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Abstract

The endocrine pancreas is composed of the islets of Langerhans. These micro-organs
play a crucial role in glucose homeostasis by producing and regulating insulin and
glucagon secretion. Dysfunction of these islets is part of the pathogenesis of diabetes
mellitus. The global health burden of diabetes mellitus is growing, with an estimated
one in eleven adults affected worldwide. A better understanding of the development

and maintenance of the pancreatic islets could prove crucial to reversing this trend.

Whilst somatic mutations have been studied extensively in tumours, the exploration of
normal tissue is still in its infancy. Here | present a novel workflow, using laser capture
microdissection, whole-genome sequencing and innovative bioinformatics to
accurately identify somatic mutations in healthy pancreatic islets. By sequencing 32
islets, all from a single individual, this work reveals islets to be polyclonal units formed
by multiple embryonic founding lineages that often come to be dominated by one or
two major lineages. The very low mutational burden observed here suggests these
islets expand very early in embryogenesis and do not undergo large clonal expansions
later in life. This is consistent with the islets being a slowly dividing tissue during
adulthood, making it less likely that islet neogenesis or replenishment by a small

number of progenitors, occurs in adults.

The 32 islets sequenced here all share a single common ancestor, one that also gives
rise to the bladder urothelium. This is presumably the first cell that gave rise to all adult
tissues. Spatially, nearby islets are more genetically similar than distant islets. This
pattern demonstrates that different embryonic lineages contribute disproportionately
to the islets in different areas of the pancreas, the implication being that this emerges
during embryonic pancreatic development, or in adulthood through hypothetical islet

fission events.

The translational potential of this line of work is substantial. Using this approach to
understand the maintenance of islets in diabetes could yield a greater understanding
of the pathogenesis, and whether somatic mutations could play a role in the disease.
Applications to other normal tissues could similarly refine our knowledge of their
development, maintenance and disease, with exciting prospects for clinical

application.
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Highlights

1.

The whole genomes of 32 pancreatic islets were sequenced from a single

human donor.

. An unmatched analysis proved efficient in the removal of germline variants and

artefacts, as well as accurately calling somatic mutations, including those

occurring in early embryonic development.

The observed somatic mutation burden in the pancreatic islets is low and is

driven by intrinsic mutational processes.

Almost all somatic mutations identified appeared to have no functional impact.

Islets are polyclonal units.

Pancreatic islets and bladder urothelium share the same most recent common

ancestor.

Multiple embryonic founders establish each pancreatic islet but islets develop

major and minor lineages.

Pancreatic islets do not appear to be maintained by a rapidly-dividing stem cell
population, but whether there are multiple stem cell populations, or self-

duplicating islet cells, needs further study.

The spatial distribution of islets and their embryonic lineages reveals their

founding cells are non-randomly distributed.

10. There are potential applications of this work to the fields of tissue development,

maintenance and disease. The possible role of somatic mutations in diabetes

mellitus is a target of future research.
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1. Introduction
1.1 Somatic mutations are acquired throughout life

Mutations are changes in the deoxyribonucleic acid (DNA) sequence. These can occur
in the germline or the soma, to differing effects. Germline mutations are those
mutations present in the haploid genomes of the gametes, that go on to fuse at
conception. As a result, these mutations are inherited from the parental generation
and are present in all the descendant cells of the totipotent zygote. Somatic mutations
are those that occur any time after zygote formation and are not inherited from parental
DNA. From the moment of conception, the zygote is under mutagenic pressure from
intrinsic mutational process, one example being DNA replication errors. As the first
cells undergo rounds of cleavage, each division is an opportunity for further mutations
to occur. With time and exposure, extrinsic mutational pressures such as ultraviolet
(UV) radiation and tobacco smoking, come to play a part in the development of somatic
mutations (Stratton, Campbell, & Futreal, 2009).

Depending on their functional impact, somatic mutations can be classified as drivers
or passengers (Figure 1) (Stratton et al., 2009). Drivers are a very small minority of
somatic mutations that provide a phenotypic benefit to the cell. Often, these drivers
are non-synonymous coding mutations, although some in non-coding regions of the
genome can also act as drivers (Horn et al., 2013; Huang et al., 2013). The
phenotypes bestowed upon the cell overlap with the hallmarks of cancer and include
sustained proliferative signalling, enabling replicative immortality and resisting cell
death (Hanahan & Weinberg, 2011). Due to the conferred growth advantage, cells with
drivers have a relative gain of fithess over their neighbours, leading to positive
selection and clonal expansions, by Darwinian evolution. This represents a critical step
in carcinogenesis, as these drivers become causally implicated in the emergence of a
future tumour (Stratton et al., 2009). Passengers on the other hand do not result in a
growth advantage for the cell. These mutations include nearly all non-coding variants
and the vast majority of coding mutations in genes not implicated in cancer.
Passengers essentially “hitchhike” with those drivers that power a clonal expansion,
as they too are present in the genome that is being positively selected for (Stratton et
al., 2009).
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Figure 1 — Somatic mutations occur throughout life
Driver and passenger mutations accumulate throughout life. Drivers lead to clonal
expansions that can emerge as tumours. There are several different mutagenic

processes that contribute to these somatic mutations (Stratton et al., 2009).

1.2 The somatic mutational burden in normal tissues is comparable to some tumours

The mutational burden is the observed number of mutations that have been
progressively acquired by a cell population. With increasing numbers of sequenced
cancer genomes, the mutational burden across cancer types has become increasingly
well-studied. Across 2,583 donors in the Pan-Cancer Analysis of Whole Genomes
network (PCAWG), 43,778,859 single nucleotide variants (SNVs) have been detected
across an array of tumour types, revealing an unprecedented insight into the typical
numbers of mutations per tumour. These mutational burdens range from 10,000 to
100,000, in some of the most highly mutated cancer types such as UV-associated
melanoma and tobacco-induced squamous cell lung cancer, to as low as 100
mutations per genome, in some bone and brain cancers (Campbell, Getz, Stuart,
Korbel, & Stein, 2017).

Understanding the somatic mutations that arise early in cancer development, perhaps
before the “mutator” phenotype exists, requires an in-depth look at healthy tissue. Prior
to neoplastic transformation, healthy tissue would be expected to be harbouring
somatic mutations and possibly the first driver, that can eventually lead to cancer
(Stratton et al., 2009). Using deep, targeted sequencing of 74 known cancer genes, in

234 biopsies of healthy skin samples, Martincorena et al., (2015) revealed mutational
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burdens averaging two to six base substitutions per megabase. This equates to
genomes of a normal skin biopsy harbouring up to 30,000 mutations. Remarkably, in
these histologically normal skin samples, the mutational burdens across all four
patients were comparable to those seen in some skin cancers and several solid tissue

malignancies (Martincorena et al., 2015).

1.3 The mutational signatures in normal tissues and cancer give insight into mutational

processes
Elucidating the processes that drive the accumulation of somatic mutations provides

insights into carcinogenesis. Mutations can be classified according to different
features with different mutational processes often inducing distinct patterns of somatic
mutations. These patterns can be used as fingerprints, or signatures, of mutational
activity. The key features involved in modelling signatures were set out by Alexandrov
et al., (2013):

1. The type of mutations observed, such as single base substitutions,
insertions/deletions or chromosomal rearrangements;

2. The local sequence context, such as the bases that precede and follow a base
substitution;

3. The location of the mutations throughout the genome, such as in particular
regions susceptible to a certain mutagenic process or spatial clustering of
mutations;

4. DNA damage repair mechanism involvement, as this leaves tell-tale marks on

the DNA sequence and contributes to mutagenesis itself.

With increasing amounts of data and new analytic methods, the list of mutational
signatures has continued to grow, from an initial 22, to the COSMIC-30 and recently
the PCAWG-65 (Alexandrov et al., 2018; Forbes et al., 2017; Nik-Zainal, Alexandrov,
etal., 2012). The PCAWG-65 mutational signatures are based on 84,729,690 somatic
mutations, with 49 of these signatures relating to single base substitutions (SBS)
(Alexandrov et al., 2018). Many different aetiologies, occurring in numerous cancer
types, have been assigned a mutational signature including smoking tobacco and

defective DNA damage repair due to BRCA 1/2 mutations (Alexandrov et al., 2018).
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Despite these signatures having been defined in cancers, normal tissue also displays
evidence of mutational signatures. For example, normal sun-exposed skin displays a
high burden of C>T mutations at dipyrimidine sites caused by transcription-coupled
repair of UV-induced DNA damage (Martincorena et al., 2015). This results in the high
prevalence of the mutational signature SBS7a being found in histologically normal
tissue, having previously been well-documented in UV-associated melanoma, as well
as head and neck squamous cell carcinoma (Figure 2) (Alexandrov et al., 2018). The
implication being that analysis of mutational signatures in normal tissues can shed

light on the mutational processes driving precancer evolution.

C>A C>G C>T T>A T>C T>G
I S
43.0%
SBS7a

32.3%
21.5%

1
10.8% I

| N

Figure 2 — Mutational signatures each have a unique profile of mutations

A 96-trinucleotide bar plot showing mutational signature SBS7a, one of the
PCAWG-65 (Alexandrov et al., 2018). Each single base substitution is shown in the
context of the pyrimidine bases involved, with the 5’ and 3’ bases included to make
a trinucleotide. SBS7a is associated with UV light shows an excess of C>T
substitutions, particularly in the context of TpCpA and TpCpC (Alexandrov et al.,
2018).

1.4 The clonality of a tissue sample can be estimated using the somatic mutations

present
The fraction of DNA molecules, within a sample, that harbour a given mutation is

termed the Variant Allele Frequency (VAF). For example, inherited germline
heterozygous mutations present in all diploid cells of the body will show VAFs around
0.5. This is because one of the two copies of the genome in every cell contains the
mutant allele (Figure 3A). In contrast, somatic mutations occur once the zygote has
been formed and are only present in a fraction of all somatic cells in an individual
(Figure 3B). Somatic mutations occurring in the first few divisions of the embryo can

appear in a considerable fraction of cells in the adult and are often termed mosaic
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mutations, while late occurring mutations are typically constrained to small clones
within a tissue.

A Germline mutations B  Somatic mutations

A\

Figure 3 — The VAF of a mutation can be used to assess clonality

Phylogenetic trees displaying the ancestry of a cell population. Mutations (yellow
lightning strike) are passed onto progeny. The parental lineage is shown by the red
circle and the fertilised egg is the purple cell. Somatic descendants are shown by

the green circles. Heterozygous variants are shown by the coloured bars in circles.

(A) A heterozygous germline mutation results in a VAF of 0.5 as they are present in

all cells.

(B) Heterozygous somatic mutations will produce a variety of VAFs, according to
how early they occur in development and to what degree a tissue is composed of

lineages carrying the somatic variant. The exception to this is a somatic mutation

occurring in the fertilised egg itself, which would give a VAF of 0.5.

The clonality of a sample can be studied by analysing the VAF distribution of all the
mutations within a sample. Heterozygous variants in a clonal sample, one where all
cells carry the same mutations and are thus closely related, would be expected to
show binomial variation around a VAF of 0.5, assuming a diploid genome. Colonic
crypts are a well-known example of a clonal tissue. Although each crypt contains

multiple stem cells, by mere drift, single stem cells frequently take over a crypt
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(Snippert et al., 2010). This leads to all cells of a crypt recently deriving from the same
stem cell and manifests as a VAF distribution centred around 0.5. Contrasting this, a
polyclonal sample would have fewer mutations at a high VAF as different cells carry
different mutations, each representing a small proportion of the sample. Within the
sample VAF distribution, these subclonal populations may then be represented as
multiple peaks each with mean VAFs less than 0.5 (Figure 4) (Nik-Zainal, Van Loo, et
al., 2012).

= Fitted distribution
"] [ 95% posterior intervals

= Observed
2 _| Cluster
2 A Cluster C
a Cluster B Cluster D

I

[ I I I I 1
0.0 0.1 02 03 04 05
Fraction of reads reporting mutation

Figure 4 — The VAF distribution reflects the clonality of a sample
A polyclonal sample has numerous clusters of VAFs that represent subclones in the
cell population (Nik-Zainal, Van Loo, et al., 2012). A Bayesian Dirichlet process has
been used to model the VAF distributions with 95% posterior confidence intervals
displayed in green. Four subclones are present, with cluster D being the dominant
lineage, as it has the highest VAF (Nik-Zainal, Van Loo, et al., 2012).

1.5 Phylogenetic tree reconstruction of early embryogenesis has been demonstrated

in clonal organoids

Utilising somatic mutations to reconstruct a phylogenetic tree, in a clonal tissue, has
previously been demonstrated in mice (Behjati et al., 2014). Clonal organoids derived
from the stomach, small and large bowel and the tail of two mice, were sent off for
whole-genome sequencing and the variant caller, CaVEMan (Cancer Variants through
Expectation Maximization) was used to identify somatic mutations (Behjati et al., 2014;
Nik-Zainal, Van Loo, et al., 2012). Initially, this variant calling was performed with a
matched tail sample to ensure efficient removal of germline variants. A subsequent

unmatched run captured the entire complement of germline and detectable somatic
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mutations and by comparing this to the matched run, the germline mutations could
again be removed, leaving behind those variants exclusive to the unmatched run. After
capillary sequencing of these exclusive variants, 35 were confirmed. As they are
shared between the organoids and the matched tail sample, they likely occur early in

embryonic development.

Maximum parsimony was then used to reconstruct a phylogenetic tree detailing the
hypothetical order of mutation acquisition (Figure 5) (Behjati et al., 2014). This totalled
23 cell divisions across two trees, one from each mouse. Both were resolved to a
single ancestral origin and although this first cell may be the zygote, the possibility of
silent cell divisions and lack of statistical power in distinguishing real differences in
read counts, means it isn’'t certain that this is the case. The mutation rate in early
embryogenesis was estimated at 1.5 mutations per cell division. Importantly, the
reconstructed tree represents the earliest divisions in the embryo and pre-dates
gastrulation, confirming that germ layers are polyphyletic in origin, formed by the

spatial aggregation of cells from different lineages (Behjati et al., 2014).
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Figure 5 — Phylogenetic tree reconstruction of different tissues in mice

(A, B) Reconstructed phylogenetic trees for the two mice studied (Behjati et al.,
2014). The numbers inside each node on the tree represent a unique mutation and
by tracing the branches of the tree, the mutations can be seen accumulating in the

most recent generations.

(C, D) The coloured circles at the tips of each tree branches indicate the tissue to

which the lineage ultimately contributes.

