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Summary  

Exploring the genomic and phenotypic diversity of the Vibrio cholerae species 

Matthew James Dorman 

Vibrio cholerae is the aetiological agent of cholera, an acute diarrhoeal disease which 

is estimated to result in up to 143,000 deaths per annum. Cholera is a considerable public health 

concern because it can spread rapidly in and explosive pandemics. Current pandemic cholera 

is caused by a highly-clonal phylogenetic lineage of V. cholerae serogroup O1, which spreads 

across the globe in periodic ‘waves’. However, V. cholerae is a species rich in diversity, and 

although much is known about the population structure of the pandemic lineages, the biology 

and pathogenicity of non-pandemic and non-O1 V. cholerae has been comparatively neglected. 

In this dissertation, I have studied the biology, genome dynamics, and diversity of non-

pandemic V. cholerae, in comparison to the current pandemic lineage.  

I first present an analysis of the 1992-1998 cholera epidemic in Argentina, a country 

which had been free of pandemic cholera for nearly 100 years before 1992. I use the genome 

sequences of 490 V. cholerae from Argentina to study the micro-evolution of the pandemic 

lineage upon its introduction into a naïve population. I use these data to describe the 

progression of the Argentinian cholera epidemic using genomic epidemiology approaches, and 

to contrast this pandemic lineage to the non-epidemic V. cholerae that were present in 

Argentina at the same time as the pandemic lineage.   

I then present a study of important recent and historical V. cholerae isolates, sequenced 

to completion using long-read technologies. I describe aspects of these genomes that could 

only be resolved using closed assemblies, and present functional validations of several in silico 

observations. Having performed this forensic, manual study of a small number of genomes, I 

then extrapolate those insights into a wider context, by mapping the distribution of key genetic 

determinants of important V. cholerae phenotypes across a phylogenetic tree of 651 highly-

diverse V. cholerae. Finally, I integrate the knowledge gained in this research to make a rational 

selection of V. cholerae isolates for transcriptomic analysis, based on their phylogenetic 

position and gene content, to investigate whether differential gene expression might explain 

the stark differences between pandemic and non-pandemic V. cholerae.  

The data presented here add substantially to our understanding of the diversity of V. 

cholerae. They emphasise the stark differences in genome flux and evolution between 

pandemic and non-pandemic lineages. They also show that many of the genetic and phenotypic 

markers of epidemic and pandemic lineages are misleading, and do not describe that which 

they were originally chosen to describe.   
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SXT (SXT/R391) Sulfamethoxazole and trimethoprim resistant conjugative element 
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T1SS Type I secretion system 

T2SS Type II secretion system 

T3SS Type III secretion system 

T6SS Type VI secretion system 

TCBS Thiosulfate-citrate bile salt 

TCP Toxin co-regulated pilus 

TEM Transmission electron microscopy 

TIGR The Institute for Genomic Research 

USA United States of America 

V. cholerae Vibrio cholerae 

V. metoecus Vibrio metoecus 

WHO World Health Organisation 

WSI Wellcome Sanger Institute 

WW1 World War One 

VPI-1 Vibrio pathogenicity island 1 

VPI-2 Vibrio pathogenicity island 2 

VSP-1 Vibrio seventh pandemic island 1 

VSP-1 Vibrio seventh pandemic island 1 


