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Abstract

The genetic basis of human evolutionary adaptation and the resulting
population diversification has been of great interest. A common approach has been
to scan genomes for population-genetic signatures of positive selection, yielding
vast lists of thousands of candidates. Here, we first took advantage of these data to
perform a meta-analysis of published selection screens and assessed their
concordance using a Selection Support Index (SSI) which weights, combines and
evaluates signals of selection on a per-gene basis. Our analysis revealed both the
low overall agreement of previous genome-wide selection scans and some strong
candidates. The focus of positive selection studies in humans thus needs to move
from candidate locus discovery to pinpointing underlying causal variants and
further investigation of their biological significance. We developed a new
computational method for this, Fine-Mapping of Adaptive Variation (FineMAV),
which combines population differentiation, derived allele frequency and a measure
of molecular functionality to prioritise candidate selected variants for functional
follow-up. We calibrated and tested FineMAV using eight ‘gold standard’ examples
of experimentally-validated causal variants underlying positive selection, and were
able to pick out the known functional allele in all instances. We used this approach
to identify the best candidate variants driving local adaptations in the 1000
Genomes Project Phase 3 SNP dataset including Africans, admixed Americans,
Europeans, and East and South Asians. FineMAV top hits were overall enriched for
high SSI scores, and we also report many novel examples, including rs6048066 in
TGM3 associated with curly hair and rs7547313 in SPTA1 associated with
erythrocyte shape and possibly malaria resistance in Africa, as well as rs201075024
in PRSS53 linked to hair shape in South Asia. We extended our analyses to additional
populations including Egyptians, Ethiopians, Greeks, Lebanese and non-admixed
Native Americans, picking up interesting hits in Peruvian Quechua and Ethiopian
Gumuz in genes involved in immunity and energy metabolism. The highest scoring
FineMAV variant in Native Americans was rs34890031 in LRGUK associated with
spermatogenesis. We then performed functional follow-up on chosen candidates.

Our in vitro studies focused on comparison of the ancestral and derived forms of the
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OR10H3 olfactory receptor, and of FUTZ involved in susceptibility to viruses, but
were limited by technical issues. We also investigated the functions of six genes
showing strong signals of selection using mouse knock-outs. The curly vibrissae
(whiskers) of Prss53 knock-out mice supports our hypothesis of selection in PRSS53
due to hair shape in humans, while Hercl knock-out mice show a range of
abnormalities affecting hearing, blood plasma chemistry and energy metabolism.
Finally, we initiated the generation of nine mouse knock-ins carrying a human
selected allele, which will be subjected to future collaborative phenotyping,
focusing on hair shape, reproduction, energy metabolism and hearing as
appropriate. Our work is thus facilitating the identification of causative alleles

driving human adaptations.
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Abstract

The genetic basis of human evolutionary adaptation and the resulting
population diversification has been of great interest. A common approach has been
to scan genomes for population-genetic signatures of positive selection, yielding
vast lists of thousands of candidates. Here, we first took advantage of these data to
perform a meta-analysis of published selection screens and assessed their
concordance using a Selection Support Index (SSI) which weights, combines and
evaluates signals of selection on a per-gene basis. Our analysis revealed both the
low overall agreement of previous genome-wide selection scans and some strong
candidates. The focus of positive selection studies in humans thus needs to move
from candidate locus discovery to pinpointing underlying causal variants and
further investigation of their biological significance. We developed a new
computational method for this, Fine-Mapping of Adaptive Variation (FineMAV),
which combines population differentiation, derived allele frequency and a measure
of molecular functionality to prioritise candidate selected variants for functional
follow-up. We calibrated and tested FineMAV using eight ‘gold standard’ examples
of experimentally-validated causal variants underlying positive selection, and were
able to pick out the known functional allele in all instances. We used this approach
to identify the best candidate variants driving local adaptations in the 1000
Genomes Project Phase 3 SNP dataset including Africans, admixed Americans,
Europeans, and East and South Asians. FineMAV top hits were overall enriched for
high SSI scores, and we also report many novel examples, including rs6048066 in
TGM3 associated with curly hair and rs7547313 in SPTA1 associated with
erythrocyte shape and possibly malaria resistance in Africa, as well as rs201075024
in PRSS53 linked to hair shape in South Asia. We extended our analyses to additional
populations including Egyptians, Ethiopians, Greeks, Lebanese and non-admixed
Native Americans, picking up interesting hits in Peruvian Quechua and Ethiopian
Gumuz in genes involved in immunity and energy metabolism. The highest scoring
FineMAV variant in Native Americans was rs34890031 in LRGUK associated with
spermatogenesis. We then performed functional follow-up on chosen candidates.

Our in vitro studies focused on comparison of the ancestral and derived forms of the
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OR10H3 olfactory receptor, and of FUTZ involved in susceptibility to viruses, but
were limited by technical issues. We also investigated the functions of six genes
showing strong signals of selection using mouse knock-outs. The curly vibrissae
(whiskers) of Prss53 knock-out mice supports our hypothesis of selection in PRSS53
due to hair shape in humans, while Hercl knock-out mice show a range of
abnormalities affecting hearing, blood plasma chemistry and energy metabolism.
Finally, we initiated the generation of nine mouse knock-ins carrying a human
selected allele, which will be subjected to future collaborative phenotyping,
focusing on hair shape, reproduction, energy metabolism and hearing as
appropriate. Our work is thus facilitating the identification of causative alleles

driving human adaptations.
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1. Introduction

1.1. Natural selection

1.1.1. Types of natural selection

The theory of natural selection was introduced by Charles R. Darwin and
Alfred R. Wallace in 1858, later described in detail in Darwin’s book, ‘On the Origin
of Species by Means of Natural Selection, or the Preservation of Favored Races in
the Struggle for Life’ (1). The process of natural selection is based on the assumption
that individuals more suited to the environment are more likely to survive and
reproduce, passing on their heritable traits to future generations (so-called survival
of the fittest), so that the frequency of fitness-enhancing traits increases in the
population over time (1, 2). Individuals with less favourable phenotypes are less
likely to survive and reproduce, as all organisms are exposed to severe competition
(2). According to the natural selection theory, populations change to adapt to their
environments, which leads to the accumulation of variation over time and perhaps
formation of a new species: a process of divergence that explains the diversity of
living organisms (1). The key elements of the natural selection theory were inter-
individual variation, inheritance with modification and the multiplication of new
forms, although the hereditary mechanism and mutagenesis were unknown at that
time (1). The advances in understanding the mechanism of inheritance made by
Gregor J. Mendel and Thomas H. Morgan became the core of classical genetics and
eventually enabled putting evolution to be understood in a molecular context (3).
The integration of genetics with the theory of natural selection by Ronald A. Fisher,
Sewall G. Wright and John B. S. Haldane formed the basis for population genetics
and the modern evolutionary synthesis (4-7).

The concept of natural selection in genetics has evolved since then, and
different types of selection were recognised, depending on whether an allele is

advantageous or deleterious and on the fitness conferred by the genotype (8). In
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this thesis we will use terminology proposed by Akey and Nielsen to describe
simplified modes of natural selection (8, 9). Imagine an initial (ancestral) single
allele A; and a new (derived) allele Az introduced by mutation into the population.
Their possible genotype combinations are A;A;, Ai1A2 and A242, each with its own
genotype fitness. We can represent the fitness of the new genotypes relative to the
fitness of the initial ancestral genotype (equal to 1) as 1 + hs and 1 + s for A;Az and
Az2Azrespectively, where h is the heterozygote effect and s is the selection coefficient
(8).If s = O there is no difference in fitness between genotypes and allele frequencies
are assumed to evolve naturally. Directional selection occurs if their fitnesses are
not all equal (8, 9). In the case of incomplete dominance (0 < h < 1) and s > 0, the
new mutation is advantageous and will rise in frequency in the population until
fixation, as Az carriers are better adapted and favoured by the positive selection (8).
If s < 0, then the newly occurred mutation is deleterious and will be purged from the
population by purifying (or negative) selection as A, carriers are less fit (8). Random
new mutations are more likely to be deleterious than beneficial and are constantly
selected against and removed from the gene pool before achieving appreciable
frequencies (a phenomenon called background selection) resulting in conserved
genomic regions with little or no variation (10-12). Finally, in case of over-dominant
selection acting on an advantageous allele (s > 0 and h > 1) the heterozygote has the
highest relative fitness (so-called heterozygote advantage) (8). Selection of this
kind is called balancing selection and multiple alleles are maintained within the
gene pool (9, 10, 13). There are other types of selection defined by the phenotypic
outcome rather than the underlying pattern of variability that are commonly used
in the population-genetic literature e.g. diversifying and stabilizing selection.
Diversifying (or disruptive) selection is described as a trend where extreme
phenotypes are favoured over intermediate phenotypes; while stabilizing selection
favours intermediate phenotypic values (10). Furthermore, another type of
selection proposed by Darwin is referred to as sexual selection, driven by
competition for mates, which explains sexually dimorphic features or increased
prevalence of sexually attractive traits (1). It is important to realise that allele
frequencies in a population (especially those of selectively neutral alleles that do
not affect the organism’s fitness) are also subjected to random fluctuation known

as genetic drift (9, 14, 15). New mutations that arise in the population may increase
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in prevalence due to genetic drift, even though they do not confer any selective
advantage (9). Finally, selection efficiency depends critically on the effective
population size, with small populations being more prone to genetic drift and thus

experiencing less efficient selection (9).
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1.1.2. Modes of positive selection

Here we define positive selection as any type of selection where new
mutations or existing variants are advantageous (with positive selection
coefficients) and there is no heterozygote advantage. There has been great interest
in positive selection as it is the primary mechanism of adaptation and the evolution
of novelty (9, 10). Selective episodes leave their signatures in the human genome
and thus can be recognised from the pattern of nucleotide polymorphisms in a
population sample due to genetic hitchhiking (16-18). The classical hard sweep
model assumes that a new advantageous mutation rapidly spreading to fixation or
high prevalence affects the pattern of linked variation (16, 18, 19). Its genetic
characteristics include high-frequency long-range haplotypes with a concomitant
reduced level of genetic variation, large allele frequency differences between
populations, and changes to the allele frequency spectrum (e.g. increased fraction
of derived common and rare alleles, depletion of intermediate-frequency variation)
(Figure 1), although these features can also arise by genetic drift or purifying
selection and are confounded by population demography (9, 16, 18-23). The size of
the genomic region that is subjected to hitchhiking depends mainly on the local
recombination rate and the selection coefficient, and its signature decreases with
increasing distance from the selected allele (24). Ongoing, or incomplete sweep
refers to any stage of selective sweep before reaching fixation, while fixed sweep is
said to be complete (19).

However, it has been argued that hard sweeps were rather rare in recent
human evolution and it is unusual for a new mutation to be rapidly driven to fixation
(18, 20, 21). Just the opposite, it seems that most of the variants increase in
frequency rather slowly and steadily, without reaching fixation and creating
extensive LD patterns, because of limited dispersion over large geographic areas
and low selection coefficients (18, 20, 21). Furthermore, the waiting time for new
mutations can be extremely long and hard sweeps may be an inefficient response
to a rapidly changing environment (18). Therefore, selection may more often
operate on pre-existing variation that has evolved neutrally in the population until

it becomes advantageous under certain conditions (‘selection on standing
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Figure 1. Hard sweep model. The blue lines indicate individual haplotypes, and derived SNP alleles
are represented as circles. Population A and B with identical haplotype structure are geographically
isolated with no gene flow between them. A new advantageous mutation (indicated by a star)
appears de novo on one haplotype in population A and rapidly spreads to fixation bringing nearby
linked derived alleles to high frequency. This creates a region of extended homozygosity (high LD)
as there were not enough time for recombination to break it down. It also causes a population-wide
reduction in genetic diversity around selected mutation as SNP-alleles that do not occur on the
selected haplotype will be lost. After the sweep is complete, new mutations appear against a
homogenous background creating an excess of rare alleles. Finally, differences in allele frequencies
between population A and B reflects the population-specific adaptation.
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variation’) (18, 20, 21). Selection from standing variation is difficult to detect using
most standard approaches, because the selected variant often exists on multiple
haplotype backgrounds (so called ‘soft sweep’) and has weaker effects on closely-
linked sites, so does not produce the classical selective sweep signatures of strong
linkage disequilibrium (LD) and site frequency spectrum (SFS) changes, although it
might exhibit an increased proportion of alleles at intermediate frequency (10, 17,
18, 20, 21, 25, 26). Similarly, the decrease in diversity around the standing variant
is subtle (10, 25). Another alternative model of positive selection on standing
variation is polygenic adaptation, defined as selection at many loci simultaneously
affecting quantitative traits composed of hundreds of alleles of small individual
effect sizes (17, 18, 21) e.g. selection on standing variants associated with greater
height in Northern Europe (27-29). Polygenic selection could allow rapid
adaptation (18). Signatures of selection on a complex trait are even more
problematic to detect as they are composed of subtle shifts in allele frequencies at
multiple loci while not producing classical sweep signatures (17, 18, 21). Finally,
adaptive variation might have been acquired from archaic hominins in the process
of admixture (so-called adaptive introgression), as modern humans were shown to
have had limited interbreeding with archaic Eurasian hominins after out of Africa
migration (30). The signature of adaptive introgression is the presence of a high
frequency haplotype characterised by strong LD in a particular population that is
also found in the archaic source population but is absent from populations depleted
of archaic admixture (30).

[t is difficult to estimate the proportions of hard sweeps, soft sweeps and
polygenic adaptation, as well as adaptive introgression, in human evolution, but it
seems that much of human adaptation may not have produced classical signatures

of selective sweeps (18, 20).
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1.1.3. Human population diversification

The out-of-Africa expansion ~60,000 years ago exposed humans to a diverse
range of new environments and selective pressures including new pathogens,
climatic conditions and diets (18, 23, 31). Genetic drift and local adaptations in
spatially distant populations consequently led to geographically-structured genetic
and phenotypic diversification, illustrated by the inter-population variation
observed for numerous morphological and physiological traits, such as skin
pigmentation (18, 21, 23). As gene flow between groups decreases with increasing
distance, members of the same local group are usually more closely related to each
other than to members of groups living in distant geographical areas (32). Traits
that show extreme differentiation between populations are thus candidates for
local adaptations (10). Pigmentation is not the only trait whose phenotypic values
strongly associate with geography. Similar trends were proposed for hair shape
(Figure 2) and body shape (e.g. larger, stockier body shape in cold climates due to
thermal efficiency or the ‘pygmy’ phenotype in tropical rainforests) (18, 33, 34).
Apart from the latitude pattern, altitude-associated adaptation has also been
reported, i.e. physiological adaptations to low oxygen at high-altitudes (35, 36). We
do not know, however, to what extent these phenotypic differences between
populations are driven by selection. It is important to realise that genetic and
morphological variation is often gradual, and phenotypic boundaries are not
discrete but often show continuous clines correlated with geography (32). In
addition, populations with similar physical characteristics can be genetically very
different, partially due to convergent evolution (32). Finally, the genetic diversity of
humans is relatively low compared with many other species (37-39) and the
relationships between ethnicity, patterns of human genetic variation, and ancestry,
are complicated (32, 40).

Not only are the genetic variants underlying differences between
populations crucial for understanding recent human evolution and present-day
human diversity, but they may also be clinically relevant, as the prevalence of some
common diseases and disease susceptibilities and drug responses varies across

regions e.g. the higher odds of developing hypertension in African Americans



30

Wavy - variable
Oval in corss-section

Coarse - straight
Cylindrical corss-section

Figure 2. Global human hair texture distribution. Reproduced after (41).
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compared with European Americans as a result of past positive selection favoring
salt and liquid retention in hot African climate (21, 42, 43). Similarly, according to
the thrifty genotype hypothesis, the high prevalence of obesity and type 2 diabetes
might be a result of an adaptation to a harsh past environment and food shortages:
an attractive hypothesis that nevertheless has some limited genetic support (42, 44-
47). The field of evolutionary medicine (also called Darwinian medicine) argues
that evolutionary biology and studies of natural selection could improve our
understanding of the origins and causes of complex diseases (42, 48, 49). Medical
implications of adaptive variation arise because natural selection can only act in a
direct way on functionally-important variants driving phenotypic variation (14,
22); selected alleles usually confer protective effects (e.g. pathogen resistance
CASP12 (50), CCR5 (51), FUTZ (52) deficiency alleles), but paradoxically, may turn
harmful in non-traditional environments (42, 44, 45, 53, 54) e.g. CPT1A (55, 56) and
APOL1 (57, 58), or in a homozygous state, e.g. sickle-cell alleles, Tay-Sachs disease,
cystic fibrosis and Phenylketonuria (59-62). Regions targeted by positive selection
might be disease-causing not only due to alleles that lost their advantage or
balancing selection, but also through the effects of genetic hitch-hiking of
moderately deleterious variants (19, 22,42, 63). Some have argued that hitchhiking,
rather than genetic drift, might be the primary force shaping the pattern of neutral
variation (so-called genetic draft) (64, 65). All of the above might contribute to
disease-causing mutations that segregate at relatively high frequencies (22, 66).
Identification of the genetic variants that underlie regional adaptations and proving
their functionality might thus sometimes facilitate disease-related research and
shed more light on the diversification of modern humans and refine the human

genotype-phenotype map.
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1.2. Methods to detect positive selection

using genomic data

Advances in genotyping and sequencing technologies laid the foundation for
population genomics and enabled moving from hypothesis-driven candidate gene
studies toward hypothesis-generating genome-wide screens for selection (8).
Whole genome analyses provide a less biased way of searching for selection
signatures, free from a priori assumptions regarding putatively selected loci (8).
The common approaches applied in population genomics to distinguish neutral
variation affected by genetic drift from variation subjected to selection involve:

1. i) Calculation of the summary statistic informative about selection in
empirical data, ii) comparison of the results against data generated by
model-based simulations of genetic drift, iii) rejection or acceptance of the
null hypothesis of neutrality (10). A common problem with such an
approach is that population-genetic models often make wunrealistic
assumptions about the demography of the populations, such as a constant
population size and no population structure, and sometimes uniform
distribution of recombination and mutation rates across the genome (9).
Many neutrality tests have been shown to be highly sensitive to such
unrealistic demographic assumptions (9, 67).

2. i) Calculation of the summary statistic informative about selection across the
whole genome, ii) construction of the empirical distribution of this genome-
wide statistic, iii) investigation of the top outliers in the extreme tail of the
empirical distribution as selection candidates (8). Such a nonparametric
outlier approach is based on the assumption that demographic history and
stochastic processes affect the whole genome equally, while selection acts in
a locus-specific manner placing selected targets in the extreme tails of the
genome-wide distribution (8, 68). However, presence in the extreme tail of
empirical distribution alone does not prove that a candidate was indeed
targeted by selection, but rather that it shows unusual characteristics

relative to the rest of the genome consistent with the hypothesis of selection
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(8). In particular, we do not know how prevalent selection has been and

what percentage of the genome should be considered an extreme outlier.
We will present the rationale behind the most commonly used approaches to detect
positive selection in the following sections. An overview of the main classes of
methods recovering selection events of different time-scales and modes is given in

Table 1.

Table 1. Comparison of time-scale and modes of positive selection detected by different methods.
‘Relative-rate’ refers to comparative methods based on inter-species comparisons explained in the
next section. Diff - population differentiation based methods; SFS - site frequency spectrum based
methods; LD - linkage disequilibrium based methods; Comp - composite methods. + indicates that a
method is sensitive to given type of selection; - indicates lack of power; (+) indicates low power. Old
selection stands for species-wide adaptation that occurred during the divergence of species. Recent
selection stands for recent or ongoing selection after out-of-Africa population split.

Selection time/mode Relative rate Diff SFS LD Comp
Old selection . ) ] ] ]
(~200 kya - 6 Mya)
g = Hard sweep - + + + N
.§ 2 Soft sweep - + . (+) +)
° 3 Polygenic
é i selection ) i - - -
guw Adaptive
gl introgression ) + ) ®) (+)
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1.2.1. Macroevolutionary relative-rate

approaches

Relative-rate comparative methods are based on comparisons between
different species and their relative rates of genetic substitution (10). Although they
can in theory be applied to within-species comparisons, they are usually used to
identify selective events that happened in the deep past at the macroevolutionary
level, as their effect is stronger in divergence data than in polymorphism data and
they are not suitable for recent selection (9, 10). Detecting positive selection using
such methods involves comparison of homologous sequences across related taxa
and searching for acceleration in the rate of evolution indicated by an excess of
substitutions relative to the baseline mutation rate (10). Relative-rate methods
have been widely used to identify genomic regions showing a significantly
accelerated rate of substitution in the human lineage (69-72).

Probably the most common relative-rate method is the dy/ds ration,
sometimes referred to as w or K,/K,. This method compares the ratio of
nonsynonymous mutations per nonsynonymous site to the number of synonymous
mutations per nonsynonymous site in a multiple species alignment, and can be
applied either to a region of interest or a single codon (9). Assuming that selection
acts on nonsynonymous mutations, negative selection will reduce the number of
nonsynonymous mutations, while continued positive selection will increase the
number of nonsynonymous mutations, relative to the number of functionally
neutral synonymous mutations that serve as a baseline substitution rate (9). In case
of neutrality, synonymous and nonsynonymous substitutions should occur at the
same relative rate, and therefore dy/ds = 1. If negative selection operates, dy/ds < 1,
indicating a relative depletion of nonsynonymous substitutions. If region is under
positive selection, then dy/ds > 1, indicating a relative excess of nonsynonymous
substitutions. This method detects repeated selective fixations that occurred in the
same gene or at the same site across taxa over long evolutionary time periods (9).
One of its strengths is that it indicates directionality of selection (positive vs
negative), but it is restricted to coding regions and nonsynonymous sites (9).

Further improvements to this method were also proposed (73-77) and a similar
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comparative method was designed for non-coding regions (78). The rate of
substitution in noncoding regions relative to the rate of synonymous substitution
in coding regions is estimated by a parameter {. When a site in a noncoding region
is evolving neutrally { = 1, whereas ¢ > 1 indicates positive selection, and ¢ < 1
suggests negative selection (78). However, in practice this method only picks up
highly variable or highly conserved noncoding sites, that may or may not be targets
of selection (78).

Other relative-rate methods are based on the principle that selection
modifies the levels of variability within and between-species (9). The MacDonald-
Kreitman Test (MKT) employs between species variation (‘divergence’) and within-
species variability (‘diversity’) (79). It calculates and compares two dy/ds values,
one between species and one within species, which should be equal under
neutrality (assuming constant mutation and substitution rates) (10). If one exceeds
the other, then the null hypothesis can be rejected (79). Larger between-species
values suggests positive selection between species, while a greater within-species
ratio indicates balancing or weak negative selection within the species (10).

Similarly, the Hudson-Kreitman-Aguade (HKA) test compares the rate of
divergence to polymorphisms for multiple genes (80). HKA calculates the ratios of
fixed interspecific differences (D) to within-species polymorphisms (P) (10). The
test assumes that under neutrality D and P should be proportional (given a constant
mutation rate) and the deviation from the neutral D/P value allows rejection of the
null hypothesis (80). The expected neutral D/P ratio for a lineage can be estimated
by examining multiple sites (10). Relatively large D/P values indicate either
directional selection between (accelerated speciation) or within (reduced diversity
within the species) species (10). Relatively small values suggest balancing selection
between species (10). In contrast to dy/ds based methods, it can be applied to both

coding and non-coding regions (10).
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1.2.2. Microevolutionary population genomic

approaches

Population genomic approaches aim to detect microevolutionary selective
events using within-species polymorphisms (9). They have been widely applied to
uncover recent and ongoing selection underlying local adaptations in humans
following the out-of-Africa migration (10). Most methods of this class rely upon the
classical hard sweep model assumptions, and its effects on patterns of linked
neutral variation (8, 18-20). Here, we present the basic strategies and some of their
derivatives commonly used in the field of human population genomics that can be
classified based on the type of selective signature they detect, as proposed by Vitti
etal. (10).

1.2.2.1. Population differentiation-based methods

Local adaptation is manifested by a geographic gradient in the frequency of
the selected allele within a geographical region (21). Any selection event, regardless
of its mode, will eventually produce an excess of allele frequency differentiation
between populations as long as (i) it has taken place in one population but not in
another (and the allele was at low frequency when first favored) or/and (ii) there
is variation in selection coefficient over space, (iii) migration and gene flow between
the populations have been restricted, (iv) and there has been enough time for
selection to act (20, 21). Even if an allele is equally advantageous in all
environments, but its selection happened in a regionally-restricted manner, the
selected variant will be concentrated around its geographic origin due to limited
dispersal (21, 22). Therefore, larger than average allele frequency differences
between populations may indicate local adaptation. This measure of selection is
sensitive to many types of selection including classic sweeps, selection from

standing variation and negative selection (17, 20, 21, 25, 26).
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Using population differentiation as an indicator of geographically restricted
positive selection was originally proposed by Cavalli-Sforza in 1966 (68). The first
attempt to implement a population differentiation-based statistical test for positive
selection was made by Lewontin and Krakauer, who used the variance of the Fsr
parameter (Wright's fixation index) and proposed rejection of the neutral model for
loci with Fsr values larger than expected by chance (81). Fsr is a common measure
of population differentiation, defined as variance in the allele frequency between
different subpopulations (weighted by the sizes of the subpopulations) divided by
the variance of allele frequency in the total population (subpopulations combined)
(82). Its values range from 0 to 1 (82). A zero value implies no population structure
(a panmictic population), while a value of one implies no gene-flow between two
populations (a fixed difference) (82). In practice, various Fsr estimators have been
proposed, e.g. calculated using nucleotide diversity () or heterozygosity (H)
(Equation 1).

Many Fsr derivatives have also been proposed (83-90), including the locus-
specific branch length metric (LSBL) and the population branch statistic (PBS)
which use pair-wise calculations of Fsr from three or more populations to isolate
population-specific changes in allele frequency relative to a broader genetic context
(91, 92), and the cross-population composite likelihood ration (XP-CLR) of allele
frequency differentiation that extends Fsr to many loci (93). Some statistics explore
differentiation of haplotypes instead of individual alleles (94). Another common
summary of population differentiation is difference in derived allele frequency
between populations (ADAF) (95). Finally, one can directly compare allele
frequencies in ancient human genomes with modern samples, although the

availability of well-preserved ancient DNA is limited (96, 97).

Equation 1. Wright's fixation index (Fsr). 77 - average number of pairwise differences between two
individuals sampled from different sub-populations (nucleotide diversity within the total
population). s - average number of pairwise differences between two individuals sampled from the
same sub-population (nucleotide diversity within subpopulations). Hs - mean expected
heterozygosity within subpopulations. Hr - expected heterozygosity in the entire population (2pq).

Ty — T Hp — Hg
FST e or FST -
it Hy
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1.2.2.2. Site frequency spectrum-based methods

Selection is known to distort the site frequency spectrum (SFS) within a
population (9). The SFS distribution of alleles in the population sample can be
defined as a count of the number of mutations of a given frequency class, for each
class (9). Negative selection increases the proportion of variants segregating at low
frequencies in the sample (9, 10). Positive directional selection tends to increase
the proportion of high frequency variants (selected alleles and linked neutral sites),
but also the proportion of low frequency variants in the case of a hard selective
sweep causing a population-wide reduction in the genetic diversity around the
selected allele (Figure 3) (9, 10). Balancing selection increases the proportion of
intermediate frequency variants (9). Such distortions can persist for thousands of
generations (10).

The most common neutrality test summarizing the SFS is Tajima’s D,
comparing the average number of nucleotide differences between pairs of
sequences with the total number of segregating sites in a population sample (98). If
the difference between these two measures of variability is larger that expected
under neutrality, then the null hypothesis is rejected. The rationale behind this
method is that the low-frequency alleles contribute less to the average number of
pairwise nucleotide differences (as most haplotypes in the selected region are the
same or very similar, therefore there are few differences between them on average),
but they do contribute to the total number of segregating sites. As a result, the
excess of rare alleles drives smaller/more negative values of D, which might be
indicative of selection (both positive or negative) or population expansion (98).
Variations on this theme have been proposed with further extensions (99-101).

Another commonly used test is Fay & Wu'’s H, which compares the number
of pair-wise differences between individuals to the number of individuals
homozygous for the derived allele (102). As selective sweeps increase the
frequency of derived alleles near the causal allele hitchhiking to high frequencies,
small values of H indicate an excess of high-frequency derived alleles and possibly
positive selection (10). Similarly, Kim and Stephan's composite likelihood ratio

(CLR) test detects an excess of derived alleles across multiple sites (103).
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1.2.2.3. Linkage disequilibrium-based methods

The level of linkage disequilibrium (LD) is defined as the correlation among
alleles from different loci (9). A beneficial mutation spreading rapidly to a high
frequency in the population brings nearby linked hitchhiker variants along, creating
a region of high LD (or, equivalently, long haplotype) quickly enough that
recombination has not had time to break it down (10, 16, 18, 19). Selection
occurring less than 400 generations ago should leave a clear LD pattern (104). Many
statistical methods for detecting regions of strong LD relative to their prevalence
within a population, or a consequent reduction in haplotype diversity, have been
proposed (104-107). This approach is commonly used to detect recent incomplete
sweeps, but also has the potential to detect soft sweeps at lower power (10).

One class of such methods is based on the extended haplotype homozygosity
(EHH) statistic that measures LD at a distance x from the core haplotype (a given
haplotype at a locus of interest) (104). EHH is defined as the probability that two
randomly chosen chromosomes carrying the core haplotype are identical by
descent (homozygous at all SNPs) for the entire genomic interval from the core
region to the point x (104). In fact, EHH detects the transmission of an extended
haplotype without recombination (104). EHH ranges from 0 (no homozygosity, all
extended haplotypes are different) to 1 (complete homozygosity, all extended
haplotypes are the same) and decreases with increasing distance from the core
region (104). Relative EHH is the ratio of the EHH on the tested core haplotype
compared with the EHH on all other core haplotypes at the region, and ranges from
0 to infinity (104). The long-range haplotype (LRH) test compares a haplotype’s
frequency to its relative EHH at various distances, looking for core haplotypes that
are extended as well as common, compared with other core haplotypes at the locus
(104). Modified versions of this test have been proposed (108, 109), including
integrated haplotype score (iHS) capturing extreme EHH for short distances and
moderate EHH for longer distances, increasing power to detect incomplete sweeps
(110), and cross-population extended haplotype homozygosity (XP-EHH) as well as
EHHS comparing haplotype lengths between populations (111, 112).
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LD decay (LDD) test is an alternative LD-based method that does not need
phased data, as it operates on homozygous sites and looks for large differences in
LD around the ancestral and derived alleles of a given SNP (assuming the derived
allele arose on a single haplotype) (8). The fraction of inferred recombinant
chromosomes (FRC) at polymorphisms surrounding the homozygous site (S) is then
computed within a certain physical distance (8). Neighbouring sites are binned
according to the separation distance from the site S. The calculated FRC associated
with the distance from the S is informative about the LD decay at various distances
and is compared to the genome average (8). Strong local LD around the new high-
frequency allele in comparison with the alternative allele indicates a selective
sweep (8).

Alternative methods detecting long identical-by-descent DNA stretches and
reduced haplotype diversity or reduce heterozygosity with increased proximity to

a selected mutation in a population have also been proposed (113-116).

1.2.2.4. Composite methods

Methods combining multiple complementary metrics based on distinctive
signatures into one composite test might provide greater power and/or resolution
in pinpointing drivers of selection (10). For instance, methods combining
information from different SFS tests assessing the distribution of different
frequency classes of variation (117, 118) or methods merging SFS inferences with
the Ewens-Watterson homozygosity test of neutrality (DH test) were proposed
(119-121). Nielsen et al. combined population differentiation-based signatures
with site frequency distortion measurements (excesses of high-frequency derived
alleles and low-frequency alleles) (122). The composite of multiple signals (CMS)
combines multiple signatures of selective sweeps taking into account three
features: (i) haplotype length (measured by iHS, XP-EHH and AiHH), (ii) population
differentiation (Fsr) and (iii) differences in derived allele frequencies between
populations (4ADAF) (123). Finally, Pybus et al. applied a machine-learning

hierarchical classification framework (boosting algorithm) that exploits scores of
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11 different selection tests to classify genomic regions into specific adaptive

scenarios considering selective sweeps’ completeness and time-frame (124).

1.2.2.5. Methods to detect adaptive introgression

Detecting adaptive introgression from archaic humans is a two-step process
comprised of detecting a signature of selection and a signature of introgression, as
currently there is no method detecting both signatures jointly (30). Any previously
introduced population genomic approaches could be used to detect selection on
introgressed DNA (30). However, as introgression alone (not necessarily adaptive)
changes the pattern of LD and distribution of allele frequencies, methods relying on
LD and the SFS, as well as composite methods, can lead to false inferences of
selection (30). Therefore, it seems that population differentiation methods
detecting the high frequency of archaic haplotype in a specific population relative
to other populations are rather robust in this scenario (assuming a low level of
introgression and low starting frequency of introgressed alleles) (30).

Detection of introgressed DNA tracts requires whole-genome sequences of
modern and archaic humans and is usually based on the number of uniquely shared
sites (sites containing high-frequency derived alleles in a particular population,
which are also present in a distantly related population but absent in other more
closely related populations) (30). Such methods are based on the assumption that
the gene flow from archaic to modern humans happened after the out-of-Africa
migration and that non-African haplotypes shared with archaic hominins but not
with present day Africans might indicate introgression (125). The most commonly
used method to identify overall introgression from genome-wide data is Patterson’s
D statistic (or the so-called ABBA-BABA statistic) based on differential sharing of
derived alleles among different pairs of individuals or populations (125-127). D
measures the excess of shared derived alleles between each of two populations in a
pair (in-group populations) and an out-group population. In a scenario of a strict
population phylogenetic tree with no admixture or migration, either of the in-group

populations have had any gene flow from the out-group population and each of the
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two in-group populations should share approximately the same number of derived
alleles with the out-group population (30). The significant deviations from the
symmetrical pattern suggest introgression (30).

A challenge is to distinguish introgression from shared ancestral genetic
variation (30). However, recent introgression should increase long-range LD,
therefore introgressed tracts should be longer than shared ancestral variation or
incomplete lineage sorting (30). The S* statistic is a summary statistic based on
patterns of LD and divergence which can be used locally to identify highly divergent
haplotypes harbouring variants in strong LD shared with archaic hominins (128,
129). The expected length of the archaic tracts can be estimated using three
parameters: the recombination rate, the number of migrants and the time since the
admixture (130, 131).

Finally, an introgressed haplotype should have low sequence divergence
from the putative archaic source population, but high sequence divergence from
other present-day human individuals (30). This can be estimated by comparison of
the time of the most recent common ancestor (TMRCA) of the test haplotype and
the archaic haplotype with the TMRCA of the test haplotype and another modern
human haplotype (132). A test human haplotype that has a recent TMRCA with an
archaic population, but an ancient TMRCA with other human haplotypes is a
candidate for introgression (30).

Probabilistic models based on the principles described above have also been
employed to identify introgressed DNA fragments (130, 133, 134). Candidate
adaptive introgressed segments are thus those that overlap between these two

steps.
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1.3. Thesis structure

This thesis presents results of a meta-analysis of previous selection scans,
our computational approach to fine-map and prioritize candidate positively-
selected variants, as well as results of functional follow-up of several candidates in
vitro and in vivo. The general introduction to positive selection presented here is
further extended in the following sections, each of which contains its own

introduction and more specific relevant background information.
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2. Fine-Mapping of adaptive variation

in silico
2.1. Introduction

Previous surveys have reported vast lists of putatively selected genes/loci
and variants, which contrasts sharply with the handful of functionally-validated
examples of genetic adaptations with both a strong population selection signal and
a compelling explanation for the reasons of selection linked to a relevant phenotype
in humans (18, 20, 42, 135). This is partially because population-genetic based
methods are often imprecise, identifying large genomic regions harboring many
genes and a myriad of SNPs that could potentially drive the selection signal, but
which are mostly neutral (10). Even if a selection statistic operates at the individual
variant level, such as population differentiation-based statistics (e.g. Fsr; difference
in derived allele frequency - ADAF (95)) or composite likelihood approaches (e.g.
Composite of Multiple Signals - CMS (123)), the highest scoring variant is not
necessarily causal. High LD around the selected SNP often results in a stretch of
highly-differentiated variants with the same allele frequencies, further
complicating the identification of the most likely causal variant. Similarly, for each
potentially causal variant identified by CMS, there are on average 20 neutral
proxies, all indistinguishable from the functional mutation (123). As a result, the
false discovery rate of genome-wide selection scans is potentially high, which is
reflected by the low concordance between such studies (8, 18, 20, 22, 54, 135-137).

The focus of this field now needs to move from locus discovery to fine
mapping of the signals of selection and biological understanding of their adaptive
significance. However, population genetics alone is usually not sufficient to narrow
down the signal of selection to a single causative SNP and the only way to
distinguish true positives from artifacts or neutral passenger variation is functional
validation (18, 138). Yet very few variants have been validated in this way, as

current technology does not allow modeling in a high-throughput fashion (138).
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Therefore, a useful step is to subject candidate variants to rigorous evaluation and
narrow down extensive lists to a manageable subset of the strongest candidates for
functional studies.

