plasmodium Falciparum Chromosomes.....................24

3.1 Introduction..24

3.2 Simple HMM Architectures...24

3.2.1 Methods..24

3.2.2 Results..24

 vii

3.3 HMM Architectures with Complementary Emission Distributions24

3.3.1 Methods..24

3.3.2 Results..24

3.4 First Order HMMs with Time-Reversible Transition Probabilities.............24

3.4.1 Methods..24

3.4.2 Results..24

3.5 Discussion ..24

3.6 Future Directions ...24

Chapter 4 Investigation of Recombination Rates Using SVMs24

4.1 Introduction..24

4.1.1 Support Vector Machines ..24

4.1.2 BioJava APIs for Support Vector Machines..24

4.2 Methods..24

4.2.1 Searching for a Signal Affecting Recombination Rates Using a

Word-Frequency Kernel Function ...24

4.2.2 Construction and Training of an SVM for Predicting

Recombination Rate...24

4.3 Results..24

4.3.1 Recombination Rates Predictions ..24

4.3.2 Cross-Validation ..24

4.4 Discussion ..24

 viii

Chapter 5 RVMs for Classification of Expression Data...24

5.1 Introduction..24

5.2 Cellular Responses to Doxorubicin ...24

5.3 Generalized Linear Models..24

5.4 Micro-array Classification Using a Support Vector Machine Implemented

as a Linear Kernel RVM..24

5.4.1 Framework for Generalised-Linear-Models amenable to

Expression Arrays..24

5.4.2 RVM Analysis Using the Small Working Set Heuristic......................24

5.4.3 Function of Genes Identified by GLM Models....................................24

5.5 Conclusions, Applications and Future Work ...24

Concluding Remarks..24

References..24

 ix

Table of Figures

Figure 3-1 Emission probabilities for the four pair-state model..................................24

Figure 3-2 Diagram of the P. Falciparum chromosome 3 and the state paths through

three models ...24

Figure 3-3 Diagram of the P. Falciparum chromosome 2 and the state paths through

three models ...24

Figure 3-4 Emission Spectrums for all Pair-State Models...24

Figure 3-5 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria

chromosome 3..24

Figure 3-6 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria

chromosome 2..24

Figure 3-7 Counts for Biological Feature and States for the 2-5 Pair-State Models ...24

Figure 3-8 Normalized Counts of States for Biological Features................................24

Figure 3-9 Normalized counts of Biological Features for States.................................24

Figure 4-1 Comparison of physical and genetic distances along chromosome 2224

Figure 4-2 Total Results of Training the SVM using Uniform Counts24

Figure 4-3 Moving Average for Uniform Counts models of Depth 4-6......................24

Figure 4-4 Moving Average for Uniform Counts models of Depth 7-9......................24

Figure 4-5 Total Results of Training the SVM using Normalized Rates24

Figure 4-6 Moving Average for Normalized Rates: Depths 4-624

Figure 4-7 Moving Average for Normalized Rates: Depths 7-924

 x

Figure 4-8 Accuracy for Recombination SVMs Under 3-Way Jack-knifing24

Figure 4-9 Predictions Across the Entire Chromosome from the 3 Jack-knife Models

for Depth of 5...24

Figure 5-1 Scatter Plot of the Two Topoisomerase II Probes Used.24

Figure 5-2 Expression Levels for Each Probe Used ..24

Figure 5-3 Average Weighs Across Relevant Models...24

Figure 5-4 Average Weights Across All Models...24

 xi

List of Tables

Table 3-1 Forward-strand and reverse-strand counts...24

Table 3-2 State-transitions and their reverse-complements...24

Table 5-1 GLM for all before-after pairs (to 4 s.f.) ...24

Table 5-2 Genes used by cross-validation models...24

 xii

Table of Equations

Equation 1-1 A Hypothesis Function...10

Equation 1-2 Error of a Hypothesis ...11

Equation 1-3 Some Error Functions ..12

Equation 1-4 Dot Products for Items Decomposable into Sub-Spaces with Dot-

products Defined..14

Equation 1-5 Definition of Kernel Functions ..15

Equation 1-6 A Polynomial From a Two-dimensional Coordinate to a Coordinate

Containing One Component for each Possible Product Involving up to Two

Dimensions ..15

Equation 1-7 Dot products between two polynomial mappings reduced to terms

involving the dot product of the unmapped variables..16

Equation 1-8 Polynomial Kernel Function ..16

Equation 1-9 Definition of a Probabilistic Hidden Markov Model21

Equation 1-10 Emission and Transition Probabilities ...22

Equation 1-11 Definition of All Legal State-Sequences..23

Equation 1-12 Likelihood of Observing a Given Sequence and Labelling23

Equation 1-13 Common Dynamic Programming Recursions as Applied to

Probabilistic Hidden Markov Models..24

Equation 4-1 Equation of a Plane ..24

Equation 4-2 Normal to a Plane as a Weighted Sum of Vectors24

 xiii

Equation 4-3 Definition of a Support Vector Machine..24

Equation 4-4 Basis Functions for Kernel Functions and Data Points..........................24

Equation 4-5 SVMs in Terms of Basis Functions ...24

Equation 4-6 The Normalizing Kernel ..24

Equation 4-7 SuffixTree Kernel...24

Equation 5-1 Bayes Theorem...24

Equation 5-2 Rearrangement of Bayes Theorem...24

Equation 5-3 Bayes Theorem in Words...24

Introduction

 1

Chapter 1 Introduction

The emerging field of Bioinformatics bridges the previously distinct worlds of

computer science and biology. Recently, the volumes of information that can be

collected with relative ease and moderately low cost per measurement have become

vast. With the ever increased the volumes of data, it is no longer possible to analyse

all of the data by hand. Computational methods are being developed to generate and

test hypothesises and to collate and present these to users. Often, these users are not

themselves programmers but biologists. Programs like BLAST (Altschul, Gish et al.

1990) have changed from being of interest to a small group of dedicated programmers

to being a tool used daily by researchers in experimental “wet” labs throughout the

world.

Established approaches for analysing biological data overlap with methods used in

other subject areas. Neural networks have been applied to a variety of problems such

as predicting the sub-cellular location of proteins (Reinhardt and Hubbard 1998),

splice-site prediction (Rampone 1998) and secondary-structure assignments for

proteins (Rost and Sander 1994). Hidden-Markov-Models (used extensively in

speech-recognition) have been used as the theoretical basis for a plethora of tasks

involving the labelling of DNA or protein sequences. These include gene finding

(Burge and Karlin 1997; Birney and Durbin 2000), elucidating evolutionary

relationships (Smith and Waterman 1981) and discovering conserved motifs in

proteins (Grundy, Bailey et al. 1997). Expression data has been extensively analysed

using a wide range of methods. These range from very simple techniques like ranking

genes by the difference in absolute level between two conditions (for example, see

(Butte, Ye et al. 2001) and references therein) through to more complex methods like

Introduction

 2

cluster analysis (Eisen, Spellman et al. 1998) and grouping by mutual information

(Butte and Kohane 2000). Above all, simple statistical models have been used

pervasively for almost all tasks.

With the rapidly increasing size and variety of biological datasets that must been

considered in any analysis, there has been a corresponding need for software

frameworks to enable the manipulation of these large datasets and aid in their

analysis.

1.1 Existing Software Development Frameworks for Bioinformatics

There are a variety of standard activities in bioinformatics that have the potential to

be addressed through the use of integrated software packages. These include data

visualization and mining, database management, naming and directory services and

machine learning. The major advantages of using integrated software packages are

that they enable a user to carry out complex tasks without having to re-implement

functionality such as file parsing, algorithms and the resource management associated

with large datasets. This enables their use by those without the necessary computer

skills required to efficiently implement complex or efficient algorithms. The effort

involved in developing and maintaining production quality code to address these

issues is considerable and usually outweighs the effort required to become

familiarised with a package, its interfaces, design and peculiarities. When the package

is a community project every user benefits from any user’s contribution to and

debugging of the code base.

When we started BioJava, there were many bioinformatics-related applications

written in almost every conceivable language. Some of these (e.g. HMMER (Eddy

2001) and BLAST (Altschul, Gish et al. 1990)) distribute source code under an open

Introduction

 3

license. However, usually these applications were coded in isolation from others, so

that each time a developer needed a parser for a given file format, or a data structure

for some biological entity, they would need to develop their own. There were a

handful of toolkits or APIs available under licensing agreements that were compatible

with free use by third parties. There were also a few toolkits available commercially,

which generally made them difficult to use in an academic setting.

1.1.1 The NCBI Toolkit

The National Centre for Biotechnology Information (NCBI) was founded in 1988 to

support bioinformatics in the United States1. One of the services it provides is a

toolkit written in C for the development of bioinformatics applications2. The NCBI

uses this toolkit internally for managing GENBANK (Benson, Karsch-Mizrachi et al.

2003) and other databases, as well as several applications including BLAST. The

current version of the toolkit has data structures for biological sequences, genetic

maps, genome assemblies and bibliographical references, as well as many of the other

commonly encountered concepts and data-structures in bioinformatics. There is an

API for both reading and writing ASN.13 documents, and support has recently been

added for XML4 documents. ASN.1 is used as the definition language within the

toolkit for data structures. The basic data structures and bookkeeping functions, such

1 See http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html for more information about the

NCBI

2 see http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML for a full listing of the

functionality of the tool box

3 see http://www.asn1.org/ for information about ASN.1

4 see http://www.w3c.org/XML/ for resources relating to the XML standard

Introduction

 4

as object life cycle, serialization and de-serialization are generated directly from the

ASN.1 definitions, and are therefore named in a consistent manner.

The NCBI toolkit has had fairly limited use as a development platform outside the

NCBI. This has probably been because although the source code is available, it has

never been regarded as a community project, starting as it did before the emergence of

the open source movement. There are also difficulties inherent to developing and

maintaining portable C libraries.

1.1.2 Bioperl

Perl5 is a loosely- and dynamically-typed scripting language that became adopted as

the scripting language of choice of bioinformatics during the 1990s. This is due to

Perl’s ample abilities to act as a scripting language, its powerful regular expression

handling and its file manipulation abilities. In 1995, the Bioperl (Stajich, Block et al.

2002) project was formed. From the beginning, it was organized around a web site6

and there was a strong commitment to open source development and to sharing source

code between developers using CVS7. It started off as a group of biological scripts,

and it quickly became apparent that there were common and reusable concepts used

by many different scripts. The first and most important of these was the ‘Sequence’

object. As of the 1.2 release of Bioperl in 2003, the exact definition of the sequence

object is still evolving.

5 The Perl web site can be found at http://www.perl.org/

6 BioPerl is co-ordinated via the http://www.bioperl.org/ web site

7 See http://www.cvshome.org/ for more information about CVS

Introduction

 5

Around 1997, the Bioperl project moved in focus from being a collection of Perl

scripts to being a library of Perl modules that defined objects. Soon after that, the

project started to adopt the practice of defining abstract classes or interfaces for these

data types and then extending these for specific implementations.

Perl in general and Bioperl in particular has since proven to be very effective as a

way to glue multiple applications together in pipelines8. Large scale systems have

been built upon Bioperl, such as the Ensemble genome annotation project (Hubbard,

Barker et al. 2002). Bioperl still has resource and computational issues when

managing very large numbers of ‘live’ objects and with allocating and deallocating

objects repeatedly. These are mainly due to inherent limitations of how Perl 5

represents objects.

At the time BioJava was started, Bioperl essentially consisted of a module for

representing sequences and annotations on those sequences, parsers for a few

common sequence formats (EMBL (Stoesser, Baker et al. 2003), SWISS-PROT

(Boeckmann, Bairoch et al. 2003), GENBANK (Benson, Karsch-Mizrachi et al.

2003)) and parsers for some commonly used applications (primarily BLAST).

1.1.3 EMBOSS

Up until the mid 1990s, the commercial software package GCG (Womble 2000),

written in C, was distributed along with its source code. It provided a collection of

command-line tools for sequence manipulation. Because the source code was

available, many new applications using the GCG libraries were developed and

8 See http://www.biopipe.org/ for more information about BioPipe

Introduction

 6

distributed in a package called extended-GCG (EGCG9). When the license agreement

for GCG was changed (around the same time that GCG Ltd was acquired by Oxford

Molecular), the source code ceased to be made available. The developers of EGCG

started to develop the European Molecular Biology Open Software Suite (EMBOSS)

(Rice, Longden et al. 2000). This is a free, open source package containing a wide

range of tools for sequence analysis and database access, as well as data-visualisation.

 At the core of EMBOSS there is a set of libraries for common tasks, such as

sequence input/output (IO), memory management, documentation of source code, and

meta-data for command-line parameters. Although most users of EMBOSS are

probably not programmers, it does provide a relatively effective library for handling

these mundane tasks.

The history of GCG and EMBOSS has underlined the need for widely used libraries

to be available to the community that uses them, without fear of their future removal,

regardless of how benevolent the current owners may be.

1.2 BioJava

In 1997, Java2 was released, together with version 1.2 of the SDK. This was a

substantial improvement over previous versions of Java, both in terms of

performance, and in the range of functionality provided by the standard libraries. With

this development, it became practical to consider developing a Bioinformatics

software package in Java. It was at this point that I first prototyped a set of interfaces

in Java which went on to become the core of BioJava. I was familiar with both C and

Perl, but rejected them for the reasons described below.

9 The original EGCG web site has been taken over by the EMBOSS site and no longer exists

Introduction

 7

C, while being a good language for developing high-performance applications, is

not always ideal for code reuse and rapid application development. C can be bound to

Java applications via the Java Native Interfaces. However, it is easier to manage a

project if it is entirely or mainly in one language. Also, the use of native code stops

the Java application from being platform-neutral.

Bioinformatics applications often require large and complex data structures. Perl’s

capability for handling these structures is limited by two main factors. Firstly, it is

difficult to handle objects that contain cyclic references, because Perl uses a

reference-counting garbage collector that will not remove them, and there is no way to

have a non-counted reference. Secondly, allocating many Perl objects is expensive,

particularly in terms of the memory foot-print associated with each instance. Many

bioinformatics tasks require very large numbers of entities to be compared. Java has a

garbage collector that handles arbitrary graphs of objects. Also, the overhead of a Java

object is minimal (a couple of words for synchronization and other book-keeping

tasks).

At the time, there were no widely used bioinformatics toolkits written in Java. The

Neomorphic toolkit10 was available commercially and provided some visualisation

tools that could be embedded within applications. However, it did not provide code

for flexible file reading and writing. Also, the underlying model for the sequence was

defined in terms of strings and arrays of characters. These do not scale to sequences

the size of whole chromosomes.

10 The Neomorphic web site can be found at https://www.Neomorphic.com/das/ngsdk/

Introduction

 8

It was in this context that BioJava (Pocock, Down et al. 2000) was started, with the

aim of providing APIs for common sequence-related bioinformatics tasks for Java

applications. The original design was heavily influenced by the Bioperl object model

at that time, and since then the two projects have had a degree of common design due

to constant comparisons between how each project approaches issues. The core

BioJava application programming interfaces (APIs) have been essentially stable since

2001.

BioJava was started in 1999, and became part of the Open Bioinformatics

Foundation11 (OBF) in January 2000. The OBF is an umbrella organisation for the

open source Bio* projects. These projects together strive to provide programmer-

friendly toolkits in several languages. Currently there are affiliated projects in Perl,

Java, Python and Ruby. There are also the CORBA, XML and SQL Bio* projects that

are language-neutral but provide data-formats and API interoperability between the

language-specific projects.

1.3 Machine Learning

Unlike other bioinformatics toolkits, BioJava was developed from the start to

provide a framework suitable for computational biology analysis by machine learning.

The main concepts of machine learning are therefore described here together with an

outline of how these are supported by BioJava. How these various implementations

are used is addressed in Chapters 3, 4 and 5.

The majority of machine learning techniques used in this field can be described as

either acting upon discreet entities (by classification or regression) or as labelling a

11 See http://www.open-bio.org/ for more information about the OBF

Introduction

 9

sequence of observations (by signal analysis). Machine learning approaches can also

be further divided into two main categories: supervised and unsupervised learning. In

the case of supervised learning, a training set is available with labelling giving the

“true” outcome for each example. For unsupervised learning, the objective is to detect

patterns within data for which there is no a priori labelling, i.e. to investigate if the

data has any inherent interesting structure.

The generalisation of a supervised learning method is how well it treats data that

did not form part of its training set. It is desirable for supervised learning methods to

generalise well so that the user can have confidence that predictions it generates are

trustworthy, even if the new data bears little resemblance to the training data.

A critical consideration in the design of BioJava has been constructing the

underlying data structures in such a way that they are appropriate for publishing data

to machine learning algorithms. The following sections discuss the way that

classification, regression and signal analysis tasks can be represented mathematically.

This leads to a natural way for structured biological data to be used in machine

learning techniques. While it is not essential to represent the data and interfaces in this

way, it does provide us with a common and clear framework upon which we can

build. This makes it much easier to change the representations of the underlying data

that is exposed to the machine learning technique as well as enabling the evaluating of

a range of different machine learning techniques on the same data.

1.3.1 Clustering, Classification and Regression for Single Items

Regression is used to predict a continuous function for data items from a set. For

example, regression could be used to predict rainfall levels from measurements of

atmospheric conditions. Classification is used to divide a set of items into disjoint

Introduction

 10

subsets. An example would be the classification of predicted transcripts into the sets

of expressed genes and psuedogenes, based on properties of their sequence.

Clustering data items produces a hierarchy of relationships, which can be represented

as a tree, with data items at the leaves. For example, phylogenetic trees are the result

of clustering the sequences of a protein family.

When presented with some items for clustering, classification or regression, it is

often natural to think in terms of these items having features, which may be either

directly observed (intensity of fluorescence on a micro-array), or calculated (BLAST

scores). The analysis is performed on these features. Traditionally, a lot of hard work

has gone into defining informative features (for example, different scoring functions

for sequence alignments) or for extracting useful information from them (for example,

Fourier transforms for expression profiles (Chen, He et al. 1999)). Standard machine

learning techniques can be applied to any set of items which can themselves be

described by a set of features. We will now consider how these datasets can be

represented in a way that makes them applicable to machine learning techniques. This

has a direct bearing upon how the interfaces in BioJava have been designed.

Given a set of items X and a set of possible outcomes Y , a space YX × of

observations and some set of functions called the ‘hypothesis space’ H , we wish to

chose a hypothesis which is a ‘good’ hypothesis for our data:

Equation 1-1 A Hypothesis Function

HhYyXxyx
h

∈∈∈ ,, whereα

The methods differ in the types of hypothesis spaces that can be searched and the

definition of a ‘good’ hypothesis. In the case of clustering, Y is the space of all

Introduction

 11

possible trees. The set of trees may be restricted to binary trees, trees that have a depth

of 1 (when partitioning into disjoint groups), or may be any other arrangement. For

classification Y is the set of labels. For regression, Y is the set of possible values for

the continuous variable being predicted: often a range of real numbers. The case of

partitioning the data into disjoint groups (classification) is in practice very similar to

regression, as the regression case can be thought of as a special case where the output

is one of a very large number of possible groups (one per real number).

It is always useful to quantify the error associated with a hypothesis. This can be

used during training to help select a hypothesis, and after training to evaluate the

success against unseen data. For supervised learning, the error is a measure of how far

the predictions fall from the true values. For a wide range of classification and

regression tasks, the error of a hypothesis over a complete data set can be treated as

the sum of the errors for each individual data point. The exact choice of how to

measure this distance between predicted and expected output depends upon the model

being considered.

Equation 1-2 Error of a Hypothesis

)(

)(
),(

xhy

err
YXyx

−=

= ∑
×∈

δ

δγ

Where δ is the difference between the expected and predicted value, γ is the total

error and err is the error function being used. For unsupervised learning there is no

notion of a “true” value, but it is still possible to define a function that is analogous to

the error function that is based purely on the assumptions of the model.

Introduction

 12

The error function is part of how the method will attempt to treat outliers, how

sensitive it will be to ‘fuzzy’ data and how general the resulting model will be. Below

are some example error functions:

Equation 1-3 Some Error Functions

−
<=

=

=

d
ddhr

sqr

lin

δ
δδ

δδ

δδ

0
)(),(

)(
)(

2

The third case in Equation 1-3 is interesting, because it includes an insensitive

region of width d around the true solution, and any prediction falling in this region

receives no penalty. In effect, this is saying that errors up to a value of d are

unimportant.

During training, given the training examples T of the form),(yx , the aim will be

to select some function that has a low error value. When used for prediction, we will

estimate the value of)|(xy as)(xhy ≈ . The ability of the function to generalise can

be estimated by computing)(xh for known outcomes that were not part of the

training data. A model generalises well if the accuracy of the predictions on unseen

data is comparable to the accuracy when predicting outcomes on the training set. This

can be estimated by training on a subset of the available training data, and then doing

a blind prediction on the rest and calculating the error function or observing the rate

of correct and incorrect predictions.

There exists a trivial function that is the exact map defined by T as long as each x

appears exactly once (i.e. there is no conflicting information). This function will

contain no errors. It has exactly as many parameters as T has members. This has no

Introduction

 13

generalisation power, as the function is not defined for any x not represented in T . If

the training method allows this hypothesis or any similar hypothesis to be chosen then

it is ‘over-fitting’ the training data. If the resulting model contains more free

parameters than there are training items (assuming that they really can vary

independently), then it is very difficult to ensure that the model is not over-fitting. A

good solution to this is to encourage the method to produce models with significantly

fewer parameters than there are training examples.

Having defined the problem, we will now discuss a convenient representation of

data and hypotheses that enables their easy integration into BioJava.

We can think of the training process as being the selection of the transformation

that project objects in X until they superimpose with their image in Y with sufficient

accuracy. If, for example, the error function was 2δ then the problem becomes the

estimation of a matrix that performs the rotation of a least-squares fit on the

transformed image of X .

In the case where Y has a single dimension, the projection must remove all except

one dimension from the feature space. This can be visualised as measuring the

distance from points to a hyper-plane (e.g. a linear surface that is one dimension lower

than the feature space). This distance is equal to the dot product of the data point with

the equation of the plane12.

12 For two numbers, ba ⋅ is the product of a and b . For vectors, there are two common types of

product – the inner and outer products. These can be explicitly disambiguated as ba, and ba × .

Inner products have scalar values. They are often written as ba ⋅ and consequently called dot-

Introduction

 14

There are a range of machine learning methods that can be represented in the form

of a sum of dot products. These include classification, regression, k-means clustering

and principal component analysis. There are techniques available to adapt this family

of methods so that they can be generalised to functions considerably more complex

than the linear dot product. This allows these machine learning techniques to consider

a much more interesting range of problems. In the rest of this section, we will discuss

one method of generalisation; kernel functions.

We can generalise the use of dot products by exploiting the representation of each

item as a set of features with associated values. For two data items p and q of

compatible types, the natural inner product is the sum of the products of their

corresponding features. In the following equation, i is used to index each feature.

Equation 1-4 Dot Products for Items Decomposable into Sub-Spaces with Dot-products Defined

∑ ⋅=⋅
i

ii qpqp

Notice that the dot product requires each feature of the data item to have a dot

product defined. For numbers, this is just the normal numerical product. However, the

value of a feature may itself be a complex structure composed from a set of features

with values.

Dot products have the properties that (a) they are symmetrical functions, (b) that

0≥⋅ xx for all values and (c) that the value of the dot product is only zero if one or

products. In this text, ba ⋅ is used where the normal Cartesian dot product is meant, and ba, is any

function that is an inner product of a and b in some space.

Introduction

 15

both of the arguments has a magnitude of zero. When considering representing

features in terms of dot products, it is necessary to ensure that they satisfy these

constraints. For example, it would be invalid to use Blast sequence alignment scores

as the value for a dot product, as they are not symmetrical.

It is often useful to first transform data from its natural coordinate system (data-

space) into one another coordinate system (the feature space) in which particular types

of analysis are easier. If φ is a function that maps from data-space to feature-space,

then the dot product of two items a and b in that space is)()(ba φφ ⋅ . If there is a

function k such that)()(),(babak φφ ⋅= , then k is a kernel function. More

explicitly:

Equation 1-5 Definition of Kernel Functions

)()(),(babak φφφ ⋅=

An interesting subset of kernel functions are equivalent to functions of the data-

space dot product. For example, given two vectors, we could define a transform that

projected the items into the space of all possible polynomial interactions of order 2 or

less (Equation 1-6) which allows conics to be constructed in the data-space. This can

be expressed in terms of dot products in the data-space (Equation 1-7). This form can

be generalized for data-spaces with any number of dimensions, and for polynomial

interactions of any order (Equation 1-8).

Equation 1-6 A Polynomial From a Two-dimensional Coordinate to a Coordinate Containing

One Component for each Possible Product Involving up to Two Dimensions

),,2,2,2,1(: 2
2

2
12121 xxxxxxxP α

Introduction

 16

Equation 1-7 Dot products between two polynomial mappings reduced to terms involving the dot

product of the unmapped variables

() ()
()2

2

2
2

2
2

2
1

2
121212211

2
2

2
12121

2
2

2
12121

1

12

2221

),,2,2,2,1(),,2,2,2,1()()(

+⋅=

+⋅+⋅=

+++++=

⋅=⋅

ba

baba

aababbaababa

abbbbbaaaaaabPaP

Equation 1-8 Polynomial Kernel Function

()nnpoly babak 1),()(+⋅=

In terms of the time-and-space constraints, this reduces the problem of finding all

polynomial interactions between all elements of two vectors from having complexity

that scales badly on the length of the vectors to one that scales linearly. Explicitly

computing polynomial interactions of order 5 would require time and space

proportional to the fifth power of the length of the vectors, where as using an

appropriate kernel function the cost would still be linear.

The feature spaces for many kernel functions are very large compared to the data-

space. For almost any training set, the feature space will have more dimensions than

training examples, and may be too large to represent explicitly. However, if the dot

products can be calculated as a simple function of the data-space dot product, then the

feature space size is no longer a constraint to calculations.

The machine learning methods that can be represented in terms of sums of dot

products can often be adapted to work with kernel functions, allowing them to explore

solutions in the feature space of the kernel, while maintaining performance

characteristics related to the dimensionality of the data-space.

Introduction

 17

It is possible to compose new kernel functions from other kernel functions and

scalar functions. In all cases, care must be taken to not invalidate the three properties

of dot products defined above. Here are three examples:

1. bgaf + Equivalent to concatenating the feature spaces of the kernels f

and g after scaling them by a and b respectively.

2. gf ⋅

3.)),((bafξ where ξ is any scalar function that maintains the conditions

that apply to dot-products, such as the polynomial kernel in Equation 1-8.

The BioJava support vector machine implementation (discussed in 4.1.1 and 4.1.2)

provides a linear dot product kernel implementation for sparse vectors of real

numbers. Additionally, there are a range of kernel functions that are implemented in

the third form above that return some function of the result of another kernel function.

These include kernels for radial basis functions, polynomials and hyperbolic tan.

There are also kernels that implement normalising transformations, such as projection

onto a unit sphere. Data is made available by implementing the kernel function

interface so that it returns a dot product for some pair of Java data structures. Then, an

appropriate feature space can be constructed by composing the kernel function objects

as required. This affords a great deal of flexibility in the range of feature spaces that

can be explored.

SVMs, described in Section 4.1.1, are one of a family of models called Generalised

Linear Models. Another related form of linear model is trained using the Relevance

Vector Machine methodology, described in 5.3. Applications of the representations

described here will be discussed in Chapters 4 and 5 with examples.

