
CHAPTER 2

DEVELOPMENT OF A CNV DISCOVERY

PIPELINE FOR AFFYMETRIX 6.0

2.1 Introduction

2.1.1 CNV discovery using microarrays

There are two major types of data that serve as the source of CNV discovery using

microarrays: two-channel array-Comparative Genomic Hybridization (CGH) and

genotyping arrays. The difference in the nature of the array affects data normal-

ization, the models underpinning CNV discovery algorithms and interpretation of

results.

Array-CGH hybridizes two differentially labeled DNA samples, often one test sam-

ple and one reference sample, together on the same array and the difference in DNA

dosage between the two samples is reflected by the difference in fluorescent inten-

sity between the two channel. A log ratio of the intensity is often calculated for

each probe and its significant deviation from zero is an indication of copy number

differences between the test and reference samples in regions targeted by the corre-

sponding probes in the test sample relative to the reference. For this type of data,

technical variation among different probes is internally controlled. Algorithms es-

sentially find outliers in ratio space. However, the derived copy number difference

5



6 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

is always relative and the choice of the reference affects the translation of relative

copy number difference into absolute copy number.

Genotyping arrays are primarily composed of pairs of oligonucleotide probes that

target the same locus but different alleles of each selected SNPs. Only one DNA sam-

ple is hybridized to the array and DNA dosage is reflected by the intensity of the

probes and also partially/indirectly by the intensity ratio between the two probes

targeting the same SNP. Some genotyping arrays also contain non-variable probes

similar to array-CGH probes, which only provide intensity information that reflects

absolute DNA dosage due to the single-channel design. For this type of data, techni-

cal variation among different probes needs to be removed explicitly in data analysis.

Algorithms work in intensity space and absolute copy number can in principle be

determined once probe dosage response has been calibrated.

2.1.1.1 Affymetrix Genome-wide human SNP array 6.0

Affymetrix genome-wide human SNP array 6.0 (Affy6) is an array platform that

aims to perform both high-density SNP genotyping and high resolution CNV dis-

covery simultaneously. It was developed between Affymetrix and the Broad Insti-

tute [18]. The array has 906,600 SNP probe sets and 946,000 copy number probe

sets. The latter includes 202,000 probe sets targeting 5,677 CNV regions from the

Database of Genomic Variants at high density and the rest spread evenly along the

genome [19]. Each SNP probe set contains multiple oligonucleotide features that

are identical copies of one of the two probes targeting the two possible alleles. Each

copy number probe set contains multiple identical features targeting the same ge-

nomic location 1. For simplicity, I will use ‘probe’ to refer to ‘probe set’ when de-

scribing analyses that use only summarized probe set intensities or their derivatives.

After hybridization, washing and scanning, a .CEL file is produced for each sample

genotyped with Affy6, which contains information including probe locations and

intensities. Affymetrix developed a suite of command line tools called Affymetrix

Power Tools (APT) [20] for extracting information from the .CEL files and common

downstream analysis such as SNP calling and CNV discovery. A number of CNV

calling methods can also be applied to Affy6 data once the probe intensities have



2.1. Introduction 7

been extracted by APT.

2.1.2 CNV discovery algorithms

Regardless of the type of the array, the typical data summary that is input into CNV

discovery algorithms is often a sequence of values (intensity or log ratio) with or-

dered spatial coordinates along a chromosome. For genotyping arrays, a second

sequence of values (measuring the relative intensity of the two alleles, often called

‘B allele frequency’) sharing the same spatial coordinates with the first sequence

of values is available. CNV discovery aims to solve the problem of finding spatial

segments with values sufficiently different from adjacent segments as a result of be-

longing to one of a finite set of copy number states that is different between adjacent

segments.

Many CNV discovery methods have been developed. Except for a few methods

that use empirical cut-off values [21, 22] or hierarchical clustering [23], most of them

can be placed into one of the following two broad categories: segmentation-based

(change-point-finding) methods and hidden-markov-model-based (HMM-based) meth-

ods.

2.1.2.1 Segmentation-based methods

This category of methods search for change points in an ordered sequence of values

that define segments having different distribution of values (often measured by hav-

ing different means). Circular binary segmentation is a typical method belonging to

this category proposed by Olshen et al [24] that recursively test if a new segment

or breakpoint should be introduced inside an existing segment based on the differ-

ences in the distribution of values between the newly introduced segment and the

rest of the existing segment or between the two resulting segments separated by

the proposed breakpoint. Jong et al [25] proposed a method that models the values

along a chromosome as a sequence of normal distributions with different parame-

ters and used the genetic algorithm to find the spatial boundaries that maximize the

likelihood that actual values are drawn from those normal distributions. Similarly,



8 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Hupe et al [26] modeled segments of different copy number states along a chromo-

some as a piecewise constant function and estimated the parameters of the function

using adaptive weights smoothing. Pique-Regi et al [27] further formulated piece-

wise constant function as linear combinations of step functions and used sparse

Bayesian learning (SBL) to obtain the best linear combination that fits the data. All

segmentation-based methods have certain measures to restrict over-segmentation

during maximization of model fitting. This usually involves substituting log likeli-

hood with Akaike Information Criterion (AIC) or Bayes Information Criterion (BIC)

or similar criteria as the target function for optimization to penalize the use of more

parameters [25–27] and/or a separate pruning step after segmentation is done to

eliminate spurious breakpoints [27].

2.1.2.1.1 GADA GADA is the implementation for the method described in [27].

It has a SBL step that provides initial breakpoints of which level of sparseness is

controlled by the parameter a (the larger the more sparse) and a backward elimina-

tion step that removes spurious breakpoints of which stringency is controlled by the

parameter T (the larger the more stringent).

2.1.2.2 HMM-based methods

HMM-based methods model the ordered sequence of values as a sequence of ob-

served states that are determined by a chain of discrete hidden states, each one of

which is determined probabilistically by its previous hidden state(s). The key pa-

rameters of a HMM include the number of hidden states K, the vector of initial

state probability π, the state transition probability matrix A and collection of emis-

sion probability functions B. Fridlyand et al [28] applied unsupervised HMM to

array-CGH data. B was assumed to be a collection of Gaussian distributions, each

corresponding to a hidden state, and the initial parameters of B were estimated

through clustering. Parameters (π, A, B) were optimized using the EM algorithm.

The number of states K was chosen to minimize an AIC-like criteria to balance be-

tween model fitting and restricting the total number parameters. Finally, The states

were merged into segments with user-defined criteria. Marioni et al [29] improved



2.1. Introduction 9

the model by using distance-aware transition probabilities to account for hetero-

geneity in probe density. Guha et al [30] modified the model to use a fixed 4-states

HMM and incorporated Bayesian learning in which each state represented a pre-

defined copy number state, informative priors were imposed on model parameters

and MCMC was used in learning model parameters and generating copy number

states. In this way, segmentation and classification was performed simultaneously.

Shah et al [31] modeled the emission probability distribution of each state as a mix-

ture of two Gaussian distributions with one component representing values gener-

ated from the given state and the other representing outliers, which improved the

robustness of CNV calling. Methods designed for SNP genotyping arrays further

exploit the additional B allele frequency (BAF) information. QuantiSNP is an objec-

tive Bayes HMM-based algorithm highly tailored to Illumina Beadarray data [32].

Similar to Marioni et al and Shah et al, state transition probabilities were adjusted for

local probe distance and outliers were considered in modeling emission probabili-

ties. Emission probabilities for BAF were modeled alongside log R ratio. Parame-

ters were estimated using the EM algorithm with hyper-parameters of the conjugate

priors for the emission model estimated from a reference dataset with known copy

number. The program calculates a Bayes factor for each CNV called that facilitates

ranking and post-filtering of CNV calls. PennCNV is another widely used HMM-

based program for the CNV analysis of Illumina Beadarray data [33]. Its underlying

model is very similar to QuantiSNP, except it incorporates population B allele fre-

quency in the emission model for BAF and it has an a posteriori validation step using

family information if available.

2.1.2.2.1 Birdsuite Birdsuite is a software suite highly tailored to the Affy6 data

that integrates SNP and CNV calling. Its CNV discovery component, Birdseye, is an

HMM-based program. Unlike most HMM-based methods, Birdseye receives pre-

defined parameters for emission probability distributions from Canary and Bird-

seed, the components of Birdsuite that run prior to Birdseye that estimate copy

number at known CNVs and genotype SNPs respectively. Those parameters are

probe-specific and are estimated using the EM algorithm during the running of Ca-

nary and Birdseed with priors learned from samples of known genotype. The state



10 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

transition probabilities are also pre-defined, distance-dependent and tuned to the

probe density of Affy6. Birdseye uses the Viterbi algorithm to determine the most

probable chain of states and produces a LOD score for each segment representing

the strength of evidence [18].