Nevertheless, there are a few well-supported cases of local genetic
adaptation that conform to a classical sweep model (20). One example is the A allele
at rs1426654 (within SLC24A5), which is nearly fixed in European populations,
causing an amino acid (Thr to Ala) change and contributing to lighter skin
pigmentation (139). Melanosomal differences between ancestral and derived
alleles of SLC24A5 were successfully assayed using a zebrafish model (139). Such
examples are not restricted to amino acid changes, and have also been reported for
cis-regulatory variants, such as the A allele at rs4988235, an intronic regulatory
variant in MCM6 which has been shown to increase the expression of the
downstream lactase (LCT) gene in vitro enabling digestion of the milk sugar, lactose,
as an adult in West Asian and European populations that traditionally practice
pastoralism (140, 141).

Here, we develop a new in silico framework to shortlist candidate selected
variants for further functional follow-up (Figure 4). In order to prioritise candidate
variants, we need a starting list of variants, a protocol for prioritization, and a way
of assessing whether or not the prioritization is effective. Since there is a large
literature on positive selection in humans, we first performed a meta-analysis of
previous studies at the gene level to obtain a summary of the field, and then
extended this with a new analysis of the 1000 Genomes Project Phase 3 genetic
variation (142) to produce a refined list of candidate variants for functional follow
up. To do so, we introduced an integrative method that overlays population
signatures of selection with functional annotation, and call it FineMAV (Fine-
Mapping of Adaptive Variation). We assessed FineMAV results using ‘gold standard’
examples (where the evidence for positive selection acting on a particular variant
is convincing) and the results of the meta-analysis. After calibration and assessment
of our method’s performance, we applied it to diverse populations and further

explored some of the novel variants in our lists.
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Figure 4. Workflow for prioritization of candidate variants for functional studies. The DNA molecule
is represented as a blue line, with variants being red dots. Identification of the candidate causal
variants from the genome-wide variation data, or the refinement of the known signal of selection to
a causative SNP, is achieved by overlapping the statistical support from genetic analyses with
functional annotation (implemented in FineMAV). A detailed follow-up functional study can then be
performed (in vitro or in vivo experiments using model systems) to validate the implicated variant,
quantify its phenotypic consequences and clarify its relationship with reproductive fitness, e.g. by
assessment of phenotypic differences between mouse models carrying the human selected and non-
selected alleles.



50



51

2.2. Meta-analysis of previous selection

SCans

2.2.1. Materials and Methods

We examined the concordance of all available genome-wide screens for
positive selection published until September 2014, focusing on recent or ongoing
positive selection, i.e. adaptations following the ‘Out of Africa’ dispersal that have
not swept to fixation yet (incomplete sweeps or so-called microevolution). It is
important to carefully curate the input data by selecting studies investigating the
same mode of selection (identifying selective events of the same age and stage of
selective sweep) from comparable genome-wide datasets in such an analysis (8).
Therefore, we searched the PubMed publication database (‘positive selection’
enquiry) for studies using (i) tests based on intra-species polymorphism (excluding
cross-species comparisons) and (ii) genome-wide sequencing or genotyping data
(iii) across at least three main continental groups (Africans [AFR], East Asians [EAS]
and Europeans [EUR]). This search yielded 26 genome-wide selection scans (83, 93,
95,108,110-112, 114,123,136, 143-158) complemented with an unpublished SFS
analysis of 1000 Genomes Project Phase 1 (159). These were grouped into four
methodological categories: (i) population differentiation (Diff), (ii) long haplotypes
(LD), (iii) site frequency spectra (SFS) and (iv) composite likelihood methods
(Comp). All reported findings were translated into gene-level nomenclature using
Ensembl annotation (160). Genes reported only by a single study were excluded at
this stage.

Since one particular method of looking for evidence of selection might be
more abundant in the published literature than others, its results might outweigh
other methods in a simple summation of the evidence and inappropriately
dominate the meta-analysis. To avoid this bias and obtain a balanced view based on
all four methods, we developed a correction to control for the proportion of studies
that are not independent. We first calculated a per-gene selection confidence level

within each methodological category (ranging from 0 for genes not reported by any
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study within that category, to 1 for genes supported by all selection scans
employing that detection method). We then calculated a Selection Support Index
(SSI) by first obtaining the mean of the squares of the selection confidence levels on
a per-gene basis. This would penalize genes moderately supported by several
methods and promote genes strongly supported by a single approach (Equation 2).
The SSI value was then corrected for the gene length where this strongly departed
from the mean (gene length was retrieved from Ensembl (160)). The theoretical
maximal SSI for an average-sized gene reported by all studies analysed is 1, while
genes reported by all studies within one methodological category would score 0.25
(Table 2). Thus, SSI weighs, combines and evaluates signals of selection on a per-
gene basis, starting from the results of published genome-wide selection scans of

autosomal loci.

Equation 2. Selection Support Index. To compute a Selection Support Index (SSI) for each gene i with
length len;, suppose i € {1, 2, ..., n}, and let Diff;, LD;, SFS; and Comp; be its selection supports within
each methodological category across all compiled genome-wide selection scans. Gene length is

measured in base pairs.
n
1
u= - len;
i=1

Diff{# + LD} + SFS? + Comp} 0| K
4 len;

SSI; =

Table 2. Selection support index values calculated for different scenarios. gene; - gene maximally
supported by all methods; gene; - gene supported strongly by population differentiation methods
only; genes - gene moderately supported by all methods.

Diff LD SFS Comp SS1
gene; 1 1 1 1 1
gene; 1 0 0 0 0.25
genes 0.25 0.25 0.25 0.25 0.0625

genei Difi€[0,1] LD;€[0,1] SFSi€[0,1] Comp;€[0,1] SSLE][0,1]

geney




53

2.2.2. Results

We assessed the confidence in selection on genes by an in silico
quantification of the strength of the signal and its reproducibility across 27 genome-
wide screens for positive selection ((83, 93, 95, 108, 110-112, 114, 123, 136, 143-
158) and unpublished SFS analysis of 1000 Genomes Project Phase 1 (159)). The
rationale behind integrating data from multiple sources is that the most extreme
selection events should leave the strongest signals, detectable by different methods,
and thus be characterised by high reproducibility across independent studies: a
strong hard sweep should leave multiple signatures of selection (8). Although the
ultimate goal of our analysis is to narrow down the signal of selection to a single
causative variant, many selection scans identify large genomic regions and do not
pinpoint a single causative SNP (10). Moreover, such scans often report outlier
genes exhibiting the most extreme hallmarks of selection, instead of the precise
genomic location of the signal itself. To nevertheless benefit from the rich data
resource accumulated in the literature, we unified the selection-scan results by
bringing them to the gene level. However, taking a simple overlap of loci reported
as selected by different studies might introduce biases because the studies are not
all independent. Thus, we applied a per-gene ‘selection support index’ (SSI -
Equation 2) that weighs, combines and evaluates signals of selection from genome-
wide selection scans focusing on recent human adaptations (adaptations that arose
after the out-of-Africa population expansion) that have not swept to fixation in the
species yet (incomplete sweeps or so-called microevolution).

If classic hard sweeps were frequent in human evolution, we would find
many candidate genes showing multiple signatures of selection and thus scoring
highly in the meta-analysis. Instead, in agreement with previous meta-analyses (8,
18,20, 22,54,135-137), we found many candidate genes that were reported by only
one or few studies, to which our index assigned low confidence in their selection
(Figure 5.A). In contrast, some widely-accepted cases of adaptations with
compelling functional evidence were found among our top-scoring candidates, such
as EDAR (138, 161), SLC24A5 (139), LCT/MCM6 (140, 141), HERC2 and OCAZ2 (162-

164). Nevertheless, even when a candidate gene has strong support from our index,
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Figure 5. Meta-analysis of published genome-wide selection scans. (A) - Plot of Selection Support
Index (SSI) scores for the positively selected genes in the published literature against the number of
genes with this score; SSI score is also illustrated by the circle colour, and gene count by the circle
size. (B) - Manhattan plot of the top ~6% putatively selected loci meeting the threshold of SSI score
> 0.09; each dot represents a gene midpoint; the cluster of genes underlying lactose tolerance is
boxed. (C) - An expanded view of the lactase persistence signal showing the strong signature of
positive selection that extends over a large genomic region; each dot represents the midpoint of a
gene surrounding LCT; genes are shown as rectangular boxes in the gene track plotted below the x-
axis displaying their chromosomal positions in GRCh37.
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rapid hard sweeps can result in a cluster of adjacent genes scoring highly (Figure
5.B) representing a single selection event spanning up to 1 Mb (e.g. the selection
signal underlying lactose tolerance in Europeans which is detectable within a 1.3
Mb window as lactase (LCT)-surrounding genes are often reported as extreme
outliers in selection studies (Figure 5.C)). The proportion of clustered candidate
genes whose selection footprint could be explained by selection acting on a nearby
gene depends on the SSI cutoff and varies from 50% up to 70% for top candidate
selected genes (meeting the threshold of 2 0.17 (top ~1.5%) and = 0.09 (top ~6%)
respectively). However, we cannot exclude the possibility that in some cases
selection truly acted on more than one gene within a contiguous cluster. The list of

top 7% protein coding genes and their SSI values can be found in Appendix A.
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2.2.3. Discussion

There are many diverse approaches to search for positive selection
footprints, most based on a single characteristic left by a hard sweep, although
emerging composite likelihood methods combine multiple lines of evidence (8).
Each method picks up on a slightly different signal and has its own strengths and
weaknesses (10), thus combining several complementary methods should increase
the chance of finding truly selected loci, as selected loci reported by multiple studies
are more likely to be real (8).

However, previous reports should not be regarded as definitive as there are
many caveats contributing to the observed low concordance between studies and
clustering of candidates. Factors potentially contributing to this result include
genetic hitchhiking, imprecise methods identifying large genomic chunks, the
incomplete nature of the chip-genotype input data, and inconsistent criteria for
reporting the most extreme outlier loci (8). Furthermore, selection studies often do
not report footprints in intergenic regions, so meta-analysis is biased toward genic
regions. Low overlap between previous selection studies may also indicate both
differences between various methods (also recovering different selective events)
and the overall high false positive rate of such scans (136).

New whole-genome sequencing datasets coupled with novel methods to
detect selection can outperform previous research and detect unreported
candidates (as full-sequence data ensure that all potential candidate variants are
evaluated). For example, the zinc uptake transporter ZIP4, known for its striking
selection signature, did not show up among the top candidate genes in the meta-
analysis of the published literature (Figure 5.A). ZIP4, encoded by SLC39A4 is
characterised by an extreme difference in the frequency of leucine-to-valine
substitution (Leu372Val) between West Africans and Eurasians (165). The
functionality of this variant was verified through in vitro functional experiments
demonstrating differences between the human derived and ancestral alleles in
surface protein expression, intracellular levels of zinc and zinc uptake (165).
However, genomic scans for selection based on extended long haplotypes or

deviations in the allele frequency spectrum had failed to identify ZIP4 as a candidate
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gene for positive selection. Such an extreme pattern of population differentiation
and the absence of additional accompanying classic sweep signatures can be
explained by the effect of a local recombination hotspot (165). In this scenario,
SLC39A4 should have obtained moderate support in our meta-analysis, but was
missed in many studies employing population differentiation methods, as the
selected SNP (or any SNP tagging it) was not included in the commonly-used
Affymetrix and Illumina SNP arrays and consequently it was absent from the HGDP
and Perlegen datasets (166, 167). As a result, SLC3944 was very weakly supported
in our meta-analysis (Figure 5.A).

Nonetheless, even though cases that do not confirm to a classical hard sweep
model could be overlooked in such gene-level overlap analysis for technical
reasons, most extreme adaptive events would remain the same across different
studies. However, even the strongest signals highlighted in the combined scans
need to be functionally validated to be considered real. To do so, the signature of

selection needs to be narrowed down to one or a few candidate SNPs.
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2.3. Fine-Mapping of Adaptive Variation

2.3.1. Materials and methods

2.3.1.1. FineMAV

Fine-Mapping of Adaptive Variation (FineMAV) is designed to refine a signal
of selection to a single most likely selected variant and thus to differentiate between
selection-driving and passenger variants for functional follow-up studies. FineMAV
is most relevant for targets of recent or ongoing local positive selection (within the
last ~60,000 years) and can be applied to a region of prior interest, or to the whole
genome for discovering novel selected variants.

A FineMAV score was calculated for the derived allele of each SNP by
combining its Derived Allele Purity (DAP), continental Derived Allele Frequency
(DAF) and functional prediction (the CADD PHRED-scaled C-score (168)) (Equation
3). The rationale behind doing so is that variants predicted to be non-functional are
likely to be neutral, since natural selection can only act directly on variants that
confer phenotypic effect. If an allele is predicted to be highly functional and rare, it
is likely to be deleterious; but it cannot be harmful if it is both functional and
common, and may potentially be adaptive. Importantly, all three metrics are allele-
specific (rather than site- or gene-specific) and consequently allow direct
evaluation of individual alleles. We simply scaled and combined the metrics to
obtain a single measure giving high values to derived alleles that are common,
population-specific and functional. In other words, we generate a high score for a
derived allele that is common, population-specific and has a strong predicted

functional effect. Individual components are introduced in the following sections.

Equation 3. Fine-Mapping of Adaptive Variation. To compute FineMAV per derived allele across n
populations, suppose i € {1, 2, ..., n}, and let DAF; be derived allele frequency in population i.

FineMAV; = DAP X DAF; X CADD
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2.3.1.2. Measure of population differentiation

We used an allele frequency differentiation method as a signature of local
selection in FineMAV. We chose a measure of population structure differing
somewhat from other methods, as: it (i) operates at the variant level, (ii) does not
rely on the hard sweep assumptions of strong LD and SFS signatures (which might
be erased by recombination), (iii) is sensitive to many types of selection including
classic sweeps and selection from standing variation and (iv) detects recent human
adaptations (17, 20, 21, 25, 26).

We proposed and applied a new measure of population differentiation called
Derived Allele Purity (DAP). DAP is related to differences in derived allele
frequencies (ADAF (95)) and other pairwise comparison-based methods, but able
to summarise population differentiation (spatial pattern of the derived allele)
across many populations in a single measure for each variant. DAP is a measure of
derived allele entropy based on Gini impurity (169) and describes how unequally
the derived allele is distributed among diverse populations. DAP operates on
derived allele counts in a population sample when distinct groups are equally
represented and is calculated according to Equation 4. When population groups are
not equally represented, derived allele count can be estimated from derived allele
frequency. DAP counts derived allele occurrences across populations and describes
their spatial distribution, reaching its maximum of 1 when all cases (derived alleles)
fall into a single population category, and penalizes allele sharing between different
populations. The magnitude of the penalty can be controlled by the x parameter

(‘penalty parameter’) depending on the user’s purposes and the number of

Equation 4. Derived allele purity. To compute derived allele purity per site (DAP) across n equally
represented populations, suppose i € {1, 2, ..., n}, and let d; be derived allele count in population i.

n
dy = Z d,

i=1

d

fi i

T dy

n
DAP = z f#
i=1
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populations being compared (n). For maximally differentiated derived alleles
(observed in one population only) DAP is constant (DAPnax = 1) and insensitive to
n, while for the other extreme, minimally differentiated derived alleles (with the
same frequency in all populations), DAP depends on n and DAP, > DAPp.;. To adjust
for this, the x parameter for lower n needs to be higher. We calibrated x using a

subset of our gold standards (see the following section).

2.3.1.3. Measure of allele prevalence

We estimated allele abundance using two alternative approaches: (i) global
derived allele frequency and (ii) continental derived allele frequency. In both cases
DAF ranges from 0 to 1. We obtained the continental DAF by averaging DAF across
all populations within each continent, and calculated global DAF for each variant by
averaging continental DAFs. Both approaches yield similar results (almost identical
lists of top 100 extreme outliers). The main difference between these two measures
of allele prevalence is that incorporation of global DAF results in a single FineMAV
score for each derived allele (which is then assigned to a single population based on
the difference in derived allele frequency between examined populations), while
application of continental DAF leads to calculation of FineMAV scores for each
population separately. Global DAF is n-dependent, while continental DAF remains
constant regardless of n, thereby making FineMAV values comparable across

different values of n. Here, we report results incorporating continental DAF.

2.3.1.4. Measure of functionality

It is crucial that variant-level functional inferences are based on whole-
genome level measures to ensure that all potentially selected variants are treated
equally. We wanted a measure of functionality to be allele-specific and applicable
to all variation, both coding and non-coding, since many signals of selection localise

in regulatory elements or intergenic regions (17, 123). As proteins are usually
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involved in many processes through complicated interaction pathways with other
proteins, amino acid change in one protein may affect many diverse traits i.e.
pleiotropic phenotypes (138). In general, pleiotropic changes are thought to be
disadvantageous (170), thus it is believed that a great deal of human phenotypic
variation is based in regulatory variation (17, 140, 170-172). However, having a
different set of annotations for coding and noncoding variation makes it challenging
to compare these distinct variant categories. Thus consensus methods combining
multiple annotations, each with its own weaknesses, are especially needed here for
functional prioritization of variants across many functional categories (168). In our
analysis we used the Combined Annotation-Dependent Depletion (CADD v1.2
PHRED-scaled C-score), which integrates 63 diverse genome annotations into a

single measure for each variant and in theory takes a value between 0 and 99 (168).

2.3.1.5. FineMAYV calibration

We compiled a gold standard panel of the eight best examples of
experimentally-validated causal variants underlying signals of positive selection
which are linked to specific phenotypic consequences (Table 3), and calibrated our
method using population-scale sequence data (1000 Genomes Project (142)) of
genomic windows spanning randomly chosen half of the gold standards. In the

calibration stage, we needed to find the value of the x penalty parameter that assigns

Table 3. List of ‘gold standard’ selected variants used for FineMAV calibration and replication. ‘Pop.’
- population with the reported selection signal: AFR - Africans; EAS - East Asians; EUR - Europeans.
‘Dataset’ indicates whether given gene was used in calibration (C) or replication (R) analysis. *Note
that ACKR1 is also known as DARC and the derived allele at rs2814778 is the Duffy O allele.

Gene SNP Pop. Function Dataset
ACKR1*  rs2814778 AFR Malaria resistance(173-176) R
SLC39A4 rs1871534 AFR Zinc level(165) C
ABCC11 1rs17822931 EAS Earwax and sweat type(177, 178) C

EDAR rs3827760 EAS  Hair shape and thickness(138, 161) R

HERC2  1rs12913832 EUR Eye pigmentation(162-164) R
MCM6 rs4988235 EUR Lactose tolerance(140, 141) C
SLC24A5 rs1426654 EUR Skin pigmentation(139, 179) C
SLC45A2 1rs16891982 EUR Skin pigmentation(179-181) R
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the background neutral variation and highly functional derived alleles fixed on the
human lineage in the window around the selected mutation low scores. Imagine
two scenarios. In scenario 1: a maximally differentiated derived allele that is
exclusively fixed in population i but absent elsewhere (DAPmax = 1), which implies a
maximal frequency (DAF; = 1), and is predicted to be functional (CADD = 20). In this
scenario, FineMAV = 20 and would be constant regardless of n (the number of
populations used in the analysis). Alternatively, in scenario 2, for a derived
mutation that is fixed in all populations (DAF; = 1) and is highly functional (CADD =
45) we need to penalize for allele sharing between populations to keep DAP (and
consequently FineMAV value) at a low level relative to scenario 1. The calibration
analysis revealed that penalty parameter x set according to Figure 6 is sufficient to
keep highly functional fixed alleles at a low level (scenario 2: DAP ~0.064 and
FineMAV ~2.88, which is at least 7 times lower than the gold standard calibration
set), but higher penalties might also be applied. Note that x decreases with

increasing n to keep FineMAV value insensitive to n.

2.3.1.6. FineMAYV calculation in 1000 Genomes Project

DAF and DAP values were calculated from the 1000 Genomes Project, Phase
3 datarelease (142) using a custom script; CADD PHRED-scaled C-scores v1.2 (168)
were obtained from http://cadd.gs.washington.edu/. We ran our analysis for both
autosomes and sex chromosomes focusing on three continental populations:
Africans (AFR), East Asians (EAS) and Europeans (EUR). We ran it in two contexts:
(i) to re-discover continent-specific positive selection signals in Africa, East Asia
and Europe (n = 3; x = 3.5), and (ii) to analyze selection that happened outside of
Africa by pooling East Asians and Europeans together (n = 2; x = 4.96). Even though
we ran our analysis with the above continental scale configuration, FineMAV could
also be applied to study signals of selection within continents. FineMAV was
calculated for derived alleles (annotated accordingly to Ensembl (160, 182)) using
a custom script (SNPs only; indels were omitted). We applied a conservative

FineMAV cut-off to include only the top 100 candidate variants in each continental
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Figure 6. Recommended minimal values of x for given n. x - penalty parameter. n - number of
populations being compared.
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population (incorporating all gold standards and giving a total of 300 variants
corresponding to the top ~0.0004% of the whole-genome distribution) for our

downstream enrichment analysis.

2.3.1.7. Simulation analysis

Simulation analyses to assess FineMAV’s performance were limited by the
unknown relationship between the prediction of functionality (CADD score) and the
selection coefficient. Although the functional range of CADD scores has been
estimated, its precise false discovery rate and sensitivity remain unknown, while
FineMAV’s performance is closely tied to the accuracy of the functional annotation.
Nevertheless, we performed simulation analysis using individual based forward-
time simulation implemented in simuPOP v1.1.7 (183) to assess the power (True
Positive Rate (TPR)) and False Discovery Rate (FDR) of the FineMAV algorithm. The
simulation analysis was coded and run by Massimo Mezzavilla (Wellcome Trust
Sanger Institute). We simulated three populations with a set of demographic
parameters (starting effective population size, migration rate and time of
divergence) similar to estimates in Europeans, African and East Asian populations
accordingly to (184). We simulated a genomic window of 1,000 SNPs with only one
SNP under selection per window in one population. The probability of
recombination between two SNPs was set to increase with the increasing physical
distance between sites. The starting derived allele frequency for the selected
marker was set to 0.01, and the allele frequencies of the remaining neutral SNPs
were drawn from a beta distribution. Each SNP was assigned a CADD score value as
follows:

i) Neutral SNPs were randomly assigned a CADD score value drawn from the
genome-wide CADD distribution of derived alleles seen at =2% frequency in

the 1000 Genomes Project, Phase 3. Our simulation does not include a

purifying selection against rare highly functional/pathogenic variants of

high CADD prediction, therefore the derived allele frequency cutoff has been

set to 2% (approximately minimal frequency at which derived allele could
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be seen at least once in a homozygous state in a population of the Phase 3

size) to remove rare deleterious variants from the CADD distribution.

ii) We had to assume that the CADD distribution of selected variants is
functional (which is supported by the CADD predictions of the gold standard
panel). Based on this assumption, the CADD score for the selected SNP was
drawn from the outlier distribution in the range of 10.78-47 (see Result
section).

We then simulated 4 scenarios under the additive selection model with
different selection coefficients: s = 0.001, s = 0.007,s = 0.01 and s = 0 (no selection)
and a sample size of 500 individuals in each population. The populations were
sampled after 1,000 generations of selection and drift. Each scenario was replicated
100 times. FineMAV was subsequently applied to each scenario. We then checked
how often the selected variants fall outside of the neutral FineMAV distribution. To
determine the upper end of the neutral distribution we bootstrapped 1,000
FineMAV values from the simulated neutral variation 100 times and took the

maximum sampled value as our cut-off (set to FineMAV of 10.7).
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2.3.2. Results

2.3.2.1. FineMAV power analyses using simulation

FineMAV’s power to detect selected variants depends on the strength of the
selection coefficient and is unable to distinguish weak selection (s =0.001) from the
neutral variation as it does not produce population differentiation (Figure 7). The
medium and strong selection coefficients produce FineMAV distributions that are
different from the neutral variation (Figure 7) and it is unlikely to find neutral
variants in the extreme upper tail of the FineMAV distribution (assuming that CADD
annotation is characterised by low false discovery rate). FineMAV's false discovery
rate in the extreme upper tail due to drift or hitchhiking is low: ~4%. The power to
detect the selected variants that fall outside of the neutral FineMAV distribution is
46% and 77% for s=0.007 and s = 0.01 respectively. Although the real power, which
depends on the functional annotation accuracy, might be lower (as functional
annotation might be incomplete), we do not attempt to pick up all selection in the
genome (potentially high false negative rate), but rather to minimize the false
discovery rate by using known functional annotation to identify a small number of

truly selected variants for functional follow up studies.

2.3.2.2. FineMAV evaluation using 1000 Genomes

Project

To calibrate FineMAV and evaluate its performance, we compiled a gold
standard panel of the eight best examples of experimentally-validated causal
variants underlying signals of positive selection that are linked to specific
phenotypic consequences in 3 well characterised main continental populations
(Table 3). We calibrated the method using genomic windows spanning half of the
positive controls (randomly chosen from each population), applied it to genome-

wide data from the 1000 Genomes Project (Phase 3) (142) to discover positive
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Figure 7. Simulated distribution of FineMAV scores for variants under selection. Three selection
scenarios of varying selection strength were plotted: s = 0.001, s = 0.007 and s = 0.01. Distributions
of FineMAV values for selected variants from each scenario are shown as box-plots. The red dotted
line represents the upper end of the neutral distribution.
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selection signals in Africa, East Asia and Europe, and tested the results by
examining: (i) whether our method was able to separate the other half of the gold
standard variants from the surrounding linked SNPs, (ii) whether the gold
standards as a group were found among the extreme outliers of the genome-wide
distribution, and (iii) whether FineMAV also enriched for genes identified in
previous genome-wide selection scans with high Selection Support Index (SSI)
values (Equation 2).

Results of the refinement of the signal of selection for the gold standard
panel calibration set and replication sets are shown in Figure 8 and Figure 9
respectively, together with the performance of methods relying on population-
genetic data alone (ADAF - a standard measure of population differentiation (95),
and CMS - a composite method (123, 155)). Our integrative approach successfully
distinguished the selected variants from the neutral background variation in all
cases, whereas the standard methods were often unable to differentiate between
the functional variant and its neutral proxies. Inclusion of functional data improved
the fine mapping of truly selected variants remarkably.

We then ranked all variants based on their FineMAV value to identify
extreme outliers in the upper tail of the empirical genome-wide distribution for
each continent, and examined whether or not the gold standard variants fell in the
extreme tail. We indeed found all the gold standards to be high scoring (Figure 10)
(among the top 0.0004% of the whole-genome distribution (Figure 11 and
Appendix B)) and set a conservative threshold to include the top 100 candidates
per population (incorporating all gold standards and a total of 300 variants, out of
more than 78 million derived alleles (Figure 11 and Appendix B)) for downstream
analysis. Among those 300 FineMAV top-hits we saw variants with varying level of
allele frequency (DAF range of ~0.25-1) and allele sharing between populations
(DAP range of ~0.38-1), all characterised by a functional CADD score prediction (in
the range of ~11 to 47 with a mean of ~19). It is worth noting that although
FineMAYV prioritises population-specific alleles, it also allows some degree of allele
sharing between populations. The distribution of continental DAF, DAP and CADD
in the top FineMAV outliers in each population are shown in Figure 12, Figure 13

and Figure 14 respectively.
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Figure 8. Comparison of three different approaches for pinpointing selected variants in the
calibration set. ADAF, CMS and FineMAV scores are shown for the genomic windows spanning genes
from the gold standard calibration panel. ADAF and FineMAV were calculated from the 1000
Genomes Project Phase3 dataset (142). CMS scores for localised regions (155) spanning genes of
interest were calculated using the pilot phase of 1000 Genomes Project (185) and downloaded from
http://www.broadinstitute.org/ (namely, region8new covering MCM6, and region152new for
ABCC11). Variants with CMS value set to ‘nan’ were not plotted, thus there is missing variation in
CMS plots. Genomic positions are given in Mb according to GRCh37 for ADAF and FineMAV, and build
NCBI36 for CMS. The selected variant is marked with a dashed line. FineMAV notably reduced the
noise of neutral background variation, so that the selected variant is always the highest scoring one
in the given gene. Note that the y-axis scale in the CMS plots is not standardised.
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Figure 9. Comparison of three different approaches for pinpointing selected variants in the
replication set. ADAF, CMS and FineMAV scores are shown for the genomic windows spanning genes
from the gold standard replication panel. ADAF and FineMAV were calculated from the 1000
Genomes Project Phase3 dataset (142). CMS scores for localised regions (155) spanning genes of
interest were calculated using the pilot phase of 1000 Genomes Project (185) and downloaded from
http://www.broadinstitute.org/ (namely, region34new covering HERCZ2, region104new for EDAR
and SLC45A2o0ld for SLC45A2). Variants with CMS value set to ‘nan’ were not plotted, thus there is
missing variation in CMS plots. Genomic positions are given in Mb according to GRCh37 for ADAF
and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line. FineMAV
notably reduced the noise of neutral background variation, so that the selected variant is always the
highest scoring one in the given gene. Note that the y-axis scale in the CMS plots is not standardised.
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Figure 10. Manhattan plot of genome-wide FineMAV scores. FineMAV scores were calculated for
genome-wide SNPs from 1000 Genomes Project Phase 3 (142) in three populations: (A) - Africans
(AFR, blue); (B) - East Asians (EAS, orange); (C) - Europeans (EUR, green). Each dot in the
Manhattan plots represents a single SNP plotted according to coordinates in GRCh37. The threshold
(dashed lines) was set to include the top 100 variants (top ~0.0004% of the whole-genome
distribution). All gold-standard SNPs (yellow dots found among the top outliers) and other
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2.3.2.2.1. Top FineMAV hits classification and enrichment

analysis

Our list of the top 300 candidates was annotated using Ensembl (160) and
we found it significantly enriched for variants of functional classes like missense
mutations (p-value < 2.2 x 10-16, Fisher's Exact Test) or regulatory region variants
(p-value = 5.30 x 10-%, Fisher's Exact Test) as compared to random expectation (list
of random alleles matched for the global allele frequency) (Figure 15). This is
expected because of the inclusion of the CADD value (168) in the FineMAV score.

We also used independent measures of functionality to test our results, and
observed that our outliers have higher fitCons scores (probability that a point
mutation will influence fitness) (186) (p-value < 2.2 x 10-16, Wilcoxon rank sum test)
than expected by chance. Furthermore, variants falling in broadly non-functional
classes (noncoding variation) are also biased toward higher GWAVA scores
(predicted functional impact of non-coding genetic variants) (187) as compared
with random expectation (p-value < 2.2 x 10-16, Wilcoxon rank sum test). These
analyses were performed after excluding FineMAV hits on the sex chromosomes as
GWAVA and fitCons scores are available for autosomes only (186, 187). Thus
although we used one particular measure of functionality in our discovery process,
we also see very strong enrichment in other available functional prediction scores,
which illustrates the consistency of our results.

Finally, we used the results of the meta-analysis of previous selection scans
to compare FineMAV top hits with previous work. Our outliers fell in or nearby
genes (~200 distinct genes) significantly enriched for high SSI from the meta-
analysis, as compared to random expectation (p-value = 6.59 x 10-19, Wilcoxon rank
sum test; after excluding gold standards: p-value = 9.20 x 10-). This illustrates
significant concordance with previous studies, as we find our strongest signals
enriched in regions that have been independently identified as being under
selection, although this comparison was limited to variants falling in or near genic
regions on autosomes, as previous selection scans often do not report intergenic
signals and excluded the sex chromosomes. We also compared the distribution of

FineMAV scores of top SNPs falling in SSI outlier genes with the null expectation. To
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Figure 15. Functional consequences of FineMAV top outliers as compared to random expectation.
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do so, we took the top ~1% of genes with the highest SSI scores (S5 = 0.18),
extended those genomic regions by 50 kb up- and downstream, extracted a top SNP
falling in each window, and built a FineMAV distribution. We found this to be
significantly different from the null expectation (p-value < 2.2 x 10-16) (Figure 16).

2.3.2.2.2. Functional validation in silico

To further evaluate our FineMAV hits, we performed an in silico validation by
searching available literature for relevant functional information about our
shortlisted variants. FineMAV’s performance is supported by several lines of
evidence. The first verification comes from the ‘gold standard’ replication set (the
best examples of validated causal adaptive variants). Not only did FineMAV replicate
a signal in well-know cases of strong selection, but also narrowed it down to a single
functional SNP (often in high LD regions). The number of such positive controls
extends to other variants that were not included in the ‘gold standard’ panel, but
whose evidence of causality is also strong, providing additional support. FineMAV
rediscovered many known variants with prior evidence for being causal of positive
selection signals including several SNPs involved in eye, hair and skin pigmentation
in non-Africans, such as rs1800414 in OCAZ (skin lightening in East Asians) (188-
190),rs1042602 and rs1126809 in TYR (pigmentation and freckling in Europeans)
(191-193), rs12350739 in BNCZ (freckling and colour saturation of human skin
pigment in Europeans) (194) but also rs1047781 in FUTZ (an enzyme-inactivating
mutation conferring advantage in avoiding certain viral infections in East Asians)
(52,195).

Finally, FineMAV picked up a variant with no prior implication of
functionality that was experimentally validated in parallel to our study, which
provides another proof of its performance. We picked-up a missense rs11150606
as sixth top scoring variant in East Asians and falling in PRSS53 whose function was
largely unknown. PRSS53 encodes one of the polyserine proteases called
polyserase-3 (POL3S) which hydrolyses peptide bonds. During the preparation of
this thesis Adhikari et al., showed that PRSS53 is highly expressed in the hair follicle
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and rs11150606 has been associated with hair shape in East Asians (196). The
authors confirmed functionality of rs11150606 by in vitro assays showing that it
affects processing and secretion of the gene product potentially contributing to the
straight hair phenotype, similar to the well-established gold standard EDAR variant
(196). They also showed that the genome regions associated with scalp hair
features are enriched for signals of recent selection in humans (196). This can be
considered as another example proving validity of our method in picking up truly

functional variants.

2.3.2.3. Novel candidate variants across Africa, East

Asia and Europe

We performed a new analysis of 1000 Genomes Project Phase 3 whole-
genome sequence data (142) using FineMAV focusing on identifying individual
putatively-selected SNPs driving recent local adaptations (adaptations that arose
after the out-of-Africa population expansion). Our analysis overlays multiple lines
of evidence for causality to prioritise the vast numbers of potential candidates in
order to identify a small number for experimental follow up.

Although we have thus far highlighted known variants replicated in our
analysis that serve as positive controls evaluating our method’s performance, the
vast majority of our outliers are novel and fall in non-coding regions (Figure 15); all
of them are characterised by high functional prediction and derived allele patterns
similar to the ‘gold standards’. We also see potential signals of convergent or
parallel evolution (31), i.e. selection on the same gene in geographically distant
populations, but on a different SNP e.g. BCOR, CDH13, FOXD1, FOXP1, HDAC8, MYH15
and NFIB all have a highly-scoring outlier SNP in two out of three populations
analysed (as multiple mutations at the same loci can give rise to a similar phenotype
(21)). Finally, our analysis picked up several novel potentially interesting
candidates, including variants on the X and Y chromosomes which have been
underrepresented in previous genomic scans, but further functional testing is

needed to verify these findings.
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Although our study focuses on local adaptation driving population
differentiation at the continental scale, FineMAV might be also applied to study
signals of selection within continents. It is also possible to investigate signal of
selection shared between populations by relevant population grouping depending
on user’s purposes, e.g. we investigated selection that happened outside Africa by
pooling East Asians and Europeans together (Appendix B).

In the following sections we discuss some some intriguing novel alleles, and
speculate on plausible selection pressures. The functional significance of the novel
candidate variants presented here needs to be experimentally validated, but
narrowing their signal of selection to a single most likely candidate SNP is already

a starting point in such efforts.

2.3.2.3.1. Nonsense variants

We observed some high-scoring nonsense variants among our top
candidates, suggesting pseudogenization of PKDILZ (an endogenous fatty acid
synthase in skeletal muscle (197)) in Europeans, ZNF208 (zinc finger and SRY-
interacting protein (198)) in Africans, as well as ZAN, OBSCN (sacromeric signaling
protein involved in myofibrillogenesis (199)) and MAGEEZ (melanoma-associated
antigen expressed in the brain (200)) in East Asians. Mice homozygous for knockout
alleles of OBSCN and ZAN are viable and fertile (201, 202); ZAN is particularly
interesting as it encodes a zonadhesin protein located in the acrosome that
mediates the species specificity of sperm binding to the extracellular coat of the egg
(zona pellucida) (203). Sperm from zonadhesin-null mice exhibit dramatically
higher levels of inter-species gamete adhesion without alteration in fertility (202).
Zonadhesin is reported to be a rapidly-evolving protein with a high level of
divergence between closely-related species, but is similar in species capable of
interbreeding (204, 205). The adaptive advantage of species specificity conferred
by zonadhesin might be the limitation of cross-species fertilization and avoidance
of sterile hybrids (205). However, polymorphism data in humans reveal a signature
of positive selection on haplotypes carrying a frameshift mutation (204). We find a

signal of selection at a nonsense mutation (rs2293766) present at 51% frequency
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in East Asians, but virtually absent elsewhere. An even higher frequency difference
is observed for a stop allele at rs1343879 in MAGEEZ on the X chromosome.
Selection at this locus was previously reported by Yngvadottir et al., who observed
lower diversity in haplotypes carrying the stop allele than in the others and
concluded that, like ZAN, the truncated MAGEEZ2 conferred a selective advantage in
East Asia (206).