Introduction

 18

1.3.2 Signal Analysis with Hidden Markov Models

Signal analysis methods deal with data that are composed from a linear sequence of

observations, possibly of differing lengths. One approach to signal analysis used

widely in bioinformatics is to infer properties of the structure of the sequence based

upon a model of how the sequence may have been generated. The sequence can be

represented as a series of observations x which are indexed in the form ix where if

ji < then ix is before jx in the sequence.

Probabilistic Hidden Markov Models (HMMs) (Durbin 1998) are generative models

that have been applied to a wide range of biological problems since their introduction

to computational biology (Churchill 1989; Krogh, Brown et al. 1994). Formally, they

define a probability distribution over all sequences that can be generated using the

production rules of a stochastic regular grammar. One benefit in representing models

as HMMs over stochastic regular grammars is that HMMs can be easily visualised as

graphs, whereas stochastic regular grammars are inherently textual.

A common and successful application of HMMs is the modelling of a family of

evolutionarily related sequences. A popular form of model for this kind of application

is the profile HMM, where a sequence of match states through the model represents

the consensus sequence for some biological feature. Insertion and deletion states

model the corresponding evolutionary events. Profile HMMs form the basis of the

SAM package (Hughey and Krogh 1995), and profiles built with the HMMER

package (Eddy 2001) form the basis of the Pfam database (Bateman, Birney et al.

2000).

Although profile HMMs are a widely used form of HMM in computational biology,

it is possible to build much more flexible models. For example, Meta-MEME

Introduction

 19

(Grundy, Bailey et al. 1997) takes simple ungapped weight-matrices, which are based

on motifs discovered using the MEME package (Bailey and Elkan 1994), and links

these together with spacers to form higher-order models.

Another common type of HMM is an alignment, or pair HMM. This form emits

correlated pairs of sequences. Pairwise alignment algorithms can be represented in

this form. The Dynamite package (Birney and Durbin 1997) provides a language for

implementing new pair-HMM algorithms. However, Dynamite itself does not provide

any facilities for training the parameters for these models. This means that Dynamite

models must be parameterised by hand, a process which is more of an art than a

science.

HMMs can be trained from labelled training data. That is, given a set of sequences

where the model states have been assigned, the optimal probabilities for the model

can be calculated directly. The observation counts are normally regularized using an

appropriate background model that reduces the possibility of over-fitting the

examples. It is generally accepted that regularization enhances the generality of the

model to unseen sequences.

The most commonly used forms of regularization are Dirichlet priors (which are

equivalent to pseudocounts) and Dirichlet mixtures (Brown, Hughey et al. 1993;

Sjolander, Karplus et al. 1996). Dirichlet priors represent probability distributions

over the range of possible counts, and are used to blend the probability obtained using

the raw counts with the expected counts if the null model were true. This is

implemented by adding extra “pseudocounts” to the observed counts. Dirichlet

mixtures work in a similar way to Dirichlet priors, but in this case there are multiple

Introduction

 20

prior models, and the prior model which is closest to the observation has the most

weight during the blending.

It is possible to use other priors, such as multinomial Gaussian distributions and

their mixtures over log-odds space (O'Hagan 1994), but these have not been

extensively investigated for biological models. This is probably because as Dirichlet

priors can be relatively easily implemented and have been applied successfully, there

is no perceived reason to use different types of prior models.

In contrast to training from fully labelled data, HMM parameters can be estimated

from an unlabeled set of sequences given a model architecture. This is achieved

iteratively by estimating a probability distribution over all possible labellings for each

sequence given a current set of estimated model parameters. Counts can be added in

proportion to the probabilities of the labellings, or sampled from this distribution. The

counts are then normalized and regularized, and these new parameters are used as the

starting point for the next round of parameter estimation. This cycle is repeated until

the model parameters cease to change by any significant amount or a pre-determined

number of cycles have elapsed. It is usually sufficient to start with arbitrary random

parameters, given a model with few enough free parameters. When counts are added

in proportion to the probability distribution over all possible labellings, this procedure

is known as Baum-Welch training (Baum, Petrie et al. 1970; Rabiner 1989; Durbin

1998). When adding counts by sampling from this distribution, we have called this

procedure Baum-Welch with sampling.

Finally, complex models can be parameterised using a mixture of labelled and

unlabelled data. For example, models for distinguishing between protein secondary

structure elements may have complex models for α-helix and β-sheet involving

Introduction

 21

multiple repeating patterns of states. Training data may be binned into sets for both

secondary structure elements, and then maximum-likelihood used within the bins

(Asai, Hayamizu et al. 1993). This initial splitting of the data is equivalent to a partial

labelling of the data that restricts those observations to being generated by a sub-set of

the parameters.

HMMs can be applied to a wide range of sequence analysis tasks. The BioJava

dynamic programming toolkit was intended to allow the implementation of a wide

range of these algorithms through a consistent API. To achieve this, it was helpful to

find a very general description of HMMs and the algorithms that are used to

manipulate them. A good formal representation of this general description aids in

developing clear APIs and good procedural implementations of the procedures

described above.

Equation 1-9 Definition of a Probabilistic Hidden Markov Model

()

iesprobabilitn transitio ies;probabilitemission
s;transition states; alphabet;emission model;

; ,,,, 2

==
=Σ===

=ΣΣΩ=

te

IΩM

IteIM

We can represent an HMM as a tuple of parameters (Equation 1-9). The model

emits symbols from an alphabet (Ω), such as DNA. It has a finite set of states (I),

often called the state-space. The model has a set of transitions (Σ) defined as all

ordered pairs of states. There is a probability distribution over the transitions (e) and

another over the members of the alphabet emitted by each state (t). It is often

convenient to represent the emission and transition probabilities as being an array of

functions dependant upon the current state under consideration (for example,

Introduction

 22

Equation 1-10). In an object-oriented interpretation, these functions could be

modelled as being properties of a state.

Equation 1-10 Emission and Transition Probabilities

()
() Σ∈∀=

Ω∈=
∈

),(|)(
|)(

jkkjpjt

kapae

Ik

k

k

It is common for some values of)(jtk to be constrained to always be zero. In this

case, we can consider there to be no legal transition from state k to state j . We can

describe these states as being unconnected. A small extension to the original model

redefines the transition term as 2I⊂Σ . From the point of view of implementing

efficient algorithms that act upon these finite state machines and of efficient data

structures for storing parameters, it is often important to know which states are

explicitly unconnected, rather than happening to have a transition probability set to

zero by a particular parameterisation.

For example, in an HMM that models a weight-matrix of length 100, there are 100

states, one for each column of the weight-matrix. The complete transition matrix

would contain 10,000 elements. However, in the HMM for a weight-matrix, the only

state that can be reached from a given state is the single one that represents the next

column. The HMM representing the weight matrix would have 99 legal transitions in

total. It would be an inefficient use of resources to store the square transition matrix

when it is only necessary to use an array linear on length to the number of states in

this model.

A sequence can be labelled with states so that there is one state associated with each

observation, and each transition represented by neighbouring pair of states are legal in

Introduction

 23

the HMM. The sequence of states is called a state-path. Formally, this can be written

as:

Equation 1-11 Definition of All Legal State-Sequences

Σ∈∈ −),(such that of valuea is thereeach For 1 iiii yyIyx

Given both x and y the joint probability of a sequence and its state-path pair can

be calculated as:

Equation 1-12 Likelihood of Observing a Given Sequence and Labelling

)|()|()|,(1∏ −=
i

iiii yypyxpMyxp

Given Equation 1-12, it is possible to evaluate any state-path. With a given set of

parameters, there will be a set of paths (often just one) that have a higher value than

any others do. The Viterbi algorithm (Rabiner 1989; Durbin 1998) finds one of these

paths. By summing over every possible state-path, that could have produced a

sequence, it is possible to calculate)|(mxp . The forwards and backwards recursions

(Rabiner 1989; Durbin 1998) calculate this value, initialising from the first and last

symbol of x respectively (Equation 1-13). In these recursions, it is necessary to loop

over the variable indexing x according to its natural ordering (and in the reverse of

this for the backwards algorithm), and similarly the destination states for each

transition must be looped over such that the recursion has been calculated for every

value of the recursion that this step relies upon.

Introduction

 24

Equation 1-13 Common Dynamic Programming Recursions as Applied to Probabilistic Hidden

Markov Models

()

()

)),(()()(),(

)),(()()(),(

)),(()(),(

)),(()()(),(

),(

),(

),(

),(

maxarg
max

kkadviBxektIjiB

kjadviFjtxeIjiF

kjadviBpjtIjiBp

kjadviVjtxeIjiV

kjk
ikj

jkk
kij

k

jkk

k
jkk

ij

+⋅⋅=∈

−⋅⋅=∈

−⋅=∈

−⋅⋅=∈

∑

∑

Σ∈∋

Σ∈∋

Σ∈∋

Σ∈∋

j state by the advancedbeen have directionswhich represent to toadd vector to theis adv(j)

j k to state fromy probabilitn transitio theis (j)
states ofset theis

state upon the lconditionaindex at that symbol theofy probabilitemission theis)(
score backwards theis),(

score forwards theis),(
one previous the tostatecurrent thefromr backpointe theis),(

index sequenceat j statefor score viterbi theis),(

aligned being sequences theinto indecies of vector theis

i

t

I

xe

IjiB

IjiF

IjiBp

iIjiV

i

k

ij

∈

∈

∈

∈

For the case of aligning multiple sequences, the observation x can be replaced by

the product of all sequences being aligned such that for sequences a and b we end up

aligning bax ×= to the model where),(, jiji bax = . We can generalise this to any

number of sequences being simultaneously aligned, and replace the compound

subscript with a vector i . For the Viterbi, forward and backward algorithms, we can

proceed exactly as before, as long as we use the partial ordering of i such that adding

one to any component of i would produce a new vector that comes after it. So that

some states can advance through a sub-set of the sequences being aligned (for

example, insertion or deletion states in a pair-wise alignment HMM), it is convenient

to have an advance vector associated with each state. This is of the same

Introduction

 25

dimensionality as i . The advance vector is purely a function of a single state. A valid

object-oriented interpretation is for states to expose an advance array as a property.

The BioJava library allows HMMs with arbitrary architectures to be constructed.

The HMM APIs are strongly modelled on the definitions of HMMs described above.

In particular, the APIs do not directly distinguish between models that generate one,

two or any other number of sequences. The sequence of observations presented to an

HMM is represented using the BioJava Alphabet, Symbol and SymbolList APIs (2.4),

which allows the algorithms to be applied to a much wider range of data than either

DNA or character strings without needing to alter the code implementing the

recursions themselves, or the associated data models. From the users’ point of view,

there is no programmatic difference between models that are fully connected and ones

that are extremely sparse. Section 2.6 discusses the BioJava HMM APIs. Chapter 3

explores the use of HMMs for modelling chromosomal structure.

1.4 Implementation and Use of BioJava

In the following chapters the implementation of BioJava and its application to real

problems are discussed. In Chapter 2, the implementation of the core of BioJava is

described. In Chapters 3, 4 and 5, BioJava is applied to particular classes of machine

learning problem. HMMs are used to discover data-compressions for whole

chromosomes in Chapter 3, SVMs are applied to recombination rate prediction in

Chapter 4 and RVMs are used to classify expression data in Chapter 5.

The BioJava Core Interfaces

 26

Chapter 2 The BioJava Core Interfaces

BioJava is intended to provide Java based APIs for common bioinformatics tasks. It

also strives to be a convenient basis for writing potentially computationally expensive

algorithms. To reduce the learning curve, and to decrease maintenance overhead,

individual APIs must be complete enough to allow them to be used algorithmically,

but slim enough that they can be easily implemented and used. The balance between

making the APIs not only powerful but also small, is sometimes difficult to maintain,

but has, in my view, fostered a high degree of elegance in the underlying object

design.

There are two clearly different cases where code reuse is beneficial. The first, and

most commonly thought of case is the reuse of library code by invoking it from

multiple applications. For example, it is very common to reuse a matrix mathematics

library during numeric programming. We could call this the “new using old” case.

The other reuse case is when library code can execute a tried-and-tested procedure

that in turn calls some application specific code. For example, in Java, a listener can

be registered with a window to handle mouse movement events. In this case, the

library code is responsible for drawing the window and for invoking the listener of

mouse movements, but the exact behaviour of the library is customized by the

listener. We could call this the “old using new” case.

The design and implementation of the BioJava libraries has primarily been an

exercise in computer science, not biology. Throughout, we have striven to foster a

high degree of code reuse both by providing APIs that can be used in a wide range of

contexts (new using old), and by providing opportunities for developers to drop in

new implementations of these APIs without affecting existing code (old using new).

The BioJava Core Interfaces

 27

The APIs relevant to this dissertation, and for which I have been primary designer and

implementer, are the following:

• Nested Exceptions and Assertions

• Changeability

• Symbols, Alphabets and SymbolList

• Sequence, Feature and SequenceDB

• Distribution

• MarkovModel

• Query

Wherever possible, the API is defined in terms of Java interface definitions,

allowing for the seamless integration of multiple implementations. Indeed, it has been

the reliance on interfaces that has made the development of the BioJava library

relatively rapid and robust. We have discovered that nearly all core data types can be

implemented in multiple ways depending upon a host of factors, so the entire toolkit

makes as few assumptions about implementation as are possible.

2.1 Java as a Language for Bioinformatics

Java (Gosling, Joy et al. 2000) is a language created by Sun Microsystems,

originally for use in imbedded systems such as mobile phones, watches and ABS

systems. It relies upon a definition of a virtual machine (VM) (Lindholm and Yellin

1999) that is responsible for thread and memory allocation, byte-code instruction

execution and enforcing security restrictions. The byte-code is naturally object-

The BioJava Core Interfaces

 28

oriented and has support for advanced features such as exception handling and thread

synchronization. The byte-code acts upon a stack of working variables, an arbitrarily

large set of virtual registers and the object (or class) that is currently in scope. There is

no pointer type in Java, or in the byte-code, making it impossible to write byte-code

that addresses arbitrary memory. Theorem provers can be used to validate that a given

portion of byte-code is safe to execute, avoiding some of the issues with other

languages (such as invalid memory allocation, executing instructions on inappropriate

types and validation that the execution stack is always in a consistent state).

The Java VM is responsible for interpreting the byte-code and for environment

functions such as memory allocation and garbage collection (freeing objects from the

memory pool once they are no longer within scope), system calls (IO, process

execution, thread management) and managing peers to the native operating system

graphical user interface (GUI). With a VM of a given version (e.g. 1.2.2) and any

platform (e.g. Sun for Windows, Compaq for Tru64), executing a portion of byte-code

should produce exactly the same results, even if the performance differs13. This code

portability by design is historically one of the major benefits of Java. In practice,

platform incompatibilities nearly always arise from platform-specific portions of the

VM, such as graphical peers, rather than bugs in the execution of byte-code.

13 Since version 1.4 of Java, some floating-point mathematical operations may be implemented by

processor-specific instructions that do not conform to the IEEE floating-point maths required by the

Java virtual machine specification. In the vast majority of cases, this does not change the result of a

calculation greatly enough to alter program behaviour. The keyword strictfp can be applied to any

class or method that must uses the IEEE-compliant math operations, such as numerically intensive code

that needs particular overflow/underflow and rounding semantics.

The BioJava Core Interfaces

 29

Pure Java byte-code interpretation has historically been slow relative to native code

(compiled from C/C++ or FORTRAN, for example), but has always compared

favourably to other interpreted languages such as Perl. Recently, with the move of

Java from toy examples and small graphical applications to large, demanding

applications such as web-server back ends (especially J2EE14) and large-scale

numerical processing (for example, the Colt matrix mathematics library15), a number

of technologies have appeared to improve the performance.

Initially, just-in-time (JIT16) compilers increased performance of large blocks of

numerical code to that comparable with C++ by compiling each byte-code function

into native code for the physical processor once a class was first loaded (present even

in many Java1.1 VMs). Some Java byte-code instructions could be represented

cleanly as one or more simple native instructions (for example, the arithmetic

operations). However, many Java byte-code instructions have no direct representation

(such as object allocation, or method invocation), so must be converted into calls to

the virtual machine. JIT compilers tend to do a good job of increasing the

performance of numeric code that resembled more classically procedural

programming styles. JITs proved insufficient for many tasks as many Java methods

are small, and very often are executed as virtual calls which can not be resolved at

compile-time. In addition, due to the highly polymorphic nature of much Java code, it

is often impossible to perform optimisations because the simple type-based system

14 See http://java.sun.com/j2ee/ for information related to the J2EE standard

15 Colt is distributed from http://tilde-hoschek.home.cern.ch/ ~hoschek/colt/index.htm

16 See http://java.sun.com/docs/jit_interface.html for more information about Sun’s JIT compiler

The BioJava Core Interfaces

 30

can’t give enough information to know the context within which code will be

executed.

The latest family of virtual machines are based upon Sun’s Hotspot Virtual

Machine architecture17. This uses a mixture of several techniques to remove

performance bottlenecks and optimise code execution. Firstly, a large portion of Java

execution time can be spent in object allocation and garbage collection. This is

especially expensive for objects that are allocated and then discarded within inner

loops. Hotspot initially flags objects with a creation time, and places them into a

nursery area. When more memory is needed, Hotspot first attempts to free objects

within the nursery rather than completing a full garbage-collection cycle.

As an anecdotal example of how this can impact performance, I wrote some code

that unnecessarily allocated a large number of objects within a tight loop, and then ran

the application on a PIII 800MHz with the Hotspot Virtual Machine and a Compaq

DS40 with Compaq 1.2.2 Fast VM. After one and a half days, the process on the

DS40 had still failed to complete. On the PC, it completed after 110 seconds. Once

the unnecessary objects were not being created, the Compaq server took just 20

seconds to execute the code, and the PC took 56 seconds. This clearly indicates the

affect of the VM implementation upon performance.

After careful memory management, the second truism of code optimisation is that

5% of the code will account for 95% of the execution time, so if you wish to focus

efforts upon optimisation, this is the portion to target. The hotspot VM continually

17 See http://java.sun.com/products/hotspot/docs/whitepaper/ Java_HotSpot_WP_Final_4_30_01.html

for more information about Sun’s hotspot VMs

The BioJava Core Interfaces

 31

profiles the application, and concurrently optimises each of the execution hot spots.

This results in applications increasing in performance as they are run (often by factors

of greater than 10 times).

Method invocations make many optimisations impossible, especially if the method

is bound at execution time rather than at compile time (for example, virtual method

invocations). This is because the optimiser does not know what the side-effects of the

invoked code will be, so it can’t really perform aggressive optimisations to eliminate

redundant code or to reorder instructions across function calls.

In traditional languages, this has been tacked with tactics such as macro-expansion,

inlining and by defining many methods as not being over-ridden by subclasses,

making the linkage static. The hotspot VM takes another approach by dynamically

inlining functions to produce multiple context-dependant compiled and optimised

versions of a given portion of an application. Most small functions, such as get/set

pairs can be trivially inlined, removing the method invocation overhead completely.

Increasingly complex methods may be inlined, allowing loop variables to be merged

and larger blocks of code to be optimised. Certain types of objects can be proven to

decompose to the set of their fields and methods only (i.e. their object reference is

never explicitly used to test for identity), in which case the fields can be allocated on

the stack. This is similar in spirit to having the power of a templated method that can

be parameterised with the template type during run-time. The result of these

optimisations is that hotspot-interpreted Java code that is polymorphic or uses many

small methods can often execute at speeds comparable to or faster than similarly

polymorphic C++ code. Currently, dedicated procedural style C or C++ may out-

perform similar Java code, but even here Java is making inroads. For example, the

The BioJava Core Interfaces

 32

Colt matrix maths library in Java now has comparable performance to the FORTRAN

matrix math libraries. There is undoubtedly more work to be done for high-end

computation in Java, but it is no longer an insurmountable obstacle to the acceptance

of Java for the hard end of Bioinformatics.

Bioinformatics is a field that is constantly redefining itself. Some problems are

clearly defined, such as the alignment of two proteins using the Smith-Waterman

algorithm (Smith and Waterman 1981). However, many other issues are moving

targets. There is also the constant pressure to produce results quickly. Traditionally

this has caused a polarization between the development of handcrafted applications in

languages such as C for specific tasks like the BLAST applications (Altschul, Gish et

al. 1990), and the use of rapidly developed ‘throwaway scripts’ in scripting languages

such as Perl18 and Python19. In practice, ‘throwaway scripts’ often become the basis of

sequence analysis pipelines that have a lifetime of months or years, and are

maintained by a succession of individuals. Eventually, these must be re-written to

improve performance, to fix bugs inherent in the initial design, or to allow the

application to perform tasks that were not part of the original design aims.

Java is a suitable language for rapidly developing Bioinformatics applications. It

can be used to write the computationally expensive as well as the flow-control

portions of Bioinformatics scripts. If libraries of biological functionality are

developed, and these are easy to use and extend, then it becomes possible to achieve

rapid development of throwaway scripts. If these short-term applications become part

18 The Perl web site can be found at http://www.perl.org/

19 Python is distributed from the http://www.python.org web site

The BioJava Core Interfaces

 33

of pipelines, the object-oriented nature of Java code means that it is potentially

possible to salvage much of the intellectually expensive code, and to quickly isolate

design faults.

The Java compilers are much more pedantic than C or C++ compilers, disallowing

many unsafe constructs that can generate strange runtime behaviour. For example,

casts are checked where possible, and arbitrary pointers do not exist. Memory

allocation and de-allocation are handled by the VM. This means that many errors that

would show up as a program crash in other languages cause the Java compiler to

generate error messages.

BioJava is intended to provide the functionality needed to rapidly develop effective

Java applications for bioinformatics. The design of the language, compiler and virtual

machine help greatly in quickly developing robust applications. BioJava builds upon

this strong foundation by providing APIs for common biological objects and tasks,

such as biological sequences, and reading these from files. Additionally, a number of

classes provide basic functionality that increases both the encapsulation and the

robustness of BioJava’s highly polymorphic code. The rest of this chapter describes

the core classes and interfaces that provide this functionality, and for which I was

solely or primarily responsible for the design and implementation.

The conventions adopted here for referring to Java types and methods are those

used in the Java documentation. When referring directly to types and methods, the

type used is fixed width. When methods are referred to, the usual form will be to

name the method followed by ellipses as in someMethod(), regardless of the actual

arguments accepted by the method. If it is necessary to describe the parameters

accepted by a method, either for the clarity of the text, or to disambiguate over-loaded

The BioJava Core Interfaces

 34

methods, the types of the arguments will be included as in anotherMethod(String,

int). In a few very rare cases, the names of the arguments must be included as in

substring(int start, int length) so as to make the semantics more clear. In

general, once a method is introduced, it will be referred to using the shortest

unambiguous form.

2.2 Nested Exceptions and Assertions

Both during the development of applications and their deployment, failures occur.

These may be due to the application being implemented incorrectly, being used with

data that it was never designed to be used with, or by some external failure, such as a

break in network communication. Programmatically handling failures gracefully and

informatively is a key to developing robust software rapidly.

Java supports the handling of error conditions by the throwing of exceptions. The

built in exceptions have a constructor that takes a message String only. Java methods

can be defined as throwing a list of Exception types. This means that the method can

raise any one of these exceptions if it is unable to complete processing, and that it is

limited to this list of checked exceptions. Some exceptions, such as

OutOfMemoryException are unchecked as it would be difficult to guard against the

many places where they may be raised without bloating both the volume of source

code and impacting upon run-time performance. During invocation, a method may

choose to not raise any of the listed exceptions (indicating that it was successful).

Function calls in C generally return an error code to indicate error status. In Java, the

method would return a value if it was successful or throw an exception if it was

unable to complete. The basic exceptions are applicable to the case where the error is

The BioJava Core Interfaces

 35

caused by a failure in the program that is clearly attributable to a single action, such as

accessing a file, or an array index being out of bounds.

When complex applications are composed of multiple ‘black box’ modules, failures

in one module may cause failures in another module. With classical exceptions, the

original cause would either percolate up by allowing the Exception to be thrown

from all methods in the first module that invoke methods in the second one, or would

have to be caught, and a new Exception thrown to describe the failure. The first

alternative tends to lead to methods throwing very large numbers of specific

exceptions defined in other modules or it leads to methods throwing extremely

general exceptions that provide poor programmatic control over error handling. This

problem becomes even more pronounced when there are multiple implementations of

a given interface. The interface author can not possibly foresee all of the ways the

interface may be implemented or the range of potential failures, so can not declare all

of the exceptions that may be raised by all implementations. For example, if an

interface is implemented using a Common Object Request Broker Architecture20

(CORBA) peer in one case and file access in another, the implementations may fail

due to CORBA-specific exceptions or problems with file access, but the original

interface author could not have known this, so would not have listed exceptions

specific to these two failures in the methods.

BioJava provides subclasses of Exception and Error (the base-class for unchecked

exceptions) that have an extra field that contains a reference to a causal exception.

These are called NestedException and NestedError respectively. In the above

20 http://www.omg.org/ is the web-site for the organisation that manages the CORBA standards

The BioJava Core Interfaces

 36

example, the interface author would declare the methods as throwing sub-classes of

NestedException describing the type of the failure (something like

RetrievalFailedException). The CORBA implementation would catch the

CORBA-specific exceptions and then construct and throw a new

RetrievalFailedException instance that refers to the CORBA exception. Similarly,

the file-based implementation would catch IOException instances and throw new

RetrievalFailedException instances that refer to the IOException that caused the

failure. NestedException and NestedError can be nested to arbitrary depths,

allowing a complete ‘chain of evidence’ to be collected about the cause of errors

without requiring modules to have knowledge of all of the exceptions raised by

indirect dependencies.

This ability to have both a complete chain of evidence for any failure while

respecting encapsulation has made it much easier to develop portions of the BioJava

library independently of one another while still allowing them to rely on functionality

provided by other BioJava modules. In our view, this has strongly contributed to the

rapid development of the libraries.

Because of a combination of Java not supporting sub-classing by restriction, and the

Java compiler being pedantic about ensuring that each error condition is accounted for

in the code, exceptions must be caught even when they are logically impossible to

generate. For example, if counts are being collected for a probability distribution over

the DNA alphabet, and the sequence is known to be DNA, then it should be

impossible to raise an IllegalSymbolException. However, because the component-

based APIs don’t have this information, the compiler will expect the exception to be

handled. The recommended way to handle this is to catch the exception and throw a

The BioJava Core Interfaces

 37

NestedError instance indicating that an assertion has been violated. The

NestedError instance will cause the stack to unwind until it is explicitly caught. If

not caught, the thread will exit with an error message. In theory, this case should

never happen, but in practice, incorrectly implemented objects manage to invalidate

these checks, particularly during development, and the assertion failures clearly

pinpoint the source of the errors.

Nested errors and exceptions are used throughout the BioJava libraries and in many

of the applications that use these libraries. They have proven to be invaluable in

writing robust code. Sun has added the concept of nested exceptions to the latest

version of Java (1.4), and we look forward to merging our system with theirs.

2.3 Changeability

When developing complex applications, and in particular those which may contain

multiple threads of execution, it is important to control which resources may change

and which can not. Often, it is also very important to be informed if something does

change so that some action can be taken. Unfortunately, the exact details may need to

be decided at run-time, so can not be implemented at compile-time as a mutable or

immutable interface implementation or by using keywords (such as C’s const

modifiers). Robust applications that are built in a modular manner need strong

guarantees about which resources will and won’t be modified, and expect these to be

enforced.

