
Chapter 2

Association mapping with

high-dimensional traits

Collaboration note This chapter contains work performed in collaboration

with Dr. Oliver Stegle and Dr. John Winn for methods development, and Alexan-

dra Nica for eQTL finding in the MuTHER dataset. Oliver first established the

eQTL model used in this chapter (Stegle et al., 2008), we then expanded on this

work jointly (Stegle et al., 2010). In particular, I reimplemented and extended

the existing model to make it usable for large scale studies, applied it on various

datasets, and analysed the results. This coauthored manuscript forms the back-

bone of the chapter. Alexandra performed the eQTL calling on the MuTHER

dataset, I obtained the results presented here based on those calls. The combined

results are presented in Nica et al. (2011)

The basic principle behind association mapping with high-dimensional traits is

same as for single traits. The additional complexities arise from covariance struc-

ture between the traits or individuals, which can confound the sought signal. In

the following, we consider joint modelling of high-dimensional traits for mapping

gene expression QTLs; the same methods can straightforwardly be extended to

any high-dimensional trait.
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2.1 Expression QTLs

2.1 Expression QTLs

DNA microarray technologies allow for quantification of expression levels of thou-

sands of loci in the genome. These measurements enable exploring how a vari-

able, such as clinical phenotype, tissue type, or genetic background, affects the

transcriptional state of the sample. Recently, gene expression levels have been

studied as quantitative genetic traits, investigating the effect of genotype as the

primary variable. Studies have found and characterised large numbers of ex-

pression quantitative trait loci (eQTLs) in yeast (Brem et al., 2002) and other

organisms (Schadt et al., 2005), exploring their complexity (Brem and Kruglyak,

2005), population genetics (Spielman et al., 2007; Stranger et al., 2007) and as-

sociations with disease (Chen et al., 2008; Emilsson et al., 2008).

An important issue in such studies is additional variation in expression data

that is not due to the genetic state, as illustrated in Figure 2.1. Intracellular

fluctuations, environmental conditions, and experimental procedures are factors

that all can have a strong effect on the measured transcript levels (Brem and

Kruglyak 2005, Leek and Storey 2007, Gibson 2008, Plagnol et al. 2008) and

thereby obscure the association signal. When measured, correct estimation of the

additional variation due to these known factors allows for a more sensitive analysis

of the genetic effect. For example, in Emilsson et al. (2008), the authors reported

finding additional human eQTLs when including the known factors of age, gender,

and blood cell counts in the model. It is also standard procedure to correct for

batch effects, such as image artefacts or sample preparation differences (Balding

et al., 2003).

In practise it is not possible to measure or even be aware of all potential sources

of variation, but nevertheless it is important to account for them. Unobserved,

hidden factors, such as cell culture conditions (Pastinen et al., 2006) often have

an influence on large numbers of genes. We and others have proposed methods

to detect and correct for such effects (Leek and Storey 2007, Stegle et al. 2008,

Kang et al. 2008). These studies demonstrated the importance of accounting for

hidden factors, yielding a stronger statistical discrimination signal.

The challenge in modelling several confounding sources of variation (Fig-

ure 2.1) is to correctly estimate the contribution that is due to each one of them.
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2.1 Expression QTLs

Figure 2.1: General additive model for sources of gene expression variability.
The G × J matrix Y of measured gene expression levels of G genes from J in-
dividuals is modelled by additive contributions from components {Y(m)} and
observation noise Ψ. Here, the components capture the signal due to primary ef-
fect of the genetic state S, known factors F and hidden factors X. Some examples
of possible underlying sources of variation are given above the model boxes. The
groupings represent some standard genetic association models commonly used.

There are open questions concerning how to ensure that only spurious signal is

eliminated by methods that account for hidden factors (see for instance discus-

sion in Kang et al. (2008)), and how to deal with situations when both known

and hidden factors are present. The problem of identifying the correct causes

of the signal is even harder in the presence of additional sources of variability.

For example, when searching for epistatic or genotype-environment interactions,

the primary effects of other known factors and hidden factors also need to be

accounted for.

The key for correctly attributing expression variability is controlling the com-

plexity of the statistical models for each source of variation. For example, the

number of genotypes considered in an association scan can be enormous, and not

all of them affect the expression level of every probe. Threshold values, obtained

from likelihood ratio statistics or empirical p-value distributions, can be used to

determine the significance of individual associations, thereby avoiding overfitting

by controlling the model complexity (Lander and Botstein, 1989; Stranger et al.,

2007). Similar measures are necessary for models of other sources of variability

such as hidden factors.

In this chapter, we first present PEER (probabilistic estimation of expres-

sion residuals), a joint Bayesian framework for gene expression variability, and
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2.2 The PEER framework

VBQTL (variational Bayesian QTL mapper) is a specific configuration of this

framework that accounts for the signal from genotype, known factors, and hidden

factors (Chapter 2.2). While previous attempts have been specific to a narrow set

of underlying sources, our approach is flexible and can be adapted to a particular

study design. The probabilistic treatment allows uncertainty to be propagated

between models, and yields a posterior distribution over model parameters. Com-

plexity control is tackled at the level of individual models, where parameters are

regularised in a Bayesian manner.

We then compare the performance of VBQTL with existing approaches for

detecting expression QTLs (Chapter 2.3). A simulation experiment contrasts

VBQTL with common approaches that use non-Bayesian techniques for distin-

guishing global hidden factor effects from genetic effects. This study highlights

differences in the methodology to control model complexity with implications to

eQTL detection power. The necessity and difficulty to account for variability

that confounds the genetic signal is demonstrated. Results on datasets from a

human outbred population and crosses of inbred yeast and mouse strains show

that VBQTL identifies more significant associations than alternative methods.

Third, we apply VBQTL to perform a whole-genome eQTL scan on the

HapMap phase 2, and MuTHER expression and genotype data, demonstrating

the scalability of our framework to large numbers of samples and probes (Chap-

ter 2.4). We find up to three times more cis eQTLs than a standard association

mapping method, suggesting more extensive genetic control of gene expression

by common variants than previously shown.

