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Abstract

Many important traits are heritable, and have a strong genetic com-

ponent. In simple cases, such as Mendelian diseases, the genetic cause

can be found with linkage methods, and many trait genes have been

mapped to date. More recently, association mapping studies have fo-

cused on complex traits that include prevalent human diseases, such

as type 2 diabetes, hypertension, and others. Numerous genome-wide

association studies have corroborated that no single gene explains all

or even a large part of the heritable variability in such traits, and

that individual effect sizes due to common variants are small. The

effect of a single locus genotype on a global trait has to be mediated

by cellular, tissue, and organ phenotypes. Thus, genetics of cellular

traits is central to developing an understanding of the genetic basis

of complex traits.

In this thesis, we address the problem of mapping cellular traits. First,

we develop a statistical model based on Bayesian regression and factor

analysis for association mapping with high-dimensional phenotypes.

We show how accounting for global, non-genetic variance components

in the phenotype data increases power to detect genetic associations.

Applying the method on human gene expression variation data, we

find that up to 30% of transcripts have a statistically significant as-

sociation to a proximal locus genotype.

Second, we show how to infer intermediate phenotypes and use them

for mapping genetic associations and interactions. We use a sparse

factor analysis model to infer hidden factors, which we treat as in-

termediate cellular phenotypes that in turn affect gene expression in

a yeast dataset. We find that the inferred phenotypes are associated



with locus genotypes and environmental conditions, and can explain

genetic associations to nearby genes. For the first time, we consider

and find interactions between genotype and intermediate phenotypes

inferred from gene expression levels, complementing and extending

established results.

Third, we develop a novel approach to map trait loci rapidly and

in narrow intervals using massively parallel sequencing. We created

advanced intercross lines between two phenotypically different wild

isolates of baker’s yeast with sequenced reference genomes. We then

applied selective pressure on the intercross pool by growing it in a

restrictive condition to enrich for individuals with protective alleles.

Sequencing DNA from the pool before and after selection pinpoints

genes responsible for the increased fitness. This novel method provides

a rapid and fine scale QTL mapping strategy improving resolution and

power.

Finally, we conclude the thesis by exploring mapping cellular traits in

a series of short studies in different organisms.
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Chapter 1

Introduction

Life is amazing in its complexity, yet robustness. Eloquent, intricate features are

faithfully transmitted from parents to their children, generation after generation.

For most species, the progeny start out as a single cell. Thus, all the information

necessary to reproduce the traits of the parents, as well as the blueprints for

the machinery to perform the reproduction, must be encoded in that tiniest of

volumes of 10−13m3. Encoding all the heritable information in one cell, and

robustly reproducing it is a miracle. I want to understand how this fascinating,

important process works.

Transmission of heritable information is interesting in itself, but it is also

central to many questions about human health. For example, the genetic back-

ground of the parents can determine not only that a human child will have ears

and toes, but also a ten-fold higher risk of developing cancer forty years down

the road (Liede et al., 2004). We need to identify, quantify, and understand the

mechanisms of the genetic risks to be able to prevent or treat the onset of the

disease. This requires an understanding of trait genetics in general.

There are two aspects to understanding the heritable component of a pheno-

type. First, where in the genome are specific traits encoded? This problem is

that of mapping heritable traits, where great advances have been made in the

last 50 years, which I will review below. Second, how does a specific region of

the genome define the trait? This is a problem of identifying the effect of genetic

information on organism features, and the area of functional genomics in general.

1



1.1 Mapping the genetic basis of heritable traits

Understanding the effect of genotype on cellular traits is a prerequisite for

understanding the genetics of tissue and organ phenotypes that ultimately ex-

plain global characteristics, such as human disease risk. In this Thesis, I address

the questions of finding and interpreting genetic effects together by focusing on

mapping cellular traits.

In the introductory chapter, I first outline the history, methods and progress

in trait mapping so far, focusing ultimately on human studies. I then discuss the

current state of mapping cellular traits using these methods, as well as some more

specific approaches available only in unicellular organisms. Finally, I introduce

the common statistical models and methods used for genetic mapping of low- and

high-dimensional traits discussed. However, I will not address the vast literature

on modelling variability in high-dimensional traits in general.

1.1 Mapping the genetic basis of heritable traits

The heritable information is encoded in the genome. It is instructive to un-

derstand how we have come to know this most basic trait mapping result to

appreciate the current opportunities as well as outstanding questions.

We can only use biological assays which give us a readout we can visualise.

Thus, until the development of high quality microscopy, cellular analyses were

impossible, and budding geneticists used plants and domestic animals for their

experiments. The hero of genetics, Gregor Mendel, worked in a quiet monastery

in Brno on crossing peas in the 1860s, and produced a paper on segregation

of traits in an obscure journal (Mendel, 1865), which would be unlikely to be

read today, as it was not in English, and probably not peer reviewed. This

paper, showing the existence of dominant and recessive alleles, as opposed to a

continuous distribution of traits among the progeny, failed to make an impact.

In 1869, a doctor named Friedrich Miescher was working in Tübingen, and

managed to isolate an acidic, phosphate-rich substance from the pus of the used

bandages (Dahm, 2008). This was the first time DNA had been purified. Like

Mendel’s discoveries, its importance became known only later.

Mendel’s work was rediscovered at the end of the century by a Dutchman

Hugo de Vries. He spent his life replicating and extending Mendel’s experiments,

2



1.1 Mapping the genetic basis of heritable traits

crossing plants, and phenotyping the progeny in his Amsterdam estate. His, and

William Bateson’s series of papers and monographs (Bateson, 1909; de Vrijes,

1901) established the foundation of genetics at the brink of the last century.

Thomas Hunt Morgan and his student Alfred Sturtevant pursued visible,

selectable phenotypes, and analysed their inheritance patterns in the fruit fly

Drosophila melanogaster, and established that ”genes” were actually on chromo-

somes, and arranged linearly (Morgan, 1910).

However, not all traits were readily visualisable under a microscope, so differ-

ent assays had to be used to make progress on understanding where the heritable

information lies. Radioactive isotopes had become widely available, with one ap-

plication as a tag for specific molecules to give a readout for the abundance of

that molecule. By 1952, it was established that DNA was the carrier of genetic

information, in a classic paper by Hershey and Chase, who measured radioactivity

in a viral infection experiment (Hershey and Chase, 1952). The DNA or proteins

of the T2 phage were tagged with heavy isotopes, and the infected cells were

tested for radioactivity readout, which confirmed DNA as the carrier of genetic

material.

X-ray crystallography, another way of getting a visual readout of biological

information, allowed arguably the greatest breakthrough of the last century, as

Crick and Watson used Franklin’s DNA diffraction pattern image to give the

physical model of the DNA double helix (Watson and Crick, 1953). The central

dogma of molecular biology and the genetic code (Crick, 1970; Gardner et al.,

1962) were established shortly thereafter. This completed the basic understanding

of the molecules involved in transmitting heritable information.

Once it was established that DNA is the carrier of genetic information, and

stretches of nucleotide sequence determine the functional outcome according to

the central dogma, the next big questions concerned gathering the genetic infor-

mation. Southern, northern, and western blots were developed to visualise the

size distribution, and sequence of DNA, RNA, and proteins (Alwine et al., 1977;

Southern, 1975; Towbin et al., 1979). The ability to query the sequence of the

heritable information, and the rapid development of methods to scale up capacity,

resulted in an exponential increase in sequence data. The full genetic makeup of

the first genome was first established for the bacteriophage lambda (Sanger et al.,

3



1.1 Mapping the genetic basis of heritable traits

1982), followed by the first free living organism H. influenzae (Fleischmann et al.,

1995), the first eukaryote S. cerevisiae (Goffeau et al., 1996), the first multicellular

organism C.elegans (C. elegans Sequencing Consortium, 1998), and culminating

with the human genome in 2001 (Lander et al., 2001).

The last decade has seen work building on the success story of decoding the

human genome and those of model organisms. One example of this is the ap-

plication of genotyping and gene expression arrays, that use the sequence at

polymorphic sites or coding regions, to assay the genetic state or mRNA ex-

pression level at specific loci. We can already produce very large quantities of

sequence data in a routine fashion. The per-base sequencing costs are decreasing,

and technologies are constantly improving, with polony-, nanopore-, or ion cap-

ture based approaches yielding promising results. The hurdles of understanding

the nature of heritable information, and measuring it, have been largely cleared.

Now, combining the relatively cheap and accessible sequence or variation data

capture with phenotype assays has enabled genetic mapping of many traits using

methods I will outline next. I will not cover effects of other inherited state, such

as methylation, chromatin state, etc. since downstream phenotypes are largely

independent of them if the transcript levels are measured.

1.1.1 Linkage mapping

Genetic information is passed on in chromosomes. In the case of sexually re-

producing eukaryotes, the child inherits a copy of each chromosome from both

parents via a haploid zygote. During meiosis, the chromosomes recombine, form-

ing the final haplotypes of the child that are made up of contiguous tracts of

DNA coming from one parent (Alberts et al., 2007). If a trait cosegregates with

one allele of a specific locus, the correlation of the locus genotype and individual

phenotype can be used to map the trait.

Human pedigrees

Mendelian traits, such as the pea flower colour or leaf crumbliness, are single gene

traits of full penetrance. The trait is determined by one gene only, and a specific

genotype confers a certainty of observing the trait. These traits are well amenable

4



1.1 Mapping the genetic basis of heritable traits

to linkage mapping approaches, as their segregation can be traced in individual

pedigrees. One prominent example was observed in the progeny of European and

Russian monarchs in the late 19th and early 20th centuries, whose ranks were

thinned by haemophilia, an X-linked recessive disease (Ingram, 1976).

The original linkage mapping approach, established by Morgan and others,

showed that genes lie on chromosomes, and traits in the fruit fly such as eye

colour, wing defects, etc. were mapped in the early last century (Green, 2010).

Linkage mapping approaches for cellular traits were further developed in the

1970’s and 80’s (Petes and Botstein, 1977). These ideas were soon expanded to

humans, where restriction fragment length variants were postulated and shown

to be polymorphic in the human population (Lander and Botstein, 1989). The

application of these methods led to discovery of the genetic basis of Huntington

disease (The Huntington’s Disease Collaborative Research Group, 1993) as well

as cystic fibrosis (Rommens et al., 1989).

Linkage to polymorphic sites has implicated many regions for disease risk, but

for many rare conditions, the causative alleles are either private, or not polymor-

phic in human population. Some of such variants have been recently been identi-

fied. Most recently, a causal mutation was identified by whole-genome sequencing

of a single family with four cases of a rare Charcot Marie Tooth disease (Lupski

et al., 2010). Furthermore, disease genes have been mapped by whole-exome se-

quencing of a very small number of diseased families (Ng et al., 2010) or a single

case in one proband (Sobreira et al., 2010).

While many genes have been mapped using linkage in human pedigrees,

Mendelian traits constitute a minority of human diseases with a genetic com-

ponent.

Designed crosses in model organisms

Traits have been mapped by linkage using segregation in general pedigrees, but

pedigrees of controlled structure are often used. Controlled crosses of haploid or

homozygous inbred lines produce progeny with predictable genotypes, that can

be further crossed in more intricate designs. This approach is obviously feasible
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1.1 Mapping the genetic basis of heritable traits

only in model organisms, and has been used with great success. I will focus on a

specific design, an Fn cross.

Typically, two phenotypically different parental strains are crossed to produce

large numbers of progeny (F1 generation). The children are then phenotyped and

genotyped, and the genetic basis of the trait can be mapped using linkage. In case

of a larger generation cross, additional rounds of crossing between the children

are undertaken (Fn cross, n > 1). This has the effect of reducing the size of

contiguous blocks of genetic material inherited from one of the original parents,

and reduces linkage between nearby loci. Given a sufficiently dense genetic map,

it allows mapping to considerably finer intervals (Darvasi and Soller, 1995).

A large body of work has focused on two F1 crosses between haploid yeast

strains. The Kruglyak lab has used a cross between a laboratory and a wineyard

strain to study genetics of gene expression, proteome variation, small molecule

response, and gene-environment interactions (Brem et al. 2002, Brem et al. 2005,

Brem and Kruglyak 2005, Foss et al. 2007, Perlstein et al. 2007, Ehrenreich et al.

2009, Ehrenreich et al. 2010). Another cross was used in a series of studies by

Steinmetz et al. to map and dissect QTLs, as well as study the recombinational

landscape in yeast (Steinmetz et al. 2002, Sinha et al. 2006, Wei et al. 2007,

Mancera et al. 2008, Zheng et al. 2010).

In diploid organisms, genetics is greatly simplified if individuals are inbred

to homozygosity. Inbred diploid F1 cross progeny (recombinant inbred lines) of

two strains have been developed and used to map traits in Caernohabitis elegans,

Drosophila melanogaster, mouse, and rat (Ayyadevara et al., 2003; Doroszuk

et al., 2009; Voigt et al., 2008) and reviewed by Flint and Mackay (2009).

1.1.2 Association studies

Over two thousand Mendelian traits have been mapped by linkage in humans

to date. However, this approach did not work for many conditions common

in humans, such as diabetes, that cluster in families. While it was clear that

these diseases are heritable, the genes could not be traced via transmission in

pedigrees. A view emerged that many common traits are polygenic, with many

loci contributing. A different mapping approach was needed.
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1.1 Mapping the genetic basis of heritable traits

Case-control GWAS

One alternative way to map disease genes is to compare frequencies of alleles in

healthy individuals (controls) and ones having the disease (cases) at many loci

in the genome to test for association of one allele to the disease. The important

distinction is that there is no family structure present, and the individuals are

assumed to be independent.

Initially, as genotyping was expensive, and numbers of assayable polymor-

phisms small, this was done for candidate genes, such as the HLA locus (Cud-

worth and Woodrow, 1976). As more human variation data became available, the

power of association studies improved. The number of loci mapped using associ-

ation has steadily risen. While only a handful of loci were reproducibly mapped

by the late 1990’s, the data from human genome project allowed the development

of genotyping arrays to query the known common segregating sites.

Since genotyping tens of thousands to millions of markers became standard,

a steady and impressive march of genome-wide association studies has produced

hundreds of loci contributing to disease conditions (reviewed e.g. by Altshuler

et al. (2008)). With even denser arrays with data from large scale human re-

sequencing studies, and sample sizes nearing 100,000 individuals, we can expect

this trend to continue in the next few years, and many more loci to be uncovered.

Association to quantitative traits in reference populations

The association approach can be successfully used outside the case-control paradigm

as well. Instead of looking for differences in allele frequency between the healthy

and diseased, one can measure a trait in a reference population of (nominally)

healthy individuals, and look for an association between a trait value and the

individual genotype. This approach has the most power when individuals vary

considerably in the trait tested.

In model organisms, it is hard to obtain large numbers of individuals without

complex population structure. A large scale project to generate many inbred

lines from a random cross between 8 mouse strains is in progress (Threadgill

et al., 2002). Recently, genotyping 191 inbred lines of Arabidopsis thaliana, a

common grass, at 215,000 loci showed the potential of assaying all markers in
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1.1 Mapping the genetic basis of heritable traits

the genome (Atwell et al., 2010). They showed the marked differences between

effects of population structure on trait mapping between plants and humans.

This hypothesis-free approach to mapping has informed us of many global

human traits that have been found to be heritable, and associated with specific

loci, such as height (Weedon et al., 2008), weight (Loos et al., 2008), telomere

length (Codd et al., 2010; Glass et al., 2010), blood pressure (Newton-Cheh et al.,

2009), etc.

Personal genomics companies are amassing genotype data of thousands of in-

dividuals, and also collecting additional information, both disease related and

of general interest. While spending public money on studies on ear bud shape

or the ability to roll one’s tongue is not reasonable, it is possible to carry out

such studies in these cohorts. Several companies have started weighing in on the

scientific debate using summary statistics from their clients who have given ap-

propriate consent, contributing to discussions on controversial results with their

data (23andMe, 2010), or publishing their own work (Eriksson et al., 2010). Com-

bining efforts of both private and public sectors to obtain genotype data for very

large well-phenotyped cohorts will further increase the rate of discovering genetic

associations to human traits.

1.1.3 Other approaches

In model organisms, other mapping approaches for genetic mapping are possible

where variation in genotype is created in a more directed manner.

Characterising mutants

Genetic manipulation of individuals allows modifying a single locus either ran-

domly, or in a controlled fashion, while keeping the rest of the genetic background

constant. This gives an opportunity to observe the effect of the modified locus

on a trait, and can be used to validate a locus mapped via linkage or association.

One such modification is a gene knockout, usually taken to mean removing

the gene product from the cell. This can be achieved either via excising the gene

from the chromosome using recombination techniques, or introducing a mutation

that renders its non-functional, such as a premature stop codon or splice acceptor.
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1.1 Mapping the genetic basis of heritable traits

Libraries of gene knockouts have been created and characterised for every gene

for yeast (Giaever et al., 2002), and are underway for mouse.

Another, more fine grained approach available in yeast, is allele mutagene-

sis, where exactly one locus is modified (Storici et al., 2001). As the rest of

the genetic context is kept entirely constant, this allows assessing the effect of

an allele in isolation. A more crude, but rapid approach is that of reciprocal

hemizygosity (Steinmetz et al., 2002). A diploid hybrid of two haploid strains is

created, followed by construction of two strains, each with one of the parental

alleles deleted. In this case, however, the effect of the allele is manifested in the

context of the rest of the hybrid genome.

Artificial selection

Instead of phenotyping individual mutants, which consumes resources and time,

artificial selection can be applied to an entire mutant library to separate the

mutants based on a trait. Again, individual mutants can then be assigned a

phenotype.

In bacteria, this approach has been used in transposon mutagenesis screens

(Langridge et al., 2009). Specifically, a transposon insertion is introduced ran-

domly into the genome for many individual bacteria to produce a library that

can then be tested for resistance to different conditions. The readout of the fre-

quency of an insertion at all loci can be made by amplifying and quantifying the

sequence from the transposon insertion sites. Similar approaches are also pursued

in eukaryotic models such as yeast and mouse cell lines (Daniel Jeffares, Stephen

Pettitt, personal communication).

Besides assigning a phenotypic effect to individual yeast gene knockouts the

yeast knockout collection can also be used in artificial selection experiments. This

is possible due to the barcode sequences introduced for each individual knockout

strain, which allow detecting lack and abundance of individual knockouts in the

full mutant pool in response to stress (Scherens and Goffeau, 2004).

Most recently, artificial selection of phenotypic extremes was applied to a very

large pool of yeast segregants obtained from an F1 cross between two haploid

lines. Combining the power of analysing very large numbers of segregants with
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the cross design demonstrated the abundance of loci contributing to trait makeup

even in “simple” eukaryotes, and emphasised the marked differences in genetic

architecture of traits (Ehrenreich et al., 2010). We had been working on a similar

approach in parallel, with results presented in Chapter 4.

1.2 Genetic structure of traits

Our knowledge of the genetic basis of heritable traits has come a long way in the

last 100 years, and much remains to be done. There are many tools at our disposal

for mapping. When trying to understand traits relevant for human health, what

can we expect to find in general, and what are the characteristics of our findings

so far?

1.2.1 Independent locus effects

Most of the existing work has focused on effects of individual variants in isolation.

There are two basic questions about effects of individual loci - how many loci

contribute to a trait, and how many traits does a locus contribute to.

Number of loci contributing to a trait and their effect sizes

The early studies in model organisms using crosses of inbred strains or recom-

binant inbred lines found several loci that determined most of the phenotypic

variability (reviewed by Flint and Mackay (2009)), spurring the quest for finding

common genetic variants with similarly large effect sizes in human population.

However, as more individuals were analysed in such crosses, more trait loci were

found, suggesting that there is a large set of mutations with smaller effect sizes.

The controlled crosses in model organisms allow reducing the sources of variabil-

ity associated with possible confounders, and thus let genetic variability make up

more of the total phenotypic variability, making the trait loci easier to map.

Consistent with the idea of many trait loci with small effects, the recent human

GWA studies have yielded hundreds of loci, almost all of which have small effect

sizes with odds ratios less than 1.4 (Hindorff et al., 2009; Manolio et al., 2009).

There is a chance that many rare variants with large effect sizes exist (Cirulli
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and Goldstein, 2010); this hypothesis remains to be tested by using genotyping

arrays including these rare variants, as well as resequencing studies.

Number of traits affected by a locus

Perhaps surprisingly, there is an emerging view that many trait loci are pleiotropic,

affecting more than one trait. This has been observed in model organisms for

years, where in crosses of yeast strains, a small set of loci determine much of the

phenotypic variability, as well as other models, such as mouse (Brem et al., 2002;

Chen et al., 2008). Similarly, some results from human GWA studies have iden-

tified unexpected links between seemingly disconnected disorders (Barrett et al.,

2008).

The existence of pleiotropic loci is consistent with the notion of hubs in gene

networks - genes that are central in pathways and whose variation has large

downstream effects (Babu et al., 2004; Luscombe et al., 2004). Such loci induce

correlation between traits, and thus motivate modelling them jointly to capture

this effect.

1.2.2 Context dependent locus effects

The functional impact of a genetic variant is determined by its cellular context.

The state of the cell - abundance, localisation, and configuration of molecules -

is a product of RNA and protein polypeptides produced from the DNA, as well

as temperature and concentrations of other molecules that can be influenced by

external factors. Thus, the effect of the variant can depend on either the sequence

of the RNAs and proteins, or some other state not directly determined by the

genome. Context dependent effects are the focus of Chapter 3 of this Thesis.

Epistatic interactions

Gene-gene, or epistatic interactions are non-independent contributions of two loci

to a trait. Usually, this is taken to mean a deviation from a standard statistical

additive/multiplicative model (statistical epistasis), but can also mean masking

or enhancing a genotype effect in general (functional epistasis). Notably, there
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is not necessarily a physical interaction between the two gene products (Phillips,

2008).

Most reports on interaction effects come from crosses or manipulations of

homozygous lines in model organisms. The reasons for a general lack of strong

evidence for interactions in human traits is the extensive linkage in pedigree

studies, where the effect of a single locus cannot be isolated, and the huge multiple

testing problem in association studies, where billions of statistical tests need to be

performed in order to assess the significance of all pairwise interactions between

common polymorphisms. However, some lone examples of epistatic interactions

in humans can be found (Butt et al., 2003; Tiret et al., 1994). Most association

studies do not report any interaction effects, or only consider them between the

mapped trait loci (Cordell, 2009).

A convincing demonstration of interactions between variants in four yeast

transcription factors highlighted the potential for epistatic interactions to explain

phenotypic variability (Gerke et al., 2009). In C. elegans, knockdowns of a small

number of ”hub” genes were shown to enhance the phenotypic effect of other

knockdowns (Lehner et al., 2006). Evidence of local adaptation and interactions

between nearby loci are also evident in the fruit flies (Mackay, 2004). Intriguingly,

interaction effects have been shown to be pervasive in a mouse, where single

chromosomes were replaced between strains (Shao et al., 2008).

GxE interactions

The gene-environment (GxE) interactions can be thought of as an environment-

specific genetic effect. In humans, they are usually found by observing a preva-

lence of a trait in a specific environment, and then conducting an association or

linkage study that conditions on it (Hunter, 2005). This has worked for several

traits, but the success, as measured by the number of identified interactions, has

not been on the scale of genome-wide association studies. Still, several highlights

are worth noting. For example, a CCR5 (cell surface receptor) null mutant in

humans interacts with HIV exposure, as HIV requires the receptor in order to

enter the cell (Smith et al., 1997). More commonly, people with fair skin (a
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heritable trait) are more prone to developing skin cancer in response to exten-

sive sunlight (Rees, 2004). Recently, genetic variants have been associated with

correct warfarin dosage (Takeuchi et al., 2009).

Gene-environment interactions are easiest studied in model organisms, where

the genotype can be held constant, and then exposed to a variety of environ-

ments. Any gene mapped by screening a library or strain collection in different

environments can be considered as part of such an interaction.

1.2.3 Missing heritability in human traits

Comparison of correlation of traits in monozygotic and dizygotic twins has shown

that almost all medically relevant human traits, from physiological, such as height,

weight, and heart rate to psychological, such as anxiety, depression, and bore-

dom susceptibility, are heritable (Boomsma et al., 2002; Visscher et al., 2008).

However, millions of pounds spent on genetic mapping studies have made us ap-

preciate that independent effects of common alleles do not explain a substantial

part of heritable variability in humans. Indeed, as most of the variants identified

using GWAS have modest effect sizes, they explain only a small part of the her-

itable variation, although some recent results claim improvements on this (Yang

et al., 2010). Leaving aside possible effects of epigenetics (Flintoft, 2010) as well

as problems with accurate heritability estimation (Visscher et al., 2008) for now,

we are still left with a gap in our knowledge. We know the information for passing

on traits we care about is there - but where, and how can we find it? The answers

lie in more accurate models and better assays; this Thesis seeks both.

1.3 Genetics of cellular traits

Most common human traits have a complex basis. Human clinical conditions are

a constellation of symptoms, each based on deviations in tissue traits of indi-

vidual organs. It is a little optimistic to assume that the genotype of a variant,

whose effect is dependent on genetic background as well as environment, can

carry substantial information on a global label of the organism, sweeping all the
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underlying complexity into a binary disease state. Instead, it is much more fea-

sible that we are able to map traits that are closer to DNA, such as molecular

or cellular quantitative traits. In a fairly homogenous tissue, the cellular char-

acteristics can be extrapolated to the entire tissue, and the tissue phenotype is

already the appropriate level of abstraction for a disease symptom. Thus, I be-

lieve that mapping cellular and tissue traits is the correct way to proceed to map

physiological human traits in general.

The effect of a single locus genotype on a global trait has to be mediated by

cellular, tissue, and organ phenotypes. There is a very limited number of ways

that the genotype of a variant can have any impact at all. A cell is a collection

of molecules undergoing reactions; a change in the amount or properties of one

of these molecules can have an effect on the kinetic parameters and equilibrium

of some of the reactions. A variant could nudge the rate of a reaction a little,

corresponding to a small effect size, or shift the balance of the reaction. If most of

the associations found in human GWA studies are due to small cellular changes

that have correspondingly small effects on tissues and organs, mapping cellular

traits will offer no advantage compared to mapping more global traits. However,

if there are substantial changes in cellular properties, we can hope to map these

large effects by measuring the cellular traits that are affected by the balance of

the particular reaction. Note that these effects can be dampened out by other

fluctuations or compensatory mechanisms at a higher level to produce a weak

effect on phenotype (Raj et al., 2010).

Perhaps most importantly, DNA sequence variation can result in protein se-

quence variation. This in turn can have an effect on secondary and tertiary

structure of the protein (Ng and Henikoff, 2006), binding affinities to DNA (Zheng

et al., 2010) or other proteins (Moreira et al., 2007), signalling and sorting prop-

erties etc. - in short, the activity of the protein. Thus, the activity of proteins

(or other functional genetic elements) in the cell in its natural environment is the

trait we would like to assay.

DNA sequence variation can also affect the affinity of proteins or nucleic acids

binding to the nearby sequence. This can have an effect on chromatin state (Mc-

Daniell et al., 2010), propensity for epigenetic modifications (Gibbs et al., 2010),

and amount of transcripts produced from a proximal or distal locus (Stranger
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et al., 2007). Thus, binding affinities of proteins to DNA sequence, and their

functional consequences, such as abundance of mRNA and protein molecules

produced from it, are also phenotypes we would like to measure.

1.3.1 Assaying cellular traits

Cells are small, and making measurements from them is hard. Ideally, we would

like to assay the quantity we are interested in, in a single cell, in a physiologically

relevant environment, in high throughput, over time, controlling for all possible

confounders, quickly, and at no cost. Reality, however, does not allow all these to

be satisfied. For trait mapping we do need to phenotype many individuals, so the

assay must be relatively high-throughput and low-cost; the rest of the desiderata

can be sacrificed to a greater or lesser extent.

Single cells and cell populations

Ideally, we would like to measure cellular traits from single cells, but this imposes

several hurdles that the assay needs to clear. Firstly, as most cells are small, the

number of molecules in a cell is limited, thus the assay must be very sensitive.

For example, measuring gene expression levels, or sequencing DNA requires on

the order of a few µg of DNA or total RNA, whereas only 10 pg of RNA is

present in the cell. Some recent developments address this, allowing quantities

to be measured from even individual cells (Kurimoto et al., 2007). Microfluidics

and microwell approaches promise to deliver assays on a chip that really do use

individual cells, but do not, however, yet assay all mRNAs (Marcus et al., 2006).

Secondly, it must be possible to isolate individual cells. This is not possible

for many cell types, thus researchers often resort to in situ experiments, where

individual cells are highlighted by clever genetic engineering techniques (Yuste,

2005). If possible, simply visualising the desired trait in the cell would be best.

However, this requires good microscopes, and usually human inference for image

analysis - but advances are made both on the level of microscopy (Yuste, 2005)

as well as phenotyping by image analysis (Iyer-Pascuzzi et al., 2010).

For assays that require larger amounts of material, cell populations have to be

used, which introduces confounding factors. Firstly, the readout is then a popu-
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lation average, and it depends on the measured trait, how well that characterises

the entire distribution of the trait. For example, gene expression in individual

cells has been shown to be bursty (Paulsson, 2004), thus averaging over the pop-

ulation can give a medium gene expression level, whereas in each individual cell,

the gene is either more highly expressed, or not present at all. Secondly, the pop-

ulation might not be homogenous. If human tissue is used, for example, mixtures

of cell types are almost always present, and deconvoluting the signal post hoc

becomes difficult, though not impossible (Clarke et al., 2010). Finally, even in a

population comprised of just one cell type, activity profiles of molecules greatly

vary with the cell cycle (Alberts et al., 2007). Thus, when analysing an unsyn-

chronised cell population, one is dealing with average measurements across the

cell cycle.

Primary tissues, proxy tissues, and cell lines

For human studies, it is not straightforward to obtain required tissues. Most or-

gans are not readily accessible, and should not be physically damaged for healthy

humans to get a sample. However, some easily replenishable tissues whose biopsy

or collection does not have side effects, such as peripheral blood, but also hair,

skin, fat, and in some cases, even muscle, are sampled for studies in healthy sub-

jects (Nica et al., 2011). Some tissues are naturally left over during procedures

in hospitals; fat and skin samples from plastic surgeries are a prime example.

Tissues can also be collected from diseased people pre and post mortem, how-

ever, these tissues may no longer reflect standard homeostatic conditions. Some

initiatives are proposing using road accident victims who are also organ donors

as sources of research tissue. Of course, in most model organisms, these issues

are not as relevant, since (subject to appropriate ethical controls and plenty of

funding) sufficient amounts of tissue can be obtained from sacrificed individuals.

