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Abstract 

Recently we have been blessed with a simultaneous rise in the volume of biological 

data and the power of computers. This has necessarily led to the emergence of the 

field of Bioinformatics, where the study of entire genomes rather than individual 

genes is the norm. 

This dissertation describes the development and application of the software 

framework BioJava, designed from the outset to provide a strong foundation for the 

implementation of different machine learning algorithms. BioJava allows genomic 

size datasets to be efficiently manipulated in a range of hardware environments. 

A variety of supervised and unsupervised learning techniques were applied to data 

sets on the scale of whole genomes taking advantage of the BioJava framework. 

Firstly, unsupervised learning was used to look for underlying structure in the 

genome sequence of whole Malaria chromosomes. Time-reversible 1st order Hidden 

Markov Models (HMMs) learned signals based on sequence composition that appear 

to correlate closely with biological units, such as exons, introns, repeats and non-

coding genomic regions. This demonstrates the ability of unsupervised methods to 

discover biologically meaningful information within genomic sequence. 

Secondly, supervised learning was used to develop a regression method able to 

predict recombination rate within human chromosomes. Support Vector Machines 

(SVMs) using suffix tree kernels were trained on human chromosome 22 sequence 

and were able to learn a signal reproducibly, although it was not clear how well this 

models recombination rate. 
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Finally, supervised learning was used to develop a classification method able to 

detect subtle signals in noisy and small sets of micro-array expression data. A 

Bayesian technique for training linear models was applied to learn sparse models. 

These were able to distinguish between tumour samples that had been treated with a 

drug and those that had not. The models produced by this method can be readily 

interpreted in terms of individual genes, and in this case made good biological sense. 

This dissertation illustrates how a framework of modular and reusable software 

components can be used together with advances in artificial intelligence to help us 

interpret the data flowing from high throughput projects in the post genomic era. 
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Chapter 1 Introduction 

The emerging field of Bioinformatics bridges the previously distinct worlds of 

computer science and biology. Recently, the volumes of information that can be 

collected with relative ease and moderately low cost per measurement have become 

vast. With the ever increased the volumes of data, it is no longer possible to analyse 

all of the data by hand. Computational methods are being developed to generate and 

test hypothesises and to collate and present these to users. Often, these users are not 

themselves programmers but biologists. Programs like BLAST (Altschul, Gish et al. 

1990) have changed from being of interest to a small group of dedicated programmers 

to being a tool used daily by researchers in experimental “wet” labs throughout the 

world. 

Established approaches for analysing biological data overlap with methods used in 

other subject areas. Neural networks have been applied to a variety of problems such 

as predicting the sub-cellular location of proteins (Reinhardt and Hubbard 1998), 

splice-site prediction (Rampone 1998) and secondary-structure assignments for 

proteins (Rost and Sander 1994). Hidden-Markov-Models (used extensively in 

speech-recognition) have been used as the theoretical basis for a plethora of tasks 

involving the labelling of DNA or protein sequences. These include gene finding 

(Burge and Karlin 1997; Birney and Durbin 2000), elucidating evolutionary 

relationships (Smith and Waterman 1981) and discovering conserved motifs in 

proteins (Grundy, Bailey et al. 1997). Expression data has been extensively analysed 

using a wide range of methods. These range from very simple techniques like ranking 

genes by the difference in absolute level between two conditions (for example, see 

(Butte, Ye et al. 2001) and references therein) through to more complex methods like 
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cluster analysis (Eisen, Spellman et al. 1998) and grouping by mutual information 

(Butte and Kohane 2000). Above all, simple statistical models have been used 

pervasively for almost all tasks. 

With the rapidly increasing size and variety of biological datasets that must been 

considered in any analysis, there has been a corresponding need for software 

frameworks to enable the manipulation of these large datasets and aid in their 

analysis. 

1.1 Existing Software Development Frameworks for Bioinformatics 

There are a variety of standard activities in bioinformatics that have the potential to 

be addressed through the use of integrated software packages. These include data 

visualization and mining, database management, naming and directory services and 

machine learning. The major advantages of using integrated software packages are 

that they enable a user to carry out complex tasks without having to re-implement 

functionality such as file parsing, algorithms and the resource management associated 

with large datasets. This enables their use by those without the necessary computer 

skills required to efficiently implement complex or efficient algorithms. The effort 

involved in developing and maintaining production quality code to address these 

issues is considerable and usually outweighs the effort required to become 

familiarised with a package, its interfaces, design and peculiarities. When the package 

is a community project every user benefits from any user’s contribution to and 

debugging of the code base. 

When we started BioJava, there were many bioinformatics-related applications 

written in almost every conceivable language. Some of these (e.g. HMMER (Eddy 

2001) and BLAST (Altschul, Gish et al. 1990)) distribute source code under an open 
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license. However, usually these applications were coded in isolation from others, so 

that each time a developer needed a parser for a given file format, or a data structure 

for some biological entity, they would need to develop their own. There were a 

handful of toolkits or APIs available under licensing agreements that were compatible 

with free use by third parties. There were also a few toolkits available commercially, 

which generally made them difficult to use in an academic setting. 

1.1.1 The NCBI Toolkit 

The National Centre for Biotechnology Information (NCBI) was founded in 1988 to 

support bioinformatics in the United States1. One of the services it provides is a 

toolkit written in C for the development of bioinformatics applications2. The NCBI 

uses this toolkit internally for managing GENBANK (Benson, Karsch-Mizrachi et al. 

2003) and other databases, as well as several applications including BLAST. The 

current version of the toolkit has data structures for biological sequences, genetic 

maps, genome assemblies and bibliographical references, as well as many of the other 

commonly encountered concepts and data-structures in bioinformatics. There is an 

API for both reading and writing ASN.13 documents, and support has recently been 

added for XML4 documents. ASN.1 is used as the definition language within the 

toolkit for data structures. The basic data structures and bookkeeping functions, such 
                                                 

1 See http://www.ncbi.nlm.nih.gov/About/glance/ourmission.html for more information about the 

NCBI 

2 see http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML for a full listing of the 

functionality of the tool box 

3 see http://www.asn1.org/ for information about ASN.1 

4 see http://www.w3c.org/XML/ for resources relating to the XML standard 
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as object life cycle, serialization and de-serialization are generated directly from the 

ASN.1 definitions, and are therefore named in a consistent manner. 

The NCBI toolkit has had fairly limited use as a development platform outside the 

NCBI. This has probably been because although the source code is available, it has 

never been regarded as a community project, starting as it did before the emergence of 

the open source movement. There are also difficulties inherent to developing and 

maintaining portable C libraries. 

1.1.2 Bioperl 

Perl5 is a loosely- and dynamically-typed scripting language that became adopted as 

the scripting language of choice of bioinformatics during the 1990s. This is due to 

Perl’s ample abilities to act as a scripting language, its powerful regular expression 

handling and its file manipulation abilities. In 1995, the Bioperl (Stajich, Block et al. 

2002) project was formed. From the beginning, it was organized around a web site6 

and there was a strong commitment to open source development and to sharing source 

code between developers using CVS7. It started off as a group of biological scripts, 

and it quickly became apparent that there were common and reusable concepts used 

by many different scripts. The first and most important of these was the ‘Sequence’ 

object. As of the 1.2 release of Bioperl in 2003, the exact definition of the sequence 

object is still evolving. 

                                                 

5 The Perl web site can be found at http://www.perl.org/  

6 BioPerl is co-ordinated via the http://www.bioperl.org/ web site 

7 See http://www.cvshome.org/ for more information about CVS 



Introduction 

   5

Around 1997, the Bioperl project moved in focus from being a collection of Perl 

scripts to being a library of Perl modules that defined objects. Soon after that, the 

project started to adopt the practice of defining abstract classes or interfaces for these 

data types and then extending these for specific implementations. 

Perl in general and Bioperl in particular has since proven to be very effective as a 

way to glue multiple applications together in pipelines8. Large scale systems have 

been built upon Bioperl, such as the Ensemble genome annotation project (Hubbard, 

Barker et al. 2002). Bioperl still has resource and computational issues when 

managing very large numbers of ‘live’ objects and with allocating and deallocating 

objects repeatedly. These are mainly due to inherent limitations of how Perl 5 

represents objects. 

At the time BioJava was started, Bioperl essentially consisted of a module for 

representing sequences and annotations on those sequences, parsers for a few 

common sequence formats (EMBL (Stoesser, Baker et al. 2003), SWISS-PROT 

(Boeckmann, Bairoch et al. 2003), GENBANK (Benson, Karsch-Mizrachi et al. 

2003)) and parsers for some commonly used applications (primarily BLAST). 

1.1.3 EMBOSS 

Up until the mid 1990s, the commercial software package GCG (Womble 2000), 

written in C, was distributed along with its source code. It provided a collection of 

command-line tools for sequence manipulation. Because the source code was 

available, many new applications using the GCG libraries were developed and 

                                                 

8 See http://www.biopipe.org/ for more information about BioPipe 
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distributed in a package called extended-GCG (EGCG9). When the license agreement 

for GCG was changed (around the same time that GCG Ltd was acquired by Oxford 

Molecular), the source code ceased to be made available. The developers of EGCG 

started to develop the European Molecular Biology Open Software Suite (EMBOSS) 

(Rice, Longden et al. 2000). This is a free, open source package containing a wide 

range of tools for sequence analysis and database access, as well as data-visualisation. 

 At the core of EMBOSS there is a set of libraries for common tasks, such as 

sequence input/output (IO), memory management, documentation of source code, and 

meta-data for command-line parameters. Although most users of EMBOSS are 

probably not programmers, it does provide a relatively effective library for handling 

these mundane tasks. 

The history of GCG and EMBOSS has underlined the need for widely used libraries 

to be available to the community that uses them, without fear of their future removal, 

regardless of how benevolent the current owners may be. 

1.2 BioJava 

In 1997, Java2 was released, together with version 1.2 of the SDK. This was a 

substantial improvement over previous versions of Java, both in terms of 

performance, and in the range of functionality provided by the standard libraries. With 

this development, it became practical to consider developing a Bioinformatics 

software package in Java. It was at this point that I first prototyped a set of interfaces 

in Java which went on to become the core of BioJava. I was familiar with both C and 

Perl, but rejected them for the reasons described below. 
                                                 

9 The original EGCG web site has been taken over by the EMBOSS site and no longer exists 
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C, while being a good language for developing high-performance applications, is 

not always ideal for code reuse and rapid application development. C can be bound to 

Java applications via the Java Native Interfaces. However, it is easier to manage a 

project if it is entirely or mainly in one language. Also, the use of native code stops 

the Java application from being platform-neutral. 

Bioinformatics applications often require large and complex data structures. Perl’s 

capability for handling these structures is limited by two main factors. Firstly, it is 

difficult to handle objects that contain cyclic references, because Perl uses a 

reference-counting garbage collector that will not remove them, and there is no way to 

have a non-counted reference. Secondly, allocating many Perl objects is expensive, 

particularly in terms of the memory foot-print associated with each instance. Many 

bioinformatics tasks require very large numbers of entities to be compared. Java has a 

garbage collector that handles arbitrary graphs of objects. Also, the overhead of a Java 

object is minimal (a couple of words for synchronization and other book-keeping 

tasks). 

At the time, there were no widely used bioinformatics toolkits written in Java. The 

Neomorphic toolkit10 was available commercially and provided some visualisation 

tools that could be embedded within applications. However, it did not provide code 

for flexible file reading and writing. Also, the underlying model for the sequence was 

defined in terms of strings and arrays of characters. These do not scale to sequences 

the size of whole chromosomes. 

                                                 

10 The Neomorphic web site can be found at https://www.Neomorphic.com/das/ngsdk/  



Introduction 

   8

It was in this context that BioJava (Pocock, Down et al. 2000) was started, with the 

aim of providing APIs for common sequence-related bioinformatics tasks for Java 

applications. The original design was heavily influenced by the Bioperl object model 

at that time, and since then the two projects have had a degree of common design due 

to constant comparisons between how each project approaches issues. The core 

BioJava application programming interfaces (APIs) have been essentially stable since 

2001. 

BioJava was started in 1999, and became part of the Open Bioinformatics 

Foundation11 (OBF) in January 2000. The OBF is an umbrella organisation for the 

open source Bio* projects. These projects together strive to provide programmer-

friendly toolkits in several languages. Currently there are affiliated projects in Perl, 

Java, Python and Ruby. There are also the CORBA, XML and SQL Bio* projects that 

are language-neutral but provide data-formats and API interoperability between the 

language-specific projects. 

1.3 Machine Learning 

Unlike other bioinformatics toolkits, BioJava was developed from the start to 

provide a framework suitable for computational biology analysis by machine learning. 

The main concepts of machine learning are therefore described here together with an 

outline of how these are supported by BioJava. How these various implementations 

are used is addressed in Chapters 3, 4 and 5. 

The majority of machine learning techniques used in this field can be described as 

either acting upon discreet entities (by classification or regression) or as labelling a 
                                                 

11 See http://www.open-bio.org/ for more information about the OBF 
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sequence of observations (by signal analysis). Machine learning approaches can also 

be further divided into two main categories: supervised and unsupervised learning. In 

the case of supervised learning, a training set is available with labelling giving the 

“true” outcome for each example. For unsupervised learning, the objective is to detect 

patterns within data for which there is no a priori labelling, i.e. to investigate if the 

data has any inherent interesting structure. 

The generalisation of a supervised learning method is how well it treats data that 

did not form part of its training set. It is desirable for supervised learning methods to 

generalise well so that the user can have confidence that predictions it generates are 

trustworthy, even if the new data bears little resemblance to the training data. 

A critical consideration in the design of BioJava has been constructing the 

underlying data structures in such a way that they are appropriate for publishing data 

to machine learning algorithms. The following sections discuss the way that 

classification, regression and signal analysis tasks can be represented mathematically. 

This leads to a natural way for structured biological data to be used in machine 

learning techniques. While it is not essential to represent the data and interfaces in this 

way, it does provide us with a common and clear framework upon which we can 

build. This makes it much easier to change the representations of the underlying data 

that is exposed to the machine learning technique as well as enabling the evaluating of 

a range of different machine learning techniques on the same data. 

1.3.1 Clustering, Classification and Regression for Single Items 

Regression is used to predict a continuous function for data items from a set. For 

example, regression could be used to predict rainfall levels from measurements of 

atmospheric conditions. Classification is used to divide a set of items into disjoint 
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subsets. An example would be the classification of predicted transcripts into the sets 

of expressed genes and psuedogenes, based on properties of their sequence. 

Clustering data items produces a hierarchy of relationships, which can be represented 

as a tree, with data items at the leaves. For example, phylogenetic trees are the result 

of clustering the sequences of a protein family. 

When presented with some items for clustering, classification or regression, it is 

often natural to think in terms of these items having features, which may be either 

directly observed (intensity of fluorescence on a micro-array), or calculated (BLAST 

scores). The analysis is performed on these features. Traditionally, a lot of hard work 

has gone into defining informative features (for example, different scoring functions 

for sequence alignments) or for extracting useful information from them (for example, 

Fourier transforms for expression profiles (Chen, He et al. 1999)). Standard machine 

learning techniques can be applied to any set of items which can themselves be 

described by a set of features. We will now consider how these datasets can be 

represented in a way that makes them applicable to machine learning techniques. This 

has a direct bearing upon how the interfaces in BioJava have been designed. 

Given a set of items X  and a set of possible outcomes Y , a space YX × of 

observations and some set of functions called the ‘hypothesis space’ H , we wish to 

chose a hypothesis which is a ‘good’ hypothesis for our data: 

Equation 1-1 A Hypothesis Function 

HhYyXxyx
h

∈∈∈ ,,  whereα  

The methods differ in the types of hypothesis spaces that can be searched and the 

definition of a ‘good’ hypothesis. In the case of clustering, Y  is the space of all 
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possible trees. The set of trees may be restricted to binary trees, trees that have a depth 

of 1 (when partitioning into disjoint groups), or may be any other arrangement. For 

classification Y  is the set of labels. For regression, Y  is the set of possible values for 

the continuous variable being predicted: often a range of real numbers. The case of 

partitioning the data into disjoint groups (classification) is in practice very similar to 

regression, as the regression case can be thought of as a special case where the output 

is one of a very large number of possible groups (one per real number). 

It is always useful to quantify the error associated with a hypothesis. This can be 

used during training to help select a hypothesis, and after training to evaluate the 

success against unseen data. For supervised learning, the error is a measure of how far 

the predictions fall from the true values. For a wide range of classification and 

regression tasks, the error of a hypothesis over a complete data set can be treated as 

the sum of the errors for each individual data point. The exact choice of how to 

measure this distance between predicted and expected output depends upon the model 

being considered. 

Equation 1-2 Error of a Hypothesis 

)(

)(
),(

xhy

err
YXyx

−=

= ∑
×∈

δ

δγ

 

Where δ  is the difference between the expected and predicted value, γ  is the total 

error and err  is the error function being used. For unsupervised learning there is no 

notion of a “true” value, but it is still possible to define a function that is analogous to 

the error function that is based purely on the assumptions of the model. 
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The error function is part of how the method will attempt to treat outliers, how 

sensitive it will be to ‘fuzzy’ data and how general the resulting model will be. Below 

are some example error functions: 

Equation 1-3 Some Error Functions 





−
<=

=

=

d
ddhr

sqr

lin

δ
δδ

δδ

δδ

0
)(),(

)(
)(

2  

The third case in Equation 1-3 is interesting, because it includes an insensitive 

region of width d  around the true solution, and any prediction falling in this region 

receives no penalty. In effect, this is saying that errors up to a value of d  are 

unimportant.  

During training, given the training examples T  of the form ),( yx , the aim will be 

to select some function that has a low error value. When used for prediction, we will 

estimate the value of )|( xy  as )(xhy ≈ . The ability of the function to generalise can 

be estimated by computing )(xh  for known outcomes that were not part of the 

training data. A model generalises well if the accuracy of the predictions on unseen 

data is comparable to the accuracy when predicting outcomes on the training set. This 

can be estimated by training on a subset of the available training data, and then doing 

a blind prediction on the rest and calculating the error function or observing the rate 

of correct and incorrect predictions. 

There exists a trivial function that is the exact map defined by T  as long as each x  

appears exactly once (i.e. there is no conflicting information). This function will 

contain no errors. It has exactly as many parameters as T  has members. This has no 
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generalisation power, as the function is not defined for any x  not represented in T . If 

the training method allows this hypothesis or any similar hypothesis to be chosen then 

it is ‘over-fitting’ the training data. If the resulting model contains more free 

parameters than there are training items (assuming that they really can vary 

independently), then it is very difficult to ensure that the model is not over-fitting. A 

good solution to this is to encourage the method to produce models with significantly 

fewer parameters than there are training examples. 

Having defined the problem, we will now discuss a convenient representation of 

data and hypotheses that enables their easy integration into BioJava. 

We can think of the training process as being the selection of the transformation 

that project objects in X  until they superimpose with their image in Y  with sufficient 

accuracy. If, for example, the error function was 2δ  then the problem becomes the 

estimation of a matrix that performs the rotation of a least-squares fit on the 

transformed image of X . 

In the case where Y  has a single dimension, the projection must remove all except 

one dimension from the feature space. This can be visualised as measuring the 

distance from points to a hyper-plane (e.g. a linear surface that is one dimension lower 

than the feature space). This distance is equal to the dot product of the data point with 

the equation of the plane12. 

                                                 

12 For two numbers, ba ⋅  is the product of a  and b . For vectors, there are two common types of 

product – the inner and outer products. These can be explicitly disambiguated as ba,  and ba × . 

Inner products have scalar values. They are often written as ba ⋅  and consequently called dot-
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There are a range of machine learning methods that can be represented in the form 

of a sum of dot products. These include classification, regression, k-means clustering 

and principal component analysis. There are techniques available to adapt this family 

of methods so that they can be generalised to functions considerably more complex 

than the linear dot product. This allows these machine learning techniques to consider 

a much more interesting range of problems. In the rest of this section, we will discuss 

one method of generalisation; kernel functions. 

We can generalise the use of dot products by exploiting the representation of each 

item as a set of features with associated values. For two data items p  and q  of 

compatible types, the natural inner product is the sum of the products of their 

corresponding features. In the following equation, i  is used to index each feature. 

Equation 1-4 Dot Products for Items Decomposable into Sub-Spaces with Dot-products Defined 

∑ ⋅=⋅
i

ii qpqp  

Notice that the dot product requires each feature of the data item to have a dot 

product defined. For numbers, this is just the normal numerical product. However, the 

value of a feature may itself be a complex structure composed from a set of features 

with values. 

Dot products have the properties that (a) they are symmetrical functions, (b) that 

0≥⋅ xx  for all values and (c) that the value of the dot product is only zero if one or 

                                                                                                                                            

products. In this text, ba ⋅  is used where the normal Cartesian dot product is meant, and ba,  is any 

function that is an inner product of a and b in some space. 
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both of the arguments has a magnitude of zero. When considering representing 

features in terms of dot products, it is necessary to ensure that they satisfy these 

constraints. For example, it would be invalid to use Blast sequence alignment scores 

as the value for a dot product, as they are not symmetrical. 

It is often useful to first transform data from its natural coordinate system (data-

space) into one another coordinate system (the feature space) in which particular types 

of analysis are easier. If φ  is a function that maps from data-space to feature-space, 

then the dot product of two items a  and b  in that space is )()( ba φφ ⋅ . If there is a 

function k  such that )()(),( babak φφ ⋅= , then k  is a kernel function. More 

explicitly: 

Equation 1-5 Definition of Kernel Functions 

 )()(),( babak φφφ ⋅=  

An interesting subset of kernel functions are equivalent to functions of the data-

space dot product. For example, given two vectors, we could define a transform that 

projected the items into the space of all possible polynomial interactions of order 2 or 

less (Equation 1-6) which allows conics to be constructed in the data-space. This can 

be expressed in terms of dot products in the data-space (Equation 1-7). This form can 

be generalized for data-spaces with any number of dimensions, and for polynomial 

interactions of any order (Equation 1-8).  

Equation 1-6 A Polynomial From a Two-dimensional Coordinate to a Coordinate Containing 

One Component for each Possible Product Involving up to Two Dimensions 

),,2,2,2,1(: 2
2

2
12121 xxxxxxxP α  
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Equation 1-7 Dot products between two polynomial mappings reduced to terms involving the dot 

product of the unmapped variables 
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Equation 1-8 Polynomial Kernel Function 

( )nnpoly babak 1),()( +⋅=
 

In terms of the time-and-space constraints, this reduces the problem of finding all 

polynomial interactions between all elements of two vectors from having complexity 

that scales badly on the length of the vectors to one that scales linearly. Explicitly 

computing polynomial interactions of order 5 would require time and space 

proportional to the fifth power of the length of the vectors, where as using an 

appropriate kernel function the cost would still be linear. 

The feature spaces for many kernel functions are very large compared to the data-

space. For almost any training set, the feature space will have more dimensions than 

training examples, and may be too large to represent explicitly. However, if the dot 

products can be calculated as a simple function of the data-space dot product, then the 

feature space size is no longer a constraint to calculations. 

The machine learning methods that can be represented in terms of sums of dot 

products can often be adapted to work with kernel functions, allowing them to explore 

solutions in the feature space of the kernel, while maintaining performance 

characteristics related to the dimensionality of the data-space. 
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It is possible to compose new kernel functions from other kernel functions and 

scalar functions. In all cases, care must be taken to not invalidate the three properties 

of dot products defined above. Here are three examples: 

1.  bgaf +  Equivalent to concatenating the feature spaces of the kernels f  

and g  after scaling them by a  and b  respectively. 

2. gf ⋅  

3. )),(( bafξ  where ξ  is any scalar function that maintains the conditions 

that apply to dot-products, such as the polynomial kernel in Equation 1-8. 

The BioJava support vector machine implementation (discussed in 4.1.1 and 4.1.2) 

provides a linear dot product kernel implementation for sparse vectors of real 

numbers. Additionally, there are a range of kernel functions that are implemented in 

the third form above that return some function of the result of another kernel function. 

These include kernels for radial basis functions, polynomials and hyperbolic tan. 

There are also kernels that implement normalising transformations, such as projection 

onto a unit sphere. Data is made available by implementing the kernel function 

interface so that it returns a dot product for some pair of Java data structures. Then, an 

appropriate feature space can be constructed by composing the kernel function objects 

as required. This affords a great deal of flexibility in the range of feature spaces that 

can be explored. 

SVMs, described in Section 4.1.1, are one of a family of models called Generalised 

Linear Models. Another related form of linear model is trained using the Relevance 

Vector Machine methodology, described in 5.3. Applications of the representations 

described here will be discussed in Chapters 4 and 5 with examples. 
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1.3.2 Signal Analysis with Hidden Markov Models 

Signal analysis methods deal with data that are composed from a linear sequence of 

observations, possibly of differing lengths. One approach to signal analysis used 

widely in bioinformatics is to infer properties of the structure of the sequence based 

upon a model of how the sequence may have been generated. The sequence can be 

represented as a series of observations x  which are indexed in the form ix  where if 

ji <  then ix  is before jx  in the sequence. 