1.6 Phylogenetic reconstruction with subclonal tissues requires a framework to identify

cell populations

While single-cell derived clones, such as organoids, enable an easy reconstruction of
phylogenetic trees, standard phylogenetic methods are not suitable when sequencing
polyclonal populations of cells. In order to reconstruct phylogenetic trees from
polyclonal populations, new methods had to be developed that first group mutations
in discrete subclones and then build trees of the subclones. For example, Bayesian
Dirichlet processes have been used in studies of breast and prostate cancer (Gundem
et al., 2015; Nik-Zainal, Van Loo, et al., 2012). The premise of this is that by clustering
variants together based on their VAFs, distinct subclones can be defined within the

population.

This was demonstrated with 21 breast cancer genomes, whereby whole-genome
sequencing, copy number analysis and somatic variant calling with CaVEMan
produced a list of variant calls in each sample (Nik-Zainal, Van Loo, et al., 2012).
Applying the Bayesian Dirichlet process based on the coverage of the variant read site
and the VAF, the clustering of mutations reveal distinct subpopulations. Amongst
these subpopulations in each sample, there was a dominant lineage, which accounted
for more than half of the sample (Nik-Zainal, Van Loo, et al., 2012). Given the high
numbers of shared mutations between clusters, these different populations appear to
co-exist for a significant portion of their life history, before diverging into separate
subclones. Applying the pigeonhole principle to these subclones enabled the order of
mutation acquisition to be inferred and as such, a phylogenetic tree was reconstructed
for each sample, the origin of which is the most recent common ancestor (MRCA) of

all the identified subpopulations (Figure 6) (Nik-Zainal, Van Loo, et al., 2012). In this
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way, somatic mutations, copy number information, mutation phasing and clustering
methods (such as the Bayesian Dirichlet process) can be used for phylogenetic

reconstruction in a single polyclonal sample.
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Figure 6 — Phylogenetic reconstruction of a single breast cancer sample

The somatic mutations identified within a tumour population can then be clustered
together based on their shared variants with the Bayesian Dirichlet process.
Applying the pigeonhole principle can then place these clusters in sequential order,
tracing their phylogenetic lineage back to the MRCA (Nik-Zainal, Van Loo, et al.,

2012).

While basic phylogenetic trees depicting the relationship between a few subclones can
be inferred from a single sample, phylogenetic reconstruction from polyclonal samples
is greatly helped by sequencing multiple related samples, such as sequencing multiple
regions of a tumour. This is exemplified by a study that performed whole-genome
sequencing and somatic variant calling in 51 tumour samples, obtained from ten
patients with metastatic prostate cancer (Gundem et al., 2015). An n-dimensional
Bayesian Dirichlet process was applied, enabling the identification of clonal and

subclonal populations within each sample per patient. By retracing the phylogeny of
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multiple tumour samples from the same patient, some including both the primary and
secondary tumours, remarkable insights were gained into the metastatic process.
Minor subclonal populations appeared to be responsible for the initiation of metastasis
and in several cases, multiple subclonal populations from the same tumour appeared
to independently achieve metastatic potential (Gundem et al., 2015). Furthermore, not
only do metastases appear to de novo seed new metastases, but multiple metastases
can seed a new metastatic deposit, forming a polyclonal foundation (Gundem et al.,
2015). This rapidly diversifies the tumour populations in each secondary tumour and

provides a new spatial dimension to the evolutionary history of cancer

Summarising, phylogenetic reconstruction requires accurate somatic variant calling,
particularly for the reconstruction of early embryonic lineage trees, in which early
branches can be supported by one or a few variants. The Bayesian Dirichlet process
provides a framework within which the subclonal populations of a sample, and those
between samples, can be identified. The relationship between samples can then be
inferred using these clusters while the pigeonhole principle allows the deduction of the
sequence in which these populations arose. By applying these principles to normal
tissues, novel insights into embryological development, tissue maintenance and

carcinogenesis can be sought.

1.7 The pancreatic islets perform endocrine functions

The pancreas is a glandular organ situated in the upper region of the abdomen, with
dual exocrine and endocrine functions. The exocrine tissue forms the majority of the
parenchyma of this organ and consists of acini and ducts (Figure 7). The acini produce
and secrete pancreatic juice, an alkaline solution rich in digestive enzymes, into the
branched ductal network which then drains into the duct of Wirsung and into the

duodenum via the ampulla of Vater (Horiguchi & Kamisawa, 2010).

In contrast, the islets of Langerhans, or pancreatic islets, are spherical micro-organs
distributed throughout the parenchyma of the pancreas that undertake numerous
endocrine functions (Figure 7). Accounting for just over 2 cm? of tissue in an average
adult human, the pancreatic islets are a mosaic of several cell types including a-cells,

B-cells, o-cells, e-cells and PP-cells (lonescu-Tirgoviste et al., 2015). The most
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common cell type within the islet are B-cells, accounting for 60%, followed by a-cells
making up 30% and the remaining 10% being &-cells, e-cells and pancreatic
polypeptide cells (PP-cells) (Cabrera et al., 2006; lonescu-Tirgoviste et al., 2015).
Fundamental to glucose homeostasis, the - and a-cells are locked in negative
feedback pathways. In the presence of glucose, B-cells produce insulin, a peptide
hormone with the primary aim of empowering tissues to utilise the glucose from the
bloodstream. In contrast, glucagon from the a-cells acts to increase blood glucose
levels from stores in the muscle and liver. Together these opposing functions form a
tightly regulated system that promotes euglycaemia. It is the dysregulation of this
homeostasis that results in diabetes mellitus (Zheng, Ley, & Hu, 2018).

Figure 7 - An overview of pancreatic histology
Pancreatic section (5 um thickness), taken from patient 290B. Exocrine tissues are
the acini and ducts whereas islets are the endocrine component. Whilst exocrine

and endocrine tissues are in close proximity, they greatly differ in their functions.
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1.8 Primitive islets develop early in foetal development and numbers peak in the post-

natal period
The pancreas is first evident as a developing endodermal embryological structure at

human gestational day 26 (Piper et al.,, 2004). By 47 days post-conception, cells
expressing the PDX1 transcription factor first appear (Jennings et al., 2013). These
progenitors are capable of becoming either a ductal or endocrine cell. The expression
of NGN-3 at weeks 7 and 8 diverts these PDX1 positive cells to the endocrine lineage
and the first insulin expressing cells are seen around this time (Jennings et al., 2013).
This marks a clear difference to the murine model whereby the initial hormone

expressed is glucagon (Jennings et al., 2013; Rall, Pictet, Williams, & Rutter, 1973).

Over two more weeks of gestation, the other endocrine cell types emerge, although
the B-cells remain the most prevalent endocrine cell during the first trimester (Piper et
al., 2004). Key transcription factors that play a role in this continued endocrine
development, through weeks 9 to 21, include NKX2.2, NKX6.1, ISLET1, NEUROD1
PAX4 and 6 (Jennings et al., 2013; Lyttle et al., 2008; Sarkar et al., 2008). In contrast,
loss of SOX9 expression appears linked with the differentiation of progenitor cells into

foetal B-cells (Jennings et al., 2013).

Clusters of endocrine cells first appear around week 12 of gestation. By week 14,
these primitive islets develop a vascular network (Jeon, Correa-Medina, Ricordi,
Edlund, & Diez, 2009; Piper et al., 2004). These clusters consist initially of more j-
cells than a-cells, but this ratio balances out by week 16, remaining at 1:1 until birth
(Gregg et al., 2012; Jeon et al., 2009; Riedel et al., 2012). It is the a-cells and 5-cells
that show a greater proliferative index compared to the B-cells in the remaining pre-
term period (Jeon et al., 2009; Sarkar et al., 2008).

In the neonatal period, B-cell numbers increase compared to the static a-cell
population (Gregg et al., 2012). Whilst B-cell neogenesis, where ductal progenitors
differentiate into p-cells, is more common in the pre-natal developing pancreas, this
does not play a prominent role in the post-natal period. Instead, proliferation of existing
B-cells accelerates, reaching a peak of 2% before ceasing by two years old (Gregg et

al., 2012). This period also involves many immature islets taking on a more familiar
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architecture, seen in the adult pancreas, and by six months all islets have reached this
point (Gregg et al., 2012). This coincides with the nutritional shift that occurs at
weaning and microRNAs, such as miR-17-5p and miR-29-3b, have been shown to
play a key role at this critical time (Jacovetti, Matkovich, Rodriguez-Trejo, Guay, &
Regazzi, 2015).

1.9 There are physiological, and pathological, causes for B-cell proliferation

After post-natal proliferation ceases, the proportion of -cells proliferating, at any one
time, drops to approximately 0.5-1% and continues to decrease further with age
(Gregg et al., 2012). Even following a loss of endocrine tissue from a partial
pancreatectomy, little evidence of B-cell proliferation has been observed (Menge et
al., 2008). Human studies using in vivo thymidine analogue incorporation combined
with radiocarbon, and lipofuscin accumulation, have both supported this, with the
suggestion that final pB-cell populations are defined before age 30 with little activity
afterwards (Cnop et al., 2010; Perl et al., 2010). Only in rare, sporadic cases has j-
cell neogenesis been observed in specimens obtained from donors older than five-
years-old (Gregg et al., 2012). In light of this, the vast majority of B-cells appear to

remain in a quiescent state through life.

The primary pathological cause of -cell proliferation in adulthood is seen in diabetes
mellitus type 2. Recognised by the World Health Organization as an important public
health problem, estimates in 2015 put the age-standardised global prevalence of
diabetes mellitus, both type 1 (DM1) and type 2 (DM2), at one in eleven adults (World
Health Organization, 2016; Zheng et al., 2018). The majority of these are believed to
be patients with DM2 (World Health Organization, 2016; Zheng et al., 2018). Primarily
a disease driven by insulin resistance in the liver, muscles and islet cells, the
dysregulation of glucose homeostasis that occurs in DM2 triggers compensatory 3-
cell hyperplasia (DeFronzo & Tripathy, 2009; EI Ouaamari et al., 2016; Escribano et
al., 2009).

While the initial compensatory proliferation and associated increased insulin secretion

can help cope with the insulin resistance, the hyperinsulinaemia that results actually

drives further insulin resistance and glucose production. This positive feedback
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eventually overwhelms the compensatory mechanisms and hyperglycaemia prevails
(Zheng et al., 2018). This produces the clinical symptoms often associated with DM2
including polyuria, polydipsia and fatigue. With DM2 established, significant changes
then follow in the pancreatic endocrine tissue resulting in a reduced B-cell mass,
altered B:a-cell ratios, co-expression of endocrine hormones and loss of B-cell identity
(Butler et al., 2003; Enge et al., 2017; Mezza et al., 2014; Spijker et al., 2015). Disease
progression often mandates insulin replacement therapy and significant macro- and

micro-vascular complications become increasingly more prevalent (Fowler, 2008).

A more physiological cause of B-cell proliferation is seen in pregnancy. The
introduction of placental lactogens and growth hormones drives hepatic
gluconeogenesis and lipolysis, leading to hyperglycaemia and insulin resistance (Beck
& Daughaday, 1967; Rieck & Kaestner, 2010; Sorenson & Brelje, 1997). In response,
a 1.4-2.4-fold increase in B-cell mass has been demonstrated (Butler et al., 2010; Van
Assche, Aerts, & De Prins, 1978). While in many women this is sufficient and entirely
normal, if the insulin resistance is too great and there are other risk factors present,
gestational diabetes can arise. The specifics of how the B-cells proliferate remains
unclear, with both self-duplication of B-cells and islet cell neogenesis being
hypothesised (Butler et al., 2010; Van Assche et al., 1978).

1.10 The maintenance of the pancreatic islets, through adulthood, is unclear

The maintenance of adult pancreatic endocrine tissue has been studied extensively,
albeit mainly in model organisms, with numerous hypotheses generated. Mechanisms
suggested for islet cell maintenance include self-duplication of existing differentiated
B-cells, neogenesis of new islets through transdifferentiation of ductal cells and

progenitor/stem cell replenishment.

Originally proposed many decades ago by Messier and Leblond (1960), self-
duplication has been best demonstrated using a Cre/lox pulse-chase system in adult
mice (Dor, Brown, Martinez, & Melton, 2004). B-cells were labelled and following the
chase, the fraction of B-cells per islet was assessed. Over 12 months, self-duplication
of pre-existing B-cells should not alter this fraction whereas stem-cell and progenitor

renewal would. The results revealed little change in the fraction, but an increase in
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endocrine tissue mass. This indicated self-duplication to be the main proliferative
pathway. Given that the B-cells were observed to increase in number, this also
challenged the notion that islet cells were post-mitotic (Dor et al., 2004). This has been
supported by subsequent studies confirming that all B-cells retain the capacity to self-
duplicate and that each cell appears to contribute equally to the maintenance of the
islet (Brennand, Huangfu, & Melton, 2007).

However, there remain aspects of pancreatic islet maintenance that cast doubt on self-
duplication being the only mechanism for islet proliferation. These are mostly focused
on the potential that stem cells and progenitors have to differentiate into B-cells.
Several different candidates have been suggested to exist, with the locations
harbouring these stem cells and progenitors including the pancreatic ductal epithelium
and the islet itself (Bonner-Weir, Baxter, Schuppin, & Smith, 1993; Zulewski et al.,
2001). One such example supporting a progenitor hypothesis, involved the
xenografting of human embryonic pancreases, with PDX1+ and Ngn-3+ progenitors,
into immunocompromised mice. Whilst the PDX1+ progenitors differentiated into -
cells, the Ngn-3+ progenitors did not, suggesting differentiated endocrine cells were
unable to self-replicate (Castaing, Duvillie, Quemeneur, Basmaciogullari, &
Scharfmann, 2005; Castaing et al., 2001).

The definitive existence of pancreatic islet stem cells is proving difficult to confirm, with
recent forays into the single-cell transcriptomics of pancreatic islets, failing to identify
a single stem cell lineage (Muraro et al., 2016). This does not completely rule out the
stem cell theory, as there may exist multiple, different stem cell populations that
contribute to islet maintenance. However, given that these stem cells appear to be
extremely rare within the islet, isolating even one population with single cell

transcriptomics will require far larger data sets (Andrews & Hemberg, 2018).

Transdifferentiation of non-endocrine cells, such as the pancreatic ducts and acini,
into endocrine cells, has also been suggested, particularly under injury. Given the
translational potential of islet neogenesis for the treatment of diabetes mellitus, this
hypothesis has garnered much attention. Researchers have transformed in vitro acini,

islet cell precursors and even splenocytes into functioning p-cells (Guz, Nasir, &
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Teitelman, 2001; Kodama, Kuhtreiber, Fujimura, Dale, & Faustman, 2003; Lipsett &
Finegood, 2002; Socorro et al., 2017). Recent work has revealed peripheral regions
of islets harbour immature B-cells that appear to be descended from nearby a-cells,
the implication being that transdifferentiation may occur within the pool of different

endocrine cells themselves (Chakravarthy et al., 2017; van der Meulen et al., 2017).