Finally, we explore applications of this model not centered on eQTL find-

ing (Chapter 2.5). We consider interpreting the inferred hidden factors to un-

derstand the main gene expression variance components in different tissues and

organisms. We also combine data from different tissues to assess the advantages

of sharing information across multiple datasets for inference.

2.2 The PEER framework

Here, we present PEER, a general framework for modelling diverse sources of

gene expression variability. The model underlying this framework assumes that
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2.2 The PEER framework

gene expression levels are influenced by additive effects from independent sources,

e.g. in the case of VBQTL these are contributions from genotype, known factors,

and hidden factors (Figures 2.1, 2.2a). We cast the full model in a probabilistic

setting, treating its parameters as random variables.

We perform Bayesian inference in the joint model, which is appealing for sev-

eral reasons. First, it allows possible dependencies between the different sources

of variation to be captured. The effects of the genotype, known and hidden

factors are learned jointly, taking other parts of the model into account. Propa-

gation of uncertainty leads to more accurate parameter estimates (Rattray et al.,

2006), and avoids possible pathologies, for instance of maximum likelihood meth-

ods (MacKay, 2003). Second, Bayesian inference allows different models to be

flexibly combined according to the needs of a particular study. Many existing

approaches can be cast as special cases of this general framework, with some ex-

amples given in Figure 2.1. Finally, the Bayesian approach leads itself to efficient

approximate inference schemes such as variational methods (Jordan et al., 1999),

rendering the resulting algorithms applicable to large-scale and high-dimensional

datasets. Also, variational learning allows an inference schedule to be specified by

the user, leading to distinct algorithms with different computational complexity

and properties (Chapter 2.2.2).

In the following, we present the mathematical model of VBQTL, and an out-

line of the inference procedure. We then describe alternative non-Bayesian models

for expression QTL studies used in the experiments. An in-depth treatment of

the framework including full details about the parameter estimation is provided

in Appendix A.

2.2.1 Model

The observed gene expression matrix Y = {yg,j} for genes g ∈ {1, . . . , G} and in-

dividuals j ∈ {1, . . . , J} is modelled by the sum of contributions Y(1),Y(2), ...,Y(M)

from M sources (in the VBQTL model, these include genotype, known and hidden

factor effects), and Gaussian noise with precisions τg for each gene g

P (yg,j | y(1)
g,j , y

(2)
g,j , ..., y

(M)
g,j , τg) = N(yg,j | y(1)

g,j + y
(2)
g,j + ...+ y

(M)
g,j ,

1

τg
), (2.1)
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2.2 The PEER framework

(b) (c)

(d) (e)(a) Bayesian network of VBQTL

Figure 2.2: Bayesian network and outline of the inference schedule for VBQTL.
(a) The Bayesian network for the model of gene expression variation used in
VBQTL. The full model combines genetic (green), known factor (blue) and hidden
factor (red) models to explain the observed gene expression levels Y. The solid
rectangles indicate that contained variables are duplicated for each gene probe
(g), SNP (n) or factor (c, k) respectively. A similar rectangle for individuals (j) is
omitted in this representation. The dashed rectangle indicates that the variable
bn,g switches the contained part of the graph on or off representing the existence or
lack of an association. Nodes with thick outlines (sn,j, fc,j and yg,j) are observed.
(b)-(e) Update cycle of the known factors model introduced in section Inference.
The red outline highlights the parts of the model that change in a step, and the
thick blue arrows illustrate the flow of information. Details of these updates are
discussed in the text.
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2.2 The PEER framework

with a gamma prior on the noise precisions P (τg) = Γ(τg | aτ , bτ ) (Figure 2.2a).

The Y(i) comprise the contribution of individual sources to the variability in the

observed expression levels, and are themselves treated as random variables with

different underlying models. In the VBQTL model used throughout the rest of

the chapter, three different models for sources of variability are used:

1) Genotype effect model represents the probabilistic variant of the stan-

dard genetic association model, where some of the SNP genotypes have a linear

effect on gene expression levels. The genetic component of the expression level

y
(1)
g,j of the gth gene probe in the jth individual is explained by linear effects of

the genotypes of N SNPs sj = {s1,j, . . . , sN,j} (Figure 2.2a, green plate):

P (y
(1)
g,j | sj,bg,ug, τg) = N(y

(1)
g,j |

N∑
n=1

bn,g · (un,gsn,j) ,
1

τg
) (2.2)

P (bn,g) = Bernoulli(bn,g | pass) (2.3)

P (un,g) = N(un,g | 0, 1). (2.4)

The weights ug = {u1,g, . . . , uN,g} control the magnitude of the effect of the SNP

on the expression levels of genes g. The binary variables bg = {b1,g, . . . , bN,g}
determine whether the SNP effect is significant (bn,g = true) or not (bn,g = false).

The prior probability pass of an individual association controls the complexity of

the model by influencing the a priori expected number of significant associations;

this parameter corresponds to a significance threshold in a classical setting.

To reduce the computational cost, inference in the association model is ap-

proximated, only considering a single most relevant SNP-regulator per gene, with

the other bn,g forced to 0. This bottleneck approximation ensures tractability of

the joint association model for large-scale studies, avoiding the need to track the

covariance between effects from multiple SNPs.

2) Known factor model accounts for the effect of known covariates F of

individual samples, such as environmental conditions, gender, or a population

indicator. The linear effects of C measured covariates in the jth individual,

fj = {f1,j, . . . , fC,j}, is taken into account using Bayesian regression (Figure 2.2a,
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2.2 The PEER framework

blue plate):

P (y
(2)
g,j | fj,vg, τg) = N(y

(2)
g,j |

C∑
c=1

vg,c fc,j,
1

τg
) (2.5)

P (vg,c |αc) = N(vg,c | 0,
1

αc
) (2.6)

P (αc) = Γ(αc | aα, bα). (2.7)

Here, vg = {vg,1, . . . , vg,C} is the corresponding weight vector for each gene g.

The gamma prior on the inverse variance αc for weights of each factor introduces

automatic relevance detection (ARD) (Mackay, 1995; Neal, 1996), driving the

weights of unused factors to 0 and thereby switching them off. This provides

complexity control of the model by regularising the effective number of covariates.