If the desired tissue cannot be sampled in the required quantity, a proxy

tissue, or a cell line can be used. A proxy tissue is a more available tissue that

is still informative about the desired trait. Peripheral blood is often used, as

it is most easily available (Scherzer et al., 2007). Cell lines, an immortalised

clonal cell population, are an alternative if bulk quantities are needed. While
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there are doubts about whether they are useful for inference about naturally

occurring traits, they have been successfully used in many studies. For example,

Epstein-Barr virus transformed lymphoblastoid cell lines from the genetically very

well characterised HapMap populations (The International HapMap Consortium,

2005), have been used in genetics of gene expression studies (Stranger et al., 2007),

as well as many others (McDaniell et al., 2010).

Available high-throughput assays

Given the desires and constraints, which high-throughput assays can we use in

studies into genetics of cellular traits?

Gene expression microarrays have been used for profiling mRNA levels for over

a decade with great success (Montgomery and Dermitzakis, 2009), with arrays

also being developed for other types of RNAs, such as microRNAs (Krichevsky

et al., 2003). They are relatively cheap, well established, give a readout of thou-

sands of traits, and their data will be used extensively throughout this The-

sis. Recently, RNAseq has been used as a competing and complementary tech-

nique (Montgomery et al., 2010; Pickrell et al., 2010).

Mass spectrometry based approaches are nearly feasible for large sample

sizes (Foss et al., 2007; Garge et al., 2010) to measure protein levels in a cell

population. However, early studies have not shown a very dense coverage of

the proteome, and posttranslational modifications further obfuscate the signal.

Accurately measuring protein levels and their activities in the cell remains a

challenging task (Choudhary and Mann, 2010).

Most recently, availability of relatively cheap, very high throughput sequenc-

ing with appropriate pulldown techniques has spurred studies into protein-DNA

and protein-RNA binding events. X-seq (Medip-Seq, Chip-Seq, MethylC-Seq,

DNAse-seq, CLIP-seq, Hit-Seq) and other approaches (3C/4C/5C, IClip, etc.)

have allowed locus-specific quantification of various types of binding events in

the cell population, reviewed e.g. in Hawkins et al. (2010).

I will not cover the many imaging approaches, but note that though they are

powerful in principle, they require sophisticated machine vision algorithms (or

many hours of good eyesight) for phenotyping, and have begun to yield exciting

results (Fuchs et al., 2010; Hutchins et al., 2010; Neumann et al., 2010).
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1.3.2 Genetics of gene expression

Many of the variants that have been identified in genome-wide association studies

do not change coding sequences (Mackay et al., 2009), suggesting that many func-

tional variants regulate gene expression, and so the genetics of gene expression

is central to understanding of the genetic basis of complex traits. It has become

possible to assay transcript levels on a large scale and treat them as quantitative

traits, enabling research into the genetic makeup of these basic cellular pheno-

types (Montgomery and Dermitzakis, 2009).

Gene expression has a genetic basis

Work began in a simple model organism, baker’s yeast, where segregating strains

from an F1 cross were first used to address genetics of gene expression (Brem

et al., 2002; Yvert et al., 2003). A year later, explorations in mice, maize, and

humans followed (Schadt et al., 2003). These studies showed that variation in

gene expression levels is heritable, and found numerous statistical associations be-

tween both loci proximal to the expression probe (cis), as well as distal (trans).

Usually, a locus within up to a 1 megabase window around the probe is consid-

ered to be in cis, and posited to have a direct, sequence-specific effect (Stranger

et al., 2005). All other loci are considered to be in trans, and their mechanism of

action to take place via a gene whose protein product is affected by variation at

the locus. However, enhancers, insulators, and other regulators proximal to the

gene can act at distances larger than one megabase, so the choice is arbitrary.

The trans eQTLs were often clustered together into “eQTL hotspots”; however,

contrary to expectation, they were not necessarily linked to variation in tran-

scription factors (Yvert et al., 2003). Notably, some of these hotspots in yeast

were found to be associated to many traits (Perlstein et al., 2007), demonstrating

pleiotropic effects beyond gene expression.

Results from early human association studies

Promptly after the first linkage-based genetics of gene expression studies in model

organisms, more in-depth human studies using association mapping followed.

Most of them used EBV-transformed lymphoblastoid cell lines (LCLs). Following
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the demonstration that variation in expression of up to 31% of the genes is her-

itable in human families (Monks et al., 2004), association mapping studies were

conducted in the HapMap CEPH population. These started with a limited num-

ber of genes (Morley et al., 2004), then, using the availability of new arrays and

HapMap genetic variation data, were carried out genome-wide (Stranger et al.,

2005). Due to limited sample size, these were only powered to find strong effects,

yet identified associations for up to 10% of human genes. Almost all of these

associations were in cis with only a handful of trans findings, as there is a huge

multiple testing burden of associating tens of thousands of transcript levels to

genotypes of millions of loci.

Tissue- and population specificity of associations

Upon establishing that many eQTLs exist in both humans and model organisms,

attention turned to whether they are universal across tissues and populations.

Associations specific to tissue or population are examples of gene-environment

or possibly epistatic interactions, as their effect is only evident conditional on

the physiology of the underlying tissue, or the ethnic background that comprises

both genetic and environmental context.

An assortment of tissues is more readily available in model organisms, so

tissue specificity of eQTLs was first addressed there. An early study in mouse

recombinant inbred lines reported almost no sharing of eQTLs (Cotsapas et al.,

2006), while later studies have found more sharing (van Nas et al., 2010).

In humans, there is a relatively small number of tissues that can be straight-

forwardly assayed. Nevertheless, recent and current attempts have given an in-

dication of extensive tissue-specificity of associations in humans (Dimas et al.,

2009; Nica et al., 2011). Whether the lack of overlap is a bona fide effect, a con-

sequence of statistical power limits, or a simple statement of tissue-specific gene

expression is not yet clear. Dimas et al. (2009) compared associations in primary

T cells, primary fibroblasts, and LCLs, finding that 70-80% are cell type specific.

Furthermore, the cell type specific eQTLs were more distal from the transcription

start site, but still in cis, suggesting that they might affect tissue-specific enhancer
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activity. However, this signal is indistinguishable from a low level of false posi-

tives, and demonstration of either diminuation of the signal further downstream,

or functional studies are needed to back up this theory. Preliminary results for

eQTL finding from a different set of tissues and larger set of samples are briefly

presented in Chapter 2.

Population specificity has been more straightforward to address due to the

availability of LCLs from the HapMap populations. Indeed, studies in 4 (Stranger

et al., 2007) and 9 (in preparation) populations have shown both increase in power

to detect weaker effects due to larger sample size, as well as eQTLs specific to

populations.

Remaining challenges

Many genetic associations to gene expression levels have been identified, and no

doubt many more will follow. There is still no consensus on the extent of genetic

regulation of gene expression - how many genes are regulated by an eQTL? Are

these associations different in tissues and human populations? Which are the

characteristics of the alleles that confer the change? How many trans associations

are there in human populations? Do they correspond to transcription factors or

other regulators? How much of the variability in phenotypes determined by gene

expression can we attribute to mRNA level variability? Some of these issues will

be addressed in this Thesis.

1.3.3 Genetics of other high-dimensional cellular traits

While this Thesis is mainly concerned with high-dimensional gene expression

data, genetics of other high-dimensional cellular phenotypes have also been ex-

plored.

Nucleotide sequence traits

The arrangement, modifications, and binding events of nucleotide sequence can

be assayed via selecting for the specific binding or modification events. The abun-

dance of such events can then in some cases be associated with the genotype. This

has been successfully done for DNA methylation (Gibbs et al., 2010), chromatin
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structure (McDaniell et al., 2010), and protein binding traits (Hawkins et al.,

2010).

Protein traits

Proteins carry out most of the cellular functions, thus protein traits, especially

ones describing their activity, are some of the potentially most useful ones. Pro-

tein levels can be measured individually if they are engineered to carry a tag that

provides a readout, in parallel using protein binding microarrays, or globally using

mass spectometry (Vogel et al., 2010). The complexities of protein level quantifi-

cation arise from many potential posttranslational modifications that can alter

the mass-charge ratio of individual peptides for tandem MS experiments (Choud-

hary and Mann, 2010), or affinities for molecules used for pulldown.

1.4 Quantitative genetic models

Once the data for trait mapping are collected, the goal is to extract information

about the underlying biological processes. This is not straightforward. The state

of the cell is an extremely high-dimensional, time-varying function; an assay

projects all this complexity into a low-dimensional visualisable readout. Inverting

that readout to infer something about the state of the cell is a challenge.

Explicitly or implicitly, analysis of high throughput data always consists of

formalising a quantitative model, a view of how we believe the world works,

and allowing the gathered data to tell us either about specifics of the model, or

whether the model is appropriate for describing the state of affairs at all. The

most natural, and often most fruitful approach is that of probabilistic modelling.

In fact, many claim it is the only logically sound way of making scientific infer-

ences (Jaynes, 2003). I will not digress on this debate here, simply note that

most data analysis problems can be cast as instances or useful approximations of

Bayesian inference in probabilistic models.

Using a probabilistic model for data analysis consists of two steps. First, one

must specify the model - a coherent set of functions that give a probability for

each possible outcome for all states of the variables of interest. Probabilistic
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1.4 Quantitative genetic models

modelling treats both observed and unobserved quantities as random variables

with corresponding prior distributions. Then, upon observing some subset D of

the variables to be equal to d, the posterior distribution of all the remaining,

unobserved variables X can be inferred using Bayes rule,

P (X = x |D = d) =
P (X = x,D = d)

P (D = d)
=

P (D = d |X = x)P (X = x)∫
X
P (D = d |X = x′)P (X = x′)dx′

(1.1)

where we only need to be able to evaluate the prior P (X) and data likelihood

P (D |X).

Using the posterior distribution is intuitively appealing. It combines all the

available information in a principled manner into a single quantitative model of

our knowledge. The probability of each possible state of the world can be ob-

tained after observing any amount of the data, as long as we are able to perform

the calculations. The posterior distribution also provides a measure of uncer-

tainty that can be used in decision making or further analysis. In practice, many

variables are often not endowed with a prior distribution, and are instead treated

as parameters. In this case, the inference can provide only a point estimate of

the parameter value via optimising the probability of the observed data, and the

variability in the estimate has to be assessed by other means, such as bootstrap-

ping.

Finding the best way to carry out these two steps of probabilistic modeling

has kept scientists busy to provide more accurate quantitative descriptions of pro-

cesses, and methods to make useful, tractable inferences. I will now describe some

of the most often used models for trait mapping for low- and high-dimensional

data, some of which will be extended or used in the later chapters, and then

discuss ways of performing inference in them in the next section.

1.4.1 Single trait

Single traits t taking value yi,t in individual i have been modelled using random

variables since the 1930’s, when Ronald Fisher established the field of quantitative

genetics (Fisher, 1939), many ideas of which are still used today.
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1.4 Quantitative genetic models

Notation

In this section, I will use standard lower case letters (e.g. yi,t) as random variables,

boldface letters (e.g. yt) as vectors of random variables, capital letters (e.g.

M) as constants denoting dimensions, and boldface capital letters (e.g. Σt) as

matrices of random variables. Greek letters usually denote parameters of specific

distributions.

Single individual

Most often, quantitative traits are assumed to be normally distributed with mean

µt and variance σ2
t

yi,t ∼ N(µt, σ
2
t ) (1.2)

so that

P (yi,t = y |µt, σ2
t ) =

1√
2πσ2

t

exp

(
−(y − µt)2

2σ2
t

)
.

In this framework, there are two standard ways to introduce the effects of the

genetic background. First, one can model the effect of genotype s of locus n in

individual i as a fixed effect with weight wn,t that gives a fixed contribution to

trait t. The standard way to encode the genotype of a locus with two alleles in a

diploid individual is to assume independent effects of both haplotypes, and either

encode the alleles as (−0.5, 0.5) or (0, 1) to give three possible genotypes (−1, 0, 1)

or (0, 1, 2). Dominance and recessive models can be introduced via an additional

weight on the heterozygous term, but these are not used in this work. In case of

more alleles, a count vector must be introduced over them; the treatment remains

unchanged in the context of these linear models, and simply scales w or offsets

µ. In any case, the model becomes

yi,t ∼ N(µt + si,nwn,t, σ
2
t ). (1.3)

An alternative is to say that the genetic bacground has a random effect on

the trait, with magnitude σ2
t,G, and the trait value y is a sum of contributions

from the random genetic variance σ2
t,G and the private variability σ2

t .
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1.4 Quantitative genetic models

yi,t ∼ N(µt, σ
2
t ) + N(0, σ2

t,G) = N(µt, σ
2
t + σ2

t,G). (1.4)

A population of independent individuals

For linkage and association mapping, phenotype data is gathered from many

individuals i = 1 . . .M , producing a vector yt = (y1,t, . . . , yM,t)
T . The model is

then generalised to an M−dimensional Gaussian

yt ∼ N(µt1M ,Σt) =
|Σt|−

1
2

(2π)
M
2

exp

(
−(yt − µt1M)TΣ−1

t (yt − µt1M)

2

)
(1.5)

where 1M = (1, 1, . . . , 1)T︸ ︷︷ ︸
M

, and Σt = diag(σ2
t , ..., σ

2
t ). Here, as it is assumed

that all individuals are independent, there is no information shared between them,

and the covariance matrix is diagonal. Reintroducing the fixed effect corresponds

to adding a weighted contribution of the genotype vector, wn,tsn to the mean.

Dealing with dependence between individuals

Even if we assume the individuals to be independent given the genotypes, sharing

alleles at a trait locus induces a correlation between the individual phenotypes.

Random genetic effects shared between individuals add an independent variance

component σt,G to corresponding off-diagonal elements of Σt. Both of these oper-

ations induce covariance between individuals. In general, the covariance matrix

could have any form. However, the problem with these, more accurate, models

is the complexity of inference. Analytical solutions do not exist to obtain single

best point estimates of the parameters, and iterative approaches have to be used.

In some recent applications, mixed linear models, combining both fixed geno-

type effects, and random genetic effects to capture known population or family

structure, have been successfully used (Atwell et al., 2010; Kang et al., 2010). In

human GWAS, a PCA-based correction of the genotype vector has been used to

correct for stratification in the population structure (Patterson et al., 2006).
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1.4 Quantitative genetic models

Covariates

While the fixed genetic effect is our primary interest for trait mapping, there are

other measured variables that influence the trait. These confounders must be

included in the model. In the current linear modeling framework, it is straight-

forward to do so via introducing a fixed effect of each of C observed factors,

f1, . . . , fC , with corresponding weights v1,t, ..., vC,t, giving

yt ∼ N(µt1M +
C∑
c=1

fcvc,t,Σt) (1.6)

This fixed effects model forms the basis for the vast majority of linkage and

association studies. It is worth noting the many implicit assumptions present

in the parametric form, the additive and linear influence of covariates etc., that

can and do introduce artifacts or reduce power for mapping when they are not

correct.

Nonlinear and interaction effects

Both gene-gene and gene-environment interaction effects can be included in these

linear models, by introducing additional additive terms to the mean that combine

the multiplicative effects of the epistatic, or gene- environment interactions. For

example, in case of a statistical interaction between known factor c′ and the

genotype at locus n, the model becomes

yt ∼ N(µt1M + wn,tsn +
C∑
c=1

fcvc,t + wc′,n,tsnfc′ ,Σt) (1.7)

The final term quantifies the departure from the independent linear effect of

the different sources of variability.

Non-normal traits

Traits can also be binary, as is the case for case control studies, or ordinal, such as

from count data, or arising from waiting times, etc. I will not delve into the details

of modelling these special cases, as they are not used in this Thesis. The rich
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generalised linear modelling framework (Nelder and Wedderburn, 1972) allows

standard inference of many types of data via the use of suitable link functions

and transformations. In short, the input space is transformed into some vector

space by calculating a sufficient statistic, and the parameters are transformed

into the same space to calculate the dot product of the two, which is then used

to score specific combinations of data and parameter values.

1.4.2 High-dimensional traits

The standard statistical models for single traits are not optimal for use in high-

dimensional traits, as these traits are usually not independent. There is additional

information present in their covariance structure. A correct model would capture

those dependencies, and allow the effects of genotype to stand out as the remain-

ing variance to be explained. If the dependencies are not observed, and thus

cannot be included in the model as covariates, they have to be included in the

model and estimated from the data. In a similar vein to single trait modelling,

the covariance between multiple traits can be modeled either by a linear (“fixed”)

effect to the mean by use of hidden variable models, or a random effect influenc-

ing the covariance matrix. Alternatively, a qualitative description of the trait

correlations is possible.

Hidden variable models

Linear hidden variable models for traits t = 1 . . . G observed in individuals i =

1 . . . N hypothesise a smaller set of K << N hidden factors X = (x1, . . .xK) that

capture much of the variability in the trait:

yt ∼ N(µt1M +
K∑
k=1

xkwk,t,Σt). (1.8)

These factors, in contrast to the covariates, are unobserved, and have to be

estimated from the data. Chapter 2 explores some of these models in greater

detail.
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Random effect model

An alternative way to include the trait covariance in the model is to introduce

an additional term that needs to be estimated:

yt ∼ N(µt1M + Ztb,Σt), (1.9)

The design matrix Zt indicates which traits are influenced by which of the

random effects b, and bi ∼ N(0, σ2
G,t).

Network models

A different approach to treating covariance between traits is looking at individual

correlations. There are many papers that establish a trait graph by introducing

a node for each trait, and an edge between nodes if some measure of correlation

or mutual information is satisfied, followed by analysing statistical properties of

the graph, its cliques, or an arbitrary subset of nodes (e.g. Zhang et al. (2010);

Zhu et al. (2008)). Such models have produced many “hairball” cover images for

journals, and (sometimes) accessible visualisation of high dimensional data (Free-

man et al., 2007). However, without an explicit generative model, they are hard

to interpret, and not used for this Thesis.

1.5 Inference for trait models

Once we have mathematically described how we believe the world works by es-

tablishing a quantitative model, and observed some data, we are ready to perform

inference of the model unknowns.

1.5.1 Frequentist inference

In frequentist inference, dominant most of the 20th century, the standard practice

is to construct estimators for parameters of interest, and test for their significance

with respect to the expectation under a background model.
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Maximum likelihood estimation

The standard estimator used is based on maximising the data likelihood under

the model. Treating the unobserved variables X as parameters, and optimising

the likelihood L or log-likelihood l of the observed data d with respect to them

gives the maximum likelihood estimates X̂:

X̂ = argmaxx∈XL(x; d) = argmaxx∈XP (D = d|X = x) (1.10)

This approach provides a point estimate of X, which has some nice proper-

ties such as consistency. The associated uncertainty (termed observed informa-

tion (Davison, 2003)) can be obtained by considering the second derivative of the

likelihood (or log-likelihood) function. If the likelihood is flat, the uncertainty

is high; if the likelihood is highly peaked, the estimate is precisely determined.

However, maximum likelihood inference is prone to undesired failure modes (some

examples are given in MacKay (2003)). It is still used in a variety of settings as it

is usually quick to calculate compared to alternatives, and behaves well in many

cases.

Significance testing

Claims about the interesting state of the world can be made by assessing how

surprised we are to see the data if the world was in fact boring. This entails

calculating a test statistic T (which can be any function of the data), and assessing

the probability of observing a value at least as extreme from a null distribution

of test statistics. The most classical approach is to consider a nested model,

where the significance of an additional parameter is assessed by the change of the

log-likelihood function. Notably,

T = 2 (l(x1, x2, ..., xN ; d)− l(x1 = 0, x2, ..., xN ; d)) (1.11)

is approximately χ2
1 distributed. Thus significance of the statistic can be quickly

assessed by determining how frequently it is observed from the parametric form

of this distribution.
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It is worth mentioning that the classical significance testing approach does

not explicitly include an alternative model. Conceptually, this is problematic for

me. I do not care about the surprise level of one model fit; instead, I want to

know what the best model describing my data is. I will not cover model selection

here, noting that the Bayesian approach of specifying a prior over models and

inferring the posterior probability of each is an appealing strategy.

Non-parametric approaches

Testing for significance of a genetic association or interaction using a standard

linear model is vulnerable to violation of any of the numerous model assumptions.

For example, when outliers are present, they are highly penalised by the normal

distribution of errors, and can give a disproportionately high test statistic. The

problem is the non-uniform distribution of p-values under the null hypothesis.

One alternative is to use a non-parametric model, that does not depend on

specific parametrised distributions. Examples of this are Spearman Rank Corre-

lation and Mann-Whitney U tests that use ranks of the data in place of actual

values.

An alternative approach does not rely on an analytical null distribution of the

test statistic. Instead, the null is constructed empirically using permutations. In

the context of association studies, one can assume the individuals are exchange-

able, and so permute the trait values between individuals, and calculate the test

statistics on the permuted values. These statistics then serve as the null distri-

bution against which the unpermuted test statistic is compared. I will use both

this and the maximum likelihood approaches in this work.

1.5.2 Bayesian inference

An alternative to significance testing is to infer the posterior distribution of the

unobserved variables. In simple cases, we can do this exactly in an analytic way.

If this is not feasible, we are left with a choice between the correct posterior to

an approximated model, or an approximate posterior to a more realistic model.
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Exact inference

In simple cases, it is possible simply to calculate the posterior P (X |D). However,

the evidence P (D) that appears in the denominator of the Bayes rule involves

integrating over all possible parameter settings, which is prohibitive in more in-

volved models. In some cases where the model is conveniently structured, the

inference can be broken up into iterative steps (e.g. Baum-Welsch estimation of

hidden Markov Model states, with biological examples in Durbin et al. (1999), or

expectation maximisation in general). However, unless the parameter optimisa-

tion problem is convex, there is no guarantee of optimal parameter finding.

Approximate inference

If exact inference cannot be performed, some of the distributions have to be

approximated. Frequently, conjugate prior distributions are chosen for computa-

tional convenience, and in general, approximations to any part of the model can

be chosen arbitrarily. However, some approaches, such as variational (mean-field)

approximations (Bishop, 2007), are more founded. In variational approximation,

the KL-divergence between the approximation and the true posterior is min-

imised. The only other underlying assumption of the variational approach is a

specific factorisation of the joint probability density. The specific forms of local

marginals can either be fixed, or derived from integrating out all the other ap-

proximate marginals from the joint distribution; a task that is easier compared

to the full problem due to the factorisation structure. Variational methods will

be used in Chapter 2.

Other approaches

A non-approximate alternative to Bayesian inference is Markov Chain Monte

Carlo (MCMC) methodology. The parameter estimates are iteratively sampled

from a proposal distribution subject to balancing constraints, and form a Markov

Chain whose asymptotic distribution is the true posterior (Davison, 2003). These

computationally intensive methods are not used in this Thesis.
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1.6 Major open questions

Given the history of trait mapping, all the questions answered, all the challenges

remaining, all the technologies becoming available, and all the computational

tools at our disposal, what are the areas ripe for advancing our knowledge?

I believe we are primed to make great advances in finding the genetic cause of

all heritable traits. We can assay genotype at an unprecedented rate, and have

amassed vast cohorts of human subjects and model organism strains. We can

assay global as well as cellular phenotypes. All the data is or will be there. I

want to use them to establish where are the trait loci, what are the functional

implications of their variation, and how does this influence disease risk in humans.

1.7 Contributions of this Thesis

In this Thesis, I attack the problem of mapping cellular traits.

In the second chapter, I develop a statistical model based on Bayesian re-

gression and factor analysis for association mapping with high-dimensional phe-

notypes. I show how accounting for global, non-genetic variance components in

the phenotype data increases power to detect genetic associations. Application

of the method on human gene expression variation data demonstrates that up to

30% of transcripts have a statistically significant association to a proximal locus

genotype, three times more than were found with a standard model.

In the third chapter, I consider mapping genetics and interactions of inferred

intermediate phenotypes. I apply a sparse factor analysis model to infer hidden

factors, which are treated as intermediate cellular phenotypes that in turn affect

gene expression in a yeast dataset. I find that the inferred phenotypes are associ-

ated with locus genotypes and environmental conditions, and can explain genetic

associations to genes in trans. For the first time, interactions between genotype

and intermediate phenotypes inferred from gene expression levels are considered

and detected, which complements and extends established results.

Then, I take another angle at mapping cellular traits. I develop a novel ap-

proach to map trait loci rapidly and in narrow intervals using massively parallel

sequencing. We created advanced intercross lines between two phenotypically

31



1.7 Contributions of this Thesis

different wild isolates of bakers yeast with sequenced reference genomes. We then

applied selective pressure on the intercross pool by growing it in a restrictive

condition to enrich for individuals with alleles that confer a positive fitness ef-

fect. Sequencing DNA from the pool before and after selection pinpoints genes

responsible for the increased fitness, or protective against reduced fitness under

stress. This novel method provides a rapid and fine scale QTL mapping strategy

improving resolution and power.

Finally, I conclude the Thesis by exploring mapping cellular traits in a series

of short studies in different organisms.
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Chapter 2

Association mapping with

high-dimensional traits

Collaboration note This chapter contains work performed in collaboration

with Dr. Oliver Stegle and Dr. John Winn for methods development, and Alexan-

dra Nica for eQTL finding in the MuTHER dataset. Oliver first established the

eQTL model used in this chapter (Stegle et al., 2008), we then expanded on this

work jointly (Stegle et al., 2010). In particular, I reimplemented and extended

the existing model to make it usable for large scale studies, applied it on various

datasets, and analysed the results. This coauthored manuscript forms the back-

bone of the chapter. Alexandra performed the eQTL calling on the MuTHER

dataset, I obtained the results presented here based on those calls. The combined

results are presented in Nica et al. (2011)

The basic principle behind association mapping with high-dimensional traits is

same as for single traits. The additional complexities arise from covariance struc-

ture between the traits or individuals, which can confound the sought signal. In

the following, we consider joint modelling of high-dimensional traits for mapping

gene expression QTLs; the same methods can straightforwardly be extended to

any high-dimensional trait.
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2.1 Expression QTLs

DNA microarray technologies allow for quantification of expression levels of thou-

sands of loci in the genome. These measurements enable exploring how a vari-

able, such as clinical phenotype, tissue type, or genetic background, affects the

transcriptional state of the sample. Recently, gene expression levels have been

studied as quantitative genetic traits, investigating the effect of genotype as the

primary variable. Studies have found and characterised large numbers of ex-

pression quantitative trait loci (eQTLs) in yeast (Brem et al., 2002) and other

organisms (Schadt et al., 2005), exploring their complexity (Brem and Kruglyak,

2005), population genetics (Spielman et al., 2007; Stranger et al., 2007) and as-

sociations with disease (Chen et al., 2008; Emilsson et al., 2008).

An important issue in such studies is additional variation in expression data

that is not due to the genetic state, as illustrated in Figure 2.1. Intracellular

fluctuations, environmental conditions, and experimental procedures are factors

that all can have a strong effect on the measured transcript levels (Brem and

Kruglyak 2005, Leek and Storey 2007, Gibson 2008, Plagnol et al. 2008) and

thereby obscure the association signal. When measured, correct estimation of the

additional variation due to these known factors allows for a more sensitive analysis

of the genetic effect. For example, in Emilsson et al. (2008), the authors reported

finding additional human eQTLs when including the known factors of age, gender,

and blood cell counts in the model. It is also standard procedure to correct for

batch effects, such as image artefacts or sample preparation differences (Balding

et al., 2003).

In practise it is not possible to measure or even be aware of all potential sources

of variation, but nevertheless it is important to account for them. Unobserved,

hidden factors, such as cell culture conditions (Pastinen et al., 2006) often have

an influence on large numbers of genes. We and others have proposed methods

to detect and correct for such effects (Leek and Storey 2007, Stegle et al. 2008,

Kang et al. 2008). These studies demonstrated the importance of accounting for

hidden factors, yielding a stronger statistical discrimination signal.

The challenge in modelling several confounding sources of variation (Fig-

ure 2.1) is to correctly estimate the contribution that is due to each one of them.
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2.1 Expression QTLs

Figure 2.1: General additive model for sources of gene expression variability.
The G × J matrix Y of measured gene expression levels of G genes from J in-
dividuals is modelled by additive contributions from components {Y(m)} and
observation noise Ψ. Here, the components capture the signal due to primary ef-
fect of the genetic state S, known factors F and hidden factors X. Some examples
of possible underlying sources of variation are given above the model boxes. The
groupings represent some standard genetic association models commonly used.

There are open questions concerning how to ensure that only spurious signal is

eliminated by methods that account for hidden factors (see for instance discus-

sion in Kang et al. (2008)), and how to deal with situations when both known

and hidden factors are present. The problem of identifying the correct causes

of the signal is even harder in the presence of additional sources of variability.

For example, when searching for epistatic or genotype-environment interactions,

the primary effects of other known factors and hidden factors also need to be

accounted for.

The key for correctly attributing expression variability is controlling the com-

plexity of the statistical models for each source of variation. For example, the

number of genotypes considered in an association scan can be enormous, and not

all of them affect the expression level of every probe. Threshold values, obtained

from likelihood ratio statistics or empirical p-value distributions, can be used to

determine the significance of individual associations, thereby avoiding overfitting

by controlling the model complexity (Lander and Botstein, 1989; Stranger et al.,

2007). Similar measures are necessary for models of other sources of variability

such as hidden factors.

In this chapter, we first present PEER (probabilistic estimation of expres-

sion residuals), a joint Bayesian framework for gene expression variability, and
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VBQTL (variational Bayesian QTL mapper) is a specific configuration of this

framework that accounts for the signal from genotype, known factors, and hidden

factors (Chapter 2.2). While previous attempts have been specific to a narrow set

of underlying sources, our approach is flexible and can be adapted to a particular

study design. The probabilistic treatment allows uncertainty to be propagated

between models, and yields a posterior distribution over model parameters. Com-

plexity control is tackled at the level of individual models, where parameters are

regularised in a Bayesian manner.

We then compare the performance of VBQTL with existing approaches for

detecting expression QTLs (Chapter 2.3). A simulation experiment contrasts

VBQTL with common approaches that use non-Bayesian techniques for distin-

guishing global hidden factor effects from genetic effects. This study highlights

differences in the methodology to control model complexity with implications to

eQTL detection power. The necessity and difficulty to account for variability

that confounds the genetic signal is demonstrated. Results on datasets from a

human outbred population and crosses of inbred yeast and mouse strains show

that VBQTL identifies more significant associations than alternative methods.

Third, we apply VBQTL to perform a whole-genome eQTL scan on the

HapMap phase 2, and MuTHER expression and genotype data, demonstrating

the scalability of our framework to large numbers of samples and probes (Chap-

ter 2.4). We find up to three times more cis eQTLs than a standard association

mapping method, suggesting more extensive genetic control of gene expression

by common variants than previously shown.

Finally, we explore applications of this model not centered on eQTL find-

ing (Chapter 2.5). We consider interpreting the inferred hidden factors to un-

derstand the main gene expression variance components in different tissues and

organisms. We also combine data from different tissues to assess the advantages

of sharing information across multiple datasets for inference.

