
CHAPTER 4

CHARACTERIZING AND PREDICTING

HAPLOINSUFFICIENCY IN THE HUMAN

GENOME

4.1 Introduction

Haploinsufficiency, wherein a single functional copy of a gene is insufficient to

maintain the normal phenotype of a diploid organism, is a major cause of human

dominant diseases.

Dominance and recessiveness are fundamental concepts of Mendelian genetics. They

describe the relationship between a pair of alleles of a gene of a diploid organism

with respect to the phenotype they manifest. An allele, A, is dominant to another

allele, a, if the corresponding phenotype of Aa is different from aa but indistin-

guishable from AA. A mutation can be described as dominant or recessive if it

is dominant or recessive to the wildtype allele. The majority of observed natu-

rally occurring (deleterious) mutations are recessive. While Fisher explained this

as the result of selection for modifier genes that increase the fitness of heterozygotes

[105], Wright viewed it as simply a physiological consequence of metabolic path-

ways [106]. Experimental and theoretical work over the years suggested Wright’s

explanation is more plausible. Kacser and Burns [107] established an excellent math-
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ematical framework for understanding dominance/recessiveness at the molecular

level and they showed that recessiveness emerges naturally from the kinetic prop-

erties of multi-enzyme system when most enzymes are far from being saturated.

The dominant mutations and the genes that harbor these mutations, though be-

ing the minority, contribute to a disproportionate ∼48% (965/2006) of human au-

tosomal Mendelian disorders with known molecular basis recorded to date [108].

Wilkie categorized the molecular mechanisms of dominance into eight types [109],

including haploinsufficiency, increased gene dosage, ectopic or temporally altered

expression, increased or constitutive protein activity, dominant negative effect, al-

tered structural protein, toxic protein alterations and new protein function. Among

those types, haploinsufficiency is especially interesting, since (i) it is a relatively

common mechanism for dominant diseases as a variety of mutations can lead to

heterozygous loss-of-function; (ii) the ascertainment of loss-of-function mutations

is relatively easy compared to gain-of-function mutations; (iii) the direct impact is

solely through dosage reduction, which is easier for functional interpretation than

other types of dominant mutation; (iv) it can be regarded as a property of a gene

as the mutant allele is always defunct irrespective of the specific mutation. From a

theoretical perspective, Veitia showed that haploinsufficiency is more likely to oc-

cur in systems that require the physical interaction of distinct macromolecules such

as transcription regulation and assembly of protein complexes, in which the total

output of the system is a sigmoid function of the dosage of each single entity [110].

From a more biological perspective, Wilkie suggested that genes encoding struc-

tural proteins are required in large quantities in specific tissues, and that subunits

of protein complexes assembled under strict stoichiometry and regulatory proteins

working close to a threshold level for different actions are more likely to be haploin-

sufficient [109]. Examples of these types include type 1 collagen [111], ribosomal

proteins [112] and members of the Hox gene family [113].

Around three hundred genes have been reported haploinsufficient in human so far

and Dang et al showed that they are less likely, compared to the rest of the genes,

to be located in genomic regions susceptible to structural rearrangements [14]. This

is expected, as large genomic deletions, a frequent consequence of structural re-

arrangements, are a major type of loss-of-function (LOF) mutation. Deletions en-
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compassing the entire length of a gene unambiguously reduce the number of its

functional copies. Partial deletions can also cause LOF, if key elements involved in

the initialization of transcription, splicing and translation, such as promoter, splic-

ing signals and start codon, are affected. Even if those elements are intact, prema-

ture stop codons could be introduced by frame-shifting deletions or simple trun-

cating deletions, which likely subject the transcripts to nonsense-mediated decay,

by which these transcripts are digested rather than translated into mutant proteins

[114]. Indeed, large deletions have been found to be causal for diverse dominant

developmental disorders, which, in turn, has led to the discovery of a number of

haploinsufficient genes (HI genes), for example the discovery of the CHARGE syn-

drome gene, CHD7 [115].

However, not all LOF mutations are deleterious. It is clear from sequenced genomes

[116], exomes [117] and CNV surveys [12] that every genome, including those of ap-

parently healthy individuals studied as controls in disease studies, harbors tens of

unambiguous LOF mutations, including large genomic deletions. Some LOF mu-

tations can be even advantageous [118]. Genes deleted in apparently healthy in-

dividuals seem not to be haploinsufficient, at least not to the point that carriers of

heterozygous LOF mutations in these genes are kept from being recruited as con-

trols for disease studies. Besides these haplosufficient (HS) genes, and the currently

known HI genes, the dosage sensitivity of the majority of the genome remains elu-

sive. Previous studies have shown that sets of HI genes, such as genes implicated

in dominant diseases, have biased evolutionary and functional properties with re-

spect to the rest of the genome [119–121]. However, there has not been a direct and

systematic investigation of differences in properties between known HI genes and

haplosufficient (HS) genes and it is unknown which properties are most informative

in predicting dosage sensitivity.

With array-based copy number detection and the current generation of sequencing

technologies, our ability to discover genetic variants in patients is running far ahead

of our ability to interpret their functional impact and there is a pressing need to dis-

tinguish between benign and pathogenic variants. Computational methods have

been developed to predict the molecular impact of non-synonymous point muta-

tions. Some totally depend on sequence conservation at the site of the mutation,
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such as SubPSEC [122], Align-GVGD [123] and SIFT [124]. Some also consider struc-

tural and biochemical properties of the protein (stability, solubility, active sites, etc),

such as SNPs3D [125] and PolyPhen [126]. The output of these algorithms is of-

ten a continuous score or a category label indicating how damaging the mutation is

to the encoded protein. Although, these outputs have been shown to be useful in

identifying pathogenic mutations for Mendelian diseases [127], their power to pre-

dict impact on fitness at individual level might still be limited, especially in the case

of heterozygous mutation wherein one of the alleles still functions normally, as they

do not distinguish between the heterozygous and homozygous genotypes of a vari-

ant. Computational tools for predicting the functional impact of large copy number

variants are still in their infancy [128]. The problem differs from non-synonymous

point mutations in that large CNVs can affect multiple genes as well as non-coding

regions simultaneously, and thus their interpretation requires the integration of dif-

ferent functional annotations to maximize the information on all affected entities.

Application of such computational interpretative tools in clinical settings requires

careful consideration, as these tools are usually trained on collated sets of known

damaging and benign mutations that could well be a biased representation of the

true spectrum of causal mutations found in real patients or in the general popula-

tion. The scores or classifications generated by these computation tools are rarely

calibrated to diagnostic outcomes, and only infrequently are the distributions of

such scores compared between patients and population controls. Characterizing the

distribution of such scores in patient and population cohorts has become more fea-

sible in recent years with the growth in databases of pathogenic variants [129, 130]

as well as of variants found in large population surveys [12, 34, 77, 78, 131, 132].

Additionally, pathogenicity scores are often just one of the many different types of

evidence that influence diagnostic interpretation and needs to be integrated with the

other evidence in a sensible way. Most current genetic diagnostic practices adopt a

decision-tree-like procedure [133, 134]. A probabilistic process would be desirable

which could give every diagnosis a level of confidence. Goldgar et al suggested

a naïve Bayesian framework to integrate different, typically uncorrelated, types of

information and demonstrated its application to the interpretation of variants of un-

known clinical significance in the BRAC1 and BRAC2 genes [135].
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In the work described in this chapter, I first explored the genomic, functional and

evolutionary characteristics of HI genes and then I developed a computational ap-

proach to predict which genes might exhibit haploinsufficiency. I then investigated

the utility of the gene-based HI predictions to measure pathogenicity of large copy

number variants, both deletions and duplications. Finally, I proposed a probabilis-

tic diagnostic framework that integrates population distributions of pathogenicity

scores, with additional evidence to generate a level of confidence for the diagnosis

of causal CNVs, and potentially other forms of genetic variants.

4.2 Materials and methods

4.2.1 Control data

The controls include a set of 6,000 UK individuals recruited as common controls in

GWAS of 13 disease conditions undertaken by Wellcome Trust Case Control Consor-

tium 2 (WTCCC2), of which 3,000 samples are from the 1958 British Birth Cohort and

3,000 samples are from the UK Blood Service Control Group. Another set of 2,421

US control individuals, 1,442 of which have European ancestry and the rest with

African-American ancestry, are from a control cohort used in GWAS of Schizophre-

nia and Bipolar disease undertaken by Genetic Association Information Network

(GAIN). Samples were previously genotyped on Affymetrix genome-wide human

SNP array 6.0. Affymetrix 6.0 CEL files were obtained from Wellcome Trust Case

Control Consortium 2 for WTCCC2 controls and from the Database of Genotype

and Phenotype (dbGaP) through accession number phs000017 and phs000021 for

GAIN controls.

