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Abstract 
 

The role of regulatory variation in shaping phenotypes became apparent once 

significant species differences could not be explained by differences at DNA 

sequence level. Since then, the control of gene expression emerged as an essential 

process at the heart of cell-type differentiation and determination of phenotypic 

variance across multiple populations and tissues. Concurrent with the identification 

of genetic variants affecting transcript levels (eQTLs) across the human genome, 

large-scale genome-wide association studies (GWAS) shed light into the genetics of 

complex traits by detecting a multitude of susceptibility loci of modest effect-size. 

The goal of this thesis is to explore the role of regulatory variation in explaining 

genetic associations with complex traits and assess how that role differs across 

tissues. 

To address this aim, I first developed an empirical methodology called Regulatory 

Trait Concordance (RTC) that integrates eQTLs and GWAS results in order to reveal 

the subset of association signals due to proximal eQTLs (cis variants). By simulating 

different genomic regions, I show that this method outperforms simple correlation 

metrics between single nucleotide polymorphisms (SNPs). I observe a significant 

enrichment of regulatory effects among currently known GWAS loci and I apply the 

RTC method to prioritize relevant genes for each of the tested complex traits. For 

this purpose, I use gene expression data measured in lymphoblastoid cell lines 

(LCLs) derived from HapMap 3 individuals and I detect several potential disease-

causing regulatory effects, with a strong enrichment for immunity-related conditions. 

Furthermore, I present an extension of the method in trans, where interrogating the 

whole genome for downstream effects of the disease variant can be informative 

regarding its unknown primary biological effect.  

Given that certain phenotypes manifest themselves only in certain tissues, I next 

explore the complexity of regulatory tissue-specificity in three human cell-types: 

LCLs, skin and fat. I discover an abundance of eQTLs in each of the three tissues 

derived from a sample set of well-phenotyped female twins and I make use of the 

unique study design (matched co-twins) to validate the discoveries. I highlight the 

challenges of comparing eQTLs between tissues and propose that continuous 

significance estimates and direct comparison of the magnitude of effect on the fold 
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change in expression are essential properties providing a biologically realistic view of 

tissue-specificity. Under this framework, I find evidence for extensive tissue-

specificity: 30% of eQTLs are shared among the three tested tissues and of those, 

10-20% have significant differences in the magnitude of fold change between 

homozygote genotypic classes across tissues. 

Finally, I show that finding causal regulatory effects for complex disease associations 

is highly impacted by the tissue where expression is quantified and its relevance to 

the trait. I apply the RTC method on GenCord, a dataset where gene expression had 

been previously measured in LCLs, fibroblasts and primary T-cells derived from the 

same 75 individuals of Europeans descent. As expected, I find a large proportion of 

likely causal regulatory effects for GWAS signals to be tissue dependent (70% of all 

significant signals).   

 

Altogether, my results support the informative value of gene expression in explaining 

a subset of GWAS signals and highlight the need to explore a variety of cell-types for 

enhancing our understanding of the biology behind these associations. 
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1 Introduction 

1.1 An	  overview	  of	  gene	  expression	  

Gene expression is a fundamental cellular process by which a gene gives rise to a 

functional product and thus produces an observable phenotype. The phenotypic 

manifestation of genes is ensured by the synthesis of proteins and functional RNA 

molecules (e.g. rRNAs, tRNAs, microRNAs). These products are the consequence of a 

regulated flow of genetic information happening almost exclusively one way (Crick 1958): 

information is first transferred from DNA to RNA (transcription) followed by the transfer of 

information from RNA to protein in the case of protein-coding genes (translation) (Figure 

1.1). A brief overview of these processes is presented in the following section. 

 

Transcription 
RNA polymerase II transcribes all eukaryotic protein-coding genes. To initiate 

transcription, the enzyme requires a set of additional proteins (transcription factors -TFs) 

which guide its positioning at the promoter and aid in pulling apart the two DNA strands, 

one of which acts as a template for RNA synthesis.  The assembly of the transcription 

initiation machinery onto DNA is facilitated by the concomitant recruitment of chromatin-

modifying enzymes, allowing access to the tightly chromatin-packaged DNA molecule. 

Following transcription initiation, other TFs guide the RNA polymerase into elongation 

mode. The single stranded pre-mRNA (primary transcript including both exons and 

introns) is synthesized in a 5’ to 3’ direction by adding ribonucleoside monophosphate 

residues to the free hydroxyl group at the 3′ end of the growing RNA chain (Strachan and 

Read 2004). 

 

RNA processing 
Eukaryotic transcription elongation is tightly coupled to RNA processing (McCracken, 

Fong et al. 1997). The first modification of the pre-mRNA is the addition of a 5’ cap (a 

modified guanine) to the emerging transcript. This ensures that the cell distinguishes 

mRNAs from other types of RNA molecules and aids their transport to the cytosol. 

Following this processing step, introns are excised from the pre-mRNA by 

endonucleolytic cleavage and exons joined together through the process of RNA splicing. 
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Alternative splicing - mediated by a large RNA-protein complex called the spliceosome - 

can give rise to various polypeptide products (isoforms) resulting from different 

combinations of joined exons. This ability to produce multiple proteins from the same 

gene increases immensely the coding potential and complexity of eukaryotic genomes 

(Modrek, Resch et al. 2001; Modrek and Lee 2003). The 3’ end of the RNA molecule is 

also processed, by the addition of a stretch of ~200 A nucleotides (poly-A tail), which 

helps direct the synthesis of the protein on the ribosome.     

 

 

 
 

Figure 1.1 The process of eukaryotic gene expression. Inside the nucleus, RNA in transcribed from the 
DNA template into a primary RNA molecule (pre-mRNA). The pre-mRNA synthesis is followed by a series 
of processing steps including removal of intronic sequences (RNA splicing), 5’ capping and 3’ 
polyadenylation. The resulting processed mRNA molecule is exported into the cytoplasm where it engages 
with the translational machinery to give rise to the corresponding protein product. Modified from 
http://plantphys.info/plant_physiology/basiccytology1.shtml. 
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mRNA transport and translation 
For some genes (e.g. rRNA genes, tRNA genes), RNA is the final gene product. 

Selected mature mRNA molecules however are transported through the nuclear pore into 

the cytoplasm, where they interact with the translational machinery and engage protein 

synthesis. Typically, the core of the mRNA is translated, while the flanking 5’ and 3’ 

sequences (UTRs – untranslated regions) are copied from the terminal exons to assist 

the stable binding of the mRNA to the ribosome and start polypeptide synthesis 

(Strachan and Read 2004). The assembly of the polypeptide is achieved by decoding the 

mRNA sequence as dictated by the triplet genetic code (three successive nucleotide 

sequences – codons – specify the corresponding amino acids). The decoding process is 

mediated by tRNAs bearing specific trinucleotide sequences (anticodons) and covalently 

bound amino acids which are subsequently inserted in the growing polypeptide chain. 

Once a stop codon is encountered, translation is terminated and the complete 

polypeptide released. Post-translational modifications involve attachment of functional 

groups (e.g. phosphoryl, carbohydrate), proteolytic cleavages or changing the chemical 

nature of selected amino acids (Mann and Jensen 2003). 

 

1.2 Mechanisms	  of	  gene	  regulation	  

The brief overview of gene expression presented above highlights the complexity of the 

process and the multitude of steps involved in its completion. Any of these steps can be 

regulated to ensure the proper functioning of cells. Specifically, a cell can control the 

gene products it makes by (a) controlling when and how much of a given gene is 

transcribed (transcriptional control), (b) controlling how the RNA transcript is processed 

and spliced (RNA processing control), (c) selecting which messenger RNAs are exported 

into the cytoplasm and where they should be localized (RNA transport and localization 

control), (d) selecting which mRNAs should be translated (translational control), (e) 

selectively destabilizing certain mRNA molecules (mRNA degradation control), or (f) 

activating, inactivating or degrading specific protein products (protein activity control) 

(Alberts 2002). For most genes though, the most common regulatory control point is the 

initiation of transcription (Guenther, Levine et al. 2007). Given this, I emphasize below 

the most common points of transcriptional control and note that for the purpose of this 

thesis, transcript abundance (mRNA levels) was considered a proxy to gene expression. 
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1.2.1 Transcriptional	  control	  

Transcription of eukaryotic genes relies on two fundamental components: 1) stretches of 

defined DNA sequence in the gene’s vicinity and 2) gene regulatory proteins (e.g. TFs) 

that recognize and bind to these sequences in order to recruit and activate the RNA 

polymerase. The sequence elements serving as recognition signals for the transcriptional 

apparatus are referred to as cis-acting, whereas gene regulatory proteins typically 

encoded elsewhere remotely in the genome (few megabases away from the gene or on 

another chromosome) are called trans-acting. Characterizing the full repertoire of 

regulatory elements is important and projects like the Encyclopedia of DNA elements 

(ENCODE - (Birney, Stamatoyannopoulos et al. 2007) have made important progress 

towards this goal. The pilot ENCODE project characterized in detail 1% of the human 

genome (~30 Mb) representing 44 carefully selected regions of variable gene content or 

containing functional elements revealed by comparative sequence analysis. The authors 

highlighted the pervasively transcribed nature of our genome by reporting that the 

majority of the human DNA sequence is represented in primary transcripts, many of 

which overlap considerably and include non-protein-coding regions. A multitude of new 

transcription start sites (TSS) was identified and the distribution of regulatory elements 

surrounding them was refined as being symmetrical, with no bias towards 5’ regions as 

previously thought (Zhang, Paccanaro et al. 2007). The project offered also new insights 

into the relationship between chromatin structure and transcriptional control by showing 

that chromatin accessibility and patterns of histone modifications are predictive of 

transcriptional activity (Koch, Andrews et al. 2007).  

1.2.1.1 Cis	  regulatory	  elements	  

The current standard view on transcription regulation involves the interplay of five major 

cis-regulatory elements (Maston, Evans et al. 2006): 

1) Promoters, short stretches of DNA sequence immediately upstream of a gene, 

typically within 200 base pairs (bp) of the TSS. They are composed of different regulatory 

sequences (core promoter and nearby proximal regulatory elements) which function as a 

docking site for the basic transcriptional machinery (RNA polymerase and a set of 

general and promoter-specific TFs). 

2) Enhancers, long-distance transcriptional control elements functioning as binding sites 

for activators, a class of TFs that increase the basal level of transcription initiated at the 

promoter. They control transcription in a spatial and temporal manner and are hence at 
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the basis of tissue-specific gene expression (Visel, Blow et al. 2009). A consensus DNA-

looping model explains how the long physical distances between enhancers and the 

genes they regulate are overcome: the DNA between the enhancer and the core 

promoter loops out bringing the enhancer-bound proteins in proximity to the basal 

transcription complex.  

3) Silencers, binding sites for TFs that reduce or repress transcription (repressors). They 

have been shown to act by blocking the binding of an activator (Harris, Mostecki et al. 

2005), competing for an activator binding site (Li, He et al. 2004), or recruiting chromatin-

modifying factors and thus blocking access to the promoter (Srinivasan and Atchison 

2004).   
4) Insulators, sequence boundary blocks (0.5-3 kb long) that prevent genes from being 

inappropriately regulated by neighbouring transcriptional elements.  These DNA 

segments can preclude undesirable interactions between a distal enhancer and a 

promoter when situated in between the two (Geyer and Corces 1992; Kellum and Schedl 

1992) or can act as barriers against spreading of repressive chromatin 

(heterochromatin), which might otherwise silence expression (Pikaart, Recillas-Targa et 

al. 1998).   

5) Locus Control Regions (LCRs), groups of multiple cis regulatory elements acting 

upon an entire locus or cluster of genes (Li, Peterson et al. 2002). Each element in an 

LCR (enhancers, silencers, etc) affects expression differentially and only their 

cooperative activity determines its spatial/temporal expression properties. Moreover, 

LCRs seem to provide an open-chromatin domain for the gene cluster they regulate. 

DNase I hypersensitive sites - chromatin regions often preceding active promoters and 

having a high sensibility to cleavage by the DNase I nuclease - have been often 

observed in the proximity of LCRs (Lowrey, Bodine et al. 1992). 

1.2.1.2 Trans	  regulatory	  elements	  	  

An abundance of distal protein regulators of transcription (trans-regulatory elements) 

further increases regulatory complexity. These proteins are mostly TFs (sequence 

specific DNA-binding proteins that mediate transcriptional activation or repression) or 

elements of chromatin modification complexes which assist the transcriptional apparatus 

to navigate through chromatin (Levine and Tjian 2003). TFs are broadly classified as 

general (factors such as the TATA box-binding transcription factor II D - TFIID - which 

assemble at the core promoter to form the preinitiation complex and are required for 
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transcription of most genes (Workman and Roeder 1987)) and tissue-specific (factors 

that ensure that certain genes are expressed only in certain tissues: e.g. the hepatic  

nuclear factor no 5 (HNF-5) modulating liver specific expression (Grange, Roux et al. 

1991) or the epidermal-enriched factor KER1 (Leask, Rosenberg et al. 1990) controlling 

keratinocyte specific expression patterns). 

Overall, the interplay of the multiple cis regulatory elements with the combinatorial 

activity of available TFs in specific chromatin-accessible genomic regions determines 

whether a transcript is being generated and if so, its level of steady-state expression 

(mRNA abundance). Mutations in any of these numerous components of the 

transcriptional machinery as well as any other post-transcriptional changes affecting 

mRNA stability (e.g. miRNA regulatory effects (Selbach, Schwanhausser et al. 2008)), 

splicing, cell signalling or protein-level modifications (Chen and Rajewsky 2007) influence 

gene activity. 

 

1.3 Genetics	  of	  global	  gene	  expression	  

Gene expression underlies cellular and higher-order phenotypes by determining and 

maintaining proper transcript levels for each gene in a given cell-type. Understanding the 

genome-wide properties of regulatory control has been the focus of genetical genomics 

(Jansen and Nap 2001), a recent field of genetic analysis linking global gene expression 

with natural sequence variation. In this section, I present the main developments in the 

field and the methods employed to enhance the current knowledge on the genetics of 

gene expression.  

1.3.1 Gene	  expression	  is	  a	  heritable	  quantitative	  trait	  

Despite their central role in shaping phenotypes, gene expression levels have been 

observed to differ significantly among individuals. These differences were first observed 

in model organisms such as yeast (Brem, Yvert et al. 2002) or mouse (Cowles, 

Hirschhorn et al. 2002), followed by similar observations in humans (Cheung, Conlin et 

al. 2003; Schadt, Monks et al. 2003; Morley, Molony et al. 2004).  

Furthermore, evidence for familial aggregation of human expression profiles was found 

(Yan, Yuan et al. 2002; Cheung, Conlin et al. 2003; Monks, Leonardson et al. 2004), 

suggesting a heritable component of gene expression. Heritability estimates (h2) capture 

the proportion of phenotypic variance among individuals in a population attributable to 
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genotypic differences. Therefore, evidence of heritability of a trait makes it amenable for 

genetic analysis. The lymphoblastoid transcriptome was the first to be estimated as 

variable among individuals, using pedigree analysis of samples from the Centre d' Etude 

du Polymorphisme Humain (CEPH) panel of lymphoblastoid cell lines (LCLs) (Cheung, 

Conlin et al. 2003; Monks, Leonardson et al. 2004; Morley, Molony et al. 2004). The 

initial heritability estimates differed between these studies, probably mostly due to small 

sample sizes and experimental artefacts that introduce additional expression variability. 

Nevertheless, they concurred that a large percentage of genes exhibit significant 

heritability levels (h2). Monks etal. analyzed LCLs from 15 families and reported 762 

genes of the 2430 (31%) differentially expressed as significantly heritable, with a median 

h2 of 0.34 (Monks, Leonardson et al. 2004). Later on, Goring et al. examined expression 

in lymphocytes isolated from 1240 individuals from 30 large families and estimated that 

up to 85% of the 19,648 detected transcripts were significantly heritable (median h2 of 

0.23 among all expressed transcripts) (Goring, Curran et al. 2007). The authors also 

draw attention on the considerable influence on gene expression of environmental 

factors and the physiological state of an individual at the time of sample collection (e.g. 

time of blood draw). Overall, the studies above indicated that most transcript levels are 

influenced by an individual’s genetic makeup and justified the upcoming efforts trying to 

identify the genetic determinants of gene expression variation. 

1.3.2 Mapping	  expression	  quantitative	  trait	  loci	  (eQTLs)	  

The quantification of gene expression in numerous individuals from a population made it 

possible to treat the expression profile of each gene as a quantitative trait (Jansen and 

Nap 2001). This realization, together with the confirmation of a genetically determined 

component of gene expression, encouraged a series of efforts to map those regions of 

the genome that contribute to variation in transcript abundance (eQTLs) (Rockman and 

Kruglyak 2006).  

 

Initially, small-scale experiments on the genetics of gene expression were performed. 

Allele-specific expression (ASE) assays confirmed that allelic differences in gene 

expression are common in autosomal non-imprinted genes (Yan, Yuan et al. 2002). Yan 

et al. compared relative expression levels of the two alleles for 13 genes in 96 individuals 

from the CEPH families. They observed allele-specific differences in six of the 13 tested 

genes, with a 1.3-4.3 fold difference between alleles. Reporter gene assays were also 
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informative with respect to the impact of genetic variation on gene expression 

(Hoogendoorn, Coleman et al. 2003). Hoogendoorn etal. screened for common 

polymorphisms the first 500 bp of the 5’ flanking region of 170 genes and measured each 

promoter’s ability to promote transcription in three human cell lines. The authors 

estimated that around a third of the promoter variants tested could significantly alter gene 

expression levels.  

 

It was the development of microarray platforms however, that made it possible to shift 

from small-scale quantifications to genome-wide measurements, where transcript 

abundance of thousands of genes is determined simultaneously in a single experiment. 

These, combined with genetic variation information, allowed the identification of an 

abundance of loci with functional effects on gene expression. Two traditional approaches 

reviewed below have been used for eQTL mapping: linkage and association analysis 

(Hirschhorn and Daly 2005; Gilad, Rifkin et al. 2008). 

1.3.2.1 Linkage	  mapping	  

Linkage mapping identifies genetic regions likely containing a causal variant by tracking 

the transmission pattern of chromosomes through families. The aim is to identify markers 

co-segregating with the trait of interest, as these are linked to the functional loci driving 

the phenotype. The main advantage of linkage studies is that they can be performed 

using a relatively low density of markers (<1000 microsatellites or slightly larger number 

of single nucleotide polymorphisms (SNPs) in humans) (Gilad, Rifkin et al. 2008). Some 

of the early genetical genomics studies identified regions controlling gene expression by 

using genome-wide linkage mapping in cell lines from individuals of the CEPH pedigrees 

(Monks, Leonardson et al. 2004; Morley, Molony et al. 2004). However, linkage mapping 

is only successful in detecting rare variants with high penetrance, such as those 

underlying monogenic ‘Mendelian’ disorders where the segregating causal allele is found 

in the same 10-20 cM region within each family (Hirschhorn and Daly 2005). In fact, in 

their study measuring expression of 23,499 genes in LCLs derived from 15 CEPH 

families, Monks et al. are only powered to detect eQTLs for 33 genes at a pointwise 

significance level of .000005. These are, as expected, large effects accounting for > 50% 

of the expression variance and having very high heritability (75% of the 33 eQTLs have a 

heritability > 0.76) (Monks, Leonardson et al. 2004). Typically, the regulatory regions 

uncovered by linkage mapping are also quite large. Morley etal. detect linkage peaks 
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>5Mb for approximately 1,000 expression phenotypes of the 3,554 expressed genes in 

LCLs from 14 CEPH families (Morley, Molony et al. 2004). Fine mapping of these large 

regions is very challenging and depends on the occurrence of recombination events 

within families. For detecting common variants (minor allele frequency (MAF) ≥ 5%) with 

smaller effect size on expression, association studies are much better powered and more 

suitable. 

1.3.2.2 Association	  mapping	  

Association studies use phenotypes measured in collections of unrelated individuals and 

dense marker information from the same samples (typically > 500,000 genotyped SNPs 

in humans) in order to detect statistically significant correlations between marker 

genotypes and the analyzed trait (transcript abundance in the case of eQTL studies). 

Again, the assumption is that the causal locus is linked, or correlated with the markers 

showing statistical associations with the phenotype. The extent of this correlation is 

determined by linkage disequilibrium (LD), a property of the genome describing the non-

random association of alleles at different loci in a population (Rockman and Kruglyak 

2006). The preferential association of allelic combinations is reflected in the haplotype 

structure of the genome (Figure 1.2.), whereby a set of highly correlated genetic markers 

(LD blocks) undisrupted by recombination mechanisms are inherited together through 

generations (Paigen and Petkov 2010). The size of the LD blocks across the human 

genome is variable but nevertheless, they provide a much better resolution than linkage 

maps, with causal variants typically to be found within windows of few tens or hundreds 

of kilobases (kb) (Dawson, Abecasis et al. 2002).  

 

Taking advantage of the correlation structure in the genome, the International HapMap 

project was launched in 2002 as a large-scale collaborative effort with the goal to identify 

and catalogue most of the common human genetic variation (Consortium 2003). The 

purpose of a detailed haplotype map (HapMap) of the human genome was to serve as a 

public resource of genetic markers and facilitate subsequent association studies with 

various phenotypes. The project was a success and its scale has been growing 

considerably throughout the years, reaching now its third phase.  
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Figure 1.2. The haplotype structure of the human genome. a) A short DNA sequence from the same 
chromosome is shown in four different individuals. The nucleotides are identical for most genomic positions 
except at three variable loci (SNPs) b) A particular combination of alleles observed in a population is called 
a haplotype. In this example, four haplotypes capture the sequence variation in the population of the DNA 
region in panel a. Only the 20 variable loci of the total 6,000 DNA bases represented are shown. c) To 
uniquely identify these four haplotypes, it is sufficient to genotype three tag SNPs out of the 20 variants. 
For example, Haplotype 1 can be recognized in any individual having the A-T-C pattern at the three tag 
SNPs. Typically, many chromosomes would carry the common haplotypes in the population. Figure 
adapted from the International HapMap Project, Nature 426, 789-796 (2003). 

 

Phase 1 of the HapMap project aimed at genotyping at least one common SNP every 5 

kb across the genome in each of the 269 samples belonging to four geographically 

distinct populations. Additionally, ten ENCODE regions, each 500 kb long, were 

sequenced in 48 individuals and all SNPs in these regions were genotyped in the full 

sample set The 269 samples consisted of: 90 individuals (30 parents-offspring trios) of 

northern and western European ancestry living in Utah from the Centre d’Etude du 

Polymorphisme Humain collection (abbreviated CEU), 90 individuals (30 trios) from the 

Yoruba in Ibadan, Nigeria (YRI), 45 Han Chinese from Beijing, China (CHB) and 44 

Japanese from Tokyo, Japan (JPT). At this stage, a total of approximately 1.3 million 

SNPs were genotyped in each population (Consortium 2005).  

In its second phase (HapMap 2), 270 individuals (the 269 Phase 1 individuals plus an 

additional JPT sample) were genotyped for a further 2.1 million SNPs. The resulting 

denser SNP map (approximately one common SNP per kb) contains an estimated 25-

35% of the total 10 million SNPs expected across the human genome (Frazer, Ballinger 

et al. 2007).  
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The current and largest phase of the project (HapMap 3) involves an extension of the 

genotyped sample set, both by supplementing the initial four-population collection with 

more individuals and also by adding samples from seven other populations 

(http://hapmap.ncbi.nlm.nih.gov/). As such, over 4 million SNPs were genotyped from 

individuals of the Phase 1 and 2 populations (180 CEU, 90 CHB, 91 JPT, 180 YRI) and 

approximately 1.5 million SNPs were genotyped in 760 individuals of seven new 

populations (90 ASW: African ancestry in Southwest USA; 100 CHD: Chinese in 

Metropolitan Denver, Colorado, USA; 100 GIH: Gujarati Indians in Houston, Texas, USA; 

100 LWK: Luhya in Webuye, Kenya; 90 MEX: Mexican ancestry in Los Angeles, 

California, USA; 180 MKK: Maasai in Kinyawa, Kenya; 100 TSI: Toscans in Italy).  

 

In combination with large-scale expression data, these well-documented common 

genetic variation maps enabled the success of detecting eQTLs using population 

association studies (Cheung, Spielman et al. 2005; Stranger, Forrest et al. 2005). 

Building on their previous whole-genome linkage work, Cheung et al. used > 770,000 

HapMap 1 SNP markers and mRNA abundance measurements from 57 CEU individuals 

to map eQTLs for previously identified expression phenotypes. Among the chosen 27 

phenotypes with significant linkage evidence (P < 3.7 x 10-5), the authors confirmed 70% 

as having significant evidence of association (P < 0.0001). For all the concordant signals 

between the two methods, they were also able to narrow down the candidate functional 

regions, making thus use of the better resolution conferred by LD (Cheung, Spielman et 

al. 2005). Stranger etal. further explored the power of association studies by performing a 

genome-wide analysis of 630 genes in LCLs from 60 unrelated CEU individuals 

genotyped in HapMap 1. For the subset of 374 expressed genes, the authors detected 

eQTLs for up to 40 genes, with the majority of the eQTLs identified mapping in the 

proximity of the genes they associate with. Laying the ground for future genome-wide 

expression studies, Stranger etal. paid special attention to the multiple-testing problem 

and evaluated three statistical correction methods to reduce false positives, namely 

Bonferroni (Miller 1981), false discovery rate (FDR) (Storey and Tibshirani 2003) and 

permutations (Churchill and Doerge 1994). The Bonferroni method is prone to 

conservative estimates of significance since it does not account for the dependence of 

SNPs due to LD and treats each SNP – gene test as independent. The authors 

nevertheless report a generally good concordance among the different multiple-testing 

correction methods. Based on the highest enrichment of significant discoveries, the 
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results favoured permuting the expression values on the genotypes as a very suitable 

statistical correction strategy (Stranger, Forrest et al. 2005).  

 

Besides multiple-testing, another caveat of genome-wide association mapping is the 

occurrence of false positives because of population substructure. In this case, allele 

frequency differences due to systematic ancestry differences between individuals having 

a dissimilar profile of interest (gene expression pattern or disease status) can cause 

spurious associations. Careful consideration of this issue lead to the development of 

appropriate statistical correction methods such as principal component analysis, 

modelling explicitly the inter-individual differences in ancestry prior to association testing 

(Price, Patterson et al. 2006). Altogether, these statistical advancements contributed 

unequivocally to the success of genome-wide association mapping.  

 

In addition to single base variations (SNPs), structural DNA variations greater than 1 kb 

and present at variable copy number compared to the reference genome (copy number 

variants - CNVs) have also been successfully mapped. Initial observations suggested 

that CNVs are commonly present across the human genome and alluded to their 

substantial contribution to genetic variation in the population (Iafrate, Feuk et al. 2004; 

Sebat, Lakshmi et al. 2004). Consequently, their likely substantial effect on phenotypic 

variation resulting from gene dosage alteration, disruption of coding sequences or 

perturbation of long-range interactions (Kleinjan and van Heyningen 2005) elicited 

considerable attention. The contribution of CNVs to gene expression variation was 

assessed first in LCLs derived from the HapMap 1 samples (Stranger, Forrest et al. 

