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Abstract

CRISPR/Cas9 is the gene editing tool of choice in basic research and poised to become one in clinical

context. However, current studies on the topic suffer from a number of shortcomings. Mutagenesis

is often assessed using bulk methods, which means rare events go undetected, unresolved or are

discarded as potential sequencing errors. Many of the genotyping methods rely on short-range PCR,

which excludes larger structural variants. Other methods, such as FISH, do not provide basepair

resolution, making the genotype assessment imprecise. Furthermore, it is not well understood how

Cas9 delivery format influences the dynamics of indel introduction. Finally, many studies of on-target

activity were conducted in cancerous cell lines, which do not accurately model the mutagenesis of

normal cells in the therapeutic context.

In my thesis, I have investigated on-target lesions induced by Cas9 complexed with single gRNAs

and no exogenous template. I have followed the time dynamics of Cas9-induced small indels as

a function of reagent delivery methods, established an assay for quantification of Cas9-induced

genomic lesions that are not small indels ("complex lesions") and used this assay to isolate and

genotype complex lesions, many of which would be missed by standard methods. I found that DNA

breaks introduced by single guide RNAs frequently resolved into deletions extending over many

kilobases. Furthermore, lesions distal to the cut site and cross-over events were identified. Frequent

and extensive DNA damage in mitotically active cells caused by CRISPR/Cas9 editing may have

pathogenic consequences.
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Glossary

BIR break-induced replication.

BL6 Mus musculus.

CAST Mus musculus castaneus.

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats.

DDR DNA damage repair.

DSB double-stranded break.

dsDNA double-stranded DNA.

ES embryonic stem.

gRNA guide RNA.

HR homologous recombination.

IDAA Indel Detection by Amplicon Analysis.

LOH loss of heterozygosity.

MMEJ microhomology-mediated end-joining.

NAHR non-allelic homologous recombination.

NGS Next-Generation Sequencing.

NHEJ non-homologous end-joining.

NMD nonsense-mediated decay.

PAM protospacer adjacent motif.

RNP ribonucleoprotein.

SNP single-nucleotide polymorphism.

SSA single-strand annealing.

ssDNA single-stranded DNA.

SSTR single-strand template repair.

TIDE Tracking of Indels by DEcomposition.