Probabilistic Hidden Markov Models (HMMs) (Durbin 1998) are generative models 

that have been applied to a wide range of biological problems since their introduction 

to computational biology (Churchill 1989; Krogh, Brown et al. 1994). Formally, they 

define a probability distribution over all sequences that can be generated using the 

production rules of a stochastic regular grammar. One benefit in representing models 

as HMMs over stochastic regular grammars is that HMMs can be easily visualised as 

graphs, whereas stochastic regular grammars are inherently textual. 

A common and successful application of HMMs is the modelling of a family of 

evolutionarily related sequences. A popular form of model for this kind of application 

is the profile HMM, where a sequence of match states through the model represents 

the consensus sequence for some biological feature. Insertion and deletion states 

model the corresponding evolutionary events. Profile HMMs form the basis of the 

SAM package (Hughey and Krogh 1995), and profiles built with the HMMER 

package (Eddy 2001) form the basis of the Pfam database (Bateman, Birney et al. 

2000). 

Although profile HMMs are a widely used form of HMM in computational biology, 

it is possible to build much more flexible models. For example, Meta-MEME 
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(Grundy, Bailey et al. 1997) takes simple ungapped weight-matrices, which are based 

on motifs discovered using the MEME package (Bailey and Elkan 1994), and links 

these together with spacers to form higher-order models. 

Another common type of HMM is an alignment, or pair HMM. This form emits 

correlated pairs of sequences. Pairwise alignment algorithms can be represented in 

this form. The Dynamite package (Birney and Durbin 1997) provides a language for 

implementing new pair-HMM algorithms. However, Dynamite itself does not provide 

any facilities for training the parameters for these models. This means that Dynamite 

models must be parameterised by hand, a process which is more of an art than a 

science. 

HMMs can be trained from labelled training data. That is, given a set of sequences 

where the model states have been assigned, the optimal probabilities for the model 

can be calculated directly. The observation counts are normally regularized using an 

appropriate background model that reduces the possibility of over-fitting the 

examples. It is generally accepted that regularization enhances the generality of the 

model to unseen sequences. 

The most commonly used forms of regularization are Dirichlet priors (which are 

equivalent to pseudocounts) and Dirichlet mixtures (Brown, Hughey et al. 1993; 

Sjolander, Karplus et al. 1996). Dirichlet priors represent probability distributions 

over the range of possible counts, and are used to blend the probability obtained using 

the raw counts with the expected counts if the null model were true. This is 

implemented by adding extra “pseudocounts” to the observed counts. Dirichlet 

mixtures work in a similar way to Dirichlet priors, but in this case there are multiple 
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prior models, and the prior model which is closest to the observation has the most 

weight during the blending. 

It is possible to use other priors, such as multinomial Gaussian distributions and 

their mixtures over log-odds space (O'Hagan 1994), but these have not been 

extensively investigated for biological models. This is probably because as Dirichlet 

priors can be relatively easily implemented and have been applied successfully, there 

is no perceived reason to use different types of prior models. 

In contrast to training from fully labelled data, HMM parameters can be estimated 

from an unlabeled set of sequences given a model architecture. This is achieved 

iteratively by estimating a probability distribution over all possible labellings for each 

sequence given a current set of estimated model parameters. Counts can be added in 

proportion to the probabilities of the labellings, or sampled from this distribution. The 

counts are then normalized and regularized, and these new parameters are used as the 

starting point for the next round of parameter estimation. This cycle is repeated until 

the model parameters cease to change by any significant amount or a pre-determined 

number of cycles have elapsed. It is usually sufficient to start with arbitrary random 

parameters, given a model with few enough free parameters. When counts are added 

in proportion to the probability distribution over all possible labellings, this procedure 

is known as Baum-Welch training (Baum, Petrie et al. 1970; Rabiner 1989; Durbin 

1998). When adding counts by sampling from this distribution, we have called this 

procedure Baum-Welch with sampling. 

Finally, complex models can be parameterised using a mixture of labelled and 

unlabelled data. For example, models for distinguishing between protein secondary 

structure elements may have complex models for α-helix and β-sheet involving 
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multiple repeating patterns of states. Training data may be binned into sets for both 

secondary structure elements, and then maximum-likelihood used within the bins 

(Asai, Hayamizu et al. 1993). This initial splitting of the data is equivalent to a partial 

labelling of the data that restricts those observations to being generated by a sub-set of 

the parameters. 

HMMs can be applied to a wide range of sequence analysis tasks. The BioJava 

dynamic programming toolkit was intended to allow the implementation of a wide 

range of these algorithms through a consistent API. To achieve this, it was helpful to 

find a very general description of HMMs and the algorithms that are used to 

manipulate them. A good formal representation of this general description aids in 

developing clear APIs and good procedural implementations of the procedures 

described above. 

Equation 1-9 Definition of a Probabilistic Hidden Markov Model 
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We can represent an HMM as a tuple of parameters (Equation 1-9). The model 

emits symbols from an alphabet (Ω ), such as DNA. It has a finite set of states ( I ), 

often called the state-space. The model has a set of transitions (Σ ) defined as all 

ordered pairs of states. There is a probability distribution over the transitions ( e ) and 

another over the members of the alphabet emitted by each state ( t ). It is often 

convenient to represent the emission and transition probabilities as being an array of 

functions dependant upon the current state under consideration (for example, 
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Equation 1-10). In an object-oriented interpretation, these functions could be 

modelled as being properties of a state. 

Equation 1-10 Emission and Transition Probabilities 

( )
( ) Σ∈∀=

Ω∈=
∈

),(|)(
|)(

jkkjpjt

kapae

Ik

k

k

 

It is common for some values of )( jtk  to be constrained to always be zero. In this 

case, we can consider there to be no legal transition from state k  to state j . We can 

describe these states as being unconnected. A small extension to the original model 

redefines the transition term as 2I⊂Σ . From the point of view of implementing 

efficient algorithms that act upon these finite state machines and of efficient data 

structures for storing parameters, it is often important to know which states are 

explicitly unconnected, rather than happening to have a transition probability set to 

zero by a particular parameterisation. 

For example, in an HMM that models a weight-matrix of length 100, there are 100 

states, one for each column of the weight-matrix. The complete transition matrix 

would contain 10,000 elements. However, in the HMM for a weight-matrix, the only 

state that can be reached from a given state is the single one that represents the next 

column. The HMM representing the weight matrix would have 99 legal transitions in 

total. It would be an inefficient use of resources to store the square transition matrix 

when it is only necessary to use an array linear on length to the number of states in 

this model. 

A sequence can be labelled with states so that there is one state associated with each 

observation, and each transition represented by neighbouring pair of states are legal in 
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the HMM. The sequence of states is called a state-path. Formally, this can be written 

as: 

Equation 1-11 Definition of All Legal State-Sequences 

Σ∈∈ − ),(such that   of  valuea is  thereeach For 1 iiii yyIyx  

Given both x  and y  the joint probability of a sequence and its state-path pair can 

be calculated as: 

Equation 1-12 Likelihood of Observing a Given Sequence and Labelling 

)|()|()|,( 1∏ −=
i

iiii yypyxpMyxp  

Given Equation 1-12, it is possible to evaluate any state-path. With a given set of 

parameters, there will be a set of paths (often just one) that have a higher value than 

any others do. The Viterbi algorithm (Rabiner 1989; Durbin 1998) finds one of these 

paths. By summing over every possible state-path, that could have produced a 

sequence, it is possible to calculate )|( mxp . The forwards and backwards recursions 

(Rabiner 1989; Durbin 1998) calculate this value, initialising from the first and last 

symbol of x  respectively (Equation 1-13). In these recursions, it is necessary to loop 

over the variable indexing x  according to its natural ordering (and in the reverse of 

this for the backwards algorithm), and similarly the destination states for each 

transition must be looped over such that the recursion has been calculated for every 

value of the recursion that this step relies upon. 
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Equation 1-13 Common Dynamic Programming Recursions as Applied to Probabilistic Hidden 

Markov Models 
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For the case of aligning multiple sequences, the observation x  can be replaced by 

the product of all sequences being aligned such that for sequences a  and b  we end up 

aligning bax ×=  to the model where ),(, jiji bax = . We can generalise this to any 

number of sequences being simultaneously aligned, and replace the compound 

subscript with a vector i . For the Viterbi, forward and backward algorithms, we can 

proceed exactly as before, as long as we use the partial ordering of i  such that adding 

one to any component of i  would produce a new vector that comes after it. So that 

some states can advance through a sub-set of the sequences being aligned (for 

example, insertion or deletion states in a pair-wise alignment HMM), it is convenient 

to have an advance vector associated with each state. This is of the same 
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dimensionality as i . The advance vector is purely a function of a single state. A valid 

object-oriented interpretation is for states to expose an advance array as a property. 

The BioJava library allows HMMs with arbitrary architectures to be constructed. 

The HMM APIs are strongly modelled on the definitions of HMMs described above. 

In particular, the APIs do not directly distinguish between models that generate one, 

two or any other number of sequences. The sequence of observations presented to an 

HMM is represented using the BioJava Alphabet, Symbol and SymbolList APIs (2.4), 

which allows the algorithms to be applied to a much wider range of data than either 

DNA or character strings without needing to alter the code implementing the 

recursions themselves, or the associated data models. From the users’ point of view, 

there is no programmatic difference between models that are fully connected and ones 

that are extremely sparse. Section 2.6 discusses the BioJava HMM APIs. Chapter 3 

explores the use of HMMs for modelling chromosomal structure. 

1.4 Implementation and Use of BioJava 

In the following chapters the implementation of BioJava and its application to real 

problems are discussed. In Chapter 2, the implementation of the core of BioJava is 

described. In Chapters 3, 4 and 5, BioJava is applied to particular classes of machine 

learning problem. HMMs are used to discover data-compressions for whole 

chromosomes in Chapter 3, SVMs are applied to recombination rate prediction in 

Chapter 4 and RVMs are used to classify expression data in Chapter 5. 
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Chapter 2 The BioJava Core Interfaces 

BioJava is intended to provide Java based APIs for common bioinformatics tasks. It 

also strives to be a convenient basis for writing potentially computationally expensive 

algorithms. To reduce the learning curve, and to decrease maintenance overhead, 

individual APIs must be complete enough to allow them to be used algorithmically, 

but slim enough that they can be easily implemented and used. The balance between 

making the APIs not only powerful but also small, is sometimes difficult to maintain, 

but has, in my view, fostered a high degree of elegance in the underlying object 

design. 

There are two clearly different cases where code reuse is beneficial. The first, and 

most commonly thought of case is the reuse of library code by invoking it from 

multiple applications. For example, it is very common to reuse a matrix mathematics 

library during numeric programming. We could call this the “new using old” case. 

The other reuse case is when library code can execute a tried-and-tested procedure 

that in turn calls some application specific code. For example, in Java, a listener can 

be registered with a window to handle mouse movement events. In this case, the 

library code is responsible for drawing the window and for invoking the listener of 

mouse movements, but the exact behaviour of the library is customized by the 

listener. We could call this the “old using new” case.  

The design and implementation of the BioJava libraries has primarily been an 

exercise in computer science, not biology. Throughout, we have striven to foster a 

high degree of code reuse both by providing APIs that can be used in a wide range of 

contexts (new using old), and by providing opportunities for developers to drop in 

new implementations of these APIs without affecting existing code (old using new). 
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The APIs relevant to this dissertation, and for which I have been primary designer and 

implementer, are the following: 

• Nested Exceptions and Assertions 

• Changeability 

• Symbols, Alphabets and SymbolList 

• Sequence, Feature and SequenceDB 

• Distribution 

• MarkovModel 

• Query 

Wherever possible, the API is defined in terms of Java interface definitions, 

allowing for the seamless integration of multiple implementations. Indeed, it has been 

the reliance on interfaces that has made the development of the BioJava library 

relatively rapid and robust. We have discovered that nearly all core data types can be 

implemented in multiple ways depending upon a host of factors, so the entire toolkit 

makes as few assumptions about implementation as are possible. 

2.1 Java as a Language for Bioinformatics 

Java (Gosling, Joy et al. 2000) is a language created by Sun Microsystems, 

originally for use in imbedded systems such as mobile phones, watches and ABS 

systems. It relies upon a definition of a virtual machine (VM) (Lindholm and Yellin 

1999) that is responsible for thread and memory allocation, byte-code instruction 

execution and enforcing security restrictions. The byte-code is naturally object-
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oriented and has support for advanced features such as exception handling and thread 

synchronization. The byte-code acts upon a stack of working variables, an arbitrarily 

large set of virtual registers and the object (or class) that is currently in scope. There is 

no pointer type in Java, or in the byte-code, making it impossible to write byte-code 

that addresses arbitrary memory. Theorem provers can be used to validate that a given 

portion of byte-code is safe to execute, avoiding some of the issues with other 

languages (such as invalid memory allocation, executing instructions on inappropriate 

types and validation that the execution stack is always in a consistent state). 

The Java VM is responsible for interpreting the byte-code and for environment 

functions such as memory allocation and garbage collection (freeing objects from the 

memory pool once they are no longer within scope), system calls (IO, process 

execution, thread management) and managing peers to the native operating system 

graphical user interface (GUI). With a VM of a given version (e.g. 1.2.2) and any 

platform (e.g. Sun for Windows, Compaq for Tru64), executing a portion of byte-code 

should produce exactly the same results, even if the performance differs13. This code 

portability by design is historically one of the major benefits of Java. In practice, 

platform incompatibilities nearly always arise from platform-specific portions of the 

VM, such as graphical peers, rather than bugs in the execution of byte-code. 

                                                 

13 Since version 1.4 of Java, some floating-point mathematical operations may be implemented by 

processor-specific instructions that do not conform to the IEEE floating-point maths required by the 

Java virtual machine specification. In the vast majority of cases, this does not change the result of a 

calculation greatly enough to alter program behaviour. The keyword strictfp can be applied to any 

class or method that must uses the IEEE-compliant math operations, such as numerically intensive code 

that needs particular overflow/underflow and rounding semantics. 
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Pure Java byte-code interpretation has historically been slow relative to native code 

(compiled from C/C++ or FORTRAN, for example), but has always compared 

favourably to other interpreted languages such as Perl. Recently, with the move of 

Java from toy examples and small graphical applications to large, demanding 

applications such as web-server back ends (especially J2EE14) and large-scale 

numerical processing (for example, the Colt matrix mathematics library15), a number 

of technologies have appeared to improve the performance. 

Initially, just-in-time (JIT16) compilers increased performance of large blocks of 

numerical code to that comparable with C++ by compiling each byte-code function 

into native code for the physical processor once a class was first loaded (present even 

in many Java1.1 VMs). Some Java byte-code instructions could be represented 

cleanly as one or more simple native instructions (for example, the arithmetic 

operations). However, many Java byte-code instructions have no direct representation 

(such as object allocation, or method invocation), so must be converted into calls to 

the virtual machine. JIT compilers tend to do a good job of increasing the 

performance of numeric code that resembled more classically procedural 

programming styles. JITs proved insufficient for many tasks as many Java methods 

are small, and very often are executed as virtual calls which can not be resolved at 

compile-time. In addition, due to the highly polymorphic nature of much Java code, it 

is often impossible to perform optimisations because the simple type-based system 

                                                 

14 See http://java.sun.com/j2ee/ for information related to the J2EE standard 

15 Colt is distributed from http://tilde-hoschek.home.cern.ch/ ~hoschek/colt/index.htm 

16 See http://java.sun.com/docs/jit_interface.html for more information about Sun’s JIT compiler 
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can’t give enough information to know the context within which code will be 

executed. 

The latest family of virtual machines are based upon Sun’s Hotspot Virtual 

Machine architecture17. This uses a mixture of several techniques to remove 

performance bottlenecks and optimise code execution. Firstly, a large portion of Java 

execution time can be spent in object allocation and garbage collection. This is 

especially expensive for objects that are allocated and then discarded within inner 

loops. Hotspot initially flags objects with a creation time, and places them into a 

nursery area. When more memory is needed, Hotspot first attempts to free objects 

within the nursery rather than completing a full garbage-collection cycle. 

As an anecdotal example of how this can impact performance, I wrote some code 

that unnecessarily allocated a large number of objects within a tight loop, and then ran 

the application on a PIII 800MHz with the Hotspot Virtual Machine and a Compaq 

DS40 with Compaq 1.2.2 Fast VM. After one and a half days, the process on the 

DS40 had still failed to complete. On the PC, it completed after 110 seconds. Once 

the unnecessary objects were not being created, the Compaq server took just 20 

seconds to execute the code, and the PC took 56 seconds. This clearly indicates the 

affect of the VM implementation upon performance. 

After careful memory management, the second truism of code optimisation is that 

5% of the code will account for 95% of the execution time, so if you wish to focus 

efforts upon optimisation, this is the portion to target. The hotspot VM continually 

                                                 

17 See http://java.sun.com/products/hotspot/docs/whitepaper/ Java_HotSpot_WP_Final_4_30_01.html 

for more information about Sun’s hotspot VMs 
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profiles the application, and concurrently optimises each of the execution hot spots. 

This results in applications increasing in performance as they are run (often by factors 

of greater than 10 times). 

Method invocations make many optimisations impossible, especially if the method 

is bound at execution time rather than at compile time (for example, virtual method 

invocations). This is because the optimiser does not know what the side-effects of the 

invoked code will be, so it can’t really perform aggressive optimisations to eliminate 

redundant code or to reorder instructions across function calls. 

In traditional languages, this has been tacked with tactics such as macro-expansion, 

inlining and by defining many methods as not being over-ridden by subclasses, 

making the linkage static. The hotspot VM takes another approach by dynamically 

inlining functions to produce multiple context-dependant compiled and optimised 

versions of a given portion of an application. Most small functions, such as get/set 

pairs can be trivially inlined, removing the method invocation overhead completely. 

Increasingly complex methods may be inlined, allowing loop variables to be merged 

and larger blocks of code to be optimised. Certain types of objects can be proven to 

decompose to the set of their fields and methods only (i.e. their object reference is 

never explicitly used to test for identity), in which case the fields can be allocated on 

the stack. This is similar in spirit to having the power of a templated method that can 

be parameterised with the template type during run-time. The result of these 

optimisations is that hotspot-interpreted Java code that is polymorphic or uses many 

small methods can often execute at speeds comparable to or faster than similarly 

polymorphic C++ code. Currently, dedicated procedural style C or C++ may out-

perform similar Java code, but even here Java is making inroads. For example, the 
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Colt matrix maths library in Java now has comparable performance to the FORTRAN 

matrix math libraries. There is undoubtedly more work to be done for high-end 

computation in Java, but it is no longer an insurmountable obstacle to the acceptance 

of Java for the hard end of Bioinformatics. 

Bioinformatics is a field that is constantly redefining itself. Some problems are 

clearly defined, such as the alignment of two proteins using the Smith-Waterman 

algorithm (Smith and Waterman 1981). However, many other issues are moving 

targets. There is also the constant pressure to produce results quickly. Traditionally 

this has caused a polarization between the development of handcrafted applications in 

languages such as C for specific tasks like the BLAST applications (Altschul, Gish et 

al. 1990), and the use of rapidly developed ‘throwaway scripts’ in scripting languages 

such as Perl18 and Python19. In practice, ‘throwaway scripts’ often become the basis of 

sequence analysis pipelines that have a lifetime of months or years, and are 

maintained by a succession of individuals. Eventually, these must be re-written to 

improve performance, to fix bugs inherent in the initial design, or to allow the 

application to perform tasks that were not part of the original design aims. 

Java is a suitable language for rapidly developing Bioinformatics applications. It 

can be used to write the computationally expensive as well as the flow-control 

portions of Bioinformatics scripts. If libraries of biological functionality are 

developed, and these are easy to use and extend, then it becomes possible to achieve 

rapid development of throwaway scripts. If these short-term applications become part 

                                                 

18 The Perl web site can be found at http://www.perl.org/ 

19 Python is distributed from the http://www.python.org web site 
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of pipelines, the object-oriented nature of Java code means that it is potentially 

possible to salvage much of the intellectually expensive code, and to quickly isolate 

design faults. 

The Java compilers are much more pedantic than C or C++ compilers, disallowing 

many unsafe constructs that can generate strange runtime behaviour. For example, 

casts are checked where possible, and arbitrary pointers do not exist. Memory 

allocation and de-allocation are handled by the VM. This means that many errors that 

would show up as a program crash in other languages cause the Java compiler to 

generate error messages. 

BioJava is intended to provide the functionality needed to rapidly develop effective 

Java applications for bioinformatics. The design of the language, compiler and virtual 

machine help greatly in quickly developing robust applications. BioJava builds upon 

this strong foundation by providing APIs for common biological objects and tasks, 

such as biological sequences, and reading these from files. Additionally, a number of 

classes provide basic functionality that increases both the encapsulation and the 

robustness of BioJava’s highly polymorphic code. The rest of this chapter describes 

the core classes and interfaces that provide this functionality, and for which I was 

solely or primarily responsible for the design and implementation. 

The conventions adopted here for referring to Java types and methods are those 

used in the Java documentation. When referring directly to types and methods, the 

type used is fixed width. When methods are referred to, the usual form will be to 

name the method followed by ellipses as in someMethod(), regardless of the actual 

arguments accepted by the method. If it is necessary to describe the parameters 

accepted by a method, either for the clarity of the text, or to disambiguate over-loaded 
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methods, the types of the arguments will be included as in anotherMethod(String, 

int). In a few very rare cases, the names of the arguments must be included as in 

substring(int start, int length) so as to make the semantics more clear. In 

general, once a method is introduced, it will be referred to using the shortest 

unambiguous form. 

2.2 Nested Exceptions and Assertions 

Both during the development of applications and their deployment, failures occur. 

These may be due to the application being implemented incorrectly, being used with 

data that it was never designed to be used with, or by some external failure, such as a 

break in network communication. Programmatically handling failures gracefully and 

informatively is a key to developing robust software rapidly. 

Java supports the handling of error conditions by the throwing of exceptions. The 

built in exceptions have a constructor that takes a message String only. Java methods 

can be defined as throwing a list of Exception types. This means that the method can 

raise any one of these exceptions if it is unable to complete processing, and that it is 

limited to this list of checked exceptions. Some exceptions, such as 

OutOfMemoryException are unchecked as it would be difficult to guard against the 

many places where they may be raised without bloating both the volume of source 

code and impacting upon run-time performance. During invocation, a method may 

choose to not raise any of the listed exceptions (indicating that it was successful). 

Function calls in C generally return an error code to indicate error status. In Java, the 

method would return a value if it was successful or throw an exception if it was 

unable to complete. The basic exceptions are applicable to the case where the error is 
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caused by a failure in the program that is clearly attributable to a single action, such as 

accessing a file, or an array index being out of bounds. 

When complex applications are composed of multiple ‘black box’ modules, failures 

in one module may cause failures in another module. With classical exceptions, the 

original cause would either percolate up by allowing the Exception to be thrown 

from all methods in the first module that invoke methods in the second one, or would 

have to be caught, and a new Exception thrown to describe the failure. The first 

alternative tends to lead to methods throwing very large numbers of specific 

exceptions defined in other modules or it leads to methods throwing extremely 

general exceptions that provide poor programmatic control over error handling. This 

problem becomes even more pronounced when there are multiple implementations of 

a given interface. The interface author can not possibly foresee all of the ways the 

interface may be implemented or the range of potential failures, so can not declare all 

of the exceptions that may be raised by all implementations. For example, if an 

interface is implemented using a Common Object Request Broker Architecture20 

(CORBA) peer in one case and file access in another, the implementations may fail 

due to CORBA-specific exceptions or problems with file access, but the original 

interface author could not have known this, so would not have listed exceptions 

specific to these two failures in the methods. 

BioJava provides subclasses of Exception and Error (the base-class for unchecked 

exceptions) that have an extra field that contains a reference to a causal exception. 

These are called NestedException and NestedError respectively. In the above 

                                                 

20 http://www.omg.org/ is the web-site for the organisation that manages the CORBA standards 
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example, the interface author would declare the methods as throwing sub-classes of 

NestedException describing the type of the failure (something like 

RetrievalFailedException). The CORBA implementation would catch the 

CORBA-specific exceptions and then construct and throw a new 

RetrievalFailedException instance that refers to the CORBA exception. Similarly, 

the file-based implementation would catch IOException instances and throw new 

RetrievalFailedException instances that refer to the IOException that caused the 

failure. NestedException and NestedError can be nested to arbitrary depths, 

allowing a complete ‘chain of evidence’ to be collected about the cause of errors 

without requiring modules to have knowledge of all of the exceptions raised by 

indirect dependencies. 

This ability to have both a complete chain of evidence for any failure while 

respecting encapsulation has made it much easier to develop portions of the BioJava 

library independently of one another while still allowing them to rely on functionality 

provided by other BioJava modules. In our view, this has strongly contributed to the 

rapid development of the libraries. 