2.1.3 CNV calling pipeline

CNV calling algorithms solve the specific problem of identifying genomic segments

with likely aberrant copy number from input sequences of values with ordered spa-

tial coordinates. However, the process that takes raw data generated by microarray

experiments and produces CNV calls ready for downstream analysis involves many

other steps that can affect the quality of the final set of CNV calls remarkably. The

structure of a typical CNV calling pipeline is demonstrated in Figure 2.1. After raw

intensities have been extracted, a pre-processing step is usually mandatory prior to

CNV calling. In this step, various normalization procedures may be applied to re-

move technical biases or variation between channels of an array, across probes of dif-

ferent spatial location or genomic context, or across different array experiments, etc.

Normalized intensities may be organized and transformed to the format required

by the calling algorithms. Technical failures may also be identified and removed at

this stage. After intensities have been properly normalized and transformed, multi-

ple calling algorithms may be applied to complement or support one another. Next,

resultant CNV calls are subjected to post-processing that usually involves comput-

ing quality control (QC) metrics and filtering calls and samples based on those QC

metrics. Additional procedures such as merging CNV calls may be necessary de-

pending on the calling algorithm that has been applied. Various visualization tools

are often an essential part of the pipeline that facilitates quality control and the se-

lection of filtering thresholds. It is crucial to assess the performance of such pipeline

with an independent CNV dataset, ideally of higher quality and from the same sam-

ples, based on which the pipeline may be optimized.

The extent of completeness in implementing the above pipeline varies among cur-

rent CNV calling programs. Some have pre-processing capabilities, such as the APT

utility apt-copynumber-workflow, which handles intensity extraction, normaliza-



2.1. Introduction 11

Figure 2.1: Simplified diagram of a typical CNV calling pipeline

tion, probe set summarization and CNV calling. Some are dedicated CNV callers

that do not implement any pre- or post-processing at all, such as GADA, which

simply outputs segmentation on receiving an input sequence of log ratios. The us-

ability of output CNV calls also varies. Again taking apt-copynumber-workflow as

an example, instead of delivering genomic segments with copy number, it only out-

puts the inferred copy number state of every probe set. GADA provides genomic

segments but does not assign copy number state. Birdseye provides the most us-

able calls of the three, as it not only produces genomic segments with copy number

state, but also produces the statistical confidence of the called CNVs that facilitates

post-processing. Regardless of the above differences, current CNV programs pro-

vide little post-processing and QC functions, whereas robust and consistent post-

processing is of vital importance in producing a reliable CNV call set, especially

in studies with a large sample size and/or multiple datasets. A few simple post-

processing methods have been applied in previous CNV studies [33, 34], which were

limited to filtering CNV calls by number of probes and size or removing samples

with large variance in probe intensities or apparent mosaic chromosomes.

In the result section of this chapter, I will first compare the performance of three

CNV calling programs on Affy6 data. I will next describe a CNV pipeline I devel-

oped for Affy6 data that features an effective sample QC. Finally, I will demonstrate

the application of this pipeline to several Affy6 datasets that will be further dis-

cussed in later chapters. The implementation details are provided in the methods

section.



12 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

2.2 Materials and methods

2.2.1 Extracting probe intensities and re-producing the scanned im-

age

Raw probe intensities and probe IDs were extracted from .CEL files using the APT

command ‘apt-cel-extract’. The positions of a probe on the array can be derived

from its probe ID using the equations provided by Affymetrix [20]:

x = (probeID− 1) mod Ncolumn

y = floor ((probeID− 1) /Ncolumn)

where, Ncolumn stands for the number of columns of the probe array, which is 2680

for Affy6 [20]. I wrote an R script to calculate the positions, re-order the probes

according to their positions and plot the scanned image using heat map colors. The

brighter the color, the higher the intensities.

2.2.2 Extracting and normalizing probe set intensities

I extracted probe set intensities from .CEL files and normalized them across samples

on the same sample plate using the APT command ‘apt-probeset-summarize’ with

the option ‘quant-norm.target=1000,pm-only,plier.optmethod=1,expr.genotype=true’.

This command first extracted probe intensities from all input sample .CEL files, then

applied quantile normalization to adjust all samples to the same distribution with

a median probe intensity value of 1000 and lastly summarize probe set intensities

from composing probes using the PLIER (probe logarithmic intensity error) estima-

tion with the ‘perfect match only’ option [20].



2.2. Materials and methods 13

2.2.3 Transform probe set intensities into log ratios

Let xi,j denotes the summarized and normalized intensity of probe set i in sample j.

The log ratio yi,j was calculated as:

yi,j = log2
xi,j

median (xi,∗)

, where median (xi,∗) is the median value of all samples on the same plate.

2.2.4 Calculating log-ratio-related sample QC statistics

Noise level and extent of spatial waviness (autocorrelation) of array data are two im-

portant factors that remarkably affect CNV analysis as will be described later. I used

median absolute deviation (MAD) of probe sets log ratios as the measure of noise

level and sum of auto-correlation (SAC) along the chromosomes as the measure of

spatial waviness. For sample j:

MADj = median
(
|y∗,j −median(y∗,j

)
|)

SACj =
n=5

∑
k=1

∣∣∣∣∣∣
E
[
(Yi,j − µyj)(Yi+k,j − µyj)

]
σ2

yj

∣∣∣∣∣∣
2.2.5 Correction for spatial auto-correlation

For each sample, correction was done by chromosomes using the method developed

by [35]. Briefly, a loess curve was fitted to the log2 ratios along a chromosome with

a window size containing 10% of the probes in the chromosome and the log2 ratios

were replaced by the residuals (Figure 2.2).

2.2.6 Storage and retrieval of normalized intensity data

Normalized probe set intensities were stored as a probe-set-by-sample table with

probe set name and chromosomal location in HDF format [36]. Each table contained



14 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

A

B

Figure 2.2: Demonstration of correcting spatial auto-correlation, showing ilog2 ratio profile
across chromosome 1 of a sample with a SAC of 0.7766 (top 0.15%) before (A) and after (B)
correction for spatial auto-correlation. The red curve in (A) is the loess curved fitted with a
window size of 14k probes (10% of all probes targeting chromosome 1)

a plate of samples. I developed a python utility using the PyTables package [37]

to write such table in HDF format and create an index in the column containing

chromosomal locations. The resulting HDF file was similar to an in-file database.

I also wrote a python utility for retrieving probe set intensities by chromosomal

coordinates from such files.

2.2.7 The CNV call format

This is the format of plain text files in which CNV calls were recorded. Each CNV is

described in one row, of which fields are separated by tab and the first seven fields



2.2. Materials and methods 15

are required. The required fields are chromosome, start coordinate, end coordinate,

number of probes contained, average log ratio, sample ID and copy number change.

Additional fields may be appended to the end of row.

2.2.8 Merging split CNV calls

CNV calls on the same chromosome were sorted by genomic coordinates and scanned

through, each time taking a pair of adjacent calls. The two adjacent calls were

merged into one, if:

1. Both calls have the same genotype

2. The number of probes separating the two calls < 100

3. The ratio of the number of probes separating the two calls to the number of

probes in the merged call < 10%

4. The probe density between the two calls > 1 probe per 5kb

5. The absolute difference in average log2ratio between the two calls < 0.15

The scan and merge process was repeated until no CNV calls could be merged.

2.2.9 CNVE clustering

To combine CNVs called in different individuals into CNV events (CNVEs), I used

a hierarchical-clustering-like method described in [12]. Briefly, pairwise reciprocal

overlap (RO) were first calculated among CNVs overlapping at least 1bp and CNV

pairs with greatest RO were merged into a CNVE if RO>50%. Then, unmerged

CNVs having a RO>50% with all CNVs already merged into this CNVE were iter-

atively merged in order of best RO. This method guarantees that the ROs between

all pairs of CNVs belonging to a CNVE are greater than 50% and when a CNV has

RO>50% with CNVs of multiple CNVEs, it is merged to the one with better RO.

The boundaries of a CNVE were defined as those enclosing the minimum genomic

interval that encompasses 90% of belonged CNVs.



16 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

2.2.10 Definition for different overlap criteria

Given two genomic intervals A and B on the same chromosome defined by coordi-

nates [startA, endA] and [startB, endB], the length of overlap L = min(endA, endB)−
max(startA, startB) + 1. Simple overlap is defined as L > 0. Overlap relative to in-

terval A is: OA = L/(endA − startA + 1). Overlap interval A > 50% is defined as

OA > 0.5. Reciprocal overlap > 50% is defined as: OA > 0.5 and OB > 0.5.