An object may change state because a method is invoked that would directly modify

it. Alternatively, it may change state because some other object, that it delegates state

maintenance to, is modified. For example, a List instance may be modified by

invoking the add method to append an item to the list. A view on the list returned by

The BioJava Core Interfaces

 38

Collections.unmodifiableList(List) cannot be modified directly, but if the

underlying list is altered, then the unmodifiable view will reflect this change. This

illustrates the difference between modifiability and changeability. The unmodifiable

list is changeable, as there is a legal way for its data to be altered, even though it can’t

be modified directly.

BioJava contains a complete object model for tracking the changes made to objects,

and for allowing changes to be prevented, without breaking object encapsulation. The

Changeable interface defines methods to add and remove listeners which will be

informed when the state of an object alters. These listeners are informed before the

object attempts to change, and have an option to veto the change by throwing a

ChangeVetoException. If none of the listeners throws an exception, then the object

updates its state and then informs each listener of the change. At this stage, each

listener can synchronize state to ensure data-integrity. In principal, this is a very

similar design pattern used by Java Beans to implement ‘bound properties’, but offers

several advantages akin to those provided by a simple cascading transaction

processing framework.

Each BioJava interface that extends the Changeable interface has public final static

fields that hold ChangeType instances that encapsulate one way that the Interface

implementations may change state. For example, FiniteAlphabet defines a static

field called SYMBOLS that represents a modification that changes which Symbol

instances are contained within the alphabet. Each implementation of FiniteAlphabet

is required by the Changeability API to allow ChangeListener instances to be

registered. The ChangeType class supports the idea of a hierarchy of change types.

The BioJava Core Interfaces

 39

The root of this hierarchy is UNKNOWN. When listeners are added to a changeable,

they will be informed of all events that descend from that type.

It is required by the contract described in the Changeable documentation to inform

all listeners registered for a given type and all of its descendents whenever state

changes by invoking the preChange() method on each listener before it changes state

If any one of the listeners vetoes the change, or if for any other reason the state cannot

be updated, then an exception will be raised. If the change can go ahead, it will

commit the state change and then invoke the postChange() method on listeners to

inform them that the state has been successfully modified. There is no guarantee made

about the relative orders that different listeners will be informed either before or after

a change is made. It is legal to inform different listeners in different threads, and in

some situations this may be a sensible thing to do, if for instance, the listeners need to

communicate with network resources.

The preChange() method indicates that a change should not be made by raising a

ChangeVetoException. ChangeVetoException extends NestedException,

allowing a change to be prevented because of a failure elsewhere in the application to

publish this information. A common cause for this is when an object stores its state in

a delegate. If a method is invoked on the object that would modify the delegate, and

the change on the delegate is vetoed then the delegate will raise a

ChangeVetoException. This will be caught by the object and a new

ChangeVetoException will be thrown indicating that the requested modification

could not be made. This new exception will nest the original exception, allowing the

complete reason for the failure to be maintained. One very useful ChangeListener is

the AlwaysVeto instance. This always throws a ChangeVetoException in

The BioJava Core Interfaces

 40

preChange(), ensuring that the change cannot go ahead. In this way, a mutable

implementation of an interface can be instantiated, populated and then locked. From

that moment on, no more modifications can be made to it.

The way that the Changeability API can be used to dynamically constrain what data

can change, and what data is fixed, can be illustrated by the dynamic programming

code. While an HMM is being used for an alignment, AlwaysVeto is registered as a

listener to all of its parameters, preventing them from changing. Once the alignment

has been completed, the AlwaysVeto listener is removed, allowing it to be modified

again. This kind of fine-grained and dynamic control of which properties can be

modified is key to developing robust and modular BioJava functionality.

ChangeEvent contains a field to store another ChangeEvent. This is used in the

case when a change in one object leads to a change in another. For example, if a

probability distribution that encapsulates some transition probabilities in an HMM

changes then the HMM will no longer have the same parameters. The HMM will

listen to each distribution, waiting for them to change. Whenever they do, it will

inform listeners that the model parameters have changed with a ChangeEvent

instance that refers back to the event fired by the probability distribution. Again, by

maintaining references back to the event that caused the new event to be fired, a

complete ‘chain of evidence’ can be built up about why an object wishes to change,

without invalidating the objects encapsulation. This potentially allows listeners to

accept or reject a change according to one of the underlying causes.

To avoid the expense of maintaining the entire changeability infrastructure all of the

time, several BioJava objects only build the support objects once listeners have been

registered. In this way, the cost of having changeability support in an object with no

The BioJava Core Interfaces

 41

listeners is the cost of one field in the object that has a null value. Once listeners are

added, this field would be filled with a reference to the support data-structures.

Mutator methods can easily chose not to perform expensive operations while there are

no listeners, such as protecting the listener list with a synchronized block. In addition,

if some listeners have been registered, but none have been added that need to be

informed of changes to state-delegation objects, then there is no need to instantiate the

change-forwarding apparatus. By implementing the classes that will take part in a

network of Changeable objects carefully as described here, it is possible to avoid

almost all unnecessary overhead.

The Changeability API is used extensively throughout the BioJava libraries. It has

proven to be effective at guarding against design flaws and has prevented countless

bugs that could have been caused by assuming the involatility of data. It has also been

leveraged within the DAS21 (Dowell, Jokerst et al. 2001) and GUI packages to

implement efficient data-caching schemes. In the future, it may be necessary to

implement a full transaction-processing framework. Until then, the Changeability API

will continue to be an invaluable tool.

2.4 Symbols, Alphabets and SymbolList

Although BioJava must deal with DNA and protein sequences, the underlying

interfaces for defining sequences is extremely flexible, allowing almost any signal to

be represented as a stream of symbols. This allows all code defined in terms of these

APIs to be applied to a wide range of use-cases. For example, the FASTA file format

object can be used to read and write state labels from HMMs without any change,

21 The DAS standard, and associated information is published at the http://biodas.org/ web site

The BioJava Core Interfaces

 42

simply by parameterising it with the alphabet of states for that HMM, and the

sequence viewing APIs can be used ‘out of the box’ with this data. This section

describes these APIs and how they can be used to represent sequences of complex

data structures in addition to DNA.

The interfaces borrow heavily from the concepts of an entity, a set and a string. A

set is an item that contains some number (possibly zero) of entities. A string is an item

that can be represented as an ordered list of entities (possibly zero in length). If all of

the entities in a string belong to a particular set, then it is described as a string over

that set. For Java String objects, the entities are char instances, the set is the

Unicode Character Set and the string is the String class. In BioJava, the Symbol

interface represents an individual entity, Alphabet represents a set of Symbols and a

SymbolList represents a string over an Alphabet. These interfaces are designed to be

as mathematically elegant as possible, as over time this has made them very useful for

seamlessly implementing algorithms. This has had the unfortunate side effect that a

large amount of documentation is needed to describe what all of the API does.

Fortunately, users of these APIs usually do not need to know the finer details to

perform all common tasks.

To reduce the amount of special-case code required, the Symbol interface

represents ambiguity symbols, such as ‘n’ or ‘x’ and gaps ‘-’ as well as concrete

symbols such as the nucleotides ‘a’, ‘g’, ‘c’ and ‘t’. Sometimes the natural alphabet to

work in can be represented as the cross product of other alphabets. When writing code

to translate a region of RNA, it is convenient for the code to work with RNA triplets.

The natural alphabet for this is RNAxRNAxRNA, which contains symbols that

The BioJava Core Interfaces

 43

represent entities like [a, u, g] and [c, c, c]. To allow all of this to be represented

consistently, three symbol interfaces extend one another.

Symbol is the most generic interface. Alphabet and SymbolList are defined in

terms of in terms of this interface. Symbol has two methods. A textual representation

is provided by getName(), which returns a human-readable string like ‘Adenine’ or

‘gly’. The getMatches()returns an Alphabet that contains all of the Symbols that are

valid matches to this one. The matches Alphabet will by definition contain the

symbol itself, as it must match itself. For a Symbol that is ambiguous, such as ‘n’, this

alphabet will contain multiple items. For a Symbol that has no ambiguity, such as ‘a’,

this will return an Alphabet containing just that single Symbols. Gaps are represented

by symbols that return an empty alphabet for getMatches(), representing the idea

that there is literally nothing there, even though space must be reserved for it. Two

Symbol instances are considered equivalent if their getMatches() alphabets contain

exactly the same set of Symbols. An Alphabet does not contain a Symbol if there are

any members of getMatches() that are not also members of the Alphabet.

BasisSymbol extends Symbol and adds the method getSymbols() that returns a

List of Symbol instances. Any column of any alignment can be represented as

BasisSymbol instance, as it is a list of individual symbols, one from each sequence in

the alignment. If a Symbol comes from some Alphabet ‘a’ that can be represented as

the cross product of a list of alphabets, ‘A’, then it is a BasisSymbol if it can itself be

represented as a list of BasisSymbols. All one-dimensional Symbols are

BasisSymbols, as clearly an alignment of a single sequence contains columns with

single symbols in it.

The BioJava Core Interfaces

 44

The codon [a, a, t] is a BasisSymbol because it is represented by the list ‘a’, ‘a’ and

‘t’ from the DNAxDNAxDNA alphabet. The codons {[a, a, t], [a, c, t]} can be

represented as [a, {a, c}, t], which again is a list of three symbols. The codon {[a, a, t],

[a, c, t], [a, a, g]} can not be represented as any single list of symbols, so it is not a

BasisSymbol. However, {[a, a, t], [a, c, t], [a, a, g], [a, c, g]} can be represented as [a,

{a, c}, {t, g}], so is a BasisSymbol. An Alphabet does not contain a BasisSymbol if

there is any member of getMatches() that it does not contain. Additionally, an

Alphabet does not contain a BasisSymbol if it is of a different order to the Alphabet

(for example, the basis symbol is of length 3, but the alphabet is the product of two

other alphabets).

AtomicSymbol extends BasisSymbol but adds no methods. These symbols actually

make up an alphabet, and are never ambiguous. There is an AtomicSymbol for ‘a’ or

the codon [a, t, c]. Since AtomicSymbol instances can’t be ambiguous, AtomicSymbol

adds the constraints that getSymbols() must return a List that only contains

AtomicSymbols. For the same reason they also add the constraint that getSymbols()

must return an Alphabet that contains exactly one Symbol, and that should be the

instance itself. Two AtomicSymbol instances are considered to be equal if they are

referred to by the same Java reference, that is, they are comparable by the == operator.

This constraint is not mathematically required, but is necessary to implement efficient

algorithms. A Java reference is of the same size as a pointer, and the == operator will

have the same overhead as pointer comparison. On many architectures, this will be as

efficient as comparing integers or characters.

In practice, most user code never need know that Symbol instances can be cast to

BasisSymbol or AtomicSymbol because the API is complete enough that any APIs

The BioJava Core Interfaces

 45

can be defined to work with Symbol directly and hide any casting inside library code

methods. For example, the TranslationTable interface defines a method to translate

a Symbol from one Alphabet into a Symbol in another Alphabet (representing the

concept of a function with the domain being the first Alphabet, and the codomain

being a subset of the second Alphabet). This can be implemented by maintaining a

table for each AtomicSymbol in the source alphabet and the associated AtomicSymbol

in the target alphabet. Given any Symbol, it would first check if it was castable to

AtomicSymbol. If it is, then the return value can be found directly by looking it up in

the table. If it is not, then each AtomicSymbol instance in the getMatches() alphabet

can be translated in turn and a new ambiguous symbol can be made representing this

set of translated symbols. In either case, the code calling the translate method need not

know anything about the actual type or implementation of the symbol instance.

The gap symbol needs special treatment to avoid various logical problems. The

purest version of gap would represent a perfectly empty set, which is dimensionless.

Indeed, the EMPTY_ALPHABET constant contains just this entity. The pure gap is a

Symbol that returns EMPTY_ALPHABET in response to getMatches(). All

Alphabet instances contain this gap. This is because there is no AtomicSymbol

instance that matches the gap, so there can never be one that matches the gap that is

rejected by any Alphabet instance.

In addition to the pure gap, there are gap symbols that represent columns in

alignments that contain gaps themselves. We can refer to a BasisSymbol that is a list

containing as [gap]. The gap and [gap] symbols are distinct entities. The pure gap

takes up no space in any direction. The [gap] symbol takes up space in one direction.

Alphabets like DNAxDNA would contain both gap and [gap, gap], but it would not

The BioJava Core Interfaces

 46

contain [gap], as [gap] is a 1-dimensional BasisSymbol, and DNAxDNA is two-

dimensional. Using this notation, we could represent a column in an alignment

between two sequences with a gap in the first sequence as [gap, sym]. Symbols like

this have no AtomicSymbol instances that could possibly match them, so their

getMatches() alphabet is empty. In geometrical terms, this is similar to finding the

volume of a solid that has one dimension of size zero. If there is some alphabet that is

the cross product of other alphabets, some of which are themselves cross products of

other alphabets, the gap symbol respects this. For example, the alphabet

DNAx(DNAxDNA) would have the gap symbol [gap,[gap,gap]]. Although this looks

complicated, it is in fact necessary to correctly maintain all available information

about a Symbol. It allows algorithms such as the dynamic programming recursions to

distinguish between insertions in each sequence, cells that are at the start or end of

one sequence, and cells that lie outside the range of the sequences.

The Alphabet interface represents a set of Symbols, and can therefore be uniquely

represented as a set of AtomicSymbol instances. It follows that any ambiguity symbol

is a member of an alphabet if its getMatches() Alphabet is a subset of the

alphabet. The contains(Symbol) method returns true if the argument is a member of

the Alphabet, and false otherwise. As a convenience to code that uses Alphabet, it

also has the method validate(Symbol) that throws an IllegalSymbolException if

the symbol is not contained in the alphabet, and silently returns otherwise. This is in

concept similar check to a run-time class cast check.

 Alphabets have a name retrieved by getName(). This is intended to be human-

readable. It is also used as a unique identifier for the alphabet, allowing alphabets to

The BioJava Core Interfaces

 47

be serialized between different virtual machines and resolve to a single unique

instance.

To convert from text to Symbol instances, an Alphabet can provide access to

multiple SymbolTokenization instances via the getTokenization(String)

method. The tokenization registered under the string ‘token’ will allow Strings to be

parsed into Symbols using some well-known single character codes. Alphabets may

provide other tokenizations.

When the product is taken of a List of Alphabet instances, getAlphabets() for

the resulting Alphabet will returns an equivalent List. It follows that

getAlphabets() returns a List of Alphabets that when multiplied together in that

order would generate that Alphabet. The EMPTY_ALPHABET constant is

equivalent to the product of a zero length list. One-dimensional Alphabets such as

DNA, return a single element List containing themselves. The Alphabet

DNAxDNAxDNAxPROTEIN would return the list [DNA,DNA,DNA,PROTEIN],

and so on.

Two factory methods allow Symbol instances to be retrieved from an Alphabet

while allowing it to maintain internal state and manage memory efficiently. The

getAmbiguity() method takes a Set of Symbol instances. It returns a Symbol

instance that has a getMatches() value that contains all of the AtomicSymbol

instances matching any one of the Symbol instances in the Set. The getSymbol()

method takes a List of symbols and returns a single Symbol that represents the

product of these. Both methods validate the input collections to ensure that the

resulting Symbol is a legal member of the Alphabet.

The BioJava Core Interfaces

 48

These methods could potentially need to do some fairly involved processing. They

must make sure they return the most specific type of symbol possible. If an equivalent

symbol exists in the virtual machine, it should return that instance. The

AlphabetManger class provides several methods to help in this process, simplifying

the implementation of Alphabet.

FiniteAlphabet extends Alphabet and represents the case when there are a finite

number of AtomicSymbol instances that are contained in the Alphabet. Because the

set is now finite, we can meaningfully define some more methods. The number of

AtomicSymbol instances in the Alphabet is returned by size(), and iterator()

returns an Iterator over these. Additionally, it adds the mutator methods

addSymbol() and removeSymbol(), which allow the set of symbols contained to be

altered.

Alphabets such as DNA and PROTEIN are represented by instances of

FiniteAlphabet. There are non-finite Alphabet instances for things like the set of

all integers and doubles. The Alphabet representing all Symbols for integers between

1 and 100 will be a FiniteAlphabet. Otherwise, they are non-finite, and just

implement Alphabet. There are a range of package-private implementations of

Alphabet and FiniteAlphabet that implement these rules. AlphabetManager

provides the main API for manipulating these entities.

SymbolList represents a list of Symbol instances from a single Alphabet. The

getAlphabet() method returns the Alphabet it is over. The symbolAt(int) method

returns the Symbol at that index. The length of the SymbolList is returned by

length(). Arguments to symbolAt() must be between 1 and length() inclusive. A

portion of the SymbolList can be retrieved by invoking subList(int start, int

The BioJava Core Interfaces

 49

end), where start and end must also be legal indexes. The sub-list returned is

inclusive of both start and end.

The default implementations of SymbolList in BioJava over finite alphabets all use

the ‘flyweight’ design pattern (Gamma, Helm et al. 1994)[195] to keep memory

consumption to a minimum. Internally, the SymbolList maintains references to the

small number of Symbol instances in their Alphabet. This means that in a

SymbolList that is a million DNA symbols in length will be represented as a list of

one million references to the four DNA AtomicSymbol instances in the DNA

Alphabet. Because the SymbolList interface places no requirements on the actual

storage of the data, it is possible to implement many different storage mechanisms.

For example there are implementations that fetch portions of the underlying data from

files or databases on demand.

Alphabets for DNA, RNA and protein are in use daily with the BioJava toolkit.

Additionally, subsets of the alphabet of all double values are used to represent DNA

physical properties (such as curvature or flexibility), and higher order alphabets are

routinely used to encapsulate everything from multiple-sequence alignments to the

results of alignment algorithms to 3-D coordinates. The apparent complexity of the

underlying symbol model has more than paid for itself by the vast increase of

potential applications now available to objects and algorithms which purely rely on

these interfaces, not the underlying data.

2.5 Locations, Sequences and Features

The Symbol, Alphabet and SymbolList APIs were primarily designed to be a good

basis for developing algorithms. In contrast, Sequence and Feature are designed for

representing bioinformatics concepts such as database IDs, repeat regions and exons.

The BioJava Core Interfaces

 50

Sequence represents an entire biological sequence, be it a chromosome, a clone or a

primer. A Feature represents a region of a Sequence that is annotated as being

interested for some reason. It may, for example, be a repeat, an exon or a protein

active site. The position of a Feature is specified by a Location object.

The Location interface represents an immutable set of indices. A Location may be

a single index (such as 73), or the range of indices (like [1000..1100]), or all indices

that are odd, or any other arbitrary set (for example, {73, [1000..1100]}). Location

defines the methods getMin() and getMax() to return the lowest and highest index

contained within that Location. The method contains(int) indicates whether an

index is contained. For all locations other than EMTPY_LOCATION, both getMin()

and getMax() are contained by the Location.

There are specific implementations for special cases, such as PointLocation for a

single index and RangeLocation for a contiguous range, and CompoundLocation for

dis-continuous regions. The equals() method will return true if two instances contain

exactly the same set of indices, regardless of the concrete class of the instances.

The methods isContiguous() and blockIterator() work together to expose the

state of the Location without exposing the storage. The isContiguous() method

returns true if there are no indices above getMin() and below getMax() that are not

contained. The blockIterator() method returns an Iterator over a minimal set

of Locations that are guaranteed between them to contain each index exactly once,

and are themselves contiguous. For a contiguous Location, this will return an

Iterator that just returns that instance.

The BioJava Core Interfaces

 51

There are several methods that compute new Locations from old ones;

translate(int dist), intersections(Location l) and union(Location)

perform the obvious functions. The methods overlaps(Location) and

contains(Location) return true or false depending on whether the argument

overlaps or is entirely contained within the Location respectively. Using these

operations, it is possible to build arbitrary Location instances without ever needing

to know how a Location is implemented. This makes code using the Location APIs

very easy to maintain, while enforces ridged encapsulation.

Locations are used within the context of the APIs described here. They have,

however, been found useful for a range of other applications including bookkeeping

to store which pixel indices have been used in GUIs, and also for prime-number

searching algorithms.

The FeatureHolder interface represents a collection of Feature instances. It has

methods to count how many features it contains, return an iterator over them, and to

return a FeatureHolder containing all the Features that match a filter criterion.

There are implementations of FeatureHolder that directly store features. Other

implementations encapsulate views of over FeatureHolders (for example,

performing a translation and strand-flip operation) or just store the rule necessary to

fetch the underlying data when needed (quite common when implementing adapters

to high-latency storage, such as databases).

The Annotatable interface specifies one method, getAnnotation(), which returns

an Annotation object. The Annotation object is just an associative array (key to

value mapping) where arbitrary information can be stored.

The BioJava Core Interfaces

 52

Sequence extends FeatureHolder, making it a container of features. It also

extends the SymbolList interface so that it can represent the primary sequence. In

addition, it adds a name and URI property for naming the sequence uniquely and also

extends Annotatable so that arbitrary information that pertains to the entire sequence

can be stored.

There are implementations of Sequence that store the sequence and features in

memory. Other implementations include those that manipulate whole-chromosome

assemblies or data from Ensembl (Hubbard, Barker et al. 2002) and DAS. The

interface-centric design means that an implementation of Sequence that suits a

particular situation can usually be trivially composed from a suitable implementation

of SymbolList, Annotation and FeatureHolder. As Java does not support multiple

inheritance of implementations, this is achieved by storing references to objects

implementing each of these interfaces and explicitly forwarding method invocations

as needed.

Other than the effort required to initially enter the code that forwards method calls,

this actually has some benefits over inheritance. Firstly, the implementing objects

may in some cases be expensive to initialize or use a lot of memory. As they are

private state of, and not directly part of (by inheritance) the implementation, they can

be lazily instantiated. Secondly, it is possible to choose a specific implementation

class at run-time, for example, by choosing an implementation of Annotation

optimized for efficiently storing very small numbers of values, or for retrieving values

associated with a very large number of properties.

Feature extends FeatureHolder and Annotatable. In addition, Feature has

source, type, location, parent sequence and symbol properties. Source and Type are

The BioJava Core Interfaces

 53

equivalent to the GFF source and type fields. Source should represent the program or

process that produced the evidence for the feature (such as a particular gene finder),

and Type should indicate what the feature is meant to represent, such as CDS, or

transcription start site. The Location represents which region of the Sequence the

Feature is attached to. The parent is the FeatureHolder that directly contains this

Feature. The Sequence property always refers to the Sequence that ultimately contains

the Feature. As Feature extends FeatureHolder, it is possible to build up arbitrary

hierarchies of features (but always as a tree). For example, a gene feature may contain

zero or more child features that represent transcription factor binding sites or perhaps

exons. The parent of the exon would be the gene feature, and the parent of the gene

would be the sequence. However, both exon and gene objects will return the same

Sequence for getSequence(). Lastly, the symbols property returns a SymbolList

that represents the Symbols contained within the Feature. The exact semantics of this

method is left up to the Feature implementation. Sub-interfaces of Feature are

provided which add more specific properties such as strand information, frame and

protein translations.

So that the feature hierarchy on sequences can be modified, there must be an API

for adding features to other features and to sequences. So that a given implementation

of Sequence and Feature can maintain implementation integrity, there must be some

sort of factory method (Gamma, Helm et al. 1994)[107] defined in the interfaces. The

original implementations had methods like createFeature(),

createStrandedFeature() or createExon(), but as the number of interfaces grew,

it became obvious that this would not scale well as the interface would have to be

modified every time another type of feature was added.

The BioJava Core Interfaces

 54

This was solved by using a single createFeature() method that takes a

polymorphic argument of type Feataure.Template. The template has public fields

that hold the properties of the feature to make, such as location, type, source and the

like. This mirrors the memento design pattern (Gamma, Helm et al. 1994)[283]. In

each interface that extends Feature, a public static inner class extends

Feature.Template called by convention Template. For example, to instantiate a

StrandedFeature, you invoke the createFeature() method with an instance of

StrandedFeature.Template as the only argument. It is then the responsibility of the

Sequence and Feature implementation to create a StrandedFeature implementation

with the same information as the template. If the particular Sequence implementation

can’t provide an appropriate implementation of Feature, it should either instantiate

the closest one it can and put the missing information into the annotation bundle, or

throw an exception. This approach allows sequence implementations to support an

arbitrary sub-set of the available feature types without requiring the feature creation

interface to grow in complexity with the number of feature types defined.

Sequences and features represent the bulk of information manipulated by most

applications. By designing the APIs from the foundation to support polymorphism

and encapsulation, we have produced a design that allows the underlying data to be

represented in any one of a number of different ways. There are implementations that

are backed by relational databases (Ensembl and BioSQL adaptors), CORBA

(BioCorba adaptors) and by web services (DAS and XEMBL clients) in addition to

those using Java objects directly. The feature creation API provides a uniform and

easy to implement way to create features conforming to a range of interfaces with a

range of different concrete implementations. The result is that developers can interact

The BioJava Core Interfaces

 55

with a single API and have access to a wide variety of different information without

needing to know anything about the implementation details of how this is achieved.

2.6 Probability Distributions and Hidden Markov Models

Hidden Markov Models (HMMs) (see Section 1.3.2) are a popular method of

analysing biological sequences. BioJava contains APIs for representing and working

with probabilistic HMMs. This includes code for representing models, as well as

implementations of the common dynamic-programming (DP) algorithms for

evaluating alternative state-paths and training model parameters. All of these APIs

build upon the Symbol, Alphabet and SymbolList APIs (Section 2.4), allowing them

to be applied without change to the wide range of signal types these data-structures

can be used to represent.

To model HMMs effectively, it is useful to provide a mechanism for representing

probability distributions. There are a wide range of other contexts within which

probability distributions can be used, such as in modelling weight matrix columns, so

to aid in their reuse there is a separate Java package dedicated to their representation

and implementation.

The Distribution interface encapsulates a probability distribution over an

Alphabet. The method getWeight(Symbol) returns the current probability of

observing the symbol from the probability distribution. This is notionally equivalent

to integrating or summing a probability distribution out over the range of all

AtomicSymbol instances in the symbol’s getMatches() Alphabet. The

manufacture of distributions is usually performed by a DistributionFactory object.

This allows particular implementations of Distribution to be tailored to a particular

Alphabet without client code needing to know the details. For example, the default

The BioJava Core Interfaces

 56

implementation of the factory returns Distribution implementations that use either

linear lookup or binary search lookups based upon which is most time-efficient for the

alphabet size. In addition, OrderNDistribution extends the Distribution interface,

and defines that it will be a probability distribution over one alphabet conditional

upon another. For example, given the Alphabet DNAxDNA (containing all ordered

pairs of nucleotides), an OrderNDistribution could be built that was four

independent Distributions over the second Alphabet conditioned upon the first

(i.e. the probability of the second nucleotide appearing given that we knew what the

first one was).

Background database probabilities of the amino acids in Swiss-Prot (Boeckmann,

Bairoch et al. 2003) could be represented as a probability distribution over the

PROTEIN alphabet. The probabilities could be estimated by counting the frequencies

of each amino acid in the database and then normalizing these counts to give a

probability distribution.

The MarkovModel interface encapsulates state-emitting HMMs. MarkovModels

contain one or more State objects. The State interface extends AtomicSymbol.

EmissionState specializes State by having an associated emission Distribution.

In generative model terms, EmissionStates emit the symbols within sequences.

DotState extends State, and represent non-emitting, silent states. These are useful

for rationalising the architecture of models.