Finally, whether an entire islet unit can duplicate itself, in a “fission” event is debated.
Fission has been well-proven in the colonic crypts, both in the post-natal period and
in adulthood, as has crypt fusion (Bjerknes, 1986; Bruens, Ellenbroek, van Rheenen,
& Snippert, 2017; Cheng & Bjerknes, 1985; Clarke, 1972). In the pancreatic islets,
fission has been postulated using X-inactivation mosaic mice with lacZ insertion, on
the X-chromosome (Seymour, Bennett, & Slack, 2004). Islets were identified that
appeared to have an irregular morphology, whereby two small masses of endocrine
cells appear to be linked by an isthmus of a-cells. These were named “dumb-bell”
islets (Seymour et al., 2004). By comparing the X-inactivation status, and hence lacZ
expression, of the masses on either side of the isthmus, it was deduced that the
masses on either side of the isthmus were more related to each other than two
randomly selected nearby islets were (Seymour et al., 2004). Further, comparing
distinct islets to each other revealed this same measure of similarity decreased as the
distance increased between them. The conclusions drawn were that these dumb-bell

islets were in a state of fission, rather than fusion (Seymour et al., 2004).

1.11 Summary

Identifying somatic mutations has proved successful in cancer and the stage is set for
studying normal tissue. The pancreatic islets represent a high-priority normal tissue to
investigate, given the scale of the health burden that DM2 poses. While efforts have
been made with single-cell RNA sequencing to decipher the somatic mutational
landscape of the pancreatic islets, these methods continue to be burdened by a high
false discovery rate (Enge et al., 2017). By establishing a workflow using whole-
genome sequencing and laser capture microdissection (LCM), the somatic mutational
profile of the islets can be examined and key questions regarding the development
and maintenance of the pancreatic endocrine tissue can hopefully be answered,

opening up the possibility of translational benefits in pancreatic islet disease.
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2. Aims

2.1 Develop a robust workflow for analysing somatic mutations in normal tissue

Studying somatic mutations in normal tissue is still a new field. Previous studies have
made use of targeted sequencing of a collection of known cancer drivers
(Martincorena et al., 2015). For whole genome sequence data, a matched analysis
has typically been favoured given the efficient removal of germline mutations that can
be achieved. However, to capture the early embryonic mutations, an unmatched
approach is necessary (Behjati et al., 2014). This comes at the cost of calling both
germline and somatic mutations. Therefore, my first aim was to design a bioinformatics
workflow that can confidently exclude germline variants from true somatic variants,

with high sensitivity and specificity.

2.2 Characterise the landscape of somatic mutations in the normal pancreatic islets

Somatic mutations in healthy pancreatic islets have so far been investigated only with
single-cell RNA sequencing (Enge et al., 2017). As such, this is limited to the exome
and is affected by a high rate of errors introduced by the whole-genome amplification
stage. This limits the insight into the mutational processes acting on them, particularly
early in development. Using whole genome sequence data, | intend to obtain
estimates for the mutational burden and use these to deduce what mutational
processes the islets are subjected to. This is also of relevance to better understand
the mutational processes that may be active in the normal cells that give rise to

pancreatic neuroendocrine tumours.

2.3 Elucidate the early phylogeny of the pancreatic islets

By using somatic mutations, | hope to obtain new insights into the development of the
pancreatic islets. The first question would be to determine clonality, confirming
whether all cells in an islet derive from a single founder cell or lineage, or whether
different lineages contribute to an islet. If islets are monoclonal or at least oligoclonal,
dominated by one or a few major lineages, it might be possible to reconstruct an
embryonic lineage tree (Figure 8). Integrating this with the spatial distribution of the
islets would then provide a glimpse into the anatomical shaping of the pancreatic

endocrine tissue, during early embryogenesis.
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Figure 8 - Somatic mutations can be used to separate the embryonic lineages
that contribute to the formation of the islets

(A) Model A shows a single cell founding an islet. The islet cells then go on to carry
the same mutations as the founding cell. The VAF distribution of the entire islet
would be centred on 0.5, in addition to the low VAF private mutations that have
accumulated through life, in the individual islet cells. The MRCA of all the cells in
the islet is the founding cell. Under this model, embryonic lineage trees can be

obtained used standard phylogenetic methods such as maximum parsimony.

(B) Model B shows two different cells founding an islet. Each cell would carry
ancestral mutations from either the red or green lineage plus their own private
mutations. Mutations in each of the two founding lineages would have VAFs less
than 0.5, but the sum should approach 0.5. The MRCA of the cells in the islet is the
MRCA of the two founding cells. If each islet present has one or a few dominant

lineages, embryonic lineage trees could be obtained using subclonal decomposition.

(C) Model C shows multiple cells founding an islet. Thus, the islet cells will share
fewer ancestral mutations and have many more private mutations accounting for a
smaller VAF each. If the contribution of different lineages does not vary across the

islets, reconstructing the embryonic lineages under this scenario will not be possible.
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2.4 Gain insight into the maintenance of the pancreatic islets through life

Some limited insights into the maintenance of the islet population throughout life might
be obtained from the VAF distribution. If a large fraction of the cells of an islet was
replenished by one, or a few, stem cells during adult life, this would be expected to
manifest as peaks in the VAF distribution of the somatic mutations detected in the
islet. A single stem cell could even take over the islet, much like those in the colonic
crypts, and the resulting VAF distribution would show a single large peak at a high
VAF. A similar distribution could also be obtained if islets are founded later in life by a

single founding cell.

In contrast, if islets are maintained by the self-duplication of differentiated islet cells,
or by a large number of slow cycling cells, or even if most islet cells are not replaced
throughout life, clonal expansions within an islet would not be expected to reach
detectable VAFs in adulthood. With this in mind, the VAF distributions may help

differentiate between extreme models of tissue maintenance.
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3. Methods
3.1 Pancreatic specimens were obtained and prepared for dissection

A single biopsy, from the tail of the pancreas, was obtained from patient 290B, a 60-
year-old female donor with confirmed brainstem death. There was no significant past
medical history reported. This anonymous donor was enrolled in the Cambridge
Biorepository for Translational Medicine (REC15/EE/0152) and pancreas, bladder and
spleen specimens were obtained with full, informed consent. All samples were

handled and processed in line with Human Tissue Authority guidelines.

The biopsies were then placed in PAXgene Tissue FIX (PreAnalytiX GmbH,
Hombrechtikon, Switzerland), a formalin-free tissue preservative. After 24 hours, the
specimens were transferred to PAXgene STABILIZER solution (PreAnalytiX GmbH)
and stored at -20 °C. The specimens were then paraffin-embedded by a trained
histologist. An Accu-Cut SRM 200 microtome (Sakura Finetek, Leiden, Netherlands)
was then used to cut 16 um thick sections. Consecutive sections were mounted on
Arcturus polyethylene naphthalate (PEN) membrane glass slides (Thermo Fisher
Scientific, Waltham, MA, USA). These slides were kept at 4 °C until staining.

3.2 Slides were stained with haematoxylin and eosin

Staining with haematoxylin and eosin was carried out in a fume cupboard. Fresh
ethanol 70% was prepared prior to starting. All equipment was rinsed in water prior to
the staining and each aliquot was freshly made up for this individual staining process,
before being appropriately disposed. Each step uses a different aliquot of the reagent,
to ensure no contamination occurred from other samples. The staining procedure and

timings was as follows:

Removal of paraffin wax and rehydration
1. Mount slides in a slide rack.
Place slides in xylene for 2 minutes.
Repeat the previous step in a second xylene aliquot for 2 minutes.
Place slides in ethanol 100% for 1 minute.

Repeat the previous step in a second ethanol 100% aliquot for 1 minute.

2R

Place slides in ethanol 70% for 1 minute.
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7. Place slides in de-ionised water for 1 minute.

Staining with haematoxylin and eosin
1. Place slides in haematoxylin for 15 seconds.
Place slides in tap water for 20 seconds.
Repeat the previous step in a second tap water aliquot.
Place slides in eosin for 10 seconds.
Place slides in a third tap water aliquot for 20 seconds.
Place slides in ethanol 70% for 20 seconds.
Repeat the previous step in a second ethanol 70% aliquot.

Place slides in ethanol 100% for 20 seconds.

© ® N o g bk b

Repeat the previous step in a second ethanol 100% aliquot for 20 seconds.
9. Place slides in xylene for 20 seconds.
10.Repeat the previous step in a second xylene aliquot.

11.Store samples in a protective box at 4 °C.

3.3 Slides were imaged using the Leica LMD7 Microscope (Leica Microsystems

GmbH, Wetzlar, Germany)

Once stained, the sections had a temporary coverslip mounted prior to being imaged,
as this produced superior images to unmounted, dry slides. This was performed in a
fume hood and involved submerging the PEN membrane slides in Neo-Clear xylene
substitute (Merck KGaA, Darmstadt, Germany), and then carefully placing a plastic

coverslip over the section ensuring minimal bubbles were formed.

The Leica LMD7 (Leica Microsystems GmbH) was cleaned using Kimtech (Kimberley-
Clark Professional, USA) wipes, DNase and 70% ethanol. The mounted slides were
then loaded upside down, as this is how they will be positioned during LCM. Images
of each individual section were obtained using the proprietary Leica LMD7 software
(Leica Microsystems GmbH), at a 10X magnification. These images were invaluable
in keeping records of the sections dissected and in retaining the spatial location of

each islet excised.

The coverslips were then removed from each slide, again by submerging them in Neo-

Clear (Merck KGaA) and gently sliding the coverslip off. The coverslip was promptly
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disposed of in the sharps bin. Excess fluid was then removed using Kimtech
(Kimberley-Clark Professional) wipes before the slides were placed in a protective box
to store at 4 °C.

3.4 Laser capture microdissection was used to excise pancreatic islets

The unmounted, dry slides were loaded onto the Leica LMD7 (Leica Microsystems
GmbH) with the PEN membrane (Thermo Fisher Scientific) side facing the ground. An
Eppendorf twin.tec LoBind 96-well skirted PCR plate (Eppendorf AG, Germany) was
then sterilised with UV radiation for 20 minutes, using the UVP Crosslinker (Analytik
Jena AG, Germany). The sterilized plate was then loaded onto the Leica LMD7 (Leica
Microsystems GmbH). The laser settings, on 10X magnification, were defined (Table

1) and laser calibration carried out.

Table 1 — The laser settings used in the LCM process
Set 1 is the primary setting and should be used first to appropriately excise the
sample from the tissue. If the excised tissue fails to drop into the well, the more

powerful set 2 can be used.

Laser setting Set 1 Set 2
Power 35 35
Aperture 2 20
Speed 1 20
Line spacing 12 12
Head current 100% 100%
Pulse frequency 120 120
Offset 50 50
Specimen balance 0 0

Using the images obtained in the previous step, individual islets were then demarcated
and labelled with the well number that they would be cut into, using the touchscreen
interface on the Leica LMD7 (Leica Microsystems GmbH). LCM was then performed

using the proprietary Leica LMD7 software (Leica Microsystems GmbH).
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Laser capture microdissection (LCM)

1.
2.

Ensure the desired well is chosen before beginning the laser microdissection.
Select the “draw and cut” option and outline the islet to be excised using the
touchscreen interface of the Leica LMD7 (Leica Microsystems GmbH).

Click “cut” to apply the laser to the outlined region. This will excise the islet.

4. Often due to static forces or incomplete tissue penetration by the laser, the

dissected islet may not initially drop into the well, instead remaining attached to
the slide. In this case, perform the following:
a. Freehand cutting of any tissue that appears to be holding the cut tissue in
the specimen, using the “set 1”7 laser setting.
b. Individual brief pulses of the laser on loose parts of the cut tissue using the
“set 2” laser setting.
Repeat this process in the same well, over several z-slices, to increase DNA
yield per well.

For duplicates and triplicates, excise the same islet into different wells.

3.5 Excised tissue underwent protein digestion prior to whole-genome sequencing

Once the islets have been excised, protein digestion was then carried out to lyse the

cells, allowing DNA extraction. This used the Arcturus PicoPure DNA Extraction Kit

(Thermo Fisher Scientific) and is detailed below.

Protein digestion and DNA extraction

1.

Prepare the Arcturus PicoPure DNA Extraction Kit (Thermo Fisher Scientific):

a. Briefly spin down the tubes containing 150 ug of Proteinase K (Thermo
Fisher Scientific), in a microcentrifuge at full speed (4000 g).

b. Add 150 uL of the provided reconstitution buffer (Thermo Fisher Scientific)
to each tube to produce a 1 ug/pL solution.

c. Pipette the buffer-enzyme solution (Thermo Fisher Scientific) up and down
gently.

d. Vortex the buffer-enzyme solution (Thermo Fisher Scientific).

e. Centrifuge the buffer-enzyme solution (Thermo Fisher Scientific) at full
speed for 5 seconds.

f. Add 20 uL to each well, keeping wells covered where possible with a sterile

foil card.
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g. Place strip caps on the wells.
2. Load the Eppendorf twin.tec LoBind 96-well skirted PCR plate (Eppendorf AG)
into a centrifuge for 1 minute at 1500x.
3. Place the Eppendorf twin.tec LoBind 96-well skirted PCR plate (Eppendorf AG)
onto the thermocycler using the following program (Table 2):

Table 2 — The thermocycler program used during protein digestion with
Arcturus PicoPure DNA Extraction Kit (Thermo Fisher Scientific)

This program was modified from the manufacturer’'s recommendations, found at
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/cms _086062.pdf. The

alternative program reduced the high temperatures recommending for inactivating

proteinase K and instead used a longer inactivating step at a lower temperature.

Step Temperature Duration

1 65°C 3 hours

2 75°C 30 minutes
3 4°C Hold

4. Store the cell lysate at -20 °C until library preparation.

3.6 Whole-genome sequencing of the pancreatic islets

DNA libraries were then generated from the low amounts of DNA using the NEBNext
Ultra Il DNA Library Prep Kit for lllumina (New England Biolabs, Ipswich, MA, USA).
This involved a shearing stage, generating a mean insert size of ~350 base pairs,
followed by end repair and adaptor ligation. This process avoids the need for whole-
genome amplification. The DNA libraries then went through 12 cycles of polymerase
chain reaction (PCR) and the concentrations were quantified with the Qubit

fluorometer (Thermo Fisher Scientific).
Two criteria were used to decide which samples would be whole-genome sequenced.

The first was that the DNA concentration exceeded 20 ng/uL. This was to ensure there

was sufficient DNA to produce a complex library of genomic DNA and avoid excessive
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PCR duplicates. The second criterion was the confirmation of the islet histology by a
trained clinical histopathologist.

