
Chapter 3

Genetic mapping with inferred

traits

Collaboration note

This chapter contains work performed in collaboration with Dr. Oliver Stegle and

Dr. John Winn for methods development. Oliver developed and implemented the

sparse factor analysis model used in this chapter (Stegle et al., 2009), we then

expanded on this work jointly (Parts et al., 2011). In particular, I applied the

factor analysis model to simulated and real data, and performed the analyses of

the results, including all association and interaction mapping. The coauthored

manuscript forms the backbone of the chapter.

Expressing RNA molecules is a highly regulated process that depends on

activations of specific pathways and regulatory factors. Such state of the cell is

hard to measure (Chapter 1.3.1), making it difficult to understand what drives

the changes in the gene expression. To close this gap we apply a statistical model

to infer the cell state variables, such as activations of transcription factors and

molecular pathways, from gene expression data. We demonstrate how the inferred

state helps to explain the effects of variation in the DNA and environment on

the expression trait via both direct regulatory effects and interactions with the

genetic state. Such analysis, exploiting inferred intermediate phenotypes, will aid
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3.1 Expression analysis with cellular traits

understanding effects of genetic variability on global traits, and help to interpret

the data from existing and forthcoming large scale studies.

3.1 Expression analysis with cellular traits

Gene expression levels are determined by the state of the cell, as well as geno-

types of the gene regulatory regions. A correct model for gene expression should

incorporate both effects.

Context-dependent genetic effects

Locus effects in isolation are not sufficient to account for gene expression variabil-

ity (see also Chapters 1.2.2 and 1.3.2). Environment and intermediate cellular

phenotypes (e.g. transcription factor or pathway activation) can and do have

large effects on the measured transcript levels (Brem and Kruglyak, 2005; Gibson,

2008). To understand the genetics of gene expression, we must therefore analyse

the consequences of genetic variants in the context of these other factors. Studies

in segregating yeast strains have investigated epistatic interactions (Brem and

Kruglyak, 2005; Storey et al., 2005), recovering interactions with genotypes of a

few major transcriptional regulators. Large scale efforts to map functional epista-

sis between genes are currently underway with promising initial results (Costanzo

et al., 2010). A recent study also searched for genotype-environment effects, and

found many gene expression levels affected by an interaction between the en-

vironment and the genotype of a major transcriptional regulator (Smith and

Kruglyak, 2008). However, much remains to be done in this area. While gene

expression has been used as an intermediate phenotype to study the genetics of

global traits (Schadt et al. 2005, Emilsson et al. 2008, Chen et al. 2008), genetics

of gene expression itself has not been considered jointly with relevant cellular

phenotypes such as pathway or transcription factor activations. This is an im-

portant gap. It is the state of the cell that determines how genetic variation

can affect the gene expression levels, thus a joint analysis with the intermediate

phenotypes should inform us about the mechanisms involved – a crucial step for

understanding the causes of phenotypic variability.
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3.1 Expression analysis with cellular traits

Inferring unmeasured cellular traits

Despite their importance, the intermediate phenotypes are usually not measured,

thus genetic effects cannot be analysed in their cellular context. Fortunately, sta-

tistical approaches have been developed that allow inferring unmeasured factors

which influence expression levels from expression data alone. Methods such as

principal components analysis (Alter et al., 2000), network components analy-

sis (Liao et al., 2003), surrogate variable analysis (SVA, Leek and Storey, 2007),

independent components analysis (Biswas et al., 2008), and the PEER frame-

work (Chapter 2) can be used to determine a set of variables that explain a part

of gene expression variability with (usually) a linear model. Their application has

been shown to increase power to find expression quantitative trait loci (eQTLs)

by explaining away confounding variation (Leek and Storey, 2007; Stegle et al.,

2010), and to yield variance components of the expression data that may be

interpretable (Stegle et al., 2010).

Our approach

Here, we perform a thorough joint genetic analysis of a gene expression dataset

with intermediate phenotypes inferred from gene expression levels. We revisit

the data of Smith and Kruglyak (Smith and Kruglyak, 2008), where the authors

looked for gene-environment interactions affecting gene expression levels in a pop-

ulation of segregating yeast strains grown in two different carbon sources. First,

we use a variant of a sparse factor analysis model (Rattray et al., 2009; Stegle

et al., 2009) to infer intermediate phenotypes from the gene expression levels (Fig-

ure 3.1a). Importantly, this method uses prior information to guide the inference

of which factors are affecting which genes, as opposed to unsupervised methods

(e.g. PEER, SVA, ICA) that learn broad effects. We use Yeastract (Teixeira et al.,