The MarkovModel interface has a stateAlphabet() property that returns a

FiniteAlphabet containing every State in the model. It also has an

emissionAlphabet() property that is the Alphabet that matches the Alphabet of the

Distribution objects associated with the EmissionState instances. In addition,

The BioJava Core Interfaces

 57

there is a method getWeights(State) that returns the transition probabilities from a

State as a Distribution. The Alphabet of the Distribution will be a sub-set of

the states Alphabet, representing every State that is reachable from that State.

MarkovModel also has a property getHeads() that represents how many

SymbolList instances are aligned to each other and the model. A single-head model

emits a single SymbolList of sequence and a single SymbolList of States. These

co-linear lists of symbols and states can be used to label a sequence, which may, for

example, mark up features like repeat regions, protein domains or exon boundaries.

Models with two heads perform pair-wise alignment. These can be used to align pairs

of sequences based upon evolutionary relationships, or to find portions of two

sequences that are more similar than would be expected by chance. Models with three

or more heads align that number of SymbolList instances to one another and label

the alignment with the states used.

The EmissionState interface defines one other property named advance, which is

an array of integers (usually 0 or 1) that indicate how much each head of the model is

advanced by the emission. For example, in pairwise alignments, the states that emit

aligned regions will advance in both directions, having an advance property of [1, 1],

where as the insert states will have an advance of [1, 0] and the delete states will have

an advance of [0, 1]. The Distributions associated with emission states should emit

gap BasisSymbols that have a BasisSymbol in each dimension that is 1, and a gap in

each dimension that is 0. Gaps are used to represent the concept that there is a gap in

the list of symbols for that dimension, or equivalently that although the global index

has advanced, the index of the underlying data being viewed has not.

The BioJava Core Interfaces

 58

The MarkovModel interface is the data-structure that defines how some sequences

could be emitted. These HMMs are purely data, and have no algorithms associated

with them. The recursions that align sequences given a MarkovModel are defined by

the DP interface. DP defines methods to calculate the forwards, backwards and Viterbi

recursions (see Equation 1-13). In addition, it defines a method to generate sequences

from the model. The efficient implementation of these recursions depends upon the

structure of the model and the number of heads the model has.

To hide implementation detail from the user, the DPFactory interface defines how

to get a DP implementation for a given model. For models with one or two heads,

there is a DP factory implementation that returns DP implementations that invoke

interpreters. For two head models, there is also a DP implementation that generates

Java byte code optimized to the architecture of a particular model. The DP compiler

outperforms the DP interpreter significantly, particularly for models that contain many

states that have transitions from only one source state. The interpreter is more suited

to situations where the model architecture is being altered, as the compiler would have

to produce new code each time the model architecture is modified.

For pairwise alignment, using the notation of Equation 1-13, i is a 2-tuple of the

index for the first and second sequences respectively. We can impose a partial

ordering upon the set of 2-tuples that follows the natural ordering of each component.

To calculate the cell at i , we must first have calculated all cells that are before i . For

the 2-dimensional case, this means calculating the cells at)0,1(−i ,)1,0(−i and

)1,1(−i . The naive way to ensure this is to construct an in-memory matrix to store

results, and to perform a nested loop over two index variables starting at 0 and going

to the first and second sequence length respectively. There are many ways to loop

The BioJava Core Interfaces

 59

over all possible values of i while guaranteeing this ordering. As long as all of the

values that are needed for uncalculated cells to be calculated are present, it is not

necessary to store any of the other values.

Assuming that the entire dynamic programming matrix is not required, we can write

a space-optimised implementation of pairwise DP that uses space proportional to the

length of the shortest sequence. Given an index a into the first sequence (the shortest)

and b into the second (the longest), we can have an outer loop over the values of b .

A single row of the dynamic programming matrix (indexed by a) containing the

results of the previous iteration (at 1−b). Then, a new row can be calculated for the

row at b . At the end of the iteration, the column at 1−b and be discarded, and that at

b becomes the array used as the known results for the next iteration (at 1+b).

The back pointer structure is a matrix of the same shape as the Viterbi matrix, but

storing the state used to reach that cell. This contains all the information necessary to

trace back from the final cell to the beginning of the alignment to retrieve the highest

scoring alignment. However, this introduces a space cost proportional to the product

of the sequence lengths. It is clear that many sub-optimal paths will exist through the

matrixes that are not needed for the eventual trace back.

Instead of holding a reference to the previous state in the matrix, BioJava stores a

BackPointer object. This stores a reference to the previous BackPointer, a step-

wise score and reference to the State associated with that position. Because

BackPointer instances refer directly to the previous entry in the chain, there is no

need to store the entire matrix in memory explicitly. The Java virtual machine will

take care of garbage-collecting all BackPointer instances that are not reachable from

the current states. It is then only necessary to explicitly hold in memory the

The BioJava Core Interfaces

 60

BackPointer objects associated with the cells that still have uncalculated

dependencies.

In this way, the memory cost for the back pointer data-structures can be reduced to

something that is at a maximum proportional to the memory used to store the values

of the dynamic programming matrix, and which converges to something proportional

to the length of the final alignment (which can never be longer than the sum of the

lengths of the sequences). The BackPointers will form a directed a-cyclic graph. The

trace back path must be from one of the leaves of this graph to the root. While

calculating this directed acyclic graph (DAG), the garbage collector will drop entire

branches from memory when they are no longer reachable. The more fully connected

the model is, the quicker the BackPointer graph will converge towards being linear

on alignment length.

Space-saving versions of the Forwards and Backwards recursions can be similarly

constructed. Since these algorithms consider all possible paths, there is no need to

consider the BackPointer data structures, so these algorithms require memory

proportional to the length of the shortest sequence and the number of states only.

This allows very large pair-wise alignment problems to be considered without

memory resources becoming the limiting factor. Clearly, this does not remove the

need to evaluate every part of the recursions, so the algorithms still scale

computationally on the product of the lengths of the sequences being aligned.

The parameters of a Distribution (and by extension the emission and transition

probabilities in an HMM) can be estimated using the DistributionTrainer

interface. This provides a transactional framework for associating observed counts

The BioJava Core Interfaces

 61

with a Distribution, for aggregating these, normalizing them and resetting them to

zero. Given labelled data, parameters are estimated by adding whole counts to the

DistributionTrainer proportional to the observations and then invoking the train

method to update the Distribution parameters.

 In many cases, a collection of distributions will need to be trained simultaneously.

The DistributionTrainerContext interface encapsulates such a set. This allows all

of the distributions within an HMM to be trained simultaneously. Since

Distribution is an interface, there will often be cases when implementations do not

actually store the values directly, but rather perform some calculation on the

parameters of another Distribution. For example, there is an implementation of

Distribution in BioJava that takes an underlying Distribution and a table that

maps input Symbol instances to a Symbol for an underlying distribution. This allows,

for instance, a Distribution over DNA symbols to have emission probabilities equal

to those of the complementary symbols in another Distribution. When the

distributions are registered with a DistributionTrainerContext, the

implementations will ensure that counts for the complementary view are routed on to

the underlying Distribution instance, and once the context is asked to train all the

parameters from the aggregated counts, the complementary view will reflect the new

parameters of the newly trained distribution.

Training distribution parameters via DistributionTrainerContext allows very

complex parameterisation of models to be explored, both in terms of the emission

probabilities and for the transitions as well, without altering the dynamic

programming recursions or the routines used to collect observation counts.

The BioJava Core Interfaces

 62

HMMs have been constructed with this API to model 3-D DNA structures

(BasisSymbols with one dimension per physical property and Distributions that

model multinomial Gaussians over these properties), align pairs of protein secondary

structure, find transcription factor binding sites, perform GIBBS sampling of

expression data, find eukaryotic and prokaryotic promoters, as well as a host of other

tasks.

2.7 Query

2.7.1 Motivations

Fairly early on in the use of the Feature interfaces, there was the need to find

features of a particular type, or with particular properties, or some combination

thereof. Initially we started adding many getFooByBar() methods, but it quickly

became apparent that this would not scale.

2.7.2 Initial Implementation

After reading the Dragon compiler book (Aho, Sethi et al. 1985), we developed a

small language for describing constraints for accepting or rejecting feature types, and

added the method filter(FeatureFilter aFilter, boolean recurse) to the

FeatureHolder interface. The FeatureFilter interface has the single method

accept(Feature) which returns true if the feature is to be included in a return-set

and false otherwise. There are implementations of FeatureFilter for accepting

features based upon their properties (type, location, annotations and the like). There

are also several logical filters. For example, FeatureFilter.And is an

implementation of filter that will accept a feature if two other filters both accept it.

There are implementations for the logical Operations ‘and’, ‘or’, ‘not’ and ‘nand’.

Using these logical Operations and the basic filters, it is possible to build up quite

The BioJava Core Interfaces

 63

sophisticated constraints. The ‘recurse’ flag in the filter method indicates whether to

apply the filter to the current collection of features only or whether to apply it to those

features and all features that they contain recursively. This provides coarse-grain

control over how to navigate the feature hierarchy.

The filtering language allows collections of features to optimise the processing of

requests as they can interrogate the query to find portions that they can easily process.

For example, a given FeatureHolder implementation may know that it only contains

features of a particular type. It can then optimally handle any filter expression that

contains a ByType expression by just comparing the two types and either accepting or

rejecting the entire set of features. This is much cheaper than comparing every feature

in turn with the filter expression. Filters are used in nearly all library and script code

that manipulates features. For data-specific implementations such as the DAS or

Ensembl bindings, the ability to compare filters can be used to implement reasonable

lazy-fetching strategies to avoid loading unnecessary information into memory from

high-latency storage (the web, or an SQL database for example). For GUIs, the rules

for deciding which features to display can be stored in these flexible filter objects and

modified at will.

2.7.3 Limitations of This System

This scheme has served us well over the last two years. However, there are several

shortcomings with this approach. The first one is that it can only be applied to

features. To extend this to all BioJava objects would require many sets of filters to be

written, each with rules about how to interpret them. In addition, in practice it would

be nice to be able to retrieve sequences from a SequenceDB instance based upon

whether they do or don’t contain a given type of Feature. This would require the

The BioJava Core Interfaces

 64

ability to specify filters that span multiple object types. The other main shortcoming is

the way that the recursion through the feature hierarchy is performed. For example,

when retrieving features of a particular type within a region of a human chromosome

we must recurse down through each level of the assembly pruning it as we go

according to region and then search for features of that type at each level. This

process is not easy to represent as a single filter. In practice, we end up constructing

recursive function calls that each do non-recursive filters to prune the selection by

location, find the features of the appropriate type to return, and recurs down to each

feature with children.

Because the filter statement does not represent the entire process of finding the

features, it is impossible to perform optimal searching and data-caching strategies for

these complex cases. This causes potential inefficiencies to creep in to an otherwise

elegant system.

To address these issues, we are evaluating a range of approaches for modelling

complex queries, including finite state machines, ontology languages and graph

grammars (refs).

2.8 Recent Developments

Since late 2001, BioJava has continued to be developed, expanding far beyond the

original group of two individuals. There are now over thirty developers, five of which

form the core development team. In this time, existing APIs have been consolidated,

and new ones have been added. In this section we will discuss some of the areas

where I have personally been the primary developer, as well as some of the

functionality which the community has contributed.

The BioJava Core Interfaces

 65

The three primary areas of personal contribution are in the design and

implementation of the tag-value parser framework, flat-file indexing, and a

constraints-based type system for Annotation objects.

Major community contributions include improvements to the FeatureFilter

language, the ‘change hub’ mechanism for managing large numbers of change

listeners, bit-packed sequences, parsers for blast (and other sequence similarity search

formats) and an emerging API for representing and manipulating ontologies. To a

greater or lesser extent I have had personal involvement in each of these, but the bulk

of the design or implementation has been undertaken by others.

2.8.1 The Tag-Value Parser

A large proportion of the data analysed by bioinformaticians is stored in text files.

Commonly, these are structured as lists of records. Each record is composed from one

or more lines that contain a tag specifying its type and an associated value. For

example, EMBL entry files have entries separated by lines consisting of ‘//’, and each

entry has one or more lines with a two letter line-type identifier code (such as ‘AC’,

‘OC’ or ‘FT’) with a value present in columns 6 to 80. Genbank files have a similar

structure, but in this case the record separator is ‘///’ and the different line types are

identified by full names (such as ‘ACCESSION’, ‘ORGANISM’ or ‘FEATURE’).

There are a large number of file formats that closely resemble either EMBL or

Genbank files, but contain different tags and represent different types of information,

such as classes of enzymes (Bairoch 2000), taxonomies (Benson, Karsch-Mizrachi et

al. 2003) and protein families (Falquet, Pagni et al. 2002).

In our experience, developing custom parsers for these file formats is an error-prone

task. One system that has implemented a general approach to parsing biological flat

The BioJava Core Interfaces

 66

files is the SRS system with its language Icarus22. Here we describe a similarly

generic framework for parsing these files within BioJava.

The tag-value framework is an attempt to provide a unified way to abstract out the

common parts of the parsing task (such as recognizing record boundaries and dividing

lines of text into tags and values) while allowing the exact details to be customised as

needed. The approach we took was to use a mixture of the strategy (Gamma, Helm et

al. 1994)[315] design pattern and liberal use of listeners. Strategies are used to

encapsulate the variable portion of a process into an interface on its own, so that the

unchanging portion can handle the unchanging functionality and delegate to the

strategy where needed. All data is treated as Java Object instances rather than String

instances, allowing the same framework to work un-changed on on-textual

information.

Over all, the flow of parsing events is very similar to that in the Simple API for

XML (SAX23). In the XML analogy, the text files are like XML files, the tag-value

listeners are like SAX events, and the Annotation API is the equivalent of the

Document Object Model (DOM24). There are also similarities with the Boulder IO

package25, as well as the way that the BioPerl SearchIO has been designed.

22 We have been unable to find documentation about icarus on the LION bioscience web site. However,

the EBI is currently providing documentation, which can be found at http://srs.ebi.ac.uk/doc/icarus.pdf

23 The SAX standard is coordinated through the http://www.saxproject.org/ web site

24 The DOM specification can be found at http://www.w3.org/DOM/

25 BoulderIO is described at http://stein.cshl.org/software/boulder/

The BioJava Core Interfaces

 67

The class Parser has a single method read(BufferedReader, TagValueParser,

TagValueListener) that reads all of the text from the buffered reader, uses the tag-

value parser to process this into tags and values, and informs the tag-value listener of

these pairs. For users of the API, this is the main method that they would invoke.

The TagValueParser interface encapsulates the process of splitting each line of

input into a tag and a value, and also of deciding if the tag is new or not. If the tag is

different from that on the previous line, then the parser assumes that it is new. In the

case where it is the same, the tag-value parser can indicate that it should be treated as

a new instance of that tag, rather than as an additional value for the current tag. For

example, rather than SWISS-PROT comments being treated as just one series of

values for a single comment tag, the tag-value parser could force a new comment tag

event to be fired for each logical block of comments. There are implementations of

TagValueParser that split lines into fixed-width areas (with two pre-built instances,

for files formatted similarly to EMBL and Genbank), and one that splits according to

a regular expression.

The TagValueListener interface has five methods. These are all invoked by a

Parser instance, and it is the Parser that is responsible for ensuring correct nesting

of these method invocations. The two methods startRecord() and endRecord()

signal that records have started and ended respectively. All other events are emitted

within the scope of this pair of events. The startTag(Object) and endTag()

methods indicate that a tag has been started and ended respectively. These are called

within the scope of the record. Tags are never directly nested. That is, for every

startTag(), there is never a directly nested startTag() invocation, and for every

startTag() there is exactly one matching endTag(). The value(TagValueContext,

The BioJava Core Interfaces

 68

Object) method is used to inform the listener of values associated with the current

tag. The value() method is only ever invoked within the context of a tag, and never

directly within the context of the record. For each value associated with a tag, there

will be a separate invocation of value(), and it is up to the listener how this should

be interpreted.

Values can be replaced with Objects that are not String instances. For example,

while parsing an EMBL entry, the lines relating to organism information could be

transformed by a listener into a single taxonomy value. It is common to transform

textual representations of things like URLs and Enzyme Classification (EC) numbers

into light-weight objects. This greatly enhances the richness of the data consumed by

the ultimate listener.

Some of these tag-value file formats have embedded sub-documents. For example,

EMBL and Genbank files have an embedded feature table document. The tag-value

framework supports these by using the context passed in as the first argument to

value(). The listener can uses the pushParser(TagValueParser,

TagValueListener) method to indicate to the Parser that all values of the current

tag should themselves be split into tag and value pairs. The pushed tag-value parser

will be used to split the values of these lines, and the results will be passed onto the

pushed listener. Once the outer tag ends, the pushed parser and listener pair are

popped back off the processing stack, and the original listener will be informed of an

endTag() event as normal. The listener pushed will receive the full set of start/end

record and tag events associated with the sub-document, and may itself choose to

push new listeners for embedded documents.

The BioJava Core Interfaces

 69

This framework allows flexible processing of files into event streams. However, it

is useful to further process these events. To support this there are a range of listener

implementations that wrap other listeners, and pass on altered evens. For example, the

accession lines of EMBL and Genbank files can contain a list of accession numbers,

separated by semi-colons. A listener would receive one value event for each accession

line. The data becomes easier to interpret if one value event can be produced for each

accession number. A RegexSplitter instance could be used to recognize each

portion of the accession line that is an accession, and then fire one value event to the

wrapped listener for each accession.

The ValueChanger listener implementation is the class responsible for changing

values associated with particular tags. It is responsible for either replacing a value

with some other value, or for firing off multiple values. Again, the strategy pattern is

used, in this case to factor out the mapping between tags and actions into a separate

class named ChangeTable. A ChangeTable instance maintains a table of which

actions are associated with which tags. This greatly promotes code reuse and

modularisation. The ValueChanger code just manages the flow of events. The actions

themselves are trivial to implement as little Java classes (often in practice as

anonymous classes). We have found that this kind of composition and

parameterisation is far superior to inheritance-based methods of customizing

behaviour.

The TagMapper listener is used to systematically replace tags with other tags. For

example, it would be possible to configure a TagMapper instance to map all EMBL

tag names to Genbank tag names. This allows event streams to be transmuted into

those accepted by standard listeners and factory objects. For example, by

The BioJava Core Interfaces

 70

transforming reference information in to tags and values that resemble those emitted

from the EMBL parser, the same reference handlers used for EMBL processing can

be reused.

Using the built in tag-value classes, and by supplementing these where needed with

some application-specific code, it is possible to rapidly develop parsers for tag-value

formats of nearly any kind, and transform the information in these files into that

required for a particular application, while achieving a very high degree of code reuse.

2.8.2 Flat File Indexing

A related problem to that of parsing these files is that of retrieving one entry among

potentially the many hundreds of thousands of entries in a single or multiple files. It

was decided by members of the OBF that it would be useful for all of the projects to

share a mechanism for indexing these files. There exist a number of indexing

strategies (for example, emblcd26). However, these tend to pose problems when

accessed from multiple different languages and on multiple platforms as they are

binary file formats. The OBDA flat file indexing specification27 defines an indexing

strategy that just uses plain text files to store the indices.

BioJava contains a full implementation of this specification, allowing a wide range

of file types to be indexed, and for individual records to be fetched in time

26 Applications for manipulating embl CD index files can be found at

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/dbiflat.html

27 See http://cvs.biojava.org/cgi-bin/viewcvs/viewcvs.cgi/obda-

specs/flatfile/indexing.txt?rev=HEAD&cvsroot=obf-common&content-type=text/vnd.viewcvs-markup

for the most recent version of the specification.7

The BioJava Core Interfaces

 71

proportional to the cost of a binary search through the index. Records can be retrieved

either by primary ID or by secondary IDs. The BioJava implementation is wholly

compatible with the other OBF implementations (in Perl, Python and C).

Sequence files can be indexed using the standard BioJava classes for reading

sequences from a stream. Additionally, any format that can be parsed with the tag-

value framework can be indexed. In the future, we will be continuing to enhance

support for secondary IDs, and provide simple APIs to allow different flat-file formats

to be linked to one another by IDs in a manner similar to SRS28.

2.8.3 Annotation Types

Since the beginning, BioJava has supported free-form associations of keys and

values through the Annotation interface. Ironically, many applications need to be

able to guarantee that certain property keys will be present in an Annotation, or that

certain values will be present. The project started to gain a lot of repetitive and error-

prone code that first checked an annotation to see what properties and values it had,

and then acted accordingly.

In order to reduce the need to write this error-prone and repetitive code, we chose to

develop a dynamic type system for Annotation instances, based around the new

AnnotationType interface. The main two methods are instanceOf(Annotation)

and subTypeOf(AnnotationType). Both compare the argument to the current type.

The instanceOf() method returns true if the argument is an instance of the type, and

subTypeOf() returns true if the argument is a sub-type of the type. An Annotation is

28 Mode information about SRS can be found at the

http://www.lionbioscience.com/solutions/products/srs web site

The BioJava Core Interfaces

 72

an instance of an AnnotationType on the basis of what properties and values it has.

One type is a sub-type of a super-type if every annotation that is an instance of the

sub-type is also an instance of the super-type. Two AnnotationType instances are

equivalent if exactly the same set of Annotation instances are accepted by the

instanceOf() methods of both types.

Restrictions are placed upon the range of values that can be associated with

properties by using instances of the CollectionConstraint interface. This has two

main methods. The accept(Object) method returns true if the argument is

acceptable to the constraint. The subConstraintOf(CollectionConstraint)

method returns true if all items acceptable by the sub-constraint are also acceptable to

the super-constraint. The AnnotationType instanceOf() and subTypeOf() methods

are implemented purely by using these methods. There are implementations of

CollectionConstraint that perform the normal logical operations, as well as checking

properties of the item under consideration.

There are many utility methods in AnnotationTools that deal with the common

operations that may be performed upon AnnotationType and Annotation instances.

This use of the façade design pattern (Gamma, Helm et al. 1994)[185] insulates users

of the API from its necessary complexities. AnnotationTools implements a wide

variety of logical operations upon AnnotationType directly, such as computing types

that are the logical union, intersection and difference of two types. It is very common

to compare the results of these to the AnnotationType constants that accept or reject

every Annotation. Additionally, it can be used to generate new Annotation

instances from an old one and a type, for example, by retaining or removing all keys

defined by the type.

The BioJava Core Interfaces

 73

The AnnotationType APIs differ from the way the Java type system works. In Java,

every Object maintains a reference to its Class. This Class maintains references to

all Classes that it inherits from, both implemented interfaces and extended classes

(the Java introspection APIs use the same type to represent both classes and

interfaces). With AnnotationType, Annotation instances maintain no such

reference. As properties are added and removed, or the associated values are altered,

the Annotation may change which annotation types it is an instance of. Code that

wishes to check types should always use the AnnotationType.instanceOf()

method. We tend to think of annotations as being ‘castable to’ an annotation type,

rather than inheriting from or implementing them.

The AnnotationType interface works synergistically with annotations and the tag-

value parsers. If the tag-value framework is like SAX and the Annotation API is like

DOM, then AnnotationType is like XML-SCHEMA29. Annotation types are also

used extensively in the recently enhanced implementation of feature filters.

2.8.4 Enhanced Feature Filters

The FeatureFilter APIs have since been developed by the community into a fully

functional constraint language for Feature hierarchies. In addition to adding

implementations for nearly all conceivable feature properties, there are now

implementations that accept or reject a feature based upon the type of the annotation

associated with the feature. Additionally, there is now much finer grained control of

searches through the hierarchy, using filters like ByAncestor and HasChild.

29 The XML Schema and related standards can be found at http://www.w3.org/XML/Schema

The BioJava Core Interfaces

 74

There is a façade class named FilterTools that implements many common

operations upon feature filters. This includes composing new filters that are the union,

intersection or difference between two filters and a range of factory methods. The

results of these are often compared to the FeatureFilter constants that accept or

reject all features. Another very common operation is to compare two FeatureFilter

instances to see if they accept a disjoint set of features.

A range of FeatureHolder implementations now publish FeatureFilter instances as

schemas describing what features they contain. Given a query, it is possible to

efficiently see if the query is disjoint from the schema and potentially avoid

comparing the contained features to the filter.

Some Feature and Sequence implementations now look at the FeatureFilter

instances being passed into the filter() method, and check the filter for known types of

annotation. For example, if a FeatureFilter is used to filter Ensembl, and it is

constraining upon the “ensemble_id” property in the feature’s annotation bundle, the

Ensembl code will be able to recognize this and do optimized database lookups rather

than looping over all possible feature instances.

 For database and high-latency applications, such as Ensembl and DAS, this

constraints-based language has allowed the existing Sequence and Feature APIs to

scale gracefully to queries that potentially scan many hundreds of thousands of

entities. By careful comparison of the filters with known schemas, and by

introspecting the filters for constraints that can be optimised, we experience

performance comparable to that for special case code that manually plans search

strategies.

The BioJava Core Interfaces

 75

2.8.5 Change Hubs

Another bottle-neck upon scalability was the implementation of how change

listeners were registered with resources such as database objects. Sequence databases

that contain mutable implementations of Sequence need to behave as if the complete

network is in place to forward events from every one of the sequences it contains. In

the case of database implementations like BioSQL and Ensembl, there may be

anywhere from a few hundred to several hundreds of thousands of sequence and

feature instances that theoretically need to be listened to. However, in a typical

application, only a few of these are ever directly accessible in memory.

In these special cases, there are implementations of the Changeability support

classes which we call “change hubs” that maintain data-structures to keep track of

which listeners logically exist. As each sequence is instantiated in memory, the

change hub registers the required listeners to it. As the sequence goes out of scope, it

takes care of removing the listeners. In this way, users of these databases can appear

to be listening indirectly to a vast number of objects, while the implementation cost in

terms of memory, and the time needed for event notification, can be kept to a

minimum.

This is one of the many examples of where designing BioJava from the start in

terms of interfaces has allowed us to drop in a complex replacement for some

standard functionality without altering the APIs exposed to users.

2.8.6 Bit Packed Sequences

As it became more common to work with complete genomic information, the

original implementation of SymbolList became impractical. It stores references to

Symbol instances in an array. References in Java are the same size as a pointer. On

The BioJava Core Interfaces

 76

32-bit platforms, this is a clear overhead compared to storing bytes (8 bits), and this is

even more pronounced on 64-bit platforms.

To allow very large sequences to be loaded into memory, an API was developed for

mapping between Symbol instances and bit patterns. The Packing interface

encapsulates the mapping between all Symbols in an Alphabet and unique bit

patterns. To encode all atomic symbols, the bit patterns must be wide enough to

encode the size of the alphabet. For example, the DNA alphabet has four members.

This can be packed into two bits. The PROTEIN alphabet has 20 members. This will

require 6 bits as 5 bits can only represent 16 combinations, but 6 bits can represent 32.

To encode all symbols, including the ambiguities, the bit pattern will have one

element per atomic symbol in the alphabet. This allows the presence or absence of

that atomic symbol to be indicated. DNA therefore requires 4 bits, and PROTEIN

requires 20 bits.

For small alphabets, like DNA and RNA, the memory saving associated with

packing the sequence is considerable (2 bits vs. 32 or 64 bits). The performance

penalty is approximately a factor of two compared to the implementation that accesses

references directly for linear scans. However, the code that is shared between the

packed and unpacked implementations has been tuned now to be over three times

faster than it originally was, so that the current packed implementation is in fact faster

than the original unpacked implementation.

