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6 Discussion 
 

Throughout my PhD I have been exploring further aspects of the genetics of human gene 

expression in an attempt to understand its role in the biology of complex disorders. 

Pioneering work studying gene expression variation documented its fundamental role in 

shaping phenotypic differences among cell-types (Schadt, Molony et al. 2008; Dimas, 

Deutsch et al. 2009), individuals (Cheung, Spielman et al. 2005; Stranger, Forrest et al. 

2005) and populations (Stranger, Nica et al. 2007). This development has been 

concomitant with the progress in discovering genetic associations with complex traits by 

genome-wide association studies (GWAS) (McCarthy, Abecasis et al. 2008).  However, 

the GWAS signals are hard to interpret in the absence of additional information 

(Dermitzakis 2008), as they often map to either non-genic regions or genes of no 

apparent functional relevance to the associated trait. Transcript abundance (mRNA 

levels) is a very proximal endophenotype immediately affected by DNA sequence 

variation. Thus, it provides a link between genotype and organismal phenotypes, which 

can be used to explain some of the genotype-phenotype associations revealed by 

GWAS. In this thesis, I developed a novel empirical methodology to explore the role of 

gene expression as an informative intermediate phenotype between DNA variation and 

disease and offered also new insights into the complexity of regulatory variation across 

multiple tissues. In the following sections, I summarize the main results of my study and 

discuss other relevant advancements and current pressing issues in the field.  

 

6.1 eQTL	  and	  GWAS	  integration	  –	  RTC	  score	  

To aid the functional interpretation of complex trait association signals, I describe in 

Chapter 3 an empirical methodology (Regulatory Trait Concordance - RTC) that directly 

integrates eQTL and GWAS data while correcting for the local correlation structure in the 

human genome (linkage disequilibrium - LD). The RTC methodology addresses the issue 

of coincidental eQTL-GWAS SNP overlaps due to the pervasiveness of regulatory 

variants and prioritizes candidate disease genes based on their differential regulation.  
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Investigating the explanatory potential of regulatory variation is appropriate, as confirmed 

by the significant overrepresentation of eQTLs observed among currently published 

GWAS SNPs.  

 

As a proof of principle I applied the RTC method initially on expression profiles quantified 

in LCLs. In line with the biological expectation, immunity-related traits were 

overrepresented among the significant results. It is clear that the tissue of expression has 

a decisive impact on the results of the method, as further exemplified in Chapter 5.  

Therefore, the RTC is unlikely to yield meaningful results for traits such as obesity or type 

2 diabetes, unless expression data from the hypothalamus and β–cells respectively 

becomes available for analysis. Like many other experiments relying on genotyping 

assays, the method is limited by the SNP coverage in each region of interest. While the 

calculation of the RTC score accounts for the number of tested SNPs so that the metric 

is comparable across regions of variable sizes, for the same hotspot interval tested, the 

denser the SNP coverage, the more informative the score with respect to the relationship 

between the eQTL and the disease SNP. Imputation helps alleviate this constraint by 

inferring additional informative genetic variation. It should be noted however, that unlike 

other methods using whole-genome transcriptome data to discover disease candidates 

(e.g. network-based approaches), the RTC is a gene prioritization method relying on the 

validity and existence of prior GWAS results. The method requires prior information 

about the identity of disease susceptibility variants and helps direct functional studies 

towards the potential candidates affected by the disease SNPs. 

 

With the limitations of tissue type, SNP coverage and prior GWAS information required, 

the RTC helps nonetheless discover likely causal cis regulatory effects for a variety of 

traits, confirming some already suspected as well as identifying a multitude of novel 

candidates. Long-range trans effects are also present but harder to identify due to lower 

power to test for such associations. Applying RTC in trans for intervals where a 

significant cis effect has been highlighted would be a useful next step in understanding 

the regulatory interactions underlying the respective GWAS signals. Ultimately, proving 

causality will demand the individual functional examination of each candidate proposed 

with the RTC approach, but in absence of such prioritization directions, the biological 

interpretation of the ever-increasing list of GWAS signals would be unattainable. 
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Finally, the RTC method is not limited to gene expression but could be generalized to 

any other endophenotype. As new methods are developed and larger cohorts become 

available, various intermediate cellular phenotypes are interrogated via association 

studies with the hope to find explanatory links between genotypic variation and complex 

trait predisposition. The biological interpretation of these discoveries will also be 

hardened by the presence of tight LD. It is therefore necessary to evaluate them in a 

conservative manner, correcting for the local correlation structure in each genomic 

interval with overlapping association signals. The integration of more intermediate 

cellular phenotypes will enhance our understanding of the biology of complex traits. 