Because of a combination of Java not supporting sub-classing by restriction, and the 

Java compiler being pedantic about ensuring that each error condition is accounted for 

in the code, exceptions must be caught even when they are logically impossible to 

generate. For example, if counts are being collected for a probability distribution over 

the DNA alphabet, and the sequence is known to be DNA, then it should be 

impossible to raise an IllegalSymbolException. However, because the component-

based APIs don’t have this information, the compiler will expect the exception to be 

handled. The recommended way to handle this is to catch the exception and throw a 
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NestedError instance indicating that an assertion has been violated. The 

NestedError instance will cause the stack to unwind until it is explicitly caught. If 

not caught, the thread will exit with an error message. In theory, this case should 

never happen, but in practice, incorrectly implemented objects manage to invalidate 

these checks, particularly during development, and the assertion failures clearly 

pinpoint the source of the errors. 

Nested errors and exceptions are used throughout the BioJava libraries and in many 

of the applications that use these libraries. They have proven to be invaluable in 

writing robust code. Sun has added the concept of nested exceptions to the latest 

version of Java (1.4), and we look forward to merging our system with theirs. 

2.3 Changeability 

When developing complex applications, and in particular those which may contain 

multiple threads of execution, it is important to control which resources may change 

and which can not. Often, it is also very important to be informed if something does 

change so that some action can be taken. Unfortunately, the exact details may need to 

be decided at run-time, so can not be implemented at compile-time as a mutable or 

immutable interface implementation or by using keywords (such as C’s const 

modifiers). Robust applications that are built in a modular manner need strong 

guarantees about which resources will and won’t be modified, and expect these to be 

enforced.  

An object may change state because a method is invoked that would directly modify 

it. Alternatively, it may change state because some other object, that it delegates state 

maintenance to, is modified. For example, a List instance may be modified by 

invoking the add method to append an item to the list. A view on the list returned by 
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Collections.unmodifiableList(List) cannot be modified directly, but if the 

underlying list is altered, then the unmodifiable view will reflect this change. This 

illustrates the difference between modifiability and changeability. The unmodifiable 

list is changeable, as there is a legal way for its data to be altered, even though it can’t 

be modified directly. 

BioJava contains a complete object model for tracking the changes made to objects, 

and for allowing changes to be prevented, without breaking object encapsulation. The 

Changeable interface defines methods to add and remove listeners which will be 

informed when the state of an object alters. These listeners are informed before the 

object attempts to change, and have an option to veto the change by throwing a 

ChangeVetoException. If none of the listeners throws an exception, then the object 

updates its state and then informs each listener of the change. At this stage, each 

listener can synchronize state to ensure data-integrity. In principal, this is a very 

similar design pattern used by Java Beans to implement ‘bound properties’, but offers 

several advantages akin to those provided by a simple cascading transaction 

processing framework. 

Each BioJava interface that extends the Changeable interface has public final static 

fields that hold ChangeType instances that encapsulate one way that the Interface 

implementations may change state. For example, FiniteAlphabet defines a static 

field called SYMBOLS that represents a modification that changes which Symbol 

instances are contained within the alphabet. Each implementation of FiniteAlphabet 

is required by the Changeability API to allow ChangeListener instances to be 

registered. The ChangeType class supports the idea of a hierarchy of change types. 
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The root of this hierarchy is UNKNOWN. When listeners are added to a changeable, 

they will be informed of all events that descend from that type. 

It is required by the contract described in the Changeable documentation to inform 

all listeners registered for a given type and all of its descendents whenever state 

changes by invoking the preChange() method on each listener before it changes state 

If any one of the listeners vetoes the change, or if for any other reason the state cannot 

be updated, then an exception will be raised. If the change can go ahead, it will 

commit the state change and then invoke the postChange() method on listeners to 

inform them that the state has been successfully modified. There is no guarantee made 

about the relative orders that different listeners will be informed either before or after 

a change is made. It is legal to inform different listeners in different threads, and in 

some situations this may be a sensible thing to do, if for instance, the listeners need to 

communicate with network resources. 

The preChange() method indicates that a change should not be made by raising a 

ChangeVetoException. ChangeVetoException extends NestedException, 

allowing a change to be prevented because of a failure elsewhere in the application to 

publish this information. A common cause for this is when an object stores its state in 

a delegate. If a method is invoked on the object that would modify the delegate, and 

the change on the delegate is vetoed then the delegate will raise a 

ChangeVetoException. This will be caught by the object and a new 

ChangeVetoException will be thrown indicating that the requested modification 

could not be made. This new exception will nest the original exception, allowing the 

complete reason for the failure to be maintained. One very useful ChangeListener is 

the AlwaysVeto instance. This always throws a ChangeVetoException in 
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preChange(), ensuring that the change cannot go ahead. In this way, a mutable 

implementation of an interface can be instantiated, populated and then locked. From 

that moment on, no more modifications can be made to it. 

The way that the Changeability API can be used to dynamically constrain what data 

can change, and what data is fixed, can be illustrated by the dynamic programming 

code. While an HMM is being used for an alignment, AlwaysVeto is registered as a 

listener to all of its parameters, preventing them from changing. Once the alignment 

has been completed, the AlwaysVeto listener is removed, allowing it to be modified 

again. This kind of fine-grained and dynamic control of which properties can be 

modified is key to developing robust and modular BioJava functionality. 

ChangeEvent contains a field to store another ChangeEvent. This is used in the 

case when a change in one object leads to a change in another. For example, if a 

probability distribution that encapsulates some transition probabilities in an HMM 

changes then the HMM will no longer have the same parameters. The HMM will 

listen to each distribution, waiting for them to change. Whenever they do, it will 

inform listeners that the model parameters have changed with a ChangeEvent 

instance that refers back to the event fired by the probability distribution. Again, by 

maintaining references back to the event that caused the new event to be fired, a 

complete ‘chain of evidence’ can be built up about why an object wishes to change, 

without invalidating the objects encapsulation. This potentially allows listeners to 

accept or reject a change according to one of the underlying causes. 

To avoid the expense of maintaining the entire changeability infrastructure all of the 

time, several BioJava objects only build the support objects once listeners have been 

registered. In this way, the cost of having changeability support in an object with no 
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listeners is the cost of one field in the object that has a null value. Once listeners are 

added, this field would be filled with a reference to the support data-structures. 

Mutator methods can easily chose not to perform expensive operations while there are 

no listeners, such as protecting the listener list with a synchronized block. In addition, 

if some listeners have been registered, but none have been added that need to be 

informed of changes to state-delegation objects, then there is no need to instantiate the 

change-forwarding apparatus. By implementing the classes that will take part in a 

network of Changeable objects carefully as described here, it is possible to avoid 

almost all unnecessary overhead. 

The Changeability API is used extensively throughout the BioJava libraries. It has 

proven to be effective at guarding against design flaws and has prevented countless 

bugs that could have been caused by assuming the involatility of data. It has also been 

leveraged within the DAS21 (Dowell, Jokerst et al. 2001) and GUI packages to 

implement efficient data-caching schemes. In the future, it may be necessary to 

implement a full transaction-processing framework. Until then, the Changeability API 

will continue to be an invaluable tool. 

2.4 Symbols, Alphabets and SymbolList 

Although BioJava must deal with DNA and protein sequences, the underlying 

interfaces for defining sequences is extremely flexible, allowing almost any signal to 

be represented as a stream of symbols. This allows all code defined in terms of these 

APIs to be applied to a wide range of use-cases. For example, the FASTA file format 

object can be used to read and write state labels from HMMs without any change, 

                                                 

21 The DAS standard, and associated information is published at the http://biodas.org/ web site 
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simply by parameterising it with the alphabet of states for that HMM, and the 

sequence viewing APIs can be used ‘out of the box’ with this data. This section 

describes these APIs and how they can be used to represent sequences of complex 

data structures in addition to DNA.  

The interfaces borrow heavily from the concepts of an entity, a set and a string. A 

set is an item that contains some number (possibly zero) of entities. A string is an item 

that can be represented as an ordered list of entities (possibly zero in length). If all of 

the entities in a string belong to a particular set, then it is described as a string over 

that set. For Java String objects, the entities are char instances, the set is the 

Unicode Character Set and the string is the String class. In BioJava, the Symbol 

interface represents an individual entity, Alphabet represents a set of Symbols and a 

SymbolList represents a string over an Alphabet. These interfaces are designed to be 

as mathematically elegant as possible, as over time this has made them very useful for 

seamlessly implementing algorithms. This has had the unfortunate side effect that a 

large amount of documentation is needed to describe what all of the API does. 

Fortunately, users of these APIs usually do not need to know the finer details to 

perform all common tasks. 

To reduce the amount of special-case code required, the Symbol interface 

represents ambiguity symbols, such as ‘n’ or ‘x’ and gaps ‘-’ as well as concrete 

symbols such as the nucleotides ‘a’, ‘g’, ‘c’ and ‘t’. Sometimes the natural alphabet to 

work in can be represented as the cross product of other alphabets. When writing code 

to translate a region of RNA, it is convenient for the code to work with RNA triplets. 

The natural alphabet for this is RNAxRNAxRNA, which contains symbols that 
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represent entities like [a, u, g] and [c, c, c]. To allow all of this to be represented 

consistently, three symbol interfaces extend one another. 

Symbol is the most generic interface. Alphabet and SymbolList are defined in 

terms of in terms of this interface. Symbol has two methods. A textual representation 

is provided by getName(), which returns a human-readable string like ‘Adenine’ or 

‘gly’. The getMatches()returns an Alphabet that contains all of the Symbols that are 

valid matches to this one. The matches Alphabet will by definition contain the 

symbol itself, as it must match itself. For a Symbol that is ambiguous, such as ‘n’, this 

alphabet will contain multiple items. For a Symbol that has no ambiguity, such as ‘a’, 

this will return an Alphabet containing just that single Symbols. Gaps are represented 

by symbols that return an empty alphabet for getMatches(), representing the idea 

that there is literally nothing there, even though space must be reserved for it. Two 

Symbol instances are considered equivalent if their getMatches() alphabets contain 

exactly the same set of Symbols. An Alphabet does not contain a Symbol if there are 

any members of getMatches() that are not also members of the Alphabet. 

BasisSymbol extends Symbol and adds the method getSymbols() that returns a 

List of Symbol instances. Any column of any alignment can be represented as 

BasisSymbol instance, as it is a list of individual symbols, one from each sequence in 

the alignment. If a Symbol comes from some Alphabet ‘a’ that can be represented as 

the cross product of a list of alphabets, ‘A’, then it is a BasisSymbol if it can itself be 

represented as a list of BasisSymbols. All one-dimensional Symbols are 

BasisSymbols, as clearly an alignment of a single sequence contains columns with 

single symbols in it. 
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The codon [a, a, t] is a BasisSymbol because it is represented by the list ‘a’, ‘a’ and 

‘t’ from the DNAxDNAxDNA alphabet. The codons {[a, a, t], [a, c, t]} can be 

represented as [a, {a, c}, t], which again is a list of three symbols. The codon {[a, a, t], 

[a, c, t], [a, a, g]} can not be represented as any single list of symbols, so it is not a 

BasisSymbol. However, {[a, a, t], [a, c, t], [a, a, g], [a, c, g]} can be represented as [a, 

{a, c}, {t, g}], so is a BasisSymbol. An Alphabet does not contain a BasisSymbol if 

there is any member of getMatches() that it does not contain. Additionally, an 

Alphabet does not contain a BasisSymbol if it is of a different order to the Alphabet 

(for example, the basis symbol is of length 3, but the alphabet is the product of two 

other alphabets). 

AtomicSymbol extends BasisSymbol but adds no methods. These symbols actually 

make up an alphabet, and are never ambiguous. There is an AtomicSymbol for ‘a’ or 

the codon [a, t, c]. Since AtomicSymbol instances can’t be ambiguous, AtomicSymbol 

adds the constraints that getSymbols() must return a List that only contains 

AtomicSymbols. For the same reason they also add the constraint that getSymbols() 

must return an Alphabet that contains exactly one Symbol, and that should be the 

instance itself. Two AtomicSymbol instances are considered to be equal if they are 

referred to by the same Java reference, that is, they are comparable by the == operator. 

This constraint is not mathematically required, but is necessary to implement efficient 

algorithms. A Java reference is of the same size as a pointer, and the == operator will 

have the same overhead as pointer comparison. On many architectures, this will be as 

efficient as comparing integers or characters. 

In practice, most user code never need know that Symbol instances can be cast to 

BasisSymbol or AtomicSymbol because the API is complete enough that any APIs 
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can be defined to work with Symbol directly and hide any casting inside library code 

methods. For example, the TranslationTable interface defines a method to translate 

a Symbol from one Alphabet into a Symbol in another Alphabet (representing the 

concept of a function with the domain being the first Alphabet, and the codomain 

being a subset of the second Alphabet). This can be implemented by maintaining a 

table for each AtomicSymbol in the source alphabet and the associated AtomicSymbol 

in the target alphabet. Given any Symbol, it would first check if it was castable to 

AtomicSymbol. If it is, then the return value can be found directly by looking it up in 

the table. If it is not, then each AtomicSymbol instance in the getMatches() alphabet 

can be translated in turn and a new ambiguous symbol can be made representing this 

set of translated symbols. In either case, the code calling the translate method need not 

know anything about the actual type or implementation of the symbol instance. 

The gap symbol needs special treatment to avoid various logical problems. The 

purest version of gap would represent a perfectly empty set, which is dimensionless. 

Indeed, the EMPTY_ALPHABET constant contains just this entity. The pure gap is a 

Symbol that returns EMPTY_ALPHABET in response to getMatches(). All 

Alphabet instances contain this gap. This is because there is no AtomicSymbol 

instance that matches the gap, so there can never be one that matches the gap that is 

rejected by any Alphabet instance. 

In addition to the pure gap, there are gap symbols that represent columns in 

alignments that contain gaps themselves. We can refer to a BasisSymbol that is a list 

containing as [gap]. The gap and [gap] symbols are distinct entities. The pure gap 

takes up no space in any direction. The [gap] symbol takes up space in one direction. 

Alphabets like DNAxDNA would contain both gap and [gap, gap], but it would not 
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contain [gap], as [gap] is a 1-dimensional BasisSymbol, and DNAxDNA is two-

dimensional. Using this notation, we could represent a column in an alignment 

between two sequences with a gap in the first sequence as [gap, sym]. Symbols like 

this have no AtomicSymbol instances that could possibly match them, so their 

getMatches() alphabet is empty. In geometrical terms, this is similar to finding the 

volume of a solid that has one dimension of size zero. If there is some alphabet that is 

the cross product of other alphabets, some of which are themselves cross products of 

other alphabets, the gap symbol respects this. For example, the alphabet 

DNAx(DNAxDNA) would have the gap symbol [gap,[gap,gap]]. Although this looks 

complicated, it is in fact necessary to correctly maintain all available information 

about a Symbol. It allows algorithms such as the dynamic programming recursions to 

distinguish between insertions in each sequence, cells that are at the start or end of 

one sequence, and cells that lie outside the range of the sequences.  

The Alphabet interface represents a set of Symbols, and can therefore be uniquely 

represented as a set of AtomicSymbol instances. It follows that any ambiguity symbol 

is a member of an alphabet if its getMatches() Alphabet is a subset of the 

alphabet. The contains(Symbol) method returns true if the argument is a member of 

the Alphabet, and false otherwise. As a convenience to code that uses Alphabet, it 

also has the method validate(Symbol) that throws an IllegalSymbolException if 

the symbol is not contained in the alphabet, and silently returns otherwise. This is in 

concept similar check to a run-time class cast check. 

 Alphabets have a name retrieved by getName(). This is intended to be human-

readable. It is also used as a unique identifier for the alphabet, allowing alphabets to 
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be serialized between different virtual machines and resolve to a single unique 

instance. 

To convert from text to Symbol instances, an Alphabet can provide access to 

multiple SymbolTokenization instances via the getTokenization(String) 

method. The tokenization registered under the string ‘token’ will allow Strings to be 

parsed into Symbols using some well-known single character codes. Alphabets may 

provide other tokenizations. 

When the product is taken of a List of Alphabet instances, getAlphabets() for 

the resulting Alphabet will returns an equivalent List. It follows that 

getAlphabets() returns a List of Alphabets that when multiplied together in that 

order would generate that Alphabet. The EMPTY_ALPHABET constant is 

equivalent to the product of a zero length list. One-dimensional Alphabets such as 

DNA, return a single element List containing themselves. The Alphabet 

DNAxDNAxDNAxPROTEIN would return the list [DNA,DNA,DNA,PROTEIN], 

and so on. 

Two factory methods allow Symbol instances to be retrieved from an Alphabet 

while allowing it to maintain internal state and manage memory efficiently. The 

getAmbiguity() method takes a Set of Symbol instances. It returns a Symbol 

instance that has a getMatches() value that contains all of the AtomicSymbol 

instances matching any one of the Symbol instances in the Set. The getSymbol() 

method takes a List of symbols and returns a single Symbol that represents the 

product of these. Both methods validate the input collections to ensure that the 

resulting Symbol is a legal member of the Alphabet. 
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These methods could potentially need to do some fairly involved processing. They 

must make sure they return the most specific type of symbol possible. If an equivalent 

symbol exists in the virtual machine, it should return that instance. The 

AlphabetManger class provides several methods to help in this process, simplifying 

the implementation of Alphabet. 

FiniteAlphabet extends Alphabet and represents the case when there are a finite 

number of AtomicSymbol instances that are contained in the Alphabet. Because the 

set is now finite, we can meaningfully define some more methods. The number of 

AtomicSymbol instances in the Alphabet is returned by size(), and iterator() 

returns an Iterator over these. Additionally, it adds the mutator methods 

addSymbol() and removeSymbol(), which allow the set of symbols contained to be 

altered. 

Alphabets such as DNA and PROTEIN are represented by instances of 

FiniteAlphabet. There are non-finite Alphabet instances for things like the set of 

all integers and doubles. The Alphabet representing all Symbols for integers between 

1 and 100 will be a FiniteAlphabet. Otherwise, they are non-finite, and just 

implement Alphabet. There are a range of package-private implementations of 

Alphabet and FiniteAlphabet that implement these rules. AlphabetManager 

provides the main API for manipulating these entities. 

SymbolList represents a list of Symbol instances from a single Alphabet. The 

getAlphabet() method returns the Alphabet it is over. The symbolAt(int) method 

returns the Symbol at that index. The length of the SymbolList is returned by 

length(). Arguments to symbolAt() must be between 1 and length() inclusive. A 

portion of the SymbolList can be retrieved by invoking subList(int start, int 



The BioJava Core Interfaces 

   49

end), where start and end must also be legal indexes. The sub-list returned is 

inclusive of both start and end. 

The default implementations of SymbolList in BioJava over finite alphabets all use 

the ‘flyweight’ design pattern (Gamma, Helm et al. 1994)[195] to keep memory 

consumption to a minimum. Internally, the SymbolList maintains references to the 

small number of Symbol instances in their Alphabet. This means that in a 

SymbolList that is a million DNA symbols in length will be represented as a list of 

one million references to the four DNA AtomicSymbol instances in the DNA 

Alphabet. Because the SymbolList interface places no requirements on the actual 

storage of the data, it is possible to implement many different storage mechanisms. 

For example there are implementations that fetch portions of the underlying data from 

files or databases on demand. 

Alphabets for DNA, RNA and protein are in use daily with the BioJava toolkit. 

Additionally, subsets of the alphabet of all double values are used to represent DNA 

physical properties (such as curvature or flexibility), and higher order alphabets are 

routinely used to encapsulate everything from multiple-sequence alignments to the 

results of alignment algorithms to 3-D coordinates. The apparent complexity of the 

underlying symbol model has more than paid for itself by the vast increase of 

potential applications now available to objects and algorithms which purely rely on 

these interfaces, not the underlying data. 

2.5 Locations, Sequences and Features 

The Symbol, Alphabet and SymbolList APIs were primarily designed to be a good 

basis for developing algorithms. In contrast, Sequence and Feature are designed for 

representing bioinformatics concepts such as database IDs, repeat regions and exons. 
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Sequence represents an entire biological sequence, be it a chromosome, a clone or a 

primer. A Feature represents a region of a Sequence that is annotated as being 

interested for some reason. It may, for example, be a repeat, an exon or a protein 

active site. The position of a Feature is specified by a Location object. 

The Location interface represents an immutable set of indices. A Location may be 

a single index (such as 73), or the range of indices (like [1000..1100]), or all indices 

that are odd, or any other arbitrary set (for example, {73, [1000..1100]}). Location 

defines the methods getMin() and getMax() to return the lowest and highest index 

contained within that Location. The method contains(int) indicates whether an 

index is contained. For all locations other than EMTPY_LOCATION, both getMin() 

and getMax() are contained by the Location. 

There are specific implementations for special cases, such as PointLocation for a 

single index and RangeLocation for a contiguous range, and CompoundLocation for 

dis-continuous regions. The equals() method will return true if two instances contain 

exactly the same set of indices, regardless of the concrete class of the instances. 

The methods isContiguous() and blockIterator() work together to expose the 

state of the Location without exposing the storage. The isContiguous() method 

returns true if there are no indices above getMin() and below getMax() that are not 

contained. The blockIterator() method returns an Iterator over a minimal set 

of Locations that are guaranteed between them to contain each index exactly once, 

and are themselves contiguous. For a contiguous Location, this will return an 

Iterator that just returns that instance. 
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There are several methods that compute new Locations from old ones; 

translate(int dist), intersections(Location l) and union(Location) 

perform the obvious functions. The methods overlaps(Location) and 

contains(Location) return true or false depending on whether the argument 

overlaps or is entirely contained within the Location respectively. Using these 

operations, it is possible to build arbitrary Location instances without ever needing 

to know how a Location is implemented. This makes code using the Location APIs 

very easy to maintain, while enforces ridged encapsulation. 

Locations are used within the context of the APIs described here. They have, 

however, been found useful for a range of other applications including bookkeeping 

to store which pixel indices have been used in GUIs, and also for prime-number 

searching algorithms. 

The FeatureHolder interface represents a collection of Feature instances. It has 

methods to count how many features it contains, return an iterator over them, and to 

return a FeatureHolder containing all the Features that match a filter criterion. 

There are implementations of FeatureHolder that directly store features. Other 

implementations encapsulate views of over FeatureHolders (for example, 

performing a translation and strand-flip operation) or just store the rule necessary to 

fetch the underlying data when needed (quite common when implementing adapters 

to high-latency storage, such as databases). 

The Annotatable interface specifies one method, getAnnotation(), which returns 

an Annotation object. The Annotation object is just an associative array (key to 

value mapping) where arbitrary information can be stored. 
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Sequence extends FeatureHolder, making it a container of features. It also 

extends the SymbolList interface so that it can represent the primary sequence. In 

addition, it adds a name and URI property for naming the sequence uniquely and also 

extends Annotatable so that arbitrary information that pertains to the entire sequence 

can be stored. 

There are implementations of Sequence that store the sequence and features in 

memory. Other implementations include those that manipulate whole-chromosome 

assemblies or data from Ensembl (Hubbard, Barker et al. 2002) and DAS. The 

interface-centric design means that an implementation of Sequence that suits a 

particular situation can usually be trivially composed from a suitable implementation 

of SymbolList, Annotation and FeatureHolder. As Java does not support multiple 

inheritance of implementations, this is achieved by storing references to objects 

implementing each of these interfaces and explicitly forwarding method invocations 

as needed. 

Other than the effort required to initially enter the code that forwards method calls, 

this actually has some benefits over inheritance. Firstly, the implementing objects 

may in some cases be expensive to initialize or use a lot of memory. As they are 

private state of, and not directly part of (by inheritance) the implementation, they can 

be lazily instantiated. Secondly, it is possible to choose a specific implementation 

class at run-time, for example, by choosing an implementation of Annotation 

optimized for efficiently storing very small numbers of values, or for retrieving values 

associated with a very large number of properties. 

Feature extends FeatureHolder and Annotatable. In addition, Feature has 

source, type, location, parent sequence and symbol properties. Source and Type are 
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equivalent to the GFF source and type fields. Source should represent the program or 

process that produced the evidence for the feature (such as a particular gene finder), 

and Type should indicate what the feature is meant to represent, such as CDS, or 

transcription start site. The Location represents which region of the Sequence the 

Feature is attached to. The parent is the FeatureHolder that directly contains this 

Feature. The Sequence property always refers to the Sequence that ultimately contains 

the Feature. As Feature extends FeatureHolder, it is possible to build up arbitrary 

hierarchies of features (but always as a tree). For example, a gene feature may contain 

zero or more child features that represent transcription factor binding sites or perhaps 

exons. The parent of the exon would be the gene feature, and the parent of the gene 

would be the sequence. However, both exon and gene objects will return the same 

Sequence for getSequence(). Lastly, the symbols property returns a SymbolList 

that represents the Symbols contained within the Feature. The exact semantics of this 

method is left up to the Feature implementation. Sub-interfaces of Feature are 

provided which add more specific properties such as strand information, frame and 

protein translations. 