2.2 The PEER framework

Here, we present PEER, a general framework for modelling diverse sources of

gene expression variability. The model underlying this framework assumes that
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2.2 The PEER framework

gene expression levels are influenced by additive effects from independent sources,

e.g. in the case of VBQTL these are contributions from genotype, known factors,

and hidden factors (Figures 2.1, 2.2a). We cast the full model in a probabilistic

setting, treating its parameters as random variables.

We perform Bayesian inference in the joint model, which is appealing for sev-

eral reasons. First, it allows possible dependencies between the different sources

of variation to be captured. The effects of the genotype, known and hidden

factors are learned jointly, taking other parts of the model into account. Propa-

gation of uncertainty leads to more accurate parameter estimates (Rattray et al.,

2006), and avoids possible pathologies, for instance of maximum likelihood meth-

ods (MacKay, 2003). Second, Bayesian inference allows different models to be

flexibly combined according to the needs of a particular study. Many existing

approaches can be cast as special cases of this general framework, with some ex-

amples given in Figure 2.1. Finally, the Bayesian approach leads itself to efficient

approximate inference schemes such as variational methods (Jordan et al., 1999),

rendering the resulting algorithms applicable to large-scale and high-dimensional

datasets. Also, variational learning allows an inference schedule to be specified by

the user, leading to distinct algorithms with different computational complexity

and properties (Chapter 2.2.2).

In the following, we present the mathematical model of VBQTL, and an out-

line of the inference procedure. We then describe alternative non-Bayesian models

for expression QTL studies used in the experiments. An in-depth treatment of

the framework including full details about the parameter estimation is provided

in Appendix A.

2.2.1 Model

The observed gene expression matrix Y = {yg,j} for genes g ∈ {1, . . . , G} and in-

dividuals j ∈ {1, . . . , J} is modelled by the sum of contributions Y(1),Y(2), ...,Y(M)

from M sources (in the VBQTL model, these include genotype, known and hidden

factor effects), and Gaussian noise with precisions τg for each gene g

P (yg,j | y(1)
g,j , y

(2)
g,j , ..., y

(M)
g,j , τg) = N(yg,j | y(1)

g,j + y
(2)
g,j + ...+ y

(M)
g,j ,

1

τg
), (2.1)
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(b) (c)

(d) (e)(a) Bayesian network of VBQTL

Figure 2.2: Bayesian network and outline of the inference schedule for VBQTL.
(a) The Bayesian network for the model of gene expression variation used in
VBQTL. The full model combines genetic (green), known factor (blue) and hidden
factor (red) models to explain the observed gene expression levels Y. The solid
rectangles indicate that contained variables are duplicated for each gene probe
(g), SNP (n) or factor (c, k) respectively. A similar rectangle for individuals (j) is
omitted in this representation. The dashed rectangle indicates that the variable
bn,g switches the contained part of the graph on or off representing the existence or
lack of an association. Nodes with thick outlines (sn,j, fc,j and yg,j) are observed.
(b)-(e) Update cycle of the known factors model introduced in section Inference.
The red outline highlights the parts of the model that change in a step, and the
thick blue arrows illustrate the flow of information. Details of these updates are
discussed in the text.
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with a gamma prior on the noise precisions P (τg) = Γ(τg | aτ , bτ ) (Figure 2.2a).

The Y(i) comprise the contribution of individual sources to the variability in the

observed expression levels, and are themselves treated as random variables with

different underlying models. In the VBQTL model used throughout the rest of

the chapter, three different models for sources of variability are used:

1) Genotype effect model represents the probabilistic variant of the stan-

dard genetic association model, where some of the SNP genotypes have a linear

effect on gene expression levels. The genetic component of the expression level

y
(1)
g,j of the gth gene probe in the jth individual is explained by linear effects of

the genotypes of N SNPs sj = {s1,j, . . . , sN,j} (Figure 2.2a, green plate):

P (y
(1)
g,j | sj,bg,ug, τg) = N(y

(1)
g,j |

N∑
n=1

bn,g · (un,gsn,j) ,
1

τg
) (2.2)

P (bn,g) = Bernoulli(bn,g | pass) (2.3)

P (un,g) = N(un,g | 0, 1). (2.4)

The weights ug = {u1,g, . . . , uN,g} control the magnitude of the effect of the SNP

on the expression levels of genes g. The binary variables bg = {b1,g, . . . , bN,g}
determine whether the SNP effect is significant (bn,g = true) or not (bn,g = false).

The prior probability pass of an individual association controls the complexity of

the model by influencing the a priori expected number of significant associations;

this parameter corresponds to a significance threshold in a classical setting.

To reduce the computational cost, inference in the association model is ap-

proximated, only considering a single most relevant SNP-regulator per gene, with

the other bn,g forced to 0. This bottleneck approximation ensures tractability of

the joint association model for large-scale studies, avoiding the need to track the

covariance between effects from multiple SNPs.

2) Known factor model accounts for the effect of known covariates F of

individual samples, such as environmental conditions, gender, or a population

indicator. The linear effects of C measured covariates in the jth individual,

fj = {f1,j, . . . , fC,j}, is taken into account using Bayesian regression (Figure 2.2a,

39



2.2 The PEER framework

blue plate):

P (y
(2)
g,j | fj,vg, τg) = N(y

(2)
g,j |

C∑
c=1

vg,c fc,j,
1

τg
) (2.5)

P (vg,c |αc) = N(vg,c | 0,
1

αc
) (2.6)

P (αc) = Γ(αc | aα, bα). (2.7)

Here, vg = {vg,1, . . . , vg,C} is the corresponding weight vector for each gene g.

The gamma prior on the inverse variance αc for weights of each factor introduces

automatic relevance detection (ARD) (Mackay, 1995; Neal, 1996), driving the

weights of unused factors to 0 and thereby switching them off. This provides

complexity control of the model by regularising the effective number of covariates.

3) Hidden factor model accounts for the effect of hidden factors (such as

unmeasured covariates and global effects on expression levels) on the gene expres-

sion levels. We use a probabilistic variant of the classical factor analysis model for

this task. It has been shown that this model captures hidden factors better than

alternative linear models, such as probabilistic principal component analysis or

independent component analysis (Stegle et al., 2008). Similarly to known factors,

the expression level of gene g in individual j is modelled by linear effects from a

chosen number of K hidden factors xj = {x1,j, . . . ,xK,j} (Figure 2.2a, red plate).

P (y
(3)
g,j |xj,wg, τg) = N(y

(3)
g,j |

K∑
k=1

wg,k xk,j,
1

τg
) (2.8)

P (wg,k | βk) = N(wg,k | 0,
1

βk
) (2.9)

P (xk,j) = N(xk,j | 0, 1) (2.10)

P (βk) = Γ(βk | aβ, bβ). (2.11)

Note that in contrast to the known factor model, the factor activations X =

{x1, . . . ,xJ} are unobserved random variables that need to be inferred from the

expression profiles. Again, the ARD prior switches unused factors off, thereby

providing probabilistic complexity control (Stegle et al. (2008), Chapter 2.3).
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2.2.2 Inference

Parameter inference in VBQTL is implemented using variational Bayesian learn-

ing (Jordan et al., 1999), a generalisation of the expectation maximisation al-

gorithm. An approximate Q-distribution over model parameters is iteratively

refined until convergence. In each iteration, approximate distributions of individ-

ual parameters are updated according to a specified schedule, taking the current

state of all other parameter distributions into account (Figure 2.2b-e). Choosing

an approximation that factorises over individual models, the variational update

equations have an intuitive interpretation:

1. The current belief of the residual dataset for a particular active model is

calculated, taking the prediction from all other models and the estimated

noise precision into account (Figure 2.2b).

2. The parameters of the active ith model are updated based on their previous

states and the new residual dataset (Figure 2.2c).

3. The distribution of the model contribution Y(i) is recalculated using the

updated parameter values. The global noise precisions τg are updated (Fig-

ure 2.2d) based on the first and second moments of all the contributions.

4. The same procedure is in turn applied to the remaining models in the

schedule (Figure 2.2e) until convergence.

This iterative procedure, performing updates of local parameter distributions

in turn, can be interpreted as a message passing algorithm, where sufficient statis-

tics of parameter and data distributions are propagated across the graphical

model (Winn and Bishop, 2006).

The initial values of parameters are determined from maximum likelihood

solutions. A random initialisation via sampling from the prior is possible as well;

we have not explored the implications of this alternative here. Details on inference

and the individual parameter update equations are given in Appendix A.

In experiments, we compare two alternative inference schedules of VBQTL. In

iterative VBQTL (iVBQTL), the parameters are learned using several iterations

through all model components, first updating the genetic model, then known
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and hidden factors. An important property of iVBQTL is that hidden factors are

estimated jointly with the genetic state and known factors. This choice of schedule

and the iterative learning help to ensure that variability that is due to genetic

associations is not explained away by other parts of the model (Chapter 2.3).

In cases where neither known nor hidden factors are correlated with the ge-

netic state, their effect can be learned independently without running the risk

of explaining away meaningful association signal. This motivates fast VBQTL

(fVBQTL), which performs a single update iteration of the full model, first in-

ferring the contribution from the known and hidden factors, and then from the

genetic state. This simpler schedule can save significant computation time, since

the factor effects can be precalculated, and only a single iteration of the com-

putationally more expensive genetic association model is needed. In cases where

the genetic state is approximately orthogonal to the known and hidden factors,

this cheaper approximation performs equally with iVBQTL for finding genetic

associations (Chapter 2.3).

2.2.3 Alternatives

We compared VBQTL with previous methods that account for confounding vari-

ance in the context of expression QTL mapping. Similarly to VBQTL, they model

known and hidden factors in the expression levels. The differences between the

alternative methods are in the hidden factor model used, which in turn vary

in the complexity control approach employed as highlighted below. Thus these

alternative models are named after the hidden factor estimation method.

Standard model The classical model explains the expression variability solely

by the effects of known factors and SNP genotypes, without accounting for the

hidden factors. The model is identical to that presented in Chapter 1.4.1.

PCA Principal components analysis (PCA) can be interpreted as decomposi-

tion of the gene expression matrix Y = (y1...yN) into a product UDVT , where

U is the matrix of left singular vectors, D is a diagonal matrix of singular values

λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0, and V is the matrix of right singular vectors. To apply
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PCA, we used U as the weight matrix W, and DVT as the latent factors X. For

the benchmark figures, illustrating the effect for different numbers of factors, we

limited the number of learned factors to a given number K by setting di,i = 0 for

i > K.

PCAsig PCA with significance testing (PCAsig) model is an extension of PCA,

where complexity is controlled by retaining only components that explain more

variance than expected by chance. Significance testing of PCA components in the

PCAsig model was performed analogously to SVA (Leek and Storey, 2007), but

without enforcing uniformity of the p-values. We found the variance explained

by each component i by calculating the statistic di =
λ2i∑N
j=1 λ

2
j

. We then permuted

the columns of Y L times, calculating null statistics di1, di2, ..., diL analogously.

Given a cutoff value α, component i was deemed to be significant if the fraction

of null statistics greater than di was less than α.

SVA Surrogate variable analysis (SVA) model is a further extension of PCAsig.

After applying the PCAsig model, each retained significant component is tested

for association with all the genes using a 5% FDR cutoff. For each component,

PCA is applied on the subset of genes associated with it, and the first principal

component (i.e. the mean of the gene expression values) is used as the surrogate

variable. The SVA package was downloaded from http://www.genomine.org/sva,

and applied to datasets with default parameters, using 100 permutations and

varying only the significance cutoff. The model implementation uses a Python

to R bridge provided by RPy (http://rpy.sourceforge.net), allowing to call the

original code provided by the authors.

For a quantitative evaluation of the performance of each method, we considered

the resulting residuals of the estimated effects from known and hidden factors.

To detect eQTLs we applied standard statistical tests employing a linear model

on the SNP genotype on these residual datasets (Chapter 1.4.1). For iVBQTL

and fVBQTL, we inferred the posterior parameter distributions, and subtracted

off the estimated effect of known and hidden factors. For other methods, we first

subtracted off the standard linear regression fit of the known factors, and then
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learned and subtracted off the hidden factor effects on the residuals. All these

alternative methods are also implemented in the general framework.

While VBQTL shares basic assumptions with these alternatives, there are

a number of differences. First, it is a probabilistic model that operates with

uncertainties in the parameter estimates as explained above. Second, the hidden

factor model allows for non-orthogonal components, and provides probabilistic

complexity control based on ARD. Third, the iVBQTL schedule takes the genetic

signal into account when estimating the hidden factor effect. Finally, the VBQTL

model estimates a global gene-specific noise level, while the non-Bayesian models

either estimate noise levels implicitly (SVA) or assume noise-free observations

(PCA, PCAsig).

2.3 Method comparison

We employed a simulated dataset to highlight the differences between alternative

approaches to account for global factors in eQTL finding.

2.3.1 Comparison on simulated data

Simulation setup

Our synthetic expression data combines linear effects from genetic associations

(eQTLs), known, hidden, and genetic global factors, and gene-specific noise (Ap-

pendix A). We used three known and seven unknown global factors whose influ-

ence varies significantly to simulate effects with a range of magnitudes. These

factors are meant to represent sources of confounding variation that are encoun-

tered in the study of the real datasets. We also introduced three global genetic

factors giving rise to trans eQTL hotspots, mimicking the action of a genetic

variant in a transcriptional regulator (e.g. transcription factor or pathway com-

ponent). Such loci have been observed in several eQTL mapping studies (Brem

et al., 2002; Schadt et al., 2005). We designated three genes with a simulated

eQTL as such regulators, and simulated correlated expression levels for 15% of the

genes for each. While the specific simulation scenario may be biased in the com-

parative performance of different methods, its underlying linear model is shared
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by all the considered approaches, and it gives intuition for the results on real

datasets discussed later.

Complexity control determines the accuracy of the hidden factor model.

We assessed the ability of the considered methods to recover the simulated con-

founding variability. For those approaches that do infer hidden factor effects,

we varied the corresponding complexity control parameters to investigate the in-

fluence on performance. For methods that take the number of components in

the hidden factor model as a parameter (PCA, VBQTL), performance for one

to 50 hidden factors was compared. For significance-testing based methods, we

considered different significance cutoffs α in the range [0.01, 0.5].

iVBQTL correctly captured the non-genetic global factor effects (Figure 2.3a),

as it is the only method that models the genetic signal when learning hidden

factors. All other methods treat the simulated transcription factor contributions

as confounding variation and explain them away. This can be a desired effect

when the genetic signal is not of primary interest, or a serious shortcoming when

downstream eQTLs are sought.

Complexity control settings determined the performance of capturing the sim-

ulated global effects on expression levels. PCA was most accurate when the

number of hidden factors was set to 10, since seven hidden factors and three

transcription factors were simulated. For larger number of components PCA

overfitted, and started explaining away genetic signal, resulting in the increase

in error. For a small number of components, transcription factor effects were

explained away first, which increased the error in estimating the hidden factors

alone. However, the estimates of the total global effects improved. PCAsig and

SVA found 6 and 7 significant hidden factors for the wide range of significance

cutoffs, α ∈ [0.01, 0.5], respectively. They failed to detect some of the weaker

hidden effects that continued to mask the genetic signal, and underfitted the

data. Their performance was similar to PCA with the matching number of com-

ponents. While the significance-testing based complexity control prevents these

approaches from overfitting, only a single outcome is observed for a wide range

of parameter settings, with the models settling to a rigid suboptimal solution.
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(a) Non-genetic global factor effect 
estimation error

(b) Total global factor effect estimation error

(c) Immediate (cis) eQTLs (d) Downstream (trans) eQTLs

Figure 2.3: Sensitivity of recovering simulated hidden factor effects and eQTLs
for Bayesian and non-Bayesian methods. (a) Mean-squared error in estimating
only the hidden factor contribution. Methods that do not explicitly retain the
genetic factors explain them away as hidden global factors, resulting in high error
comparable to not accounting for hidden factors at all (Standard). (b) Mean-
squared error in estimating the contribution from hidden and genetic factors.
(c) Sensitivity of recovering immediate SNP associations. (d) Sensitivity of re-
covering downstream associations. Seven hidden factors and three transcription
factor effects were simulated. For eQTL sensitivity, standard eQTL finding on
simulated data (Standard) and same data without the hidden effects (Ideal) are
included as comparisons. PCAsig and SVA identified a constant number of hidden
components (marked with a diamond shape), thus only a single result (dashed
line) is given.
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fVBQTL achieved the most accurate estimation of global variation. Notably, un-

like PCA, its performance did not degrade for large numbers of hidden factors in

the model, exhibiting good complexity control in this scenario.

Hidden factor effect estimation accuracy is mirrored in eQTL finding

sensitivity.

We determined the sensitivity and specificity of the considered methods for de-

tecting the immediate and downstream simulated genetic associations. The sig-

nificance of an eQTL was tested using a two-sided t test on the correlation coeffi-

cient with a 0.1% Bonferroni corrected per-gene false positive rate in the genetic

association model. The results when calling eQTLs using regression on ranks,

or permutations to establish the empirical null distribution of LOD scores were

almost identical. As a benchmark, the comparison includes eQTL finding using

the standard method on both raw expression data (Standard), and an ideal case,

where the simulated hidden factor effects are removed, but the simulated genetic

factors maintained (Ideal).

The accuracy of the hidden factor effect estimation mirrored the immedi-

ate eQTL finding sensitivity (Figure 2.3c). The specificity was consistent with

the chosen false positive rate for all methods (data not shown). fVBQTL and

iVBQTL recovered more true cis eQTLs compared to other methods, approach-

ing the performance of the ideal case, mirroring the accuracy of estimating hidden

factor effects. PCA overfitted when the number of components used was greater

than the true number of ten simulated global factors, explaining away genetic sig-

nal. While the PCA error for detecting global effects increased only marginally,

the decrease in sensitivity for identifying eQTLs was severe. The overfitting in

case of PCA, and underfitting in case of PCAsig and SVA both resulted in a loss

of sensitivity to find the simulated cis associations. fVBQTL and iVBQTL did

not suffer from either deficiency, capturing nearly all the associations possible in

the ideal case.

All methods except iVBQTL and standard method explained away simulated

trans eQTL hotspots (Figure 2.3d). This is due to the global factor effect es-

timation accuracy, where iVBQTL alone refrained from explaining the hotspots

away as a global factor. The standard method found nearly all the original
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trans associations, actually outperforming methods that explain away confound-

ing variability. Thus, in cases where there is true genetic signal with widespread

downstream effects, its contribution needs to be taken into account to retain

its relation to genotype, and avoid attributing it to a confounding global cause.

This is straightforward in our framework, and is demonstrated by the good per-

formance of iVBQTL in this scenario. iVBQTL retained the original associations,

while explaining away non-genetic causes of expression variability, thus adding

power to detect the weaker, masked eQTLs. This effect is also observed in the

study of crosses of inbred strains below.

Taken together these results suggest that it is important to account for the

confounding sources of variation in expression levels, while keeping the signal

of the genetic state. Correct complexity control is required to avoid over- and

underfitting in order to achieve optimal sensitivity for detecting true genetic as-

sociations.

2.3.2 Comparison on real data

Next, we compared the same methods for expression QTL finding on yeast (Brem

and Kruglyak, 2005), mouse (Schadt et al., 2005), and human (Stranger et al.,

2007) datasets. These represent common study designs of an outbred population

(human), and a population of crosses between inbred strains (yeast, mouse). We

considered 5, 15, 30, and 60 hidden factors for PCA and VBQTL, and 0.01, 0.1,

and 0.3 as significance cutoffs for SVA and PCAsig. Expression QTLs were

detected using a two-sided t test analogously to the simulation scenario. Again,

results for alternative genetic association tests were similar (data not shown).

Accounting for hidden factors helps to detect additional cis eQTLs in

an outbred population

We applied the considered methods on the genotype and expression data from 90

individuals of the CEU (CEPH from Utah) HapMap phase 2 samples (Stranger

et al., 2007; The International HapMap Consortium, 2005). The data consisted of

genotypes of 55,000 SNPs and expression levels of 618 probes from chromosome

19 (results for three more chromosomes were similar, data not shown). The
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Figure 2.4: Number of probes with an eQTL found as a function of maximum
number of hidden factors for three previously published datasets. Significance-
testing based methods (PCAsig, SVA) identified the same number of factors for
a wide range of cutoff values (α ∈ [0.01, 0.3]), thus only a single count is given
(dashed lines), together with the number of factors found (diamond shape). Other
methods were applied with a maximum number of 5, 15, 30 and 60 hidden factors.
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expression levels were measured in EBV-transformed lymphoblastoid cell lines of

healthy individuals. The gender covariate was included as a known factor for all

methods. We did not consider probes with overlapping SNPs. Following Stranger

et al. (2007), an association was called to be in cis when the SNP was within

1Mb from the probe midpoint and in trans otherwise.

The standard method found the least gene probes with a cis association (20,

Figure 2.4c), suggesting that strong confounding sources of variation are present

in this dataset. The number of identified probes with a trans association was not

significantly higher than expected by chance at the chosen FPR, which is in line

with previous results (Stranger et al., 2007), and suggests little intrachromosomal

trans regulation.

PCA, the simplest method for accounting for hidden factors, found additional

associations when up to 30 principal components were used, but substantially

fewer for 60 components. This is expected, since there are no more than 90

degrees of freedom in this dataset, and 60 principal components accounted for

over 94% of the variance (Table B.6), and hence PCA is likely to explain away

part of the genetic association signal for large numbers of components.

The significance-testing based methods, SVA and PCAsig both found ad-

ditional associations compared to the standard method. It is remarkable that

both found a constant number of significant hidden factors for the wide range

α ∈ {0.01, 0.1, 0.3} of significance cutoffs considered, again exhibiting rigid com-

plexity control. The performance of SVA with the 12 hidden factors found is

close to performance of PCA with 15 components (both find 38 probes with an

association). Similarly, PCAsig with the 7 significant components performs com-

parably to PCA with 5 components (37 vs. 35 probes with an association). This

shows the intrinsic similarity of these methods to PCA, as was also observed in

the simulation scenario.

fVBQTL and iVBQTL found more probes with an association (55 and 54)

than all other methods, representing an almost threefold increase in the number

of genes with a cis eQTL. Complexity control assured that the performance sat-

urated for large enough number of factors and did not degrade as for PCA. None

of the estimated hidden factors was significantly correlated to a SNP genotype,
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suggesting that individual genetic variants do not have global effects on many

gene expression levels in this dataset.

It is important to note that the model performance depends on two aspects.

First, the model complexity control, regulating the amount of variance explained,

is important to ensure that genetic signal is not attributed to hidden factors.

Overfitting in case of PCA for a large number of components is an example of

such an effect. Second, while alternative hidden factor models explained simi-

lar amounts of variance, their performance differed due to the underlying model.

For example, PCA and fVBQTL both explained about 70% of variance in the

observed expression levels (Table B.6) yet fVBQTL identified additional asso-

ciations. These findings are consistent with the simulation study results, and

suggest that the additional associations found with Bayesian models are due to

differences in the underlying model and complexity control.

Accounting for hidden factors adds power to detect cis associations in

crosses between inbred mouse and yeast strains.

Next, we applied the methods to two datasets of inbred strain crosses. The yeast

expression dataset (Brem and Kruglyak, 2005) (GEO (Barrett et al., 2009) ac-

cession GSE1990 with genotypes provided by authors) contained 7084 expression

measurements and 2925 genotyped loci in 112 crosses of segregating yeast strains.

The mouse expression data consisted of 23,698 expression measurements for 111

F2 mouse lines, and genotypes at 137 genetic markers. An association was called

to be in cis if the probe and the genotyped locus were from the same chromosome,

and in trans otherwise.

The relative performance of different methods was similar to their ability to

detect cis eQTLs in the outbred population dataset (Figures 2.4a, 2.4b). The

absolute performance gain was significantly lower for all methods, however. This

finding suggests that the genetic signal is stronger compared to confounding

sources of variation, which is not unexpected from the study design. All fac-

tor methods identified additional associations compared to the standard method.

PCA overfitted for larger numbers of principal components used, explaining away

genetic association signal. SVA and PCAsig found the same number of signifi-

cant hidden factors for a range of significance cutoffs considered, exhibiting little
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flexibility. Again, their performance was similar to extrapolation of PCA results

with matching numbers of effective components. fVBQTL and iVBQTL found

additional genetic associations in cis compared to the standard model and other

methods for accounting for confounding variance, as observed in simulations and

human dataset. Summary statistics for the method performance can be found in

tables B.6 to B.8.

Iterative learning with iVBQTL overcomes difficulties in detecting

trans associations for crosses of inbred strains.

All methods found additional trans associations in mouse, but fewer than the

standard method in yeast (Figure 2.4d, 2.4e). In yeast, the more variance was

explained by the hidden factors, the fewer trans eQTLs were found, suggesting

that the global determinants of gene expression variation were correlated with

the genetic state. Indeed, the inferred hidden factor levels were correlated with

genotypes of “pivotal loci” that are associated with expression levels of hundreds

of genes.

The effect of pivotal loci has been observed before, and interpreted in different

ways (Kang et al., 2008; Leek and Storey, 2007). It could be that the additional

variation is artefactual, and correlated to the genetic state by chance. In this

case, all the original trans associations are spurious. The alternative explanation

is that the genotype of these loci have real downstream effects on the expression

profiles of very many genes. In this case the variance is not confounding the

genetic signal, but in fact is a part of it, and hence should not be explained away.

Previous methods do not provide consistent ways of dealing with this issue.

The SVA authors also suggest to remove the effect of the primary variable first.

However, the authors do not consider accounting for the genetic effect in their

application to the same yeast dataset (Leek and Storey, 2007). Kang et al. (2008)

also explain away trans associations when applying their correction procedure.

We provide a principled approach for dealing with this situation and show its

merit. The iVBQTL scheduling takes the genetic state into account while learning

the hidden factors, and as a consequence is more sensitive to genetic associations.
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2.4 Expression QTL mapping in large human

populations

After confirming that our method works on simulated data, and comparing per-

formance on different small scale real datasets, we analysed several human large

scale expression datasets in depth.

2.4.1 HapMap phase 2 dataset.

Motivated by the results of the initial study of a single human chromosome,

we applied fVBQTL, learning 30 hidden factors, to the 10,000 most variable

expression probes of the HapMap 2 dataset. We searched for cis eQTLs in the

original expression data (standard eQTLs) as well as the residuals of fVBQTL

(VBeQTLs), using a 2-tailed t test with 0.1% Bonferroni-corrected per-gene FPR

to assess the significance of association.

VBQTL increases power threefold

On the CEU population, we found 1051 genes with a VBeQTL at false discovery

rate (FDR) of 0.9%, and 382 genes with a standard eQTL at FDR of 2.6% (Fig-

ure 2.5). This result corresponds to nearly a threefold increase in the number of

genes with an association, and is consistent across chromosomes. A similar in-

crease in the number of associations was found for other populations (Table B.1).

We repeated this genome-wide experiment on pooled populations. Due to the

increased sample size, it was possible to detect additional associations. We found

2696 genes with a VBeQTL compared to 1045 genes with a standard eQTL at the

0.1% FPR (Figure 2.6a). The VBeQTLs in the pooled sample cover 27% of all the

considered probes, suggesting that the number of human genes whose expression

levels are affected by common cis-acting genetic variation may be significantly

higher than previously shown (Stranger et al., 2007; Williams et al., 2007). This

additional abundance of associations suggests that detection of cis eQTLs has

not been saturated and larger sample sizes may lead to evidence of even more

extensive cis regulation by common polymorphisms.
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Figure 2.5: Fraction of tested genes with a cis association in individual chromo-
somes for the HapMap CEU population (FPR=0.1%).

Exploratory results indicate additional power to find trans eQTLs without

explaining away eQTL hotspots (Table B.4). These should be interpreted with

caution due to very stringent requirements for multiple testing correction, how-

ever.

Additional associations are due to increased sensitivity.

It is important to demonstrate that the additional associations found after re-

moving the learned non-genetic factors are biologically meaningful. We provide

evidence that the additional associations found in HapMap phase 2 data are real

in three ways.

First, we investigated how many of the genes with a VBeQTL in each of

the three populations individually were replicated using the standard method

on a pooled data set containing all populations. Note that this will only vali-

date weak associations that occur in multiple populations – we would not expect

weak population-specific associations to be replicated in the pooled data set.

However, we expect many of the associations to be replicated in multiple popu-

lations (Stranger et al., 2007). A total of 63% of all and 46% of the additional
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Figure 2.6: Validation of VBQTLs by comparison to standard eQTLs.
(a,b,d,e) Venn diagrams depicting overlap of probes with a standard eQTL or
VBeQTL in the CEU population and probes with an eQTL in other populations.
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2.4 Expression QTL mapping in large human populations

associations found in the CEU population were recovered using the standard

method in the pooled population (Figure 2.6b). The remaining additional associ-

ations may be explained by even weaker signals that were recovered by applying

fVBQTL, or as population-specific effects that do not stand out in the pooled

sample. Analogous overlaps were found when excluding the CEU population

from the pooled analysis (Table B.3).

Second, we evaluated to what extent the additional genes with a VBeQTL in a

single population were replicated in other populations. For instance, 56% of genes

with a CEU VBeQTL were replicated on the YRI population (Figure 2.6d), and

68% on the CHB+JPT population (Figure 2.6e). These overlaps are consistent

with overlaps of standard eQTLs, and are similar for other populations (Ta-

ble B.2), and alternative methods accounting for hidden factors.

Finally, we validated that the locations of the novel associations are dis-

tributed similarly to the original ones. We analysed the distribution of the posi-

tion of additional cis associations around the gene start along with the association

LOD scores. The additional VBeQTLs have very similar characteristics to the

standard eQTLs, being concentrated around the gene start (Figure 2.6c, 2.6f), in

line with results from Stranger et al. (2007).

2.4.2 The MuTHER study

The MuTHER (Multiple Tissue Human Expression Resource) project is a large

scale collaboration that seeks to understand genotype, gene expression, methyla-

tion, and disease phenotype variation (Nica et al., 2011). Over 800 individuals (a

mixture of monozygotic and dizygotic twins from the TwinsUK cohort (Spector

and Williams, 2006)) have donated blood, fat, skin, and in some cases muscle,

samples to the project. In the following, I will discuss some of the analysis aspects

of the pilot gene expression data. These data include gene expression measure-

ments from fat, skin, and LCLs for about 160 individuals and 27,000 probes.

We sought to find expression QTLs in multiple tissues by applying the Bayesian

factor analysis model of PEER to the tissue gene expression data.
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2.4 Expression QTL mapping in large human populations

Fitting hyperparameters to maximise consistency

In the studies of HapMap samples, we varied the number of latent factors as the

only free parameter. Here, we also varied the ARD hyperprior, as well as noise

prior, to sensitively adjust how much gene expression variability is explained by

the hidden factors.