Whole-genome sequencing (WGS) was then performed with the lllumina HiSeq X™
Ten system (lllumina Inc, San Diego, California, USA), through sequencing-by-
synthesis. Paired-end reads of 150 base pairs in a single lane run were used, with the
aim of achieving an effective coverage of 30X. Upon completion of sequencing, BWA-
MEM (v0.7.16, https://github.com/Ih3/bwa) (Li & Durbin, 2009) was used to align reads
to the GRCh37 (hg19) build of the human genome. All genome coordinates described

relate to this build. Duplicates were identified using biobambam (v2.0.54,
https://github.com/gt1/biobambam) (Tischler & Leonard, 2014).

3.7 A somatic variant caller was used to generate the matched and unmatched calls

Somatic  variant calling was undertaken with CaVEMan (v1.11.2,

https://github.com/cancerit/CaVEMan) (Jones et al., 2016) using default parameters.

Key conditions were to only accept a variant if it is present in greater than three reads
at that site. The matched data was a whole-genome sequence, obtained from the
bladder urothelium of the same patient (sample PD37726b 100071). Performing
variant calling against a matched normal sample is the traditional way of identifying
somatic mutations, as this removes mutations shared between both samples as
germline. However, in doing so, matched variant calling removes those early
embryonic, mosaic mutations that are present in both the pancreatic islets and the
matched bladder sample. Since embryonic mutations are of particular interest for this
project, we also performed an unmatched variant calling using a synthetic, unrelated
normal sample as the comparison, retaining germline mutations as well as embryonic

mutations.

In-house filters were then applied to both data sets to remove artefacts known to occur
during the LCM pipeline. This filtering step was designed by Mathijs Sanders. LCM-
related artefactual variants tend to co-occur with additional nearby variants and have
been shown to arise in reads containing inverted repeats with similar alignment start
positions. The origin of these variants has been modelled in silico and attributed to

mismatched base pairing in DNA hairpin loop structures. Detecting these variants is
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based on proximity of the variant to the alignment start site as well as the standard
deviation and the median absolute deviation of the variant position, within the
supporting reads. These statistics were calculated separately for positive and negative
strand aligned reads. With sufficient supporting reads that have similar alignment
starts, variants were retained if other reads demonstrated strong measures of

variance.

In silico re-genotyping was then undertaken in the unmatched data using CGPVAF

(part of vafCorrect, v.5.3.8, https://github.com/cancerit/vafCorrect). Ten matched

bladder urothelium samples were also included in this re-genotyping. Variants that had
passed CaVEMan in some samples, but not others, then had their VAF calculated in

each sample they were present in, even if based on one read.

3.8 Copy number analysis was performed to assess for losses and gains

To ensure no copy number changes or loss of heterozygosity events, copy number
analysis was performed on all 32 samples. ASCAT (Allele-Specific Copy number

Analysis of Tumours, v4.0.1, https://github.com/cancerit/ascatNgs) and Battenberg

(v.3.0.1, https://github.com/cancerit/cgpBattenberg) were both used (Nik-Zainal, Van
Loo, et al., 2012; Raine et al., 2016; Van Loo et al., 2010). The bladder urothelium
sample, PD37726b_100071, was used as the matched normal. While ASCAT depends

on single nucleotide polymorphisms (SNPs) to calculate allele-specific copy numbers,

Battenberg uses haplotypes (phased SNPs) to determine allelic ratios, making it
preferable in sub-clonal populations (Nik-Zainal, Van Loo, et al., 2012; Raine et al.,
2016; Van Loo et al., 2010). Together, the two complement each other and provide a

more complete copy number analysis.

3.9 A mean VAF filter was applied to remove the germline variants

Computational analysis was undertaken with the R programming language (v.3.5.0,
http://www.R-project.org) (R Core Team, 2018) and RStudio (v1.1.453,
http://www.rstudio.com/) (RStudio Team, 2016). The first filter applied was to retain

only variants with a mean VAF less than 0.4. This was applied to both the matched
and unmatched data, with the motivation being to remove most germline SNPs, since

these will be expected to have VAFs tightly clustered around 0.5.
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3.10 The beta-binomial distribution identified over-dispersed somatic variants

Removing variants with a mean VAF across all samples equal to, or higher than, 0.4
should remove most germline SNPs, while retaining early embryonic mutations.
However, some germline SNPs and low-frequency artefacts will be retained with this
filter. To distinguish between these and genuine somatic variants, we developed a
novel approach based on fitting a beta-binomial distribution to the number of reads
supporting a mutation across samples. A given germline SNP or low-frequency
artefact will be expected to affect all libraries similarly, with variation in the number of
supporting reads mostly reflecting binomial sampling. Instead, genuine somatic
mutations will be expected to vary considerably in their contribution to different areas
of tissue. This can be quantified using the over-dispersion parameter of the beta-
binomial distribution, with genuine somatic mutations expected to show a large degree
of over-dispersion across libraries. This analysis was undertaken with the R package
VGAM (v1.0-5, htips://www.stat.auckland.ac.nz/~yee/NVNGAM/) (Yee, 2015), in

collaboration with Tim Coorens.

The estimation range of the over-dispersion parameter, p, for each variant was
bounded between 10® and 0.89, using a grid search with 0.05 intervals to obtain
approximate maximum-likelihood estimates. The resulting distribution of p values
across candidate mutations was then plotted as a histogram revealing a clear
separation between highly over-dispersed variants and lowly over-dispersed variants.
A cut-off p value was then chosen following manual inspection of the histogram, to

retain over-dispersed variants as those likely to be somatic.

3.11 A depth filter ensured sufficient read numbers supported variants

A depth filter was subsequently applied to both data sets, after the mean VAF and
beta-binomial filter. The purpose of filtering by coverage was to reduce the chance of
a sampling bias being the reason a variant was called as somatic. Only variants with

a mean coverage greater than 20X, across all samples, were retained.

3.12 Estimation of the observable mutational burden per cell

To estimate the average number of detected mutations per cell in a sample, the

equation below can be used (Martincorena et al., 2015). This equation uses the allele
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frequencies of each detected mutation to estimate the fraction of cells that carry the
mutation, assuming a diploid copy number. Summing these fractions across all
mutations produces an estimate of the observed mean mutational burden per cell,

rather than per islet (Martincorena et al., 2015).

Where B = Mutational burden, M = Total number of detected mutations, f = VAF

It is important to note that this estimate is restricted to observed mutations. In highly
polyclonal samples, only a small fraction of all mutations may reach sufficiently high
VAFs to be detectable and thus this calculation represents a lower bound estimate of

the true number of somatic mutations present in each cell of a sample.

3.13 Mutational signature analysis identifies distinct mutational processes active in a

sample

Identifying a mutational signature requires first preparing the data to a standardised
format. By convention, the base substitutions refer only to the pyrimidine base (C and
T) and each base substitution is displayed in the context of the 5’ and 3’ base on either
side of it. This produces a matrix of 96-trinucleotide combinations, across six
substitution types. Through non-negative matrix factorisation, the distinct mutational
patterns can be extracted and fitted using prior knowledge of the 49 known single base
substitutions (SBS), identified by the Pan-Cancer Analysis of Whole-Genomes
Network (PCAWG) (Alexandrov et al., 2018). A multiple linear regression model can
then weigh each signature against each other, to reveal their proportional influences
in each sample, wusing the R package deconstructSigs (v1.8.0,
https://qgithub.com/raerose01/deconstructSigs) (Rosenthal, McGranahan, Herrero,
Taylor, & Swanton, 2016).

3.14 Assessment of clonality using variant allele frequencies

The clonality of a sample can be studied using histograms to visualise the VAF

distributions. Monoclonal and polyclonal samples can then be differentiated by their
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respective distributions and mean values. A clonal sample, one where each cell within
the islet derives from a recent common ancestor, is characterised by a binomial
distribution centred around 0.5. Samples with large subclones can take on multimodal

distributions while highly polyclonal samples tend to be dominated by rare variants.

3.15 A phylogenetic tree of pancreatic islet development can be reconstructed using

data clustering algorithms

An n-dimensional hierarchical Dirichlet process (n-HDP) was used to cluster variants
(Appendix 8.1) (Gundem et al., 2015; Teh, Jordan, Beal, & Blei, 2006). This algorithm
was written by Peter Campbell. The reasoning behind using the n-HDP is that
mutations which have occurred in the same embryonic cell will have a consistent VAF
across different samples. Clusters, or groups, of mutations can then be identified by
clustering the VAF profiles of all the mutations across samples, over numerous
iterations. The optimal solution will be the one that places the most mutations, with the
highest probabilities, into clusters. Each cluster can then be represented in each islet
as a proportion of cells carrying the mutations found in that cluster. The pigeonhole
principle can then identify whether the clusters within the islets are mutually exclusive
or nested. From this, the branches on a phylogenetic tree can be drawn depicting the
relationship between the inferred clusters or lineages (Gundem et al., 2015; Nik-
Zainal, Van Loo, et al., 2012).

The visualisation of the individual phylogenetic trees for each sample was performed

using the R package ggtree, (v1.12.0, https://github.com/GuangchuangYu/ggtree)

(Yu, Smith David, Zhu, Guan, & Lam Tommy, 2016). This was done in collaboration
with Tim Coorens. By overlaying the phylogenetic lineages onto the spatial locations
of the islets in the section, the distribution of embryonic lineages in the tissue can be

seen.
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4. Results

4.1 Whole-genome sequencing of 32 pancreatic islets from the same individual

Through LCM, 40 islets were obtained from a single pancreatic biopsy of patient 290B.
From these 40 islets, 32 samples were sent on for WGS. The eight samples that did
not go on to be sequenced all either had too little DNA and therefore failed library
preparation, or they did not pass inspection by a trained clinical histopathologist. The
reasons for failing histological review included contamination from nearby tissues,
such as pancreatic acini, and incorrect identification of an islet. Included in the 32
samples sequenced was a biological duplicate and ftriplicate. Therefore, 29 unique
islets in total were sequenced. An overview of the spatial location of the 29 unique

islets sequenced is shown in Figure 9.

A
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Figure 9 - Images from the LCM of the pancreatic islets

(A) An overview image of a single section of pancreas obtained during LCM with a
10X objective lens. The 29 unique islets are marked by orange circles. The number
labelling these circles is the suffix of each sample (“PD37726d_1000”). Islets labelled
with a * are obtained from a z-slice 16 um above or below this slice. The duplicate
samples (blue box) are labelled as 8 and 41, while the triplicate samples (green box)
are 15, 17 and 39.

(B), (C) A close-up of an islet excised during LCM, before and after dissection. The
sample is PD37726d_lo0018 with an area of 38,659 pm?>.

The mean area per microdissection was 17,441 um? while the mean number of z-
slices was three. The total area excised per well was positively correlated with the
DNA concentration obtained (Figure 10A). The mean DNA concentration per sample
was 62 ng/uL, and coverage improved with increasing concentrations (Figure 10B). It
appears enough DNA was obtained from these samples to provide a high library

complexity that was not exhausted by the level of coverage achieved here.
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Figure 10 — The data metrics from the LCM workflow
The dashed red line in each graph indicates the linear regression with the adjusted

R? and p value in the top right.

(A) A scatterplot showing a statistically significant increase in DNA concentration,

as the total area excised per islet increases.

(B) A scatterplot showing the coverage achieved from the DNA concentration per
islet. The correlation is not statistically significant, as shown by the p value

exceeding 0.05.

4.2 Successful identification of somatic mutations in individual islets

Traditionally, variant calling in cancer genomic studies relies on comparing a tumour
sample to a matched normal to identify mutations exclusively present in the tumour
sample, while removing germline mutations shared between both samples. Early
embryonic mutations provide an additional challenge using these traditional methods

as they are present in both the sample of interest and the normal matched sample.

To approach this task, CaVEMan was run in two different ways: a standard run using
a matched bladder urothelium (sample PD37726b_1o0071), and an unmatched run,
using an unrelated WGS sample as a reference (section 3.7). The latter analysis

results in the identification of both somatic and germline mutations, but also allows the
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retention of those early embryonic mutations that are critical to phylogenetic
reconstruction. With appropriate filtering of the unmatched data, and comparing the
calls to the matched analysis for validation, it is hoped the germline mutations can be

removed while still retaining the early embryonic mutations.

Sequencing artefacts introduced during the LCM pipeline were then removed using
filters designed by Mathijs Sanders. This was followed by in silico genotyping with ten
matched bladder urothelium samples. Copy number analysis was then performed and
showed no significant gains or losses, with a mean ploidy of 1.97 (Appendix 8.2). In
the unmatched run, the total number of variants identified was 1,978,687, with 95,317
being unique. The first step in removing the germline variants was to remove any calls
with a mean VAF, across all samples, greater than 0.4. This left 79,465 variants, of

which 2,799 were unique. The effect of this mean VAF filter can be seen in Figure 11.

A VAF distribution in unmatched data B VAF distribution in the unmatched data after the mean
VAF filter
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Trinucleotide plot for all variants in the unmatched data
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Figure 11 — The initial variant filtering in the unmatched analysis significantly
reduced the number of variants

(A) The VAF distribution prior to any filters being applied. The large number of
mutations in the histogram are in a binomial distribution with a mean of 0.5. The red
vertical line signifies the mean VAF cut-off of 0.4.

(B) The VAF distribution following removal of the variants with a mean VAF greater

than or equal to 0.4.

(C) The 96-trinucleotide bar plot for all 95,317 unique variants, prior to any filters

being applied. There is an excess of C>T mutations.

(D) The 96-trinucleotide bar plot following the application of the mean VAF filter.
While C>T mutations still dominate, TpTpA and ApTpT mutations are significantly

more prominent than before.

For consistency, the matched run was processed analogously and identified 1,318

variants initially, before this reduced to 1,284 after the mean VAF filter.

4.3 Use of the beta-binomial distribution to identify variable sites

Although the removal of variants, with mean VAF across samples greater than 0.4, is
expected to remove the vast majority of heterozygous and homozygous variants,
some can remain at lower frequencies, either by chance or owing to systematic
mapping biases. Distinguishing those genuine somatic mutations relies on the
hypothesis that their VAFs would vary considerably between samples, from the same
individual, depending on the relative contribution of different lineages to different
samples. This is helped by the availability of ten matched bladder urothelium samples
which have previously been shown to be dominated by individual clones. In contrast,
a germline variant or low-frequency artefact, would be expected to be more evenly
distributed across libraries. In this way, somatic mutations would show a greater level

of dispersion amongst sample, compared to germline mutations and artefacts.