So that the feature hierarchy on sequences can be modified, there must be an API 

for adding features to other features and to sequences. So that a given implementation 

of Sequence and Feature can maintain implementation integrity, there must be some 

sort of factory method (Gamma, Helm et al. 1994)[107] defined in the interfaces. The 

original implementations had methods like createFeature(), 

createStrandedFeature() or createExon(), but as the number of interfaces grew, 

it became obvious that this would not scale well as the interface would have to be 

modified every time another type of feature was added. 
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This was solved by using a single createFeature() method that takes a 

polymorphic argument of type Feataure.Template. The template has public fields 

that hold the properties of the feature to make, such as location, type, source and the 

like. This mirrors the memento design pattern (Gamma, Helm et al. 1994)[283]. In 

each interface that extends Feature, a public static inner class extends 

Feature.Template called by convention Template. For example, to instantiate a 

StrandedFeature, you invoke the createFeature() method with an instance of 

StrandedFeature.Template as the only argument. It is then the responsibility of the 

Sequence and Feature implementation to create a StrandedFeature implementation 

with the same information as the template. If the particular Sequence implementation 

can’t provide an appropriate implementation of Feature, it should either instantiate 

the closest one it can and put the missing information into the annotation bundle, or 

throw an exception. This approach allows sequence implementations to support an 

arbitrary sub-set of the available feature types without requiring the feature creation 

interface to grow in complexity with the number of feature types defined. 

Sequences and features represent the bulk of information manipulated by most 

applications. By designing the APIs from the foundation to support polymorphism 

and encapsulation, we have produced a design that allows the underlying data to be 

represented in any one of a number of different ways. There are implementations that 

are backed by relational databases (Ensembl and BioSQL adaptors), CORBA 

(BioCorba adaptors) and by web services (DAS and XEMBL clients) in addition to 

those using Java objects directly. The feature creation API provides a uniform and 

easy to implement way to create features conforming to a range of interfaces with a 

range of different concrete implementations. The result is that developers can interact 
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with a single API and have access to a wide variety of different information without 

needing to know anything about the implementation details of how this is achieved. 

2.6 Probability Distributions and Hidden Markov Models 

Hidden Markov Models (HMMs) (see Section 1.3.2) are a popular method of 

analysing biological sequences. BioJava contains APIs for representing and working 

with probabilistic HMMs. This includes code for representing models, as well as 

implementations of the common dynamic-programming (DP) algorithms for 

evaluating alternative state-paths and training model parameters. All of these APIs 

build upon the Symbol, Alphabet and SymbolList APIs (Section 2.4), allowing them 

to be applied without change to the wide range of signal types these data-structures 

can be used to represent. 

To model HMMs effectively, it is useful to provide a mechanism for representing 

probability distributions. There are a wide range of other contexts within which 

probability distributions can be used, such as in modelling weight matrix columns, so 

to aid in their reuse there is a separate Java package dedicated to their representation 

and implementation. 

The Distribution interface encapsulates a probability distribution over an 

Alphabet. The method getWeight(Symbol) returns the current probability of 

observing the symbol from the probability distribution. This is notionally equivalent 

to integrating or summing a probability distribution out over the range of all 

AtomicSymbol instances in the symbol’s getMatches() Alphabet. The 

manufacture of distributions is usually performed by a DistributionFactory object. 

This allows particular implementations of Distribution to be tailored to a particular 

Alphabet without client code needing to know the details. For example, the default 
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implementation of the factory returns Distribution implementations that use either 

linear lookup or binary search lookups based upon which is most time-efficient for the 

alphabet size. In addition, OrderNDistribution extends the Distribution interface, 

and defines that it will be a probability distribution over one alphabet conditional 

upon another. For example, given the Alphabet DNAxDNA (containing all ordered 

pairs of nucleotides), an OrderNDistribution could be built that was four 

independent Distributions over the second Alphabet conditioned upon the first 

(i.e. the probability of the second nucleotide appearing given that we knew what the 

first one was). 

Background database probabilities of the amino acids in Swiss-Prot (Boeckmann, 

Bairoch et al. 2003) could be represented as a probability distribution over the 

PROTEIN alphabet. The probabilities could be estimated by counting the frequencies 

of each amino acid in the database and then normalizing these counts to give a 

probability distribution.  

The MarkovModel interface encapsulates state-emitting HMMs. MarkovModels 

contain one or more State objects. The State interface extends AtomicSymbol. 

EmissionState specializes State by having an associated emission Distribution. 

In generative model terms, EmissionStates emit the symbols within sequences. 

DotState extends State, and represent non-emitting, silent states. These are useful 

for rationalising the architecture of models. 

The MarkovModel interface has a stateAlphabet() property that returns a 

FiniteAlphabet containing every State in the model. It also has an 

emissionAlphabet() property that is the Alphabet that matches the Alphabet of the 

Distribution objects associated with the EmissionState instances. In addition, 
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there is a method getWeights(State) that returns the transition probabilities from a 

State as a Distribution. The Alphabet of the Distribution will be a sub-set of 

the states Alphabet, representing every State that is reachable from that State. 

MarkovModel also has a property getHeads() that represents how many 

SymbolList instances are aligned to each other and the model. A single-head model 

emits a single SymbolList of sequence and a single SymbolList of States. These 

co-linear lists of symbols and states can be used to label a sequence, which may, for 

example, mark up features like repeat regions, protein domains or exon boundaries. 

Models with two heads perform pair-wise alignment. These can be used to align pairs 

of sequences based upon evolutionary relationships, or to find portions of two 

sequences that are more similar than would be expected by chance. Models with three 

or more heads align that number of SymbolList instances to one another and label 

the alignment with the states used. 

The EmissionState interface defines one other property named advance, which is 

an array of integers (usually 0 or 1) that indicate how much each head of the model is 

advanced by the emission. For example, in pairwise alignments, the states that emit 

aligned regions will advance in both directions, having an advance property of [1, 1], 

where as the insert states will have an advance of [1, 0] and the delete states will have 

an advance of [0, 1]. The Distributions associated with emission states should emit 

gap BasisSymbols that have a BasisSymbol in each dimension that is 1, and a gap in 

each dimension that is 0. Gaps are used to represent the concept that there is a gap in 

the list of symbols for that dimension, or equivalently that although the global index 

has advanced, the index of the underlying data being viewed has not. 
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The MarkovModel interface is the data-structure that defines how some sequences 

could be emitted. These HMMs are purely data, and have no algorithms associated 

with them. The recursions that align sequences given a MarkovModel are defined by 

the DP interface. DP defines methods to calculate the forwards, backwards and Viterbi 

recursions (see Equation 1-13). In addition, it defines a method to generate sequences 

from the model. The efficient implementation of these recursions depends upon the 

structure of the model and the number of heads the model has. 

To hide implementation detail from the user, the DPFactory interface defines how 

to get a DP implementation for a given model. For models with one or two heads, 

there is a DP factory implementation that returns DP implementations that invoke 

interpreters. For two head models, there is also a DP implementation that generates 

Java byte code optimized to the architecture of a particular model. The DP compiler 

outperforms the DP interpreter significantly, particularly for models that contain many 

states that have transitions from only one source state. The interpreter is more suited 

to situations where the model architecture is being altered, as the compiler would have 

to produce new code each time the model architecture is modified. 

For pairwise alignment, using the notation of Equation 1-13, i  is a 2-tuple of the 

index for the first and second sequences respectively. We can impose a partial 

ordering upon the set of 2-tuples that follows the natural ordering of each component. 

To calculate the cell at i , we must first have calculated all cells that are before i . For 

the 2-dimensional case, this means calculating the cells at )0,1(−i , )1,0(−i and 

)1,1(−i . The naive way to ensure this is to construct an in-memory matrix to store 

results, and to perform a nested loop over two index variables starting at 0 and going 

to the first and second sequence length respectively. There are many ways to loop 
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over all possible values of i  while guaranteeing this ordering. As long as all of the 

values that are needed for uncalculated cells to be calculated are present, it is not 

necessary to store any of the other values. 

Assuming that the entire dynamic programming matrix is not required, we can write 

a space-optimised implementation of pairwise DP that uses space proportional to the 

length of the shortest sequence. Given an index a  into the first sequence (the shortest) 

and b  into the second (the longest), we can have an outer loop over the values of b . 

A single row of the dynamic programming matrix (indexed by a  ) containing the 

results of the previous iteration (at 1−b ). Then, a new row can be calculated for the 

row at b . At the end of the iteration, the column at 1−b  and be discarded, and that at 

b  becomes the array used as the known results for the next iteration (at 1+b ). 

The back pointer structure is a matrix of the same shape as the Viterbi matrix, but 

storing the state used to reach that cell. This contains all the information necessary to 

trace back from the final cell to the beginning of the alignment to retrieve the highest 

scoring alignment. However, this introduces a space cost proportional to the product 

of the sequence lengths. It is clear that many sub-optimal paths will exist through the 

matrixes that are not needed for the eventual trace back. 

Instead of holding a reference to the previous state in the matrix, BioJava stores a 

BackPointer object. This stores a reference to the previous BackPointer, a step-

wise score and reference to the State associated with that position. Because 

BackPointer instances refer directly to the previous entry in the chain, there is no 

need to store the entire matrix in memory explicitly. The Java virtual machine will 

take care of garbage-collecting all BackPointer instances that are not reachable from 

the current states. It is then only necessary to explicitly hold in memory the 
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BackPointer objects associated with the cells that still have uncalculated 

dependencies. 

In this way, the memory cost for the back pointer data-structures can be reduced to 

something that is at a maximum proportional to the memory used to store the values 

of the dynamic programming matrix, and which converges to something proportional 

to the length of the final alignment (which can never be longer than the sum of the 

lengths of the sequences). The BackPointers will form a directed a-cyclic graph. The 

trace back path must be from one of the leaves of this graph to the root. While 

calculating this directed acyclic graph (DAG), the garbage collector will drop entire 

branches from memory when they are no longer reachable. The more fully connected 

the model is, the quicker the BackPointer graph will converge towards being linear 

on alignment length. 

Space-saving versions of the Forwards and Backwards recursions can be similarly 

constructed. Since these algorithms consider all possible paths, there is no need to 

consider the BackPointer data structures, so these algorithms require memory 

proportional to the length of the shortest sequence and the number of states only. 

This allows very large pair-wise alignment problems to be considered without 

memory resources becoming the limiting factor. Clearly, this does not remove the 

need to evaluate every part of the recursions, so the algorithms still scale 

computationally on the product of the lengths of the sequences being aligned. 

The parameters of a Distribution (and by extension the emission and transition 

probabilities in an HMM) can be estimated using the DistributionTrainer 

interface. This provides a transactional framework for associating observed counts 
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with a Distribution, for aggregating these, normalizing them and resetting them to 

zero. Given labelled data, parameters are estimated by adding whole counts to the 

DistributionTrainer proportional to the observations and then invoking the train 

method to update the Distribution parameters. 

 In many cases, a collection of distributions will need to be trained simultaneously. 

The DistributionTrainerContext interface encapsulates such a set. This allows all 

of the distributions within an HMM to be trained simultaneously. Since 

Distribution is an interface, there will often be cases when implementations do not 

actually store the values directly, but rather perform some calculation on the 

parameters of another Distribution. For example, there is an implementation of 

Distribution in BioJava that takes an underlying Distribution and a table that 

maps input Symbol instances to a Symbol for an underlying distribution. This allows, 

for instance, a Distribution over DNA symbols to have emission probabilities equal 

to those of the complementary symbols in another Distribution. When the 

distributions are registered with a DistributionTrainerContext, the 

implementations will ensure that counts for the complementary view are routed on to 

the underlying Distribution instance, and once the context is asked to train all the 

parameters from the aggregated counts, the complementary view will reflect the new 

parameters of the newly trained distribution. 

Training distribution parameters via DistributionTrainerContext allows very 

complex parameterisation of models to be explored, both in terms of the emission 

probabilities and for the transitions as well, without altering the dynamic 

programming recursions or the routines used to collect observation counts. 
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HMMs have been constructed with this API to model 3-D DNA structures 

(BasisSymbols with one dimension per physical property and Distributions that 

model multinomial Gaussians over these properties), align pairs of protein secondary 

structure, find transcription factor binding sites, perform GIBBS sampling of 

expression data, find eukaryotic and prokaryotic promoters, as well as a host of other 

tasks. 

2.7 Query 

2.7.1 Motivations 

Fairly early on in the use of the Feature interfaces, there was the need to find 

features of a particular type, or with particular properties, or some combination 

thereof. Initially we started adding many getFooByBar() methods, but it quickly 

became apparent that this would not scale. 

2.7.2 Initial Implementation 

After reading the Dragon compiler book (Aho, Sethi et al. 1985), we developed a 

small language for describing constraints for accepting or rejecting feature types, and 

added the method filter(FeatureFilter aFilter, boolean recurse) to the 

FeatureHolder interface. The FeatureFilter interface has the single method 

accept(Feature) which returns true if the feature is to be included in a return-set 

and false otherwise. There are implementations of FeatureFilter for accepting 

features based upon their properties (type, location, annotations and the like). There 

are also several logical filters. For example, FeatureFilter.And is an 

implementation of filter that will accept a feature if two other filters both accept it. 

There are implementations for the logical Operations ‘and’, ‘or’, ‘not’ and ‘nand’. 

Using these logical Operations and the basic filters, it is possible to build up quite 
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sophisticated constraints. The ‘recurse’ flag in the filter method indicates whether to 

apply the filter to the current collection of features only or whether to apply it to those 

features and all features that they contain recursively. This provides coarse-grain 

control over how to navigate the feature hierarchy. 

The filtering language allows collections of features to optimise the processing of 

requests as they can interrogate the query to find portions that they can easily process. 

For example, a given FeatureHolder implementation may know that it only contains 

features of a particular type. It can then optimally handle any filter expression that 

contains a ByType expression by just comparing the two types and either accepting or 

rejecting the entire set of features. This is much cheaper than comparing every feature 

in turn with the filter expression. Filters are used in nearly all library and script code 

that manipulates features. For data-specific implementations such as the DAS or 

Ensembl bindings, the ability to compare filters can be used to implement reasonable 

lazy-fetching strategies to avoid loading unnecessary information into memory from 

high-latency storage (the web, or an SQL database for example). For GUIs, the rules 

for deciding which features to display can be stored in these flexible filter objects and 

modified at will. 

2.7.3 Limitations of This System 

This scheme has served us well over the last two years. However, there are several 

shortcomings with this approach. The first one is that it can only be applied to 

features. To extend this to all BioJava objects would require many sets of filters to be 

written, each with rules about how to interpret them. In addition, in practice it would 

be nice to be able to retrieve sequences from a SequenceDB instance based upon 

whether they do or don’t contain a given type of Feature. This would require the 
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ability to specify filters that span multiple object types. The other main shortcoming is 

the way that the recursion through the feature hierarchy is performed. For example, 

when retrieving features of a particular type within a region of a human chromosome 

we must recurse down through each level of the assembly pruning it as we go 

according to region and then search for features of that type at each level. This 

process is not easy to represent as a single filter. In practice, we end up constructing 

recursive function calls that each do non-recursive filters to prune the selection by 

location, find the features of the appropriate type to return, and recurs down to each 

feature with children. 

Because the filter statement does not represent the entire process of finding the 

features, it is impossible to perform optimal searching and data-caching strategies for 

these complex cases. This causes potential inefficiencies to creep in to an otherwise 

elegant system. 

To address these issues, we are evaluating a range of approaches for modelling 

complex queries, including finite state machines, ontology languages and graph 

grammars (refs). 

2.8 Recent Developments 

Since late 2001, BioJava has continued to be developed, expanding far beyond the 

original group of two individuals. There are now over thirty developers, five of which 

form the core development team. In this time, existing APIs have been consolidated, 

and new ones have been added. In this section we will discuss some of the areas 

where I have personally been the primary developer, as well as some of the 

functionality which the community has contributed. 
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The three primary areas of personal contribution are in the design and 

implementation of the tag-value parser framework, flat-file indexing, and a 

constraints-based type system for Annotation objects. 

Major community contributions include improvements to the FeatureFilter 

language, the ‘change hub’ mechanism for managing large numbers of change 

listeners, bit-packed sequences, parsers for blast (and other sequence similarity search 

formats) and an emerging API for representing and manipulating ontologies. To a 

greater or lesser extent I have had personal involvement in each of these, but the bulk 

of the design or implementation has been undertaken by others. 

2.8.1 The Tag-Value Parser 

A large proportion of the data analysed by bioinformaticians is stored in text files. 

Commonly, these are structured as lists of records. Each record is composed from one 

or more lines that contain a tag specifying its type and an associated value. For 

example, EMBL entry files have entries separated by lines consisting of ‘//’, and each 

entry has one or more lines with a two letter line-type identifier code (such as ‘AC’, 

‘OC’ or ‘FT’) with a value present in columns 6 to 80. Genbank files have a similar 

structure, but in this case the record separator is ‘///’ and the different line types are 

identified by full names (such as ‘ACCESSION’, ‘ORGANISM’ or ‘FEATURE’). 

There are a large number of file formats that closely resemble either EMBL or 

Genbank files, but contain different tags and represent different types of information, 

such as classes of enzymes (Bairoch 2000), taxonomies (Benson, Karsch-Mizrachi et 

al. 2003) and protein families (Falquet, Pagni et al. 2002). 

In our experience, developing custom parsers for these file formats is an error-prone 

task. One system that has implemented a general approach to parsing biological flat 
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files is the SRS system with its language Icarus22. Here we describe a similarly 

generic framework for parsing these files within BioJava. 

The tag-value framework is an attempt to provide a unified way to abstract out the 

common parts of the parsing task (such as recognizing record boundaries and dividing 

lines of text into tags and values) while allowing the exact details to be customised as 

needed. The approach we took was to use a mixture of the strategy (Gamma, Helm et 

al. 1994)[315] design pattern and liberal use of listeners. Strategies are used to 

encapsulate the variable portion of a process into an interface on its own, so that the 

unchanging portion can handle the unchanging functionality and delegate to the 

strategy where needed. All data is treated as Java Object instances rather than String 

instances, allowing the same framework to work un-changed on on-textual 

information. 

Over all, the flow of parsing events is very similar to that in the Simple API for 

XML (SAX23). In the XML analogy, the text files are like XML files, the tag-value 

listeners are like SAX events, and the Annotation API is the equivalent of the 

Document Object Model (DOM24). There are also similarities with the Boulder IO 

package25, as well as the way that the BioPerl SearchIO has been designed. 

                                                 

22 We have been unable to find documentation about icarus on the LION bioscience web site. However, 

the EBI is currently providing documentation, which can be found at http://srs.ebi.ac.uk/doc/icarus.pdf  

23 The SAX standard is coordinated through the http://www.saxproject.org/ web site 

24 The DOM specification can be found at http://www.w3.org/DOM/  

25 BoulderIO is described at http://stein.cshl.org/software/boulder/  
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The class Parser has a single method read(BufferedReader, TagValueParser, 

TagValueListener) that reads all of the text from the buffered reader, uses the tag-

value parser to process this into tags and values, and informs the tag-value listener of 

these pairs. For users of the API, this is the main method that they would invoke. 

The TagValueParser interface encapsulates the process of splitting each line of 

input into a tag and a value, and also of deciding if the tag is new or not. If the tag is 

different from that on the previous line, then the parser assumes that it is new. In the 

case where it is the same, the tag-value parser can indicate that it should be treated as 

a new instance of that tag, rather than as an additional value for the current tag. For 

example, rather than SWISS-PROT comments being treated as just one series of 

values for a single comment tag, the tag-value parser could force a new comment tag 

event to be fired for each logical block of comments. There are implementations of 

TagValueParser that split lines into fixed-width areas (with two pre-built instances, 

for files formatted similarly to EMBL and Genbank), and one that splits according to 

a regular expression. 

The TagValueListener interface has five methods. These are all invoked by a 

Parser instance, and it is the Parser that is responsible for ensuring correct nesting 

of these method invocations. The two methods startRecord() and endRecord() 

signal that records have started and ended respectively. All other events are emitted 

within the scope of this pair of events. The startTag(Object) and endTag() 

methods indicate that a tag has been started and ended respectively. These are called 

within the scope of the record. Tags are never directly nested. That is, for every 

startTag(), there is never a directly nested startTag() invocation, and for every 

startTag() there is exactly one matching endTag(). The value(TagValueContext, 
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Object) method is used to inform the listener of values associated with the current 

tag. The value() method is only ever invoked within the context of a tag, and never 

directly within the context of the record. For each value associated with a tag, there 

will be a separate invocation of value(), and it is up to the listener how this should 

be interpreted. 

Values can be replaced with Objects that are not String instances. For example, 

while parsing an EMBL entry, the lines relating to organism information could be 

transformed by a listener into a single taxonomy value. It is common to transform 

textual representations of things like URLs and Enzyme Classification (EC) numbers 

into light-weight objects. This greatly enhances the richness of the data consumed by 

the ultimate listener. 

Some of these tag-value file formats have embedded sub-documents. For example, 

EMBL and Genbank files have an embedded feature table document. The tag-value 

framework supports these by using the context passed in as the first argument to 

value(). The listener can uses the pushParser(TagValueParser, 

TagValueListener) method to indicate to the Parser that all values of the current 

tag should themselves be split into tag and value pairs. The pushed tag-value parser 

will be used to split the values of these lines, and the results will be passed onto the 

pushed listener. Once the outer tag ends, the pushed parser and listener pair are 

popped back off the processing stack, and the original listener will be informed of an 

endTag() event as normal. The listener pushed will receive the full set of start/end 

record and tag events associated with the sub-document, and may itself choose to 

push new listeners for embedded documents. 
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This framework allows flexible processing of files into event streams. However, it 

is useful to further process these events. To support this there are a range of listener 

implementations that wrap other listeners, and pass on altered evens. For example, the 

accession lines of EMBL and Genbank files can contain a list of accession numbers, 

separated by semi-colons. A listener would receive one value event for each accession 

line. The data becomes easier to interpret if one value event can be produced for each 

accession number. A RegexSplitter instance could be used to recognize each 

portion of the accession line that is an accession, and then fire one value event to the 

wrapped listener for each accession. 

The ValueChanger listener implementation is the class responsible for changing 

values associated with particular tags. It is responsible for either replacing a value 

with some other value, or for firing off multiple values. Again, the strategy pattern is 

used, in this case to factor out the mapping between tags and actions into a separate 

class named ChangeTable. A ChangeTable instance maintains a table of which 

actions are associated with which tags. This greatly promotes code reuse and 

modularisation. The ValueChanger code just manages the flow of events. The actions 

themselves are trivial to implement as little Java classes (often in practice as 

anonymous classes). We have found that this kind of composition and 

parameterisation is far superior to inheritance-based methods of customizing 

behaviour. 

The TagMapper listener is used to systematically replace tags with other tags. For 

example, it would be possible to configure a TagMapper instance to map all EMBL 

tag names to Genbank tag names. This allows event streams to be transmuted into 

those accepted by standard listeners and factory objects. For example, by 
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transforming reference information in to tags and values that resemble those emitted 

from the EMBL parser, the same reference handlers used for EMBL processing can 

be reused.  

Using the built in tag-value classes, and by supplementing these where needed with 

some application-specific code, it is possible to rapidly develop parsers for tag-value 

formats of nearly any kind, and transform the information in these files into that 

required for a particular application, while achieving a very high degree of code reuse. 

2.8.2 Flat File Indexing 

A related problem to that of parsing these files is that of retrieving one entry among 

potentially the many hundreds of thousands of entries in a single or multiple files. It 

was decided by members of the OBF that it would be useful for all of the projects to 

share a mechanism for indexing these files. There exist a number of indexing 

strategies (for example, emblcd26). However, these tend to pose problems when 

accessed from multiple different languages and on multiple platforms as they are 

binary file formats. The OBDA flat file indexing specification27 defines an indexing 

strategy that just uses plain text files to store the indices. 

BioJava contains a full implementation of this specification, allowing a wide range 

of file types to be indexed, and for individual records to be fetched in time 

                                                 

26 Applications for manipulating embl CD index files can be found at 

http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/dbiflat.html 

27 See http://cvs.biojava.org/cgi-bin/viewcvs/viewcvs.cgi/obda-

specs/flatfile/indexing.txt?rev=HEAD&cvsroot=obf-common&content-type=text/vnd.viewcvs-markup 

for the most recent version of the specification.7 
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proportional to the cost of a binary search through the index. Records can be retrieved 

either by primary ID or by secondary IDs. The BioJava implementation is wholly 

compatible with the other OBF implementations (in Perl, Python and C). 

Sequence files can be indexed using the standard BioJava classes for reading 

sequences from a stream. Additionally, any format that can be parsed with the tag-

value framework can be indexed. In the future, we will be continuing to enhance 

support for secondary IDs, and provide simple APIs to allow different flat-file formats 

to be linked to one another by IDs in a manner similar to SRS28. 