2.3.2.3.2. Missense variants

FineMAV also highlighted rs6048066, a missense variant in TGM3 in
Africans. The TGM3 gene product (TGase 3) is involved in the keratinization of the
epidermis and hair follicle by crosslinking structural proteins, thereby contributing
to hair structure, epidermal barrier functions and wound healing (207, 208). Tgm3
knockout mice do not exhibit severe malformation apart from striking
abnormalities of hair follicle function and hair development, manifested by rough-
looking, curly or brittle hair (208-210). The missense variant we report here falls in
the catalytic core of the protein, as does the mouse nonsynonymous we?B" allele
causing the wavy coat and curly whiskers phenotype (210). The absence of TGase 3
seems to affect hair fiber morphogenesis, and could play a role in the maintenance
of body heat in mammals (211). Similarly in humans, TGase 3 is likely to participate
in human hair shaft keratinization and scaffolding (207), and its deficiency has been
linked to Uncombable Hair Syndrome characterised by dry, frizzy and wiry hair,
often with slower growth rate (212). SNPs in TGM3 have been weakly associated
with hair diameter in humans (213), and proteomic profiling of human hair shafts
identified TGase 3 as a major component of the hair fiber and revealed considerable
variation among samples of different ethnic origins, with the lowest levels in African
Americans and Kenyans (214). We propose that this missense variant (rs6048066)
might cause enzyme deficiency and contribute to African hair texture, hypothesised
to have experienced strong positive selection in equatorial climates due to body-
temperature-regulation (33, 215).

Another novel signal detected in African populations falls in SPTA1, encoding

erythrocytic spectrin, alpha 1, a principal component of the erythrocyte membrane
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skeleton, which is essential for the arrangement of transmembrane proteins,
determining red cell membrane stability, cell shape and deformability (216-218).
Variants in SPTA1 have been associated with quantitative hematologic traits (219-
221), and those causing its deficiency result in hemolytic anemias characterised by
elliptically shaped erythrocytes (also seen in Sptal~/- null-mice) (222, 223). The
high prevalence of such anemia in Africa (10 times higher in West Africa than in
Europe or USA (224)) raised the question of a selective advantage, possibly
contributing to protection against malaria (225, 226). It has been shown that
decreased spectrin level inhibited malaria parasite growth in vitro (227) and in a
mouse model (228). This evidence suggests that a functionally and structurally
normal host membrane is necessary for parasite growth and development (225,
227). FineMAV pinpointed rs7547313 (Ile>Val) as a likely selected variant present
at 0.37 frequency in Africans but absent elsewhere. Furthermore, this variant was
reported to be an eQTL associated with lower expression of ACKR1 [MIM: 613665]
(also known as DARC); p-value = 0.000017 (200). It is worth saying that rs7547313
is not in LD with the known Duffy O allele (rs2814778); r2=0.000228497. However,
the functional effect of this missense variant on the protein level and malaria

parasite growth remains uncertain.

2.3.2.3.3. Regulatory variants

Regulatory variants are particularly interesting as they form the most
abundant functional category among FineMAV outliers (Figure 15) and are
responsible for the bulk of human phenotypic variation (17, 140, 170-172).
However, the functional effects of regulatory variants are currently difficult to
predict and interpret. We find a signal of selection on rs2303893 - a splice region
intronic regulatory variant that falls in a region flanking the HADHB promoter (160)
and is associated with increased HADHB expression in adipose, arterial and brain
tissue (Geuvadis and GTEx data (200, 229)). HADHB encodes the beta subunit of the
mitochondrial trifunctional protein involved in the beta-oxidation of fatty acids, and
its deficiency causes severe phenotypes (230-232), but the reason for selection in

East Asians remains enigmatic.
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Another interesting candidate selected in East Asians is rs222444?2 falling in
a promoter flanking region in the intron of VRKI. The region surrounding
rs2224442, although non-coding, is characterised by high conservation across taxa
and presence of DNasel hypersensitivity. VRK1 is a protein kinase implicated in
mitotic and meiotic cell cycles (233, 234) which plays an important role in
gametogenesis in multiple species (235-238). VRK1-deficient organisms show
abnormality of reproductive organs, followed by defects in germ cell development
(235-238). Both sexes of VRK1-null mice have been reported to be infertile
displaying defects in sex organs, oogenesis and spermatogenesis (239-242). It
might be that this regulatory variant affects the expression level of VRK1 and

modulate maturation of gametes.
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2.3.3. Discussion

The aim of this study was not to perform another selection scan, and it
should not be interpreted in that way. Instead, it aims to refine a proportion of local
adaptations to a single variant and prioritise candidates for further functional
validation, as current methods often do not pinpoint causal SNPs. Therefore, this
section provides a decision-making algorithm for elucidation of most likely causal
variants that precedes laborious experimental work as it is impractical to assay
thousands of variants in a high-throughput fashion. To do so, we introduced the
FineMAYV statistic which combines measures of population differentiation, derived
allele frequency and molecular functionality. As it is difficult to distinguish true
biological signals from false positives using population genetic variation data alone,
incorporation of diverse functional annotations (such as predictors of
deleteriousness) should improve the pinpointing of likely causal variants, as it has
in the detection of disease-causing variants (243). It is worth noting that variants
classified as damaging alter the level or biochemical function of a gene product, but
do not necessarily decrease the reproductive fitness of carriers (168, 244). The
functional consequence of the ‘damaging’ change for a person depends on many
factors and can be either negative or positive (as deficiency alleles might be either
beneficial or detrimental) depending on the environmental context. For instance,
variants disadvantageous in one environment can be favored under different
conditions e.g. sickle cell (62), CPT1A (55, 56).

FineMAV was calibrated and tested using a gold standard panel of the eight
best examples of experimentally-validated causal variants underlying signals of
positive selection in humans, and was able to identify the known functional
candidate in all cases (Figure 8 and Figure 9). Using the complete 1000 Genomes
Project dataset (142), we then ranked all genome-wide SNPs based on their
FineMAV value and identified extreme outliers in the upper tail of the empirical
genome-wide distribution in Africa, Europe and East Asia. FineMAV rediscovered
other known variants with strong prior evidence for being causal of positive
selection signals, but which were not part of the positive control set which provides

additional support for our method. We also identified potential functional variants



87

in other genes reported to be under strong positive selection in the literature (with
strong SSI score) where the causal mutation has not been confirmed yet, including
LPP, PCDH15 and PRSS53. The selection signal in PCDH15 and PRSS53 was
attributed to a single missense variant (rs4935502 and rs11150606 respectively),
replicating the results obtained by CMS (155, 196).

The signal in BNC2 was particularly strong in Europeans, as reflected by a
cluster of 12 SNPs found among the top 100 hits in the FineMAV distribution (Figure
10.C). The hypothesised casual SNP (the intergenic rs12350739) was the second
highest-scoring BNCZ2 variant in our analysis and has been reported to be a
functional eQTL as it falls in a highly-conserved melanocyte-specific enhancer and
regulates BNCZ2 transcription (194). The highest-scoring BCNZ2 variant
(rs10962600) might also contribute to the differential expression of BNCZ isoforms,
as several regions inside and outside of the BNCZ gene contain enhancer features
(194). Interestingly, BNC2 has been highlighted as one of the genes present in a
region of the human genome that shows increased levels of Neanderthal ancestry
(Figure 17), suggesting that Neanderthal introgression might have provided
modern humans with adaptive variation for skin phenotypes involving BNCZ2 (30,
129, 134, 194). Furthermore, a cluster of high-scoring SNPs in FineMAV analysis
might be indicative of introgression as a source of adaptive variation as opposed to
advantageous de novo mutations that usually arise individually. We also found other
candidate SNPs falling in regions proposed to be adaptively introgressed from an
archaic source (27 SNPs in total) in GNAIZ2, GPATCH1, IRF6, POUZF3, RASSFI,
SEMA3F and SLC38A3 (Figure 17) (30, 129, 134, 245) suggesting that some of the
candidates might be of archaic rather than de novo origin. However, the origin of the
adaptive mutations is not the focus of this study and has been carefully analysed
elsewhere (30, 129, 134, 245).

Finally, FineMAV picked up variants with modest to high derived allele
frequency ranging from ~0.25 to ~1 within continental populations (Figure 12).
Most classical methods detect only extreme allele frequency differences between
populations, which are less likely to arise by chance (20). On the other hand, highly
functional alleles are less likely to be subjected to random changes in their
frequency, thus it seems that filtering out neutral variation by applying functional

information might allow more examples of weaker sweeps (potentially including
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Figure 17. Genotypes of putatively introgressed SNPs identified by FineMAV. Rows represent
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according to genotype: white dot - homozygote for ancestral allele; violet dot - homozygote for
derived allele; pink - heterozygote. Human genotypes are denoted by lines (using the same colour
coding). The bottom panel specifies the FineMAV score for each variant.
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selection on standing variation) to be discovered, which are characterised by more
modest allele frequency shifts (20, 21), although our method has no power to detect
low selection coefficients that do not produce a population differentiation pattern.
[t is worth noting that the lack of FineMAV hits on the Y chromosome (only one in

the top 300) shows strong dependence on the CADD score prediction.
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2.4. FineMAYV application to various

populations

2.4.1. Materials and methods

After the calibration of our method and assessment of its performance in
African, East Asian and European populations in the 1000 Genomes Project dataset,
we applied it to investigate population-specific local adaptations in Egyptians,
Ethiopians, Greeks, Lebanese, Native Americans and South Asians as described

below.

2.4.1.1. Admixed Americans and South Asians

We ran FineMAV analysis in Admixed Americans (AMR) and South Asians
(SAS) from the 1000 Genomes Project, Phase 3 data release (142) together with the
three main continental populations (described in the previous section) as follows:
AFR, AMR, EAS, EUR; n = 4; x = 2.98 and AFR, EAS, EUR, SAS; n = 4; x = 2.98. DAF,

DAP and FineMAV values were calculated as described earlier.

2.4.1.2. Non-admixed Native Americans

We searched for local adaptations in non-admixed Native Americans
(nAMR) using a dataset comprised of unpublished low coverage whole-genome
sequences from 24 Quechua from Peru generated at WTSI. In total, 29 Quechua
were sequenced on either an [llumina Genome Analyzer Il using 108 bp paired-end
reads or HiSeq 2000 with 100 bp paired-end reads with insert size of 300-500 bp.
Reads were aligned to GRCh37 (hg19/NCBI37) for general sequencing QC and

yielded average coverage of 4-6x. The 29 BAMs were then merged with a subset of
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the 1000 Genomes Phase 1 and 2 samples using the varpipe tool. Variants and
genotypes were called in the merged dataset by Luca Pagani and Petr Danecek
(Wellcome Trust Sanger Institute) using Samtools and the procedure described in
(247). Samples showing more than 5% European ancestry in ADMIXTURE analysis
using common variants were excluded from subsequent analysis leaving a total of
24 individuals. FineMAV analysis in nAMR were performed using 3 reference
populations from the subset of 1000 Genomes Project: AFR (Americans of African
Ancestry, Southwest USA [AWS], Luhya in Webuye, Kenya [LWK], Yoruba in Ibadan,
Nigeria [YRI]), EAS (Han Chinese in Bejing, China [CHB], Southern Han Chinese
[CHS]), EUR (Utah Residents with European Ancestry, USA [CEU], Iberian
Population in Spain [IBS], Toscani in Italia [TSI]); n = 4; x = 2.98. DAF, DAP and
FineMAV values were calculated as described earlier. Common variants failing
Hardy-Weinberg equilibrium and not called in 1000 Genomes Project, Phase 3 data

release (142) were excluded.

2.4.1.3. Greeks, Lebanese, Egyptians and Ethiopians
(GLEE)

The GLEE dataset comprised the following individuals: 100 Egyptians (EGP)
and 100 Ethiopians (ETP; 25 each from Amhara, Oromo, Wolayta and Gumuz)
sequenced at 8x depth using Illumina HiSeq 2000 (247); 100 Greeks (GRK) from the
HELIC TEENAGE (TEENs of Attica: Genes and Environment) cohort comprising
young adults from Athens, Greece, that were sequenced at 30x depth using the
[llumina HiSeq X10 platform, then downsampled to ~8x using the Samtools -s
option to have a coverage comparable to other populations in the dataset; 100
Lebanese (LEB including 34 Christians, 28 Druze and 38 Muslims) sequenced to an
average depth of 8x using Illumina HiSeq 2500. This dataset was merged with
similar data generated by the 1000 Genomes Project including CEU, CHB and YRI
(around 100 individuals each) and the genotypes were called jointly using Samtools
and Bcftools. Calling and quality control analysis were performed by Petr Danecek,

Marc Haber, and Javier Prado-Martinez (Wellcome Trust Sanger Institute).
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Genotype calling accuracy was assessed by checking concordance with array data
from the same samples and was found to have >99% concordance. Outlier samples
(deviating >8 SD from the core variation of the population in the PCA performed
using Eigensoft) and first and second degree relatives were excluded from further
analysis leaving: 91 EGP, 25 Amhara, 25 Oromo, 24 Wolayta, 23 Gumuz, 98 GRK, 34
LEB Christians, 28 LEB Druz and 38 LEB Muslims. DAF, DAP and FineMAV values
were calculated for derived and ambiguous alleles (annotated accordingly to
Ensembl Compara (160, 182)) using a custom script (SNPs only; indels were
omitted). The FineMAV analysis were performed in the following contexts: i) CEU,
CHB, YRI; n = 3; x = 3.5; as a sanity check to compare the concordance of FineMAV
results calculated using full 1000 Genomes Project, Phase 3 (142) and results
calculated from a single continental populations; ii) CEU, CHB, EGP, YRI; n = 4; x =
2.98; to investigate Egyptian-specific signal; iii) Amhara, Oromo and Wolayta were
pooled together as admixed Ethiopians (247) (ETP) and analysed in the following
context: ETP, CEU, CHB, YRI; n = 4; x = 2.98; iv) Gumuz (non-admixed Ethiopian
population (247)) was processed separately: CEU, CHB, Gumuz, YRI; n = 4; x = 2.98;
v) CEU, CHB, GRK, YRI; n = 4; x = 2.98; to explore Greek-specific signal; vi) CHB, GRK,
YRI; n = 3; x = 3.5; replacing CEU with GRK in the inter-continental comparison; vii)
CEU, CHB, LEB, YRL; n = 4; x = 2.98; to investigate Lebanese-specific signal (all
Lebanese pooled together); viii) LEB Christians, LEB Muslims; n = 2; x = 4.96; to

explore differentiation between different Lebanese groups.
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2.4.2. Results

2.4.2.1. FineMAYV analysis in Native Americans and

South Asians

2.4.2.1.1. AMR and SAS from 1000 Genomes Project

FineMAV analyses of the 1000 Genomes Project Admixed Americans (AMR)
and South Asians (SAS) revealed little population-specific variation in these
populations (Figure 18). Even though the signal there was lower due to population
admixture, we nonetheless saw promising candidates for local adaptations found
exclusively in those populations. Interestingly, the only clear outlier observed in
SAS, found at 0.54 frequency but virtually absent elsewhere, was a missense
rs201075024 falling in PRSS53 (Figure 18.A). A different non-synonymous variant
in PRSS53 was picked-up in East Asians (see previous section: Functional
validation), and has been recently shown to affect enzyme processing and secretion
potentially contributing to the straight hair phenotype (196). Furthermore, East
and South Asian alleles fall in close proximity, only 10 bp apart (Figure 19), which
might indicate a similar functional consequence and convergent evolution of a hair-
related phenotype.

The FineMAV signal in Admixed Americans was lower (Figure 18.B) as
admixture decreases differentiation and population-specific derived allele
frequency, with the top 3 scores being missense variants: rs148608573 in MAP7D1,
rs142326775 in ZNF438 and rs34890031 in LRGUK (mouse homologue is essential
for multiple aspects of sperm assembly and function (248)). Even though admixture
decreases the FineMAV signal, the one-directional admixture i.e. European gene
flow to Americas affects the frequency of derived Native American alleles, but not
their purity (as private American alleles would still be found exclusively in
Americas at high DAP values). In the case of common derived alleles selected to high
frequencies before an admixture event, their FineMAV signal should still be

detectable after European gene flow to Americas (assuming their high functional
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prediction (CADD) and DAP scores) even if their allele frequencies decreased
substantially. Therefore, the strongest local adaptations should still fall in the tail of

the FineMAV distribution even in cases of recent one-directional gene flow.

2.4.2.1.2. Non-admixed Native Americans

We found a strong signal of local adaptation in the non-admixed Native
American population, with many potentially interesting candidates (Figure 18.C
and Appendix B), although the allele frequency calculation was based on a small
sample (n = 24). There was a substantial overlap between the top outliers found in
admixed and non-admixed populations (reaching 50% among the top 50 hits). We
also saw a moderate correlation (r = 0.58; p-value = 2.661 x 10-10) between the
FineMAV values of the top 100 non-admixed hits and their admixed equivalents. The
highest scoring variant (similarly to results in admixed Americans) was a missense
rs34890031 (found at 0.77 frequency) in LRGUK, a gene that plays a critical role in
male fertility (248). All of the above suggest that FineMAV is indeed able to pick up
the strongest selection signals even in admixed populations in cases of one-
directional gene flow when the source population is used in the analysis.

Other interesting variants include missense rs62621285 in ST14 and a stop
gained rs2293766 in ZAN, present at 56% and 79% respectively. This nonsense
mutation in ZAN (involved in sperm species specificity (202, 203)) has been
introduced in the previous section as one of the top variants selected in East Asians,
yet its frequency in Native Americans is even higher. ST14 is known for playing an
important role in hair development and growth and its deficiency in mice causes
brittle, thin, uneven, and sparse hair, or even a complete absence of erupted pelage
hairs and vibrissae in null animals (249-254), which is interesting considering the
reduced body hair in Native American populations (255, 256). Furthermore, ST14
is required for skin keratinization, formation and maintenance of the epithelial and
epidermal barrier and integrity (250, 253, 254, 257-263). It seems that this gene
has pleiotropic functions affecting the development of the epidermis, hair follicles,
and cellular immune system (254) as it has been shown that the ST14 protein

product (matriptase) is also an influenza virus-activating protease supporting
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multicycle viral replication in the human respiratory epithelium (264-266). The
influenza genome does not encode any proteases and relies on host proteases for
the cleavage activation of the surface receptor proteins in order to fuse with the
host cell membrane (264-266). Knockdown of matriptase in human bronchial
epithelial cells significantly blocked influenza virus H1 subtype replication (264-
266).

We detected additional putatively causal mutations falling in genes linked to
immunity including: i) rs4924468 in a promoter flanking region upstream of
BAHD1 (null mice exhibit decreased susceptibility to bacterial infection (267)); ii)
rs12478730 and rs12474958 in the [FIHI enhancer (mediating the immune
system's interferon response to RNA viruses including hepatitis B and C, influenza
A, paramyxoviruses (mumps, measles, respiratory syncytial virus causing
bronchiolitis and pneumonia), enteroviruses (including poliovirus), dengue,
rotavirus and Herpes simplex virus among others (268-283); null mice were more
susceptible to viral infection, experienced more severe symptoms and reduced
survival (284-288)); iii) a missense/promoter flanking region mutation
(rs145088108) in LCK (T-cell proliferation and activation gene whose deficiency
causes severe immunodeficiency (289-297)) and iv) missense/TF binding site
mutation (rs147302393) in SON (important for trafficking of influenza A virions to
late endosomes during infection (298) and repressing transcription of hepatitis B
virus (299)).

Furthermore, the SON protein product was shown to regulate ghrelin
receptor (GHSR) transcription in the brain by repressing its promoter activity
(300). Ghrelin (encoded by GHRL and acting via GHSR) is a pleiotropic hormone
secreted by the stomach that promotes food intake, weight gain and fat storage by
reducing fat utilization (beta-oxidation), but also decreased glucose tolerance and
decreased insulin sensitivity in mice and rats (301-305). Knockout mice display
increased utilization of fat as an energy source on a high fat diet, reduced food
intake, weight gain and adiposity, increased energy expenditure and locomotor
activity, decreased circulating glucose level, improved glucose tolerance, increased
circulating insulin level and secretion (304, 306, 307). It seems that the absence of
ghrelin protects from diet-induced obesity and type 2 diabetes (306, 307). On the

other hand, the ghrelin circulating level was shown to increase during fasting and it
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was suggested that it prolongs survival in starved humans but may also play a role
in fetal adaptation to intrauterine malnutrition, while its absence impairs fasting
tolerance (301, 302, 305, 308-310). It seems that ghrelin plays an important role in
the metabolic adaptation to nutrient availability and determines the type of
substrate (fat or carbohydrate) that is used for maintenance of energy balance (304,
306). Interestingly, one of the high-scoring variants in the Quechua population is a
missense variant (rs4684677) falling in GHRL. GHRL encodes preproghrelin, which
is a precursor of two peptides ghrelin and obestatin. Obestatin is ghrelin’s
antagonist involved in satiety and decreased appetite contributing to decreased
body weight gain (311) and the variant we picked up (Gln to Leu substitution in
position 90 of the ghrelin/obestatin prepropeptide; rs4684677) was shown to
impact obestatin function. GIn90Leu was slightly more efficient than native
obestatin in inhibiting ghrelin-induced food intake (312).

Highlighted example is not the only case of variants falling in genes
regulating energy homeostasis, as we also picked up rs189645263 in a promoter of
HIPK3 (a known regulator of insulin secretion whose deficiency impairs insulin
secretion and glucose tolerance and may play a role in the pathogenesis of type 2
diabetes (313)), and rs116131136 missense/promoter flanking region in VGF (an
energy homeostasis regulator). Processing of VGF generates multiple bioactive
peptides and mouse homozygotes for the null allele are small, lean with reduced
adiposity and increased fatty acid oxidation, hypermetabolic (with increased
resting energy expenditure and oxygen consumption), hyperactive, cold intolerant
and infertile (314, 315). Furthermore, VGF deficiency is characterised by decreased
circulating glucose and insulin levels but increased insulin sensitivity and improved
glucose tolerance, resistance to induced obesity and hyperglycemia which indicates
that this gene may also play an important role in diabetes (316-320).

Finally, we detected a strong signal in the CNTNAPZ gene, with a cluster of 9
SNPs in the top 100, which might indicate archaic introgression as a source of this
haplotype (similarly to BNCZ found in Europeans). Indeed, this derived haplotype
is also found in the high-coverage Denisova genome, but in a heterozygous state
which should be taken with caution as heterozygous haplotypes are rather
uncommon in highly inbred archaic hominins and could arise from mapping and

calling errors (246).
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2.4.2.2. GLEE

The Near East, Southern Europe and East Africa form a region which is key
for understanding the evolutionary history of modern humans. The region is at the
centre of modern humans’ expansion outside Africa and an established source of
subsequent expansions such as that during the Neolithic into Europe, Central Asia
and possibly back to Africa (247, 321, 322). Yet the genomics of the populations in
this area have been little-studied, especially on the whole-genome level.

We first performed a sanity check to ensure that the results we are getting
using a single reference population representing each continent (CEU for Europe,
CHB for East Asia and YRI for Africa) are consistent with the results obtained for
the full 1000 Genomes Project, Phase 3 (142) (reported in previous section). We
found a very high concordance between the two runs with ~70% of the top 100
outliers being the same and a high correlation between FineMAV values of those 100
candidates (r = 0.85 in Africa, r = 0.83 in East Asia and r = 0.85 in Europe; all with
p-value < 2.2 x 10-16). All gold standards were successfully picked up as high-scoring
in the sanity test. Furthermore, we detected two well-know adaptive variants
among the top 100 hits that were missed in the full 1000 Genomes Project analysis:
(i) rs3211938, a nonsense mutation in CD36 selected in YRI and conferring
protection against malaria and/or the metabolic syndrome (323-325), and (ii) a
missense variant, rs1229984, falling in ADH1B selected in CHB possibly due to
protection against alcohol dependence (326-329). The reason why rs3211938 was
picked up in the test run is its high frequency in YRI (29%) compared to the
frequency in general African population (12%) sampled by the 1000 Genomes
Project (12% in the combined sample is too low to be detected by FineMAV at the
continental scale analysis). On the other hand, rs1229984 was not picked up in the
full 1000 Genomes Project survey as its evolutionary state (ancestral vs derived)
could not been inferred and was subsequently excluded from the analysis, while
this study was less stringent and ambiguous sites were retained.

We then replaced CEU with genetically close GRK population to see how it
affects the analysis. The results for CHB and YRI remained virtually the same, while

the most prominent difference between GRK and the general European population
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sampled in 1000 Genomes Project Phase 3 was the loss of the selection signals
underlying lactose tolerance (rs4988235 in MCM6; 0.51 DAF in EUR vs 0.13 DAF in
GRK) and blue eyes (rs12913832 in HERCZ; 0.64 DAF in EUR and 0.34 DAF in GRK)
in Greeks (Figure 20.A and B). Conversely, the allele with the biggest difference in
the FineMAV score between GRK and EUR that shows a signal of selection in Greeks
but not EUR was an amino acid change (rs35392772) in MOS, a cell cycle-regulator
essential for oocyte maturation in vertebrates (330-333) (0.24 DAF in GRK vs 0.16
DAF in EUR) (Figure 20.A and B). However, we did not pick up any convincing GRK-
specific adaptation signal in a 4-population comparison (CEU + CHB + GRK + YRI)
and the apparent moderate clusters seen in the Manhattan plot fall in repetitive
elements or duplicated genes likely underlying mapping -> calling artifacts rather
than true signals (Figure 21).

Similarly, we did not find any convincing population-specific signals in
Egyptians, admixed Ethiopians, and Lebanese, which is consistent with their known
admixture and/or extensive ancestry sharing with both Middle East, Europe, and
Africa resulting in little population differentiation (247, 334) (Figure 21 and Figure
22). Finally, we did not detect selection-driven differentiation between Lebanese
Christians and Muslims, which implies that the population structure seen in
Lebanese is most likely due to population isolation followed by genetic drift rather
than positive selection (334) (Figure 21.B and C). We did, however, see some signal
of selection in the non-admixed Ethiopian population (Gumuz), although the results
are based on allele frequencies calculated in a small sample size (n=23), with top 3
SNPs being: nonsense variant rs7904983 in PKD2L1 (70% in Gumuz vs 19% in
AFR), missense variant rs56683778 in CCDC80 (48% in Gumuz vs 7% in AFR), and
intronic variant rs9938729 in MVP (46% in Gumuz vs 2% in AFR) (Figure 22.C).

PKDZ2L1 is a sour taste and cellular pH sensor; mice lacking Pkd211 showed
no or decreased taste response to sour stimuli (335-338). Olfaction enables
examination of food source properties including potential acidity manifested by
sour taste, stimulating an aversive response (339). It is hard to speculate about the
possible reasons for selection of PKD2L1 loss of function, but variation in this gene
was also associated with serum metabolite levels among African Americans (e.g.

palmitoleic acid) (340-342).
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Figure 20. Manhattan plot of genome-wide FineMAV scores in Greeks. FineMAV scores calculated for
genome-wide SNPs in: (A) - GRK (run together with CHB and YRI); (B) - EUR from the full 1000
Genomes Project Phase 3 calculated in the previous section; (C) - GRK (run together with CEU, CHB
and YRI). Each dot in the Manhattan plots represents a single SNP plotted according to coordinates
in GRCh37. The threshold (dashed lines) was set to include the top 100 variants. All gold-standard

SNPs (yellow dots found among the top outliers) and other interesting candidate variants are labeled
with the name of the gene they fall into.
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Figure 21. Manhattan plot of genome-wide FineMAV scores in Lebanese. FineMAV scores calculated
for genome-wide SNPs in: (A) - LEB general population (run together with CEU, CHB and YRI); (B)
- LEB Christians (run against LEB Muslims); (C) - LEB Muslims (run against LEB Christians). Each
dot in the Manhattan plots represents a single SNP plotted according to coordinates in GRCh37.
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CCDC80 has been shown to play an important role in adipocyte
differentiation (343) and may be a key player in energy metabolism and body
weight regulation (344, 345). The absence of Ccdc80 in mice results in increased
caloric intake, decreased energy expenditure, obesity, increased glucose level and
enhanced lipolysis with decreased circulating insulin level and impaired glucose
tolerance when fed a high fat diet (346). CCDC80 has been flagged as having a
protective role in obesity and diabetes (347).

MVP function has remained elusive. It has been shown to contribute to
resistance against Pseudomonas aeruginosa lung infection (348) and confer
response to an environmental toxin (349). On the other hand, some bacteria
incorporate human MVP onto their surface in order to escape autophagy (350).
Furthermore, MVP over-expression has been associated with tumor chemo- and
radiotherapy resistance as it is involved in DNA double-strand break repair
machineries and was shown to be upregulated in stress conditions (351). One study
reported high MVP expression related to severe hypoxia in clinical tumors (352).
This report highlights MVP as putative high-altitude adaptation gene, although such

a claim is purely speculative and requires further functional investigation.
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2.4.3. Discussion

FineMAV does not aim to detect all selection events, but rather to identify a
small number of likely causal variants driving population diversification, therefore
it is reassuring that we do not detect much signal in cases where population
admixture and/or extensive ancestry sharing between populations has resulted in
little differentiation. It has been shown that the recent back-flow of likely Near
Eastern, and to a lesser extent European, ancestry to Africa has drastically
influenced the genomes of present day Northeast African populations (247, 321,
322). Pagani et al. reported the average proportion of non-African ancestry in the
EGP and ETP samples (excluding the Gumuz) to be around 80% and 50%
respectively (247). Furthermore, the indigenous North African ancestry is closely
related to populations outside of Africa as Northeast Africa was the last stop on the
migration out of Africa (247, 321). On top of that, a significant signature of a sub-
Saharan African component was also reported in North African populations (247,
321). Including proxies of source populations in FineMAV comparison cancels out
admixed alleles described by low ‘purity’ score (DAP) as they are found across
multiple populations, while the frequency of the indigenous-population-specific
alleles drops below the detection level as a result of population mixing. Similarly,
the South Asian population is made up of two main ancestry components called
‘Ancestral North Indian’ (ANI) and ‘Ancestral South Indian’ (ASI) (353). ANI was
shown to be genetically close to Middle Easterners, Central Asians, and Europeans,
and ranged from 39% to 71% in India with complex population stratification due
to endogamy (353, 354). A complex population structure was also reported for the
Lebanese population that falls into two main groups: one showing genetic affinity
toward present-day Europeans and Central Asians, and the other more closely
related to Middle Easterners and Africans due to a different admixture history with
neighboring populations driven by culture and endogamy (334). We did not
however detect any differentiation between these two groups that was driven by
selection.

Nevertheless, FineMAV was able to pick up the strongest signals of local

adaptation in admixed Native Americans, despite recent admixture (e.g.



107

rs34890031 in LRGUK). One-directional gene flow from Europeans to Americans
(decreasing indigenous allele frequency (DAF), but not its purity (DAP)) is a much
simpler scenario than the continuous population mixing at the edge of continents
seen in Northeast Africa and Near East, with multiple components and a multi-
layered history. The non-admixed Native Peruvians revealed a range of putatively
selected SNPs falling in genes related to immunity, especially antiviral response.
Historical record documented a massive bottleneck in the Inca Empire (and
Americas in general) attributed to infectious diseases acquired upon European
contact, mainly smallpox but also measles, influenza, mumps and pneumonia
among others (355-358). The selective pressure (pathogen virulence) in
immunologically naive populations having no natural resistance against epidemic
disease was very strong and is estimated to have wiped out over 90% of the
Peruvian Inca population over only 50-100 years (356, 359). However, it is hard to
tell if the signals we picked up were driven by recent strong selection ~500 years
ago, or older events, or a combination of both. Similarly, Fumagalli et al. also
detected local selective pressures acting on IFIH1 (a sensor of viral RNA involved in
antiviral host defense) favouring different alleles in distinct geographical regions
(360). They reported directional positive selection in Europe and Asia as well as a
long population-specific haplotype that swept to high frequency in South America
(360). High Fsr between Asian and South American populations and the presence of
an extended haplotype in America suggest a relatively recent selective sweep (360).
This South American haplotype was defined by two SNPs only 3 bp apart (360). The
same two SNPs (rs12478730 and rs12474958), falling in a conserved enhancer,
were picked up in our FineMAV analysis and might increase IFIH1 expression
conferring stronger protection against viral infections. Notably, variation in IFIH1
and its increased expression was also linked to increased risk of autoimmune
diseases (type 1 diabetes, psoriasis and lupus among others) (360-362).

Finally, we found a signal of geographically restricted selection in energy
metabolism genes in both Quechua and Gumuz. Widespread obesity and an elevated
risk of developing type 2 diabetes and cardiovascular diseases have been reported
for many indigenous communities including Native Americans (363-365). Such an
observation has been linked to the so-called ‘thrifty gene’ hypothesis suggesting

that decreased resting metabolic rate and increased energy storage was favoured
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in populations historically facing feast-famine cycles (44, 45, 366, 367). Adaptation
to food scarcity may predispose to metabolic syndrome in a non-traditional lifestyle
with continuous food supply (44, 45, 366, 367). Furthermore, the traditional diet of
aboriginal Americans and Ethiopians was estimated to be high in carbohydrates
(~70-80%) and low in fat (8-12%), while adoption of a modern lifestyle resulted in
much higher fat-intake (35% fat) (368-370). Urban Peruvians and rural-to-urban
migrants showed a higher prevalence of obesity and cardiovascular diseases
compared with the rural population (although environmental factors play an
important role) (371-373), and a general high incidence of hypertension and
obesity was reported in Peru among both cosmopolitan and Andean Peruvians
(374-381) with nearly a quarter of the adult population at an increased risk of
diabetes (382). Similar trends in the prevalence of cardiovascular diseases linked
to urbanisation were reported in Ethiopia (370, 383-390). Furthermore, a previous
selection scan in indigenous Ethiopian population of Wolaita has also reported a
recent positive selection on genes involved in immunity and energy metabolism
during prolonged food shortage that were linked to diabetes and obesity
susceptibility (370). Apart from diet, high-altitude hypoxia that promotes lipid
storage and carbohydrate oxidation might have contributed to metabolic
adaptation (370, 391, 392). However, we did not replicate the high-altitude
adaptation signals reported previously for Ethiopian highlanders and Andean
Quechua (370, 393), although there is no information whether the populations

analysed in this study were residing at high-altitude.
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3. Functional follow-up of selected

candidates

The endeavour to understand selective adaptation requires the in-depth
functional validation of candidate causal variants. However, the scale of
phenotyping measurements that can be easily and ethically assessed in humans is
limited. Even if a variant is shown to associate with some trait(s) in humans, it
remains uncertain whether it is a true causative variant driving the signal of
selection and observed phenotype or a neutral linked mutation, as association
studies discover correlation rather than causation (138). Pleiotropic effects create
additional difficulties (138, 394); thus it seems crucial to isolate the phenotypic
consequences of beneficial variants (often very subtle) from the genetic
background that is variable between individuals (138). Non-human animal and cell-
culture models coupled with genome editing (e.g. using clustered regularly
interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein-9
nuclease (Cas9)) as well as non-cellular experiments seem to be a suitable solution
to overcome these difficulties, as they enable isolation of the variant and its direct
testing. The obvious limitation of such approach is that variants may behave
differently in humans compared with in vitro and in vivo model systems. Models
need to closely replicate the predicted functional impact of the candidate variants.
Thus, choosing the appropriate experimental methods is a critical step in such
analyses, and will depend on many factors like the class of variant analysed and its
biological context; organ, tissue type or process affected by the mutation; sequence
and function conservation between human and the modelling system; availability
of prior knowledge about variant functionality; predicted phenotype and its effect
size; costs and efforts. This chapter presents first some in vitro studies, then in vivo
studies. Contribution of internal and external collaborators is indicated in relevant

Methods sections.
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3.1. Functional studies in vitro

Using non-cellular assays of modified protein-protein interactions or human
cell lines engineered to carry the proposed causal variant can be quicker and less
laborious than generation of animal models. Furthermore, human cell lines are
often the best approximation for modelling of human characteristics, as they
guarantee sequence identity (which is often a problem for modelling of regulatory
elements in different taxa) and likely functional similarity. However, function might
vary from in vivo conditions. The limitation of this approach is that simple cultured
cell models may be inappropriate for complex whole-organism level phenotypes
but can be applied to study cellular phenotypes. A successful example of such
validation is the derived G allele at rs12913832, associated with blue eye colour
(162, 163). This variant is located upstream of the OCAZ2 promoter in a highly
conserved intronic sequence that represents a regulatory region controlling
expression of OCAZ2, a major contributor to human eye colour variation (162, 163).
The derived G allele was shown to decrease expression of OCAZ, as it binds
differently to nuclear extracts in in vitro assays in cell cultures (163).