2007). The association analysis between expression levels of 14,925 transcripts and 

correspondingly typed SNP and CNV variants in the 210 unrelated HapMap individuals 

revealed a series of cis effects: a total of 888 nonredundant genes associated with at 

least one SNP and 238 nonredundant genes associated with at least one autosomal 

CNV. The authors estimated that 83.6% of the expression variation is attributable to 

SNPs while CNVs capture 17.7% of the total expression variation in the current samples, 

with little overlap between them. Recently however, the higher CNV resolution enabled 

by tiling-array comparative genome hybridization (CGH) approaches indicates that CNV 

effects are much less dramatic than initially suspected. In conjunction with the denser 

SNP maps available, it was concluded that the contribution of common CNVs to 
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phenotypic variance (including thus mRNA levels) is already captured to a great extent 

by neighbouring SNPs (McCarroll, Kuruvilla et al. 2008; Conrad, Pinto et al. 2010).  

1.3.2.3 Cis	  and	  trans	  eQTLs	  

One of the major advantages of eQTL mapping using the genome-wide association 

approach is that it permits the identification of new functional loci without requiring any 

previous knowledge about specific cis or trans regulatory regions. Typically in the eQTL 

mapping literature, regulatory variants have been characterized as either cis or trans 

acting, depending on the physical distance from the gene they regulate (Figure 1.3). In 

this thesis variants within one megabase (Mb) on either side of a gene’s TSS were called 

cis, while those at least five Mb downstream or upstream of the TSS or on a different 

chromosome were considered trans-acting.  

 

 

    
Figure 1.3. Cis and trans effects on transcript levels. Polymorphic regulatory variants (SNPs) affecting 
variation in a gene’s transcript levels in cis (a) or in trans (b). The cis variant is located close to the gene it 
regulates. Individuals with the G allele at the cis eQTL have higher expression levels than individuals with 
the C allele. Trans variants are located at a much further genomic distance from the gene they regulate. 
There too, a particular allele (A in this case) drives high expression levels as opposed to the T allele 
determining lower mRNA levels. Modified from (Cheung and Spielman 2009). 
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Studies so far explain most of the variance in gene expression locally, by sequence 

variants in the vicinity of the associated genes. In a large-scale expression study where 

lymphocytes in 1,240 individuals were profiled, the authors identified 1,345 cis-regulated 

transcripts at an FDR rate of 5% of the total 19,658 tested (Goring, Curran et al. 2007). A 

study in our lab detected numerous cis effects in transformed B-cells. The analysis of 

270 lymphoblastoid cell lines derived from the HapMap 2 individuals and genotyped for 

2.2 million common SNPs revealed 831 genes of the 13,643 tested as having a 

significant cis eQTL (Stranger, Nica et al. 2007). Since power increases with the 

availability of larger sample sizes, the number of genes detected to have eQTLs is also 

expected to increase. Finding trans eQTLs has been less successful so far, mainly 

because interrogating the whole-genome for potential regulatory effects is a daunting 

statistical and computational task, requiring the correction for millions of tests. Whether 

the current enrichment of cis versus trans eQTLs reflects biological reality and is not just 

attributable to low power in trans is still under debate (Wray 2007; Wittkopp, Haerum et 

al. 2008).  

1.3.3 Population	  differentiation	  of	  gene	  expression	  

Several studies have analyzed expression data in populations of different ancestry and 

revealed substantial differences at many loci. A study on 16 individuals of European and 

African descent estimated that 17% of genes were differentially expressed between 

populations (Storey, Madeoy et al. 2007).  Differences were found also between 

European and Asian–derived populations for 1,097 of 4,197 genes tested (Spielman, 

Bastone et al. 2007). Larger scale studies confirmed the initial estimates. The eQTL 

study on 270 individuals of the four HapMap 2 populations of European (CEU), Asian 

(CHB, JPT) and African (YRI) descent reported that 17-29% of loci have significant 

differences in mean expression levels between population pairs (Stranger, Nica et al. 

2007). While some of these observations are due to environmental factors (Idaghdour, 

Storey et al. 2008), genetics plays an important role in shaping the observed differences. 

Price etal. provide evidence for population differentiation due to genetic effects using cell 

lines derived from an admixed African American population (Price, Patterson et al. 2008). 

They estimated a mean value of 0.2 and a median of 0.12 in the proportion of gene 

expression variation attributable to population differences. A large proportion of the 

genetically determined variation in gene expression across populations has been 
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explained by different allele frequencies (Spielman, Bastone et al. 2007), suggesting that 

regulatory mechanisms are probably not fundamentally different between populations.  

1.3.4 Multiple-‐tissue	  studies	  

So far, the majority of human eQTL studies have been performed exclusively on blood-

derived cells or cell lines. This relatively easily accessible cell-type has been very useful 

in understanding the genetics of gene expression and continues to be a great resource. 

However, as gene expression signatures are cell-type specific (Alberts 2002), the 

question arises whether regulatory control of steady-state expression is also cell-type 

dependent. Estimates vary depending on the tissues being compared and the eQTL 

methods used, but generally, a significant tissue-specific component of cis regulation has 

been systematically reported.  

Myers et al. analyzed for the first time the genetics of gene expression variability in the 

human brain. After expression profiling and genotyping 193 neuropathologically normal 

human brain samples, the authors estimated that 58% of the transcriptome is cortically 

expressed and identified significant eQTLs for 21% of the expressed transcripts (2,975 of 

the total 14,078 tested). A comparison of the cortical results with eQTLs previously 

identified in LCLs from CEPH individuals resulted in barely any overlap. While some 

degree of brain-specific control of gene expression is expected, the marked lack of 

overlap observed here is exacerbated by the different microarray platforms used and the 

distinct samples profiled in the two experiments (Myers, Gibbs et al. 2007). In a study 

comparing adipose and blood expression patterns between two Icelandic cohorts of 

considerable sample size (673 and 1,002 individuals respectively), 50% of the cis eQTLs 

detected were shared (Emilsson, Thorleifsson et al. 2008). Another study overlapping 

eQTLs identified in 93 autopsy-derived cortical tissue samples and 80 peripheral blood 

mononucleated cell samples outlined the distinct genetic control of expression in the two 

tissues, reporting <50% sharing (Heinzen, Ge et al. 2008). Finally, a study in our lab 

compared the regulatory landscape in three tissues (fibroblasts, LCLs and primary T 

cells) derived from the same set of 75 European individuals. Unlike previous studies, this 

unique dataset properly accounts for confounding factors such as differences in 

population samples, array platforms or statistical methods. The authors reported that 69-

80% of cis eQTLs are cell-type specific, augmenting thus the need to study multiple 

tissues to determine the full spectrum of regulatory variants (Dimas, Deutsch et al. 2009). 
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1.3.5 Environmental	  and	  epistatic	  effects	  on	  expression	  

Gene expression is a complex trait shaped, in addition to genetic factors, by 

environmental conditions. Lifestyle (e.g. diet, smoking), geographic conditions or age 

have been shown to have a considerable impact on expression, sometimes even larger 

than that attributed to genetic effects (Idaghdour, Storey et al. 2008). Moreover, 

experimental treatment of cells can markedly change their expression patterns (Choy, 

Yelensky et al. 2008). Exposing cells to different perturbations also revealed that 

individuals differ in their response to external stresses (e.g. ionizing radiation) and lead to 

the identification of DNA variants that influence this differential response (Smirnov, 

Morley et al. 2009). Further such studies will be very useful for understanding the 

genetics of differential toxin response in view of improving drug administration. This has 

been the focus of pharmacogenomics, a field aiming to identify genetic determinants of 

drug response, i.e. polymorphisms influencing the activity of drug metabolizing genes 

(Evans and Relling 1999). Differential tissue and organ response to other disease 

relevant stimuli (e.g. insulin) is also likely to influence disease status and will need 

appropriate consideration in future association studies. 

Interactions between genetic factors (Brem, Storey et al. 2005; Dimas, Stranger et al. 

2008), but also between genetic and environmental factors (Gibson 2008) have an effect 

on gene expression as well. However, in the absence of good hypotheses for which 

particular combinations of DNA variants to test and under which model, detecting 

epistatic effects is statistically still very challenging.    

 

1.4 Gene	  expression	  shapes	  cellular	  and	  high-‐order	  phenotypes	  

The role of gene regulation in shaping phenotypes has been pointed out early on, 

starting with the landmark paper of King and Wilson (King and Wilson 1975). Through 

comparative protein analysis, they were able to demonstrate that humans and 

chimpanzees are 99% genetically identical and thus suggested that significant species 

differences are probably due to gene regulatory variation. Since then, gene expression 

has been implicated in associations with a wide range of cellular and high-order 

phenotypes. A succinct review of a number of key examples certifying the role of gene 

expression variation in shaping phenotypes is presented below.   
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1.4.1 The	  role	  of	  expression	  in	  defining	  and	  maintaining	  cell-‐specificity	  

The control of gene expression is fundamental for the formation of specialized 

differentiated eukaryotic cells. Precise spatial and temporal gene regulation during 

development determines cell fate and helps maintain differentiated cell-specific 

signatures through subsequent cell generations (Alberts 2002).  One example of a highly 

coordinated regulatory genetic switch mechanism is that involved in the formation of 

muscle cells during embryonic development. The development of muscle cells depends 

on the expression of myogenic proteins (MyoD, Myf5, myogenin, and Mrf4), a family of 

helix-loop-helix regulatory proteins. These bind to specific regulatory sequences 

surrounding muscle-specific genes and activate their transcription (Weintraub, Davis et 

al. 1991). Through a series of positive feedback loops, myogenic proteins further 

stimulate transcription of other gene regulatory proteins involved in muscle cell 

development. The deterministic role of gene expression in cell-type formation was 

additionally confirmed by observing the ability of myogenic proteins to trigger muscle 

differentiation in other cell-types (e.g. the human myogenic factor Myf5 induces myogenic 

phenotypes such as formation of multinuclei and synthesis of sarcomeric myosin heavy 

chains when transiently expressed in embryonic mouse fibroblasts (Braun, 

Buschhausen-Denker et al. 1989)).  

 

Once cells differentiate into a certain cell-type, they remain specialized and transmit their 

specific expression signatures to daughter cells. This is attained by feedback loops 

wherein key gene regulatory proteins activate their own transcription or that of cell-type 

specific genes they interact with (Alberts 2002). Chromatin signatures also ensure the 

faithful propagation of cell-type specific expression, as unexpressed genes are packaged 

into compact chromatin forms, inaccessible to the transcriptional apparatus (Boyle, Davis 

et al. 2008). Specificity of gene expression in different cell-types has been extensively 

observed and Adams et al. were among the first to report this at a genome-wide scale 

(Adams, Kerlavage et al. 1995). In their study sampling 30 tissues with more than 1000 

ESTs (expression sequence tags) each, they detected only eight genes matched by 

ESTs in all 30 tissues and 227 genes represented in at least 20 tissues. A following 

large-scale study on 46 human and 45 mouse tissues, organs and cell lines reported only 

6% ubiquitously expressed genes and ascertained that tissue-specific gene clusters can 

be found in nearly all tissues examined (Su, Cooke et al. 2002). 
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1.4.2 Gene	  expression	  shapes	  complex	  phenotypes	  in	  the	  natural	  and	  disease	  range	  

Despite the essential role of regulatory control in ensuring normal functioning of cells, 

most biological systems are remarkably robust, showing abundant gene expression 

variation (Oleksiak, Churchill et al. 2002; Gilad, Oshlack et al. 2006). Much of the natural 

phenotypic variation including numerous adaptive features of various organisms has 

been associated with changes in gene expression. One of the early examples included 

the differential expression of the Hox gene Ultrabithorax, which has been shown to 

pattern fine hair outgrowths (trichomes) on the posterior femur of the second leg in 

Drosophila (Figure 1.4). The evolution of cis-regulatory elements of this gene, rather than 

the protein itself was indicated as responsible for these adaptive morphological changes 

(Stern 1998). Similarly, evolution of a cis-regulatory element in the yellow gene has been 

shown to contribute to the gain of a male-specific pigmentation spot in Drosophila 

biarmipes (Gompel, Prud'homme et al. 2005) while comparative analysis of expression 

patterns of growth factors in Darwin’s Finches revealed that differential expression of 

Bmp4 has a major role in determining beak morphology (Abzhanov, Protas et al. 2004). 

                    
Figure 1.4.  Different trichome patterns among Drosophila species. The posterior second femur of 
three Drosophila species is shown. The morphological differences observed are due to differential 
regulation of the Hox gene Ultrabithorax. Modified from (Stern 1998). 
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In humans, regulatory variation has been also associated with a series of phenotypic 

changes. A common well-studied example is that of lactase persistence (Ingram, Mulcare 

et al. 2009). Digestion of lactose, the sugar essential for nourishment of newborn 

mammals, is facilitated by lactase, a small intestinal enzyme encoded by the LCT gene. 

After weaning, the production of lactase decreases significantly in humans resulting in 

the inability to digest milk (lactose intolerance). Some humans however, are able to 

express LCT in adulthood (lactase persistence) and this has been especially observed in 

regions with traditional practice of milking (Figure 1.5), suggesting that the locus has 

been subject to strong positive selection (Holden and Mace 1997). The worldwide 

differential lactase expression has a genetic determinant and that was shown to be a cis-

regulatory element (Wang, Harvey et al. 1995). 

 

 

 
 
Figure 1.5. Geographic distribution of lactose intolerance. World map showing the distribution of 
lactose intolerance by region. Red indicates a high intolerance percentage and green a low percentage of 
lactose intolerance. The regions of low intolerance (or lactase persistence) coincide with areas of known 
cattle farming tradition. Image from http://en.wikipedia.org/wiki/Lactose_intolerance. 

 

Gene expression changes beyond a tolerance limit can have more serious phenotypic 

consequences and prove detrimental. Decreased or complete loss of α-globin expression 

has been associated with α-thalassaemia (Weatherall 1998) and a regulatory SNP 

mapping in between the α-globin gene cluster and its upstream regulatory elements has 

been linked to the disease by causing significant down-regulation of the αD, α2 and α1 
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genes (De Gobbi, Viprakasit et al. 2006). Low levels of adenomatous polyposis coli 

(APC) expression predispose to hereditary colorectal cancers (Yan, Dobbie et al. 2002) 

and over-expression of C-MYC (v-myc myelocytomatosis viral oncogene homolog) can 

lead to Burkitt’s lymphoma (Boxer and Dang 2001). Specific regulatory polymorphisms 

inducing differential gene expression associated with complex traits have also been 

identified. Progression of coronary atherosclerosis has been associated with reduced 

expression of human stromelysin-1, regulated by a common cis-regulatory variant at the 

promoter (Ye, Eriksson et al. 1996). Susceptibility to autoimmune disorders has also 

been attributed to changes in expression: variants in the noncoding 3’ region of the 

cytotoxic T lymphocyte antigen 4 gene (CTLA4) correlating with lower mRNA levels of a 

CTLA4 splice variant were identified as disease determinant candidates for Graves’ 

disease, autoimmune hypothyroidism and type 1 diabetes (Ueda, Howson et al. 2003). 

Taken together, these examples highlight the considerable range of phenotypic changes 

attributable to gene expression variation. 

 

1.5 Genetics	  of	  complex	  diseases	  

Concomitant with the progress in understanding the genetics of gene expression, new 

insights into the genetic causes of common diseases have also been obtained. In the 

current section I briefly outline the developments that lead to this progress and the 

challenges that still exist in this area.  

1.5.1 The	  road	  to	  genome-‐wide	  association	  studies	  (GWAS)	  

During the last twenty years, genetic mapping techniques allowed the elucidation of 

numerous rare monogenic disorders (Jimenez-Sanchez, Childs et al. 2001). Identifying 

genetic determinants of common diseases on the other hand, was lagging behind. The 

hitherto most common methods for uncovering disease genes, candidate gene 

approaches and family studies using linkage analysis, have been both failing to identify 

causative loci for complex traits.  

Candidate gene studies are impractical since they are conditioned by often-unavailable 

information about disease biology. Even when a proposed relationship with a complex 

phenotype exists, finding causative variants within candidate genes has been 

unsuccessful, mainly because of the small sample sizes and the lenient statistical criteria 

by which associations were deemed causal. As such, many of the genotype-phenotype 
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associations reported based on candidate-gene approaches failed to replicate in 

independent studies (Ioannidis, Ntzani et al. 2001). 

Linkage approaches were not far more successful, unsurprisingly given the properties of 

complex traits. Common complex disorders do not follow simple Mendelian inheritance 

patterns and are in addition characterized by multiple gene-gene and gene-environment 

interactions (Lander and Schork 1994). Each of these factors has a relatively small 

individual contribution to the determination of the ultimate disease phenotype. A number 

of additional aspects explain why it is improbable to find variants that impact common 

diseases and also co-segregate in families: (1) incomplete penetrance, whereby not all 

individuals inheriting the predisposing allele manifest the phenotype (2) locus and allelic 

heterogeneity, when mutations in any of several genes and different mutations within a 

gene respectively may give rise to the same phenotype or (3) pleiotropy, occurring when 

a single gene has multiple parallel phenotypic effects (Lander and Schork 1994). Under 

these circumstances, only few attempts to uncover complex disease loci using linkage 

analysis were successful (e.g. NOD2 associated with Crohn’s disease susceptibility 

(Hugot, Chamaillard et al. 2001; Ogura, Bonen et al. 2001)). Numerous other putative 

candidates were not further replicated, limiting in this way our understanding of complex 

diseases. In a classical paper in the field, Risch and Merikangas explained that the 

failure of replication was due to the limited power of linkage analysis to detect small 

genetic effects (Risch and Merikangas 1996). Thus, many of the proposed candidates 

were false positives and in fact, an unachievable sample size of more than 2500 families 

would be required to detect loci having low genotypic relative risk (typically ≤ 2 for 

complex disorders) with a minimum 80% power. Despite technical limitations at the time, 

the authors proposed genome-wide association studies (GWAS) as an alternative 

powerful approach.  

1.5.2 The	  GWAS	  revolution	  

In the past few years, the ability of GWAS to help understand the genetic basis of 

complex disorders has become apparent (WTCCC 2007). The outburst of successful 

GWAS is owed to the availability of well-documented common human genetic variation 

maps (e.g. HapMap project (Frazer, Ballinger et al. 2007)), large patient samples with 

accurately recorded phenotypic information as well as appropriate statistical methods to 

assess significance (Rice, Schork et al. 2008). This approach has revealed a multitude of 

disease-susceptibility loci, now stored in an updated catalogue at the National Human 
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Genome Research Institute (NHGRI) (Hindorff, Sethupathy et al. 2009). For several 

common disorders such as type 1 (Hakonarson, Grant et al. 2007; Todd, Walker et al. 

2007) and type 2 diabetes (Scott, Mohlke et al. 2007; Sladek, Rocheleau et al. 2007; 

Zeggini, Weedon et al. 2007; Zeggini, Scott et al. 2008), prostate cancer (Eeles, Kote-

Jarai et al. 2008; Thomas, Jacobs et al. 2008) or inflammatory bowel disease (Parkes, 

Barrett et al. 2007; Rioux, Xavier et al. 2007), a multitude of predisposing loci has been 

reported. Most of these studies featured case-control designs, whereby a group of 

selected individuals diagnosed with a disorder of interest (cases) is compared to a group 

of people not ascertained for that phenotype (controls). The goal is to detect 

susceptibility alleles having marked frequency differences between the two groups. This 

design requires population stratification corrections and careful case/control selection in 

order to avoid misclassification biases (classification of cases as non-diseased), which 

can all decrease the power to detect associations (McCarthy, Abecasis et al. 2008).  

 

Most recently, GWAS have been performed on population-based cohorts, offering 

insights into the genetics of continuous traits, be they anthropomorphic like height 

(Weedon, Lettre et al. 2007; Lettre, Jackson et al. 2008) or disease relevant (e.g. fat 

mass (Frayling, Timpson et al. 2007; Loos, Lindgren et al. 2008), lipids (Saxena, Voight 

et al. 2007; Willer, Sanna et al. 2008; Teslovich, Musunuru et al. 2010)). The discovery of 

multiple susceptibility variants per complex trait, each of small effect size, as well as their 

considerable pleiotropic overlap (Stratton and Rahman 2008) is gradually shifting the 

focus from viewing disease as a dichotomous trait towards a quantitative view, where 

common disorders are the extremes of a spectrum of quantitative traits (Figure 1.6) 

(Dermitzakis 2008; Plomin, Haworth et al. 2009). 
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Figure 1.6. Common disorders as quantitative traits. Disease state can be viewed as the tail of a 
spectrum of continuous phenotypes. In this schematic example, four unlinked DNA variants determine the 
whole-organism phenotype through changes at the cellular level, which in turn affect intermediate organ-
tissue phenotypes. Yellow to red gradients represent the effect of each of the four red and yellow DNA 
variants at the different ends of the phenotypic spectra. At the cellular level, these effects are easy to 
interpret and to detect, whereas at organismal level, the power to detect them is reduced owing to the large 
number of direct and indirect intermediate interactions. Adapted from (Dermitzakis 2008).   

 

A wide range of quantitative trait data of potential disease relevance is nowadays being 

collected and combined into large-scale meta-analyses. With greater power, such efforts 

identify disease affecting loci and the intermediate quantitative traits underlying them 

(e.g. Prokopenko etal. and Dupuis et al. look at fasting glucose levels as a continuous 

trait, find variants that associate with glucose concentrations and subsequently identify 

type 2 diabetes susceptibility loci (Prokopenko, Langenberg et al. 2009; Dupuis, 

Langenberg et al. 2010)).     

 

1.6 Promise	  of	  eQTL	  studies	  for	  disease	  genetics	  

Despite the impressive success of GWAS, there is a substantial gap between the 

susceptibility variants discovered and understanding how those respective loci contribute 

to disease. Frequently such loci map to genomic regions of no apparent function (non-

coding) or the genome’s tight correlation structure (LD) does not permit firm conclusions 

about functional effects (i.e. which is the causal variant and which gene function does it 
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affect). Under these circumstances, the need to incorporate additional information for 

interpreting GWAS results became evident. The direct link between DNA polymorphisms 

(usually SNPs) and variable transcript levels along with the increasing role attributed to 

regulatory variation in shaping phenotypic differences, nominated gene expression as an 

important mechanism underlying complex traits. Subsequently, I describe the main 

results obtained so far in support of this hypothesis. 

1.6.1 GWAS	  SNPs	  can	  be	  strong	  eQTLs	  

Comparing expression levels of individual genes between cases and controls may not be 

sufficiently powered to detect significant differences (Cookson, Liang et al. 2009) and 

discriminating between causal and reactive expression changes would be a tough 

challenge. However, genetic markers simultaneously associated with disease status and 

eQTLs are very interesting: if one allele is more frequent in cases than controls and at 

the same time it is causal for gene expression effects of a nearby gene, which is itself 

important for the disease, then it is likely that causality can be established. Several 

recent studies have shown the value of this principle by incorporating eQTL analyses 

with GWAS results and thus proposing candidate disease genes. Moffatt etal. identified a 

series of strongly correlated SNPs in a 200 kb region of chromosome 17q23 associated 

with childhood asthma (Moffatt, Kabesch et al. 2007). The association region contained 

19 genes, none of which had an evident disease role. Expression analysis on 

lymphoblastoid cell lines derived from the same families showed that the most significant 

GWAS SNPs also explained ~29.5% of the variance in transcript levels of one of those 

19 genes, ORMDL3 (ORM1-like 3), now the best candidate for further functional studies.  

Expression data has helped interpret some of the association signals for Crohn’s disease 

as well. Initial findings of a recent GWAS included multiple susceptibility loci mapping to 

a 1.25 Mb gene desert region on chromosome 5 (Barrett, Hansoul et al. 2008). eQTL 

data showed that one or more of these loci act as long-range cis regulators of PTGER4 

(prostaglandin E receptor 4), a gene 270 kb away from the associated region whose 

homologue has been implicated in phenotypes similar to Crohn’s disease in the mouse 

(Libioulle, Louis et al. 2007). Other similar examples for height (Gudbjartsson, Walters et 

al. 2008), systemic lupus erythematosus (Hom, Graham et al. 2008), type 1 diabetes 

(Hakonarson, Grant et al. 2007) or bipolar disorder (WTCCC 2007) support the use of 

eQTL data in aiding the interpretation of GWAS results.  
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However, not all cases are so straightforward, as shown by the association of the SH2B1 

(SH2B adaptor protein 1) locus to body mass index (BMI) (Willer, Speliotes et al. 2009). 

In this case, a non-synonymous genome-wide significant SNP in SH2B1 was associated 

also with differential expression of two other genes (EIF3C – eukaryotic translation 

initiation factor 3, subunit C and TUFM – Tu translation elongation factor, mitochondrial). 

Functional evidence from mice, where mutating a SH2B1 homologue leads to extreme 

obesity (Ren, Li et al. 2005) and from humans, where a chromosomal deletion 

encompassing SH2B1 associates with severe early-onset obesity (Bochukova, Huang et 

al. 2010) strengthen the hypothesis that the missense SNP is the actual functional 

variant. This SNP is then most probably in high LD with a different causal regulatory 

variant, which affects EIF3C and TUFM expression. This is a typical example of a 

coincidental overlap of GWAS and eQTL results, which must be carefully distinguished 

from causal cases where both the GWAS SNP and the eQTL tag the same functional 

variant (Figure 1.7).  

 
Figure 1.7. Interpreting GWAS results with eQTL data. Schematic representation of a genomic interval 
where same SNPs have been tested independently for associations with a disease (red) and transcript 
levels of a set of genes (blue). Three nearby genes are investigated for potential causal regulatory effects: 
(a) Gene A can be ruled out as it has no significant eQTL in the interval (b) The disease - associated 
interval harbours an eQTL for gene B, but the eQTL and the disease marker tag different functional 
variants (c) The GWAS SNP is a strong eQTL for Gene C and they likely tag the same functional effect as 
reflected by the similar association patterns at other tagging SNPs in the interval (Nica and Dermitzakis 
2008). 
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Given the ubiquitous nature of regulatory variants (Stranger, Nica et al. 2007) and hence 

the high probability of such coincidental overlaps, integrative methods pinpointing true 

causal regulatory effects are desirable (Nica and Dermitzakis 2008). Nevertheless, since 

many traits manifest themselves only in certain tissues, such methods are only 

informative if expression measurements from disease-relevant cell-types are compared. 

Defining disease relevance of a cell-type is however yet another challenging task. The 

pathology of diseases is largely tissue-specific, but it remains mostly unknown how 

tissue-wide germline mutations lead to tissue-restricted disease effects (Lage, Hansen et 

al. 2008). Moreover, substantial overlap has been observed between pathways involved 

in progression of different diseases (Bentires-Alj, Kontaridis et al. 2006) and sometimes 

this overlap is not intuitive (Swanberg, Lidman et al. 2005; Torkamani, Topol et al. 2008). 

Therefore, confidently defining tissue relevance to a complex trait is yet unrealistic and 

expression datasets from seemingly irrelevant tissues should not be discarded at this 

stage, as they could be informative of disease biology.  