To quantify the extent of the variation per variant across samples, while removing the

stochastic noise from binomial sampling, a beta-binomial distribution was fitted to the
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mutant counts from each sample (section 3.10). The over-dispersion parameter (p),
representing this variation, took on a bimodal distribution across the mutations,
separating those that genuinely vary across biopsies, from those that show an
approximately constant error rate. Upon manual inspection of this distribution, the 799
unique variants with a log p greater than -3 were retained, and the remaining 2,000
were discarded (Figure 12A). A depth filter was then applied to both data sets

specifying that all variants have a mean coverage greater than 20X (Figure 12B).
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Figure 12 — The beta-binomial distribution identified over-dispersed variants
(A) The beta-binomial distribution applied to the 2,799 variants that passed all
previous filters in the unmatched data. The vertical red line represents log p of -3,

and 799 variants are shown exceeding the over-dispersion parameter.

(B) The mean coverage in the unmatched data following the beta-binomial filter. A
depth filter was applied to the 799 variants that passed the beta-binomial filter, to
retain those with a coverage >20X. This cut-off is shown by the dashed red line and

excluded 30 variants.

(C) The 96-trinucleotide bar plot for the 769 variants remaining in the unmatched
data, following the beta-binomial distribution and depth filter. There is still a clear

prevalence of C>T mutations, although the T>A mutations have decreased.

Applying these two filters further reduced the number of unique variants in the
unmatched data to 769. This appeared to remove a significant number of the T>A
mutations that had been present. These transversions have been linked to an artefact
generated by the fragmentase enzyme mix, during whole-genome library preparation
(New England Biolabs, Ipswich, MA, USA). The filtered-out variants are further
analysed in the Appendix 8.3. Similarly, this approach reduced the variant count in the
matched data to 737 unique mutations. A summary of these filtering steps is shown in
Figure 13.
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Unmatched Matched
CaVEMan run CaVEMan run
1,978,687 Total variants 1,318 Total variants
95,317 Unique variants 923 Unique variants
Mean VAF filter Mean VAF filter
79,465 Total variants 1,284 Total variants
2,799 Unique variants 921 Unique variants
Beta-binomial filter Beta-binomial filter
3,782 Total variants 1,050 Total variants
799 Unique variants 739 Unique variants
Depth filter Depth filter
3,140 Total variants 1,046 Total variants
769 Unique variants 737 Unique variants
Variants that Variants that
pass all filters pass all filters

Figure 13 — The two workflows for the matched and unmatched data
(A) The unmatched workflow initially shows a larger number of variants due to the
lack of germline filtering during the CaVEMan run. However, this is extensively

reduced by the filters in the workflow.

(B) The matched workflow used a matched normal sample during CaVEMan. This

was the bladder urothelium sample PD37726b 100071 and ensured removal of

germline variants early on in the workflow.

4.4 The unmatched analysis provided comparable results to the matched analysis

With a final list of variants in each data set, comparing the two sets revealed a high
degree of concordance (Figure 14). The 769 variants in the unmatched data includes
all 737 variants that are present in the matched data, but also an extra 32 exclusive

mutations.
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Venn diagram of the matched and unmatched data

Unmatched data
769 variants
32 exclusive

Matched data
737 variants
0 exclusive

Figure 14 - A Venn diagram demonstrating the overlap between the matched
and unmatched data

There are 737 shared mutations (blue circle) between the two data sets, and all of
these are nested within the 769 variants in the unmatched data (green circle). The
extra 32 mutations exclusive to the unmatched data set are highlighted by the green
rim produced from the overlapping circles. Generated using the R package
VennDiagram, v1.6.20, htips://CRAN.R-project.org/package=VennDiagram (Chen
& Boutros, 2011).

These 32 exclusive mutations were then manually checked using the genome
browser, JBrowse (v2.2.0, https://github.com/GMOD/jbrowse) (Buels et al., 2016).

Two variants were removed from the data due to poor read quality (Figure 15), leaving

767 variants, with 30 of these being exclusive to the unmatched data. All 30 variants
were present in both the islets and the bladder samples, suggesting that these may

either precede or occur in the MRCA of both tissues.
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Figure 15 — Manual inspection of the two variants that were excluded from the
unmatched data

JBrowse screenshot of sample PD37726d_100008 with the two variants highlighted
by the arrows and labels (Buels et al., 2016). The reference sequence is present at
the top of the image. Each horizontal bar is an individual sequencing read with red
representing a forward strand and blue being a reverse. The read quality is
represented by the intensity of the colour in each read. Darker intensities signify a

poor read quality, compared to lighter shades.

The two variants appear to be present almost exclusively in poor quality reads. This

stark contrast is shown best the green box. Additionally, almost all reads with the

variants have been sequenced in the same direction.

The conclusions from comparing the unmatched and matched results are that the
unmatched analysis not only identifies the same mutations as the matched data, but

it also rescues key mutations that were removed by the germline filter. These appear
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mostly to be genuine somatic mutations, with two potential artefacts recovered.
Overall, this new filtering approach for unmatched variant calling appears to offer a
powerful way of identifying somatic mutations and early embryonic mutations without
a considerable loss in specificity, compared to traditional matched normal analyses.
Therefore, the unmatched data alone will be used for all further analyses.

4.5 Early embryonic mutations are identified by unmatched variant calling

The 30 mutations found exclusively in the unmatched data included some at a
particularly high mean VAF across all samples. This is consistent with these variants
being early embryonic mutations that are mosaic in multiple biopsies, and common to
both the pancreatic islet and bladder urothelium whole genomes (Figure 16).

Mean VAF in the 30 exclusive variants extracted from the unmatched data
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Figure 16 — The 30 exclusive variants showed a range of mean VAFs
A bar plot of the 30 variants found exclusively in the unmatched data, after all filters
and manual inspection. The range of means is from 0.033 to 0.319, while the mean

VAF across all variants is 0.070.
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Within these 30 variants recovered through the unmatched analysis, eight had mean
VAFs across all samples that exceeded 10%. This is consistent with what would be
expected from those very early embryonic mutations. Three variants had global mean
VAFs greater than 25%, accounting for over 50% of the cells in all islet and bladder
samples. These may have occurred in the first cell division of the MRCA of the
pancreatic endocrine tissue and the bladder urothelium. These include an A>T
transversion at 8:6682939, a G>A transition at 4:92552588 and another G>A transition
at 13:47260293 (Figure 16). The unmatched data therefore appears to have recovered

mutations that could have occurred in the early developmental stages.

4.6 Almost all mutations identified had no apparent functional impact

From the list of 767 mutations in the unmatched data, the vast majority occurred in

intergenic and intronic regions (Figure 17).
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Figure 17 - The frequency of mutations in different regions of the genome

The vast majority of variants are found in intergenic and intronic locations, with very

few in the exonic regions. ncRNA is non-coding RNA and UTR3 is the untranslated

region in the 3’ end of the gene.

Six non-synonymous mutations were identified among the 767 mutations (Table 3).

Three of these had PolyPhen2 HDIV scores exceeding 0.85 and were classed as
“deleterious” (Adzhubei et al., 2010).

Table 3 — Six non-synonymous mutations were identified

have been missed by CaVEMan, due to too few variant reads, were called.

The non-synonymous mutations are shown with PolyPhen2 HDIV scores and VAFs.

In silico re-genotyping with CGPVAF ensured that variants that would otherwise

C>T

Gene Mutation Amino acid | PolyPhen2 Islets with VAF
change HDIV Score mutation

XRN1 3:142144304 | p.Trp161Cys | 1 PD37726d_lo0004 | 0.12
C>A PD37726d_lo0018 | 0.05
PD37726d_lo0047 | 0.06

PD37726d_lo0048 | 0.07

ATRIP | 3:48501909 | p.Val393Met | 1 PD37726d_lo0007 | 0.12
G>A PD37726d_lo0037 | 0.04

LIPI 21:15561402 | p.Thr150Ser | 0.985 PD37726d_lo0002 | 0.03
T>A PD37726d_lo0008 | 0.02
PD37726d_lo0035 | 0.03

PD37726d_lo0055 | 0.03

PD37726d_lo0056 | 0.45

NEK10 | 3:27333020 | p.Asp477Glu | 0.349 PD37726d_lo0006 | 0.14
A>T PD37726d_lo0022 | 0.02
OR2T12 | 1:248457927 | p.Arg318Ser | 0 PD37726d_lo0004 | 0.15
C>A PD37726d_lo0007 | 0.03
PD37726d_lo0048 | 0.03

OR8H3 | 11:55890132 | p.Thr95Met | 0 PD37726d_lo0037 | 0.15
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The three deleterious non-synonymous mutations occurred in the exonic regions of
the genes XRN1, ATRIP and LIPI. XRN1 is an exoribonuclease involved in the
degradation of RNA transcripts carrying nonsense mutations (Gatfield & lzaurralde,
2004), while ATRIP plays a key role in the repair of single-strand DNA breaks
alongside the ataxic telangiectasia and Rad3-related protein (Zou & Elledge, 2003).

LIPI codes for a lipase |, an enzyme involved in the metabolism of lipids has been
associated with hypertriglyceridaemia (Wen et al., 2003). However, a variant affecting
codon 150, as found here, has not previously been identified in the Catalogue Of
Somatic Mutations In Cancer (COSMIC) database

(https://cancer.sanger.ac.uk/cosmic/gene/analysis?In=LIPI) (Forbes et al., 2017). The

variant detected here was common to five islets with four of them having a VAF less
than 0.04. Given that PD37726d_ 100008 and PD37726d 100041 are duplicates, a
variant present in one would be expected to be present in the other. The VAF being
below the limit of detection makes it likely this is simply a missed variant in sample
PD37726d_lo0041.

In sample PD37726d_100056, this variant carries a much higher VAF (0.46). Manual
inspection of the reads using JBrowse supported this variant being a true somatic
mutation (Figure 18) (Buels et al., 2016). Given that this passed all the filters and
manual inspection, as well as being within the limits of detection, this would make an
interesting candidate gene to investigate further for any phenotypic effects and

possible selective pressures.
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Figure 18 — The LIPI variant in sample PD37726d_l00056

JBrowse screenshot showing the sequencing reads from sample PD37726d_100056
(Buels et al., 2016). Each horizontal bar is an individual read with the red
representing a forward strand and blue being a reverse. The lighter the shade of

these colours, the better the read quality.

The LIPI variant (21:15561402T>A) is highlighted by the green box. The large

number of good quality reads, in both directions, carrying this variant support the

notion that this is a genuine somatic mutation.

Nevertheless, analyses of somatic mutations from cancer genomes and healthy
tissues suggests that most coding mutations accumulate effectively neutrally in
somatic tissues, making it likely that these mutations are simple passenger events
(Martincorena et al., 2017). In fact, given the exome represents 1-2% of the genome,
the six non-synonymous mutations identified here are in keeping with the number of

coding mutations expected by chance across 767 variants.
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4.7 The observed mutational burden in the pancreatic islets is low

The mutational burden represents a snapshot of the detectable mutations in a sample.
A high mutational burden would indicate a strong mutagenic process affecting the
sample compared to a low mutational burden. In the unmatched data, 767 unique
mutations were identified. In each islet, the number of mutations ranged from 13 to 43
mutations per cell, with a mean of 23 (Figure 19). Comparing the duplicates and
triplicates, each have a similar mutational burden, as would be expected for identical

samples.
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Figure 19 — The observed mutational burden in the pancreatic islets

(A) A bar plot highlighting the mutational burden (y-axis) across all 32 samples

sequenced (x-axis). The mean (23) is shown by the dashed red line. The range is

from 13 to 43 mutations. There appears to be a concordance between duplicate and

triplicate samples.

(B) A scatterplot of the observed number of mutations (y-axis) compared to the

mean coverage per sample (x-axis). Samples are labelled by the number that

follows the “PD37726d_[o00” prefix. The dashed red line indicates the linear

coverage and the number of mutations (R? = -0.00767, p value = 0.389).

regression of this plot. There is no significant correlation between the mean

55




4 .8 Intrinsic mutational processes dominate the pancreatic islets

In tandem with the mutational burden, eliciting the mutational signatures can help
characterise the processes driving the accumulation of mutations. Amongst the 767
mutations in the unmatched data, there is a high proportion of C>T mutations (Figure
20A). These are particularly prevalent in CpG sites. Smaller numbers are seen in the
T>C, C>A and T>A substitution classes. The mutational signatures extracted are
dominated by signatures SBS5 and SBS1 (Figure 20B).
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Figure 20 - The mutational signatures in the pancreatic islets
(A) The 96-trinucleotide bar plot for the 767 mutations in the unmatched data. C>T

mutations are the most common base substitutions in the islets.

(B) Pie chart displaying the mutational signatures extracted from the 767 mutations
in the unmatched data, using deconstructSigs (Rosenthal et al., 2016). Signature
SBS5 is the dominant mutational signature, followed by signatures SBS1 and
SBS18 (Alexandrov et al., 2018).

Both SBS5 and SBS1 have been found in all the cancer types analysed in the PCAWG
data (Alexandrov et al., 2018). SBS1 is a well-understood mutational signature that
arises from the spontaneous deamination of 5-methylcytosine at CpG sites,
throughout the genome. As a result, it is made up of C>T mutations at CpG sites
(Figure 21A) (Alexandrov et al., 2018).

Less is known about SBS5. The mutational profile of SBS5 is flatter, with all six
pyrimidine substitution classes being affected, and C>T and T>C being the most
common (Figure 21B) (Alexandrov et al., 2018). Studies of signature 1 and 5 from
cancer genomes of different patients, across a range of ages, have shown they tend
to increase with age. This suggests an ongoing process, occurring throughout life at a
relatively constant rate (Alexandrov et al., 2015; Alexandrov et al., 2018). Considering
the ubiquity of SBS5 and the similarities to the intrinsic process represented by SBS1,

it is likely that SBS5 is also an intrinsic mutational process.

SBS18 appears to be an entirely different mutational process (Figure 21C). Found in
many cancers, the C>A mutations are due to reactive oxygen species (Alexandrov et
al., 2018). Given the low proportion represented here, it is possible that this signature

was introduced during the processing and sequencing of the islet samples.
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Figure 21 — The reference trinucleotide plots for the three mutational

signatures extracted
The three reference signatures from the PCAWG data that match the extracted

signatures from the pancreatic islets (Alexandrov et al., 2018).

(A) The 96-trinucleotide bar plot for signature SBS1 showing a high proportion of
C>T mutations, in NpCpG sites.

(B) The 96-trinucleotide bar plot for signature SBS5 showing a flat mutational profile

with higher numbers in the C>T and T>C substitution classes.