3) Hidden factor model accounts for the effect of hidden factors (such as

unmeasured covariates and global effects on expression levels) on the gene expres-

sion levels. We use a probabilistic variant of the classical factor analysis model for

this task. It has been shown that this model captures hidden factors better than

alternative linear models, such as probabilistic principal component analysis or

independent component analysis (Stegle et al., 2008). Similarly to known factors,

the expression level of gene g in individual j is modelled by linear effects from a

chosen number of K hidden factors xj = {x1,j, . . . ,xK,j} (Figure 2.2a, red plate).

P (y
(3)
g,j |xj,wg, τg) = N(y

(3)
g,j |

K∑
k=1

wg,k xk,j,
1

τg
) (2.8)

P (wg,k | βk) = N(wg,k | 0,
1

βk
) (2.9)

P (xk,j) = N(xk,j | 0, 1) (2.10)

P (βk) = Γ(βk | aβ, bβ). (2.11)

Note that in contrast to the known factor model, the factor activations X =

{x1, . . . ,xJ} are unobserved random variables that need to be inferred from the

expression profiles. Again, the ARD prior switches unused factors off, thereby

providing probabilistic complexity control (Stegle et al. (2008), Chapter 2.3).
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2.2 The PEER framework

2.2.2 Inference

Parameter inference in VBQTL is implemented using variational Bayesian learn-

ing (Jordan et al., 1999), a generalisation of the expectation maximisation al-

gorithm. An approximate Q-distribution over model parameters is iteratively

refined until convergence. In each iteration, approximate distributions of individ-

ual parameters are updated according to a specified schedule, taking the current

state of all other parameter distributions into account (Figure 2.2b-e). Choosing

an approximation that factorises over individual models, the variational update

equations have an intuitive interpretation:

1. The current belief of the residual dataset for a particular active model is

calculated, taking the prediction from all other models and the estimated

noise precision into account (Figure 2.2b).

2. The parameters of the active ith model are updated based on their previous

states and the new residual dataset (Figure 2.2c).

3. The distribution of the model contribution Y(i) is recalculated using the

updated parameter values. The global noise precisions τg are updated (Fig-

ure 2.2d) based on the first and second moments of all the contributions.

4. The same procedure is in turn applied to the remaining models in the

schedule (Figure 2.2e) until convergence.

This iterative procedure, performing updates of local parameter distributions

in turn, can be interpreted as a message passing algorithm, where sufficient statis-

tics of parameter and data distributions are propagated across the graphical

model (Winn and Bishop, 2006).

The initial values of parameters are determined from maximum likelihood

solutions. A random initialisation via sampling from the prior is possible as well;

we have not explored the implications of this alternative here. Details on inference

and the individual parameter update equations are given in Appendix A.

In experiments, we compare two alternative inference schedules of VBQTL. In

iterative VBQTL (iVBQTL), the parameters are learned using several iterations

through all model components, first updating the genetic model, then known
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2.2 The PEER framework

and hidden factors. An important property of iVBQTL is that hidden factors are

estimated jointly with the genetic state and known factors. This choice of schedule

and the iterative learning help to ensure that variability that is due to genetic

associations is not explained away by other parts of the model (Chapter 2.3).

In cases where neither known nor hidden factors are correlated with the ge-

netic state, their effect can be learned independently without running the risk

of explaining away meaningful association signal. This motivates fast VBQTL

(fVBQTL), which performs a single update iteration of the full model, first in-

ferring the contribution from the known and hidden factors, and then from the

genetic state. This simpler schedule can save significant computation time, since

the factor effects can be precalculated, and only a single iteration of the com-

putationally more expensive genetic association model is needed. In cases where

the genetic state is approximately orthogonal to the known and hidden factors,

this cheaper approximation performs equally with iVBQTL for finding genetic

associations (Chapter 2.3).

2.2.3 Alternatives

We compared VBQTL with previous methods that account for confounding vari-

ance in the context of expression QTL mapping. Similarly to VBQTL, they model

known and hidden factors in the expression levels. The differences between the

alternative methods are in the hidden factor model used, which in turn vary

in the complexity control approach employed as highlighted below. Thus these

alternative models are named after the hidden factor estimation method.

Standard model The classical model explains the expression variability solely

by the effects of known factors and SNP genotypes, without accounting for the

hidden factors. The model is identical to that presented in Chapter 1.4.1.

PCA Principal components analysis (PCA) can be interpreted as decomposi-

tion of the gene expression matrix Y = (y1...yN) into a product UDVT , where

U is the matrix of left singular vectors, D is a diagonal matrix of singular values

λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0, and V is the matrix of right singular vectors. To apply
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2.2 The PEER framework

PCA, we used U as the weight matrix W, and DVT as the latent factors X. For

the benchmark figures, illustrating the effect for different numbers of factors, we

limited the number of learned factors to a given number K by setting di,i = 0 for

i > K.

PCAsig PCA with significance testing (PCAsig) model is an extension of PCA,

where complexity is controlled by retaining only components that explain more

variance than expected by chance. Significance testing of PCA components in the

PCAsig model was performed analogously to SVA (Leek and Storey, 2007), but

without enforcing uniformity of the p-values. We found the variance explained

by each component i by calculating the statistic di =
λ2i∑N
j=1 λ

2
j

. We then permuted

the columns of Y L times, calculating null statistics di1, di2, ..., diL analogously.

Given a cutoff value α, component i was deemed to be significant if the fraction

of null statistics greater than di was less than α.

SVA Surrogate variable analysis (SVA) model is a further extension of PCAsig.

After applying the PCAsig model, each retained significant component is tested

for association with all the genes using a 5% FDR cutoff. For each component,

PCA is applied on the subset of genes associated with it, and the first principal

component (i.e. the mean of the gene expression values) is used as the surrogate

variable. The SVA package was downloaded from http://www.genomine.org/sva,

and applied to datasets with default parameters, using 100 permutations and

varying only the significance cutoff. The model implementation uses a Python

to R bridge provided by RPy (http://rpy.sourceforge.net), allowing to call the

original code provided by the authors.

For a quantitative evaluation of the performance of each method, we considered

the resulting residuals of the estimated effects from known and hidden factors.