Long symbol lists are implemented by storing a List of fixed-length symbol list

instances. When a symbolAt() request comes in to the symbol list, it calculates which

child list it is in, extracts that symbol list and passes the request on (after adjusting the

index accordingly). One benefit of this is that if a sub-list has been taken of a region,

The BioJava Core Interfaces

 77

and that region falls totally within the range of one of the child symbol lists, the sub-

list will only maintain a reference to this child symbol list, allowing the large one to

be garbage collected once it goes out of scope.

Another benefit is that different child lists can be implemented using different

SymbolList implementations. Most sequences present today have a very small

number of ambiguity symbols, and when they are present, they are usually runs of ‘n’

characters. Child lists that have no ambiguity at all can be packed using the most

efficient packing possible. Child lists that do have ambiguity can be packed using an

ambiguity-capable packing.

The bit-packing APIs have facilitated the implementation of a pure-java

implementation of SSAHA (Ning, Cox et al. 2001), as well as making it feasible to

store complete human chromosomes in memory. It demonstrates again the flexibility

afforded by interface-based design. No methods in the Alphabet or SymbolList

interfaces needed to be modified, meaning that all existing applications benefit from

these improvements without alteration.

2.9 Conclusions

The BioJava APIs outlined here are designed to be extremely flexible, while

imposing minimal restrictions on how the interfaces are implemented. This is

achieved by pervasively using Java interfaces rather than abstract classes to define

APIs, and leveraging nested exceptions to handle errors. Potentially variable

behaviour is systematically encapsulated by strategy objects. The Changeability API

allows programmers to maintain tight control over which object may be modified and

under what circumstances this will be allowed, while also facilitating the

synchronization of objects’ state and simultaneously enforcing the principal of strong

The BioJava Core Interfaces

 78

object encapsulation. The Symbol and Location APIs provide examples of how

careful object modelling can make software disproportionately powerful by ensuring

that the interfaces have a complete but minimal set of operations that allow for all

conceivable uses of the objects. The DistributionFactory and DPFactory

interfaces demonstrate how tailor-made implementations of interfaces can be

instantiated without the users of APIs needing to know about these implementations.

The creation of features by using Feature.Template instances demonstrates how

two-dimensional polymorphism (interface and implementation) can be implemented

without pushing responsibility for data-integrity to the users of the API. The

FeatureFilter and AnnotationType APIs demonstrate how data structures can be

queried efficiently without violating encapsulation.

Because of the strongly interface-centric design, it is fairly easy to view underlying

data in several forms by defining only the transformation to be applied. For example,

OrderNSymbolList views an underlying symbol list as the nth order view. A 1st order

view of a DNA sequence would produce a SymbolList with the alphabet

DNAxDNA, containing symbols that represent each overlapping pair of symbols from

the original sequence. Similarly, distributions can be constructed that represent a

translated view of another distribution, such as the complementary distribution. This

paradigm allows very elegant data-structures to be built up without duplicating either

the underlying data or the code that performs view transformations. Indeed, BioJava

strongly discourages data duplication. As an extreme example, to reverse-complement

an entire chromosome, BioJava would construct a ComplementarySymbolList that

views a ReverseSymbolList that views the underlying SymbolList for the

chromosome. The total additional cost in memory for complementing the

chromosome is two Java object instances, rather than the memory for the entire

HMMs for Whole P. Falciparum Chromosomes

 80

Chapter 3 HMMs for whole Plasmodium

Falciparum Chromosomes

3.1 Introduction

Observation of chromosomes in a variety of organisms appears to show that they

are composed of a number of distinct blocks. For example, there are the banding

patterns observed in condensed eukaryotic chromosomes (Rooney 2001). With the

primary sequence of these chromosomes becoming available it is now possible to

investigate what relationship if any there is between these patterns and the sequence.

By using unsupervised learning techniques it is possible to look for natural patterns

in the sequence without being biased by prior expectations. We can then compare

these natural patterns with the annotated biological function to look for correlations. If

the chromosomes are constructed from blocks that have one of a small number of

sequence composition biases, it should be possible to estimate both the number of and

the compositional bias for each distinct bias and use these to partition the

chromosome into regions. In the general case, the chromosome could be modelled as

being made up of regions of DNA which each have a reasonably constant sequence

composition but which noticeably vary in composition from their neighbours.

The compositional bias parameters and the likely order in which blocks follow one

another can be estimated using Hidden Markov Models (HMMs) (see Section 1.3.2).

In contrast to the complex HMM methods commonly employed for modelling

biological sequences, such as gene finders, our models do not need to be concerned

with the fine structure of the DNA, concentrating instead on large-scale chromosomal

structures.

HMMs for Whole P. Falciparum Chromosomes

 81

It has been observed that gross sequence content correlates particularly strongly

with function in the Malarial parasite Plasmodium Falciparum. The chromosomes as

a whole have a very high ratio of AT to GC. However, since coding for amino acids

require all nucleotides to be used, exons tend to have a slightly lower ratio (Escalante,

Lal et al. 1998). Annotators use sequence composition plots as a tool to aid

annotation. Since this is particularly useful in the P. Falciparum annotation process

(K. Rutherford, personal communication) this genome was selected as a target for

investigation using these approaches.

P. Falciparum has a genome estimated to be about 3030 megabases (mb) in length,

divided into 14 chromosomes (Pollack, Katzen et al. 1982). The genome exhibits a

strongly biased AT/GC ratio with an overall (A + T) content estimated at 82 %.

Recently, the complete sequence of chromosomes two and three have been sequenced

and published (Bowman, Lawson et al. 1999; Gardner, Tettelin et al. 1999)31. The

telomeric regions of chromosomes two and three are similar in structure, containing a

shared pattern of terminal telomeric repeats followed by the repeats R-CG7 and

rep20, a member of the var gene family, the R-FA3 repeat and finally a riffin gene.

This arrangement of repeats and genes appears to be functional, promoting shuffling

of the sub-telomeric regions between multiple chromosomes (Figueiredo, Freitas-

Junior et al. 2002).

30 The total size of the genome has since been found to be closer to 23 mb in length Gardner, M. J., N.

Hall, et al. (2002). "Genome sequence of the human malaria parasite Plasmodium falciparum." Nature

419(6906): 498-511..

31 Since this time, the entire genome of P. Falciparum has been sequenced Ibid..

HMMs for Whole P. Falciparum Chromosomes

 82

By eye, it is possible to identify regions of chromosome 3 with extreme base

composition. Some of these are clearly correlated with biologically important

features. In addition to the GC enrichment associated with exons, there is a region

with extreme AT content (95-100%) that is believed to be the centromere (Hall, Pain

et al. 2002). It is interesting to speculate as to how many types of sequence

composition exist within Malaria chromosomes, or even whether the chromosome can

meaningfully be grouped into regions that have one of a small number of

compositional biases, or are in fact part of a continuum.

The BioJava HMM APIs are very flexible and allow many different architectures

and parameter sets to be evaluated rapidly. The representation of the underlying

alphabets in BioJava enables us to reuse architectures for different representations

without recoding the core recursions. This makes them an ideal tool for investigating

this type of open-ended question.

3.2 Simple HMM Architectures

3.2.1 Methods

A simple HMM was constructed using the BioJava HMM APIs (Section 2.6) with

two states each with independent emission distributions. This was expected to

segregate the chromosome into regions of high and low AT/GC ratio. A second model

was generated with four independent states expected to segregate the chromosome

into regions of relatively very low, low, high and very high AT/GC ratio. In both

cases, these models were fully connected (transitions existed between all states).

Transitions and emissions parameters were initiated to random values, but with the

constraint that the transition from any state to itself was initialised to a value

approximately 1000 times more likely than the transition to any other state. All model

HMMs for Whole P. Falciparum Chromosomes

 83

scores are presented in units of log probability due to the extreme dynamic range of

these probabilities. These models were trained using Baum-Welch with sampling (as

described in Section 1.3.2).

3.2.2 Results

The two-state model reached a stable set of parameters within a very few cycles.

The log likelihood remained almost constant from cycle 40 to completion at cycle

1214 (–1246786 at cycle 40, with mean –1246786 between cycles 40 and 1214). The

Viterbi state paths from the model at cycles 40 and 1000 are 98.6 % identical. The

model with four states showed similar convergence behaviour (data not shown).

The emission probabilities of the model with two states were complementary rather

than being segregated into high and low GC. Over multiple training sessions with

different initial parameters, the model with four states learned two distinct sets of

model parameters.

Both four state models contained a pair of states that were similar to the states in the

two state model. This pair of states aligned to the major part of the chromosome. The

other two states of the four state model trained differently.

In the first set of model parameters, the two additional states aligned to the

chromosome ends (telomeric regions) and were complementary to each other, i.e. for

each telomere one state aligned to one strand and the other to the reverse complement

of it.

In the second set of model parameters, the two additional states instead modelled a

strong first order relationship in the telomeres. Specifically, one state modelled ‘A’

rich regions and the other modelled ‘T’ rich regions. Frequently these ‘regions’ were

HMMs for Whole P. Falciparum Chromosomes

 84

only single nucleotides in length. Transition probabilities favoured them moving from

one to another. The other pair of states modelled the internal regions as before.

3.3 HMM Architectures with Complementary Emission Distributions

The above results demonstrate that the chromosome must be considered in terms of

being a double-stranded DNA molecule rather than as a single-stranded sequence. In

particular, if there is a block with a characteristic sequence composition on one strand,

this, by definition, implies a block with the complementary distribution on the other

strand. This pair of states should be modelling a single set of parameters. To achieve

this we developed a Distribution that implements a complementary view onto

another Distribution. A pair of states can then be added to the model, one with the

forward strand distribution and one with its complement. We call these

complementary states pair-states. During training, all counts associated with the

complementary distribution are first un-complemented and then forwarded as counts

to the forward-strand distribution. This guarantees that the total number of parameters

is minimized and that all available evidence for emissions is used during training.

3.3.1 Methods

Models were constructed with two, three, four or five pair-states (4, 6, 8 and 10

total states respectively). During training, all emission probabilities and all transition

probabilities were initially set to random values, with transitions from each state to

itself initially being approximately 1000 times more likely than any other transitions.

Each model was then trained using Baum-Welch with sampling, as described above,

as well as by Baum-Welch, using the sequence of Malaria chromosome 3. Training

was stopped after 100 cycles due to a combination of computational constraints and

the observation that models appear to converge before cycle 100. The different

HMMs for Whole P. Falciparum Chromosomes

 85

models were then aligned to both chromosome 3 and chromosome 2 without

additional training.

Models with more than 5 pair-states were not trained as both the memory and

computational requirements for the estimation of training parameters becomes

prohibitive. The space required is approximately equal to length_of_sequence x

number_of_states x size_of(double), which for large sequences with many states

quickly reaches the limits of a machine with hundreds of megabytes.

3.3.2 Results

Training using Baulm-Welch with sampling exhibited quicker convergence

properties than Baulm-Welch, and was also computationally less expensive due to the

decreased number of counts which needed to be summed. Multiple training runs with

sampling produced models with more similar parameters and alignment scores than

with Baulm-Welch training (data not shown).

We then considered a representative from the replicates of the two, three and four

pair-state models. The Viterbi paths at 20 and 100 cycles for the two, three and four

state-pair models differed by 0.23 %, 0.45 % and 1.41 % respectively. This indicates

that by cycle 100, the models were not changing significantly in their predictions. The

model with five pair-states did not use one pair of states at all, indicating that this

family of models could only distinguish four types of gross genomic content, and is

therefore not discussed further.

In all cases, some transition probabilities in the trained models have moved greatly

from their original values, and the most used states have emission probabilities that lie

close to the ratios found in the chromosome (Figure 3-1).

HMMs for Whole P. Falciparum Chromosomes

 86

The Viterbi paths for all three pair-state models at cycle 100 against chromosome 3

(Figure 3-2) show use of paired states at the beginning and end of the chromosome,

and a similar banding pattern of states within the chromosome. In all three

alignments, a single state emits the first 276 bases of the chromosome. The

corresponding complementary state then emits the final 186 (±2) bases of the

chromosome. This corresponds to the regions of sequenced telomere. In addition, in

all three models, a single pair of complementary states emits the majority of the body

of the chromosome. The models with more states show additional features, such as

the appearance of a band near the ends of the chromosome that resembles telomeric

sequence, and blocks of sequence corresponding to repeat elements. Not all states

were used by the more complex models. For example, the three pair-state model

learned two telomeric states, two internal states and a final state that matches a region

within the genes PFC005w and PCFC1120c. This state did not use the complement of

this final state anywhere.

The four pair-state model has corresponding states for each of these regions and two

complementary states that match a region between the telomeres and the var genes.

These overlap significantly with the repeat elements rep20, rep11 and R-CG7, and

show striking similarities with the state-paths for chromosome 3. Again, the telomeres

have been correctly identified, and the exons on each strand seem to segregate with

the two main states. In addition, the regions near the telomeres are predicted to have a

very similar structure, including a telomeric-like section within the var genes, and the

use of states that overlap the repeat elements.

In the four state-pair model, the coding region state pair has one state associated

with each strand. 86% of all bases in exons on the positive strands are matched by the

HMMs for Whole P. Falciparum Chromosomes

 87

first state, and only 14% by second. 94% of all bases in exons on the negative strand

are matched by the first state and 5% by the second. Overall, these states predict the

strand correctly 90% of the time on a per-nucleotide basis. Most errors are made on

the boundaries between genes on opposite strands.

The Viterbi state path for chromosome 2 (Figure 3-3) shows striking similarities

with those obtained for chromosome 3 (Figure 3-2). This is evidence that the two

chromosomes share a common architecture. Labellings of randomised sequences do

not show these similarities in patterns (data not shown). Therefore, we believe that the

models have indeed learned some general properties of malarial chromosomes.

It is possible that the consistent structures predicted at the beginning and end of

each chromosome is an artefact of transition probabilities associated with entering and

exiting the model. To test this, artificial chromosome sequences were constructed.

The first half of the chromosome was appended to the second half so that the central

regions of the sequence were now at the ends, and the ends of the sequence were now

in the centre. State-paths were predicted using the same models as before. The regions

at the ends of the artificial sequences were labelled with the states associated with the

body of the chromosome, and the regions corresponding to the telomeres now located

in the centre of the sequence were labelled with the telomere-associated state-pair.

This indicates that the models are making predictions on the basis of the sequences,

and not any edge-effect artefacts.

HMMs for Whole P. Falciparum Chromosomes

 88

a)

b)

c)

d)

Figure 3-1 Emission probabilities for the four pair-state model

Each row shows a state-pair with complementary emission probabilities. They

match a) chromosome body; left and right associated with (-) and (+) strand exons

respectively b) telomere-like sequence; left and right associated with telomeres at the

right and left of the chromosome respectively c) near-telomere repeat associated

regions d) (G + C) rich region in the var genes (only one of this state-pair is used).

HMMs for Whole P. Falciparum Chromosomes

 89

States

Exon Tel. Rep. GC

Figure 3-2 Diagram of the P. Falciparum chromosome 3 and the state paths through three models (legend continued on next page)

HMMs for Whole P. Falciparum Chromosomes

 90

Sections a, b and c represent the state paths of the two, three and four state-pair models respectively across the entire

chromosome with insets to the left and right showing the extreme telomeric region. The relative positions of exons and repeat

elements are indicated above these diagrams. Section d shows an enlarged view of the state paths for the first and last 50,000 bp of

the chromosome, with the corresponding exons and repeat elements above. Within each diagram, a different shading pattern is

used for each state, as indicated by the key (Exon - exon-related, Tel. - telomeric-like, Rep. - repeat-associated, GC - high (G + C)

content). Arrows above the diagrams indicate the positions of narrow regions that may not be easily visible.

HMMs for Whole P. Falciparum Chromosomes

 91

States

Exon Tel. Rep. GC

Figure 3-3 Diagram of the P. Falciparum chromosome 2 and the state paths through three models (legend continued on next page)

HMMs for Whole P. Falciparum Chromosomes

 92

Sections a, b and c represent the state paths of the two, three and four state-pair models respectively across the entire

chromosome with insets to the left and right showing the extreme telomeric region. The relative positions of exons and repeat

elements are indicated above these diagrams. Section d shows an enlarged view of the state paths for the first and last 50,000 bp of

the chromosome, with the corresponding exons and repeat elements above. Within each diagram, a different shading pattern is

used for each state, as indicated by the key (Exon - exon-related, Tel. - telomeric-like, Rep. - repeat-associated, GC - high (G + C)

content). Arrows above the diagrams indicate the positions of narrow features that may not be visible at this scale.

HMMs for Whole P. Falciparum Chromosomes

 93

3.4 First Order HMMs with Time-Reversible Transition Probabilities

The model with four independent distributions in some cases learned a pair of states

that crudely represented a 1st order distribution (encapsulating dinucleotides). To

explore this further, models were constructed that contained emission Distribution

objects encapsulating a 1st order Markov process.

The 0th order model used the third pair-state to identify a high-G region. However,

the transition probabilities learned for this model only allowed one of the pair of states

to be used. This was due to the lack of association between the transition probabilities.

The re-architecting process required to introduce higher order emission probabilities

also provided an opportunity to constrain the transition probabilities such that the

resulting HMM is truly time-reversible (if the sequence being analyzed is played back

in reverse with the appropriate complementation, it would induce a state labelling that

is the reverse-complement of the forward state labelling). The time-reversed transition

probabilities should in theory remove the kind of artefacts observed in the 0th order

model’s third pair-state.

3.4.1 Methods

The chromosome was viewed through an NthOrderSymbolList instance to

translate it into all overlapping pairs of symbols, and the HMM emission alphabet was

set to DNAxDNA.

The 1st order emission distributions presented additional challenges to ensure that

they were correct estimates in both the forward and reverse directions. The probability

of observing a given dinucleotide is defined as being the probability of observing the

second nucleotide conditioned upon the first. That is, there is a 0th order probability

distribution over each second nucleotide that is chosen according to the identity of the

HMMs for Whole P. Falciparum Chromosomes

 94

first nucleotide. If the distribution associated with the complementary state is

calculated by simply reverse-complementing the dinucleotide and finding its

probability in the original distribution, this will not be a true probability distribution

(the sum over all probabilities given all dinucleotides starting with a given nucleotide

will not be guaranteed to be 1). This is because in this case we are effectively

conditioning upon the second nucleotide rather than the first. This causes the models

to be non-probabilistic and the training algorithms to fail.

We address this by reverse-complement the table of observations and then re-

normalize to give the complementary 1st order probabilities. During training, a

standard DistributionTrainer is registered with the forward-strand probability

distribution. The reverse-complement distribution registers a DistributionTrainer

that forwards all counts on to this after reverse-complementing the dinucleotide.

Probabilities for the forward distribution are estimated as normal and those for the

reverse distribution are estimated by normalizing the reverse-complemented counts.

This scheme ensures that all available information is pooled (both evidence for

forward and reverse strand are aggregated) and that the result is a strand-reversible

probabilistic Markov process. As a concrete example, given the short sequence

‘AATGCGT’ we can estimate both a forward 1st order distribution, that would

produce this and a reverse-strand 1st order distribution, that would produce

‘ACGCATT’ with an equal probability using the counts in Table 3-1 and a suitable

normalization (such as pseudocounts). It is clear from this example that the

probability of observing a dinucleotide is not equivalent to observing its reverse-

complement (for example, AG is half in the forward strand, but CT is not observed at

all in the reverse strand).

HMMs for Whole P. Falciparum Chromosomes

 95

Table 3-1 Forward-strand and reverse-strand counts

 A G C T Sum

A 1 1 2
G 1 1 2
C 1 1
T 1 1

 A G C T Sum
A 1 1
G 1 1
C 1 1 2
T 1 1 2

The transition distributions present a more complex problem. The first naïve

approach was to constrain the transition probabilities of a reverse-strand state to be

the transition probability from the forward-strand state to the complement of the

destination. This does yield a probabilistic model. However, it is not fully time-

reversible. This is because if we consider both strands, the model effectively treats

entry to a forward-strand state as being equivalent to exiting a reverse-strand state.

 This was again addressed by estimating the transition probabilities from tables of

counts. However, we run into a problem that prevents us using the same

DistributionTrainer solution as for the 1st order probabilities. Table 3-2

enumerates every possible transition from state ‘a’ to state ‘b’ given that neither, one,

or both may be complemented (indicated as a’ or b’ respectively).

Table 3-2 State-transitions and their reverse-complements

Forward Reverse
Complement

a-b b’-a’
a-b’ b-a’
a’-b b’-a
a’-b’ b-a

HMMs for Whole P. Falciparum Chromosomes

 96

For three of the four cases, either the forward or reverse-complement forms start

with a forward-strand state. These can all use the reverse-complement forward-state

counts to calculate the backward-state probabilities. However, in one case (a’-b:b’-a),

there is no count associated purely with the forward-strand process. In the naive

probability model described above, this case is considered interchangeable with (a-

b’:b-a’). However, the two are clearly distinct transitions. This issue did not arise for

the emission probabilities as we only considered the cases of a-b, or b’-a’, which are a

well-behaved subset of all the interactions in Table 3-2 (in particular a-b:b’-a’).

The problematic transitions do not arise for more restrictive model architectures for

which forward and reverse model regions are separated by an a-directional region.

During training, a table of counts for all pair-wise combinations of states was kept,

and while collecting observations, the count was split into two parts, which were then

forwarded to each count cell representing the two possible time-reversed transitions.

Then, during training, the distribution was estimated by normalizing the aggregates of

each of the two time-reversed transitions.

3.4.2 Results

Models with 2, 3, 4 or 5 pairs of states were trained on chromosome 3 of P.

Falciparum using Baum-Welch training until the forwards probability did not vary by

more than e
01.0 between two cycles (changes of > 0.01 relative to scores in the range

of tens of thousands). The models took 116, 103, 77 and 90 cycles respectively to

converge. Models with more states were again not trained due to the memory and

computational constraints.

The transition probabilities for all models are dominated by state-to-self transitions.

Emission probabilities for all models (Figure 3-4) show a progression in complexity

HMMs for Whole P. Falciparum Chromosomes

 97

with the number of state-pairs available. The additional distributions seem to model

additional sub-types of sequence, and in every case, each of the distributions in the

simpler models are represented in the more complex models. This indicates that the

additional available complexity is being used to model distinct populations of

sequences. This is in contrast to the 0th order model, which could model no more than

four compositional biases. Presumably, the 1st order probability distributions are

capturing some more biologically relevant information. It is also interesting in that

each model was trained entirely independently with different starting parameters but

learned very similar final parameters. This is good evidence that the models are

learning some legitimate signals embedded within the chromosomal sequence rather

than using the extra parameters in an arbitrary manner to memorise the training

sequence.

The entire chromosome was classified into the following biological feature types;

exon, intron, repeat and other, using the annotation associated with the malarial

chromosome. This classification was then projected onto the state labelling from the 5

pair-state model (shown graphically in Figure 3-5 and Figure 3-6 for chromosomes 3

and 2 respectively). From this, a count of the number of times a particular state and

feature are co-located was calculated (Figure 3-7). These counts show dramatic trends

for certain features and states to be associated with one another. There are clearly two

state-pairs (3± and 5±) associated with exons. States 2± are also associated to some

degree with the ‘other’ category while States 4± accounts for the majority of repeats.

Figure 3-8 and Figure 3-9 are normalized views of these counts for the 5 pair-state

model representing the conditional probabilities of observing a particular state given

that the feature is known, and observing a given feature given that a state is known.

HMMs for Whole P. Falciparum Chromosomes

 98

From Figure 3-8 it is clear that if a region is an exon, the states 3± and 5± together

account for nearly the entire feature (> 93 % for + strand, > 94 % for –strand). Introns

do not have a single state associated, but show a predisposition towards the pair 2± (2-

preferred over 2+ for forward strand introns and 2+ preferred over 2- for backward

strand introns). Indeed, the predispositions in forward and reverse strand introns

appear to show a distinctly strand-dependant pattern despite there not being a single

indicator state. This indicates that the introns contain important strand-dependant

information. Repeats are associated with the states 4±. The other category most

closely resembles the average of the intron distributions. It is interesting that the

repeat distribution seems not to include a large proportion of states 1±, despite these

being found in introns and ‘other’.

The most striking feature of Figure 3-9 is that almost all states are associated

primarily with only one feature type. The second observation is that no state is

predictive of introns. States 1± and 2± are associated with ‘other’. States 3± and 5±

are associated with exons. States 4± are associated with repeat regions.

We can see from Figure 3-7 how as state pairs were added, the correlation between

states and features altered. In the 2 pair-state model, exons are only labelled by states

2±, but these states are also frequently found labelling ‘other’, and accounts for

almost all repeats. In the 3 pair-state model, the exons and the repeats are modelled by

their own states (3±), while 2± remain the major ‘other’ states. In the 4 pair-state

model, states 4± now take on the role of specifically modelling the repeats. Finally, in

the 5 pair-state model, states 5± model a sub-set of exons. Clearly, as more states are

added to the models, they are making finer distinctions over how to model the

chromosome.

HMMs for Whole P. Falciparum Chromosomes

 99

Figure 3-5 and Figure 3-6 are graphical representations of the state-paths of the five

pair-state model to chromosomes 3 and 2 of Malaria respectively. Again, from these

figures, the co-localisation of some feature types with biological features are clear to

see, particularly at the extreme ends of the chromosomes. These results also

demonstrate how as the complexity of the models increase, finer distinctions in the

assignments are identified.

Figure 3-7 displays the frequency with which different states align to each of the

different biological feature classes. In Figure 3-8, this data has been normalized to

give the observed probability of any given state given a particular type of feature.

This gives an indication of how strongly a given state labelling of a region of

chromosome indicates a particular biological function for that region. In Figure 3-9,

this same data has been normalized to give the observed probability of any feature

type given a particular state. This indicates how predictive each state is of the

different feature classes.

HMMs for Whole P. Falciparum Chromosomes

 100

state 1 2 3 4 5

+

2

-

+

3

-

+

4

-

+

 5

-

+
-

Figure 3-4 Emission Spectrums for all Pair-State Models (legend continued on next page)

HMMs for Whole P. Falciparum Chromosomes

 101

Sections for the 2-5 pair-state models contain two rows, the first contains graphs of

the 1st order emission probabilities and the second contains graphs of the reverse-

strand emission probabilities. The emission probabilities for each model are arranged

so that those that appear similar are in the same column (1-5). The final area displays

a key that associates the states with colours in the whole-chromosome diagrams

Figure 3-5 and Figure 3-6.

HMMs for Whole P. Falciparum Chromosomes

 102

Figure 3-5 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria chromosome 3 (legend continues on next page)

HMMs for Whole P. Falciparum Chromosomes

 103

Lines a, b and c display the alignments of the 3,4 and 5 state-pair models respectively. The colours are as in the key in Figure 3-4. The red

exons belong to ‘normal’ genes. The blue exons belong to ‘bob’ genes (Bowman, Lawson et al. 1999).

HMMs for Whole P. Falciparum Chromosomes

 104

Figure 3-6 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria chromosome 2 (legend continues on next page)

HMMs for Whole P. Falciparum Chromosomes

 105

Lines a, b and c display the alignments of the 3, 4 and 5 state-pair models respectively. The colours are as in the key in Figure 3-4. The red

exons belong to ‘normal’ genes. The blue exons belong to ‘bob’ genes (Bowman, Lawson et al. 1999).