(C) The 96-trinucleotide bar plot for signature SBS18 showing isolated C>A

mutations, particularly in the context of NpCpA/T.
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4.9 The pancreatic islets are not clonal units

Each of the 32 pancreatic islets appears to be polyclonal (Figure 22). This is made
clear by the VAF distribution being centred on means much lower than 0.5.
Nevertheless, many of the islets also harbour a few mutations at high VAFs, some
even approaching 0.5. Although some variation is expected due to binomial noise,
some of these high VAF variants betray the existence of a dominant embryonic lineage
in certain islets, as it is shown later. An example of this is seen in PD37726_100056.
This sample hosts the previously described non-synonymous L/PI mutation at a VAF

of 0.46.

Clonality in the unmatched data

PD37726d_160002 PD37726d_l60004 PD37726d_I60006 PD37726d_160007
(n=88) (n=116) (n=112) (n=160)

| — | —_—

00 02 04 06 08 10

Frequency
0 30 60

0 30 60
Ll
0 30 &0
LLLLLL]
0 30 60

PD37726d_lo0008 PD37726d_lo0015 PD37726d_lo0017 PD37726d_lo0018
> (n=110) (n=95) (n=83) (n=67)
gk g ] 2
2B 2 3 S g e
E <) =) =3 o Hl—h
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
PD37726d_lo0022 37726d_lo0024 37726d_1o0025 PD37726d_lo0026
> (n=103) (n=95) (n=76) (n=81)
28 3 3 8 8
[]
28 8 g 8 8 3
Ec L—'—‘—‘ (=] o *_H_‘ (=] H—'—\
00 02 04 06 08 10 0.0 0.2 04 06 08 1.0 0.0 02 04 06 08 1.0 00 02 04 06 08 10
PD37726d_lo0030 PD37726d_lo0032 PD37726d_lo0033 PD37726d_lo0034
> (n=91) (n=87) (n=121) (n=107)
23 3 3 2 j 3 3
7]
So =) o o
el L] « @
E o #'_'_'_\ =) h-l_'_'_l o k'—'—'—‘ o FI—'—\
00 02 04 06 08 10 0.0 02 04 06 08 10 0.0 02 04 06 08 10 00 02 04 06 08 10
PD37726d_lo0035 PD37726d_lo0037 PD37726d_lo0039 PD37726d_lo0040
> (n=113) (n=124) (n=81) (n=78)
QQ o =3 o
5@ @ = @
28 3 8 3 3 3 8 3
[F]
e © o o
00 02 04 06 08 10 0.0 0.2 04 06 08 10 0.0 02 04 06 08 10 00 02 04 06 08 10
PD37726d_lo0041 PD37726d_lo0042 PD37726d_100043 PD37726d_lo0044
3 (n=112) & (n=78) - (n=89) - (n=72)
5 @0 o ©
B 8 8 8
C ° o M—'—'—‘ =) #'—I—'—\
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
37726d_|00047 PD37726d_lo0048 PD37726d_l100049 PD37726d_lo0051
> (n=111) (n=104) (n=115) (n=101)
28 3 3 3 8
<
28 8 8 8
Ec k—'—'—‘ o F'—'—‘ o o
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
PD37726d_lo0053 PD37726d_lo0054 PD37726d_lo0055 PD37726d_lo0056
> (n=71) (n=66) (n=93) (n=100)
gg g 2 g
@
28 % 8 3 8 8
E =) #r—'—‘—‘ o =3 h—’—'—‘ o
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
VAF VAF VAF VAF

59



Figure 22 — The clonality of the 32 pancreatic islet samples

The VAF distributions in each of the 32 samples is shown with frequency on the y-
axis and VAF on the x-axis. The duplicates and triplicates are shown in the blue and
green boxes respectively. The number of mutations is noted underneath the sample

name. Each islet appears to be polyclonal.

4.10 Phylogenetic reconstruction of the early embryonic lineage tree

To reconstruct the early splits in the phylogenetic tree, two additional criteria were
applied to the 767 variants. The first was that the variants had to be shared in more
than one sample. Secondly, each variant that was shared, had to be at a VAF>0.2 in
each of the samples it was present in. The reasoning behind this is that an early
embryonic variant would be expected to make up a significant proportion of the islet it
is present in. Different combinations of these two criteria were trialled to identify the
optimal combination and although relaxing them led to more variants being included,
many of these were private mutations carried no additional phylogenetic information
(Table 4).

Table 4 — The different number of variants available for phylogenetic tree
reconstruction, when including two additional criteria.

The permutations of these additional criteria did not significantly improve the
phylogenetic tree reconstruction. This is because at VAFs nearing the limit of

detection, the variants are harder to distinguish from each other, and from noise.

VAF>0 VAF>0.2
All variants 767 261
Shared variants (in >1 sample) 623 84

Phylogenetic reconstruction was then undertaken with these 84 variants by examining
the shared variants between samples. The ten bladder samples previously used for in
silico re-genotyping were also included with the 32 islets in order to provide greater
power in identifying clusters. The mutational spectrum of these 84 variants and the

clusters identified between samples, are both shown in Figure 23.
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Trinucleotide plot for shared variants
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Figure 23 — The 84 variants used for phylogenetic tree reconstruction

A) Heatmap displaying the 84 variants (y-axis) across all 42 samples (x-axis). Islets
are prefixed with “PD37726d” while bladder urothelium samples are labelled as
“PD37726b”. A VAF key is located in the bottom right. The shades of blue highlight
the presence of a variant at a VAF greater than 0.2. Those variants with a VAF less
than 0.2, and those absent from the samples, are in white. Clusters of samples that
share variants can be seen by the groupings of blue. Generated using the R
package gplots (v3.0.1, https://CRAN.R-project.org/package=gplots) (Warnes et al.,
2015).

(B) The 96-trinucleotide bar plot shows few mutations but a clear dominance of C>T

mutations, in the red.

The heatmap in Figure 23A reveals how different groups of mutations (rows) contribute
to very different extents in individual islets (columns). The existence of clustering
evidences the presence of different genetic lineages dominating each islet. The
heatmap also reveals that, while some islets appear to have high VAFs from a single

group of mutations, others show moderate VAFs from different clusters.
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To formalise the observations above, an n-dimensional hierarchical Dirichlet process
(n-HDP) was then employed to identify clusters of mutations with VAFs consistent
across samples. These clusters were then used to reconstruct a phylogenetic tree
(Appendix 8.1). The n-HDP algorithm ran for 15,000 iterations and the first 10,000 of
these were discarded (Figure 24). Fifteen clusters were determined to be the optimal

solution, of which three were very similar (Figure 25).

Convergence plot for n-HDP

20

Alpha

0 5000 10000 15000
[teration

Figure 24 - The convergence plot generated by n-HDP
The number of iterations is seen along the x-axis while the y-axis is the number of
clusters (alpha). The first 10,000 iterations were discarded, marked by the dashed

red line.
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Figure 25 — The n-HDP clustering output

Heatmap of the clusters (y-axis) per sample (x-axis). Islets are prefixed with
“PD37726d” while bladder urothelium samples are labelled as “PD37726b”. Darker
colours represent higher median VAFs. Shared clusters amongst samples can be

seen.

Cluster 49 is striking as the two mutations that make up this cluster, appear to
contribute equally to all samples. On manual inspection, these two variants appear

have good read quality, adequate depth and presence in many samples. The
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mutations are 22:32464813G>A and 1:66874323C>T with mean VAFs of 0.107 and
0.079 respectively. As this cluster did not segregate the samples, it was discarded
when reconstructing the phylogenetic tree. The two mutations making up this cluster
were manually inspected and showed a low VAF across many samples, in reads of
good quality. It is likely therefore that cluster 49 reflects the inability by the n-HDP
algorithm to appropriately assign a cluster to these variants, without violating the
hierarchy. Running the n-HDP algorithm with relaxed criteria, to allow an increased

number of mutations, will likely remove this cluster.

Analysing the clustering heatmap in Figure 25, it is clear that all samples show
mutations from the cluster trio of 39, 26 and 34 or from cluster 92. The dichotomous
nature of this implies these clusters represent the first split in the phylogenetic tree.
This is supported by applying the pigeonhole principle to the fraction of cells carrying
the variant across islets. This can be exemplified using the boxes in Figure 26, which
show the estimated fraction of cells carrying the mutations in each cluster from two
samples. The entire set of boxes for all 32 islets and 10 bladder samples is included

in the Appendix 8.4 and these were generated in collaboration with Federico Abascal.
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Figure 26 — The pigeonhole principle identified the phylogeny of clusters
Boxes each showing the cell fraction occupied by each cluster (y-axis). Cell fraction

is equal to the VAF doubled. The numbers represent the cluster number assigned

by n-HDP (x-axis). The sample name is at the top of each box. Box width is
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proportional to the number of mutations while the length is the 95% credible interval.
Cluster 49 (purple) was discarded as it appeared to be present in all cells.

(A) Sample PD37726d_lo0017 shows clusters 34, 39 and 26 are highly represented
in the cell fraction, each contributing over 70%. These represent the first mutations
in the ancestral lineage. Cluster 10 is the next largest fraction and is too large to be
mutually exclusive, hence must be nested in the previous three clusters. Cluster 8
occupies 30% of the cell fraction and could be mutually exclusive to cluster 10 or

nested within it.

(B) Sample PD37726d_100037 shows cluster 92 in nearly 90% of the cell fraction
and cluster 7 at 40%. These represent the first two splits in the phylogeny. It
becomes unclear for the third generation of the phylogeny, the exact nature of how
cluster 10, 34, 3 and 11 are represented, given their low cell fraction does not

distinguish between whether they are mutually exclusive or nested.

Looking at Figure 26, the higher the cell fraction is, the earlier this cluster occurred in
the ancestry. The next largest fraction occupied by a cluster is then assessed by
summing this with the first lineage fraction. If the sum exceeds 1, then this means both
lineages cannot be present alongside each other (sibling clusters), but instead, the
smaller lineage must be nested within the larger one. In this way, a second split can
be defined. This can be confirmed by comparing the nesting to the shared clusters on
the heatmap. For example, from Figure 26A, it is clear that clusters 34 and 10 are
nested as their corresponding mutations account for approximately 70% and 60% of
the cells of the sample (islet PD37726d_100017). By using this approach across all
samples, multiple phylogenetic relationships can be identified. The smaller VAFs
become harder to differentiate between lineages that exist alongside each other, and
within each other. This limits the number of branches on a tree that can be reliably

distinguished using subclonal decomposition and the pigeonhole principle.

By working through all 42 boxplots, 32 for the islets and 10 for the bladder, and using
the heatmap generated from the n-HDP process, a conservative phylogenetic tree was
reconstructed, with splits only drawn when the pigeonhole principle could confidently

be applied (Figure 27).
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Figure 27 — The phylogenetic tree reconstructed with the n-HDP clustering

Each branch has an associated set of unique mutations with the mean VAF in
brackets. The variants are assigned to an individual cluster, as per the n-HDP
clustering. The variants in bold represent those recovered from the 30 exclusive

mutations in the unmatched data set.

In the end, three generations were identified. A polytomy was also identified indicating
that there are likely missing variants or silent divisions. The number of mutations per
cluster varied from 2 to 21, with increasing numbers of mutations per cluster with each

additional generation.

4.11 The early ancestry of the islets appears to be fully explained

As a validation step for this phylogenetic tree, the cumulative mean VAF for each level
in the tree was then calculated, in the islets (Figure 28). This means summing the
mean VAFs of the mutations from each branch of the tree, at each level. Per
generation, or level in the phylogenetic tree, the cumulative mean VAF should sum to

0.5 if all lineages are accounted for. A shortfall here suggests a variant may have been
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missed or placed in the wrong generation. For example, a given islet may be formed
by 60% of cells derived from the first putative daughter cell on the left and 40% from
the daughter cell on the right. If that is the case, we would expect the mean VAFs of
the mutations in the left and right branches of the first level to be approximately 0.3
and 0.2 respectively, with both summing to 0.5, indicating no missing split in the tree.

Cumulative VAF per level of phylogenetic tree (islets only)
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Figure 28 — The cumulative VAF for the islet samples

Boxplots detailing the distributions of all cumulative mean VAFs across samples
from each of the three levels of the phylogenetic tree. Only the 32 islet samples are
included. The median across all branches in the level of the tree is marked by the
black line inside the box, while the interquartile range, between the first and third, is
shown by the box margins. The upper whisker represents values that are greater
than the third quartile, to a degree of 1.5x of the interquartile range. The lower
whisker represents values that are less than the first quartile, to a degree of 1.5x of

the interquartile range. The mean is shown by the dashed red line.

(A) The first split shows a cumulative mean VAF of 0.5.
(B) The second split is shown with a cumulative mean VAF of 0.46.
(C) The third split is shown with cumulative mean VAF of 0.29.

The early lineage of the islets appears to be well-explained by the n-HDP tree. The
cumulative mean VAFs of the first and second levels are 0.5 and 0.46 respectively,
suggesting that the key divisions involved in the early lineage, that relates all islets,

are captured by the tree. The third level marks a clear change with a cumulative mean
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VAF of 0.29. This level is likely under-described with regards to the branches and splits
involved, with about 60% being represented. This is not unexpected and is a result of
insufficient fractioning of mutations into different clusters by the n-HDP method.
Incorrectly lumping multiple mutations into a single cluster will lead to clusters that

conceal the different branches that would otherwise be arising here in the tree.

For example, cluster 8 may represent this. The C>G transversion at 7:12501676
carries a global VAF of 0.066. This is lower than the other variants found in the same
cluster, both at 0.174 and 0.185. In fact, a mean VAF of 0.066 is more in keeping with
the values found in the third level. Moving the variant from cluster 8 to a new cluster
in level Ill, makes a significant impact on the cumulative mean VAFs, by increasing
the second level cumulative mean VAF to 0.49 and the third level cumulative mean
VAF to 0.32. Therefore, it is likely that the n-HDP clustering did not place this variant
in the correct cluster, despite the seemingly correct identification of an early embryonic
variant. Overall, the cumulative VAFs analysis suggests that the clusters in the third

level of the new tree are not fully resolved.

4.12 The early embryonic lineages of the bladder appear incomplete

Compared to the islets, the ancestry of the ten matched bladder urothelium samples

is less clear from these data (Figure 29).
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Figure 29 — The cumulative VAF for the bladder urothelium samples

Boxplots detailing the distributions of all the variants in each of the three levels
marked on the phylogenetic tree. These are in the same format as those in Figure
28. Only the 10 bladder samples are included.

(A) The first split is shown with cumulative mean VAF of 0.52.
(B) The second split is shown with a cumulative mean VAF of 0.35.

(C) The third split Is shown with a cumulative mean VAF of 0.10.