2.8.3 Annotation Types 

Since the beginning, BioJava has supported free-form associations of keys and 

values through the Annotation interface. Ironically, many applications need to be 

able to guarantee that certain property keys will be present in an Annotation, or that 

certain values will be present. The project started to gain a lot of repetitive and error-

prone code that first checked an annotation to see what properties and values it had, 

and then acted accordingly. 

In order to reduce the need to write this error-prone and repetitive code, we chose to 

develop a dynamic type system for Annotation instances, based around the new 

AnnotationType interface. The main two methods are instanceOf(Annotation) 

and subTypeOf(AnnotationType). Both compare the argument to the current type. 

The instanceOf() method returns true if the argument is an instance of the type, and 

subTypeOf() returns true if the argument is a sub-type of the type. An Annotation is 
                                                 

28 Mode information about SRS can be found at the 

http://www.lionbioscience.com/solutions/products/srs web site 
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an instance of an AnnotationType on the basis of what properties and values it has. 

One type is a sub-type of a super-type if every annotation that is an instance of the 

sub-type is also an instance of the super-type. Two AnnotationType instances are 

equivalent if exactly the same set of Annotation instances are accepted by the 

instanceOf() methods of both types. 

Restrictions are placed upon the range of values that can be associated with 

properties by using instances of the CollectionConstraint interface. This has two 

main methods. The accept(Object) method returns true if the argument is 

acceptable to the constraint. The subConstraintOf(CollectionConstraint) 

method returns true if all items acceptable by the sub-constraint are also acceptable to 

the super-constraint. The AnnotationType instanceOf() and subTypeOf() methods 

are implemented purely by using these methods. There are implementations of 

CollectionConstraint that perform the normal logical operations, as well as checking 

properties of the item under consideration. 

There are many utility methods in AnnotationTools that deal with the common 

operations that may be performed upon AnnotationType and Annotation instances. 

This use of the façade design pattern (Gamma, Helm et al. 1994)[185] insulates users 

of the API from its necessary complexities. AnnotationTools implements a wide 

variety of logical operations upon AnnotationType directly, such as computing types 

that are the logical union, intersection and difference of two types. It is very common 

to compare the results of these to the AnnotationType constants that accept or reject 

every Annotation. Additionally, it can be used to generate new Annotation 

instances from an old one and a type, for example, by retaining or removing all keys 

defined by the type. 
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The AnnotationType APIs differ from the way the Java type system works. In Java, 

every Object maintains a reference to its Class. This Class maintains references to 

all Classes that it inherits from, both implemented interfaces and extended classes 

(the Java introspection APIs use the same type to represent both classes and 

interfaces). With AnnotationType, Annotation instances maintain no such 

reference. As properties are added and removed, or the associated values are altered, 

the Annotation may change which annotation types it is an instance of. Code that 

wishes to check types should always use the AnnotationType.instanceOf() 

method. We tend to think of annotations as being ‘castable to’ an annotation type, 

rather than inheriting from or implementing them. 

The AnnotationType interface works synergistically with annotations and the tag-

value parsers. If the tag-value framework is like SAX and the Annotation API is like 

DOM, then AnnotationType is like XML-SCHEMA29. Annotation types are also 

used extensively in the recently enhanced implementation of feature filters. 

2.8.4 Enhanced Feature Filters 

The FeatureFilter APIs have since been developed by the community into a fully 

functional constraint language for Feature hierarchies. In addition to adding 

implementations for nearly all conceivable feature properties, there are now 

implementations that accept or reject a feature based upon the type of the annotation 

associated with the feature. Additionally, there is now much finer grained control of 

searches through the hierarchy, using filters like ByAncestor and HasChild. 

                                                 

29 The XML Schema and related standards can be found at http://www.w3.org/XML/Schema  
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There is a façade class named FilterTools that implements many common 

operations upon feature filters. This includes composing new filters that are the union, 

intersection or difference between two filters and a range of factory methods. The 

results of these are often compared to the FeatureFilter constants that accept or 

reject all features. Another very common operation is to compare two FeatureFilter 

instances to see if they accept a disjoint set of features. 

A range of FeatureHolder implementations now publish FeatureFilter instances as 

schemas describing what features they contain. Given a query, it is possible to 

efficiently see if the query is disjoint from the schema and potentially avoid 

comparing the contained features to the filter. 

Some Feature and Sequence implementations now look at the FeatureFilter 

instances being passed into the filter() method, and check the filter for known types of 

annotation. For example, if a FeatureFilter is used to filter Ensembl, and it is 

constraining upon the “ensemble_id” property in the feature’s annotation bundle, the 

Ensembl code will be able to recognize this and do optimized database lookups rather 

than looping over all possible feature instances. 

 For database and high-latency applications, such as Ensembl and DAS, this 

constraints-based language has allowed the existing Sequence and Feature APIs to 

scale gracefully to queries that potentially scan many hundreds of thousands of 

entities. By careful comparison of the filters with known schemas, and by 

introspecting the filters for constraints that can be optimised, we experience 

performance comparable to that for special case code that manually plans search 

strategies. 
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2.8.5 Change Hubs 

Another bottle-neck upon scalability was the implementation of how change 

listeners were registered with resources such as database objects. Sequence databases 

that contain mutable implementations of Sequence need to behave as if the complete 

network is in place to forward events from every one of the sequences it contains. In 

the case of database implementations like BioSQL and Ensembl, there may be 

anywhere from a few hundred to several hundreds of thousands of sequence and 

feature instances that theoretically need to be listened to. However, in a typical 

application, only a few of these are ever directly accessible in memory. 

In these special cases, there are implementations of the Changeability support 

classes which we call “change hubs” that maintain data-structures to keep track of 

which listeners logically exist. As each sequence is instantiated in memory, the 

change hub registers the required listeners to it. As the sequence goes out of scope, it 

takes care of removing the listeners. In this way, users of these databases can appear 

to be listening indirectly to a vast number of objects, while the implementation cost in 

terms of memory, and the time needed for event notification, can be kept to a 

minimum. 

This is one of the many examples of where designing BioJava from the start in 

terms of interfaces has allowed us to drop in a complex replacement for some 

standard functionality without altering the APIs exposed to users.  

2.8.6 Bit Packed Sequences 

As it became more common to work with complete genomic information, the 

original implementation of SymbolList became impractical. It stores references to 

Symbol instances in an array. References in Java are the same size as a pointer. On 
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32-bit platforms, this is a clear overhead compared to storing bytes (8 bits), and this is 

even more pronounced on 64-bit platforms. 

To allow very large sequences to be loaded into memory, an API was developed for 

mapping between Symbol instances and bit patterns. The Packing interface 

encapsulates the mapping between all Symbols in an Alphabet and unique bit 

patterns. To encode all atomic symbols, the bit patterns must be wide enough to 

encode the size of the alphabet. For example, the DNA alphabet has four members. 

This can be packed into two bits. The PROTEIN alphabet has 20 members. This will 

require 6 bits as 5 bits can only represent 16 combinations, but 6 bits can represent 32. 

To encode all symbols, including the ambiguities, the bit pattern will have one 

element per atomic symbol in the alphabet. This allows the presence or absence of 

that atomic symbol to be indicated. DNA therefore requires 4 bits, and PROTEIN 

requires 20 bits. 

For small alphabets, like DNA and RNA, the memory saving associated with 

packing the sequence is considerable (2 bits vs. 32 or 64 bits). The performance 

penalty is approximately a factor of two compared to the implementation that accesses 

references directly for linear scans. However, the code that is shared between the 

packed and unpacked implementations has been tuned now to be over three times 

faster than it originally was, so that the current packed implementation is in fact faster 

than the original unpacked implementation.  

Long symbol lists are implemented by storing a List of fixed-length symbol list 

instances. When a symbolAt() request comes in to the symbol list, it calculates which 

child list it is in, extracts that symbol list and passes the request on (after adjusting the 

index accordingly). One benefit of this is that if a sub-list has been taken of a region, 
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and that region falls totally within the range of one of the child symbol lists, the sub-

list will only maintain a reference to this child symbol list, allowing the large one to 

be garbage collected once it goes out of scope. 

Another benefit is that different child lists can be implemented using different 

SymbolList implementations. Most sequences present today have a very small 

number of ambiguity symbols, and when they are present, they are usually runs of ‘n’ 

characters. Child lists that have no ambiguity at all can be packed using the most 

efficient packing possible. Child lists that do have ambiguity can be packed using an 

ambiguity-capable packing. 

The bit-packing APIs have facilitated the implementation of a pure-java 

implementation of SSAHA (Ning, Cox et al. 2001), as well as making it feasible to 

store complete human chromosomes in memory. It demonstrates again the flexibility 

afforded by interface-based design. No methods in the Alphabet or SymbolList 

interfaces needed to be modified, meaning that all existing applications benefit from 

these improvements without alteration. 

2.9 Conclusions 

The BioJava APIs outlined here are designed to be extremely flexible, while 

imposing minimal restrictions on how the interfaces are implemented. This is 

achieved by pervasively using Java interfaces rather than abstract classes to define 

APIs, and leveraging nested exceptions to handle errors. Potentially variable 

behaviour is systematically encapsulated by strategy objects. The Changeability API 

allows programmers to maintain tight control over which object may be modified and 

under what circumstances this will be allowed, while also facilitating the 

synchronization of objects’ state and simultaneously enforcing the principal of strong 
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object encapsulation. The Symbol and Location APIs provide examples of how 

careful object modelling can make software disproportionately powerful by ensuring 

that the interfaces have a complete but minimal set of operations that allow for all 

conceivable uses of the objects. The DistributionFactory and DPFactory 

interfaces demonstrate how tailor-made implementations of interfaces can be 

instantiated without the users of APIs needing to know about these implementations. 

The creation of features by using Feature.Template instances demonstrates how 

two-dimensional polymorphism (interface and implementation) can be implemented 

without pushing responsibility for data-integrity to the users of the API. The 

FeatureFilter and AnnotationType APIs demonstrate how data structures can be 

queried efficiently without violating encapsulation. 

Because of the strongly interface-centric design, it is fairly easy to view underlying 

data in several forms by defining only the transformation to be applied. For example, 

OrderNSymbolList views an underlying symbol list as the nth order view. A 1st order 

view of a DNA sequence would produce a SymbolList with the alphabet 

DNAxDNA, containing symbols that represent each overlapping pair of symbols from 

the original sequence. Similarly, distributions can be constructed that represent a 

translated view of another distribution, such as the complementary distribution. This 

paradigm allows very elegant data-structures to be built up without duplicating either 

the underlying data or the code that performs view transformations. Indeed, BioJava 

strongly discourages data duplication. As an extreme example, to reverse-complement 

an entire chromosome, BioJava would construct a ComplementarySymbolList that 

views a ReverseSymbolList that views the underlying SymbolList for the 

chromosome. The total additional cost in memory for complementing the 

chromosome is two Java object instances, rather than the memory for the entire 
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Chapter 3 HMMs for whole Plasmodium 

Falciparum Chromosomes 

3.1 Introduction 

Observation of chromosomes in a variety of organisms appears to show that they 

are composed of a number of distinct blocks. For example, there are the banding 

patterns observed in condensed eukaryotic chromosomes (Rooney 2001). With the 

primary sequence of these chromosomes becoming available it is now possible to 

investigate what relationship if any there is between these patterns and the sequence. 

By using unsupervised learning techniques it is possible to look for natural patterns 

in the sequence without being biased by prior expectations. We can then compare 

these natural patterns with the annotated biological function to look for correlations. If 

the chromosomes are constructed from blocks that have one of a small number of 

sequence composition biases, it should be possible to estimate both the number of and 

the compositional bias for each distinct bias and use these to partition the 

chromosome into regions. In the general case, the chromosome could be modelled as 

being made up of regions of DNA which each have a reasonably constant sequence 

composition but which noticeably vary in composition from their neighbours. 

The compositional bias parameters and the likely order in which blocks follow one 

another can be estimated using Hidden Markov Models (HMMs) (see Section 1.3.2). 

In contrast to the complex HMM methods commonly employed for modelling 

biological sequences, such as gene finders, our models do not need to be concerned 

with the fine structure of the DNA, concentrating instead on large-scale chromosomal 

structures. 
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It has been observed that gross sequence content correlates particularly strongly 

with function in the Malarial parasite Plasmodium Falciparum. The chromosomes as 

a whole have a very high ratio of AT to GC. However, since coding for amino acids 

require all nucleotides to be used, exons tend to have a slightly lower ratio (Escalante, 

Lal et al. 1998). Annotators use sequence composition plots as a tool to aid 

annotation. Since this is particularly useful in the P. Falciparum annotation process 

(K. Rutherford, personal communication) this genome was selected as a target for 

investigation using these approaches. 

P. Falciparum has a genome estimated to be about 3030 megabases (mb) in length, 

divided into 14 chromosomes (Pollack, Katzen et al. 1982). The genome exhibits a 

strongly biased AT/GC ratio with an overall (A + T) content estimated at 82 %. 

Recently, the complete sequence of chromosomes two and three have been sequenced 

and published (Bowman, Lawson et al. 1999; Gardner, Tettelin et al. 1999)31. The 

telomeric regions of chromosomes two and three are similar in structure, containing a 

shared pattern of terminal telomeric repeats followed by the repeats R-CG7 and 

rep20, a member of the var gene family, the R-FA3 repeat and finally a riffin gene. 

This arrangement of repeats and genes appears to be functional, promoting shuffling 

of the sub-telomeric regions between multiple chromosomes (Figueiredo, Freitas-

Junior et al. 2002). 

                                                 

30 The total size of the genome has since been found to be closer to 23 mb in length Gardner, M. J., N. 

Hall, et al. (2002). "Genome sequence of the human malaria parasite Plasmodium falciparum." Nature 

419(6906): 498-511.. 

31 Since this time, the entire genome of P. Falciparum has been sequenced Ibid..  
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By eye, it is possible to identify regions of chromosome 3 with extreme base 

composition. Some of these are clearly correlated with biologically important 

features. In addition to the GC enrichment associated with exons, there is a region 

with extreme AT content (95-100%) that is believed to be the centromere (Hall, Pain 

et al. 2002). It is interesting to speculate as to how many types of sequence 

composition exist within Malaria chromosomes, or even whether the chromosome can 

meaningfully be grouped into regions that have one of a small number of 

compositional biases, or are in fact part of a continuum. 

The BioJava HMM APIs are very flexible and allow many different architectures 

and parameter sets to be evaluated rapidly. The representation of the underlying 

alphabets in BioJava enables us to reuse architectures for different representations 

without recoding the core recursions. This makes them an ideal tool for investigating 

this type of open-ended question. 

3.2 Simple HMM Architectures 

3.2.1 Methods 

A simple HMM was constructed using the BioJava HMM APIs (Section 2.6) with 

two states each with independent emission distributions. This was expected to 

segregate the chromosome into regions of high and low AT/GC ratio. A second model 

was generated with four independent states expected to segregate the chromosome 

into regions of relatively very low, low, high and very high AT/GC ratio. In both 

cases, these models were fully connected (transitions existed between all states). 

Transitions and emissions parameters were initiated to random values, but with the 

constraint that the transition from any state to itself was initialised to a value 

approximately 1000 times more likely than the transition to any other state. All model 
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scores are presented in units of log probability due to the extreme dynamic range of 

these probabilities. These models were trained using Baum-Welch with sampling (as 

described in Section 1.3.2). 

3.2.2 Results 

The two-state model reached a stable set of parameters within a very few cycles. 

The log likelihood remained almost constant from cycle 40 to completion at cycle 

1214 (–1246786 at cycle 40, with mean –1246786 between cycles 40 and 1214). The 

Viterbi state paths from the model at cycles 40 and 1000 are 98.6 % identical. The 

model with four states showed similar convergence behaviour (data not shown). 

The emission probabilities of the model with two states were complementary rather 

than being segregated into high and low GC. Over multiple training sessions with 

different initial parameters, the model with four states learned two distinct sets of 

model parameters. 

Both four state models contained a pair of states that were similar to the states in the 

two state model. This pair of states aligned to the major part of the chromosome. The 

other two states of the four state model trained differently. 

In the first set of model parameters, the two additional states aligned to the 

chromosome ends (telomeric regions) and were complementary to each other, i.e. for 

each telomere one state aligned to one strand and the other to the reverse complement 

of it. 

In the second set of model parameters, the two additional states instead modelled a 

strong first order relationship in the telomeres. Specifically, one state modelled ‘A’ 

rich regions and the other modelled ‘T’ rich regions. Frequently these ‘regions’ were 
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only single nucleotides in length. Transition probabilities favoured them moving from 

one to another. The other pair of states modelled the internal regions as before. 

3.3 HMM Architectures with Complementary Emission Distributions 

The above results demonstrate that the chromosome must be considered in terms of 

being a double-stranded DNA molecule rather than as a single-stranded sequence. In 

particular, if there is a block with a characteristic sequence composition on one strand, 

this, by definition, implies a block with the complementary distribution on the other 

strand. This pair of states should be modelling a single set of parameters. To achieve 

this we developed a Distribution that implements a complementary view onto 

another Distribution. A pair of states can then be added to the model, one with the 

forward strand distribution and one with its complement. We call these 

complementary states pair-states. During training, all counts associated with the 

complementary distribution are first un-complemented and then forwarded as counts 

to the forward-strand distribution. This guarantees that the total number of parameters 

is minimized and that all available evidence for emissions is used during training. 

3.3.1 Methods 

Models were constructed with two, three, four or five pair-states (4, 6, 8 and 10 

total states respectively). During training, all emission probabilities and all transition 

probabilities were initially set to random values, with transitions from each state to 

itself initially being approximately 1000 times more likely than any other transitions. 

Each model was then trained using Baum-Welch with sampling, as described above, 

as well as by Baum-Welch, using the sequence of Malaria chromosome 3. Training 

was stopped after 100 cycles due to a combination of computational constraints and 

the observation that models appear to converge before cycle 100. The different 
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models were then aligned to both chromosome 3 and chromosome 2 without 

additional training. 

Models with more than 5 pair-states were not trained as both the memory and 

computational requirements for the estimation of training parameters becomes 

prohibitive. The space required is approximately equal to length_of_sequence x 

number_of_states x size_of(double), which for large sequences with many states 

quickly reaches the limits of a machine with hundreds of megabytes. 

3.3.2 Results 

Training using Baulm-Welch with sampling exhibited quicker convergence 

properties than Baulm-Welch, and was also computationally less expensive due to the 

decreased number of counts which needed to be summed. Multiple training runs with 

sampling produced models with more similar parameters and alignment scores than 

with Baulm-Welch training (data not shown). 

We then considered a representative from the replicates of the two, three and four 

pair-state models. The Viterbi paths at 20 and 100 cycles for the two, three and four 

state-pair models differed by 0.23 %, 0.45 % and 1.41 % respectively. This indicates 

that by cycle 100, the models were not changing significantly in their predictions. The 

model with five pair-states did not use one pair of states at all, indicating that this 

family of models could only distinguish four types of gross genomic content, and is 

therefore not discussed further. 

In all cases, some transition probabilities in the trained models have moved greatly 

from their original values, and the most used states have emission probabilities that lie 

close to the ratios found in the chromosome (Figure 3-1). 
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The Viterbi paths for all three pair-state models at cycle 100 against chromosome 3 

(Figure 3-2) show use of paired states at the beginning and end of the chromosome, 

and a similar banding pattern of states within the chromosome. In all three 

alignments, a single state emits the first 276 bases of the chromosome. The 

corresponding complementary state then emits the final 186 (±2) bases of the 

chromosome. This corresponds to the regions of sequenced telomere. In addition, in 

all three models, a single pair of complementary states emits the majority of the body 

of the chromosome. The models with more states show additional features, such as 

the appearance of a band near the ends of the chromosome that resembles telomeric 

sequence, and blocks of sequence corresponding to repeat elements. Not all states 

were used by the more complex models. For example, the three pair-state model 

learned two telomeric states, two internal states and a final state that matches a region 

within the genes PFC005w and PCFC1120c. This state did not use the complement of 

this final state anywhere. 

The four pair-state model has corresponding states for each of these regions and two 

complementary states that match a region between the telomeres and the var genes. 

These overlap significantly with the repeat elements rep20, rep11 and R-CG7, and 

show striking similarities with the state-paths for chromosome 3. Again, the telomeres 

have been correctly identified, and the exons on each strand seem to segregate with 

the two main states. In addition, the regions near the telomeres are predicted to have a 

very similar structure, including a telomeric-like section within the var genes, and the 

use of states that overlap the repeat elements. 

In the four state-pair model, the coding region state pair has one state associated 

with each strand. 86% of all bases in exons on the positive strands are matched by the 
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first state, and only 14% by second. 94% of all bases in exons on the negative strand 

are matched by the first state and 5% by the second. Overall, these states predict the 

strand correctly 90% of the time on a per-nucleotide basis. Most errors are made on 

the boundaries between genes on opposite strands. 

The Viterbi state path for chromosome 2 (Figure 3-3) shows striking similarities 

with those obtained for chromosome 3 (Figure 3-2). This is evidence that the two 

chromosomes share a common architecture. Labellings of randomised sequences do 

not show these similarities in patterns (data not shown). Therefore, we believe that the 

models have indeed learned some general properties of malarial chromosomes. 

It is possible that the consistent structures predicted at the beginning and end of 

each chromosome is an artefact of transition probabilities associated with entering and 

exiting the model. To test this, artificial chromosome sequences were constructed. 

The first half of the chromosome was appended to the second half so that the central 

regions of the sequence were now at the ends, and the ends of the sequence were now 

in the centre. State-paths were predicted using the same models as before. The regions 

at the ends of the artificial sequences were labelled with the states associated with the 

body of the chromosome, and the regions corresponding to the telomeres now located 

in the centre of the sequence were labelled with the telomere-associated state-pair. 

This indicates that the models are making predictions on the basis of the sequences, 

and not any edge-effect artefacts. 
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b) 

c) 

d) 

 

Figure 3-1 Emission probabilities for the four pair-state model 

Each row shows a state-pair with complementary emission probabilities. They 

match a) chromosome body; left and right associated with (-) and (+) strand exons 

respectively b) telomere-like sequence; left and right associated with telomeres at the 

right and left of the chromosome respectively c) near-telomere repeat associated 

regions d) (G + C) rich region in the var genes (only one of this state-pair is used). 
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Figure 3-2 Diagram of the P. Falciparum chromosome 3 and the state paths through three models (legend continued on next page)
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Sections a, b and c represent the state paths of the two, three and four state-pair models respectively across the entire 

chromosome with insets to the left and right showing the extreme telomeric region. The relative positions of exons and repeat 

elements are indicated above these diagrams. Section d shows an enlarged view of the state paths for the first and last 50,000 bp of 

the chromosome, with the corresponding exons and repeat elements above. Within each diagram, a different shading pattern is 

used for each state, as indicated by the key (Exon - exon-related, Tel. - telomeric-like, Rep. - repeat-associated, GC - high (G + C) 

content). Arrows above the diagrams indicate the positions of narrow regions that may not be easily visible. 
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Figure 3-3 Diagram of the P. Falciparum chromosome 2 and the state paths through three models (legend continued on next page) 
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Sections a, b and c represent the state paths of the two, three and four state-pair models respectively across the entire 

chromosome with insets to the left and right showing the extreme telomeric region. The relative positions of exons and repeat 

elements are indicated above these diagrams. Section d shows an enlarged view of the state paths for the first and last 50,000 bp of 

the chromosome, with the corresponding exons and repeat elements above. Within each diagram, a different shading pattern is 

used for each state, as indicated by the key (Exon - exon-related, Tel. - telomeric-like, Rep. - repeat-associated, GC - high (G + C) 

content). Arrows above the diagrams indicate the positions of narrow features that may not be visible at this scale. 
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3.4 First Order HMMs with Time-Reversible Transition Probabilities 

The model with four independent distributions in some cases learned a pair of states 

that crudely represented a 1st order distribution (encapsulating dinucleotides). To 

explore this further, models were constructed that contained emission Distribution 

objects encapsulating a 1st order Markov process. 

The 0th order model used the third pair-state to identify a high-G region. However, 

the transition probabilities learned for this model only allowed one of the pair of states 

to be used. This was due to the lack of association between the transition probabilities. 

The re-architecting process required to introduce higher order emission probabilities 

also provided an opportunity to constrain the transition probabilities such that the 

resulting HMM is truly time-reversible (if the sequence being analyzed is played back 

in reverse with the appropriate complementation, it would induce a state labelling that 

is the reverse-complement of the forward state labelling). The time-reversed transition 

probabilities should in theory remove the kind of artefacts observed in the 0th order 

model’s third pair-state. 

3.4.1 Methods 

The chromosome was viewed through an NthOrderSymbolList instance to 

translate it into all overlapping pairs of symbols, and the HMM emission alphabet was 

set to DNAxDNA.  

