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Abstract 

The human commensal gut microbiota can act as a reservoir of antimicrobial resistance genes 

that can persist and spread to pathogens. However, the extent and diversity of antibiotic 

resistance encoded by human commensal bacteria remains to be determined. Due to 

immediate clinical relevance and our previous inability to culture these commensal bacteria, 

the majority of research into antibiotic resistance has focused on pathogenic organisms or 

well-characterized antibiotic resistance mechanisms. Here, I demonstrate the existence of 

unpredicted antibiotic resistance, not detected by several genome-based prediction methods, 

in diverse bacterial species from the human gastrointestinal tract.  

178 antibiotic resistance genes and mutations were identified in a culture collection of 737 

phylogenetically diverse gut bacteria from healthy humans. Recent developments in culturing 

anaerobic gut bacteria were used to determine antibiotic sensitivity phenotypes and observe 

the spectrum of clinically relevant antibiotics across the diversity of these isolates. These data 

were combined to assess the accuracy of genome-based predictions in human commensal gut 

bacteria, revealing multiple instances of unpredicted antibiotic resistance. This highlights the 

importance of combining computational genomic prediction with functional validation and 

increases our knowledge of antibiotic resistance in commensal human gut bacteria. 

In addition, the impact of therapeutic amoxicillin treatment on antibiotic resistance in mice 

with human-derived gut microbiota was studied. These experiments model processes in 

humans and reveal community- and strain-level changes in antibiotic resistance following 

antibiotic therapy. These experiments further elucidate the role of the gut microbiota as a 

reservoir of antibiotic resistance and the influence of antibiotics on this reservoir. 
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Chapter 1: Antibiotics and commensal human gut bacteria 
 

1.1 Antibiotics 

Antibiotics are a cornerstone of modern medicine and are used extensively throughout the 

developed and developing worlds, in humans and for veterinary and agricultural purposes. 

They are drugs that either kill or inhibit the growth and replication of a bacterium1 and are 

used to treat bacterial infections in, or on, the body. They are distinct from antiseptics (used 

to sterilise living tissue and reduce the risk of infection, rather than treat an infection) and 

disinfectants (non-selective antimicrobials that kill a range of microorganisms, not just 

bacteria, and are used on non-living surfaces)1. They are also not toxins, as toxins are defined 

as a poisonous substance produced by a microorganism, plant or animal that causes illness in 

the body; antibiotics do not cause direct harm to human cells. Antibiotics can be administered 

intravenously (into veins via syringe or catheter), intramuscular (into muscle via syringe), 

orally (in tablet, capsule or liquid form), or topically (e.g. creams, lotion, sprays or drops). 

Intravenous is considered the most effective route as it creates an immediate therapeutic 

blood level of the antibiotic, but oral routes are often preferred as they are less intrusive, do 

not require a hospital stay, and often achieve supra-inhibitory blood levels2.  

Antibiotics can now be synthesised in a laboratory, but are often based on compounds 

produced naturally by microorganisms to harm or kill bacteria in their environment. Not all 

microorganisms produce antibiotic compounds – in fact, there are only around 20 species that 

produce antibiotics that are now mass-produced and used in medicine3. Typically these are 

soil-dwelling microorganisms3, although the search for new antibiotics is now beginning to 

shift to marine microbes4. Both of these environments feature high diversity and density of 

microorganism; antibiotic production is thought to be a mechanism of attack against 
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neighbouring bacteria or defence, enabling survival of the antibiotic-producer5. Antibiotic 

compounds can also act as signalling molecules between bacterial cells, regulating bacterial 

behaviour such as biofilm formation6. Therefore, they have important roles in nature that 

humans have co-opted for our benefit and integrated antibiotics into human and animal 

medicine. It is difficult to quantify exactly the overall impact of antibiotics on infection 

dynamics and distinguish between the impacts of other factors such as the introduction of 

vaccines7 or improved sanitation8. Despite this, antibiotic use is associated with a decrease in 

deaths caused by communicable diseases per year9 and increase in average life expectancy9. 

 

1.2 The history of antibiotics 

It is only recently, and over a relatively short timeline, that antibiotics have become 

entrenched in our society to treat bacterial infections (Fig. 1.1). Just 110 years ago, Paul Ehrlich 

(the German biochemist, 1854-1915) coined the term “magic bullet” when theorising a 

chemical that could selectively target and kill disease-causing agents in the body without 

harming the patient10. The first “true” magic bullet antibiotic against bacteria that was used 

clinically against bacterial infections was in fact used a number of years before this term was 

used. Pyocyanase was an extract prepared from the Gram-negative bacterium Pseudomonas 

aeruginosa by Emmerich and Low in 189911. It was active against a number of pathogenic 

bacteria but since its effectiveness was inconsistent and it was mildly toxic to humans it was 

abandoned11. Ehrlich, now considered the founding father of chemotherapy and large-scale, 

systematic drug screens, developed his own magic bullet (‘Compound 606’) against the 

causative bacterium of syphilis, Treponema palladium12. Compound 606, or Salvarsan, was the 

most frequently prescribed drug after its discovery in 190913. Prontosil was another early 

antibiotic, a compound synthesised as part of a screen by Bayer chemists Josef Klarer and Fritz 
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Mietzsch and shown to have antibacterial properties against a number of diseases by Gerhard 

Domagk14. The active component sulphanilamide had been previously used in the dye industry 

and had already come off-patent, enabling sulphonamide derivatives to be produced by 

various companies15. Sulphonamides are the oldest class of synthetic antibiotics and new 

versions are still produced and used today. 

Figure 1.1. Timeline of antibiotic discovery. Adapted from Silver 201116. 

 

Probably the most well-known antibiotic, and one of the oldest mass-produced antibiotics, is 

penicillin, “discovered” in 1928 in the famous tale of Alexander Fleming (Scottish 

bacteriologist, 1881-1955) and an open window. A mysterious fungus had blown through an 

open window and contaminated plates being used to study Staphylococcus, which was known 

to cause infections in humans, and the fungus had managed to halt the growth of this 

bacterium17. The antimicrobial properties of moulds were already known, but Fleming was 

remarkably dedicated in his efforts to purify the exact compound responsible for this effect. 

Penicillin was eventually brought into mass production in 1945, overtaking Salvarsan in 

usage15. Penicillin antibiotics are still the most prescribed drug globally to this day18. The mass 

production of penicillin coincided with the discovery of streptomycin in 1943, an antibiotic 

isolated from the soil bacterium Streptomyces griseus that could treat Mycobacterium 

tuberculosis, the cause of tuberculosis (TB)19. These events heralded the start of the “golden 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

1928: Penicillins
1932: Sulphonamides
1942: Aminoglycosides, Bacitracin

1945: Tetracyclines
1946: Nitrofurans
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age of antibiotics” (Fig. 1.1): eighteen new types of antibiotics were discovered between 1944 

and 197016. The rate of discovery then began to decline, with only four new classes in the 

1970s and one in the 1980s. Since then, no new classes of antibiotics have been discovered16 

– only “re-discoveries” have occurred, involving modifications of already known antibiotics16 

(Table 1.1). The decline in discovery of novel classes of antibiotics is problematic due to the 

emergence and spread of antibiotic resistance, where bacterial infections can no longer be 

treated with the same drugs that were once so effective. Since antibiotics are inseparable 

from today’s world, there are concerns a “post-antibiotic era” may be approaching20. In light 

of this, extraordinary research is taking place across the world to discover new antibiotics, 

develop alternatives to antibiotics, and understand the evolution and spread of antibiotic 

resistance.



  

Table 1.1. Sources of antibiotics. The year of discovery and source of current antibiotic classes are described. Adapted from Silver, 201116 and Chandra and Kumar, 20163. 