Whilst the first level of the phylogenetic tree correctly accounts for all cells in the
bladder samples, the second and third split appear to miss out key variants and
branches. This is shown by the dramatic decrease in cumulative mean VAF. This
results in 70% of the second level of the tree being explained and only 20% of the third
split being accounted for. Further insights into these missing bladder variants and

splits can be seen when combining both the bladder and islet samples (Figure 30).
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Figure 30 - The cumulative VAF for both the islets and bladder samples
Boxplots detailing the distributions of all the variants in each of the three levels of
the phylogenetic tree. These are in the same format as those in Figures 28 and 29.

All 42 islet and bladder urothelium samples are included.

(A) The first split shows a cumulative mean VAF of 0.5.
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(B) The second split shows a cumulative mean VAF of 0.43. The three outlying
samples at the lower end are the triplicate bladder samples PD37726b_ 100071,
PD37726b_l1o0079 and PD37726b_100091.

(C) The third split shows a cumulative mean VAF of 0.24.

The first level of the tree shows a cumulative mean VAF of 0.5, supporting the notion
that this phylogenetic tree is rooted at the MRCA of the pancreatic islets and bladder
urothelium. The second split is almost fully accounted for except for three outliers, with
mean VAFs below the tail of the boxplot. These three bladder samples are actually a
triplicate. Given their anomalous fitting in the boxplot, they were investigated further.
This was done by analysing the VAF of each variant, from each cluster, in all three
samples. Each branch in the level of the tree could then be compared to reveal the

path taken by the samples through the phylogeny (Figure 31).
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Figure 31 - The early phylogeny of the bladder triplicate

Each bar plot represents the associated branch of the tree, and hence one (or more)
clusters of variants. The y-axis reports the VAF while the x-axis shows the three
bladder samples (PD37726b_[00071, PD37726b_lo0079, PD37726b_100091).
Error bars depict 95% binomial confidence intervals.

The triplicate does not appear to be represented in the right-hand side of the tree in

the second generation. This suggests a missing cluster that represents bladder

urothelium, and not any of the islets sampled here.

Analysing Figure 31 shows that approximately two-thirds of the cells in this bladder
triplicate derive from cluster 92. However, none of the three descendant lineages
(clusters 11, 9 and 7) appear to contribute to this bladder sample. This confirms that
there is at least one missing lineage in the phylogenetic tree that does not significantly
contribute to any of the 32 islets, but instead give rise to most of the cells of this bladder
urothelium sample. Therefore, the polytomy in Figure 27 must have at least one more

branch.

4 .13 Islets are composed of different embryonic lineages and are often dominated by

one or two major lineages

Having demonstrated that the first two levels of the phylogenetic tree accurately reflect
the embryonic lineages in the islets, the contributions that each individual embryonic
lineage makes towards each islet can be studied in detail. A monoclonal foundation of
the islet would be expected to have a single clear lineage while oligoclonal and
polyclonal foundations, will produce a more heterogeneous picture with multiple

variants, on different branches contributing to each islet (Figure 32).
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Figure 32 — The phylogenetic trees of each of the 32 islets

The contribution of each lineage to each islet is depicted here using the R package,
ggtree (Yu et al., 2016). These images were produced in collaboration with Tim
Coorens. A schematic of the original reference tree is shown at the top of the
diagram and a mean VAF key is in the bottom right. In all the trees, an extra branch
has been added to cluster 8 (light brown node on the left side of the second level in
the schematic) in order to show the silent division that distinguishes cluster 6, from

cluster 8.

Each branch represents a new cluster and each coloured point is a specific, unique
mutation, which has a fixed, consistent location across all the trees. The colour of
the mutation corresponds to the mean VAF with red being 0.5 and yellow to white
representing much lower values. Duplicates and triplicates shown in the blue and

green boxes respectively.

Figure 32 summarises how much the different embryonic lineages contribute to each
islet. For example, sample PD37726d_100056 nearly entirely derives from the left most
embryonic lineage of the tree. The VAFs close to 0.5 along the left-most branches
show that the islet is almost entirely composed of cells descended from clusters 26,
39 and 34 in the first level, and clusters 10 and 2 lower down the tree. This is consistent
with the high prevalence of the LI/P/ variant in this islet. While other lineages are
present, shown as the yellow mutations on other branches, it is clear these explain
only a small fraction of the cells in this islet. Contrasting this, other islets show a more
even split between lineages such as PD37726d_100055. Thus, individual islets appear
to be formed by multiple embryonic lineages but often have one or two dominant

lineages contributing to most of the cells in the islet.

4.14 Integrating the spatial location of the islets with their lineages reveals a non-

random distribution across the pancreatic tissue

By overlaying the contribution of different embryonic lineages onto the spatial locations
of the islets, nearby islets can have their ancestry compared to each other. If the
spatial distribution of islet embryonic lineages is random, this would suggest that early
embryonic founding of each islet is independent of its neighbours. Contrasting this is

would be a non-random distribution, whereby islets in the same spatial regions are
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more similar to each other, than to distant islets. The latter scenario may suggest that
different lineages preferentially seed the formation of islets in different areas of the
developing pancreas, or alternatively, that islet fission is a common phenomenon in

the formation or maintenance of the islets.

As the first two levels of the phylogenetic tree appear to give a near-complete picture
of the early lineage tree, that gave rise to all 32 islets studied, the contribution to each
islet by the lineages shown in the top two levels of the tree can be confidently
portrayed, in combination with their spatial location (Figure 33).
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Figure 33 — The integrated spatial and phylogenetic information for each islet
Greyscale pancreas overview section used in LCM. Each pie chart represents the
spatial location of an individual islet and the number labelling these pie charts is the
suffix of each sample (“PD37726d_|o00*"). Islets labelled with a * are obtained from
a z-slice 16 um above or below this slice. Duplicates (8 and 41) and triplicates (15,
17 and 39) are displayed next to each other and are in blue and green boxes
respectively. A schematic of the phylogenetic tree generated by the n-HDP is shown
in the top right with a legend below, displaying the corresponding colours and names

for each cluster.

(A) The proportions of the pie charts are related to the first split in the phylogenetic
tree. As such, the fraction of the pie chart in brown (clusters 26, 34 and 39)
represents the cell fraction descending from the left-sided branch of the first split,

while green represents the right side (cluster 92).
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(B) The proportions of the pie charts here relate to the branching of the second split

in the phylogenetic tree. This includes clusters 10 and 8 on the left side of the tree,

in shades of brown, and clusters 7, 9 and 11 on the right, in shades of green.

Figure 33 shows that the founding cells of the islets, and hence the embryonic linages
that make up the islets, appear to be non-randomly distributed. Islets from the same
area of the section show a more similar contribution of different linages than pairs of
distant islets. For example, the top left region of Figure 33 shows several islets that
share the same embryonic lineages, in similar proportions. These relationships are
generally preserved across both levels of the phylogenetic tree. Demonstrating the
precision of this approach, the duplicate and triplicate samples are consistent amongst
themselves. This non-random distribution suggests that nearby islets are founded by
the same population of ancestral cells, or that once founded, an islet can undergo a
fission event and duplicate itself. Evidence of islet fission however is very limited and
the current data is unable to distinguish between the two hypotheses (Jo et al., 2011;
Seymour et al., 2004).
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5. Discussion
5.1 LCM with an unmatched analysis may prove to be a reproducible workflow in other

normal tissues

Capturing the landscape of somatic mutations within normal tissue is a growing field.
At the Wellcome Sanger Institute (Cambridge, UK), a new pipeline using LCM of small
areas of tissue and low-input DNA sequencing has been developed. Being able to
take such precise biopsies, drawn freehand, makes few histological structures off
limits. Whilst the spherical nature of the islets does pose an additional challenge in
obtaining a complete three-dimensional sample, the use of multiple z-slices taken

within the same islet, allows an approximation of the entire spherical islet to be made.

The study of somatic mutations has typically relied on matched data with the
acknowledgement of the limitations this carries with regards to early embryonic
mutations and phylogenetic reconstruction. However, the unmatched workflow
presented here supersedes this matched approach. Germline mutations were
confidently removed, identical somatic variants were called and, importantly, early
embryonic mutations were recovered with minimal introduction of artefacts. Ultilising
this workflow, both prospectively and retrospectively, to similar data sets from other
tissues could help decipher their somatic mutational profiles and early embryonic
phylogenies. As the field grows and more normal tissues are investigated, the work

here could prove pivotal in directing future somatic mutation research.

5.2 Novel insights have been gained into somatic mutations of the pancreatic islets

The almost unprecedented very low number of somatic mutations identified in each
whole genome, as well as the pattern of mutation sharing across islets and across the
pancreas and bladder, strongly suggests that many of the mutations detected in this
analysis occurred during early embryogenesis. Signature analysis of the mutations
detected confirmed that the majority of them can be assigned to intrinsic mutational
processes without clear evidence of mutagen-induced mutations. This is perhaps to

be expected for mutations of embryonic origin.

As expected given the very low mutational burden, there were few non-synonymous
mutations identified. One notable variant in the LIPI gene stands out as a high VAF
coding mutation (sample PD37726d_100056). Its high VAF in the absence of aberrant
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copy number changes confirms that the mutation is present in approximately 90% of
the islet cells (95% confidence interval: 56%-100%). Consistently, this islet appears to
be mostly derived from a single branch of the phylogenetic tree. The high VAF of this
variant could be consistent with it being an early passenger mutation present in an
embryonic cell that gave rise to most cells in this islet, or with a later clonal expansion
by drift or positive selection. Nevertheless, the low mutational burden in this islet, not

dissimilar from other more polyclonal islets, suggests an early embryonic origin.

An interesting observation from this study is that the MRCA of all cells in the 32 islets
of Langerhans also appears to be the MRCA of all cells in the ten matched bladder
urothelium samples. This resembles the observation from a previous study in mice
that showed the MRCA of the endoderm is also the MRCA of the ectoderm and
mesoderm, with the suggestion this is likely to be the zygote (or at least the cell that
gave rise to seemingly all cells in the adult) (Behjati et al., 2014). From the results
presented here, it is unclear whether the MRCA of the pancreatic islets and bladder
urothelium is the zygote, or whether it is simply the first cell that gave rise to all adult

tissues.

5.3 The founding model of the pancreatic islets is still only partially understood

The presence of so many different embryonic lineages in each islet indicates that
multiple embryonic founding cells of different lineages, come together to seed each
islet. Given that many islets have all five branches of the second generation of the
phylogenetic tree represented in their phylogeny, this suggests that at least five
embryonic founding cells established these islets. This is consistent with a polyclonal
founding model (Model C, Figure 8) for the pancreatic islets. However, the phylogeny
of most islets suggests the existence of dominant lineages disproportionally
contributing to each islet (Figure 34). This is in keeping with previous studies showing
asymmetric contributions being made to adult tissues, from embryonic ancestors
(Behjati et al., 2014; Ju et al., 2017).
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Figure 34 — Multiple embryonic founders may seed an islet

One interpretation of the data is that multiple founding cells (coloured circles) appear
to make up the islets (black circle) (Model C, Figure 8). However, the proportion of
lineages seeding the islet may vary. Some islets may be entirely polyclonal, whereby
all five lineages occupy an equal proportion of the population (such as that
represented in the box) or they may be oligoclonal, with examples shown on the
right of the diagram. Indeed, some of the islets here appear to be more clonal than
others, with PD37726d_100056 a notable example.

Since the pancreatic islets also contain other minor cell types, such as non-endocrine
cells like endothelial cells, it remains to be shown whether the existence of a dominant
lineage in many islets is due to a monoclonal origin of all endocrine cells, in a given
islet, or whether endocrine cells in a single islet truly arise from multiple embryonic
progenitors. Future studies combining information from adjacent areas of exocrine
pancreas or additional phenotyping information from immunohistochemistry or single-
cell RNA sequencing, may shed light on whether different lineages contribute to

different cell types.
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The results shown here are in stark contrast to the somatic mutations that can be
detected in fast dividing clonal tissues like the colonic crypts. The patterns seen here
in the islets instead suggest the islets are formed by a few founder cells early in
development and do not undergo any subsequent clonal sweep later in life, as this
would be expected to come with an increased burden of clonal mutations. This is
consistent with the current belief that islets are maintained by the infrequent division
of many cells, such as self-duplication of differentiated p-cells, and seem inconsistent
with islets being replenished, or formed, in adulthood by one or a few cells (Bonner-
Weir et al., 2012; Dor et al., 2004). Nevertheless, the findings here relate only to the

32 islets sampled.

Spatially, the founding of these islets appears to have been a non-random process,
with islets nearby sharing similar ancestry. Further statistical methods would be
necessary to quantify the extent of this with one option being a permutation approach
with the islet positions and relatedness. The implication of this non-random distribution
is that the same ancestral founding cells, occurring early in development, may seed
regions of the pancreas during embryogenesis. Alternatively, once formed, islets may
then divide into two identical islets through islet fission (Seymour et al., 2004). Several
pairs of islets are seen that are close to each other with a high degree of resemblance
in Figure 32 and these may represent examples of either the same founding cells or

fission (Figure 35). Indeed, the two may not be mutually exclusive.
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Figure 35 — Possible islet fission events are difficult to differentiate from
similar founder populations

In light of their proximity to each other, samples PD37725d 100025 and
PD37726d 100026 appear remarkably similar in their early phylogenetic ancestry.
This may be due to an identical founder population or a fission event. Distinguishing

the two will be difficult with the current method.

5.4 Limitations of the current methodology

There are several domains where improvements could be made. While LCM appears
to be well-suited to the task, there are risks of contamination between plate wells. This
could be from other samples during the cutting process, or when preparing the plate.
In this study, this was closely monitored during the LCM stage through proper
precautions and cleaning steps. The concordance of the duplicates and triplicates

provides further support that there was little contamination of samples.

One key limitation was that all the islets were excised from a single biopsy, in one
region of the pancreas, from a single patient. Whilst deep sampling of a single donor
is necessary for phylogenetic reconstruction, multiple donors would be needed to
make generalizable conclusions. To improve on this, many more islets would be

required, from numerous biopsies across a range of donors.

Mutational signature analysis is a fast-growing field and has revealed numerous
insights in cancer types. However, current knowledge of the mutational processes
active in normal tissues is in its infancy. Whilst the same mutational processes may
be occurring in normal tissue, there might be mutational signatures that are specific to
certain normal tissues, and therefore not contribute sufficient numbers to malignancies
for them to be detectable. By restricting the current analysis to signatures found in
cancer genomes, the contribution of other signatures may have been overlooked. A
de novo approach to mutational signature extraction may prove helpful in ascertaining
the mutational processes specific to normal tissue, particularly when working with
multiple patients. The R package HDP (https://github.com/nicolaroberts/hdp)
(Roberts, 2018; Teh et al., 2006), could be used to do this. Still, one practical issue

with de novo extraction is the need for a large number of mutations to work with, from
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many different samples or patients with different contributions of these mutational
signatures. Given the low mutational burden detected here, a de novo signature

extraction would require a much larger number of islet whole genomes.