The 1st order emission distributions presented additional challenges to ensure that 

they were correct estimates in both the forward and reverse directions. The probability 

of observing a given dinucleotide is defined as being the probability of observing the 

second nucleotide conditioned upon the first. That is, there is a 0th order probability 

distribution over each second nucleotide that is chosen according to the identity of the 
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first nucleotide. If the distribution associated with the complementary state is 

calculated by simply reverse-complementing the dinucleotide and finding its 

probability in the original distribution, this will not be a true probability distribution 

(the sum over all probabilities given all dinucleotides starting with a given nucleotide 

will not be guaranteed to be 1). This is because in this case we are effectively 

conditioning upon the second nucleotide rather than the first. This causes the models 

to be non-probabilistic and the training algorithms to fail. 

We address this by reverse-complement the table of observations and then re-

normalize to give the complementary 1st order probabilities. During training, a 

standard DistributionTrainer is registered with the forward-strand probability 

distribution. The reverse-complement distribution registers a DistributionTrainer 

that forwards all counts on to this after reverse-complementing the dinucleotide. 

Probabilities for the forward distribution are estimated as normal and those for the 

reverse distribution are estimated by normalizing the reverse-complemented counts.  

This scheme ensures that all available information is pooled (both evidence for 

forward and reverse strand are aggregated) and that the result is a strand-reversible 

probabilistic Markov process. As a concrete example, given the short sequence 

‘AATGCGT’ we can estimate both a forward 1st order distribution, that would 

produce this and a reverse-strand 1st order distribution, that would produce 

‘ACGCATT’ with an equal probability using the counts in Table 3-1 and a suitable 

normalization (such as pseudocounts). It is clear from this example that the 

probability of observing a dinucleotide is not equivalent to observing its reverse-

complement (for example, AG is half in the forward strand, but CT is not observed at 

all in the reverse strand).  
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Table 3-1 Forward-strand and reverse-strand counts 

 A G C T Sum 

A 1   1 2 
G   1 1 2 
C  1   1 
T  1   1 

 
 A G C T Sum 
A   1  1 
G   1  1 
C 1 1   2 
T 1   1 2 

 

The transition distributions present a more complex problem. The first naïve 

approach was to constrain the transition probabilities of a reverse-strand state to be 

the transition probability from the forward-strand state to the complement of the 

destination. This does yield a probabilistic model. However, it is not fully time-

reversible. This is because if we consider both strands, the model effectively treats 

entry to a forward-strand state as being equivalent to exiting a reverse-strand state. 

 This was again addressed by estimating the transition probabilities from tables of 

counts. However, we run into a problem that prevents us using the same 

DistributionTrainer solution as for the 1st order probabilities. Table 3-2 

enumerates every possible transition from state ‘a’ to state ‘b’ given that neither, one, 

or both may be complemented (indicated as a’ or b’ respectively). 

Table 3-2 State-transitions and their reverse-complements 

Forward Reverse 
Complement 

a-b b’-a’ 
a-b’ b-a’ 
a’-b b’-a 
a’-b’ b-a 



HMMs for Whole P. Falciparum Chromosomes 

   96

For three of the four cases, either the forward or reverse-complement forms start 

with a forward-strand state. These can all use the reverse-complement forward-state 

counts to calculate the backward-state probabilities. However, in one case (a’-b:b’-a), 

there is no count associated purely with the forward-strand process. In the naive 

probability model described above, this case is considered interchangeable with (a-

b’:b-a’). However, the two are clearly distinct transitions. This issue did not arise for 

the emission probabilities as we only considered the cases of a-b, or b’-a’, which are a 

well-behaved subset of all the interactions in Table 3-2 (in particular a-b:b’-a’).  

The problematic transitions do not arise for more restrictive model architectures for 

which forward and reverse model regions are separated by an a-directional region. 

During training, a table of counts for all pair-wise combinations of states was kept, 

and while collecting observations, the count was split into two parts, which were then 

forwarded to each count cell representing the two possible time-reversed transitions. 

Then, during training, the distribution was estimated by normalizing the aggregates of 

each of the two time-reversed transitions. 

3.4.2 Results 

Models with 2, 3, 4 or 5 pairs of states were trained on chromosome 3 of P. 

Falciparum using Baum-Welch training until the forwards probability did not vary by 

more than e
01.0  between two cycles (changes of > 0.01 relative to scores in the range 

of tens of thousands). The models took 116, 103, 77 and 90 cycles respectively to 

converge. Models with more states were again not trained due to the memory and 

computational constraints. 

The transition probabilities for all models are dominated by state-to-self transitions. 

Emission probabilities for all models (Figure 3-4) show a progression in complexity 
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with the number of state-pairs available. The additional distributions seem to model 

additional sub-types of sequence, and in every case, each of the distributions in the 

simpler models are represented in the more complex models. This indicates that the 

additional available complexity is being used to model distinct populations of 

sequences. This is in contrast to the 0th order model, which could model no more than 

four compositional biases. Presumably, the 1st order probability distributions are 

capturing some more biologically relevant information. It is also interesting in that 

each model was trained entirely independently with different starting parameters but 

learned very similar final parameters. This is good evidence that the models are 

learning some legitimate signals embedded within the chromosomal sequence rather 

than using the extra parameters in an arbitrary manner to memorise the training 

sequence. 

The entire chromosome was classified into the following biological feature types; 

exon, intron, repeat and other, using the annotation associated with the malarial 

chromosome. This classification was then projected onto the state labelling from the 5 

pair-state model (shown graphically in Figure 3-5 and Figure 3-6 for chromosomes 3 

and 2 respectively). From this, a count of the number of times a particular state and 

feature are co-located was calculated (Figure 3-7). These counts show dramatic trends 

for certain features and states to be associated with one another. There are clearly two 

state-pairs (3± and 5±) associated with exons. States 2± are also associated to some 

degree with the ‘other’ category while States 4± accounts for the majority of repeats. 

Figure 3-8 and Figure 3-9 are normalized views of these counts for the 5 pair-state 

model representing the conditional probabilities of observing a particular state given 

that the feature is known, and observing a given feature given that a state is known. 
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From Figure 3-8 it is clear that if a region is an exon, the states 3± and 5± together 

account for nearly the entire feature (> 93 % for + strand, > 94 % for –strand). Introns 

do not have a single state associated, but show a predisposition towards the pair 2± (2- 

preferred over 2+ for forward strand introns and 2+ preferred over 2- for backward 

strand introns). Indeed, the predispositions in forward and reverse strand introns 

appear to show a distinctly strand-dependant pattern despite there not being a single 

indicator state. This indicates that the introns contain important strand-dependant 

information. Repeats are associated with the states 4±. The other category most 

closely resembles the average of the intron distributions. It is interesting that the 

repeat distribution seems not to include a large proportion of states 1±, despite these 

being found in introns and ‘other’.  

The most striking feature of Figure 3-9 is that almost all states are associated 

primarily with only one feature type. The second observation is that no state is 

predictive of introns. States 1± and 2± are associated with ‘other’. States 3± and 5± 

are associated with exons. States 4± are associated with repeat regions. 

We can see from Figure 3-7 how as state pairs were added, the correlation between 

states and features altered. In the 2 pair-state model, exons are only labelled by states 

2±, but these states are also frequently found labelling ‘other’, and accounts for 

almost all repeats. In the 3 pair-state model, the exons and the repeats are modelled by 

their own states (3±), while 2± remain the major ‘other’ states. In the 4 pair-state 

model, states 4± now take on the role of specifically modelling the repeats. Finally, in 

the 5 pair-state model, states 5± model a sub-set of exons. Clearly, as more states are 

added to the models, they are making finer distinctions over how to model the 

chromosome. 
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Figure 3-5 and Figure 3-6 are graphical representations of the state-paths of the five 

pair-state model to chromosomes 3 and 2 of Malaria respectively. Again, from these 

figures, the co-localisation of some feature types with biological features are clear to 

see, particularly at the extreme ends of the chromosomes. These results also 

demonstrate how as the complexity of the models increase, finer distinctions in the 

assignments are identified. 

Figure 3-7 displays the frequency with which different states align to each of the 

different biological feature classes. In Figure 3-8, this data has been normalized to 

give the observed probability of any given state given a particular type of feature. 

This gives an indication of how strongly a given state labelling of a region of 

chromosome indicates a particular biological function for that region. In Figure 3-9, 

this same data has been normalized to give the observed probability of any feature 

type given a particular state. This indicates how predictive each state is of the 

different feature classes. 
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Figure 3-4 Emission Spectrums for all Pair-State Models (legend continued on next page)
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Sections for the 2-5 pair-state models contain two rows, the first contains graphs of 

the 1st order emission probabilities and the second contains graphs of the reverse-

strand emission probabilities. The emission probabilities for each model are arranged 

so that those that appear similar are in the same column (1-5). The final area displays 

a key that associates the states with colours in the whole-chromosome diagrams 

Figure 3-5 and Figure 3-6. 
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Figure 3-5 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria chromosome 3 (legend continues on next page)
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Lines a, b and c display the alignments of the 3,4 and 5 state-pair models respectively. The colours are as in the key in Figure 3-4. The red 

exons belong to ‘normal’ genes. The blue exons belong to ‘bob’ genes (Bowman, Lawson et al. 1999). 
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Figure 3-6 Diagram of the alignments of the 3,4 and 5 state-pair models to Malaria chromosome 2 (legend continues on next page)
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Lines a, b and c display the alignments of the 3, 4 and 5 state-pair models respectively. The colours are as in the key in Figure 3-4. The red 

exons belong to ‘normal’ genes. The blue exons belong to ‘bob’ genes (Bowman, Lawson et al. 1999). 
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Figure 3-7 Counts for Biological Feature and States for the 2-5 Pair-State Models (legend continues on next page)
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The state labels are consistent with the labels in Figure 3-4. Each model in turn was used to label chromosome 3. The state labelling was then 

compared to the location of known genes and repeats. 
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Error! Not a valid link. 

Figure 3-8 Normalized Counts of States for Biological Features 

This bar chart displays the data in Figure 4-8 grouped by biological feature. For 

each feature, the probability of observing a given state is displayed as a bar. Exons are 

primarily accounted for by states 3±, with states 5 aligning to only approximately one 

fifth of exon sequence. No other biological feature class is predicted so clearly by any 

state. 

Error! Not a valid link. 

Figure 3-9 Normalized counts of Biological Features for States 

This bar chart displays the data in Figure 4-8 grouped by state. For each state, the 

probability of observing a given feature is displayed as a bar. States 1+, 1-, 2+ and 2- 

are specific for the Other category. States 3+, 3-, 5+ and 5- are specific to exons 

States 4+ and 4- are specific to repeats. 
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3.5 Discussion 

In order to investigate the gross structure of malarial chromosomes, we explored a 

number of different HMM architectures using the BioJava HMM APIs. The initial 

model contained just two states. It was trained to classify every base within the 

Malaria chromosome as being emitted by one or other of these states. The transition 

probabilities were set to initial values that favoured a single state emitting a long 

region of the chromosome. The belief was that this model would segregate the 

chromosome into high and low AT/GC content. After training, the emission 

spectrums of the two states were very close to being complementary. One 

interpretation of this is that the underlying biological process learned was strand-

dependant, so that in effect the model reflected a single probability distribution, but 

learned it once for each strand. 

This observation lead to the construction pair-state HMMs with pairs of states that 

emit nucleotides according to complementary distributions. The two pair-state model 

revealed that the telomeric regions were distinct from the internal chromosomal 

sequence, and that the body of the chromosome aligned to a single pair of states 

which flipped between one another. This pair of states appears to correspond to the 

positions at which Malaria utilizes one strand or the other for coding exons, predicting 

the strand with an accuracy of 90 %. This is surprisingly accurate, given the extreme 

simplicity of the model. 

The more complicated models additionally predict a feature resembling telomeric 

sequence followed by a small region of sequence that is distinguished from the rest of 

the chromosome by its very high (G + C) content (52 %). This interesting pattern is 

visible only in the genes PFC005w and PCFC1120c, which are putative members of 



HMMs for Whole P. Falciparum Chromosomes 

   110

the var family (Bowman, Lawson et al. 1999), involved in evading the host immune 

system. There is some evidence that var genes are subject to epigenetic control and 

undergo frequent intragenic recombination (Corcoran, Thompson et al. 1988), so the 

telomeric-like fragments within these genes may be the remnants of chromosomal 

rearrangement events resulting in the shuffling of these sub-telomeric regions. 

The models trained on chromosome 3 were aligned without further training to P. 

Falciparum chromosome 2, to check whether the models had learned features specific 

chromosome 3, or more general features of Malarial chromosomes. Without further 

training, the models correctly recognise the telomeres, predict the exon directions and 

also identified the telomere-associated repeats in chromosome 2. In addition, the var 

genes on chromosome 2 appear to contain a band of telomeric sequence in the 

corresponding locations to the var genes located on chromosome 3. In chromosome 2, 

the band of high (G + C) content appears not to be present. 

The blocks of telomeric base composition within, and beyond the var genes, may be 

a relic of recent recombination events between these genes and other telomeric var 

loci. Other var loci also appear to share this feature (data not shown), although these 

types of model may not be appropriate for analysing short sequences. The high (G + 

C) region found in the chromosome 3 alignments may be specific to that chromosome 

as none of the other var genes analysed shares this feature. It was not possible to train 

simple pair-state models that used more than four pairs of states, which is evidence 

that the models were not over-fitting the training data, and were characterizing real 

information about the chromosomes. 

In addition to the observation that both strands of the chromosome must be 

considered, the original model indicated that some of the processes observed were not 
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easily modelled by 0th order probabilities. This inspired the creation of the fully time-

reversible 1st order models. These models were able to learn more subtle signals that 

were associated with or were indicators of exons (+ and – strand), introns (again + 

and – strand), repeat elements and ‘other’ (assumed to be intergenic sequence). These 

models were capable of consistently learning the same signals given different initial 

training parameters and different numbers of paired states. Additionally, they were 

able to learn additional and more complex signals as the number of parameters was 

increased. The most interesting feature of the 5 pair-state model is the sub-division of 

exons into those with high and low adenine content (states 3± and 5± respectively). 

This does not coincide with any obvious properties of the genes. 

None of these models learned a state associated with the putative centromere, which 

has been predicted to lie in a region which is almost entirely (A + T) in composition 

(Bowman, Lawson et al. 1999). However, the centromere is a comparatively small 

structure that may not be distinctively different from the already extreme A/T bias of 

the chromosome in general. The 0th order model did model a very small region of 

high G+C content, but this had sequence-composition characteristics that are radically 

different to those associated with the other states. It is possible that a 1st order models 

with more states would have recognized the centromere. 

All of these models were trained using unsupervised learning techniques, and had 

no supplied data to indicate the location or type of biological features. However, all of 

these models have learned signals that are co-located with biologically significant 

structures. Given the relative simplicity of the models, this is clearly a potentially 

powerful method. 
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3.6 Future Directions 

At the time this work was done the model size was limited due to the physical 

memory required to store training parameters for large sequences. With newer 

machines with greater physical memory it has now become practical to extend this 

work to consider more states and larger sequences, such as human chromosomes. It 

would also be interesting to look at orders greater than one. However, to train models 

with large numbers of transitions and high-order emission states would most likely 

require a more sophisticated regularization framework and possibly a more complex 

representation of the HMM than simple pseudo-counts or these probability 

parameterized finites state machines can afford. 

The memory requirements for the dynamic-programming matrices used during 

training scales linearly with the length of the training sequences, and also with the 

number of states in the model. On the computer hard ware used in this study, this 

becomes prohibitive for sequences that exceed more than a megabase in length, and 

for models with more than ten states. 

One solution would be to calculate one matrix completely, and then calculate each 

column of the other in turn using the space-saving implementation of the recursion, 

adding counts associated with each completed row of the matrix as we go. However, 

one of the matrices must still be held in memory, so this still scales in proportion to 

the length of the sequence, allowing us only to double the training sequence length, or 

the number of states. 

Another solution would be to calculate the space-saving version of one recursion, 

and as each matrix row is completed, calculate the other recursion back to that point. 

Although the memory required for this is trivial, the computation will scale by the 
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square of the sequence length. This is likely to become prohibitive even quicker than 

the memory constraints of the above approaches. 

A combination of the two methods can be developed that has a computational and 

space cost proportional to the length of the sequence. Firstly, a chunk size is chosen. 

Then, the forwards recursion is calculated using the space-saving version of the 

recursions. The first matrix row encountered is then stored in a list. Each time a 

number of rows have been calculated that is a multiple of the chunk size, this is also 

stored in the list. This is done until the complete recursion has been calculated. The 

complete sub-matrix running from any stored row to the next (or the end of the 

sequence) can now be calculated as needed using the normal forward recursion, 

initialized on the stored row. The space-saving implementation of the backwards 

matrix can then be used to provide the backwards scores for each region, starting with 

the last and working towards the first, and counts can be added to the model trainer as 

normal. 

This method requires the forwards matrix to be calculated twice, and also will need 

enough memory to store the forwards matrix rows for each of the chunks. However, 

this is significantly lower than the cost of storing the complete matrix. If the largest 

sequence that can be used for training with the current method is one megabase, then 

the chunk size can be set to once per half megabase. This would allow half a million 

chunks to be processed before using half of the available memory (the other half 

being required for calculating the sub-matrices). There are no sequences that we are 

aware of that are likely to exceed the order of a million, million nucleotides. 

Therefore, we propose that this method will allow single-head HMMs to be trained on 
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any practically available sequences without exceeding readily available memory 

resources. We plan to implement this training method in BioJava in the near future. 

The investigations described in this chapter have demonstrated that the BioJava 

HMM APIs are highly adaptable to different model architectures, with potentially 

complex relationships between the values of parameters. The same implementation 

code was successfully used here for models with different numbers of states and for 

different emission alphabets. The results are numerically stable and fully probabilistic. 

These APIs have been used by others for modeling biological signals, for example, 

see (Hasan 2003). We hope that as the APIs mature, they will become used even more 

widely for different modeling tasks. 
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Chapter 4  Investigation of Recombination Rates 

Using SVMs 

4.1 Introduction 

In Chapter 3 attempts were made to divide chromosomes up into blocks with 

uniform but distinct properties using HMMs. The justification for this was the 

observation that certain biological processes appear to segregate with such patterns. 

Another way to look at chromosomes is to consider if there are associated properties 

that are continuous in nature. One property that appears to have this behaviour is the 

probability of recombination occurring between any two bases on the sequence. 

Recombination events are responsible for the inheritance of a unique, mosaic 

combination of alleles during sexual reproduction. In humans it has become clear that 

the single nucleotide polymorphisms observed are grouped into regions bounded by 

points of recombination, which have recently been mapped for Chromosome 22 

(Dawson, Abecasis et al. 2002). How much variation in recombination rates 

influences the inheritance pattern in organisms including man has to date not been 

quantified.  

The exact mechanisms that drive differences in recombination rate are unknown. It 

has been shown in some organisms that some recombination hot spots can be directly 

controlled by very small regions of a chromosome, and that the trait of recombination 

rate is heritable (Dixon and Kowalczykowski 1991). It is always possible that the 

heritable component is something other than the genome sequence, such as the 

methylation pattern. The objective of this chapter is therefore to look for a sequence 

based signal. 
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Human Chromosome 22 provides the source of data for this investigation. The rate 

of recombination has been estimated along a large portion of the q-arm of human 

chromosome 22 between some 35 genetic markers (Dib, Faure et al. 1996; Dunham, 

Shimizu et al. 1999). With the advent of a finished sequence for this chromosome, it 

is possible to compare the genetic and physical distances. As indicated by the blue 

line in Figure 4-1, the recombination rate is not uniform across the region. By plotting 

physical position along the x-axis and the ratio of genetic to physical distance on the 

y-axis, the non-linearity shows up clearly as spikes. There may be recombination rate 

enhancing and repressing signals within the chromosome that are causing this 

position-dependant difference in recombination rate. 

 The process of learning how to predict recombination rate from sequence content 

can be addressed by a supervised learning approach. The dimensionality of the data is 

extremely high if we consider all possible sub-sequences within a region of interest. 

One methodology which has been used successfully for very high dimensional data is 

the support vector machine (SVM) which is now described in detail.  
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Figure 4-1 Comparison of physical and genetic distances along chromosome 22 

The x-axis represents the genetic distance of each marker on the q-arm of 

chromosome 22 from the centromere, as measured in megabases. The pink line is the 

distance in centi-morgans of each marker from the first marker. The blue line displays 

a data-point between each consecutive pair of markers, with a height proportional to 

the ratio between the difference in the genetic distance between the two markers and 

their physical distance. Peaks in the blue graph indicate regions of relatively high 

recombination. 
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4.1.1 Support Vector Machines 

Support vector machines (SVM) (Vapnik 1995) are linear models that use dot 

products and kernel functions to perform classification and regression tasks (see 

Section 1.3.1). They are designed to estimate an affine transform from an arbitrary 

dimensional input space to a single dimensional output space. This output space is 

defined as the distance of a data item from some plane in input space. The distance of 

a point from a plane can be computed as the dot-product between the point and the 

normal of the plane, plus the plane’s constant (the smallest distance of the plane from 

the origin). All points lying within a plane satisfy the equation: 

Equation 4-1 Equation of a Plane 
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Dot-products of sums can be re-written as sums of dot-products: 

Equation 4-2 Normal to a Plane as a Weighted Sum of Vectors 
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It follows that we can represent the normal of the plane by a weighted sum of the 

training examples. Although most of the problems encountered do not have a good 

linear solution in the data-space, there is often a linear solution in some alternate 

‘feature space’ that is equivalent to a non-linear solution in the data-space. For 

example, the space of all polynomial interactions of order two or less between the two 

components of a vector describes all conics in the data-space. If there is a kernel 
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function that computes dot-products in this feature space, Equation 4-2 shows that the 

equation of the plane can be implicitly represented as a weighted sum of the kernel 

functions acting upon each data point and the data-item x . The full equation becomes 

Equation 4-3 where iβ  is the weight of the i th training example in the plane normal. 

Equation 4-3 Definition of a Support Vector Machine 

hxxkxf
i

ii −= ∑ ),()( β  

This formulation has the interesting property that although the solution is in a 

potentially large feature space, there is exactly one more parameters than there are 

training examples. The standard SVM training algorithms introduce a further 

constraint upon the parameters such that one of them is not free. This means that 

regardless of the resulting model, it can contain no more information than the original 

training data. 

When using a SVM, it is usual to vary x  for some fixed range of values for ix  and 

iβ . This can be made more explicit by rewriting the kernel function term as a basis 

function: 

Equation 4-4 Basis Functions for Kernel Functions and Data Points 

),()( xxkx ii =φ  

This allows the SVM equation to be re-written as follows. 

Equation 4-5 SVMs in Terms of Basis Functions 

hxxf
i

ii −= ∑ )()( φβ  
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If any of the weights iβ  are zero, then the associated basis function does not affect 

the result. If only a few of the weights are non-zero then the resulting function is 

relatively simple. This property is called sparsity and the data-points associated with 

the contributing basis functions are called support vectors, as for separable problems, 

when displayed graphically in the feature-space (and if the feature space is related by 

a continuous function to the data-space, in that also), they ‘support’ the learned 

hyperplane (or decision boundary in the data-space). For the special case of pair-wise 

classification, the support vectors are the data points that lie on the boundaries of the 

convex hulls of the two sets of data in feature space. 

There are several methods available to estimate the parameters of the hyperplane 

( )h,β  given an error function. We found the most efficient method currently 

available to be the SMO algorithm (Platt 1998). This method optimises for pairs of 

support vectors at a time, and eventually this leads to the complete solution being 

found. For problems with appreciable sparsity, this method takes time approximately 

proportional to the training set size. Once trained, SVMs are computationally very 

cheap to apply to new data items, assuming that the kernel function is easy to 

compute. 

4.1.2 BioJava APIs for Support Vector Machines 

Support for SVMs is provided by BioJava. Their implementation builds upon the 

formulism discussed in Section 1.3.1 by providing a Java interface called 

KernelFunction that computes the kernel function for any two Java objects. There 

are now a number of other publicly available SVM implementations, such as SVM-
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fu32. However, unlike many of the other implementations, BioJava allows arbitrary 

kernel functions to be used. One of the benefits of this flexibility is that we can 

manipulate the data inside the kernels, for example normalizing vectors onto a unit 

sphere or scaling some subspace. We have also observed that for complex kernel 

functions, the performance of the BioJava implementation does not degrade. 

4.2 Methods 

4.2.1 Searching for a Signal Affecting Recombination Rates Using a Word-

Frequency Kernel Function 

Under the assumption that there are sequences within chromosomal DNA that affect 

recombination rate, and given example sequences known to have high or low rates, it 

should be possible to discover some metric of the sequence which is predictive of its 

recombination rate. It is possible that recombination rate is mediated by very simple 

sequences (e.g. poly-A or poly-GC), or relies upon very complex patterns (e.g. entire 

promoters or histone-binding regions). Either way, it is likely that part of the signal 

will correlate with scores collected by counting word frequencies (such as the 

frequencies of all octamers). 