To detect eQTLs we applied standard statistical tests employing a linear model

on the SNP genotype on these residual datasets (Chapter 1.4.1). For iVBQTL

and fVBQTL, we inferred the posterior parameter distributions, and subtracted

off the estimated effect of known and hidden factors. For other methods, we first

subtracted off the standard linear regression fit of the known factors, and then
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2.3 Method comparison

learned and subtracted off the hidden factor effects on the residuals. All these

alternative methods are also implemented in the general framework.

While VBQTL shares basic assumptions with these alternatives, there are

a number of differences. First, it is a probabilistic model that operates with

uncertainties in the parameter estimates as explained above. Second, the hidden

factor model allows for non-orthogonal components, and provides probabilistic

complexity control based on ARD. Third, the iVBQTL schedule takes the genetic

signal into account when estimating the hidden factor effect. Finally, the VBQTL

model estimates a global gene-specific noise level, while the non-Bayesian models

either estimate noise levels implicitly (SVA) or assume noise-free observations

(PCA, PCAsig).

2.3 Method comparison

We employed a simulated dataset to highlight the differences between alternative

approaches to account for global factors in eQTL finding.

2.3.1 Comparison on simulated data

Simulation setup

Our synthetic expression data combines linear effects from genetic associations

(eQTLs), known, hidden, and genetic global factors, and gene-specific noise (Ap-

pendix A). We used three known and seven unknown global factors whose influ-

ence varies significantly to simulate effects with a range of magnitudes. These

factors are meant to represent sources of confounding variation that are encoun-

tered in the study of the real datasets. We also introduced three global genetic

factors giving rise to trans eQTL hotspots, mimicking the action of a genetic

variant in a transcriptional regulator (e.g. transcription factor or pathway com-

ponent). Such loci have been observed in several eQTL mapping studies (Brem

et al., 2002; Schadt et al., 2005). We designated three genes with a simulated

eQTL as such regulators, and simulated correlated expression levels for 15% of the

genes for each. While the specific simulation scenario may be biased in the com-

parative performance of different methods, its underlying linear model is shared
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2.3 Method comparison

by all the considered approaches, and it gives intuition for the results on real

datasets discussed later.

Complexity control determines the accuracy of the hidden factor model.

We assessed the ability of the considered methods to recover the simulated con-

founding variability. For those approaches that do infer hidden factor effects,

we varied the corresponding complexity control parameters to investigate the in-

fluence on performance. For methods that take the number of components in

the hidden factor model as a parameter (PCA, VBQTL), performance for one

to 50 hidden factors was compared. For significance-testing based methods, we

considered different significance cutoffs α in the range [0.01, 0.5].

iVBQTL correctly captured the non-genetic global factor effects (Figure 2.3a),

as it is the only method that models the genetic signal when learning hidden

factors. All other methods treat the simulated transcription factor contributions

as confounding variation and explain them away. This can be a desired effect

when the genetic signal is not of primary interest, or a serious shortcoming when

downstream eQTLs are sought.

Complexity control settings determined the performance of capturing the sim-

ulated global effects on expression levels. PCA was most accurate when the

number of hidden factors was set to 10, since seven hidden factors and three

transcription factors were simulated. For larger number of components PCA

overfitted, and started explaining away genetic signal, resulting in the increase

in error. For a small number of components, transcription factor effects were

explained away first, which increased the error in estimating the hidden factors

alone. However, the estimates of the total global effects improved. PCAsig and

SVA found 6 and 7 significant hidden factors for the wide range of significance

cutoffs, α ∈ [0.01, 0.5], respectively. They failed to detect some of the weaker

hidden effects that continued to mask the genetic signal, and underfitted the

data. Their performance was similar to PCA with the matching number of com-

ponents. While the significance-testing based complexity control prevents these

approaches from overfitting, only a single outcome is observed for a wide range

of parameter settings, with the models settling to a rigid suboptimal solution.
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2.3 Method comparison

(a) Non-genetic global factor effect 
estimation error

(b) Total global factor effect estimation error

(c) Immediate (cis) eQTLs (d) Downstream (trans) eQTLs

Figure 2.3: Sensitivity of recovering simulated hidden factor effects and eQTLs
for Bayesian and non-Bayesian methods. (a) Mean-squared error in estimating
only the hidden factor contribution. Methods that do not explicitly retain the
genetic factors explain them away as hidden global factors, resulting in high error
comparable to not accounting for hidden factors at all (Standard). (b) Mean-
squared error in estimating the contribution from hidden and genetic factors.
(c) Sensitivity of recovering immediate SNP associations. (d) Sensitivity of re-
covering downstream associations. Seven hidden factors and three transcription
factor effects were simulated. For eQTL sensitivity, standard eQTL finding on
simulated data (Standard) and same data without the hidden effects (Ideal) are
included as comparisons. PCAsig and SVA identified a constant number of hidden
components (marked with a diamond shape), thus only a single result (dashed
line) is given.
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2.3 Method comparison

fVBQTL achieved the most accurate estimation of global variation. Notably, un-

like PCA, its performance did not degrade for large numbers of hidden factors in

the model, exhibiting good complexity control in this scenario.

Hidden factor effect estimation accuracy is mirrored in eQTL finding

sensitivity.

We determined the sensitivity and specificity of the considered methods for de-

tecting the immediate and downstream simulated genetic associations. The sig-

nificance of an eQTL was tested using a two-sided t test on the correlation coeffi-

cient with a 0.1% Bonferroni corrected per-gene false positive rate in the genetic

association model. The results when calling eQTLs using regression on ranks,

or permutations to establish the empirical null distribution of LOD scores were

almost identical. As a benchmark, the comparison includes eQTL finding using

the standard method on both raw expression data (Standard), and an ideal case,

where the simulated hidden factor effects are removed, but the simulated genetic

factors maintained (Ideal).