 

Year Antibiotic Source Kingdom; Division (Fungi) or Phylum (Bacteria); Class; Order; Family) 
1928 Penicillins Penicillium Fungi; Ascomycota; Eurotiomycetes; Eurotiales; Trichocomaceae 

1932 Sulphonamides Synthetic  

1942 Aminoglycosides Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1942 Bacitracin Bacillus subtilis Bacteria 

1945 Tetracyclines Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1946 Nitrofurans Synthetic  

1947 Polymyxins Paenibacillus polymyxa Bacteria 

1947 Phenicols Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1948 Cephalosporins Acremonium Fungi; Ascomycota; Hypocreales; Hypocreaceae 

1950 Pleuromutilins Clitopilus passecherianus Fungi; Basidiomycota; Agaricomyctes; Agaricales; Entolomataceae 

1952 Glycopeptides Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1952 Nitroimidazoles Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1952 Streptogramins Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1955 Cycloserine Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1955 Novobiocin Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1957 Rifamycins Amycolatepsis rifamycinica Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Pseudonocardiaceae 

1961 Trimethoprim Synthetic  

1962 Quinolones Synthetic  

1962 Lincosamides Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1962 Fusidic acid Fusidium coccineum Fungi; Ascomycota; Hypocreales; Nectriaceae 

1969 Fosfomycin Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1971 Mupirocin Pseudomonas fluorescens Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae 

1976 Carbapenems Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1978 Oxazolidinones Synthetic (derived from cycloserine)  

1979 Monobactams Synthetic (derived from Chromobacterium violaceum) Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales; Neisseriaceae 

1987 Lipopeptides Streptomyces spp. Bacteria; Actinobacteria; Actinomycetes; Actinomycetales; Actinomycetaceae 

1995 Glycylcyclines Synthetic Synthetic (tetracycline derivative) 

5 
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1.3 Clinically relevant antibiotics 

Today, seventeen classes of antibiotics are considered essential by the World Health 

Organisation21 (Table 1.2). There are three categories of essential antibiotics: Access (first or 

second line of defence options for common infections); Watch (higher resistance potential but 

still recommended as first or second line treatments); and Reserve (‘last resort’ options for 

serious antibiotic-resistant infections). Each antibiotic has a different mechanism of action 

(Fig. 1.2), mechanism of resistance and can target different types of bacterial pathogens (Table 

1.2). This may include Gram-negative and/or Gram-positive bacteria, as determined by the 

Gram staining technique developed by Hans Christian Gram in 188422. In addition, bacteria 

can be strictly aerobic or anaerobic, meaning that the absence or presence of oxygen 

respectively is toxic, or somewhere in between23. Antibiotics such as aminoglycosides rely on 

components of the aerobic respiration pathway, and as such their spectrum of activity is 

thought to only include aerobic bacteria and not anaerobes24. Essential antibiotics are 

discussed in more detail below, including their reported spectrum of activity. 

Figure 1.2. Mechanism of action for antibiotics on the WHO List of Essential Medicines 201721. Adapted from 
Shaikh et al. 201525. Vector images of DNA, folate and protein synthesis from Freepik.com and smart.servier.com.
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Table 1.2. The antibiotics included in the 20th Edition of the WHO List of Essential Medicines (2017)21. These antibiotics are considered essential by the WHO to treat bacterial 
infections. There are three categories: Access (first or second line options for common infections); Watch (higher resistance potential but still recommended as first or second line 
treatments); and Reserve (‘last resort’ options for serious antibiotic-resistant infections). Antibiotics can be considered both Access and Watch; here, they have been listed under 
the higher concern category of Watch for conciseness. 

WHO 
Category 

Antibiotic Class Sub-class Drug name Mechanism of action Mechanism of resistance Used against 

Access Aminocyclitol  Spectinomycin Protein synthesis inhibition: 
bind 30S ribosomal subunit 

Ribosomal mutations; enzymes 
that modify either the antibiotic 
or target  

Aerobic Gram-negative bacteria 
e.g. Pseudomonas aeruginosa 
and staphylococci 

Access Aminoglycoside  Amikacin 
Gentamicin 

Protein synthesis inhibition: 
bind 30S ribosomal subunit 

Ribosomal mutations; 
antibiotic- or target-modifying 
enzymes  

Aerobic Gram-negative bacteria 
e.g. Pseudomonas aeruginosa 
and staphylococci 

Access Amphenicol  Chloramphenicol Protein synthesis: interacts 
with 23S rRNA of 50S 
ribosomal subunit 

Ribosomal mutations; 
antibiotic-modifying enzymes; 
efflux 

Gram-negative bacteria e.g. 
Haemophilus influenzae and 
Gram-positives e.g. 
Streptococcus pneumoniae 

Access Beta-lactam 1st generation 
cephalosporin 

Cefalexin 
Cefazolin 

Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives e.g. penicillin-resistant 
bacteria such as Pseudomonas 
aeruginosa 

Access Beta-lactam Penicillin Amoxicillin 
Amoxicillin + 
clavulanic acid 
Ampicillin 
Benzathine 
benzylpenicillin 
Benzylpenicillin 
Cloxacillin 
Phenylmethylpenicillin 
Procain 
benzylpenicillin 

Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives 
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WHO 
Category 

Antibiotic Class Sub-class Drug name Mechanism of action Mechanism of resistance Used against 

Access Folic acid 
metabolism 
inhibitors 

 Sulphamethoxazole + 
trimethoprim 

Folate synthesis inhibition: 
inhibit enzymes in different 
stages of the folic acid 
biosynthesis pathway 

Mutations to increase 
expression of trimethoprim 
targets, or in the targets 
themselves, or acquisition of 
genes encoding less sensitive 
targets 

Gram-negative and Gram-
positives including MRSA 

Access Nitroimidazole  Metronidazole DNA replication inhibition: the 
prodrug is reduced and 
converted to the toxic drug 
that inhibits DNA synthesis 

Decreased uptake; altered 
reduction efficiency; efflux; 
drug inactivation; acquisition of 
genes that encode alternative 
reductases and convert prodrug 
to non-toxic alternative 

Anaerobic Gram-negative or 
Gram-positive bacteria e.g. 
Prevotella 

Access Nitrofuran  Nitrofurantoin DNA replication inhibition: the 
prodrug is reduced and the 
intermediate metabolites bind 
enzymes involved in DNA and 
RNA synthesis 

Mutations in reductases Gram-negative and Gram-
positives excluding intrinsically-
resistant Klebsiella and 
Pseudomonas spp. 

Access Tetracycline  Doxycycline Protein synthesis inhibitor: 
prevent translation by binding 
16S rRNA in 30S subunit 

Efflux; target-protection 
proteins that dislodge 
tetracycline 

Gram-negative and Gram-
positives including MRSA 

Watch Beta-lactam Anti-
pseudomonal 
penicillin 
 

Piperacillin + 
tazobactam 

Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives including Pseudomonas 
aeruginosa 

Watch Beta-lactam Carbapenem Imipenem + cilostatin 
Meropenem 

Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives, especially multi-drug 
resistant infections 
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WHO 
Category 

Antibiotic Class Sub-class Drug name Mechanism of action Mechanism of resistance Used against 

Watch Beta-lactam 3rd generation 
cephalosporin 

Cefixime 
Ceftriaxone 
Cefotaxime 
Ceftazidime 

Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives, especially for bacterial 
meningitis and sepsis 

Watch Beta-lactam Penem Faropenem Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives, especially multi-drug 
resistant infections 

Watch Fluoroquinolone  Ciprofloxacin 
Levofloxacin 
Moxifloxacin 
Norfloxacin 

DNA replication inhibition: 
inhibit DNA gyrase 

DNA gyrase mutations; efflux; 
Qnr production (protein that 
competes for fluoroquinolone 
binding site) 

Gram-negative and Gram-
positives, including anaerobes 

Watch Glycopeptide  Teicoplanin 
Vancomycin 

Cell wall synthesis inhibition: 
bind D-Ala-D-Ala cell wall 
molecules 

Acquisition of van gene cluster 
(replaces final D-Alanine in cell 
wall molecules to prevent 
glycopeptide binding and 
destroys normal D-Ala-D-Ala 
molecules) 

Gram-positives e.g. Enterococcus 
faecalis and Clostridioides difficile 

Watch Lincosamide  Clindamycin Protein synthesis inhibition: 
inhibit translocation by binding 
23S rRNA in 50S ribosomal 
subunit 