6.2 Cis	  eQTL	  tissue-‐specificity	  

Gene expression (mRNA transcript abundance) has already facilitated the identification 

of candidate susceptibility genes for a variety of conditions such as metabolic disease 

traits (Chen, Zhu et al. 2008), asthma (Moffatt, Kabesch et al. 2007) or Crohn’s disease 

(McCarroll, Huett et al. 2008). Using the RTC methodology, further evidence has been 

acquired in favour of the overall GWAS explanatory potential of regulatory variation and 

new differentially expressed genes with potential disease causing role were revealed 

(Nica, Montgomery et al. 2010). However, some phenotypes manifest themselves only in 

certain tissues (Emilsson, Thorleifsson et al. 2008) and our guess of tissue relevance is 

yet far from satisfactory. Given this, the value of measuring expression in multiple cell-

types, including primary tissues reflecting in vivo patterns, is incontestable. 

Transcriptional regulatory networks are expected to dictate tissue-specificity of regulatory 

effects (Ravasi, Suzuki et al. 2010) but the extent of this is still under debate. 

 

In Chapter 4, I investigated further aspects of tissue-specificity in three human tissues: 

one cell-line (LCL) and two primary tissues of clinical importance (skin – previously 

uncharacterized and fat). An abundance of cis eQTLs was detected in all three tissues, 

at a comparable rate to other studies of similar sample size (Stranger, Nica et al. 2007). 

The eQTLs appear robust, replicating in a very high proportion (93-98%) in independent 

co-twin samples of identical (monozygotic twins) or 50% similar (dizygotic twins) genetic 

background. Using recombination hotspot coordinates and stringent LD filters, the 

detected signals were refined to likely independently acting cis eQTLs. Most genes were 

observed to have single associated regulatory variants, which, if shared across tissues, 

share the same direction of effect and map to the same recombination hotspot interval. 
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This suggests that largely, shared differentially regulated genes also share regulatory 

functional variants across tissues. Additionally, factor analysis (FA) was employed, 

accounting for global variance components in the data, which can be also of non-genetic 

nature (e.g. experimental noise or environmental conditions). FA further increased the 

power to detect eQTLs of smaller genetic effects, implying that future expression studies 

on larger sample sizes are expected to reveal a plethora of additional regulatory variants 

in each tissue.  

 

The three tissues analyzed here support a large degree of tissue-specificity of eQTLs 

and emphasize the importance of accounting not only for statistical significance but also 

for continuous biological properties such as effect size. Most notably, significant eQTLs 

at the same threshold were observed to exhibit differential fold changes in expression 

between genotypes across tissues. Despite sharing statistical significance, these are 

also tissue-specific effects since they are likely to have different biological 

consequences. Given this, the biological interpretation of eQTLs - much like in the case 

of complex traits – is tissue-dependent and requires collecting multiple tissue expression 

datasets. Studying regulation of expression during different developmental stages as well 

as regulatory changes following exposure to various stimuli are essential future steps 

towards understanding gene regulation in more detail. Furthermore, trans effects and 

their tissue-specific properties are still largely unknown and remain to be discovered in 

better-powered eQTL studies. Understanding the genetic architecture of gene expression 

with its complexities and context-dependent effects is fundamental, especially if 

employed in explaining the biological properties of disease causing variants. 

 

6.3 Tissue-‐dependent	  prediction	  of	  disease	  regulatory	  effects	  

The extensive tissue-specific component of regulatory variation is tested specifically in a 

disease context in Chapter 5. Here, I apply the RTC methodology on a multiple tissue 

dataset (GenCord) in order to prioritize disease relevant genes based on their potential 

causal regulatory effects. Each of the three tissues is informative with respect to a subset 

of GWAS signals, allowing the discovery of several regulatory effects with potential 

implications in disease aetiology.  
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The results support the decisive role of the tissue of origin where transcript abundance is 

quantified, for predicting trait-relevant candidate genes. Specifically, I observe that of the 

total amount of confident results, the majority (~70%) are restricted to one tissue only 