2006) transcription factor binding and KEGG (Kanehisa et al., 2002) pathway

data as prior information in the model, which allows the inferred phenotypes to

be interpreted as transcription factor and pathway activations. We then analyse

the variation in the learnt activations, and find that growth condition and segre-

gating locus genotypes have a strong influence (Figure 3.1b). Finally, for the first
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3.1 Expression analysis with cellular traits
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Figure 3.1: Analysing genetic effects in the context of intermediate phenotypes
using PHO4 as an example. (a) Intermediate phenotypes are learnt from expres-
sion levels using prior information from Yeastract database on the targets of the
factor. The highlighted genes are known targets of PHO4. These activations are
learned jointly for all factors. (b) The variation in intermediate phenotypes can
be explained by locus genotypes or the growth condition of the segregants. For
most loci (greyed out), the genotype is uncorrelated with the factor activation
level. For the PHO84 locus at chrIII-46084, not greyed out and indicated by ar-
row, it is correlated. The plot at right shows the distribution of factor activations
stratified by genotype at this locus. (c) Some genotypes show a statistical inter-
action with the inferred intermediate phenotype affecting gene expression levels,
in this case YJL213W. See also Figure 3.3.
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3.2 Model of expression with unmeasured traits

time, we consider genotype-dependent effects of the inferred intermediate phe-

notypes. We find genetic interactions with the inferred phenotypes that affect

gene expression levels (Figure 3.1c), and identify hotspots in the genome that

show an excess of these interactions. We show that many genotype-environment

interactions are captured with the estimated intermediate phenotype, helping

to interpret the environmental effect, and generate plausible, testable hypothe-

ses for the mechanisms of several determined interactions. We propose that as

pathway and transcription factor target annotations improve, our approach will

produce even more useful intermediate traits that should be included in analysis

and interpretation of high-throughput gene expression data.

3.2 Model of expression with unmeasured traits

We used a joint model of genotype and unmeasured trait effects on gene expression

data, and used a two-stage inference procedure to estimate the individual effects.

3.2.1 Statistical model

The statistical model underlying our analysis assumes that the gene expression

levels are influenced by effects of locus genotypes, intermediate factors, and inter-

action effects between them. These effects jointly influence expression variability

in an additive manner, resulting in a generative model for expression yg,j of gene

g in individual j of the form:

yg,j = µg +
N∑
n=1

θg,nsn,j︸ ︷︷ ︸
SNP effect

+
K∑
k=1

wg,kxk,j︸ ︷︷ ︸
factor effect

+
K∑
k=1

N∑
n=1

φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term

+ψg,j. (3.1)

Here, µg is the mean expression level, ψg,j the residual expression, and θg,n denote

the weights of genotypes of SNPs sn,j. The activations xk = {xk,1, . . . , xk,J} of

K intermediate factors are modelled as unobserved latent variables that linearly

influence gene g with weights wg,k. Finally, the strength of interaction effects

between factor k and SNP n is regulated by the interaction weights φg,k,n.
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3.2 Model of expression with unmeasured traits

On a second level of the model, the latent factor activations xk may themselves

be associated to the genetic state. Again assuming a linear model, these relations

are cast as

xk,j = µk +
N∑
n=1

βk,nsn,j︸ ︷︷ ︸
SNP effect

+εk,j, (3.2)

where βk,n is the association weight and ψk,j denotes the observation noise.

While appealing because of its generality, it is hard to perform joint parameter

inference in the model implied by Equations (3.1) and (3.2). Here, we follow a two-

step approach that yields tractable inferences and allows for statistical significance

testing of the relevant factors contributing to the total gene expression variability

(Equation (3.1)).

1. Factor inference: The latent factors X = {x1, . . . ,xK} and weights W =

{wg,k} are inferred from the expression levels alone, not taking the effects

of SNPs sn,j via association and interaction into account.

2. Association and interaction testing: Significance of associations of

factors to SNPs (Equation (3.2)) and SNP-gene-factor interaction terms

(Equation (3.1)) are tested conditioned on the state of the inferred factors.

In this scheme, the factor inference is approximated as the contribution of direct

SNP effects and interactions is not taken into account while learning. In this

context, this approximation is well justified because of the relative effect sizes.

The total variance explained by the interactions is small compared to the direct

factor effects. If necessary on other datasets, this step-wise procedure could also

be iterated, refining the state of the inferred factors given the state of associations

and interactions.

3.2.2 Trait inference

Factors are inferred using a sparse Bayesian factor analysis model (Rattray et al.,

2009; Stegle et al., 2009), presented here for completeness. Starting from the full

model in Equation (3.1), the terms for direct genetic associations and interac-

tions are dropped. The remaining factor model explains the expression profile
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3.2 Model of expression with unmeasured traits

yj = (y1,j, . . . , yG,j)
T of the G genes for segregant j by a product of activa-

tions xj = (x1,j, . . . , xK,j)
T of the K factors, and the G times K weight matrix

W = (w1, . . . ,wG) and per-gene Gaussian noise ψ = (ψ1, ...ψG)T

yg,j = wg · xj + ψg. (3.3)

The expression data Y is observed, and all other variables are treated as ran-

dom with corresponding prior probabilities. The indicator variable zg,k encodes

whether factor k regulates gene g (zg,k = 1) or not (zg,k = 0).

P (wg,k|zg,k = 0) =N(wg,k ; 0, σ0)

P (wg,k|zg,k = 1) =N(wg,k ; 0, 1) (3.4)

The width σ0 of the first Gaussian is small, driving the weight to zero. In ex-

periments, we used σ0 = 10−4. This existing knowledge about whether a factor

affects a gene, extracted from KEGG or Yeastract, is then encoded as a Bernoulli

prior on the indicator variables zg,k.