Ribosomal mutations or 
modifications; efflux 

Gram-positives and anaerobes, 
but not typically Gram-negative 
aerobes 

Watch Macrolide  Azithromycin 
Clarithromycin 

Protein synthesis inhibition: 
inhibit translocation by binding 
23S rRNA in 50S ribosomal 
subunit 

Ribosomal mutations or 
modifications; efflux 

Gram-positives and anaerobes, 
but not typically Gram-negative 
aerobes 

Reserve Beta-lactam Monobactam Aztreonam Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative aerobes, 
including Pseudomonas 
aeruginosa 
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WHO 
Category 

Antibiotic Class Sub-class Drug name Mechanism of action Mechanism of resistance Used against 

Reserve Beta-lactam 4th generation 
cephalosporin 

Cefepime Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives  

Reserve Beta-lactam 5th generation 
cephalosporin 

Ceftaroline Cell wall synthesis inhibition: 
interact with cell wall catalysis 
enzymes 

Antibiotic-degrading enzymes, 
beta-lactamases; mutations in 
cell wall proteins 

Gram-negative and Gram-
positives including MRSA 

Reserve Peptide: cyclic 
lipopeptide 

 Daptomycin Membrane function disruption: 
inserts into cytoplasmic 
membrane, disrupts integrity 
and triggers rapid cell death  

Mutations in genes that alter 
the target or entry of 
daptomycin into cytoplasmic 
membrane 

Gram-positives e.g. vancomycin-
resistant enterococci and MRSA 

Reserve Fosfomycin  Fosfomycin Cell wall synthesis inhibition: 
inhibits the first step of cell 
wall synthesis 

Mutations in murA, the protein 
that initiates cell wall synthesis; 
mutations in membrane 
transporters, acquisition of 
fosfomycin-inactivating 
enzymes 

Gram-negative and Gram-
positive bacteria, especially for 
antibiotic-resistant UTIs 

Reserve Glycylcycline  Tigecycline Protein synthesis inhibition: 
binds 30S ribosome, blocking 
tRNA entry 

Efflux Gram-negative and Gram-
positive, including tetracycline-
resistant bacteria 

Reserve Oxazolidinone  Linezolid Protein synthesis inhibition: 
binds 23S rRNA in 50S 
ribosomal subunit and 
interacts with tRNAs to prevent 
protein synthesis initiation 

Efflux (especially in Gram-
negative aerobes); ribosomal 
mutations 

Gram-positives e.g. vancomycin-
resistant enterococci and MRSA, 
Gram-negative anaerobes 

Reserve Peptide: 
polymixins 

 Colistin 
Polymyxin B 

Outer membrane disruption: 
bind lipopolysaccharide to 
destabilise OM and IM, induce 
osmotic imbalance and 
oxidative stress 

Chromosomal mutations; 
acquisition of genes that alter 
the lipopolysaccharide 

Multi-drug resistant Gram-
negative aerobes 

10 
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1.3.1 Access antibiotics: first or second line of defence 

Access antibiotics are those that, according to the WHO, are first or second line drugs for 

common infectious diseases and should be: widely available, affordable, appropriately 

formulated and quality controlled18. First line antibiotics are typically narrow spectrum: they 

only target a limited range of bacteria, such as the intended pathogenic bacterium and 

possibly some close relatives18. They should also have low resistance potential and positive 

benefit-to-risk ratios18; i.e., the risk of harm to the patient is low compared to the potential 

treatment of their infection. Broad spectrum antibiotics, that target a wider range of bacteria, 

are generally used as second line options, as are drugs with higher resistance potentials or less 

positive benefit-to-risk ratios21 (e.g. they might have more common or more serious side 

effects).  

Aminocyclitol antibiotics, such as spectinomycin, bind the 30S subunit of the bacterial 

ribosome, disrupting protein synthesis. Aminoglycosides, such as amikacin and gentamicin, 

act via the same mechanism. To do this, they must enter the cell through its cytoplasmic 

membrane – a process that requires energy dependent active bacterial transport24. This in 

turn requires oxygen and an active proton motive force; therefore these drugs are only 

typically effective for bacteria capable of aerobic respiration24. Aminocyclitols and 

aminoglycosides are considered inactive against anaerobic bacteria, which have adapted to 

survive without oxygen and do not have the usual required components to transport these 

drugs into their cells24. Therefore, these drugs are considered broad-spectrum but only for a 

range of aerobic bacteria. Although these antibiotics are known to be toxic to humans and can 

cause hearing loss, they are considered first line treatments for respiratory infections in cystic 

fibrosis patients26. They are also used to treat multiple-drug resistant (MDR) infections, often 

as part of combination therapy with beta-lactams, since these classes of antibiotics have a 
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synergistic effect when used together26. Aminoglycoside resistance is mediated by ribosomal 

mutations, enzymes that modify the antibiotic, or enzymes that modify the target27. 

Chloramphenicol, an amphenicol, is considered a broad-spectrum antibiotic and interacts 

with the 23S rRNA of the 50S ribosomal subunit, preventing protein synthesis24. It is a first line 

option for eye infections such as conjunctivitis, which can be caused by bacteria including 

Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis28. 

Chloramphenicol resistance is mediated by ribosomal mutations or chloramphenicol-

modifying enzymes. It can also be due to efflux-mediated resistance29. Mutations in 

components of efflux systems can increase the affinity for certain molecules including 

antibiotics, resulting in increased resistance29. 

Beta-lactams are a diverse group of antibiotics with several sub-classes. This includes 

penicillins, cephalosporins, carbapenems and monobactams. Beta-lactam antibiotics have a 

chemical structure that is similar to that of D-Alanyl-D-Alanine (D-Ala-D-Ala), a ‘building block’ 

of bacterial cell walls30. This means the beta-lactams can interact with the enzymes that 

catalyse the cell wall synthesis, preventing proper cell wall synthesis and resulting in osmotic 

instability and bacterial cell death30. The different sub-classes of beta-lactams are categorised 

by the modification to the standard beta-lactam structure that defines that particular group. 

Penicillins and 1st generation cephalosporins are on the Access list of antibiotics. Both these 

sub-classes of beta-lactam are typically considered narrow spectrum. However, the spectrum 

varies from drug to drug: for example, amoxicillin is considered broad-spectrum or extended-

spectrum compared to the original penicillin31. Penicillins, especially amoxicillin, are the first 

line drug of choice for common bacterial infections, such as dental, ear, respiratory and throat 

infections32, hence their position as the most used drugs in the world33. Genes that encode 

beta-lactamase enzymes, which degrade beta-lactam antibiotics, are some of the most 
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common antibiotic resistance genes (ARGs): over 1000 different beta-lactamase genes are 

described29. Beta-lactams can be given alongside a beta-lactamase inhibitor, such as 

amoxicillin with clavulanate, to prevent a beta-lactamase enzyme from functioning properly24. 

This combination increases the efficiency of the amoxicillin. First generation cephalosporins, 

such as cefalexin and cefazolin, have often been used as second-line options as an alternative 

to penicillin, in the case of resistance or allergies21. Beta-lactam resistance can also be 

mediated by mutations or modifications in the antibiotic target (penicillin-binding proteins 

(PBPs) in the cell wall) or in porins, which allow the beta-lactam antibiotics to enter the cell29. 

The folic acid metabolism inhibitor combination of sulphamethoxazole and trimethoprim is 

active against many different bacterial infections24. Bacteria must synthesise de novo folates 

that can act as cofactors for various other biosynthetic pathways; without these cofactors 

their growth is inhibited34. Sulphonamides, such as sulphamethoxazole, and trimethoprim, a 

diaminopyrimidine antibiotic, inhibit enzymes involved in different stages of the folic acid 

biosynthetic pathway and thus this combination is considered synergistic24. It is a common 

first-line treatment for infections including urinary tract infections (UTIs), traveller’s 

diarrhoea, methicillin-resistant Staphylococcus aureus (MRSA) skin infections, respiratory 

tract infections, and cholera35. Resistance to trimethoprim is mediated by mutations that 

increase the expression of trimethoprim targets so that the antibiotic is outnumbered and its 

effect limited29. Mutations that alter the targets themselves or the acquisition of genes that 

encode less sensitive targets are also known to result in trimethoprim resistance29. 