4.2.2 Asserting of loss of function genes

To identify protein-coding genes disrupted in a LOF manner, CNV calls made by

the calling pipeline described in Chapter 2 were compared to gene annotation pro-

vided by EnsEMBL [136]. Four scenarios were considered LOF to a protein-coding

transcript:



96 CHAPTER 4. CHARACTERIZING AND PREDICTING HAPLOINSUFFICIENCY

1. deletion of over 50% of coding sequence

2. deletion of the start codon or the first exon

3. deletion-disrupted-splicing

4. deletion-caused frame-shift

A gene was considered LOF if all of its transcripts were LOF. Under these criteria,

CNVs were identified in GWAS control individuals with a LOF impact on 2,677

genes. I defined haplosufficient genes as being those observed as LOF genes in two

or more GWAS control individuals.

4.2.3 Preparing possible predictor variables

4.2.3.1 Genomic properties

The length of gene, spliced transcript, 3’UTR and coding sequence and the num-

ber of exons were calculated on the basis of gene annotation downloaded from En-

sEMBL. The number of protein domains was retrieved from EnsEMBL build 50.

4.2.3.2 Evolutionary properties

dN/dS data was downloaded from EnsEMBL. Genomic Evolutionary Rate Profil-

ing (GERP) [137] score was downloaded from EBI. Two summed GERP values, one

for coding sequence and the other for promoter region, defined as bases within

±100bp of the transcription start site, were then calculated for all human protein-

coding transcripts according to EnsEMBL annotations and summarized by gene

using the median values. A third summed GERP value for conserved noncoding

elements around genes was calculated as the sum of GERP scores of all bases of

annotated conserved noncoding elements within an interval ±50kb of the gene. To

derive the list of conserved noncoding elements, I retrieved a list of conserved el-

ements throughout placental mammals from the UCSC genome browser (28-Way
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Most Cons track) and removed elements overlapping with exons according to En-

sEMBL gene annotation. The number and identity of paralogs were downloaded

from EnsEMBL.

4.2.3.3 Functional properties

Gene expression profiles in human were obtained from the GNF Atlas [138]. To-

tal expression levels were normalized across genes and the standard deviation of

expression across normal tissue types of each gene was used to indicate its tissue

specificity of expression. Genes over-expressed by at least 8 fold in human embry-

onic stem cells [139], fetal tissues [138] and mouse fetal tissues [140] were collectively

treated as genes expressed at embryonic stage. A binary coding was used to repre-

sent this property in which genes expressed at embryonic stage were labeled 1 and

the rest were labeled 0.

4.2.3.4 Network properties

Two interaction networks were used. One is a binary protein-protein interaction net-

work integrated from a number of sources [141–145]. Proteins were mapped to their

coding genes and interactions were not counted repeatedly if multiple proteins were

mapped to a single gene. This network included 70,632 interactions among 11,077

genes. The other is a probabilistic gene interaction network (a network of 470,217

links among 16,375 human genes calculated using methods previously described

for yeast [146] and worm [147] and derived from 22 publicly available genomics

datasets including DNA microarray data, protein-protein interactions, genetic in-

teractions, literature mining, comparative genomics, and orthologous transfer of

gene-gene functional associations from fly, worm, and yeast, where the weight of

a link is the log likelihood score of the interaction [146]. Measures of centrality (de-

gree, betweenness) and modularity (cluster coefficient) were calculated using MCL

[148]. Shortest path distance and sum of weight of interactions [147] were calculated

as measures of proximity to a group of ’seed’ genes.
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4.2.3.5 Other properties

A list of 300 genes implicated in cancer was downloaded from the COSMIC database

[149]. Growth rate of yeast heterozygous deletion strains were from Deutschbauer

et al [150].

4.2.4 Comparing predictor variables between HI and HS genes

For continuous variables, the two-tailed Mann-Whitney U test was performed to as-

sess if positive (haploinsufficient) and negative (haplosufficient) training data have

the same median value for potential predictor variables. For two-class categorical

features, Fisher’s exact tests were performed. Statistical tests were performed using

R (http://www.r-project.org).

4.2.5 Feature selection for the predictive model

I assessed different potential sets of predictor variables for input into the predictive

model using the following criteria: (i) they allow prediction for at least half the genes

in the genome, (ii) the Spearman correlation ρ2 between all pairs of predictor vari-

ables is less than 0.05, (iii) they are drawn from different broad categories (genomic,

evolutionary, functional and network) if possible, and (iv) achieve best performance

in model assessment.

4.2.6 Assessing model performance

The sensitivity of the prediction was plotted against 1 − speci f icity and the area

under the ROC curve (AUC) [151] was used as quantitative measure of the per-

formance of the model, where sensitivity = TP/ (TP + FN), and speci f icity =

TN/ (TN + FP). The other measure used is the Matthews correlation coefficients

(MCC) [152], defined as:

TP× TN − FP× FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

http://www.r-project.org


4.2. Materials and methods 99

To avoid over-fitting, the sensitivity and specificity were calculated using 10-fold

cross-validation. To overcome the variability caused by random partition involved

in 10-fold cross-validation, each such assessment was repeated 30 times and the

mean values were reported.

4.2.7 Multiple imputation

Multiple imputation was used to fill in (‘impute’) the missing values for predic-

tor variables incorporated in the model, namely ‘dN/dS ratio between human and

macaque’, ‘promoter conservation (GERP)’, and ‘gene network proximity to HI genes’,

except for ‘embryonic expression’ of which the genomic coverage is 100%. Since

‘gene network proximity to HI genes’ and ‘promoter conservation (GERP)’ are the

top two predictive variables, genes missing both values were removed. To achieve

better imputation, I included three additional gene properties, namely ‘CDS con-

servation (GERP)’, ‘spliced transcript length’ and ‘gene network betweenness cen-

trality’ in the imputation process. Twenty independent imputations of 20 iterations

were undertaken. In each iteration, imputation for each predictor variable was in

the order of increasing number of missing values using the predictive mean match-

ing method. The computation was done using the R package MICE [153].

4.2.8 Parameter estimation for the Bayesian diagnostic framework

The prior probability of a CNV being causal (p(C)) was estimated as the average

number of CNVs found per individual divided by the current diagnostic rate for

CNVs. Diagnostic rate and average number of CNVs found per individual were

taken from Buysee et al [134], which found on average 0.86 deletions and 0.73 du-

plications per individual and achieved a diagnostic rate of 0.1 using BAC array and

Agilent 44K array CGH.

The probability of a causal CNV being rare (population frequency < 1%) (p(F|C), F =

rare) was set at 1. The probability of a causal CNV being de novo (p(F|C), F =

de novo) was also taken from Buysee et al [134] in which 73% of the causal CNVs

found were de novo. The distribution of pathogenicity scores of de novo CNVs in DE-
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CIPHER [129] was used to approximate that of causal CNVs. The probability of a

causal and rare (or de novo) CNV having a pathogenicity score equals to x was taken

as the empirical estimation of probability density of the distribution of pathogenic-

ity scores of causal CNVs at x.

The probability of a benign CNV being rare (population frequency < 1%) (p(F|C̄), F =

rare) was estimated as the fraction of WTCCC2 and GAIN control CNVs with a car-

rier frequency < 1%. The probability of a benign CNV being de novo (p(F|C̄), F =

de novo) was also taken from Itsara et al [131] in which 0.44% of the CNVs found in

children of apparently healthy trios were de novo. The distribution of pathogenicity

scores of benign CNVs was generated using WTCCC2 and GAIN control CNVs after

excluding CNVs at known pathogenic loci recorded in DECIPHER. The probability

of a benign and rare (or de novo) CNV having a given pathogenicity score equals

to x was taken as the empirical estimation of probability density of the distribution

of pathogenicity scores of benign CNVs with a carrier frequency < 1% (or with an

occurrence of 1, i.e. singletons) at x. Since WTCCC2 and GAIN control CNVs were

discovered using arrays of considerably higher resolution than the CNVs discov-

ered by Buysee et al and the CNVs recorded in DECIPHER, deletions <180kb and

duplication <330kb were excluded prior to the above calculation in order to match

the number of CNVs discovered per individual.