The accuracy of the hidden factor effect estimation mirrored the immedi-

ate eQTL finding sensitivity (Figure 2.3c). The specificity was consistent with

the chosen false positive rate for all methods (data not shown). fVBQTL and

iVBQTL recovered more true cis eQTLs compared to other methods, approach-

ing the performance of the ideal case, mirroring the accuracy of estimating hidden

factor effects. PCA overfitted when the number of components used was greater

than the true number of ten simulated global factors, explaining away genetic sig-

nal. While the PCA error for detecting global effects increased only marginally,

the decrease in sensitivity for identifying eQTLs was severe. The overfitting in

case of PCA, and underfitting in case of PCAsig and SVA both resulted in a loss

of sensitivity to find the simulated cis associations. fVBQTL and iVBQTL did

not suffer from either deficiency, capturing nearly all the associations possible in

the ideal case.

All methods except iVBQTL and standard method explained away simulated

trans eQTL hotspots (Figure 2.3d). This is due to the global factor effect es-

timation accuracy, where iVBQTL alone refrained from explaining the hotspots

away as a global factor. The standard method found nearly all the original
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2.3 Method comparison

trans associations, actually outperforming methods that explain away confound-

ing variability. Thus, in cases where there is true genetic signal with widespread

downstream effects, its contribution needs to be taken into account to retain

its relation to genotype, and avoid attributing it to a confounding global cause.

This is straightforward in our framework, and is demonstrated by the good per-

formance of iVBQTL in this scenario. iVBQTL retained the original associations,

while explaining away non-genetic causes of expression variability, thus adding

power to detect the weaker, masked eQTLs. This effect is also observed in the

study of crosses of inbred strains below.

Taken together these results suggest that it is important to account for the

confounding sources of variation in expression levels, while keeping the signal

of the genetic state. Correct complexity control is required to avoid over- and

underfitting in order to achieve optimal sensitivity for detecting true genetic as-

sociations.

2.3.2 Comparison on real data

Next, we compared the same methods for expression QTL finding on yeast (Brem

and Kruglyak, 2005), mouse (Schadt et al., 2005), and human (Stranger et al.,

2007) datasets. These represent common study designs of an outbred population

(human), and a population of crosses between inbred strains (yeast, mouse). We

considered 5, 15, 30, and 60 hidden factors for PCA and VBQTL, and 0.01, 0.1,

and 0.3 as significance cutoffs for SVA and PCAsig. Expression QTLs were

detected using a two-sided t test analogously to the simulation scenario. Again,

results for alternative genetic association tests were similar (data not shown).

Accounting for hidden factors helps to detect additional cis eQTLs in

an outbred population

We applied the considered methods on the genotype and expression data from 90

individuals of the CEU (CEPH from Utah) HapMap phase 2 samples (Stranger

et al., 2007; The International HapMap Consortium, 2005). The data consisted of

genotypes of 55,000 SNPs and expression levels of 618 probes from chromosome

19 (results for three more chromosomes were similar, data not shown). The

48



2.3 Method comparison

Figure 2.4: Number of probes with an eQTL found as a function of maximum
number of hidden factors for three previously published datasets. Significance-
testing based methods (PCAsig, SVA) identified the same number of factors for
a wide range of cutoff values (α ∈ [0.01, 0.3]), thus only a single count is given
(dashed lines), together with the number of factors found (diamond shape). Other
methods were applied with a maximum number of 5, 15, 30 and 60 hidden factors.
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expression levels were measured in EBV-transformed lymphoblastoid cell lines of

healthy individuals. The gender covariate was included as a known factor for all

methods. We did not consider probes with overlapping SNPs. Following Stranger

et al. (2007), an association was called to be in cis when the SNP was within

1Mb from the probe midpoint and in trans otherwise.

The standard method found the least gene probes with a cis association (20,

Figure 2.4c), suggesting that strong confounding sources of variation are present

in this dataset. The number of identified probes with a trans association was not

significantly higher than expected by chance at the chosen FPR, which is in line

with previous results (Stranger et al., 2007), and suggests little intrachromosomal

trans regulation.

PCA, the simplest method for accounting for hidden factors, found additional

associations when up to 30 principal components were used, but substantially

fewer for 60 components. This is expected, since there are no more than 90

degrees of freedom in this dataset, and 60 principal components accounted for

over 94% of the variance (Table B.6), and hence PCA is likely to explain away

part of the genetic association signal for large numbers of components.

The significance-testing based methods, SVA and PCAsig both found ad-

ditional associations compared to the standard method. It is remarkable that

both found a constant number of significant hidden factors for the wide range

α ∈ {0.01, 0.1, 0.3} of significance cutoffs considered, again exhibiting rigid com-

plexity control. The performance of SVA with the 12 hidden factors found is

close to performance of PCA with 15 components (both find 38 probes with an

association). Similarly, PCAsig with the 7 significant components performs com-

parably to PCA with 5 components (37 vs. 35 probes with an association). This

shows the intrinsic similarity of these methods to PCA, as was also observed in

the simulation scenario.

fVBQTL and iVBQTL found more probes with an association (55 and 54)

than all other methods, representing an almost threefold increase in the number

of genes with a cis eQTL. Complexity control assured that the performance sat-

urated for large enough number of factors and did not degrade as for PCA. None

of the estimated hidden factors was significantly correlated to a SNP genotype,
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suggesting that individual genetic variants do not have global effects on many

gene expression levels in this dataset.

It is important to note that the model performance depends on two aspects.

First, the model complexity control, regulating the amount of variance explained,

is important to ensure that genetic signal is not attributed to hidden factors.

Overfitting in case of PCA for a large number of components is an example of

such an effect. Second, while alternative hidden factor models explained simi-

lar amounts of variance, their performance differed due to the underlying model.

For example, PCA and fVBQTL both explained about 70% of variance in the

observed expression levels (Table B.6) yet fVBQTL identified additional asso-

ciations. These findings are consistent with the simulation study results, and

suggest that the additional associations found with Bayesian models are due to

differences in the underlying model and complexity control.

Accounting for hidden factors adds power to detect cis associations in

crosses between inbred mouse and yeast strains.

Next, we applied the methods to two datasets of inbred strain crosses. The yeast

expression dataset (Brem and Kruglyak, 2005) (GEO (Barrett et al., 2009) ac-

cession GSE1990 with genotypes provided by authors) contained 7084 expression

measurements and 2925 genotyped loci in 112 crosses of segregating yeast strains.