Sulphonamide resistance is common and mainly due to plasmid-borne genes encoding 

alternative enzymes that are less sensitive to the antibiotic36. This is a method of horizontal 

gene transfer (HGT): the movement of genes between bacterial cells that bypasses vertical 

transmission. 
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The nitroimidazole, metronidazole, inhibits DNA synthesis and causes DNA damage in 

anaerobic bacterial cells35. Strict aerobic bacteria lack electron-transport proteins with 

sufficient negative redox potential to activate the prodrug form once it is inside the cell, thus 

metronidazole has the opposite spectrum to aminoglycosides37. It is the first-line option for 

infections caused by anaerobic bacteria, such as dental abscesses (e.g. by Prevotella or 

Streptococcus)38 or bacterial vaginosis caused by Gardnerella vaginalis37. Resistance is 

mediated by decreased uptake or altered reduction efficiency (that also leads to decreased 

uptake)37. Efflux and drug inactivation are also possible, as is the acquisition of nim genes from 

other bacteria via HGT. These nim genes encode alternative reductase enzymes to convert the 

prodrug into a non-toxic alternative37. 

The nitrofuran, nitrofurantoin, has multiple antibacterial properties – none of which are fully 

understood yet39. Like nitroimidazoles, it is a prodrug, and is activated inside the bacterial cell 

by the action of nitroreductases39. The intermediate metabolites produced bind to bacterial 

ribosomes and enzymes involved in DNA and RNA synthesis, plus other metabolic processes39. 

It is broad-spectrum with activity against both Gram-negatives and Gram-positives, though 

some Klebsiella and Pseudomonas species are intrinsically resistant39, and it is a first-line 

treatment for uncomplicated, lower UTIs39. Resistance is thought to be mediated by mutations 

in nitroreductases39. 

Tetracyclines such as doxycycline are another type of protein synthesis inhibitor that act upon 

conserved sections of the 16S rRNA in the 30S subunit, preventing translation24. It has broad 

spectrum and is commonly used to treat sexually transmitted infections (STIs), Lyme disease, 

skin infections and MRSA40. Resistance is mediated by tetracycline-specific efflux pumps or 

target-protection proteins that dislodge tetracycline when it is bound to the ribosome29. 
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1.3.2 Watch antibiotics: first or second line of defence with high resistance potential 

Watch antibiotics have higher resistance potential and may be of broader spectrum21. These 

antibiotics are also featured on the Highest Priority Critically Important Antimicrobials (CIA) 

list41, which is intended to ensure that these antibiotics are prioritised for stewardship 

strategies and used prudently. 

Piperacillin with tazobactam is another penicillin/beta-lactamase inhibitor combination, as 

described earlier. Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen that 

can cause infections in humans, but is intrinsically resistant to penicillin antibiotics caused by 

the production of a beta-lactamase enzyme42. Piperacillin with tazobactam has anti-

pseudomonal activity and therefore is a common option for the treatment of P. aeruginosa 

infections. This bacterium has become a major contributor to infections that are hospital-

acquired and/or in immunocompromised or critically ill patients43. It is important then that 

antibiotics capable of treating these infections are only used when appropriate to limit the 

development of resistance and conserve their utility. 

There are two other sub-classes of beta-lactams that are on the Watch list: third generation 

cephalosporins and penems. Third generation cephalosporins have a specific type of 

modification to the basic beta-lactam structure that increases their specificity to binding cell 

wall proteins44. They have a broader spectrum than previous generations, although again it 

varies between drugs. For example, cefotaxime and ceftizoxime have the best Gram-positive 

coverage of third generation cephalosporins44, though they are typically used to treat Gram-

negative infections in hospitals associated with meningitis and sepsis44. Penems, including 

carbapenems, have the broadest spectrum of activity of the beta-lactams and are relatively 

resistant to most types of beta-lactamases45; hence why they are often used to treat beta-



 

  16 

lactam resistant or MDR infections45. Carbapenem resistance can be conferred by single 

nucleotide polymorphisms (SNPs) that affect PBPs in the cell wall46 or in the porin that enables 

carbapenem import into the cell46, or by increased activity of efflux pumps46. The most 

clinically important cause of carbapenem resistance is carbapenemases enzymes29. 

Fluoroquinolone antibiotics, such as ciprofloxacin, are highly active against both Gram-

negatives and Gram-positives47. Newer fluoroquinolones in particular, such as moxifloxacin, 

have very broad spectrums of activity, including against anaerobes47. They work by inhibiting 

DNA gyrase, an enzyme involved in DNA replication and transcription24. Fluoroquinolones are 

very commonly prescribed drugs, including for ear, gastrointestinal (GI) and respiratory 

infections and UTIs47. Resistance is commonly mediated by mutations in the target enzymes, 

as well as over-expression of efflux pumps and production of Qnr, a protein encoded by 

plasmids that competes for the fluoroquinolone binding site29. 

Glycopeptides are similar to beta-lactams in that they inhibit cell wall synthesis, however they 

do this by binding to the D-Ala-D-Ala molecules rather than the enzymes that process 

synthesis24. These antibiotics target Gram-positive organisms only; due to their size, they are 

typically unable to cross the outer membrane (OM) of Gram-negatives48. Teicoplanin is more 

potent than vancomycin, but both are crucial antibiotics used to treat infections caused by 

Gram-positive bacteria such as Enterococcus or Clostridioides difficile48. Resistance to 

vancomycin is mediated by the acquisition of a van gene cluster, which act to replace the final 

D-Alanine in the cell wall molecules with D-lactate or D-serine, preventing vancomycin 

binding29. The normal D-Ala-D-Ala molecules are also destroyed by the function of the van 

gene operon29. 
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Lincosamides, such as clindamycin, and macrolides, such as azithromycin, have similar 

mechanisms of action. They inhibit translocation, an early stage in protein synthesis, by 

targeting the conserved sequences of the 23S rRNA in the 50S ribosomal subunit24. 

Lincosamides target Gram-positives and anaerobes, but typically not Gram-negative or strictly 

aerobic organisms49. They are often used to treat head, neck, respiratory, bone, soft tissue, 

abdominal, and pelvic infections50. Macrolides have a similar broad spectrum of activity, plus 

some Gram-negative aerobes or facultative anaerobes, but Enterobacteriaceae tend to be 

resistant due to having relatively impermeable cell walls51. They are also used for respiratory 

tract, skin and soft tissue infections51. Resistance to lincosamides and macrolides can be 

mediated by mutations in the ribosome, modifications of the ribosome (e.g. methylation), or 

by efflux pumps29. 

 

1.3.3 Reserve antibiotics: last resort 

Reserve antibiotics are those that should only be used as a last resort; that is, in the case of a 

serious or life-threatening multi-drug resistant infection that is not responding to first or 

second line treatments41.  

There are three types of beta-lactam included on the reserve list: fourth and fifth generation 

cephalosporins and monobactams. Fourth and fifth generation cephalosporins have a 

broader spectrum of, and higher, activity52 and are more resistant to extended-spectrum beta-

lactamases53 than previous generation cephalosporins. The fifth generation cephalosporin 

ceftaroline also has activity against Methicillin-Resistant Staphylococcus aureus (MRSA) and is 

now a vital drug in the treatment of MRSA infections54. In contrast, monobactams such as 

aztreonam have a narrow spectrum and are only active against Gram-negatives capable of 
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aerobic respiration, including P. aeruginosa55. These synthetic antibiotics are highly resistant 

to beta-lactamases and are used to treat multi-drug resistant Gram-negative infections55. 

However, there are certain beta-lactamases, such as TEM-3, that are capable of degrading 

aztreonam29.  

Daptomycin is a synthetic cyclic lipopeptide antibiotic first reported in 200256 with a unique 

mechanism of action. It inserts into the bacterial cytoplasmic membrane, where it disrupts 

the membrane functional integrity to trigger the release of intracellular ions and cause rapid 

cell death57. It has antibiotic activity against Gram-positive bacteria, such as vancomycin-

resistant enterococci (VRE), MRSA and penicillin-resistant streptococci – for which there are 

few alternative treatments57. Daptomycin resistance is complicated but thought to be 

mediated by mutations in genes that alter the target or the entry of daptomycin into the 

cytoplasmic membrane58. Daptomycin-degrading enzymes exist in environmental bacteria but 

are not currently considered clinically relevant59. 