The next two sections present the two examples of in vitro analyses
performed as part of this work. Each is structured with individual introductory,

methods, results and discussion sections.
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3.1.1. Positive selection in the human olfactory

receptor gene family

3.1.1.1. Introduction

The olfactory receptor (OR) proteins are members of a large family of G-
protein-coupled receptors arising from mostly single coding-exon genes that often
occur in large clusters in the human genome (395-397). ORs interact with odorant
molecules in the nasal olfactory epithelium to initiate a neuronal response that
triggers the perception of a smell (395, 398, 399), but might be also involved in
other, non-olfactory-related, functions (400). It is also known that point mutations
in OR genes contribute to olfactory phenotype diversity in humans and each person
has a unique set of genetic variation that leads to enormous differences in olfactory
perception between individuals (401-406).

It has been shown that the mammalian OR repertoire have been subjected
to rapid evolution, presumably due to species-specific adaptation to the ecological
niche (407, 408). Detection of chemical molecules in the proximate environment is
informative about toxicity of food sources, habitat parameters and predators, but
also helps in individual identification and mate selection and might play a crucial
role in the organism’s survival (400, 407, 409-411). However, it is commonly
assumed that the primate lineage (especially humans) suffered significant gene loss
in the OR repertoire and a decline in the importance of the olfactory system (399,
412-418). As much as 60% of the human OR genes are pseudogenes bearing one or
more coding-region disruption likely resulting in a functional inactivation (414,
419). While Pierron et al. showed that negative selection is still relaxed in human
ORs, suggesting that the olfactory capability might still be decreasing (420), others
have reported positive selection acting on intact OR clusters and ethnographic
variability (397, 419, 421).

Taken together, it seems that some OR genes might not be essential for
human survival, but it appears that the general enhancement and diversification of

the size of the OR repertoire may confer a selective advantage (397). On the other
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hand, a recent study reported no evidence of positive selection on the olfactory
receptor repertoire as a whole since the chimpanzee-human divergence (414), but
did not rule out the possibility that a few intact OR genes could have experienced
selective sweeps and the signature in the combined sample is undetectable (421).
The emerging picture shows that whereas most human OR genes are under no or
little evolutionary constraint, others might have important functions, and a subset
have evolved under positive selection (421) e.g. OR5I1 (422).

There has been an ongoing debate about whether the selection seen on
human ORs was due to smell perception in olfactory epithelium, or to different
recognition and signalling functions in other parts of the body. Such questions
might be addressed by performing functional follow-up of selected human alleles.
However, fast evolution between species makes it difficult to model human derived
alleles in vivo using available model organisms, as a significant proportion of
mammalian ORs are orphan receptors (407, 423). Furthermore, it appears that
even with a clear 1:1 ortholog between closely-related species, functional
equivalency is limited and sequence does not accurately predict the functional
properties of ORs among orthologs in this multi-gene family (407). In such cases, in
vitro approaches proved to be a reliable predictor of in vivo function and odour
perception, and have provided insight into the functionality of ORs and their
evolutionary history (407). We decided to functionally follow-up OR genes using an
in vitro approach as we saw multiple signals of selection falling in olfactory clusters,

and established collaborations with experts in olfaction biology.

3.1.1.2. Materials and methods

We explored previously-compiled lists of CMS, ADAF and FineMAYV to search
for putatively selected candidate variants falling in ORs. We then followed up
experimentally on the strongest example in collaboration with Joel Mainland at the
Monell Center (Philadelphia, United States). Mainland et al. looked at the activation
(ligand specificity and activation strength) of the ancestral and derived version of

the protein upon exposure to a chemically diverse odour library using a high-
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throughput cyclic adenosine monophosphate (cAMP)-mediated luciferase in vitro
assay for OR functional testing (407, 423-425). To do so, the coding sequences (full
ORF) of the derived and ancestral haplotypes were cloned and expressed in a
heterologous cell system (Hana3A cells, an HEK293T-derived cell line stably
expressing accessory factors for OR expression (426, 427)). This system enables
cell-surface expression of ORs and measuring their activation upon odour
stimulation. If examined OR binds the ligand, binding will change the conformation
of the ORs and initiate a cascade of signal transduction leading to OR activation, and
production and accumulation of cAMP (which turns on the expression of a
luciferase reporter gene that is readily quantifiable by luminometrical methods)
(425). The ancestral and derived alleles of missense SNPs were then screened
against a panel of 918 compounds to compare their dose-responses to individual
ligands by testing each allele across a range of concentrations. A detailed
description of the methods used in this study can be found elsewhere (401, 407,
423-425).

3.1.1.3. Results

In our database compiled from previous selection scans we found evidence
of selection on 10 SNPs falling in 9 OR genes (Table 4). Not all of those signals need
to be independent, as European and East Asian variants falling into clusters on
chromosomes 1 and 11 respectively are in high LD. The strongest CMS signals
pointed to two missense variants: rs2240227 in OR10H3 selected in East Asians
(CHB+JPT, HapMap data (123); Figure 23) and rs12273630 in OR51B5 selected in
Africans (YRI, 1000 Genomes Project data (155)) which falls in the OR gene cluster
on chromosome 11. FineMAV analysis replicated the signal of selection on
rs2240227 in OR10H3 (Figure 23) as one of the strongest hits in East Asians
(ranking as 28t in the whole-genome analysis), but picked up another SNP from the
chromosome 11 cluster, rs331537 in OR52K2 ranking 66t in Africans.

We chose to functionally follow up on rs2240227, as it seemed the strongest

and most reproducible candidate, whose derived allele is seen at 61% frequency in
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Figure 23. Signal of selection in OR10H3 according to three different approaches. ADAF, CMS and
FineMAV scores are shown for the genomic window spanning 10 kb around the variant of interest.
ADAF and FineMAV were calculated from the 1000 Genomes Project Phase3 dataset (142).
Normalised CMS scores (123) were calculated using the phase II of the International Haplotype Map
Project (HapMapll) (146) and downloaded from http://www.broadinstitute.org/. Variants with
CMS values set to ‘nan’ or below 0 are not shown. Genomic positions are given in bp according to
GRCh37 for ADAF and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a
dashed line.
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East Asia but is rare elsewhere (5% in Europe and 0.7% in Africa) and is predicted
to be highly functional (CADD score of 22.3, PolyPhen: possibly damaging, SIFT:
deleterious). To measure the functional consequence of rs2240227 polymorphism,
we needed to pair OR10H3 with odorant in vitro, as OR10H3 does not have an
identified odorant ligand. We therefore functionally assayed and compared the East
Asian derived and reference ancestral haplotypes (different by only 1 amino acid
residue at the Leul4lle substitution; Figure 24) in collaboration with Joel Mainland
at the Monell Center (Philadelphia, United States). The receptors showed no
response to any stimuli tested. An example of such a negative dose-response is

shown in Figure 25.

Table 4. Top-scoring candidates for positive selection in the olfactory receptor family. The ‘Method’
specifies the test that picked up the given variant. ‘Pop.” - population exhibiting the signal of
selection. ‘Expression’ provides information on ectopic expression based on (200, 428, 429); a
hyphen indicates no reported ectopic expression.

Gene SNP Chr.  Method Pop. Consequence Expression
missense .
OR2L2 rs6658141 1 CMS EUR (Val->Leu) low ectopic
ORZL3  rs6658256 1 CMS  EUR ussense low ectopic
(Ser->Leu)
missense
OR1B1 rs1476859 9 ADAF AFR (Ala->Thr) -
missense
. (Arg->His),
OR52K2 rs331537 11 FIZeDIZ}iV’ AFR regulatory low ectopic
(promoter
flanking region)
missense
OR51B5 r1s12273630 11 CMS  AFR (Val->Ile), 4ium ectopic
regulatory
(enhancer)
OR56B4 rs1462983 11 CMS, — gps missense low ectopic
ADAF (Pro->Ser) P
regulatory
OR52W1 rs11040760 11 CMS, ADAF EAS (enhancer, low ectopic
eQTL)
OR52W1 r1s10839531 11  ADAF  AFR missense low ectopic
(His->Arg)
OR10AD1 r1s4760697 12 cMs ~ gyr  resulatory low ectopic
(promoter)
FineMAV, missense

ORI10H3  rs2240227 19 EAS -

CMS (Leu->Ile)
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Figure 24. Haplotype network of OR10H3. The median-joining haplotype network was generated
using Network 5.0.0.0 (430) and sequences of 270 individuals from the 1000 Genome Project, Phase
1 (85 CEU, 97 CHB, 88 YRI) (159) and the high-coverage Denisova genome (246). Each circle
represents a distinct haplotype; circle area is proportional to haplotype frequency; the branch length
shows number of mutational steps between haplotypes (shortest line equals one step); the selected
rs2240227 mutation is marked with a star.
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Figure 25. Dose-response curve of the derived (141le) and ancestral (14Leu) version of the OR10H3
receptor to the aurantiol odorant. X-axis shows the concentration of aurantiol in Log Molar units. Y-
axis shows the luciferase response (each concentration was tested in triplicate, error bars indicates
= S.E.M. over three replicates). Rho-pClI is a negative vector-only control (mammalian expression
vector containing the first 20 amino acids of human rhodopsin (Rho-tag) that was used for OR
cloning; the inclusion of the Rho-tag at the N-terminal end has been shown to promote the cell-
surface expression of ORs (425)). Responses of cells transfected with a plasmid encoding OR10H3
should fit the sigmoid curve upon activation with an empty vector showing no response. The odorant
did not activate the receptor significantly more than the vector-only transfected control as described
in (407).
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3.1.1.4. Discussion

3.1.1.4.1. Lack of OR10H3 activation

[t is known that missense substitutions in ORs often alter receptor function
and can have dramatic consequences on activation, ligand specificity and odour
perception (401-407). We made an attempt to compare functional differences of the
ancestral and derived receptor variants of OR10H3 in vitro with a diverse panel of
odours, but we could not identify any ligands that activated either of the alleles
(14Leu or 14lle) preventing us from comparing their functional impact.

The fact that the receptors investigated did not respond to a panel of odours
illustrates the limitations of the in vitro assay. Most likely, the relevant odour is
simply not present in the panel, but the lack of receptor response might
alternatively reflect a failure of the OR to function in the assay (402, 407). In
addition, the difference between derived and ancestral allele might affect other
aspects then ligand binding, e.g. differences in G-protein coupling or receptor
recycling and could be investigated in the future (407).

[tis also possible that OR10H3 is non-functional, as not all ORs with an intact
ORF are necessarily expressed and functional (407). Another possibility is that,
according to a broader non-classical definition, ORs are small proteins responsible
for transduction of a signal upon ligand recognition not necessarily linked to
olfaction. It could thus be that OR10H3 does not have an olfactory function at all,
but detects non-classical odorants, while our odour space panel is optimised for
olfactory response in the human nose.

Such a hypothesis is supported by the observation that majority of the ORs
(including OR10H3) picked up by the selection scans (Table 4) are poorly expressed
in the human nasal olfactory epithelium (based on 3 human samples assayed for
RNA expression using a custom NanoString CodeSet; personal communication,
Darren Logan, 2015). There is no evidence that these ORs are particularly important
for olfactory function, which is consistent with the hypothesis that they could have

been under selection for reasons other than smell perception.
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3.1.1.4.2. Ectopic expression of olfactory receptors

It has been demonstrated that OR expression is not restricted to the
olfactory epithelium and about a quarter of ORs are expressed ectopically (i.e. in
non-olfactory tissues), serving extra-olfactory functions, although some ectopic OR
transcripts may not code for a functional protein (429, 431, 432). Functionality of
ectopic ORs is supported by their strong evolutionary constraint compared to OR
genes expressed exclusively in the olfactory epithelium (432). Furthermore, most
of the key components of the olfactory signal transduction pathway were detected
across many tissues, which suggests the existence of downstream signal
transduction in non-olfactory tissues and might indicate the involvement of these
gene products in other physiological processes (429) (but it is also possible that
activation of ectopically expressed ORs targets other signalling pathways (433)).

Expression analysis of ectopically expressed ORs across multiple human
tissues found that some ORs were broadly expressed in a variety of non-olfactory
tissues, while others showed exclusive expression in one investigated tissue (such
as OR4N4 and ORZH1 in testis) (429). OR genes expressed ectopically were more
highly expressed in testis that in any other non-olfactory tissue examined,
indicating a possible important functional role of ORs in testis (429, 434, 435) e.g.
the expression and activation of ORIDZ is believed to function in human sperm
chemotaxis, influencing the swimming direction and speed of spermatozoa, which
might be critical in the fertilization process (436-439). Furthermore, 40% of MHC-
linked OR-genes were detected in the testis (spermatocytes) (429) and might
participate in olfaction-guided mate choice, but also in MHC-dependent selection of
the spermatozoa acting as surface chemoreceptors to favour the production of
MHC-heterozygous offspring (440). Apart from involvement in chemotaxis, ORs
expressed in testis were implied in the sperm development and competition or
interaction between spermatozoa and oocytes (429, 440). Nonolfaction-associated
OR function such as cell-cell recognition in human embryogenesis has also been
suggested (441). Finally, ORs expressed in the human gut mucosa might control gut
motility and secretion (433).

Most of the receptors picked out by our study were also reported to be

expressed ectopically (Table 4) (200, 428), including OR10AD1 and OR51B5 as the
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most highly expressed in the human tissues (429). OR10AD1 and ORZL2 showed the
evidence of being expressed in human testes and could be involved in chemotaxis
during fertilization (200, 442). OR51B5 is a particularly interesting example as it
was associated with the fetal haemoglobin (HbF) levels (443) and the observed
signal of selection in this gene was reported in Africans. HbF partially compensates
for the reduction or absence of normal HbA production in sickle cell anaemia and
the [-thalassemias, and its increased level correlates with less severe
complications, fewer pain crises and improved survival (443).

Solovieff et al. found an association between HbF concentration in sickle cell
anaemia and a regulatory region in the olfactory receptor gene cluster (containing
OR51B5 and OR51B6) upstream of the [3-globin gene cluster on chromosome 11
(443). The authors suggested that this region might play a role in controlling
expression within the 3-globin gene complex (containing the HbF gene) by altering
chromatin structure (establishing and/or maintaining of an open chromatin
domain) (443-446). It might be that the rs12273630 picked up by the CMS method
that falls in the OR51B5 (but also in introns of HBEI1 (embryonic haemoglobin
subunit epsilon) and HBGZ (fetal haemoglobin subunit gamma-2) and an enhancer)
has been selected due to non-olfactory regulatory function. ORs from this cluster
are transcribed at low levels in erythroid cells and are characterised by high
evolutionary constraint (446, 447).

It was previously thought that the expression of (-globin genes is strictly
dependent on a cis-acting element called the locus control region (LCR), that
contains erythroid-specific DNase I hypersensitive sites necessary for establishing
the open chromatin domain (446). However, it has been shown in mouse ES cells
that the chromatin in the -globin gene cluster remains in an open conformation,
even after deletion of the LCR, if the olfactory receptor gene cluster remained intact
(although the transcription of -like globin genes was significantly reduced) (448).
This suggests that the OR cluster, together with other elements scattered
throughout the locus, might contribute to heterochromatinization independently
from the LCR (448). Other GWAS studies have also reported association of the OR
gene cluster on chromosome 11 with HbF level and thalassemia severity (449, 450).

Furthermore, a DNase hypersensitive site was reported within the OR region (451),
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but the functional impact of the olfactory gene locus on downstream globin genes

remains uncertain and requires further experimental investigation (443).
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3.1.2. Selection on fucosyltransferase 2 (FUTZ2)

3.1.2.1. Introduction

Pathogens have been a powerful selective force during human evolution and
numerous host-cell surface molecules recognised as receptors by pathogens have
experienced positive selection in humans (452, 453). One source of such strong
pressures, historically responsible for high child mortality in developing countries,
was rota- and noroviruses. These enteric viruses cause acute gastroenteritis
characterised by vomiting, diarrhoea, dehydration and electrolyte imbalance,
resulting in over 650,000 deaths per year (prior to the introduction of vaccination
programmes) (454-456). Rota- and norovirus attachment to the host cell requires
binding to carbohydrates (oligosaccharides) of the ABO(H)/Lewis histo-blood
group antigens expressed in epithelial cells of the gut (454, 457-461). The synthesis
of the H antigen (precursor of the ABO antigens) on epithelial cell surfaces and in
body fluids is regulated by the human secretor locus (Se) FUTZ, encoding alpha-
(1,2)fucosyltransferase. Loss of function mutations in FUTZ result in the non-
secretor phenotypei.e.alack of the FUT2 enzyme activity and a consequent absence
of the a1,2-fucose antigen in the intestinal surface mucosa and body fluids, which
is associated with resistance to virus attachment and infection (52, 454, 462). Non-
secretors can still produce ABO(H) antigens in erythrocytes, as their precursor is
encoded by FUT1 (463).

[t has been shown that many independent mutations are responsible for the
nonsecretor phenotype around the world (452), and ~20-30% of the worldwide
population fail to secrete H antigen (464, 465). The two most common mutations
causing the nonsecretor phenotype are the stop-gained variant rs601338, also
known as se#¢ (found at high frequencies in Africans (49%) and Europeans (44%)
but absent in East Asians) (452, 465), and a missense variant, rs1047781 (se38?),
found exclusively in East Asians at 44%. The latter results in an Ile140Phe amino
acid substitution and was shown to reduce the FUT2 enzyme stability and activity
to 2-3%, thus causing almost complete inactivation (195, 464, 466,467). Therefore,

homozygous carriers of the se385 missense mutation are sometimes considered
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‘weak secretors’ expressing low levels of H-antigen, as opposed to ‘nonsecretors’
with the se#?% nonsense mutation who do not secrete H-antigen at all (461, 467). It
has been proposed that those two mutations may cause differences in susceptibility
to specific viral strains, and that ‘low secretor’ status provides incomplete
protection from noro-/rotaviruses (461).

Many studies have investigated the infection susceptibility of secretors vs
non-secretors (468-470). A recent meta-analysis indicated that host genetic
susceptibility to norovirus and rotavirus infection is strain-specific, and secretors
are ~2-30 times more prone to infection (depending on the virus) compared with
non-secretors (461, 471). Non-secretors showed strong although not absolute
protection from infections depending on virus carbohydrate-binding profile, as
different strains recognise slightly different glycan patterns (461, 471, 472). The
strongest infection association with the secretor status was shown for GIl.4
noroviruses and P[8] rotaviruses (461, 471). Other beneficial effects of FUTZ null-
alleles have been proposed, including avoidance of the carcinogenic bacteria
Helicobacter pylori that colonise the stomach through binding to host gastric mucus
layer containing H blood group structures (473-479), and a reduced risk of
acquiring HIV-1 and a slowed progression of its infection in non-secretors (480-
482). The latter could be linked to FUTZ expression in the epithelial cells of the
genitourinary tract (480, 481). In addition, FUT2 has also been shown to be
expressed in the epithelial cells of the respiratory tract, and nonsecretor status was
associated with a decreased risk of some respiratory viral diseases caused by
influenza A and B viruses, rhinoviruses, respiratory syncytial virus, and echoviruses
which enter the host via mucosal surfaces (483).

FUTZ2 activity has also been shown to affect the gut microbiota (species
composition, diversity, absolute abundance and host-microbe interactions) and
metabolite profiles in adults (484-487). The H antigen is an oligosaccharide that
acts both as an attachment site and a carbon source for intestinal bacteria that
protects from intestinal overcolonization by opportunistic pathogens and
subsequent inflammatory diseases (485, 488-491). Non-secretors have an altered
functional composition of mucosal microbiota which puts them at increased risk of

developing inflammatory bowel disease (IBD) (492), including Crohn's disease
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(485, 486, 493-496) and ulcerative colitis (497), but also primary sclerosing
cholangitis (PSC) (498-500) and celiac disease (501).

Various studies have reported signatures of balancing and positive selection
at the FUTZ locus (452, 464, 502-504). The East Asian nonsecretor mutation
(rs1047781) was proposed to have experienced a recent drastic increase in
frequency likely due to strong positive selection in agreement with the reduction of
genetic diversity and distortion of SFS (452). In this section we attempted to
functionally follow up the selected FUTZ variant picked up in our study.

3.1.2.2. Material and methods

We aimed to establish a stable cell line expressing exogenous ancestral and
derived form of FUTZ with no endogenous background expression. All molecular
biology work was done by Carmen Diaz Soria (Paul Kellam’s Viral Genomics group
at the Wellcome Trust Sanger Institute). Cell culture work was performed by
Carmen Diaz Soria and me. Western blot analyses were carried out by Elena Arciero

(Wellcome Trust Sanger Institute) and me.

3.1.2.2.1. Construct design with GeneArt and Site-Directed

Mutagenesis

Human DNA ancestral and derived FUTZ sequences were synthesised by
GeneArt. Constructs were made in duplicate carrying C-terminal HA or Myc tags. To
mask an extra BamHlI restriction site in the FUTZ constructs, we carried out site-
directed mutagenesis using the QuikChange II XL site-directed mutagenesis kit
(Agilent) and primers (Metabion) shown in Table 5 under conditions shown in
Table 6. These GeneArt plasmids were then transformed into NEB Turbo competent
cells (New England Biolabs) according to the manufacturer’s guidelines. Cells were
spread onto ampicillin LB agar plates and incubated overnight at 37°C. Single

ampicillin-resistant colonies were picked from each LB agar plate and used to
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inoculate 5 ml of LB medium in a 50 ml falcon tube. Cultures were left overnight in
a shaking incubator at 37°C and 200 revolutions per minute (Innova44, New
Brunswick Scientific). The culture was centrifuged (10,000 g, 5 min) and the DNA
extracted (QiaPrep spin mini-prep kit, Qiagen) following the manufacturer’s
protocol. We checked the colonies using restriction enzyme digests with BamHI and
Notl (Promega, UK) followed by running products on an agarose gel. Digestion
reactions were carried out in 20 ul and incubated at 37°C for 1 h under reaction

conditions according to the Promega protocol.

Table 5. Primers used in this study.

Name Sequence 5’-3’ Usage Manufacturer
Sequencing pHR
SFFV_F TGCTTCTCGCTTCTGTTCG SIN CSGW-PGK  Sigma-Aldrich
PURO
Sequencing pHR
WPRE_R CCACATAGCGTAAAAGGAG SIN CSGW-PGK  Sigma-Aldrich
PURO
Site Directed .
c425a_fut2_ F CCACGGCCAGCAGGATACCCTGGCAG . Metabion
Mutagenesis
c425a_fut2 R CTGCCAGGGTATCCTGCTGGCCGTGG — Sive Directed v abion
Mutagenesis

Table 6. PCR cycling conditions for Site Directed Mutagenesis.

Cycles Temperature [°C] Time
1 95 1 min
95 50 secs
18 60 50 secs
68 7 min + 10 secs
1 68 7 min

3.1.2.2.2. Construction of plasmids

The insert was removed from each GeneArt plasmid and ligated into a
lentivirus expression vector, pHR-SIN CSGW PGK Puro. First, the GeneArt plasmids
as well as the expression vector were digested using the restriction enzyme BamHI

and Notl (Promega, UK) as described above. The digestion products were run on an
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agarose gel and the DNA fragment corresponding to the FUTZ gene construct (~1.1
kb) and the expression vector (~9 kb) were extracted using a QIAquick Gel
Extraction Kit (Qiagen) following the manufacturer’s instructions. QIAgen-purified
FUTZ2 DNA fragments were cloned into pHR-SIN CSGW PGK Puro by ligation. All
ligation reactions were carried out at a 3:1 molar insert:vector ratio in a 20 pl
reaction volume and left overnight at 16°C.

The ligation mix (pHR-SIN CSGW PGK Puro + FUTZ gene) was transformed
into NEB Turbo competent cells (New England Biolabs) as described in the previous
section. The colonies were checked by colony PCR using the conditions described in
Table 7. Sanger sequencing (GATC Biotech) was used to check the integrity of these
sequences and ensure that the tag was in-frame with the rest of the protein
sequence. The DNA sequence was amplified using SFFV_F and WPRE_R primers
(Sigma-Aldrich) shown in Table 5.

Table 7. PCR cycling conditions for colony PCR and to generate DNA for Sanger sequencing.

Cycles Temperature [°C] Time
1 98 30 secs
98 10 secs
30 54 30 secs
72 35 secs
1 68 10 min

3.1.2.2.3. Making lentivirus stocks

Lentivirus particles were constructed according to an in-house protocol
using a gag-pol expressing vector (p8.91), a VSV-G expressing vector (pMDG) and
the above vector expressing FUTZ (pHR-SIN CSGW PGK Puro). Briefly, 10 ul Fugene-
6 (Roche) was added to 200 pl Opti-MEM (ThermoFisher). A DNA mix carrying 1 pg
gag-pol expresser (p8.91), 1 ug pMDG (VSV-G expresser) and 1.5 ug expression
vector (pHR-SIN CSGW PGK Puro + FUT2) was made in 15 ul in TE (10 mM TRIS pH
8,1 mM EDTA) and added to the Opti-MEM /Fugene-6 mixture. The mixture was left
at room temperature for 15 minutes. This DNA mix was then added dropwise to

HEK-293T cells that had been plated the day before in 10 cm plates. Cell were
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returned to the incubator at 37°C in 5% carbon dioxide in air mixture. The next day,
the medium was changed and 8 ml of fresh medium added. The supernatant
containing the lentivirus particles was collected after 48 hrs, filtered with 0.45 um

filters and stored at -80 °C.

3.1.2.2.4. Production of stable cell lines and cell culture

We plated 6 x 105 A549 cells/ml in 6-well plates in duplicate. The next day,
the cells were transfected with 500 ml of lentiviral particles, except for the control
untransfected cells. A medium change was performed after 48 hrs. Cells were
exposed to the selection antibiotic, Puromycin (1.4 mg/ml) at a 1/1000 dilution 4
days post-transfection. Medium containing the selection antibiotic was replaced
every 3 days. Cell lines were grown in F12 (Invitrogen) supplemented with 10 %
v/v foetal bovine serum (FBS, Biosera). Cells were passaged 1:6 or 1:10, twice a

week.

3.1.2.2.5. Western blotting

Proteins were extracted from cell cultures using radioimmunoprecipitation
assay buffer (RIPA Buffer; R0278 SIGMA) containing Halt™ Phosphatase Inhibitor
Cocktail (78420B; Thermo Scientific) following the manufacturer’s protocol.
Protein samples were then mixed with Protein Loading Buffer Blue 2X (EC-886;
National Diagnostics) and loaded into wells alongside the Precision Plus Protein™
Kaleidoscope™ Prestained Protein Standards (#1610375; BIO-RAD) to be
separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Electrophoresis
was carried out using 4-20% Mini-PROTEAN® TGX™ Precast Protein Gels
(#4561093; BIO-RAD) in a Mini-PROTEAN Tetra Cell system (BIO-RAD) containing
electrophoresis buffer (1x PBS and 0.05% Tween 20 (Sigma)). Proteins were then
transferred onto nitrocellulose membrane (Trans-Blot® Turbo™ Mini

Nitrocellulose Transfer Packs; #1704158; BIO-RAD) using Trans-Blot® Turbo™
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Transfer System (7 mins, 25V; BIO-RAD). Membranes were incubated with primary
antibodies: goat polyclonal to FUTZ (ab177239; Abcam) or Mouse monoclonal [AC-
15] to beta Actin (HRP) (ab49900; Abcam) for 2 hours, followed by incubation with
the following species-appropriate secondary antibodies for 1 hour: Donkey Anti-
Goat IgG (6420-05; SouthernBiotech) or Polyclonal Goat Anti-Mouse IgG (Dako). All
antibodies were diluted in 1x PBS (Sigma) containing 0.05% Tween 20 (Sigma) and
5% non-fat dried milk (Carnation). Proteins were then visualised using the ECL™
Prime Western Blotting Detection Reagent (RPN2236; GE Healthcare) following the
producer’s instructions, and the Celvin® S chemiluminescence imaging system

(Biostep). Images were captured with SnapAndGO software.

3.1.2.3. Results

Our FineMAV analysis in 1000 Genomes Project, Phase 3 (142) picked up the
known ‘weak’ secretor mutation rs1047781 as the 21st highest scoring variant in
East Asians (Figure 26). The molecular functionality of this variant and its impact
on noro- and rotaviruses susceptibility is well documented (195, 464, 466, 467),
but the hypothesised selective advantage of the low-/inactive enzyme in the
resistance to other viral infections has not been directly measured in vitro. We
aimed to express the ancestral and low-activity derived forms of the FUT2 enzyme
in A549 cells, a cell line that does not express the endogenous copy of this gene, and
establish a stably-transfected cell lines. We intended to assess the cell fucosylation
level associated with each allele using anti-fucose staining as described in (505) and
their susceptibility to a range of viruses (2 strains of influenza A virus subtype H5
from Vietnam and Indonesia, and 5 Ebolaviruses: Bundibugyo ebolavirus, Reston
ebolavirus, Sudan ebolavirus and Zaire ebolavirus including Mayinga and Mayinga
M2 strains) using the luciferase pseudovirus infection assay that, knowing
rs1047781 causality, seemed as a low-hanging fruit.

We successfully transfected cells with the lentiviral vector and detected
transient FUTZ expression of all four variants: ancestral HA-tagged, derived HA-

tagged, ancestral Myc-tagged and derived Myc-tagged. We then isolated stably-
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Figure 26. Signal of selection in FUT2 according to three different approaches. ADAF, CMS and
FineMAV scores are shown for the genomic window spanning the FUT2 gene. ADAF and FineMAV
were calculated from the 1000 Genomes Project Phase3 dataset (142). Normalised CMS scores (123)
were calculated using phase II of the International Haplotype Map Project (HapMapll) (146) and
downloaded from http://www.broadinstitute.org/. Variants with CMS values set to ‘nan’ or below 0
are not shown. Genomic positions are given in bp according to GRCh37 for ADAF and FineMAV, and
build NCBI36 for CMS. The selected variant is marked with a dashed line.
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transfected cells (successful integration of the vector into the genome) using
selection medium. Only Myc-tagged lines passed the antibiotic selection and were
expanded and maintained under the selection regime. However, we failed to
establish a stable cell line expressing the transgene, as the FUTZ expression was lost
over time (after ~10 passages corresponding to ~1.5 month) (Figure 27) and we

could not test for susceptibility to a panel of viruses.

3.1.2.4. Discussion

The genomic integration of engineered transgenes is a standard genetic
manipulation of mammalian cells that has been applied to investigate FUTZ function
in the past. For instance, overexpression of exogenous FUTZ in the human HuH-7
cell line (hepatocarcinoma) was shown to enhance norovirus binding (506).
Enzymatic activity of different FUT2 variants was evaluated in CHO-K1 (Chinese
hamster ovary) or COS (Kidney from African green monkey) cells transfected with
expression vectors carrying different version of the human gene (195, 467, 507).
Both experiments were carried out in transiently-transfected cells. Rotavirus
binding to fucosylated cells was, on the other hand, shown in a FUTZ positive stably-
transfected CHO cell line (460).

An isolated stably transfected cell clone should ideally express the transgene
at constant level over prolonged period of time (508). However, a complete loss of
the transgene expression over time is quite common, despite the successful
integration of the expression vector into the genome and its integrity (508). Such a
phenomenon is often attributed to epigenetic downregulation of transgene activity
in cell cultures, which critically depends on the integration site and its chromatin
environment (508). Expression of the antibiotic resistance marker does not
guarantee persistent expression of the gene of interest even when placed in close
proximity as they are independent transcription units (508). It has been shown that
progressive transcriptional silencing of the gene of interest may occur over
propagation in the presence of antibiotic selective pressure, as cells with an intact

antibiotic resistance gene but a disrupted/silenced gene of interest have a slight
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Figure 27. Western Blot analysis cropped to show regions of interest. Lysates of transient and stable
transfectants of A549 cells carrying Myc-tagged FUT2, ancestral (140Ile) or derived (140Phe)
vector, were separated by SDS-PAGE and transferred onto nitrocellulose membranes. Plain A549
served as a negative control. Predicted molecular mass under SDS-PAGE reducing conditions: FUT2

~50 kDA; B-actin ~42 kDa.
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competitive growth advantage over the protein-producing cells, and tend to
dominate the culture (509). A way to overcome this problem could be using a
transfection vector where FUTZ and the antibiotic resistance gene are driven from
the same promoter or applying more stringent antibiotic-based approaches for cell
line selection or selection techniques based on expression of the gene of interest
itself like the one described in (508). An alternative solution, although more
laborious, would be editing of the endogenous copy of the FUTZ via CRISPR/Cas9 in
ES cells without introducing exogenous DNA prone to epigenetic modifications.
Such an approach would also ensure the same FUTZ copy number per cell and

homogenous expression in the cell population.
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3.2. Functional studies in vivo

3.2.1. Introduction

Model organisms have been extensively used in a variety of biological
research to identify and characterise disease-gene associations, candidate gene
function, their pathway involvement and expression patterns (510). This approach
is based on the widely-accepted assumption that orthologous genes usually
perform equivalent or identical functions across taxa, which allowed translation of
animal research into human health applications (511-514). For instance, gene
knock-outs in inbred mouse strains have been widely applied to study the function
of human many genes (515, 516). Similarly, several human diseases and
pathological variants have been successfully modelled in mice, which share 99% of
their genes with humans, and are the only mammal whose genome can be efficiently
manipulated on a large scale (138, 515, 517). Model organisms also provide an
opportunity to assess phenotypic impact at the whole-organism level, thus enabling
phenotyping of more complex traits like behaviour, hearing or cold resistance,
which are difficult to measure at the cellular level.

Modelling of non-pathological human genetic variation, however, has
received little attention to date. Nevertheless, mouse knock-outs have been
successfully used to study human-specific evolutionary adaptations like fixed loss
of function mutations in MYH16 (resulting in the reduction of the masticatory
apparatus), and CMAH (loss of the enzyme due to immune-related selection) (518-
520). There are, however, only two reports of successful modelling of human
adaptive alleles (humanized knock-in models) in mouse: the human-specific form
of FOXP2 (521) and a population-specific allele in EDAR (138). The derived G allele
atrs3827760 in EDAR causes an amino acid change that is widespread in East Asian
populations (up to 93%) and virtually absent in Africans and Europeans (1%)
(138). A mouse model carrying the derived allele recapitulated the associated
human phenotype of increased hair thickness and sweat gland number, proving

causality of the point mutation (138). This study demonstrated the suitability of the
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mouse model for isolation and characterization of subtle phenotypic effects of a
human adaptive allele in a genetically homogeneous background when the
conservation of protein and target organ function between the two species is high
enough (138). Non-mammalian models have also been successfully applied to study
human adaptations, e.g. melanosomal differences between the ancestral and
derived alleles of SLC24A5 were successfully assayed using a zebrafish model (139).
Although non-mammal animals might offer a faster and cheaper way of
characterizing the biological consequences of the putatively selected mutation in
vivo, this approach can only be applied to study basic functions of conserved one-
to-one orthologues.

There are, nevertheless limitations to model organism studies as the
conclusions depend critically on the appropriateness of the model system for the
human phenotype (138). It has been shown that specific groups of genes and
regulatory elements have undergone more rapid evolution than others, e.g. a large
fraction of enhancers have changed their activity in the human lineage (including
human-specific activity gains and losses) (518, 522, 523). Lack of the sequence
and/or target organ homology between mouse and human makes it difficult to
model human-specific derived variants in genes/cis-elements subjected to rapid
evolution (e.g. related to the immune or central nervous system and other human-
specific aspects of biology). On the other hand, even human-specific traits have been
successfully modelled in mice. Enard et al. introduced two nonsynonymous
substitutions in the FOXP2 gene that have been fixed specifically on the human
lineage, probably due to effects on aspects of speech and language, into the
endogenous mouse orthologue (521). As a result, subtle changes in the central
nervous system that might be linked to some aspects of speech and language in
humans have been found in the mouse model (521).

However, for both FOXP2 and EDAR variants, the selected human
phenotypes were reliably suggested by mouse knock-outs or naturally-occurring
human loss-of-function mutations. An absence of such prior knowledge makes it
difficult to predict and experimentally validate the selected advantageous
phenotype associated with a variant in a gene whose function remains unclear, as
it is impractical to assay every trait in every cell type (155). Therefore, formulating

a prior hypothesis about the selected phenotype based on biological insights
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extracted from publically-available sources (e.g. detailed single-gene studies) or
conducting novel knock-out studies to improve our understanding of gene function
seems to be fundamental to future phenotyping efforts. Models with disrupted
gene/regulatory element might show a phenotype that helps to localise the affected
function and physiological system that has been the target of recent positive
selection, as the single point mutation would perhaps have a subtle effect, but
probably one related to the knockdown phenotype. Comparison of animal knock-
out phenotypes and naturally occurring human loss-of-function phenotypes might
prove to be very informative for decision-making, e.g. modelling of a human
adaptive variant by changing one nucleotide in a mouse orthologue that exhibits
undetectable knock-out phenotype might seem a risky undertaking better avoided.
If direct experimental data on the gene function is unavailable, making predictions
about the selected phenotype might be facilitated by the expression pattern and
function of orthologous or paralogous genes, protein interactions, pathway

involvement and co-localization, expression patterns and disease associations.
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3.2.2. Materials and methods

3.2.2.1. Candidate variant selection for in vivo studies

Candidate variants chosen for functional studies in mice had to meet several
modelability criteria. They had to be strong candidates for positive selection
characterised by high FineMAV scores, ideally, supported by CMS or SSI. They had
to fall in genes with a 1-to-1 human-mouse ortholog of at least 70% reciprocal
amino acid identity. The local alignment of the DNA sequence surrounding the
putatively selected mutation had to be characterised by high conservation between
human and mouse. They had to fall in genes of known functionality that allowed
formulation of a prior hypothesis about the reasons for selection and predictions of
the selected phenotype. The selected candidate variant’s function was therefore
extensively annotated and assessed using publicly-available high-throughput
functional genomic and phenotypic databases (Table 8). We overlapped clinical

features observed in naturally occurring loss-of-function mutations in humans,

Table 8. List of databases used for functional annotation of candidate variants and genes.