1.6.2 Gene	  regulatory	  networks	  

The large-scale disease studies performed so far have uncovered multiple variants of 

small effect sizes affecting multiple genes. This suggests that common forms of disease 

are most probably not the result of single gene changes with a single outcome, but rather 

the outcome of perturbations of gene networks which are affected by complex genetic 

and environmental interactions (Schadt 2009). The numerous genetic factors involved in 

disease predisposition appear randomly distributed across the genome, but the 

expectation is that they are functionally linked and that these functional interactions are 

useful in prioritizing disease genes (Franke, van Bakel et al. 2006). DNA sequencing of 

tumour samples from pancreatic and brain cancer respectively, provided supporting 

evidence for this principle by identifying candidate genes belonging largely to core 

pathways involved in tumorigenisis or tumour progression (Jones, Zhang et al. 2008; 

Parsons, Jones et al. 2008). Recently, analysis of gene regulatory networks has offered 

important insight into complex disease mechanisms. In a study integrating co-expression 

networks and genotypic data from an F2 intercross population, Chen etal. identified a 

liver and adipose macrophage-enriched sub-network (MEMN) associated with metabolic 

syndrome relevant traits (Chen, Zhu et al. 2008). Three genes in this network, lipoprotein 

lipase (Lpl), lactamase β (Lactb) and protein phosphatase 1-like (Ppm1l) were validated 

by gene knockouts as causal obesity genes, strengthening the association of MEMN to 
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phenotypes characteristic to metabolic syndrome. A parallel study in humans identified a 

homologous transcriptional network constructed from adipose data, having substantial 

overlap with MEMN sub-modules and being enriched for genes involved in inflammatory 

and immune response (Emilsson, Thorleifsson et al. 2008). Subsequent eQTL mapping 

identified cis-regulatory variants affecting specific genes in this network and the joint 

analysis of the strongest cis eQTLs revealed substantial enrichment for variants 

associated to obesity related clinical traits. Classical genetic approaches would not be 

able to detect such variants with small individual effects. Identifying them as a group 

affecting gene networks which - when perturbed - result in a disease state, is in this case 

much better powered. 

1.6.3 Candidate	  gene	  approach	  via	  transcriptome	  profiling	  	  

The major challenge when using transcriptome data for interpreting disease effects is 

distinguishing between causal and reactive changes in gene expression. An interesting 

approach to address this issue has been taken recently by Naukkarinen and colleagues, 

who use it to detect potential obesity candidate genes (Naukkarinen, Surakka et al. 

2010). The authors made use of genome-wide expression data from adipose tissue and 

a unique collection of samples (a set of 13 monozygotic - MZ - twin pairs discordant for 

BMI) in order to devise an original candidate gene prioritization strategy. An additional 

cohort of 77 non-related individuals having a wide and representative BMI range had 

been profiled for adipose expression. The authors compared significant expression 

differences between lean and obese individuals in the MZ twins and the separate cohort, 

the rationale being that expression differences in the genetically identical twins represent 

likely reactive effects to obesity, whereas expression differences in the non-related 

individuals are a combination of causal and reactive determinants. The difference of the 

two sets would constitute a plausible collection of genes causally implicated in obesity 

risk. Variants in these genes (197 SNPs in 27 genes) showed a significant excess of low 

P-values when tested for association with BMI in a large cohort. Among the top 

associated SNPs, seven mapped to the same gene, F13A1 (coagulation factor XIII, A1 

polypeptide), a newly proposed obesity susceptibility candidate. Variants in this gene 

were replicated in another independent cohort of ~2,000 samples, yet further validation 

of the associations with BMI is still required in larger independent cohorts. The choice of 

the candidate cell-type for expression quantification is an obvious issue. The authors 

acknowledge that for example, MC4R, a known obesity gene has been excluded, as it is 
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not expressed in fat. Given the poor candidate tissue knowledge, choosing a relevant 

tissue for such experiments is currently very challenging for many traits. Furthermore, 

identical twins discordant for a phenotype of interest, while very informative, are a rare 

sample collection. Nevertheless, this informed candidate gene strategy is an interesting 

example of how to identify further disease variants when limited by the sample sizes 

available. For many complex traits, identifying additional genetic associations beyond the 

initial ‘low-hanging fruits’ requires sampling of a vast set of individuals. For example, the 

six new loci associated with body mass index (BMI) recently reported by the GIANT 

consortium involved the analysis of more than 91,000 samples (Willer, Speliotes et al. 

2009). Similarly large or larger sample sizes are unrealistic for other traits and novel 

strategies like the example presented here could be helpful for uncovering smaller 

genetic effects. 

 

1.7 Thesis	  aims	  

The genetics of global gene expression has been extensively studied in recent years and 

it is now unquestionable that regulatory variants affecting transcript levels are 

ubiquitously distributed throughout the human genome. Concurrently, large-scale GWAS 

have shed light into the genetics of human complex traits and identified a multitude of 

susceptibility loci of modest effect-size each. Despite the statistical success in revealing 

DNA variant - trait associations, by themselves, these results alone don’t necessarily 

lead to the identification of causal disease mechanisms. The goal of my thesis is to 

further the understanding of regulatory variation particularly with a focus on its role in 

complex diseases. Specifically, I address this by: (a) developing an empirical 

methodology (RTC) that directly combines eQTL and GWAS results in order to detect 

causal regulatory effects and prioritize candidate disease genes (Chapter 3) (b) exploring 

the complexity of regulatory tissue-specificity in multiple primary tissues derived from a 

set of twins (Chapter 4) (c) analyzing the implications of tissue-dependency in detecting 

causal regulatory effects for complex traits (Chapter 5). Taken together, the results 

presented here underline the informative value of expression phenotypes for explaining 

the biological properties behind genetic associations with complex traits and highlight the 

need to explore regulatory complexity in a variety of relevant cell-types. 
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2 Materials and methods 

2.1 Resources	  

The data presented and analysed in this thesis has been derived from samples 

belonging to three major resources, briefly outlined below: the HapMap, MuTHER and 

GenCord projects. Table 2.1 summarizes the number of available samples, SNPs and 

transcripts per resource and the respective thesis chapters where they have been 

analyzed. 

 

Chapter Resource 
Samples by 

Tissue SNPs 
Mapped 
Probes 

Mapped 
Genes 

3 
HapMap 3 

(CEU) 109 LCL 1,186,075 21,800 18,226 

4 MuTHER 
156 LCL, 160 SKIN, 

166 FAT 865,544 27,499 18,170 

5 GenCord 

75 LCL, 75 
fibroblasts, 75 T-

cells 1,428,314 26,651 17,945 
 

Table 2.1. Summary of resources (samples, SNPs and transcripts) used throughout the thesis. 

 

2.1.1 HapMap	  

The International HapMap project is a large-scale collaboration launched in 2002 to 

identify and catalogue common human genetic variation (Consortium 2003). DNA from 

LCLs derived from individuals of different population ancestry has been genotyped in an 

attempt to discover the vast majority of common human SNPs (MAF ≥ 5%). HapMap 3, 

the current and largest phase of the project (http://hapmap.ncbi.nlm.nih.gov/) is 

comprised of over 4 million SNPs genotyped from individuals of the Phase 1 and 2 

populations (180 CEU, 90 CHB, 91 JPT, 180 YRI) and approximately 1.5 million SNPs 

genotyped in 760 individuals of seven new populations (90 ASW, 100 CHD, 100 GIH, 

100 LWK, 90 MEX, 180 MKK, 100 TSI).  

 

In this thesis, I analysed data from the subset of unrelated HapMap 3 CEU individuals 

(N=109) in the study described in Chapter 3. 
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2.1.2 MuTHER	  

The MuTHER (Multiple Tissue Human Expression Resource) project was funded by the 

Wellcome Trust in 2007 as a coordinated program of analysis aiming to enhance our 

knowledge about common trait susceptibility. By generating detailed genetic (genotyping 

and resequencing) and genomic (mRNA expression, methylation status) information from 

a range of tissues collected from ~1000 twins, the MuTHER project will constitute a 

major resource for understanding the relationships between sequence variation and 

disease phenotypes (http://www.muther.ac.uk/).  

LCLs, fresh lymphocytes, fat, muscle and skin biopsies have been obtained from a 

maximum of 855 twins (318 monozygotic, 537 dizygotic) from the well-characterised 

Twins UK Resource (Spector and Williams 2006). This sample of volunteers was 

recruited by media campaigns without selecting for particular diseases or traits. All twins 

received a series of detailed disease and environmental questionnaires and the majority 

of individuals have been clinically assessed at several time points for hundreds of 

phenotypes related to common diseases or intermediate traits. All individuals recruited in 

this study were Caucasian female twins aged between 39 and 70 years old.  

 

At the time of writing, whole-genome genotyping and expression profiling of the full set of 

855 twins was underway.  A sample subset representing the pilot phase of the MuTHER 

project had been profiled in advance in three tissues: LCL, skin and fat. Skin punch 

biopsies (N=196) were taken from a relatively photo-protected area adjacent and inferior 

to the umbilicus. The fat sample was then carefully dissected from the same skin biopsy 

incision. A peripheral blood sample to generate lymphoblastoid cell lines (LCL) was taken 

contemporaneously. The biopsies were performed by Daniel Glass at KCL following the 

technique steps described in Appendix 1.  

 

Chapter 4 describes the analysis I performed on the MuTHER pilot project data. 
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2.1.3 GenCord	  

The GenCord project was initiated at the University of Geneva Hospital and consists of a 

collection of cell lines derived from the umbilical cords of 85 individuals of Western 

European origin. The primary goal of the project was to serve as a resource facilitating 

discovery and comparison of eQTLs across multiple tissues while controlling for 

confounding factors such as different population samples or differences in technological 

and statistical methods employed. Umbilical cord was chosen due to its accessibility and 

the potential of harvesting multiple tissues from the same sample. Following appropriate 

consent and ethical approval (Dimas, Deutsch et al. 2009), cord blood and cord tissue 

was obtained per each sample in order to derive three cell-types: primary fibroblasts, 

EBV-immortalized lymphoblastoid cell lines (LCL) and primary T-cells. All pregnancies 

were full or near full term (38-41 week) ensuring age homogeneity of the samples. 

 

GenCord LCL data was used in the control experiment I describe in Chapter 3. GenCord 

data from LCLs, fibroblasts and T-cells was used in the analysis I present in Chapter 5.  

2.2 SNP	  genotyping	  

Genetic variation data (SNP genotypes) from HapMap 3, MuTHER and GenCord has 

been analysed throughout the course of my PhD, primarily to identify associations with 

gene expression variation (eQTL discovery, section 2.4). 

SNP detection has been performed mostly on Illumina’s whole-genome genotyping 

platforms using the Infinium HD technology. This enables dense, uniform genome 

coverage by typing a representative set of tag SNPs.  The Infinium II assay workflow is 

described in Figure 2.1. 
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Figure 2.1. Illumina II assay protocol. The Infinium II whole-genome genotyping assay uses a single 
bead type and dual colour channel approach. During Step 1 and Step 2, a DNA sample of relatively low 
required quantity (750 ng suffice for assaying 500,000 SNPs) is amplified and incubated overnight. The 
amplification has no appreciable allelic partiality. Following the amplification, the product is fragmented in 
an enzymatic process (Step 3). After precipitating and resuspending the DNA (Step 4), the BeadChip is 
prepared for hybridization (Step 5). The DNA samples are applied onto the BeadChips and incubated 
overnight, thus allowing the fragmented DNA to hybridize to locus-specific 50-mers on the chips which are 
covalently linked to one of the > 500,000 chip bead types (Step 6). One bead corresponds to each allele 
per SNP locus. After hybridization, an enzymatic base extension process ensures allelic specificity and the 
products are subsequently fluorescently stained (Step 7). Finally, the BeadArray Reader (Step 8) detects 
the fluorescence bead intensities, which are in turn analyzed by calling algorithms and translated into 
genotypic information (Step 9). Figure and assay protocol description from www.illumina.com 

 
HapMap 
HapMap genotypes have been generated by the International HapMap Consortium and 

are publicly available on the HapMap website (http://hapmap.ncbi.nlm.nih.gov/). The 

release used in this thesis (HapMap version 27, NCBI Build 36) contains SNP genotype 

data generated from 1,301 HapMap 3 samples collected using two platforms: the Illumina 

Human1M (by the WTSI) and the Affymetrix SNP 6.0 (Broad Institute). Data from the two 

platforms have been merged and the subset of SNPs passing the following QC criteria 

kept: 1) Hardy-Weinberg p-value > 10-6  per population; 2) genotype missingness < 0.05 

per population; 3) <3 Mendel errors per population; 4) SNP must have an rsID and map 
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to a unique genomic location. For the analysis presented in Chapter 3 I have used all 

common (MAF ≥ 5%) autosomal SNPs from the unrelated CEU HapMap 3 individuals 

(N=109). This dataset amounts to 1,186,075 SNPs.  

 

MuTHER 
The pilot MuTHER samples have been genotyped at WTSI using in parallel Illumina’s 

1M-Duo and 1.2M-Duo custom chips on different subsets of individuals. Before further 

filtering, there were 106 samples with call rate (CR) ≥ 0.90 on the 1.2M and 88 samples 

with CR ≥ 0.90 on the 1M chip. Combined intensity files were created for Illuminus (Teo, 

Inouye et al. 2007) by retaining on a per-chromosome basis only SNPs common to both 

chips. Additionally, any SNPs that moved position between the two chips were removed. 

Following further quality checks (Hardy- Weinberg p > 10-4, MAF > 1%), 865,544 SNPs 

were kept for analysis. The QC analysis was performed by Simon Potter at WTSI. 

 

The set of successfully genotyped samples was overlapped with individuals having 

corresponding expression data available. This amounted to the following sample set per 

tissue: 156 LCL, 160 skin and 166 fat individuals (Chapter 4).  

 

GenCord 
The 85 GenCord individuals were genotyped for approximately half a million SNPs each 

using Illumina’s 550K SNP array. DNA samples were extracted from cord tissue LCLs 

with the Puregene cell kit (Gentra-Qiagen, Venlo, The Netherlands). This work was 

carried out by Samuel Deutsch and colleagues in Stylianos Antonarakis’ lab at UGMS. 

Principal component analysis (PCA) was performed on the genotype data to detect 

potential outliers. Following this analysis performed by Stephen Montgomery at the 

WTSI, ten individuals were removed. After further QC analysis (removing SNPs with 

missing data), 394,651 SNPs with MAF ≥ 5% were kept for analysis (Chapter 3). 

To increase the power to detect associations with expression, GenCord genotypes were 

imputed onto the reference HapMap 2 data using the BEAGLE software (Browning and 

Browning 2007). Following imputation, QC was performed whereby SNPs with imputation 

quality scores < 0.9 (24,7078 SNPs) and those failing MAF (<5%) or Hardy-Weinberg 

equilibrium checks (total of 67,718 SNPs) were removed.  This work was performed at 

UGMS by Eugenia Migliavacca (imputation) and Tuuli Lappalainen (QC). A final set of 

1,428,314 SNPs in 75 individuals was used for the analysis In Chapter 5. 
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2.3 Gene	  expression	  quantification	  

Transcript levels in HapMap (LCL), GenCord (LCLs, fibroblasts, T cells) and MuTHER 

(LCL, skin, fat) samples were quantified at WTSI using Illumina’s whole-genome gene 

expression arrays. HapMap and GenCord data are also publicly available at 

http://www.sanger.ac.uk/resources/software/genevar/. 

Whole-genome expression profiling is based on the direct hybridization technology 

developed by Illumina (Figure 2.2).  

    

 
Figure 2.2. Direct hybridization assay overview and workflow. Figure from www.illumina.com 

 

The protocol features first the amplification of the starting RNA material via first- and 

second-strand reverse transcription, followed by a single in vitro transcription (IVT) 

amplification that incorporates biotin-labelled nucleotides. The resulting cRNA is purified, 

hybridized to the array and labelled with Cy3-streptavidin (Amersham Biosciences, Little 

Chalfont, UK). The fluorescence emission by Cy3 is scanned and quantified with Bead 

Station (Illumina). 

More than 48,000 unique bead types (one for each of the 47,294 transcripts plus 

controls) are represented on the array. Each bead contains several hundred thousand 
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copies of gene-specific 50mer probes covalently attached. The probes are derived from 

the National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) 

and UniGene databases. The beads are assembled into 3 µm diameter wells, generating 

an average 30-fold redundant information for each probe. These background-corrected 

values for a single bead type are summarized by Bead Studio (Illumina software) and 

outputted to the user as a set of 47,294 intensity values for each individual hybridization. 

 
HapMap 
Total RNA was extracted from LCLs derived from the HapMap 3 individuals (Coriell). 

Gene expression was quantified using Illumina’s commercial array Sentrix Human-6 

Expression BeadChip version 2. For each RNA extraction, two one-quarter scale 

Message Amp II reactions (IVTs) (Ambion, Austin, Texas, USA) were performed using 

200 ng of total RNA, to produce cRNA. To assay transcript levels, 1.5 µg of the cRNA 

were hybridized to the whole-genome expression array. Six arrays were run in parallel on 

each individual BeadChip. The experimental work was carried out by Catherine Ingle, 

James Nisbet and Magdalena Sekowska at the WTSI. 

 

To combine information from the two replicate hybridizations, raw data was normalized 

on a log2 scale by quantile normalization (Bolstad, Irizarry et al. 2003) across replicates 

of a single individual followed by median normalization across all individuals from a 

single population. Normalization was performed by Stephen Montgomery at WTSI. 

 

Of the >48,000 probes represented on the array, only a trustable subset was chosen for 

further analysis. The Sentrix Human-6 Expression BeadChip version 2 array covers over 

24,000 unique, curated RefSeq genes, as well as genes with less well-established 

annotation. Only probes corresponding to well-annotated RefSeq genes were kept at this 

point. Additionally, probes were matched to corresponding Ensembl genes (Ensembl 49 

NCBI Build 36) using SSAHA (Sequence Search and Alignment by Hashing Algorithm) 

(Ning, Cox et al. 2001). Following the SSAHA run 22,512 probes were mapped to 19,862 

Ensembl genes. Probes mapping to multiple Ensembl genes were removed, as well as 

ones mapping to sex chromosomes. After filtering, a non-redundant set of 21,800 probes 

(corresponding to 18,226 Ensembl genes) was used for association analysis. Mapping 

and selection of probes for final analysis was carried out by Antigone Dimas at WTSI. 
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MuTHER 
RNA was extracted from LCLs, skin and fat samples derived from the pilot MuTHER 

individuals. Gene expression was measured using Illumina’s HumanHT-12 version 3 

whole-genome array, as explained previously (in this case, each sample had three 

technical replicates). The experimental work was carried out by James Nisbet and 

Magdalena Sekowska at WTSI and by Amy Barrett and Mary Travers at WTCHG. 

 

Log 2 -transformed expression signals were normalized separately per tissue as follows: 

quantile normalization was performed across the 3 replicates of each individual followed 

by quantile normalization across all individuals.  

 

The  >48,000 probes targeting more than 25,000 genes are derived from RefSeq (Build 

36.2, Rel 22) and UniGene (Build 199). To select probes corresponding to well-annotated 

genes, Illumina’s v3 probes were mapped to unique Ensembl gene IDs by combining and 

cross-checking two methods. The first approach used probe annotations to RefSeq IDs 

provided by Illumina, which were further queried with BioMart (Ensembl 54) for 

corresponding Ensembl genes IDs. RefSeq IDs mapping to multiple Ensembl Genes 

were excluded, and only autosomal genes retained. This step was performed with the 

help of Tsun-Po Yang at WTSI. The second approach used BLAT (Kent 2002) to map 

the 50-mer probe sequences to Ensembl transcripts and to extract genomic locations 

matching all 50 bases of the probe sequence. Probes with unique perfect match to the 

genome and corresponding transcripts matching to the same genes were kept. This 

approach was performed by Josine Min at WTCHG. The union of the two mapping 

approaches after excluding 196 conflictingly matching probes resulted in 27,499 probes 

corresponding to 18,170 autosomal genes available for association analysis.  

 

GenCord 
Total RNA was extracted from LCLs, fibroblasts and T-cells of the 85 GenCord 

individuals. Two one-quarter scale Message Amp II reactions (Ambion) were performed 

for each RNA extraction with 200 ng of total RNA. 1.5 µg of cRNA was hybridized to 

Illumina’s WG-6 v3 Expression BeadChip array to quantify transcript abundance as 

described previously. Each RNA sample had two technical replicates. This work was 

carried out by Catherine Ingle, James Nisbet, and Magdalena Sekowska at the WTSI. 
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The expression raw data was normalized independently for each cell type as follows: the 

intensity values were log2 transformed, quantile normalized per sample replicates and 

median normalized across all individuals. Each cell type was renormalized using the 

mean of the medians of each cell type expression values. Normalization was carried out 

by Stephen Montgomery at the WTSI. 

 

The WG-6 v3 Expression BeadChip array covers over 27,000 unique coding transcripts. 

For some of them, well-established annotation exists (7,000 transcripts have provisional 

annotation). In addition, the array covers non-coding transcripts, as well as 

experimentally confirmed mRNA sequences aligning to EST clusters. Again, only probes 

with good or provisional annotation (mapping to RefSeq genes) were selected of the total 

48,000 probe set 36,156 probes with Refseq IDs were queried for their corresponding 

Ensembl gene IDs in Biomart (Ensembl 50, NCBI Build 36). Of these, 22,651 probes had 

a uniquely assigned Ensembl gene ID and did not map to either chromosomes X or Y. 

These probes corresponding to 17,945 RefSeq genes and 15,596 Ensembl genes 

respectively were used for subsequent analysis. Selection of the final probe list was done 

by Antigone Dimas at WTSI. 

2.4 eQTL	  discovery	  

Associations between SNP genotypes and normalized expression values were run using 

Spearman Rank Correlation (SRC) and additive linear regression (LR). SRC was 

exclusively used to detect eQTLs (Chapter 4) while LR was used to quantify the 

proportion of expression variance unexplained by the SNP genotypic classes (Chapter 3, 

Chapter 5).  I considered SNPs within a 1Mb window on either side of a gene’s 

transcription start site (TSS) as cis-acting while SNPs located further than 5 Mb away 

either side of a gene’s TSS or SNP-gene pairs on different chromosomes as trans-acting. 

2.4.1 Association	  analysis	  

Before association, the SNP genotypes were numerically encoded (0, 1 or 2) to 

represent the counts of alphabetically sorted alleles at each locus (e.g. counting the 

number of G alleles for an A/G SNP: AA = 0, AG = 1, GG = 2) (Figure 2.3).  
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Figure 2.3. SNP-gene association example. The A/G SNP in this schematic example is plotted against a 
gene’s corresponding normalized log2 expression values. In this case, the A allele at the SNP locus 
predisposes individuals to have higher expression values of the respective gene. 

 

2.4.1.1 Spearman	  Rank	  Correlation	  (SRC)	  

SRC is a non-parametric test assessing the degree of statistical dependence between 

two variables (X and Y). A monotonic function is fitted to describe the correlation 

between X and Y (e.g. X = genotype, Y  = expression). No other assumption is made 

about the relationship between the two variables, which are rank-ordered. In our case for 

example, expression values are ordered low to high and ranked accordingly (1..n), 

irrespective of their actual numerical value. This makes sure that outliers do not have a 

high impact on estimating the correlation between X and Y. The degree and direction of 

this correlation is reflected in the ρ (rho) coefficient, calculated as below, where n is the 

number of observations and di is the difference between the ranks of each observation 

on the two variables (di = xi - yi):  

 

€ 

ρ =1−
6 di∑

2

n(n2 −1)  
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When two observations for the same variable are equal (tied), they are each assigned 

the average corresponding rank. A perfect Spearman correlation (ρ = 1 or ρ = -1) occurs 

when each of the variables is a perfect monotone function of the other. The sign marks 

the direction of the correlation: ρ > 0 (positive correlation) if Y tends to increase when X 

increases and ρ < 0 (negative correlation) if Y tends to decrease when X increased. A 

nominal p-value for the association test is also reported.  

2.4.1.2 Additive	  linear	  regression	  (LR)	  

In a LR model, the relationship between two variables is explored by fitting a linear 

equation to the observed values. For the work presented in this thesis, the following main 

effects additive model was used to test for SNP-gene expression associations: 

 

Yi = b0 + bi Xi +εi 
 

Here, the dependent variable Yi is a probe’s normalized log2 expression value quantified 

in individual i (i = 1..n) and the explanatory variable Xi is the corresponding numerically 

encoded genotype. εi are independent normally distributed random variables with mean 0 

and constant variance (Stranger, Forrest et al. 2005). bi is the slope of the fitted 

regression line (bi = 0 if there is no association between the genotype and the expression 

values). How well the regression model fits the data can be estimated from the inspection 

of the residuals i.e. the vertical distances of each point from the regression line. The 

residuals quantify the proportion of the variance in the dependent variable (Y - 

expression) that cannot be accounted for by the explanatory variable (X - genotype). As 

such, the most common regression technique employs minimizing the sum of squared 

residuals.   

2.4.2 Multiple	  testing	  correction	  

The statistical significance of associations between SNP genotypes and gene expression 

levels was assessed using permutations (Churchill and Doerge 1994; Doerge and 

Churchill 1996). The log2 normalized expression values of each probe were permuted 

10,000 times relative to the genotypes of the SNPs in the tested window (2MB in cis). 

The minimal p-value association of each run was retained generating thus a distribution 

of 10,000 values corresponding to the best random SNP-probe associations. 

Significance was assessed for different threshold levels (0.5, 0.01, 0.001 and 0.0001) by 
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comparing the tail of the distribution of the 10,000 minimal p-values for each gene to the 

observed association p-value (e.g. an association was considered significant at the 

0.0001 threshold if the nominal observed p-value was lower than the 0.0001 tail of the 

distribution of minimal permuted p-values) (Stranger, Forrest et al. 2005; Stranger, Nica 

et al. 2007). 

2.5 Recombination	  hotspot	  mapping	  and	  LD	  filtering	  

To restrict the search space for causal regulatory effects and refine eQTL signals, I have 

made use of the genome’s correlation structure (LD). Specifically, I used recombination 

hotspot coordinates derived from the statistical analysis of the variation data generated 

by the HapMap 2 project (Release 22, Build 36) (McVean, Myers et al. 2004) (Myers, 

Bottolo et al. 2005). The recombination hotspots inferred are typically 1-2 kb long and are 

surrounded by much larger regions (defined here as recombination hotspot intervals) 

essentially devoid of recombination (Paigen and Petkov 2010).  All autosomal SNPs in 

HapMap 3 CEU, MuTHER and GenCord have been mapped to recombination hotspots 

and hotspot intervals. The mapping serves both to restrict the search for functional 

regulatory variants explaining GWAS signals (Chapter 3, Chapter 5) and also for refining 

eQTL signals by identifying independent regulatory effects and comparing them across 

multiple tissues (Chapter 4).  

 

In Chapters 3 and 5, GWAS results are tested for explanatory regulatory effects. For this 

purpose, given any GWAS SNP, I focus on the recombination hotspot interval where it 

resides and where also at least one eQTL co-localizes. Limiting the search space for 

causal effects to these intervals with independent recombination history is a reasonable 

approach, as few or no recombination events are expected between the reported 

associated SNPs and the functional variants they are tagging.  