Once the sequence data is transformed into a format that is equivalent to counts 

over a finite set of properties, it becomes suitable data for processing with a Support 

Vector Machine using a simple kernel function. The transform from sequence to 

counts can be considered to be equivalent to a data-to-feature space transform, 

inducing a new kernel function that both projects sequences to counts and then 

calculates the dot-product of the counts. 
                                                 

32 SVM-fu is distributed through the http://www.ai.mit.edu/projects/cbcl/ web site 
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In previous studies with word-count based kernel functions, greater accuracy has 

been achieved by normalizing the counts prior to calculating the kernel function as it 

is usually the relative proportion of the different words and not the absolute count that 

is informative, and normalization both controls for document size and numerical 

instabilities introduced by large differences in size between the magnitudes of training 

data (for example, see example training data accompanying svm-light33). However, 

this normalization can actually be performed within the kernel itself (Equation 4-6) as 

the process of normalizing each input vector is itself a transform from some data-

space to a feature space (projection of all points onto a unit hyper-sphere). 

In the cases when the data-space is very large and the cost of normalizing this is 

prohibitive but the un-normalized kernel is cheap to compute, the normalizing kernel 

saves both space and time. It potentially makes reading the computer code easier as 

the entire data-to-feature transform is represented in one place, the kernel, rather than 

being spread amongst multiple pre-processing steps. If repeatedly calculating the 

terms aa,  and bb,  is found to be expensive then these values can be cached. By 

applying an object-oriented design methodology, we can implement a kernel that 

delegates to an underlying kernel function for all values not known and caches the 

results for all terms of the form xx ⋅  for quick access. This is the approach taken in 

the BioJava toolkit, and we have found that it drastically decrease the computational 

load of kernel functions such as the normalizing and radial basis kernels that require 

some values to be repeatedly calculated. 

                                                 

33 See http://svmlight.joachims.org/ for an example of using normalised counts for classification 
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Equation 4-6 The Normalizing Kernel 
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The family of kernel functions used in this study can be represented as: 

Equation 4-7 SuffixTree Kernel 
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Because of how the suffix trees are constructed, they will not contain nodes for zero 

counts. By definition, if a given sub-string is absent from the entire sequence, then all 

other sub-strings containing that string will also be absent. For this reason, the nodes 

of the tree are sparsely populated (only nodes that store non-zero counts are 

instantiated). Thus, the index i  in Equation 4-7 need actually only loop over values of 

dΩ  that are populated in both a and b. 

The depth function term )(⋅df  allows the counts associated with strings of a 

particular length to be given greater or lesser weight. For example, a depth function 

that always returns 1 will leave the counts un-scaled (uniform depth function). A 

depth function that returns non-zero for one value and zero for all others will have the 

effect of only including words of a single length. A depth function of the form dΩ  

will make longer matches more significant than shorter ones, taking into account the 

fact that they are less likely by chance (normalizing depth function). 
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In principal, the depth functions are a subset of functions that return a scale factor 

for each i  that is purely a function of its length. In cases when the sequence bias is 

significantly divergent from uniform, it may be worth re-defining Equation 4-7 in 

terms of a per- i  scaling function instead of a depth function. However, we considered 

that in this case any increased accuracy obtained would be off-set by the need to 

optimize the scaling function, and any associated computational overhead. 

4.2.2 Construction and Training of an SVM for Predicting Recombination Rate 

The SVM used was constructed with the normalized suffix-tree kernel as described 

above. Both the uniform and normalizing depth functions were evaluated. The 

maximum tree depths were fixed from 1 to 9 for the uniform model and 1 to 8 for the 

normalized model. The models were trained using the SMO method for classifiers as 

at the time the BioJava implementation of SVM regression that was not numerically 

stable.  

All clones in the partially finished Human chromosome 22 were extracted, together 

with their approximate coordinates within the chromosome. These were fully repeat-

masked for both simple and complex repeats using repeat masker34. The chromosomal 

locations of all 35 markers were used. The high-recombination rate region within 

approximately 18-21Mb and the low recombination rate region within approximately 

21-17Mb were used as the positive and negative training sets respectively. All clones 

from these regions were used for training. All clones outside of this region were 

included during the prediction phase. 

                                                 

34 se here for an online reference for repeatmasker, currently unpublished:  

http://ftp.genome.washington.edu/RM/RepeatMasker.html 
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4.3 Results 

4.3.1 Recombination Rates Predictions 

In no cases could any of the models with a depth of less than four be trained. This 

indicates that the information necessary to predict recombination rates relies upon 

sequences of at least four in length. To bin sequences into two categories should only 

have required one variable, or the ratio of two variables, so the tree depth of 1 or 2 

should have been sufficient to trivially separate them if the signal was purely based 

upon low-order sequence bias (such as AT/GC ratio). 

For the models with maximum depth 4 and upward, the SVM produced an output 

centred on 0.0, indicating that the model is not consistently predicting items as being 

positive or negative. During training, the procedure attempts to predict a function such 

that all negative examples have a value less than –1.0, and all of the positive examples 

have a value of greater than +1.0. All items that are within the range –1.0 and +1.0 

will be support vectors. If unseen data has an output between –1.0 and +1.0, this 

indicates that the SVM considers this data-point ambiguous, but it still attempts a 

classification that can be read by looking at the sign of the output. Values of 

magnitude larger than 1.0 indicate that the SVM was confident in its assignment. 

The models trained using the uniform counts (Figure 4-2, Figure 4-3, Figure 4-4) 

learned functions that model the training data well, giving outputs around +1 for the 

high recombination regions and -1 for the low recombination regions. The higher 

depth models (6-9) produce SVM outputs that are noticeably closer to zero and less 

spread than the lower depth models. However, the general shapes of these curves (as 

judged by the 10 point moving average) are very similar. Arguably, the output 

shadows the recombination curve, particularly around the peak at 10Mb, and the dip 
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at 30Mb. However, it also predicts a recombination-poor region at 5Mb. The 5Mb 

feature may be biologically significant but not visible in the recombination plot due to 

marker density, or may be an artefact. 

The models trained using length-normalized counts, Figure 4-5 Figure 4-6, Figure 

4-7) are less prone to wild fluctuations (compare the scattering visible in Figure 4-2 

and Figure 4-5), which may indicate that the predictions are more robust. In addition, 

the dynamics of the predicted recombination frequencies are more similar to the 

actual rates (Figure 4-6, Figure 4-7). Again, as the depth of the suffix-tree is 

increased, the resulting function becomes smoother, closer to zero and fluctuates less 

wildly. 

4.3.2 Cross-Validation 

To assess how robust the predictions of the SVMs are with respect to the training 

data, the sequences within the positive and negative training sets were partitioned into 

three sets randomly. Three models were trained, one for each partition, and then tested 

by predicting the membership of the other two partitions. This 3-way jack-knifing was 

performed for all depths in the normalized models using training methods which 

where otherwise identical to those used above. The best accuracy of 80 % (random 50 

%) is achieved for a depth of 5, with accuracy becoming worse for greater depths. 

The resulting models appeared to be memorizations of the training data, with very 

few example sequences not included as support vectors (between 1 and 4 training 

examples left out). They do seem to be consistent among one another (depth of 5 

being the most reproducible), with prediction accuracies that are consistent, both 

inside the training data (Figure 4-8), and across the entire chromosome (Figure 4-9). 
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However, over all, the chromosomal predictions are less informative of recombination 

rate. This is as to be expected with less training data. 
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Error! Not a valid link. 

Figure 4-2 Total Results of Training the SVM using Uniform Counts 

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed. 

Error! Not a valid link. 

Figure 4-3 Moving Average for Uniform Counts models of Depth 4-6 

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of 

recombination is also displayed. 

Error! Not a valid link. 

Figure 4-4 Moving Average for Uniform Counts models of Depth 7-9 

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of 

recombination is also displayed. High LowTest Test 

High LowTest Test
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SVM Trained on Normalized Rates
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Figure 4-5 Total Results of Training the SVM using Normalized Rates 

SVM predictions are displayed as points on the scatter graph. For comparison, the recombination rate is also displayed. 

Test Test High Low
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SVM Trained on Normalized Rates (4-6)
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Figure 4-6 Moving Average for Normalized Rates: Depths 4-6 

10 point moving averages of the SVM predictions are displayed for models with depths of four, five and six. For comparison, the rate of 

recombination is also displayed. 

Test High Low Test
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SVM Trained on Normalized Rates (7-8)
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Figure 4-7 Moving Average for Normalized Rates: Depths 7-9 

10 point moving averages of the SVM predictions are displayed for models with depths of seven, eight and nine. For comparison, the rate of 

recombination is also displayed. 

Test TestLowHigh
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Reproducability Under 3-way Jack-knifing
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Figure 4-8 Accuracy for Recombination SVMs Under 3-Way Jack-knifing 

The percentage accuracy for each group of jack-knifed models is displayed as a bar. The y-axis displays the percentage accuracy of each group 

of jack-knifed models. Error bars represent two standard deviations. The bar representing 5-mers has the greatest height. 
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Predictions from the 3 Jack-Knife Models
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Figure 4-9 Predictions Across the Entire Chromosome from the 3 Jack-knife Models for Depth of 5 
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4.4 Discussion 

It is clear that the normalized rates kernel appears to be more robustly predicting 

recombination rates than the uniform counts kernel. This exposes one of the 

interesting properties of SVMs when dealing with data containing errors. The relative 

magnitude of each data-space basis (here each word) acts in the spirit of a prior over 

how likely this basis is to form part of the normal to the hyper-plane. In theory, the 

training method for SVMs should allow these affects to be removed. In practice, with 

incomplete and stochastically sampled data sets it seems to be important to try to 

make sure that the raw data is presented in such a way as to normalize out any biases 

(such as normalizing vectors, pre-normalizing each dimension and the like). It is 

possible that the RVM methodology (explored in Chapter 5 for a different type of 

problem) would be more robust for this kind of data as during training it makes an 

estimate of the degree of certainty with which parameters can be set. This would have 

the effect of removing dimensions that sharply but inconsistently affect the predicted 

value regardless of their magnitude. SVMs will tend to be locked into local minima 

associated with these sharply varying dimensions, as they are greedy algorithms (they 

search for a global maximum by hill climbing). 

The jack-knife results indicate that the signal being learned is not strongly 

dependant on the training data. This is evidence that these models are learning real 

signals. It is interesting that the 3 jack-knife models appear to be memorizing their 

training sets but still generalize in comparable ways to each other. Because the 

function learned is represented as a sum of normals to a plane (each support vector 

representing one of these normals), different combinations of support vectors and 

associated weights may be constructing a very similar hyper-plane. It would be 

interesting to attempt to calculate the total normal to the hyper-plane in each case and 
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in the case where all training data is used to find the short sequences that are actually 

informative. This has not yet been attempted, as the raw data has gone though several 

data-to-feature space projections before arriving in the space for which the hyper-

plane is constructed and it is not clear how to represent these transforms in terms of 

raw word counts. 

Recombination hot spots are still not, to our knowledge, fully explained or 

predictable by any method available. However, recently there has been evidence that 

poly GT/AC tracts may contribute to differences in recombination rates (Gendrel, 

Boulet et al. 2000; Majewski and Ott 2000). In the light of this, it would be worth re-

running the analysis with the now finished and un-masked chromosome 22 sequence. 

The masked sequences used here almost certainly had most of this signal screened 

out. An important message to this story is that ‘junk’ DNA may well have 

functionality within the genome, and should not be discarded out-of-hand. The 

genome contains sequences with many functions, many of them which are not directly 

related to coding for valid proteins.  
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Chapter 5  RVMs for Classification of Expression 

Data 

5.1 Introduction 

The phenotypic behaviour of a cell is in large part due to the activity of its proteins. 

These are translated from mRNAs, which are have been transcribed from active 

genes. There are many levels at which the activity of proteins can be regulated, 

however it has generally become accepted that measuring mRNA levels gives a good 

insight into the relative levels of gene activity. The results of simultaneous 

measurements of large numbers of mRNA levels, made in a single experiment, will be 

referred to as ‘expression data’. 

It has become possible to collect expression data systematically using methods such 

as quantitative PCR (Buck, Harris et al. 1991; Nedelman, Heagerty et al. 1992), array 

technologies (Schena, Shalon et al. 1995; Lashkari, DeRisi et al. 1997; Shalon 1998) 

and DNA chips (Guo, Guilfoyle et al. 1994; Hughes, Mao et al. 2001). The 

availability of complete genomes and fairly complete gene annotation has enabled the 

construction of DNA probes to represent most expressed mRNAs in a particular 

population of cells. Many thousands of these probes can be arrayed onto a single 

microarray or DNA chip, making it possible to capture a snapshot of the expression 

state of a cell in a single measurement. 

Given the availability of this measurement technology, it becomes possible to take 

snapshots of a range of conditions of a population of cells and, by processing the 

results, compare the expression levels of different genes under different conditions. 

Examples include comparing the natural state of the cell with its state during 
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conditions of metabolic stress, heat shock or disease. These measurements generate 

large volumes of data that can contain large statistical errors as a result of limitations 

inherent to the experimental technologies. Errors may also arise from stochastic 

variations in the different cell populations under study, due to the inherent dynamics 

of complex systems (for example, see (Guillouzic, L'Heureux et al. 2000; Smolen, 

Baxter et al. 2001) for discussions of ways in which the dynamics of gene expression 

are inherently complex systems). 

For many cellular processes, we have a fair understanding of the ways groups of 

genes are co-regulated as a result of biochemical, genetic and other analysis. 

Expression data gives us the opportunity to systematically extend this understanding 

to the whole genome, showing previously unknown regulatory relationships. The 

expectation is that genes which appear to be co-regulated are likely to be involved in 

the same cellular processes. One way of viewing this data is from the point of view of 

genes, for example, the level of a gene during sporulation (Chu, DeRisi et al. 1998). 

Another way is to classify conditions, i.e. to match a particular cellular expression 

snapshot to a particular cancer condition (Alizadeh, Eisen et al. 2000; Ramaswamy, 

Tamayo et al. 2001). 

The standard method for processing expression data is currently cluster analysis 

(Eisen, Spellman et al. 1998). This describes the dynamics of expression data as a 

hierarchical model, either in terms of similar experimental samples given genes, or 

similar genes given a set of experiments. Many of the major signals that emerge from 

naïve clustering are strongly correlated with histological features, for example in 

different areas of the gut (Bates, Erwin et al. 2002), or different developmental stages 

(Mody, Cao et al. 2001). Sometimes, by selecting sub-trees of genes, sets can be 
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found that co-segregate with a qualitative or quantitative observation. However, this is 

far from being an automated task, relying on human concepts of relevance and 

relatedness. 

One practical application of expression data analysis using machine learning 

techniques has been the classification of cancer cell types from different patients. 

Different cancer cell types can appear very similar, but may have very different 

survival rates which may require different treatments (Kihara, Tsunoda et al. 2001; 

Liefers and Tollenaar 2002; van 't Veer, Dai et al. 2002). In (Ramaswamy, Tamayo et 

al. 2001) SVMs were used to construct a classifier for the expression patterns of 14 

distinct tumour types from 218 samples. Each expression data sample included 

measurements from 16,063 genes. The SVM-based classifier could then be used to 

classify the tumour type of any new sample with a high degree of accuracy (78%). 

They were also able to identify which genes contributed most to the SVM model. 

SVMs were able to carry out the above classification as a result of the large 

expression differences between cancer cell types. A much more difficult problem is to 

automatically extract information about changes in gene expression as a result of a 

much subtler difference, such as in response to drug treatment. The subtler effects 

tend to be masked by the differences between the cell lineages that have been treated. 

Perou (Perou, Sorlie et al. 2000) describes a series of experiments measuring 8,102 

gene expression levels in human breast cancer cell lines and biopsy samples. One sub-

set of the samples are biopsies taken from patients with tumours before and after 

treatment with the anti-cancer drug, doxorubicin. The expression data for 20 before-

after pairs were clustered using hierarchal clustering. All but three of the sample pairs 

clustered together as siblings in the tree. This indicates that the changes in gene 
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expression due to treatment are not reliably detected by clustering against the 

background of the cell lineage. In a further paper (Brenton, Aparicio et al. 2001), 

cluster-analysis could be used to identify sub-types of breast tumours. However, this 

required much larger amounts of data and some human intervention. It also was 

unable to address the issue of what effect the doxorubicin had upon gene expression. 

Typically, when modelling expression data, the aim is both to perform some 

classification task, and also to look at the resulting model and identify genes that 

contribute to the model, with the hope that they will provide biological insight. In this 

chapter the use of SVMs and RVMs is explored to extract information about the 

effects of doxorubicin. We both evaluate whether these methods are able to generate 

models that can classify micro-arrays into pre- and post-treatment with doxorubicin, 

and also to decide if the models they produce are consistent with the known biological 

processes, and therefore could be used in other situations to identify novel relevant 

genes. 

5.2 Cellular Responses to Doxorubicin 

Doxorubicin causes cellular apoptosis by several routes. The primary action of 

doxorubicin activity is due to intercalation into double-stranded DNA. This both 

prevents the normal UV-repair pathway (nucleotide excision repair) and causes 

single-strand breaks, both of which lead to an increase in the rate of DNA repair 

enzyme activation. Normally, topoisomerase II relaxes tension due to supercoiling by 

scanning DNA. It then breaks one of the two phosphate backbones, allows the DNA 

to relax and then repairs the resulting single strand break. If instead it binds to an 

intercalated doxorubicin molecule, the single-strand break is made, but is not repaired. 

In this case, the topoisomerase II protein remains covalently attached to the broken 
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strand (Tewey, Rowe et al. 1984). The activity level of the DNA repair response is 

measured by the cell, and if it increases above a critical threshold, the cell enters an 

apoptotic response. 

Cell lines that are resistant to doxorubicin often share a common set of mutations. 

Topoisomerase II activity can be severely impaired (Potmesil, Hsiang et al. 1988). 

This is consistent with the role of this gene in the drug’s mechanism of action. 

Resistant cell lines frequently express multi-drug resistance proteins, such as P-

glycoprotein (P-gp), and multi-drug resistance associated protein (MRP) (Grandjean, 

Bremaud et al. 2001) which expel the drug from the cells. Impaired systems for 

maintaining levels of small ions, such as Na+ and K+ (Lawrence 1988; Lawrence and 

Davis 1990) also seem to confer a measure of resistance. It is possible that these small 

ions are required to enhance the stability of the complex between topoisomerase II 

and the DNA. Resistant cells often have impaired Jun-Fos pathways (Pourquier, 

Montaudon et al. 1998). During apoptosis, the Jun-Fos transcription factor 

heterodimer is activated via a signal-cascade. This in turn leads to the altered 

expression of gene products, activating the signal-cascades mediating the cellular 

apoptotic pathway. If either Jun or Fos gene is mutated to loss-of-function mutants, 

then is apoptosis pathway can not activate. 

5.3 Generalized Linear Models 

Although SVMs have been used successfully to distinguish between tumour types 

where there have been large numbers of samples available as described above 

(Ramaswamy, Tamayo et al. 2001), previous implementations guarantee that the 

SVM will find a solution even if there is insufficient evidence to support it. The 

training algorithms for SVMs search for the globally ‘best’ separating hyper-plane, 
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and give no indication of the range of hyper-planes that perform similarly well, even 

if they have a radically different plane normal. This brings into question their utility 

for discovering new expression relationships in small or noisy data-sets, as it becomes 

difficult to distinguish between results that are significant, where all ‘good’ hyper-

planes have very similar normal vectors, and those that are correspond to the ‘best’ 

but uninformative solution, where a wide range of normal vectors would perform 

nearly as well. In this chapter, we apply a Bayesian approach to training that is able to 

address this. 

In Section 4.1.1, we discussed how SVMs can be represented as a sum of basis 

functions (Equation 4-5). The general class of models that take on this form are called 

Generalized Linear Models (GLMs) (Nelder and McCulagh 1983). During training, 

the selection of the weights is just a scaling factor for each subspace, stretching the 

dimensions that increase the accuracy of the model, and shrinking those that are 

irrelevant. From this point of view, the basis functions each define a dimension in the 

feature space under consideration. 

Some of the basis functions will be highly correlated with one another. This means 

that using more than one of these will contribute little or no additional information. 

Other basis functions may simply be uninformative to the problem in hand. By 

defining some measure of the information contributed to the model by a given basis 

function, and the additional complexity of including that function, it is possible to 

make a trade-off between the simplicity of a model and how well it fits the data. 

Bayes Theorem states how the probability of simultaneously observing two events 

is related to the probability of observing one event in isolation and the probability of 
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observing the second event given that we already know that the first one has occurred. 

Let us consider the case of observing a model, m  and data, d . 

Equation 5-1 Bayes Theorem 
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This equivalence can be re-arranged to express one of the conditional probabilities 

in terms of the independent probabilities and the other conditional probability. It is in 

this form that Bayes Theorem is most often presented. 

Equation 5-2 Rearrangement of Bayes Theorem 
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dp
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dmp =   

The terms in this form all have names in Bayesian statistical analysis. 

Equation 5-3 Bayes Theorem in Words 

evidence

priorlikelihood
posterior

⋅
=  

In the case of models and data, the posterior is the probability of our model (and 

associated parameters) given the data. The likelihood is the probability of observing 

the data given our model. The prior is the degree of belief we have that the model is 

sensible. The evidence is the probability of observing our data given any possible 

model, which in practice means the sum or integral of the probability of observing the 

data over all possible values for all parameters of the model. 

One method for training GLMs which makes use of Bayesian statistics is the 

Relevance Vector Machine (RVM) (Bishop and E. 2000; Tipping 2000). In the case 
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of RVMs, the prior is chosen in such a way that it favours models where many of the 

weight parameters have values near to zero. For a particular parameter set to have a 

high posterior probability, the prior “cost” of any non-zero weights must be balanced 

by an increased value of the likelihood. If a particular basis function does not 

contribute to the likelihood sufficiently, then a greater overall posterior can be 

achieved by setting its weight to zero. RVMs can be trained by selecting parameters 

that maximize the posterior (Tipping 2000), or by fitting a variational approximating 

distribution to the posterior (Bishop and E. 2000). 

A pure Java implementation of the RVM method has been implemented (Down 

2003). This implementation uses patterns similar to the BioJava SVM implementation 

(Section 4.1.2) to insulate the optimiser from the data. An interface BasisFunction is 

provided that has a single method that returns the value of the basis function for a 

Java object. There is also an interface BasisSource that represents an iterater over a 

set of basis functions. The known implementations of RVMs (Bishop and E. 2000; 

Tipping 2000; Down 2003) all have space and time costs that scale very badly with 

the number of basis functions being considered. The API for Down’s method employs 

the ‘small working set’ heuristic to work around this. During training, many weights 

become sufficiently close to zero to be discarded within a very few cycles of 

optimisation. This is exploited by setting a high and low water-mark for the set of 

basis symbols being considered. Initially, basis symbols are obtained from the 

BasisSource until the high water-mark is reached. The optimiser then runs until it 

has discarded enough basis functions that the low water-mark is reached. At that 

point, basis functions are added until the high water-mark is again reached, all 

parameters are re-initialised and the optimisation is resumed. This process is 

continued until the BasisSource has no more basis functions available. At this point, 
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the optimiser runs until the model converges. This heuristic keeps the cost of training 

a model with increasing numbers of basis functions proportional to the total number 

of basis functions that must be considered, and some function of the working set size. 

In practice, this makes some problems tractable that would be otherwise intractable. 

The RVM API of Down’s implementation interacts with the BioJava APIs for 

SVMs. Where appropriate, interfaces for representing training data and models are 

reused. In addition, there is adaptor code that allows a kernel function and a set of 

training objects to be viewed as a BasisSource over the implied basis functions (see 

Equation 4-4). In practice, very few lines of code need be changed to switch between 

analysing a data set with SVM and RVM methods. 

5.4 Micro-array Classification Using a Support Vector Machine Implemented as 

a Linear Kernel RVM 

To investigate the behaviour of SVMs when applied to a hard expression analysis 

problem, we applied them to the dataset described above (Perou, Sorlie et al. 2000). 

The BioJava implementation of SVMs was used to construct a classifying support 

vector machine using the dot product (linear) kernel function to evaluate expression 

data. The kernel function was implemented so that the expression data was 

represented as an array of the log of the ratio between background and experimental 

sample levels. This was trained using the complete set of expression data described in 

Section 5.1 using the SMO training algorithm. The resulting model contained nearly 

all micro-arrays as support vectors. This suggests that the model was effectively 

memorizing the training set. We therefore decided not to further investigate the use of 

classically trained SVMs for this task, as they seem to be unable to model this 

problem. 
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To investigate whether the SVMs were extracting any significant data from the 

expression data-set, or just memorizing it as suspected, we applied an RVM approach 

(Section 5.3). An RVM was constructed with a BasisSource using the above training 

data and kernel function to generate basis functions (See Section 4.1.1, and in 

particular Equation 4-4 and Equation 4-5). The RVM was then trained using the 

complete set of micro-arrays. Given these basis functions, the RVM becomes 

equivalent to a Bayesian interpretation of the SVM. This RVM rejected all basis 

functions during training. This indicates that none of the SVM solutions using a linear 

kernel function robustly describes how to separate the pre- and post-treatment 

samples. 