4.2.9 Text mining through PubMed abstracts

The title and abstract of publications that contain the keyword ‘haploinsufficiency’

or ‘haploinsufficient’ were retrieved from PubMed on Aug 2010, using the search

term ‘haploinsufficient[Title/Abstract] OR haploinsufficiency[Title/Abstract] AND humans[MeSH

Terms]’. After cleaning the text, a word frequency table was compiled from all titles and

abstracts. A dictionary that maps gene names and synonyms to gene symbols was down-

loaded from HGNC [154]. For each title and abstract, the sentence containing the keyword

‘haploinsufficiency’ or ‘haploinsufficient’ was extracted and parsed by the GENIA tagger

[155] to break the sentence into chunks and tag the part-of-speech of each chunk. The chunk

immediately before the keyword, the noun chunk in front of a verb and a preposition in

front of the keyword were extracted. These chunks were first examined by GENIA tagger

to identify the named biomedical entity. If this failed, the noun in the chunk that appeared
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fewer than 10 times as recorded in the frequency table and contained numbers or capital let-

ters, or followed immediately by ‘gene’, ‘protein’ or ‘transcript’ was kept as potential gene

name. These potential gene names and named entities identified by the GENIA tagger were

looked up in the gene name dictionary to convert into unique HGNC gene symbols.
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4.3 Results

4.3.1 Characteristics of haploinsufficient genes

I first compiled a list of known human HI genes and a catalog of HS genes. Known HI

genes were collated from literature [14, 156]. The catalog of HS genes was generated from

genes disrupted in a loss-of-function manner in control individuals used in genome-wide

association studies by CNVs detected in data from the Affymetrix 6.0 chip (see Methods). I

identified 2,676 putative HS genes seen in any control individuals and 1,079 seen in two or

more controls (Figure 4.1), and used the latter set in most downstream analyses. Thus the

final list of HI and HS genes contains 301 and 1,079 genes respectively.

LOF
transcript

Deleting
>50% CDS?

Deleting
start codon/
1st exon?

Deleting
2n+1 splicing

signals?

Deleted
CDS != 3n?
(Frameshift)

Yes

No

No

NoYes

Yes

Yes

Transcripts 1

LOF pipeline LOF pipeline LOF pipeline

Transcripts 2 Transcripts N

Protein-coding
genes

. . . . . .

. . . . . .

Loss-of-function
gene

All LOF?

Yes

229805

45283

22861

1052
299001 LOF events

6302 LOF transcripts

2676 LOF genes

Figure 4.1: Procedure for LOF calling. The flow chart shows the pipeline used to identify LOF
genes. A gene with all its transcripts disrupted under any of the four considered LOF scenarios is
regarded as LOF. On the right, the numbers under each scenario denotes the number of detected
LOF events meeting that criterion. A LOF event is defined as loss of function of one transcript in
one individual.

To systematically assess the difference in properties between HI and HS genes, I gathered a

large number of annotations describing the evolutionary, functionary and interaction prop-

erties of genes (see Methods) and examined the distribution of each individual property in

HI and HS genes. I found that HI genes have consistently a more conserved coding se-
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quence (human-macaque dN/dS, p = 3.12×10−26), a less mutable promoter (p < 1×10−30),

paralogs with lower sequence similarity (p = 1.84×10−9), a longer spliced transcript (p <

1×10−30), a longer 3’UTR (p = 2.63×10−12), higher expression during early development

(p = 1.10×10−15), higher tissue specificity in expression (p = 2.29×10−6), more interaction

partners in both a protein-protein interaction network (p < 1×10−30) and a gene interaction

network (p < 1×10−30) and higher chances of interacting with other known HI genes (p <

1×10−30) and cancer genes (p < 1×10−30) (Figure 4.2). Interestingly, the growth rate of yeast

heterozygous deletion strains does not seem to differ between their HI human homologs and

HS human homologs, probably reflecting the vast functional differences between the major-

ity of yeast and human genes, except those involved in highly conserved cellular processes.

Z−
sc

or
e 

re
la

tiv
e 

to
 th

e 
ge

no
m

e

−0.5

0.0

0.5

1.0

HI
HS

−l
og

10
(p

)

30

25

20

15

10

5

0

hu
m

an
−c

hi
m

p 
dN

/d
S

hu
m

an
−m

ac
aq

ue
 d

N
/d

S

hu
m

an
−m

ou
se

 d
N

/d
S

C
D

S 
co

ns
er

va
tio

n 
(G

ER
P)

pr
om

ot
er

 c
on

se
rv

at
io

n 
(G

ER
P)

nu
m

be
r o

f p
ar

al
og

s

id
en

tit
y 

w
ith

 c
lo

se
st

 p
ar

al
og

nu
m

be
r o

f e
xo

ns

ge
ne

 le
ng

th

sp
lic

ed
 tr

an
sc

rip
t l

en
gt

h

C
D

S 
le

ng
th

3'
U

TR
 le

ng
th

nu
m

be
r o

f p
ro

te
in

 d
om

ai
ns

em
br

yo
ni

c 
ex

pr
es

si
on

ex
pr

es
si

on
 ti

ss
ue

 s
pe

ci
fic

ity

PP
I d

eg
re

e 
ce

nt
ra

lit
y

PP
I c

lu
st

er
 c

oe
ffi

ci
en

t

PP
I b

et
w

ee
nn

es
s 

ce
nt

ra
lit

y

PP
I d

is
ta

nc
e 

to
 H

I

PP
I p

ro
xi

m
ity

 to
 H

I

PP
I d

is
ta

nc
e 

to
 c

an
ce

r g
en

es

PP
I p

ro
xi

m
ity

 to
 c

an
ce

r g
en

es

ge
ne

 n
et

w
or

k 
de

gr
ee

 c
en

tra
lit

y

ge
ne

 n
et

w
or

k 
cl

us
te

r c
oe

ffi
ci

en
t

ge
ne

 n
et

w
or

k 
be

tw
ee

nn
es

s 
ce

nt
ra

lit
y

ge
ne

 n
et

w
or

k 
di

st
an

ce
 to

 H
I

ge
ne

 n
et

w
or

k 
pr

ox
im

ity
 to

 H
I

ge
ne

 n
et

w
or

k 
di

st
an

ce
 to

 c
an

ce
r g

en
es

ge
ne

 n
et

w
or

k 
pr

ox
im

ity
 to

 c
an

ce
r g

en
es

+/
− 

ye
as

t g
ro

w
th

 ra
te

Evolutionary properties Genomic properties Functional
properties

Protein-protein interaction
network properties

Probabilistic genetic interaction
network properties

Figure 4.2: Properties that distinguish HI genes from HS genes. The upper part of the figure
shows the comparison of the mean of each individual property between HI genes and HS genes.
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two times the standard error of the mean. The bars in the middle part present the transformed p
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0.05.
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Table 4.1: Genomic coverage of gene properties

Property #Genes Genomic coverage∗

Human-chimp dN/dS 15,084 79.50%

Human-macaque dN/dS 15,025 79.20%

Human-mouse dN/dS 14,386 75.80%

Coding sequence GERP 17,164 90.50%

Promoter GERP 16,807 88.70%

Number of paralogs
11,066 58.30%

Identity of closest paralog

Number of exons

Length of gene

Length of spliced transcript 17,700 93.30%

Length of coding sequence

Length of 3’UTR

Number of domains 14,722 88.50%

Embryonic expression† 18,962 (2421) 100% (12.8%)

Tissue specificity of expression 13,950 73.60%

PPI network properties‡ 11,077 58.40%

Genetic network properties‡ 14,664 77.30%

+/- Yeast growth rate 3,352 17.70%

∗ Calculated relative to the number of EnsEMBL annotated protein-coding genes that can be uniquely
mapped to HGNC symbol.

†
Since this is a binary factor where every gene is classified as either over-expressed or not in embryo
tissue, the coverage is 100%. The number and fraction of genes over-expressed in embryo is listed in
parenthesis.

‡ Including degree, cluster coefficient, betweenness, distance to known HI/cancer genes, proximity to
known HI/cancer genes.
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4.3.2 Training a model to classify HI and HS genes

The highly significant differences in genomic, evolutionary, functional and network prop-

erties between HI and HS genes suggest some combination of these properties may be pre-

dictive of haploinsufficiency. I used linear discriminant analysis (LDA) as the supervised

classifier, which, given multi-dimensional data and class labels, finds the linear combina-

tion of the given dimensions (linear discriminant) that maximizes the inter-class variance.

I trained the classifier using various sets of gene properties to obtain a classification model

and applied the model to estimate a probability of being HI (p(HI)) for all protein-coding

genes in the genome for which all the selected predictor variables were available. Finally, I

validated the predictions using external data sets.

The final result is presented below and is followed by discussion of more detailed ques-

tions: (i) which gene properties should be incorporated (Section 4.3.2.1) ? (ii) which training

dataset should be used (Section 4.3.2.2) ? (iii) does a more sophisticated classifier perform

better (Section 4.3.2.3) ? Section 4.3.2.4 presents the validation of prediction. Section 4.3.2.5

described some further improvements of the prediction of which the outcome is not in-

cluded below as they were undertaken at a later stage.

After assessing various different sets of predictor variables (see Methods, and below) my

initial classifier was trained with four predictor variables: dN/dS between human and

macaque, promoter conservation, embryonic expression and network proximity to known

HI genes. The model was obtained by training on 234 HI genes and 326 HS genes for which

the predictor variables were available. All predictor variables were scaled to the same vari-

ance before entering LDA so that their contribution can be measured by the coefficients of

the resulting linear discriminant. Proximity to known HI genes provided the most predictive

power. The model achieved an AUC of 0.81 and a MCC of 0.50 in ten-fold cross-validation

(Figure 4.3). I applied the model to estimate a probability of being HI for all 12,443 protein-

coding genes in the genome for which all four selected predictor variables were available.