2.2.11 Heuristic quality score for APT and GADA CNV calls

The quality score Q is defined as Nprobe ×
∣∣∣logRatio

∣∣∣.



2.3. Results 17

2.3 Results

2.3.1 Comparing discovery programs for Affy6 data

2.3.1.1 Test pipeline for assessing CNV calling programs

To test the performance of apt-copynumber-workflow, GADA and Birdsuite, three

test pipelines were constructed.

As stated in section 2.1.3, apt-copynumber-workflow is a fairly standalone pro-

gram that handles both pre-processing (intensity extraction, normalization, probe

set summarization, transformation into log ratio) and CNV discovery. However, it

only produces copy number state for individual probe sets. Therefore, an extra step

was added to merge adjacent probe sets into one CNV call if they had the same copy

number state and their copy number were not equal to 2 and to calculate other in-

formation such as average log ratio that were required by the CNV call format (as

described in section 2.2.7). Then CNVs were filtered by size, number of probes, and

probe density and samples with excessive CNV calls were removed.

Since GADA is a dedicated CNV caller, apt-probeset-summarize was used to han-

dle intensity extraction, normalization and probe set summarization. Probe set in-

tensities were then transformed into log ratio as described in method. Unlike apt-

copynumber-workflow, wherein intervention is not possible between pre-processing

and CNV calling, an extra step that corrects spatial auto-correlation was added be-

fore running GADA, as it reduces the long range waviness in the data (Figure 2.2).

Since GADA only performs segmentation but not copy number assignment, thresh-

olds were applied to the distribution of average log ratio of segments to distinguish

CNV calls and segments with normal copy number. The resulting CNV calls were

stored in CNV call format and filtered using the same criteria as for calls made by

apt-copynumber-workflow. Samples with excessive CNV calls were also removed.

Birdsuite calls apt-probeset-summarize to handle pre-processing. Since it works

with probe set intensities instead of log ratios, transformation was not needed. Only

output from the Birdseye algorithm were passed on for downstream analyses as Ca-

nary performs CNV typing at known CNVs rather than CNV discovery. The Birds-



18 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

eye calls were filtered using the LOD score in addition to the same criteria as above

and samples with excessive CNV calls were removed.

2.3.1.2 Comparing general characteristics of call sets

I used the above test pipelines to call CNVs in 270 HapMap1 individuals. A num-

ber of program parameters and filter parameters were tested as listed in Table 2.1. I

examined the median number of calls per sample, the median size of calls, the num-

ber of CNVEs, the fraction of singletons and overlap with published CNV datasets

[12, 34] (Table 2.1).

Table 2.1: Summaries of call sets produced by test piplines

Program

Program
or filter
parame-

ter

Median
#call
per

sample

Median
call size
(kb)

Deletion-
to-

duplication
ratio

#CNVE %Singleton
CNVE

%Overlap
rate∗

%Overlap
rate†

APT Default 64 14.6 2.82 2861 49.2 27.2 25.5

GADA
a=1
T=7

M=5‡
88 14.0 2.54 4514 49.3 23.8 23.2

GADA
a=1
T=8
M=5

73 15.2 2.61 3500 47.7 27.9 26.1

GADA
a=1
T=9
M=5

61 17.3 2.67 2833 47.2 30.0 27.9

GADA
a=1

T=10
M=5

51 19.4 2.80 2307 45.8 31.8 29.6

Birdseye LOD≥5 86 14.8 4.03 3469 48.5 30.9 24.7

Birdseye LOD≥10 59 23.4 4.20 2176 46.9 35.3 28.6

∗ Proportion of calls reciprocally overlapped by common CNVs described in McCarroll et al [34].

† Proportion of calls reciprocally overlapped by ng42M CNVs described in Conrad et al [12].

‡ For a and T see section 2.1.2.1.1; M defines the minimal required number of probes.



2.3. Results 19

There were a few characteristics that were shared by or similar among all pipelines.

For example, (i) all pipelines called 50–90 CNVs per individuals, (ii) the median call

size of the majority of call sets were all in the range of 15–20kb, (iii) the proportions

of singletons were close to 50%, (iv) one quarter to one third of the CNVEs were

found previously, (v) all three CNV calling methods were better at calling large re-

current deletions as indicated by increased call size and deletion-to-duplication ra-

tio and decreased proportion of singletons with increasing stringency (GADA T7 to

T10, Birdseye LOD5 to LOD10) of calling. The deletion-to-duplication ratio differed

remarkably between call sets produced by Birdseye and the other two programs.

This is likely due to that Birdseye calls from intensities whereas the other two calls

from log ratios (see section 2.4.2).

2.3.1.3 Benchmark by a high quality call set

Comparing with one or more independent high quality datasets generated from

the same samples can provide direct assessment of the performance of the calling

algorithms. Previously, a set of tiling resolution CNV calls were produced from

40 individuals, 19 of which were from the HapMap1 individuals, using a set of

Nimblegen CGH arrays that collectively contained 42M probes [12] (referred to as

ng42M). I used this dataset as a gold standard to benchmark GADA T9, GADA T10

and Birdseye call sets, as the rest of the call sets were apparently of lower quality.

The fraction of ng42M CNVs reciprocally overlapped >50% by test call set in the

same individual was used as a measure of sensitivity and the fraction of test call

set overlapped by ng42M CNVs in the same individual was used as a measure of

specificity (Table 2.2–2.9).

Breaking down by CNV size, sensitivity generally increased as call size increased in

all three call sets as expected. Specificity, however, was highest in the middle ranges

(10kb to 100kb) and sharply dropped to roughly 10% for CNVs above 500kb. This



20 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Table 2.2: Proportion of ng42M calls reciprocally overlapped by GADA T9 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 2.35% 9.38% 19.17% 19.15% 10.00% 5.63%

(1,5%] 1.67% 11.22% 7.30% 9.09% 0.00% 3.57%

(5%,10%] 1.86% 13.25% 5.08% 4.85% 50.00% 3.67%

(10%,100%] 0.78% 5.14% 5.09% 7.26% 16.67% 2.30%

All Classes 1.10% 6.77% 6.26% 7.63% 15.63% 2.83%

Table 2.3: Proportion of GADA T9 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 44.44% 50.00% 66.67% 77.78% 50.00% 54.64%

(1,1%] 69.57% 70.59% 42.86% 58.33% 0.00% 57.60%

(1%,5%] 45.83% 52.94% 44.83% 45.65% 0.00% 45.64%

(5%,10%] 49.25% 51.43% 48.39% 40.00% 33.33% 47.13%

(10%,100%] 31.21% 55.74% 56.61% 51.79% 4.35% 44.82%

All Classes 42.86% 55.06% 52.22% 49.37% 10.26% 47.51%

Table 2.4: Proportion of ng42M calls reciprocally overlapped by GADA T10 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 1.73% 7.59% 17.92% 19.15% 10.00% 4.82%

(1,5%] 1.11% 10.20% 6.74% 9.09% 0.00% 3.01%

(5%,10%] 1.54% 12.05% 3.73% 3.88% 0.00% 3.00%

(10%,100%] 0.63% 4.21% 4.77% 7.04% 16.67% 2.04%

All Classes 0.86% 5.70% 5.76% 7.36% 12.50% 2.46%



2.3. Results 21

Table 2.5: Proportion of GADA T10 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 59.26% 30.00% 65.52% 85.71% 50.00% 60.00%

(1,1%] 58.33% 63.16% 48.72% 63.64% 0.00% 55.66%

(1%,5%] 51.85% 51.16% 44.62% 50.00% 12.50% 48.12%

(5%,10%] 42.11% 53.57% 40.00% 40.48% 0.00% 41.72%

(10%,100%] 33.09% 56.86% 62.05% 54.35% 5.26% 48.56%

All Classes 43.92% 53.64% 55.32% 51.35% 8.33% 48.95%

Table 2.6: Proportion of ng42M calls reciprocally overlapped by Birdseye LOD5 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 4.69% 18.30% 26.67% 14.89% 10.00% 9.19%

(1,5%] 3.90% 13.27% 9.55% 9.09% 0.00% 5.69%

(5%,10%] 2.67% 19.88% 5.42% 7.77% 0.00% 5.00%

(10%,100%] 1.31% 7.40% 7.45% 9.90% 16.67% 3.41%

All Classes 1.96% 10.27% 8.82% 9.87% 12.50% 4.27%

was likely caused by the resolution difference between Nimblegen 42M arrays and

Affymetrix 6.0 arrays, which has two implications: (i) Nimblegen 42M arrays have

much better power to detect small to middle size CNVs, (ii) One large Affy6 call

may be called as multiple smaller CNVs in ng42M. Actually if using ‘overlap ng42M