The mouse expression data consisted of 23,698 expression measurements for 111

F2 mouse lines, and genotypes at 137 genetic markers. An association was called

to be in cis if the probe and the genotyped locus were from the same chromosome,

and in trans otherwise.

The relative performance of different methods was similar to their ability to

detect cis eQTLs in the outbred population dataset (Figures 2.4a, 2.4b). The

absolute performance gain was significantly lower for all methods, however. This

finding suggests that the genetic signal is stronger compared to confounding

sources of variation, which is not unexpected from the study design. All fac-

tor methods identified additional associations compared to the standard method.

PCA overfitted for larger numbers of principal components used, explaining away

genetic association signal. SVA and PCAsig found the same number of signifi-

cant hidden factors for a range of significance cutoffs considered, exhibiting little
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flexibility. Again, their performance was similar to extrapolation of PCA results

with matching numbers of effective components. fVBQTL and iVBQTL found

additional genetic associations in cis compared to the standard model and other

methods for accounting for confounding variance, as observed in simulations and

human dataset. Summary statistics for the method performance can be found in

tables B.6 to B.8.

Iterative learning with iVBQTL overcomes difficulties in detecting

trans associations for crosses of inbred strains.

All methods found additional trans associations in mouse, but fewer than the

standard method in yeast (Figure 2.4d, 2.4e). In yeast, the more variance was

explained by the hidden factors, the fewer trans eQTLs were found, suggesting

that the global determinants of gene expression variation were correlated with

the genetic state. Indeed, the inferred hidden factor levels were correlated with

genotypes of “pivotal loci” that are associated with expression levels of hundreds

of genes.

The effect of pivotal loci has been observed before, and interpreted in different

ways (Kang et al., 2008; Leek and Storey, 2007). It could be that the additional

variation is artefactual, and correlated to the genetic state by chance. In this

case, all the original trans associations are spurious. The alternative explanation

is that the genotype of these loci have real downstream effects on the expression

profiles of very many genes. In this case the variance is not confounding the

genetic signal, but in fact is a part of it, and hence should not be explained away.

Previous methods do not provide consistent ways of dealing with this issue.

The SVA authors also suggest to remove the effect of the primary variable first.

However, the authors do not consider accounting for the genetic effect in their

application to the same yeast dataset (Leek and Storey, 2007). Kang et al. (2008)

also explain away trans associations when applying their correction procedure.

We provide a principled approach for dealing with this situation and show its

merit. The iVBQTL scheduling takes the genetic state into account while learning

the hidden factors, and as a consequence is more sensitive to genetic associations.

52



2.4 Expression QTL mapping in large human populations

2.4 Expression QTL mapping in large human

populations

After confirming that our method works on simulated data, and comparing per-

formance on different small scale real datasets, we analysed several human large

scale expression datasets in depth.

2.4.1 HapMap phase 2 dataset.

Motivated by the results of the initial study of a single human chromosome,

we applied fVBQTL, learning 30 hidden factors, to the 10,000 most variable

expression probes of the HapMap 2 dataset. We searched for cis eQTLs in the

original expression data (standard eQTLs) as well as the residuals of fVBQTL

(VBeQTLs), using a 2-tailed t test with 0.1% Bonferroni-corrected per-gene FPR

to assess the significance of association.

VBQTL increases power threefold

On the CEU population, we found 1051 genes with a VBeQTL at false discovery

rate (FDR) of 0.9%, and 382 genes with a standard eQTL at FDR of 2.6% (Fig-

ure 2.5). This result corresponds to nearly a threefold increase in the number of

genes with an association, and is consistent across chromosomes. A similar in-

crease in the number of associations was found for other populations (Table B.1).

We repeated this genome-wide experiment on pooled populations. Due to the

increased sample size, it was possible to detect additional associations. We found

2696 genes with a VBeQTL compared to 1045 genes with a standard eQTL at the

0.1% FPR (Figure 2.6a). The VBeQTLs in the pooled sample cover 27% of all the

considered probes, suggesting that the number of human genes whose expression

levels are affected by common cis-acting genetic variation may be significantly

higher than previously shown (Stranger et al., 2007; Williams et al., 2007). This

additional abundance of associations suggests that detection of cis eQTLs has

not been saturated and larger sample sizes may lead to evidence of even more

extensive cis regulation by common polymorphisms.
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2.4 Expression QTL mapping in large human populations

Figure 2.5: Fraction of tested genes with a cis association in individual chromo-
somes for the HapMap CEU population (FPR=0.1%).

Exploratory results indicate additional power to find trans eQTLs without

explaining away eQTL hotspots (Table B.4). These should be interpreted with

caution due to very stringent requirements for multiple testing correction, how-

ever.

Additional associations are due to increased sensitivity.

It is important to demonstrate that the additional associations found after re-

moving the learned non-genetic factors are biologically meaningful. We provide

evidence that the additional associations found in HapMap phase 2 data are real

in three ways.

First, we investigated how many of the genes with a VBeQTL in each of

the three populations individually were replicated using the standard method

on a pooled data set containing all populations. Note that this will only vali-

date weak associations that occur in multiple populations – we would not expect

weak population-specific associations to be replicated in the pooled data set.

However, we expect many of the associations to be replicated in multiple popu-

lations (Stranger et al., 2007). A total of 63% of all and 46% of the additional
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Figure 2.6: Validation of VBQTLs by comparison to standard eQTLs.
(a,b,d,e) Venn diagrams depicting overlap of probes with a standard eQTL or
VBeQTL in the CEU population and probes with an eQTL in other populations.
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associations found in the CEU population were recovered using the standard

method in the pooled population (Figure 2.6b). The remaining additional associ-

ations may be explained by even weaker signals that were recovered by applying

fVBQTL, or as population-specific effects that do not stand out in the pooled

sample. Analogous overlaps were found when excluding the CEU population

from the pooled analysis (Table B.3).

Second, we evaluated to what extent the additional genes with a VBeQTL in a

single population were replicated in other populations. For instance, 56% of genes

with a CEU VBeQTL were replicated on the YRI population (Figure 2.6d), and

68% on the CHB+JPT population (Figure 2.6e). These overlaps are consistent

with overlaps of standard eQTLs, and are similar for other populations (Ta-

ble B.2), and alternative methods accounting for hidden factors.