The distribution of the predicted p(HI) is clearly bimodal, with a large peak near 0.2 and a

much smaller peak at 1 (Figure 4.4 left). The distributions of p(HI) for the HI and HS train-

ing sets differ significantly (p < 1×10−30, Mann-Whitney test or Kolmogorov-Smirnov test)

(Figure 4.4 right).
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Figure 4.3: Assessment of model performance. The ROC curve demonstrates the performance
of the model evaluated by 10-fold cross-validation. The lower right part shows the relative
contribution of each predictor variable to the prediction model measured by the absolute value of
the scaling factor of each predictor variable constituting the linear discriminant.



4.3. Results 107

Predicted probability of being haploinsufficient

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

Predicted probability of being haploinsufficient

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

30 HI training set
HS training set

Figure 4.4: Predicted probability of being haploinsufficient. The histogram on the left shows the
distribution of the predicted probability of being haploinsufficient (p(HI)) of all 12,443
predictable genes. The histogram on the right shows the distribution of the predicted p(HI) of
the HI training set (light grey) and the HS training set (dark grey).
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4.3.2.1 Integrating information from multiple ‘orthogonal’ predictor variables

improves classification

To assess the marginal utility of using more than one predictor variable, I trained sepa-

rate LDA models from the same set of genes (known HI genes plus HS genes) using only

one predictor variable at a time and compared the cross-validation performance with us-

ing all predictor variables. The latter out-performs models using single predictor variable

(max AUC = 0.78 for network proximity to known HI genes whereas the integrated model

achieves 0.81) (Figure 4.5), indicating that combining the predictor variables together gener-

ated a more predictive model than considering any of the individual predictor variables in

isolation.
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Figure 4.5: Prediction performance of single predictor variable and integrated model. Mean
AUC of each model in 10-fold cross-validation repeated 30 times are shown as vertical bars with
the actual values label at the top.
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Since each gene property annotation is only available for a fraction of genes in the genome

(Table 4.1), there is a trade-off between the possible increase in prediction performance by

considering more gene properties as predictor variables and the decrease in the coverage

of genes one could predict. Therefore, I aimed to select a small number of most predic-

tive properties that are relatively ‘orthogonal’ in the kind of information they provide (see

Methods).

After evaluating a number of possible combinations of predictor variables, which all had

similar performance (Figure 4.6), I selected a model comprising of ‘dN/dS between human

and macaque’, ‘promoter conservation’, ‘embryonic expression’ and ‘network proximity to

known HI genes’.
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Figure 4.6: Comparison of model performance. The AUCs of each combination of predictor
variables in 10-fold cross validation repeated 30 times are shown as vertical bars with error bars
represent 2 times standard deviation. The mean AUC (red), mean MCC (green) and the overall
gene coverage (blue) are labeled on top of each bar. The bar pointed by the black arrowhead is
the chosen combination of predictor variables.
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4.3.2.2 Using HS genes as negative training set improves classification

Previous studies [119–121] have compared HI-related gene sets against the rest of the genome

to describe their characteristics. I investigated how the choice of negative training set in-

fluences the performance of my prediction model. I generated gene sets of different sizes

randomly sampled from non-HI genes with complete predictor variable information and

compared the cross-validation performance (AUC) resulting from the use of these gene sets

as the negative training set to the use of the HS gene set as the negative training set (Fig-

ure 4.7). The use of a judiciously selected HS gene set is clearly advantageous.
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Figure 4.7: Prediction performance of using HS and genome background as negative training
set. The plot compares the cross-validation performances resulted from using different gene sets
as negative training set. The triangle represents HS gene set generated from CNV data. The
squares represent different sizes of random gene sets sampled from the genome after excluding
known HI genes. For each size, the gene set was sampled 20 times and the standard deviation of
the resulting performances is shown as error bar.
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I further investigated if our model performance is sensitive to the CNV discovery and fil-

tering parameters, which determines the stringency of the HS gene set. I examined the

influence on cross-validation performance of using different confidence thresholds (Birds-

eye LOD score) in CNV discovery and population frequency when generating HS gene set.

A greater LOD score indicates higher confidence and thus a more stringent CNV set. Simi-

larly, the more frequently a gene is found LOF in apparently healthy individuals, the more

likely it is haplosufficient, and thus the negative training set is more stringent. I found that

the LOD score threshold has little influence on the model performance, within the range I

assessed (Figure 4.8). The use of recurrent LOF genes exhibits an apparent improvement of

performance over the use of all LOF genes under most LOD thresholds. Further increase in

stringency by requiring higher frequency results in further reduction of the size of negative

training set, but little if any increase in performance of the prediction model. Therefore, I

adopted the negative training set generated under ‘LOD > 10’ and ‘found in at least two

individuals’ in further analysis.
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Figure 4.8: Prediction performance under different parameters used in generation of negative
training set. The cross-validation performance (AUC) resulted from using negative training sets
generated with different parameters are represented by blue vertical bars with axis on the left.
The sizes of these negative training sets are represented by red vertical bars with axis on the
right. Bars are grouped by the CNV calling parameters, LOD score, and within each group the
darkness of coloring represent different frequency threshold used to define HS as shown in the
legend. The bar pointed by the black arrowhead represents parameters and corresponding
negative training set adopted in further analysis.

4.3.2.3 LDA achieves similar classification performance compared to a more so-

phisticated classifier

I investigated if the use of support vector machine (SVM), a more sophisticated machine

learning method, as classifier would improve prediction performance. An SVM model was

trained on the same training set as LDA with optimized parameters (gamma = 0.1, cost

= 1) and class weights. The performance was examined by self-validation, leave-one-out
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cross-validation and 10-fold cross-validation. Despite being more sophisticated and com-

putational expensive, SVM exhibits no appreciable improvement over LDA (Figure 4.9).
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Figure 4.9: Comparing the prediction performance of LDA and SVM. The plot shows the
comparison of prediction performance between LDA (dark bar) and SVM (light bar) using three
approaches (from left to right): self-validation, leave-one-out cross-validation and 10-fold
cross-validation. In the first two comparisons, SVM exhibits only very marginal improvement over
LDA, whereas in the third LDA is marginally better.

4.3.2.4 Validating haploinsufficiency predictions using external datasets

It is not possible to assess how well-calibrated the predicted probabilities of being HI are, as

the fraction of human genes that exhibit HI is not known. I therefore sought to validate these

predictions using indirect approaches that examined the distribution of p(HI) in indepen-

dent gene sets enriched for HI. As there is no credible estimation of the number of human

HI genes, in some of the following validation analyses I arbitrarily labeled the genes in the
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top 10% of p(HI) as being predicted HI genes. However, the results were robust against this

threshold being varied by at least a factor of at least 2.

First, I asked if genes implicated in human dominant diseases were enriched in our pre-

dicted HI genes relative to recessive-disease-causing genes. I retrieved 571 and 772 genes

implicated in dominant and recessive disease from the OMIM and hOMIM[119] database,

respectively, with no information regarding haploinsufficiency (and thus not included in our

training data), and compared the distribution of predicted p(HI) against each other. The HI

status could be predicted for 392 dominant genes and 606 recessive genes, of which 87 and

39 were predicted as being HI, respectively. This 4.14 fold enrichment of genes predicted to

be HI within the dominant disease gene set is highly significant (p = 4.46×10−13, Fisher’s

exact test). Simply comparing the distribution of p(HI) values for these dominant and re-

cessive genes also shows a highly significant shift towards high p(HI) values in dominant

relative to recessive genes (p = 4.44×10−16, Mann-Whitney U test) (Figure 4.10).

Second, I asked if heterozygous knockouts of the orthologs of predicted human HI genes

are more likely to cause severe phenotypic abnormalities in mice. For this purpose, I ex-

tracted a list of 1,523 mouse genes whose heterozygous knockout cause various abnormal

phenotypes from the MGI database, mapped them onto orthologous genes in humans, re-

moved orthologs to genes in our training gene sets and extracted the predicted p(HI) for the

remainder. HI status could be predicted for the orthologs of 1,063 of these genes and 260

(24.5%) of them were predicted HI, indicating a 2.45 fold enrichment (p < 1×10−30, Fisher’s

exact test) (Figure 4.11). If focusing on those genes of which the heterozygous LOF pheno-

types involve prenatal lethality (MP:0002080), the fold of enrichment increased to 4.38 (p =

3.60×10−12, Fisher’s exact test) (28 predicted as HI out of 64 that could be predicted).
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Figure 4.10: Enrichment of predicted HI genes in dominant genes relative to recessive genes.
This plot shows the fold of enrichment of predicted HI genes in dominant genes relative to
recessive genes (thick solid line) as a function of the proportion of predictions labeled as being
haploinsufficient. Also plotted is the transformed p value (-log10p) of the corresponding Fisher’s
exact test (thick dashed line). The horizontal dashed line marks the p value of 0.05.
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Figure 4.11: Enrichment of predicted HI genes in orthologs of mouse haploinsufficient genes and
mouse haplolethal genes. This plot shows the fold of enrichment of predicted HI genes in human
orthologs of mouse haploinsufficient genes (black solid line) and mouse haplolethal genes (black
dashed line) relative to the genome average as a function of the proportion of predictions labeled
as being haploinsufficient. The two lines in grey show the transformed p values of the
corresponding Fisher’s exact test. The horizontal dashed line marks the p value of 0.05.
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4.3.2.5 Improving prediction with expanded training data and improved predic-

tor variables

Having achieved reasonable performance with my initial predictive model of gene haploin-

sufficiency and shown that neither changing the classifier nor how the HS gene training

data are filtered, I explored different potential strategies to improve upon the performance

of this predictive model. In this section I describe two, potentially complementary strate-

gies: (i) Including new and improved predictor variables into the predictive model, and

(ii) using improved positive control training data (i.e. known HI genes).