>50%’ as the criteria instead of ‘reciprocal overlap >50%’ (see section 2.2.10), speci-

ficity also increased as call size increased and reached close to 100% above 500kb

(data not shown). Breaking down by CNV frequency, both sensitivity and speci-

ficity decreased as frequency increased. This might reflect the enrichment of com-

mon CNVs in duplicated regions of the genome and the impaired performance of

CNV discovery algorithms in such regions, and suggests a need for different strat-

egy for calling common CNVs. Overall, Birdseye LOD10 call sets achieved the high-



22 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Table 2.7: Proportion of Birdseye LOD5 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 62.00% 69.57% 51.61% 66.67% 0.00% 60.19%

(1,1%] 72.41% 61.54% 65.79% 66.67% 50.00% 67.65%

(1%,5%] 60.29% 79.63% 47.44% 39.13% 0.00% 56.96%

(5%,10%] 45.88% 69.57% 36.96% 40.63% 33.33% 45.50%

(10%,100%] 43.88% 51.32% 53.20% 48.23% 0.00% 48.91%

All Classes 52.06% 60.79% 51.63% 46.58% 18.18% 52.41%

Table 2.8: Proportion of ng42M calls reciprocally overlapped by Birdseye LOD10 calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 2.83% 12.95% 22.92% 14.89% 10.00% 6.75%

(1,5%] 1.89% 12.24% 8.43% 7.27% 0.00% 3.90%

(5%,10%] 1.46% 15.06% 5.08% 6.80% 0.00% 3.61%

(10%,100%] 0.97% 4.21% 6.29% 8.58% 11.11% 2.62%

All Classes 1.27% 6.77% 7.54% 8.62% 9.38% 3.20%

est specificity (55.59%) and the second highest sensitivity (3.20%) of the three. It was

particularly better in calling smaller events (1k to 20kb). It had lower specificity than

GADA call sets in middle to large size ranges, but it might be affected more severely

by the array difference discussed above as having a much larger median call size.

I investigated how sensitivity and specificity changes as a function of call filters. For

Birdseye calls, LOD score was a natural quality filter. As APT and GADA did not

compute a per call confidence/quality score, a heuristic formula (see section 2.2.11)

previously shown to be monotonically related to false positive rate [38] was used.

To account for the fact that ng42M calls were relative to a certain reference indi-

vidual, sensitivity and specificity was calculated based on both direct comparison

of Affy6 CNV calls to ng42M CNV calls in the same individual and comparison of



2.3. Results 23

Table 2.9: Proportion of Birdseye LOD10 calls reciprocally overlapped by ng42M calls

Frequency (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,500kb] (500kb,+∞] All Classes

(0,1] 90.48% 70.59% 62.96% 66.67% 0.00% 72.46%

(1,1%] 73.33% 61.11% 75.86% 66.67% 50.00% 70.33%

(1%,5%] 67.16% 87.80% 55.74% 47.37% 0.00% 63.64%

(5%,10%] 54.00% 91.67% 44.44% 42.86% 0.00% 52.10%

(10%,100%] 49.74% 44.05% 54.15% 46.46% 0.00% 49.85%

All Classes 57.98% 62.21% 55.92% 47.60% 10.00% 55.59%

Affy6 CNV calls to ng42M CNVEs. Birdseye calling plus LOD score filtering out-

performed other call sets from other algorithms filtered using the heuristic score

under most stringency thresholds by yielding more calls while achieving higher

specificity (Figure 2.3).

A B

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Number of calls per sample

Pr
op

or
tio

n 
of

 c
al

ls
 o

ve
rla

pp
ed

 b
y 

ng
42

M
 c

al
ls

APT
Birdseye
GADA T8
GADA T9
GADA T10

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Number of calls per sample

Pr
op

or
tio

n 
of

 c
al

ls
 o

ve
rla

pp
ed

 b
y 

ng
42

M
 C

N
VE

s APT
Birdseye
GADA T8
GADA T9
GADA T10

LOD10
LOD5

LOD10

LOD5

Figure 2.3: Sensitivity, measured by median of number of calls per sample, versus specificity,
measured by proportion of calls reciprocally overlapped by ng42M CNVs in the same sample (A)
or by ng42M CNVEs (B), under shifting call filters. LOD score (for Birdseye calls) and number of
probes times absolute log2 ratio (for APT and GADA calls) thresholds increase from right to left.



24 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Since calculation of specificity and sensitivity was based on the definition of over-

lap, I examined if the superior performance of Birdseye was independent of overlap

threshold. By fixing the call filter and shifting the reciprocal overlap threshold used

to define a test call as being present in the gold standard dataset, a series of speci-

ficity value were calculated. Again, Birdseye call sets out-performed other call sets

and Birdseye LOD10 had higher specificity than Birdseye LOD5, as expected (Fig-

ure 2.4).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Reciprocal overlap threshold

Pr
op

or
tio

n 
ov

er
la

pp
ed

 b
y 

ng
42

M
 c

al
ls

APT
Birdseye LOD5
Birdseye LOD10
GADA T8
GADA T9
GADA T10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Reciprocal overlap threshold

Pr
op

or
tio

n 
ov

er
la

pp
ed

 b
y 

ng
42

M
 C

N
VE

s

APT
Birdseye LOD5
Birdseye LOD10
GADA T8
GADA T9
GADA T10

A B

Figure 2.4: Specificity, measured by proportion of calls reciprocally overlapped by ng42M CNVs
in the same sample (A) or by ng42M CNVEs (B), as a function of reciprocal overlapping
threshold.

Based on the above comparisons, Birdsuite was chosen as the core CNV discovery

program around which the production pipeline was built.



2.3. Results 25

2.3.2 Implementing a CNV discovery and QC pipeline for Affy6

data

I developed a robust CNV calling and quality control pipeline for Affymetrix 6.0

data around Birdsuite. The pipeline is able to process thousands of samples auto-

matically, providing robust CNV calls ready for downstream analysis and visual-

ization for manual examination of calling quality. Below I have used the WTCCC2

control dataset as an example when demonstrating certain features of the pipeline.

2.3.2.1 Pre-calling QC

Defects in array experiment can sometimes be visually apparent when simply look-

ing at the scanned image and could lead to the exclusion of the array before en-

tering the CNV discovery process. As the actual scanned images are not available

for many array experiments, they were regenerated from the .CEL files (see sec-

tion 2.2.1). Those with defects such as contamination (Figure 2.5A) and global low-

hybridization (Figure 2.5B) can be easily distinguished from those with scanned im-

ages of typically normal experiments (Figure 2.5D). Usually, small-scale contamina-

tion has little impact on the overall quality of data, but abnormally low hybridiza-

tion often causes increased noise level. Samples with such defects could also be

identified by other QC metric at later stages. Therefore, except for some very rare

cases (Figure 2.5C), the role of scanned images generated at this step was mainly to

aid the investigation of the cause of low quality data rather than dropping samples

before CNV calling.

2.3.2.2 Pre-processing and CNV calling

CNVs were called by plate using Birdsuite with default parameters. The normalized

and summarized probe set intensities produced by apt-probeset-summarize, which

was called by Birdsuite to handle pre-processing, were stored in the form of in-file

database (see section 2.2.6). A copy of the intensities was transformed to log ratios

and were used to calculate average log ratio for each CNV call and log-ratio-related



26 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

A B

C D

Figure 2.5: Regenerated scanned images of four samples. An Affy6 chip contains close to 7
million probes organized in a 2572 × 2680 matrix, each represented as a dot in heat colors.
Brightness is proportional to log2 intensity. The four scanned images are examples of
contamination (A, scattered abnormal low intensity regions in top right, bottom right and
bottom left zone), global low-hybridization (B, globally darker color and blurred border between
the central cross region and the rest of the chip), failed experiment (C, no hybridization signal at
all) and normal scanned image (D, bright and clear cross region with the rest of chip being
relatively homogeneous).

sample QC statistics for each sample. CNVs called from all plates were pooled and

stored in CNV call format.