The parameters of the inverse variance prior have a natural interpretation

in the context of exponential family models. The conjugate prior is Γ(a0, b0)

distributed, where a0 and b0 correspond to the sum and effective number of prior

observations, respectively (Davison, 2003). We varied the prior mean a0
b0

from

10−6 to 10−2, and the number of observations b0 from 10−3N to N (where N is

the number of observations in data) for both weight and noise precision prior,

and learned 120 latent factors.

To choose the best parameter settings, we used the fraction of overlap be-

tween eQTLs found in co-twins as the objective function to optimise. The study

cohort has a natural structure of paired twins. We called eQTL sets Q1 and Q2

(Alexandra Nica, require 10−3 nominal Spearman Rank Correlation p-value) in

the sets of “first” and “second” twins in a twin pair, and calculated the Jaccard

index J(Q1, Q2) = |Q1∩Q2|
|Q1∪Q2| between them, as well as the fraction of residual vari-

ance remaining for each parameter setting after subtracting off the factor analysis

model contribution.

We found a broad peak of parameter settings that produced a similar fraction

of variance explained and eQTL overlap (Figure 2.7a). This confirms that the

method is robust to a wide range of parameter settings, spanning many orders

of magnitude. Furthermore, the overlap of eQTLs between co-twins was a very

good predictor of total findings (Figure 2.7b), motivating the choice of highest

overlap fraction from another angle.

Many more QTLs are found

We found many eQTLs in the three tissues (Figure 2.7c). The properties and

overlaps of these are discussed in other work (Nica et al., 2011). The relatively

low number of discoveries in skin is likely due to poorer quality RNA. There is

no relation between the overall expression level or the weight of RNA integrity
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2.4 Expression QTL mapping in large human populations

Figure 2.7: eQTL finding results on the MuTHER dataset. (a) Overlap of co-twin
eQTLs as a function of variance explained by the factor analysis model (b) Cor-
relation of co-twin eQTL overlap and total number of discoveries (c) Total num-
ber of discovered eQTLs in the three tissues with standard model and VBQTL
(LOD>5) (d) Difference in number of discoveries between standard model and
VBQTL as a function of significance cutoff.
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2.4 Expression QTL mapping in large human populations

number (RIN) on the expression level in a linear model and the frequency of eQTL

discovery. In addition, we could interpret some of the broad variance components

in the skin and fat tissue (Chapter 2.5 below).

As an additional quality control, we tested whether VBQTL increases discov-

eries at all significance cutoffs. If a lot of discoveries are made at lenient cutoffs,

it would indicate a large fraction of likely false positives, and problems with the

model. However, we found that VBQTL finds additional eQTLs only at relatively

high cutoffs (− log10 p > 5, Figure 2.7d), confirming that our approach does not

indiscriminately amplify all signal.

2.4.3 The 1000 Genomes low coverage pilot

Some of the HapMap phase 2 unrelated individuals have been sequenced at low

coverage genome wide as part of the 1000 Genomes Project (Consortium, 2010).

It is interesting to test whether the availability of genotypes at all loci increases

power to detect eQTLs.

We used the expression and genotype data for the 43 CEU, 42 YRI, and

59 CHB+JPT indviduals for whom we have the expression and genome sequence

data. We filtered the HapMap 2 genotypes to 317,000 to 1,000,000 polymorphisms

assayed by standard Illumina genotyping chips (designated 317K, 610K, and 1M),

and also included the 1000 Genomes genotypes (1000G) at all loci called from

sequencing data.

We then searched for eQTLs in a 50kb window centered around the expression

probe independently for each population and genotype dataset. We used Spear-

man’s Rank Correlation coefficient as a test statistic, and assessed its significance

by performing 20 permutations of the entire analysis to obtain a genome-wide sig-

nificance cutoff corresponding to 5% false discovery rate. Both standard eQTL

model on original data (Standard) and same approach on residuals of the PEER

factor analysis model (VBQTL) were assessed.

Consistent with previous experiences, we found additional eQTLs using ex-

pression residuals from PEER (Figure 2.8). More interestingly, we observed an

increase in the number of discoveries using the full genetic background. For pop-

ulations that are relatively well represented in the genotyping chips used (CEU,
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Figure 2.8: eQTL finding results on the HapMap2 dataset with 1000 Genomes
genotypes. Number of eQTLs in three different populations as well as combined
population significant at 5% FDR using the standard eQTL model (Standard),
and residuals from PEER factor analysis model (VBQTL). Spearman’s Rank
Correlation was used as a test statistic, with genome-wide significance cutoff
determined from permutations. Appropriate covariates for gender and population
were included in the models.
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CHB+JPT), the increases were low, while for a genetically more diverse popu-

lation (YRI) as well as the full combined population with more power to assess

significance of rarer alleles, the number of discoveries increased by 30 and 10%,

respectively. We expect the genotypes of low frequency alleles to be even more

beneficial in larger cohorts, where they are assayed in sufficient numbers to reli-

ably test their effect on gene expression levels.

2.5 Interpretation of learned hidden factors.

The hidden factor models hypothesise a set of unobserved non-genetic factors that

influence the measured gene expression levels. To gain insights into their inter-

pretation we considered correlations to known effects such as gender, population

or environment, and the sets of genes most influenced.

Human panels. We applied fVBQTL to expression data from individuals of

all three HapMap populations, and tested for correlation between the inferred

hidden factors and the population and gender indicator variables. The resulting

correlation coefficients (Table B.5) indicate that many of the learned latent causes

are correlated with population and that one is strongly correlated with gender.

This implies that the hidden factor model can recapture variance in the gene

expression levels due to true underlying properties of individuals. However, none

of the global factors learned in one population was correlated with any single

SNP genotype.

We could not attribute any variance to the same causes in the MuTHER LCL

expression data, as all samples came from women in one population. However,

in other tissues, we could link some of the largest variance component to a single

trait. In the fat tissue, the individual body mass index was correlated with the

second inferred factor (Pearson’s r2 = 0.27). This is not unexpected, as obesity-

related traits, including body mass index, have been shown to be correlated to

many gene expression levels (Emilsson et al., 2008). The strongest influence

on the MuTHER skin tissue gene expression data was RNA integrity number

(RIN), which was correlated with the first inferred factor (Pearson’s r2 = 0.37).

Many samples had low quality total skin RNA, due to the aggressive extraction
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procedures needed to isolate RNA from the resistant skin tissue. Low RNA

quality implies degradation of RNA molecules among other effects, which has a

broad effect on many gene expression levels, and was captured with an inferred

latent factor.

Crosses of yeast strains A recent study in yeast looked for changes in eQTLs

when segregating strains were grown in different media (Smith and Kruglyak,

2008). We applied fVBQTL to the expression data of this study (GEO accession

GSE9376), without including any information about the growth condition. The

first hidden factor learned was highly correlated with the indicator variable for

the growth condition (r2 = 0.96), demonstrating that the VBQTL model can

successfully recover a strong environmental effect if it is present.

The global factors identified can be further analysed for biological signals,

looking for GO term over-representation in the genes that they affect. We used

the ordered GO profiling method (Reimand et al., 2007) to find significantly

enriched GO categories for the 30 genes most affected by each factor. Recent

results (Biswas et al., 2008) show that related linear Gaussian models find bi-

ologically relevant factors in the yeast expression dataset. We replicated these

findings with our model, yielding factors enriched in biological functions, includ-

ing sugar, alcohol and amino acid metabolic processes. Similar analysis in human

and mouse did not show significant over-representation of GO categories, provid-

ing no evidence that the main axes of variation in the expression levels for these

experiments are due to variation in common biological function. This could be

due to poor GO annotation of the genes, gene features not related to GO biolog-

ical function, or more technical sources of global variation, such as cell culture

conditions (Pastinen et al., 2006).

2.6 Discussion

We have presented VBQTL, a probabilistic model to dissect gene expression vari-

ation in the context of genetic association studies. The model is implemented in a

Bayesian inference framework that allows uncertainty to be propagated between
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different parts of the model, and yields posterior distributions over parameter es-

timates for more sensitive analysis. In comparative eQTL mapping experiments,

VBQTL outperformed alternative methods for eQTL finding on simulated and

real data. In the most striking example, VBQTL found up to three times more

eQTLs than a standard method, and 45% more compared to the best alternative

in the HapMap 2 expression dataset.

Our approach advances the methodology for understanding phenotypic vari-

ation. The implementation of a flexible framework allows models for explaining

the observed variability to be straightforwardly combined. Notably, non-Bayesian

models can also be included, as we demonstrated with PCA, SVA, and linear

regression models. VBQTL controls the model complexity at the level of all in-

dividual components of expression variability, thereby preventing from over- and

underfitting. Our experimental results on simulation and real data showed how

explaining away too much variability removes some signal of interest from the

data, and failing to account for all sources of confounding variation decreases

power to detect the relevant signal. When the variable of interest is correlated

with many gene expression levels, its effect can be falsely explained away by the

hidden factor model. We showed that in such settings the choice of an iterative

schedule helps to ensure that variability is explained by the appropriate part of

the model. There can be no silver bullet solution that provides perfect results in

any scenario with no supervision. Instead, modelling assumptions must be made

explicit, and incorporated in the analysis, as is elegantly done in the Bayesian

setting.

VBQTL and other methods that account for hidden factors all found addi-

tional expression QTLs in the datasets studied compared to the standard method.

It is remarkable that, with only 270 samples, and looking in one tissue type, we

can find significant genetic associations to 27% of the expressed genes. The repli-

cation of the additional associations in different populations suggests that they

are genuine. The increase in power is due to the hidden factor model, which ex-

plains away unwanted non-genetic variability, thereby allowing the genetic effects

to stand out to a greater extent. The high number of additional associations

suggests that association finding studies in human have not saturated, and we

expect the fraction of genes with an eQTL will increase further as the number
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of samples grows. It may be that the expression of the majority of human genes

varies as a result of segregating genetic variation. While previous studies have

reported only 12% of heritable variation to be due to cis variants (Price et al.,

2008), this does not contradict the presence of weak cis eQTLs for a large fraction

of the genes.

In conclusion, we believe that VBQTL provides a principled and accurate way

to study gene expression and other high-dimensional data. Increasingly complex

models combining genetic and other effects can explain significantly more of the

variance in observed phenotypes, as suggested by this study and others. Our

general framework provides the flexibility to facilitate these richer models, for

example, we have already started exploring interaction effects as an additional

model of the framework. It will be interesting to see how these approaches can

contribute to our understanding of human disease genetics, potentially involving

intermediate phenotypes such as gene expression and other factors.

The software used in this study is freely available online at http://www.

sanger.ac.uk/resources/software/peer/.
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Chapter 3

Genetic mapping with inferred

traits

Collaboration note

This chapter contains work performed in collaboration with Dr. Oliver Stegle and

Dr. John Winn for methods development. Oliver developed and implemented the

sparse factor analysis model used in this chapter (Stegle et al., 2009), we then

expanded on this work jointly (Parts et al., 2011). In particular, I applied the

factor analysis model to simulated and real data, and performed the analyses of

the results, including all association and interaction mapping. The coauthored

manuscript forms the backbone of the chapter.

Expressing RNA molecules is a highly regulated process that depends on

activations of specific pathways and regulatory factors. Such state of the cell is

hard to measure (Chapter 1.3.1), making it difficult to understand what drives

the changes in the gene expression. To close this gap we apply a statistical model

to infer the cell state variables, such as activations of transcription factors and

molecular pathways, from gene expression data. We demonstrate how the inferred

state helps to explain the effects of variation in the DNA and environment on

the expression trait via both direct regulatory effects and interactions with the

genetic state. Such analysis, exploiting inferred intermediate phenotypes, will aid
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understanding effects of genetic variability on global traits, and help to interpret

the data from existing and forthcoming large scale studies.

3.1 Expression analysis with cellular traits

Gene expression levels are determined by the state of the cell, as well as geno-

types of the gene regulatory regions. A correct model for gene expression should

incorporate both effects.

Context-dependent genetic effects

Locus effects in isolation are not sufficient to account for gene expression variabil-

ity (see also Chapters 1.2.2 and 1.3.2). Environment and intermediate cellular

phenotypes (e.g. transcription factor or pathway activation) can and do have

large effects on the measured transcript levels (Brem and Kruglyak, 2005; Gibson,

2008). To understand the genetics of gene expression, we must therefore analyse

the consequences of genetic variants in the context of these other factors. Studies

in segregating yeast strains have investigated epistatic interactions (Brem and

Kruglyak, 2005; Storey et al., 2005), recovering interactions with genotypes of a

few major transcriptional regulators. Large scale efforts to map functional epista-

sis between genes are currently underway with promising initial results (Costanzo

et al., 2010). A recent study also searched for genotype-environment effects, and

found many gene expression levels affected by an interaction between the en-

vironment and the genotype of a major transcriptional regulator (Smith and

Kruglyak, 2008). However, much remains to be done in this area. While gene

expression has been used as an intermediate phenotype to study the genetics of

global traits (Schadt et al. 2005, Emilsson et al. 2008, Chen et al. 2008), genetics

of gene expression itself has not been considered jointly with relevant cellular

phenotypes such as pathway or transcription factor activations. This is an im-

portant gap. It is the state of the cell that determines how genetic variation

can affect the gene expression levels, thus a joint analysis with the intermediate

phenotypes should inform us about the mechanisms involved – a crucial step for

understanding the causes of phenotypic variability.
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Inferring unmeasured cellular traits

Despite their importance, the intermediate phenotypes are usually not measured,

thus genetic effects cannot be analysed in their cellular context. Fortunately, sta-

tistical approaches have been developed that allow inferring unmeasured factors

which influence expression levels from expression data alone. Methods such as

principal components analysis (Alter et al., 2000), network components analy-

sis (Liao et al., 2003), surrogate variable analysis (SVA, Leek and Storey, 2007),

independent components analysis (Biswas et al., 2008), and the PEER frame-

work (Chapter 2) can be used to determine a set of variables that explain a part

of gene expression variability with (usually) a linear model. Their application has

been shown to increase power to find expression quantitative trait loci (eQTLs)

by explaining away confounding variation (Leek and Storey, 2007; Stegle et al.,

2010), and to yield variance components of the expression data that may be

interpretable (Stegle et al., 2010).

Our approach

Here, we perform a thorough joint genetic analysis of a gene expression dataset

with intermediate phenotypes inferred from gene expression levels. We revisit

the data of Smith and Kruglyak (Smith and Kruglyak, 2008), where the authors

looked for gene-environment interactions affecting gene expression levels in a pop-

ulation of segregating yeast strains grown in two different carbon sources. First,

we use a variant of a sparse factor analysis model (Rattray et al., 2009; Stegle

et al., 2009) to infer intermediate phenotypes from the gene expression levels (Fig-

ure 3.1a). Importantly, this method uses prior information to guide the inference

of which factors are affecting which genes, as opposed to unsupervised methods

(e.g. PEER, SVA, ICA) that learn broad effects. We use Yeastract (Teixeira et al.,

2006) transcription factor binding and KEGG (Kanehisa et al., 2002) pathway

data as prior information in the model, which allows the inferred phenotypes to

be interpreted as transcription factor and pathway activations. We then analyse

the variation in the learnt activations, and find that growth condition and segre-

gating locus genotypes have a strong influence (Figure 3.1b). Finally, for the first
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Figure 3.1: Analysing genetic effects in the context of intermediate phenotypes
using PHO4 as an example. (a) Intermediate phenotypes are learnt from expres-
sion levels using prior information from Yeastract database on the targets of the
factor. The highlighted genes are known targets of PHO4. These activations are
learned jointly for all factors. (b) The variation in intermediate phenotypes can
be explained by locus genotypes or the growth condition of the segregants. For
most loci (greyed out), the genotype is uncorrelated with the factor activation
level. For the PHO84 locus at chrIII-46084, not greyed out and indicated by ar-
row, it is correlated. The plot at right shows the distribution of factor activations
stratified by genotype at this locus. (c) Some genotypes show a statistical inter-
action with the inferred intermediate phenotype affecting gene expression levels,
in this case YJL213W. See also Figure 3.3.

68



3.2 Model of expression with unmeasured traits

time, we consider genotype-dependent effects of the inferred intermediate phe-

notypes. We find genetic interactions with the inferred phenotypes that affect

gene expression levels (Figure 3.1c), and identify hotspots in the genome that

show an excess of these interactions. We show that many genotype-environment

interactions are captured with the estimated intermediate phenotype, helping

to interpret the environmental effect, and generate plausible, testable hypothe-

ses for the mechanisms of several determined interactions. We propose that as

pathway and transcription factor target annotations improve, our approach will

produce even more useful intermediate traits that should be included in analysis

and interpretation of high-throughput gene expression data.

3.2 Model of expression with unmeasured traits

We used a joint model of genotype and unmeasured trait effects on gene expression

data, and used a two-stage inference procedure to estimate the individual effects.

3.2.1 Statistical model

The statistical model underlying our analysis assumes that the gene expression

levels are influenced by effects of locus genotypes, intermediate factors, and inter-

action effects between them. These effects jointly influence expression variability

in an additive manner, resulting in a generative model for expression yg,j of gene

g in individual j of the form:

yg,j = µg +
N∑
n=1

θg,nsn,j︸ ︷︷ ︸
SNP effect

+
K∑
k=1

wg,kxk,j︸ ︷︷ ︸
factor effect

+
K∑
k=1

N∑
n=1

φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term

+ψg,j. (3.1)

Here, µg is the mean expression level, ψg,j the residual expression, and θg,n denote

the weights of genotypes of SNPs sn,j. The activations xk = {xk,1, . . . , xk,J} of

K intermediate factors are modelled as unobserved latent variables that linearly

influence gene g with weights wg,k. Finally, the strength of interaction effects

between factor k and SNP n is regulated by the interaction weights φg,k,n.
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3.2 Model of expression with unmeasured traits

On a second level of the model, the latent factor activations xk may themselves

be associated to the genetic state. Again assuming a linear model, these relations

are cast as

xk,j = µk +
N∑
n=1

βk,nsn,j︸ ︷︷ ︸
SNP effect

+εk,j, (3.2)

where βk,n is the association weight and ψk,j denotes the observation noise.

While appealing because of its generality, it is hard to perform joint parameter

inference in the model implied by Equations (3.1) and (3.2). Here, we follow a two-

step approach that yields tractable inferences and allows for statistical significance

testing of the relevant factors contributing to the total gene expression variability

(Equation (3.1)).

1. Factor inference: The latent factors X = {x1, . . . ,xK} and weights W =

{wg,k} are inferred from the expression levels alone, not taking the effects

of SNPs sn,j via association and interaction into account.

2. Association and interaction testing: Significance of associations of

factors to SNPs (Equation (3.2)) and SNP-gene-factor interaction terms

(Equation (3.1)) are tested conditioned on the state of the inferred factors.

In this scheme, the factor inference is approximated as the contribution of direct

SNP effects and interactions is not taken into account while learning. In this

context, this approximation is well justified because of the relative effect sizes.

The total variance explained by the interactions is small compared to the direct

factor effects. If necessary on other datasets, this step-wise procedure could also

be iterated, refining the state of the inferred factors given the state of associations

and interactions.

3.2.2 Trait inference

Factors are inferred using a sparse Bayesian factor analysis model (Rattray et al.,

2009; Stegle et al., 2009), presented here for completeness. Starting from the full

model in Equation (3.1), the terms for direct genetic associations and interac-

tions are dropped. The remaining factor model explains the expression profile
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3.2 Model of expression with unmeasured traits

yj = (y1,j, . . . , yG,j)
T of the G genes for segregant j by a product of activa-

tions xj = (x1,j, . . . , xK,j)
T of the K factors, and the G times K weight matrix

W = (w1, . . . ,wG) and per-gene Gaussian noise ψ = (ψ1, ...ψG)T

yg,j = wg · xj + ψg. (3.3)

The expression data Y is observed, and all other variables are treated as ran-

dom with corresponding prior probabilities. The indicator variable zg,k encodes

whether factor k regulates gene g (zg,k = 1) or not (zg,k = 0).

P (wg,k|zg,k = 0) =N(wg,k ; 0, σ0)

P (wg,k|zg,k = 1) =N(wg,k ; 0, 1) (3.4)

The width σ0 of the first Gaussian is small, driving the weight to zero. In ex-

periments, we used σ0 = 10−4. This existing knowledge about whether a factor

affects a gene, extracted from KEGG or Yeastract, is then encoded as a Bernoulli

prior on the indicator variables zg,k.

πg,k = P (zg,k = 1) =

{
η0 no link
1− η1 link

. (3.5)

The variable η0 can be thought of as the false negative rate (FNR), the frequency

at which prior information is incorrectly set to “no link”. Similarly, η1 is the

false positive rate (FPR) of the observed prior information. We used η0 = 0.06

and η0 = 0.0001 for Yeastract and KEGG factors, respectively, and η1 = 0.001

for both. The ratio of the false positive and false negative rate is motivated by

relatively high false positive rates in chromatin immunoprecipitation experiments,

and confidence in the KEGG annotations.

Prior probabilities over factors X are standard Gaussian distributed, xk,j ∼
N(0, 1), and the per-gene noise precisions τg, ψg ∼ N(0, τg), are a priori Gamma

distributed, τg ∼ Gamma(τg | aτ , bτ ). For the experiments this prior was set to

be uninformative with aτ = bτ = 0.001.

Inference in the sparse factor analysis model is achieved using a hybrid of two

deterministic approximations, variational learning (VB) (Jordan et al., 1999) and
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3.2 Model of expression with unmeasured traits

Expectation Propagation (Minka, 2001), with exact details presented in (Rattray

et al., 2009; Stegle et al., 2009).

Statistical identifiability of factors and model restarts

In general, factor analysis models are prone to suffering from intrinsic symmetries

such as sign flips or factor permutations with impacts on the interpretability of

obtained solutions. The informative sparsity prior of the factor analysis model

(Equation (3.5)) substantially reduces these ambiguities, as it introduces con-

straints on possible factor configurations.

As an additional measure, our analysis explicitly takes the variability of factor

solutions into account by analysing a set of inference solutions rather than a single

point estimate. In the experiments, we performed 20 independent runs of the

factor analysis model with parameters randomly initialised from their respective

prior distributions, and used this whole ensemble to test for significant association

and interaction effects.

3.2.3 Association and interaction testing

Following the generative model (Equation 3.1) we use standard association and

interaction statistics (Lynch and Walsh, 1998) to test for associations between

known variables (genotype of SNP n, environment indicator, or mRNA expression

level) and the inferred factor activations. For completeness, we first present the

model and test statistics used for both associations and interactions, followed by

the significance testing approach. The derivation is developed explicitly using

the SNP genotype as the known variable and factor activation as the dependent

variable; tests for other covariates (or eQTL effects) are performed analogously.

Test statistics

We perform independent tests for association between the activation xk of indi-

vidual factor k and genotype sn of SNP n, fitting a liner model of the form

xk,j = µk + βk,nsn,j︸ ︷︷ ︸
SNP effect

+εk,j, (3.6)
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3.2 Model of expression with unmeasured traits

assuming Gaussian observation noise εk,j ∼ N(0, σ2
k,j). For each pair of SNP n

and factor k, we calculate the association log-odds (LOD) score

Lak,n = logP (xk | βk,n)− logP (xk | βk,n = 0) (3.7)

as a test statistic. The weight in the foreground model βk,n, the mean µk and the

noise level σ2
k,n are fit by maximum likelihood for every calculation.

Test statistics for the interaction terms are calculated analogously based on an

independent interaction model. In short, we calculate the residuals of the factor

analysis model and apply a standard interaction model between SNP n, factor k

and gene g. This corresponds to the linear model

yg,j = µg +

direct effects︷ ︸︸ ︷
θg,nsn,j︸ ︷︷ ︸
SNP effect

+ wg,kxk,j︸ ︷︷ ︸
factor effect

+φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term

+

[∑
l 6=k

wg,lxl,j

]
︸ ︷︷ ︸

remaining factor effect

+ψg,j, (3.8)

where the expression level of gene probe g for individual j is described by fitted

effects of the tested SNP sn,j, learned factor activation xk,j and the interaction

term sn,jxk,j with the residuals explained by 0-meaned Gaussian noise ψg,j. The

log-odds test statistic for the interaction between factor k and SNP n to influence

gene g follows as

Lig,k,n = logP (yg |φg,k,n)− logP (yg |φg,k,n = 0). (3.9)

The respective mean variable µg, weights θg,n, wg,k (but not wg,k′ where k′ 6= k),

and φg,k,n, as well as noise variance ψg,j are fitted independently using maximum

likelihood for each factor, gene, SNP triplet. The contribution from all remaining

factors is not refit to preserve the sparsity pattern learnt from the factor inference.

To reduce the number of effective tests, we used the strongest interaction LOD

score L̂ig,n = maxk L
i
g,k,n across factors, thus performing tests for every SNP and

gene pair. This approach corresponds to the assumption that at most a single

factor is interacting with a given gene-SNP pair. The consistency of the strongest

interacting factor is informative of the identifiability of the interaction effect (see

below).
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3.2 Model of expression with unmeasured traits

Incorporating several random initialisations

For all our analysis of intermediate phenotypes, we generated factor inference

results from R = 20 random initialisations of the model parameters to capture

the variability in the model and avoid overfitting of inferred factor activations

to local optima (See Statistical identifiability of factors below). Thus, we de-

signed a significance testing scheme based on Q-values (Storey and Tibshirani,

2003) that employs the full set of runs, taking the uncertainty in the factor poste-

rior distributions into account. We present this approach below for associations.

Testing interactions is analogous except for the specifics of permutations high-

lighted in the text. In case of analyses where the multiple restarts are not used

(e.g. eQTLs), we calculated Q-values from the single instance. In all cases, the

null distribution of LOD scores was obtained by combining all calculated null

statistics in the random restart.

Q-value calculation For every run r = 1, . . . , R of the factor analysis model,

we evaluated the test statistics of factor associations (Lak,n) for every pair of

factor k and SNP s. This analysis was then repeated on 20 permuted datasets in

each run with the genotypes shuffled with respect to the factor activations, while

keeping individual segregants grown in two conditions paired. For interaction

LOD scores, the factor activations and gene expression levels were not permuted

with respect to each other. From this empirical null distribution of LOD scores

in run r (across all SNPs and factors), we calculated Q-values qrn,r (local FDR)

for each candidate association (Storey and Tibshirani, 2003) between SNP n and

inferred posterior of factor k in this run.

Combining Q-values The Q-values from all runs were then combined into an

overall Q-value qk,n = R−1
∑R

r=1 q
r
k,n, which was used to assess significance at a

given FDR threshold.

From a probabilistic viewpoint, averaging Q-values over multiple restarts of

the model can intuitively be thought of as integrating out the uncertainty from the

factor inference. For example, for an association test assessing the significance

of the weight βk,n, we are truly interested in the probability of an association

being absent (Bayesian Q-value, see for example (Storey, 2003)) given uncertain
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3.3 Phenotype inference

inference of the factor activation P (xk |Y,π). Conditioned on the observed data

Y and prior π this probability follows as

P (βk,n = 0 |Y,π, sn) =

∫
xk

P (βk,n = 0 |xk, sn)P (xk |Y,π). (3.10)

In general this integral is not analytically tractable. Assuming we have instead a
number of R samples xrk from the factor posterior, the integral can be approxi-
mated by

≈ 1

R

R∑
r=1

P (βk,n = 0 |xrk, sn) (3.11)

in a Monte Carlo fashion. Finally, identifying the null probabilities as Bayesian
Q-values we get

=
1

R

R∑
r=1

qrk,n. (3.12)

Note that the restarts from the factor analysis model are not exactly samples from

its posterior but nevertheless characterise the posterior uncertainty sufficiently

well (See also Simulation study below). Full MCMC sampling is computationally

infeasible due to the size of the regulatory network; for a comparison of MCMC

sampling and deterministic inference as employed here, see Stegle et al. (2009).

3.3 Phenotype inference

We inferred intermediate phenotypes on expression levels of 5493 genes from 109

yeast segregants grown in two environmental conditions (Chapter 3.3.2, Smith and

Kruglyak (2008)). We performed the inference 20 times with different random

initialisations of the parameters.

We considered three alternative types of prior information. First, we hypothe-

sised the factors to be transcription factor activation levels, and used data for 167

transcription factors from Yeastract (Teixeira et al., 2006) to assign a prior prob-

ability of a factor affecting a gene expression level. Second, we hypothesised the
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3.3 Phenotype inference

factors to be pathway activations, and used KEGG database information (Kane-

hisa et al., 2002) for 63 pathways for the prior probability of a link between a

pathway activation and a gene. Third, for comparison, we employed an uninfor-

mative prior, where 30 factors were a priori equally likely to affect all genes. The

datasets are described in more detail in Chapter 3.3.2 We call the inferred factor

activations Yeastract factors, KEGG factors, and freeform factors, respectively.

3.3.1 Factor analysis model performance

In-depth comparison of inference approaches for the sparse factor analysis model

used is given in other work (Stegle et al., 2009); the model was found to accurately

recover factor activations in a setup similar to this study.

One way to further assess the reproducibility of the factor inference is to con-

sider the correlation between the posterior means of individual factor activations.

We called the inferred activation of factor k in u-th run xuk = (xuk,1, ..., x
u
k,J) re-

producible if its Pearson correlation ρ(xuk ,x
v
k) > 0.7 for at least 16 of the 20

different v. 72 of 167 (31%) Yeastract and 19 of 63 (30%) KEGG factors were

reproducible. While we explicitly took the variability between runs into account

in further analyses, these numbers are instructive for developing intuition about

the model.

3.3.2 Datasets used

For completeness, we provide specific details of the datasets used.

Gene expression data from (Smith and Kruglyak, 2008) (GEO accession num-

ber GSE9376) was downloaded using PUMAdb (http://puma.princeton.edu). In

line with (Smith and Kruglyak, 2008), we considered spots good data if the inten-

sity was well above background and the feature was not a nonuniformity outlier.

Transcripts with more than 20% of missing values were discarded. All other miss-

ing expression values were replaced with the averages across the corresponding

growth condition.

The remaining expression data consisted of 5493 probe measurements for 109

crosses of BY (laboratory) and RM (wild) strains grown in either glucose or

ethanol, resulting in a total of 218 individuals. Strain genotypes were kindly
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3.4 Association analysis with inferred phenotypes

provided by R. Brem. Each of the 109 segregant strains was genotyped at 2956

loci to give a crude map of genetic background.

Transcription factor binding data was downloaded from Yeastract (Teixeira

et al., 2006) (Version 1.1438) and contained binary indicators of binding between

174 transcription factors and 5914 genes. We considered the 3000 most variable

probes whose corresponding genes were included in the binding matrix, and tran-

scription factors that influenced at least 5 genes. After further discarding probes

for which there were no data available, the remaining Yeastract prior dataset

consisted of binding data for 167 transcription factors affecting 2941 genes.