Fosfomycin (a simple form of phosphonic acid) was discovered from Streptomyces in 1969 

and is unique in its mechanism of inhibiting the first step in bacterial cell wall synthesis60. It is 

active against both Gram-negative and Gram-positive bacteria and though it was uncommonly 

used for several decades, in recent years it has been revived to treat antibiotic-resistant UTIs60. 

UTIs account for a significant burden of hospital admissions and are increasingly resistant to 

first or second line antibiotics61, and so reserving fosfomycin for use only when absolutely 

necessary is vital to continue treating these cases. Fosfomycin resistance is rare as there 

appears to be an associated fitness cost, but mutations in murA, the gene encoding the protein 

that initiates cell wall synthesis, can occur62. In addition, mutations that alter membrane 

transporters can prevent fosfomycin entering the cell, and bacteria can acquire plasmid-

encoded genes that inactivate the drug62. 
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Tigecycline is the first of the synthetic class of glycylcycline antibiotics, developed in the 

2000s63. Glycylcyclines feature a modified tetracycline structure; tetracycline resistance is 

now rife since this antibiotic is relatively old and very widely-used64. The glycylcycline 

structure binds to the bacterial 30S ribosome, blocking tRNA entry and preventing protein 

synthesis63. Tigecycline is broad spectrum, including activity against drug-resistant Gram-

positive infections and even some resistant to tetracycline, despite any presence of 

tetracycline-specific resistance mechanisms65. However, efflux pumps involved in MDR and 

point mutations can sometimes cause tigecycline resistance29. 

The oxazolidinone linezolid is another synthetic antibiotic, from the late 1980s, which 

interferes with protein synthesis in two separate stages: by binding the 23S rRNA in the 50S 

ribosomal subunit and by interacting with tRNAs to prevent protein synthesis initiation66. Like 

daptomycin, it is used to treat antibiotic-resistant Gram-positive infections such as VRE and 

MRSA but also has activity against Gram-negative anaerobes67. Gram-negative aerobic or 

facultative anaerobic bacteria can contain efflux pumps that are able to pump out linezolid 

and resist its action67. Resistance is also mediated by ribosomal mutations29. 

Polymyxins are non-ribosomal cyclic lipopeptides, originally discovered in 1947 during “the 

golden age of antibiotic discovery” before falling out of use due to nephrotoxicity. They have 

been revisited more recently due to the increasing cases of MDR infections68. Polymyxins bind 

to the lipopolysaccharide in the OM of Gram-negative bacteria, causing outer and 

subsequently inner membrane destabilisation68. They are also reported to induce osmotic 

imbalance and oxidative stress, resulting in cell lysis68. Polymyxins are not susceptible to the 

activity of efflux pumps24, hence why they are such good options to selectively treat serious 

Gram-negative aerobic or facultative anaerobic infections that are resistant to other 
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antibiotics69. Colistin resistance is mediated by chromosomal mutations or acquisition of 

genes that alter the lipopolysaccharide27. 

From this information discussed so far, we can make two important conclusions: firstly, beta-

lactam antibiotics feature in all three categories of antibiotics, encompass a large number of 

drugs, are among the oldest clinically-used antibiotics and are still the most prescribed drugs 

in the world. This underlines their critical importance in modern human medicine. Secondly, 

that resistance to all these clinically relevant antibiotics among bacterial pathogens has 

emerged5, including to last resort antibiotics. This means that cases are arising where an 

infection cannot be treated with any available antibiotics – sometimes resulting in the 

patient’s death70. For example, a woman died in the United States in 2017 following a 

carbapenem-resistant Enterobacteriaceae infection: the strain of K. pneumoniae she was 

infected with was resistant to 26 antibiotics available in the country at the time70. This 

highlights the increasing severity of antibiotic resistance. 

 

1.4 Bacterial genetics and antibiotic resistance 

There are three main ways in which bacteria can be resistant to antibiotics that are explained 

by their genetics: intrinsic resistance, where the bacteria are naturally resistant; DNA 

mutations, where mutations in the genome lead to increased resistance; and antibiotic 

resistance genes, where entire genes can explain increased resistance. These will now each 

be discussed in more detail. 
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1.4.1 Intrinsic resistance 

There are a number of biological differences between bacteria that mean not all antibiotics 

are effective against all bacteria; this natural resistance is also described as intrinsic resistance. 

For example, Gram-negative bacteria have an OM, which Gram-positives do not possess71. 

The OM prevents access of glycopeptide antibiotics such as vancomycin to Gram-negative 

bacteria such as Proteobacteria71. Moreover, metabolic differences (e.g. aerobic versus 

anaerobic) can explain intrinsic resistance. For example, efflux pumps, that can pump out 

antibiotics from bacterial cells, are common in aerobic and facultatively anaerobic bacteria 

such as Proteobacteria29. As they require oxygen and active transport to function, they are 

uncommon in anaerobic bacteria. The decision of which antibiotic to prescribe must take 

these differences into consideration, along with a number of other factors relating to the 

disease-causing bacterium, the antibiotic and the patient. However, these intrinsic resistances 

are not involved in the development or spread of antibiotic resistance as they occur naturally; 

instead, these processes are caused by changes in the bacterial genome72. 

 

1.4.2 DNA mutations 

One key way in which antibiotic resistance can develop is by changes in the DNA sequence, or 

mutations. Mutations occur naturally: when cells replicate and divide, DNA must also be 

replicated, but the process is not error-free73. If incorrect nucleotides are incorporated into 

the new DNA strand being synthesised, this could have an impact on the function of that 

particular DNA sequence. For example, a bacterial cell with a mutation in a gene that encodes 

the target of an antibiotic may have a reduced affinity for how the antibiotic binds to said 

target72. In the presence of that antibiotic, that cell is less likely to be killed by the antibiotic 
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and can divide to produce more cells featuring the same DNA mutation. In this way, a more 

resistant strain can replace and take over the previous population of bacterial cells; thus, 

antibiotics select for bacteria that are more tolerant of or resistant to the antibiotic being 

used. The problem is magnified when we consider the short generation times of bacteria: E. 

coli can divide in approximately 20 minutes, leading to millions of cells in a matter of hours74. 

This allows antibiotic-resistant bacteria to be selected for in a short time period and also for 

mutations to accumulate and potentially become fixed in the population73. Mutations can 

impact antibiotic resistance in several ways: they can alter the target of the antibiotic so that 

the two can no longer interact; they can alter an efflux pump to have increased activity and 

reduce the concentration of antibiotic in the cell; they can increase the amount of the target 

protein in the bacterial cell so the impact of the antibiotic is reduced; or increase the 

expression and production of antibiotic-degrading enzymes. Using sufficiently high antibiotic 

dosing regimens can prevent a sub-population of cells with antibiotic resistance-conferring 

mutations from surviving75,76.  

 

1.4.3 Antibiotic resistance genes and horizontal gene transfer 

In addition to DNA mutations, bacteria can harbour antibiotic resistance genes (ARGs): genes 

that encode proteins that are capable of modifying or degrading antibiotics or their targets72. 

One of the most common examples is a beta-lactamase, an enzyme capable of degrading beta-

lactam antibiotics (the class that includes penicillins). There are both different sub-classes of 

beta-lactam antibiotics and beta-lactamase enzymes. Different beta-lactamases can have 

differing levels of activity against sub-classes of beta-lactam antibiotics25. This means that 

beta-lactam antibiotics belonging to a different sub-class (e.g. a cephalosporin) could be used 
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to treat infections that are resistant to penicillin via a penicillin-degrading beta-lactamase. 

Modifying and degrading enzymes exist for different types of antibiotics, as outlined in section 

1.3 and Table 1.2. 

The critical issue with ARGs is that they can be transferred by HGT; there are three main 

processes through which this can take place. Firstly, there is transformation, where bacteria 

that are “competent” can take in DNA from their environment that is self-replicable or is 

incorporated into their genome72. Competence can vary between species and even within a 

single bacterial cell depending on its replication cycle72. Secondly, there is transduction, which 

involves the packing of bacterial DNA into bacteriophages (viruses that infect bacteria)72. 