Finally, we validated that the locations of the novel associations are dis-

tributed similarly to the original ones. We analysed the distribution of the posi-

tion of additional cis associations around the gene start along with the association

LOD scores. The additional VBeQTLs have very similar characteristics to the

standard eQTLs, being concentrated around the gene start (Figure 2.6c, 2.6f), in

line with results from Stranger et al. (2007).

2.4.2 The MuTHER study

The MuTHER (Multiple Tissue Human Expression Resource) project is a large

scale collaboration that seeks to understand genotype, gene expression, methyla-

tion, and disease phenotype variation (Nica et al., 2011). Over 800 individuals (a

mixture of monozygotic and dizygotic twins from the TwinsUK cohort (Spector

and Williams, 2006)) have donated blood, fat, skin, and in some cases muscle,

samples to the project. In the following, I will discuss some of the analysis aspects

of the pilot gene expression data. These data include gene expression measure-

ments from fat, skin, and LCLs for about 160 individuals and 27,000 probes.

We sought to find expression QTLs in multiple tissues by applying the Bayesian

factor analysis model of PEER to the tissue gene expression data.
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Fitting hyperparameters to maximise consistency

In the studies of HapMap samples, we varied the number of latent factors as the

only free parameter. Here, we also varied the ARD hyperprior, as well as noise

prior, to sensitively adjust how much gene expression variability is explained by

the hidden factors.

The parameters of the inverse variance prior have a natural interpretation

in the context of exponential family models. The conjugate prior is Γ(a0, b0)

distributed, where a0 and b0 correspond to the sum and effective number of prior

observations, respectively (Davison, 2003). We varied the prior mean a0
b0

from

10−6 to 10−2, and the number of observations b0 from 10−3N to N (where N is

the number of observations in data) for both weight and noise precision prior,

and learned 120 latent factors.

To choose the best parameter settings, we used the fraction of overlap be-

tween eQTLs found in co-twins as the objective function to optimise. The study

cohort has a natural structure of paired twins. We called eQTL sets Q1 and Q2

(Alexandra Nica, require 10−3 nominal Spearman Rank Correlation p-value) in

the sets of “first” and “second” twins in a twin pair, and calculated the Jaccard

index J(Q1, Q2) = |Q1∩Q2|
|Q1∪Q2| between them, as well as the fraction of residual vari-

ance remaining for each parameter setting after subtracting off the factor analysis

model contribution.

We found a broad peak of parameter settings that produced a similar fraction

of variance explained and eQTL overlap (Figure 2.7a). This confirms that the

method is robust to a wide range of parameter settings, spanning many orders

of magnitude. Furthermore, the overlap of eQTLs between co-twins was a very

good predictor of total findings (Figure 2.7b), motivating the choice of highest

overlap fraction from another angle.

Many more QTLs are found

We found many eQTLs in the three tissues (Figure 2.7c). The properties and

overlaps of these are discussed in other work (Nica et al., 2011). The relatively

low number of discoveries in skin is likely due to poorer quality RNA. There is

no relation between the overall expression level or the weight of RNA integrity
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Figure 2.7: eQTL finding results on the MuTHER dataset. (a) Overlap of co-twin
eQTLs as a function of variance explained by the factor analysis model (b) Cor-
relation of co-twin eQTL overlap and total number of discoveries (c) Total num-
ber of discovered eQTLs in the three tissues with standard model and VBQTL
(LOD>5) (d) Difference in number of discoveries between standard model and
VBQTL as a function of significance cutoff.
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number (RIN) on the expression level in a linear model and the frequency of eQTL

discovery. In addition, we could interpret some of the broad variance components

in the skin and fat tissue (Chapter 2.5 below).

As an additional quality control, we tested whether VBQTL increases discov-

eries at all significance cutoffs. If a lot of discoveries are made at lenient cutoffs,

it would indicate a large fraction of likely false positives, and problems with the

model. However, we found that VBQTL finds additional eQTLs only at relatively

high cutoffs (− log10 p > 5, Figure 2.7d), confirming that our approach does not

indiscriminately amplify all signal.

2.4.3 The 1000 Genomes low coverage pilot

Some of the HapMap phase 2 unrelated individuals have been sequenced at low

coverage genome wide as part of the 1000 Genomes Project (Consortium, 2010).

It is interesting to test whether the availability of genotypes at all loci increases

power to detect eQTLs.

We used the expression and genotype data for the 43 CEU, 42 YRI, and

59 CHB+JPT indviduals for whom we have the expression and genome sequence

data. We filtered the HapMap 2 genotypes to 317,000 to 1,000,000 polymorphisms

assayed by standard Illumina genotyping chips (designated 317K, 610K, and 1M),

and also included the 1000 Genomes genotypes (1000G) at all loci called from

sequencing data.

We then searched for eQTLs in a 50kb window centered around the expression

probe independently for each population and genotype dataset. We used Spear-

man’s Rank Correlation coefficient as a test statistic, and assessed its significance

by performing 20 permutations of the entire analysis to obtain a genome-wide sig-

nificance cutoff corresponding to 5% false discovery rate. Both standard eQTL

model on original data (Standard) and same approach on residuals of the PEER

factor analysis model (VBQTL) were assessed.

Consistent with previous experiences, we found additional eQTLs using ex-

pression residuals from PEER (Figure 2.8). More interestingly, we observed an

increase in the number of discoveries using the full genetic background. For pop-

ulations that are relatively well represented in the genotyping chips used (CEU,
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Figure 2.8: eQTL finding results on the HapMap2 dataset with 1000 Genomes
genotypes. Number of eQTLs in three different populations as well as combined
population significant at 5% FDR using the standard eQTL model (Standard),
and residuals from PEER factor analysis model (VBQTL). Spearman’s Rank
Correlation was used as a test statistic, with genome-wide significance cutoff
determined from permutations. Appropriate covariates for gender and population
were included in the models.
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CHB+JPT), the increases were low, while for a genetically more diverse popu-

lation (YRI) as well as the full combined population with more power to assess

significance of rarer alleles, the number of discoveries increased by 30 and 10%,

respectively. We expect the genotypes of low frequency alleles to be even more

beneficial in larger cohorts, where they are assayed in sufficient numbers to reli-

ably test their effect on gene expression levels.