Similarly, pathway information was downloaded from the KEGG database (Kane-

hisa et al., 2002). Only pathways with at least 5 genes were included in the

network prior. This filtering procedure retained 63 pathways controlling 1263

genes. The results of Smith and Kruglyak (2008) were not used as a source of

information for either of the prior datasets.

3.4 Association analysis with inferred phenotypes

First, we looked for the causes and consequences of variability in the inferred

intermediate phenotypes.

3.4.1 Genotype and environment

Although the factors were inferred jointly from the expression data alone, many

factor activations were significantly associated with a locus (SNP) genotype or

indicator variable encoding growth in ethanol or glucose as a carbon source (“en-

vironment”, Tables B.9 to B.11). Thirty two Yeastract factors were associated

with a SNP genotype at false discovery rate (FDR) less than 5% and 26 with the

environment. Similarly, 7 KEGG factors were associated with a SNP genotype,

and one with the environment while 24 freeform factors were significantly associ-

ated with a SNP genotype and one with the environment. Some of the genotype

associations were due to pleiotropic effects of single loci, while others were private

to a locus-factor combination (Tables B.12 to B.14).
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3.4 Association analysis with inferred phenotypes

Many of these individual associations to Yeastract and KEGG factors can

be interpreted by considering the role of the inferred factors and functional an-

notations of genes at associated loci. We now give some examples to further

corroborate the use of factor activations as intermediate phenotypes. All associa-

tions are significant at 5% FDR, with corresponding Q-values q (minimal FDR for

which the association is significant (Storey and Tibshirani, 2003)) and average

log-odds scores L given.

Yeastract factors.

Loci associated with Yeastract factor activations encode genes functionally re-

lated to the corresponding transcription factor. The PHO84 (an inorganic phos-

phate transporter) locus was associated with the PHO4 (a major regulator of

phosphate-responsive genes) transcription factor activation (q < 0.03, L = 15.5).

The association implicates genetic variation in the transporter as a determinant

of the transciptional activation of phosphate-responsive genes through PHO4 ac-

tivation. The mechanism of action is likely a switch in transcriptional response

when PHO84, a high affinity phosphate transporter, is rendered ineffective by a

mutation (Wykoff et al., 2007).

The SUM1 (transcriptional repressor of middle sporulation-specific genes)

factor activation was associated with the genotype of the RFM1 (repression factor

of middle sporulation) locus (q < 10−5, L = 115.2). This is intriguing since RFM1

recruits the HST1 histone deacetylase to some of the promoters regulated by

SUM1 (McCord et al., 2003; SGD project), suggesting that genetic variation in

the RFM1 gene indirectly alters the effect of SUM1 on individual genes.

There is also a straightforward eQTL that regulates the HAP1 (heme acti-

vation protein) gene expression (q < 10−5, L = 80.6), as well as factor activation

(q < 10−5, L = 38.7). This is a cis effect, since the locus is proximal to the

gene, and manifests itself as a trans eQTL hotspot by affecting expression levels

of some of the 170 known HAP1 targets. Thirty four of the 84 (40%) significant

trans eQTLs are also known targets of HAP1. Our data suggest that the other

50 may either be previously undiscovered targets of HAP1, or downstream effects

of some of its direct targets.
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The THI2 thiamine metabolism transcription factor activation was associ-

ated with the genotype of the THI5 locus (q < 10−5, L = 52.2). This suggests

a regulatory role of THI5 upstream of THI2 in thiamine biosynthesis for the

previously poorly characterised THI5 gene. This illustrates how our inference

allows generating hypotheses for the function for genes that are implicated in a

cellular pathway, but not annotated with a specific role.

KEGG factors.

Associations to KEGG pathways tend to capture the effect of a pathway compo-

nent genotype. For example, two amino acid metabolism pathways are associated

with locus genotypes of genes in the pathway. The inferred activation of lysine

biosynthesis pathway was associated with genetic variation in the LYS2 locus

(q < 10−4, L = 25.6), and the activation of arginine and proline metabolism

pathway with the ARG8 locus (q < 10−5, L = 46.7), both members of the respec-

tive pathways. We thus hypothesise that variants in these genes directly affect

the activation of the corresponding pathways. Also, the nitrogen metabolism

pathway was associated with the ASP3 (cell-wall L-asparaginase) gene cluster

locus genotype. (q < 10−5, L = 119.9). The ASP3 genes are part of the pathway,

and are present in four copies in the reference strain S288c, conferring increased

resistance to nitrogen starvation stress. The inferred state of the pathway thus

likely corresponds to the ASP3 copy number via the locus genotype proxy.

Furthermore, the fatty acid metabolism pathway activation was associated

with the OAF1 (oleate-activated transcription factor) locus genotype (q < 0.01,

L = 67.1), which is a known regulator of the pathway (Smith et al., 2007).

We thus hypothesise that genetic variants in OAF1 between the two strains are

responsible for differences in fatty acid metabolism in the segregants, as has also

been proposed in earlier work (Lee et al., 2009).

Finally, the environment is strongly associated to the very wide metabolic

pathways category (q < 10−5, L = 393.2). This KEGG entry comprises 619

genes, and captures the effect of the growth condition of the segregants on their

metabolic state.
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Freeform factors.

The freeform factors capture broad variance components in the data, with each

factor’s activation contributing to very many probe expression levels. Regardless

of the unsupervised inference of the activations, they still show strong associations

to environment and locus genotypes. However, due to this global nature of the

factors, the associations are less straightforwardly amenable to interpretation.

The first factor is associated with the environment (q < 10−5, L = 289.5), and

accounts for any mean shifts in gene expression levels between segregants grown in

glucose and ethanol (Table B.11). Several of the other factors are associated with

genotypes of “pivotal loci” described before (Brem and Kruglyak, 2005; Smith

and Kruglyak, 2008; Yvert et al., 2003). It may be possible to make suggestions

about the functionality via methods such as overrepresentation of GO categories

within sets of genes with large weights for a factor, such as a recent study that

performed a similar association analysis with unsupervised factors (Biswas et al.,

2008). Our approach of using existing data for guidance is stronger compared to

unsupervised methods as we use evidence of which gene is affected by the factor,

thus improving statistical identifiability, and do not rely on an ad hoc choice

of number of factors. This yields interpretable results that are more useful for

generating hypotheses for the consequence of genetic or environmental variation.

Response to small molecule stress has been measured in the same segregants

to map drug response loci (Perlstein et al., 2007). This study found eight QTL

hotspots, six of which are within 20kb of loci that also show several associations to

our inferred intermediate phenotypes (Tables B.12 to B.14), corroborating their

pleiotropic effect.

3.4.2 mRNA and protein levels

Twenty five of 167 Yeastract factors were associated with the probe expression

level measuring the mRNA abundance of the corresponding transcription factor

gene (Table B.9, Figure 3.2). Twenty of the 25 (80%) were also significantly

associated with a SNP genotype or environment. While statistically significant,

these associations do not explain the majority of the factor variability, as only four

80



3.4 Association analysis with inferred phenotypes

Yeastract factors were correlated with their probe expression level with Pearson

r2 > 0.5.

Figure 3.2: Pearson’s correlation of Yeastract factors and their corresponding
probe expression levels.

The general lack of correlation between factor activation and the correspond-

ing measured expression level for the remaining transcription factors is perhaps

not surprising. Presumably what matters for the factor activation is protein ac-

tivity level, not mRNA abundance. Previous studies have found poor correlation

between mRNA and protein expression levels (Foss et al., 2007; Gygi et al., 1999).

Also, alternative mechanisms for activation exist. Many Yeastract factors with-

out significant correlation to transcript levels have been shown to be activated

not via increase in expression, but other means. For example, PHO4 is activated

by multiple phosphorylation events (Komeili and O’Shea, 1999). Simlarly, nu-

clear localisation and therefore activation of ACE2 and MSN2 are controlled by

phosphorylation state (Goerner et al., 1998; O’Conallain et al., 1999). We predict

most of the other transcription factors to also be activated by non-transcriptional

means.

The protein level of one of the Yeastract factors, GIS2, has been assayed

quantitatively in a previous study (Foss et al., 2007) for 87 of the 109 segregants

we considered in a similar growth condition. For this transcription factor, the
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inferred factor activation was better correlated to the protein level than the cor-

responding probe expression level for 15 of the 20 random initialisations. This

example gives further support to treating the inferred factors as meaningful in-

termediate quantitative traits.

3.4.3 eQTL hotspots

As observed before (Brem et al., 2002; Smith and Kruglyak, 2008; Yvert et al.,

2003) some segregating loci show significant associations with up to 271 (IRA2,

regulator of the RAS-cAMP pathway locus) probe expression levels, forming trans

eQTL hotspots. There are five such hotspots with at least 30 associations each.

On average, 32% of the genes associated with a trans eQTL hotspot (FDR<5%)

are explained by a transcription factor associated with the hotspot locus genotype

targeting the gene (Table B.15). In 94% of these cases, the association with the

inferred factor activation is stronger than with the locus genotype, and for three of

the five hotspots, many additional associations with factor targets are recovered.

For example, the PHO84 locus is associated with the PHO4 Yeastract factor

activation (q < 0.03, L = 15.5), as well as 31 probe expression levels in trans.

Eleven of these are also significantly associated with the PHO4 factor activation,

all showing a stronger association. PHO4 itself is significantly associated with

454 probes, greatly expanding the range of plausible effects of the PHO84 locus.

This shows that using inferred intermediate phenotypes can reveal additional

associations that otherwise would not be statistically significant.

3.5 Interaction analysis with inferred phenotypes

Beyond understanding the causes of variability in the inferred traits, we are also

interested in their genotype-dependent effects on gene expression levels.

3.5.1 Discovering interactions

We scanned the genome for genotype-factor interactions that affect gene expres-

sion levels (Figure 3.1c) using a standard linear interaction model, and recovered

three broad classes of interactions (Figure 3.3). We tested each locus-gene pair
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independently for interaction with any inferred factor using 20 permutations, and

information from all the random restarts of the model. If a single factor was ob-

served with the strongest interaction score for a locus-gene pair in at least half

the multiple restarts, we interpreted it as the true interacting factor; in other

cases, we did not designate a factor to an interaction effect. We give examples

of interactions we find below, highlighting how they add to the understanding of

the propagation of the genotype effect.

The largest set of interactions was found at the IRA2 locus. Many Yeas-

tract factors, such as MIG1, HAP4, YAP1 and MSN2 show high interaction

LOD scores with this locus (Figure 3.3a). All these corresponding transcription

factors act in glucose response, nutrient limitation or stress conditions, which is

consistent with the role of IRA2 in environmental stress response by mediating

cAMP levels in the cell. Their factor activations are associated with the envi-

ronment (Table B.9), and the interactions thus recapitulate gene-environment

interactions. While all these factor activations are correlated due to the strong

association with the environment, making it hard to identify the true interacting

factor, we can narrow the factor down to a few that exhibit strong LOD scores.

Identifiability of the interacting factor is hard in general for factors that capture

large effects, or have target sets that largely overlap with other factors. The in-

ferred factors do capture the true underlying sources of variability, which is even

more useful in settings where not all sources of variability are measured. Also,

even having measured the relevant growth condition, we can further interpret the

interactions as transcription factor activation having an effect in a specific genetic

background in some cases, a more specific claim.

The PHO4 factor activation is associated with (q < 0.03, L = 15.5) and

interacts with the PHO84 locus on chromosome XIII to influence 245 genes (Fig-

ure 3.3b). At the same time, the activation also interacts with the environment

variable to influence gene expression levels. Notably, the statistical interaction

for the PHO4 expression, PHO84 genotype and the same gene expression levels

also has LOD scores greater than 11. Thus these interactions are not artifactual,

but can be traced back to measured quantities for all interacting variables.

We also recovered epistatic interactions that failed the stringent multiple test-

ing criteria on their own, but showed a stronger signal via the intermediate fac-

83



3.5 Interaction analysis with inferred phenotypes

BY Glu

RM Glu

BY Eth

RM Eth

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
YAP1 activation

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

H
X

T
6

 e
x
p
re

ss
io

n

IRA2 locus, LOD = 28.0

(a) YAP1-IRA2 interaction

1.0 0.5 0.0 0.5
PHO4 activation

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y
JL

2
1

3
W

 e
x
p
re

ss
io

n

PHO84 locus, LOD = 26.5

(b) PHO4-PHO84 interaction
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(c) SCM4-HAP1 interaction

Figure 3.3: Three broad classes of interaction effects between locus genotype
and transcription factor activation affecting gene expression (for details see text).
Each marker shows the gene expression and factor activation for one individual
segregant of either BY (blue) and RM (red) background at the locus, and grown
in ethanol (triangles) or glucose (circles) as a carbon source. Maximum likelihood
fits for expression data for the BY and RM segregants are plotted as solid lines;
an interaction effect corresponds to a difference in slope in the two genetic back-
grounds. (a) Genotype-environment interaction mediated by the inferred YAP1
transcription factor activation. (b) Interaction between the PHO84 locus and
PHO4 transcription factor activation, which is associated both with the PHO84
locus genotype and the PHO4 probe expression level. (c) Epistatic interaction
between HAP1 and its target, SCM4, mediated by the HAP1 activation.
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tor. For example, HAP1 factor activation interacts with (q < 0.01, L = 38.6)

the SCM4 (suppressor of CDC4 mutation) locus genotype to influence SCM4

expression level (Figure 3.3c), while the epistatic interaction LOD score is only

7.9. As SCM4 has a HAP1 binding site in its promoter region, it is plausible that

genetic variants could directly inhibit HAP1 binding. This effect would only be

observable in case HAP1 is active, which in turn is controlled by the HAP1 locus

genotype (q < 10−5, L = 38.7). This is an example of an epistatic interaction

that is mediated by an intermediate phenotype of transcription factor activity.

In total, we found 2,397 genes with a gene-Yeastract factor interaction effect

(q < 0.05). We also found 2,211 genes that show genetic interactions with KEGG

factors and 2,250 with freeform factors. We noted several interaction “peaks”

in the genome, such as the IRA2 locus, where the locus genotype interacts with

several genes via one or multiple factors (Figure 3.4). These coincide with trans

eQTL peaks and gene-environment interaction peaks observed before (Smith and

Kruglyak, 2008; Yvert et al., 2003), and have been annotated for potential causal

genes.

3.5.2 Recovering interactions

We found 10,049 locus-environment interactions affecting 676 gene expression

levels (Figure 3.4) using the same model and testing approach as for inferred

factor interactions (FDR < 5%). Of these, we recovered 4605 interactions (46%)

affecting 505 genes (75%) with the Yeastract factors, 6464 interactions (64%)

affecting 572 genes (85%) with the KEGG factors, and 3065 interactions (31%)

affecting 420 genes (62%) with the freeform factors. All environment-associated

Yeastract factors had a strong interaction LOD scores with the IRA2 locus,

affecting hundreds of genes. These interactions recapitulate the gene-environment

interaction reported and validated in the original analysis of the data (Smith and

Kruglyak, 2008). It is reassuring that we are able to recover these interactions

with the inferred intermediate phenotypes, and to expand their repertoire as well

as provide hypotheses for their mechanism.

Preliminary results from an ongoing screen for gene-gene interactions have

shown epistatic interactions for 95,445 gene pairs (Costanzo et al., 2010). Three
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Figure 3.4: Number of genes affected by a genotype-factor interaction for each
locus for Yeastract factors (blue), KEGG factors (red), freeform factors (green),
and environment (gray).

hundred and sixty eight knockouts of a Yeastract factor gene and an interaction

peak gene were tested in this large-scale assay, with 40 epistatic interactions

found. We could find interactions for 22 of the tested pairs, and recovered one of

the 40 interactions of Costanzo et al. (2010). Our screen is for genetic interactions

that are different from the synthetic lethal screen of Costanzo et al. Consistent

with this, we find some overlap, but not more or less than expected by chance.

3.6 Discussion

Our genetic analysis of the gene expression data from (Smith and Kruglyak,

2008) has shown that inferred intermediate phenotypes are valuable for generat-

ing hypotheses about plausible connections between genetic and gene expression

variation. Using these inferred cellular phenotypes, we identified loci associated

with transcription factor and pathway activations, thus giving the genetic effect a

straightforward mechanistic interpretation, and often suggesting a candidate gene

responsible for the change. For the first time, we considered and found statistical

interaction effects with inferred intermediate phenotypes.

Our work is a step towards interpreting and understanding effects of genetic

variants by putting them into cellular context. Conventional analysis, relating

genotype and expression levels, is restricted to observed measurements, often
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producing only statistical associations instead of a plausible mechanistic view.

Going beyond this, our approach yields phenotypic variables at an intermediate

level which can be used in the analysis. We showed that these provide additional

interpretability and in some settings increase statistical power. Besides standard

association and interaction effects between genotype and gene expression, our

approach allows more rich hypothesis spaces to be explored, where the dependent

variable we model is not a global organism phenotype such as disease label, or

a very specific measurement like a single gene expression level. We have shown

that this analysis is both feasible, and gives interesting results.

The idea of looking for associations and interactions with inferred intermedi-

ate phenotypes will be even more useful in forthcoming studies that include other

cellular measurements. The inferred transcription factor or pathway activations

allow interpreting the variability in these measured phenotypes as a result of

changes in regulator activity or pathway state, bridging the gap between individ-

ual molecule measurements, and states of protein complexes, cellular machines,

and pathways. We believe that the inferred intermediate phenotypes can be much

more informative about the state of the cell and organism than individual locus

genotypes and gene expression levels, and will also show stronger associations to

downstream cellular and tissue phenotypes.

The intermediate activation phenotype has lower dimensionality compared to

the space of genotypes and gene expression levels, which helps against multiple

testing issues present in genome-wide scans for epistatic interactions. We were

able to infer association and interaction effects, including proxies for epistasis,

while finding epistatic interactions by testing all locus pairs is usually hindered

by the billions of tests performed (Brem and Kruglyak, 2005; Cordell, 2009; Storey

et al., 2005). The incorporation of prior information to infer interpretable factors

is a flexible way to reduce the number of tests by capturing relevant parts of the

data variation in a few factors, and can also add power if the factor is a better

proxy for the true interacting variable.

The inferred transcription factor activations did not mostly correlate with

their expression level. This is expected, as the activity of a protein depends on

the protein level, localisation, posttranslational modification state, and existence
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of binding partners to carry out its function. Expression level alone is often a

poor proxy for a measure of protein activity.

A range of prior work has applied linear or generalised linear models to infer

unobserved determinants of gene expression levels. For example, broad hidden

factors have been inferred from gene expression that are likely to be due to con-

founding sources and hence can safely be explained away, thereby increasing the

power of eQTL studies (Leek and Storey, 2007; Stegle et al., 2010). Although

methodologically related, this work has a completely different aim. Also, unsu-

pervised sparse linear models have been applied to infer hidden determinants in

gene expression which are subsequently analysed for association to the genetic

state (Biswas et al., 2008). This approach is closely related to the “freeform

factors” included in this analysis for comparison. Overall, we show that factor

learning taking prior knowledge into account adds statistical identifiability of the

actual factors thereby providing interpretability. Other interesting approaches

perform feature selection to capture relevant properties of the segregating sites

in order to pinpoint the causative allele (Lee et al., 2009), or build a predictive

(network) model of gene expression, followed by analysing its cliques and subnet-

works (Zhu et al., 2008), but neither explicitly model unobserved phenotypes. A

very recent paper proposed an integrated Bayesian ANOVA model that explains

the gene expression profile by modules (Zhang et al., 2010). These modules in turn

are modelled as a function of the genotype, taking direct and epistatic regulation

into account. Importantly, both these related approaches infer gene expression

determinants in an unsupervised fashion, and hence the interpretation of these

association signals can be difficult and remains as a retrospective analysis step.

Finally, a methodologically related sparse factor analysis model employing prior

information has been applied to a narrower dataset with an aim to explain trans

eQTL hotspots (Sun et al., 2007). However, the study does not consider the idea

of genetic effects in the phenotypic context, or look for interaction effects, which

is a primary focus of this work.

There has been speculation that a significant proportion of heritable variabil-

ity that cannot be attributed to associations with single loci is due to interaction

effects. This hypothesis is intuitively appealing, since we expect some genetic

variants only to have an effect in a specific context. We have found an abundance
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of such statistical interactions, and have shown how some of them help to un-

derstand and interpret yeast gene expression regulation. Often, they recapitulate

epistatic or gene-environment interactions, but nevertheless add a plausible mech-

anism of action. It will be especially interesting and important to see how these

methods work on large, extensively genotyped and phenotyped human cohorts

that are becoming available in the near future.

An open source Python implementation of the statistical models and the anal-

ysis pipeline is available from ftp://ftp.sanger.ac.uk/pub/rd/PEER
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Chapter 4

Genetic mapping using artificial

selection

Collaboration note

This chapter contains work performed in collaboration with many people, most

notably Dr. Gianni Liti and Francisco Cubillos. The results have been submitted

for publication (Parts et al., 2010), and the manuscript forms the backbone of this

chapter. I am including brief validation results from some of their experiments

for completeness, detailed acknowledgements are given below.

I conceived and developed the project with Gianni. Gianni and Richard Durbin

designed the intercross approach. Gianni, Francisco, and Kanika Jain performed

the genotyping, crossing, selection, and validation experiments. Michael Quail

prepared the sequencing libraries. Jared Simpson assembled the parental strains.

Jonas Warringer performed the phenotyping. I analyzed the sequencing and geno-

typing data. Amin Zia and Alan Moses performed individual allele analysis.

One approach to understanding the genetic basis of traits is to study their

pattern of inheritance among offspring of phenotypically different strains (Mackay

et al., 2009; Nordborg and Weigel, 2008; Rockman, 2008). Previously, such anal-

ysis has been limited by low mapping resolution, high labour costs, and large
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sample size requirements for detecting modest effects. We present a novel ap-

proach to map trait loci using artificial selection. We subject a large pool of

haploid or diploid twelfth generation progeny between two budding yeast strains

to heat stress for extended time. Sequencing total DNA from the pool before and

during selection reveals the genetic architecture of heat resistance in this cross.

Many regions, some contained within a single gene, change in allele frequency,

show evidence of negative epistatic interactions, and exhibit dominant, recessive,

and additive effects.

4.1 Trait mapping with natural genetic varia-

tion

A central challenge of modern genetics is to identify genes and pathways re-

sponsible for variation in quantitative traits. In the last decade, efforts of large

international collaborations have revealed numerous loci that influence disease

risk in humans by genotyping and phenotyping very large cohorts of individuals

(Chapter 1.1.2). However, the effects of single alleles are generally modest, and

explain only a small proportion of the heritable variability. Studies in model

organisms, where causality can be addressed by reverse genetic tools, can help

understand the genetic complexity of such traits (Chapter 1.1.1).

4.1.1 Shortcomings of existing approaches

Mapping the effect of naturally occurring genetic variation on traits is not straight-

forward even in model organisms. Designed crosses often use manipulated labo-

ratory strains (Ehrenreich et al., 2009), and produce segregants that have to be

laboriously genotyped and phenotyped. It is also costly to develop and maintain

outbred populations of sufficient size (Valdar et al., 2006). Recently, analysis of a

very large pool of recombinant yeast strains has been used to identify quantitative

trait loci (QTLs) for multiple traits (Ehrenreich et al., 2010; Segrè et al., 2006;

Wenger et al., 2010) without characterizing individual segregants.
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4.1.2 Leveraging artificial selection

While Ehrenreich et al. (2010) found many QTL regions, the problem of finding

all responsible loci, and localising the trait genes within QTL peaks remains. Fur-

thermore, such analyses in yeast have previously been limited to haploid samples.

Here, we present a precise and sensitive approach to QTL mapping, extending

the approach of Ehrenreich et al. (2010), and identify trait loci and genes in both

haploid and diploid populations. We used a three step process (Figure 4.1). First,

we generated intercross lines between two phenotypically different yeast strains.

We then applied selective pressure to the pool by growing it in a restrictive con-

dition (40◦C heat or 400 µg/ml paraquat) to enrich for individuals with beneficial

alleles. Finally, we sequenced the pool before and at multiple timepoints during

selection to directly assess the changes in population allele frequencies throughout

the genome.

Figure 4.1: A 3-step QTL mapping strategy by crossing two phenotypically
different strains for many generations to create a large segregating pool of in-
dividuals of various fitness, and growing the pool in a restrictive condition that
enriches for beneficial alleles that can be detected via sequencing total DNA from
the pool.

Methods used throughout the chapter are outlined in Chapter 4.4. The tech-

nical aspects of the experimental approaches designed and performed by collab-

orators are available elsewhere (Parts et al., 2010).
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4.2 Very large segregating yeast population

We generated up to 12 generations of advanced intercross lines (F12 AILs, 12

generations of random mating between YPS128, a North American oak tree bark

(NA) strain, and DVGBP6044, a West African palm wine (WA) strain. The re-

sulting haploid or heterozygous diploid intercross pools consisted of 10-100 million

random segregants, with a segregating site every 170 bases on average.

We sought to characterise the properties of this mapping pool to assess the

increase in number of recombinations, and confirm that the alleles present in the

parents are still segregating after many generations of intercross.

4.2.1 Recombination rate

Using many rounds of crosses should expand the genetic map due to reduction of

linkage between nearby loci (Figure 4.2, Darvasi and Soller (1995)). To confirm

this, we genotyped 30 markers in 96 individual segregants from each of three gen-

erations in three regions to assess the change in recombination fraction between

adjacent markers.

The genetic distance (measured in 100 times the average number of recombi-

nation events) between two chromosome XIII loci separated by 204kb increased

from 88 in F1 to 125 in F6 and 180 in F12. We further sequenced two segregants

from the F6 pool at low coverage and observed 64 and 68 recombination events, a

125% increase compared to an average of 30 events detected in 96 F1 segregants

(Figure 4.2b, Cubillos et al. (2011)).

We observed fewer recombination events than expected if an independent set

of crossovers occurred every generation. There are several explanations to this.

First, it is known that the recombination rate is not uniform, but accentuated in

specific regions (recombination hotspots, Tsai et al. (2010)). Therefore, multiple

recombinations can occur at the same site, leading to underdetection of recombi-

nation events. Second, it is possible that there is recombination preference in the

heterozygous diploids with homozygous regions. We are not able to detect such

events. Finally, we have conservatively filtered out very closely spaced events

(2kb, Chapter 4.4) as well as subtelomeric events, introducing a further bias.
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Some of these issues can be addressed by using a different cross with higher re-

combination frequency, or mutant strains that exhibit alternative recombination

patterns.

Figure 4.2: Recombination landscape after mulptiple rounds of intercrosses.
a) Expansion of the genetic map, measured in recombination units (ru) of 100
times the average number of recombination events from first to twelfth generation
(bottom of panel) of a 200-kb chromosome XIII locus genotyped at 9 markers (top
of panel). b) Genetic background of two segregants from first (F1) and 6th (F6)
generation cross shows a sharp increase in recombination events.

4.2.2 Parental allele frequency

Sequencing total DNA from pools before selection shows that more than 99%

of the mappable genome is segregating in the F6 generation with minor allele

frequency greater than 10%, and 97% in the F12 generation (Figure 4.3a). A

small fraction of the genome is strongly selected for during the intercross rounds,

due to alleles favoring sporulation, mating, or resistance to selection steps used

in the cross (Chapter 4.4). This allowed us to map 6 regions responsible for these

traits as a byproduct of our approach (Table B.17).
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4.3 Mapping trait loci using selection

After establishing a large segregating population, we employed it for trait map-

ping.

4.3.1 QTLs in haploid pool

We sequenced DNA from the F12 haploid pool to an average genome cover-

age of 25x to 150x (Table B.16) after 0 (T0), 96 (T1), 192 (T2) and 288 (T3,

144 generations) hours of growth at 40◦C. There were 19 regions where the in-

ferred allele frequency of the T2 pool changed by at least 10% in each of two

biological replicates compared to both the initial pool and the control experi-

ment (Figure 4.3a-c, Table B.18). The NA version of the locus was selected in

about two thirds (12/19) of the cases, consistent with it being the more heat

resistant strain(Cubillos et al., 2011), however, several antagonistic WA alleles

were also selected for. These changes are specific to the heat stress condition,

as the same pool exposed to oxidative stress (paraquat, 1.5 mM) yielded a dif-

ferent set of QTLs (not shown). In addition, all the mitochondrial genes were

greatly reduced in copy number upon selection (Table B.19). On further testing,

189/189 segregants from F12 selected pool exhibited the petite phenotype when

grown in non-fermentable carbon source (glycerol and ethanol), indicating loss of

mitochondrial genome.

4.3.2 QTL validation

We validated three of the mapped QTLs. Conventional linkage analysis of 96

F1 segregants also indicated a strong QTL at the right end of chromosome XIII

(variance explained 66%). No other strong QTLs were seen in this cross. This

region corresponds to the most rapid change in allele frequency with the NA

allele fixing early in the selection at T1 (Figure 4.3d). The only other QTL that

reached fixation was the GTPase activating protein IRA1, a negative regulator

of the RAS signalling pathway. Interestingly, three additional genes of the same

pathway (IRA2, GPB1 and GPB2 ), as well as some of its targets (CDC25, BCY1,

CYR1, mitochondrial genome) were contained in intervals with sharp increase in
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Figure 4.3: Changes in allele frequencies pinpoint QTLs. a-c) WA allele fre-
quency of whole genome (a), chromosome II (b), and IRA1 region (c) of the F12
pool before (blue) and after selection (green). Lines in gene regions in (c) denote
segregating sites (black) and non-synonymous segregating sites (red). The sites
with intolerable mutations (SIFT analysis) are highlighted with arrows and des-
ignated with the amino acid change. d) Individual examples of mapped QTLs
that show differences in strength, beneficial allele, effect of recombination and
ploidy. Each window spans 80kb and is centered on the locus with the largest
allele frequency change in F12 T2 across two replicas. Shaded regions indicate
90% and 95% confidence intervals.
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NA allele frequencies in the F6 or F12 pools, confirming the involvement of the

entire RAS pathway in the heat resistance phenotype.

Figure 4.4: IRA1 and IRA2 are high temperature growth QTLs. a) Reciprocal
hemizygosity confirms that IRA1 and IRA2 are high temperature growth QTLs.
WA/NA hybrids were individually deleted for the IRA alleles and used to assess
their contribution to high temperature growth. Plate spotting assay using 10-fold
serial dilution demonstrates better growth of the hybrid when the NA allele is
present. b) Competition experiment on hybrids with IRA reciprocal hemizygous
deletions (as a) that resembles the selective step applied to the pool. This assay
shows that hybrids carrying the NA allele are selected when cells were grown at
40C for 192 hours (T2).