When the phage infects another bacterium it inserts the bacterial DNA inside it into the new 

host bacterium, where it can be incorporated into the bacterial chromosome72. Thirdly, there 

is conjugation, involving the direct cell-cell contact or bridge-like connections between 

bacteria, allowing for DNA to be transferred from the donor cell to the recipient cell72. 

The movement of ARGs is therefore a major contributing factor to the spread of antibiotic 

resistance. ARGs are not always transferred alone but can reside in mobile genetic elements 

(MGEs)77; regions of DNA that contain more than a single gene and even elements responsible 

for their own replication or movement. Such MGEs include: 

• Integrative and Conjugative Elements (ICEs): also known as conjugative transposons – 

DNA sequences that are integrated into the host bacterial genome and encode their 

own functional conjugation systems 

• Integrons: sections of DNA that easily recombine to capture new DNA 

• Plasmids: self-replicating, circular extra-chromosomal DNA transferred by conjugation 

• Phages: bacterial viruses that can integrate into the host bacterial genome 
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• Transposable elements: transposons and insertion sequences are DNA sequences that 

can move position within a genome 

The conjugative MGEs are especially relevant to the spread of antibiotic resistance as they aid 

the transfer between unrelated bacteria. A single MGE can contain multiple ARGs, meaning 

that a bacterium can acquire resistance to multiple antibiotics at once, even in the absence of 

selective pressure from those antibiotics. Furthermore, not only does antibiotic use introduce 

a selective pressure that selects for mutations conferring antibiotic resistance, but it also 

promotes mutations and HGT78. Antibiotic exposure can induce the SOS DNA damage 

response in bacteria, which arrests the cell cycle and allows any DNA damage to be repaired79. 

SOS-induced DNA damage repair is especially error prone, resulting in an increased mutation 

rate79. In addition, the SOS response is linked to increased rates of conjugative transfer79. 

Thus, antibiotic therapy both promotes and selects for a variety of antibiotic-resistance 

conferring changes in bacterial genomes.  

 

1.5 Antibiotic resistance is a major global issue 

Antibiotic resistance is an ancient strategy used by bacteria to survive competition from other 

microorganisms that produce antibiotics5. It is, therefore, a perfectly natural biological 

occurrence. However, it is problematic when it occurs in clinical isolates of bacterial infections. 

Antibiotic resistance is a global threat to human health that is increasing in both prevalence 

and severity, and is considered one of the most pressing issues of the 21st Century80. Some 

estimates place the mortality rate of drug-resistant infections (DRIs) at 10 million deaths per 

year by 205080. The highest burden of DRIs is in developing countries, where antibiotics are 

becoming increasingly more accessible and are often available without a prescription81. In 
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these countries, proper sanitation (e.g. clean water, basic toilets, good hygiene practises and 

waste disposal) and strict antibiotic guidelines are often lacking82. South-East Asia in particular 

is a global hotspot for emerging infectious diseases due to these reasons, plus small-scale 

animal production and high livestock densities83. As a result, infections are more easily 

transmitted and there is a strong selective pressure for the evolution of resistant bacteria82. 

For example, enteric pathogens isolated from Vietnamese children suffering from Acute 

Watery Diarrhoea (AWD) are often MDR84. The issue is also important in developed countries: 

in the USA, 23,000 people die of DRIs annually85.  

Of particular concern are hospital-acquired infections (HAIs), infections acquired whilst 

receiving other medical treatments that total over 1.7 million cases and almost 99,000 related 

deaths per year86. The leading causes of these are the ESKAPE pathogens: Enterococcus 

faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa and Enterobacter spp.. These contribute significantly to healthcare 

and economic burdens and are often reported as resistant to multiple drugs87. The latter four 

of these (“KAPE”) are all members of the phylum Proteobacteria; of 538 species of bacterial 

pathogens88, 43 % (236) belong to Proteobacteria – the biggest contribution of any phyla (Fig. 

1.3). Antibiotic resistance in pathogenic Proteobacteria is therefore especially relevant and 

understanding the spread of antibiotic resistance, plus discovering alternative or novel 

treatments for MDR pathogenic bacteria, is of high priority89. Indeed, the top three microbial 

infections of critical priority for new treatment R&D according to the World Health 

Organisation (WHO) involve three of the KAPE Proteobacteria pathogens: A. baumannii, P. 

aeruginosa, and Extended-Spectrum Beta-lactamase (ESBL)-producing Enterobacteriaceae 

(and specifically isolates that are resistant to carbapenems)90.  
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Carbapenems are typically reserved for infections that are resistant to multiple other 

antibiotics, including other beta-lactams. As mentioned, beta-lactam antibiotics are some of 

the most commonly used drugs in the world, and beta-lactamases are some of the most 

common and well-studied types of ARGs91. These often exist on MGEs, and have contributed 

significantly to the burden of DRIs. For example, the aminopenicillin amoxicillin is one of the 

Figure 1.3. Proportions of 538 species of bacterial pathogens belonging to particular phyla. The list of bacteria 
species was taken from Taylor 200188 and the phyla they belong to identified with the online NCBI taxon identifier 
tool (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi). The bacterial pathogens belong 
to nine different phyla, with over 40 % belonging to Proteobacteria and 20 % to Firmicutes. The numbers above 
the phyla names refer to the number of species observed in each phyla to be bacterial pathogens according to 
Taylor 200188. The four coloured phyla highlight the four key phyla of the human gut microbiota. 

 

most prescribed antibiotics globally due to its role as a first-line drug in the treatment of otitis 

media ear infections33. These infections are the most frequent reason doctors in the USA 

prescribe antibiotics33 and are often caused by bacteria such as the Gram-negative, 
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facultatively anaerobic, Proteobacteria E. coli92. Nowadays, up to 95 % of E. coli isolates in 

national collections are resistant to amoxicillin (Fig. 1.4). Although there are a wide range of 

enzymes that confer extended-spectrum beta-lactam resistance93, the highly mobilisable CTX-

M genes are the most common and important types of ESBL due to their ease of dissemination 

and prevalence in human, animal and environmental isolates94. ESBLs were originally defined 

as enzymes that could hydrolyse the beta-lactam ring in most beta-lactam sub-classes except 

carbapenems93. However, some ESBLs, such as OXA-23, OXA-40 and OXA-48, have been 

reported as conferring resistance to carbapenems95. 

 
Figure 1.4. Global aminopenicillin (including amoxicillin) resistance in Escherichia coli. Map created at 
https://resistancemap.cddep.org/ on 02/03/2018. Data curated by the Center for Disease Dynamics, Economics 
and Policy and includes aggregated resistance rates for isolates (includes intermediate resistance) from blood 
and cerebrospinal fluid (i.e., invasive) from inpatients of all ages. Because of differences in scope of collections 
and testing methods, caution should be exercised in comparing across countries. Full data available online: The 
Center for Disease Dynamics Economics & Policy. ResistanceMap: Antibiotic Resistance. 2018. 
https://resistancemap.cddep.org/AntibioticResistance.php. Data accessed: March 02, 2018. 

 

Carbapenem-resistant Enterobacteriaceae (CRE) infections have increased by 3 % in the USA 

between 2001 and 201090 and have high mortality rates of up to 48 %96 due to the limited 
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treatment options. In addition, carbapenem-resistance conferred by mobile carbapenemases 

is especially important clinically due to their specific ability to hydrolyse the beta-lactam ring 

in carbapenems and propensity to spread97. One treatment option in these cases is colistin, 

but even resistance to this drug is rapidly spreading. It was previously thought that colistin 

resistance only involved chromosomal DNA mutations98. However, the first plasmid-mediated 

colistin resistance gene mcr-1 was identified in 201599. MCR-1 is an enzyme that modifies the 

colistin target and thus reduces the drug-target interaction, first discovered in E. coli isolates 

from China99. Eight mcr variants have now been identified100, at least two of which are globally 

distributed101. Therefore, treatment options are severely limited and emerging colistin 

resistance in carbapenem-resistant infections is one of the most pressing concerns for global 

health. The emergence and global spread of mobile carbapenemases and mcr genes in clinical 

isolates of pathogenic bacteria highlights the extent and severity of horizontal antibiotic 

resistance gene transfer (HGT). 