2.3. Results 27

2.3.2.3 CNV call QC

A number of summary statistics were calculated and visualized to aid the decision

of filter parameters (Figure 2.6). Considering that Birdsuite does not yet correctly

segment Y chromosome and CNV calling in X chromosome is problematic due to

the presence of pseudoautosomal regions and the difference in neutral copy number

between male and female, and in order to remove the lower end tail in the distribu-

tion of call size, number of probes and probe density, I set up the following criteria

to filter CNV calls:

1. Autosomal

2. LOD score ≥ 10

3. Number of probes ≥ 5

4. Size ≥ 1kb

5. Probe density ≥ 1 per 10kb



28 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Figure 2.6: Summary statistics of the call set before call QC.

2.3.2.4 Sample QC

Even after the above filters, the number of CNVs called in some samples were a

few orders of magnitude greater than most of the other samples. Obviously, this

variation could not be explained solely by natural variation in the number of CNVs

carried by an individual, but were more likely technical artifacts. There can be two

types of such artifacts. The first type is caused by differential sensitivity, wherein

specificity of CNV calling is good and similar across samples, but due to some



2.3. Results 29

samples being noisier than others, fewer CNVs can be called with a level of con-

fidence that reaches a pre-defined common threshold. The second type is more

severe, wherein the data quality of some samples is so poor that CNV calling pro-

gram starts to produce large number of false calls. This was observed when running

samples with strong waviness as indicated by having high spatial auto-correlation

through the GADA test pipeline without correction. The number of apparently false

CNVs was effectively reduced after correcting for spatial auto-correlation, suggest-

ing waviness was indeed the cause of such artifact (Figure 2.7). As Birdseye works

on probe set intensities rather than log ratios, such correction could not be per-

formed, which might explain the excessive CNV calls. To account for both types

of artifact, I used a linear function to model the negative correlation between the

number of calls per sample and the sample’s median absolute deviation (MAD) of

log ratios, a measure of the level of noise in the data, wherein the parameters of the

linear model were estimated using samples with a MAD<0.3 and a SAC in the bot-

tom 90% in order to exclude the influence of samples with extreme level of noise or

spatial auto-correlation. Samples which after correction were more than four MADs

from the fitted linear model were removed (Figure 2.8).

In addition to the number of calls per sample, deletion-to-duplication ratio (DDR)

should also be relatively stable across samples given the same CNV discovery al-

gorithm and a reasonably large number of CNVs called per sample. Indeed, most

samples had a DDR between 1 and 16 with a median at about 4 (Figure 2.9). The

majority of samples that fell outside this range had a DDR below the lower bound

and many of them also had high SAC and coincided with those having excessive

CNV calls. This indicates the abnormally high number of calls per sample and

low DDR was predominately driven by over-calling of false duplications in samples

with strong spatial correlation. In practice, the median and MAD of the distribution

of log-transformed DDR were calculated and samples falling more than four MADs

from the median were removed (Figure 2.9).



30 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

Figure 2.7: Example of over-calling due to spatial waviness along the chromosome. Black dots
are log2 ratios across chromosome 1 of a sample with a SAC of 0.78 (top 0.15%) before (A) and
after (B) correction for spatial auto-correlation. Horizontal segments are deletions (red) and
duplications (green) called by GADA. The average log2 ratios of the CNV calls are represented
by the horizontal position of the segments. Those located between -0.15 and 0.15 (light blue
dashed lines) will be filtered out.



2.3. Results 31

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0

50

100

150

200

250

300

MAD

N
um

be
r 

of
 C

N
V

s 
pe

r 
sa

m
pl

e

●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●●

●
●

●

●●

●●

●

●
●●●

●

●

●
●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●●● ●

●

●
●

●
●

●●

●●●●

●
●

●

●

●

●

●
●

● ●

●

●
●

●
● ●

● ●

●

●

●
●

●
●

●
●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●● ●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●●

●

●

●●

●

●

●●
●

●

●

●
●

● ●

● ●

●

●
● ●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●
●

● ●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●●

●
●

●

● ●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●● ●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●
● ●●

●

●

●●
●

●

●

●
●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●

●

●

●
● ●
●

● ●●
●

●

●

●● ●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●
●

●

● ●
● ●

●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●

● ●

●

● ●
●

● ●

●

●●
●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●
●

● ●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
● ●

●
●

●

●

●
● ●

● ●

●●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●
●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

● ●

●

●●
●●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●● ●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●●

●

●

● ●●

●
●●

● ●

●
●

●

● ●
●

●

●

● ●

●

●
●

●

●

●
●

●
● ●●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●
●●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●
●●

●●

●

●

●●

●

● ●

●

●

●

● ● ●

●

●
●

●

●●
●

●●
●

●

●
●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●●
●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●
● ●

●●

● ●
●

●

●●

●
●
●

●●

●●

●

●●
●

●

●

●

●
●●

● ●

●

●

●

●

●

● ●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●●●
●

● ●

●

● ● ●

●
●

●

●
● ●

●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●●

●

●●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
● ●

●●
●

●

● ●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●●

●

●●●
●

●

●

●

●

●

●

● ●
●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

● ●●

●
● ●●

●

●

●● ●
●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●
●

●●
●

●

●
● ●

●

●

●

● ●
●

● ●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●●

●

●

●

●
●●●

●

●

●●

●
●

● ●
●● ●

●

●

●

●●
●●

●●●●

●

●
●

●

●

● ●●
●●●

●

●
● ●●●

● ●●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

● ●

●

●
●

●

●

●

● ●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●

●
●●

●

●● ●

●

●

●

●

● ●

●
●

●

●●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●● ●
●

●●

●
●

● ●

●

●

●

● ●

●
●

● ●
●

●

●
●

●

●

●● ●

●

●
●

● ●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●●

● ●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●●●

●
●

●
●

● ●
●

●

●

●

●

● ●

●

●

●

●

●
●
●

●
●

●●
●

●

●

● ●● ●
● ● ●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●
●●

●

●

●●

● ●

●

●

●
●●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

● ●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

● ●

●

●●

●●
●

●

●●

●
●

●

●

●

●
●●

●

●
●

●● ●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●
●

●●
● ●

●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●●

●●

●

●

●

●
●

●●
●

●
●

●

● ●

●

●

●●
●

●

●

●

● ●

●

●

●
●

● ●

●

●

●
●

●

●
●

●●

●

●

●

●
● ●

●

●

●
●●

●●
●●

●

●

●
●

●
●

●
●

●

●

●● ●
●

● ●

●
●

● ●
●

●
●

●

●

● ● ●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●●
●

●

● ●

●
●●

●

●

●
●

●

●
● ●

●

●

● ●●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●●
●●● ●
●

● ●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

● ●●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

● ●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●● ●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●● ●

●

●● ●
●

●

●

●
●●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●
● ●●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●●

●

●

●

●

●●●

●

● ●
●

●●
●

●

● ●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

● ●

●

●●●

●

●

●
●

●

●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●
●

●

●

●
●

●

●
●●

● ●●

●

●

●
●

●

●

● ●
●

●
● ●●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●
● ●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

● ●

●

●

●

●

●
●●
●
● ●

●

●●

●
●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

● ●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●● ●

●

●
● ●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●

●●
●

●
●●

●
●●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●● ●

● ●

●

●●

● ●●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●● ●
●

●

●●
●●

●
●

●

●

●

●

● ●

●
●

●
●●●

●
●●

●

●●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●
● ●

●
●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●
●

● ●●

●●

●●
●

●

● ●

●

●

●

●

●

●

●

●
●
●

● ●
●

●
●

●
●

●

●●

●
●

●

●

● ●

●●

●

●●●

●

●

● ●

● ●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●●

●

● ●

●

●

●

●

●●

●

●
●

●●

●

●●
●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●●

●
●

●
●

●

●●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●●

●

●

●

●

●●

●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

● ●
●

●

● ●

●

●

●
●

●

●

●●

●
●

●●

●

●

●●

●

●●

● ●

●

●●

●
●

●
●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
● ●

●
● ●

●

●●
●

●
●

●

●

●●
●

●●

●●
●●

●

●

● ●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●●● ●●

●

●

●

●

●
●

●

●

●
●●

●

● ●
●

●

●●

●●

●
●

●

●

●●

●●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

● ●

●

●

●
●

●
●● ● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●

●
● ●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●● ●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

● ●
●●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●
● ●

● ●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●●● ●
●●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●● ●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