This negative result does not necessarily mean that this task could not be performed 

with either an SVM or an RVM using linear kernel functions, but that there was 

insufficient training data to support any parameters. By working with larger training 

sets, or more complex kernels, it may be possible to apply a kernel RVM to this data. 

However, this result does indicate one of the main benefits of RVM training over 

SVMs in that the RVM was able to indicate that no reasonable model could be 

produced. The SVM produced the best model that it could, which was of poor quality, 

but without any indication to the user that this was the case. Any predictions made on 

the basis of genes contributing to the separating hyper-plane are likely to have been 

incorrect, but there would have been no way to know this purely from the SVM 

results themselves. 
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5.4.1 Framework for Generalised-Linear-Models amenable to Expression Arrays 

Given the failure of the linear kernel model description used above to discover 

expression differences resulting from treatment using doxorubicin, we now present an 

alternative way to model the problem. 

An individual array measurement can be considered as a tuple of measurements 

with one dimension per spot on the array. This is a convenient interpretation for 

database storage and cluster analysis. Another point of view considers each spot to be 

the result of evaluating a probabilistic function on the particular sample (the log of the 

ratio of measured expression levels in experimental and background samples). This 

interpretation takes into account that the expression level measured is subject to noise. 

It transforms individual measurements (and by extension the individual genes) into 

entities amenable to hypothesis-directed reasoning using the RVM framework 

(Section 4.1.1), as now each measurement for each gene can be treated as the value of 

a basis function. 

Consider a set of genes, G , a set of micro-arrays, A , and the function that retrieves 

the level for a gene on an array, ),( AaGgl ∈∈ . For any particular fixed g , there 

exists a conditioned version of this function, which we shall call )(al g . A GLM can 

then be constructed where the set of functions being evaluated is the set (.)gl  for each 

gene. This model produces an output based upon a weighted sum of the log ratios of 

expression levels of multiple genes that is potentially predictive of some process. 

Given any pre-defined classes by which the array measurements can be classified, a 

GLM can be estimated to perform that classification. If the sparse training approach is 

taken, then the hope is that the model will tend to extract key genes that have a type of 
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response that helps in the classification task, and will tend to discard all uninformative 

genes. This has the beneficial property of giving back a list of genes that are 

representative of each distinct response to the stimulus that aids in the classification 

task. If multiple genes share the same or similar expression profiles, the sparsity 

properties of the trainer will tend to find the statistically most representative member 

of that group and discard all others. For some uses of the method, such as where a 

complete list of significant genes would be useful (including those contributing 

similar information), this property is a disadvantage. In these cases, some further 

analysis of the data will be required to recover these other genes from the training 

data.  

5.4.2 RVM Analysis Using the Small Working Set Heuristic 

To evaluate this approach, a training set was constructed containing all of the before 

and after treatment measurements introduced above. The aim was to classify micro-

arrays into those before and after doxorubicin treatment. An output of 1.0 would 

indicate that the method was certain that it was an example of ‘before’. An output of 

0.0 would indicate that the method was certain that it was an example of ‘after’. A 

value between these two values indicates the degree of confidence that the sample 

belongs to one class or the other. 

The number of basis functions to be evaluated was very large (one for each of the 

8,102 genes). It was not practical to train the RVM with all of these simultaneously, 

so the small working set heuristic, described above (Section 5.3), was employed. The 

high water-mark was set to 90, and the low water-mark was set to 75. As long as the 

total number of basis functions needed for the task is below the low water mark, we 

could expect the result to be unaffected. 
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To check whether the heuristic altered the result the training was performed three 

times, using different permutations of the training data and of the order that the 

functions were added. The three models produced were identical (the same genes with 

weights within the bounds of numerical precision), and gave the model shown in 

Table 5-1. This suggests that, with this data set, the small working set heuristic works. 

 

Table 5-1 GLM for all before-after pairs (to 4 s.f.) 

Accession Weight  Gene Name Description 
AA017544 -3.269 RGS1  Regulator of G-protein signalling 1 
T72398 4.982 TDO2 Tryptophan 2,3-dioxygenase 
AA040944 -6.299 FOS  Transcription factor involved in the 

apoptotic pathway 
 

This model correctly classifies all of the training examples using the log-ratios of 

just three genes. Of course, training and testing on the same data-set is not robust for 

assessing how well models generalise, but the simplicity of the model suggests that 

this approach may work. Additionally, one of the three genes used is FOS, which is 

known to be involved in the apoptotic pathway activated in response to doxorubicin 

treatment (see Section 5.2). 

To assess how reproducible these results where, we performed a “leave one out” 

cross-validation. For each of the forty micro-arrays, a prediction was made using a 

classifier trained on the remaining thirty-nine micro-arrays. The accuracy rate of the 

model for unseen data can then be estimated as the average accuracy of these forty 

predictions. 
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Of the 40 different models generated, 29 predicted the unseen item correctly. This is 

an accuracy rate of 72.5%, compared to the expected rate of 50%. All of the correct 

predictions typically had extreme probabilities (< 0.2 or > 0.8) where as the incorrect 

predictions were all relatively close to 0.5 (> 0.3 and < 0.7). 15 models used three 

genes, 23 used four genes and 2 used five genes. Across these models, a total of 22 

different genes were used. Every model contained AA040944 (FOS). 22 of them used 

AA027832 (HBA2) and 17 used AA017544 (RGS1). These results are summarised in 

Table 5-2. 

In the forty models generated by cross-validation, several of them use one of two 

alternative probes for the gene TOP2A. The degree of reproducibility or otherwise of 

the levels associated with those two probes can be taken as an indication of the quality 

of the data-set. Figure 5-1 shows a scatter plot with one data point for each of the 40 

micro-arrays, and x, y co-ordinates given by the level of expression for the two 

TOP2A probes in a given micro-array. The levels have an R2 value of 0.68, indicating 

that although they are correlated, there is a considerable degree of independent 

variation. 

A summary of the expression data for these probes is displayed in Figure 5-2. As is 

seen from the graph, none of the probes used in the models have clearly separate 

distributions before and after treatment. FOS, which is used by every model generated 

during cross-validation, shows differences between the two groups, as does JUN, and 

to a lesser extent, both of the TOP2A probes. However, it should be clear from this 

that there is no one unambiguous indicator gene. 

Given that the cross-validation procedure produced a range of different basis 

functions with a range of weights, it is interesting to consider what linear models can 
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be generated by combining these basis functions and their weights. This should give 

us some further indication of how important particular basis functions are. 

One linear model can be obtained by taking the average weighting of each probe 

across all of the cross-validation models in which it takes part. The result of applying 

this to the micro-arrays is presented in Figure 5-3 as the scores produced prior to 

conversion to probabilities. This model misclassifies only four micro-arrays, giving a 

90% accuracy rate. 

This model does not take into account that some probes are present in fewer 

models. It is possible to reflect this by averaging the weights across all models, using 

a weight of zero where the probe is not used in a particular model. The result of 

applying this to the micro-arrays is presented in Figure 5-4. This model correctly 

classifies all of the micro-arrays. However, the associated confidences are lower, as 

demonstrated by the reduced magnitude of the outputs. The increase in accuracy of 

this model supports the idea that basis functions which are frequently present in 

different models are more informative to the classification task. 

Using the contribution of just FOS to the model in Figure 5-4 (FOS level multiplied 

by its weight), all of the samples taken after treatment can be correctly identified, but 

11 out of the 20 samples taken before treatment are misclassified. Similarly, using just 

the contribution of TDO2, all of samples taken after treatment can be correctly 

identified, but 4 of the samples taken before treatment are incorrectly predicted as 

being after treatment. This contrasts strongly with the behaviour of the contribution of 

the third component RGS1, which uniformly predicts all samples as belong to the 

before treatment class, with just one before and one after treatment sample predicted 

as after treatment. Each of the models generated during the cross validation procedure 
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contains exactly one probe that uniformly predicts all microarrays as belonging to one 

class (data not shown). We propose that the RVM is using these uniform predictors as 

a calibrated model of the level and variation inherent within this data set. 

The aim of this RVM approach is to classify microarrays into two classes using the 

expression levels associated with each gene within each microarray. This 

methodology produces models that can be readily interpreted in terms of the 

contribution of each gene. However, it is not the primary aim of this method to 

indicate discriminating genes. A student t-test is more appropriate as a means for 

identifying genes with differential expression levels. This test calculates the 

probability that two sets of numbers have normal distributions that are distinguishable 

from one-another. 

The student t-test scores associated with the range of levels in the before and after 

treatment groups is presented in Table 3-2. The column labelled TP contains the t-test 

scores for the two sets of microarrays taking into account the pairing between samples 

taken from the same patient before and after treatment. This information was not 

available to the RVM, and the student t-test scores assuming no such pairing are 

contained within the column labelled TS. 

The probes for FOS and JUN have values that are extremely significant, indicating 

that there is very strong support for the hypothesis that the microarray levels before 

and after treatment come from different distributions. Generally, the t-test scores 

(both TS and TP) do not show any clear trend related to the rank of the probe in the 

table, or with the use of the probe as a uniform predictor. Although many of the 

probes used in the cross-validation models do have significant t-test scores, some do 

not, both at the 5 % and the 1 % significance level. Interestingly, many of the TP 
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scores are actually worse than the associated TS scores. It would be expected that in a 

system with low noise, the extra information provided by the sample pairing would 

lead to systematically greater significance. The presence of counter-examples may 

indicate that when considering individual genes, the level of noise in this data in some 

cases obscures the signal provided by the before and after treatment pairing. 
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Table 5-2 Genes used by cross-validation models 

All information taken from the data files providing the expression data. Accession 

values of (*) indicate that the spot had no associated probe. TS is the value of the 

student t-test assuming the before and after samples to be unpaired. TP is the value of 

the student t-test taking into account that before and after samples are paired. 

Probe Accession Symbol Uses TS 
(%) 

TP 
(%) 

Description 

9016 AA040944 FOS 40 0.00 0.00 v-fos FBJ murine 
osteosarcoma viral oncogene 
homolog 

8530 AA027832 HBA2 22 4.89 2.95 Hemoglobin, alpha 2 
243 AA017544 RGS1 17 1.11 1.38 Regulator of G-protein 

signalling 1 
2114 AA454668 PTGS1 11 0.24 0.07 Prostaglandin-endoperoxide 

synthase 1 (prostaglandin 
G/H synthase and 
cyclooxygenase) 

6333 N50845  11 5.74 9.64  
5635 *  8 0.60 0.39  
6077 AA425316 LOC51700 7 1.78 2.02 Cytochrome b5 reductase 

b5R.2 
7399 AA026682 TOP2A 5 0.71 0.60 Topoisomerase (DNA) II 

alpha (170kD) 
3903 *  3 5.13 4.39  
3901 *  2 0.36 0.45  
5284 T72398 TDO2 2 7.33 0.83 Tryptophan 2,3-dioxygenase 
6223 *  2 15.48 16.19  
6494 W96134 JUN 2 0.00 0.00 v-jun avian sarcoma virus 17 

oncogene homolog 
7956 T63045 IGL@ 2 16.01 1.40 Immunoglobulin lambda 

locus 
244 AA074224 RCV1 1 9.98 12.11 Recoverin 
2753 *  1 4.63 6.26  
4468 AA453345 JAK2 1 6.99 3.93 Janus kinase 2 (a protein 

tyrosine kinase) 
5002 AA620359  1 1.20 0.62  
6043 H87471 KYNU 1 20.95 4.81 Kynureninase (L-kynurenine 

hydrolase) 
7704 N71028  1 0.99 0.17  
8494 *  1 4.58 8.33  
8719 AA504348 TOP2A 1 2.34 2.39 Topoisomerase (DNA) II 

alpha (170kD) 
Error! Not a valid link. 

Figure 5-1 Scatter Plot of the Two Topoisomerase II Probes Used. 
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There is one point for each of the 40 micro-arrays. The x values are the levels of the 

probe for AA504348, and the y values are the levels of the probe AA026682. Both of 

these are probes for the TOP2A gene. The R2 value is the correlation between the 

levels measured for these two probes under identical conditions. 

Error! Not a valid link. 

Figure 5-2 Expression Levels for Each Probe Used 

For each probe, there are three bars. Each data-point displays the mean level for a 

probe across a range of micro-arrays. The error bars display two standard deviations 

around the mean. In each case, the left-most bar corresponds to the mean and standard 

deviation of the probes level across the 20 micro-arrays taken before treatment, and 

the right-most par corresponds to the mean and standard deviations for the probe 

across the 20 micro-array measurements after drug treatment. Each data-point is 

labeled with the gene name if present. If this was not present, the accession number is 

used. If this was not available, the probe number is used. The probes are in the same 

order as Table 5-2. 

 

Error! Not a valid link. 

Figure 5-3 Average Weighs Across Relevant Models. 

The samples after treatment are to the left, and samples before treatment are to the 

right. All prediction values are in the units of the GLM before conversion into 

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0 

will map to probabilities above 0.5. All of the before samples have been correctly 

classified. Four of the after samples are misclassified, and are indicated with an 

asterisk (*). 

Before After 

*

***
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Error! Not a valid link. 

Figure 5-4 Average Weights Across All Models 

The samples after treatment are to the left, and samples before treatment are to the 

right. All prediction values are in the units of the GLM before conversion into 

probabilities. Values below 0 will map to probabilities below 0.5, and values above 0 

will map to probabilities above 0.5. All of the samples have been correctly classified. 

After Before 
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5.4.3 Function of Genes Identified by GLM Models 

 If the model learned a biologically significant signal, this should be reflected in the 

probes used to construct the model (as listed in Table 5-2). For many of the genes, this 

is indeed the case. Several genes known to be involved in the action of doxorubicin 

are present. 

TOP2A directly interacts with doxorubicin, leading to the single-strand break 

mechanism of drug activity. This appears to be down-regulated in the group after 

treatment. This could be evidence that the cancers are developing doxorubicin 

resistance by repressing the TOP2A gene. Alternatively, potentially irreversible 

interactions between TOP2A and doxorubicin intercalated with DNA, or the relative 

lack of super-coiling due to many single-strand breaks may be fooling the regulatory 

mechanisms for TOP2A into behaving as if there are sufficient levels of the protein, 

leading to down-regulation of the gene. 

 JUN and FOS are part of the pathway that mediates apoptosis in response to 

excessive rates of single-strand breakages. Both of these appear to be up-regulated in 

the group after treatment. JUN and FOS form a transcription regulatory complex, and 

in cells responding to single-strand break stress, this complex interacts with the genes 

responsible for activating the apoptosis response. The resulting reduction in level of 

free JUN and FOS may cause their synthesis to be up-regulated to compensate. 

RGS1 is a repressor of the G protein signalling that is involved in the regulation of 

b-cell activation and proliferation, as well being indicated in a range of cancers35. It 

appears to be marginally down-regulated after treatment. G proteins are involved in a 
                                                 

35 See http://caroll.vjf.cnrs.fr/cancergene/CG516.html for a description of RGS1 
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wide range of signalling activities, and initiate MAP-kinase cascades. By down-

regulating the repressor, the activity of the G proteins would be enhanced, increasing 

the strength of the signalling pathway. The single strand breaks introduced by 

Doxorubicin activity tend to arrest cell division. An increase in proliferation signals 

mediated by G protein signalling may compensate for this effect. 

Two enzymes, TDO2 and KYNU, are present from the tryptophan metabolism 

pathway. Both of these enzymes appear to be down regulated in response to 

doxorubicin treatment. TDO2 catalysis the conversion of tryptophan to N-formyl-

kynurenine. KYNU catalyses the conversion of this compound to formyl-anthranilate. 

It is intriguing that the models identified these two enzymes, given their proximity in 

a pathway. Intracellular levels of tryptophan around tumours have been shown to be 

abnormal (Iwagaki, Hizuta et al. 1995; Huang, Fuchs et al. 2002), but there is no clear 

indication of why this pathway should be important in response to doxorubicin. 

The two genes HBA2 (haemoglobin alpha 2 subunit) and LOC51700 (cytochrome-b5 

reductase) are present in several models. Both of these appear to be down regulated in 

response to doxorubicin treatment. Cytochrome-b5 and haemoglobin both require haem36 for 

their production. Cytochrome-b5 reductase decreases the levels of available cytochrome-b5. 

Reduction in the levels of this enzyme would lead to increased levels of cytochrome-b5. A 

down regulation of HBA2 production would reduce the amount of haem becoming 

incorporated into haemoglobin. If both proteins are expressed within the same cells, these two 

processes would act together to increase the level of cytochrome-b5. 

                                                 

36 See http://www.genome.ad.jp/dbget-bin/www_bget?compound+C00032 and links from that page for 

a more full description of haem and the Prophyrin metabolism pathway 
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As the samples used for microarray analysis were obtained from biopsies, it is inevitable 

that they represent expression levels from a range of different cell types. It is possible that 

within this population there were immature red blood cells. Although the nucleated red blood 

cell precursors are present only in the bone-marrow, there is a stage in their differentiation 

intermediate between this and mature red blood cells that contains mitochondria and 

messenger RNA. For a couple of days, these are present in the blood stream (Gilbert 2003). 

During this maturation stage, haemoglobin is synthesized. It is possible that the chemotherapy 

results in a decrease rate of red blood cell production. This would lead to a decreased number 

of maturing red blood cells in the circulatory system, and therefore a lower measured level of 

the haemoglobin mRNA. 

5.5 Conclusions, Applications and Future Work 

In this chapter, we have shown that RVMs can be used in the analysis of expression 

data that contains few samples and is noisy. The RVM was both able to perform the 

required classification task, and the model produced has clearly identified biologically 

relevant genes. 

Cluster analysis of this expression data does not help in discovering genes that have 

modified expression levels in response to treatment with doxorubicin. Clustering by 

correlation co-efficient identifies clusters containing pairs of micro-arrays from a 

single patient. It does not produce clusters corresponding to all micro-arrays pre- or 

post-treatment, indicating that the history of the cell line is the primary signal in the 

expression profiles. 

When an SVM was trained using the tumour sample expression data, it appeared to 

memorize the training set. When the same model was trained using the probabilistic 

RVM trainer, the RVM rejected the hypothesis that the data was separable using the 
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linear kernel function. This indicated that with just 20 samples, a conventional SVM 

could not be constructed to classify these samples into pre- and post-treatment. 

Using an alternative strategy, an RVM was constructed with one basis function for 

each unique probe used to measure the level of a gene, and applied to learn a 

discriminator to predict whether tumour samples were pre- or post-treatment. It was 

able to learn signals that correlated with the treatment status. The function learned by 

RVM did appear to display all of the expected traits of sparsity, simplicity and 

generalization expected from this training method. Of course, given 8,102 genes to 

choose from, a model could trivially be constructed that performed very well on the 

training set. However, this would not be expected to generalize to unseen data. The 

results of the cross-validated training indicate that the models do generalize regardless 

of the sub-set used for training and testing, and that the models do not purely contain 

some statistically aberrant signal present by chance in the training set. With larger 

training sets, it should be possible to learn models with better estimates for which 

genes are informative and are less prone to over-fitting. 

Some of the probes identified as basis functions during cross-validation appear to 

show differences in their average levels before and after drug treatment. Others do 

not. However, the RVMs are not looking at genes in isolation, but rather looking at 

interactions between them. A number of genes were identified as indicators that make 

clear biological sense, given the known action of doxorubicin (JUN, FOS, 

topoisomerase II). A number of others are not surprising, such as those associated 

with signalling cascades. Others, such as TDO2 and KYNU are implicated by their 

presence in the model and their differences in mean level before and after treatment. 
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A final group appear to be used by the model as a measure of the noise in the system, 

or to obtain a baseline from which all other levels can be calculated. 

This use of RVMs is potentially applicable to any situation where large numbers of 

expression levels have been measured and a test is required which will indicate which 

of these are informative for a particular biological response. The classifier generated 

can be used to classify new data. RVMs can be trained using any set of basis 

functions. This is applicable to a wide range of situations, for example, screening 

expression levels from patient samples to estimate which of a range of anti-cancer 

drugs may be an appropriate treatment. It is possible to combine expression data with 

any other measurements. For example, expression levels could be combined with 

information about the presence or absence of SNPs, direct biological measurements, 

such as pulse or breathing rate, and so forth into a single predictive model. 

The RVMs have two advantages over support vector machines (SVM) for this type 

of data. Firstly, to evaluate an SVM it is necessary to calculate products for every 

gene on the micro-array. The SVM will be invalid if all of the genes on the original 

micro-array are not also measured in the clinical sample from the patient, as the full 

dot product between the support vectors and the sample cannot be calculated. In 

addition, this requires one multiplication per micro-array spot per support vector. An 

RVM of the form described above only requires that the genes that are used by the 

model be within the set measured in the patient sample. It requires one multiplication 

for each gene that is used as a basis function to the learned weight. 

Secondly, the GLMs produced by RVMs give an indication of confidence in their 

prediction. This potentially allows the person interpreting the model output to make 

sensible judgements about how to use the model’s prediction (for example, ignoring 
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predictions with very low confidence). SVMs give an output value, but the absolute 

scale of this number is dependant on the distance from the separating hyper-plane of 

the two support vectors corresponding to the closest correctly classified data points 

from each class. Two SVMs using different support vectors will have incomparable 

scales, making it impossible to compare these values directly. 

To evaluate the effectiveness of these RVMs for other classification tasks using 

micro-array data, more data sets need to be analysed. The data set used here was both 

small and noisy. It is to be expected that with larger data sets containing cleaner 

expression levels, that much higher levels of classification accuracy can be achieved. 

In the case where this method is used as a way of identifying biologically relevant 

genes, methods need to be developed to extract models with more genes. This could 

be achieved by training the model repeatedly, removing all probes identified by 

previous models until the model does not perform the classification task. 

Alternatively, it may be possible to look at the information each indicator gene is 

contributing, and to use some form of hierarchical or single-linkage clustering to 

identify those with patterns of expression that share information with it. The RVM 

could be modified to indicate if each basis was rejected because it did not contribute 

to the accuracy of the model, or because it duplicated information present in another 

basis. 

Since this work was carried out, related relevance-based approaches have begun to 

emerge, for example (Li, Campbell et al. 2002) and Gene-Rave37. However, these 

                                                 

37 See http://www.bioinformatics.csiro.au/GeneRave/products.html and the examples link from this 

page 
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methods do not seem to be producing results with quite the same high level of sparsity 

our method generates. Neither of these methods has as yet solved the question of how 

to retrieve the indicator genes removed from the model because they give information 

correlated to that of the selected relevant genes.  
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Concluding Remarks 

The vast volumes of biological data being produced now overwhelm the traditional 

paradigm of individual scientists studying individual results and making and testing 

individual hypotheses. In this dissertation, I present tools and methods that allow data 

sets of genomic scales to be explored, analyzed and learned from. The BioJava project 

provides programming tools for manipulating genomic data sets. HMMs can be 

constructed which leverage un-supervised learning techniques to elucidate the 

inherent structure of chromosomes. SVMs and latterly RVMs can be used to perform 

regression and classification tasks on large quantities data with an unprecedented 

degree of sparsity and generalization. Here, they are used for the diverse tasks of 

predicting recombination rates and classifying tumour samples into those treated and 

un-treated with Doxorubicin. 

During my PhD studies, I have used BioJava and its machine learning 

implementations in a range of other situations, which are not discussed in detail here. 

This was partly to define the limitations of the methods and partly for scientific 

exploration. Briefly, SVMs were applied to a wide range of regression and 

classification tasks. These included the implementation of an e-mail spam filter, 

assessing the accuracy of gene predictions given the outputs of multiple programs and 

curve smoothing for recombination rates. RVMs were applied to an equally wide 

range of problems, including predicting protein secondary structure elements, 

sequence comparison using HMM kernels and simultaneous estimation of expression 

profile class and promoter structures. HMMs were used to model 3-D DNA structure 

using a multinomial Gaussian emission state, Gibbs-sampling of expression profiles, 

promoter finding, protein secondary structure prediction by pair wise alignment and 
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HMM-based kernel functions. This is by no means an exhaustive list of mini-projects 

undertaken within the past four years, but gives a flavour of the range of problems 

that can be tackled using these technologies. 

Since this thesis was written, BioJava has continued to develop (as discussed in 

chapter 2), demonstrating that the original APIs are both flexible and sufficient, 

allowing a wide degree of reuse and extension. 

None of the methods presented here are limited to the problems to which they were 

applied. The task ahead is to use these and other technologies to make new 

discoveries about how genomes are structured, function, evolve and fail. The possible 

applications are wide-ranging; medicine, agriculture, bio-engineering, palaeontology, 

to name but a few. I look forward to seeing where this leads us. 
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Forgive us for what we have done and what we have left undone 

(Extract from the Anglican Order of Service) 
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