 

In Chapter 4, I aim to characterize in detail the landscape of regulatory variation across 

LCLs, skin and fat. For this reason, I refine the discovered eQTL signals to likely 

independent effects per gene. The strategy employed is the following: after mapping 

significant eQTLs to recombination hotspot intervals, the most significant SNP per gene 

per interval is kept. Furthermore, to avoid long-range correlations which can extend over 

recombination hotspots, an additional LD filtering step is performed so that for each pair 

of significant eQTLs with D’ > 0.5, the least significant SNP is ignored. The choice of D’ 
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over r2 as LD filtering metric is based on their distinctive properties. Both metrics relate to 

D, the basic unit of LD measuring the deviation of haplotype frequencies from equilibrium 

state (Lewontin and Dunn 1960). For two SNPs with alleles (A,a) and (B,b) respectively: 

  

€ 

D = f (AB) − f (A) f (B)
  

 

where f(X) is the frequency of the X allele. If D is significantly different from 0, LD occurs. 

D’, calculated as below, ranges from 0 to 1, with D’ =1 denoting complete LD while 

values towards 0 indicating linkage equilibrium, i.e. historical genetic independence. 

 

€ 

if D ≥ 0, D'= D
Dmax

if D < 0, D'= D
Dmin

 

 

r2 is the statistical coefficient of determination, or the measure of correlation between a 

pair of variables (SNP genotypic classes in this case). Also in the range of 0 to 1, r2 = 1 

indicates that one SNP is directly predictive of the other (perfect correlation) and lower 

values denote the decay of their correlation (r2 approaches 0) (Wang, Barratt et al. 2005). 

€ 

r2 =
D2

f (A) f (a) f (B) f (b)  

 

While r2 quantifies the statistical correlation between two variants, D’ is a measure of their 

historical relationship which is biologically more meaningful. For example, two correlated 

SNPs in between which no recombination event occurred (D’ =1) but which have 

different MAFs (low r2) can be tagging the same functional effect (e.g. a single 

independent regulatory variant residing in the respective hotspot interval). The stringent 

D’ threshold (which corresponds to an even lower r2) provides thus a more suitable 

method to filter for historically independent effects. When comparing across tissues, this 

filtering ensures that true shared effects (interval-gene combinations) are contrasted and 



 42 

not just genes, which would be inaccurate in cases when the same gene is regulated by 

different functional variants in different tissues.  

 

2.6 RTC	  scoring	  scheme	  (Chapter	  3,	  Chapter	  5)	  

The Regulatory Trait Concordance (RTC) method was developed in order to detect the 

subset of GWAS signals which could be explained by significant regulatory effects and 

identify the genes whose expression levels they mediate. For this purpose, I used 

expression data from two resources: HapMap 3 and GenCord. The whole-genome 

expression quantification experiments on the MuTHER pilot samples were performed 

towards the end of my PhD and were not available for analysis at that time. eQTLs 

discovered in LCLs derived from HapMap 3 CEU and GenCord individuals were tested in 

Chapter 3, while eQTLs detected in the three GenCord tissues (LCLs, fibroblasts, T-

cells) were overlaid with GWAS results in Chapter 5. I next describe the RTC method 

and the main experiments it has been used for. 

2.6.1 Method	  overview	  

I assess the likelihood of a shared functional effect between a GWAS SNP and an eQTL 

by quantifying the change in the statistical significance of the eQTL after correcting for 

the genetic effect of the GWAS SNP. The correction is performed using a LR model. The 

GWAS SNP is first regressed against normalized expression values of the gene for 

which an eQTL exists. The residuals capture the remaining unexplained expression 

variance after the removal (correction) of the GWAS SNP effect. This resulting pseudo 

phenotype is used to redo the SRC association with the eQTL genotype. It is expected 

that if the GWAS SNP mediates the disease effect through a change in gene expression 

due to a regulatory variant (eQTL) then correcting out the GWAS SNP effect will have a 

marked consequence on the eQTL i.e. the eQTL SNP – gene association p-value after 

correction will be much less significant than the association p-value before correction. 

The p-value estimates however, are affected also by the LD structure of the investigated 

region: the correlation between the eQTL and the GWAS SNP but also between each of 

the two and the actual functional variants (most often unknown) influence the correction 

outcome. Given that part of the change in the p-values will be attributed to LD, it is 

necessary to account for this correlation in each interval of interest.    
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I account for the LD structure in each hotspot interval separately by ranking (Rank GWAS 

SNP) the impact on the eQTL (quantified by the adjusted association P-value after 

correction) of the GWAS SNP correction to that of correcting for all other SNPs in the 

same interval. The rank denotes the number of SNPs which when used to correct the 

expression data, have a higher impact on the eQTL (less significant adjusted P-value) 

than the GWAS SNP (i.e. RankGWAS SNP = 0 if the GWAS SNP is the same as the eQTL 

SNP, RankGWAS SNP = 1 if of all the SNPs in the interval, the GWAS SNP has the largest 

impact on the eQTL etc). By taking into account the total number of SNPs in the interval 

(NSNPs), this ranking can be compared across different genes and intervals. For this 

purpose, the RTC score is defined as follows: 

  

€ 

RTC=
NSNPs − RankGWAS SNP

NSNPs
 

 

The RTC score ranges from 0 to 1, with values closer to 1 indicating causal regulatory 

effects. The highest RTC statistic (RTC = 1) is obtained for the lowest correction ranking 

(RankGWAS SNP = 0) corresponding to cases when the GWAS SNP is identical to the 

eQTL. As expected in these instances, correcting the eQTL SNP with itself removes the 

largest possible amount of variance, more so than with any other SNP in the region. 

Cases when the eQTL and GWAS SNP are identical are impossible to resolve with the 

RTC or any other method. They are however still informative, indicating that the pattern 

of association between the SNPs in that region and the disease phenotype and gene 

expression respectively are identical. 

2.6.2 RTC	  properties	  under	  simulations	  

Before applying it to large-scale expression datasets, I investigated the properties and 

robustness of the RTC score with respect to D’ and r2, the two most common LD metrics.  

Both possible scenarios were tested: the null hypothesis (H0) when a GWAS disease 

SNP (dSNP) and a co-localizing eQTL would tag two different causal variants and the 

alternative hypothesis (H1) when the eQTL and dSNP tag the same functional variant. 

For this purpose, I have simulated causal SNPs (cSNP), eQTLs and dSNPs under 

different scenarios varying the LD levels between them as well as the LD pattern of the 

hotspot interval where they reside. The dSNP emulates the most significant trait-
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associated SNP typically reported by GWAS studies, while the cSNP represents the 

actual functional variant, unknown most of the times. For each simulated case, the cSNP 

was first masked, then the RTC was calculated and its performance evaluated. I used the 

HapMap 3 CEU cis eQTLs (315 genes at 10-3 permutation threshold) to create the list of 

cSNPs.  

 

For the H0 test, the cSNPs were called causal eQTL SNPs (c-eQTLs). For each c-eQTL, I 

sampled a different causal disease SNP (c-dSNP) from the same recombination hotspot 

interval, with the requirement that its MAF comes from a distribution identical to that of 

the GWAS SNPs downloaded from NHGRI (976 GWAS variants) (website accessed 

02.03.09). Subsequently, I sampled up to five eQTL-dSNP pairs per interval where the 

eQTLs and dSNPs are the topmost correlated (r2) SNPs with the c-eQTL and the c-dSNP 

respectively. These imitate the typical tagging SNPs reported as having a significant 

association with gene expression and disease phenotypes respectively. After sampling, I 

excluded cases where the eQTL and dSNP are identical, as these contradict the H0. c-

eQTL-c-dSNP-eQTL-dSNP quartets mapping to 287 unique hotspot intervals were 

sampled and tested under H0. The RTC score was calculated for all simulated eQTL-

dSNP pairs in each of the 287 hotspot intervals. The predictive value of the RTC score 

was compared against standard measures of LD (r2, D’) between the eQTL and the 

dSNP. 

 

Under the H1, the cSNP represents the untyped causal variant mediating the disease 

association via significant changes in gene expression levels. In this case, both the eQTL 

and the dSNP tag the same effect. Therefore, up to five eQTL-dSNP pairs were sampled 

for each hotspot interval harbouring a cSNP under H1 as follows: the eQTLs were chosen 

as the top most significant SNPs per eQTL gene - excluding the cSNP; the dSNPs were 

randomly sampled from the same hotspot interval such that the r2 between each of them 

and the cSNP was in the range  [0.5,0.9]. Perfectly correlated SNPs (r2 = 1) were 

excluded, as such cases cannot be resolved. In addition, at any stage of the 5-step 

iteration process per cSNP, the dSNP was selected to be different from the cSNP and 

the eQTLs sampled up to that point. cSNP-eQTL-dSNP trios mapping to 290 unique 

hotspot intervals throughout the genome were sampled and tested under the H1. For all 

simulated eQTL-dSNP pairs per each hotspot interval (N = 290), the RTC score was 
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calculated and its predictive value compared against the correlation level (r2, D’) between 

the eQTL and the dSNP. 

 

Finally, the effect of a region’s overall LD pattern on estimating the RTC score was 

explored. For this purpose, the extent of LD per hotspot interval was calculated as the 

median r2 of all pairwise SNP combinations available per interval. Under both H0 and H1, 

the relationship between the median r2 of a hotspot interval and the RTC was 

investigated.  

 

The RTC properties as revealed by these analyses are described in Chapter 3. 

2.7 MuTHER	  eQTL	  analysis	  (Chapter	  4)	  

2.7.1 Factor	  analysis	  

eQTL analysis on the MuTHER pilot data was performed using the discovery framework 

presented in Section 2.4 of this chapter (Methods). Additionally, eQTL analysis was 

conducted after accounting for experimental noise and global environmental conditions, 

which are also known to impact gene expression in a global manner. For this purpose, a 

Bayesian factor analysis (FA) model (Stegle, Parts et al. 2010) was applied to the 

expression data in each tissue. This approach uses an unsupervised linear model to 

account for global variance components in the data, and yields a residual expression 

dataset that can be used in further analysis. 

A wide range of parameter settings was tested for the model, controlling the amount of 

variance explained by it. This was achieved by setting the parameters of the prior 

distributions for gene expression precision (inverse variance) and factor weight precision. 

These random variables are modelled using Gamma distributions, thus their natural 

exponential family parameters (the prior mean and number of prior observations) were 

varied. The prior mean was varied from 10-6 to 10-2 and the number of prior observations 

from N*10-3 to N, where N is the number of observations from data. 120 latent factors 

were thus learned. For each tissue, the residual dataset that gave the best eQTL overlap 

between co-twin samples was used in the subsequent eQTL analyses. The prior values 

used for each dataset are given in Table 2.2. The FA was developed and carried out by 

Leopold Parts at WTSI.  
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 Weight prior Noise prior 
 Mean Observations Mean Observations 

LCL 10-6 23 10-3 10 
SKIN 10-6 23 10-1 100 
FAT 10-6 23 10-3 10 

 
Table 2.2. Factor analysis weight and noise prior values applied to each tissue. Analysis performed 
on MuTHER pilot samples. 

 

Following FA, the eQTL analysis on the corrected expression data was performed 

identically to the original detection strategy: SRC followed by multiple-testing correction 

using permutations. 

2.7.2 	  Estimation	  of	  proportion	  of	  true	  positives	  (π1)	  

Overlapping eQTL discoveries at the same threshold is very sensitive to power, as 

thresholds are driven by statistical significance. Given this, eQTL replication and tissue 

sharing was quantified also in a continuous way with Storey’s qvalue statistic (Storey and 

Tibshirani 2003). The QVALUE software implemented in the R package qvalue 1.20.0 

was used under the default recommended settings. The program takes a list of p-values 

and computes their estimated π0 - the proportion of features that are truly null - based on 

their distribution (the assumption used is that alternative cases tend to be close to zero, 

while p-values of null features will be uniformly distributed among [0,1]). The quantity π1  

= 1- π0 estimates the lower bound of the proportion of truly alternative features, i.e. the 

proportion of true positives (TP). Replication and sharing between two samples is 

reported as the proportion of TP (π1) estimated from the p-value distribution in the 

second sample of independent eQTLs initially discovered in the first sample (exact snp-

probe combinations are used). 
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3 RTC – empirical method for integrating regulatory variants 
with complex trait associations 

 

The biological interpretation of the plenitude of GWAS signals (WTCCC 2007; Eeles, 

Kote-Jarai et al. 2008; Zeggini, Scott et al. 2008) is very challenging since most 

candidate loci fall either in gene deserts or in regions with many equally plausible 

causative genes. Following the concurrent progress in understanding the genetic basis of 

regulatory variation (Cheung, Spielman et al. 2005; Dixon, Liang et al. 2007; Goring, 

Curran et al. 2007; Stranger, Forrest et al. 2007), differential gene expression has been 

proposed as a promising intermediate layer of information to aid this interpretation 

(Emilsson, Thorleifsson et al. 2008). Most commonly, interrogating the GWAS SNPs 

themselves for significant associations with gene expression has been employed to 

explain some of the GWAS results (Moffatt, Kabesch et al. 2007; Barrett, Hansoul et al. 

2008). However, the ubiquity of regulatory variation throughout the human genome 

(Dixon, Liang et al. 2007; Stranger, Nica et al. 2007) makes coincidental overlaps of 

eQTLs and complex trait loci very likely. This likelihood is a direct consequence of the 

correlation structure in the genome (linkage disequilibrium - LD), which makes 

functionally unrelated variants statistically correlated.  

 

As sample sizes increase, allowing the discovery of larger numbers of eQTLs of smaller 

effect size and as the expression experiments will be performed in a larger variety of 

tissues, we can envisage that almost every gene will have an associated eQTL under a 

certain condition. Consequently, the probability that any of these will map to a genomic 

region where a GWAS SNP also resides is very high. Therefore, it is important to 

emphasize that while it is very tempting to infer potential causal mechanisms based on 

such overlaps, this would be a naïve inference in the absence of additional supporting 

evidence for causality. In the long run, this will not only be an issue for gene expression, 

but also for any other cellular phenotype. Association studies for intermediate 

phenotypes with possible relevance to complex traits are underway and their results will 

overlap some of the GWAS signals. The biological meaning of these overlaps will again 

need to be evaluated in the context of the genome’s correlation structure.  
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It is not evident though, how to model each genomic region with overlapping association 

signals in the absence of information about the history of the region. Accounting for the 

historical parameters of a region under the coalescent, while desirable, is 

computationally and practically not feasible since the human population history is too 

complex to properly model and small deviations or slightly incorrect assumptions could 

create false signals or reduce power.  

 

In order to distinguish such accidental co-localizations (Chen, Zhu et al. 2008; Plagnol, 

Smyth et al. 2009) from true sharing of causal variants, I propose here an empirical 

methodology instead. This directly combines eQTL and GWAS data while accounting for 

the LD of the region harbouring the GWAS SNP. In this chapter, I demonstrate the value 

of the approach by predicting the regulatory impact of several GWAS variants in cis and 

trans and I also show that the correlation strength (r2, D’) between the GWAS SNP and 

the eQTL is not a sufficient predictor of regulatory mediated disease effects. This work 

has been described in (Nica, Montgomery et al. 2010). 

3.1 Current	  GWAS	  signals	  are	  enriched	  for	  regulatory	  variants	  

To identify likely causal effects (not variants since full sequencing data is not available at 

this point), I took advantage of published association data catalogued in the NHGRI 

database (Hindorff, Sethupathy et al. 2009) and gene expression data generated in LCLs 

derived from HapMap 3 individuals (see Methods). In this study, I limited the expression 

analysis to the 109 CEU individuals (European origin), as they are the closest in ancestry 

to the majority of individuals in published GWAS studies. I used the NHGRI database 

(accessed 02.03.09) to extract 976 GWAS SNPs with minor allele frequency (MAF) > 5% 

that were also genotyped in the HapMap 3 CEU, thus allowing to test the exact GWAS 

SNPs for associations with differential gene expression in LCLs. In total 17673 genes 

were examined. To discover eQTLs, I used Spearman Rank Correlation (SRC). This 

method captures the vast majority of associations discovered with standard linear 

regression (LR) models, with the additional advantage that it’s not affected by outliers 

and hence has more power and allows direct comparison of nominal P-values (Stranger, 

Nica et al. 2007). I looked for both proximal (cis) and distal (trans) effects as follows: 

variants within 1Mb on either side of the transcription start site (TSS) of a gene are 

considered to be acting in cis, while those at least 5 Mb downstream or upstream of the 

TSS or on a different chromosome are considered to be acting in trans. 
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In order to assess the overall impact of the currently known GWAS SNPs on expression, 

I contrasted their cis and trans effects to those of a random set of SNPs, representing the 

null. In a QQ plot (Figure 3.1), I compared the distributions of the best cis and trans 

association p-values per SNP for the 976 GWAS SNPs (observed) to 1000 sets of most 

significant p-values of 976 random SNPs each (expected). The 1000 random sets of 976 

SNPs were sampled to have identical MAF distribution to the GWAS SNPs. 

         
Figure 3.1. Excess of regulatory variants among GWAS signals. QQ plot depicting the excess of 
significant regulatory signal in GWAS data (976 NHGRI SNPs). For both the cis and trans analyses, the 
−log10(P-value) of the best associations per SNP are plotted. In red, the distribution of these values for 
GWAS SNPs is compared to that of the median of 1,000 sets of 976 random SNPs with same MAF 
distribution. In black, the estimated upper limit of the 95% confidence interval is plotted. 
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In cis, I observe a much stronger regulatory signal in the GWAS data compared to 

random (Figure 3.1). The significant difference between the two becomes apparent 

above a –log10(P-value) = 4. In trans, I also detect a more significant regulatory signal for 

GWAS SNPs compared to random, however not as strong as in cis. This is to be 

expected given that the much greater statistical space explored in trans limits the power 

to detect such effects. 

 

Nevertheless, despite their confinement to one tissue type - LCLs, these comparisons 

support the overall explanatory potential of regulatory variation for the biological effects 

of GWAS variants. As expected given the nature of the tissue, the phenotypes 

responsible for this enrichment are immunity related (Figure 3.2). 

 

 
Figure 3.2. Cis regulatory enrichment stratified by immunity relatedness. The −log10(P-value) of the 
best associations per GWAS SNPs and a set of random SNPs are plotted. As expected given the tissue 
(LCLs), immunity related phenotypes are mainly responsible for the enrichment. 
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3.2 RTC	  score	  to	  distinguish	  between	  causal	  effects	  and	  coincidental	  overlaps	  

To identify the subset of causal effects from the regulatory enrichment observed, I 

focused only on the genomic regions harbouring either cis or trans eQTLs. I split the 

genome into recombination hotspot intervals based on genome-wide estimates of 

hotspot coordinates from McVean et al. (McVean, Myers et al. 2004). Limiting the search 

space for causal effects to these intervals is a reasonable conventional approach, as the 

lack of recombination events between the reported associated SNPs and the functional 

variants they are tagging enabled the discoveries through GWAS in the first place.  

 

Given the abundance of cis eQTLs in the human genome, mere interval overlap is not 

sufficient to claim that a co-localized cis eQTL and a GWAS SNP are tagging the same 

functional variant. However, if the GWAS SNP and the eQTL do tag the same causal 

SNP, it is expected that removing the genetic effect of the GWAS SNP will have a 

marked consequence on the eQTL association. Starting from this hypothesis, I 

developed an empirical method to uncover regulatory mediated associations with 

complex traits. For all genes with a significant cis eQTL (0.05 permutation threshold as 

defined in Methods) (Stranger, Nica et al. 2007) in a given interval, I created corrected 

phenotypes from the residuals of the standard LR of the GWAS SNP against normalized 

expression values of the gene for which an eQTL exists. The residuals capture the 

remaining unexplained expression variance after the removal of the GWAS SNP effect. 

The SRC analysis was redone, this time with the pseudo phenotype, and the adjusted 

association P-value retained. Depending on the internal LD structure of the hotspot 

interval, the correlation between the GWAS SNP and the eQTL will vary, hence so will 

the P-values after and before correction. One way to assess the relevance of the GWAS 

SNP to the eQTL is to compare its correction impact to that of all other SNPs in the 

interval. For this purpose, I defined a Regulatory Trait Concordance (RTC) Score for 

each gene-GWAS SNP combination as a ratio taking into account the ranking of the 

correction with respect to all SNPs in the interval (Rank GWAS SNP) and the total number of 

tested SNPs (NSNPs) (see Methods).  

 

€ 

RTC=
NSNPs − RankGWASSNP

NSNPs
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The rank denotes the number of SNPs which when used to correct the expression data, 

have a higher impact on the eQTL (less significant adjusted P-value) than the GWAS 

SNP. As such, the RTC score will always be in the range (0,1], with values close to 1 

indicating that the GWAS effect is the same as the eQTL effect. 

 

The RTC score captures the LD structure of each tested region by taking into account 

the correction at all SNPs for every recombination hotspot interval. In addition, this 

ensures that RTC estimates are not up weighted in intervals with low number of SNPs 

(e.g. an extreme hypothetical case would be an interval with two SNPs only, the eQTL 

and the GWAS SNP; in this case the ranked correction at the eQTL would be high - Rank 

GWAS SNP = 1, as there is no other SNP in the interval to test; nevertheless, given just the 2 

SNPs in the interval, the RTC score would only be 0.5 = (2 – 1) / 2). While this is not a 

problem for overestimating confident RTC scores, a caveat of the method is that 

intermediate values are equally discarded when in fact estimations derived from intervals 

with more SNP information should be up scaled (i.e. an RTC = 0.7 in an interval with 150 

SNPs is more considerable than an RTC = 0.7 in an interval with 10 SNPs). Adjusting the 

value of the RTC score based on the SNP content of each region is a pending further 

development of the method. Meanwhile, one way to maximize the information content in 

each interval would be to include imputed SNP data. Given that the p-value associations 

prior to and after GWAS SNP correction are calculated with a non-parametric ranked test 

(SRC), it would be possible to use the estimates of allele dosage instead of the direct 

genotypes. This strategy has been shown to have comparable results to methods that 

take genotype uncertainty into account (Guan and Stephens 2008) and along with the 

SRC test as well as the permutations-based eQTL assignment, it should not be sensitive 

to outliers. A thorough evaluation of the use of imputed data to estimate RTC scores 

remains to be performed as a further improvement of the test.   

3.3 RTC	  properties	  

The properties and robustness of the RTC score were investigated under the null 

hypothesis (H0: eQTL and GWAS are tagging two different causal SNPs) and the 

alternative hypothesis (H1: same causal SNP). For this purpose, I have simulated causal 

SNPs (cSNP), eQTLs and dSNPs (see Methods) varying the LD levels between them as 

well as the LD pattern of the hotspot interval where they reside. The cSNPs were then 
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masked and subsequently, the RTC score was calculated under these different LD 

scenarios for both hypotheses.  

 

The RTC score is uniformly distributed under the null, when the simulated causal eQTL 

SNP (c-eQTL) and the causal disease SNP (c-dSNP) are different (Figure 3.3, left 

panel). Under the H1 on the other hand, the RTC score is right skewed, with a clear 

enrichment for values close to 1 recovering the single causal SNP effect (Figure 3.3, 

middle panel). 

 

 

 
Figure 3.3. RTC score distribution following simulations. The RTC score is uniformly distributed for 
simulated eQTLs and dSNPs tagging two different causal variants in the same interval (left panel). The 
RTC Score is right-skewed for simulated eQTLs and dSNPs tagging the same functional variant (middle 
panel). The RTC score is sensitive to associations tagging a common functional variant in non-simulated 
data, when the GWAS trait is gene expression (GenCord LCL samples – right panel). 

 

 

The simulations show that the complexity and variability of the LD structure in the 

genome impede the simple use of correlation metrics to infer shared causal effects. 

The statistical correlation (r2) between the eQTL and the dSNP is not on its own sufficient 

to predict whether they tag the same cSNP. The RTC outperforms r2 since it is able to 

recover causal effects even for low correlated pairs (Figure 3.4). 
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Figure 3.4. Properties of the RTC score when varying r2. Simulation results depicting the relationship 
between the RTC score and the r2 (eQTL, dSNP) when they tag different causal SNPs (H0: left panel) 
versus one causal SNP (H1: right panel). The RTC increases as expected with increased r2 between the 
eQTL and the dSNP, but when tagging the same functional variant, various lower pairwise r2 combinations 
can determine a high RTC. This makes r2 on its own insufficient to detect shared causal effects. 

 

The historical correlation metric between eQTLs and dSNPs (D’) is also not fully 

predictive of high RTC scores (Figure 3.5). It can be observed from the H0 simulation 

results that D’ is not correlated with RTC, meaning that when the eQTL and dSNP tag 

different functional variants, the RTC score is not high just because D’ is high. In 

addition, while high RTC scoring cases cluster much tighter around high D’ values under 

the H1 compared to r2 previously, a high D’ is not sufficient to predict causal effects. That 

is because it would be impossible to distinguish causal from coincidental effects given a 

perfect historical correlation scenario.  
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Figure 3.5. Properties of the RTC score when varying D'. Simulation results depicting the relationship 
between the RTC score and the D' (eQTL, dSNP) when they tag different causal SNPs (H0: left panel) 
versus one causal SNP (H1: right panel). D' is not correlated with RTC, therefore it will not determine high 
scores on its own in the absence of a common functional variant. Under the H1, the majority of high RTC 
scoring pairs have high D', but in the case of a perfect historical correlation scenario, it's impossible to 
distinguish causal from coincidental effects with D' only. 

 

Finally, the effect of the overall LD pattern in a region of interest on the estimation of the 

RTC score was investigated. For this purpose, I calculated the median r2 of each hotspot 

interval (for all pairwise SNP combinations available per interval) and checked its 

relationship to the RTC score under the null and alternative hypothesis. It is expected 

that RTC will perform better in intervals with overall low LD, where the correlation 

between the eQTL and other non-disease SNPs will decay much faster, making the 

correction for the dSNP stand out. However, I confirm that the LD of the region does not 

determine high scores by itself. Intervals of low LD where different c-eQTLs and c-dSNPs 

reside have a uniform distribution of RTC scores (Figure 3.6, left panel). As expected, the 

H1 simulations show that the RTC is most powerful in intervals with low median r2 (Figure 

3.6, right panel). 
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Figure 3.6. Properties of the RTC score when varying the median r2 of the hotspot interval. 
Simulation results depicting the relationship between the RTC score and the local LD structure (median r2) 
under the null (different causal SNPs - left panel) and alternative hypothesis (same causal SNP - right 
panel). Under H0, the RTC score is evenly distributed, therefore intervals with overall low LD will not 
determine high RTC scores. Under H1, the RTC performs best in intervals with overall low LD, where the 
correlation between the eQTL and other non-disease SNPs decays much faster, making the dSNP 
correction stand out. 