● ●●

●

●
●

●

●
●

● ●● ●

●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

● ●
●

●

● ●

●●

●

●
● ●●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●●

●

●
● ●

●
●

●●
● ●

●

●

● ●

●

● ●
●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●●

●

●
● ●

●

●

● ●

●●

● ●

●

●

●
● ●

●

●● ●

●

●●

●

●

●●

●

●

●

● ●●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●

●
● ●

●●

●

●

● ●

●
●

●

●

●

●
●

●
●●

●●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●●
●

●

● ●●

●

●●● ●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●●

● ●

● ●

●

●

●●

●

●● ●
● ●●

●

●

●

●●●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●
●●
●

●●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

● ●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●
●

●

●●

●
●●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●
●
● ●

●
●

●
●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●●

● ●●
● ●●

●

●

● ●

●

●

●

●

●
●

●

●

●●
●●

●●
●

●
● ●●

●

● ●

●

●●

●

●
●●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●
●

● ●
●

●●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●● ●

●

●

●
●

●
● ●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●● ●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

● ●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●●

● ●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●●●

●
●●

●

●

●
●
●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●
●
●

●

●

●

●

●● ●●

●

●●

●

●

●

●
●

●
●

● ●
●

●
●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●
● ●

●
●

●

●

●

●●
●

●
●

●

● ●

●

●

●● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

● ●
●●

●

●

●
●

●

●● ●

●
●

●●

●●
● ●

●

●

●

●

●

●● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
● ●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

4 x MAD(residuals)
Removed

Low SAC

High SAC

Figure 2.8: Number of CNV calls per sample as a function of the sample’s level of noise. Each
solid colored dot represents a sample. The sample’s level of spatial auto-correlation is coded by
terrain color, where the more greenish the lower the level of spatial auto-correlation. The blue
solid line denotes the fitted linear model. The blue dashed lines represent four times the MAD of
the residuals away from the fitted line. Dots encircled by red are samples to be removed for
falling outside the region bordered by the blue dashed lines.



32 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

0 50 100 150 200 250 300

−4

−2

0

2

4

Number of CNVs per sample

Lo
g2

(d
el

/d
up

 r
at

io
)

●
●

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●● ●

●●●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
● ●

●●

●●

●
● ●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●●

●●

●
●

● ●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

● ●●

● ● ● ●
● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●
●●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●●● ●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●
●

●
●

●● ●●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
● ●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●
●

●●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

● ● ●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●● ●●

●

●● ●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
● ●

●
● ●

●

●

●

●
●

●

●

●
●

●● ●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●
● ●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●
● ●

●
●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●● ●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●●
●

●

●

● ●
●

● ●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●

●
●●●
●

●

● ●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●

●

●
● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●
● ● ●

●

●

●

●● ●

●

●

●
●●

●

●

●

●

● ●

●●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●

●
●

●

●●
●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

● ●

●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●
●

●

● ●

●

●

●

●●

●
● ●●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

● ●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●●

●

●

●● ●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

● ●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●●

●

●

●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

● ●
●

●
● ●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

● ●
●

● ●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●●

●●

●

●
●

●●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

4 x MAD(residuals)
Removed

Low SAC

High SAC

Figure 2.9: Distribution of deletion-to-duplication ratio. Each solid colored dot represents a
sample. The sample’s level of spatial auto-correlation is coded by terrain color, where the more
greenish the lower the level of spatial auto-correlation. The blue solid line denotes the median of
log2 deletion-to-duplication ratio. The blue dashed lines represent four times the MAD of the
residuals away from the median. Dots encircled by red are samples to be removed for falling
outside the region bordered by the blue dashed lines.



2.3. Results 33

2.3.2.5 Merge split CNV calls

Birdseye sometimes incorrectly split large CNVs into multiple smaller calls due to

just a few probes in the middle that did not meet the expected level of dosage-

responsiveness (Figure 2.10). I added an ad hoc step to merge these split calls based

on the number of probes between adjacent calls, the ratio of the number of probes

between adjacent calls to the number of probes in the merged call, the probe density

between adjacent calls and the absolute difference in log ratio between adjacent calls

(see section 2.2.8). My selection of merging parameter values was guided by the

distribution of the above metrics (Figure 2.11) and visual inspection of the merged

calls.

Figure 2.10: Birdseye split a duplication of 620kb into two duplication calls of 500kb and 110kb,
respectively. The sample carrying the duplication is highlighted in red. Other samples in the
same plate are in black. Blue vertical lines denote the boundaries of the two duplication calls.



34 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

#Probe between adjacent CNV calls

D
en

si
ty

0 100 200 300 400 500

0.000

0.005

0.010

0.015

0.020

Ratio of #probe between adjacent CNV calls
to #probe of merged CNV call

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

Probe density between adjacent CNV calls
(#kb per 1 probe)

D
en

si
ty

0.1 1 10 100 1000

0.0

0.5

1.0

1.5

2.0

Absolute difference in log2ratio
between adjacent calls

D
en

si
ty

0.0 0.5 1.0 1.5

0

1

2

3

4

5

A B

C D

Figure 2.11: The distribution of variables used as metric for deciding if adjacent calls should be
merged. Vertical dashed lines mark the thresholds.

2.3.2.6 Cluster CNVE and calculate CNVE frequency

I observed frequently that CNV calls discovered in one sample had extensive over-

lap with CNV calls in multiple other samples, which likely indicate these variants

were identical and probably result from a single ancestral mutation event. Under

such a scenario, any slight differences in location were probably just technical fluc-

tuations in the precision of CNV discovery. Even if two overlapping CNV calls orig-



2.3. Results 35

inated independently in different individuals and had real slight differences in their

locations, operationally treating them as a single event was reckoned reasonable in

most analyses considering the highly similar genomic content they encompass and

the utility of knowing the frequency of a CNV of a particular genomic interval. I

used a clustering-like algorithm to merge such CNVs into CNVEs (see section 2.2.9)

and the frequency of a CNVE was calculated as the number of individuals carrying

this CNVE divided by the sample size. This call frequency is not the same as an

allele frequency, but is nevertheless useful in downstream analyses to distinguish

between common and rarer CNVs.



36 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

2.3.3 Application of the pipeline to process Affy6 datasets

I applied the above CNV discovery pipeline to the following cohorts genotyped

using Affy6:

1. 5,989 UK individuals recruited as common controls in the Wellcome Trust Case

Control Consortium 2 project (referred to as WTCCC2).

2. 1,442 American individuals of European ancestry recruited as controls for the

GAIN study of Schizophrenia and Bipolar disease (referred to as GAIN_EA,

Genetic Association Information Network, European Ancestry)

3. 226 prenatal samples with major ultrasound abnormalities or multiple soft

markers detected by standard two dimensional ultrasonography, (referred to

as AFD, Abnormal Fetal Development)

4. 334 UK patients with sever-early-onset obesity, half of which also had develop-

mental delay (referred to as SCOOP1, Severe Childhood-Onset Obesity Project

1)

5. 1,386 UK patients with severe early-onset obesity (referred to as SCOOP2)

The biological interpretation of the CNVs identified in these cohorts is described in

other chapters in this thesis. Here I focus on the performance of the CNV discov-

ery pipeline across a range of different datasets, generated in different laboratories.

I compared the QC metrics and CNV statistics of these cohorts, examined the re-

producibility of CNV discovery using this CNV calling pipeline and investigated if

commonly adopted QC metrics for SNP genotyping are also appropriate for CNV

QC.

2.3.3.1 Comparing QC and CNV statistics

I first examined the distribution of level of noise and spatial autocorrelation in the

five datasets. Small but statistically significant differences in the distribution of the

level of noise were observed both between control cohorts and between controls



2.3. Results 37

and cases (Figure 2.12A). The level of noise (as measured by the MAD of log ra-

tios) was lower in WTCCC2 as compared to GAIN_EA (p = 2.2×10−47, two-sided

Mann-Whitney U test, same for the following), AFD (p = 8.3×10−9), SCOOP1 (p

= 8.6×10−13) and SCOOP2 (p = 1.1×10−5). These differences largely explained the

differences in the distribution of number of calls per sample among the different co-

horts (Figure 2.12B, r = -0.88, p = 0.04). Significant differences in the distribution of

spatial autocorrelation were also observed. SCOOP1 and SCOOP2 samples had sig-

nificantly greater median spatial autocorrelation (p = 6.3×10−60 and p = 2.0×10−100,

respectively, as compared with WTCCC2) and more samples with very high spatial

autocorrelation than the rest of the cohorts (Figure 2.12C). This explained their lower

sample QC pass rate (Figure 2.12D, r = -0.93, p = 0.02).