The minimum detectable VAF here was approximately 0.1, based on the WGS
coverage and the CaVEMan default parameters. For a polyclonal tissue like the islets,
the detectable variants were mostly ancestral mutations, most of which might have
been present in the founder cells of an islet. Somatic mutations acquired through life
by islets cells are unlikely to be present in a sufficient fraction of cells of an islet to be
detectable. As a result, the mutational burden estimated in this study is expected to
heavily underestimate the mutational burden of individual islet cells at the time of death

of this donor, and instead likely represent the mutational burden of the founding cells.

A much greater coverage would enable the detection of more recent variants, and this
would also be advantageous when looking at phylogenetic reconstruction. This would
still be hindered by the polyclonal composition of the islets and the intrinsic errors
introduced in sequencing. A possible solution to improve the recall of rare, or even
private, somatic variants may be bottleneck sequencing (BotSeqS), whereby
molecular barcoding combined with a dilution step prior to whole-genome library
preparation, can dramatically increase the ability to identify those low VAF variants
(Hoang et al., 2016). Additionally, the use of single-cell genomic and transcriptomic
sequencing (G&T-seq) plus single-cell derived organoids, may play a role in the future
somatic mutation workflow, particularly in polyclonal tissues (Enge et al., 2017; Jager
et al., 2018; Macaulay et al., 2015).

Summarising, the sequencing of 32 pancreatic islet whole genomes, all from a single
donor, has shown an unmatched analysis to be superior to a matched approach. The
observed somatic mutational burden in these islets appears to be low and driven by
intrinsic processes. Further, the pancreatic islets seem to be polyclonal units,
established by multiple embryonic founders, with major and minor lineages. They do
not appear to be maintained by a fast-dividing stem cell population and their spatial
distribution is non-random, suggesting regions of the developing pancreas are seeded
by the same populations of founding cells. Finally, the islets also appear to share a

MRCA with the bladder urothelium, going back likely to the fertilised egg.
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6. Future Directions
6.1 Single-cell derived splenocyte colonies may help enrich the phylogenetic tree

The phylogenetic reconstruction completed here approximates the early embryonic
lineage of the islets. In order to obtain a more precise and complete phylogeny of the
early development in this donor, single-cell derived splenocyte colonies are being
cultured, in collaboration with Elisa Laurenti at the Wellcome-MRC Stem Cell Institute
(Cambridge, UK). In single-cell derived clonal populations, heterozygous variants in
the original founding cell take on VAFs of 0.5 in the larger clonal population,
irrespective of its original VAF in the tissue. Rare variants can therefore become
detectable under current sequencing protocols, at moderate depths, allowing higher-
quality phylogenetic trees to be reconstructed using standard phylogenetic

approaches (Behjati et al., 2014).

6.2 Immunohistochemistry could play a role in explaining the lineage proportions

Most islets appear to be a polyclonal unit, derived from at least five embryonic
founders. Often the islets appeared to have a major lineage accounting for over half
of the population, along with several more minor sub-populations (Figure 32). Given
that B-cells make up about 60% of the islet, with a-cells being 30% (lonescu-Tirgoviste
et al., 2015), it would be interesting to examine whether the proportions of the islet cell

types correlates with the lineages present in the population.

It is unclear whether different lineages could reflect different cell types. It is likely that
non-endocrine cells within an islet partially explain the presence of multiple embryonic
founders, but this is difficult to assess with the current data. It is also unclear whether
different subpopulations of endocrine cells in a given islet may derive from different
founder cells, including differences between pB-cells and a-cells. With a view of
investigating further, immunohistochemistry can be performed on the sections for the
markers expressed by each cell type. Key targets for this would include chromogranin,
insulin, glucagon, trypsin and CD31 (Campbell-Thompson, Heiple, Montgomery,
Zhang, & Schneider, 2012; Lin, Chen, & Wang, 2015; Pusztaszeri, Seelentag, &
Bosman, 2006). Their relative fractions could then be compared to those obtained
from the whole-genome sequencing data. In preparation for this, 5 um sections have

been obtained; from directly above and below the 16 um sections cut for LCM. As a
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tissue thickness of 5 um represents less than a single cell layer, the sub-populations
of different cell types in the islets excised can be experimentally identified. Building on
this, G&T-seq may provide a superior option to identifying cell types within the islet.

6.3 Targeted genotyping of pancreatic tissues may reveal more detailed insights into

development and maintenance

One key question is whether transdifferentiation of non-endocrine cells into endocrine
cells, particularly B-cells, could be achieved (Bonner-Weir et al., 2008; Kim & Lee,
2016). This possibility has attracted considerable attention for its translational
potential, in an age where DM2 has become more widespread, with a growing health
burden (World Health Organization, 2016). To investigate transdifferentiation further,
as well as more generally assessing the contribution of different lineages to the
exocrine pancreas surrounding the islets, LCM has been used to obtain pancreatic

ducts and acini from the same patient (290B) (Figure 36).

Figure 36 — Further LCM work is focusing on the pancreatic ducts and acini
LCM images from patient 290B. The black lines tracing the borders of the structure

indicate the margins of the laser microdissection.

(A) A pancreatic duct demarcated during LCM. The area of tissue obtained was
28,466 pm?>.
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(B) A crescentic acinar section surrounding islet PD37726d_[0o0030, outlined in
black. This has an area of 36,582 um?. The islet was previously excised and leaves
a white circle in the centre of picture. There is a clear margin of tissue left between
the islet and the acinar crescent, to ensure no remnants of the islets are cut with the

acinar tissue.

As shown in Figure 36, while the ducts have been taken in the same way as the islets
have, a different approach has been used for the acini. Crescents of acinar tissue
surrounding islets are being collected with a clear margin of tissue being left between
the islets and acinar crescents, to prevent cross-contamination of the cell types. With
the whole-genome sequence data from the islets, ultra-deep targeted sequencing of
the surrounding acinar crescents, and nearby ducts, can be performed using the
mutations identified in the islet whole-genome data as a custom bait. The targeted
genotyping of both of these exocrine tissues will then shed light on whether they share

the same variants and therefore, ancestry.

To conclude, this body of work serves as a starting point for examining the somatic
mutations in the pancreatic islets. Building on this foundation, future work is already
under way. Single-cell derived splenocyte colonies are currently being cultured and
once sequenced, the phylogenetic tree reconstruction will hopefully reveal an
unrivalled insight into the phylogeny of the islets of Langerhans.
Immunohistochemistry is a readily available resource to further clarify the lineages
seen in each islet and this could frame these results in a more appropriate context.
The prospect of transdifferentiation is exciting and if shared ancestry between the
endocrine and exocrine pancreas is proven, a remarkable new frontier could open up
in regenerative medicine, one that could lead to the development of novel, translational

therapies for diabetic patients.
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8. Appendices
8.1 Variant clustering with the n-dimensional hierarchical Dirichlet process

To cluster the VAFs across multiple samples from the same patient, an n-dimensional
hierarchical Dirichlet process was employed. This algorithm was written and designed
by Peter Campbell. Much like the Bayesian Dirichlet process used previously, this
method requires the number of variant reads per sample as well as the sequencing
depth (Nik-Zainal, Van Loo, et al., 2012). There are no prior definitions of how many
mutations are in each cluster, and each mutation can be allocated to any cluster. An
upper limit of 100 clusters was set; however the number of clusters generated here
was far less than that. Diploid cells are assumed. Each cluster takes on a location
within an n-dimensional VAF hypercube but the exact location of this is unknown until
the completion of the process. Both the distribution of clone sizes and number of
variants per clone are modelled as a Dirichlet process, in a hierarchical Bayesian

model with the variant reads and total sequencing depth.

The total read depth for mutation /in sample jis defined as:n; ,i = 1,..,N,j=1,..,M
where N is the number of somatic mutations across all M samples. The reference
allele, y; ;, is similarly defined using the number of reads supporting the reference

sequence. The distribution of the reference allele approximates a binomial distribution
of the mutation total read depth and the expected proportion of reads supporting the

reference allele (m; ;). As such, y; j~Bin(n; ;, m; ;) where m; ; is a Dirichlet process:

m;~DP(aP,) € [0,1]M

P is defined as:

P = Z wh6nh
h=1

In this case, m,~P,, where &, is the point mass at = and w,, is the weight of the ht"
mutation cluster. As this is a stick-breaking representation of the Dirichlet process, w;,
is defined as:

wp = Vil (1= V)

The beta distribution is then used to estimate V, as V,~Beta(1 — a). As priors,
P,~U(0,1)™ and a~T'(0.01,0.01). The posterior distribution of the Dirichlet process is
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then modelled using the Gibbs sampler. This involves the sequential sampling of each
parameter in the joint distribution and the extraction of a univariate conditional
distribution, based on the previous sampling of all other parameters (Hines, 2015). In
this case, each mutation is assigned a cluster and stick-breaking weights are adjusted
based on the conditional conjugate beta posterior distributions. Draws from the
posterior distribution of (7, |—) are then used to update the cluster positions in the M-

dimensional VAF hypercube.

In large polyclonal samples, these clusters tend to be on the edges of the VAF
hypercube and as such, a large region of low probability becomes apparent in the
posterior distribution. This aspect of the posterior distribution can then go unsampled
due to the low probability and the Gibbs sampling can then be limited. To counter this,
a merge-split step is performed after each iteration of the Gibbs sampler using the
Metropolis-Hastings proposal for conjugate distributions (Dahl, 2003). Briefly, this
involves the random sampling of two mutations and if they are in different clusters,
merging the two variants is considered based on the beta-binomial distribution of
mutations already allocated. Should the two random variants be in the same clusters,
a split step is then considered in a similar fashion (Dahl, 2003). Each merge-split
option produces a Metropolis-Hastings ratio and the split or merge is accepted with
this probability (Hastings, 1970). The posterior distribution for a can then be refined

using this clustering.

The Gibbs sampler was run for 15,000 iterations and the first 10,000 were discarded.
The R package label.switching (v1.7, https://CRAN.R-

project.org/package=label.switching) (Papastamoulis, 2016) was integrated into the

process in order to resolve the label switching problem associated with Markov Chain
Monte Carlo outputs, through the use of an Equivalence Classes Representatives

(ECR) algorithm (Papastamoulis & lliopoulos, 2010).

8.2 Copy number analysis revealed no detectable gains or losses across samples
The mean ploidy was 1.97 with ASCAT and 2 with Battenberg (Nik-Zainal, Van Loo,
et al., 2012; Raine et al., 2016; Van Loo et al., 2010). This fits with a normal sample
containing no significant copy number changes. The ASCAT and Battenberg plot for
sample PD37726d_100055 can be seen in Figure S1.
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Ploidy: 2.00, aberrant cell fraction: 100%, g of fit: 87.5%, b Ploidy: 2.12, aberrant cell fraction: 96%, goodness of fit: 100.0%
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Figure S1 - The copy number analysis of sample PD37726d_lo0055
The x-axes in all six plots is the genomic position, split up by chromosome number.
LogR is the log of the coverage at each variant site, compared to the reference

sample. The BAF is the B-allele frequency with the B-allele being the mutant variant.

(A) The plots produced by ASCAT shows a clear ploidy of 2, with very few
deviations. The top plot summarises this with the few individual red and green marks
above and below the value y=1. The LogR and BAF plots show no significant

changes in allele frequency or deviations in coverage.

(B) The plot produced by Battenberg supports the ASCAT result, with a ploidy of
2.12 and a goodness of it equal to 100%. The top plot summarises this with the few
individual red and green marks above and below the value y=1. The LogR and BAF

plots show no significant changes in allele frequency or deviations in coverage.

8.3 Additional support for the mutation calling filters

To validate these three filters, the variants that were filtered out in the unmatched data
were analysed. These variants include those with a mean VAF>0.4, a low over-
dispersion parameter (p-value) or poor coverage at the variant site. This does not
include any variants filtered out by manual inspection of the variants. Per sample, the
range of mutations removed was 92,603 to 94,435 and the mean number of removed

variants per sample was 94,204 (Figure S2).
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Trinucleotide plot for mutations removed by filters
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Figure S2 — The entire set of variants filtered out from the unmatched data
The 96-trinucleotide bar plot shows the unique variants removed from the
unmatched data. There is a clear dominance of C>T mutations, followed by T>C

mutations.

Many of the mutations included in this filtered out cohort would be expected to be
germline SNVs. These variants take on high VAFs and are present throughout all
samples. Artefacts however would be expected to have a lower VAF and be less
common amongst the samples. The efficient removal of artefacts, through the use of
the filters described, appears to be supported when subsetting these mutations to
those with a VAF less than 0.1 (Figure S3).
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Trinucleotide plot for the mutations, with a mean VAF<0.1, removed by the filters
C>A Cc>G C>T T>A T>C T>G

60 —

40

Number of mutations

20 -
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Figure S3 — The low VAF variants that were filtered out
From the 94,548 variants filtered out of the unmatched data, 497 had a mean
VAF<0.1. The majority of these are T>A mutations and resemble known sequencing

artefacts.

The 497 variants with a VAF less than 0.1 are made up mostly of T>A mutations, a
transversion likely generated by the fragmentase enzyme mix (New England Biolabs),
during whole-genome library preparation. Comparing Figure S3 to Figures 11 and 12,
there is a clear removal of these T>A mutations through the use of the beta-binomial
distribution and a depth filter. It appears therefore, that these two filters have proved

useful in reducing sequencing artefacts.

8.4 The pigeonhole principle was applied to each of the 42 samples to reconstruct the

phylogenetic tree

The boxes that were generated from the n-HDP clustering algorithm for all 42 samples
are shown in Figure S4. These figures were generated in collaboration with Federico

Abascal.
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Figure S4 — All 42 boxes used in the phylogenetic tree reconstruction

These boxes represent all 32 islets and ten bladder urothelium samples that
underwent clustering with n-HDP. Per sample, clusters (x-axis) and the cell fraction
per cluster (y-axis) are shown. The cell fraction is equal to double the VAF. The
sample name is at the top with the prefix “PD37726b” representing a bladder
urothelium sample and “PD37726d” representing an islet sample. Box width is
proportional to the number of mutations while the length is the 95% credible interval.

Cluster 49 was discarded as it appeared to be present in all cells.

Each of these boxplots was used to reconstruct the phylogenetic tree, placing the
32 islets and the ten bladder urothelial samples onto the tree. This revealed a shared
MRCA and a missing split accounting for three bladder samples (Figures 30 and
31).
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