HMMs for Whole P. Falciparum Chromosomes

 106

1+1-2+2-

Exon+
Exon-
Intron+

Intron-
Repeat

Other

0

50000

100000

150000

200000

250000

300000

Count

State
Feature

Frequencies for 2 Pair-State Model

1+1-2+2-3+3-

Exon+

Intron+

Repeat

0

50000

100000

150000

200000

250000

300000

Count

State
Feature

Frequencies for 3 Pair-State Models

1+1-2+2-3+3-4+4-

Exon+
Exon-
Intron+

Intron-
Repeat

Other

0

50000

100000

150000

200000

250000

300000

Count

State
Feature

Frequencies for 4 Pair-State Model

1+1-2+2-3+3-4+4-5+5-

Exon+
Exon-
Intron+

Intron-
Repeat

Other

0

50000

100000

150000

200000

250000

300000

Count

State
Feature

Frequencies for 5 Pair-State Model

Figure 3-7 Counts for Biological Feature and States for the 2-5 Pair-State Models (legend continues on next page)

HMMs for Whole P. Falciparum Chromosomes

 107

The state labels are consistent with the labels in Figure 3-4. Each model in turn was used to label chromosome 3. The state labelling was then

compared to the location of known genes and repeats.

HMMs for Whole P. Falciparum Chromosomes

 108

Error! Not a valid link.

Figure 3-8 Normalized Counts of States for Biological Features

This bar chart displays the data in Figure 4-8 grouped by biological feature. For

each feature, the probability of observing a given state is displayed as a bar. Exons are

primarily accounted for by states 3±, with states 5 aligning to only approximately one

fifth of exon sequence. No other biological feature class is predicted so clearly by any

state.

Error! Not a valid link.

Figure 3-9 Normalized counts of Biological Features for States

This bar chart displays the data in Figure 4-8 grouped by state. For each state, the

probability of observing a given feature is displayed as a bar. States 1+, 1-, 2+ and 2-

are specific for the Other category. States 3+, 3-, 5+ and 5- are specific to exons

States 4+ and 4- are specific to repeats.

HMMs for Whole P. Falciparum Chromosomes

 109

3.5 Discussion

In order to investigate the gross structure of malarial chromosomes, we explored a

number of different HMM architectures using the BioJava HMM APIs. The initial

model contained just two states. It was trained to classify every base within the

Malaria chromosome as being emitted by one or other of these states. The transition

probabilities were set to initial values that favoured a single state emitting a long

region of the chromosome. The belief was that this model would segregate the

chromosome into high and low AT/GC content. After training, the emission

spectrums of the two states were very close to being complementary. One

interpretation of this is that the underlying biological process learned was strand-

dependant, so that in effect the model reflected a single probability distribution, but

learned it once for each strand.

This observation lead to the construction pair-state HMMs with pairs of states that

emit nucleotides according to complementary distributions. The two pair-state model

revealed that the telomeric regions were distinct from the internal chromosomal

sequence, and that the body of the chromosome aligned to a single pair of states

which flipped between one another. This pair of states appears to correspond to the

positions at which Malaria utilizes one strand or the other for coding exons, predicting

the strand with an accuracy of 90 %. This is surprisingly accurate, given the extreme

simplicity of the model.

The more complicated models additionally predict a feature resembling telomeric

sequence followed by a small region of sequence that is distinguished from the rest of

the chromosome by its very high (G + C) content (52 %). This interesting pattern is

visible only in the genes PFC005w and PCFC1120c, which are putative members of

HMMs for Whole P. Falciparum Chromosomes

 110

the var family (Bowman, Lawson et al. 1999), involved in evading the host immune

system. There is some evidence that var genes are subject to epigenetic control and

undergo frequent intragenic recombination (Corcoran, Thompson et al. 1988), so the

telomeric-like fragments within these genes may be the remnants of chromosomal

rearrangement events resulting in the shuffling of these sub-telomeric regions.

The models trained on chromosome 3 were aligned without further training to P.

Falciparum chromosome 2, to check whether the models had learned features specific

chromosome 3, or more general features of Malarial chromosomes. Without further

training, the models correctly recognise the telomeres, predict the exon directions and

also identified the telomere-associated repeats in chromosome 2. In addition, the var

genes on chromosome 2 appear to contain a band of telomeric sequence in the

corresponding locations to the var genes located on chromosome 3. In chromosome 2,

the band of high (G + C) content appears not to be present.

The blocks of telomeric base composition within, and beyond the var genes, may be

a relic of recent recombination events between these genes and other telomeric var

loci. Other var loci also appear to share this feature (data not shown), although these

types of model may not be appropriate for analysing short sequences. The high (G +

C) region found in the chromosome 3 alignments may be specific to that chromosome

as none of the other var genes analysed shares this feature. It was not possible to train

simple pair-state models that used more than four pairs of states, which is evidence

that the models were not over-fitting the training data, and were characterizing real

information about the chromosomes.

In addition to the observation that both strands of the chromosome must be

considered, the original model indicated that some of the processes observed were not

HMMs for Whole P. Falciparum Chromosomes

 111

easily modelled by 0th order probabilities. This inspired the creation of the fully time-

reversible 1st order models. These models were able to learn more subtle signals that

were associated with or were indicators of exons (+ and – strand), introns (again +

and – strand), repeat elements and ‘other’ (assumed to be intergenic sequence). These

models were capable of consistently learning the same signals given different initial

training parameters and different numbers of paired states. Additionally, they were

able to learn additional and more complex signals as the number of parameters was

increased. The most interesting feature of the 5 pair-state model is the sub-division of

exons into those with high and low adenine content (states 3± and 5± respectively).

This does not coincide with any obvious properties of the genes.

None of these models learned a state associated with the putative centromere, which

has been predicted to lie in a region which is almost entirely (A + T) in composition

(Bowman, Lawson et al. 1999). However, the centromere is a comparatively small

structure that may not be distinctively different from the already extreme A/T bias of

the chromosome in general. The 0th order model did model a very small region of

high G+C content, but this had sequence-composition characteristics that are radically

different to those associated with the other states. It is possible that a 1st order models

with more states would have recognized the centromere.

All of these models were trained using unsupervised learning techniques, and had

no supplied data to indicate the location or type of biological features. However, all of

these models have learned signals that are co-located with biologically significant

structures. Given the relative simplicity of the models, this is clearly a potentially

powerful method.

HMMs for Whole P. Falciparum Chromosomes

 112

3.6 Future Directions

At the time this work was done the model size was limited due to the physical

memory required to store training parameters for large sequences. With newer

machines with greater physical memory it has now become practical to extend this

work to consider more states and larger sequences, such as human chromosomes. It

would also be interesting to look at orders greater than one. However, to train models

with large numbers of transitions and high-order emission states would most likely

require a more sophisticated regularization framework and possibly a more complex

representation of the HMM than simple pseudo-counts or these probability

parameterized finites state machines can afford.

The memory requirements for the dynamic-programming matrices used during

training scales linearly with the length of the training sequences, and also with the

number of states in the model. On the computer hard ware used in this study, this

becomes prohibitive for sequences that exceed more than a megabase in length, and

for models with more than ten states.

One solution would be to calculate one matrix completely, and then calculate each

column of the other in turn using the space-saving implementation of the recursion,

adding counts associated with each completed row of the matrix as we go. However,

one of the matrices must still be held in memory, so this still scales in proportion to

the length of the sequence, allowing us only to double the training sequence length, or

the number of states.

Another solution would be to calculate the space-saving version of one recursion,

and as each matrix row is completed, calculate the other recursion back to that point.

Although the memory required for this is trivial, the computation will scale by the

HMMs for Whole P. Falciparum Chromosomes

 113

square of the sequence length. This is likely to become prohibitive even quicker than

the memory constraints of the above approaches.

A combination of the two methods can be developed that has a computational and

space cost proportional to the length of the sequence. Firstly, a chunk size is chosen.

Then, the forwards recursion is calculated using the space-saving version of the

recursions. The first matrix row encountered is then stored in a list. Each time a

number of rows have been calculated that is a multiple of the chunk size, this is also

stored in the list. This is done until the complete recursion has been calculated. The

complete sub-matrix running from any stored row to the next (or the end of the

sequence) can now be calculated as needed using the normal forward recursion,

initialized on the stored row. The space-saving implementation of the backwards

matrix can then be used to provide the backwards scores for each region, starting with

the last and working towards the first, and counts can be added to the model trainer as

normal.

This method requires the forwards matrix to be calculated twice, and also will need

enough memory to store the forwards matrix rows for each of the chunks. However,

this is significantly lower than the cost of storing the complete matrix. If the largest

sequence that can be used for training with the current method is one megabase, then

the chunk size can be set to once per half megabase. This would allow half a million

chunks to be processed before using half of the available memory (the other half

being required for calculating the sub-matrices). There are no sequences that we are

aware of that are likely to exceed the order of a million, million nucleotides.

Therefore, we propose that this method will allow single-head HMMs to be trained on

HMMs for Whole P. Falciparum Chromosomes

 114

any practically available sequences without exceeding readily available memory

resources. We plan to implement this training method in BioJava in the near future.

The investigations described in this chapter have demonstrated that the BioJava

HMM APIs are highly adaptable to different model architectures, with potentially

complex relationships between the values of parameters. The same implementation

code was successfully used here for models with different numbers of states and for

different emission alphabets. The results are numerically stable and fully probabilistic.

These APIs have been used by others for modeling biological signals, for example,

see (Hasan 2003). We hope that as the APIs mature, they will become used even more

widely for different modeling tasks.

Investigation of Recombination Rates Using SVMs

 115

Chapter 4 Investigation of Recombination Rates

Using SVMs

4.1 Introduction

In Chapter 3 attempts were made to divide chromosomes up into blocks with

uniform but distinct properties using HMMs. The justification for this was the

observation that certain biological processes appear to segregate with such patterns.

Another way to look at chromosomes is to consider if there are associated properties

that are continuous in nature. One property that appears to have this behaviour is the

probability of recombination occurring between any two bases on the sequence.

Recombination events are responsible for the inheritance of a unique, mosaic

combination of alleles during sexual reproduction. In humans it has become clear that

the single nucleotide polymorphisms observed are grouped into regions bounded by

points of recombination, which have recently been mapped for Chromosome 22

(Dawson, Abecasis et al. 2002). How much variation in recombination rates

influences the inheritance pattern in organisms including man has to date not been

quantified.

The exact mechanisms that drive differences in recombination rate are unknown. It

has been shown in some organisms that some recombination hot spots can be directly

controlled by very small regions of a chromosome, and that the trait of recombination

rate is heritable (Dixon and Kowalczykowski 1991). It is always possible that the

heritable component is something other than the genome sequence, such as the

methylation pattern. The objective of this chapter is therefore to look for a sequence

based signal.

Investigation of Recombination Rates Using SVMs

 116

Human Chromosome 22 provides the source of data for this investigation. The rate

of recombination has been estimated along a large portion of the q-arm of human

chromosome 22 between some 35 genetic markers (Dib, Faure et al. 1996; Dunham,

Shimizu et al. 1999). With the advent of a finished sequence for this chromosome, it

is possible to compare the genetic and physical distances. As indicated by the blue

line in Figure 4-1, the recombination rate is not uniform across the region. By plotting

physical position along the x-axis and the ratio of genetic to physical distance on the

y-axis, the non-linearity shows up clearly as spikes. There may be recombination rate

enhancing and repressing signals within the chromosome that are causing this

position-dependant difference in recombination rate.

 The process of learning how to predict recombination rate from sequence content

can be addressed by a supervised learning approach. The dimensionality of the data is

extremely high if we consider all possible sub-sequences within a region of interest.

One methodology which has been used successfully for very high dimensional data is

the support vector machine (SVM) which is now described in detail.

Investigation of Recombination Rates Using SVMs

 117

Physical and genetic distances

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35

nt

cm

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

cm
/n

t

cm
cm/nt

Figure 4-1 Comparison of physical and genetic distances along chromosome 22

The x-axis represents the genetic distance of each marker on the q-arm of

chromosome 22 from the centromere, as measured in megabases. The pink line is the

distance in centi-morgans of each marker from the first marker. The blue line displays

a data-point between each consecutive pair of markers, with a height proportional to

the ratio between the difference in the genetic distance between the two markers and

their physical distance. Peaks in the blue graph indicate regions of relatively high

recombination.

Investigation of Recombination Rates Using SVMs

 118

4.1.1 Support Vector Machines

Support vector machines (SVM) (Vapnik 1995) are linear models that use dot

products and kernel functions to perform classification and regression tasks (see

Section 1.3.1). They are designed to estimate an affine transform from an arbitrary

dimensional input space to a single dimensional output space. This output space is

defined as the distance of a data item from some plane in input space. The distance of

a point from a plane can be computed as the dot-product between the point and the

normal of the plane, plus the plane’s constant (the smallest distance of the plane from

the origin). All points lying within a plane satisfy the equation:

Equation 4-1 Equation of a Plane

offset planeh plane;in point any plane; the tonormal
0

===
=−⋅

xv

hxv

Dot-products of sums can be re-written as sums of dot-products:

Equation 4-2 Normal to a Plane as a Weighted Sum of Vectors

()∑∑ ⋅=⋅

i
i

i
i xxxx

It follows that we can represent the normal of the plane by a weighted sum of the

training examples. Although most of the problems encountered do not have a good

linear solution in the data-space, there is often a linear solution in some alternate

‘feature space’ that is equivalent to a non-linear solution in the data-space. For

example, the space of all polynomial interactions of order two or less between the two

components of a vector describes all conics in the data-space. If there is a kernel

Investigation of Recombination Rates Using SVMs

 119

function that computes dot-products in this feature space, Equation 4-2 shows that the

equation of the plane can be implicitly represented as a weighted sum of the kernel

functions acting upon each data point and the data-item x . The full equation becomes

Equation 4-3 where iβ is the weight of the i th training example in the plane normal.

Equation 4-3 Definition of a Support Vector Machine

hxxkxf
i

ii −= ∑),()(β

This formulation has the interesting property that although the solution is in a

potentially large feature space, there is exactly one more parameters than there are

training examples. The standard SVM training algorithms introduce a further

constraint upon the parameters such that one of them is not free. This means that

regardless of the resulting model, it can contain no more information than the original

training data.

When using a SVM, it is usual to vary x for some fixed range of values for ix and

iβ . This can be made more explicit by rewriting the kernel function term as a basis

function:

Equation 4-4 Basis Functions for Kernel Functions and Data Points

),()(xxkx ii =φ

This allows the SVM equation to be re-written as follows.

Equation 4-5 SVMs in Terms of Basis Functions

hxxf
i

ii −= ∑)()(φβ

Investigation of Recombination Rates Using SVMs

 120

If any of the weights iβ are zero, then the associated basis function does not affect

the result. If only a few of the weights are non-zero then the resulting function is

relatively simple. This property is called sparsity and the data-points associated with

the contributing basis functions are called support vectors, as for separable problems,

when displayed graphically in the feature-space (and if the feature space is related by

a continuous function to the data-space, in that also), they ‘support’ the learned

hyperplane (or decision boundary in the data-space). For the special case of pair-wise

classification, the support vectors are the data points that lie on the boundaries of the

convex hulls of the two sets of data in feature space.

There are several methods available to estimate the parameters of the hyperplane

()h,β given an error function. We found the most efficient method currently

available to be the SMO algorithm (Platt 1998). This method optimises for pairs of

support vectors at a time, and eventually this leads to the complete solution being

found. For problems with appreciable sparsity, this method takes time approximately

proportional to the training set size. Once trained, SVMs are computationally very

cheap to apply to new data items, assuming that the kernel function is easy to

compute.

4.1.2 BioJava APIs for Support Vector Machines

Support for SVMs is provided by BioJava. Their implementation builds upon the

formulism discussed in Section 1.3.1 by providing a Java interface called

KernelFunction that computes the kernel function for any two Java objects. There

are now a number of other publicly available SVM implementations, such as SVM-

Investigation of Recombination Rates Using SVMs

 121

fu32. However, unlike many of the other implementations, BioJava allows arbitrary

kernel functions to be used. One of the benefits of this flexibility is that we can

manipulate the data inside the kernels, for example normalizing vectors onto a unit

sphere or scaling some subspace. We have also observed that for complex kernel

functions, the performance of the BioJava implementation does not degrade.

4.2 Methods

4.2.1 Searching for a Signal Affecting Recombination Rates Using a Word-

Frequency Kernel Function

Under the assumption that there are sequences within chromosomal DNA that affect

recombination rate, and given example sequences known to have high or low rates, it

should be possible to discover some metric of the sequence which is predictive of its

recombination rate. It is possible that recombination rate is mediated by very simple

sequences (e.g. poly-A or poly-GC), or relies upon very complex patterns (e.g. entire

promoters or histone-binding regions). Either way, it is likely that part of the signal

will correlate with scores collected by counting word frequencies (such as the

frequencies of all octamers).

Once the sequence data is transformed into a format that is equivalent to counts

over a finite set of properties, it becomes suitable data for processing with a Support

Vector Machine using a simple kernel function. The transform from sequence to

counts can be considered to be equivalent to a data-to-feature space transform,

inducing a new kernel function that both projects sequences to counts and then

calculates the dot-product of the counts.

32 SVM-fu is distributed through the http://www.ai.mit.edu/projects/cbcl/ web site

Investigation of Recombination Rates Using SVMs

 122

In previous studies with word-count based kernel functions, greater accuracy has

been achieved by normalizing the counts prior to calculating the kernel function as it

is usually the relative proportion of the different words and not the absolute count that

is informative, and normalization both controls for document size and numerical

instabilities introduced by large differences in size between the magnitudes of training

data (for example, see example training data accompanying svm-light33). However,

this normalization can actually be performed within the kernel itself (Equation 4-6) as

the process of normalizing each input vector is itself a transform from some data-

space to a feature space (projection of all points onto a unit hyper-sphere).

In the cases when the data-space is very large and the cost of normalizing this is

prohibitive but the un-normalized kernel is cheap to compute, the normalizing kernel

saves both space and time. It potentially makes reading the computer code easier as

the entire data-to-feature transform is represented in one place, the kernel, rather than

being spread amongst multiple pre-processing steps. If repeatedly calculating the

terms aa, and bb, is found to be expensive then these values can be cached. By

applying an object-oriented design methodology, we can implement a kernel that

delegates to an underlying kernel function for all values not known and caches the

results for all terms of the form xx ⋅ for quick access. This is the approach taken in

the BioJava toolkit, and we have found that it drastically decrease the computational

load of kernel functions such as the normalizing and radial basis kernels that require

some values to be repeatedly calculated.

33 See http://svmlight.joachims.org/ for an example of using normalised counts for classification

Investigation of Recombination Rates Using SVMs

 123

Equation 4-6 The Normalizing Kernel

bbaa

ba
babak

norm

,,

,ˆ,ˆ),(, ==
⋅⋅

The family of kernel functions used in this study can be represented as:

Equation 4-7 SuffixTree Kernel

i stringby indexable are essuffix tre
depth);by counts tree(scalesfunction depth

;)(),(

 where),(

)..0(
)(

=

⋅⋅= ∑ ∑
∈ Ω∈

⋅

df

baddfba

ba
k

ld i
ii

SuffixTree

df

norm

d

SuffixTree

df

k

k

Because of how the suffix trees are constructed, they will not contain nodes for zero

counts. By definition, if a given sub-string is absent from the entire sequence, then all

other sub-strings containing that string will also be absent. For this reason, the nodes

of the tree are sparsely populated (only nodes that store non-zero counts are

instantiated). Thus, the index i in Equation 4-7 need actually only loop over values of

dΩ that are populated in both a and b.

The depth function term)(⋅df allows the counts associated with strings of a

particular length to be given greater or lesser weight. For example, a depth function

that always returns 1 will leave the counts un-scaled (uniform depth function). A

depth function that returns non-zero for one value and zero for all others will have the

effect of only including words of a single length. A depth function of the form dΩ

will make longer matches more significant than shorter ones, taking into account the

fact that they are less likely by chance (normalizing depth function).

Investigation of Recombination Rates Using SVMs

 124

In principal, the depth functions are a subset of functions that return a scale factor

for each i that is purely a function of its length. In cases when the sequence bias is

significantly divergent from uniform, it may be worth re-defining Equation 4-7 in

terms of a per- i scaling function instead of a depth function. However, we considered

that in this case any increased accuracy obtained would be off-set by the need to

optimize the scaling function, and any associated computational overhead.

4.2.2 Construction and Training of an SVM for Predicting Recombination Rate

The SVM used was constructed with the normalized suffix-tree kernel as described

above. Both the uniform and normalizing depth functions were evaluated. The

maximum tree depths were fixed from 1 to 9 for the uniform model and 1 to 8 for the

normalized model. The models were trained using the SMO method for classifiers as

at the time the BioJava implementation of SVM regression that was not numerically

stable.

All clones in the partially finished Human chromosome 22 were extracted, together

with their approximate coordinates within the chromosome. These were fully repeat-

masked for both simple and complex repeats using repeat masker34. The chromosomal

locations of all 35 markers were used. The high-recombination rate region within

approximately 18-21Mb and the low recombination rate region within approximately

21-17Mb were used as the positive and negative training sets respectively. All clones

from these regions were used for training. All clones outside of this region were

included during the prediction phase.

34 se here for an online reference for repeatmasker, currently unpublished:

http://ftp.genome.washington.edu/RM/RepeatMasker.html

Investigation of Recombination Rates Using SVMs

 125

4.3 Results

4.3.1 Recombination Rates Predictions

In no cases could any of the models with a depth of less than four be trained. This

indicates that the information necessary to predict recombination rates relies upon

sequences of at least four in length. To bin sequences into two categories should only

have required one variable, or the ratio of two variables, so the tree depth of 1 or 2

should have been sufficient to trivially separate them if the signal was purely based

upon low-order sequence bias (such as AT/GC ratio).

For the models with maximum depth 4 and upward, the SVM produced an output

centred on 0.0, indicating that the model is not consistently predicting items as being

positive or negative. During training, the procedure attempts to predict a function such

that all negative examples have a value less than –1.0, and all of the positive examples

have a value of greater than +1.0. All items that are within the range –1.0 and +1.0

will be support vectors. If unseen data has an output between –1.0 and +1.0, this

indicates that the SVM considers this data-point ambiguous, but it still attempts a

classification that can be read by looking at the sign of the output. Values of

magnitude larger than 1.0 indicate that the SVM was confident in its assignment.

The models trained using the uniform counts (Figure 4-2, Figure 4-3, Figure 4-4)

learned functions that model the training data well, giving outputs around +1 for the

high recombination regions and -1 for the low recombination regions. The higher

depth models (6-9) produce SVM outputs that are noticeably closer to zero and less

spread than the lower depth models. However, the general shapes of these curves (as

judged by the 10 point moving average) are very similar. Arguably, the output

shadows the recombination curve, particularly around the peak at 10Mb, and the dip

Investigation of Recombination Rates Using SVMs

 126

at 30Mb. However, it also predicts a recombination-poor region at 5Mb. The 5Mb

feature may be biologically significant but not visible in the recombination plot due to

marker density, or may be an artefact.

The models trained using length-normalized counts, Figure 4-5 Figure 4-6, Figure

4-7) are less prone to wild fluctuations (compare the scattering visible in Figure 4-2

and Figure 4-5), which may indicate that the predictions are more robust. In addition,

the dynamics of the predicted recombination frequencies are more similar to the

actual rates (Figure 4-6, Figure 4-7). Again, as the depth of the suffix-tree is

increased, the resulting function becomes smoother, closer to zero and fluctuates less

wildly.

4.3.2 Cross-Validation

To assess how robust the predictions of the SVMs are with respect to the training

data, the sequences within the positive and negative training sets were partitioned into

three sets randomly. Three models were trained, one for each partition, and then tested

by predicting the membership of the other two partitions. This 3-way jack-knifing was

performed for all depths in the normalized models using training methods which

where otherwise identical to those used above. The best accuracy of 80 % (random 50

%) is achieved for a depth of 5, with accuracy becoming worse for greater depths.

The resulting models appeared to be memorizations of the training data, with very

few example sequences not included as support vectors (between 1 and 4 training

examples left out). They do seem to be consistent among one another (depth of 5

being the most reproducible), with prediction accuracies that are consistent, both

inside the training data (Figure 4-8), and across the entire chromosome (Figure 4-9).

Investigation of Recombination Rates Using SVMs

 127

However, over all, the chromosomal predictions are less informative of recombination

rate. This is as to be expected with less training data.

Investigation of Recombination Rates Using SVMs

 128

Error! Not a valid link.

Figure 4-2 Total Results of Training the SVM using Uniform Counts

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed.

Error! Not a valid link.

Figure 4-3 Moving Average for Uniform Counts models of Depth 4-6

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of

recombination is also displayed.

Error! Not a valid link.

Figure 4-4 Moving Average for Uniform Counts models of Depth 7-9

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of

recombination is also displayed. High LowTest Test

High LowTest Test

Investigation of Recombination Rates Using SVMs

 129

SVM Trained on Normalized Rates

-8

-6

-4

-2

0

2

4

6

8

10

5 10 15 20 25 30 35 40

Position (Mb)

SV
M

 O
ut

pu
t

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

C
M

/n
t

four
five
six
seven
eight
Series6

Figure 4-5 Total Results of Training the SVM using Normalized Rates

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed.

Test Test High Low

Investigation of Recombination Rates Using SVMs

 130

SVM Trained on Normalized Rates (4-6)

-4

-3

-2

-1

0

1

2

3

4

5 10 15 20 25 30 35 40

Position(Mb)

SV
M

 O
up

ut

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

C
M

/n
t

four
five
six
Series6
10 per. Mov. Avg. (four)
10 per. Mov. Avg. (five)
10 per. Mov. Avg. (six)

Figure 4-6 Moving Average for Normalized Rates: Depths 4-6

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of

recombination is also displayed.

Test High Low Test

Investigation of Recombination Rates Using SVMs

 131

SVM Trained on Normalized Rates (7-8)

-1.2

-0.7

-0.2

0.3

0.8

5 10 15 20 25 30 35 40

Position (Mb)

SV
M

 O
ut

pu
t

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

C
M

/n
t

seven
eight
Series6
10 per. Mov. Avg. (seven)
10 per. Mov. Avg. (eight)

Figure 4-7 Moving Average for Normalized Rates: Depths 7-9

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of

recombination is also displayed.

Test TestLowHigh

Investigation of Recombination Rates Using SVMs

 132

Reproducability Under 3-way Jack-knifing

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7 8

Length of n-mers

Pe
rc

en
ta

ge
 A

cc
ur

ac
y

Figure 4-8 Accuracy for Recombination SVMs Under 3-Way Jack-knifing

The percentage accuracy for each group of jack-knifed models is displayed as a bar. The y-axis displays the percentage accuracy of each group

of jack-knifed models. Error bars represent two standard deviations. The bar representing 5-mers has the greatest height.

Investigation of Recombination Rates Using SVMs

 133

Predictions from the 3 Jack-Knife Models

-5

-4

-3

-2

-1

0

1

2

3

4

5

5 10 15 20 25 30 35 40

Postion (Mb)

SV
M

 O
ut

pu
t

0

0.000002

0.000004

0.000006

0.000008

0.00001

0.000012

0.000014

C
M

/n
t

Split0
Split1
Split2
delta
10 per. Mov. Avg. (Split2)
10 per. Mov. Avg. (Split0)
10 per. Mov. Avg. (Split1)

Figure 4-9 Predictions Across the Entire Chromosome from the 3 Jack-knife Models for Depth of 5

Investigation of Recombination Rates Using SVMs

 134

4.4 Discussion

It is clear that the normalized rates kernel appears to be more robustly predicting

recombination rates than the uniform counts kernel. This exposes one of the

interesting properties of SVMs when dealing with data containing errors. The relative

magnitude of each data-space basis (here each word) acts in the spirit of a prior over

how likely this basis is to form part of the normal to the hyper-plane. In theory, the

training method for SVMs should allow these affects to be removed. In practice, with

incomplete and stochastically sampled data sets it seems to be important to try to

make sure that the raw data is presented in such a way as to normalize out any biases

(such as normalizing vectors, pre-normalizing each dimension and the like). It is

possible that the RVM methodology (explored in Chapter 5 for a different type of

problem) would be more robust for this kind of data as during training it makes an

estimate of the degree of certainty with which parameters can be set. This would have

the effect of removing dimensions that sharply but inconsistently affect the predicted

value regardless of their magnitude. SVMs will tend to be locked into local minima

associated with these sharply varying dimensions, as they are greedy algorithms (they

search for a global maximum by hill climbing).