and when considering these discoveries in each tissue separately, 50% of the RTC 

results per tissue appear tissue-specific. The distribution of RTC scores in each of the 

three tissues reflects their distinct biological properties. As such, while expression data in 

each tissue contributes to the discovery of candidates undetectable in the other two 

tissues, the two immunity-related cell-types (B-cells and T-cells) share, as expected, 

more causal regulatory effects than any other pairwise tissue comparison. Nevertheless, 

establishing which tissue is relevant for which trait is not trivial. In addition to anticipated 

autoimmune signals revealed in B-cells and T-cells, a series of other biologically 

interesting and less expected candidates are detected. Upon further careful validation, 

some of these unexpected results may provide new clues about shared biological 

mechanisms involved in the pathology of different diseases, a hypothesis supported by 

the current overlap in GWAS results between apparently dissimilar complex traits. For 

the moment, the currently scarce knowledge about disease biology as well as the 

reasonable proportion of regulatory effects shared across tissues, justify the informative 

value of investigating any available expression dataset for potential RTC signals. The 

current results suggest that the more tissues we sample, the more likely we are to detect 

regulatory effects of special relevance to complex diseases. It would be ideal to screen a 

wide range of human tissues in the future and by combining it with GWAS data to create 

a “tissue map” of natural variation, whereby one could determine the most biologically 

relevant expression changes for a variant of interest and estimate how distant this 

prediction is compared to the case when one would access the tissue where the first 

molecular change relevant to the disease occurs. 

 

6.4 Next-‐generation	  genomics	  	  

The development of high-throughput microarray and genotyping technologies enabled 

the current progress in understanding the genetics of gene expression variation and 

complex disease risk. While this has been a great achievement, several limitations still 

exist and need to be addressed in the near future.  
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Firstly, most of the association studies performed so far rely on human DNA sequence 

representing the common genetic variation in any region of interest. This means that the 

susceptibility variants reported are most probably only tagging the real functional variants 

and are not causal themselves. Initial discoveries should ideally be followed by fine 

mapping the regions harbouring the significant statistical signals. However, this was not 

thoroughly attempted so far, primarily because in the absence of other prior biological 

information, such tasks were financially unaffordable. The drop in sequencing costs is 

gradually reducing this impediment, but the perfect correlation (LD) between variants 

precludes the identification of functional SNPs even in narrower susceptibility regions. 

Most likely, the smaller set of susceptibility variants revealed by targeted resequencing 

will need to be further analyzed in functional assays to establish causation beyond doubt. 

Traditional microarray experiments also suffer from capturing only a subset of the overall 

transcriptome diversity. Typically, only few probes are presently designed per gene 

making it impossible to resolve issues like alternative splicing. Measurements of 

transcript abundance are also problematic in cases of genes expressed at low levels, 

which are hard to distinguish from background noise or in cases when genes are 

expressed at very high levels, as microarrays reach saturation.  

 

The development of protocols for next-generation sequencing (Margulies, Egholm et al. 

2005; Shendure, Porreca et al. 2005) marked the start of a revolutionary direction for 

genetic studies, addressing the above-mentioned limitations. Next-generation 

sequencing has already made efforts like the 1000 Genomes Project possible 

(http://www.1000genomes.org/), a resource set up to generate a human genetic variation 

map at unprecedented resolution. The initial goal of the project was to sequence more 

than 1000 individuals and catalogue almost all variants found at minor allele frequency > 

1% in different human populations (European, African and East Asian). Within genes, 

sequencing goes even deeper, down to 0.5% frequency. After the completion of the pilot 

tests, the project is currently being extended towards a full set of genomes coming from 

2,500 individuals from 27 populations around the world. Clearly, such detailed sequence 

information will allow the discovery of additional disease susceptibility variants through 

GWAS (limited by technology, current GWAS studies have typically surveyed only 

common DNA variants with frequency greater than 5-10%). Furthermore, the 1000 

Genomes Project will significantly enhance our knowledge by surveying other forms of 

genetic variation in addition to the traditionally typed single base polymorphisms (SNPs). 
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Small insertions or deletions (indels) as well as larger changes in the structure and copy 

number of certain genomic regions (CNVs) will also be documented. These additional 

forms of genetic variation together with previously undetected rare SNP variants will lead 

to the discovery of potentially new disease risk factors.  