We validated by reciprocal hemizygosity (Steinmetz et al., 2002) that IRA1

and IRA2 alleles affect high temperature growth. The effect was evident from a

plating assay, growth curves, and competition experiments (Figure 4.4). These

genes affect both growth rate (doubling time) and efficiency (final density) with

IRA1 having a stronger effect compared to IRA2, consistent with the differ-

ence in their final allele frequency. Interestingly, IRA1 and IRA2 do not have a

pleiotropic effect on growth, even at environmental conditions where RAS activ-

ity has a strong influence. The clear identification of the IRA1 and IRA2 alleles

as a cause of low performance at high temperatures shows that our method can

directly map causative genes without any a priori information and without re-

quiring further fine-mapping.
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4.3.3 Mapping resolution

The advantage of reduced linkage is evident from narrow mapped intervals, in

several cases localising to within single genes (Figure 4.3c-d). For example, in

case of IRA1, we could map the selected variant down to a small region of the

gene (Figure 4.3c), that also harbours the strongest candidate sequence variant

between the two strains from SIFT (Ng and Henikoff, 2003) analysis. This resolu-

tion is in contrast to that from previous studies based on crosses between strains,

including (Ehrenreich et al., 2010), which typically map to large regions contain-

ing many genes. An additional advantage of the intercross rounds is the ability

to unlink independent QTLs at one locus (Figure 4.3d). There is a risk that long

term culturing under stress conditions will select for new adaptive mutations that

might rise to high frequencies and dominate the pool. However, as the pool did

not become clonal, it is unlikely that haplotypes harbouring strongly adaptive

mutations had risen to high frequency during selection (see simulations below).

4.3.4 Lack of fixation

While the alleles with strongest fitness effect, such as at IRA1 gene (chrII:522kb,

Figure 4.3b) and chrXIII subtelomeric region (Figure 4.3d) reached fixation in the

pool upon selection, weaker ones required extended selective pressure to rise in

frequency (Figure 4.3d), demonstrating the advantage of using extended selection.

Three of the 19 QTLs (16%) had reached their T3 allele frequency at T1, but 17 by

T2 (89%). Thus, only a minority of two loci were still changing in allele frequency

after T2. This indicates that all the remaining haplotypes in the pool have nearly

equal fitness in this stress condition, or are so rare even by T3 that change in

their frequency does not have a major effect on the average pool genotype. It

also suggests that we have saturated for individual loci with independent effects

that are present in the founding strains.

4.3.5 Negative epistatic interactions

The fact that for 17 QTLs both alleles remained segregating in the pool after

up to 288 hours under selection suggests that these segregating loci cannot have
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independent additive effects, as otherwise their beneficial version would continue

to rise in frequency after T2. Thus, the pool after selection is a mixture of

haplotypes with alternative QTL genotype combinations of similar fitness. This

suggests an abundance of negative epistatic interactions, as otherwise the bene-

ficial combination would keep rising in frequency. To test this explanation, we

genotyped 192 segregants from the F12 pool after 240 hours of selection (T2.5),

and looked for scarcity and abundance of specific allele combinations at the 11

strongest QTLs. None of the two-locus combinations was significantly different

from the expectation under independence (lowest one- tailed p=0.09, Fisher’s

exact test) after correcting for multiple testing. Some evidence for lower than

expected deleterious allele combination counts was observed when pooling the

counts over all pairs (one-tailed p=0.19, Fisher’s exact test). This pattern is

consistent with complex control and interactions involving multiple genes.

4.3.6 QTLs in diploid pool

Importantly for drawing comparisons with human studies, we were able to map

all the 19 heat resistance QTLs in the pool of heterozygous diploid individuals.

The effect of selection was weaker for the diploid pool, as allele frequencies had

not reached their equilibrium levels by T2, and continued to change until T3

(Figure 4.3d). Diploid pool allele frequency after selection indicates that the

chrXIII QTL is consistent with a dominant effect with the final frequency of the

homozygous deleterious genotype being removed from the pool, and the IRA1

QTL with a recessive effect with the beneficial allele being fixed. While it was

expected that we could map the recessive QTLs, it is surprising that the final

allele frequencies for the other 17 loci were nearly identical for haploid and diploid

segregants, consistent with the selected alleles having additive effects as observed

for most human GWAS hits.

4.3.7 Comparison with F1 segregant analysis

The heat growth QTLs we found by linkage analysis of 96 F1 segregants partially

overlapped the ones identified using our novel approach (Cubillos et al., 2011).

However, the linkage analysis lacked power to detect the weak effects, as only
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the strongest chrXIII subtelomere QTL was detected with high confidence, and

a chromosome IV QTL with borderline significance. This shows the additional

power of our method. Furthermore, data from growth curves suggests that some

of the QTL effects may not be detectable by phenotyping the segregants at 40◦C,

and phenotyping at higher temperatures will be more informative of individual

effect sizes.

4.4 Data analysis

4.4.1 Sequencing data handling

Sequencing reads from the intercross pools before and after selection were mapped

to the S288c reference genome obtained from the SGRP project website (Liti

et al., 2009a) using BWA (Li and Durbin, 2010), with option ’ -n 8’ to allow

mapping of divergent reads from the other strains. Pileup files comprising the

genotypes of mapped reads were created for segregating sites inferred from both

low-coverage capillary sequencing (Liti et al., 2009a) and the parental strain shot-

gun sequence mapping to the S288c assembly. For allele frequency inference, sites

that were not segregating in the initial population, corresponding to likely false

positive variant calls, were filtered out, as well as sites that were noted as heterozy-

gous in either parental strain, indicative of copy number variation. Furthermore,

for allele frequency inference, we filtered the variants to have minimum distance

of at least 200 bases to ensure that any single read does not contribute dispro-

portionately due to spanning many variants. The mapping pipeline is available

upon request.

4.4.2 Segregant analysis

To analyse the genetic background of two individual F6 segregants, we mapped

the sequencing reads to the genome as described earlier, and classified every

segregating site to stem from one of the two parental strains, or a no-call. A site

was called to be from one parent, if it was covered by at least 15 sequencing reads

with base and mapping qualities at least 30, and 80% of them had the parental
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allele. We conservatively refrained from making a call at low-coverage variants,

subtelomeric regions up to 30kb, and variants with ambiguous mapping data.

We called a recombination event if a region of at least 2kb from one parent was

followed by a region of at least 2kb from the other, and at least 5 calls were made

in both regions. This results in a conservative estimate of recombination events,

as it discards non-crossovers, and recombination in subtelomeric regions.

4.4.3 Copy number and missing sequence.

We mapped all reads to artificial chromosomes, each containing exactly one gene

with 100 flanking bases, and recorded their average sequencing coverage every

100 bases. We used that to infer a copy number for each gene as the average gene

coverage normalised by the average sequencing coverage. We also mapped the

reads to the assembled contigs from parental sequence data that did not map to

the S288c reference; no large allele frequency changes were observed.

4.4.4 Allele frequency inference

Under a simple model, there is an unobserved WA allele frequency fl at each

locus l; we want to infer the posterior distribution of fl after observing the se-

quence data. We assume all reads to come from different segregants after filtering

segregating sites to be distant, thus every segregant i has one allele ai observed

at some locus l1 distance dl,i away from l. We take dl,i to be infinity if the loci

are on different chromosomes. For that segregant, there is an unobserved allele

bl,i at locus l, and the probability that these loci are linked, with no recombina-

tion event occurring during the intercross between them, is ql,i = 1− exp(−dl,iρ),

where ρ is the recombination rate. We took ρ = 30(1 + g−1
2

) , where g is the

number of intercross rounds, as there are on average 30 crossovers per tetrad,

and every intercross after the first one has a 50/50 chance of introducing a switch

between parental haplotypes. The likelihood of the allele frequency at locus l is
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thus P (D|fl) =
∏

i P (ai|fl), where

P (ai | fl) = P (ai, bl,i = WA | fl) + P (ai, bl,i = NA | fl) =

= P (ai | bl,i = WA)P (bl,i = WA | fl) + P (ai | bl,i = NA)P (bl,i = NA | fl) =

= qai=WA
l,i (1− ql,i)ai=NAfl + qai=NA

l,i (1− ql,i)ai=WA(1− fl) '

' ql,if
ai=WA
l (1− fl)ai=NA

Here, we have discarded likelihood terms that require a recombination event, as

we will filter ql,i to be large. We approximate the posterior of fl with a Beta distri-

bution with an uninformative prior, and find the maximum likelihood parameters

of the distribution from for segregants for which ql,i > 0.95 (0.75 for Fig. 2A-B

for smoothness). This inference procedure corresponds to a smoothing approach

within a fixed window with the width determined by the recombination rate, and

has the effect of discriminating against extreme allele frequencies. The posterior

confidence intervals were obtained from the approximated Beta distribution.

4.4.5 QTL inference

We inferred QTLs in the F12 selected pool by comparing the inferred allele fre-

quencies before and after selection. The allele frequencies in the control exper-

iment, propagating the cells without selection, were nearly identical to those

before selection. We called QTLs by testing for inequality of the inferred approx-

imate posterior allele frequencies before and after selection. As a simple cutoff,

we called a QTL if the inferred allele frequency changed in the same direction by

at least 10% in both biological replicas and 25% in total, a change larger than

exhibited for the control experiments at permissive temperature of 23 degrees af-

ter 192 hours at any locus in either replica. A single QTL was called in any 20kb

window, corresponding to the variant with the largest combined allele frequency

change over the two replicas.

4.4.6 Linkage analysis in F1 segregants.

We used results from Cubillos et al. (2011) for F1 segregant QTL mapping. In

short, we used standard marker regression for the 200 genotyped markers and
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3 heat growth phenotypes to map QTLs significant at 5% false discovery rate

(FDR) using a standard linear model and 1000 permutations.

4.4.7 Epistatic interaction tests

We used a standard linear model (Chapter 1.4.1) to assess the significance of

an epistatic interaction term between two genotyped loci that affects any of the

three growth phenotypes assayed for the segregants. No significant interactions

were found at 5% false discovery rate (FDR, fraction of expected false positives

in all calls), possibly due to the difference of the phenotyping temperature effect

in solid and liquid media, or lack of power.

We tested for scarcity and abundance of two-locus genotype combinations for

11 genotyped trait loci in 189 segregants of F12 population after 120 hours in heat

stress (Table S9). For each pair of segregating loci, we compiled a contingency ta-

ble of genotype counts, and applied two-tailed Fishers exact test to calculate the

p-value of independence of the loci. We calculated the false discovery rate (FDR,

fraction of expected false positive calls) at a range of p-value cutoffs for the set

of pairwise tests, and did not find individual interactions at FDR < 10%. As an

alternative, we pooled all allele combination counts for beneficial/beneficial (BB),

beneficial/deleterious (BD), and deleterious/deleterious (DD) genotype combina-

tions, to test for relative abundance of BB and DD combinations. For the 11

genotyped QTLs, there were n11 = 607 DD genotypes, n12 = 3959 BD geno-

types, and n22 = 5739 BB genotypes for the N = n11 + n12 + n22 genotypes. We

then compiled a contingency table with the observed and expected combination

counts calculated from the fraction of genotyped beneficial alleles, and calculated

the chi-squared test p-value. This test is appropriate as the sample size is large.

We also repeated the test for QTLs found within individual pathways; no p-values

were significant at 10% cutoff.

4.5 Simulation experiments

We now expand on the argument for lack of adaptive mutations dominating

the pool, as well as allele frequency changes under simplifying conditions in a
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simulation scenario. We simulated data from a simple generative model to explore

the potential of adaptive mutations to dominate a haploid pool, as well as effects

of more than one allele in haploid and diploid pools.

4.5.1 Adaptive mutations.

First, we provide three lines of computational evidence for lack of new adaptive

mutations with large effect on intercross pool allele frequency during selection.

Second, we demonstrate how interaction effects can account for lack of fixation,

and ploidy can be responsible for the difference in response time to selection.

Firstly, the fitness requirement of adaptive mutations to dominate the pool is

too high. A single adaptive mutation begins at very low initial frequency, f1 = 1
N

,

where we take N , the total number of segregants in the pool to be 107. The

doubling times for the segregants range from 1.5 hours in permissive condition

(or for fit segregants in restrictive condition) to 2 hours for unfit segregants in

restrictive condition. Let us assume an adaptive mutation rises to the same

frequency as the total frequency of haplotypes with beneficial alleles at the two

loci that reach fixation - the IRA1 and chrXIII subtelomeric loci (initial frequency

f0 = 0.25) all of which have doubling times t0 ∼ 1.5 hours. Over T = 288 hours

of selection, the following identity must then hold for the doubling time t1 of the

adaptive mutation: f12
T
t1 ≥ f02

T
t0 , or t1 ≤ T

log2 f0−log2 f1+ T
t0

. Plugging in numbers

for f1, f0, T , this gives t1 ≤ 1.34 = 0.9t0 Thus, in order to rise to appreciable

frequencies in the very large pool, the haplotype with the adaptive mutation must

grow 10% faster in restrictive condition than the segregants do in the permissive

condition. If such mutations were possible, they would be more likely to rise

during the many months of intercross rounds, not during the span of four days.

However, in this case, the allele, not the haplotype, will be selected for, as further

intercross rounds separate the adaptive mutation from the haplotype on which it

arose.

Dominating adaptive mutations would drive the pool allele frequencies to

extremes. In the very long run, the haplotype with the adaptive mutation will be

the only one left in the pool, as no recombination happens during selection. As the

frequency of the adaptive mutation rises in the pool, the pool loses heterozygosity
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4.5 Simulation experiments

and genetic complexity, and the frequency of the NA allele at all segregating loci

will be driven to 0 or 1. If a haplotype with an adaptive mutation is present at

high frequency in the pool, we would expect to see an allele frequency change

from the initial pool at all loci towards the genotype of that haplotype, which we

do not observe.

Adaptive mutations would continue to rise in frequency after 192 hours. We

do not observe global allele frequency changes after 192 hours. However, as

outlined above, haplotypes with adaptive mutations should continue to rise in

frequency in the pool. These three lines of evidence point to little contribution

from adaptive mutations to the final segregant pool allele frequency makeup.

Adaptive mutations for sporulation, mating, or growth can arise during intercross,

and could be traced. However, for QTL mapping, we are conditioning our analysis

on all the segregating sites present in the pool at the beginning of selection,

regardless of whether they were present in the parental strains.

4.5.2 Effects of selection on allele frequency.

We simulated allele frequency changes under simple assumptions for various sce-

narios. While standard (e.g. Hartl and Clark (2006)), the results give intuition

for allele frequency changes observed.

Haploid individuals. We fixed the initial allele frequency of any locus to be

0.5 for simplicity, and calculated its change over generations in a deterministic

way. For a one locus trait, the individuals with genotype ’1’ were assumed to

have a fitness advantage s, which changed the rate at which they survived to

the next generation, with the frequency fl,t of locus l at generation t was taken

to be
(1+s)fl,t−1

(1+s)fl,t−1+(1−fl,t−1)
= 1+s

1+sfl,t−1
fl,t−1 If s > 0, fl increases, and if s < 0, it

decreases in a near-geometric manner. For these one locus haploid pools, the

beneficial allele asymptotically approaches fixation, with the speed depending on

the magnitude of the selection coefficient (Figure 4.5).

In case two loci are contributing, the calculation remains almost unchanged,

but now the effect of selection is assumed to act only on the ’11’ genotype.

In this case, if s > 0, the haplotypes with ’11’ genotype are fitter than the
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others, and again are driven to fixation. However, if s < 0, the ’11’ genotype

is selected against, and will be purged from the pool in the long run. Both

alleles will still be present at each locus (Figure 4.5A). We hypothesize such

interactions to be responsible for the lack of fixation upon over 100 generations of

selection. The usual intuition behind this is that fitness depends on functioning

of a specific pathway. While any single mutation does not alter the functionality

of the pathway, there are many possible combinations of genotypes that render it

defective. These combinations are selected against, producing a change in allele

frequency, but not fixation of any allele.

Diploid individuals. As the diploid individuals propagate clonally just like

haploids, we have to trace the frequency of the genotypes, not alleles, since there

is no further mixing of the haplotypes between individuals. We can therefore treat

a one locus trait in diploids, identically to a two-locus trait in haploids, and find

that for traits where the beneficial allele behaves in an additive or recessive way,

selection drives the frequency of beneficial allele to fixation, and for dominant

beneficial alleles, the homozygous non-beneficial allele combination is selected

against (Figure 4.5). We observed QTLs with final allele frequencies as well

as their speed of change consistent with both recessive (IRA1 ) and dominant

(chrXIII subtelomere) beneficial alleles (main text). However, when the QTL

acts in an additive manner, the allele frequency change is identical to that of the

haploid pool.

If interaction effects are responsible for the allele frequency change, the effect

can again be dominant, additive, or recessive. The differences to a one-locus

model are slower effect of selection, as the fittest haplotype has lower initial

frequency, and less extreme final allele frequency in case the interaction effect

is dominant, as there are fewer genotype combinations selected against (Fig-

ure 4.5B).

4.6 Discussion

We have presented an accurate, sensitive, quick approach for QTL mapping in

yeast. It is straightforward to apply our method to any selectable trait. We
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4.6 Discussion

Figure 4.5: Haploid (solid lines) and diploid (dashed lines) pool allele frequency
changes for 1-locus (a) and 2-locus effects (b). Initial allele frequency of a locus is
0.6. Individual lines correspond to different fitness modifiers, from top to bottom:
+1,+0.3,+0.1,+0.03,−0.03,−0.3,−1.
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expect to be able to extend these mapping populations to include more of the

genetic diversity in the species by crossing a larger number of parental strains.

As we were also able to map the trait loci in the diploid pool, there is a potential

to establish an outbred yeast population that can be used as a model for natural

diploid genome-wide association studies as carried out in humans.
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Chapter 5

Additional gene mapping studies

Collaboration note This chapter contains work performed in collaboration

with Gemma Langridge and Dr. Keith Turner for bacterial transposon mutant

mapping (Langridge et al., 2009), and Francisco Cubillos and Dr. Gianni Liti

for yeast linkage analysis (Cubillos et al., 2011; Liti et al., 2009b).

Gemma and Keith developed the transposon mutant library, performed the ex-

periments, generated raw data, and did the high-level analysis; I contributed the

statistical analyses of the data. Similarly, Francisco and Gianni designed and

developed the yeast grid of crosses, performed the experiments, and high-level

analysis; I contributed the statistical analyses and parts of interpretation of the

data.

5.1 Gene mapping with one million bacterial

transposon mutants

One trait mapping approach available in prokaryotic and simple eukaryotic organ-

isms is generating a very large number of random mutants, and then examining

which mutants survive selection (Chapter 1.1.3). This is related to the work in

Chapter 4 on standing variation, but can access a wider variety of alleles. A

version of this approach based on transposon insertions was recently developed
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5.1 Gene mapping with one million bacterial transposon mutants

for the bacterium Salmonella enterica serovar Typhi (S. Typhi, Langridge et al.

(2009)).

5.1.1 Transposon insertion library for Salmonella Typhi

S. Typhi causes typhoid fever, and is responsible for hundreds of thousands of

deaths in the developing world every year (Crump et al., 2004). One approach

to fighting this disease agent is to map the genes essential for its survival in

the permissive condition, restrictive conditions associated with its lifecycle in

the human host, and under stress from therapeutic agents. To this end, our

collaborators created a transposon insertion library with on the order of 1,000,000

mutants, each harbouring one transposon insertion. This large mutant library was

then grown in a permissive condition and with added 10% ox bile to simulate gall

bladder environment, followed by DNA extraction from the pool, amplification

of DNA from the junction between transposon sequence and genomic DNA, and

high-throughput sequencing. Mapping the sequencing reads to the genome results

in a list of sites where some mutant had a transposon inserted.

Here, we focus on two mapping tasks. First, we look for essential genes that

do not allow insertions, followed by study of genes essential for growth in bile,

which is important for its persistence in the human host.

5.1.2 Mapping essential genes

To test whether a gene was essential, we quantified how unlikely it was to har-

bour a transposon insertion. Genes with no observed insertions are likely to be

essential, while genes with many insertions are obviously not. For every gene g of

length Lg, we calculated the insertion frequency fg = Ig
Lg

, where Ig is the observed

number of insertions.

We noted that the distribution of f was bimodal with modes at 0 and roughly

0.05, and heavy-tailed (Figure 5.1). The mode at 0 corresponds to the essential

genes that do not allow for any insertions, and the mode at 0.05 to all the other

genes. Under the assumption of uniform incorporation of the transposon, we

would expect the number of insertions in a gene to follow a Poisson distribution.

However, the distribution is considerably more dispersed, indicating presence of
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5.1 Gene mapping with one million bacterial transposon mutants

unknown biases and potential sequence-specificity. Standard approaches to deal

with overdispersion, such as using a negative binomial distribution, or a normal

distribution with variance proportional to mean, did not give a substantially

better fit, and were not straightforward to interpret.

Insertions / bp

D
en
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ty

0.00 0.02 0.04 0.06 0.08 0.10

0
5

10
15

20

Figure 5.1: Histogram of per-base insertion frequency of individual genes. The
blue line corresponds to the Gamma fit to the right mode (non-essential model),
while the red line corresponds to the Gamma fit to the left mode (essential model).

Instead of modelling the generative process, we modelled the data directly.

We fit Gamma distributions for the two modes of the distribution of the insertion

site count in every condition using the R MASS library. For each fg, we calculated

the probabilities corresponding to the right tail of the essential model and left tail

of the non-essential model. This represents our belief of observing an insertion

index that is at least as extreme for both individual models. For every gene g,

we calculated the base 2 logarithm of the likelihood ratio (Lg) between the two

model fits, and classified the gene as essential (Lg < −2, essential model at least

111



5.2 Gene mapping with grid of yeast crosses

4 times more likely), non-essential (Lg > 2, non-essential model at least 4 times

more likely), or uncertain (|Lg| < 2).

We found 349 essential genes at false discovery rate less than 0.07. The

analysis of these genes is presented in Langridge et al. (2009).

5.1.3 Mapping condition-specific essential genes

Next, we looked for genes essential for growth in bile. These genes should not

be essential in general, but insertions in them should be observed less than in

the permissive condition. There were three timepoints for growth in bile, we

compared the data from each to the data from permissive condition. We analyse

number of mapped reads instead of insertion events to avoid many more com-

parisons of very low frequency (1-2 insertions) events. From the raw data, it

was clear that several genes had reduced insertion frequencies as assessed by the

number of sequenced reads (Figure 5.2a).

For each pair of conditions (A,B), we calculated the log2 fold change ratio

Sg,A,B in the number of observed reads Rg,A, Rg,B for every gene g as Sg,A,B =
Rg,A+100

Rg,B+100
. The correction of 100 reads in the numerator and denominator smooth

out the high scores for genes with very low numbers of observed reads, and cor-

responds to a prior belief that if there is an insertion present, there should be an

abundance of reads mapping to it.

Again, we modelled the data directly. We fit a normal model to the mode of

distribution of SA,B over all genes, and calculated p-values for each gene according

to the fit (Figure 5.2b). This procedure results in an ordered gene list. We chose

an arbitrary cutoff, and considered a gene to be condition-specific if the fold-

change between the conditions was greater than 4, which corresponds to p-value

of 10−5, and false discovery rate of 2.5× 10−4. These genes are analysed in depth

in Langridge et al. (2009).

5.2 Gene mapping with grid of yeast crosses

Baker’s yeast Saccharomyces cerevisiae has been successfully used in linkage stud-

ies over the last decade, focusing mainly on two F1 crosses (Ehrenreich et al.
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Figure 5.2: (a) Scatter plot of log2 read counts in two conditions. 100 is added
to each gene’s counts for smoothing. (b) Histogram of gene read count log2 fold
change. The blue line corresponds to normal fit to the mode, red line is the cutoff
used to determine condition-specificity.
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5.2 Gene mapping with grid of yeast crosses

(2009); Mancera et al. (2008); Steinmetz et al. (2002); Zheng et al. (2010), Chap-

ter 1.1.1). However, a single cross gives restricted information about context-

dependent allele effects, and is limited to variants present only in the two parental

strains.

5.2.1 Grid of yeast crosses

To explore the effects of alleles in different genetic contexts, our collaborators gen-

erated a grid of crosses between all five clean (non-mosaic) lineages of S. cerevisiae

sequenced as part of the Saccharomyces Genome Resequencing Project (Liti et al.,

2009a). One of the strains (of Malaysian origin) was effectively reproductively

isolated, and thus not included for further analysis. The remaining six crosses

between the four strains captured 64% of the segregating sites identified by Liti

et al. (2009a).

Ninety-six F1 segregants were isolated from 24 meiotic events for each cross.

Every segregant was genotyped at 171 evenly spaced markers, followed by quan-

titative characterisation of growth curves in different conditions. Three growth

environments were shared between all crosses, while the rest of the 32 tested

environments were cross specific.

5.2.2 Recombination analysis

First, we characterised the global recombination landscape in the six crosses.

We called a recombination event between two consecutive genotyped loci in one

haploid segregant if the two observed alleles came from different parents.

We determined the average recombination rate ρk in each cross k as the num-

ber of observed recombination events divided by the genome size. We then used

a Poisson model with mean ρk to assess the significance of hot- and coldspots in

each cross k. A hotspot was deemed significant if the probability of observing

as least as many recombination events under the model was less than α = 0.005

(FDR< 10%) in at least one cross. Similarly, coldspots were called significant, if

the probability of observing up to that many recombination events was less than

0.005.
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5.2 Gene mapping with grid of yeast crosses

Figure 5.3: Observed recombination rate in each of six crosses, as well as a
reference cross from previous work. Recombination hotspots are highlighted with
a filled circular marker.
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5.2 Gene mapping with grid of yeast crosses

In addition, we used data from Mancera et al. (2008), who established a

high-resolution crossover map in another cross using 56 meiotic events. For each

marker we genotyped, we took the closest called genotype from their data for

every segregant, and repeated our analysis on this dataset.

We found 32 hotspots (Figure 5.3) and 48 coldspots. Nine of the hotspots were

not recovered with the high-resolution data form Mancera et al. (2008); seven

of the nine were cross-specific, and the remaining two strain-specific, present

in all crosses with one strain. We found ten of sixteen centromeric regions to

be recombination coldspots in some cross, consistent with their reduced rate of

meiotic recombination (Choo, 1998) while no other coldspots were shared between

more than three crosses. These results suggest that hotspots, but not coldspots,

are mostly conserved. In-depth analysis of these data is given in Cubillos et al.

(2011).

5.2.3 Linkage mapping

We then mapped QTLs in all six crosses to determine the regions linked to growth

phenotypes in different conditions. Linkage analysis was performed with the

rQTL software (Broman et al., 2003) using the non- parametric (Kruskal-Wallis)

test for QTLs and normal model for variance explained. LOD> 2.63 was used

as cutoff (FDR< 5%) giving less than one QTL by chance per trait. We used

the same approach to find strain-specific QTLs by performing one against all

tests, pooling data from all crosses with a strain. We also searched for epistatic

interactions using the normal model (Chapter 1.4.1), taking LOD> 5.8 (FDR<

5%) as a cutoff.

We found a plethora of QTLs. Two hundred and thirty-three marker-trait

pairs were significant. Many of them were specific to a cross or strain, and other

combinations were represented as well (Figure 5.4a). We found additional QTLs

by pooling the genotypes across crosses (Figure 5.4b), and also detected putative

epistatic interactions. Again, more analyses of the QTLs are provided in Cubillos

et al. (2011).
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5.2 Gene mapping with grid of yeast crosses

Figure 5.4: Paraquat growth rate QTLs found in each cross independently (a)
and in a one-against-all test for the WA strain (b). The phenotyping approach
and conditions used are described in Cubillos et al. (2011).
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Chapter 6

Conclusions

6.1 Conclusions and discussion

I have spent the last four years trying to understand the genetic basis of cellu-

lar traits, focusing mostly on genetics of gene expression, and trait mapping by

selection.

6.1.1 Abundance and importance of eQTLs

We found genetic associations to 30% of the transcript levels, and preliminary

results suggest that this number increases to 85% in larger human cohorts. Thus,

gene expression level, the most basic cellular phenotype, is certainly influenced

by genotype. While it is not surprising that common genetic variation in gene

regulatory regions does influence the structure and protein binding affinities of

DNA, still only a small amount of variance is explained by genotype.

We (Chapter 3) and others (Foss et al., 2007) have found evidence for little

correlation between mRNA and protein levels in the cell. This suggests that

small scale gene expression variation is not amplified to protein levels, and rather

dampened. This supports the view that many of the eQTLs we find may not have

functional consequences in the tissue the gene expression was assayed. However,

in other tissues, the effects may be larger.

Strong QTLs, however are candidates for causal regulatory effects, including

human GWAS hits (Nica et al., 2010; Nicolae et al., 2010). It could also be
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6.1 Conclusions and discussion

that some of the weak eQTL alleles tag rare variants of large effect, that are not

detected with the non-parametric methods commonly used. Furthermore, weak

eQTLs in one tissue could be strong in another, where the genes are expressed at

higher levels. While a comprehensive resource of human average tissue-specific

expression levels has recently been published (Lukk et al., 2010), there is no

comprehensive data available yet on the variability of expression levels in all

tissues, and their genetic basis. Some projects, e.g. the MuTHER resource (Nica

et al., 2011) are beginning to fill this gap.

Some dimensions of eQTL mapping remain understudied. First, there is a

question of identifying the causative nucleotide(s). Functional annotation of the

loci can help find variants that are in known or predicted protein binding regions,

and therefore predicted to be functional. Further correlating the existence of a

binding site with expression from the haplotype, which can be possible in mRNA-

seq experiments, will give more evidence for the functional impact. Second, from

studying cell populations, it is not clear whether the change in expression levels is

due to a shift in the mean level in every cell, or a large change in a smaller number

of cells. The problem of differentiating between small effects of full penetrance

and large effects of low penetrance is fascinating and important, and pertinent

to most cellular traits. I hope that large condition-specific effects are at play, as

these will be easier to model, once appropriate assays have been undertaken.

6.1.2 Abundance and importance of interactions

We have developed methods to detect genotype-specific effects on cellular traits

(Chapter 3). We found that modelling unmeasured cellular phenotypes lowers

the dimensionality of the hypothesis space, eases the multiple testing burden,

and yields interpretable genetic associations and interactions.

There is a gap between intuition developed in model organisms and findings

from studying human cohorts. In models, epistasis has been found almost every-

where, while in humans, it remains elusive. This is a secondary problem. The

real cellular mechanism for an epistatic effect is not DNA-DNA interaction, but

instead, an interaction of two traits. Thus, the question is not where are epistatic
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6.1 Conclusions and discussion

effects, but rather which traits we need to measure or infer to understand varia-

tion in our favourite trait. The genotype then comes into play only as a source

of variability for the interacting trait.

We have explored one direction of such interactions, genotype-specific tran-

scription factor and pathway effects. We rely heavily on existing annotations for

structuring our model, and have to use inferred phenotypes, as the traits we are

really interested in are not measured. Thus, obvious extensions to existing work

would include more detailed prior information, as well as modelling other mea-

sured traits. I believe that genotype-specific effects are also pervasive in humans,

and will be detected using inferred intermediate phenotypes, or assays of further

cellular phenotypes.