πg,k = P (zg,k = 1) =

{
η0 no link
1− η1 link

. (3.5)

The variable η0 can be thought of as the false negative rate (FNR), the frequency

at which prior information is incorrectly set to “no link”. Similarly, η1 is the

false positive rate (FPR) of the observed prior information. We used η0 = 0.06

and η0 = 0.0001 for Yeastract and KEGG factors, respectively, and η1 = 0.001

for both. The ratio of the false positive and false negative rate is motivated by

relatively high false positive rates in chromatin immunoprecipitation experiments,

and confidence in the KEGG annotations.

Prior probabilities over factors X are standard Gaussian distributed, xk,j ∼
N(0, 1), and the per-gene noise precisions τg, ψg ∼ N(0, τg), are a priori Gamma

distributed, τg ∼ Gamma(τg | aτ , bτ ). For the experiments this prior was set to

be uninformative with aτ = bτ = 0.001.

Inference in the sparse factor analysis model is achieved using a hybrid of two

deterministic approximations, variational learning (VB) (Jordan et al., 1999) and

71



3.2 Model of expression with unmeasured traits

Expectation Propagation (Minka, 2001), with exact details presented in (Rattray

et al., 2009; Stegle et al., 2009).

Statistical identifiability of factors and model restarts

In general, factor analysis models are prone to suffering from intrinsic symmetries

such as sign flips or factor permutations with impacts on the interpretability of

obtained solutions. The informative sparsity prior of the factor analysis model

(Equation (3.5)) substantially reduces these ambiguities, as it introduces con-

straints on possible factor configurations.

As an additional measure, our analysis explicitly takes the variability of factor

solutions into account by analysing a set of inference solutions rather than a single

point estimate. In the experiments, we performed 20 independent runs of the

factor analysis model with parameters randomly initialised from their respective

prior distributions, and used this whole ensemble to test for significant association

and interaction effects.

3.2.3 Association and interaction testing

Following the generative model (Equation 3.1) we use standard association and

interaction statistics (Lynch and Walsh, 1998) to test for associations between

known variables (genotype of SNP n, environment indicator, or mRNA expression

level) and the inferred factor activations. For completeness, we first present the

model and test statistics used for both associations and interactions, followed by

the significance testing approach. The derivation is developed explicitly using

the SNP genotype as the known variable and factor activation as the dependent

variable; tests for other covariates (or eQTL effects) are performed analogously.

Test statistics

We perform independent tests for association between the activation xk of indi-

vidual factor k and genotype sn of SNP n, fitting a liner model of the form

xk,j = µk + βk,nsn,j︸ ︷︷ ︸
SNP effect

+εk,j, (3.6)
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3.2 Model of expression with unmeasured traits

assuming Gaussian observation noise εk,j ∼ N(0, σ2
k,j). For each pair of SNP n

and factor k, we calculate the association log-odds (LOD) score

Lak,n = logP (xk | βk,n)− logP (xk | βk,n = 0) (3.7)

as a test statistic. The weight in the foreground model βk,n, the mean µk and the

noise level σ2
k,n are fit by maximum likelihood for every calculation.

Test statistics for the interaction terms are calculated analogously based on an

independent interaction model. In short, we calculate the residuals of the factor

analysis model and apply a standard interaction model between SNP n, factor k

and gene g. This corresponds to the linear model

yg,j = µg +

direct effects︷ ︸︸ ︷
θg,nsn,j︸ ︷︷ ︸
SNP effect

+ wg,kxk,j︸ ︷︷ ︸
factor effect

+φg,k,n (sn,jxk,j)︸ ︷︷ ︸
interaction term

+

[∑
l 6=k

wg,lxl,j

]
︸ ︷︷ ︸

remaining factor effect

+ψg,j, (3.8)

where the expression level of gene probe g for individual j is described by fitted

effects of the tested SNP sn,j, learned factor activation xk,j and the interaction

term sn,jxk,j with the residuals explained by 0-meaned Gaussian noise ψg,j. The

log-odds test statistic for the interaction between factor k and SNP n to influence

gene g follows as

Lig,k,n = logP (yg |φg,k,n)− logP (yg |φg,k,n = 0). (3.9)

The respective mean variable µg, weights θg,n, wg,k (but not wg,k′ where k′ 6= k),

and φg,k,n, as well as noise variance ψg,j are fitted independently using maximum

likelihood for each factor, gene, SNP triplet. The contribution from all remaining

factors is not refit to preserve the sparsity pattern learnt from the factor inference.

To reduce the number of effective tests, we used the strongest interaction LOD

score L̂ig,n = maxk L
i
g,k,n across factors, thus performing tests for every SNP and

gene pair. This approach corresponds to the assumption that at most a single

factor is interacting with a given gene-SNP pair. The consistency of the strongest

interacting factor is informative of the identifiability of the interaction effect (see

below).
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3.2 Model of expression with unmeasured traits

Incorporating several random initialisations

For all our analysis of intermediate phenotypes, we generated factor inference

results from R = 20 random initialisations of the model parameters to capture

the variability in the model and avoid overfitting of inferred factor activations

to local optima (See Statistical identifiability of factors below). Thus, we de-

signed a significance testing scheme based on Q-values (Storey and Tibshirani,

2003) that employs the full set of runs, taking the uncertainty in the factor poste-

rior distributions into account. We present this approach below for associations.