 

Next-generation sequencing technology has also been recently applied to profile in depth 

the transcriptome (Wang, Gerstein et al. 2009). RNA sequencing (RNA-seq) has several 

important advantages compared to gene expression measurements using microarrays: a 

much more accurate quantification of transcript levels, assessment of alternative splicing 

and the ability to detect novel gene structures (Montgomery and Dermitzakis 2009). Two 

recent landmark papers demonstrated the value of RNA-seq in linking genetic sequence 

variation to transcript abundance at an unparalleled resolution (Montgomery, Sammeth et 

al. 2010; Pickrell, Marioni et al. 2010). In the two studies, RNA from LCLs derived from 

~60 European (CEU) and African (YRI) HapMap individuals respectively, was deep-

sequenced. The transcript information thus generated was used in conjunction with 

genotypic data available from the HapMap project in order to detect genome-wide 

associations (eQTLs). Both papers reveal a greater number of eQTLs than previously 

reported by studies using microarray technologies. The eQTL overlap between the two 

studies, as well as their overlap with prior discoveries validate them as real genetic 

effects. RNA-seq allows a better quantification of transcript isoforms and facilitates the 

discovery of a considerable number of variants responsible for alternative splicing. 

Furthermore, allele-specific expression was assayed in the same experiment, permitting 

also the identification of rare eQTLs and allelic differences in transcript structure 

(Montgomery, Sammeth et al. 2010). Finally, new putative coding-exons were 

discovered, as well as a multitude of unannotated exons and new polyadenylation sites, 

highlighting the current lack of completeness of gene annotation (Pickrell, Marioni et al. 

2010).  

 

These new important aspects of the complexity in the transcriptional landscape will offer 

new insights into the genetic control of gene expression and in turn, its intermediate role 

in determining other complex traits. Next-generation genomics will soon be able to 

combine detailed genetic variation maps (e.g. 1000 Genomes Project) with high-

resolution transcriptional information sampled over multiple tissues and enable thus a 

more accurate description of the tissue-specific features of regulatory variation.  
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Next-generation sequencing is being also used to produce genome-scale epigenomic 

and interactome data (Hawkins, Hon et al. 2010). Epigenetic modifications play an 

essential role in transcriptional control and substantial variation in chromatin states has 

been recently observed, along with evidence that chromatin differences are heritable 

(Martienssen and Colot 2001; Eckhardt, Lewin et al. 2006; Vaughn, Tanurdzic et al. 

2007). So far, the best characterized examples of epigenetic heritability come from plant 

studies (e.g. segregation of parental alleles with different epigenetic signatures has been 

implicated in variation of height and flowering time of Arabidopsis thaliana (Johannes, 

Porcher et al. 2009)). These results motivate documenting epigenetic variation at a large 

scale and investigating its consequences on variation in human complex traits. It is now 

possible to perform nucleotide resolution mapping of methylated DNA sites at genome-

wide scale, by coupling next-generation sequencing with bisulphite treatment of DNA 

(MethylC–seq) (Lister, Pelizzola et al. 2009) or with immunoprecipitation of methylated 

DNA using antibodies (MeDIP-seq) (Li, Ye et al. 2010).  Determining physical and 

functional interactions across the genome (interactome) is yet another crucial 

development facilitated by next-generation sequencing. ChIP-seq (Robertson, Hirst et al. 

2007) and more recently CLIP-seq (Chi, Zang et al. 2009) methods combine chromatin 

immunoprecipitation (ChIP) techniques with deep sequencing to determine DNA-protein 

and RNA-protein interactions respectively. Long-range DNA interactions mediated 

potentially also through protein interactions are being investigated too, using 

chromosome confirmation capture (3C) technologies (Dekker, Rippe et al. 2002). These, 

combined with high-throughput paired-end sequencing have demonstrated the feasibility 

of detecting genomic interactions at genome-wide scale (Lieberman-Aiden, van Berkum 

et al. 2009). 