6.1.3 Trait mapping using artificial selection

We have established a method to map any selectable trait in yeast to narrow

intervals, and found many loci to be contributing to heat resistance.

It is not surprising that many loci are responsible for variation in one trait.

While simple characteristics can be determined by one specialised protein such

as efflux pumps of specific molecules, most cellular traits are determined by the

action of entire pathways. Thus, variation in any part of the pathway that also

effects its activity will be a source of variability for the phenotype. Any allele that

affects a pathway component and has downstream effects will be under selection

if pathway activation is selected for.

The lack of fixation of individual alleles is also explained by selection for

pathway activation. Once the activation is perturbed enough to produce a fit

individual, genotypes of other alleles have no fitness effect, and are under no

selective pressure. Alternatively, once enough deleterious alleles are present to

abolish the pathway activation and produce an unfit individual, the additional

alleles will not influence the fitness of the individual further. Such effects cor-

respond to negative epistatic interactions, and we are validating whether they

explain our observations (see Future work below).
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It has been reassuring to observe genetic complexity in a simple model organ-

ism. Hopefully, much of what we learn about the fine scale structure of complex

yeast traits mapped by artificial selection will also translate to higher eukaryotes.

6.2 Future work

The development of the PEER framework (Chapter 2) and the interaction model

(Chapter 3) is complete. What remains to be finished is an interface more ac-

cessible to the general user. To this end, we are reimplementing both general

as well as sparse factor analysis models as an R package. Further work along

modelling latent phenotypes will use the MuTHER dataset, and combine infor-

mation from genotype, gene expression, small RNA expression, methylation, lipid

level, metabolite, DEXA scan, and clinical questionnaire data, building towards

a generative model of human cellular and molecular physiology, and its relation

to disease.

There are many possibilities to extend work on mapping by artificial selection

(Chapter 4). There are experiments to be done, analysis to undertake, and models

to develop.

Modelling. The first priority is establishing and implementing inference

for a correct generative model of allele frequencies and QTLs. Currently, we

employ a simplistic smoothing approach. Instead, we have a HMM-like model

in mind, where binary indicators designate QTL locations, local recombination

rates are modelled as random variables with informed prior distributions, and

allele frequencies are inferred taking the above into account. This model would

yield a more finescale QTL map, inform of the required sequencing depth for

accurate mapping, as well as provide estimates of local recombination rates. The

exact QTL locations can be used in designing further genotyping experiments.

Analyses. We have generated a rich dataset, and many questions are not

yet answered. We are looking to analyse population genetics and signatures of

selection for all QTL regions, run SIFT analyses to detect intolerable alleles, and

perform additional computational experiments to assess the effect of candidate

causative alleles on mRNA expression levels or protein structure and function.
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Finally, we are in a position to assess local recombination rates both from the

model proposed above, as well as long insert libraries that we can scan for read

pairs with evidence of material from more than one parental strain.

Experiments. We are in the process of extending this work in several direc-

tions.

Firstly, we are genotyping 1,000 segregants from the pool after selection at all

the QTL loci to find epistatic interactions. Secondly, we have generated a four-

way cross of the strains used in the grid of crosses experiment (Chapter 5.2). We

are mapping QTLs in this genetically more diverse population, and genotyping

and phenotyping 384 of the segregants from the intercross pool. We need to per-

form a few follow-up experiments for replicating diploid results, and understand

how much information is shared between haploid and diploid screens. Finally, it

may be interesting to assess the dynamics of the allele frequency change at higher

resolution, and in longer term.

Most importantly, we can map any selectable trait to high resolution. This

opens a wide range of possible experiments. Most interesting ones pertain to

general cell biology that would also transfer to higher eukaryotes, such as DNA

damage response, oxidative stress response, ageing, and cell adhesion. We are

looking to focus on specific biological questions that can be answered in this

model.

We have measured mRNA levels from the pool before and after selection, both

steady state, as well as in response to heat shock after 15 minutes. We may be

looking to supplement these experiments with protein level measurements of a few

key proteins to assess the role of their abundance in the heat resistance trait to

trace the phenotypic effect of the alleles. Furthermore, we may attempt to rescue

the heat resistance phenotype in some segregants with low fitness by introducing a

plasmid that modifies RAS activity. Finally, we could generate allele replacement

strains for the individual QTLs to assess the effect of the alleles in isolation and

specific combinations.
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Appendix A

Variational inference in PEER

Supplementary Methods

Implementation of non-Bayesian models

Standard expression QTL model

To ensure a common ground when comparing different methods, we used a well

established linear regression approach introduced by Lander and Botstein (1989)

to detect associations. For each tested SNP n with genotype sn,j and gene g with

expression level yg,j, we evaluated the log-odds (LOD) score

Ln,g = log

{∏
j

P (yg,j | sn,j,θ1)

P (yg,j |θ0)

}
= log

{∏
j

N(yg,j;un,jsn,j + µg,1, σ
2
g,1)

N(yg,j;µg,0, σ2
g,0)

}
(A.1)

which assess how well a particular gene expression level is modelled when the

observed genetic state sn,j is taken into account, compared to how well it is

model-led by a background model ignoring the genetic effect. The probe expres-

sion levels yg,j can either be the raw measurements, residuals after subtracting

the estimated effect of hidden and known factors, or ranks for a non-parametric

statistic.
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Significance of an association was evaluated in three different ways:

1. 2-tailed t test on expression values uses the Student’s t distribution

with N − 2 degrees of freedom to assess the significance of the statistic

t = (N − 2)0.5ρ(1 − ρ2)−0.5 based on the correlation coefficient ρ2 = 1 −
exp(−2Ln,gN

−1) between the genotype and the expression levels. We called

an association significant if |t| was greater than the 10−3

2S
tail of the tN−2

distribution, which corresponds to a 10−3 Bonferroni-corrected per-gene

false positive rate when performing tests for S SNPs.

2. Rank correlation uses the same test, but on the ranks of expression values.

3. Permutation testing (Lynch and Walsh, 1998) repeats the analysis in

Equation (A.1) with permuted expression levels with respect to the genetic

state, calculating the distribution of null log-odds scores. An eQTL was

called significant if Ln,g was greater than L̂n,g, the δ tail of the null distri-

bution for a given false positive rate (FPR) δ. The same set of permutations

was used for all methods. To account for multiple testing, we estimated a

single significance threshold L̂g per gene for all tested SNPs. This was done

by taking the maximum LOD score over SNPs for a given permutation and

using this score distribution when estimating the δ tail (Stranger et al.,

2007).

The posterior of the switch variable for the probabilistic genetic model is not

used for the final tests to put all methods on equal footing.

PEER framework

VBQTL and the alternative compared methods are implemented within the

PEER (Probabilistic Estimation of Expression Residuals) framework. Here, we

give a full self-contained treatment of the framework and the implemented infer-

ence algorithms.
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Likelihood models

The likelihood model of PEER for observed expression levels Y is

P (Y |Y(1), . . . ,Y(M), τ ) = N(Y |Y(1) + · · ·+ Y(M),Σ), (A.2)

where Σ = diag{ 1
τg
} is the diagonal matrix constructed from noise precisions {τg}

and {Y(m)} are the contributions of expression variability for each of M models.

The noise model is per gene, similar to a factor analysis model, where gamma

priors are put on the noise precisions,

P (τg) = Γ(τg | aτ , bτ ). (A.3)

In experiments we used vague gamma prior parameters, aτ = 1, bτ = 100. Each

of the M models itself depends on parameters θ(m) and possibly other data D(m)

P (Y(m) |θ(m),D(m)). (A.4)

Genotype effect model. The expression level y
(1)
g,j of the gth gene probe

in the jth individual is explained by linear effects of genotypes of N SNPs sj =

(s1,j, . . . , sN,j):

P (y
(1)
g,j | sj,bg,ug, τg) = N(y

(1)
g,j |

N∑
n=1

bn,g · (un,gsn,j) ,
1

τg
) (A.5)

P (bn,g) = Bernoulli(bn,g | pass) (A.6)

P (un,g) = N(un,g | 0, 1). (A.7)

The weight ug = (u1,g, . . . , uN,g) indicates the magnitude of the effect, and

the binary variables bg = (b1,g, . . . , bN,g) determine whether it is significant

(true) or not (false), taking the Bernoulli prior on the switch variable P (bn,g) =

Bernoulli(bn,g | pass) into account. When the switch variable is on, the expression
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level is linearly influenced by the SNP, and unaffected otherwise. The LOD score

of the association model (Section Standard expression QTL model) is closely re-

lated to the switch variable bn,g. For a particular parameter setting, the posterior

probability over the switch state bn,g is a monotonically increasing function of the

LOD score. The exact relation is P (bn,g = 1 | yg,j, sj,n) = σ(LOD score) where

σ() is the sigmoid function σ(x) = 1/(1 + e−x).

2) Known factor model. The effect of the measured C covariates in the

jth individual, fj = (f1,j, . . . , fC,j), where the weights of their effect on a gene g

is vg = (vg,1, . . . , vg,C) is modelled as:

P (y
(2)
g,j | fj,vg, τg) = N(y

(2)
g,j |

C∑
c=1

vg,c fc,j,
1

τg
) (A.8)

P (vg,c |αc) = N(vg,c | 0,
1

αc
) (A.9)

P (αc) = Γ(αc | aα, bα). (A.10)

The gamma prior on the inverse covariances for each factor introduces automatic

relevance detection (ARD) Mackay (1995); Neal (1996), driving the weights of

unused factors to 0 and thereby switching them off. This is explained in more

detail below.

3) Hidden factor model. Analogously to known factors, expression vari-

ability is modelled by linear effects from K hidden factors X = {x1, . . . ,xK}:

P (y
(3)
g,j |xj,wg, τg) = N(y

(3)
g,j |

K∑
k=1

wg,k xk,j,
1

τg
) (A.11)

P (wk, βk) =
G∏
g=1

N(wg,k | 0,
1

βk
) (A.12)

P (xk,j) = N(xk,j | 0, 1) (A.13)

P (βk) = Γ(βk | aβ, bβ). (A.14)
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The factor activations X are random variables that are not observed, but

instead inferred from the expression levels. Again, the ARD prior allows unused

factors to be switched off. This forces the model to learn factors which have a

broad effect on many expression levels. In experiments we used values aα = 10−7G

and bα = 10−1G, where G is the total number of gene probes. Similar prior

settings were used for the weights of the known factors vc. We put a standard

normal prior on the hidden factors, xk,j ∼ N(xk,j | 0, 1).

Variational inference

As outlined in Methods we use variational Bayesian inference Jordan et al. (1999)

for parameter learning in the framework. The basic principle of variational meth-

ods is to approximate the exact joint posterior distribution over all parameters by

a factorised Q-distribution. Individual factors of the Q-distribution are refined

by minimisation of the KL-divergence between the exact and the approximate

distributions with respect to the parameters of a single factor. This leads to an

iterative algorithm, updating individual factors of the approximate distribution

given the state of all others. Here, we give the factorisations and update rules for

the general framework and the individual models.

PEER framework. We approximate the exact joint posterior distribution

over all parameters

P ({Y(m)}Mm=1, {θ(m)}Mm=1, |D) (A.15)

by a factorised approximation over parameters for individual models

Q(Θ) =
M∏
m=1

Q(θ(m))Q(Y(m)). (A.16)

Here we defined the abbreviation D = {Y, {D(m)}Mm=1}, summarising all observed

data; expression levels Y as well as model-specific data {D(m)}Mm=1. Note that as

the expression contributions Y(m) are not observed they also resemble parameters
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that need to be inferred. Strictly speaking these are not treated as random

variables of the model, but Gaussian messages that comprise the first and second

moments of the expression variability contribution of a respective model. The

distributions of parameters θ(m) for individual models are in turn factorised. The

set Θ = {θ(1), . . . ,θ(M)} denotes the set of all parameters from all models.

The approximate Q-distributions are updated iteratively, taking the current

state of all others into account. Update equations for a particular Qi can be

derived by functional minimisation of the KL-divergence between P and Q with

respect to Qi which leads to

Q̃(Θi) ∝ exp {〈logP (D,Θ)〉Q(Θj),i 6=j}. (A.17)

The term in the exponent is the expectation of the model log-likelihood under all

other Q-distributions. Together with the expression data likelihood

P (Y |Θ) = N(Y |Y(1) + · · ·+ Y(M),Σ)
M∏
m=1

P (Y(m) |θ(m),D(m)) (A.18)

this allows generic update rules for all model parameters to be derived. Sub-

stituting in Equation (A.16) for each Q(·), we obtain the following approximate

distributions:

(Approximate distributions)

Q(τ ) =
G∏
g=1

Γ(τg | ãτg , b̃τg) (A.19)

Q(Y(m)) =
G∏
g=1

J∏
j=1

N(y
(m)
g,j | m̃Y

(m)
g,j
,

1

τ̃
Y

(m)
g,j

), (A.20)

and similar factorisations for each of the models (given below). The parameter

128



update equations for the framework parameters follow as:

(Update rules)

ãτg = aτ +
1

2

J∑
j=1

〈(
yg,j −

M∑
m=1

y
(m)
g,j

)2〉
(A.21)

b̃τg = bτ +
J

2
. (A.22)

Genotype effect model The update equations for the models introduced

in the main text (Inference) follow similarly. For the models, we give the ap-

proximate factorisations employed, and the resulting update equations that are

derived in identical manner to the treatment above.

(Approximate distributions)

Q(B) =
N∏
n=1

G∏
g=1

Bernoulli(bn,g | p̃bn,g) (A.23)

Q(U) =
N∏
n=1

G∏
g=1

N(un,g | m̃un,g , Σ̃un,g) (A.24)
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(Update rules)

Σ̃un,g = I + 〈τg〉
〈
b2
n,g

〉 J∑
j=1

sT
n,jsn,j (A.25)

m̃un,g = Σ̃−1
un,g

(
〈τg〉 〈bn,g〉

J∑
j=1

sn,j

〈
z

(1)
g,j

\n〉)
(A.26)

m̃
y
(1)
g,j

=
N∑
n=1

〈bn,g〉 〈un,g〉 sn,j (A.27)

τ̃
y
(1)
g,j

=

[
N∑
n=1

〈
b2
n,g

〉 〈
u2
n,g

〉
s2
n,j

]
, (A.28)

where we define

〈
z

(1)
g,j

\n〉
= z

(1)
g,j −

∑
m6=n

〈bm,g〉 〈um,g〉 sm,j (A.29)

and the residual expression dataset for the mth model

z
(m)
g,j = yg,j −

M∑
l 6=m

y
(l)
g,j. (A.30)

(A.31)

The approximate posterior over the indicator variables can be obtained from

p̃bn,g ∝ pass · exp

{
−1

2

J∑
j=1

〈(
z

(1)
g,j

\n
− bn,gun,gsn,j

)2
〉}

(1− p̃bn,g) ∝ (1− pass) · exp

{
−1

2

J∑
j=1

〈(
z

(1)
g,j

\n)2
〉}

, (A.32)
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which after normalisation gives rise to p̃bn,g .

(A.33)

Known factor model is identical in treatment to the hidden factor model,

without the need for updates of the factor activations. Thus, we only present the

hidden factor model here.

(A.34)

(Approximate distributions)

Q(X) =
J∏
j=1

N(xj | m̃xj
, Σ̃xj

) (A.35)

Q(W) =
G∏
g=1

N(wg | m̃wg , Σ̃wg) (A.36)

Q(β) =
K∏
k=1

Γ(βk | ãβk , b̃βk) (A.37)

(Update rules)

Σ̃xj
= Σxj

+
〈
WTdiag (τ ) W

〉
(A.38)

m̃xj
= Σ̃−1

xj

〈
WT

〉
diag 〈τ 〉

(〈
z

(3)
j

〉)
(A.39)
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Σ̃wg = diag 〈β〉+ 〈τg〉
J∑
j=1

〈
xjx

T
j

〉
(A.40)

m̃wg = Σ̃−1
wg

(
〈τg〉

J∑
j=1

〈xj〉
(〈

z
(3)
j

〉))
(A.41)

m̃
y
(3)
g,j

=
K∑
k=1
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Initialisation. The initial states of hidden factor model weights Q(wg) and

levels Q(xj) are determined from a PCA solution, and the weights for known fac-

tors Q(vg) are initialised to the maximum likelihood estimate. The parameters

for remaining Q distributions for all models are deterministically initialised to

corresponding prior means. A random initialisation is possible as well, however,

additional computation time is required for multiple restarts, and the inference

becomes non-deterministic. We have not explored the implications of this alter-

native here as the maximum likelihood initialisation performs robustly well in

practise.

Bottleneck approximation. The genetic association model accounts for

additive association signals from all considered SNPs. The corresponding varia-

tional updates of the indicator variables in Equation (A.32) can be unstable in

practise. In particular, if multiple correlated SNPs are in association to a single

gene, variational learning is prone to being trapped in local optima, attribut-

ing the effect to only one of them. Hence, the inferred state of the indicator

variables B depends on the order in which these updates are carried out. To

obtain meaningful results, the update sequence needs to be randomised and typ-

ically large numbers of restarts are required. This procedure implies prohibitive

computational cost, particularly for large datasets. To avoid this additional com-

putation, these updates are instead implemented greedily. For each gene g only

a single non-zero entry in the indicator matrix is permitted, corresponding to
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the SNP with the greatest evidence for an association. This leads to a sparse

association matrix B.

VBQTL

Both the iterative (iVBQTL) and the fast variant (fVBQTL) of the studied al-

gorithms use these update equations presented above. iVBQTL uses the full

variational approximation with a specific update order of the Q(θi) distributions.

In experiments, we used 3 iterations of the full model. Within each full iteration,

the genetic model was iterated 3, known factor model 30 and hidden factor model

30 times.

To compare the eQTL detection performance of VBQTL with standard meth-

ods and previous studies, we do not directly evaluate the linkage probabilities

P (bn,g) which are obtained during learning. Instead, we apply the standard asso-

ciation model (Section Standard expression QTL model) on the residuals of the

known and unknown factor models after convergence similarly to the traditional

methods.

fVBQTL is a faster approximate variant of iVBQTL. Rather than performing

full inference in the model, the genetic part of the model is ignored when inferring

the parameters for the factor models, which can be cast as a specific update

schedule.

Simulation dataset

We simulated 80 diploid individuals with 100 SNPs and 400 probe expression

measurements. The simulated minor allele frequency was 0.4 for each SNP, and

the allele configuration sn,j of SNP n was encoded as (1, 0), (1, 1), or (1, 2),

including a column for the mean. We independently simulated effects of known

and hidden factors, as well as genetic associations, noise, and downstream effects.

Noise level ψg of probe g was drawn from a normal distribution with mean 0 and

inverse variance τg drawn from Γ(3, 1), ψg ∼ N(0, τ−1
g ). We simulated associations

between SNP genotypes and gene expression levels for 1% of the SNP-gene pairs.

The genetic weight θg,n for an association between probe g and SNP n was drawn
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from N(0, 4). A total of 10 global factors affecting all gene expression levels were

simulated. Individual factor levels xj,k for factor k were drawn from N(0, 0.6).

Weights wk,g of factor k for probe g were drawn from N(0, σ2
k), where σ2

k ∼
0.8(Γ(2.5, 0.6))2 for a heavy-tailed weight distribution. Three of the 10 simulated

global factors were designated as known covariates fc,j. Further three probes that

had a simulated SNP association were designated to have downstream effects on

30 other probes. The effect of probe g on probe h in individual j was simulated as

additive factor of w′g,hyg,j, where w′g,h ∼ N(8, 0.8) for strong downstream effects,

and yg,j is the expression level of probe g in individual j.
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Appendix B

Supplementary Tables

Chr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y Total FDR
Probes 1009 644 540 384 449 571 468 338 387 380 545 520 189 330 348 426 549 154 618 266 120 238 328 15 9816 -

CEU
Standard 23 21 12 24 14 26 18 12 3 17 21 24 5 16 15 21 35 9 29 8 8 14 7 0 382 2.57 %
fVBQTL 61 69 53 57 45 83 44 36 12 48 61 68 16 41 32 55 82 20 69 29 17 30 23 0 1051 0.93 %

YRI
Standard 37 32 23 19 21 42 27 17 9 27 31 30 9 24 16 24 38 12 30 18 8 26 9 0 529 1.86 %
fVBQTL 79 94 75 48 56 91 66 38 17 58 79 65 26 48 48 59 94 22 77 40 19 43 27 0 1269 0.77 %

ASI
Standard 36 37 19 28 19 48 30 15 9 24 33 36 10 19 12 24 43 16 42 16 10 19 9 0 554 1.77 %
fVBQTL 91 105 88 55 58 111 73 55 19 59 87 78 31 56 52 61 109 30 96 43 22 37 28 0 1444 0.68 %

pooled
Standard 68 77 56 48 42 79 52 32 14 46 48 66 21 39 34 43 82 21 71 31 19 37 19 0 1045 0.94 %
fVBQTL 159 191 158 115 120 202 138 101 36 120 168 159 54 104 96 113 181 51 170 78 33 85 60 4 2696 0.36 %

Table B.1: Number of probes with a cis association for individual chromosomes
and per-probe false discovery rate for the considered populations (per-probe
FPR= 0.100%, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed
t test) on raw expression data (Standard) and after accounting for hidden factors
(fVBQTL).
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Standard eQTLs
CEU (382) YRI (529) CHB+JPT (554) Pooled (1045)

Standard

CEU (382) 382 (100%) 194 (50%) 236 (61%) 356 (93%)
YRI (529) 194 (36%) 529 (100%) 228 (43%) 409 (77%)
CHB+JPT (554) 236 (42%) 228 (41%) 554 (100%) 490 (88%)
Pooled (1045) 356 (34%) 409 (39%) 490 (46%) 1045 (100%)

fVBQTL

CEU (1051) 365 (34%) 282 (26%) 358 (34%) 662 (62%)
YRI (1269) 276 (21%) 510 (40%) 356 (28%) 675 (53%)
CHB+JPT (1444) 305 (21%) 322 (22%) 531 (36%) 788 (54%)
Pooled (2696) 370 (13%) 486 (18%) 527 (19%) 1028 (38%)

fVBQTL eQTLs
CEU (1051) YRI (1269) CHB+JPT (1444) Pooled (2696)

Standard

CEU (382) 365 (95%) 276 (72%) 305 (79%) 370 (96%)
YRI (529) 282 (53%) 510 (96%) 322 (60%) 486 (91%)
CHB+JPT (554) 358 (64%) 356 (64%) 531 (95%) 527 (95%)
Pooled (1045) 662 (63%) 675 (64%) 788 (75%) 1028 (98%)

fVBQTL

CEU (1051) 1051 (100%) 591 (56%) 717 (68%) 1007 (95%)
YRI (1269) 591 (46%) 1269 (100%) 697 (54%) 1120 (88%)
CHB+JPT (1444) 717 (49%) 697 (48%) 1444 (100%) 1350 (93%)
Pooled (2696) 1007 (37%) 1120 (41%) 1350 (50%) 2696 (100%)

Table B.2: Magnitude and fraction of overlap between probes with a Standard
of fVBQTLcis eQTL respectively, for different populations and methods. Total
numbers for each population and method are given in parenthesis after the pop-
ulation. 955 probes had a standard eQTL in some population, and 148 in every
population. 2236 probes had a fVBQTL eQTL in some population, and 477 in
every population.

Population 1. eQTLs 2. fVBQTLs 3. Pooled eQTLs 2. & 3. 2. - 1. 3. - 1. (2. - 1.) &(3. - 1.)
CEU 382 1051 871 485 686 582 204
YRI 529 1269 796 476 759 507 188
CHB+JPT 554 1444 709 501 913 378 170

Table B.3: Overlap of VBQTLs in one population (2.) with standard eQTLs
found when pooling the other two populations (3.). Overlaps are given both for
all QTLs (2. & 3.) and only for additional ones (2. - 1. & 3. - 1.) compared
to standard eQTLs in the population. Per-probe eQTL FPR=0.1%, Bonferroni
corrected for testing multiple SNPs per probe, 2-tailed t test.

136



Standard
Population CEU (47) YRI (78) CHB+JPT (46)
CEU (47) 47 (100%) 18 (38%) 22 (47%)
YRI (78) 18 (23%) 78 (100%) 18 (23%)
CHB+JPT (46) 22 (48%) 18 (39%) 46 (100%)
All populations 13
> 1 populations 32
Any population 126

fVBQTL
Population CEU (72) YRI (87) CHB+JPT (76)
CEU (72) 72 (100%) 26 (36%) 41 (57%)
YRI (87) 26 (30%) 87 (100%) 31 (36%)
CHB+JPT (76) 41 (54%) 31 (41%) 76 (100%)
All populations 25
> 1 populations 48
Any population 162

Table B.4: Count and percent overlap between probes in trans associations on
different populations using standard method and after using fVBQTL.

Factor 1 2 3 4 5 6
Gender 0.12 0.16 -0.81 0.19 0.08 -0.00

CEU 0.68 -0.47 -0.21 -0.04 -0.27 0.04
CHB+JPT -0.43 0.28 -0.24 -0.64 -0.08 0.03

YRI -0.25 0.19 0.46 0.69 0.35 -0.08

Table B.5: Pearson correlation coefficient between top 6 factors learned on the
pooled HapMap data, and 4 indicator variables relating to the background of the
individual. Correlations with absolute value above 0.6 are highlighted.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 20 1.00 1.00 0 0.00 0.00
PCA 5 – 5 0.52 35 0.54 0.95 0 0.00 0.00
PCA 15 – 15 0.70 38 0.45 0.85 0 0.00 0.00
PCA 30 – 30 0.82 29 0.45 0.65 0 0.00 0.00
PCA 60 – 60 0.94 4 0.75 0.15 0 0.00 0.00
PCAsig – 0.01 7 0.56 37 0.51 0.95 0 0.00 0.00
PCAsig – 0.1 7 0.56 37 0.51 0.95 0 0.00 0.00
PCAsig – 0.3 7 0.56 37 0.51 0.95 0 0.00 0.00
SVA – 0.01 12 0.65 38 0.50 0.95 0 0.00 0.00
SVA – 0.1 12 0.65 38 0.50 0.95 0 0.00 0.00
SVA – 0.3 12 0.65 38 0.50 0.95 0 0.00 0.00
fVBQTL 5 – 5 0.52 34 0.59 1.00 0 0.00 0.00
fVBQTL 15 – 15 0.69 51 0.39 1.00 0 0.00 0.00
fVBQTL 30 – 30 0.70 55 0.36 1.00 0 0.00 0.00
fVBQTL 60 – 60 0.70 55 0.36 1.00 0 0.00 0.00
iVBQTL 5 – 5 0.52 34 0.59 1.00 0 0.00 0.00
iVBQTL 15 – 15 0.69 51 0.39 1.00 0 0.00 0.00
iVBQTL 30 – 30 0.70 54 0.37 1.00 0 0.00 0.00
iVBQTL 60 – 60 0.70 54 0.37 1.00 0 0.00 0.00

Table B.6: Summary statistics for method performances on the human chro-
mosome 19 dataset presented in the main text. The parameters for different
methods are varied by the number of allowed factors K (PCA, VBQTL) or by
the significance cutoff α ( PCAsig, SVA). Hidden factor summary is given by the
number of factors found and the variance explained by the hidden factor effects.
The number of probes with a cis and trans eQTL, as well as the sensitivity and
specificity of recovering probes with a standard eQTL are given. Per-probe eQTL
FPR = 0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed
t test.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 445 1.00 1.00 746 1.00 1.00
PCA 5 – 5 0.28 478 0.77 0.82 501 0.79 0.53
PCA 15 – 15 0.53 481 0.64 0.69 132 0.77 0.14
PCA 30 – 30 0.70 392 0.60 0.53 57 0.75 0.06
PCA 60 – 60 0.86 105 0.66 0.16 5 1.00 0.01
PCAsig – 0.01 7 0.34 468 0.72 0.76 229 0.80 0.25
PCAsig – 0.1 7 0.34 468 0.72 0.76 229 0.80 0.25
PCAsig – 0.3 7 0.34 468 0.72 0.76 229 0.80 0.25
SVA – 0.01 14 0.52 482 0.65 0.71 144 0.78 0.15
SVA – 0.1 14 0.52 482 0.65 0.71 144 0.78 0.15
SVA – 0.3 14 0.52 482 0.65 0.71 144 0.78 0.15
fVBQTL 5 – 5 0.34 547 0.72 0.89 409 0.81 0.45
fVBQTL 15 – 15 0.55 668 0.59 0.88 364 0.80 0.39
fVBQTL 30 – 30 0.62 719 0.54 0.87 349 0.79 0.37
fVBQTL 60 – 60 0.62 722 0.54 0.87 348 0.78 0.37
iVBQTL 5 – 5 0.32 616 0.68 0.95 650 0.76 0.66
iVBQTL 15 – 15 0.50 785 0.54 0.96 694 0.73 0.68
iVBQTL 30 – 30 0.57 821 0.52 0.95 746 0.71 0.71
iVBQTL 60 – 60 0.57 825 0.51 0.95 739 0.71 0.70

Table B.7: Summary statistics for method performances on the yeast dataset
presented in the main text. The parameters for different methods are varied by
the number of allowed factors K (PCA, VBQTL) or by the significance cutoff
α ( PCAsig, SVA). Hidden factor summary is given by the number of factors
found and the variance explained by the hidden factor effects. The number of
probes with a cis and trans eQTL, as well as the sensitivity and specificity of
recovering probes with a standard eQTL are given. Per-probe eQTL FPR =
0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed t test.
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Method K α Factors found Variance explained cis probes cis spec. cis sens. trans probes trans spec. trans sens.
Standard – – 0 0.00 560 1.00 1.00 369 1.00 1.00
PCA 5 – 5 0.25 639 0.84 0.96 418 0.76 0.86
PCA 15 – 15 0.48 614 0.82 0.90 409 0.72 0.80
PCA 30 – 30 0.74 708 0.70 0.88 488 0.59 0.78
PCA 60 – 60 0.91 354 0.82 0.52 178 0.76 0.37
PCAsig – 0.01 12 0.39 601 0.84 0.91 376 0.76 0.77
PCAsig – 0.1 13 0.41 589 0.85 0.90 371 0.75 0.76
PCAsig – 0.3 13 0.41 589 0.85 0.90 371 0.75 0.76
SVA – 0.01 24 0.67 687 0.74 0.91 501 0.58 0.79
SVA – 0.1 24 0.67 687 0.74 0.91 501 0.58 0.79
SVA – 0.3 24 0.67 687 0.74 0.91 501 0.58 0.79
fVBQTL 5 – 5 0.32 876 0.63 0.98 590 0.56 0.90
fVBQTL 15 – 15 0.51 1028 0.54 0.99 716 0.46 0.89
fVBQTL 30 – 30 0.67 973 0.56 0.98 657 0.49 0.88
fVBQTL 60 – 60 0.70 932 0.59 0.98 626 0.51 0.87
iVBQTL 5 – 5 0.32 895 0.62 0.99 613 0.55 0.91
iVBQTL 15 – 15 0.51 1036 0.53 0.99 723 0.46 0.90
iVBQTL 30 – 30 0.55 1056 0.52 0.99 729 0.46 0.90
iVBQTL 60 – 60 0.55 1049 0.53 0.99 728 0.45 0.90