Database URL
Ensembl www.ensembl.org
Human Gene Mutation Database www.hgmd.cf.ac.uk
Clinical Genomic Database research.nhgri.nih.gov/CGD
Online Mendelian Inheritance in Man www.omim.org

Catalog of Published Genome-Wide

Association Studies www.eblac.uk/gwas

Expression Atlas www.ebi.ac.uk/gxa
The Genotype-Tlssug Expression (GTEX) www.gtexportal.org
Project
GENCODE www.gencodegenes.org
Multiple Tissue Human Expression Resource www.muther.ac.uk
GenCord Project ega-archive.org/dacs/EGAC00001000105
GENe Expression VARiation www.sanger.ac.uk/res;rurces/software/genev
Genetic European Variation in Health and www.geuvadis.org
Disease (GEUVADIS) www.ebi.ac.uk/Tools/geuvadis-das
Mouse Genome Informatics www.informatics.jax.org
International Mouse Phenotyping Consortium www.mousephenotype.org
WTSI Mouse Resources Portal www.sanger.ac.uk/mouseportal

Zebrafish Mutation Project www.sanger.ac.uk/resources/zebrafish/zmp
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with mouse and zebrafish null phenotypes annotations and performed PubMed
searches to get insights into the function of genes showing signatures of positive
selection. In cases where there was no clue to the candidate gene’s function, but it
nevertheless seemed of interest, a request for generation of a knock-out mouse was
initiated to improve our understanding the selected gene’s role in the organism.
Within this framework, we chose to model variants ranging from ‘safe’
choices with a strong prior expectation about the phenotype to more risky ones
where the phenotype was essentially unknown, including several non-synonymous

variants, but also some synonymous or non-coding ones.

3.2.2.2. Mouse strain generation and phenotyping

The mouse line generation (including mutation design, mutagenesis,
transgenic technologies to transfer the allele into the germ line, genotyping and
quality control), colony management, primary phenotyping (Appendix C) and parts
of the secondary phenotyping (if needed) were/are to be entirely performed by the
Wellcome Trust Sanger Institute Mouse Pipelines (institute core facility:
www.sanger.ac.uk/science/groups/mouse-pipelines) upon our request. The
genome editing technology employed for the generation of the new strains (both
deletion alleles and point mutations) was initially blastocyst microinjection of
targeted mutant mouse embryonic stem cell (mESC), then CRISPR/Cas9-mediated
mutagenesis by single-cell zygote cytoplasmic microinjection, both in the
C57BL/6N background. The progeny derived from the microinjection experiment
was bred to allow the transmission of the mutations into the germline of the F1 mice
that were genotyped by either end-point PCR or real-time qPCR to demonstrate that
the desired allelic structure had been produced. Mice were then bred to
homozygosity (if viable in this stage) and sufficient numbers for phenotyping. The
standardised primary phenotyping, encompassing a set of phenotypic tests
covering more than 600 clinical parameters, is being applied to cohorts of 7 mutant
males and 7 mutant females for each of the mutant strains and matched controls (7

males and 7 females per week). This high-throughput screen can be divided into 3
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general categories: developmental, in vivo (reproduction, infection and immunity,
musculoskeletal system, metabolism and endocrinology), and necropsy and blood
analysis. A full list of tests performed as of January 2016 can be found in Appendix

C.
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3.2.3. Results and discussion

3.2.3.1. Knock-outs

We generated new knock-out mouse lines for highly scoring candidate
variants falling in genes with no prior knowledge of their functionality. The
rationale behind this strategy was that turning off the activity of a mouse ortholog
might help to assess what biological systems were targeted by positive selection in
humans. Our prioritization resulted in production and phenotyping of 6 mouse
knock-out strains that lack genes showing signatures of local adaptation in humans
in order to improve our understanding of their function and thus aid in formulating
hypotheses about possible selected phenotypes (Table 9).

All 6 knock-outs were generated by CRISPR/Cas9 mediated critical exon
deletion. Each knock-out mouse colony is undergoing primary phenotyping and if
needed, a detailed secondary phenotyping will be performed. Four of the mutant
lines (Cpsf3l/-, Gpatchl”/-, Herc1/- and Prss537/-) are at the primary phenotyping
stage, but this has not yet been completed. A description of the selected candidates

and the signature of their selection, as well as preliminary results of the primary

Table 9. List of mouse knock-out strains generated in this study. All human-mouse orthologue pairs
shortlisted here are 1-to-1 orthologues. ‘Top SNP’ lists the SNP with the highest FineMAV score in
the given gene, which is most likely driving the signal of selection in humans (although it is not being
currently modelled for all knock-out lines); * in the case of HERC1 the second-highest scoring SNP is
given; ‘Consequence’ and ‘FineMAV specify properties of Top SNPs; ‘Pop.” - population with the
signal of selection; ‘SSI" - Selection Support Index for each gene; ‘Orthologue identity’ - percentage
of the mouse protein sequence matching the human protein sequence / percentage of the human
protein sequence matching the mouse protein sequence; ‘Stage’ - current stage of each line: MI -
micro-injection, PP - primary phenotyping.

Orthologue

Gene Top SNP Consequence FineMAV Pop. SSI identity Stage
CPSF3L rs12142199 synonymous 11.07 EUR 0.08 94/95 PP
GPATCH1 rs10421769 missense 7.15 EUR 0.04 84/84 PP
HERC1 rs2255243* missense 6.59 EAS 0.49 97/97 PP
LRRC36  rs8052655  |1SS€nse 1628 AFR 022  81/80 MI
regulatory
MAGEE2  rs1343879 stop gained 23.01 EAS 0.04 83/83 MI
PRSS53 rs11150606; missense; 13.66;  EAS; 0.09 81/81 PP

rs201075024 missense 10.91 SAS
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phenotyping and discussion of the selection hypotheses are given for each gene

separately in the next section.

3.2.3.1.1. Selected candidates

CPSF3L

CPSF3L (cleavage and polyadenylation specific factor 3-like) is the catalytic
subunit (INTS11) of the Integrator complex, a protein complex containing at least
12 components, that is responsible for meditating the 3-prime end processing
(cleavage and polyadenylation) of small nuclear RNAs U1 and U2, thereby affecting
many biological processes (524). CPSF3L belongs to a superfamily of zinc-
dependent [-lactamase fold proteins and functions as an RNA-specific
endonuclease (524). Depletion of CPSF3L by RNA interference (RNAi) results in
disrupted formation of the Integrator complex (525) and the arrest of HeLa cells in
early G1, but does not prevent cell growth (524). This observation suggests that
CPSF3L might be involved in the maturation of cellular pre-mRNAs encoding
proteins required for cell cycle progression and entry into S phase (e.g. replication-
dependent histone pre-mRNAs), but its precise cellular role remain unknown (524).
Furthermore, it has been shown that CPSF3L is highly conserved from plants to
humans and the suppression of the Caenorhabditis elegans orthologue by RNAi
leads to an early lethal phenotype, while disruption of the mouse Integrator
complex causes growth arrest in early blastocyst embryos (526). Another study
revealed that INTS11 plays a critical role in the differentiation of pre-adipocytes
and its expression level is increased during the process of differentiation into
mature adipocytes, while being reduced to basal levels after the completion of
differentiation (525). INTS11 silencing using siRNAs (small interfering RNAs)
markedly inhibited adipose differentiation (525). Knock-down in zebrafish
embryos led to impaired red blood cell differentiation, also implying its role in cell
differentiation (527). Expression analysis found it expressed across various human

tissues with the highest level in brain and uterus (200).



143

We found a strong signature of selection on rs12142199, ranking 5% in
Europeans (Table 9 and Figure 28 upper panel). The signal has been also replicated
by CMS and is supported by a few published studies. Although this variant seems to
be synonymous according to well-supported transcript models (Transcription
Support Level (TSL) = 1; GENCODE), it has been also reported to be an eQTL driving
expression of CPSF3L (MuTHER and Geuvadis RNA sequencing project) (229, 528).
We requested generation of Cpsf3I null allele in mouse that turned out to be
recessive lethal (no homozygote embryos detected at E14.5 out of 33 collected).

Primary phenotyping of heterozygotes is in progress.

GPATCH1

The GPATCH1 (G patch domain containing 1) product is one of the proteins
found in the catalytically-competent form of the spliceosome (C complex) (529). In
eukaryotes, the spliceosome mediates the removal of introns from nascent
transcripts (529). However, little is known about GPATCH1 function. Variants in
this gene have been found to be associated with the bone mineral density, heel bone
properties and risk of fracture, which classified GPATCH1 as osteoporosis
susceptibility gene (530, 531).

We found a strong FineMAV signal at a missense variant (rs10421769)
ranking 55% in Europeans (Table 9 and Figure 28 lower panel). Selection on this
variant was also supported by CMS. Interestingly, rs10421769 falls in a region
proposed to be adaptively introgressed from an archaic source, and its derived
allele was present at homozygous state in Neanderthals (Figure 17) (30, 129, 134,
245). Additionally, it has been shown that its derived form was already presentin a
7,000-year-old Mesolithic European hunter-gatherer together with ancestral
pigmentation alleles (532). However, and interestingly, the alleged GPATCH1 role
in the immune system reported in this study (532) seems to arise from a confusion
of a former GPATCHI name (ECGP, evolutionarily conserved G patch domain
containing) with Ecgp (endothelial cell glycoprotein) encoded by a different gene
and reported as receptor for OmpA expressed by E. coli (533). In the light of GWAS
studies, it could be hypothesised that the candidate GPATCHI1 variant may
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Figure 28. Comparison of three different approaches for pinpointing selected variants. ADAF, CMS
and FineMAV scores are shown for the genomic windows spanning genes of interest. ADAF and
FineMAV were calculated from the 1000 Genomes Project Phase3 dataset (142). CMS scores are
given for booth, the pilot phase of 1000 Genomes Project (155, 185) and the phase II of the
International Haplotype Map Project (HapMapll) (123, 146), all downloaded from
http://www.broadinstitute.org/. 1000 Genomes Project CMS scores included windows named:
regionlnew and region42new spanning CPSF3L and GPATCHI1 respectively. Variants with CMS
values set to ‘nan’ or below 0 are not shown. Genomic positions are given in bp according to GRCh37
for ADAF and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line.
Note that the y-axis scale in the CMS plots is not standardised.
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contribute to increased bone density and might have been selected preceding
changes in skin pigmentation, as light skin pigmentation was not yet ever-present
in Europe during Mesolithic times (532). Decreased vitamin D synthesis associated
with dark skin pigmentation coupled with inadequate sunlight exposure at higher
latitudes and a subsequent impaired bone mineralization might have accounted for
the strong selective pressure during Mesolithic times that favoured variants
increasing bone density. Since such hypothesis is purely speculative and expression
analysis found GPATCH1 expressed across various human tissues with the highest
levels in brain, ovary and uterus (200), selective pressures could alternatively have
operated on tissues other than bone.

Similarly to Cpsf31, the homozygous Gpatch1 mouse knock-out also results in
embryonic lethality (no homozygote embryos detected at E14.5 out of 36 collected)
and primary phenotyping of heterozygous colonies is in progress. Obtained results
suggest that both CPSF3L and GPATCH1 genes are crucial at the early stages of
organism’s development as their homozygous knockout in mouse causes
embryonic lethality. However, such phenotype is not informative about putative
reasons for selection. Ongoing phenotyping of heterozygotes might shed more light
on CPSF3L and GPATCH1 functionality by assessing biological parameters affected
by their heterozygous deficiency.

LRRC36

One of the strongest FineMAV signals (3™ top hit in Africans) localised to a
missense rs8052655 falling in LRRC36 (leucine rich repeat containing 36) and a
promoter flanking region (Table 9 and Figure 29). This gene has been repeatedly
reported in selection screens and was shown to be highly expressed in human testis
(200), although its function is largely unknown. Knock-out line targeting mouse

Lrrc36 is currently at the micro-injection stage.
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Figure 29. Comparison of three different approaches for pinpointing selected variants. ADAF, CMS
and FineMAV scores are shown for the genomic windows spanning genes of interest. ADAF and

FineMAV were calculated from the 1000 Genomes Project Phase3 dataset (142). Normalised CMS

scores (123) were calculated using the phase II of the International Haplotype Map Project
(HapMapll) (146) and downloaded from http://www.broadinstitute.org/. Variants with CMS values
set to ‘nan’ or below 0 are not shown. CMS data for sex chromosomes is unavailable, therefore CMS
scores for MAGEEZ are missing. Genomic positions are given in bp according to GRCh37 for ADAF
and FineMAV, and build NCBI36 for CMS. The selected variant is marked with a dashed line.
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MAGEE2

The highest observed FineMAV score in East Asians mapped to a nonsense
mutation (rs1343879) in enigmatic MAGEEZ (MAGE family member E2 expressed
in the brain (200)) on chromosome X (Table 9 and Figure 29). This finding is
particularly interesting as sex chromosomes have usually been omitted in selection
screens. Nevertheless, a selection signal in this gene was picked up by Yngvadottir
et al, who observed lower diversity in haplotypes carrying the stop allele and
concluded that the truncated MAGEEZ2 conferred a selective advantage in East Asia
(206); the MAGEEZ transcript containing the stop variant was predicted to avoid
nonsense-mediated decay and encodes a protein truncated by about 77%. It is
difficult to predict whether or not the truncated protein is non-functional. Assuming
that the truncated human product is a loss-of-function variant, the MageeZ2 null
mouse would itself model the biological consequence of the selected human stop

allele. Null MageeZ strain is currently at the micro-injection stage.

PRSS53

PRSS53 (protease, serine 53) encodes one of the polyserine proteases called
polyserase-3 (POL3S), which has the biochemical property of hydrolyzing peptide
bonds but whose functional role is largely unknown (534). Proteases make up the
human degradome involved in a wide variety of biological processes including
embryonic development, blood coagulation, tissue remodelling, wound healing,
cell-cycle progression, angiogenesis, apoptosis, autophagy and senescence (534).
Moreover, it is now well established that proteases participate in these key
biological events through the selective and limited cleavage of specific substrates
(534). Polyserase-3 was shown to be expressed in most tissues and tumor cell lines
analysed suggesting that this enzyme may contribute to tumor development and
progression (535). Another study showed that POL3S may play a substantial role in
the function of pancreatic islet (-cells, and it has been classified as a potential
diabetes-associated gene (536). Finally, genome-wide association analysis

identified polyserase-3 as a psoriasis susceptibility locus that showed the strongest
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differential expression between psoriatic and normal skin (2.66-fold increase in
lesional skin compared to control skin) (537). The broad range of associated traits
did not allow formulation precise hypothesis about the selection in PRSS53 and,
therefore, a mouse knock-out of this gene was generated.

Our interest in this gene arose from two variants that were independently
picked up in two different populations: a missense rs11150606 being the 6t top
scoring variant in East Asians (also supported by CMS and previous reports) and
the nonsynonymous rs201075024 scoring highest in South Asians. Both alleles fall
in close proximity, only 10 bp apart (Table 9 and Figure 30 upper panel), which
might indicate a similar functional consequence and convergent evolution.
However, in parallel to our study, Adhikari et al. recently showed that PRSS53 is
highly expressed in the hair follicle, and associated rs11150606 with hair shape in
East Asians (196). The authors confirmed functionality of rs11150606 by in vitro
assays showing that it affects processing and secretion of the gene product,
potentially contributing to a straight hair phenotype (similarly to the well-
established EDAR variant) (196). Our novel Prss53 null mouse strain has already
entered the phenotyping pipeline and the early investigation revealed abnormal
vibrissae morphology. Curly vibrissae shape was observed for 30% and 80% of
homozygous null females and males respectively (Figure 31 and Figure 32). Such
finding further supports PRSS53 involvement in hair shape and appropriateness of

the mouse model to study this phenotype.

HERC1

HERC1 (HECT and RLD domain containing E3 ubiquitin protein ligase family
member 1) encodes a giant multidomain protein that acts as a guanine nucleotide
exchange factor, GTPase regulator and E3 ubiquitin ligase (538). This protein is
thought to be involved in membrane transport processes, protein stabilization and
degradation, cell proliferation and growth (539). HERC1 is widely expressed in all
human and mouse tissues examined (200, 540). Furthermore, HERC1 was found to
be mutated in multiple tumors and its overexpression has been shown in all human

tumor cell lines tested (540). HERC1 is known to interact with and destabilise the
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Figure 30. Comparison of three different approaches for pinpointing selected variants. ADAF, CMS
and FineMAV scores are shown for the genomic windows spanning genes of interest. ADAF and
FineMAV were calculated from the 1000 Genomes Project Phase3 dataset (142). CMS scores are
given for the pilot phase of 1000 Genomes Project (155, 185) (if available) and the phase II of the
International Haplotype Map Project (HapMapll) (123, 146), all downloaded from
http://www.broadinstitute.org/. 1000 Genomes Project CMS scores included window named
region145new, which spans VRK1. Variants with CMS values set to ‘nan’ or below 0 are not shown.
CMS has not been calculated in South Asians, therefore CMS scores for rs201075024 in PRSS53 are
missing. Genomic positions are given in bp according to GRCh37 for ADAF and FineMAV, and build
NCBI36 for CMS. The selected variant is marked with a dashed line. Note that the y-axis scale in the
CMS plots is not standardised.
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Figure 32. Vibrissae shape in Prss537/- mice. Left panel: Control. Right panel: Prss53 null mutant.
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tumor suppressor TSC2 (541) and regulate MSH2 degradation (a DNA mismatch
repair enzyme maintaining genomic integrity) (542). Its knockdown leads to a
significant reduction in DNA mismatch repair capacity in human leukemia cells
(542). Recent studies and selection scans have suggested that the human HERC1
gene have been affected by local positive selection (strong CMS and SSI signal; Table
9 and Figure 33 upper panel). Marked differences in allele and haplotype
frequencies between East Asian and non-East Asian populations have been
reported, together with low genetic diversity in East Asia (543). The biological
function of HERC1, however, has not been well defined.

Homozygous disruption of Herc1 by spontaneous mutation in mouse was
shown to produce a phenotype characterised by abnormal hind limb posture,
decreased coordination (balance and tremor), reduced weight, decreased survival,
and progressive Purkinje cell (PC) neurodegeneration leading to severe ataxia and
reduced lifespan (539). Both sexes appeared to be fertile although poor breeders.
All these phenotypic characteristics correlate with extensive autophagy observed
in the PCs of mutant mice associated with an increase of the mutant protein level
(539). Successful complete transgenic rescue was achieved with either a mouse BAC
containing the normal copy of Herc1 or with the human HERCI cDNA (539). It was
concluded that HERC1 has a profound impact on animal growth and the
maintenance of the cerebellum structure (539), although this study did not assess
the effect of this mutation on other aspects of mouse biology. Therefore, we decided
to carry out a novel knock-out study with standardised primary phenotyping.

Phenotypic characterisation of the Hercl null mice has not been completed
yet, but has already revealed a range of early observations. Homozygotes for the
null allele appear to be infertile. There is also a strong trend for high-frequency
hearing loss (Auditory Brain Response thresholds are elevated at 24-30kHz
frequencies). Furthermore, we observed increased body weight, mostly affecting
males (Figure 34). This has also been confirmand by body composition X-ray
imaging showing increased total body fat amount and increased percent body fat in
both sexes (Figure 35 and Figure 36). Furthermore, comprehensive plasma
chemistry analysis reported abnormal levels of many parameters: sodium, chloride,
high density lipoprotein (HDL), amylase, albumin (data not shown) and insulin

(Figure 37). Whole blood terminal haematology analysis picked up deviation in
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Figure 33. Comparison of three different approaches for pinpointing selected variants. ADAF, CMS
and FineMAV scores are shown for the genomic windows spanning genes of interest. ADAF and
FineMAV were calculated from the 1000 Genomes Project Phase3 dataset (142). Expanded view of
the FineMAV plot is given underneath. CMS scores are given for booth, the pilot phase of 1000
Genomes Project (155, 185) and the phase II of the International Haplotype Map Project (HapMaplI)
(123, 146), all downloaded from http://www.broadinstitute.org/. 1000 Genomes Project CMS
scores included windows named: region147new and region134new spanning HERC1 and PCDH15
respectively. Variants with CMS values set to ‘nan’ or below 0 are not shown. Genomic positions are
given in bp according to GRCh37 for ADAF and FineMAV, and build NCBI36 for CMS. The selected
variant is marked with a dashed line. Note that the y-axis scale in the CMS plots is not standardised.



154

| @ Controls (n=56) @ Hom (n=11) 0O Baseline (n=1713) @ Controls (n=55) @ Hom (n=8) O Baseline (n=1707)
50 50
45 45
40 40
97 5%
35 35
— -97.5% C) - Median
o® z®
5 o 5 s L25%
@ + Median @
= 2
20 F25% 20
15 15
10 10
5 s
4 6 8 9 1 12 13 14 15 16 4 [ 8 9 11 12 13 14 15 16
Age (weeks) Age (weeks)
a Controls (n=34) @ Hom (n=6) O Baseline (n=1535) @ Controls (n=48) @ Hom (n=6) O Baseline (n=1538)
45 46
44 44 L4
42 42 .
40 40
3 ot 3 97.5%
fossces sffeesossssana sprecsnos 97
) 36 * C 36 "
£ 34 P | £ 34
g 2 a 3 2
e “*t------J - - 97 5% S S e e e L
2o s 3% Median
28 28
2% . Py e e AL I e s e L25%
------- B - e e e B 1 L)
24 24 ° o
2 l 2
o P ———— L25% o
Corl'rols Ho'm Ccn'ms Holm

Figure 34. Increased body weight in Herc1-/- mice. Top panel: Average weight curve; Bottom panel:
Body weight; Left panel: Females; Right panel: Males.
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Figure 35. Increased total body fat amount in Herc1/- mice. Top panel: Fat mass; Bottom panel: Fat
percentage estimate; Left panel: Females; Right panel: Males. Body Composition was examined in
anaesthetised mice using a dual energy X-ray absorptiometry machine (Lunar PIXImus II).
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Figure 36. Body Composition X-ray imagining of a Herc1-/- mouse. Top panel: Herc1-/- male; Bottom
panel: Control male. Anaesthetised mice were imaged on a dual energy X-ray absorptiometry
machine (Lunar PIXImus II).
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Figure 37.Increased circulating insulin level in Herc1-/- mice. Left panel: Females; Right panel: Males.

Plasma insulin concentration was measured by Mesoscale Discovery (MSD) array technology in non-
fasted terminally anaesthetised with ketamine/xylazine mice.
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white blood cell count (increased leukocyte cell number in females) and red blood
cell distribution width (increased red blood cell distribution width in females).
Neurological and dysmorphology assessment did not reveal any abnormalities so
far (normal paw grip, limb grasping and gait; no ataxia or tremor), although brain
histopathology has not yet been performed.

Functional characterization of HercI/- mice model generated in this study
disclosed a range of phenotypes. Interestingly, they did not recapitulate the
neurodegeneration and motor impairment phenotypes of the published mouse
mutant carrying a spontaneous missense mutation disrupting Hercl (539),
although the primary phenotyping of our mutant has not been completed yet.
Contrary to what we found, the spontaneous mutation affected animal growth and
survival resulting in reduced weight (539). Recently reported loss of function
mutations in humans manifest intellectual disability, megalocephaly, facial
dysmorphism, motor development delay, hypotonia, limb and gait abnormalities,
and occasionally seizures, overgrowth due to excessive tissue proliferation and
brain abnormalities, with small cerebellum among others (544-546). Furthermore,
HERC1 was associated with autism spectrum disorder in humans (547). None of the
published studies reported the metabolic and hearing abnormalities found in our
model. It is possible that the spontaneous missense mutations in mice and humans
are gain-of-function rather than loss-of-function, e.g. it has been shown that the
known mutation in mouse enhances the stability of the Herc1 protein and increases
its level, which is very different to a lack of protein (539, 544). Phenotypes in human
also vary between cases (544-546). It is likely that the nature of the mutations as
well as possibly the effect of modifier genes leads to these phenotypic differences
(544, 545). It is also possible that HERC1 disruption affects several pathways and
many systems, as its protein product is involved in membrane transport processes,
potentially causing neurodevelopmental malformations and consequent
abnormalities (546). The broad range of affected phenotypes complicates
conclusive hypothesising about the likely selective benefits that drove adaptation,
nevertheless it seems that HERC1 is fundamental in early brain development and

function (546, 548).
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3.2.3.2. Knock-ins

In parallel to our knock-out studies, we requested the generation of 9 mouse
models carrying the putatively selected human derived allele that met our
prioritization criteria in order to test hypothesis about their causality and roles in
human adaptation. We generated knock-ins of three candidate adaptive variants
falling into genes targeted in our knock-out project, as well as six additional variants
in cases where there was enough prior information (Table 10). We developed an
interest and collaborations in four specific phenotypic categories: hair shape,
reproduction energy metabolism and hearing. As the effects are expected to be
rather subtle, a detailed secondary phenotyping of these humanized mice is planned
on top of the standardised primary phenotyping. Two strains are at the early stages
of primary phenotyping, and no gross abnormalities have been detected (Table 10).
A description of the selected candidates and the signature of their selection, as well
as discussion of the hypothesised phenotype potentially driving the selective force

are given for each gene separately in the following sections.

Table 10. List of humanized mouse strains generated in this study. All human-mouse orthologue
pairs shortlisted here are 1-to-1 orthologues. ‘“Top SNP’ lists SNPs with the highest FineMAV score in
the given gene, which is most likely driving the signal of selection in humans and is modelled in this
study; * in the case of HERC1 the second-highest scoring SNP was chosen. ‘Consequence’ and
‘FineMAV’ specify properties of Top SNPs; ‘Pop.” - population with the signal of selection (‘NES’ -
Northeastern Siberian); ‘SSI" - Selection Support Index for each gene; ‘Orthologue identity’ -
percentage of the mouse protein sequence matching the human protein sequence / percentage of
the human protein sequence matching the mouse protein sequence; ‘Stage’ - current stage of each
line: MI - micro-injection, CE - colony expansion of genotype-confirmed mice, PP - primary
phenotyping.

Gene Top SNP Consequence FineMAV Pop. SSI Ozg};?llgg;e Stage
CPT1IA  rs80356779 missense 17.48 NES 0.05 87/87 CE
HERC1  1rs2255243* missense 6.59 EAS 0.49 97/97 PP
LRGUK  rs34890031 missense 21.32 AMR 0.04 73/73 MI
OTOF rs17005371 missense 10.57 AFR 0.12 95/95 MI

PCHD15  rs4935502 MISSENSe, 7.91 EAS 032  84/84 CE
splice region

PRSS53  1rs11150606 missense 13.66 EAS 0.09 81/81 PP

PRSS53  1rs201075024 missense 10.91 SAS 0.09 81/81 MI

TGM3 rs6048066 missense 9.77 AFR 0.12 77]77 CE

VRK1 rs2224442 regulatory 8.93 EAS 0.03 78/87 MI
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3.2.3.2.1. Hair shape: PRSS53 and TGM3

It has been shown that genomic regions associated with scalp hair features
are enriched for signals of recent selection in humans (196). We modelled two
derived alleles of the PRSS53 gene (described in the Knock-out section) selected in
East (rs11150606) and South (rs201075024) Asians, likely due to hair-related
phenotypes (Table 10 and Figure 30 upper panel). These two knock-ins are being
engineered alongside the PRSS53 knock-out. The model of East Asian-specific allele
has reached the initial stage of primary phenotyping, while the South Asian-specific
allele model is at the micro-injection phase. It is predicted that these variants
contribute to hair shape phenotype based on the genome-wide association study
and functional follow-up in humans (196), but also generated here null mouse
strain. It has been proposed that the straight hair phenotype has been selected
outside Africa as it tends to naturally fall over the ears and neck, which could
provide an adaptive advantage in cold climates relative to tightly curly hair (549).
Furthermore, some have argued that straight hair enables the passage of more UV
light into hair roots (and consequently into the skin) via the hair shaft, which
facilitated vitamin D production at high latitudes (549, 550). Assessment of the
impact of selected alleles on hair straightness will probably require detailed
secondary phenotyping, as mouse hair is naturally straight and we do not expect
obvious abnormalities to be picked up by the general primary screen.

Another variant that drew our attention is a missense mutation (rs6048066)
in TGM3 expressed in the cuticle of growing hair fiber and putatively selected in
Africans (described in 2.3.2.5.2. Missense variants) (Table 10 and Figure 29). The
mouse colony carrying the human derived allele is currently at the expansion stage
preceding primary phenotyping. A selection signal in TGM3 has also been implied
in previous studies and the likely driver mutation detected by FineMAV scores as
the 53rd top signal in Africans. We proposed that this amino acid change might cause
enzyme deficiency and contribute to African hair texture. However, considering its
frequency in Africa (43%) and the fixed prevalence of Afro-textured hair, this
variant alone cannot explain hair curliness, but could potentially contribute to this
complex and quantitative trait (the commonly-used Andre Walker hair typing

system classifies hair texture into 4 types, each with 3 subcategories, resulting in
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12 simplified classes used to describe different variations among individuals,
although more scientific approaches have also been proposed (551)). This
hypothesis is supported by the observation that Tgm3 is a modifier of the wal
(unlocalised) gene in mice (552). Homozygous mice carrying mutant wal also have
a wavy coat (552). The hair curliness in double mouse mutants (Tgm3~/- wal/wal)
is much more striking than in wal/wal or Tgm37/- mutants alone, suggesting an
additive effect (552).

Moreover, the hair of the Tgm3 null mouse was also reported to be shorter
than in normal mice, whilst the whiskers were twisted and thinner (553), which is
consistent with observed lower hair growth rate and diameter in Africans (554,
555). It has been hypothesised that Afro-hair morphology experienced strong
positive selection as the trait has been retained/preferred among many equatorial
human groups (215). While sexual selection cannot be ruled out as being
responsible for such pattern, a strong correlation with geography suggests rather
an environmental influence. Moreover, although sub-Saharan Africans are the most
genetically diverse population, curly textured hair seems to be a fixed derived
feature in this region when compared to non-human primates. This points towards
a strong, long-term selective pressure in the savannah environment (556). It has
been suggested that Afro-textured hair may have been adaptive in Africa because
the relatively sparse density of such hair, combined with its elastic helix shape,
results in an airy effect that likely facilitates body-temperature regulation via
improved circulation of cool air onto the scalp (215, 549). Additionally, wet tightly
coiled hair does not stick to the neck and scalp which could further enhance the
cooling system (549). Finally, curly hair was also argued to protect from UV light
passage into the body better than straight hair (215, 549, 550).

3.2.3.2.2. Reproduction: LRGUK and VRK1

Two of the proposed knock-in alleles are predicted to have been selected due
to effects on fertility, and are both at the micro-injection stage of engineering.
Unquestionably, natural selection that improves reproductive fitness could act

directly by modulating fertility levels. The strongest selection signal observed in
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Native Americans fell on rs34890031 (missense Arg->His) in LRGUK (leucine rich
repeats and guanylate kinase domain containing) and could be one such example
(Table 10 and Figure 38). The mouse homologue is essential for multiple aspects of
sperm development, assembly and function including acrosome attachment, head
shaping and tail formation (248). A null mouse model caused by a nonsense
mutation and nonsense-mediated mRNA decay resulted in male-specific infertility,
chaotic and disorganised spermatogenesis, 81% reduction in sperm production and
13% reduction in testis weight (248). Abnormal sperm development was
manifested by head and tail abnormalities and germ cell degeneration that resulted
in no capacity for motility (248). LRGUK is predominantly expressed in human and
mouse testis (200, 248).

Another selected candidate (rs2224442) falls in a promoter flanking region in the
intron of VRKI. The region surrounding rs2224442, although non-coding, is
characterised by high conservation across taxa and the presence of DNasel
hypersensitivity, and scored as the 46t top FineMAV variant in East Asians (Table
10 and Figure 30 lower panel). VRK1 is a protein kinase implicated in mitotic and
meiotic cell cycles, cell proliferation and differentiation (233, 234, 557, 558) that
plays an important role in organogenesis of sex organs and gametogenesis in
multiple species (235-238). VRK1-deficient organisms show abnormality of the
reproductive organs, followed by defects in germ cell development (235-238). Both
sexes of VRK1-null mice have been reported to be infertile displaying defects in sex
organs (e.g. small testis in males) and impaired oogenesis and spermatogenesis due
to meiotic arrest manifested as azoospermia and lack of mature sperm in males
(239-242). It might be that this regulatory variant affects the expression level of
VRK1 and modulates the maturation of gametes.

Although VRK1 expression is highly enriched in testis compared to other
human tissues (200), mutations in this gene have been linked to early-onset spinal
muscular atrophy, neurogenic atrophy, ataxia, microcephaly developmental delay
and intellectual disability due to disturbance of cell cycle progression (559-564). It
has been also reported to act as a tumor suppressor gene that contributes to
genomic stability by facilitating DNA damage responses (565-568). It is clear that a
gene implicated in the coordination of diverse signaling processes and functions

(especially fundamental function like cell division) might have pleiotropic effects
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(557), therefore a comprehensive primary phenotyping assessing the function of
many organs needs to be performed to identify possible reasons for adaptation at

this locus.

3.2.3.2.3. Energy metabolism: HERC1 and CPT1A

Energy metabolism is another field that we developed an interest in, and one
that has been reported to be targeted by recent human evolution. According to the
thrifty genotype hypothesis, adaptation might have favoured efficient energy
expenditure to maximize energy storage, which enhanced survival in periods of
food shortage but predispose to obesity and Type 2 Diabetes in a modern dietary
environment (44, 45, 366, 367).

Although the HERC1 knock-out model manifested a metabolic and auditory
phenotype, these might still be secondary consequences of a neurodevelopmental
disorder (described in the Knock-out section). Nevertheless, we decided to model
the candidate causal variant in parallel to the knock-out line. It is a particularly
complicated example as the FineMAV analysis revealed 3 high-scoring candidates in
HERCI in East Asians (Figure 33): 1 intronic, 1 missense and 1 synonymous (in
decreasing signal order). We proceeded with modelling the missense candidate
rs2255243 (2nd scoring in HERC1) as its functional consequence is easier to predict
and examine. However, we do not exclude the possibility of investigating the other
two variants in the future. Another complication was that the mouse amino acid
(Thr) does not match either the human ancestral (Ala) or derived (Gly) amino acids
at this position. Therefore, we decided to model both the human ancestral and
derived form of HERC1 in mouse. Both lines have entered the primary phenotyping
phase.

Another variant that is a part of our modelling study comes from a published
selection scan in Arctic populations (55, 56). One of the strongest signal of selection
in the Siberian population was mapped to a genomic region spanning CPT1A and
has been linked to rs80356779 variant causing Pro479Leu amino acid change,
which appears to be a functional candidate for the cold adaptation in this population

(55, 56). We also applied FineMAV to this dataset and found rs80356779 to be the
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highest scoring variant in Northeast Siberians (NES) (run configuration: AFR, EAS,
EUR, NES; n = 4; x = 2.98; data not shown). CPT1A was associated with serum
metabolite levels and obesity in GWAS studies (569-572) and encodes carnitine
palmitoyltransferase 1A, a liver enzyme located on the outer mitochondrial
membrane, required for the import of long-chain fats into the mitochondria for use
in beta-oxidation and energy production (573-575). CPT1A is active during fasting
to maintain energy, sparing glucose for vital bodily functions by generating ketones
(which serve as an alternate energy source) (366, 573-575). In the fed state when
there is sufficient glucose availability, CPT1A is inhibited by malonyl-CoA (573, 576,
577). It has been shown that homozygosity for the Pro479Leu variant (at
rs80356779) in CPT1A decreases enzyme thermostability and functional activity
(20% of normal) and makes the enzyme relatively insensitive to malonyl-CoA
inhibition (576, 578). As a result, Pro479Leu homozygosity causes CPT1A
deficiency that impairs fatty acid oxidation, ketogenesis and fasting tolerance, also
conferring risk for hypoketotic hypoglycaemia, seizures, and sudden unexpected
death in infancy (SUDI) during fasting related to illness (367, 574, 575, 579, 580). It
has been extensively characterised in the Inuit population, in whom it was
associated with increased infant mortality (574, 575).