Testing interactions is analogous except for the specifics of permutations high-

lighted in the text. In case of analyses where the multiple restarts are not used

(e.g. eQTLs), we calculated Q-values from the single instance. In all cases, the

null distribution of LOD scores was obtained by combining all calculated null

statistics in the random restart.

Q-value calculation For every run r = 1, . . . , R of the factor analysis model,

we evaluated the test statistics of factor associations (Lak,n) for every pair of

factor k and SNP s. This analysis was then repeated on 20 permuted datasets in

each run with the genotypes shuffled with respect to the factor activations, while

keeping individual segregants grown in two conditions paired. For interaction

LOD scores, the factor activations and gene expression levels were not permuted

with respect to each other. From this empirical null distribution of LOD scores

in run r (across all SNPs and factors), we calculated Q-values qrn,r (local FDR)

for each candidate association (Storey and Tibshirani, 2003) between SNP n and

inferred posterior of factor k in this run.

Combining Q-values The Q-values from all runs were then combined into an

overall Q-value qk,n = R−1
∑R

r=1 q
r
k,n, which was used to assess significance at a

given FDR threshold.

From a probabilistic viewpoint, averaging Q-values over multiple restarts of

the model can intuitively be thought of as integrating out the uncertainty from the

factor inference. For example, for an association test assessing the significance

of the weight βk,n, we are truly interested in the probability of an association

being absent (Bayesian Q-value, see for example (Storey, 2003)) given uncertain
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3.3 Phenotype inference

inference of the factor activation P (xk |Y,π). Conditioned on the observed data

Y and prior π this probability follows as

P (βk,n = 0 |Y,π, sn) =

∫
xk

P (βk,n = 0 |xk, sn)P (xk |Y,π). (3.10)

In general this integral is not analytically tractable. Assuming we have instead a
number of R samples xrk from the factor posterior, the integral can be approxi-
mated by

≈ 1

R

R∑
r=1

P (βk,n = 0 |xrk, sn) (3.11)

in a Monte Carlo fashion. Finally, identifying the null probabilities as Bayesian
Q-values we get

=
1

R

R∑
r=1

qrk,n. (3.12)

Note that the restarts from the factor analysis model are not exactly samples from

its posterior but nevertheless characterise the posterior uncertainty sufficiently

well (See also Simulation study below). Full MCMC sampling is computationally

infeasible due to the size of the regulatory network; for a comparison of MCMC

sampling and deterministic inference as employed here, see Stegle et al. (2009).

3.3 Phenotype inference

We inferred intermediate phenotypes on expression levels of 5493 genes from 109

yeast segregants grown in two environmental conditions (Chapter 3.3.2, Smith and

Kruglyak (2008)). We performed the inference 20 times with different random

initialisations of the parameters.

We considered three alternative types of prior information. First, we hypothe-

sised the factors to be transcription factor activation levels, and used data for 167

transcription factors from Yeastract (Teixeira et al., 2006) to assign a prior prob-

ability of a factor affecting a gene expression level. Second, we hypothesised the

75



3.3 Phenotype inference

factors to be pathway activations, and used KEGG database information (Kane-

hisa et al., 2002) for 63 pathways for the prior probability of a link between a

pathway activation and a gene. Third, for comparison, we employed an uninfor-

mative prior, where 30 factors were a priori equally likely to affect all genes. The

datasets are described in more detail in Chapter 3.3.2 We call the inferred factor

activations Yeastract factors, KEGG factors, and freeform factors, respectively.

3.3.1 Factor analysis model performance

In-depth comparison of inference approaches for the sparse factor analysis model

used is given in other work (Stegle et al., 2009); the model was found to accurately

recover factor activations in a setup similar to this study.

One way to further assess the reproducibility of the factor inference is to con-

sider the correlation between the posterior means of individual factor activations.

We called the inferred activation of factor k in u-th run xuk = (xuk,1, ..., x
u
k,J) re-

producible if its Pearson correlation ρ(xuk ,x
v
k) > 0.7 for at least 16 of the 20

different v. 72 of 167 (31%) Yeastract and 19 of 63 (30%) KEGG factors were

reproducible. While we explicitly took the variability between runs into account

in further analyses, these numbers are instructive for developing intuition about

the model.

3.3.2 Datasets used

For completeness, we provide specific details of the datasets used.

Gene expression data from (Smith and Kruglyak, 2008) (GEO accession num-

ber GSE9376) was downloaded using PUMAdb (http://puma.princeton.edu). In

line with (Smith and Kruglyak, 2008), we considered spots good data if the inten-

sity was well above background and the feature was not a nonuniformity outlier.

Transcripts with more than 20% of missing values were discarded. All other miss-

ing expression values were replaced with the averages across the corresponding

growth condition.

The remaining expression data consisted of 5493 probe measurements for 109

crosses of BY (laboratory) and RM (wild) strains grown in either glucose or

ethanol, resulting in a total of 218 individuals. Strain genotypes were kindly
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3.4 Association analysis with inferred phenotypes

provided by R. Brem. Each of the 109 segregant strains was genotyped at 2956

loci to give a crude map of genetic background.

Transcription factor binding data was downloaded from Yeastract (Teixeira

et al., 2006) (Version 1.1438) and contained binary indicators of binding between

174 transcription factors and 5914 genes. We considered the 3000 most variable

probes whose corresponding genes were included in the binding matrix, and tran-

scription factors that influenced at least 5 genes. After further discarding probes

for which there were no data available, the remaining Yeastract prior dataset

consisted of binding data for 167 transcription factors affecting 2941 genes.