4.3.2.5.1 Inclusion of new and improved predictor variables

In the light of the emerging role of conserved noncoding elements in regulation of gene ex-

pression, especially of developmental genes known to be dosage sensitive, I investigated

several variables that summarize the extent of conserved noncoding sequence within and

flanking a gene. I settled on the sum of GERP scores of all bases of conserved non-coding el-

ements within an interval±50kb of the gene as a candidate predictor variable. This property

differs significantly between HI and HS genes (p = 4.0×10−54, Mann-Whitney U test).

The coverage of the protein-protein interaction network was also expanded from 11,077

genes and 70,632 interactions to 16,390 genes and 1,240,972 interactions by incorporating

data from the STRING database [157]. As a result, the number of genes predictable with

the same predictor variables as selected in Section 4.3.2.1 increased to 13,030 (+5%) without

imputation or, if using the predictor variables optimized for the updated gene properties as

described in Section 4.3.2.5.2, increased to 16,017 (+29%). I also updated the gene property

annotations to EnsEMBL 53.

4.3.2.5.2 Improved HI training set through literature mining and manual cura-

tion

The known HI genes used as positive training set was initially taken from Dang et al and

Seidman et al, which reflected the current knowledge in Nov 2007. I performed a literature

searching on Aug 2010 to include more, newly discovered HI genes. Through text mining

of PubMed abstracts (see Methods), 138 genes were added to the HI set, resulting in a com-

bined set of 439 genes. 358 of these genes for which a PubMed abstract is available were
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manually curated. After curation of the entire set, 40 genes were removed, 55 were labeled

as with weak evidence (see Appendix A). 72 genes that are involved in cancer [149] were

also removed, since seemingly dominant inheritance could be the result of somatic loss of

heterozygosity instead of truly genetic haploinsufficiency in the case of cancer.

To evaluate the expanded and manually curated HI set, the model was re-trained both

with and without genes with weak evidence using the updated version of the same pre-

dictor variables as Section 4.3.2.1 and the performance were measured by two approaches:

(i) the cross-validation AUC (AUCCV) and (ii) the AUC for classifying pathogenic and be-

nign CNVs using model-prediction-based LOD scores (AUCLOD) . The model trained with

the more stringent set exhibited higher cross-validation AUC than the model trained with

more relaxed set (0.77 vs 0.75) and the two had the same variant classification AUC (0.98).

Whereas the more stringent model achieved the same cross-validation AUC as the model

trained on the initial training set after removing cancer genes, both all were noticeably lower

than the model trained on the initial training set with the earlier predictor variables (0.81).

Therefore, I explored if other combinations of predictor variables perform better with the

updated annotations and training set. A comparison of performance statistics is shown in

(Table 4.2). Based on both cross-validation AUC and variant classification AUC, I selected

the model that incorporates the predictor variables: ‘GERP score of conserved non-coding

elements’, ‘median size of spliced transcripts’, ‘identity to closest paralog’ and ‘embryonic

expression’ and ‘proximity to other known HI genes in protein-protein interaction network’,

and I trained this model using the more stringent updated known HI gene set. The new pre-

dictive model achieved higher cross-validation AUC (0.86 vs 0.81) and similar variant clas-

sification AUC (0.96 vs 0.96) to the un-updated model, while improving prediction coverage

without imputation (16,017 vs 12,443). However, when testing if genes found with LOF sub-

stitutions and indels in sequenced exomes have lower p(HI) than the genome background

as did in Section 4.3.3.4, the difference was less significant despite still being in the same

direction (0.13 vs 0.21, p = 2.2×10−12, Mann-Whitney test). The difference was even smaller

when comparing p(HI) of genes found with LOF substitutions in a larger exome-sequencing

dataset that consisted of ∼300 apparently healthy individuals (0.18 vs 0.21, p = 4.5×10−3,

Mann-Whitney test). Thus although the cross-validation seems to indicate improved per-

formance from this later model, the comparisons with external datasets of different types,

does not back this up.
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Table 4.2: Performance comparison of prediction models

HI training set Predictors #HI training #Predictable AUCCV AUCLOD

CNC_GERP
PPI_LLS2HI 237 16,017 0.866 0.915

Initial∗

CNC_GERP
PPI_LLS2HI
TRANS_SIZE
PARALOG_DIST
EARLY_DEV

237 16,017 0.869 0.945

MACAQUE_DNDS
PROMOTER_GERP
EARLY_DEV
GGI_LLS2HI

237 13,030 0.765 0.97

CNC_GERP
PPI_LLS2HI 312 16,017 0.864 0.934

Expanded

CNC_GERP
PPI_LLS2HI
TRANS_SIZE
PARALOG_DIST
EARLY_DEV

312 16,017 0.864 0.964

MACAQUE_DNDS
PROMOTER_GERP
EARLY_DEV
GGI_LLS2HI

312 13,030 0.765 0.975

∗ Cancer genes removed
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4.3.3 Using HI gene predictions to assess pathogenicity of dele-

tions

4.3.3.1 Defining a genomic-interval-based pathogenicity score

I investigated how my gene-based predictions of haploinsufficiency might be used to dis-

criminate between benign and pathogenic genic deletions. I considered that a natural way to

score the probability of a deletion of a genomic interval causing a haploinsufficiency pheno-

type is to generate a LOD (log-odds) score comparing the probability that none of the genes

covered contained in the interval will cause haploinsufficiency with the probability that at

least one of the genes will cause haploinsufficiency, as shown schematically in Figure 4.12.

This LOD score is calculated using the formula below:

LOD = ln
(

1−∏ (1− p(HI))
∏ (1− p(HI))

)
, and assumes that there is no statistical interaction between the genes. Worked examples

of this calculation are shown in the figure below. Higher LOD scores indicate deletions are

more likely to be pathogenic as a result of haploinsufficiency.

4.3.3.2 Discriminating benign and pathogenic deletions

I then considered how these deletion-based haploinsufficiency scores might be used to as-

sess whether a genic deletion observed in a patient might cause their disease. One way of

framing probabilistically this intuitively simple question is to estimate the opposing prob-

ability, that the deletion is unrelated to the patient’s disease status. This can be equated to

the probability of drawing an individual at random from a healthy control population with

a deletion at least as pathogenic as the deletion in the patient. This probability can be es-

timated empirically as the proportion of healthy controls with a genic deletion having the

same or greater haploinsufficiency LOD score.

To test this approach, and to avoid circular reasoning, I retained a subset (2,322 GWAS con-

trols used in studies of schizophrenia and bipolar disease) of the 8,458 apparently healthy

individuals from which the HS genes in the original training data were derived and gener-

ated a new set of p(HI) by training on the reduced HS gene set identified from the rest of

apparently healthy individuals using the same method as described in Section 4.3.2. After

imputation of predictor variables (see Methods), this new training set contains 287 HI genes
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Figure 4.12: Calculation of deletion-based LOD scores and the distribution of LOD score of
control individuals and pathogenic de novo deletions. The upper portion of the figure is a
schematic demonstration of the calculation of the deletion-based LOD score. The contribution of
genes with high p(HI) is accordingly weighted in a probabilistic way. The deletion with the
largest LOD score in each individual is recorded and their distribution is shown in the lower
portion of the figure. The distribution of maximal LOD scores of 2,322 control individuals are
shown in green and the distribution of LOD scores of 487 pathogenic de novo deletions from
DECIPHER are in red. Using the control distribution as the null, the probability a deletion is
pathogenic can be assessed.
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and 594 HS genes (234 HI genes and 270 HS genes before imputation). The model trained

from this reduced training set achieved a similar AUC and MCC in 10-fold cross-validation

as the model trained from the original training set (after imputation: AUC = 0.84, MCC =

0.55; before imputation: AUC = 0.81, MCC = 0.50).