Paradoxically, a high prevalence of Pro479Leu variant in the CPT1A gene has
been identified among aboriginal Arctic populations (up to 85%) suggesting
selective advantage in the past (367, 573-575, 578, 581, 582). The constitutively
active, malonyl-CoA resistant, Pro479Leu CPTI1A protein maintaining increased
basal rate of beta-oxidation and ketogenesis at all times may have been
advantageous because of its cardioprotective role in the context of the traditional
high fat diet (with little to no carbohydrates) of indigenous Arctic people, although
this information alone does not fully explain a selective advantage for the variant
(575, 578, 581, 583). Furthermore, such a traditional diet enriched in n-3
polyunsaturated fatty acids increases expression of CPT1A4, which may compensate
for reduced activity, and the observed deleterious effect might be caused by a recent
lifestyle shift (367, 583, 584). Indeed, this variant has been linked to smaller body
size and reduced body fat deposition, low serum cholesterol and triglyceride levels,
reduced insulin resistance and high circulating HDL-cholesterol (575, 578, 581,

583, 585). It has been observed that indigenous Siberians, even when obese, do not
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develop features of metabolic syndrome, insulin resistance and type 2 diabetes (the
so-called ‘healthy obese’ phenotype) due to increased basal fatty acid oxidation rate
(367, 581, 583). It has also been proposed this variant might protect against
infection via an elevated apolipoprotein A-I level (581).

Although the causality of this mutation seems to be well established, the
selected advantage is unclear and has not been explicitly tested. We want to test if
the selected variant confers cold climate adaptations in order to optimise energy
utilization (575). Cold adaptive processes could be expected to involve fatty acid
metabolism in energy and systemic heat production, as continuous cold exposure is
known to determine the mobilization and metabolism of fat (55). It has been shown
that cold exposure increased fatty acid $-oxidation capacity in mice adipose tissue
via increased Cptla expression (586). Mouse seems to be a suitable organism for
our hypothesis testing as a mouse knock-out line phenotype recapitulates the
human loss-of-function mutation. Homozygous null mice displayed embryonic
lethality, while heterozygotes (~55% Cptla activity in the liver) were cold tolerant
but exhibited decreased serum glucose and increased serum free fatty acid levels
after fasting (587). Our mouse model is currently at the stage of colony expansion

for primary and secondary phenotyping.

3.2.3.2.4. Hearing: OTOF and PCDH15

The high-ranking variant (84t FineMAV hit in East Asians; Table 10 and
Figure 33 lower panel) shortlisted in our study is a nonsynonymous rs4935502
acidic-to-nonpolar (D435A) mutation in PCDH15 (with a high CMS signal and strong
support from the literature). This mutation alters a highly-conserved residue
predicted to lie in the Ca?*-binding site at the protein’s cadherin-4 domain (123)
and might have been selected due to an advantageous effect on some aspect of
hearing. PCHD15 (protocadherin-related 15) is a member of the cadherin
superfamily of integral membrane proteins that mediate calcium-dependent cell-
cell adhesion (588). The PCDH15 gene encodes three alternative isoforms differing
in their cytoplasmic domains (CD1, CD2, and CD3) characterised by different

expression patterns (mainly cochlea, retina, brain, lung and testis (200, 588, 589)),
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suggesting that alternative splicing regulates PCDH15 function (588). The protein
product of this gene is necessary for normal retinal and cochlear functions (590).
Hearing and balance use hair cells in the inner ear to transform mechanical stimuli
into electrical signals (590). Mechanical force from sound waves or head
movements is conveyed to hair-cell transduction channels by tip links, fine
filaments formed by PCDH15 and CDH23 (591, 592). Mechanical force increases
tension in tip links, which in turn conveys force to mechanosensitive ion channels
to open them (592, 593). PCDH15 was shown to play crucial role in the
morphogenesis and organization of hair cell bundles and in the maintenance of
retinal photoreceptor cells (590, 594). Mutations affecting these neuroepithelia in
mice and rats cause profound deafness and a balance disorder due to degeneration
and abnormalities of hair cells, although visual defects are not evident (589, 594,
595). Homozygotes for severe mutations exhibit hyperactivity, head-tossing,
circling behaviour and impaired swimming indicative of vestibular dysfunction,
along with the lack of an auditory-evoked brainstem response at the highest
intensities of acoustic stimulation (589, 594, 596). Surprisingly, mice lacking
PCDH15-CD1 and PCDH15-CD3 maintain hearing function (form normal hair
bundles and tip links), while PCDH15-CD2-deficient mice are deaf (597). However,
vestibular function remains intact in the PCDH15-CD2 mutants (597). In humans,
mutations in PCDH15 result in hearing loss, whereas more severe mutations cause
Usher Syndrome Type IF (USH1F) characterised by profound deafness and
vestibular dysfunction with progressive loss of vision due to retinitis pigmentosa
(590). Defects in the cochlea include degeneration of hair cells and disrupted
interactions between CDH23 and PCDH15 (tip-link function) (594).

On the other hand, some isoforms were detected in natural killer (NK)/T
cells (598). Published studies associated PCDH15 with extrapulmonary
tuberculosis (599), late-onset Alzheimer disease (600) and response to smallpox
vaccine in Hispanics (601), showing that this gene may be important in regulating
humoral immunity. PCDH15 expression was also detected in liver and pancreas, and
loss-of-function mutations in the mouse orthologue caused abnormalities in the
lipid profile. Similarly, PCDH15 has been associated with anthropometric traits
related to body size and adiposity (602), lipid abnormalities and increased risk of

premature coronary heart disease in humans (603). All of the above might indicate
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potential pleiotropic effects of PCDH15 mutations. Our humanized mouse model is
currently at the colony expansion phase for primary and secondary phenotyping.
The final variant selected for modelling is rs17005371, causing an amino
acid substitution in the protein product of OTOF and putatively selected in Africans
(30t top score; Table 10 and Figure 29). A mouse model carrying the African
derived mutation is at the micro-injection phase. OTOF encodes otoferlin, which is
expressed mainly in cochlear auditory inner hair cells (but also brain) (200, 604-
606) and plays an essential role in a late step of synaptic vesicle exocytosis and
neurotransmitter release at the synapse between inner hair cells and auditory
nerve fibres (604, 606-608). OTOF acts as a Ca?* sensor, triggering vesicle fusion at
synaptic membranes (calcium dependent membrane-membrane fusion) (604, 605,
607-612). Disruptions in this gene result in synaptic disorder, impairment of
auditory nerve firing and severe to profound hearing loss (605, 613). Some
mutations cause temperature sensitive auditory neuropathy manifested by severe
hearing loss during fever, which recovers when the body temperature returns to
normal (614, 615). It might indicate that some forms of OTOF have a reduced
activity as the temperature increases (616). There are several alternative splice
isoform of otoferlin (604), but normal hearing is thought to require the long isoform
and exon 48 (616). Insight into the molecular function of this gene was provided by
mouse knock-out studies (608, 611, 612, 617). Disruption of the mouse ortholog
recapitulated the hearing loss seen in human patients (608, 611,612, 617). The null
mouse had structurally normal synapses between hair cells and the auditory nerve
fibre, but lacked calcium-triggered dumping of the synaptic vesicle contents
(abolished exocytosis) (608, 611, 612, 617). Interestingly, both PCDH15 and OTOF
orthologs have undergone adaptive evolution in echolocating mammals (bats and
toothed whales) implying that they might have co-evolved to optimise cochlear

amplification (618, 619).
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4. General discussion

4.1. Summary

Here, we return to wider questions in the field of adaptation in humans, and
FineMAV’s contribution to it. The genetic basis of human adaptations is of great
interest and has a correspondingly large literature. Most previous work has focused
on investigating the mode of adaptation (classic selective sweeps vs selection on
standing variation) and scanning the genome for signatures of positive selection.
The current literature thus documents that classic sweeps were not common (18,
20), and are difficult to identify reliably from population-genetic data alone as
attested by the limited overlap between genomic selection scans, but nevertheless
have occurred and are of great interest. We have not carried out another genome-
wide scan for positive selection and are not entering the debate about whether or
not classic selective sweeps were common in humans. Instead, we take the view
that the field now needs additional well-supported examples of variants that are
driving adaptations, both to understand specific events and to inform more general
questions regarding the genetic basis of human adaptation. Support comes most
compellingly from model cell/organism studies, but these are low-throughput and
so a way to prioritise candidates for these is needed. We provide this by combining
population-genetic and functional evidence into a single quantitative measure, the
FineMAYV score, which scans millions of variants genome-wide to generate a list of
individual candidate variants in order of priority. We validated our method using a
meta-analysis, a handful of gold standard variants, together with available in silico
evidence for selection. We have begun modelling a few of the candidate variants in
cells or mice ourselves, and have reported progress in this area. We hope that others
may benefit from this work, either directly from the human candidates we identify,
or more indirectly by applying our approach to other species, as our method is
applicable to any species with suitable genomic data.

We thus provide a way to move forward from the morass of genome scans

for positive selection. Our study probably misses many genuine selected variants
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(high false negative rate), but our prioritization aims to enrich for true positives,
which is what matters for people who are going to spend years examining each
individual candidate in cellular or animal models, as it has not always been possible
to find a link between a seemingly strong candidate variant and reproductive
fitness. For instance, the reason for selection of the TRPV6 haplotype containing
three derived non-synonymous substitutions observed in non-African populations
(620) remains enigmatic, despite detailed functional characterization of selected
and non-selected forms at the cellular level (621). TRPV6 encodes a Ca2* selective
ion channel, which is critically involved in dietary calcium uptake and
(re)absorption (621). Potential functional differences between the ancestral and
derived TRPV6 proteins were investigated in cell lines by carrying out
electrophysiology experiments (621). No statistically significant differences in
biophysical channel function were found (621). It remains possible that the
ancestral and derived forms differ in other aspects that can only be observed at the
whole-organism level (621). However, none of the three candidate sites for
functional differences proposed previously was supported by our FineMAV analysis
(in both selection scenarios n = 3 (AFR, EAS, EUR) and n = 2 (AFR, EAS+EUR)) and
their predicted functionality is low (FineMAV ~1 for each variant in EAS+EUR
scenario). Therefore, we see them as weak candidates for causality and would not
suggest modeling them.

Modeling of human selection in cell or animal systems is challenging since
relevant phenotypic consequences (often very subtle) might be overlooked. Some
phenotypes might be seen only in certain conditions, such as the presence of
specific pathogens or environmental stresses. Sometimes an inappropriately
chosen modeling system (cell lines, tissue or organ) might miss adaptive alleles
with effects that only manifest in a particular organ or at a whole organism level
(22, 138). The inability to directly demonstrate phenotypic consequences in a
limited set-up does not entirely rule out the possibility that a variant has been
selected (17). Nonetheless, regardless of challenges like these, cell and animal
models often provide the best way to test hypotheses regarding recent human
evolution (138). FineMAV now offers a better way to identify specific variants for
modelling and paves the way for identification of causative alleles driving

phenotypic differences among human populations.
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4.2. Next steps

As discussed earlier functional validation of candidate signals of selection is
a current roadblock in the field of population genetics, limiting both our
understanding of the modes and importance of positive selection, and the
independent evaluation of methods to detect it. Modeling of non-pathological
human genetic variation in cell or animal systems, however, has received only
limited attention to date (518). The impact of each human derived mutation needs
to be compared with the ancestral allele control. While cellular phenotyping in an
in vitro set up is often restricted to a particular cell type, assays performed in model
organisms provide a much broader spectrum of possibilities. Since many genes are
expressed in multiple organs and could potentially affect different tissues (have
pleiotropic effects), it is crucial to perform a comprehensive and multidisciplinary
primary phenotypic screen measuring a variety of physiological systems (even if
there is functional insight to speculate about likely phenotypic outcomes).
Standardised primary phenotyping of a wild-type and mutant mouse to assay
phenotypic differences between the ancestral and derived alleles might overlook
subtle phenotypic differences, so detailed secondary phenotyping addressing
specific organ/tissue/function will often be needed. Successful examples show that
in-depth follow-up studies of putatively-selected variation using in vitro
experiments and model organisms constitute a suitable and promising tool to test
hypotheses regarding human evolution.

All mouse strains generated as a part of this study will undergo standardised
primary phenotyping (in case the modelled polymorphisms were selected for
different functions than predicted, or to pick up pleiotropic effects), whilst knock-
in lines carrying selected human derived single point mutation are also being
subjected to detailed secondary phenotyping addressing the predicted phenotype.
We have already established external collaborations with experts in relevant fields
to focus on energy metabolism, hearing, hair and skin phenotypes of our models.

Secondary follow-up of hair phenotypes of TGM3 and PRSS53 mutant lines
will be carried out at the Wellcome Trust Sanger Institute Mouse Phenotyping

facility led by Chris Lelliott in collaboration with Paul Schofield (Department of
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Physiology, Development and Neuroscience; University of Cambridge) and John
Sundberg (The Jackson Laboratory, Bar Harbor, ME, USA). The phenotyping
strategy prepared by Chris Lelliott includes longitudinal dysmorphology imaging
capturing hair progression over time, a hair follicle cycling test, skin integrity
measured by trans-epidermal water loss and comprehensive ex vivo skin
histopathology (haematoxylin and eosin staining, immunohistochemistry imaging
and electron microscopy imaging). Hair analysis will focus on both coat hair (dorsal
and ventral) and vibrissae to assess parameters like curliness, proportion of
different hair types, cross-sectional ellipticity and diameter, hair density (hair
follicle bulbs per skin area), hair placodes size, physical resistance or hair rigidity,
presence of isopeptide bonds and defects in cross-linking. These analyses will be
complemented by proteomic profiling of the shaft using mass spectrometry. TGase
3 enzymatic activity will also be assessed on protein extracted from oesophagus,
the tissue with the highest TGM3 expression in humans. The earliest experimental
cohort will be available in Oct-Dec 2016.

Molecular mechanisms of energy balance of the CPT1A humanized mouse
model will be investigated in collaboration with Sergio Rodriguez-Cuenca and
Antonio Vidal-Puig (Metabolic Research Laboratories, University of Cambridge).
Growth curves will be examined under different nutritional and environmental
challenges including: i) classical high fat diet; ii) high polyunsaturated fatty acids
(PUFAs), medium protein, low carbohydrate diet (to mimic the nutritional
macronutrient composition of the artic populations); iii) food shortage/fasting; iv)
thermoneutrality (28-30°C); v) cold exposure (4-8°C); vi) progressive acclimation
(22/24°C to 16°C to 4°C). This study will be complemented by energy expenditure
and respiratory exchange ratio measurements (evaluated using the Metatracer
analyser), body composition analysis (using Time Domain Nuclear Magnetic
Resonance to evaluate fat percentage and lean mass during the nutritional
challenge) and basic blood biochemistry profiling during the different nutritional
interventions (focusing on plasma triglycerides, free fatty acids, carnitine, glucose,
insulin levels, ketone bodies, and markers of liver damage (ALT/AST ratio)).
Carbohydrate and lipid metabolism are of special interest and will be followed up
using glucose tolerance tests (GTT), insulin tolerance tests (ITT), lipid tolerance

tests and detailed lipid profiling in plasma to evaluate the phospholipid pool and
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their oxidative status. These analyses may be complemented by assessment of
Cptla enzymatic activity and liver histopathology. Additionally, our Pro479Leu
mouse model might also serve as a model of human sudden unexpected death in
infancy (SUDI).

Finally, we plan to look at the hearing of PCDH15, OTOF and potentially
HERC1 models in great detail in collaboration with Karen Steel (King’'s College
London). Secondary phenotyping planned by Karen Steel will focus on physiological
(electrophysiological) differences between the humanized mice and controls,
including auditory brainstem response screening (with extended threshold
recording), tests of frequency tuning, temporal processing, adaptation, fatigue and
distortion product otoacoustic emissions (DPOAEs - to examine sounds emitted in
response to two simultaneous tones of different frequencies) amongst others.

In addition, phenotyping efforts will be supplemented with detailed in silico
protein modelling that would help to understand the molecular impact of selected
amino acid substitutions on the protein structure done by Tomek Stepniewski,
Ramon Guixa-Gonzalez and Jana Selent (Research Programme on Biomedical
Informatics, Department of Experimental and Health Sciences Universitat Pompeu

Fabra, Hospital del Mar Medical Research Institute, Barcelona, Spain).
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4.3. Future directions

Functional studies exploring mechanistic links between genetic diversity
and phenotypic variation should also focus on addressing other modes of selection
to fully understand the genetic basis of human adaptation. There are a few well-
established examples of genetic variants targeted by balancing selection linked to
phenotypic traits (i.e. sickle cell anemia and malaria resistance (62)), but less
success has been achieved in pinpointing and validating variants driving soft
sweeps and polygenic selection that leave weak signatures of selection (18, 26),
although new methods addressing these questions are emerging e.g. the Singleton
Density Score (SDS) inferring very recent changes in allele frequencies that are able
to uncover polygenic shifts affecting complex traits, but also very recent hard and
soft sweeps (622). Another challenge is the functional follow-up of variants with
small, but non-zero size effects that have been proposed to drive phenotypic
variation of many complex traits in an additive fashion (623). It is likely that such
variants are insufficient to cause a detectable phenotype in isolation. One possible
solution would be engineering multiple such variants in mice through genome
editing in isolation and then cross-breeding the progeny in order to accumulate all
candidates in one individual to examine additive effect and phenotype
amplification, although it seems laborious and time consuming endeavour. Another
possibility would be re-evaluating human cohorts with rich phenotyping data in
testing hypotheses regarding human adaptation, thus replacing model organisms.
New large-scale datasets of densely genotyped or deeply sequenced and extensively
phenotyped individuals, such as the UK Biobank dataset (624, 625), might help in
the assessment of co-segregation of candidate variant with phenotype directly in
humans.

Further challenges include addressing the effects of other forms of genetic
variation. Most functional studies focus on heritable coding variation, namely,
coding variants in the nucleotide sequence of DNA. Only a handful of regulatory
candidates have been functionally validated, but it seems that the bulk of human
adaptation is though to be concentrated in non-coding regions driving gene

expression levels (17, 140, 141, 162-164, 170-172, 626, 627). Indeed, the majority
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of SNPs identified by FineMAV fall into regulatory, intronic or intergenic regions,
but also in non-coding RNAs (ncRNA). The inability to form prior hypotheses about
the function of non-coding DNA is a key factor limiting functional follow-up studies
(626). Several ncRNAs have been shown to play important roles in diverse
biological processes, but their functions have been largely unexplored in humans
(628). It has also been shown that purifying selection has acted on conserved long
intergenic ncRNAs, and a fraction of them show signals of selection similar to
protein-coding genes (628, 629). A recent study proposed functional prioritisation
of the hundreds of putative long ncRNAs for downstream experimental
interrogation (628). Exploring signals of selection in ncRNAs is a potential further
direction of this project.

Additionally, functional studies also need to tackle structural variants
exhibiting signals of selection. Large allele frequency differences between
populations have been reported for copy-number variants (CNVs), and this class of
variants is in general believed to have contributed to hominid evolution and human
adaptation (630) e.g. increase in the copy-number of the salivary amylase gene
(AMY1) as an adaptation to a high-starch diet (631), duplication of the HP and HPR
genes in Africans associated with protection against trypanosomiasis (630, 632),
deletion of UGTZ2B17 in East Asians (633), or selectively introgressed CNVs of
archaic origin in modern Oceanic populations (630).

Finally, known genetic variation often does not fully explain the observed
phenotypic variance, a phenomenon referred to as the ‘missing heritability’ that has
been linked to gene-gene and gene-environment interactions (634). Therefore,
efforts aimed at understanding human adaptation should also account for other
layers of variation, like epigenetic variation, that can inform about additional
mechanisms of human responses to environmental challenges. Epigenetic
modifications, and in particular DNA methylations, provide information on gene
activity that could contribute to phenotypic variation (635, 636). Methylation
occurs on cytosine residues in the context of CpG dinucleotides which are found at
gene promoters and can regulate the expression of neighbouring genes (637). A
substantial portion of DNA methylation variation is controlled by inherited genetic
variation (methylation quantitative trait loci; meQTLs), but it can also be affected

by a broad range of environmental factors including habitat and lifestyle (638-646).
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Recent studies reported extensive DNA methylation differences between major
ethnic groups and a signature of selection on population-specific meQTLs (645-
648). We integrated expression quantitative trait loci (eQTLs) data with our results,
but have not explored meQTLs annotations, which could be another future
expansion of this project. Apart from the heritable aspect of methylation-associated
SNPs, it has been proposed that populations can initially respond to environmental
challenges via epigenetic changes independently of underlying meQTLs, with the
adaptive phenotype being achieved via genetic changes over time (648). Such short-
term rapid adaptation is little-recognised and needs further investigation, as the
proportion of methylated sites unexplained by underlying SNPs is substantial (643,
646, 648). On the other hand, this first line of adaptation might also influence the
epitype of germline cells and potentially impact subsequent generations allowing a
response to the environment through changes in gene expression (646).

Alot of work needs to be done to interpret the interplay between genotype,
environment and the natural phenotypic variation occurring in the human species.
Finding mechanistic links between selection candidates and Darwinian fitness
seems crucial in these efforts. Our abilities to generate genetic and phenotype data
on vast scales, modify genomes, and develop new analytical approaches are
expanding at unprecedented rates. Predictions about the future usually turn out to
miss the most important and unexpected new approaches, but there seems every
reason to be optimistic that the next few years will see great advances in our

understanding of human adaptation.
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Appendix A

Lists of top SIS candidate genes

Top 7% of positively selected protein coding genes and their SSI values are

given in the following pages.

CHR - chromosome
GENE NAME - associated gene name
SIS - Selection Support Index
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CHR GENE NAME SSI CHR GENE NAME _SSI CHR GENE NAME _SSI CHR GENE NAME _ SSI CHR GENE NAME _SSI
2 EDAR 0.76 14 AP5M1 0.20 10 ADK 0.16 1 CLSPN 0.14 9 C9orf156  0.12
4 SLC30A9  0.70 16 CBFB 0.20 3 USP4 0.16 19  CEACAMI  0.14 9 HEMGN  0.12
4 BEND4  0.55 16 TPPP3 0.20 2 RTKN 0.16 18 CD226 0.14 22 CDC45 0.12
15  SLC24A5 0.49 10 CFAP70  0.20 15 CTXN2 0.16 1 ST6GALNAC3 0.14 4 SEC24B  0.12
15 HERC1 0.49 16  KCTD19  0.20 1 TEKT2 0.16 2 VSNL1 0.14 19  ZBTB7A  0.12
2 UBXN4 0.47 20 SLC32A1  0.20 20 PROCR 0.16 20 FAM83D  0.14 2 YWHAQ  0.12
2 LCcT 0.46 13 MPHOSPH8 0.20 10 SEC24C  0.16 15 TRPM1 0.14 4 KLB 0.12
4 TMEM33  0.45 2 PCGF1 0.20 19 ZNF780B 0.16 1 HMCN1 0.14 9 c8G 0.12
2 McMe 0.44 5 APC 0.20 5 TRIM23  0.16 3 CCDC36 0.14 7 C7orf34  0.12
15 MYEF2 0.43 1 TSTD1 0.20 21 WDR4 0.16 15 RORA 0.14 2 SUCLG1 ~ 0.12
17 BCAS3 0.42 10 CCDC172  0.20 7 IFRD1 0.16 6 LAMA2 0.14 19 cxcL17 - 012
2 Gee2 0.40 3 RPEP2 0.19 17 SLC25A19 0.16 18 RTTN 0.14 7 SLC26A5  0.12
1 ZMYM6  0.40 3 AMT 0.19 6 PREP 0.16 2 SLC4AS 0.14 3 LRIG1 0.12
12 PAWR 0.39 11 VPS37C  0.19 16 SLC9A5  0.16 10 PPP3CB 0.14 1 NCDN 0.12
2 DARS 0.38 2 ALMS1-IT1 0.19 1 AGO3 0.16 2 HECW2 0.14 12 OSBPL8  0.12
15 HERC2 0.37 2 IN080B  0.19 13 UFM1 0.16 12 TMTC3 0.14 11 OR5AS1  0.12
1 ZMYM4 037 1 BCAR3 0.19 7 C7orf60  0.16 5 C5orf34 0.14 14 NRXN3 0.12
1 ZMYM1 0.37 10  PIP4K2A  0.19 5 TMEM232 0.16 3 CHMP2B  0.14 20 CNBD2 0.12
14 ACTN1 0.37 3 NICN1 0.19 2 CCDC148  0.16 10 SCD 0.14 16 LONP2 0.12
7 LSMEM1  0.36 16 TMEM208 0.19 5 CENPK  0.16 2 CENPO 0.14 2 ADCY3 0.12
12 SYT1 0.35 2 GEN1 0.19 16 VKORCI ~ 0.16 15 SENP8 0.14 16 THAP11 ~ 0.12
19 YIF1B 0.34 4 C4orf46  0.19 5 REEP5 0.16 10 DNAJC9 0.14 4 WDR19  0.12
2 R3HDM1  0.34 16 GABARAPL2 0.19 6 TAAR2 0.16 22 CDPF1 0.14 7 KCND2 0.12
15  SLCI12A1  0.34 15 FBXL22  0.19 19 SPINT2  0.16 9 SETX 0.14 8 TEX15 0.12
4 DCAF4L1 033 7 DGKI 0.19 3 POUIF1  0.16 16 N4BP1 0.14 16 KAT8 0.12
3 EPHB1 0.33 5 SLC25A46 0.19 22 MRPL40  0.16 7 SRPK2 0.14 16  Cl6orf70 0.12
3 LPP 0.32 6 MRAP2 0.19 2 WDR54  0.16 5 PAIP1 0.14 5 SLC27A6  0.12
2 LIMS1 0.32 11 PGAS 0.19 8 PINX1 0.16 20 EDEM2 0.14 6 PHACTRI 0.12
10  PCDH15 032 1 OR2L13  0.18 16 ATP6VOD1 0.16 6 VNN1 0.14 7 MYH16  0.12
2 RANBP2  0.32 3 APEH 0.18 14 NAA30 0.16 8 MTMR9 0.14 15 TMEM87A 0.12
2 ccpe13s 0.30 2 KCNH7 ~ 0.18 9 PTGS1 0.16 12 GOLT1B 0.14 14 PRKCH  0.12
15 APBA2 0.30 1 DLGAP3  0.18 1 ROR1 0.16 12 STRAP 0.14 10 GPR158  0.12
12 TMEM117 0.30 10 FUT11 0.18 7 PRKAG2  0.16 15 Myosc 0.14 12 DDX55 0.12
12 PPPIRI2A 0.30 3 ccpc71 0.8 16 CHSTS 0.16 14 SNAPC1 0.14 16 PARN 0.12
22 APOL2 0.29 2 CXCR4 0.18 3 RHOA 0.16 17 SHMT1 0.14 5 SKP2 0.12
1 SFPQ 0.29 19 CATSPERG 0.18 3 ZBTB20  0.16 3 PTPLB 0.14 22 PPARA 0.12
7 TRPV6 0.29 1 F5 0.18 8 CSMD1 0.15 1 BLZF1 0.14 12 Cl2orf29 0.12
2 SULT1C2 029 1 ZBTB41  0.18 1 PTPN22  0.15 2 HADHB 0.14 14  KLHL28 0.12
3 O0XSM 0.28 6 RPL32P1  0.18 7 PTCD1 0.15 12 ERC1 0.13 6 LMBRD1  0.12
7 TRPV5 0.28 3 DAG1 0.18 1 F13B 0.15 20 BMP7 0.13 6 UTRN 0.12
15 DAPK2 0.28 16 ELMO3  0.18 19 CNFN 0.15 2 IFIH1 0.13 3 SPTSSB 0.12
2 EX0C6B  0.28 2 MRPL53  0.18 22 CLDN5  0.15 7 KEL 0.13 4 TMEM156 0.12
3 SLC4A7  0.28 6 TAAR1 0.18 1 PHLDA3  0.15 5 C5orf28 0.13 15 KLF13 0.12
10  MRPS16  0.28 19 ZNF546  0.18 6  HLA-DPA2 0.15 6 NKAIN2 0.13 4 HMGB1P28 0.12
15 bur 0.27 16 ABCC11 0.8 1 RPS6KA1  0.15 15 DU0OX2 0.13 20 STK35 0.12
10  PNLIPRP3 0.27 6 CYB5R4  0.18 1 EVI5 0.15 10 P4HA1 0.13 16 ITGAM 0.12
2 SULT1C4 027 7 BUD31 0.18 3 MYLK 0.15 7 SDK1 0.13 22 APOL3 0.12
22 MYH9 0.26 10  SYNPO2L 0.18 22 PKDRE]  0.15 22 APOL4 0.13 12 GYS2 0.12
17  APPBP2  0.26 3  KLHDC8B 0.18 10 NUDTI3 0.5 22 GTSE1 0.13 9 FKTN 0.12
9 BNC2 0.26 8 SNTG1 0.18 8 SLC35G5  0.15 20 DOKS5 0.13 17 RNF135 012
2 GALNT5  0.26 13 PSPC1 0.18 3 Foxp1 0.15 4 KIAA1109  0.13 4 ADHI1IB  0.12
3 BAI3 0.26 19 PSMC4 0.18 2 MLPH 0.15 17 MED13 0.13 17 EVI2A 0.12
16  PLEKHG4 0.26 5 SLC45A2  0.18 1 F11R 0.15 16 TFAP4 0.13 15 SIN3A 0.12
5 mcc 0.25 8 XKR6 0.18 10 FAMI149B1 0.15 16 BCL7C 0.13 3 HMGB3P12 0.12
1 PSMB2  0.25 2 ccpci42 - 018 14  ADAM21 0.15 21 TMPRSS3 ~ 0.13 3 TAF9BP1  0.12
2 WBP1 0.25 2 TTC31 0.18 15 CSNK1G1 015 15 MY09A 0.13 17 DDX5 0.12
3 RBP2 0.25 1 ASPM 0.18 18 DTNA 0.15 7 ATP5]2 0.13 1 CDC42BPA 0.12
3 NGLY1 0.25 10 AGAPS 0.18 16 FBXL8 0.15 16 E2F4 0.13 15 VPS39 0.12
5 ARHGAP26 0.25 2 LBX2 0.18 18 (CCDC102B 0.15 16 TRADD 0.13 16  ZCCHC14 0.12
7  TMEM168 0.24 2 ASAP2 0.17 20  EIF4E2P1 0.15 1 CSRP1 0.13 15 GNB5 0.12
2 ALMS1 0.24 2 CYP26B1  0.17 20 LLPHP1I 015 8 PTP4A3 0.13 5 ADAMTS6 0.12
3 TBC1D5  0.24 11 NAV2 0.17 1 RPL5P4  0.15 2 DCTN1 0.13 1 ADPRHL2 0.12
1 OR2L2 0.24 3 EPHA6 0.17 7 PDAP1 0.15 7 CPSF4 0.13 22 C220rf39 0.12
2 SMC6 0.24 1 PVRL4 0.17 10  PKD2L1  0.15 1 TNNI1 0.13 4 KLHL5 0.12
7  CNTNAP2 0.24 1 USF1 0.17 9 DOCK8  0.15 16 FAM65A 0.13 19 LIPE 0.12
14 EX0C5 0.24 1 CRB1 0.17 3 C3orf84  0.15 12 ATXN2 0.13 17 PCTP 0.12
1 KIAA0319L 0.24 8 BLK 0.17 15 PKM 0.15 12 RECQL 0.13 12 C2CD5 0.12
19  C19rf33 0.23 6 SAMD3  0.17 11 VWCE 0.15 15 PTPN9 0.13 16  SDR42E1 0.12
4  ATP1B1P1 0.23 4 GABRA4  0.17 1 LEPR 0.15 2 GLI2 0.13 6 IL20RA  0.12
6  HLA-DPB1 0.23 8 UNC5D  0.17 17 SLC5A10 0.15 14 IGHG1 0.13 20 TGM3 0.12
9 TYRP1 0.23 2 NEUROD1 0.17 3 CD47 0.15 1 ADAM15  0.13 20 CPNE1 0.12
16 ADAT1 0.23 12 CACNAIC 0.17 7 GALNT11  0.15 2 THADA 0.13 18 RIT2 0.12
17 GRB2 0.23 16 FHOD1 0.17 16 EXOC3L1 0.15 8 EIF3H 0.13 10 CoMMD3 0.12
7 EPHB6 0.23 6  HLA-DPA1 0.17 16 NOL3 0.15 4 TLR1 0.13 12 TBC1D30 0.12
15 HEXA 0.23 6  HLA-DPB2 0.17 2 PDE11A  0.15 22 UFDIL 0.13 3 FSTL1 0.12
22 LARGE 0.22 10  ZSwiM8s  0.17 1 SLC44A5  0.15 2 SPR 0.13 22 MKL1 0.12
10 USP54 0.22 14 PPP2R5E  0.17 14 SYNJ2BP  0.15 2 DNAH6 0.13 19 GGN 0.12
3 TCTA 0.22 10 NRG3 0.17 10 SPAG6 0.15 9 CNTLN 0.13 1 COL8A2  0.12
12 TEAD4 0.22 3 COPB2 0.17 15  GRAMD2 0.15 2 NCOA1 0.13 17  PRPSAP2 0.12
5 CTNND2  0.22 16 LRRC29  0.17 20 RALGAPA2 0.15 3 FHIT 0.13 11 PRDM10  0.12
15 0CA2 0.22 10 NDST2 0.17 10 ANXA7  0.14 15 PPIB 0.13 22 SYNGR1I ~ 0.11
16  LRRC36  0.22 5 FGF1 0.17 10 ECD 0.14 2 PRPF40A  0.13 1 scpPz 0.11
19  FAM98C  0.22 6 HTR1B 0.17 11 POU2F3  0.14 15 CEMIP 0.13 22 HIRA 0.11
3 BBX 0.22 6 TAAR3 0.17 17 UsP32 0.14 2 FMNL2 0.13 7 RELN 0.11
18 PTPRM  0.21 1 ARHGAP30 0.17 15 SNX1 0.14 16 wwox 0.13 21 BACE2 0.11
15  C150rf43 0.21 2 PTRHD1  0.17 16  HSD11B2 0.14 15 SORD 0.13 17 DPRXP4  0.11
10 CELF2 0.21 5 SRP19 0.17 16 HSF4 0.14 15 ZNF609 0.13 6 POPDC3  0.11
4 LIMCH1 ~ 0.21 20 ACTRS 0.17 15 USP3 0.14 11 PGA3 0.13 1 TFAP2E ~ 0.11
1 AGO4 0.21 5 PPWD1 0.17 3 SNRK 0.14 11 PGA4 0.13 11 NTM 0.11
19  SPRED3  0.21 3 NEK10 0.17 10 CAMK2G 0.14 1 AGO1 0.13 7 SEMA3E ~ 0.11
10  CHCHD1 0.21 16 ABCC12 017 4 PHOX2B  0.14 17 C17orf64  0.13 9 FBXWS5  0.11
1 COL11A1  0.21 16  ZDHHC1  0.17 11 CcD5 0.14 11 DDB1 0.13 14 NPAS3 0.11
12 Ccux2 0.21 7 ITGB8 0.17 1 ABCA4 0.14 2 ARL6IP6  0.13 3 CLSTN2  0.11
19 KCNK6  0.21 7 GRM8 0.17 16 ENKD1 0.14 4 ARHGEF38 0.13 14 IGHG3 0.11
19 PSMD8  0.21 15 SNX22 0.17 15 CELF6 0.14 1 NME7 0.13 7 CPED1 0.11
22 CELSR1 ~ 0.21 19  ZNF780A  0.17 10 BMS1P4 0.14 22 MEIT 0.13 17 PRKCA 0.11
7 ARPCIB  0.21 2 PARD3B  0.17 12 SPX 0.14 22 APOL1 0.13 2 CERKL 0.11
9 SMc2 0.21 2 MOGS 0.16 2 FUCAIP1  0.14 20 DHX35 0.13 3 CNTN6 0.11
4 ETFDH  0.20 3 MRPS22  0.16 17 PPMID  0.14 2 OTOF 0.12 8 TCF24 0.11
7 ARPCIA _ 0.20 10  CTNNA3  0.16 14 HIFIA 0.14 1 SLC35F3  0.12 2 TET3 0.11