 

3.4 RTC	  score	  when	  both	  traits	  are	  gene	  expression	  

In the first instance I tested the RTC method in a positive control experiment where 

intervals harbouring already identified regulatory associations were analyzed. I used 

published cis eQTLs (10-3 permutation threshold) discovered in the same tissue as the 

HapMap 3 CEU eQTLs (LCLs) but derived from an independent set of samples: 75 

individuals of Western European origin from the GenCord resource (Dimas, Deutsch et 

al. 2009). In this experiment, I considered the GenCord eQTLs as the equivalent of 

GWAS SNPs and I limited the analysis to intervals with cis eQTLs in both datasets. 

Furthermore, I conditioned the associated genes for the same interval to be identical in 

the two expression datasets, expecting thus a common functional variant. As a result of 

this filtering, SNPs in 157 hotspot intervals were tested, associated with differential 

expression levels of 154 genes. As expected from the H1 simulations, the RTC score 

distribution after correcting for the GenCord eQTLs is right-skewed (Figure 3.3, right 
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panel), suggesting that the scoring method is sensitive to associations tagging the same 

functional variant. I detect 33 SNP-probe pairs with an RTC score of 1 out of the total 185 

tested pairs. Given the marked difference in genotyping density between HapMap and 

GenCord (~1.2 million SNPs versus ~400,000 SNPs respectively) and the hypothesis 

that the 157 overlapping intervals share the same functional variant, approximately 3 

times more perfect scoring cases (99 pairs with RTC score = 1) are expected than what 

we observe, had individuals from both datasets been equally densely genotyped. I use 

the degree of sharing between the eQTLs in the two datasets to derive a reasonable, yet 

conservative threshold: currently, 105 SNP-probe pairs pass the 0.9 RTC threshold, 

making it thus a suitable stringent cut-off for calling significant discoveries. 

 

3.5 Cis	  results	  

Following the positive control analysis, I applied the scoring method in a disease GWAS 

setting using the NHGRI SNPs described in Section 3.1. The respective 976 common 

GWAS SNPs map to 784 hotspot intervals. Of these, I focused the cis analysis on GWAS 

intervals (N=130) where at least one significant cis eQTL at a 0.05 permutation P-value 

threshold also resides. For the trans analysis, I ordered all 784 GWAS intervals by their 

most significant trans eQTL and kept the topmost 50 intervals for further examination. 

Table 3.1 summarizes the most confident cis results ordered by RTC score. I detect 

SNP-gene combinations passing the 0.9 threshold for 28 intervals out of the 130, twice 

as many than expected by chance (13 expected top 10% scoring intervals under the 

uniform distribution). The RTC method confirms prior results in the literature suggestive 

of disease effects mediated through expression (ORMDL3 for asthma risk (Moffatt, 

Kabesch et al. 2007), C8orf13 locus for systemic lupus erythematosus risk (Hom, 

Graham et al. 2008), SLC22A5 for Crohn’s disease (Peltekova, Wintle et al. 2004; 

Barrett, Hansoul et al. 2008). In addition, other yet unknown candidate genes for a 

variety of conditions are identified. 
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GWAS SNP Complex Trait Gene RTC Chr 
rs2064689 Crohn’s disease WDR78 1 1 
rs3129934 Multiple sclerosis HLA-DRB1 1 6 
rs2188962 Crohn’s disease SLC22A5 1 5 
rs1015362 Burning and freckling TRPC4AP 1 20 
rs2735839 Prostate cancer C19orf48 1 19 
rs6830062 Height LCORL 1 4 
rs2242330 Parkinsons disease TMPRSS11A 1 4 
rs7498665 Body mass index,Weight EIF3CL 1 16 
rs2872507 Crohn’s disease ZPBP2 0.99 17 
rs255052 HDL cholesterol AGRP 0.99 16 
rs4549631 Height TRMT11 0.98 6 
rs9469220 Crohn’s disease ILMN_29412 0.98 6 
rs11083846 Chronic lymphocytic leukemia SLC8A2 0.98 19 

rs13277113 
Systemic lupus 
erythematosus C8orf13 0.97 8 

rs9272346 Type 1 diabetes HLA-DRB1 0.96 6 
rs12324805 Body mass index STARD5 0.96 15 
rs3764261 HDL cholesterol MT1H 0.96 16 
rs3135388 Multiple sclerosis HLA-DRB5 0.96 6 
rs3814219 Endothelial function traits FAM26B 0.95 10 
rs12708716 Type 1 diabetes ILMN_32084 0.95 16 
rs2269426 Plasma eosinophil count HLA-DRB1 0.95 6 
rs10769908 Body mass index C11orf17 0.94 11 
rs4130590 Bipolar disorder ILMN_17339 0.94 9 
rs7216389 Asthma ORMDL3 0.94 17 
rs3796619 Recombination rate (males) CRIPAK 0.93 4 
rs1748195 Triglycerides DOCK7 0.93 1 
rs2903692 Type 1 diabetes ILMN_32084 0.93 16 
rs3197999 Crohn’s disease SLC38A3 0.92 3 
rs9858542 Crohn’s disease SLC38A3 0.92 3 
rs6441961 Celiac disease LIMD1 0.92 3 
rs660895 Rheumatoid arthritis PSMB9 0.91 6 
rs9652490 Essential tremor ILMN_111363 0.91 15 
rs1397048 Hemostatic factors OR8H2 0.91 11 
rs3825932 Type 1 diabetes CTSH 0.91 15 
rs2395185 Ulcerative colitis ILMN_29412 0.9 6 

 
Table 3.1. Candidate cis results. Candidate genes (RTC score ≥ 0.9) for cis regulatory mediated GWAS 
effects. RTC applied on 976 GWAS SNPs from NHGRI and HapMap 3 CEU expression data in LCLs. The 
higher the score, the more likely it is that the GWAS SNP and the eQTL for the gene shown are tagging the 
same functional variant. 

 

 

 

 

 



 59 

An interesting example of a novel cis regulatory mediated effect is the one for Crohn’s 

disease with gene SLC38A3, member 3 of the solute carrier family 38. Independent 

studies detected significant Crohn’s associations of two SNPs in the same hotspot 

interval on chromosome 3: rs3197999 (Barrett, Hansoul et al. 2008), a non-synonymous 

SNP in gene MST1 and rs9858542 (Parkes, Barrett et al. 2007; WTCCC 2007), a 

synonymous SNP in nearby gene BSN. Suggestive literature evidence supports the role 

of MST1 in Crohn’s pathogenesis: the protein encoded by MST1 (macrophage-

stimulating protein – MSP) and its receptor MST1R are reportedly involved in 

macrophage chemotaxis and activation (Leonard and Skeel 1976) and have a role also 

in regulating inflammatory responses following pro-inflammatory signals (Morrison, 

Wilson et al. 2004). These lines of evidence, in addition to the disease associated non-

synonymous SNP made MST1 the most attractive candidate gene out of the many 

present in that region (Goyette, Lefebvre et al. 2008). However, the data presented here 

supports an additional regulatory component underlying the susceptibility locus. For both 

GWAS SNPs, SLC38A3 is the highest scoring candidate in the region (RTC score: 0.92). 

Interestingly, this is functionally similar to another Crohn’s susceptibility gene SLC22A5 

confirmed with the RTC method (RTC score = 1) and also encoding a sodium dependent 

multi-pass membrane protein (solute carrier family protein). The observed direction of 

effect is the same for both genes (eQTLs associate with low expression levels) as in 

previous expression datasets (Barrett, Hansoul et al. 2008) and suggests a possible 

involvement of this gene family in the disease. This is in agreement with recent studies 

reporting that disease causative genes are functionally more closely related (Franke, van 

Bakel et al. 2006). 

 

Overrepresentation of immunity-related results 
The tissue under investigation is LCLs so it is expected that GWAS signals of immunity 

related traits (comprising here autoimmune disorders and diseases of the immune 

system e.g. AIDS progression) more likely show an overlap with eQTLs. In order to 

evaluate the relevance of the presented results, I analyzed the distributions of the best 

RTC scores per GWAS SNP stratified by the immunity relatedness of the complex trait 

they associate with (Figure 3.7).  
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I observe a significant overrepresentation of high-scoring genes (RTC ≥ 0.9) for immunity 

related traits compared to non-immunity related ones (Fisher’s Exact Test, P-value = 

0.0125) (Fraser and Xie 2009). This suggests that the scoring scheme predicts 

regulatory effects of the relevant phenotypes. In addition, we observed that for GWAS 

signals with RTC score ≥ 0.9, only 10% of the nearest gene to the GWAS SNP was also 

the eQTL gene. These however, correspond as expected to instances when the eQTL 

gene is also the nearest gene to the eQTL itself. If that is not the case, the inference of 

relevance of a gene simply based on its proximity to the GWAS SNP is not informative.  

 

 

 

 
Figure 3.7. Overrepresentation of immunity-related high RTC scoring cis signals. Distribution of best 
RTC scores per GWAS SNP stratified by immunity relatedness. Histogram contains results from the 
analysis of 130 hotspot intervals with colocalizing disease SNPs and cis eQTLs. We observe a significant 
overrepresentation of high-scoring (RTC ≥ 0.9) candidate genes (black bars) for immunity related complex 
traits compared to non-immunity related ones (grey bars) (Fisher's Exact Test, P-value = 0.0125). 
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3.6 Trans	  results	  

Even if the causal SNP is not cis-regulatory, using gene expression to determine its 

downstream targets, coupled with information about the biological pathways these 

targets act in could help interpret the primary GWAS effect.  

 

I investigate this hypothesis in the topmost 50 GWAS intervals ordered by their trans 

eQTL significance. For each interval, I apply the RTC scoring scheme on the subset of 

genes in the whole genome with a notable effect in trans (SRC nominal P-value < 10-5). 

These signals amount to a total of 552 genes. I obtain SNP-gene combinations passing 

the 0.9 RTC score threshold for 24 of the 50 tested intervals (corresponding to a total of 

85 genes). Six of these intervals contain GWAS SNPs associated with immunity related 

traits (Table 3.2). 

 

While not statistically significant - unsurprisingly given that only a small subset of the total 

GWAS intervals is tested - these examples support the usefulness of the trans approach. 

As hypothesized, for the same complex trait associated SNP, several potential candidate 

genes in trans can be discovered throughout the genome. Some of these are biologically 

plausible results and merit further investigation. However, many trans candidates are 

hard to interpret at this stage given their incomplete annotation and further functional 

studies will need to be performed for validation. 
 

Table 3.2. Candidate trans results. Candidate trans genes likely involved in the same biological 
pathways, relevant to the GWAS SNPs (GWAS SNP and the genes it affects in trans often reside on 
different chromosomes, as indicated in the SNP Chr and Genes Chr fields respectively). Signals related to 
the same hotspot interval separated by a horizontal line. Regulatory trans effects RTC applied in trans on 
976 GWAS SNPs from NHGRI and HapMap 3 CEU expression data in LCLs. Table contains only the 
confident results (RTC Score ≥ 0.9) for the six immunity related intervals. 
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GWAS SNP Complex Trait Genes RTC 
SNP 
Chr 

Genes 
Chr 

rs2251746 Serum IgE levels SLC25A18 0.99 1 22 

rs983332 
Response to TNF 
antagonists RGS16, IGSF3 0.97 1 1 

rs983332 
Response to TNF 
antagonists C17orf58 0.97 1 17 

rs653178 Celiac disease PAX8, DOK1 1 12 2 
rs17696736 Type 1 diabetes PAX8, DOK1 0.98 12 2 
rs2542151 Crohn's,Type 1 diabetes MMP12 1 18 11 

rs2542151 Crohn's,Type 1 diabetes 

SLC39A4, 
PSD3, AHNAK2, 
FAM108B1, 
CYP2S1, 
CLEC7A 0.97 18 

8, 8, 14, 9, 
19, 12 

rs2542151 Crohn's,Type 1 diabetes LENEP 0.91 18 1 
rs3134792 Psoriasis ADRA2C 1 6 4 

rs3134792 Psoriasis 
DPEP1, 
ARHGEF3 0.99 6 16, 3 

rs1265181 Psoriasis POU5F1P1 0.96 6 8 
rs1265181 Psoriasis DPEP1 0.95 6 16 

rs1265181 Psoriasis 
CYP4F8, 
ADRA2C 0.94 6 19, 4 

rs1265181 Psoriasis RGS9 0.92 6 17 
rs2395185 Ulcerative colitis B4GALT2, ASB5 0.97 6 1, 4 
rs2395185 Ulcerative colitis STK32A 0.94 6 5 
rs2395185 Ulcerative colitis OXT 0.93 6 20 
rs2395185 Ulcerative colitis CSRP3 0.92 6 11 
rs2395185 Ulcerative colitis LGALS4 0.91 6 19 
rs3135388 Multiple sclerosis LIMS1 0.95 6 2 

rs477515 
Inflammatory bowel 
disease B4GALT2 1 6 1 

rs477515 
Inflammatory bowel 
disease ASB5 0.99 6 4 

rs477515 
Inflammatory bowel 
disease STK32A 0.95 6 5 

rs477515 
Inflammatory bowel 
disease OXT 0.94 6 20 

rs477515 
Inflammatory bowel 
disease CSRP3 0.93 6 11 

rs477515 
Inflammatory bowel 
disease DCHS2 0.91 6 4 

rs477515 
Inflammatory bowel 
disease LGALS4 0.9 6 19 

rs615672 Rheumatoid arthritis DCHS2 0.99 6 4 
rs6457617 Rheumatoid arthritis SMARCD3 0.95 6 7 
rs6457620 Rheumatoid arthritis SMARCD3 0.95 6 7 
rs660895 Rheumatoid arthritis RETSAT 0.99 6 2 
rs660895 Rheumatoid arthritis CALCR 0.98 6 7 
rs9268877 Ulcerative colitis LIMS1 0.97 6 2 
rs9268877 Ulcerative colitis B4GALT2 0.94 6 1 
rs9268877 Ulcerative colitis ASB5 0.91 6 4 
rs9272346 Type 1 diabetes LIMS1 0.97 6 2 
rs9272346 Type 1 diabetes WHDC1L1 0.94 6 15 
rs9272346 Type 1 diabetes ASB5 0.93 6 4 

rs9272346 Type 1 diabetes 
SEMA6D, OXT, 
B4GALT2 0.92 6 15, 20, 1 



 63 

 

A subset (N=15) of the hotspot intervals containing GWAS SNPs and tested in this 

chapter harbour both cis and trans eQTLs (as defined in Methods). For two of the 15 

intervals, I detect potential explanatory regulatory effects (genes with high RTC score) in 

both cis and trans (Table 3.3.). It is likely that changes in expression levels of all these 

genes are relevant to the single common GWAS signal. Interestingly for example, the 

DOCK7 (dedicator of cytokinesis 7) locus has been implicated in coronary heart disease 

risk (Aulchenko, Ripatti et al. 2009) and SNP variants at the SORCS2 (sortilin-related 

VPS10 domain containing receptor 2) locus have been associated with hemorrhagic 

stroke (Yoshida, Kato et al. 2010). Both genes score a high RTC with SNP rs1748195 

associated with triglyceride levels, a quantitative trait highly relevant to heart disorders. 

Functional verification of similar gene connections might lead to the discovery of new 

disease-relevant pathways.  

 

  
GWAS 
SNP 

Complex 
Trait Gene RTC 

SNP 
Chr 

Gene 
Chr Interval 

cis rs1748195 Triglycerides DOCK7 0.93 1 1 1:62673568-62974568 
trans rs1748195 Triglycerides SORCS2 0.9 1 4 1:62673568-62974568 

cis rs1007738 
Bone mineral 
density (hip) ACP2 0.88 11 11 11:46234001-46861001 

trans rs1007738 
Bone mineral 
density (hip) CAPN12 0.98 11 19 11:46234001-46861001 

trans rs1007738 
Bone mineral 
density (hip) SYNGR3 0.87 11 16 11:46234001-46861001 

trans rs1007738 
Bone mineral 
density (hip) TMEM149 0.83 11 19 11:46234001-46861001 

trans rs1007738 
Bone mineral 
density (hip) PBXIP1 0.82 11 1 11:46234001-46861001 

 
Table 3.3. Hotspot intervals with overlapping cis and trans effects as indicated by the high RTC 
score. Candidate regulatory effects explaining GWAS signals were detected for two of the 15 intervals 
tested for both cis and trans effects.   

 

3.7 RTC	  outperforms	  alternative	  correlation	  metrics	  

The power to detect significant associations between genotyped SNP proxies and a 

phenotype depends on the correlation between those proxies and the functional variant 

(Pritchard and Przeworski 2001). Just like for the simulated data, I tested whether the 

correlation between a GWAS SNP and its co-localizing eQTL is sufficient for predicting a 

shared causal effect. For both the cis and the trans analysis, I observe that the r2 

between the eQTL and the disease SNP is not a direct predictor of the RTC score, and in 
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several cases I predict that even pairs with low r2 are likely tagging the same functional 

effect (Figure 3.8, top panel).  

    
Figure 3.8. The RTC method compared to standard LD measurements in the observed data. Neither 
r2 nor D' between the eQTL and the GWAS SNP are direct predictors of a high RTC score. Highlighted 
here are the results from the cis and trans analyses. I obtain high scoring results (RTC scores ≥ 0.8 in 
blue) for cases with a high correlation between the disease SNP and the eQTL as expected, but also for 
pairs with low statistical correlation (r2 – top panel). As shown in the bottom panel, many of these high 
scoring pairs are historically correlated (D' = 1), but so are many more by chance. Additionally, high scoring 
pairs with low D' can be detected as well. Hence, no obvious combination of the two LD measures can 
predict a high RTC score. 

 

The reason for this is that many of the high scoring pairs with poor statistical correlation 

(low r2) are actually historically correlated (D’=1). Nevertheless, D’ is not very informative 

either (Figure 3.8, bottom panel), the main problem here being that in regions with 

generally high D’ among many SNPs, one cannot determine which of the pairs actually 

represents a common functional variant.  
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Another metric of potential predictive value is the fraction of eQTL variance explained by 

the dSNP. Figure 3.9 indicates the relationship between the RTC score and the fraction 

of explained variance at the eQTL left unexplained after the dSNP correction (ratio of 

linear regression adjusted R2 after and before correction). As expected given the 

definition of the RTC, the highest density of good scoring results is registered for dSNPs 

that explain most of the eQTL variance. However, RTC outperforms the variance metric, 

scoring high even when less of the eQTL variance is explained by a dSNP. As such, 

setting a threshold on the explained variance would not be sufficiently informative either. 

              
Figure 3.9. The fraction of eQTL variance explained away by the dSNP versus the RTC score.  
Contrasted are the LR adjusted R2 at the eQTL after and before correction of the dSNP. It is observed that 
while most high scoring pairs correspond to cases of lowest variance left unexplained, solely using an 
arbitrary variance threshold would cause other interesting cases to be missed. 

 

3.8 Conclusions	  

In this chapter, I described a newly developed empirical methodology, called Regulatory 

Trait Concordance (RTC). The purpose of this method is to account for local LD structure 

in the human genome and integrate eQTLs and GWAS results to reveal the subset of 

association signals that are due to cis eQTLs. This approach aims to help understand 

some of the biological mechanisms - should they be regulatory - behind the genetic 

associations with complex diseases. Candidate genes linked to the SNP variants 
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reported so far as implicated in disease susceptibility are often chosen solely based on 

genomic proximity criteria. The RTC enables therefore a more informed choice of 

candidate disease genes, based on evidence in favour of common functional regulatory 

effects. 

 

Genomic regions of various LD patterns were first simulated to explore the properties of 

the RTC score. Simulated intervals for both cases when a single or two different causal 

variants exist were analyzed. Consequently, I showed that the proposed scoring scheme 

outperforms SNP correlation metrics, be they statistical (r2) or historical (D’). Following 

the observation of a significant abundance of regulatory signals among currently 

published GWAS loci, I applied the method on expression data in blood-derived LCLs 

extracted from HapMap 3 individuals of European descent. Relevant genes under 

regulatory control were prioritized for each of the respective complex traits. As such, I 

detected several potential disease causing regulatory effects, with a strong enrichment 

for immunity-related conditions, consistent with the nature of the cell line tested (LCLs). 

Furthermore, I presented an extension of the method in trans, where interrogating the 

whole genome for downstream effects of the disease variant can be informative 

regarding its unknown primary biological effect.  

 

Overall, the RTC method supports the integration of cellular phenotype associations with 

organismal complex traits as a way to biologically interpret the genetic determinants of 

these traits. 
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4 Tissue-specificity of cis regulatory variants 
 

Most of the knowledge on the genetic basis of regulatory variation has been gained so 

far by examining whole-genome expression patterns in blood-derived cells or cell lines 

(lymphocytes, LCLs) (Cheung, Spielman et al. 2005; Stranger, Forrest et al. 2005; 

Goring, Curran et al. 2007). Blood-derived cell-types continue to be the easiest 

accessible source for large-scale transcript level profiling, however incorporating 

information from a variety of other tissues is essential. Both during development as well 

as throughout the process of cellular differentiation, some genes are expressed 

ubiquitously while others display tissue-specific characteristics (Myers, Gibbs et al. 2007; 

Schadt, Molony et al. 2008). Additionally, many phenotypes manifest themselves only in 

certain tissues (Nowak and Davies 2004; Oksenberg and Baranzini 2010). Given the key 

role of regulatory variation in shaping complex phenotypes of medical importance, it is of 

special interest to assess the extent of expression differences between tissues that can 

be attributed to differential regulatory control.  

 

Promising advancement towards this goal has been made recently by several studies 

identifying and comparing eQTLs in multiple human tissues. Myers etal. were the first to 

explore genetic variation influencing normal human cortical expression (Myers, Gibbs et 

al. 2007). The authors estimate using expression and genotypic data from 193 samples 

that 58% of the transcriptome is cortically expressed and of the expressed transcripts, 

21% have significant eQTLs. Little overlap can be found between this eQTL set and 

results from previous analyses on blood-derived cells. While differences between the 

compared studies with respect to the samples and genotyping platforms used explain 

some of the modest overlap, it is very likely that variants discovered in the cortical 

samples underlie brain specific control of gene expression. In conjunction with results 

from GWAS, brain specific eQTLs could help uncover the genetic basis of some 

neurologic disorders. 

 

In a study on 400 human liver samples, Schadt etal. identified more than 6000 SNP – 

gene associations (Schadt, Molony et al. 2008). Many of the genes detected in this 

experiment had already been linked to a variety of complex diseases, expectedly given 
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the liver’s essential role in many human metabolic processes. The same expression 

platform employed for the human liver cohort has also been used on a set of human 

blood and adipose tissue samples in another study (Emilsson, Thorleifsson et al. 2008). 

The authors evaluated the cis eQTL overlap in the three tissues, estimating ~30% 

sharing (Schadt, Molony et al. 2008). Efforts from our group have also contributed to the 

understanding of regulatory variation in a cell-type specific context. In a systematic study 

controlling for confounding associations due to different population samples or discrepant 

technological and statistical methods used, eQTLs were detected and compared across 

LCLs, fibroblasts and T-cells derived from the same 75 GenCord individuals (Dimas, 

Deutsch et al. 2009). The authors report that 69-80% of all discoveries (cis eQTLs) are 

cell-type specific, highlighting the need of sampling multiple tissue expression datasets in 

order to describe the full repertoire of regulatory variants. 

 

Documenting cell-type specific regulatory variation is very important from the disease 

perspective. Integrating expression data with GWAS results can be informative for 

discovering genes and pathways whose disruption likely causes disease (Chen, Zhu et 

al. 2008; Nica and Dermitzakis 2008; Nica, Montgomery et al. 2010).  However, this is 

only possible when the tissue of expression is relevant to the interrogated complex trait 

(Nica and Dermitzakis 2008). eQTLs discovered in LCLs have helped explain GWAS 

associations with childhood asthma (Moffatt, Kabesch et al. 2007) and Crohn’s disease 

(Libioulle, Louis et al. 2007), two autoimmune inflammatory disorders. The adipose and 

blood cohorts analyzed by Emilsson etal. had been assessed for various phenotypes too, 

including obesity relevant traits. Notably, 50% of the cis signals were estimated as 

overlapping between the two cohorts, but a marked correlation with obesity-related traits 

was only observed for gene expression measured in adipose tissue (Emilsson, 

Thorleifsson et al. 2008). These observations certify the importance of integrating data 

from a relevant tissue when trying to interpret GWAS results using gene expression as 

an intermediate phenotype. Nevertheless, it is still unclear what the pattern of diminishing 

returns is across human tissues and what tissues could serve as highly informative in 

large cohorts. For example, LCLs have been useful in less expected cases enabling 

candidate gene discovery for associations with autism (Nishimura, Martin et al. 2007) or 

bipolar disorder (Iwamoto, Bundo et al. 2004).  
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In this chapter, I further explore the complexity of the human regulatory variation 

landscape in LCLs and two primary tissues (skin and fat) derived from the same subset 

of female twins from the UK Adult Twin registry (Spector and Williams 2006). In line with 

previous studies, I report extensive tissue-specificity of eQTLs using both a standard 

association method as well as a Bayesian factor analysis model. I describe the properties 

of eQTLs in each tissue and I propose that continuous estimates of statistical 

significance as well as the direct comparison of the magnitude of effect on the fold 

change in expression are essential properties that jointly provide a biologically realistic 

view of tissue-specificity. 

 

4.1 Abundant	  eQTL	  discoveries	  per	  tissue	  

The pilot MuTHER samples were genotyped and profiled for gene expression in three 

tissues: LCLs, skin and fat. Normalization was performed separately in each tissue 

(Methods). The overlapping set of successfully genotyped samples with available 

expression data amounted to 156 individuals for LCL (30 MZ pairs, 37 DZ pairs, 22 

singletons), 160 for skin (31 MZ pairs, 37 DZ pairs, 24 singletons) and 166 for fat (31 MZ 

pairs, 40 DZ pairs, 24 singletons). This final dataset was used for eQTL analysis (MZ and 

DZ pairs per tissue - Table 4.1).  

The probes on the array were mapped to Ensembl gene IDs and only a confident subset 

was kept for analysis (27,499 probes mapping uniquely to 18,170 Ensembl genes). 

865,544 SNPs passing quality check (Methods) were tested for associations with these 

probes. 

    MZ pairs DZ pairs 
3 tissues LCL-SKIN-FAT 28 30 
        
2 tissues only LCL-SKIN 1 2 
  LCL-FAT 1 5 
  SKIN-FAT 2 5 
        
1 tissue only LCL 0 0 
  SKIN 0 0 
  FAT 0 0 
Total   32 42 

 

Table 4.1. Successfully genotyped twin pairs (MZ and DZ) with available gene expression data. 
Number of twin pairs per tissue sharing both genotypic and expression information. 
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The eQTL analysis was performed separately in each tissue. I considered only unrelated 

individuals at a time by separating twins from the same pair and thus performing two 

independent eQTL analyses per tissue. This study design, hereafter named Matched Co-

Twin Analysis (MCTA), permits immediate replication and validation of eQTL discoveries.  

This is important and unique with respect to previous eQTL studies which do not go 

beyond reporting the most significant findings (Morley, Molony et al. 2004; Cheung, 

Spielman et al. 2005). Given the known inter-individual variability in gene expression 

levels and the multiple sources of variation that can contribute to this, replicating the 

genetic determinants of expression differences (eQTLs) is essential, much like in any 

GWAS exercise. Furthermore, in a multiple-tissue expression design like here, where 

one of the main goals is to assess the extent of eQTL tissue-specificity, it is very useful to 

contrast between-tissue to within-tissue variability of expression changes for properly 

assessing the tissue-dependent level of regulatory control (section 4.4).  