Similarly, pathway information was downloaded from the KEGG database (Kane-

hisa et al., 2002). Only pathways with at least 5 genes were included in the

network prior. This filtering procedure retained 63 pathways controlling 1263

genes. The results of Smith and Kruglyak (2008) were not used as a source of

information for either of the prior datasets.

3.4 Association analysis with inferred phenotypes

First, we looked for the causes and consequences of variability in the inferred

intermediate phenotypes.

3.4.1 Genotype and environment

Although the factors were inferred jointly from the expression data alone, many

factor activations were significantly associated with a locus (SNP) genotype or

indicator variable encoding growth in ethanol or glucose as a carbon source (“en-

vironment”, Tables B.9 to B.11). Thirty two Yeastract factors were associated

with a SNP genotype at false discovery rate (FDR) less than 5% and 26 with the

environment. Similarly, 7 KEGG factors were associated with a SNP genotype,

and one with the environment while 24 freeform factors were significantly associ-

ated with a SNP genotype and one with the environment. Some of the genotype

associations were due to pleiotropic effects of single loci, while others were private

to a locus-factor combination (Tables B.12 to B.14).

77



3.4 Association analysis with inferred phenotypes

Many of these individual associations to Yeastract and KEGG factors can

be interpreted by considering the role of the inferred factors and functional an-

notations of genes at associated loci. We now give some examples to further

corroborate the use of factor activations as intermediate phenotypes. All associa-

tions are significant at 5% FDR, with corresponding Q-values q (minimal FDR for

which the association is significant (Storey and Tibshirani, 2003)) and average

log-odds scores L given.

Yeastract factors.

Loci associated with Yeastract factor activations encode genes functionally re-

lated to the corresponding transcription factor. The PHO84 (an inorganic phos-

phate transporter) locus was associated with the PHO4 (a major regulator of

phosphate-responsive genes) transcription factor activation (q < 0.03, L = 15.5).

The association implicates genetic variation in the transporter as a determinant

of the transciptional activation of phosphate-responsive genes through PHO4 ac-

tivation. The mechanism of action is likely a switch in transcriptional response

when PHO84, a high affinity phosphate transporter, is rendered ineffective by a

mutation (Wykoff et al., 2007).

The SUM1 (transcriptional repressor of middle sporulation-specific genes)

factor activation was associated with the genotype of the RFM1 (repression factor

of middle sporulation) locus (q < 10−5, L = 115.2). This is intriguing since RFM1

recruits the HST1 histone deacetylase to some of the promoters regulated by

SUM1 (McCord et al., 2003; SGD project), suggesting that genetic variation in

the RFM1 gene indirectly alters the effect of SUM1 on individual genes.

There is also a straightforward eQTL that regulates the HAP1 (heme acti-

vation protein) gene expression (q < 10−5, L = 80.6), as well as factor activation

(q < 10−5, L = 38.7). This is a cis effect, since the locus is proximal to the

gene, and manifests itself as a trans eQTL hotspot by affecting expression levels

of some of the 170 known HAP1 targets. Thirty four of the 84 (40%) significant

trans eQTLs are also known targets of HAP1. Our data suggest that the other

50 may either be previously undiscovered targets of HAP1, or downstream effects

of some of its direct targets.
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3.4 Association analysis with inferred phenotypes

The THI2 thiamine metabolism transcription factor activation was associ-

ated with the genotype of the THI5 locus (q < 10−5, L = 52.2). This suggests

a regulatory role of THI5 upstream of THI2 in thiamine biosynthesis for the

previously poorly characterised THI5 gene. This illustrates how our inference

allows generating hypotheses for the function for genes that are implicated in a

cellular pathway, but not annotated with a specific role.

KEGG factors.

Associations to KEGG pathways tend to capture the effect of a pathway compo-

nent genotype. For example, two amino acid metabolism pathways are associated

with locus genotypes of genes in the pathway. The inferred activation of lysine

biosynthesis pathway was associated with genetic variation in the LYS2 locus

(q < 10−4, L = 25.6), and the activation of arginine and proline metabolism

pathway with the ARG8 locus (q < 10−5, L = 46.7), both members of the respec-

tive pathways. We thus hypothesise that variants in these genes directly affect

the activation of the corresponding pathways. Also, the nitrogen metabolism

pathway was associated with the ASP3 (cell-wall L-asparaginase) gene cluster

locus genotype. (q < 10−5, L = 119.9). The ASP3 genes are part of the pathway,

and are present in four copies in the reference strain S288c, conferring increased

resistance to nitrogen starvation stress. The inferred state of the pathway thus

likely corresponds to the ASP3 copy number via the locus genotype proxy.

Furthermore, the fatty acid metabolism pathway activation was associated

with the OAF1 (oleate-activated transcription factor) locus genotype (q < 0.01,

L = 67.1), which is a known regulator of the pathway (Smith et al., 2007).

We thus hypothesise that genetic variants in OAF1 between the two strains are

responsible for differences in fatty acid metabolism in the segregants, as has also

been proposed in earlier work (Lee et al., 2009).