 

1.6 Antibiotic misuse and overuse: a One Health problem 

Many antibiotic treatments are unnecessary, unregulated, or do not correctly follow 

guidelines102, leading to increased opportunities for bacteria to develop or spread antibiotic 

resistance. Underdosing is a particular problem, where bacteria are exposed to a 

concentration of antibiotics too low to kill them. This can occur if the concentration required 

to kill the infectious bacterial cells is underestimated, or if the person prescribing, selling or 

purchasing antibiotics is doing so without consulting official guidance. Antibiotics are now 

available over-the-counter, without prescription, in countries across the world, meaning 

someone can choose to self-medicate with antibiotics who may not understand or receive 

instructions on the correct dosage to take. In addition, some people stop taking antibiotics 
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once they start to feel better, instead of finishing the advised course of therapy, which may 

lead to sub-optimal doses of antibiotic that could select for bacterial cells more tolerant to or 

better able to resist the antibiotic75. This ‘underdosing’ phenomenon was even warned about 

by Fleming in his Nobel Prize acceptance speech in 1945103: 

‘It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them 

to concentrations not sufficient to kill them, and the same thing has occasionally happened in 

the body. The time may come when penicillin can be bought by anyone in the shops. Then 

there is the danger that the ignorant man may easily underdose himself and by exposing his 

microbes to non-lethal quantities of the drug make them resistant.’ – Alexander Fleming, 

1945. 

However, there is uncertainty over the guidelines for prescription doses and length of 

treatments and how important it is to adhere to these rules75. Indeed, there is evidence that 

taking antibiotics for longer is more likely to result in increased resistance than shorter 

treatment durations75,104. Clinical trials investigating end points such as fever resolution105 as 

a guide for when to stop antibiotic treatment are recommended to better understand and 

develop antibiotic prescribing guidelines that reduce the risk of bacteria developing 

resistance. 

The overuse of antibiotics is also problematic – for example in the USA, up to 50 % of antibiotic 

use is reportedly unnecessary106. Reasons for overuse include: prescribing antibiotic therapy 

despite lack of evidence of bacterial infection or suspected non-bacterial infection; lack of 

prescription required to obtain antibiotics; easy access to antibiotics (e.g. over-the-

counter)107. The contribution of these issues varies from country-to-country, leading to 

variable rates of antibiotic use between nations. Antibiotic use can be measured in defined 
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daily doses (DDD), which represents assumed average maintenance dose per day for a drug 

used for its main indication in adults108. For example, the DDD for amoxicillin administered 

orally is 1.5 g per day109. DDD can be compared across a number of factors such as inpatients 

in a hospital, or population per country, e.g. DDD per 1000 people per day. In the UK 

antibiotics can only legally be obtained with a prescription from a licensed medical 

practitioner, and there are national campaigns to reduce the unnecessary or inappropriate 

use of antibiotics. In 2015, the UK had a total 8696 DDDs per 1000 people per day across all 

antibiotics measured (Fig. 1.5) – this is equivalent to 8.696 DDDs of antibiotics per person per 

day.  

In contrast, Turkey is one of the heaviest users of antibiotics in the world110, and had 18,095 

DDDs per 1000 people per day (18.095 DDDs of antibiotics per person per day). The reasons 

for such high usage are much the same as already described: poor medical education 

regarding antibiotics, pharmaceutical industry pressure and promotions, and lack of antibiotic 

policy or guidelines111. Thankfully Turkey, and most other countries, have brought in measures 

to reduce the overuse and misuse of antibiotics112. These measures, such as national 

campaigns to increase awareness and understanding of antibiotic resistance or more strictly 

regulate antibiotic use, are known as antibiotic stewardship113. This stewardship is designed 

to limit the development and spread of antibiotic resistance113 and therefore conserve our 

antibiotics and prolong their lifespan as much as possible. Despite this, antibiotic use has 

generally increased over the last fifteen years (Fig. 1.5) and broad-spectrum penicillins such 

as amoxicillin continue to be the most used type of antibiotic. 
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Figure 1.5. Usage of antibiotics in the United Kingdom and Turkey. The UK is the location of the current study 
and Turkey has the highest use of antibiotics of any country. Antibiotic use data are shown in defined daily doses 
(DDD) per 1,000 individuals (population, pop) per day. The Center for Disease Dynamics Economics & Policy. 
ResistanceMap: Antibiotic Use 2018. https://resistancemap.cddep.org/AntibioticUse.php. Date accessed: 
01/03/2018. 

 

However, it is not just antibiotic use in people that contributes to the problem of antibiotic 

resistance. It is a One Health problem, linking human health to the health of animals and the 

environment, where ensuring optimal health for all these components requires a collaborative 

effort across scientific disciplines and geography (e.g. locally, nationally, internationally and 

globally)114. This means we need to consider health – and specifically the use of antibiotics 
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and the presence of antibiotic resistance – in animals and the environment, alongside humans. 

For example, antibiotic use in agricultural animals is widespread18,113,115. Whilst often for 

medical purposes, antibiotics are also commonly misused in agriculture as growth 

promoters116 – the exact mechanism is not well understood, but antibiotics are thought to 

reduce the amount of bacteria in the gut microbiome of livestock animals, reducing 

competition for energy derived from the animal’s feed116. The doses used for these “medically 

unnecessary” purposes is typically not controlled115 and so animals can receive sub-inhibitory 

concentrations117, creating conditions that select for antibiotic-resistant bacteria.  

Clinical cases of antibiotic-resistant infections have been acquired from agricultural animals: 

for example, drug resistant Salmonella infections from poultry date back to the 1960s118. This 

“farm-to-fork” hypothesis proposes that livestock carry antibiotic-resistant bacteria that 

spread to humans through e.g. direct contact or contaminated animal products99,119. If these 

resistant bacteria enter a human’s GI tract, they may potentially cause an infection requiring 

antibiotic treatment, where the first-line drug of choice may not work. In addition, several 

important ARGs were first identified in animal associated bacterial strains and have since 

spread to human-associated strains – including the mcr-1 colistin resistance gene in colistin-

resistant E. coli from pigs99. Therefore, antibiotic use in agricultural animals should also be 

monitored and reduced to what is only necessary for proper veterinary medicine. In some 

countries, such as Sweden, Denmark, the Netherlands and the UK, the use of antibiotics as 

growth promoters in agriculture is banned115. However, other countries (for example, China) 

continue to use antibiotics critical to human medicine – including the last-resort antibiotic 

colistin – for this purpose113. Clearly, there is still work to be done in reducing the unnecessary 

use of antibiotics in both humans and animals. 
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Since antibiotic resistance is a natural phenomenon, antibiotic-resistant bacteria are found in 

the environment. However, humans have increased the selective pressure on environmental 

bacteria to promote the development or spread of antibiotic resistance. This can be linked to 

agricultural use of antibiotics: faeces from livestock may contain antibiotic-resistant bacteria 

or antibiotic compounds themselves. Areas exposed to agricultural run-off can therefore 

contain concentrations of antibiotics that promote the development of antibiotic resistance 

in bacteria that should not have received antibiotic exposure117. Again, these may cause 

antibiotic-resistant infections – if someone ingests vegetables grown in contaminated 

soil99,119, for example. Additionally, hospital waste can contaminate local water sources with 

antibiotics or antibiotic-resistant bacteria120,121 – if someone went swimming in this water, 

they may also acquire an antibiotic-resistant infection122. Environments containing antibiotic-

resistant bacteria and ARGs – which could be harboured by pathogenic and non-pathogenic, 

environmental bacteria that do not typically cause disease – are referred to as reservoirs of 

antibiotic resistance. In reservoirs of antibiotic resistance, it is possible that ARGs can move 

between diverse and multiple bacteria via HGT. Since HGT has contributed to the global 

dissemination of antibiotic resistance, it is important to understand its mechanisms and the 

environments in which it occurs. For example – where do pathogenic bacteria acquire ARGs 

from, and what other bacteria do they donate ARGs to? 