2.5 Interpretation of learned hidden factors.

The hidden factor models hypothesise a set of unobserved non-genetic factors that

influence the measured gene expression levels. To gain insights into their inter-

pretation we considered correlations to known effects such as gender, population

or environment, and the sets of genes most influenced.

Human panels. We applied fVBQTL to expression data from individuals of

all three HapMap populations, and tested for correlation between the inferred

hidden factors and the population and gender indicator variables. The resulting

correlation coefficients (Table B.5) indicate that many of the learned latent causes

are correlated with population and that one is strongly correlated with gender.

This implies that the hidden factor model can recapture variance in the gene

expression levels due to true underlying properties of individuals. However, none

of the global factors learned in one population was correlated with any single

SNP genotype.

We could not attribute any variance to the same causes in the MuTHER LCL

expression data, as all samples came from women in one population. However,

in other tissues, we could link some of the largest variance component to a single

trait. In the fat tissue, the individual body mass index was correlated with the

second inferred factor (Pearson’s r2 = 0.27). This is not unexpected, as obesity-

related traits, including body mass index, have been shown to be correlated to

many gene expression levels (Emilsson et al., 2008). The strongest influence

on the MuTHER skin tissue gene expression data was RNA integrity number

(RIN), which was correlated with the first inferred factor (Pearson’s r2 = 0.37).

Many samples had low quality total skin RNA, due to the aggressive extraction
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procedures needed to isolate RNA from the resistant skin tissue. Low RNA

quality implies degradation of RNA molecules among other effects, which has a

broad effect on many gene expression levels, and was captured with an inferred

latent factor.

Crosses of yeast strains A recent study in yeast looked for changes in eQTLs

when segregating strains were grown in different media (Smith and Kruglyak,

2008). We applied fVBQTL to the expression data of this study (GEO accession

GSE9376), without including any information about the growth condition. The

first hidden factor learned was highly correlated with the indicator variable for

the growth condition (r2 = 0.96), demonstrating that the VBQTL model can

successfully recover a strong environmental effect if it is present.

The global factors identified can be further analysed for biological signals,

looking for GO term over-representation in the genes that they affect. We used

the ordered GO profiling method (Reimand et al., 2007) to find significantly

enriched GO categories for the 30 genes most affected by each factor. Recent

results (Biswas et al., 2008) show that related linear Gaussian models find bi-

ologically relevant factors in the yeast expression dataset. We replicated these

findings with our model, yielding factors enriched in biological functions, includ-

ing sugar, alcohol and amino acid metabolic processes. Similar analysis in human

and mouse did not show significant over-representation of GO categories, provid-

ing no evidence that the main axes of variation in the expression levels for these

experiments are due to variation in common biological function. This could be

due to poor GO annotation of the genes, gene features not related to GO biolog-

ical function, or more technical sources of global variation, such as cell culture

conditions (Pastinen et al., 2006).

2.6 Discussion

We have presented VBQTL, a probabilistic model to dissect gene expression vari-

ation in the context of genetic association studies. The model is implemented in a

Bayesian inference framework that allows uncertainty to be propagated between
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different parts of the model, and yields posterior distributions over parameter es-

timates for more sensitive analysis. In comparative eQTL mapping experiments,

VBQTL outperformed alternative methods for eQTL finding on simulated and

real data. In the most striking example, VBQTL found up to three times more

eQTLs than a standard method, and 45% more compared to the best alternative

in the HapMap 2 expression dataset.

Our approach advances the methodology for understanding phenotypic vari-

ation. The implementation of a flexible framework allows models for explaining

the observed variability to be straightforwardly combined. Notably, non-Bayesian

models can also be included, as we demonstrated with PCA, SVA, and linear

regression models. VBQTL controls the model complexity at the level of all in-

dividual components of expression variability, thereby preventing from over- and

underfitting. Our experimental results on simulation and real data showed how

explaining away too much variability removes some signal of interest from the

data, and failing to account for all sources of confounding variation decreases

power to detect the relevant signal. When the variable of interest is correlated

with many gene expression levels, its effect can be falsely explained away by the

hidden factor model. We showed that in such settings the choice of an iterative

schedule helps to ensure that variability is explained by the appropriate part of

the model. There can be no silver bullet solution that provides perfect results in

any scenario with no supervision. Instead, modelling assumptions must be made

explicit, and incorporated in the analysis, as is elegantly done in the Bayesian

setting.

VBQTL and other methods that account for hidden factors all found addi-

tional expression QTLs in the datasets studied compared to the standard method.

It is remarkable that, with only 270 samples, and looking in one tissue type, we

can find significant genetic associations to 27% of the expressed genes. The repli-

cation of the additional associations in different populations suggests that they

are genuine. The increase in power is due to the hidden factor model, which ex-

plains away unwanted non-genetic variability, thereby allowing the genetic effects

to stand out to a greater extent. The high number of additional associations

suggests that association finding studies in human have not saturated, and we

expect the fraction of genes with an eQTL will increase further as the number
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of samples grows. It may be that the expression of the majority of human genes

varies as a result of segregating genetic variation. While previous studies have

reported only 12% of heritable variation to be due to cis variants (Price et al.,

2008), this does not contradict the presence of weak cis eQTLs for a large fraction

of the genes.

In conclusion, we believe that VBQTL provides a principled and accurate way

to study gene expression and other high-dimensional data. Increasingly complex

models combining genetic and other effects can explain significantly more of the

variance in observed phenotypes, as suggested by this study and others. Our

general framework provides the flexibility to facilitate these richer models, for

example, we have already started exploring interaction effects as an additional

model of the framework. It will be interesting to see how these approaches can

contribute to our understanding of human disease genetics, potentially involving

intermediate phenotypes such as gene expression and other factors.

The software used in this study is freely available online at http://www.

sanger.ac.uk/resources/software/peer/.
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