Table 2.10: Summaries statistics of CNV call sets

Cohort #Sample
pass QC

Median
#call
per

sample

Median
call size
(kb)

Deletion-
to-

duplication
ratio

#CNVE
Median
CNVE

size (kb)

%Singleton
CNVE

Average
plate
size

WTCCC2 5897 58 23.6 3.73 12295 37.9 62.8 84

GAIN_EA 1419 49 27.0 3.83 4493 42.9 63.4 85

AFD 224 50 22.3 5.13 1432 33.1 58.9 38

SCOOP1 292 55 23.5 4.09 2173 32.7 61.7 67

SCOOP2 1289 56 23.3 3.91 5277 37.9 64.5 87

Next I compared the summary statistics of the final filtered call set of the differ-

ent cohorts (Table 2.10). As discussed above, GAIN_EA and AFD produced fewer

calls per sample due to having noisier intensities (log2 ratios). GAIN_EA had larger

CNVs and CNVEs, possibly due to lower sensitivity to smaller events, but there

could be other contributing factors. The differences in the proportion of CNVEs

seen only in one sample (singletons) might be partly explained by differences in

the sizes of the cohort and possibly the impact on sensitivity of differences in aver-

age batch (plate) sizes (r = 0.97, p = 0.006), since Birdseye receive parameters of the



38 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

WTCCC2
(5989)

GAIN_EA
(1442)

AFD
(226)

SCOOP1
(334)

SCOOP2
(1386)

0.1

0.2

0.3

0.4

0.5

M
AD

WTCCC2
(5989)

GAIN_EA
(1442)

AFD
(226)

SCOOP1
(334)

SCOOP2
(1386)

0.0

0.5

1.0

1.5

2.0

2.5

SA
C

A

C

B

D

0.120 0.122 0.124 0.126 0.128

50

52

54

56

58

MAD
N

um
be

r o
f C

N
V 

ca
lls

 p
er

 s
am

pl
e

●

●

●

●

●

●

●

●

●

●

WTCCC2
GAIN_EA
AFD
SCOOP1
SCOOP2

0.14 0.16 0.18 0.20 0.22 0.24 0.26

0.88

0.90

0.92

0.94

0.96

0.98

SAC

Pr
op

or
tio

n 
of

 s
am

pl
es

 p
as

si
ng

 Q
C

●●

●

●

●

●

●

●

●

●

WTCCC2
GAIN_EA
AFD
SCOOP1
SCOOP2

Figure 2.12: Comparison of QC statistics. (A) Distribution of the level of noise. (B) The
number of CNV calls per sample as a function of the level of noise. The points represent the
median value for each cohort. (C) Distribution of spatial autocorrelation. (D) Sample QC pass
rate as a function of the level of spatial autocorrelation. The x value of each point is the median
SAC for each cohorts.

emission probability distribution from Canary and Canary could overestimate the

variance of the intensity distribution of the neutral copy state when given a smaller

number of samples, which would lead to under-calling of singletons. The disease

cohorts (AFD, SCOOP1 and SCOOP2) had greater deletion-to-duplication ratios,



2.3. Results 39

which might reflect ture biological differences, but more likely is due to technical

biases, as duplications become more difficult to call than deletions with noisier data

and smaller plate sizes.

1kb 10kb 100kb 1Mb 10Mb

CNV size

Pr
op

or
tio

n 
of

 a
ll 

C
N

Vs

0.001%

0.01%

0.1%

1%

10%

100%

WTCCC2
EA_GAIN
AFD
SCOOP1
SCOOP2

1kb 10kb 100kb 1Mb 10Mb

CNV size

Pr
op

or
tio

n 
of

 th
e 

co
ho

rt
0.1%

1%

10%

100%

WTCCC2
EA_GAIN
AFD
SCOOP1
SCOOP2

A B

Figure 2.13: Proportion of large CNVs relative to all CNVs as a function of size threshold (A)
and proportion of the cohort carrying large CNVs as a function of size threshold (B). Both CNV
sizes and proportions are in log scale.

Finally, I investigated if there is difference in the distribution of large CNV calls

in the call sets. As the calling of large CNVs should be least affected by technical

issues, this could provide insights into the biological characteristics of the cohorts.

For CNVs exceeding a certain size threshold, I calculated their proportion relative

to all CNVs and the proportion of the cohort carrying such CNVs. The proportions

remained relatively similar until the threshold reached 1Mb, beyond which disease

cohorts (AFD, SCOOP1 and SCOOP2) had both greater proportion of large CNVs

and greater proportion of individuals carrying such CNVs (Figure 2.13).

2.3.3.2 Reproducibility of CNV discovery using Affy6 plus the pipeline

There were 55 SCOOP1 patients genotyped for a second time using Affy6 as part

of SCOOP2 (46 passed sample QC both times), which provided an opportunity to

investigate the reproducibility of CNV discovery using the CNV discovery pipeline

I developed. Samples of 46 of those patients passed QC in both datasets. For each



40 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

individual, I defined a CNV called in one dataset ‘reproduced’ if it reciprocally over-

lapped >50% with a CNV called in the same individual in the other dataset. Repli-

cate rate was defined as:

Nreproduced,SCOOP1 + Nreproduced,SCOOP2

NSCOOP1 + NSCOOP2

On average, a replicate rate of 76.8% was achieved. As expected, due to differ-

ences in sensitivity and specificity, the replicate rate was much higher for deletions

than duplications (Table 2.11). I further interrogated if the concordance (‘replicate

rate’) between CNV sets called in samples from the same individual was higher

than that between CNV sets called in samples from different individuals. To do this,

for each of the 46 SCOOP1 samples, I calculated replicate rates with 100 randomly

chosen SCOOP2 samples. This verified that the observed level of reproducibility

between samples from the same individual was not a mere coincidence that could

be achieved by pairing randomly chosen samples (Figure 2.14).

Table 2.11: Replicate rate of CNV discovery using Affy6 and the Birdsuite pipeline

Type (1kb,10kb] (10kb,20kb] (20kb,100kb] (100kb,+∞] All Classes

Duplication 40.00% 63.08% 46.20% 60.97% 54.56%

Deletion 80.08% 76.15% 87.46% 81.25% 82.10%

All Classes 79.19% 74.93% 78.65% 70.82% 76.83%



2.3. Results 41

●●

●

●

● ●

●

●

●

●

●●● ●

●

●

●

● ●● ●● ●

●

●●

●●

●

●

●

●

●

●●

A369−003 − SCOOP729565
A369−004 − SCOOP728932
A369−013 − SCOOP729686
A369−016 − SCOOP729002
A369−034 − SCOOP729206
A369−045 − SCOOP729661
A369−047 − SCOOP729816
A369−058 − SCOOP729999
A369−062 − SCOOP730349
A369−064 − SCOOP729858
A369−065 − SCOOP729933
A369−069 − SCOOP730311
A369−074 − SCOOP730184
A369−079 − SCOOP730049
A369−087 − SCOOP729985
A369−099 − SCOOP730504
A369−100 − SCOOP730638
A369−106 − SCOOP731084
A369−108 − SCOOP730553
A369−111 − SCOOP730557
A369−117 − SCOOP731186
A369−119 − SCOOP728815
A369−134 − SCOOP731455
A369−137 − SCOOP730153
A369−138 − SCOOP730343
A369−143 − SCOOP729841
A369−144 − SCOOP730864
A369−162 − SCOOP730848
A369−173 − SCOOP730868
A369−177 − SCOOP974880
A369−182 − SCOOP730456
A369−185 − SCOOP730903
A369−193 − SCOOP730379
A369−216 − SCOOP730747
A369−223 − SCOOP731540
A369−227 − SCOOP729515
A369−243 − SCOOP729111
A369−244 − SCOOP728936
A369−252 − SCOOP729607
A369−261 − SCOOP729162
A369−272 − SCOOP731002
A369−276 − SCOOP730686
A369−280 − SCOOP730777
A369−282 − SCOOP731091
A369−286 − SCOOP731023
A369−289 − SCOOP731215

0.0 0.2 0.4 0.6 0.8 1.0

Replicate rate

Figure 2.14: Comparing replicate rate between randomly chosen pairs of samples and samples
that are true replicates. The distributions of replicate rate between randomly paired samples are
presented by boxes whereas replicate rate between true replicates as printed in the labels are
presented by red triangles.

2.3.3.3 SNP genotyping QC metrics are not suitable for CNV QC

SNP call rate and the level of heterozygosity are sample QC metrics that are fre-

quently used in SNP GWAS where samples having low SNP call rate or being out-

liers in the distribution of the level of heterozygosity were removed [13, 39]. I inves-



42 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

tigated if these metrics are also appropriate for identifying samples to be removed

for CNV analyses. I examined the distribution of SNP call rate and the level of het-

erozygosity against the two metrics I used for CNV sample QC, the number of calls

per sample and deletion-to-duplication ratio (DDR). As shown in (Figure 2.15), the

majority of samples having low SNP call rate or being outliers in the distribution

of the level of heterozygosity yielded similar number of CNV calls or DDR to sam-

ples with high SNP call rate and normal level of heterozygosity. Samples with ex-

treme number of calls and DDR are close to the mode of the distribution of SNP call

rate and the level of heterozygosity, implying that filtering samples for downstream

CNV analyses by using these SNP-based QC metrics would not be useful.