CHR GENE NAME _SSI CHR GENE NAME _SSI CHR GENE NAME _SSI CHR GENE NAME _SSI CHR _ GENENAME __ SSI
6 GRIK2 0.11 2 ERBB4 0.10 1 SCAMP3  0.09 12 CD63 0.08 15 DUOXA1 0.08
7 vwcez 0.11 2 PKP4 0.10 15 TRIP4 0.09 8 FABP4 0.08 16 RLTPR 0.08
18 ccpci78 011 1 FDPS 0.10 10 Myoz1 0.09 12 IGFBP6  0.08 16 FTO 0.08
3 LMLN 0.11 3 GPX1 0.10 18  ZNF407  0.09 1 SLC25A34 0.08 17 HDACS 0.08
3 MKRN2 011 20 ROMO1 0.10 16  SETDIA  0.09 13 TBC1D4  0.08 1 SMYD3 0.08
4 STK32B  0.11 1  PRKARIAP 0.10 12 C12orf50  0.09 7 BBS9 0.08 1 FAM69A 0.08
20 SPAG4 0.11 2 ADAM17  0.10 12 CDK2AP1  0.09 20 SRMS 0.08 14 FANCM 0.08
7 EGFR 0.11 16  HSD17B2  0.10 14  RAD51B  0.09 2 KCNS3 0.08 22 PRR34 0.08
12 GTF2H3  0.11 12 KITLG 0.10 1 OR2L5 0.09 7 ZNRF2 0.08 2 DUXAP1 0.08
16 XYLT1 0.11 1 PDE4B  0.10 14 EFS 0.09 1 ACAP3 0.08 7 OR9A2 0.08
7 CTTNBP2  0.11 4 ADH7 0.10 11 DLG2 0.09 2 CNNM3  0.08 8 PTTG3P 0.08
2 ZRANB3  0.11 20 RALGAPB 0.10 10 TCF7L2  0.09 17 SHPK 0.08 13 ST6GALNAC4P1 0.08
12 Gucy2c  0.11 1 HCN3 0.10 12 SH2B3 0.09 3 SERPINI1 0.08 16 UBA52P8 0.08
7 TPK1 0.11 12 MPHOSPH9 0.10 11 CKAPS 0.09 12 ST8SIA1  0.08 6 PBX2 0.08
15 SV2B 0.11 4 TTC39CP1 0.10 14  RPL36AL  0.09 9 SH3GL2 ~ 0.08
22 ZBED4 0.11 22 SGSM3 0.10 2 ANTXR1 ~ 0.09 2 1QCA1 0.08
13 RB1 0.11 2 EMX1 0.10 8 VPS13B  0.09 1 OR2AK2  0.08
1 KCNN3 011 4 BMP3 0.10 2 ACMSD  0.09 6 RNF5 0.08
20 D1 0.11 3 CLEC3B  0.10 16 EEF2K 0.09 1 TRAPPC3  0.08
16 KCTD5  0.11 20 ACSS1 0.10 18 KLHL14  0.09 10 HPSE2 0.08
1 OR2L8 0.11 2 FAP 0.10 16 CEMP1 0.09 17 NF1 0.08
17 POLG2 0.11 16 ZNF668  0.10 16 RBFOX1  0.09 12 KCNH3 0.08
3 FAM208A 0.11 14 DCAF5 0.10 11 TMEM138 0.09 11 OAF 0.08
20 CEP250  0.11 1 SLC9c2 - 0.10 11 TMEM216 0.09 3 CAMKV ~ 0.08
8 RNF170  0.11 1 EFNA4 0.10 7 ZNF394  0.09 2 NEB 0.08
9 INVS 0.11 20  SCANDI  0.10 11 MYRF 0.09 15 MTMRI10 0.08
16 CES4A 0.11 12 CEP290  0.10 3 GOLIM4  0.09 16 ~ SHCBP1  0.08
2 MAP3K19 0.11 1 RPAP2 0.10 4 PPID 0.09 1  KIAA1107 0.08
3 SEMA5B ~ 0.11 1 GFI1 0.09 8 NRG1 0.09 17 MPP2 0.08
2 ABCA12  0.11 9 KANK1 0.09 17 SMURF2  0.09 7 CYP3A5  0.08
8 SGK3 0.11 7 PRSS1 0.09 4 C4orf22  0.09 12 EPS8 0.08
10 BMI1 0.11 20 COX412 0.09 9 TTLL11  0.09 12 NAA25 0.08
15 ARNT2 011 22 TNRC6B  0.09 12 HMGA2  0.09 19 PSG3 0.08
5 KCNIPT 011 8 PPP1IR42  0.09 7 ZSCAN25  0.09 4 RAB28 0.08
20 BCL2L1 011 1 PUSL1 0.09 6 KCNQ5  0.09 1 EFNA1 0.08
16 KIAA0895L 0.11 1 PRDM16  0.09 6 GPR111  0.09 17 NT5C 0.08
12 TSPAN9  0.11 6 COL11A2  0.09 7 GTF21 0.09 11 SLC35C1  0.08
2 FAM49A  0.11 1 ZBTB7B  0.09 12 HECTD4 0.09 5 SGTB 0.08
7 SUGCT  0.11 16 BCKDK  0.09 8 PCMTD1  0.09 2 SSFA2 0.08
8 PSD3 0.11 16 CTF1 0.09 16 ACD 0.09 16  FAM96B  0.08
16 AGRP 0.11 16 PRSS53  0.09 1 ACKR1 0.09 14 MGAT2  0.08
9 EHMT1 0.11 8 SGCZ 0.09 1 SLC50A1  0.09 17 EVIZB 0.08
11 AHNAK  0.11 15 GANC 0.09 2 TLX2 0.09 7 OR6V1 0.08
14 Cl4orf28 0.11 16  TERF2IP  0.09 2 NECAPIP2 0.09 2 DNAJC5G  0.08
2 ERMN 0.11 10 HIF1IAN ~ 0.09 13 NPM1P22 0.09 19  HMG20B  0.08
10 MSS51 0.11 11 TENM4  0.09 1 OR10j3  0.09 4 FNIP2 0.08
6 CEP162  0.10 8 CHRNB3  0.09 2 OR7E28P  0.09 3 FAIM 0.08
8 RP1L1 0.10 15 GABRB3  0.09 18 RPS3AP49 0.09 2 DFNB59  0.08
6  UHRF1BP1 0.10 20 NFS1 0.09 2 TAF13P2  0.09 20 PTK6 0.08
15 FBN1 0.10 14 RHOJ 0.09 1 DCST1 0.09 6 PARK2 0.08
8 POTEA 0.10 17 RAB11FIP4 0.09 12 SLCO1B3  0.09 14 PLEK2 0.08
3 ANO10  0.10 4 RXFP1 0.09 1 KCNT2 0.08 22 €CDC134 0.08
2 ACKR3 0.10 3 KCNAB1 ~ 0.09 11 OR4P4 0.08 3 MSTI1R 0.08
1 SCMH1 0.10 8 THAP1 0.09 11 OR8H3 0.08 6 AGER 0.08
22 ADSL 0.10 1 LHX8 0.09 17 DHX58 0.08 7 ARF5 0.08
5 KIF3A 0.10 10 SEC31B 0.09 17 GNA13 0.08 7 ING3 0.08
22 MGAT3  0.10 16 ORAI3 0.09 6 NCOA7  0.08 8 CHRNA6  0.08
8 PTK2 0.10 2 RAB17 0.09 4 PRKG2 0.08 6 ANKS1A  0.08
3 ARHGEF3 0.10 5 SEPT8 0.09 2 PRKRA 0.08 3 busp7 0.08
8 McMDC2  0.10 22 MCHR1 0.09 2 ARL5A 0.08 12 HOXC13  0.08
9 NXNL2  0.10 22 RPL3 0.09 8 ST18 0.08 16 GFOD2 0.08
6 PDE7B  0.10 4 SORCS2  0.09 5 PPP2R2B  0.08 BODIL1  0.08
17 ADAP2 0.10 12 TMTC2  0.09 1 SHC1 0.08 4 SMARCA5 0.08
2 DIRC1 0.10 4 TMPRSS11B 0.09 16 ITGAL 0.08 9  OLFML2A  0.08
2 RAB3GAP1 0.10 20 FER1L4  0.09 2 KDM3A  0.08 15 CTDSPL2  0.08
6 AHI1 0.10 12 TCTN2 0.09 22 TTC28 0.08 7 ZNF655  0.08
2 LRPPRC ~ 0.10 20 RBM39  0.09 12 SBNO1 0.08 22 CACNA1l 0.08
2 KIF3C 0.10 3 PPARG 0.09 1 MAGI3 0.08 16 CDH16 0.08
16 CENPT  0.10 8 HOOK3  0.09 15 CAPN3 0.08 14  DNAAF2  0.08
15 FAM96A  0.10 5 FBN2 0.09 1 RPL5 0.08 17 ATP5H  0.08
8 TRPS1 0.10 7 ZNF789  0.09 14 AHSA1 0.08 16 RRAD 0.08
20 ERGIC3  0.10 17 TRPV1 0.09 11 DAK 0.08 21 N6AMT1  0.08
1 NOTCH2  0.10 6 TBC1D7  0.09 22 PDGFB 0.08 19  SIPAIL3  0.08
2 ITGB1BP1 0.10 3 EIF4E3  0.09 6 EZR 0.08 22 TEF 0.08
16 KARS 0.10 13 ZMYM5  0.09 8 FABPY 0.08 22 PMM1 0.08
12 ANO2 0.10 11 F2 0.09 11  SCGB1D1 0.08 12 SLC6A15 0.08
1 ANKRD45 0.10 2 NAT8 0.09 12 EIF2B1 0.08 19 MAST1 0.08
2 CACNB4  0.10 16 PARD6A  0.09 1 CPSF3L  0.08 9 EDF1 0.08
1 LRRC7 0.10 1 EFNA3 0.09 22 TOB2 0.08 6 GPSM3  0.08
5 NIMIK  0.10 12 FAM109A 0.09 15 DUOXA2 0.08 22 ST13 0.08
1 RABGGTB 0.10 2 SULT1C2P1 0.09 5 IL13 0.08 15 CYP19A1 0.08
20 RBM12  0.10 6 TRDN 0.09 4 GAB1 0.08 2 APOB 0.08
19  ARHGEF1 0.10 2 CCNT2 0.09 4 GPM6A 0.08 20 GDF5 0.08
3 DGKG 0.10 22 ALG12 0.09 10 SMNDCI  0.08 3 FAM212A 0.08
16 NUDT16L1 0.10 2 SULT1C3  0.09 3 ADAMTS9 0.08 1 KLHDC9  0.08
1 SsU72 0.10 5 CDH12 0.09 2 GCG 0.08 11 OR56B4  0.08
10 SORCS3  0.10 9 TRAF2 0.09 1 GLMN 0.08 2 ANKRD23 0.08
16 MPHOSPH6 0.10 2 C€CDC150  0.09 1 NFASC ~ 0.08 10 CAMK1D 0.08
19  RASGRP4 0.10 13 PRR20A  0.09 10 KIAA1217 0.08 1 MEX3A 0.08
15  KIAA0101 0.10 20 CDH4 0.09 7 TTC26 0.08 1 RAB25 0.08
2 SEMA4F  0.10 8 DNAJC5B  0.09 11 LRP4 0.08 20 CSTF1 0.08
16  ZNF646  0.10 11 TMEM258 0.09 11 CYB561A3 0.08 12 OLR1 0.08
17 NUP85  0.10 7 KMT2C  0.09 12 Ci2orfé5 0.08 8  FAM167A 0.08
12 MAPKAPK5 0.10 17 CA4 0.09 16  TSNAXIP1 0.08 19 ZNF14 0.08
16 NUTF2  0.10 1 CFH 0.09 16 BFAR 0.08 11 KCNQ1 0.08
1 DPM3 0.10 12 ATP6V0A2 0.09 12 KCNJ8 0.08 2 ACVR1 0.08
1 OR2L3 0.10 1 HS25T1  0.09 1 OR2T8 0.08 2 TMEM163 0.08
20 PHF20 0.10 1 Clorf216  0.09 16  Clé6orf87 0.08 17 CALCOCO2 0.08
2 COPS8 0.10 15 PIF1 0.09 1 SLFNL1 ~ 0.08 20 XKR7 0.08
22 TRMU 0.10 16 PYCARD _ 0.09 7 GRM3 0.08 1 CFHR1 0.08

223



224



225

Appendix B

Lists of top FineMAV candidates

Top 100 FineMAV hits in Africans (AFR), East Asians (EAS), Europeans
(EUR), Eurasians (EAS+EUR) and non-admixed Native Americans (AMR) are given

in the following pages.

SNP

CHR

POS
DER_ALLELE
DAF
DAF_GLOB

DAP
CADD

FineMAV
CONSEQUENCE

GENE

- Single Nucleotide Polymorphism ID

- chromosome

- genomic position

- derived allele

- population specific Derived Allele Frequency

- Global Derived Allele Frequency (average across
populations)

- Derived Allele Purity

- Combined Annotation-Dependent Depletion of derived
allele

- population specific Fine-Mapping of Adaptive Variation
- most severe consequence according to ENSEMBL (NC
stands for non-coding; RNA stands for different types of non-
coding RNA including lincRNA, snRNA and miRNA)

- associated gene name
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SNP CHR POS DER_ALLELE DAF_AFR DAF_EAS DAF_EUR DAF_GLOB DAP CADD FineMAV_AFR CONSEQUENCE GENE
rs2814778 1 159174683 © 0.96 0.00 0.01 032 098 17.74 16.73 5 prime UTR ACKR1
rs7645635 3 188327555 G 0.71 0.00 0.01 024 098 23.50 16.34 Missense LPP
rs8052655 16 67409180 A 0.64 0.00 0.04 0.23 0.79 32.00 16.28 Missense; Regulatory LRRC36
rs6601495 8 10480377 © 0.77 0.00 0.01 026 097 21.00 15.73 Missense RP1L1
rs35999740 19 22116015 T 0.48 0.00 0.01 0.16 0.92 34.00 14.94 Stop ZNF208

rs13043 3 138347988 © 0.63 0.00 0.01 021 093 23.10 13.38 Missense FAIM
rs1871534 8 145639681 © 091 0.00 0.01 031 097 14.92 13.29 Missense SLC39A4
rs10743455 12 23269297 c 0.57 0.00 0.00 0.19 1.00 21.20 12.16 RNA
rs10955754 8 116673229 A 0.62 0.00 0.01 021 097 19.83 12.05 Intron TRPS1
rs12334173 7 107698612 T 0.64 0.00 0.01 022 090 20.20 11.77 Intron LAMB4
rs7073075 10 108751261 A 0.68 0.00 0.02 0.24 0.89 19.33 11.77 Intron SORCS1
rs7749306 6 10687746 T 0.78 0.04 0.02 028 076 19.73 11.75 Missense Céorf52
rs2871874 2 121696149 G 0.59 0.00 0.01 0.20 0.92 21.70 11.75 Regulatory GLI2
rs12386710 7 79665088 G 0.57 0.00 0.00 019 098 2040 11.45 Intergenic
rs73129583 5 91226210 A 0.60 0.00 0.00 020 098 1935 11.43 Intergenic
rs4246244 12 23255870 G 0.57 0.00 0.00 0.19 1.00 19.68 11.22 RNA
rs7860464 9 710966 A 0.55 0.00 0.02 019 089 22.60 11.13 Missense KANK1
rs7091076 ~ 10 108751262 G 0.68 0.00 0.02 0.24 0.89 18.23 11.10 Intron SORCS1
rs11993782 8 145004042 A 0.83 0.00 0.01 028 097 1385 11.08 Intron PLEC
rs11989050 8 116781936 G 0.70 0.00 0.00 024 097 16.29 11.08 Intron TRPS1
rs7840291 8 116762150 A 0.71 0.00 0.00 0.24 0.97 16.00 10.99 Intron TRPS1
rs10016143 4 149615561 G 0.72 0.00 0.00 024 098 1546 10.92 RNA
rs1185511 17 3627619 T 0.59 0.00 0.00 0.20 1.00 18.44 10.82 Regulatory GSG2; ITGAE
rs16887761 8 116781627 G 0.70 0.00 0.00 0.24 0.97 15.90 10.81 Intron TRPS1
rs11860295 16 67316234 T 0.69 0.00 0.07 026 070 22.20 10.79 Missense PLEKHG4
rs1346265 15 45695612 T 0.53 0.01 0.00 0.18 0.94 21.80 10.78 Regulatory SPATAS5L1; GATM
rs5962502 X 104535693 © 0.89 0.05 0.06 033 068 17.77 10.73 Intron ILIRAPL2
rs2467852 15 45695341 A 0.53 0.01 0.00 018 094 21.50 10.65 Regulatory SPATAS5L1; GATM
rs11121679 1 11072691 A 0.49 0.00 0.00 0.16 0.99 21.90 10.58 Regulatory; 5 prime UTR TARDBP
rs17005371 2 26687761 A 0.54 0.00 0.01 018 091 21.60 10.57 Missense OTOF
rs10093431 8 54899861 T 0.61 0.00 0.02 0.21 0.87 19.97 10.55 Regulatory TCEA1
rs73641908 9 14339646 C 0.57 0.00 0.00 0.19 099 1839 10.48 Intron NFIB
rs6830772 4 110475069 © 0.56 0.00 0.00 019 099 18.68 10.46 NC transcript exon SETP20
rs67954183 X 17610532 T 0.59 0.01 0.01 0.20 0.89 19.66 10.33 Regulatory NHS
rs11989722 8 116662069 T 0.63 0.00 0.01 021 097 16.68 10.28 Regulatory TRPS1
rs6468210 8 33858833 G 0.52 0.00 0.01 018 095 20.70 10.24 RNA
rs57609710 1 173560754 G 0.65 0.00 0.01 0.22 0.97 16.00 10.16 Intron SLCIC2
rs181107182 X = 39964323 G 0.59 0.00 0.04 021 080 21.50 10.12 Regulatory BCOR
rs73636231 X 104706319 A 0.69 0.00 0.00 0.23 0.98 14.86 10.10 Intron IL1RAPL2
rs73695330 8 91295266 T 0.50 0.01 0.00 017 095 21.20 10.08 RNA LINC00534
rs11537667 16 70303659 T 0.30 0.00 0.00 010 098 34.00 10.05 Missense AARS
rs10044990 5 107141997 A 0.50 0.00 0.00 0.17 0.97 20.40 9.98 Regulatory RN7SKP122
rs55844314 3 46036264 G 0.64 0.04 0.03 024 070 22.20 9.96 Regulatory Fyco1
rs6759356 2 158140806 © 0.50 0.00 0.02 0.17 0.87 22.80 9.95 Missense GALNTS
rs1427463 17 62492582 T 0.80 0.03 0.12 0.32 0.56 22.00 9.93 Missense; Regulatory POLG2
rs692703 15 41408736 G 0.46 0.00 0.01 016 096 2230 9.93 Regulatory INO8O
rs9460973 6 24175021 A 0.49 0.00 0.02 0.17 0.84 23.80 9.92 Missense Dcpc2
rs698258 2 176988412 T 0.54 0.00 0.02 019 086 21.40 9.90 Intron HOXD9; HOXD10
rs857418 6 14656031 C 0.54 0.00 0.01 019 091 19.96 9.86 Regulatory
rs7406656 17 58832257 G 0.81 0.02 0.11 0.31 0.61 20.10 9.85 Intron BCAS3
rs7868958 9 110905201 G 0.46 0.00 0.00 015 098 22.10 9.84 Regulatory
rs10912654 1 173601630 T 0.70 0.00 0.01 0.23 0.98 14.36 9.80 Intron ANKRD45
rs6048066 20 2291722 © 043 0.00 0.00 014  1.00 22.70 9.77 Missense TGM3
rs2122635 7 131830328 A 0.87 0.06 0.07 033 062 17.96 9.73 Regulatory PLXNA4
rs8034559 15 95104562 T 0.49 0.00 0.01 0.17 0.97 20.40 9.70 Intergenic
rs10093311 8 54899788 G 0.60 0.00 0.02 021 087 1854 9.69 Regulatory TCEA1
rs7072384 10 108750921 C 0.68 0.00 0.02 0.24 0.89 15.86 9.68 Intron SORCS1
157723522 5 100962433 T 0.71 0.03 0.03 0.26 0.75 18.02 9.67 Intergenic
rs10111177 8 33843454 T 0.52 0.00 0.01 017 095 19.58 9.67 RNA
rs2408536 21 24144784 A 0.47 0.00 0.00 0.16 0.99 20.70 9.56 Intergenic
rs10503956 8 33941001 A 0.47 0.00 0.00 016 097 20.80 9.55 Intergenic
rs521983 13 58636124 T 0.45 0.00 0.00 015 098 21.40 9.51 Intergenic
rs28711384 2 164867367 (6] 0.61 0.00 0.01 0.20 0.96 16.27 9.50 RNA
rs34155925 4 76788564 T 0.45 0.01 0.00 015 093 22.60 9.49 Missense PPEF2
rs7705335 5 72743925 © 0.64 0.00 0.00 0.22 0.98 14.98 9.47 Missense; Regulatory FOXD1
rs331537 11 4471276 A 0.72 0.03 0.03 026 074 17.78 9.46 Missense OR52K2
rs17105909 14 37473678 A 0.56 0.00 0.00 019 099 1697 9.42 Intron SLC25A21
rs5965014 X 64988114 T 0.71 0.00 0.00 0.24 0.99 13.36 9.40 Downstream gene NANOGP9
rs1657220 10 34816233 T 0.62 0.00 0.05 022 076 19.96 9.40 Regulatory PARD3
rs7103594 11 78320673 A 0.63 0.00 0.01 0.21 0.97 15.34 9.38 Intergenic
rs983763 4 185981720 G 0.72 0.00 0.00 0.24 0.99 13.26 9.35 RNA
rs733495 8 72472156 © 0.47 0.00 0.00 016  1.00 19.99 9.35 RNA
rs16945912 15 63133002 C 0.57 0.01 0.02 0.20 0.85 19.16 9.34 3 prime UTR TLN2
rs6982495 8 34790660 T 0.55 0.00 0.02 019 090 1887 9.33 Intergenic
rs6883147 5 68176952 © 0.53 0.00 0.00 018 097 1812 9.32 RNA
rs7090581 10 26504928 A 0.48 0.00 0.00 0.16 0.99 19.86 9.31 Regulatory GAD2; MYO3A
rs7095872 10 112435986 © 0.57 0.00 0.00 019 098 16.52 9.30 Regulatory RBM20
rs6596137 5 133019116 © 0.50 0.00 0.02 0.17 0.88 21.10 9.28 Intergenic
rs2610724 6 89383001 A 0.52 0.00 0.00 018 095 18.62 9.25 Intron RNGTT
rs1128308 14 105954682 G 0.60 0.00 0.02 021 086 1810 9.25 Regulatory CRIP1; C140rf80
rs6659237 1 147026125 G 0.67 0.00 0.04 0.24 0.81 17.10 9.24 Intron BCL9
rs1464836 7 108478693 A 0.52 0.00 0.01 017 095 18.69 9.23 Intergenic
rs60081219 X 53710797 A 0.67 0.02 0.01 023 085 16.23 9.22 Regulatory HUWE1
rs1253835 13 106222388 G 0.56 0.01 0.02 0.20 0.85 19.26 9.22 Intergenic
rs7106654 11 47203983 A 0.36 0.00 0.01 012 095 27.10 9.20 Missense PACSIN3
rs1871148 3 71102544 Cc 0.48 0.00 0.00 0.16 0.99 19.14 9.19 Intron FOXP1
rs201113 10 11048264 © 0.79 0.00 0.10 030 065 17.79 9.13 Regulatory CELF2
rs7268805 20 11198959 G 0.59 0.00 0.02 021 085 1827 9.11 Regulatory
rs16984889 X 105168689 A 0.44 0.00 0.00 0.15 0.99 20.80 9.11 Missense; Splice NRK
rs6888459 5 72741402 A 0.62 0.00 0.00 021 098 14.87 9.09 Intron FOXD1
rs59236623 11 114013734 © 0.50 0.00 0.00 0.17 0.99 18.38 9.06 Intron ZBTB16
rs57085058 X = 48910933 T 0.63 0.00 0.00 021 099 1454 9.05 Regulatory €CDC120
rs16984014 X 102979184 A 0.26 0.00 0.00 0.09 1.00 34.00 9.00 Missense GLRA4
rs5469 16 72088418 A 0.43 0.00 0.00 0.14 0.98 21.10 8.98 Regulatory TXNL4B; HP
rs7771665 6 144539961 © 0.62 0.00 0.01 021 092 1576 8.98 Intergenic
rs4876614 8 116821225 T 0.84 0.07 0.02 031 070 1531 8.98 Intron TRPS1
rs7935192 11 47004492 A 0.59 0.00 0.00 0.20 0.98 15.52 8.97 Intron Cllorf49
rs5971168 = X = 28334054 G 0.74 0.01 0.03 026 085 14.26 897 Intergenic
rs7547313 1 158632531 Cc 0.37 0.00 0.00 0.12 0.97 24.80 8.94 Missense SPTA1
rs17118461 12 56687805 T 0.59 0.00 0.00 020 099 1532 893 Intron cs




SNP CHR POS DER ALLELE DAF_AFR DAF_EAS DAF EUR DAF GLOB DAP CADD FineMAV_EAS  CONSEQUENCE GENE
rs1343879 X 75004529 A 0.03 0.83 0.03 030  0.79 35.00 23.01 Stop MAGEE2
rs2293766 7 100371358 A 0.02 0.51 0.01 0.18 0.82 47.00 19.48 Stop ZAN
rs3827760 2 109513601 G 0.00 0.87 0.01 030 095 2230 18.42 Missense EDAR
rs1800414 15 28197037 © 0.00 0.60 0.00 0.20 1.00 24.10 14.31 Missense; Splice 0CA2
rs72617608 Y 2863171 A 0.00 0.82 0.00 0.27 1.00 17.31 14.12 NC transcript exon EEF1A1P41
rs11150606 16 31099011 © 0.01 0.76 0.03 027  0.84 2130 13.66 Missense PRSS53
rs3732240 2 71366957 A 0.00 0.43 0.02 0.15 0.87 32.00 12.12 Missense MPHOSPH10
rs17027638 3 3197918 G 0.00 0.70 0.02 024 088 19.75 12.07 Synonymous CRBN
rs34537429 2 26296089 G 0.00 0.86 0.02 030 090 15.53 12.00 Regulatory RAB10
rs72627476 2 109451118 G 0.00 0.86 0.01 0.29 0.95 14.61 1191 Intron CCDC138
rs12678022 8 73837442 A 0.01 0.78 0.04 028  0.82 1845 11.76 Intron KCNB2
rs17822931 16 48258198 T 0.01 0.78 0.14 0.31 0.54 26.50 11.26 Missense ABCC11
rs72630048 X 71715133 A 0.04 0.73 0.01 026 079 19.04 10.97 Regulatory HDAC8
rs11217799 11 120164954 © 0.01 0.65 0.00 022 096 17.49 10.96 Intron POU2F3
rs4411467 15 93588043 A 0.03 0.68 0.04 0.25 0.73 22.00 10.96 3 prime UTR RGMA
rs3736508 11 45975130 T 0.00 0.56 0.03 020  0.83 23.60 10.92 Missense PHF21A
rs9360004 6 93673482 A 0.02 0.71 0.01 025 0.88 17.46 10.88 Intergenic
rs4688744 3 50249500 A 0.00 0.62 0.01 0.21 0.93 18.13 10.43 Regulatory SLC38A3
rs12921053 16 82867623 A 0.06 0.76 0.02 028 070 1941 10.42 Regulatory CDH13
rs35685348 15 64759279 T 0.04 0.79 0.09 0.31 0.59 21.80 10.25 Intron ZNF609
rs1047781 19 49206631 T 0.00 0.44 0.00 0.15 1.00 23.20 10.20 Missense FUT2
rs74595980 3 50198840 © 0.00 0.63 0.01 021 092 17.44 10.15 Intron SEMA3F
rs58137261 3 50187637 G 0.00 0.63 0.01 0.21 0.92 17.49 10.11 Regulatory SEMA3F
rs2072053 3 50197092 T 0.00 0.63 0.01 021 092 1747 10.10 Synonymous SEMA3F
rs6609051 X = 39938225 © 0.00 0.64 0.03 0.23 0.83 18.81 10.01 Intron BCOR
rs16986619 2 19740980 © 0.02 0.70 0.07 0.26 0.65 22.00 9.95 Regulatory
rs72612108 8 32306158 A 0.01 0.61 0.02 021 084 19.25 9.91 Regulatory NRG1
rs2240227 19 15852242 A 0.01 0.61 0.05 0.22 0.72 22.30 9.85 Missense OR10H3
rs2282440 1 31347320 A 0.01 0.52 0.01 0.18  0.83 22.50 9.79 Missense SDC3
rs10496971 2 145769943 G 0.07 0.79 0.07 031 057 2110 9.58 Regulatory; RNA TEX41
rs2242406 16 75574030 T 0.01 0.70 0.04 0.25 0.78 17.33 9.56 Synonymous TMEM231
rs936212 15 40581543 © 0.00 0.56 0.01 019 091 18.69 9.53 Missense PLCB2
rs289817 15 63795675 A 0.08 091 0.13 0.37 0.48 22.00 9.49 Regulatory USP3
rs245821 5 142403197 A 0.00 043 0.00 0.14  1.00 2170 9.43 Regulatory ARHGAP26
rs61687236 X = 74860977 A 0.03 0.83 0.03 029 079 1434 9.40 Intergenic
rs12607385 18 47777937 A 0.00 0.43 0.01 0.14 0.93 23.70 9.36 Missense CFAP53
rs17143187 7 20666235 © 0.01 0.45 0.01 016  0.85 24.10 9.26 Splice ABCB5
rs79525262 17 48639367 A 0.01 0.82 0.12 031  0.61 1846 9.22 Intron CACNA1G

rs10846 19 14582468 A 0.04 0.82 0.09 032 0.60 18.51 9.14 Missense PKN1; PTGER1
rs12231744 12 112477055 © 0.05 0.57 0.00 021 072 2210 9.10 Missense NAA25
rs72612111 8 32345444 A 0.00 0.57 0.02 0.20 0.84 18.89 9.02 Regulatory NRG1
rs3843699 15 64637091 T 0.01 0.76 0.08 028  0.69 17.18 9.01 Regulatory CSNK1G1
rs10497377 2 172926226 T 0.01 0.44 0.01 015  0.88 23.40 9.00 Missense; Splice METAP1D
rs12036697 1 152878909 G 0.00 0.52 0.00 0.18 0.98 17.67 8.99 Regulatory IVL
rs2074000 7 20685484 A 0.00 0.45 0.01 015 090 22.20 897 Missense ABCB5
rs2224442 14 97272382 G 0.12 0.83 0.05 0.34 0.51 21.10 8.93 Regulatory VRK1
rs77017835 7 100377364 A 0.03 0.51 0.01 018 076 22.90 8.89 Missense ZAN
rs2236943 3 50278613 A 0.00 0.62 0.01 021 093 1531 8.81 Intron GNAI2
rs61186727 3 149801650 A 0.00 0.43 0.00 0.14 0.97 21.10 8.81 Regulatory
rs77794375 7 100285476 T 0.02 0.50 0.01 018 079 2240 877 Missense GIGYF1
rs58361699 9 14241650 © 0.00 0.51 0.01 017 092 1857 8.72 Regulatory NFIB
rs2897762 X 12212919 G 0.00 0.62 0.04 0.22 0.77 18.19 8.70 Intron FRMPD4
rs16938528 8 73866368 A 0.01 0.78 0.04 028  0.80 13.90 8.66 RNA
rs11217775 11 120121323 C 0.02 0.62 0.03 0.22 0.78 17.99 8.62 Intron POU2F3
rs1017570 12 54245951 T 0.04 0.64 0.05 024  0.64 21.00 8.61 Intergenic

rs727250 X 71645222 G 0.05 0.73 0.01 026 074 15.93 8.60 Intron HDAC8
rs79117849 3 50370841 G 0.00 0.62 0.01 0.21 0.93 14.85 857 Intron RASSF1
rs6123230 20 51566360 T 0.01 0.55 0.04 020  0.75 20.90 8.57 Intergenic

rs2235371 1 209964080 T 0.00 0.43 0.01 0.15 0.88 22.50 8.54 Missense; Regulatory IRF6
rs2292114 15 65876969 A 0.00 0.43 0.01 0.15 093 21.00 851 Intron VWA9
rs12638212 3 108159977 A 0.04 0.56 0.04 021  0.62 24.40 8.48 Missense; Regulatory MYH15
rs12643176 4 38253288 (6} 0.00 0.72 0.03 0.25 0.86 13.77 8.48 Intergenic

rs7711270 5 141870940 © 0.00 0.57 0.03 020 081 1825 847 Regulatory
rs80166022 7 83487913 G 0.01 0.61 0.01 021 090 15.24 8.44 Intergenic
rs58402910 11 131279607 T 0.05 0.62 0.01 0.23 0.74 18.06 8.35 Intron NTM
rs12622852 2 17409594 G 0.00 0.77 0.08 028 070 15.46 831 Regulatory
rs10433910 4 80852826 C 0.04 0.66 0.05 0.25 0.62 20.30 8.30 Intron ANTXR2
rs6612369 X 55829607 A 0.01 0.62 0.00 0.21 0.95 14.00 827 Intergenic

rs3795786 1 228469903 T 0.02 0.29 0.01 011 076 37.00 8.26 Stop OBSCN
rs4912861 5 141888970 (€ 0.00 0.53 0.05 0.19 0.74 20.90 823 Regulatory

rs9384327 6 155752362 © 0.01 0.69 0.07 026  0.68 17.59 8.19 Intron NOX3
rs12585165 13 74150425 T 0.03 0.60 0.01 0.21 0.80 17.08 8.18 RNA LINC00392
rs9634714 13 34908238 A 0.01 0.78 0.05 028 078 13.39 8.16 Intergenic
rs11014573 10 25758874 G 0.01 0.56 0.00 019 094 1545 813 Intron GPR158
rs12688902 X 71695388 G 0.04 0.71 0.01 0.25 0.78 14.53 8.10 Regulatory HDAC8
rs2922849 8 6456740 T 0.00 0.46 0.02 0.16  0.85 20.80 8.09 Regulatory MCPH1
rs12492683 3 50351598 T 0.00 0.62 0.01 021 093 14.00 8.08 Upstream gene HYALI; HYAL2
rs72630058 X 71880808 T 0.04 0.68 0.01 0.24 0.79 15.01 8.07 Intron PHKA1
rs965305 15 98271950 T 0.01 0.56 0.05 021  0.69 20.70 8.02 RNA LINC00923
rs2140929 10 80304118 A 0.00 0.45 0.00 0.15 0.97 18.21 7.99 Regulatory; RNA LINC00856
rs12622360 2 60610224 A 0.00 0.61 0.06 023 070 18.82 7.99 RNA RNU1-32P; MIR4432
rs3824883 11 120172688 T 0.00 0.60 0.00 020 097 1361 7.99 NC transcript exon POU2F3
rs4688683 3 = 50239464 T 0.00 0.61 0.01 0.21 0.93 13.88 7.95 Regulatory SLC38A3
rs4935502 10 55955444 G 0.13 0.84 0.13 037 038 24.50 7.91 Missense; Splice PCDH15
rs60041373 7 109419462 © 0.00 0.40 0.00 0.14 0.96 20.50 791 Intergenic

rs9363019 6 93628360 G 0.02 0.73 0.13 029  0.53 20.50 7.89 Intergenic
rs17027678 2 41647254 G 0.00 0.56 0.03 019 084 1693 7.87 Intergenic
rs17853471 18 70209177 T 0.00 0.46 0.01 0.16 091 18.62 7.86 Regulatory CBLN2
rs12684795 9 9817047 © 0.07 0.71 0.06 028 057 19.23 7.84 Intron PTPRD
rs75241782 12 112280300 T 0.05 0.58 0.00 021 072 1871 7.76 Regulatory MAPKAPKS
rs3905317 2 135744007 C 0.01 0.38 0.00 0.13 0.87 23.30 7.75 Missense MAP3K19
rs17130188 10 114868162 © 0.02 0.50 0.01 018  0.81 1945 7.75 Regulatory TCF7L2
rs59111569 2 25956419 G 0.00 0.84 0.04 0.29 0.85 10.86 7.75 Downstream gene ASXL2
rs7309681 12 112337874 T 0.05 0.57 0.00 0.21 0.72 18.68 7.73 3 prime UTR MAPKAPKS5; ADAM1A
rs2303893 2 26507076 T 0.02 0.74 0.07 028  0.67 15.69 7.72 Splice; Regulatory HADHB
rs1969589 15 93588030 T 0.03 0.65 0.03 0.24 0.74 15.85 7.69 3 prime UTR RGMA
rs12575998 11 131279672 T 0.06 0.62 0.01 023 072 17.04 7.60 Intron NTM
rs76145088 1 209989232 G 0.00 0.43 0.01 0.15  0.88 20.20 7.60 Regulatory

rs4145606 2 19754838 G 0.02 0.69 0.08 0.26 0.64 17.14 7.58 Intergenic
rs10460537 2 47283824 © 0.00 035 0.00 012 099 21.60 7.57 Regulatory; RNA TTC7A; C2orf61
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rs16891982 5 33951693 G 0.04 0.01 0.94 033 086 2630 2121 Missense SLC45A2
rs1426654 15 48426484 A 0.07 0.01 1.00 0.36 0.75 18.75 13.99 Missense SLC24A5
rs10962600 9 16795783 T 0.02 0.00 0.73 025 089 1833 11.92 Regulatory BNC2
rs12939056 17 7754993 A 0.01 0.00 0.58 020 092 22.00 11.65 Regulatory; Synonymous KDM6B; TMEM88
rs12142199 1 1249187 A 0.07 0.02 0.81 0.30 0.71 19.45 11.07 Missense CPSF3L
rs12881545 14 101176212 © 0.03 0.01 0.65 023 083 19.95 10.78 Regulatory
rs11073964 15 91543761 © 0.04 0.00 0.60 0.21 0.78 22.40 10.56 Missense VPS33B
rs6705778 2 104490395 G 0.04 0.00 0.71 025 081 18.05 10.36 RNA
rs1472932 17 19220666 A 0.06 0.00 0.81 029 076 16.51 10.17 Regulatory EPN2
rs4851673 2 104817402 G 0.08 0.00 0.74 0.28 0.69 19.88 10.14 Intergenic