Finally, the environment is strongly associated to the very wide metabolic

pathways category (q < 10−5, L = 393.2). This KEGG entry comprises 619

genes, and captures the effect of the growth condition of the segregants on their

metabolic state.
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Freeform factors.

The freeform factors capture broad variance components in the data, with each

factor’s activation contributing to very many probe expression levels. Regardless

of the unsupervised inference of the activations, they still show strong associations

to environment and locus genotypes. However, due to this global nature of the

factors, the associations are less straightforwardly amenable to interpretation.

The first factor is associated with the environment (q < 10−5, L = 289.5), and

accounts for any mean shifts in gene expression levels between segregants grown in

glucose and ethanol (Table B.11). Several of the other factors are associated with

genotypes of “pivotal loci” described before (Brem and Kruglyak, 2005; Smith

and Kruglyak, 2008; Yvert et al., 2003). It may be possible to make suggestions

about the functionality via methods such as overrepresentation of GO categories

within sets of genes with large weights for a factor, such as a recent study that

performed a similar association analysis with unsupervised factors (Biswas et al.,

2008). Our approach of using existing data for guidance is stronger compared to

unsupervised methods as we use evidence of which gene is affected by the factor,

thus improving statistical identifiability, and do not rely on an ad hoc choice

of number of factors. This yields interpretable results that are more useful for

generating hypotheses for the consequence of genetic or environmental variation.

Response to small molecule stress has been measured in the same segregants

to map drug response loci (Perlstein et al., 2007). This study found eight QTL

hotspots, six of which are within 20kb of loci that also show several associations to

our inferred intermediate phenotypes (Tables B.12 to B.14), corroborating their

pleiotropic effect.

3.4.2 mRNA and protein levels

Twenty five of 167 Yeastract factors were associated with the probe expression

level measuring the mRNA abundance of the corresponding transcription factor

gene (Table B.9, Figure 3.2). Twenty of the 25 (80%) were also significantly

associated with a SNP genotype or environment. While statistically significant,

these associations do not explain the majority of the factor variability, as only four
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Yeastract factors were correlated with their probe expression level with Pearson

r2 > 0.5.

Figure 3.2: Pearson’s correlation of Yeastract factors and their corresponding
probe expression levels.

The general lack of correlation between factor activation and the correspond-

ing measured expression level for the remaining transcription factors is perhaps

not surprising. Presumably what matters for the factor activation is protein ac-

tivity level, not mRNA abundance. Previous studies have found poor correlation

between mRNA and protein expression levels (Foss et al., 2007; Gygi et al., 1999).

Also, alternative mechanisms for activation exist. Many Yeastract factors with-

out significant correlation to transcript levels have been shown to be activated

not via increase in expression, but other means. For example, PHO4 is activated

by multiple phosphorylation events (Komeili and O’Shea, 1999). Simlarly, nu-

clear localisation and therefore activation of ACE2 and MSN2 are controlled by

phosphorylation state (Goerner et al., 1998; O’Conallain et al., 1999). We predict

most of the other transcription factors to also be activated by non-transcriptional

means.

The protein level of one of the Yeastract factors, GIS2, has been assayed

quantitatively in a previous study (Foss et al., 2007) for 87 of the 109 segregants

we considered in a similar growth condition. For this transcription factor, the
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inferred factor activation was better correlated to the protein level than the cor-

responding probe expression level for 15 of the 20 random initialisations. This

example gives further support to treating the inferred factors as meaningful in-

termediate quantitative traits.

3.4.3 eQTL hotspots

As observed before (Brem et al., 2002; Smith and Kruglyak, 2008; Yvert et al.,

2003) some segregating loci show significant associations with up to 271 (IRA2,

regulator of the RAS-cAMP pathway locus) probe expression levels, forming trans

eQTL hotspots. There are five such hotspots with at least 30 associations each.

On average, 32% of the genes associated with a trans eQTL hotspot (FDR<5%)

are explained by a transcription factor associated with the hotspot locus genotype

targeting the gene (Table B.15). In 94% of these cases, the association with the

inferred factor activation is stronger than with the locus genotype, and for three of

the five hotspots, many additional associations with factor targets are recovered.

For example, the PHO84 locus is associated with the PHO4 Yeastract factor

activation (q < 0.03, L = 15.5), as well as 31 probe expression levels in trans.

Eleven of these are also significantly associated with the PHO4 factor activation,

all showing a stronger association. PHO4 itself is significantly associated with

454 probes, greatly expanding the range of plausible effects of the PHO84 locus.

This shows that using inferred intermediate phenotypes can reveal additional

associations that otherwise would not be statistically significant.

3.5 Interaction analysis with inferred phenotypes

Beyond understanding the causes of variability in the inferred traits, we are also

interested in their genotype-dependent effects on gene expression levels.

3.5.1 Discovering interactions

We scanned the genome for genotype-factor interactions that affect gene expres-

sion levels (Figure 3.1c) using a standard linear interaction model, and recovered

three broad classes of interactions (Figure 3.3). We tested each locus-gene pair
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independently for interaction with any inferred factor using 20 permutations, and

information from all the random restarts of the model. If a single factor was ob-

served with the strongest interaction score for a locus-gene pair in at least half

the multiple restarts, we interpreted it as the true interacting factor; in other

cases, we did not designate a factor to an interaction effect. We give examples

of interactions we find below, highlighting how they add to the understanding of

the propagation of the genotype effect.