 

Spearman Rank Correlation (SRC) was used to detect associations and I restricted the 

search to cis effects located within 1Mb on either side of a gene’s transcription start site 

(TSS). Statistical significance was assessed at different thresholds using permutations 

(10,000 per gene) (Methods). An abundance of cis eQTLs was detected in each tissue, 

at a comparable rate to other studies of similar sample size (Stranger, Nica et al. 2007; 

Dimas, Deutsch et al. 2009). At a permutation significance level of 10-3, roughly 18 genes 

are expected to have at least one significant association by chance. At this threshold 

level, I detect significant associations with 509, 238 and 462 genes in LCL, skin and fat 

respectively for the first subset of the twin cohort (Twin 1) (Table 4.2).  Unless otherwise 

stated, the 10-3 permutation cut-off corresponding to an FDR rate of 3.5% in LCL and fat 

and 7.5 % in skin was henceforth chosen when exploring eQTL properties.  
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  LCL SKIN FAT 
Permutation 
Threshold Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2 

10-4 296 360 123 125 303 304 
10-3 509 556 238 231 462 488 
10-2 1014 1059 605 676 982 1068 

 
Table 4.2. Cis eQTL associations detected with SRC analysis. Significant discoveries (number of 
genes with eQTLs) are shown at different permutation thresholds for each tissue. Within each tissue, two 
independent eQTL analyses were performed after separating related individuals in two subsets (Twin1, 
Twin2). 

 

Compared to LCL and fat, proportionally less eQTLs were detected in skin, at all levels of 

significance. This is likely due to lower power in skin, which is a more heterogeneous 

tissue and consists of a variety of cell-types (Sorrell and Caplan 2004; Leek and Storey 

2007).  

 

The MCTA study design allows replication of eQTL discoveries in each tissue. 

Replication was assessed using the mean value of the proportion of true positives (π1) 

(see Methods and (Storey and Tibshirani 2003)) estimated from the exploration of 

significant eQTLs in the reciprocal co-twin. Specifically, significant SNP - gene 

combinations discovered in the first co-twin are tested in the second co-twin and the 

nominal SRC p-value distribution of the same initial associations is analyzed. The 

reciprocal test (SNP - gene associations discovered in co-twin 2 tested in co-twin 1) is 

also performed. The enrichment of low p-values from the distribution described above is 

used to estimate π1. For each tissue, the mean π1 of the two reciprocal tests is reported 

(Table 4.3). The discovered eQTLs appear robust as they replicate well between 

individuals of the two co-twin groups per tissue, with a mean proportion of true positives 

from 0.93 for skin to 0.98 for LCL and fat. I also checked the proportion of true positives 

specifically among the subset of genes that do not replicate in the co-twin at the same 

threshold. This too is high (π1 =  0.84 for skin and 0.94 for LCL and fat), suggesting that 

exact overlap of genes at a given permutation threshold (PT) is an underestimate of 

eQTL replication due to winner’s curse i.e. I see eQTLs in the co-twin that clearly 

replicate the initial findings, but at higher p-value and thus marginally not meeting the 

initial discovery threshold. 
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 SRC analysis SRC-FA analysis 

 Twin 1 Twin 2 
Replication 
(Mean π1) Twin 1 Twin 2 

Replication 
(Mean π1) 

LCL 509 556 0.98 1068 1226 0.97 
SKIN 238 231 0.93 534 544 0.95 
FAT 462 488 0.98 1054 1072 0.97 

 
Table 4.3.  Replication of cis eQTL discoveries (number of significant genes per tissue at 10-3 
permutation threshold). Results from both the Spearman Rank Correlation (SRC) and Factor Analysis 
(SRC-FA) are presented. Proportion of replicating signals calculated as the mean co-twin π1 estimates from 
the p-value distribution of same SNP-gene associations in the reciprocal twin set 

 

4.2 Substantial	  increase	  in	  number	  of	  eQTLs	  per	  tissue	  by	  Factor	  analysis	  

The observed variation in gene expression is not entirely due to genetic effects. 

Experimental noise and environmental conditions also affect transcript levels in a global 

manner. Therefore, it is desirable to remove the effects of such random variables and 

thus increase the power to detect eQTLs. For this purpose, factor analysis (FA) was 

employed on each tissue separately (Stegle, Parts et al. 2010).  We corrected for global 

latent effects on all individuals in each tissue and fitted various parameters such as 

number of learned factors and proportion of variance explained, in order to maximize for 

replication of eQTLs per tissue between twin sets (Methods).  

 

After performing standard SRC eQTL analysis on the factor-corrected expression data 

(SRC-FA), a substantial improvement in eQTL discovery at each of the standard 

permutation thresholds used was obtained (Table 4.4). The MCTA design is useful as it 

permits the validation of the new eQTL discoveries in the replication co-twin for each 

tissue separately. This is essential in order to verify that FA performs as expected by 

modelling environmental factors and not correcting out a vast proportion of genetic 

effects. The improvement in eQTL discovery with SRC-FA is considerable (twice as 

many eQTLs at 10-3 PT) and consistent in all three tissues. The high eQTL replication 

between twin sets persists after FA, with an additional improvement of true positives 

detection in skin: π1 = 0.95 (Table 4.3).  
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  LCL SKIN FAT 
Permutation 
Threshold Twin 1 Twin 2 Twin 1 Twin 2 Twin 1 Twin 2 

10-4 721 828 329 344 690 720 
10-3 1064 1220 532 542 1052 1070 
10-2 1839 1967 1103 1080 1732 1812 

 

Table 4.4. Cis eQTL associations detected with SRC-FA analysis. Number of genes with a significant 
eQTL is shown for each co-twin analysis per tissue at different permutation thresholds.  

 

I validated the results of the FA correction by investigating the eQTLs resulting from the 

SRC-FA analysis. As expected, FA recovers the majority of eQTLs discovered with the 

initial analysis (roughly 90% of LCL and fat and 80% of skin results) and allows the 

discovery of additional signals (Table 4.5).  

 

 Twin 1 Twin 2 

 Total Std FA recovered (%) Total FA Total Std FA recovered (%) Total FA 

LCL 509 460 (90.37%) 1064 556 494 (88.85%) 1220 

SKIN 238 189 (79.41%) 532 231 188 (81.39%) 542 

FAT 462 421 (91.13%) 1052 488 436 (89.34%) 1070 

 
Table 4.5. Recovery of SRC eQTLs (10-3 PT gene associations) with factor analysis correction. In 
each tissue and for both co-twins, 80-90% of eQTLs detected before correction (standard analysis - Std) 
are recovered with SRC-FA. 

 

The additional eQTLs likely represent real effects that could not be detected initially due 

to low power. To test this hypothesis, the eQTLs revealed only after FA correction were 

tested in the uncorrected expression dataset The p-value distribution of the exact same 

SNP – gene combinations showed a highly significant enrichment of low values (Figure 

4.1). In each tissue and for each co-twin subset, the estimated enrichment corresponded 

to a π1 value of 0.99. This confirms that the vast majority of new eQTLs are real and 

would be picked up using the standard SRC pipeline if a larger sample size would be 

available.  
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Figure 4.1. P-value distribution of cis eQTLs (10-3 PT) gained with FA correction in the uncorrected 
data. The significant overrepresentation of low p-values for the new eQTLs (π1 = 0.99) shows that the 
signal existed in the uncorrected data but wasn’t called significant due to low power. Result consistent in all 
tissues for both sets of co-twins (Twin 1 – left panel, Twin 2 – right panel). 

 

4.3 eQTL	  properties	  across	  tissues	  

The eQTLs (10-3 permutation threshold) resulting from both SRC and SRC-FA analyses 

were compared across all three tissues. Initial direct tissue overlap of significant eQTLs 

supports an extensive level of tissue-specificity with very similar proportion in both 

detection methods employed.  

 

A visual representation of the percentages of eQTLs found in only one tissue, shared in 

only two tissues and common in all three tissues for SRC and SRC-FA respectively can 

be seen in Figure 4.2. 
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Figure 4.2. Percentage of eQTLs (10-3 PT) found only in one tissue, only in two tissues and in all 
three tissues with the SRC and SRC-FA analysis respectively. Both methods reveal similarly high 
extents of tissue-specificity. Skin specific eQTLs of smaller effects are harder to detect due to low power.  

 

 

In the first co-twin set we discover 858 non-redundant eQTL genes at 10-3 PT in all three 

tissues (Table 4.6). Of these, 106 genes (12.35%) are shared across all tissues, 139 

(16.2%) are shared in at least two tissues and 613 genes (71.44%) are detected in only 

one tissue. In skin, where we are least powered likely due to tissue heterogeneity and 

variety of cell-types, we detect proportionally fewer tissue-specific effects (10.02% of skin 

eQTLs are only present in skin at 10-3 PT).  
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Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 106 12.35 78 102 11.02 
       

2 tissues only LCL-SKIN 19 2.21 4 12 1.29 
 LCL-FAT 93 10.84 52 107 11.56 
  SKIN-FAT 27 3.15 11 26 2.81 
       

1 tissue only LCL 291 33.92 150 335 36.18 
 SKIN 86 10.02 17 91 9.82 
  FAT 236 27.5 103 253 27.32 

Total 
significant LCL 509  363 556  

 SKIN 238  132 231  
  FAT 462   304 488   

Union of total 
significant   858 100 563 926 100 

 
Table 4.6.  Tissue-shared and tissue-specific gene associations (10-3 PT), SRC analysis 
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SRC-FA results confirm the estimated ~30% of eQTLs to be shared in at least two 

tissues based on threshold eQTL discovery (Table 4.7).  

 

 

Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 242 13.28 192 270 13.86 
       

2 tissues only LCL-SKIN 38 2.09 8 42 2.16 
 LCL-FAT 210 11.53 84 232 11.91 
  SKIN-FAT 94 5.16 28 70 3.59 
       

1 tissue only LCL 574 31.5 302 676 34.7 
 SKIN 158 8.67 51 160 8.21 
  FAT 506 27.77 221 498 25.56 

Total 
significant LCL 1064  781 1220  

 SKIN 532  338 542  
  FAT 1052   735 1070   

Union of total 
significant   1822 100 1312 1948 100 

 
Table 4.7. Tissue-shared and tissue-specific gene associations (10-3 PT), SRC-FA analysis. 
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In the currently examined three tissues, shared eQTLs show the same allelic direction of 

effect (Figure 4.3), i.e. if one SNP allele predisposes to increased levels of expression of 

a gene, it will also tend to elevate the expression level of that gene in the other tissue. 

This is true for both eQTLs significant at 10-3 and 10-2 PT.  

 

 
Figure 4.3. Shared eQTLs (10-2 PT, SRC) have the same direction of effect (SRC rho) across tissues 

 

As reflected by the SRC correlation coefficient rho (Figure 4.4), eQTLs significant in one 

tissue explain a substantially higher fraction of gene expression variation in the tissue of 

discovery than in other tissues (same SNP-gene association), whereas shared effects at 

the same significance threshold (10-3 PT) have comparable variance explained by the 

SNP across tissues. 
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Figure 4.4. Cumulative SRC rho distribution across tissues for tissue-specific and shared eQTLs 
(10-3 PT, Twin 1). eQTLs discovered in one tissue only have distinctively higher variance in the tissue of 
discovery compared to shared effects.  

 

In order to refine the expression association signals and describe independently acting 

eQTLs, I mapped them to recombination hotspot intervals and filtered subsequently by 

LD (Methods). I observe in all tissues that the majority of genes (90-95%) are controlled 

by single independent cis eQTLs with similar estimates from the standard and factor 

eQTL analysis. The finer comparison of eQTL effects requiring the sharing of both the 

gene and the genomic interval harboring the eQTL SNP yields similar counts of shared 

and specific effects (Table 4.8). The results are similar for SRC-FA. This suggests that 

the vast majority of shared genes also share regulatory variants across tissues. 
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Twin 1  Twin 2 

  10-3 PT 
% 

total Overlap 10-3 PT 
% 

total 
       

3 tissues LCL-SKIN-FAT 104 10.86 70 96 9.44 
       

2 tissues only LCL-SKIN 17 1.77 5 14 1.37 
 LCL-FAT 90 9.39 49 103 10.13 
  SKIN-FAT 30 3.13 12 26 2.56 
       

1 tissue only LCL 339 35.39 151 374 36.77 
 SKIN 101 10.54 18 106 10.42 
  FAT 277 28.91 100 298 29.3 

Total 
significant LCL 550  348 587  

 SKIN 252  128 242  
  FAT 501   302 523   

Union of total 
significant   958 100 565 1017 100 

 
Table 4.8. Tissue-shared and tissue-specific interval-gene associations (10-3 PT), SRC analysis. 

 

Furthermore, the genomic location of the independent eQTLs with respect to basic gene 

structure landmarks was investigated. Similar results to previous studies are observed 

(Dimas, Deutsch et al. 2009). As such, eQTLs cluster symmetrically around the TSS, 

with shared effects distributed more tightly compared to specific ones (Figure 4.5). The 

broader distribution of cell-type specific effects around the TSS suggests their role on 

tissue-specific enhancer elements. Independent eQTLs gained with FA correction were 

also investigated. It was found that they have the same pattern as the SRC eQTLs, 

supporting furthermore their likely biological role.  
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Figure 4.5. Distribution of independent cis eQTLs (10-3 PT, SRC) around the transcription start site 
(TSS). Data from co-twin 1 shown here; left panel displays all eQTLs, the middle panel includes only 
tissue-specific eQTLs while the right panel shows only eQTLs shared across all three tissues. Similar 
results are obtained for co-twin 2 and the independent eQTLs revealed by the SRC-FA analysis. 
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4.4 Alternative	  estimates	  of	  eQTL	  tissue-‐specificity	  

Thresholds are driven by statistical significance and overlaps at these levels are heavily 

dependent on power. In addition, eQTLs sharing statistical significance may still have 

notable effect differences on gene expression levels across tissues, with potentially 

different biological consequences. Given these caveats, I examined tissue-specificity in a 

continuous way using the estimate of significant low p-value enrichment (π1). More 

specifically, I investigated the p-value distribution of significant SNP-gene pairs (10-3 PT) 

from a reference tissue in the other two tissues. The p-value distribution in the other two 

tissues suggests a high degree of tissue sharing (53 to 80%) both with the SRC and 

SRC-FA, varying slightly depending on the reference tissue in the comparison (Table 

4.9). This indicates that we are still underpowered to detect eQTLs of smaller effects that 

would increase also the previous threshold-based estimates of tissue sharing. In any 

case, 29% of eQTLs (1-mean π1) are expected to be exclusively tissue-specific. 

 

#Twin 1  

Reference Secondary 
SRC 

analysis π1 
SRC-FA 

analysis π1 
SKIN 0.67 0.71 

LCL FAT 0.73 0.77 
LCL 0.77 0.67 

SKIN FAT 0.72 0.84 
LCL 0.63 0.72 

FAT SKIN 0.73 0.78 
    
#Twin 2  

Reference Secondary 
SRC 

analysis π1 
SRC-FA 

analysis π1 
SKIN 0.53 0.66 

LCL FAT 0.73 0.75 
LCL 0.72 0.71 

SKIN FAT 0.8 0.84 
LCL 0.69 0.58 

FAT SKIN 0.81 0.76 
 

Table 4.9. Continuous estimates of tissue sharing by enrichment of low p-values (π1) of reference 
eQTLs (SNP-genes 10-3 PT) in the secondary tissues. 
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Tissue sharing should not just be the common presence of a statistically significant 

regulatory effect, but also the similar effect size (fold change in expression) of that variant 

across tissues.  In this respect, I report the fold change as the difference between the 

gene expression means of the two homozygous genotypic classes. Within the same 

tissue, the two co-twin sets are only slightly different in their fold change estimates (0.94 

Pearson’s correlation of fold change between Twin 1 and Twin 2 in LCL, 0.80 in skin and 

0.90 in fat – Figure 4.6). This difference in estimated effect size is much more apparent 

however between tissues (LCL eQTLs have a 0.65 and 0.72 fold change correlation with 

skin and fat eQTLs respectively). To a large extent, this is due to the tissue-specificity of 

eQTLs. However, shared eQTLs at the same threshold of significance don’t always share 

the same effect size across tissues, suggesting additional possible hidden tissue-specific 

effects (LCL fold change correlation of 0.72 in skin and 0.77 in fat for shared eQTLs i.e. 

20% difference in fold change magnitude between tissues compared to within tissue 

difference). This suggests that even statistically tissue shared eQTLs have additional 

dimensions of tissue-specificity and their mere discovery in multiple tissues does not 

guarantee similar magnitude of consequences. 

 

The extent of these observations remains to be tested in trans in the better-powered full 

MuTHER dataset (N ~ 800 individuals). Here, an extension of the MCTA design will be 

most valuable. Building co-expression networks for each tissue will allow the discovery of 

tissue-specific modules, which combined with genotypic information could uncover 

further aspects of tissue-specific regulatory control. The topologies of the networks 

resulting from such approaches are however highly dependent on the methods and 

parameters used.  Therefore, cross-validating the network predictions with the reciprocal 

co-twin will ensure that only genetically-relevant gene expression modules are 

compared. 
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Figure 4.6. Fold change within twins and across tissues for LCL eQTLs (10-3 PT, SRC) discovered in 
Twin 1. The plotted fold change on the X and Y-axes was calculated as the difference in mean expression 
of homozygous genotypic classes. For each pairwise tissue comparison, the Pearson’s correlation 
coefficient between fold changes is shown. 
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4.5 Conclusions	  

While there have been studies exploring regulatory variation in one or more tissues, the 

complexity of tissue-specificity in multiple primary tissues is not yet well understood. In 

this chapter, I explored in depth the role of regulatory variation in three human tissues: 

LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived 

simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER 

resource. An abundance of eQTLs in each tissue was discovered, similar to previous 

estimates (858 or 4.7% of genes). In addition, factor analysis (FA) was applied by 

removing effects of latent variables, increasing the power by at least 2-fold (1822 eQTL 

genes). The unique study design (Matched Co-Twin Analysis – MCTA) permits 

immediate replication of eQTLs with co-twins (93-98%) and validation of the considerable 

gain in eQTL discovery after FA correction. It was observed that the majority (>90%) of 

genes are regulated by single independent eQTLs with shared direction of effect across 

different tissues and their spatial distribution around basic gene structure landmarks was 

described. I highlight the challenges of comparing eQTLs between tissues and after 

verifying previous significance threshold-based estimates of extensive tissue-specificity, I 

show their limitations given their dependency on statistical power. Instead, I propose that 

continuous estimates of statistical significance and direct comparison of the magnitude of 

effect on the fold change in expression are essential properties that jointly provide a 

biologically realistic view of tissue-specificity. Under this framework, this study shows that 

30% of eQTLs are shared among tissues, while another 29% are likely exclusively 

tissue-specific. However, even among the shared eQTLs a substantial proportion (10-

20%) have significant differences in the magnitude of fold change between homozygote 

classes across tissues. These results underline the need to account for the complexity of 

eQTL tissue-specificity in an effort to assess consequences of such variants for complex 

traits. 
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5 Tissue-dependent causal regulatory effects 
 

Gene expression studies performed so far on multiple human tissues support an 

extensive level of eQTL tissue-specificity. Comparisons across dissimilar cell-types 

documented first the considerable tissue dependency of cis regulatory variation. As such, 

overlaying LCL and cortical tissue eQTLs resulted in barely any overlap (Myers, Gibbs et 

al. 2007), the comparison of adipose and blood expression patterns in two Icelandic 

cohorts reported that 50% of the detected cis eQTLs were shared (Emilsson, 

Thorleifsson et al. 2008) and a study overlapping eQTLs from autopsy-derived cortical 

tissue and peripheral blood mononucleated cells revealed less than 50% sharing 

(Heinzen, Ge et al. 2008). In the previous chapter (Chapter 4), I further explored the 

complexity of eQTL tissue-specificity in LCLs, skin and fat, estimating a relatively low 

proportion of shared eQTL effects (~30%). Moreover, eQTLs do not display significant 

tissue-specific properties only among cell-types with substantially different cellular 

functions. The study from our lab overlapping regulatory variants in transformed B-cells 

(LCLs), fibroblasts and primary T-cells provided evidence that even cell-types as closely 

related as B-cells and T-cells share only a minority of cis eQTLs (<15%) (Dimas, Deutsch 

et al. 2009).  

 

A similarly high emphasis on tissue-dependency has been put in the context of other 

complex traits, including disease phenotypes. Different diseases manifest themselves in 

different organs and have different tissues as primary targets of pathology (connective 

tissue diseases, muscle diseases, etc.). However, the tissues where diseases are 

manifested are not necessarily informative of the cell-type where the causal mechanism 

leading to disease progression occurs. Perhaps one of the best illustrative examples in 

this sense is the one of MC4R (melanocortin-4 receptor), a gene in the vicinity of which 

several common variants associated with fat mass, weight and obesity risk were 

discovered (Loos, Lindgren et al. 2008). Rare functional mutations in MC4R, known to 

cause monogenic severe childhood-onset obesity (Vaisse, Clement et al. 1998; Yeo, 

Farooqi et al. 1998) and further functional evidence from murine models (Huszar, Lynch 

et al. 1997) indicated that MC4R is also responsible for common obesity. Most likely, the 

susceptibility loci act by disrupting the expression of MC4R. However, this hypothesis 
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remains hard to verify, given that MC4R is almost exclusively expressed in the brain and 

found at very low levels in most of the currently available expression datasets. The brain 

specific expression pattern of an obesity susceptibility gene is a clear example of the fact 

that predicting a tissue’s relevance to disease is complicated by the discrepancy between 

the place of its manifestation and where the causal mechanism initiates.  

 

In this chapter, I explore the role of tissue-dependency in predicting causal regulatory 

effects for GWAS loci. Specifically, I apply the RTC methodology described in Chapters 2 

and 3 on the three cell-types (B cells, T cells and fibroblasts) available from the GenCord 

(because of time and availability constraints, this analysis was performed on the 

GenCord rather than the MuTHER resource, which is also of very high interest and 

constitutes a future project in the lab; see Methods). I show that finding regulatory 

variants and corresponding differentially expressed genes underlying complex disease 

associations is highly dependent on the nature of the cell-type tested. The results confirm 

previously suspected candidate loci and offer new functional insights into disease 

aetiology by revealing novel differentially regulated susceptibility genes. 

 

5.1 RTC	  score	  distribution	  by	  tissue	  

To detect likely causal regulatory effects for GWAS signals across multiple tissues I used 

expression and genotypic data derived from the 75 GenCord European individuals. The 

~400,000 genotyped SNPs were imputed first on HapMap 2 in order to increase power to 

detect associations with expression. After imputation and QC filtering (see Methods), 

1,428,314 SNPs with MAF > 5% were available for analysis. Transcript level 

measurements in transformed B-cells, fibroblasts and primary T-cells for probes mapping 

uniquely to 15,596 Ensembl genes (Methods) were tested for association with SNP 

genotypes. I considered SNP–gene associations with a nominal SRC p-value < 10-4 as 

eQTLs. This nominal threshold corresponds roughly to a 0.05 permutation threshold 

(estimation from multiple eQTL analyses on different datasets run in our group). At this 

significance level, 1139 genes were detected to have at least one eQTL in B-cells, 1098 

genes in T-cells and 1157 genes in fibroblasts. I overlapped these sets of eQTLs with 

GWAS results in each tissue separately. For this purpose, I revisited the NHGRI GWAS 

catalogue (Hindorff, Sethupathy et al. 2009) and downloaded the most recent list at that 

time of SNPs associated with complex traits (accessed 12.04.2010). 1750 SNPs were 
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retrieved, associated with 248 traits. I further mapped both the GenCord eQTLs and 

NHGRI GWAS SNPs to recombination hotspot intervals (McVean, Myers et al. 2004) as 

described in Chapter 2. The 1750 GWAS SNPs mapped to 1400 intervals, suggesting 

that some intervals harbour multiple susceptibility loci often associated with multiple 

traits, as in the case of the well-known 8q24 gene desert region, where variant 

associations with breast, prostate and colorectal cancer have been reported (Ghoussaini, 

Song et al. 2008; Al Olama, Kote-Jarai et al. 2009). The overlap of recombination hotspot 

intervals where at least one GWAS SNP and one eQTL co-localize resulted in 106, 111 

and 105 intervals in B-cells, T-cells and fibroblasts respectively. A subset of these 

intervals contained more than one disease GWAS locus. Each interval was tested in cis 

under the RTC framework (see Methods) for every disease association reported by 

NHGRI (in total 149, 150 and 144 interval-disease combinations were tested in B-cells, 

T-cells and fibroblasts – Table 5.1).   

 

 

 #Intervals #Interval-diseases 
B-cells 106 149 
T-cells 111 150 
Fibro 105 144 
Shared 26 53 

 
Table 5.1. Number of nonredundant recombination hotspot intervals with co-localizing GenCord 
eQTLs and GWAS SNPs. Unique count of intervals (#Intervals) and interval-disease combinations 
(#Intervals with multiple disease GWAS loci - #Interval-diseases) per tissue tested for causal regulatory 
effects with the RTC. A subset of intervals (Shared) harbour eQTLs detected in all three tissues. 

  

In each of the three tissues, an overrepresentation of GWAS regulatory candidates with 

high RTC scores is observed (Figure 5.1). I detect SNP-gene associations passing the 

0.9 RTC threshold for 41 interval-disease combinations of the total 149 tested in B-cells, 

36 high scoring interval-disease combinations of 150 tested in T-cells and 29 out of 144 

tested in fibroblasts. The overall distribution of scores differs across tissues, with a more 

noticeable similarity between B-cells and T-cells. This similarity between the two cell-

types in contrast to the different pattern of RTC scores in fibroblasts is even more 

apparent when focusing on the shared subset of 53 interval-disease combinations tested 

in all three tissues (Figure 5.2). 
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Figure 5.1. Distribution of RTC scores across tissues. The best score per GWAS SNP per interval-
disease combination is plotted for all tested intervals. An enrichment of high RTC scoring candidates (≥ 
0.9) is present in each tissue, corresponding to the subset of GWAS SNPs likely explained by regulatory 
effects. 

 

 
Figure 5.2. Distribution of RTC scores across tissues for shared intervals-disease combinations. 
The best score per GWAS SNP per interval-disease combination is plotted only for the 53 shared interval-
disease combinations tested in all three tissues. A marked difference in distribution of scores can be 
observed, especially between fibroblasts and the more functionally similar B-cells and T-cells.  

 

The differential RTC score distribution across the three tissues reflects the biological 

similarities of the tested cell-types. B-cells and T-cells are two classes of lymphocytes, 

the white blood cells involved in the body’s adaptive immune response (Alberts 2002). 

Fibroblasts on the other hand, are a type of connective tissue cells secreting the 
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extracellular matrix and collagen and playing an essential role in wound healing. 