The resulting predictions are also highly consistent with the original predictions (correla-

tion between p(HI) is 0.99 both before and after imputation). I used the predictions based

on the dataset that includes imputed predictor variables to allow the more reliable assertion

of haploinsufficiency of a genomic interval from the vast majority of the genes affected by

its deletion (17,456 genes with p(HI) after imputation as opposed to 12,443 before impu-

tation). Based on these predictions I determined the distribution of the maximal deletion

haploinsufficiency scores for the retained subset of 2,322 apparently healthy individuals.

To compare this distribution of ‘most pathogenic’ deletions discovered in apparently healthy

individuals with truly pathogenic deletions, I collected 487 de novo deletions identified from

array-based CNV detection and classified as being putatively pathogenic in the DECIPHER

database [129]. I focused exclusively on deletions known to be de novo variants, as I infer

that their pathogenicity has been ascribed primarily on the basis of their inheritance status,

and not their gene content. The distributions of maximal LOD scores in GWAS controls and

LOD scores of pathogenic DECIPHER deletions are shown in Figure 4.12. The pathogenic

deletions have strikingly significantly higher LOD scores than deletions observed in GWAS

controls (p < 1×10−30, Mann-Whitney U test). I observed that for 92% of the pathogenic

deletions there was a probability of less than 5% of drawing an individual at random from

our control population with a genic deletion of equal or greater LOD score, and for 83% of

pathogenic deletions there was a less than 1% probability.

I computed ROC curves to compare three different approaches for discriminating between

pathogenic deletions and deletions seen in controls: (i) LOD scores, (ii) the length of the dele-

tion, and (iii) the number of genes in the deletion (Figure 4.13). These ROC curves clearly

show that the haploinsufficiency LOD score is the best metric of the three for discriminating

between pathogenic deletions in patients and deletions seen in controls.



4.3. Results 123

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

AUC = 0.938
AUC = 0.908
AUC = 0.962

LOD score
number of genes deleted
size of deletion

Figure 4.13: Comparison of different metrics for assessing deletion pathogenicity. Three ROC
curves represent the performance of three different methods for distinguishing between
pathogenic deletions from DECIPHER and the most pathogenic deletions observed in control
individuals. The blue curve denotes using LOD score calculated from predicted probability of
exhibiting haploinsufficiency as the metric of pathogenicity. The green curve denotes using the
number of deleted genes as the metric, in which case the most pathogenic deletion per individual
is the one containing greatest number of genes in that individual. The red curve denotes using
the size of deletion as the discriminating metric.

I investigated whether the distribution of maximal LOD scores is significantly different be-

tween 1,433 European-Americans (EA) and 889 African-Americans (AA) GWAS controls,

which, if true, might suggest the necessity of using ethnicity matched population pathogenic-

ity score distributions. I observed that there was not a significant difference in median hap-

loinsufficiency scores in EA and AA populations (p = 0.71, Mann-Whitney U test). The EA
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controls have a slightly longer tail of more pathogenic deletions (e.g. a higher proportion

of EA controls have deletions with LOD scores in the top 1% in the pooled distribution,

Table 4.3), which is consistent with the previous suggestion that purifying selection is more

efficient in African populations due to their larger effective population sizes [158, 159]. How-

ever, this difference is again not significant (p = 0.24, Fisher’s exact test).

Table 4.3: Population-specific properties of LOF CNVs

Population
Average

#(LOF CNV)
per individual

Average
#(predictable
LOF gene) per

individual

Average
#(LOF gene)
in CNV with
max LOD per
individual

Average of
max LOD per
individual

Proportion
with max

LOD ≥ 99%
of the pooled
population

European
American 7.41 10.5 2.85 -0.36 1.18%

African
American 7.35 10.1 2.74 -0.38 0.79%

4.3.3.3 Extension to duplications

Since the probability of a gene being haploinsufficient partly reflects its general dosage sensi-

tivity, it might be reasonable to expect abnormally increased dosage of at least some HI genes

could also be pathogenic, as exemplified by the PMP22 gene contained in the lim1.5Mb re-

gion at 17p11.2 of which duplication causes Charcot-Marie-Tooth syndrome type 1A and

deletion causes Hereditary Neuropathy with Liability to Pressure Palsies. Therefore, I in-

vestigated if the interval-based haploinsufficiency LOD score could also be applied to clas-

sifying the pathogenicity of duplications. All computational procedures were identical to

those for deletions, except the slight difference that the LOD scores for duplications were

calculated from the p(HI) of genes contained in a genomic interval instead of LOF genes.

I again compared the ROC curves of using LOD scores, the length of the duplication, and

the number of genes in the duplication (Figure 4.14). The LOD score exhibit similar per-

formance to the size of duplication in discriminating between pathogenic duplications and

duplications seen in controls. Both LOD score and size performed better than the number

of genes.
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Figure 4.14: Comparison of different metrics for assessing duplication pathogenicity. Three ROC
curves represent the performance of three different methods for distinguishing between
pathogenic duplications from DECIPHER and the most pathogenic duplications observed in
control individuals. The blue curve denotes using LOD score calculated from predicted
probability of exhibiting haploinsufficiency as the metric of pathogenicity. The green curve
denotes using the number of duplicated genes as the metric, in which case the most pathogenic
duplication per individual is the one containing greatest number of genes in that individual. The
red curve denotes using the size of duplication as the discriminating metric.

4.3.3.4 Extension to other forms of genetic variation

I investigated whether the gene-based probabilities of haploinsufficiency that I have gener-

ated are of general utility across different forms of genetic variation. If this is indeed the

case then I should expect that genes harboring loss-of-function substitutions or small in-
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dels in apparently healthy individuals should not have a high p(HI). I identified 349 genes

as having LOF substitutions and indels in 12 recently sequenced exomes [116], of which I

could estimate p(HI) for 176 that were not also in the HS training set (and thus represent a

fair set for independent comparisons). These genes are highly significantly enriched among

genes with low probabilities of exhibiting haploinsufficiency (p = 1.06×10−20 when compar-

ing to the genome, and p < 1×10−30 when comparing to known HI genes, Mann-Whitney U

test). This result implies that there are not substantial differences between genes that tolerate

whole gene deletions and those that tolerate smaller loss-of-function variants.

Moreover, by utilizing a large gene-resequencing dataset that contains 47,576 SNPs found by

direct resequencing of 11,404 protein-coding genes in 35 individuals (20 European-Americans

(EA) and 15 African-Americans (AA)) [160], I studied the allele frequency spectrum of dif-

ferent types of genic variants with respect to p(HI) of the genes. I hypothesized that genes

under stronger negative selection should exhibit an enrichment of rare alleles in their allele

frequency spectrum relative to genes under less selective constraint. There are 14,420 non-

synonymous SNPs and 16,213 synonymous SNPs in the dataset found within genes with

predicted p(HI). I examined their derived allele frequency (DAF) spectrum as a function of

p(HI) of the genes in which they are located (Figure 4.15).

Regardless of population composition, the DAF spectrum of nonsynonymous SNPs are sig-

nificantly more skewed towards rare variants in gene sets with higher p(HI) than in those

with lower p(HI), as assessed by a one-sided Mann-Whitney U test comparing the median

of the allele frequency spectrum of nonsynonymous variants in genes with p(HI) in the top

20% with that of nonsynonymous variants in genes with p(HI) in the bottom 80%. The p

value for this test in EA was 3.95×10−3, and in AA was 2.85×10−7. As a control, the differ-

ence in DAF of synonymous SNPs between high p(HI) genes and low p(HI) genes was not

significant (EA p = 0.127, AA p = 0.057). These results suggest greater selective constraint

on genes predicted to exhibit haploinsufficiency.
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Figure 4.15: Derived allele frequency spectrum of variants in different gene sets. This figure
shows the spectrum of derived allele frequency (DAF, represented here as counts of derived allele
in the population) of nonsynonymous SNPs and synonymous SNPs discovered by resequencing of
human genes in a) 15 African Americans and b) 20 European Americans. In each plot, DAF of
variants located in genes of different p(HI) are compared side by side, where bars of decreasing
darkness represent quantiles of decreasing p(HI), such that the 0–25% quartile is that with the
highest probability of being haploinsufficient.
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4.3.4 Probabilistic CNV diagnosis

In Section 4.3.2 and 4.3.3, I demonstrated the usefulness of gene-based p(HI) and its deriva-

tive, the interval-based haploinsufficiency LOD score in discriminating between benign and

pathogenic deletions by showing that known pathogenic deletions have a LOD score dis-

tribution significantly higher than that of even the ‘most deleterious’ deletions found in ap-

parently healthy individuals. However, in clinical diagnostics the primary question is how

likely a variant is pathogenic/causal given all sources of evidence (e.g. pathogenic score).

This is a typical Bayesian problem of which the answer is affected by both prior belief and

evidence. Naturally, I modeled this problem using a Bayesian framework and tried to put

it in the context of the general diagnostic process. I applied this framework to CNV diag-

nostics and examined two frequently encountered scenarios in clinical diagnostics wherein

(i) the inheritance status of the variant is unknown or (ii) the variant is known to have arisen

de novo.