Table B.8: Summary statistics for method performances on the mouse dataset
presented in the main text. The parameters for different methods are varied by
the number of allowed factors K (PCA, VBQTL) or by the significance cutoff
α ( PCAsig, SVA). Hidden factor summary is given by the number of factors
found and the variance explained by the hidden factor effects. The number of
probes with a cis and trans eQTL, as well as the sensitivity and specificity of
recovering probes with a standard eQTL are given. Per-probe eQTL FPR =
0.001, Bonferroni corrected for testing multiple SNPs per probe, 2-tailed t test.
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Factor Q-value mean(LODs) Covariate
Oaf1p 5.54E-03 42.9 (r2=0.30) Probe
Pdr3p 2.09E-02 14.6 SNP XV 132423
Rtg3p 3.01E-02 21.4 SNP XIV 449639
Reb1p 3.70E-02 41.5 Env
Reb1p 0.00E+00 78.1 (r2=0.51) Probe
Thi2p 0.00E+00 52.2 SNP VI 5852
Kar4p 0.00E+00 45.7 SNP V 183958
Hcm1p 0.00E+00 38.9 (r2=0.29) Probe
Rpn4p 2.25E-02 56.1 Env
Rpn4p 2.44E-02 35.4 (r2=0.24) Probe
Pdc2p 1.84E-02 16.4 SNP XII 611967
Gis1p 4.18E-02 11.9 SNP XV 193911
Ino2p 1.48E-02 11.9 SNP II 603790
Upc2p 2.90E-02 11.7 SNP I 55215
Adr1p 4.98E-02 41.7 Env
Met32p 1.90E-02 15.8 SNP IX 277908
Met32p 1.04E-03 23.4 (r2=0.19) Probe
Sum1p 0.00E+00 115.2 SNP XV 838599
Stp1p 1.36E-02 23.6 (r2=0.19) Probe
Gcn4p 2.28E-02 66.7 Env
Gcn4p 3.00E-02 72.4 (r2=0.42) Probe
Swi4p 6.09E-03 39.7 Env
Spt2p 8.70E-05 34.1 SNP XV 10337
Gat1p 2.44E-02 23.5 (r2=0.19) Probe
Hac1p 4.56E-02 20.5 Env
Cdc14p 0.00E+00 42.3 SNP X 307178
Pho4p 2.90E-02 15.5 SNP XIII 28694
Mig1p 5.77E-04 151.3 Env
Mig1p 3.30E-02 51.1 (r2=0.35) Probe
Aft1p 3.83E-02 10.9 SNP XV 180210
Hsf1p 2.60E-02 64.3 Env
Hsf1p 3.79E-04 31.1 (r2=0.24) Probe
Tos8p 5.79E-03 60.0 Env
Tos8p 1.92E-02 14.7 (r2=0.12) Probe
Gts1p 7.33E-03 43.1 SNP V 17399
Yap3p 1.53E-03 21.6 SNP VII 73452
Opi1p 3.24E-02 22.5 SNP V 15817
Stp2p 1.63E-02 70.4 Env
Stp2p 3.41E-02 61.7 (r2=0.39) Probe
Rsc30p 1.00E-03 29.7 SNP VIII 221933
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Factor Q-value mean(LODs) Covariate
Rsc30p 4.97E-02 60.7 (r2=0.41) Probe
Ste12p 2.22E-02 156.7 Env
Ste12p 4.31E-05 85.1 (r2=0.51) Probe
Zap1p 3.67E-02 35.1 Env
Gzf3p 3.63E-02 110.2 SNP III 210748
YJL206C 8.80E-04 46.0 SNP VIII 92978
Cbf1p 3.70E-02 34.7 Env
Put3p 1.47E-02 10.3 Env
Put3p 2.26E-02 7.0 (r2=0.06) Probe
Phd1p 2.51E-02 12.9 SNP XIII 46084
Phd1p 6.45E-04 24.5 (r2=0.19) Probe
Hap4p 4.84E-02 79.0 (r2=0.41) Probe
Abf1p 0.00E+00 52.4 Env
Bas1p 3.46E-02 72.9 SNP IV 289639
Rfx1p 4.78E-02 29.7 Env
Ifh1p 4.61E-02 15.7 Env
Hap1p 0.00E+00 38.7 SNP XII 607076
Hap1p 0.00E+00 96.4 (r2=0.59) Probe
Pdr8p 5.93E-03 14.2 SNP XII 27765
Sfp1p 0.00E+00 104.6 Env
Yap1p 0.00E+00 225.2 Env
Yap1p 0.00E+00 84.9 (r2=0.52) Probe
Yox1p 0.00E+00 93.6 Env
War1p 8.89E-03 36.5 SNP III 301446
Msn2p 3.35E-02 21.0 SNP XV 154309
Mcm1p 8.37E-03 76.7 Env
Mcm1p 3.28E-02 21.5 (r2=0.17) Probe
Fkh2p 4.90E-02 17.7 Env
Fkh2p 4.42E-02 10.5 (r2=0.09) Probe
Met4p 2.21E-04 79.0 Env
Met4p 4.77E-02 32.9 (r2=0.24) Probe
Sko1p 1.76E-02 36.3 SNP XV 180222
Gcr2p 6.25E-04 22.7 SNP XIV 486861
Gcr2p 4.36E-02 8.2 (r2=0.07) Probe
Gis2p 3.79E-02 12.6 SNP XIV 582954
Cin5p 2.35E-02 45.6 Env
Hms1p 3.21E-02 27.3 Env
Sfl1p 0.00E+00 39.1 SNP I 186488
Pip2p 4.34E-02 35.4 (r2=0.25) Probe
Usv1p 9.62E-04 41.3 SNP XI 98330
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Factor Q-value mean(LODs) Covariate
Rox1p 4.72E-02 35.5 SNP XIV 449639
Fhl1p 3.76E-02 31.7 (r2=0.25) Probe
Arr1p 3.50E-02 111.9 Env
Table B.9: Properties of inferred yeastract factor acti-
vations. Q-value and average LOD score of association
with SNPs (with best locus) or environment indicator is
given for associations with combined Q-value < 0.050

Factor Q-value mean(LODs) Covariate
Glycolysis / Gluconeogenesis (00010) 4.63E-02 19.9 SNP XIV 486861
Nitrogen metabolism (00910) 0.00E+00 119.9 SNP XII 433955
Lysine biosynthesis (00300) 4.00E-05 25.6 SNP II 479166
Tryptophan metabolism (00380) 0.00E+00 29.2 SNP XV 779974
Arginine and proline metabolism
(00330)

0.00E+00 46.7 SNP XV 59733

Aminoacyl-tRNA biosynthesis (00970) 4.50E-02 21.7 SNP XIV 486861
Metabolic pathways (01100) 0.00E+00 393.2 Env
Fatty acid metabolism (00071) 7.66E-03 67.1 SNP I 55329

Table B.10: Properties of inferred kegg factor activations. Q-value and average
LOD score of association with SNPs (with best locus) or environment indicator
is given for associations with combined Q-value < 0.050
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Factor Q-value mean(LODs) Covariate
Factor 1 0.00E+00 289.5 Env
Factor 4 0.00E+00 19.9 SNP XV 89211
Factor 5 0.00E+00 61.4 SNP XIV 449639
Factor 7 1.96E-02 10.9 SNP XV 446514
Factor 8 2.34E-04 16.2 SNP XII 681096
Factor 9 1.11E-03 15.6 SNP XII 659357
Factor 10 1.32E-03 15.1 SNP XII 672779
Factor 11 0.00E+00 19.2 SNP XII 634225
Factor 12 0.00E+00 17.7 SNP II 506661
Factor 14 6.23E-03 12.6 SNP XI 180221
Factor 15 1.99E-03 14.2 SNP III 76127
Factor 16 1.65E-02 11.2 SNP XIII 404546
Factor 17 2.54E-02 10.1 SNP XV 838599
Factor 18 3.12E-02 9.8 SNP XIII 216022
Factor 19 3.15E-02 9.7 SNP XV 619862
Factor 20 0.00E+00 21.3 SNP II 506661
Factor 21 2.25E-03 13.8 SNP XV 842027
Factor 22 0.00E+00 24.1 SNP V 395442
Factor 23 2.36E-03 14.1 SNP XIII 78655
Factor 24 0.00E+00 18.5 SNP III 75021
Factor 25 1.08E-02 11.5 SNP XV 496730
Factor 26 9.58E-03 11.6 SNP IX 195965
Factor 27 1.98E-02 10.9 SNP II 486640
Factor 28 3.32E-02 9.7 SNP XVI 454307

Table B.11: Properties of inferred freeform factor activations. Q-value and aver-
age LOD score of association with SNPs (with best locus) or environment indi-
cator is given for associations with combined Q-value < 0.050
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Locus Factor Q-value mean(LODs)
III 79091 War1p 4.53E-02 26.3
III 79091 Thi2p 9.65E-03 12.3
III 79091 Gzf3p 3.63E-02 110.2
IV 106892 Bas1p 3.46E-02 72.9
IV 106892 Gzf3p 3.90E-02 9.8
IV 106892 Yap3p 1.73E-03 35.2
V 6335 Gts1p 7.33E-03 43.1
V 6335 Opi1p 3.24E-02 22.5
V 6335 Kar4p 0.00E+00 45.7
V 420595 Rsc30p 3.60E-02 10.5
V 420595 Kar4p 0.00E+00 40.5
V 420595 Hap1p 1.89E-02 10.4
V 420595 Sfl1p 3.78E-04 36.4
VII 55458 Gts1p 1.79E-02 13.0
VII 55458 Yap3p 1.53E-03 21.6
VII 449898 Gzf3p 4.24E-02 12.2
VII 449898 Pdr8p 4.52E-02 14.7
XII 611810 Hap1p 0.00E+00 38.7
XII 611810 Pdc2p 1.84E-02 16.4
XII 611810 Pdr8p 2.21E-02 13.2
XIII 46084 Pho4p 2.90E-02 15.5
XIII 46084 Phd1p 2.51E-02 12.9
XIII 46084 Ino2p 4.69E-02 11.3
XIV 449639 Rox1p 4.72E-02 35.5
XIV 449639 Gcr2p 6.25E-04 22.7
XIV 449639 Rtg3p 3.01E-02 21.4
XIV 449639 Gis2p 3.79E-02 12.6
XV 174364 Pdr3p 2.09E-02 14.6
XV 174364 Sko1p 1.76E-02 36.3
XV 174364 Spt2p 8.70E-05 34.1
XV 174364 Aft1p 3.83E-02 10.9
XV 174364 Gis1p 4.18E-02 11.9
XV 174364 Msn2p 3.35E-02 21.0
XV 380725 Gis1p 4.79E-02 9.5
XV 380725 Sum1p 6.18E-03 13.2
XVI 932310 Rsc30p 4.52E-02 14.2
XVI 932310 Sfl1p 2.76E-02 14.8

Table B.12: Associations to loci with more than one yeastract factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Factor Q-value mean(LODs) Covariate
Locus Factor Q-value mean(LODs)
XIV 486861 Aminoacyl-tRNA biosynthesis (00970) 4.50E-02 21.7
XIV 486861 Glycolysis / Gluconeogenesis (00010) 4.63E-02 19.9

Table B.13: Associations to loci with more than one kegg factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Locus Factor Q-value mean(LODs)
II 486640 Factor 5 1.73E-02 11.1
II 486640 Factor 7 2.00E-02 10.8
II 486640 Factor 8 2.11E-02 10.6
II 486640 Factor 12 0.00E+00 17.7
II 486640 Factor 20 0.00E+00 21.3
II 486640 Factor 27 1.98E-02 10.9
II 697894 Factor 20 3.11E-02 9.8
II 697894 Factor 12 2.01E-03 14.3
III 91287 Factor 8 3.40E-02 9.6
III 91287 Factor 15 1.99E-03 14.2
III 91287 Factor 16 3.51E-02 9.4
III 91287 Factor 17 4.78E-02 8.8
III 91287 Factor 24 0.00E+00 18.5
III 91287 Factor 28 3.49E-02 9.4
V 350744 Factor 14 4.96E-02 8.7
V 350744 Factor 22 0.00E+00 24.1
IX 195965 Factor 25 4.18E-02 9.0
IX 195965 Factor 26 9.58E-03 11.6
IX 195965 Factor 4 3.05E-02 9.8
XII 635380 Factor 4 4.21E-02 9.0
XII 635380 Factor 8 2.34E-04 16.2
XII 635380 Factor 9 1.11E-03 15.6
XII 635380 Factor 10 1.32E-03 15.1
XII 635380 Factor 11 0.00E+00 19.2
XII 635380 Factor 12 1.50E-03 14.9
XII 635380 Factor 23 2.53E-02 10.0
XIII 28622 Factor 18 3.12E-02 9.8
XIII 28622 Factor 23 2.36E-03 14.1
XIII 28622 Factor 7 2.56E-02 10.1
XIV 418269 Factor 5 0.00E+00 61.4
XIV 418269 Factor 30 3.37E-02 9.6
XIV 418269 Factor 8 1.67E-03 14.7
XV 96633 Factor 18 4.94E-02 8.7
XV 96633 Factor 4 0.00E+00 19.9
XV 96633 Factor 5 2.38E-02 10.3
XV 96633 Factor 24 9.55E-03 11.6
XV 838599 Factor 17 2.54E-02 10.1
XV 838599 Factor 21 2.25E-03 13.8

Table B.14: Associations to loci with more than one freeform factor association.
Q-value and average LOD score are given for all factors associated to each locus.
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Locus Chr Pos. 1. Probes
with trans
associa-
tions

2. Probes
with down-
stream fac-
tor associ-
ations

3. (2.)
with
stronger
factor as-
sociation

1.&2 1.&2.
1.

1.&3.
1.

1.&3.
1.&2

AMN1 2 555575 51 73 73 3 0.06 0.06 1.00
HAP1 12 644082 66 53 53 31 0.47 0.47 1.00
PHO84 13 46084 31 454 454 11 0.35 0.35 1.00
MKT1 14 449639 218 514 508 21 0.10 0.07 0.71
IRA2 15 174364 271 1443 1438 164 0.61 0.59 0.97

Table B.15: trans eQTL peaks with at least 50 associations. For each peak,
the number of significant associations to probe expression levels (1.), number of
associations for Yeastract factor activations significantly associated with the peak
(2.), number of genes more strongly associated with the factor than the peak locus
genotype (3.) are given, together with the number and fraction of trans eQTLs
explained by the factors, fraction of trans eQTLs more strongly associated with
the factor, and fraction of trans eQTLs associated with a factor that are more
strongly associated with the factor.

Sample Generation Replica Type Ploidy Condition Timepoint Coverage
WA-NA Initial R1 F6 T0 6 1 Pool Haploid Permissive 0 23.8
WA-NA Initial R2 F6 T0 6 2 Pool Haploid Permissive 0 13.1
WA-NA Heat R1 F6 T4 6 1 Pool Haploid Heat 40C 2 19.3
WA-NA Heat R2 F6 T4 6 2 Pool Haploid Heat 40C 2 25.7
WA-NA Initial R1 F6 S1 6 1 Segregant Haploid Permissive 0 20.3
WA-NA Initial R2 F6 S1 6 2 Segregant Haploid Permissive 0 27.4
WA-NA Mock R1 F12 T4 12 1 Pool Haploid Permissive 2 115.4
WA-NA Heat R1 F12 T4 12 1 Pool Haploid Heat 40C 2 129.3
WA-NA Mock R2 F12 T4 12 2 Pool Haploid Permissive 2 105.7
WA-NA Initial R2 F12 T0 12 2 Pool Haploid Permissive 0 107.3
WA-NA Heat R2 F12 T2 12 2 Pool Haploid Heat 40C 1 54.8
WA-NA Heat R2 F12 T4 12 2 Pool Haploid Heat 40C 2 83.7
WA-NA Heat R2 F12 T6 12 2 Pool Haploid Heat 40C 3 65.9
WA-NA Diploid-heat R2 F12 T6 12 2 Pool Diploid Heat 40C 3 32.6
WA-NA Diploid-heat R1 F12 T4 12 1 Pool Diploid Heat 40C 2 88.6
WA-NA Paraquat R1 F12 T4 12 1 Pool Haploid Paraquat 2 150

Table B.16: Average sequencing coverage at segregating sites for different inter-
cross generations, ploidies, conditions, and selection timepoints.
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Chromosome Location Combined change (R1 + R2)
1 11998 0.38
1 207560 0.29
2 472111 0.33
4 1444248 -0.26
4 373030 0.3
4 430662 0.35
4 474894 0.39
4 572931 0.53
4 700611 -0.35
7 1081499 -0.59
8 261643 0.28
9 77497 0.27
10 420908 0.27
10 450702 0.26
10 492479 0.26
10 613016 0.45
12 388635 -0.38
12 491120 -0.28
12 967942 -0.35
14 49576 0.3
15 184627 0.39
15 580877 -0.28

Table B.17: Regions selected for during intercross rounds between F6 and F12
generations.
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Chromosome Location Combined allele frequency change (R1 + R2)
1 119382 0.31
2 472031 -0.52
2 517350 -0.68
4 1313885 0.42
4 454021 -0.31
4 496586 -0.3
7 131690 0.3
7 859960 0.83
9 292345 -0.32
10 234117 -0.39
10 420908 -0.42
10 679911 -0.28
12 140165 0.38
12 730764 -0.28
13 743221 -0.27
13 893719 -0.56
14 480623 0.46
15 1032447 -0.76
15 179760 -1.27

Table B.18: Heat QTLs detected with artificial selection. All loci with total allele
frequency change of at least 0.3, and at least 0.1 in both replicas are given.
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Gene F12 T4 F12 T0 Change T0 - T4
Q0045 0.4 36.5 -36.1
Q0250 2 37 -35
Q0255 1.7 36.1 -34.4
Q0060 0.3 31.9 -31.6
Q0115 1.2 32 -30.8
Q0275 1.8 32.3 -30.5
Q0105 3.3 32.8 -29.5
Q0050 0.2 27.7 -27.5
Q0120 1.6 28.3 -26.7
Q0070 0.2 26 -25.8
Q0085 1.9 26.1 -24.2
Q0065 0.2 22 -21.8
Q0182 0.7 18.3 -17.6
Q0032 0.9 12.3 -11.4
Q0142 0.3 11.3 -11
YLR162W 44.5 55.4 -10.9
Q0140 3.3 13.2 -9.9
Q0130 2.7 11.4 -8.7
Q0144 2.2 10.8 -8.6
Q0143 0.7 7.9 -7.2
Q0080 0.1 6.2 -6.1
YDR366C 11.5 17.6 -6.1
Q0110 0.7 6 -5.3
Q0010 13.7 18 -4.3
Q0092 0 3.5 -3.5
Q0017 0.1 2.5 -2.4
YEL074W 4.1 5.9 -1.8
YIR044C 1.1 2.9 -1.8
YIL174W 0.7 1.9 -1.2
YJL225C 2.1 3.3 -1.2
YNL337W 1.6 2.8 -1.2
YOL166C 1.6 2.8 -1.2
YHR216W 3.4 4.4 -1
YLR465C 2.6 0.9 1.7
YDR340W 8.3 3.9 4.4

Table B.19: Genes changing in copy number upon selection.
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Cubillos, F.A., Zörgö, E., Parts, L., Fargier, P., et al. Assessing the complex ar-

chitecture of polygenic traits in diverged yeast populations. Molecular Ecology,

2011. 93, 95, 99, 102, 109, 116, 117

Cudworth, A.G. and Woodrow, J.C. Genetic susceptibility in diabetes mellitus:

analysis of the HLA association. Br Med J, 2(6040):846–8, 1976. 7

Dahm, R. Discovering DNA: Friedrich Miescher and the early years of nucleic

acid research. Hum Genet, 122(6):565–81, 2008. 2

Darvasi, A. and Soller, M. Advanced intercross lines, an experimental population

for fine genetic mapping. Genetics, 141(3):1199–1207, 1995. 6, 93

Davison, A.C. Statistical Models. Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press, 2003. 28, 30, 57

de Vrijes, H. Die mutationstheorie. Versuche und beobachtungen über die entste-

hung von arten im pflanzenreich. Leipzig,Veit comp., 1901. 3

Dimas, A.S., Deutsch, S., Stranger, B.E., Montgomery, S.B., et al. Common

regulatory variation impacts gene expression in a cell type-dependent manner.

Science, 325(5945):1246–50, 2009. 19

155



REFERENCES

Doroszuk, A., Snoek, L.B., Fradin, E., Riksen, J., et al. A genome-wide library of

CB4856/N2 introgression lines of Caenorhabditis elegans. Nucleic Acids Res,

37(16):e110, 2009. 6

Durbin, R., Eddy, S.R., Krogh, A., and Mitchison, G. Biological Sequence Analy-

sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University

Press, 1999. 30

Ehrenreich, I.M., Torabi, N., Jia, Y., Kent, J., et al. Dissection of geneti-

cally complex traits with extremely large pools of yeast segregants. Nature,

464(7291):1039–1042, 2010. 6, 10, 91, 92, 98

Ehrenreich, I., Gerke, J., and Kruglyak, L. Genetic dissection of complex traits

in yeast: insights from studies of gene expression and other phenotypes in the

BYxRM cross. In Cold Spring Harb Symp Quant Biol, volume 74, pp. 145–153.

2009. 6, 91, 112

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S., et al. Genetics of

gene expression and its effect on disease. Nature, 452(7186):423–428, 2008. 34,

61, 66

Eriksson, N., Macpherson, J.M., Tung, J.Y., Hon, L.S., et al. Web-based,

participant-driven studies yield novel genetic associations for common traits.

PLoS Genet, 6(6):e1000993, 2010. 8

Fisher, R.A. The Genetical Theory of Natural Selection. Oxford University Press,

USA, 1939. 22

Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., et al. Whole-

genome random sequencing and assembly of Haemophilus influenzae Rd. Sci-

ence, 269(5223):496–512, 1995. 4

Flint, J. and Mackay, T.F.C. Genetic architecture of quantitative traits in mice,

flies, and humans. Genome Res, 19(5):723–33, 2009. 6, 10

Flintoft, L. Complex disease: Adding epigenetics to the mix. Nature Reviews

Genetics, 11(2):94–95, 2010. 13

156



REFERENCES

Foss, E.J., Radulovic, D., Shaffer, S.A., Ruderfer, D.M., et al. Genetic basis of

proteome variation in yeast. Nature Genetics, 39(11):1369–1375, 2007. 6, 17,

81, 118

Freeman, T.C., Goldovsky, L., Brosch, M., van Dongen, S., et al. Construc-

tion, visualisation, and clustering of transcription networks from microarray

expression data. PLoS Comput Biol, 3(10):2032–42, 2007. 27

Fuchs, F., Pau, G., Kranz, D., Sklyar, O., et al. Clustering phenotype populations

by genome-wide RNAi and multiparametric imaging. Mol Syst Biol, 6:370,

2010. 17

Gardner, R.S., Wahba, A.J., Basilio, C., Miller, R.S., et al. Synthetic polynu-

cleotides and the amino acid code. VII. Proc Natl Acad Sci U S A, 48:2087–94,

1962. 3

Garge, N., Pan, H., Rowland, M.D., Cargile, B.J., et al. Identification of quanti-

tative trait loci underlying proteome variation in human lymphoblastoid cells.

Mol Cell Proteomics, 9(7):1383–99, 2010. 17

Gerke, J., Lorenz, K., and Cohen, B. Genetic Interactions Between Transcription

Factors Cause Natural Variation in Yeast. Science, 323(5913):498–501, 2009.

12

Giaever, G., Chu, A.M., Ni, L., Connelly, C., et al. Functional profiling of the

Saccharomyces cerevisiae genome. Nature, 418(6896):387–91, 2002. 9

Gibbs, J.R., van der Brug, M.P., Hernandez, D.G., Traynor, B.J., et al. Abundant

quantitative trait loci exist for DNA methylation and gene expression in human

brain. PLoS Genet, 6(5):e1000952, 2010. 14, 20

Gibson, G. The environmental contribution to gene expression profiles. Nature

reviews. Genetics, 9(8):575–581, 2008. 34, 66

Glass, D., Parts, L., Knowles, D., Aviv, A., et al. No correlation between child-

hood maltreatment and telomere length. Biol Psychiatry, 68(6):e21–2; author

reply e23–4, 2010. 8

157



REFERENCES

Goerner, W., Durchschlag, E., Martinez-Pastor, M., Estruch, F., et al. Nuclear

localization of the C2H2 zinc finger protein MSN2P is regulated by stress and

protein kinase A activity. Genes & development, 12(4):586, 1998. 81

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., et al. Life with 6000 genes.

Science, 274(5287):546, 563–7, 1996. 4

Green, M.M. 2010: A century of Drosophila genetics through the prism of the

white gene. Genetics, 184(1):3–7, 2010. 5

Group, T.H.D.C.R. A novel gene containing a trinucleotide repeat that is ex-

panded and unstable on Huntington’s disease chromosomes. Cell, 72(6):971–83,

1993. 5

Gygi, S., Rochon, Y., Franza, B., and Aebersold, R. Correlation between protein

and mRNA abundance in yeast. Molecular and Cellular Biology, 19(3):1720,

1999. 81

Hartl, D.L. and Clark, A.G. Principles of Population Genetics, Fourth Edition.

Sinauer Associates, Inc., 4th edition, 2006. URL http://www.amazon.com/

exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0878933085. 105

Hawkins, R.D., Hon, G.C., and Ren, B. Next-generation genomics: an integrative

approach. Nature Reviews Genetics, 11(7):476–486, 2010. 17, 21

Hershey, A.D. and Chase, M. Independent functions of viral protein and nucleic

acid in growth of bacteriophage. J Gen Physiol., 36:39–56, 1952. 3

Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., et al. Potential

etiologic and functional implications of genome-wide association loci for human

diseases and traits. Proc Natl Acad Sci U S A, 106(23):9362–7, 2009. 10

Hunter, D.J. Gene-environment interactions in human diseases. Nat Rev Genet,

6(4):287–298, 2005. 12

Hutchins, J.R.A., Toyoda, Y., Hegemann, B., Poser, I., et al. Systematic anal-

ysis of human protein complexes identifies chromosome segregation proteins.

Science, 328(5978):593–9, 2010. 17

158

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0878933085
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0878933085


REFERENCES

Ingram, G.I. The history of haemophilia. Journal of Clinical Pathology,

29(6):469–479, 1976. 5

Iyer-Pascuzzi, A.S., Symonova, O., Mileyko, Y., Hao, Y., et al. Imaging and

analysis platform for automatic phenotyping and trait ranking of plant root

systems. Plant Physiol, 152(3):1148–57, 2010. 15

Jaynes, E.T. Probability Theory: The Logic of Science. Cambridge University

Press, 2003. 21

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. An Introduction to

Variational Methods for Graphical Models. Machine Learning, 37:183–233,

1999. 37, 41, 71, 127

Kanehisa, M., Goto, S., Kawashima, S., and Nakaya, A. The KEGG databases

at GenomeNet. Nucleic Acids Research, 30(1):42, 2002. 67, 76, 77

Kang, H.M.M., Sul, J.H.H., Service, S.K., Zaitlen, N.A., et al. Variance compo-

nent model to account for sample structure in genome-wide association studies.

Nature genetics, 42(4):348–354, 2010. 24

Kang, H.M.M., Ye, C., and Eskin, E. Accurate discovery of expression quan-

titative trait loci under confounding from spurious and genuine regulatory

hotspots. Genetics, 180(4):1909–1925, 2008. 34, 35, 52

Komeili, A. and O’Shea, E. Roles of phosphorylation sites in regulating activity

of the transcription factor Pho4. Science, 284(5416):977, 1999. 81

Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., et al. A microRNA

array reveals extensive regulation of microRNAs during brain development.

RNA, 9(10):1274–81, 2003. 17

Kurimoto, K., Yabuta, Y., Ohinata, Y., and Saitou, M. Global single-cell cDNA

amplification to provide a template for representative high-density oligonu-

cleotide microarray analysis. Nat Protoc, 2(3):739–52, 2007. 15

159



REFERENCES

Lander, E.S. and Botstein, D. Mapping Mendelian Factors Underlying Quanti-

tative Traits Using RFLP Linkage Maps. Genetics, 121(1):185–199, 1989. 5,

35, 123

Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., et al. Initial sequencing

and analysis of the human genome. Nature, 409(6822):860–921, 2001. 4

Langridge, G.C., Phan, M.D., Turner, D.J., Perkins, T.T., et al. Simultaneous

assay of every Salmonella Typhi gene using one million transposon mutants.

Genome Res, 19(12):2308–16, 2009. 9, 109, 110, 112

Lee, S.I.I., Dudley, A.M., Drubin, D., Silver, P.A., et al. Learning a prior on

regulatory potential from eQTL data. PLoS genetics, 5(1):e1000358+, 2009.

79, 88

Leek, J.T. and Storey, J.D. Capturing Heterogeneity in Gene Expression Studies

by Surrogate Variable Analysis. PLoS Genet, 3(9):e161–1735, 2007. 34, 43, 52,

67, 88

Lehner, B., Crombie, C., Tischler, J., Fortunato, A., et al. Systematic mapping

of genetic interactions in Caenorhabditis elegans identifies common modifiers

of diverse signaling pathways. Nat Genet, 38(8):896–903, 2006. 12

Li, H. and Durbin, R. Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics, 26(5):589–595, 2010. 100

Liao, J.C., Boscolo, R., Yang, Y., Tran, L.M., et al. Network component analysis:

Reconstruction of regulatory signals in biological systems. Proc. Natl. Acad.

Sci., 100(26):15522–15527, 2003. 67

Liede, A., Karlan, B.Y., and Narod, S.A. Cancer risks for male carriers of germline

mutations in BRCA1 or BRCA2: a review of the literature. J Clin Oncol,

22(4):735–42, 2004. 1

Liti, G., Carter, D.M., Moses, A.M., Warringer, J., et al. Population genomics of

domestic and wild yeasts. Nature, 458(7236):337–341, 2009a. 100, 114

160



REFERENCES

Liti, G., Haricharan, S., Cubillos, F.A., Tierney, A.L., et al. Segregating YKU80

and TLC1 alleles underlying natural variation in telomere properties in wild

yeast. PLoS Genet, 5(9):e1000659, 2009b. 109

Loos, R.J.F., Lindgren, C.M., Li, S., Wheeler, E., et al. Common variants near

MC4R are associated with fat mass, weight and risk of obesity. Nat Genet,

40(6):768–75, 2008. 8
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