rs7580 X 71493691 T 0.10 0.01 0.75 029  0.63 2130 10.09 Regulatory; Synonymous  RPS4X; PIN4
rs12350739 9 16885017 A 0.02 0.01 0.56 0.20 0.87 20.40 10.01 Regulatory
rs1446585 2 136407479 A 0.03 0.00 0.54 0.19 0.84 21.70 9.84 Missense R3HDM1
rs34938541 2 104830710 T 0.09 0.00 0.76 029 066 1873 9.46 Intergenic
rs17261772 2 135911422 T 0.03 0.00 0.59 0.21 0.84 19.07 9.40 Missense RAB3GAP1
rs10756789 9 16720122 G 0.02 0.00 0.63 022 089 16.53 9.30 Regulatory BNC2
rs12128213 1 200197538 G 0.02 0.01 0.51 018  0.82 21.60 9.11 Regulatory
rs1355128 17 19299144 A 0.04 0.00 0.78 0.27 0.84 13.93 9.10 Intergenic
rs13037496 20 31466534 T 0.05 0.01 0.48 018  0.70 26.50 8.99 Missense EFCAB8
rs35517488 7 113362256 T 0.03 0.01 0.51 0.18 0.80 21.90 8.97 Intergenic
rs28591622 17 19175317 A 0.06 0.00 0.81 029 076 14.24 8.77 Intron EPN2
rs7637449 3 56628031 A 0.07 0.05 0.54 022 049 33.00 8.68 Missense CCDC66
rs4508618 2 104763415 G 0.06 0.00 0.74 0.27 0.74 15.80 8.65 RNA
rs2026805 9 16800789 A 0.02 0.00 0.72 025 089 1339 8.59 Intron BNC2
rs13027794 2 216577817 T 0.09 0.00 0.70 0.26 0.66 18.55 8.54 Regulatory; RNA LINC00607
rs2842895 6 7106316 € 0.03 0.01 0.54 0.19 0.81 19.37 8.54 Upstream gene RREB1
rs35135256 2 104788566 G 0.08 0.00 0.74 028  0.68 16.79 8.52 Intergenic
rs10756812 9 16786303 A 0.02 0.00 0.69 0.24 0.89 13.69 8.50 Intron BNC2
rs12913832 15 28365618 G 0.03 0.00 0.64 022 085 15.66 848 Intron HERC2
rs1042602 11 88911696 A 0.01 0.00 0.37 013 089 25.40 837 Missense TYR
rs12345910 9 16802118 @© 0.02 0.00 0.72 0.25 0.89 12.71 823 Regulatory BNC2
rs17675094 16 82949088 © 0.02 0.03 0.60 022 073 1841 8.08 Intron CDH13
rs11788101 9 16828961 T 0.02 0.00 0.55 0.19 0.89 15.94 7.85 Regulatory BNC2
rs776912 1 10847784 A 0.06 0.00 0.65 024 071 1693 7.81 Intron CASZ1
rs4676964 3 71034748 T 0.04 0.01 0.52 019 072 20.80 7.79 Intron FOXP1
rs7568863 2 104642666 A 0.05 0.00 0.59 0.21 0.76 17.29 7.74 RNA
rs679539 18 7743989 A 0.04 0.00 0.47 017 075 21.60 7.70 Intron PTPRM
rs11751128 6 155561796 T 0.01 0.00 0.28 0.10 0.81 34.00 7.62 Missense TIAM2
rs10960774 9 12739313 G 0.05 0.01 0.59 0.22 0.72 17.65 7.58 Regulatory
rs9874207 3 71019750 T 0.03 0.00 0.51 018 080 1854 7.57 Intron FOXP1
rs6057598 20 31168281 C 0.05 0.07 0.71 0.28 0.57 18.25 743 RNA; Intron NOL4L
rs10178579 2 139231958 A 0.03 0.01 0.50 018  0.73 20.30 742 Regulatory; RNA
rs12727510 1 214356500 T 0.03 0.01 0.62 022 080 1491 7.41 Intergenic
rs1249090 1 48153140 G 0.04 0.04 0.53 0.20 0.63 22.20 7.41 Regulatory
rs11170700 12 54210635 T 0.03 0.01 0.47 017 077 2040 7.41 RNA RN7SKP289
rs10810606 9 16754982 A 0.03 0.00 0.69 0.24 0.88 12.15 7.39 Intron BNC2
rs12344347 9 16769662 T 0.02 0.00 0.69 024 089 11.92 7.38 Intron BNC2
rs13281090 8 66590479 A 0.05 0.00 0.53 019 074 18.60 7.36 Intron MTFR1
rs12915092 15 56035767 A 0.02 0.02 0.50 0.18 0.81 18.13 7.35 Regulatory PRTG
rs4357572 1 50576710 A 0.03 0.03 0.54 020 068 19.76 7.32 Intron ELAVL4
rs1052023 19 42799049 T 0.01 0.00 0.39 013 091 20.50 7.29 Synonymous cic
rs1126809 11 89017961 A 0.01 0.00 0.25 0.09 0.87 33.00 7.27 Missense TYR
rs561828 11 126035297 © 0.04 0.01 0.49 018  0.72 20.20 7.19 RNA
rs9887642 X 71348837 A 0.06 0.03 0.79 0.29 0.68 13.31 7.17 Regulatory; 3 prime UTR  RGAG4; NHSL2
rs10421769 19 33605312 T 0.03 0.01 0.65 023 081 1354 7.15 Missense GPATCH1
rs2217415 2 137731295 T 0.03 0.01 0.49 018 078 1875 7.12 Intron THSD7B
rs7593295 2 104781454 @© 0.06 0.00 0.74 0.27 0.74 12.92 7.06 Regulatory
rs17856697 17 7348625 G 0.01 0.00 0.35 012  0.87 22.80 7.05 Missense; Regulatory ~ CHRNBI; FGF11
rs13222241 7 113393990 A 0.03 0.01 0.53 0.19 0.80 16.72 7.04 Intergenic

rs89962 12 52915172 T 0.02 0.01 041 015 081 21.10 7.01 Upstream gene KRTS
rs63716 X 72489427 A 0.04 0.02 0.67 024 075 13.67 6.92 Intergenic
rs55930529 8 144905741 T 0.02 0.01 0.53 0.18 0.86 15.10 6.92 Regulatory PUF60
rs11781090 8 144871633 T 0.02 0.01 0.53 019 079 16.62 6.91 Downstream gene SCRIB
rs6707475 2 74710491 © 0.09 0.18 0.84 0.37 0.38 21.70 691 Missense; Regulatory ~ TTC31; CCDC142
rs597894 X 71551322 T 0.08 0.02 0.77 0.29 0.66 13.43 6.86 Intron HDAC8
rs6862358 5 78742980 G 0.03 0.01 0.52 018 079 16.65 6.86 Regulatory HOMER1
rs11789463 9 16836011 A 0.02 0.00 0.51 0.18 0.89 14.97 6.84 Regulatory BNC2
rs4299484 3 108189627 T 0.01 0.00 0.29 010 089 2580 6.74 Missense; Regulatory MYH15
rs61992671 14 101531854 G 0.02 0.04 0.49 018  0.66 20.80 6.73 NC transcript exon; RNA MIR412
rs750607 15 74734819 T 0.03 0.01 0.54 0.19 0.82 14.85 6.67 Regulatory UBL7
rs977745 17 59603321 T 0.04 0.11 0.64 026 049 21.30 6.67 Intergenic
rs28760541 17 19172505 A 0.06 0.00 0.81 0.29 0.76 10.78 6.64 Regulatory EPN2
rs569791 1 38507495 G 0.03 0.05 0.53 020  0.60 21.00 6.63 Downstream gene POU3F1
rs3904600 6 7109665 G 0.12 0.01 0.63 025 053 1991 6.61 Regulatory RREB1
rs12131971 1 38809580 (o} 0.04 0.01 0.45 0.17 0.70 21.00 6.59 Intergenic

rs12864339 13 59824906 © 0.03 0.01 045 016 077 19.27 6.59 Intergenic

rs1267936 19 33643243 G 0.03 0.01 0.62 022 080 13.29 6.59 Regulatory WDR88
rs7499011 16 81242198 A 0.09 0.00 0.38 0.16 0.46 37.00 6.58 Stop PKD1L2
rs587118 9 35074917 © 0.02 0.00 0.48 017 084 1637 6.57 Splice FANCG
rs1411428 9 16661820 G 0.02 0.00 0.59 0.20 0.89 12.48 6.56 Intron BNC2
rs12488457 3 130116696 € 0.05 0.17 0.72 032 040 22.80 6.53 Missense COL6AS
rs17651549 17 44061278 T 0.01 0.00 0.24 0.08  0.82 33.00 6.53 Missense MAPT
rs820373 3 123404986 G 0.07 0.07 0.78 031 0.55 15.29 6.52 Intron MYLK
rs820371 3 123404711 C 0.07 0.07 0.77 030 055 15.53 6.52 Intron MYLK
rs3170660 1 27210721 T 0.02 0.00 0.37 0.13 0.80 22.00 6.50 Missense GPN2
rs35244551 12 122416064 T 0.02 0.00 0.46 016 086 16.26 6.49 Intron WDR66
rs11211032 1 45246243 A 0.03 0.03 0.47 018  0.67 20.40 6.46 NC transcript exon RPS15AP11
rs9403480 6 143605472 G 0.02 0.00 0.41 0.14 0.83 18.92 6.43 Intron AIG1
rs959071 17 19142226 © 0.07 0.12 0.88 036 051 1432 6.40 Intron EPN2
rs952031 2 104430586 T 0.03 0.00 0.51 018 080 15.73 6.36 Intergenic
rs12146246 10 74574063 T 0.04 0.03 0.63 0.23 0.68 14.81 6.35 Regulatory McU
rs2972190 5 72739879 T 0.02 0.00 0.35 013  0.82 21.90 6.35 Regulatory FOXD1
rs40305 3 123411589 A 0.06 0.07 0.76 0.30 0.57 14.66 6.34 Regulatory MYLK
rs61734605 11 34916657 T 0.02 0.00 0.33 012 081 23.80 6.32 Missense; Splice APIP
rs13285378 9 16671729 T 0.02 0.00 0.54 019 090 1298 6.31 Regulatory BNC2
rs9650151 8 66628852 A 0.04 0.00 0.43 0.16 0.71 20.30 6.30 Regulatory MTFR1; PDE7A
rs5913330 X 80087152 C 0.04 0.05 0.68 026  0.64 1430 6.30 Intergenic

rs4988235 2 136608646 A 0.03 0.00 0.51 0.18 0.83 14.86 6.29 Intron MCM6
rs522681 11 126021204 G 0.04 0.01 0.51 0.18 0.73 17.04 6.27 Intergenic

rs12440103 15 56036068 G 0.02 0.02 0.50 018 081 1546 6.27 Regulatory PRTG




SNP CHR POS DER_ALLELE DAF_AFR DAF_EAS+EUR DAF_GLOB DAP CADD FineMAV_EAS+EUR CONSEQUENCE GENE
rs12471312 2 72789764 G 0.04 0.88 0.46 0.82 20.90 15.02 Regulatory EXOC6B
rs1801187 X = 32380996 T 0.03 0.59 0.31 0.78 32.00 14.62 Missense DMD
rs1385699 X = 65824986 T 0.05 0.90 0.48 0.77 18.50 12.78 Missense EDA2R
rs3753841 1 103379918 A 0.05 0.66 0.35 0.70 26.50 12.19 Missense COL11A1
1s5936453 X 147943667 G 0.05 0.94 0.49 0.76 17.04 12.14 Intron AFF2
rs16957091 15 43017426 T 0.04 0.76 0.40 0.75 21.20 12.05 Synonymous CDAN1
rs344478 7 146410468 A 0.08 0.90 0.49 0.67 19.56 11.77 Intron CNTNAP2
rs35143646 X 2856155 T 0.08 0.79 0.43 0.62 23.70 11.64 Missense ARSE
rs4844074 X 147897430 A 0.06 0.91 0.48 0.74 17.19 11.57 Intron AFF2
rs10736817 11 78602525 A 0.04 0.70 0.37 0.76 21.50 11.51 Intron TENM4
rs5943149 X 110655636 G 0.09 0.99 0.54 0.64 17.74 11.36 Upstream gene Dcx
rs6637417 X 127370947 A 0.03 0.85 0.44 0.83 16.02 1131 Intergenic
rs2037044 2 177682929 A 0.02 0.62 0.32 0.87 20.80 11.30 RNA
rs5985320 X 110466936 A 0.09 0.97 0.53 0.64 18.18 11.30 3 prime UTR PAK3
rs2034721 17 53894516 T 0.07 0.83 0.45 0.67 20.20 11.22 Regulatory pPCTP
rs5921046 X 97565093 G 0.06 0.81 0.44 0.70 19.63 11.19 Intergenic
rs1596930 2 72826665 G 0.04 0.88 0.46 0.82 15.41 1115 Intron EX0C6B
rs2303223 16 31075175 A 0.02 0.64 0.33 0.87 19.99 11.14 Synonymous ZNF668
rs1343879 X 75004529 A 0.03 0.43 0.23 0.74 35.00 1112 Stop MAGEE2
rs1078540 X 110951042 c 0.06 1.00 0.53 0.74 14.98 11.08 Intron ALG13
rs4722666 7 27197601 G 0.10 0.85 0.47 0.57 22.50 10.89 Regulatory HOXA7; HOXA9
rs2249797 5 98107341 T 0.02 0.61 0.32 0.82 21.70 10.89 Regulatory RGMB
rs17671597 16 7381106 G 0.02 0.57 0.30 0.86 22.10 10.85 Regulatory RBFOX1
rs2301721 7 27196113 T 0.10 0.84 0.47 0.57 22.50 10.82 Missense; Regulatory HOXA7
rs143383 20 34025983 A 0.03 0.67 0.35 0.80 19.99 10.72 Regulatory; 5 prime UTR GDF5
rs17822931 16 48258198 T 0.01 0.46 0.24 0.88 26.50 10.67 Missense ABCC11
rs1973791 3 187416634 A 0.05 0.67 0.36 0.72 21.90 10.64 Synonymous RTP2
rs9845788 3 135914715 A 0.05 0.70 0.37 0.70 21.70 10.64 Regulatory MSL2
rs6872244 5 117489412 T 0.05 0.71 0.38 0.74 20.20 10.59 RNA
rs4788890 17 73389446 G 0.08 0.89 0.48 0.66 17.89 10.53 Regulatory GRB2
rs1126565 X = 19373839 A 0.05 0.98 0.51 0.79 13.68 10.51 Synonymous PDHA1

rs6979 16 67691668 A 0.03 0.66 0.34 0.79 20.20 1048 Missense ACD

1s2276118 11 67288594 T 0.03 0.61 0.32 0.79 21.80 10.42 Missense CABP2
rs1049205 16 4942099 T 0.03 0.59 0.31 0.76 23.30 10.39 Missense PPL
rs9428174 1 120585262 G 0.06 0.79 0.42 0.71 18.57 10.36 Intron NOTCH2
rs184502 3 168196092 A 0.04 0.76 0.40 0.78 17.43 10.35 Intron EGFEM1P
rs1352943 3 27368875 G 0.03 0.60 0.31 0.79 22.00 10.34 Regulatory NEK10
rs1576050 10 31608510 A 0.06 0.87 0.47 0.71 16.72 10.32 Regulatory ZEB1
rs1593304 7 131619847 G 0.07 0.83 0.45 0.65 19.10 10.28 RNA

- X 153629155 G 0.13 0.92 0.52 0.53 21.10 10.28 Missense RPL10
rs5921045 X = 97564948 G 0.06 0.81 0.44 0.70 18.15 10.26 Intergenic
rs2394517 6 29069299 T 0.05 0.47 0.26 0.63 35.00 10.22 Stop OR2j1
rs734312 4 6303354 A 0.03 0.69 0.36 0.80 18.60 10.21 Missense WEFS1
rs12507582 4 169369920 T 0.02 0.48 0.25 0.81 26.20 10.18 Missense DDX60L
rs1132528 5 112929013 T 0.03 0.59 0.31 0.76 22.40 10.14 Missense YTHDC2
rs269868 15 45392075 A 0.16 0.94 0.55 0.46 23.40 10.08 Missense DUOX2
rs1036739 2 158665196 G 0.06 0.86 0.46 0.73 16.10 10.05 Intron ACVR1
rs3809482 15 43661802 T 0.03 0.61 0.32 0.81 20.40 10.04 Missense ZSCAN29
rs7193955 16 48122582 A 0.11 0.84 0.47 0.54 22.20 10.03 Missense ABCC12
rs6546839 2 73680508 G 0.12 0.88 0.50 0.53 21.60 10.02 Missense ALMS1
rs642652 2 72622480 (@ 0.05 0.90 0.48 0.75 14.77 9.99 Intron EXOC6B
rs16903296 5 36721292 © 0.06 0.76 0.41 0.71 1848 9.97 Regulatory
rs12442525 15 42149506 C 0.06 0.71 0.38 0.67 21.00 9.96 Missense SPTBN5
rs11655511 17 59287269 T 0.06 0.78 0.42 0.68 18.67 9.95 Regulatory BCAS3
rs1061629 14 77926011 T 0.07 0.71 0.39 0.63 22.30 9.94 Synonymous; 5 prime UTR AHSA1
rs1332720 X 64815536 C 0.07 1.00 0.53 0.72 13.84 9.94 Regulatory MSN
rs2294504 X 109552667 T 0.02 0.60 0.31 0.88 18.82 9.93 NC transcript exon AMMECR1
rs7421376 2 217902364 G 0.02 0.54 0.28 0.86 21.40 9.91 Intergenic
rs4442810 16 65676733 T 0.02 0.57 0.29 0.85 20.60 9.89 RNA
rs2037912 16 4933939 c 0.03 0.59 0.31 0.78 21.30 9.84 Missense PPL
rs7944370 11 8105557 G 0.03 0.61 0.32 0.80 20.20 9.83 Regulatory TUB
rs3760454 17 30222002 € 0.03 0.55 0.29 0.80 22.40 9.80 Missense UTP6
rs6467654 7 136093047 A 0.03 0.62 0.32 0.82 19.19 9.77 RNA
rs10497469 2 177807577 A 0.03 0.65 0.34 0.82 18.39 9.75 Intergenic
rs2725405 17 79220224 C 0.03 0.57 0.30 0.81 21.20 9.75 Missense SLC38A10
rs2747701 6 71238105 G 0.02 0.51 0.26 0.83 22.90 9.73 Missense FAM135A
rs10790451 11 121570520 G 0.05 0.76 0.41 0.74 17.21 9.70 Intergenic
rs8082149 17 54572895 c 0.06 0.77 0.42 0.70 17.78 9.70 Intron ANKFN1
rs56103503 1 154980351 T 0.02 0.64 0.33 0.84 18.24 9.69 Intron ZBTB7B
rs12855681 X 98858596 G 0.09 0.87 0.48 0.62 17.81 9.68 Intergenic
rs238928 11 113973184 (o 0.03 0.78 0.41 0.81 15.36 9.65 Intron ZBTB16
rs24657 16 22972853 A 0.03 0.58 0.30 0.76 22.00 9.64 Intergenic
rs6494466 15 64508763 G 0.04 0.81 0.42 0.79 14.98 9.63 Missense; Splice CSNK1G1
rs1057079 1 11205058 T 0.06 0.78 0.42 0.68 18.27 9.60 Synonymous MTOR
rs2602141 15 43724646 T 0.04 0.65 0.35 0.74 19.88 9.59 Missense TP53BP1
rs7210574 17 73824121 T 0.04 0.61 0.33 0.74 21.20 9.57 Regulatory UNC13D; UNK
rs6894514 5 117901084 T 0.09 0.77 0.43 0.56 22.10 9.56 RNA
rs8068946 17 70712513 G 0.04 0.68 0.36 0.75 18.72 9.55 Regulatory SLC39A11
rs11150220 16 79848178 G 0.04 0.74 0.39 0.77 16.58 9.55 RNA LINC01228
rs2330442 7 42380071 A 0.03 0.66 0.35 0.78 18.58 9.54 Intergenic
rs3827760 2 109513601 G 0.00 0.44 0.22 0.97 22.30 9.54 Missense EDAR
rs12347057 9 126694094 T 0.11 0.79 0.45 0.54 22.30 9.53 Upstream gene DENND1A
rs5919324 X 66430640 A 0.05 0.93 0.49 0.76 13.39 9.48 Intergenic
rs224333 20 34023962 G 0.03 0.67 0.35 0.79 17.92 9.45 Regulatory GDF5
rs62173642 2 177885414 G 0.08 0.73 0.40 0.60 21.60 9.45 RNA
rs11665349 18 67601981 c 0.15 0.98 0.56 0.49 19.56 9.44 Intron CD226
rs9930441 16 79862805 T 0.03 0.64 0.34 0.77 19.26 9.42 RNA LINC01228
rs10499928 7 96384778 G 0.04 0.60 0.32 0.74 21.20 9.41 Intergenic
rs1448335 X = 20875921 G 0.07 0.80 0.43 0.66 17.83 9.38 Regulatory
rs1735679 10 31786137 A 0.06 0.88 0.47 0.71 15.15 9.38 Intron ZEB1
rs3747579 16 4445327 T 0.12 0.75 0.43 0.48 25.90 9.36 Missense CORO7
rs12917189 15 43023482 T 0.05 0.77 0.41 0.74 16.37 9.35 Missense CDAN1
rs4888047 16 79826489 G 0.04 0.70 0.37 0.77 17.18 9.31 RNA LINC01229
rs4891384 18 67624554 C 0.11 0.98 0.54 0.59 16.09 9.29 Regulatory CD226
rs4850759 2 197952851 G 0.03 0.74 0.39 0.81 15.55 9.28 Intron ANKRD44
rs11559290 4 159601676 T 0.15 0.92 0.53 0.48 20.90 9.27 Missense; Splice ETFDH
rs1005502 8 117167843 T 0.03 0.59 0.31 0.79 19.88 9.26 RNA LINC00536
rs2292249 12 83252600 G 0.03 0.59 0.31 0.78 20.10 9.26 Intron T™MTC2
rs10786871 10 107319562 C 0.05 0.67 0.36 0.71 19.39 9.25 Intergenic
rs12849919 X 139115671 A 0.07 0.79 0.43 0.65 17.91 978 Downstream gene HNRNPA3P3
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SNP CHR POS DER_ALLELE DAF_AFR DAF AMR DAF_EAS DAF _EUR DAF_GLOB DAP CADD FineMAV_AMR CONSEQUENCE GENE
rs34890031 7 133884081 A 0.00 0.77 0.04 0.00 0.20 0.86 32.00 21.32 Missense LRGUK
rs61750329 1 11585308 T 0.00 0.70 0.01 0.02 0.18 0.89 24.90 15.65 Missense PTCHD2
rs142326775 10 31134425 T 0.00 0.45 0.00 0.00 0.11 0.97 35.00 15.38 Missense ZNF438
rs146573098 12 113875765 A 0.00 0.57 0.00 0.00 0.14 0.99 26.50 14.89 Missense SDSL
rs12421620 11 66276576 A 0.01 0.89 0.01 0.03 0.23 0.88 18.19 14.15 Missense DPP3
rs1871044 11 67276158 G 0.02 0.75 0.04 0.00 0.20 0.80 22.30 13.42 Regulatory PITPNM1; CDK2AP2
rs149808694 16 9811265 © 0.00 0.73 0.01 0.00 0.18 0.97 18.87 13.28 Intergenic
rs138840395 6 157264533 A 0.00 0.73 0.00 0.00 0.18 0.98 1838 EIE Regulatory ARID1B
rs142949209 7 147359632 T 0.00 0.66 0.00 0.00 0.17 0.99 19.93 12.97 Intron CNTNAP2
rs143128534 6 56332359 T 0.00 0.64 0.00 0.00 0.16 1.00 19.83 12.62 Intron DST
rs4924468 15 40729596 © 0.00 0.57 0.00 0.00 0.14 0.98 22.30 12.37 Up- Downstream gene BAHD1; IVD
rs149320184 7 147375822 C 0.00 0.64 0.00 0.00 0.16 1.00 19.17 12.20 Intron CNTNAP2
rs145495982 7 147379361 G 0.00 0.64 0.00 0.00 0.16 1.00 18.95 12.06 Intron CNTNAP2
rs1574103 11 67057599 T 0.00 0.77 0.03 0.00 0.20 0.86 18.03 11.98 Regulatory; Synonymous ANKRD13D
rs35545453 3 69031963 © 0.00 0.57 0.01 0.01 0.15 0.92 22.90 1191 Missense; Splice EOGT
rs146181399 7 147371437 A 0.00 0.64 0.00 0.00 0.16 1.00 18.55 11.81 Intron CNTNAP2
rs17739774 14 47770258 T 0.00 0.82 0.00 0.06 0.22 0.81 17.84 11.80 Intron MDGA2
rs150664883 18 35146206 A 0.00 0.70 0.02 0.05 0.19 0.74 2240 11.69 Regulatory CELF4
rs17819664 15 57221167 T 0.00 0.66 0.00 0.02 0.17 0.89 19.68 11.60 Regulatory TCF12
rs79317492 15 57537491 C 0.00 0.66 0.00 0.02 0.17 0.89 19.40 11.43 Regulatory TCF12
rs9548505 13 39422624 T 0.13 0.70 0.00 0.08 0.23 0.46 35.00 11.43 Missense FREM2
rs12441769 15 57116557 T 0.00 0.66 0.00 0.02 0.17 0.90 19.13 11.38 Intron ZNF280D
rs145088108 1 32740366 A 0.00 0.61 0.01 0.00 0.16 0.92 19.99 11.33 Missense LCK
rs74431877 1 = 32193049 A 0.00 0.66 0.01 0.00 0.17 0.95 17.74 11.16 Missense ADGRB2
rs74719094 14 96768380 G 0.00 0.52 0.01 0.00 0.13 0.92 23.10 11.14 Missense ATG2B
rs77499580 12 98578714 A 0.00 0.61 0.00 0.00 0.15 0.98 18.57 11.11 RNA
rs138670348 7 147375810 © 0.00 0.64 0.00 0.00 0.16 1.00 17.34 11.04 Intron CNTNAP2
rs117867971 3 60269689 C 0.00 0.61 0.01 0.00 0.16 0.93 19.24 11.02 Intron FHIT
rs62621285 11 130058437 A 0.00 0.57 0.00 0.03 0.15 0.82 23.60 11.02 Missense ST14
rs61740840 9 124794020 T 0.00 0.57 0.01 0.02 0.15 0.84 22.90 10.98 Missense TTLL11
rs79256594 3 89177432 T 0.01 0.80 0.05 0.02 0.22 0.77 17.95 10.95 Intron EPHA3
rs140151892 12 49214015 G 0.00 0.59 0.02 0.00 0.15 0.88 20.90 10.91 NC transcript exon CACNB3
rs12474958 2 163150282 G 0.00 0.61 0.00 0.01 0.16 0.93 19.09 10.90 Regulatory IFIH1
rs143040189 12 110937404 C 0.00 0.52 0.00 0.00 0.13 0.97 21.30 10.85 Intron VPS29
rs141137978 7 147379526 © 0.00 0.64 0.00 0.00 0.16 1.00 16.79 10.69 Intron CNTNAP2
rs2293766 7 100371358 A 0.02 0.80 0.48 0.00 0.32 0.29 47.00 10.66 Stop ZAN
rs117487309 22 41195082 A 0.01 0.77 0.01 0.01 0.20 0.90 15.24 10.55 Synonymous SLC25A17
rs12422382 12 116131292 T 0.00 0.52 0.00 0.00 0.13 0.97 20.60 10.49 Intergenic
rs78262741 9 4290185 A 0.00 0.52 0.00 0.00 0.13 0.98 20.50 10.45 Regulatory GLIS3
rs189645263 11 33278862 G 0.00 0.48 0.00 0.00 0.12 0.98 22.10 10.36 Regulatory HIPK3
rs12478730 2 163150279 © 0.00 0.61 0.00 0.01 0.16 0.93 17.95 10.25 Regulatory IFIH1
rs6130686 20 43371253 T 0.00 0.52 0.02 0.00 0.14 0.88 22.10 10.20 Intron KCNK15
rs144851788 18 50510228 © 0.01 0.52 0.00 0.00 0.13 0.94 20.60 10.10 Intron bcc
rs41307728 1 229594003 T 0.02 0.43 0.00 0.01 0.11 0.85 27.60 10.09 Missense NUP133
rs12540617 7 100815816 T 0.00 0.84 0.02 0.02 0.22 0.87 13.69 10.06 Synonymous NAT16
rs145924266 3 138665815 T 0.04 0.75 0.03 0.00 0.21 0.76 17.66 10.05 Regulatory; 5 prime UTR FOXL2
rs75681209 15 57451085 G 0.00 0.64 0.00 0.02 0.17 0.88 17.95 10.04 Regulatory TCF12
rs79140822 1 98298087 G 0.00 0.73 0.03 0.00 0.19 0.87 15.78 10.03 Regulatory DPYD
rs142443364 3 138660894 T 0.01 0.75 0.02 0.00 0.19 0.89 14.98 10.02 RNA LINC01391
rs148564531 7 147382260 G 0.00 0.64 0.00 0.00 0.16 1.00 15.75 10.02 Intron CNTNAP2
rs114571119 3 138657902 A 0.04 0.73 0.02 0.00 0.20 0.78 17.49 9.98 RNA LINC01391
rs138576967 6 157270044 A 0.00 0.75 0.00 0.00 0.19 0.98 13.48 9.94 Regulatory ARID1B
rs2066494 11 67165015 © 0.06 0.77 0.03 0.01 0.22 0.69 18.55 9.88 Synonymous RAD9A
rs147339364 12 98446787 C 0.00 0.68 0.03 0.00 0.18 0.87 16.59 9.83 intergenic
rs75828095 6 56512199 G 0.00 0.61 0.01 0.00 0.16 0.95 16.80 9.78 Regulatory DST
rs145602591 1 32126672 T 0.00 0.57 0.02 0.00 0.15 0.87 19.80 9.77 Missense COL16A1
rs116131136 7 100807230 T 0.00 0.48 0.01 0.00 0.12 0.92 22.10 9.71 Missense; Regulatory VGF
rs1055280 7 135661990 T 0.00 0.50 0.01 0.00 0.13 0.89 21.80 9.68 Regulatory; 5 prime UTR MTPN
rs117415954 12 98446717 © 0.00 0.68 0.03 0.00 0.18 0.87 16.31 9.66 Intergenic
rs147152654 4 71724337 T 0.00 0.52 0.00 0.00 0.13 0.98 18.87 9.63 Intergenic
rs188337800 7 132117258 © 0.00 0.45 0.00 0.00 0.11 1.00 21.10 650 Regulatory PLXNA4
rs16940118 12 109754567 T 0.00 0.84 0.00 0.00 0.21 0.99 1147 9.57 Intergenic
rs147302393 21 34925304 G 0.00 0.41 0.00 0.00 0.10 1.00 23.30 9.53 Missense; Regulatory SON
rs73009507 19 10961024 G 0.00 0.50 0.00 0.04 0.14 0.78 24.30 9.46 Missense C19orf38
rs35047625 22 32000930 T 0.00 0.41 0.05 0.00 0.12 0.70 33.00 9.39 Missense; Splice SFI1
rs76326377 3 28652325 G 0.00 0.73 0.08 0.05 0.22 0.61 21.20 9.38 Intron RBMS3
rs79250477 15 57436183 A 0.00 0.66 0.00 0.02 0.17 0.89 15.81 9.32 Intron TCF12
rs2019884 12 98481159 C 0.00 0.68 0.04 0.00 0.18 0.83 16.48 9.31 Intergenic
rs16934463 10 33713572 G 0.00 0.48 0.01 0.00 0.12 0.89 21.90 9.31 Intergenic
rs12440729 15 57497961 A 0.00 0.66 0.00 0.02 0.17 0.89 15.73 9.27 Intron TCF12
rs145682935 1 53125880 G 0.00 0.66 0.00 0.00 0.17 0.99 14.21 25 Intron FAM159A
rs145384767 7 147417499 C 0.00 0.61 0.00 0.00 0.15 1.00 15.05 9.23 Intron CNTNAP2
rs17800083 3 70784519 T 0.00 0.57 0.00 0.01 0.15 092 17.61 GRA] Intergenic
rs150384670 3 89975292 G 0.00 0.43 0.00 0.00 0.11 0.98 21.60 9.18 Intergenic
rs140696197 5 81153904 © 0.00 0.64 0.01 0.00 0.16 0.93 1531 9.08 Intergenic
rs148257703 10 31441807 G 0.00 0.43 0.00 0.00 0.11 1.00 21.00 9.07 Intergenic
rs11083711 19 44001379 © 0.02 0.68 0.09 0.05 0.21 0.54 24.80 9.06 Missense PHLDB3
rs4788114 16 28995145 T 0.01 0.57 0.00 0.06 0.16 0.71 22.50 9.04 Synonymous SPNS1
rs139787913 11 111601686 A 0.00 0.50 0.01 0.00 0.13 0.93 19.54 9.04 Regulatory PPP2R1B
rs149326963 1 54863067 T 0.00 0.50 0.00 0.02 0.13 091 19.87 9.01 Intron SSBP3

rs961269 12 109915143 A 0.00 0.48 0.00 0.00 0.12 1.00 18.86 9.00 Regulatory; 5 prime UTR  KCTD10; UBE3B
rs78662103 10 61142860 T 0.03 0.75 0.04 0.01 0.21 0.74 16.07 8.98 Intergenic
rs185677681 1 176354064 G 0.00 0.50 0.00 0.00 0.13 1.00 17.91 8.96 Intergenic

rs10509182 10 64760466 © 0.00 0.59 0.05 0.00 0.16 0.78 19.41 8.95 Intergenic
rs138004015 12 31653216 T 0.00 0.61 0.01 0.00 0.16 0.93 15.71 8.94 Intron DENND5B
rs3735695 7 100452239 T 0.00 0.70 0.05 0.00 0.19 0.80 15.81 8.93 Splice SLC12A9
rs2287541 12 14664250 G 0.01 0.52 0.01 0.05 0.15 0.68 25.00 8.87 Missense PLBD1
rs4537942 14 24901824 T 0.01 0.73 0.01 0.04 0.20 0.80 15.11 8.84 Splice KHNYN
rs1816322 15 57330511 G 0.00 0.66 0.00 0.02 0.17 0.89 15.00 8.84 Intron TCF12
152268883 2 163041387 G 0.01 0.82 0.18 0.01 0.25 0.53 20.50 8.83 Intron FAP
rs140164015 14 61059047 T 0.00 0.55 0.00 0.00 0.14 0.99 16.39 8.83 Intergenic

rs16880472 6 50562461 A 0.00 0.61 0.01 0.00 0.15 0.97 14.70 8.77 RNA
rs145570841 10 28409298 T 0.00 0.48 0.00 0.00 0.12 1.00 18.37 8.77 Missense MPP7
rs78180656 16 73587930 A 0.00 0.70 0.04 0.01 0.19 0.81 15.27 8.77 RNA

rs77618848 20 52277148 G 0.00 0.45 0.01 0.00 0.12 091 21.10 8.75 Regulatory

rs12032735 1 = 27757291 G 0.01 0.89 0.23 0.00 0.28 0.49 20.20 8.74 Regulatory WASF2
rs150087094 7 147375742 G 0.00 0.64 0.00 0.00 0.16 1.00 13.71 8.73 Intron CNTNAP2
rs148387576 1 170570525 T 0.01 0.73 0.05 0.00 0.20 0.79 15.15 8.71 RNA
rs147396436 10 33680982 G 0.00 0.52 0.01 0.00 0.13 0.95 17.46 8.69 Intergenic

rs4684677 3 10328453 A 0.01 0.57 0.00 0.07 0.16 0.68 22.30 8.66 i GHRL
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Appendix C

List of primary phenotyping tests

The list below specifies a standard set of phenotyping tests that were applied
to all mouse strains generated in this study. Provided here information was derived
from Wellcome Trust Sanger Institute Mouse Pipelines internal website

(mouse.internal.sanger.ac.uk).

Homozygous viability at P14
Recessive Lethal Study
Homozygous Fertility
General Observations
Weight Curves
Neurological Assessment
Grip Strength
Dysmorphology

Indirect Calorimetry
Glucose Tolerance (ip)
Auditory Brainstem Response
Body Composition (DEXA)
X-ray Imaging

Eye Morphology

Plasma Chemistry

Insulin

Haematology Terminal
Micronuclei

PBL Terminal

Heart Weight

Brain Histopathology

Eye Histopathology



232

Salmonella Challenge
Citrobacter Challenge
Cytotoxic T Cell Function
Spleen Immunophenotyping
Mesenteric Lymph Node
Bone Marrow

Anti-nuclear Antibody Assay
Epidermal Immune Composition
DSS Challenge

Influenza Challenge
Trichuris Challenge

OBCD Bone
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