Nevertheless, despite being much more functionally related, B-cells and T-cells carry out 

two distinct types of immune responses whose disruption may thus have different 

phenotypic consequences. B-cells participate in the antibody immune response whereby 

following their activation by foreign antigens, they secrete antibodies. These can then 

circulate in the bloodstream, bind the antigens that stimulated their production and thus 

inhibit the detrimental action of viruses or microbial toxins on the cell. In most mammals, 

B-cells are produced in the bone marrow (Alley 1987). T-cells, the other major class of 

lymphocytes, are produced in the thymus and are responsible for cell-mediated immune 

responses (Spits 2002). After their activation, T-cells react directly against a foreign 

antigen, for example by killing a virus-infected host cell displaying the respective antigens 

on its surface. T-cells also assist other cells in immunologic processes such as 

macrophage activation or differentiation of B-cells into plasma cells (McHeyzer-Williams, 

Pelletier et al. 2009) .  

 

Our group documented substantial differences in regulation of gene expression in the 

three tissues, the authors finding that 69 to 80% of the genetic regulatory effects are cell-

type specific (Dimas, Deutsch et al. 2009). RTC results on the same dataset reflect the 

high extent of cis eQTL tissue-specificity (Table 5.2). As such, of the total 78 

nonredundant interval-disease combinations with confident evidence of causal regulatory 

effects (RTC score ≥ 0.9), only 5 (6.4%) were shared across all three tissues. The 

pairwise tissue overlap of RTC results mirrors as expected the biological properties of the 

cell-types compared. Specifically, B-cells and T-cells share more GWAS relevant 

regulatory effects (16.7% of the total) compared to any of the other pairwise 

combinations (2 shared intervals between B-cells and fibroblasts and 3 examples 

common to T-cells and fibroblasts). Most of the confident RTC results (around 70%) are 

cell-type specific. This shows that as predicted, detecting causal regulatory effects for 

complex trait associations is highly tissue-dependent.  
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    #Interval-Disease 
(RTC ≥ 0.9)  

% 
Total 

3 tissues B cell - T cell - Fibro 5 6.4 
    

2 tissues only B cell - T cell 13 16.7 
 B cell - Fibro 2 2.6 
  T cell - Fibro 3 3.8 
    

1 tissue only B cell 21 26.9 
 T cell 15 19.2 
  Fibro 19 24.3 
    

Total RTC ≥ 0.9 B cell 41  
 T cell 36  
  Fibro 29   

Union of total 
RTC ≥ 0.9   78   

 
Table 5.2. Tissue shared and tissue-specific interval-disease combinations with high RTC score. 
RTC results with a score ≥ 0.9 are overlapped and compared across tissues. The significant tissue-specific 
component (~70% of results are found in one tissue only) implies that predicting causal regulatory effects 
for GWAS loci is highly dependent on the tissue where expression is determined. 

 

In the following sections, I present the best RTC results for each tissue and focus on 

some interesting biological examples. 

 

5.2 B-‐cell	  results	  

Table 5.3 summarizes the most confident cis results in B-cells ordered by RTC score.  I 

detect SNP-gene combinations passing the 0.9 RTC threshold for 41 interval-disease 

combinations of the 149 tested. Among the 41 confident signals, 21 (51%) are only found 

in B-cells at this score level. Candidate genes already suspected to have a role in 

disease susceptibility are confirmed by the RTC and additional candidates revealed. 

Within the same recombination hotspot interval on chromosome 8 (chr8:11374002-

11504000), two significant genome-wide SNP associations exist, one with systemic lupus 

erythematosus (Hom, Graham et al. 2008)(rs13277113) and the other one with 

rheumatoid arthritis (rs2736340) (Gregersen, Amos et al. 2009). The C8orf13-BLK locus  
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GWAS SNP Complex Trait Gene RTC Chr 
rs10903129 Cholesterol, total TMEM50A 0.96 1 

rs7512898 
Electrocardiographic conduction 
measures TNNT2 0.91 1 

rs13160562 Alcohol dependence ERAP1 1 5 
rs7731657 Fasting plasma glucose CDC42SE2 0.96 5 
rs9272346 Type 1 diabetes HLA-DQB1 1 6 
rs3135388 Multiple sclerosis HLA-DRB5 1 6 
rs2517713 Nasopharyngeal carcinoma HLA-A 0.99 6 
rs9272219 Schizophrenia HLA-DQA2 0.99 6 
rs3129934 Multiple sclerosis HLA-DRB5 0.98 6 
rs8321 AIDS progression HLA-G 0.98 6 
rs2227139 Hematological parameters HLA-DRB5 0.97 6 
rs2523393 Multiple sclerosis TRIM27 0.96 6 
rs9268480 Ulcerative colitis HLA-DQB1 0.95 6 
rs9264942 HIV-1 control NFKBIL1 0.95 6 
rs2187668 Systemic lupus erythematosus HLA-DQA2 0.94 6 
rs2269426 Plasma eosinophil count HLA-DQA2 0.93 6 
rs13437082 Height C6orf48 0.93 6 
rs7743761 Ankylosing spondylitis HLA-C 0.93 6 
rs9461688 Protein quantitative trait loci C6orf48 0.90 6 

rs2237349 
Attention deficit hyperactivity 
disorder CREB5 0.99 7 

rs17145738 Triglycerides BCL7B 0.94 7 
rs13277113 Systemic lupus erythematosus C8orf13 1 8 
rs2736340 Rheumatoid arthritis C8orf13 1 8 
rs216345 Bipolar disorder NUDT2 1 9 
rs10781500 Ulcerative colitis CARD9 1 9 
rs4130590 Bipolar disorder SLC2A8 0.99 9 
rs7871764 Height NUDT2 0.94 9 
rs1927702 Body mass index C9orf52 0.92 9 
rs4977574 Myocardial infarction (early onset) CDKN2A 0.91 9 
rs7481311 Weight LIN7C 1 11 
rs5215 Type 2 diabetes C11orf58 0.96 11 
rs11602954 Mean platelet volume ATHL1 0.95 11 
rs11171739 Type 1 diabetes RPS26 0.98 12 
rs8020441 Cognitive performance ATP5S 1 14 

rs10133111 
Brain imaging in schizophrenia 
(interaction) HSP90AA2 0.96 14 

rs748404 Lung cancer TGM5 0.93 15 
rs2290400 Type 1 diabetes GSDML 0.97 17 

rs199533 Parkinsons disease 
ILMN_2544
5 0.93 17 

rs2014572 Hyperactive-impulsive symptoms VN1R1 0.92 19 
rs6060369 Height UQCC 0.99 20 
rs5751901 Protein quantitative trait loci GGT4P 1 22 

 
Table 5.3. Candidate B-cell results. Candidate genes (RTC score ≥ 0.9) for cis regulatory mediated 
GWAS effects. RTC applied on NHGRI GWAS SNPs and B-cell expression data from the GenCord. 
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has already been associated to lupus and confirmed in the initial RTC analysis on LCLs 

derived from HapMap 3 CEU individuals (Nica, Montgomery et al. 2010). The rheumatoid 

arthritis SNP identified more recently, scores equally high (RTC = 1) with the same gene 

of unknown function, C8orf13. Furthermore, the two SNPs are in very high LD (r2 = 0.95, 

D’ = 0.99) suggesting that most likely they are tagging the same functional variant, which 

plays an important role in the two autoimmune diseases.  

 

The RTC applied on GenCord B-cells recovers another suspected autoimmune disease 

effect, namely the implication of CARD9 (caspase recruitment domain family, member 9) 

in ulcerative colitis risk (Zhernakova, Festen et al. 2008). The GWAS SNP rs10781500 

on chromosome 9 scores best (RTC = 1) with this gene, which is a very plausible 

candidate for inflammatory bowel diseases (including ulcerative colitis). CARD9 was 

shown to be essential in the process of stimulating the innate immune signalling by 

intracellular and extracellular pathogens (Underhill and Shimada 2007). Studies in mice 

documented the role of CARD9 in contributing to cytokine production via MAPK 

activation (Hsu, Zhang et al. 2007) or alternatively, leading to NF-κβ activation through 

the syk-CARD9 interaction (Hara, Ishihara et al. 2007). Given these, disrupting CARD9 

signalling by modifying the gene’s expression levels appears to be a very probable 

mechanism leading to a deficient immune response predisposing to disease. 

Nevertheless, the authors of the GWAS study highlight that the extended 120 kb 

haplotype where the susceptibility SNP resides includes in addition to CARD9 a few 

other genes that cannot be confidently excluded, namely GPSM1, PSM1, LOC728489, 

SNAPC4, SDCCAG3, PMPCA, INPP5E and KIAA0310 (Zhernakova, Festen et al. 2008). 

Interestingly, for one of these genes, INPP5E (inositol polyphosphate-5-phosphatase), 

the RTC method provides supporting evidence in T-cells (RTC score = 0.9) and a 

modest effect in fibroblasts (RTC score = 0.76) for the same hotspot interval 

(chr9:138377986-138526984) where the GWAS SNP rs10781500 resides. INPP5E has 

also been shown to mediate cell responses to various stimulations (Kong, Speed et al. 

2000). Both genes at the 9q34.3 locus would therefore merit further investigation for 

determining the causative roles behind the disease association. 

 

The association of the UQCC (ubiquinol-cytochrome c reductase complex chaperone) 

locus on chromosome 20 with human height is one of the most robust signals for this 

trait, repeatedly replicated across multiple studies (Gudbjartsson, Walters et al. 2008; 
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Sanna, Jackson et al. 2008; Soranzo, Rivadeneira et al. 2009). The gene encodes a 

transmembrane protein and evidence from studies in mouse embryonic stem cells shows 

that the gene is down regulated in the presence of FGF2 (Vetter and Wurst 2001), which 

acts together with bone morphogenic proteins and Hox gene products to initiate and 

promote skeleton growth (Sanna, Jackson et al. 2008). The RTC successfully recovers 

the causal regulatory effect at this convincing gene locus with a score of 0.99 in B-cells 

only. 

5.3 T-‐cell	  results	  

Using gene expression data from T-cells, I detect SNP-gene associations passing the 0.9 

RTC score threshold for 36 interval-gene combinations of the 150 tested (discoveries 

sorted by RTC are presented in Table 5.4). Of these, results for 15 recombination 

hotspot intervals (41.7%) are restricted to T-cells, denoting once more the important role 

of the tissue-type in detecting disease relevant regulatory effects.  As expected, the RTC 

method reveals candidate genes for a variety of autoimmune conditions, but also other 

interesting traits, some already flagged in the literature. 

 

A recent GWAS identified significant associations at the 5q31 locus with osteoporosis 

risk (Guo, Tan et al. 2010). The strongest associated SNP, rs13182402 maps within the 

gene ALDH7A1 (aldehyde dehydrogenase 7 family, member A1), that plays a major role 

in degrading and detoxifying acetaldehyde generated by alcohol metabolism and lipid 

peroxidation. Acetaldehyde was shown to inhibit osteoblast proliferation and result in 

decreased bone formation in murine and human bone marrow cultures (Giuliani, Girasole 

et al. 1999), making it thus a plausible candidate for explaining the disease association. 

We provide further evidence for this hypothesis by detecting a strong likely causal 

regulatory effect (RTC score = 1) for the same GWAS SNP with ALDH7A1. The effect is 

only detectable in T-cells and it suggests that rs13182402 predisposes to osteoporosis 

by substantially affecting the expression of ALDH7A1. 

 

Similarly, the RTC recovers and confirms the implication of another suspected 

susceptibility gene, GPR22 (G protein-coupled receptor 22) in osteoarthritis (Kerkhof, 

Lories et al. 2010). The most significant associated GWAS SNP, rs3815148 maps in an 

intronic region of a very large gene, COG5 (component of oligomeric golgi complex 5) 

spanning ~3.6 Mb on the reverse strand of chromosome 7. However, the same SNP is 
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GWAS SNP Complex Trait Gene RTC Chr 
rs3890745 Rheumatoid arthritis MMEL1 0.98 1 
rs6435862 Neuroblastoma (high-risk) BARD1 0.97 2 
rs10495928 Hemoglobin SOCS5 0.91 2 
rs3772130 Cognitive performance IQCB1 1 3 
rs13182402 Osteoporosis ALDH7A1 1 5 
rs7731657 Fasting plasma glucose CDC42SE2 0.99 5 
rs13160562 Alcohol dependence ERAP1 0.91 5 
rs1321311 Electrocardiographic traits FGD2 1 6 
rs3135388 Multiple sclerosis HLA-DRB5 1 6 
rs2517713 Nasopharyngeal carcinoma HLA-G 1 6 
rs9272346 Type 1 diabetes HLA-DQB1 0.99 6 
rs9264942 HIV-1 control EHMT2 0.99 6 
rs3129934 Multiple sclerosis HLA-DRB5 0.98 6 
rs13437082 Height HLA-C 0.97 6 
rs2523393 Multiple sclerosis HLA-G 0.97 6 
rs10484554 Psoriasis HLA-C 0.96 6 
rs13194053 Schizophrenia BTN3A2 0.96 6 

rs9461688 
Protein quantitative trait 
loci HLA-C 0.96 6 

rs12216125 
Serum markers of iron 
status BTN3A2 0.95 6 

rs9268480 Ulcerative colitis HLA-DQB1 0.95 6 
rs2227139 Hematological parameters HLA-DRB5 0.94 6 
rs8321 AIDS progression HLA-A 0.92 6 
rs741301 Diabetic nephropathy GPR141 0.98 7 
rs3815148 Osteoarthritis GPR22 0.98 7 
rs4130590 Bipolar disorder SH2D3C 0.97 9 
rs1927702 Body mass index BNC2 0.93 9 
rs10781500 Ulcerative colitis INPP5E 0.90 9 
rs703842 Multiple sclerosis FAM119B 1 12 
rs11171739 Type 1 diabetes RPS26 0.98 12 
rs1402279 Smoking behavior OSBPL8 0.92 12 
rs1378942 Diastolic blood pressure C15orf39 0.91 15 
rs4785763 Melanoma CDK10 0.99 16 
rs11648785 Tanning CDK10 0.98 16 
rs199533 Parkinsons disease NSF 0.91 17 

rs8099917 
Response to Hepatitis C 
treatment PSMC4 0.95 19 

rs5751614 Height BCR 0.97 22 
 
Table 5.4. Candidate T-cell results. Candidate genes (RTC score ≥ 0.9) for cis regulatory mediated 
GWAS effects. RTC applied on NHGRI GWAS SNPs and T-cell expression data from the GenCord. 
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associated with differential expression levels of a nearby gene on the forward strand 

encoding a G protein-coupled receptor (GPR22). The RTC framework provides 

compelling evidence that the GWAS SNP acts by modulating GPR22 expression, as 

revealed by the 0.98 RTC score on the interval tested (chr7: 106574287-107092285). 

Results from experimental work in mouse models strengthen the potential role of GPR22 

in osteoarthritis pathology. For example, immunohistochemistry experiments showed that 

the GPR22 protein was absent in normal mouse articular cartilage or synovium, but 

GPR22-positive chondrocytes (the only cell-type found in cartilage) were detected in 

osteophytes (bony projections usually formed along joints) in instability-induced 

osteoarthritis and in the upper layers of the articular cartilage of mouse knee joints 

challenged with papain or albumin treatment (Kerkhof, Lories et al. 2010). All these lines 

of evidence point towards GPR22 as having a causative disease role rather than COG5, 

the gene where the GWAS SNP resides. 

 

Finally, another interesting result of the RTC analysis is the one linking the FAM119B 

(family with sequence similarity 119, member B) gene to multiple sclerosis susceptibility. 

Multiple sclerosis is an immune-mediated disorder whereby the body’s own immune 

system attacks and damages the myelin sheaths around the axons in the brain and 

spinal cord. This severe disease of the central nervous system is characterized by myelin 

loss, chronic inflammation, axonal and oligodendrocyte pathology, and progressive 

neurological dysfunction (Oksenberg and Baranzini 2010). Although mechanisms 

involved in the disease process are relatively well described, very little is known about 

what causes the disease. Recently, a handful of GWAS studies revealed a subset of 

well-replicating associations, which remain largely elusive with respect to the genes 

whose activity they disrupt. One significant risk associated locus has been found on 

chromosome 12q13–14 in a gene-dense region of very high LD (2009). The most 

significant SNP in this region (rs703842) maps to the 3’ UTR of the METTL1 

(methyltransferase-like protein 1) gene, 1.76 kb upstream of the CYP27B1 (cytochrome 

P450 family 27 subfamily B) gene. While not being able to confidently exclude the other 

genes in the 12q13-14 haplotype (17 genes in total), the authors propose CYP27B1 as 

the strongest causative candidate based on current genetic, immunological and 

epidemiological evidence. CYP27B1 encodes an enzyme which hydroxylates 25-

hydroxyvitamin D into its bioactive form, 1,25(OH)2D. This, along with the vitamin D 
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endocrine system, have been shown to play an important role in the prevention of 

disease onset and progression of autoimmune conditions modelled in the mouse (Lemire 

and Archer 1991). Furthermore, the link between vitamin D deficiency and increased 

multiple sclerosis incidence (van der Mei, Ponsonby et al. 2007) as well as the 

association between common variants in CYP27B1 and risk of Type 1 diabetes (Bailey, 

Cooper et al. 2007) - also an autoimmune condition - advocate for the functional role of 

this gene in disease. With the RTC method, an additional candidate susceptibility gene in 

the 12q13-14 haplotype is discovered. Having a maximum RTC score with the same risk 

SNP rs703842 (RTC = 1) both in T-cells and fibroblasts, FAM119B appears as a 

noteworthy likely causal gene with a regulatory effect. Unfortunately, little is known about 

the function of this gene.  However, a recent study analyzing the whole blood mRNA 

transcriptome of 99 untreated multiple sclerosis patients supports the RTC discovery 

(Gandhi, McKay et al. 2010). The authors find evidence for specific dysregulation of T-

cell pathways in the trait pathogenesis. Of the 17 genes at the 12q13-14 locus, they can 

quantify expression data in leukocytes for 13 genes and one of them, FAM119B is 

expressed at significantly lower levels in the susceptibility haplotype (P-value < 10-14). 

This is yet another example of a non-intuitive disease susceptibility candidate, as the 

gene where the risk GWAS SNP maps to has no functional relevance to the trait. 

Instead, the GWAS SNP affects another proximal gene and the RTC methodology is 

helpful in discerning between such cases.   
 

5.4 Fibroblast	  results	  

Finally, fibroblast expression data was also used to test for potential explanatory disease 

effects via regulatory mechanisms. Of the 144 recombination hotspot intervals 

harbouring nonredundant disease risk loci, SNP-gene associations passing the 0.9 RTC 

threshold were detected for 29 interval-disease combinations. Of these, 19 (65%) were 

confined to this tissue, reiterating the RTC tissue-specificity observed previously also in 

B-cells and T-cells. The most confident discoveries, sorted by RTC are listed in Table 

5.5. 

 

Notably, two signals for multiple sclerosis score a maximum RTC of 1 in this cell-type. 

One of the two (rs703842 associated with FAM119B on chromosome 12q13-14) has 

been described in the previous section as a plausible candidate supported additionally by 
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recent evidence from the analysis of T-cell expression in untreated individuals with the 

disease. The common high score (RTC = 1) attributed to the same SNP-gene 

association in both T-cells and fibroblasts indicates the likelihood of potentially shared 

disease-relevant biological properties between the two tissues. Interestingly, both 

leukocytes and fibroblasts produce type I interferons, ubiquitous cytokines released 

following exposure to a stimulus (pathogen or tumour cell) to trigger an immune response 

(Meyer 2009). More specifically, fibroblasts produce interferon (INF) beta, a type I 

interferon that has been used extensively over the past decades as an effective first-line 

therapy against relapsing-remitting multiple sclerosis (Zhang and Markovic-Plese 2010).  

This common function of interferons - stimulating or inhibiting a variety of genes involved 

in immunity-related conditions - might partially explain the surprising usefulness of 

fibroblast expression in explaining associations with multiple sclerosis. 

 
The SNP rs744166 on chromosome 17q21.1 maps to the first intron of the STAT3 (signal 

transducer and activator of transcription 3) gene and has been associated to multiple 

sclerosis by studying a high-risk isolated Finnish population (Jakkula, Leppa et al. 2010). 

The role of STAT3 in disease predisposition seems very likely, given its suspected 

implication in another autoimmune disorder (Crohn’s disease (Barrett, Hansoul et al. 

2008)) and the evidence from mouse studies where targeted deletion of the gene in 

CD4+ T-cells prevented the development of experimental autoimmune 

encephalomyelitis, the murine model of multiple sclerosis (Liu, Lee et al. 2008). However, 

another study in an independent Spanish population investigated the role of common 

variants in STAT3 in multiple sclerosis and the two clinical subtypes of inflammatory 

bowel disease, ulcerative colitis and Crohn’s disease (Cenit, Alcina et al. 2010). While 

STAT3 polymorphisms confirmed the gene’s implication in colitis and Crohn’s, the 

authors found no evidence for a major role of this gene in multiple sclerosis. The RTC 

pinpoints the existence of a regulatory effect in another proximal gene, also a member of 

the STAT family of transcription factors - STAT5 (signal transducer and activator of 

transcription 5A). rs744166 scores an RTC of 1 with this gene in fibroblasts only, making 

it also an interesting candidate. Functional studies in mouse have shown that STAT5 

mediates the antiapoptotic effects of methylprednisolone (a synthetic glucocorticoid 

agonist used widely for the clinical therapy of spinal cord injuries and multiple sclerosis) 

on oligodendrocytes (Xu, Chen et al. 2009). Overexpression of an activated form of 

STAT5 prevents oligodendrocyte cell death whereas knocking down this gene leads to 
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GWAS SNP Complex Trait Gene RTC Chr 
rs6537837 Major depressive disorder UBL4B 1 1 
rs1390401 Height JMJD4 0.92 1 
rs3197999 Crohns disease WDR6 0.92 3 
rs4380451 Bipolar disorder CMTM7 0.91 3 
rs4143832 Plasma eosinophil count HSPA4 0.97 5 
rs2517713 Nasopharyngeal carcinoma HLA-A 1 6 
rs2523393 Multiple sclerosis HLA-F 0.99 6 
rs7743761 Ankylosing spondylitis IER3 0.99 6 

rs3130340 
Bone mineral density 
(spine) HLA-DMB 0.97 6 

rs3131379 
Systemic lupus 
erythematosus HLA-DMB 0.96 6 

rs9461688 
Protein quantitative trait 
loci IER3 0.96 6 

rs742132 Serum uric acid HIST1H4C 0.95 6 
rs9264942 HIV-1 control IER3 0.95 6 
rs9469220 Crohns disease HLA-DMA 0.94 6 
rs12191877 Psoriasis HLA-C 0.93 6 
rs3131296 Schizophrenia HLA-DMB 0.92 6 
rs198846 Hemoglobin HIST1H2BH 0.92 6 
rs703842 Multiple sclerosis FAM119B 1 12 
rs11171739 Type 1 diabetes RPS26 0.98 12 
rs1994090 Parkinsons disease C12orf4 0.98 12 
rs10444502 Biochemical measures RFC5 0.92 12 
rs8020441 Cognitive performance CDKL1 0.92 14 
rs3825932 Type 1 diabetes CTSH 0.95 15 
rs744166 Multiple sclerosis STAT5A 1 17 
rs758642 Smoking behavior OR1A1 1 17 

rs8073783 
Conduct disorder 
(interaction) KIF2B 0.98 17 

rs2191566 
Acute lymphoblastic 
leukemia (childhood) ZNF155 0.91 19 

rs1555322 
Attention deficit 
hyperactivity disorder TRPC4AP 0.94 20 

rs5751614 Height BCR 0.97 22 
 
Table 5.5. Candidate fibroblast results. Candidate genes (RTC score ≥ 0.9) for cis regulatory mediated 
GWAS effects. RTC applied on NHGRI GWAS SNPs and fibroblast expression data from the GenCord. 
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the loss of the protective effect.  Thus, both genes (STAT3 and STAT5) could be further 

considered as potential key determinants of disease risk. Additional studies of the 

interactions between each of the two gene products with other transcription factors might 

provide a better insight into the disease mechanisms characteristic for multiple sclerosis 

or other autoimmune traits. 

 

Finally, for a subset of the GWAS SNPs tested in this chapter (N = 9) the RTC reveals 

identical gene candidates independently in at least two of the GenCord tissues (Table 

5.6). Such consistent examples deserve special attention in future functional studies 

focusing on the respective genomic regions.   

 

GWAS SNP Complex Trait Gene RTC Chr Tissue 
rs13160562 Alcohol dependence ERAP1 1 5 B-cells 
rs13160562 Alcohol dependence ERAP1 0.91 5 T-cells 
rs7731657 Fasting plasma glucose CDC42SE2 0.99 5 T-cells 
rs7731657 Fasting plasma glucose CDC42SE2 0.96 5 B-cells 
rs2227139 Hematological parameters HLA-DRB5 0.97 6 B-cells 
rs2227139 Hematological parameters HLA-DRB5 0.94 6 T-cells 
rs3129934 Multiple sclerosis HLA-DRB5 0.98 6 B-cells 
rs3129934 Multiple sclerosis HLA-DRB5 0.98 6 T-cells 
rs3135388 Multiple sclerosis HLA-DRB5 1 6 B-cells 
rs3135388 Multiple sclerosis HLA-DRB5 1 6 T-cells 
rs9268480 Ulcerative colitis HLA-DQB1 0.95 6 B-cells 
rs9268480 Ulcerative colitis HLA-DQB1 0.95 6 T-cells 
rs9272346 Type 1 diabetes HLA-DQB1 1 6 B-cells 
rs9272346 Type 1 diabetes HLA-DQB1 0.99 6 T-cells 
rs11171739 Type 1 diabetes RPS26 0.98 12 B-cells 
rs11171739 Type 1 diabetes RPS26 0.98 12 T-cells 
rs11171739 Type 1 diabetes RPS26 0.98 12 Fibro 
rs5751614 Height BCR 0.97 22 T-cells 
rs5751614 Height BCR 0.97 22 Fibro 

 
Table 5.6. RTC signals consistent across at least two tissues. Candidate genes (RTC score ≥ 0.9) for 
cis regulatory mediated GWAS effects consistent in at least two GenCord tissues. 

 

5.5 Conclusions	  

In this chapter I explored the tissue-dependent value of gene expression variation in 

predicting candidate disease genes. The RTC methodology was applied to expression 

data in B-cells, T-cells and fibroblasts derived from 75 Swiss individuals and GWAS data 
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from the NHGRI catalogue. As expected given the demonstrated high extent of cis eQTL 

tissue-specificity and the tissue-restricted manifestation of diseases, the results of the 

RTC analysis are overall highly cell-type specific. Of the total number of confident 

discoveries passing the 0.9 RTC score threshold, roughly 70% of the predicted effects 

are found only in one cell-type. In each of the three tissues, this corresponds to 

approximately 50% of all confident effects being specific per cell-type. The distribution of 

the scores and the pairwise comparisons of RTC discoveries mimic the biological 

properties of the tissues tested, whereby B-cells and T-cells share as expected 

proportionally more causal regulatory effects, many for immunity-related conditions. Each 

of the three cell-types permits the discovery of candidate disease genes whose 

differentiated regulation is affected by GWAS SNPs. The RTC confirms previously 

suspected expression mediated disease effects but also facilitates the informative 

prioritization of novel candidate causal genes, some already having plausible functional 

justification from experimental studies. 