4.3.4.1 A Bayesian framework for CNV diagnostics

The diagnostic question: ‘is this variant, in this patient, sufficient to explain their clinical

phenotype?’ can be answered by assessing the posterior probability that this variant is

causal given all the available evidence, p(C|E), where C denotes that the variant is causal

and E denotes all available evidence. This probability is difficult to measure directly. In-

stead, the probability to observe such evidence given the variant is causal (and not causal),

p(E|C) (and p(E|C̄)), can be estimated directly from medical or population data and can be

used to derive p(C|E) according to the Bayes Rule:

p(C|E) = p(C)p(E|C)
p(E)

=
p(C)p(E|C)

p(C)p(E|C) + p(C̄)p(E|C̄)

, where p(C) is the prior probability a variant is causal. Evidence involved in diagno-

sis of genetic variants includes both dichotomous or categorical conditions and continu-

ous measurements. The former are often used as filters, such as ‘overlapping with known

disease-causing genes’ and ‘inherited from similarly affected parents’. The latter can be

transformed into filters with defined thresholds, such as the division of common and rare

variants based on population frequency thresholds, or used directly as numeric variables,

such as pathogenic scores. Therefore, the space of evidence can be split into S, denoting that

the variant has a measure of pathogenicity equal to x, and F, representing all other pieces



4.3. Results 129

of evidence that can be used as filters. In this way, the posterior probability and the Bayes

factor becomes p(C|S, F) and p(S, F|C), respectively. The latter can be further expanded to

p(F|C)p(S|C, F), so that

p(C|S, F) =
p(C)p(F|C)p(S|C, F)

p(C)p(F|C)p(S|C, F) + p(C̄)p(F|C̄)p(S|C̄, F)

, or in its likelihood ratio form,

LR =
p(C|S, F)
p(C̄|S, F)

=
p(C)p(F|C)p(S|C, F)
p(C̄)p(F|C̄)p(S|C̄, F)

p(C|S, F) =
LR

1 + LR

p(F|C) (or p(F|C̄)) is the probability the variant passes this filter F given the variant is causal

(or benign), and p(S|C, F) (or p(S|C̄, F)) is the probability of the variant having a measure

of pathogenicity equals to x given it is causal (or benign) and passes the filter F.

p(F|C) can be estimated as the proportion of causal variants discovered in large patient stud-

ies that pass the filter, and p(S|C, F) can be estimated as the proportion of causal variants

passing the filter that have a pathogenic measure equal to x. p(F|C̄) and p(S|C̄, F) are best

estimated from all benign variants, from both patients and healthy individuals. In practice,

benign variants are usually not reported and recorded in patient studies, and depending

on the particular filter, F, such information is sometimes not collected for variants found

in population-based or control studies (e.g. whether a variant is de novo or not). Therefore,

p(F|C̄) and p(S|C̄, F) often have to be estimated from approximate distributions. Variants

found in control individuals should be similar enough to all benign variants provided the

sample size of the control cohort is large. For certain filters, the set of variants that pass

them may be obtained through proxy properties. After the approximate variant sets are

constructed, p(F|C̄) and p(S|C̄, F) can be estimated as for causal variants. With different

F, these components need to be estimated from different sets of variants and the posterior

probability changes accordingly. Below I consider two categories of possibly causal variant

that are frequently encountered in clinical diagnostics: (i) the variant can be shown to be

rare, but is of known inheritance status, and (ii) the variant can be shown to be de novo.
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Table 4.4: Estimated parameters of the diagnostic framework

Variant type Size range F p(C) p(F|C) p(F|C̄)

deletion >180k rare 0.12 1 0.34

deletion >180k de novo 0.12 0.73 0.0044

duplication >330k rare 0.14 1 0.38

duplication >330k de novo 0.14 0.73 0.0044

4.3.4.2 The variant is rare, and of unknown inheritance status

Under this scenario, often the only information on the variant is that it is not already known

to be pathogenic and is not commonly seen in the population, therefore F denotes the filter

that requires variants to be rare as defined by having a population frequency <1%. The esti-

mated value of the parameters: p(C), p(F|C) and p(F|C̄) were listed in Table 4.4 (see Meth-

ods). I considered either the LOD score or the variant size as the measure of pathogenic-

ity. The distribution of LOD scores and variant sizes for rare casual and benign CNVs,

from which p(S|C, F) and p(S|C̄, F) can be calculated, were shown in Figure 4.16–4.19. For

both deletions and duplications, the resulting posterior probability p(C|S, F) increases as

the LOD score, or the size of the variant, becomes greater. In order to achieve a confidence

level of 95%, a rare deletion of unknown inheritance status needs to be larger than 2.1Mb or

have a LOD score greater than 7.2, and a rare duplication needs to be larger than 3.2Mb or

with a LOD score greater than 15.5.

4.3.4.3 The variant is de novo

The de novo rate of causal and benign CNVs is even harder to obtain as confirming the

de novo status would require the genotype information of both the parents and the child,

i.e. the ‘trio’, and reaching a reasonable estimate requires genotyping a large number of

such trios. There are a few studies that have reported CNV diagnosis in hundreds to more

than a thousand patients including parents in which low-resolution array-CGH were used

to detect large CNVs and de novo status were confirmed where possible [134, 161]. These

studies are arguably the best sources from which one can estimate the de novo rate of causal

CNVs. However, even with this data the number of de novo CNV from any one study is
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Figure 4.16: The posterior probability of a deletion being causal as a function of pathogenicity
score. The distribution of pathogenicity score for causal (red) and benign (green) deletions are
shown in A and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95
and 0.99.

too small to generate a meaningful distribution of measure of pathogenicity. Therefore, the

distribution of pathogenicity measures for de novo CNVs was approximated using known

de novo causal CNVs recorded in DECIPHER. Studies reporting de novo CNVs discovered in

apparently healthy individuals are even scarcer. I took the benign de novo rate from Itsara

et al, which investigated the rate of de novo CNVs in 772 transmissions in pedigrees without

neurocognitive disease genotyped on median- to high-resolution SNP genotyping arrays

and I approximated the distribution of pathogenicity scores for benign de novo CNVs using

singleton CNVs found in WTCCC2 and GAIN controls.

The estimated values of the parameters are show in Table 4.4 and the causal and benign dis-

tributions of measure of pathogenicity are shown in Figure 4.16–4.19. As expected, for both

deletions and duplications, the size or the LOD score required for a variant to have a prob-

ability of being causal greater than 0.95 is much smaller than that required for a variant of

which the inheritance status is unknown. However, being de novo alone does not guarantee

pathogenicity as the probability of being a causal variant is still not convincingly high when

the variant is small (0.8 at size = 500kb) or with very low LOD score (0.7 at LOD = -2).
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Figure 4.17: The posterior probability of a deletion being causal as a function of size. The
distribution of pathogenicity score for causal (red) and benign (green) deletions are shown in A
and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95 and 0.99.
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Figure 4.18: The posterior probability of a duplication being causal as a function of
pathogenicity score. The distribution of pathogenicity score for causal (red) and benign (green)
duplications are shown in A and B. In C, the two horizontal dashed lines represent posterior
probabilities of 0.95 and 0.99.
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Figure 4.19: The posterior probability of a deletion being causal as a function of size. The
distribution of pathogenicity score for causal (red) and benign (green) deletions are shown in A
and B. In C, the two horizontal dashed lines represent posterior probabilities of 0.95 and 0.99.
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4.4 Discussion

In this chapter, I described the collection of human HI genes and HS genes, their differences

in genomic, evolutionary, functional and network properties, and a computational method

that distinguishes the two and predicts the probability of exhibiting haploinsufficiency for

human protein-coding genes of unknown dosage sensitivity. A measure of pathogenicity

for large genic copy number variants was developed on the basis of the HI predictions. A

probabilistic diagnostic framework was designed to transform evidence of pathogenicity of

a patient variant into confidence of diagnosis by taking into account the population variance

of that measure of pathogenicity.

The traditional view that recessiveness is the norm of deleterious mutations is supported by

earlier mutagenesis screen of model organisms [162]. In human, the ∼300 known HI genes

only account for ∼1.5% of the protein-coding genome. However, haploinsufficiency, like

most concepts in Mendelian genetics, is a qualitative, rather than quantitative, description

based on a phenotype-specific definition of insufficiency, Insensitive or incomplete pheno-

typing or diagnosis could lead to underestimation of the proportion of the genome that is

actually dosage sensitive. In genetics studies of model organisms, it is common that only the

most prominent phenotypic consequence of a mutation or traits that are in relation with cer-

tain prior expectation are examined and reported. Abnormalities that are subtle and require

specially designed tests to reveal or occur in completely unexpected tissues or cells can often

be overlooked. Even in human, wherein measurements of physiological and morphological

abnormalities is thought to be much more sensitive and thorough, complete phenotyping

is never guaranteed. For example, the mutant allele of the gene GJB2, which is causal for

the most frequent form of recessive congenital hearing loss, was recently found responsi-

ble for increased epidermal thickness in a dominant or semi-dominant manner [163, 164].