90 92 94 96 98 100

0

50

100

150

200

250

300

SNP call rate

N
um

be
r 

of
 C

N
V

 c
al

ls
 p

er
 s

am
pl

e

90 92 94 96 98 100

−4

−2

0

2

4

SNP call rate

Lo
g2

(d
el

/d
up

 r
at

io
)

25 30 35 40

0

50

100

150

200

250

300

Heterozygosity

N
um

be
r 

of
 C

N
V

 c
al

ls
 p

er
 s

am
pl

e

25 30 35 40

−4

−2

0

2

4

Heterozygosity

Lo
g2

(d
el

/d
up

 r
at

io
)

Figure 2.15: Distribution of SNP QC metric against CNV QC metric.



2.4. Discussion 43

2.4 Discussion

In this chapter, I described the development of a CNV calling pipeline for Affy6

genotype data. I first compared the performance of three CNV calling programs on

Affy6 data. Next, I built a production pipeline around the selected program, Bird-

suite, which incorporated a number of QC metrics and post-processing procedures.

Finally, I applied the pipeline to several Affy6 datasets to produce filtered CNV call

sets for further analysis. I have demonstrated that the pipeline I developed gener-

ated high quality CNV call sets across a range of different datasets.

2.4.1 Storage of CNV data

The amount of data a single microarray experiment can produce increases linearly

with the increase in resolution and coverage of the array. With 6,892,960 oligonu-

cleotide features on the slide, Affy6 yields nearly seven million raw intensity values

per experiment, which are summarized to more than 2.7 million intensity values

corresponding to nearly one million copy number probe sets and one million SNP

probe sets. The summarized and normalized intensities, together with minimal an-

notations required for CNV calling, including probe set ID, type and genomic loca-

tion, take up close to 2Gb of disk space for 96 samples if stored in plain text format.

Such data are required not only for CNV calling but for QC and various visualiza-

tions as well, in which scenario fast access to intensity values of certain samples

within a genomic window of interest is needed. Due to hardware limitations, I used

a special HDF file to store and manage such data. Although the genomic coordi-

nates were indexed to facilitate fast query, the speed is still affected and limited by

disk performance. However, relationships among samples and other annotations

associated to probes and samples have to be managed separately. Ideally, all those

data should be stored in an efficiently designed database with an index loaded in

memory.



44 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

2.4.2 Log ratio versus intensity

Birdsuite outperformed GADA and APT for CNV discovery from Affy6 data in the

comparisons I performed. Its CNV discovery component, Birdseye, is the only pro-

gram of the three that works on intensities rather than converted log ratios. In prin-

ciple, the conversion to log ratio should reduce the variation across different probe

sets. Actually, this explains why most general-purpose (multi-platform) CNV dis-

covery programs expect to work with log ratios: for segmentation-based methods,

simple piecewise constant function can be used to model log ratio profiles along a

chromosome and for HMM-based method, the same parameters for emission model

can be used for all probe sets. By comparison, algorithms working with intensities

produced from single channel genotyping arrays need special treatment to handle

the larger variance across probe sets (e.g. Birdseye uses probe-set-specific emission

parameters), which often limits their application to other types of arrays. However,

calling CNVs from intensities also has advantages over log ratios. First, strictly

speaking, log ratios can only indicate comparative loss or gain of copy number rel-

ative to a reference rather than an actual genotype. For the APT and GADA test

pipeline, log ratio were converted from intensities using a population (all samples

in a plate) median as the reference, which could deviate from diploidy in common

CNV regions and lead to a more balanced ‘deletion’ ‘duplication’ ratio, as shown in

Table 2.1, which, if taken at face value, could give a misleading view of the nature of

CNVs in an individual’s genome. Second, discriminating high copy number states

is much harder using log ratios than using intensities especially when the reference’s

copy number is greater than two.

2.4.3 CNV discovery QC filter parameters

Due to differences in array specification, CNV discovery algorithm and purpose of

investigation, there is little consensus in what filters should be applied for CNV dis-

covery. Without an independent and high quality CNV call set in the same individ-

uals, previous studies often have had to rely on simulated data or indirect measures

[24, 26, 28]. Rather than using stringent filtering, I have instead used instead fairly

permissive filters in the production pipeline, as Birdseye calls with a LOD ≥ 10 al-



2.4. Discussion 45

ready have reasonably high specificity even for smaller events (in the size range of

1kb to 10kb (Table 2.9) or having 5 to 10 probes (data not shown)), as judged in the

comparisons with the ng42M call set.

2.4.4 CNV discovery sample QC

The sample QC method I developed for this pipeline is relatively simple yet effec-

tive. By quantifying the two primary data quality factors that affect CNV discovery

performance, spatial auto-correlation and noise, the method is able to clearly distin-

guish samples of acceptable quality, in which the number of CNV calls per sample

follows an expected inverse correlation with the level of noise, and samples that

are apparent outliers to this trend. This pattern of separation has been consistently

observed in several Affy6 datasets, and in principle should be applicable to CNV

discovery pipelines for other arrays and sequence data as well.

The QC methods can still be improved. In analyses described in later chapters in this

thesis, I found that data quality was not equally poor throughout the entire genome

and good quality CNV calls at specific loci could still be salvaged in some of the

samples that had failed the QC thresholds described here. Therefore, a finer QC

procedure that filters by chromosomes rather than by samples might prove useful.

2.4.5 CNV clustering versus joint calling

An ad hoc CNV clustering step was deployed at the end of the discovery pipeline

to combine CNVs called from each individual that likely correspond to the same

mutation event and to calculate a lower bound on the numbers of individuals carry-

ing such events in a population. Based on reciprocal overlap, the generality of this

method ensures it can be applied to all CNV call sets produced by various CNV dis-

covery pipelines. However, a better solution would be to statistically model CNVEs

and to call CNVs jointly from multiple individuals rather than calling CNVs one

individual at a time. As pointed out by Zöllner [40], sharing information across in-

dividuals should not only increase the sensitivity of calling common CNVs but also

make estimation of the border of CNVE more accurate.



46 CHAPTER 2. A CNV DISCOVERY PIPELINE FOR AFFYMETRIX 6.0

2.4.6 Merging split CNV calls

There have been a number of reports that large CNVs are sometimes incorrectly split

by both HMM-based methods [11, 33, 41] and segmentation-based methods [12, 27].

In this pipeline, I introduced a merging step after call QC and sample QC. For some

large CNVs, since each individual split calls produced by Birdseye did not meet the

call QC thresholds, they could not be caught by the merging step and hence missed

from the final call set. An alternative design would be to merge CNV calls prior

to any call filtering. However, it would be difficult to derive a LOD score for the

merged CNV call to allow it to be filtered along with other, unmerged calls. A neater

solution would be to reduce the probability of splitting large CNVs at the discovery

stage. HMM-based methods such as Birdseye currently often use distance-aware

transition probabilities wherein the likelihood of a probe having a different copy

number state from its previous probe increases as the distance to the previous probe

increases. These distance-aware transition probabilities are independent of the loca-

tion of the probe. With the current knowledge of spatial distribution of CNVs across

the genome, location-aware transition probabilities could be introduced. With the

availability of large amount of Affy6 data, one can calculate a signal-to-noise ratio

for every probe and weight probes on their signal-to-noise ratio during CNV calling.

Such information has been used in segmentation-based method [42] and can also be

incorporated into the Viterbi algorithm for HMM-based methods.

2.4.7 Application of this pipeline

This pipeline has been successfully applied to a number of cohorts genotyped using

Affy6, ranging from apparently healthy genomes and patient genomes with subtly

different patterns of CNV from controls (see following chapters), and should be ap-

plicable to the majority of disease cohorts. However, this pipeline was not designed

for CNV discovery in cancer genomes, since (i) the emission model parameters of

Birdseye were estimated only for the pre-defined states corresponding to copy num-

ber of integer 0–5, and (ii) spatial auto-correlation and level of noise as measures of

data quality only applies to genomes with a limited amount of CNV and the as-

sumption that the number and the deletion-duplication-ratio of CNVs discovered



2.4. Discussion 47

in one sample should be relatively comparable among individuals does not hold for

cancer genomes.