 

I highlight the risks of misinformed candidate gene prediction by relying solely on genetic 

distance criteria and give examples where the RTC can help distinguish likely causal 

effects from genes coincidentally residing closest to the GWAS SNP loci. Finally, the 

data suggests that establishing relevance of a cell-type to a complex trait is not trivial. 

The current knowledge about disease biology is generally limited and thus, predicting 

candidate disease tissues could be as unsuccessful as candidate gene approaches have 

proved to be for complex diseases. Additionally, the estimated fair amount (~30%) of 

tissue shared regulatory variation should encourage the interrogation of any available 

cell-type for potential regulatory disease effects. In this sense, I conclude by presenting a 

few unexpected associations revealed by the RTC, which could offer new insights into 

disease aetiology. 
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6 Discussion 
 

Throughout my PhD I have been exploring further aspects of the genetics of human gene 

expression in an attempt to understand its role in the biology of complex disorders. 

Pioneering work studying gene expression variation documented its fundamental role in 

shaping phenotypic differences among cell-types (Schadt, Molony et al. 2008; Dimas, 

Deutsch et al. 2009), individuals (Cheung, Spielman et al. 2005; Stranger, Forrest et al. 

2005) and populations (Stranger, Nica et al. 2007). This development has been 

concomitant with the progress in discovering genetic associations with complex traits by 

genome-wide association studies (GWAS) (McCarthy, Abecasis et al. 2008).  However, 

the GWAS signals are hard to interpret in the absence of additional information 

(Dermitzakis 2008), as they often map to either non-genic regions or genes of no 

apparent functional relevance to the associated trait. Transcript abundance (mRNA 

levels) is a very proximal endophenotype immediately affected by DNA sequence 

variation. Thus, it provides a link between genotype and organismal phenotypes, which 

can be used to explain some of the genotype-phenotype associations revealed by 

GWAS. In this thesis, I developed a novel empirical methodology to explore the role of 

gene expression as an informative intermediate phenotype between DNA variation and 

disease and offered also new insights into the complexity of regulatory variation across 

multiple tissues. In the following sections, I summarize the main results of my study and 

discuss other relevant advancements and current pressing issues in the field.  

 

6.1 eQTL	  and	  GWAS	  integration	  –	  RTC	  score	  

To aid the functional interpretation of complex trait association signals, I describe in 

Chapter 3 an empirical methodology (Regulatory Trait Concordance - RTC) that directly 

integrates eQTL and GWAS data while correcting for the local correlation structure in the 

human genome (linkage disequilibrium - LD). The RTC methodology addresses the issue 

of coincidental eQTL-GWAS SNP overlaps due to the pervasiveness of regulatory 

variants and prioritizes candidate disease genes based on their differential regulation.  
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Investigating the explanatory potential of regulatory variation is appropriate, as confirmed 

by the significant overrepresentation of eQTLs observed among currently published 

GWAS SNPs.  

 

As a proof of principle I applied the RTC method initially on expression profiles quantified 

in LCLs. In line with the biological expectation, immunity-related traits were 

overrepresented among the significant results. It is clear that the tissue of expression has 

a decisive impact on the results of the method, as further exemplified in Chapter 5.  

Therefore, the RTC is unlikely to yield meaningful results for traits such as obesity or type 

2 diabetes, unless expression data from the hypothalamus and β–cells respectively 

becomes available for analysis. Like many other experiments relying on genotyping 

assays, the method is limited by the SNP coverage in each region of interest. While the 

calculation of the RTC score accounts for the number of tested SNPs so that the metric 

is comparable across regions of variable sizes, for the same hotspot interval tested, the 

denser the SNP coverage, the more informative the score with respect to the relationship 

between the eQTL and the disease SNP. Imputation helps alleviate this constraint by 

inferring additional informative genetic variation. It should be noted however, that unlike 

other methods using whole-genome transcriptome data to discover disease candidates 

(e.g. network-based approaches), the RTC is a gene prioritization method relying on the 

validity and existence of prior GWAS results. The method requires prior information 

about the identity of disease susceptibility variants and helps direct functional studies 

towards the potential candidates affected by the disease SNPs. 

 

With the limitations of tissue type, SNP coverage and prior GWAS information required, 

the RTC helps nonetheless discover likely causal cis regulatory effects for a variety of 

traits, confirming some already suspected as well as identifying a multitude of novel 

candidates. Long-range trans effects are also present but harder to identify due to lower 

power to test for such associations. Applying RTC in trans for intervals where a 

significant cis effect has been highlighted would be a useful next step in understanding 

the regulatory interactions underlying the respective GWAS signals. Ultimately, proving 

causality will demand the individual functional examination of each candidate proposed 

with the RTC approach, but in absence of such prioritization directions, the biological 

interpretation of the ever-increasing list of GWAS signals would be unattainable. 
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Finally, the RTC method is not limited to gene expression but could be generalized to 

any other endophenotype. As new methods are developed and larger cohorts become 

available, various intermediate cellular phenotypes are interrogated via association 

studies with the hope to find explanatory links between genotypic variation and complex 

trait predisposition. The biological interpretation of these discoveries will also be 

hardened by the presence of tight LD. It is therefore necessary to evaluate them in a 

conservative manner, correcting for the local correlation structure in each genomic 

interval with overlapping association signals. The integration of more intermediate 

cellular phenotypes will enhance our understanding of the biology of complex traits. 

6.2 Cis	  eQTL	  tissue-‐specificity	  

Gene expression (mRNA transcript abundance) has already facilitated the identification 

of candidate susceptibility genes for a variety of conditions such as metabolic disease 

traits (Chen, Zhu et al. 2008), asthma (Moffatt, Kabesch et al. 2007) or Crohn’s disease 

(McCarroll, Huett et al. 2008). Using the RTC methodology, further evidence has been 

acquired in favour of the overall GWAS explanatory potential of regulatory variation and 

new differentially expressed genes with potential disease causing role were revealed 

(Nica, Montgomery et al. 2010). However, some phenotypes manifest themselves only in 

certain tissues (Emilsson, Thorleifsson et al. 2008) and our guess of tissue relevance is 

yet far from satisfactory. Given this, the value of measuring expression in multiple cell-

types, including primary tissues reflecting in vivo patterns, is incontestable. 

Transcriptional regulatory networks are expected to dictate tissue-specificity of regulatory 

effects (Ravasi, Suzuki et al. 2010) but the extent of this is still under debate. 

 

In Chapter 4, I investigated further aspects of tissue-specificity in three human tissues: 

one cell-line (LCL) and two primary tissues of clinical importance (skin – previously 

uncharacterized and fat). An abundance of cis eQTLs was detected in all three tissues, 

at a comparable rate to other studies of similar sample size (Stranger, Nica et al. 2007). 

The eQTLs appear robust, replicating in a very high proportion (93-98%) in independent 

co-twin samples of identical (monozygotic twins) or 50% similar (dizygotic twins) genetic 

background. Using recombination hotspot coordinates and stringent LD filters, the 

detected signals were refined to likely independently acting cis eQTLs. Most genes were 

observed to have single associated regulatory variants, which, if shared across tissues, 

share the same direction of effect and map to the same recombination hotspot interval. 
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This suggests that largely, shared differentially regulated genes also share regulatory 

functional variants across tissues. Additionally, factor analysis (FA) was employed, 

accounting for global variance components in the data, which can be also of non-genetic 

nature (e.g. experimental noise or environmental conditions). FA further increased the 

power to detect eQTLs of smaller genetic effects, implying that future expression studies 

on larger sample sizes are expected to reveal a plethora of additional regulatory variants 

in each tissue.  

 

The three tissues analyzed here support a large degree of tissue-specificity of eQTLs 

and emphasize the importance of accounting not only for statistical significance but also 

for continuous biological properties such as effect size. Most notably, significant eQTLs 

at the same threshold were observed to exhibit differential fold changes in expression 

between genotypes across tissues. Despite sharing statistical significance, these are 

also tissue-specific effects since they are likely to have different biological 

consequences. Given this, the biological interpretation of eQTLs - much like in the case 

of complex traits – is tissue-dependent and requires collecting multiple tissue expression 

datasets. Studying regulation of expression during different developmental stages as well 

as regulatory changes following exposure to various stimuli are essential future steps 

towards understanding gene regulation in more detail. Furthermore, trans effects and 

their tissue-specific properties are still largely unknown and remain to be discovered in 

better-powered eQTL studies. Understanding the genetic architecture of gene expression 

with its complexities and context-dependent effects is fundamental, especially if 

employed in explaining the biological properties of disease causing variants. 

 

6.3 Tissue-‐dependent	  prediction	  of	  disease	  regulatory	  effects	  

The extensive tissue-specific component of regulatory variation is tested specifically in a 

disease context in Chapter 5. Here, I apply the RTC methodology on a multiple tissue 

dataset (GenCord) in order to prioritize disease relevant genes based on their potential 

causal regulatory effects. Each of the three tissues is informative with respect to a subset 

of GWAS signals, allowing the discovery of several regulatory effects with potential 

implications in disease aetiology.  
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The results support the decisive role of the tissue of origin where transcript abundance is 

quantified, for predicting trait-relevant candidate genes. Specifically, I observe that of the 

total amount of confident results, the majority (~70%) are restricted to one tissue only 

and when considering these discoveries in each tissue separately, 50% of the RTC 

results per tissue appear tissue-specific. The distribution of RTC scores in each of the 

three tissues reflects their distinct biological properties. As such, while expression data in 

each tissue contributes to the discovery of candidates undetectable in the other two 

tissues, the two immunity-related cell-types (B-cells and T-cells) share, as expected, 

more causal regulatory effects than any other pairwise tissue comparison. Nevertheless, 

establishing which tissue is relevant for which trait is not trivial. In addition to anticipated 

autoimmune signals revealed in B-cells and T-cells, a series of other biologically 

interesting and less expected candidates are detected. Upon further careful validation, 

some of these unexpected results may provide new clues about shared biological 

mechanisms involved in the pathology of different diseases, a hypothesis supported by 

the current overlap in GWAS results between apparently dissimilar complex traits. For 

the moment, the currently scarce knowledge about disease biology as well as the 

reasonable proportion of regulatory effects shared across tissues, justify the informative 

value of investigating any available expression dataset for potential RTC signals. The 

current results suggest that the more tissues we sample, the more likely we are to detect 

regulatory effects of special relevance to complex diseases. It would be ideal to screen a 

wide range of human tissues in the future and by combining it with GWAS data to create 

a “tissue map” of natural variation, whereby one could determine the most biologically 

relevant expression changes for a variant of interest and estimate how distant this 

prediction is compared to the case when one would access the tissue where the first 

molecular change relevant to the disease occurs. 

 

6.4 Next-‐generation	  genomics	  	  

The development of high-throughput microarray and genotyping technologies enabled 

the current progress in understanding the genetics of gene expression variation and 

complex disease risk. While this has been a great achievement, several limitations still 

exist and need to be addressed in the near future.  
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Firstly, most of the association studies performed so far rely on human DNA sequence 

representing the common genetic variation in any region of interest. This means that the 

susceptibility variants reported are most probably only tagging the real functional variants 

and are not causal themselves. Initial discoveries should ideally be followed by fine 

mapping the regions harbouring the significant statistical signals. However, this was not 

thoroughly attempted so far, primarily because in the absence of other prior biological 

information, such tasks were financially unaffordable. The drop in sequencing costs is 

gradually reducing this impediment, but the perfect correlation (LD) between variants 

precludes the identification of functional SNPs even in narrower susceptibility regions. 

Most likely, the smaller set of susceptibility variants revealed by targeted resequencing 

will need to be further analyzed in functional assays to establish causation beyond doubt. 

Traditional microarray experiments also suffer from capturing only a subset of the overall 

transcriptome diversity. Typically, only few probes are presently designed per gene 

making it impossible to resolve issues like alternative splicing. Measurements of 

transcript abundance are also problematic in cases of genes expressed at low levels, 

which are hard to distinguish from background noise or in cases when genes are 

expressed at very high levels, as microarrays reach saturation.  

 

The development of protocols for next-generation sequencing (Margulies, Egholm et al. 

2005; Shendure, Porreca et al. 2005) marked the start of a revolutionary direction for 

genetic studies, addressing the above-mentioned limitations. Next-generation 

sequencing has already made efforts like the 1000 Genomes Project possible 

(http://www.1000genomes.org/), a resource set up to generate a human genetic variation 

map at unprecedented resolution. The initial goal of the project was to sequence more 

than 1000 individuals and catalogue almost all variants found at minor allele frequency > 

1% in different human populations (European, African and East Asian). Within genes, 

sequencing goes even deeper, down to 0.5% frequency. After the completion of the pilot 

tests, the project is currently being extended towards a full set of genomes coming from 

2,500 individuals from 27 populations around the world. Clearly, such detailed sequence 

information will allow the discovery of additional disease susceptibility variants through 

GWAS (limited by technology, current GWAS studies have typically surveyed only 

common DNA variants with frequency greater than 5-10%). Furthermore, the 1000 

Genomes Project will significantly enhance our knowledge by surveying other forms of 

genetic variation in addition to the traditionally typed single base polymorphisms (SNPs). 
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Small insertions or deletions (indels) as well as larger changes in the structure and copy 

number of certain genomic regions (CNVs) will also be documented. These additional 

forms of genetic variation together with previously undetected rare SNP variants will lead 

to the discovery of potentially new disease risk factors.  

 

Next-generation sequencing technology has also been recently applied to profile in depth 

the transcriptome (Wang, Gerstein et al. 2009). RNA sequencing (RNA-seq) has several 

important advantages compared to gene expression measurements using microarrays: a 

much more accurate quantification of transcript levels, assessment of alternative splicing 

and the ability to detect novel gene structures (Montgomery and Dermitzakis 2009). Two 

recent landmark papers demonstrated the value of RNA-seq in linking genetic sequence 

variation to transcript abundance at an unparalleled resolution (Montgomery, Sammeth et 

al. 2010; Pickrell, Marioni et al. 2010). In the two studies, RNA from LCLs derived from 

~60 European (CEU) and African (YRI) HapMap individuals respectively, was deep-

sequenced. The transcript information thus generated was used in conjunction with 

genotypic data available from the HapMap project in order to detect genome-wide 

associations (eQTLs). Both papers reveal a greater number of eQTLs than previously 

reported by studies using microarray technologies. The eQTL overlap between the two 

studies, as well as their overlap with prior discoveries validate them as real genetic 

effects. RNA-seq allows a better quantification of transcript isoforms and facilitates the 

discovery of a considerable number of variants responsible for alternative splicing. 

Furthermore, allele-specific expression was assayed in the same experiment, permitting 

also the identification of rare eQTLs and allelic differences in transcript structure 

(Montgomery, Sammeth et al. 2010). Finally, new putative coding-exons were 

discovered, as well as a multitude of unannotated exons and new polyadenylation sites, 

highlighting the current lack of completeness of gene annotation (Pickrell, Marioni et al. 

2010).  

 

These new important aspects of the complexity in the transcriptional landscape will offer 

new insights into the genetic control of gene expression and in turn, its intermediate role 

in determining other complex traits. Next-generation genomics will soon be able to 

combine detailed genetic variation maps (e.g. 1000 Genomes Project) with high-

resolution transcriptional information sampled over multiple tissues and enable thus a 

more accurate description of the tissue-specific features of regulatory variation.  
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Next-generation sequencing is being also used to produce genome-scale epigenomic 

and interactome data (Hawkins, Hon et al. 2010). Epigenetic modifications play an 

essential role in transcriptional control and substantial variation in chromatin states has 

been recently observed, along with evidence that chromatin differences are heritable 

(Martienssen and Colot 2001; Eckhardt, Lewin et al. 2006; Vaughn, Tanurdzic et al. 

2007). So far, the best characterized examples of epigenetic heritability come from plant 

studies (e.g. segregation of parental alleles with different epigenetic signatures has been 

implicated in variation of height and flowering time of Arabidopsis thaliana (Johannes, 

Porcher et al. 2009)). These results motivate documenting epigenetic variation at a large 

scale and investigating its consequences on variation in human complex traits. It is now 

possible to perform nucleotide resolution mapping of methylated DNA sites at genome-

wide scale, by coupling next-generation sequencing with bisulphite treatment of DNA 

(MethylC–seq) (Lister, Pelizzola et al. 2009) or with immunoprecipitation of methylated 

DNA using antibodies (MeDIP-seq) (Li, Ye et al. 2010).  Determining physical and 

functional interactions across the genome (interactome) is yet another crucial 

development facilitated by next-generation sequencing. ChIP-seq (Robertson, Hirst et al. 

2007) and more recently CLIP-seq (Chi, Zang et al. 2009) methods combine chromatin 

immunoprecipitation (ChIP) techniques with deep sequencing to determine DNA-protein 

and RNA-protein interactions respectively. Long-range DNA interactions mediated 

potentially also through protein interactions are being investigated too, using 

chromosome confirmation capture (3C) technologies (Dekker, Rippe et al. 2002). These, 

combined with high-throughput paired-end sequencing have demonstrated the feasibility 

of detecting genomic interactions at genome-wide scale (Lieberman-Aiden, van Berkum 

et al. 2009). 

 

Together, all these comprehensive datasets will greatly improve the functional annotation 

of the human genome. The emerging era of next-generation genomics will be dominated 

by attempts to integrate these different sources of information. Their success will be 

crucial for our ability to explain the biology behind the presently known genetic 

associations with complex traits.  



 110 

6.5 The	  missing	  heritability	  of	  complex	  diseases	  

The value of GWAS studies in advancing the knowledge on the genetics of complex 

diseases is indisputable. The results so far offer new insights into disease biology by 

revealing previously unsuspected susceptibility pathways and highlighting unanticipated 

overlaps between loci associated with different conditions. For example, the 

pathogenesis of type 2 diabetes is now confidently linked to disruptions of the function of 

insulin-producing β-cells and multiple studies on Crohn’s disease point now to autophagy 

- the process by which cells digest themselves via the lysosome - and innate immunity 

mechanisms as being implicated in disease aetiology (Barrett, Hansoul et al. 2008). 

Surprising GWAS overlaps have been observed, including the 8q24 gene desert region 

harbouring several independent susceptibility loci for prostate cancer, colon cancer, as 

well as one breast cancer variant. Weather these loci share a common mechanism 

leading to cancer onset is unknown, as well as the genes whose function they might 

disrupt. However, the MYC oncogene is a plausible nearby candidate and its interaction 

with tissue-specific enhancers within 8q24 is one recently proposed mechanism 

explaining the statistical associations overlap (Ahmadiyeh, Pomerantz et al. 2010).  

Further functional studies will better characterise these intricate disease links, otherwise 

undiscovered in the absence of GWAS studies. More interesting lessons about disease 

biology will surely be learned from the other >500 independent strong SNP associations 

(P-value < 10-8) reported so far with various complex traits (Hindorff, Sethupathy et al. 

2009). 

 

GWAS studies started revealing the genetic landscape of many common diseases, yet 

most of the variants identified (typically common SNPs with MAF > 5%) have very small 

effect sizes and explain only a very small proportion of the heritability of their associated 

traits. The proportion of phenotypic variation attributable to genetic variation (heritability) 

is very modest for most of the common traits investigated, even when the traits 

themselves have an estimated high level of heritability (Cirulli and Goldstein 2010). For 

example, the heritability of height has been estimated at ~ 0.8 (Silventoinen, Sammalisto 

et al. 2003; Visscher, Hill et al. 2008), yet the 50 associated common variants identified 

so far account only for ~5% of the phenotypic variance in the population (Visscher 2008; 

Weedon, Lango et al. 2008). Similarly, schizophrenia has an estimated heritability of 0.8-

0.85 and a GWAS meta-analysis including over 8,000 cases and 19,000 controls 
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identified only 7 significant SNPs, each with an odds ratio below 1.3 (Shi, Levinson et al. 

2009). Finally, the 18 common variants significantly associated with type 2 diabetes only 

explain 6% of the increased disease risk among relatives (Zeggini, Scott et al. 2008; 

Manolio, Collins et al. 2009). These observations bring up the important issue of finding 

out where the rest of the ‘missing heritability’ is and how can it be explained.  

 

Several possible hypotheses have been formulated in order to elucidate the missing 

heritability problem (Eichler, Flint et al. 2010).  First, the incomplete assessment of the 

spectrum of human genetic variation has been criticized.  Compared to single nucleotide 

changes (SNPs), larger structural variants like deletions, duplications or inversions have 

been understudied. Although individually rare, this type of variation is collectively 

common in the human population (Redon, Ishikawa et al. 2006) and can offer new 

insights into disease genetics. In fact, in a few instances common CNVs have been 

shown to play key disease susceptibility roles. A 20 kb deletion polymorphism upstream 

of IRGM (immunity-related GTPase family, M) and in perfect LD (r2 = 1.0) with the most 

significant Crohn’s disease SNP in that region has been causally implicated in the 

disorder through a distinctly altered expression pattern affecting autophagy efficiency 

(McCarroll, Huett et al. 2008). Another deletion (45-kb long) is a strong candidate for 

explaining the BMI association signal at the NEGR1 (neuronal growth regulator 1) locus 

(Willer, Speliotes et al. 2009). Here too, the structural variant was in perfect LD with the 

most significant SNPs detected by the GWAS analysis. Recent studies report similar 

observations on a large scale. The WTCCC analyzed eight complex diseases with 3,432 

common CNVs in 17,000 individuals and concluded that common copy number 

polymorphisms contributing to phenotypic variation are already largely accounted for by 

GWAS (Conrad, Pinto et al. 2010; Craddock, Hurles et al. 2010). It is possible that rare 

CNVs (e.g. rare recurrent variants of larger effect size (Bochukova, Huang et al. 2010)) 

or those of a more complex nature and currently not detectable with existing technology 

would have a higher impact on disease risk. Common CNVs however are unlikely to 

account for much of the missing heritability. 

 

Another relevant heritability aspect, largely overlooked due to the difficulty in detecting 

and accounting for this type of effect, is the parent of origin dependent disease risk. 

Recently, a few susceptibility variants for cancer and type 2 diabetes were reported as 

conferring disease risk only when inherited from a certain parent (Kong, Steinthorsdottir 
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et al. 2009). Heritability values of such variants are underestimated if parental origin is 

not taken into account. However, the overall proportion of these effects and the likely 

number of diseases where they might play a role remains unknown and hard to 

approximate due to low power. 

 

Assessing the contribution of rare variants to common disease predisposition is perhaps 

one of the most immediate questions of disease genetics and the most promising 

explanation for the current missing heritability. Extremely rare (private, MAF<0.5%) or 

intermediately rare variants (0.5%<MAF<5%) are currently out of the scope of 

genotyping arrays employed in GWAS and have been underexplored. Low frequency 

variants are suspected to have greater effect sizes, increasing the disease risk by two or 

threefold compared to the typically modest (1.1-1.5-fold) risk conferred by common 

variants. Few examples, mostly from lipids studies, already exist in the literature 

supporting the hypothesis that genes harbouring common disease risk variants can also 

contain rare variants with larger effects. 11 out of 30 genes containing common 

susceptibility variants influencing plasma lipid concentrations have been shown to also 

harbour rare variants of large effects identified previously in Mendelian dyslipidemias 

(abnormal lipids amount in the blood) (Kathiresan, Willer et al. 2009). Johansen et al. 

further explored the extent to which rare variants affect lipid phenotypes (Johansen, 

Wang et al. 2010). The authors report an excess of rare variants in GWAS-identified 

susceptibility genes for hypertriglyceridemia, the polygenic condition characterized by 

high fasting plasma triglycerides levels. Resequencing of four genes (APOA5, GCKR, 

LPL and APOB) containing common GWAS variants uncovered a significant burden of 

154 rare missense or nonsense SNPs in 438 cases, compared to only 53 variants in 327 

controls. Considering the rare variants in these genes alongside the common 

susceptibility SNPs increases the proportion of explained heritability of the trait. 

 

Next-generation sequencing will enable the comprehensive detection of similar rare 

genetic changes in susceptibility genes for other complex traits. However, the genotype-

phenotype relationship is of a complex nature and most likely distinct across different 

common traits. As such, it is possible that for other human traits, a more realistic 

biological view would be one involving rare combinations of common variants (Eichler, 

Flint et al. 2010). This hypothesis has been tested very recently in a study on human 

height, providing supporting evidence for its soundness (Yang, Benyamin et al. 2010). 
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The authors show that the missing heritability problem is overstated for this trait, 

evaluating that a large proportion of the heritability is in fact hidden by current estimates, 

and not missing. Yang et al. argue that a large proportion of the height heritability can 

already be explained by common variants, provided that all SNPs are considered 

simultaneously. Traditional GWAS approaches test for strong independent genetic 

effects and require evidence of replication in independent cohorts. Such a stringent 

approach is bound to miss many causal SNPs that do not pass these significance cut-

offs. Therefore, the authors use a linear model where they regress at the same time all 

GWAS SNPs against an adjusted measure of height. With this model they estimate that 

45% of the 80% height heritability can actually be explained, an almost ten-fold increase 

from the typical 5% height variance accounted for in the literature. By accounting for 

incomplete LD between the tagging and causal variants, the authors increase their 

explained heritability estimate of stature to at least 67%. The difference in LD between 

the common genotyped SNPs and the actual causal variants is explained by the fact that 

causal variants, being likely deleterious are kept at lower MAF than the tagging SNPs 

surveyed by GWAS. Therefore, most of the heritability for height can actually already be 

captured by common variants. Weather this will be the case for other complex traits, 

especially common diseases, remains to be tested. Rare causal SNPs of larger effects 

can have a marked genetic contribution to the risk of particular diseases and their 

discovery remains necessary. The ultimate goal of translating genetic knowledge into 

clinical practice can only be attained through a thorough understanding of trait-specific 

genetic architecture and next-generation sequencing will play an essential role towards 

this end. 
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Appendix 
1. Biopsy technique protocol 
 

1. The lower abdominal biopsy site is cleaned. Local anesthetic with adrenaline is 

infiltrated into the pre-inked skin. 

 

2. Stretching the skin perpendicular to the relaxed skin tension lines between thumb 

and finger either side of the area to be sampled, the punch blade is placed on the 

skin and rotated under gentle pressure by rolling it between the thumb and finger 

using a twisting drilling action. 

 

3. One should penetrate to the level of the fat layer to achieve a full thickness skin 

biopsy specimen. The specimen should be weighed, cut in half, and stored 

immediately in liquid nitrogen 

 

4. The specimen will either float up on the fat layer or can be gently lifted using a 

skin hook or gently applied forceps to allow specimen collection by cutting through 

the fat layer using a scalpel or sharp scissors. 

 

5. Further fat can be obtained by careful dissection of the fat layer using forceps and 

scalpel. The fat sample should be weighed and immediately stored in liquid 

nitrogen. 

 

6. Haemostasis can be achieved with direct pressure and/or interrupted sutures. 

Both absorbent and non-absorbent sutures can be used in a layered closure for 

larger punch defects. 

 

7. The resultant defect can be allowed to heal by secondary intention as an 

alternative method although optimal haemostasis and cosmesis as well as 

reduced healing time are usually seen with sutured wounds. 
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