 

Together, all these comprehensive datasets will greatly improve the functional annotation 

of the human genome. The emerging era of next-generation genomics will be dominated 

by attempts to integrate these different sources of information. Their success will be 

crucial for our ability to explain the biology behind the presently known genetic 

associations with complex traits.  
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6.5 The	  missing	  heritability	  of	  complex	  diseases	  

The value of GWAS studies in advancing the knowledge on the genetics of complex 

diseases is indisputable. The results so far offer new insights into disease biology by 

revealing previously unsuspected susceptibility pathways and highlighting unanticipated 

overlaps between loci associated with different conditions. For example, the 

pathogenesis of type 2 diabetes is now confidently linked to disruptions of the function of 

insulin-producing β-cells and multiple studies on Crohn’s disease point now to autophagy 

- the process by which cells digest themselves via the lysosome - and innate immunity 

mechanisms as being implicated in disease aetiology (Barrett, Hansoul et al. 2008). 

Surprising GWAS overlaps have been observed, including the 8q24 gene desert region 

harbouring several independent susceptibility loci for prostate cancer, colon cancer, as 

well as one breast cancer variant. Weather these loci share a common mechanism 

leading to cancer onset is unknown, as well as the genes whose function they might 

disrupt. However, the MYC oncogene is a plausible nearby candidate and its interaction 

with tissue-specific enhancers within 8q24 is one recently proposed mechanism 

explaining the statistical associations overlap (Ahmadiyeh, Pomerantz et al. 2010).  

Further functional studies will better characterise these intricate disease links, otherwise 

undiscovered in the absence of GWAS studies. More interesting lessons about disease 

biology will surely be learned from the other >500 independent strong SNP associations 

(P-value < 10-8) reported so far with various complex traits (Hindorff, Sethupathy et al. 

2009). 

 

GWAS studies started revealing the genetic landscape of many common diseases, yet 

most of the variants identified (typically common SNPs with MAF > 5%) have very small 

effect sizes and explain only a very small proportion of the heritability of their associated 

traits. The proportion of phenotypic variation attributable to genetic variation (heritability) 

is very modest for most of the common traits investigated, even when the traits 

themselves have an estimated high level of heritability (Cirulli and Goldstein 2010). For 

example, the heritability of height has been estimated at ~ 0.8 (Silventoinen, Sammalisto 

et al. 2003; Visscher, Hill et al. 2008), yet the 50 associated common variants identified 

so far account only for ~5% of the phenotypic variance in the population (Visscher 2008; 

Weedon, Lango et al. 2008). Similarly, schizophrenia has an estimated heritability of 0.8-

0.85 and a GWAS meta-analysis including over 8,000 cases and 19,000 controls 
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identified only 7 significant SNPs, each with an odds ratio below 1.3 (Shi, Levinson et al. 

2009). Finally, the 18 common variants significantly associated with type 2 diabetes only 

explain 6% of the increased disease risk among relatives (Zeggini, Scott et al. 2008; 

Manolio, Collins et al. 2009). These observations bring up the important issue of finding 

out where the rest of the ‘missing heritability’ is and how can it be explained.  

 

Several possible hypotheses have been formulated in order to elucidate the missing 

heritability problem (Eichler, Flint et al. 2010).  First, the incomplete assessment of the 

spectrum of human genetic variation has been criticized.  Compared to single nucleotide 

changes (SNPs), larger structural variants like deletions, duplications or inversions have 

been understudied. Although individually rare, this type of variation is collectively 

common in the human population (Redon, Ishikawa et al. 2006) and can offer new 

insights into disease genetics. In fact, in a few instances common CNVs have been 

shown to play key disease susceptibility roles. A 20 kb deletion polymorphism upstream 

of IRGM (immunity-related GTPase family, M) and in perfect LD (r2 = 1.0) with the most 

significant Crohn’s disease SNP in that region has been causally implicated in the 

disorder through a distinctly altered expression pattern affecting autophagy efficiency 

(McCarroll, Huett et al. 2008). Another deletion (45-kb long) is a strong candidate for 

explaining the BMI association signal at the NEGR1 (neuronal growth regulator 1) locus 

(Willer, Speliotes et al. 2009). Here too, the structural variant was in perfect LD with the 

most significant SNPs detected by the GWAS analysis. Recent studies report similar 

observations on a large scale. The WTCCC analyzed eight complex diseases with 3,432 

common CNVs in 17,000 individuals and concluded that common copy number 

polymorphisms contributing to phenotypic variation are already largely accounted for by 

GWAS (Conrad, Pinto et al. 2010; Craddock, Hurles et al. 2010). It is possible that rare 

CNVs (e.g. rare recurrent variants of larger effect size (Bochukova, Huang et al. 2010)) 

or those of a more complex nature and currently not detectable with existing technology 

would have a higher impact on disease risk. Common CNVs however are unlikely to 

account for much of the missing heritability. 