The jack-knife results indicate that the signal being learned is not strongly

dependant on the training data. This is evidence that these models are learning real

signals. It is interesting that the 3 jack-knife models appear to be memorizing their

training sets but still generalize in comparable ways to each other. Because the

function learned is represented as a sum of normals to a plane (each support vector

representing one of these normals), different combinations of support vectors and

associated weights may be constructing a very similar hyper-plane. It would be

interesting to attempt to calculate the total normal to the hyper-plane in each case and

Investigation of Recombination Rates Using SVMs

 135

in the case where all training data is used to find the short sequences that are actually

informative. This has not yet been attempted, as the raw data has gone though several

data-to-feature space projections before arriving in the space for which the hyper-

plane is constructed and it is not clear how to represent these transforms in terms of

raw word counts.

Recombination hot spots are still not, to our knowledge, fully explained or

predictable by any method available. However, recently there has been evidence that

poly GT/AC tracts may contribute to differences in recombination rates (Gendrel,

Boulet et al. 2000; Majewski and Ott 2000). In the light of this, it would be worth re-

running the analysis with the now finished and un-masked chromosome 22 sequence.

The masked sequences used here almost certainly had most of this signal screened

out. An important message to this story is that ‘junk’ DNA may well have

functionality within the genome, and should not be discarded out-of-hand. The

genome contains sequences with many functions, many of them which are not directly

related to coding for valid proteins.

 RVMs for Classification of Expression Data

 136

Chapter 5 RVMs for Classification of Expression

Data

5.1 Introduction

The phenotypic behaviour of a cell is in large part due to the activity of its proteins.

These are translated from mRNAs, which are have been transcribed from active

genes. There are many levels at which the activity of proteins can be regulated,

however it has generally become accepted that measuring mRNA levels gives a good

insight into the relative levels of gene activity. The results of simultaneous

measurements of large numbers of mRNA levels, made in a single experiment, will be

referred to as ‘expression data’.

It has become possible to collect expression data systematically using methods such

as quantitative PCR (Buck, Harris et al. 1991; Nedelman, Heagerty et al. 1992), array

technologies (Schena, Shalon et al. 1995; Lashkari, DeRisi et al. 1997; Shalon 1998)

and DNA chips (Guo, Guilfoyle et al. 1994; Hughes, Mao et al. 2001). The

availability of complete genomes and fairly complete gene annotation has enabled the

construction of DNA probes to represent most expressed mRNAs in a particular

population of cells. Many thousands of these probes can be arrayed onto a single

microarray or DNA chip, making it possible to capture a snapshot of the expression

state of a cell in a single measurement.

Given the availability of this measurement technology, it becomes possible to take

snapshots of a range of conditions of a population of cells and, by processing the

results, compare the expression levels of different genes under different conditions.

Examples include comparing the natural state of the cell with its state during

 RVMs for Classification of Expression Data

 137

conditions of metabolic stress, heat shock or disease. These measurements generate

large volumes of data that can contain large statistical errors as a result of limitations

inherent to the experimental technologies. Errors may also arise from stochastic

variations in the different cell populations under study, due to the inherent dynamics

of complex systems (for example, see (Guillouzic, L'Heureux et al. 2000; Smolen,

Baxter et al. 2001) for discussions of ways in which the dynamics of gene expression

are inherently complex systems).

For many cellular processes, we have a fair understanding of the ways groups of

genes are co-regulated as a result of biochemical, genetic and other analysis.

Expression data gives us the opportunity to systematically extend this understanding

to the whole genome, showing previously unknown regulatory relationships. The

expectation is that genes which appear to be co-regulated are likely to be involved in

the same cellular processes. One way of viewing this data is from the point of view of

genes, for example, the level of a gene during sporulation (Chu, DeRisi et al. 1998).

Another way is to classify conditions, i.e. to match a particular cellular expression

snapshot to a particular cancer condition (Alizadeh, Eisen et al. 2000; Ramaswamy,

Tamayo et al. 2001).

The standard method for processing expression data is currently cluster analysis

(Eisen, Spellman et al. 1998). This describes the dynamics of expression data as a

hierarchical model, either in terms of similar experimental samples given genes, or

similar genes given a set of experiments. Many of the major signals that emerge from

naïve clustering are strongly correlated with histological features, for example in

different areas of the gut (Bates, Erwin et al. 2002), or different developmental stages

(Mody, Cao et al. 2001). Sometimes, by selecting sub-trees of genes, sets can be

 RVMs for Classification of Expression Data

 138

found that co-segregate with a qualitative or quantitative observation. However, this is

far from being an automated task, relying on human concepts of relevance and

relatedness.

One practical application of expression data analysis using machine learning

techniques has been the classification of cancer cell types from different patients.

Different cancer cell types can appear very similar, but may have very different

survival rates which may require different treatments (Kihara, Tsunoda et al. 2001;

Liefers and Tollenaar 2002; van 't Veer, Dai et al. 2002). In (Ramaswamy, Tamayo et

al. 2001) SVMs were used to construct a classifier for the expression patterns of 14

distinct tumour types from 218 samples. Each expression data sample included

measurements from 16,063 genes. The SVM-based classifier could then be used to

classify the tumour type of any new sample with a high degree of accuracy (78%).

They were also able to identify which genes contributed most to the SVM model.

SVMs were able to carry out the above classification as a result of the large

expression differences between cancer cell types. A much more difficult problem is to

automatically extract information about changes in gene expression as a result of a

much subtler difference, such as in response to drug treatment. The subtler effects

tend to be masked by the differences between the cell lineages that have been treated.

Perou (Perou, Sorlie et al. 2000) describes a series of experiments measuring 8,102

gene expression levels in human breast cancer cell lines and biopsy samples. One sub-

set of the samples are biopsies taken from patients with tumours before and after

treatment with the anti-cancer drug, doxorubicin. The expression data for 20 before-

after pairs were clustered using hierarchal clustering. All but three of the sample pairs

clustered together as siblings in the tree. This indicates that the changes in gene

 RVMs for Classification of Expression Data

 139

expression due to treatment are not reliably detected by clustering against the

background of the cell lineage. In a further paper (Brenton, Aparicio et al. 2001),

cluster-analysis could be used to identify sub-types of breast tumours. However, this

required much larger amounts of data and some human intervention. It also was

unable to address the issue of what effect the doxorubicin had upon gene expression.

Typically, when modelling expression data, the aim is both to perform some

classification task, and also to look at the resulting model and identify genes that

contribute to the model, with the hope that they will provide biological insight. In this

chapter the use of SVMs and RVMs is explored to extract information about the

effects of doxorubicin. We both evaluate whether these methods are able to generate

models that can classify micro-arrays into pre- and post-treatment with doxorubicin,

and also to decide if the models they produce are consistent with the known biological

processes, and therefore could be used in other situations to identify novel relevant

genes.

5.2 Cellular Responses to Doxorubicin

Doxorubicin causes cellular apoptosis by several routes. The primary action of

doxorubicin activity is due to intercalation into double-stranded DNA. This both

prevents the normal UV-repair pathway (nucleotide excision repair) and causes

single-strand breaks, both of which lead to an increase in the rate of DNA repair

enzyme activation. Normally, topoisomerase II relaxes tension due to supercoiling by

scanning DNA. It then breaks one of the two phosphate backbones, allows the DNA

to relax and then repairs the resulting single strand break. If instead it binds to an

intercalated doxorubicin molecule, the single-strand break is made, but is not repaired.

In this case, the topoisomerase II protein remains covalently attached to the broken

 RVMs for Classification of Expression Data

 140

strand (Tewey, Rowe et al. 1984). The activity level of the DNA repair response is

measured by the cell, and if it increases above a critical threshold, the cell enters an

apoptotic response.

Cell lines that are resistant to doxorubicin often share a common set of mutations.

Topoisomerase II activity can be severely impaired (Potmesil, Hsiang et al. 1988).

This is consistent with the role of this gene in the drug’s mechanism of action.

Resistant cell lines frequently express multi-drug resistance proteins, such as P-

glycoprotein (P-gp), and multi-drug resistance associated protein (MRP) (Grandjean,

Bremaud et al. 2001) which expel the drug from the cells. Impaired systems for

maintaining levels of small ions, such as Na+ and K+ (Lawrence 1988; Lawrence and

Davis 1990) also seem to confer a measure of resistance. It is possible that these small

ions are required to enhance the stability of the complex between topoisomerase II

and the DNA. Resistant cells often have impaired Jun-Fos pathways (Pourquier,

Montaudon et al. 1998). During apoptosis, the Jun-Fos transcription factor

heterodimer is activated via a signal-cascade. This in turn leads to the altered

expression of gene products, activating the signal-cascades mediating the cellular

apoptotic pathway. If either Jun or Fos gene is mutated to loss-of-function mutants,

then is apoptosis pathway can not activate.

5.3 Generalized Linear Models

Although SVMs have been used successfully to distinguish between tumour types

where there have been large numbers of samples available as described above

(Ramaswamy, Tamayo et al. 2001), previous implementations guarantee that the

SVM will find a solution even if there is insufficient evidence to support it. The

training algorithms for SVMs search for the globally ‘best’ separating hyper-plane,

 RVMs for Classification of Expression Data

 141

and give no indication of the range of hyper-planes that perform similarly well, even

if they have a radically different plane normal. This brings into question their utility

for discovering new expression relationships in small or noisy data-sets, as it becomes

difficult to distinguish between results that are significant, where all ‘good’ hyper-

planes have very similar normal vectors, and those that are correspond to the ‘best’

but uninformative solution, where a wide range of normal vectors would perform

nearly as well. In this chapter, we apply a Bayesian approach to training that is able to

address this.

In Section 4.1.1, we discussed how SVMs can be represented as a sum of basis

functions (Equation 4-5). The general class of models that take on this form are called

Generalized Linear Models (GLMs) (Nelder and McCulagh 1983). During training,

the selection of the weights is just a scaling factor for each subspace, stretching the

dimensions that increase the accuracy of the model, and shrinking those that are

irrelevant. From this point of view, the basis functions each define a dimension in the

feature space under consideration.

Some of the basis functions will be highly correlated with one another. This means

that using more than one of these will contribute little or no additional information.

Other basis functions may simply be uninformative to the problem in hand. By

defining some measure of the information contributed to the model by a given basis

function, and the additional complexity of including that function, it is possible to

make a trade-off between the simplicity of a model and how well it fits the data.

Bayes Theorem states how the probability of simultaneously observing two events

is related to the probability of observing one event in isolation and the probability of

 RVMs for Classification of Expression Data

 142

observing the second event given that we already know that the first one has occurred.

Let us consider the case of observing a model, m and data, d .

Equation 5-1 Bayes Theorem

)()|(
)()|(),(
mpmdp

dpdmpdmp

=
=

This equivalence can be re-arranged to express one of the conditional probabilities

in terms of the independent probabilities and the other conditional probability. It is in

this form that Bayes Theorem is most often presented.

Equation 5-2 Rearrangement of Bayes Theorem

)(
)()|()|(

dp

mpmdp
dmp =

The terms in this form all have names in Bayesian statistical analysis.

Equation 5-3 Bayes Theorem in Words

evidence

priorlikelihood
posterior

⋅
=

In the case of models and data, the posterior is the probability of our model (and

associated parameters) given the data. The likelihood is the probability of observing

the data given our model. The prior is the degree of belief we have that the model is

sensible. The evidence is the probability of observing our data given any possible

model, which in practice means the sum or integral of the probability of observing the

data over all possible values for all parameters of the model.

One method for training GLMs which makes use of Bayesian statistics is the

Relevance Vector Machine (RVM) (Bishop and E. 2000; Tipping 2000). In the case

 RVMs for Classification of Expression Data

 143

of RVMs, the prior is chosen in such a way that it favours models where many of the

weight parameters have values near to zero. For a particular parameter set to have a

high posterior probability, the prior “cost” of any non-zero weights must be balanced

by an increased value of the likelihood. If a particular basis function does not

contribute to the likelihood sufficiently, then a greater overall posterior can be

achieved by setting its weight to zero. RVMs can be trained by selecting parameters

that maximize the posterior (Tipping 2000), or by fitting a variational approximating

distribution to the posterior (Bishop and E. 2000).

A pure Java implementation of the RVM method has been implemented (Down

2003). This implementation uses patterns similar to the BioJava SVM implementation

(Section 4.1.2) to insulate the optimiser from the data. An interface BasisFunction is

provided that has a single method that returns the value of the basis function for a

Java object. There is also an interface BasisSource that represents an iterater over a

set of basis functions. The known implementations of RVMs (Bishop and E. 2000;

Tipping 2000; Down 2003) all have space and time costs that scale very badly with

the number of basis functions being considered. The API for Down’s method employs

the ‘small working set’ heuristic to work around this. During training, many weights

become sufficiently close to zero to be discarded within a very few cycles of

optimisation. This is exploited by setting a high and low water-mark for the set of

basis symbols being considered. Initially, basis symbols are obtained from the

BasisSource until the high water-mark is reached. The optimiser then runs until it

has discarded enough basis functions that the low water-mark is reached. At that

point, basis functions are added until the high water-mark is again reached, all

parameters are re-initialised and the optimisation is resumed. This process is

continued until the BasisSource has no more basis functions available. At this point,

 RVMs for Classification of Expression Data

 144

the optimiser runs until the model converges. This heuristic keeps the cost of training

a model with increasing numbers of basis functions proportional to the total number

of basis functions that must be considered, and some function of the working set size.

In practice, this makes some problems tractable that would be otherwise intractable.

The RVM API of Down’s implementation interacts with the BioJava APIs for

SVMs. Where appropriate, interfaces for representing training data and models are

reused. In addition, there is adaptor code that allows a kernel function and a set of

training objects to be viewed as a BasisSource over the implied basis functions (see

Equation 4-4). In practice, very few lines of code need be changed to switch between

analysing a data set with SVM and RVM methods.

5.4 Micro-array Classification Using a Support Vector Machine Implemented as

a Linear Kernel RVM

To investigate the behaviour of SVMs when applied to a hard expression analysis

problem, we applied them to the dataset described above (Perou, Sorlie et al. 2000).

The BioJava implementation of SVMs was used to construct a classifying support

vector machine using the dot product (linear) kernel function to evaluate expression

data. The kernel function was implemented so that the expression data was

represented as an array of the log of the ratio between background and experimental

sample levels. This was trained using the complete set of expression data described in

Section 5.1 using the SMO training algorithm. The resulting model contained nearly

all micro-arrays as support vectors. This suggests that the model was effectively

memorizing the training set. We therefore decided not to further investigate the use of

classically trained SVMs for this task, as they seem to be unable to model this

problem.

 RVMs for Classification of Expression Data

 145

To investigate whether the SVMs were extracting any significant data from the

expression data-set, or just memorizing it as suspected, we applied an RVM approach

(Section 5.3). An RVM was constructed with a BasisSource using the above training

data and kernel function to generate basis functions (See Section 4.1.1, and in

particular Equation 4-4 and Equation 4-5). The RVM was then trained using the

complete set of micro-arrays. Given these basis functions, the RVM becomes

equivalent to a Bayesian interpretation of the SVM. This RVM rejected all basis

functions during training. This indicates that none of the SVM solutions using a linear

kernel function robustly describes how to separate the pre- and post-treatment

samples.

This negative result does not necessarily mean that this task could not be performed

with either an SVM or an RVM using linear kernel functions, but that there was

insufficient training data to support any parameters. By working with larger training

sets, or more complex kernels, it may be possible to apply a kernel RVM to this data.

However, this result does indicate one of the main benefits of RVM training over

SVMs in that the RVM was able to indicate that no reasonable model could be

produced. The SVM produced the best model that it could, which was of poor quality,

but without any indication to the user that this was the case. Any predictions made on

the basis of genes contributing to the separating hyper-plane are likely to have been

incorrect, but there would have been no way to know this purely from the SVM

results themselves.

 RVMs for Classification of Expression Data

 146

5.4.1 Framework for Generalised-Linear-Models amenable to Expression Arrays

Given the failure of the linear kernel model description used above to discover

expression differences resulting from treatment using doxorubicin, we now present an

alternative way to model the problem.

An individual array measurement can be considered as a tuple of measurements

with one dimension per spot on the array. This is a convenient interpretation for

database storage and cluster analysis. Another point of view considers each spot to be

the result of evaluating a probabilistic function on the particular sample (the log of the

ratio of measured expression levels in experimental and background samples). This

interpretation takes into account that the expression level measured is subject to noise.

It transforms individual measurements (and by extension the individual genes) into

entities amenable to hypothesis-directed reasoning using the RVM framework

(Section 4.1.1), as now each measurement for each gene can be treated as the value of

a basis function.

Consider a set of genes, G , a set of micro-arrays, A , and the function that retrieves

the level for a gene on an array,),(AaGgl ∈∈ . For any particular fixed g , there

exists a conditioned version of this function, which we shall call)(al g . A GLM can

then be constructed where the set of functions being evaluated is the set (.)gl for each

gene. This model produces an output based upon a weighted sum of the log ratios of

expression levels of multiple genes that is potentially predictive of some process.

Given any pre-defined classes by which the array measurements can be classified, a

GLM can be estimated to perform that classification. If the sparse training approach is

taken, then the hope is that the model will tend to extract key genes that have a type of

 RVMs for Classification of Expression Data

 147

response that helps in the classification task, and will tend to discard all uninformative

genes. This has the beneficial property of giving back a list of genes that are

representative of each distinct response to the stimulus that aids in the classification

task. If multiple genes share the same or similar expression profiles, the sparsity

properties of the trainer will tend to find the statistically most representative member

of that group and discard all others. For some uses of the method, such as where a

complete list of significant genes would be useful (including those contributing

similar information), this property is a disadvantage. In these cases, some further

analysis of the data will be required to recover these other genes from the training

data.

5.4.2 RVM Analysis Using the Small Working Set Heuristic

To evaluate this approach, a training set was constructed containing all of the before

and after treatment measurements introduced above. The aim was to classify micro-

arrays into those before and after doxorubicin treatment. An output of 1.0 would

indicate that the method was certain that it was an example of ‘before’. An output of

0.0 would indicate that the method was certain that it was an example of ‘after’. A

value between these two values indicates the degree of confidence that the sample

belongs to one class or the other.

The number of basis functions to be evaluated was very large (one for each of the

8,102 genes). It was not practical to train the RVM with all of these simultaneously,

so the small working set heuristic, described above (Section 5.3), was employed. The

high water-mark was set to 90, and the low water-mark was set to 75. As long as the

total number of basis functions needed for the task is below the low water mark, we

could expect the result to be unaffected.

 RVMs for Classification of Expression Data

 148

To check whether the heuristic altered the result the training was performed three

times, using different permutations of the training data and of the order that the

functions were added. The three models produced were identical (the same genes with

weights within the bounds of numerical precision), and gave the model shown in

Table 5-1. This suggests that, with this data set, the small working set heuristic works.

Table 5-1 GLM for all before-after pairs (to 4 s.f.)

Accession Weight Gene Name Description
AA017544 -3.269 RGS1 Regulator of G-protein signalling 1
T72398 4.982 TDO2 Tryptophan 2,3-dioxygenase
AA040944 -6.299 FOS Transcription factor involved in the

apoptotic pathway

This model correctly classifies all of the training examples using the log-ratios of

just three genes. Of course, training and testing on the same data-set is not robust for

assessing how well models generalise, but the simplicity of the model suggests that

this approach may work. Additionally, one of the three genes used is FOS, which is

known to be involved in the apoptotic pathway activated in response to doxorubicin

treatment (see Section 5.2).

To assess how reproducible these results where, we performed a “leave one out”

cross-validation. For each of the forty micro-arrays, a prediction was made using a

classifier trained on the remaining thirty-nine micro-arrays. The accuracy rate of the

model for unseen data can then be estimated as the average accuracy of these forty

predictions.

 RVMs for Classification of Expression Data

 149

Of the 40 different models generated, 29 predicted the unseen item correctly. This is

an accuracy rate of 72.5%, compared to the expected rate of 50%. All of the correct

predictions typically had extreme probabilities (< 0.2 or > 0.8) where as the incorrect

predictions were all relatively close to 0.5 (> 0.3 and < 0.7). 15 models used three

genes, 23 used four genes and 2 used five genes. Across these models, a total of 22

different genes were used. Every model contained AA040944 (FOS). 22 of them used

AA027832 (HBA2) and 17 used AA017544 (RGS1). These results are summarised in

Table 5-2.

In the forty models generated by cross-validation, several of them use one of two

alternative probes for the gene TOP2A. The degree of reproducibility or otherwise of

the levels associated with those two probes can be taken as an indication of the quality

of the data-set. Figure 5-1 shows a scatter plot with one data point for each of the 40

micro-arrays, and x, y co-ordinates given by the level of expression for the two

TOP2A probes in a given micro-array. The levels have an R2 value of 0.68, indicating

that although they are correlated, there is a considerable degree of independent

variation.

A summary of the expression data for these probes is displayed in Figure 5-2. As is

seen from the graph, none of the probes used in the models have clearly separate

distributions before and after treatment. FOS, which is used by every model generated

during cross-validation, shows differences between the two groups, as does JUN, and

to a lesser extent, both of the TOP2A probes. However, it should be clear from this

that there is no one unambiguous indicator gene.

Given that the cross-validation procedure produced a range of different basis

functions with a range of weights, it is interesting to consider what linear models can

 RVMs for Classification of Expression Data

 150

be generated by combining these basis functions and their weights. This should give

us some further indication of how important particular basis functions are.

One linear model can be obtained by taking the average weighting of each probe

across all of the cross-validation models in which it takes part. The result of applying

this to the micro-arrays is presented in Figure 5-3 as the scores produced prior to

conversion to probabilities. This model misclassifies only four micro-arrays, giving a

90% accuracy rate.

This model does not take into account that some probes are present in fewer

models. It is possible to reflect this by averaging the weights across all models, using

a weight of zero where the probe is not used in a particular model. The result of

applying this to the micro-arrays is presented in Figure 5-4. This model correctly

classifies all of the micro-arrays. However, the associated confidences are lower, as

demonstrated by the reduced magnitude of the outputs. The increase in accuracy of

this model supports the idea that basis functions which are frequently present in

different models are more informative to the classification task.

Using the contribution of just FOS to the model in Figure 5-4 (FOS level multiplied

by its weight), all of the samples taken after treatment can be correctly identified, but

11 out of the 20 samples taken before treatment are misclassified. Similarly, using just

the contribution of TDO2, all of samples taken after treatment can be correctly

identified, but 4 of the samples taken before treatment are incorrectly predicted as

being after treatment. This contrasts strongly with the behaviour of the contribution of

the third component RGS1, which uniformly predicts all samples as belong to the

before treatment class, with just one before and one after treatment sample predicted

as after treatment. Each of the models generated during the cross validation procedure

 RVMs for Classification of Expression Data

 151

contains exactly one probe that uniformly predicts all microarrays as belonging to one

class (data not shown). We propose that the RVM is using these uniform predictors as

a calibrated model of the level and variation inherent within this data set.

The aim of this RVM approach is to classify microarrays into two classes using the

expression levels associated with each gene within each microarray. This

methodology produces models that can be readily interpreted in terms of the

contribution of each gene. However, it is not the primary aim of this method to

indicate discriminating genes. A student t-test is more appropriate as a means for

identifying genes with differential expression levels. This test calculates the

probability that two sets of numbers have normal distributions that are distinguishable

from one-another.

The student t-test scores associated with the range of levels in the before and after

treatment groups is presented in Table 3-2. The column labelled TP contains the t-test

scores for the two sets of microarrays taking into account the pairing between samples

taken from the same patient before and after treatment. This information was not

available to the RVM, and the student t-test scores assuming no such pairing are

contained within the column labelled TS.

The probes for FOS and JUN have values that are extremely significant, indicating

that there is very strong support for the hypothesis that the microarray levels before

and after treatment come from different distributions. Generally, the t-test scores

(both TS and TP) do not show any clear trend related to the rank of the probe in the

table, or with the use of the probe as a uniform predictor. Although many of the

probes used in the cross-validation models do have significant t-test scores, some do

not, both at the 5 % and the 1 % significance level. Interestingly, many of the TP

 RVMs for Classification of Expression Data

 152

scores are actually worse than the associated TS scores. It would be expected that in a

system with low noise, the extra information provided by the sample pairing would

lead to systematically greater significance. The presence of counter-examples may

indicate that when considering individual genes, the level of noise in this data in some

cases obscures the signal provided by the before and after treatment pairing.

 RVMs for Classification of Expression Data

 153

Table 5-2 Genes used by cross-validation models

All information taken from the data files providing the expression data. Accession

values of (*) indicate that the spot had no associated probe. TS is the value of the

student t-test assuming the before and after samples to be unpaired. TP is the value of

the student t-test taking into account that before and after samples are paired.

Probe Accession Symbol Uses TS
(%)

TP
(%)

Description

9016 AA040944 FOS 40 0.00 0.00 v-fos FBJ murine
osteosarcoma viral oncogene
homolog

8530 AA027832 HBA2 22 4.89 2.95 Hemoglobin, alpha 2
243 AA017544 RGS1 17 1.11 1.38 Regulator of G-protein

signalling 1
2114 AA454668 PTGS1 11 0.24 0.07 Prostaglandin-endoperoxide

synthase 1 (prostaglandin
G/H synthase and
cyclooxygenase)

6333 N50845 11 5.74 9.64
5635 * 8 0.60 0.39
6077 AA425316 LOC51700 7 1.78 2.02 Cytochrome b5 reductase

b5R.2
7399 AA026682 TOP2A 5 0.71 0.60 Topoisomerase (DNA) II

alpha (170kD)
3903 * 3 5.13 4.39
3901 * 2 0.36 0.45
5284 T72398 TDO2 2 7.33 0.83 Tryptophan 2,3-dioxygenase
6223 * 2 15.48 16.19
6494 W96134 JUN 2 0.00 0.00 v-jun avian sarcoma virus 17

oncogene homolog
7956 T63045 IGL@ 2 16.01 1.40 Immunoglobulin lambda

locus
244 AA074224 RCV1 1 9.98 12.11 Recoverin
2753 * 1 4.63 6.26
4468 AA453345 JAK2 1 6.99 3.93 Janus kinase 2 (a protein

tyrosine kinase)
5002 AA620359 1 1.20 0.62
6043 H87471 KYNU 1 20.95 4.81 Kynureninase (L-kynurenine

hydrolase)
7704 N71028 1 0.99 0.17
8494 * 1 4.58 8.33
8719 AA504348 TOP2A 1 2.34 2.39 Topoisomerase (DNA) II

alpha (170kD)
Error! Not a valid link.

Figure 5-1 Scatter Plot of the Two Topoisomerase II Probes Used.