Thickened epiderm is obviously a less prominent trait that could not be detected without

skin ultrasonography or similar technologies. In this chapter, the definition of haploinsuffi-

ciency has focused on severe clinical phenotypes (broadly-defined) as sufficiency relates to

being qualified to be recruited as an apparently healthy control in a study of common dis-

ease susceptibility. With more complete phenotyping and hence a more stringent definition

of sufficiency, the haploinsufficient/dosage-sensitive proportion of the genome might grow

larger. In addition, most early work of Fisher, Wright and others that emphasized the dom-

inance of the wildtype allele focused on metabolic enzymes. We now know that metabolic

enzymes are less likely to be haploinsufficient whereas transcription factors, structural pro-
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teins and subunits of protein complexes are more likely to be haploinsufficient due to the

kinetic properties of the respective molecular system in which they function [107, 165, 166].

As transcription factors alone account 5–10% of the human protein-coding genome [167],

the currently ∼300 known human HI genes is likely just a tip of the iceberg.

Not surprisingly, the known HI genes were found to be larger in size, which is a general

characteristic of disease genes [168, 169], though it might be attributed to ascertainment

bias, as, all things being equal, it is easier to find multiple families with causal mutations in

the same gene if the gene is larger. HI genes were found to be more conserved in their coding

sequence than HS genes, which is consistent with previous comparison between dominant

and recessive disease genes [119]. In addition, the promoter sequences of HI genes are more

conserved as well, which might suggest transcription regulation of these genes, as a part of

dosage control mechanism, is under greater purifying selection, although this needs to be

confirmed by human variation data. HI genes were found to have fewer paralogs and/or

paralogs with lower sequence similarity than HS genes. This is consistent with a yeast study

[150] which reported that HI genes tend not to have paralogs and suggested having a close

paralog may provide a buffer against the effects of haploinsufficiency, but contradicts an-

other report by Kondrashov et al [120] that found human dominant disease genes tend to

have more paralogs than recessive disease genes and argued that such is the result of pos-

itive selection. However, the latter finding is not strictly comparable to this study, since

homozygous LOF mutation of recessive disease genes can cause severe phenotypic defects

and are hence under selection and less likely to be found in large genomic deletions, from

which the HS gene set used in this study are collected. Indeed, there is a significant under-

representation (p = 0.0023) of recessive disease genes in the HS gene set. The strong en-

richment of olfactory receptor genes in the HS set (13% compared to 2% genome-wide, p

< 2.2×10−16) could also affect the result. With respect to their spatiotemporal expression

patterns, HI genes are more tissue specific and active during early development, which is

expected since many of the haploinsufficient transcription factors play vital and tissue spe-

cific role in early developmental processes such as patterning, morphogenesis and organ

development [156]. As for network properties, HI genes are found to be more central and

closer to one another. The latter may support the view that haploinsufficiency tend to occur

in certain molecular systems (early-development-related signaling and transcription regu-

lation pathways, protein complexes), but may also be confounded by the ascertainment bias

that search for novel disease genes tends to follow interaction partners of known disease

genes.
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The prediction of HI was implemented by training a statistical classifier on known HI and

HS genes using gene properties that best distinguish the two as predictor variables. This

is not a strictly mechanism-based approach, but an approach that exploits the correlation

between haploinsufficiency and other gene properties. Though the performance of the pre-

diction, as assessed by cross-validation using the training data, is moderately good (AUC =

0.81 without imputation of predictors and 0.84 with imputation; when requiring 80% sensi-

tivity, the version without imputation has 70% specificity and version with imputation has

75% specificity), it is better than using any single gene property alone and has been validated

to be able to prioritize potential real genes. Proximity to other known HI genes within gene

or protein networks was found to be the most predictive property of which the contribu-

tion to performance cannot be fully explained by sequence conservation, tissue-specificity

of expression, or other gene properties. Incomplete coverage of all genes in the genome

by gene-gene and protein-protein networks is therefore also the major factor limiting the

genome coverage of these predictions. The predictions should be substantially improved

in both accuracy and coverage with the future generation of more complete and accurate

human genetic interaction networks.

Although haploinsufficiency can be regarded as the property of a single gene, phenotypic

manifestation of any genetic mutation, including heterozygous LOF mutation, is, strict speak-

ing, the output of a perturbed multi-layer system of interacting molecules, cells and organs.

Consequently, dosage sensitivity of a gene could vary across different genetic backgrounds.

For example, heterozygous deletion of Tbx5 causes embryonic lethality in 129S mice, but

produces viable mice on B6 background [170]. In humans, patients carrying a second large

CNV in addition to the micro-deletion at 16p12.1 exhibit much severer developmental delay

than those having the 16p12.1 micro-deletion alone [91]. Therefore, the ideal prediction of

haploinsufficiency should come from a system biology approach that models all interacting

genes and biochemical reactions in a cell mathematically similar to that of Kacers and Burns

[107] in which haploinsufficiency could be determined by numeric simulation and single

component sensitivity analysis.

The measure of pathogenicity of a CNV was defined as the log of odds that at least one

affected gene is haploinsufficient. As the likelihoods of being haploinsufficient of individual

genes are combined in such a probabilistic way, its application is not limited to individual

genomic intervals. For example, one can measure the genome-wide pathogenic burden of

an individual by calculating the odds that at least one gene is haploinsufficient out of all

genes affected by any CNV, or other LOF variants, in this individual’s genome. However,
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there are also obvious caveats of such measure. First, the measure can only be applied to

CNVs affecting protein-coding genes for which a prediction is available. Second, potential

functions of intergenic sequences are ignored. Third, the effects of each gene are assumed

to be independent. To tackle the first two limitations, one could consider features that are

not bound to genes, such as the density of repeat elements or the number of conserved

non-coding elements. However, these properties need to be combined with the likelihoods

of genes exhibiting haploinsufficiency in a meaningful way. For the third caveat, the idea

solution would again be a system biology approach as described above, substituting the

single-component sensitivity analysis with a multiple-component sensitivity analysis.

The probabilistic diagnostic framework provides a natural way to integrate both qualitative

and quantitative measures of pathogenicity and produces quantified confidence of diagno-

sis by considering the population variance of the quantitative measure of pathogenicity. Be-

ing a Bayesian method, it has the advantage of not naively assuming that different measures

are independent, but at the same time it requires knowledge of the conditional distribution

of the quantitative measure of pathogenicity, which is not always readily available. In its

application to rare and de novo CNVs in Section 4.3.4, the patient and control distribution

of pathogenicity score under the condition that the CNVs are de novo were unavailable and

were substituted with approximated distributions. Another problem, which is common for

all Bayesian inferences, is the requirement of a proper prior. The prior probability of a vari-

ant being causal can be affected by a number of factors, for example, the specific type of

disease and the filters or tests having been applied before the application of this framework.

As for CNVs, since different CNV discovery platforms vary vastly in their sensitivity and

resolution, which could have profound impact on the population distribution of the quan-

titative measure of pathogenicity, the prior should be estimated from the same or similar

platform that the population distribution of pathogenicity scores is generated.

Previously, de novo CNVs discovered in patients were highly likely to be diagnosed as being

a causal variant in clinical practice. As early CNV discovery technologies, such as cyto-

genetic methods and low-resolution array CGH could only find very large events, those

diagnoses might largely hold correct. However, in recent years, with improved CNV dis-

covery technology and accumulated CNV datasets, it is known that de novo CNVs, especially

smaller ones, arise at an appreciable rate (estimates ranging from 1×10−2 to 3×10−2 CNVs

per haploid genome per generation [89, 131, 171]) in healthy individuals. Therefore, there is

growing recommendation for not relying solely on the de novo status in the interpretation of

variant causality [133, 172]. My application of this diagnostic framework to de novo CNVs
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not only supported this view, but also provides a quantitative level of confidence as a func-

tion of the size of the variant or its pathogenicity score. However, these quantitative values

should be interpreted with caution at this stage, and are not mature enough for clinical im-

plantation, for several reasons. First, as the distribution of CNVs and functional sequences

is uneven across the genome whereas the size or the pathogenicity score of CNVs are locus-

independent measures. In addition, these results are highly dependent on the CNV discov-

ery platform and the prior. Furthermore, the use of approximate conditional distributions

of pathogenicity scores has introduced additional uncertainty. With the increasing applica-

tion of array CGH, high-resolution genotyping array and medical sequencing, and hence

ascertainment of a more complete spectrum of variants in patient genomes, this diagnostic

framework is expected to produce a more accurate estimation of confidence to aid the diag-

nosis of novel, rare variants for which detailed locus-specific information is unavailable.