The largest set of interactions was found at the IRA2 locus. Many Yeas-

tract factors, such as MIG1, HAP4, YAP1 and MSN2 show high interaction

LOD scores with this locus (Figure 3.3a). All these corresponding transcription

factors act in glucose response, nutrient limitation or stress conditions, which is

consistent with the role of IRA2 in environmental stress response by mediating

cAMP levels in the cell. Their factor activations are associated with the envi-

ronment (Table B.9), and the interactions thus recapitulate gene-environment

interactions. While all these factor activations are correlated due to the strong

association with the environment, making it hard to identify the true interacting

factor, we can narrow the factor down to a few that exhibit strong LOD scores.

Identifiability of the interacting factor is hard in general for factors that capture

large effects, or have target sets that largely overlap with other factors. The in-

ferred factors do capture the true underlying sources of variability, which is even

more useful in settings where not all sources of variability are measured. Also,

even having measured the relevant growth condition, we can further interpret the

interactions as transcription factor activation having an effect in a specific genetic

background in some cases, a more specific claim.

The PHO4 factor activation is associated with (q < 0.03, L = 15.5) and

interacts with the PHO84 locus on chromosome XIII to influence 245 genes (Fig-

ure 3.3b). At the same time, the activation also interacts with the environment

variable to influence gene expression levels. Notably, the statistical interaction

for the PHO4 expression, PHO84 genotype and the same gene expression levels

also has LOD scores greater than 11. Thus these interactions are not artifactual,

but can be traced back to measured quantities for all interacting variables.

We also recovered epistatic interactions that failed the stringent multiple test-

ing criteria on their own, but showed a stronger signal via the intermediate fac-
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(b) PHO4-PHO84 interaction
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(c) SCM4-HAP1 interaction

Figure 3.3: Three broad classes of interaction effects between locus genotype
and transcription factor activation affecting gene expression (for details see text).
Each marker shows the gene expression and factor activation for one individual
segregant of either BY (blue) and RM (red) background at the locus, and grown
in ethanol (triangles) or glucose (circles) as a carbon source. Maximum likelihood
fits for expression data for the BY and RM segregants are plotted as solid lines;
an interaction effect corresponds to a difference in slope in the two genetic back-
grounds. (a) Genotype-environment interaction mediated by the inferred YAP1
transcription factor activation. (b) Interaction between the PHO84 locus and
PHO4 transcription factor activation, which is associated both with the PHO84
locus genotype and the PHO4 probe expression level. (c) Epistatic interaction
between HAP1 and its target, SCM4, mediated by the HAP1 activation.
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tor. For example, HAP1 factor activation interacts with (q < 0.01, L = 38.6)

the SCM4 (suppressor of CDC4 mutation) locus genotype to influence SCM4

expression level (Figure 3.3c), while the epistatic interaction LOD score is only

7.9. As SCM4 has a HAP1 binding site in its promoter region, it is plausible that

genetic variants could directly inhibit HAP1 binding. This effect would only be

observable in case HAP1 is active, which in turn is controlled by the HAP1 locus

genotype (q < 10−5, L = 38.7). This is an example of an epistatic interaction

that is mediated by an intermediate phenotype of transcription factor activity.

In total, we found 2,397 genes with a gene-Yeastract factor interaction effect

(q < 0.05). We also found 2,211 genes that show genetic interactions with KEGG

factors and 2,250 with freeform factors. We noted several interaction “peaks”

in the genome, such as the IRA2 locus, where the locus genotype interacts with

several genes via one or multiple factors (Figure 3.4). These coincide with trans

eQTL peaks and gene-environment interaction peaks observed before (Smith and

Kruglyak, 2008; Yvert et al., 2003), and have been annotated for potential causal

genes.

3.5.2 Recovering interactions

We found 10,049 locus-environment interactions affecting 676 gene expression

levels (Figure 3.4) using the same model and testing approach as for inferred

factor interactions (FDR < 5%). Of these, we recovered 4605 interactions (46%)

affecting 505 genes (75%) with the Yeastract factors, 6464 interactions (64%)

affecting 572 genes (85%) with the KEGG factors, and 3065 interactions (31%)

affecting 420 genes (62%) with the freeform factors. All environment-associated

Yeastract factors had a strong interaction LOD scores with the IRA2 locus,

affecting hundreds of genes. These interactions recapitulate the gene-environment

interaction reported and validated in the original analysis of the data (Smith and

Kruglyak, 2008). It is reassuring that we are able to recover these interactions

with the inferred intermediate phenotypes, and to expand their repertoire as well

as provide hypotheses for their mechanism.

Preliminary results from an ongoing screen for gene-gene interactions have

shown epistatic interactions for 95,445 gene pairs (Costanzo et al., 2010). Three
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Figure 3.4: Number of genes affected by a genotype-factor interaction for each
locus for Yeastract factors (blue), KEGG factors (red), freeform factors (green),
and environment (gray).

hundred and sixty eight knockouts of a Yeastract factor gene and an interaction

peak gene were tested in this large-scale assay, with 40 epistatic interactions

found. We could find interactions for 22 of the tested pairs, and recovered one of

the 40 interactions of Costanzo et al. (2010). Our screen is for genetic interactions

that are different from the synthetic lethal screen of Costanzo et al. Consistent

with this, we find some overlap, but not more or less than expected by chance.