 

Another relevant heritability aspect, largely overlooked due to the difficulty in detecting 

and accounting for this type of effect, is the parent of origin dependent disease risk. 

Recently, a few susceptibility variants for cancer and type 2 diabetes were reported as 

conferring disease risk only when inherited from a certain parent (Kong, Steinthorsdottir 
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et al. 2009). Heritability values of such variants are underestimated if parental origin is 

not taken into account. However, the overall proportion of these effects and the likely 

number of diseases where they might play a role remains unknown and hard to 

approximate due to low power. 

 

Assessing the contribution of rare variants to common disease predisposition is perhaps 

one of the most immediate questions of disease genetics and the most promising 

explanation for the current missing heritability. Extremely rare (private, MAF<0.5%) or 

intermediately rare variants (0.5%<MAF<5%) are currently out of the scope of 

genotyping arrays employed in GWAS and have been underexplored. Low frequency 

variants are suspected to have greater effect sizes, increasing the disease risk by two or 

threefold compared to the typically modest (1.1-1.5-fold) risk conferred by common 

variants. Few examples, mostly from lipids studies, already exist in the literature 

supporting the hypothesis that genes harbouring common disease risk variants can also 

contain rare variants with larger effects. 11 out of 30 genes containing common 

susceptibility variants influencing plasma lipid concentrations have been shown to also 

harbour rare variants of large effects identified previously in Mendelian dyslipidemias 

(abnormal lipids amount in the blood) (Kathiresan, Willer et al. 2009). Johansen et al. 

further explored the extent to which rare variants affect lipid phenotypes (Johansen, 

Wang et al. 2010). The authors report an excess of rare variants in GWAS-identified 

susceptibility genes for hypertriglyceridemia, the polygenic condition characterized by 

high fasting plasma triglycerides levels. Resequencing of four genes (APOA5, GCKR, 

LPL and APOB) containing common GWAS variants uncovered a significant burden of 

154 rare missense or nonsense SNPs in 438 cases, compared to only 53 variants in 327 

controls. Considering the rare variants in these genes alongside the common 

susceptibility SNPs increases the proportion of explained heritability of the trait. 

 

Next-generation sequencing will enable the comprehensive detection of similar rare 

genetic changes in susceptibility genes for other complex traits. However, the genotype-

phenotype relationship is of a complex nature and most likely distinct across different 

common traits. As such, it is possible that for other human traits, a more realistic 

biological view would be one involving rare combinations of common variants (Eichler, 

Flint et al. 2010). This hypothesis has been tested very recently in a study on human 

height, providing supporting evidence for its soundness (Yang, Benyamin et al. 2010). 
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The authors show that the missing heritability problem is overstated for this trait, 

evaluating that a large proportion of the heritability is in fact hidden by current estimates, 

and not missing. Yang et al. argue that a large proportion of the height heritability can 

already be explained by common variants, provided that all SNPs are considered 

simultaneously. Traditional GWAS approaches test for strong independent genetic 

effects and require evidence of replication in independent cohorts. Such a stringent 

approach is bound to miss many causal SNPs that do not pass these significance cut-

offs. Therefore, the authors use a linear model where they regress at the same time all 

GWAS SNPs against an adjusted measure of height. With this model they estimate that 

45% of the 80% height heritability can actually be explained, an almost ten-fold increase 

from the typical 5% height variance accounted for in the literature. By accounting for 

incomplete LD between the tagging and causal variants, the authors increase their 

explained heritability estimate of stature to at least 67%. The difference in LD between 

the common genotyped SNPs and the actual causal variants is explained by the fact that 

causal variants, being likely deleterious are kept at lower MAF than the tagging SNPs 

surveyed by GWAS. Therefore, most of the heritability for height can actually already be 

captured by common variants. Weather this will be the case for other complex traits, 

especially common diseases, remains to be tested. Rare causal SNPs of larger effects 

can have a marked genetic contribution to the risk of particular diseases and their 

discovery remains necessary. The ultimate goal of translating genetic knowledge into 

clinical practice can only be attained through a thorough understanding of trait-specific 

genetic architecture and next-generation sequencing will play an essential role towards 

this end. 

 

 

 