 RVMs for Classification of Expression Data

 154

There is one point for each of the 40 micro-arrays. The x values are the levels of the

probe for AA504348, and the y values are the levels of the probe AA026682. Both of

these are probes for the TOP2A gene. The R2 value is the correlation between the

levels measured for these two probes under identical conditions.

Error! Not a valid link.

Figure 5-2 Expression Levels for Each Probe Used

For each probe, there are three bars. Each data-point displays the mean level for a

probe across a range of micro-arrays. The error bars display two standard deviations

around the mean. In each case, the left-most bar corresponds to the mean and standard

deviation of the probes level across the 20 micro-arrays taken before treatment, and

the right-most par corresponds to the mean and standard deviations for the probe

across the 20 micro-array measurements after drug treatment. Each data-point is

labeled with the gene name if present. If this was not present, the accession number is

used. If this was not available, the probe number is used. The probes are in the same

order as Table 5-2.

Error! Not a valid link.

Figure 5-3 Average Weighs Across Relevant Models.

The samples after treatment are to the left, and samples before treatment are to the

right. All prediction values are in the units of the GLM before conversion into

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0

will map to probabilities above 0.5. All of the before samples have been correctly

classified. Four of the after samples are misclassified, and are indicated with an

asterisk (*).

Before After

*

 RVMs for Classification of Expression Data

 155

Error! Not a valid link.

Figure 5-4 Average Weights Across All Models

The samples after treatment are to the left, and samples before treatment are to the

right. All prediction values are in the units of the GLM before conversion into

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0

will map to probabilities above 0.5. All of the samples have been correctly classified.

After Before

 RVMs for Classification of Expression Data

 156

5.4.3 Function of Genes Identified by GLM Models

 If the model learned a biologically significant signal, this should be reflected in the

probes used to construct the model (as listed in Table 5-2). For many of the genes, this

is indeed the case. Several genes known to be involved in the action of doxorubicin

are present.

TOP2A directly interacts with doxorubicin, leading to the single-strand break

mechanism of drug activity. This appears to be down-regulated in the group after

treatment. This could be evidence that the cancers are developing doxorubicin

resistance by repressing the TOP2A gene. Alternatively, potentially irreversible

interactions between TOP2A and doxorubicin intercalated with DNA, or the relative

lack of super-coiling due to many single-strand breaks may be fooling the regulatory

mechanisms for TOP2A into behaving as if there are sufficient levels of the protein,

leading to down-regulation of the gene.

 JUN and FOS are part of the pathway that mediates apoptosis in response to

excessive rates of single-strand breakages. Both of these appear to be up-regulated in

the group after treatment. JUN and FOS form a transcription regulatory complex, and

in cells responding to single-strand break stress, this complex interacts with the genes

responsible for activating the apoptosis response. The resulting reduction in level of

free JUN and FOS may cause their synthesis to be up-regulated to compensate.

RGS1 is a repressor of the G protein signalling that is involved in the regulation of

b-cell activation and proliferation, as well being indicated in a range of cancers35. It

appears to be marginally down-regulated after treatment. G proteins are involved in a

35 See http://caroll.vjf.cnrs.fr/cancergene/CG516.html for a description of RGS1

 RVMs for Classification of Expression Data

 157

wide range of signalling activities, and initiate MAP-kinase cascades. By down-

regulating the repressor, the activity of the G proteins would be enhanced, increasing

the strength of the signalling pathway. The single strand breaks introduced by

Doxorubicin activity tend to arrest cell division. An increase in proliferation signals

mediated by G protein signalling may compensate for this effect.

Two enzymes, TDO2 and KYNU, are present from the tryptophan metabolism

pathway. Both of these enzymes appear to be down regulated in response to

doxorubicin treatment. TDO2 catalysis the conversion of tryptophan to N-formyl-

kynurenine. KYNU catalyses the conversion of this compound to formyl-anthranilate.

It is intriguing that the models identified these two enzymes, given their proximity in

a pathway. Intracellular levels of tryptophan around tumours have been shown to be

abnormal (Iwagaki, Hizuta et al. 1995; Huang, Fuchs et al. 2002), but there is no clear

indication of why this pathway should be important in response to doxorubicin.

The two genes HBA2 (haemoglobin alpha 2 subunit) and LOC51700 (cytochrome-b5

reductase) are present in several models. Both of these appear to be down regulated in

response to doxorubicin treatment. Cytochrome-b5 and haemoglobin both require haem36 for

their production. Cytochrome-b5 reductase decreases the levels of available cytochrome-b5.

Reduction in the levels of this enzyme would lead to increased levels of cytochrome-b5. A

down regulation of HBA2 production would reduce the amount of haem becoming

incorporated into haemoglobin. If both proteins are expressed within the same cells, these two

processes would act together to increase the level of cytochrome-b5.

36 See http://www.genome.ad.jp/dbget-bin/www_bget?compound+C00032 and links from that page for

a more full description of haem and the Prophyrin metabolism pathway

 RVMs for Classification of Expression Data

 158

As the samples used for microarray analysis were obtained from biopsies, it is inevitable

that they represent expression levels from a range of different cell types. It is possible that

within this population there were immature red blood cells. Although the nucleated red blood

cell precursors are present only in the bone-marrow, there is a stage in their differentiation

intermediate between this and mature red blood cells that contains mitochondria and

messenger RNA. For a couple of days, these are present in the blood stream (Gilbert 2003).

During this maturation stage, haemoglobin is synthesized. It is possible that the chemotherapy

results in a decrease rate of red blood cell production. This would lead to a decreased number

of maturing red blood cells in the circulatory system, and therefore a lower measured level of

the haemoglobin mRNA.

5.5 Conclusions, Applications and Future Work

In this chapter, we have shown that RVMs can be used in the analysis of expression

data that contains few samples and is noisy. The RVM was both able to perform the

required classification task, and the model produced has clearly identified biologically

relevant genes.

Cluster analysis of this expression data does not help in discovering genes that have

modified expression levels in response to treatment with doxorubicin. Clustering by

correlation co-efficient identifies clusters containing pairs of micro-arrays from a

single patient. It does not produce clusters corresponding to all micro-arrays pre- or

post-treatment, indicating that the history of the cell line is the primary signal in the

expression profiles.

When an SVM was trained using the tumour sample expression data, it appeared to

memorize the training set. When the same model was trained using the probabilistic

RVM trainer, the RVM rejected the hypothesis that the data was separable using the

 RVMs for Classification of Expression Data

 159

linear kernel function. This indicated that with just 20 samples, a conventional SVM

could not be constructed to classify these samples into pre- and post-treatment.

Using an alternative strategy, an RVM was constructed with one basis function for

each unique probe used to measure the level of a gene, and applied to learn a

discriminator to predict whether tumour samples were pre- or post-treatment. It was

able to learn signals that correlated with the treatment status. The function learned by

RVM did appear to display all of the expected traits of sparsity, simplicity and

generalization expected from this training method. Of course, given 8,102 genes to

choose from, a model could trivially be constructed that performed very well on the

training set. However, this would not be expected to generalize to unseen data. The

results of the cross-validated training indicate that the models do generalize regardless

of the sub-set used for training and testing, and that the models do not purely contain

some statistically aberrant signal present by chance in the training set. With larger

training sets, it should be possible to learn models with better estimates for which

genes are informative and are less prone to over-fitting.

Some of the probes identified as basis functions during cross-validation appear to

show differences in their average levels before and after drug treatment. Others do

not. However, the RVMs are not looking at genes in isolation, but rather looking at

interactions between them. A number of genes were identified as indicators that make

clear biological sense, given the known action of doxorubicin (JUN, FOS,

topoisomerase II). A number of others are not surprising, such as those associated

with signalling cascades. Others, such as TDO2 and KYNU are implicated by their

presence in the model and their differences in mean level before and after treatment.

 RVMs for Classification of Expression Data

 160

A final group appear to be used by the model as a measure of the noise in the system,

or to obtain a baseline from which all other levels can be calculated.

This use of RVMs is potentially applicable to any situation where large numbers of

expression levels have been measured and a test is required which will indicate which

of these are informative for a particular biological response. The classifier generated

can be used to classify new data. RVMs can be trained using any set of basis

functions. This is applicable to a wide range of situations, for example, screening

expression levels from patient samples to estimate which of a range of anti-cancer

drugs may be an appropriate treatment. It is possible to combine expression data with

any other measurements. For example, expression levels could be combined with

information about the presence or absence of SNPs, direct biological measurements,

such as pulse or breathing rate, and so forth into a single predictive model.

The RVMs have two advantages over support vector machines (SVM) for this type

of data. Firstly, to evaluate an SVM it is necessary to calculate products for every

gene on the micro-array. The SVM will be invalid if all of the genes on the original

micro-array are not also measured in the clinical sample from the patient, as the full

dot product between the support vectors and the sample cannot be calculated. In

addition, this requires one multiplication per micro-array spot per support vector. An

RVM of the form described above only requires that the genes that are used by the

model be within the set measured in the patient sample. It requires one multiplication

for each gene that is used as a basis function to the learned weight.

Secondly, the GLMs produced by RVMs give an indication of confidence in their

prediction. This potentially allows the person interpreting the model output to make

sensible judgements about how to use the model’s prediction (for example, ignoring

 RVMs for Classification of Expression Data

 161

predictions with very low confidence). SVMs give an output value, but the absolute

scale of this number is dependant on the distance from the separating hyper-plane of

the two support vectors corresponding to the closest correctly classified data points

from each class. Two SVMs using different support vectors will have incomparable

scales, making it impossible to compare these values directly.

To evaluate the effectiveness of these RVMs for other classification tasks using

micro-array data, more data sets need to be analysed. The data set used here was both

small and noisy. It is to be expected that with larger data sets containing cleaner

expression levels, that much higher levels of classification accuracy can be achieved.

In the case where this method is used as a way of identifying biologically relevant

genes, methods need to be developed to extract models with more genes. This could

be achieved by training the model repeatedly, removing all probes identified by

previous models until the model does not perform the classification task.

Alternatively, it may be possible to look at the information each indicator gene is

contributing, and to use some form of hierarchical or single-linkage clustering to

identify those with patterns of expression that share information with it. The RVM

could be modified to indicate if each basis was rejected because it did not contribute

to the accuracy of the model, or because it duplicated information present in another

basis.

Since this work was carried out, related relevance-based approaches have begun to

emerge, for example (Li, Campbell et al. 2002) and Gene-Rave37. However, these

37 See http://www.bioinformatics.csiro.au/GeneRave/products.html and the examples link from this

page

 RVMs for Classification of Expression Data

 162

methods do not seem to be producing results with quite the same high level of sparsity

our method generates. Neither of these methods has as yet solved the question of how

to retrieve the indicator genes removed from the model because they give information

correlated to that of the selected relevant genes.

 Concluding Remarks

 163

Concluding Remarks

The vast volumes of biological data being produced now overwhelm the traditional

paradigm of individual scientists studying individual results and making and testing

individual hypotheses. In this dissertation, I present tools and methods that allow data

sets of genomic scales to be explored, analyzed and learned from. The BioJava project

provides programming tools for manipulating genomic data sets. HMMs can be

constructed which leverage un-supervised learning techniques to elucidate the

inherent structure of chromosomes. SVMs and latterly RVMs can be used to perform

regression and classification tasks on large quantities data with an unprecedented

degree of sparsity and generalization. Here, they are used for the diverse tasks of

predicting recombination rates and classifying tumour samples into those treated and

un-treated with Doxorubicin.

During my PhD studies, I have used BioJava and its machine learning

implementations in a range of other situations, which are not discussed in detail here.

This was partly to define the limitations of the methods and partly for scientific

exploration. Briefly, SVMs were applied to a wide range of regression and

classification tasks. These included the implementation of an e-mail spam filter,

assessing the accuracy of gene predictions given the outputs of multiple programs and

curve smoothing for recombination rates. RVMs were applied to an equally wide

range of problems, including predicting protein secondary structure elements,

sequence comparison using HMM kernels and simultaneous estimation of expression

profile class and promoter structures. HMMs were used to model 3-D DNA structure

using a multinomial Gaussian emission state, Gibbs-sampling of expression profiles,

promoter finding, protein secondary structure prediction by pair wise alignment and

 Concluding Remarks

 164

HMM-based kernel functions. This is by no means an exhaustive list of mini-projects

undertaken within the past four years, but gives a flavour of the range of problems

that can be tackled using these technologies.

Since this thesis was written, BioJava has continued to develop (as discussed in

chapter 2), demonstrating that the original APIs are both flexible and sufficient,

allowing a wide degree of reuse and extension.

None of the methods presented here are limited to the problems to which they were

applied. The task ahead is to use these and other technologies to make new

discoveries about how genomes are structured, function, evolve and fail. The possible

applications are wide-ranging; medicine, agriculture, bio-engineering, palaeontology,

to name but a few. I look forward to seeing where this leads us.

 165

Forgive us for what we have done and what we have left undone

(Extract from the Anglican Order of Service)

References

 166

References

Aho, A. V., R. Sethi, et al. (1985). Compilers: Principles, Techniques, and Tools,
Addison-Wesley.

Alizadeh, A. A., M. B. Eisen, et al. (2000). "Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling." Nature 403(6769): 503-
11.

Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." J Mol Biol
215(3): 403-10.

Asai, K., S. Hayamizu, et al. (1993). "Prediction of protein secondary structure by the
hidden Markov model." Comput Appl Biosci 9(2): 141-6.

Bailey, T. L. and C. Elkan (1994). "Fitting a mixture model by expectation
maximization to discover motifs in biopolymers." Proc Int Conf Intell Syst
Mol Biol 2: 28-36.

Bairoch, A. (2000). "The ENZYME database in 2000." Nucleic Acids Res 28(1): 304-
5.

Bateman, A., E. Birney, et al. (2000). "The Pfam protein families database." Nucleic
Acids Res 28(1): 263-6.

Bates, M. D., C. R. Erwin, et al. (2002). "Novel genes and functional relationships in
the adult mouse gastrointestinal tract identified by microarray analysis."
Gastroenterology 122(5): 1467-82.

Baum, L. E., T. Petrie, et al. (1970). "A maximization technique occuring in the
statistical analysis of probabilitic functions of Markov chains." The Annals of
Mathematical Statistics 41(1): 164171.

Benson, D. A., I. Karsch-Mizrachi, et al. (2003). "GenBank." Nucleic Acids Res
31(1): 23-7.

Birney, E. and R. Durbin (1997). "Dynamite: a flexible code generating language for
dynamic programming methods used in sequence comparison." Proc Int Conf
Intell Syst Mol Biol 5: 56-64.

Birney, E. and R. Durbin (2000). "Using GeneWise in the Drosophila annotation
experiment." Genome Res 10(4): 547-8.

Bishop, C. M. and T. M. E. (2000). Variational relevance vector machines.
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann.

Boeckmann, B., A. Bairoch, et al. (2003). "The SWISS-PROT protein knowledgebase
and its supplement TrEMBL in 2003." Nucleic Acids Res 31(1): 365-70.

Bowman, S., D. Lawson, et al. (1999). "The complete nucleotide sequence of
chromosome 3 of Plasmodium falciparum." Nature 400(6744): 532-8.

Brenton, J. D., S. A. Aparicio, et al. (2001). "Molecular profiling of breast cancer:
portraits but not physiognomy." Breast Cancer Res 3(2): 77-80.

Brown, M., R. Hughey, et al. (1993). "Using Dirichlet mixture priors to derive hidden
Markov models for protein families." Proc Int Conf Intell Syst Mol Biol 1: 47-
55.

Buck, K. J., R. A. Harris, et al. (1991). "A general method for quantitative PCR
analysis of mRNA levels for members of gene families: application to
GABAA receptor subunits." Biotechniques 11(5): 636-41.

Burge, C. and S. Karlin (1997). "Prediction of complete gene structures in human
genomic DNA." J Mol Biol 268(1): 78-94.

References

 167

Butte, A. J. and I. S. Kohane (2000). "Mutual information relevance networks:
functional genomic clustering using pairwise entropy measurements." Pac
Symp Biocomput: 418-29.

Butte, A. J., J. Ye, et al. (2001). "Determining significant fold differences in gene
expression analysis." Pac Symp Biocomput: 6-17.

Chen, T., H. L. He, et al. (1999). "Modeling gene expression with differential
equations." Pac Symp Biocomput: 29-40.

Chu, S., J. DeRisi, et al. (1998). "The transcriptional program of sporulation in
budding yeast." Science 282(5389): 699-705.

Churchill, G. A. (1989). "Stochastic models for heterogeneous DNA sequences." Bull
Math Biol 51(1): 79-94.

Corcoran, L. M., J. K. Thompson, et al. (1988). "Homologous recombination within
subtelomeric repeat sequences generates chromosome size polymorphisms in
P. falciparum." Cell 53(5): 807-13.

Dawson, E., G. R. Abecasis, et al. (2002). "A first-generation linkage disequilibrium
map of human chromosome 22." Nature 418(6897): 544-8.

Dib, C., S. Faure, et al. (1996). "A comprehensive genetic map of the human genome
based on 5,264 microsatellites." Nature 380(6570): 152-4.

Dixon, D. A. and S. C. Kowalczykowski (1991). "Homologous pairing in vitro
stimulated by the recombination hotspot, Chi." Cell 66(2): 361-71.

Dowell, R. D., R. M. Jokerst, et al. (2001). "The Distributed Annotation System."
BMC Bioinformatics 2(1): 7.

Down, T. (2003). Genetics. Cambridge, Cambridge.
Dunham, I., N. Shimizu, et al. (1999). "The DNA sequence of human chromosome

22." Nature 402(6761): 489-95.
Durbin, R., Eddy, E., Krogh A. and Mitchison, G. (1998). Biological Seqence

Analysis. Cambridge, UK, Cambridge University Press.
Eddy, S. R. (2001). "Profile hidden markov models for biological sequence analysis."

Bioinformatics 14: 755-763.
Eisen, M. B., P. T. Spellman, et al. (1998). "Cluster analysis and display of genome-

wide expression patterns." Proc Natl Acad Sci U S A 95(25): 14863-8.
Escalante, A. A., A. A. Lal, et al. (1998). "Genetic polymorphism and natural

selection in the malaria parasite Plasmodium falciparum." Genetics 149(1):
189-202.

Falquet, L., M. Pagni, et al. (2002). "The PROSITE database, its status in 2002."
Nucleic Acids Res 30(1): 235-8.

Figueiredo, L. M., L. H. Freitas-Junior, et al. (2002). "A central role for Plasmodium
falciparum subtelomeric regions in spatial positioning and telomere length
regulation." Embo J 21(4): 815-24.

Gamma, E., R. Helm, et al. (1994). Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley Professional.

Gardner, M. J., N. Hall, et al. (2002). "Genome sequence of the human malaria
parasite Plasmodium falciparum." Nature 419(6906): 498-511.

Gardner, M. J., H. Tettelin, et al. (1999). "The malaria genome sequencing project:
complete sequence of Plasmodium falciparum chromosome 2." Parassitologia
41(1-3): 69-75.

Gendrel, C. G., A. Boulet, et al. (2000). "(CA/GT)(n) microsatellites affect
homologous recombination during yeast meiosis." Genes Dev 14(10): 1261-8.

Gilbert, S. F. (2003). Developmental Biology. Sunderland, MA, Sinauer Associates,
Inc.

References

 168

Gosling, J., B. Joy, et al. (2000). The Java Language Specification, Addison-Wesley.
Grandjean, F., L. Bremaud, et al. (2001). "Sequential gene expression of P-

glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and lung
resistance protein: functional activity of P-gp and MRP present in the
doxorubicin-resistant human K562 cell lines." Anticancer Drugs 12(3): 247-
58.

Grundy, W. N., T. L. Bailey, et al. (1997). "Meta-MEME: motif-based hidden
Markov models of protein families." Comput Appl Biosci 13(4): 397-406.

Guillouzic, S., I. I. L'Heureux, et al. (2000). "Rate processes in a delayed,
stochastically driven, and overdamped system." Phys Rev E Stat Phys Plasmas
Fluids Relat Interdiscip Topics 61(5A): 4906-14.

Guo, Z., R. A. Guilfoyle, et al. (1994). "Direct fluorescence analysis of genetic
polymorphisms by hybridization with oligonucleotide arrays on glass
supports." Nucleic Acids Res 22(24): 5456-65.

Hall, N., A. Pain, et al. (2002). "Sequence of Plasmodium falciparum chromosomes 1,
3-9 and 13." Nature 419(6906): 527-31.

Hasan, S. (2003). The Sanger Centre. Cambridge.
Huang, A., D. Fuchs, et al. (2002). "Serum tryptophan decrease correlates with

immune activation and impaired quality of life in colorectal cancer." Br J
Cancer 86(11): 1691-6.

Hubbard, T., D. Barker, et al. (2002). "The Ensembl genome database project."
Nucleic Acids Res 30(1): 38-41.

Hughes, T. R., M. Mao, et al. (2001). "Expression profiling using microarrays
fabricated by an ink-jet oligonucleotide synthesizer." Nat Biotechnol 19(4):
342-7.

Hughey, R. and A. Krogh (1995). SAM: Sequence alignment and modeling software
system. Santa Cruz, CA, University of California.

Iwagaki, H., A. Hizuta, et al. (1995). "Decreased serum tryptophan in patients with
cancer cachexia correlates with increased serum neopterin." Immunol Invest
24(3): 467-78.

Kihara, C., T. Tsunoda, et al. (2001). "Prediction of sensitivity of esophageal tumors
to adjuvant chemotherapy by cDNA microarray analysis of gene-expression
profiles." Cancer Res 61(17): 6474-9.

Krogh, A., M. Brown, et al. (1994). "Hidden Markov models in computational
biology. Applications to protein modeling." J Mol Biol 235(5): 1501-31.

Lashkari, D. A., J. L. DeRisi, et al. (1997). "Yeast microarrays for genome wide
parallel genetic and gene expression analysis." Proc Natl Acad Sci U S A
94(24): 13057-62.

Lawrence, T. S. (1988). "Reduction of doxorubicin cytotoxicity by ouabain:
correlation with topoisomerase-induced DNA strand breakage in human and
hamster cells." Cancer Res 48(3): 725-30.

Lawrence, T. S. and M. A. Davis (1990). "The influence of Na+,K(+)-pump blockade
on doxorubicin-mediated cytotoxicity and DNA strand breakage in human
tumor cells." Cancer Chemother Pharmacol 26(3): 163-7.

Li, Y., C. Campbell, et al. (2002). "Bayesian automatic relevance determination
algorithms for classifying gene expression data." Bioinformatics 18(10): 1332-
9.

Liefers, G. J. and R. A. Tollenaar (2002). "Cancer genetics and their application to
individualised medicine." Eur J Cancer 38(7): 872-9.

References

 169

Lindholm, T. and F. Yellin (1999). The Java Virtual Machine Specification, Addison-
Wesley.

Majewski, J. and J. Ott (2000). "GT repeats are associated with recombination on
human chromosome 22." Genome Res 10(8): 1108-14.

Mody, M., Y. Cao, et al. (2001). "Genome-wide gene expression profiles of the
developing mouse hippocampus." Proc Natl Acad Sci U S A 98(15): 8862-7.

Nedelman, J., P. Heagerty, et al. (1992). "Quantitative PCR with internal controls."
Comput Appl Biosci 8(1): 65-70.

Nelder, J. A. and P. McCulagh (1983). Generalized Linear Models. London, Chapman
and Hall.

Ning, Z., A. J. Cox, et al. (2001). "SSAHA: a fast search method for large DNA
databases." Genome Res 11(10): 1725-9.

O'Hagan, A. (1994). Bayesian Inference. London, Hodder Anold.
Perou, C. M., T. Sorlie, et al. (2000). "Molecular portraits of human breast tumours."

Nature 406(6797): 747-52.
Platt, J. (1998). Fast Training of Support Vector Machines using Sequential Minimal

Optimization. Advances in Kernel Methods - Support Vector Learning. B. C.
a. S. Scholkopf B., A., MIT Press.

Pocock, M. R., T. Down, et al. (2000). "BioJava: Open Source Components for
Bioinformatics." sigbio newsletter 20(2): 10-12.

Pollack, Y., A. L. Katzen, et al. (1982). "The genome of Plasmodium falciparum. I:
DNA base composition." Nucleic Acids Res 10(2): 539-46.

Potmesil, M., Y. H. Hsiang, et al. (1988). "Resistance of human leukemic and normal
lymphocytes to drug-induced DNA cleavage and low levels of DNA
topoisomerase II." Cancer Res 48(12): 3537-43.

Pourquier, P., D. Montaudon, et al. (1998). "Doxorubicin-induced alterations of c-
myc and c-jun gene expression in rat glioblastoma cells: role of c-jun in drug
resistance and cell death." Biochem Pharmacol 55(12): 1963-71.

Rabiner, L. R. (1989). "A tutorial on Hidden Markov Models and selected
applications in speech recognition." Proceedings of the IEEE 77(2): 257-286.

Ramaswamy, S., P. Tamayo, et al. (2001). "Multiclass cancer diagnosis using tumor
gene expression signatures." Proc Natl Acad Sci U S A 98(26): 15149-54.

Rampone, S. (1998). "Recognition of splice junctions on DNA sequences by BRAIN
learning algorithm." Bioinformatics 14(8): 676-84.

Reinhardt, A. and T. Hubbard (1998). "Using neural networks for prediction of the
subcellular location of proteins." Nucleic Acids Res 26(9): 2230-6.

Rice, P., I. Longden, et al. (2000). "EMBOSS: the European Molecular Biology Open
Software Suite." Trends Genet 16(6): 276-7.

Rooney, D. E. (2001). Human Cytogenetics: Constitutional Analysis, A Practical
Approach. Oxford, Oxford University Press.

Rost, B. and C. Sander (1994). "Combining evolutionary information and neural
networks to predict protein secondary structure." Proteins 19(1): 55-72.

Schena, M., D. Shalon, et al. (1995). "Quantitative monitoring of gene expression
patterns with a complementary DNA microarray." Science 270(5235): 467-70.

Shalon, D. (1998). "Gene expression micro-arrays: a new tool for genomic research."
Pathol Biol (Paris) 46(2): 107-9.

Sjolander, K., K. Karplus, et al. (1996). "Dirichlet mixtures: a method for improved
detection of weak but significant protein sequence homology." Comput Appl
Biosci 12(4): 327-45.

References

 170

Smith, T. F. and M. S. Waterman (1981). "Identification of common molecular
subsequences." J Mol Biol 147(1): 195-7.

Smolen, P., D. A. Baxter, et al. (2001). "Modeling circadian oscillations with
interlocking positive and negative feedback loops." J Neurosci 21(17): 6644-
56.

Stajich, J. E., D. Block, et al. (2002). "The Bioperl toolkit: Perl modules for the life
sciences." Genome Res 12(10): 1611-8.

Stoesser, G., W. Baker, et al. (2003). "The EMBL Nucleotide Sequence Database:
major new developments." Nucleic Acids Res 31(1): 17-22.

Tewey, K. M., T. C. Rowe, et al. (1984). "Adriamycin-induced DNA damage
mediated by mammalian DNA topoisomerase II." Science 226(4673): 466-8.

Tipping, M. E. (2000). The Relevance Vector Machine. Advances in Neural
Information Processing Systems 12, MIT Press.

van 't Veer, L. J., H. Dai, et al. (2002). "Gene expression profiling predicts clinical
outcome of breast cancer." Nature 415(6871): 530-6.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer.
Womble, D. D. (2000). "GCG: The Wisconsin Package of sequence analysis

programs." Methods Mol Biol 132: 3-22.