3.6 Discussion

Our genetic analysis of the gene expression data from (Smith and Kruglyak,

2008) has shown that inferred intermediate phenotypes are valuable for generat-

ing hypotheses about plausible connections between genetic and gene expression

variation. Using these inferred cellular phenotypes, we identified loci associated

with transcription factor and pathway activations, thus giving the genetic effect a

straightforward mechanistic interpretation, and often suggesting a candidate gene

responsible for the change. For the first time, we considered and found statistical

interaction effects with inferred intermediate phenotypes.

Our work is a step towards interpreting and understanding effects of genetic

variants by putting them into cellular context. Conventional analysis, relating

genotype and expression levels, is restricted to observed measurements, often
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producing only statistical associations instead of a plausible mechanistic view.

Going beyond this, our approach yields phenotypic variables at an intermediate

level which can be used in the analysis. We showed that these provide additional

interpretability and in some settings increase statistical power. Besides standard

association and interaction effects between genotype and gene expression, our

approach allows more rich hypothesis spaces to be explored, where the dependent

variable we model is not a global organism phenotype such as disease label, or

a very specific measurement like a single gene expression level. We have shown

that this analysis is both feasible, and gives interesting results.

The idea of looking for associations and interactions with inferred intermedi-

ate phenotypes will be even more useful in forthcoming studies that include other

cellular measurements. The inferred transcription factor or pathway activations

allow interpreting the variability in these measured phenotypes as a result of

changes in regulator activity or pathway state, bridging the gap between individ-

ual molecule measurements, and states of protein complexes, cellular machines,

and pathways. We believe that the inferred intermediate phenotypes can be much

more informative about the state of the cell and organism than individual locus

genotypes and gene expression levels, and will also show stronger associations to

downstream cellular and tissue phenotypes.

The intermediate activation phenotype has lower dimensionality compared to

the space of genotypes and gene expression levels, which helps against multiple

testing issues present in genome-wide scans for epistatic interactions. We were

able to infer association and interaction effects, including proxies for epistasis,

while finding epistatic interactions by testing all locus pairs is usually hindered

by the billions of tests performed (Brem and Kruglyak, 2005; Cordell, 2009; Storey

et al., 2005). The incorporation of prior information to infer interpretable factors

is a flexible way to reduce the number of tests by capturing relevant parts of the

data variation in a few factors, and can also add power if the factor is a better

proxy for the true interacting variable.

The inferred transcription factor activations did not mostly correlate with

their expression level. This is expected, as the activity of a protein depends on

the protein level, localisation, posttranslational modification state, and existence
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of binding partners to carry out its function. Expression level alone is often a

poor proxy for a measure of protein activity.

A range of prior work has applied linear or generalised linear models to infer

unobserved determinants of gene expression levels. For example, broad hidden

factors have been inferred from gene expression that are likely to be due to con-

founding sources and hence can safely be explained away, thereby increasing the

power of eQTL studies (Leek and Storey, 2007; Stegle et al., 2010). Although

methodologically related, this work has a completely different aim. Also, unsu-

pervised sparse linear models have been applied to infer hidden determinants in

gene expression which are subsequently analysed for association to the genetic

state (Biswas et al., 2008). This approach is closely related to the “freeform

factors” included in this analysis for comparison. Overall, we show that factor

learning taking prior knowledge into account adds statistical identifiability of the

actual factors thereby providing interpretability. Other interesting approaches

perform feature selection to capture relevant properties of the segregating sites

in order to pinpoint the causative allele (Lee et al., 2009), or build a predictive

(network) model of gene expression, followed by analysing its cliques and subnet-

works (Zhu et al., 2008), but neither explicitly model unobserved phenotypes. A

very recent paper proposed an integrated Bayesian ANOVA model that explains

the gene expression profile by modules (Zhang et al., 2010). These modules in turn

are modelled as a function of the genotype, taking direct and epistatic regulation

into account. Importantly, both these related approaches infer gene expression

determinants in an unsupervised fashion, and hence the interpretation of these

association signals can be difficult and remains as a retrospective analysis step.

Finally, a methodologically related sparse factor analysis model employing prior

information has been applied to a narrower dataset with an aim to explain trans

eQTL hotspots (Sun et al., 2007). However, the study does not consider the idea

of genetic effects in the phenotypic context, or look for interaction effects, which

is a primary focus of this work.

There has been speculation that a significant proportion of heritable variabil-

ity that cannot be attributed to associations with single loci is due to interaction

effects. This hypothesis is intuitively appealing, since we expect some genetic

variants only to have an effect in a specific context. We have found an abundance
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of such statistical interactions, and have shown how some of them help to un-

derstand and interpret yeast gene expression regulation. Often, they recapitulate

epistatic or gene-environment interactions, but nevertheless add a plausible mech-

anism of action. It will be especially interesting and important to see how these

methods work on large, extensively genotyped and phenotyped human cohorts

that are becoming available in the near future.

An open source Python implementation of the statistical models and the anal-

ysis pipeline is available from ftp://ftp.sanger.ac.uk/pub/rd/PEER
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