 

1.7 The gut microbiome as a reservoir of antibiotic resistance  

The gut microbiome, the complement of commensal microorganisms and their genes that live 

in the GI tract, was first proposed as a reservoir for antibiotic resistance in 2004123. The 

intestinal microbiota refers specifically to the microorganisms, including bacteria that reside 

within the GI tract. They make up part of the total human microbiome, along with the skin 
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microbiome, vaginal microbiome, and microbiomes of other organs and tissues. Humans first 

become colonised by microbiota during birth, for example from the vagina and faeces if born 

via the birth canal. Caesarean-born babies are less exposed to these sources of bacteria and 

are more likely to first be colonised by through skin-skin contact and contact with the 

environment124. We continue to be colonised as we age, from our diets and our environments, 

and our microbiome matures from its initial form into a mature, relatively stable state124. In 

the healthy adult, there is estimated to be approximately 300 species of commensals in the 

GI tract125, of which the majority and most abundant belong to the Firmicutes and 

Bacteroidetes respectively126. Proteobacteria and Actinobacteria are two other common 

intestinal microbiota phyla, though typically less abundant and diverse in the gut microbiome 

than Bacteroidetes and Firmicutes126. These phyla vary in their respiration physiology: 

Actinobacteria are typically considered aerobic, with two genera described as anaerobic or 

facultatively anaerobic127; Bacteroidetes are typically considered anaerobic, though two 

families are thought to be strict aerobes128; Firmicutes includes taxa described as aerobic and 

others described as anaerobic; Proteobacteria are described as facultative anaerobes129. Since 

the gut contains a very low concentration of oxygen and is generally considered an anaerobic 

environment, most gut bacteria taxa are adapted to these conditions and are considered 

strictly anaerobic130. Facultatively anaerobic or microaerophilic bacteria are much less 

abundant in the gut than strict anaerobes130. 

Our intestinal microbiota are very important to our health: they help train our immune 

system131, digest food and produce energy, metabolise waste products, and protect from 

certain diseases132. One particular example is providing colonisation resistance against 

bacterial infections such as C. difficile133; the gut microbiota can prevent this pathogen from 

colonising the gut and producing toxins which causes severe diarrhoea in 
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immunocompromised patients. Unfortunately antibiotic use, to treat or prevent bacterial 

infections including C. difficile, can also negatively affect our gut microbiota. This is because 

antibiotics, especially those considered broad-spectrum and delivered orally, can have a direct 

impact on our indigenous gut microbiota. This impact may vary at different life stages: for 

example, in a new-born baby to prevent infection, antibiotics can disrupt the normal 

colonisation process134. This is associated with the later development of immunological 

conditions such as asthma134. As an adult, antibiotic therapy can alter the colonisation 

resistance of the gut microbiota and leave the person at risk of a C. difficile infection135.  

We are exposed to antibiotics throughout our lives: during birth to prevent infection; during 

childhood to treat common infections such as ear or throat infections; more rarely in 

adulthood (perhaps for a wisdom tooth infection or a more severe but relatively rare infection 

such as bacterial meningitis); to prevent infection during labour, in immunocompromised 

Intensive Care Unit patients or the elderly, amongst others. Due to the use and overuse of 

orally-administered broad-spectrum antibiotics, our gut microbiota are also often under 

selective pressure to evolve antibiotic resistance136. There is a strong positive correlation 

between antibiotic consumption and proportions of antibiotic resistant bacteria and antibiotic 

resistance gene abundance in gut microbiomes137: for example, southern Europe consumes 

more antibiotics than Denmark and accordingly human faecal samples from Denmark have 

lower carriage of antibiotic resistance genes than samples from Spain or France137. In addition, 

due to the density and diversity of commensal bacteria, the potential for exposure to food-

borne pathogens such as members of Enterobacteriaceae is high. It is possible transient 

intestinal pathogens transfer ARGs to the resident gut microbiota, rendering these ARGs 

theoretically accessible to any other pathogen that passes through123, or vice versa. As just 

one example, conjugation events of plasmids carrying antibiotic resistance genes between 
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commensal E. coli and pathogenic Salmonella can occur138. Therefore, not only can gut 

microbiota acquire ARGs from pathogens, but they also harbour their own ARGs that can be 

transferred to other bacteria123.  

Indeed, many studies have identified the presence of ARGs in commensal gut bacteria137,139-

144 including genes with over 90% similarity to known ARG sequences from pathogenic 

bacteria in human stool and saliva samples139. Even in healthy infants under one month of age 

who had not been treated with antibiotics, ARGs conferring resistance to up to 14 antibiotics 

have been identified141. Tetracycline genes, such as tetO, tetQ and tetW, are particularly 

prevalent in gut microbiome samples collected from across the world139,142; this is thought to 

be due to the historical high usage of tetracycline in agriculture (now banned in the EU and 

USA)137 and therefore associated with the farm-to-fork hypothesis. Macrolide and 

sulphonamide resistance genes (e.g. ermB and sul2 respectively) are also reportedly common 

in gut microbiomes137,141,142; macrolides have also been used as agricultural growth 

promoters137, whereas sulphonamides are very old types of antibiotics and so selective 

pressure for sulphonamide resistance in the gut has existed for a comparatively long period 

of time137. Clearly then, antibiotic resistance can occur in the gut even in the absence of 

antibiotic treatment, although antibiotic usage is associated with increase abundance or 

diversity of resistance genes and mutations. 

Moreover, gut bacteria have been found to contain novel ARGs that have not previously been 

detected in pathogenic bacteria139,144. For example, ten novel beta-lactamase genes with 

between 35 and 61 % similarity to known beta-lactamases at the time were identified from 

human stool and saliva139,144. More recently, novel beta-lactamases have been detected in 

sewage sludge containing human faecal matter145, including one found on a mobile element 

that is considered likely to be highly mobilisable between bacteria145. Thus, despite the 
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increasing evidence that the human gut microbiome harbours diverse ARGs, it is unlikely we 

have discovered all ARGs or mutations that cause antibiotic resistance. In addition, with 

studies typically focussing on Western or industrialised communities, antibiotic resistance in 

other communities is less well understood. Finally, since gut microbiome studies have often 

depended on culture-independent techniques, rare or lowly abundant members of the gut 

microbiota are less well studied than more abundant bacteria. As a result, the incidence, 

distribution and dissemination of ARGs within the gut microbiota is still not fully understood.  

 

1.8 Studying antibiotic resistance in bacteria  

Studying antibiotic resistance involves determining the sensitivity of particular bacterial taxa 

(e.g. isolate, strain, species, genus, family, order, class and phylum) to an antibiotic. This can 

involve measuring the physical response through culture and phenotyping an isolate-

antibiotic combination, or studying the presence and prevalence of antibiotic resistance-

conferring mutations or genes (genetic determinants of antibiotic resistance) in bacterial 

genomes or metagenomes. How these methods have been used to study antibiotic resistance, 

particularly in gut microbiota, will now be discussed in turn. 

 

1.8.1 Phenotyping 

Microbiology has its foundations in culturing bacteria and studying their physical 

characteristics (i.e., phenotypes). Pathogenic bacteria have come under much scrutiny 

because of their propensity to cause disease. As described earlier, the majority of clinical 

pathogens tend to be Gram-negative, facultatively anaerobic bacteria that are amenable to 
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culture, allowing their antibiotic resistance phenotypes to be measured and recorded on a 

large scale. This has resulted in huge quantities of data being collected regarding the variation 

in antibiotic resistance and susceptibility to various antibiotics in common pathogenic 

bacteria. This data can be used to can define cut off points of susceptibility or resistance, such 

as those by the European Committee on Antibiotic Susceptibility Testing (EUCAST), the Clinical 

Laboratory Standards Institute (CLSI) or the British Society of Antimicrobial Chemotherapy 

(BSAC). These consider bacteria as resistant if they require over a certain concentration of 

antibiotic to be killed, and bacteria that are killed with lower concentrations are considered 

susceptible. For example, the EUCAST guidelines (version 7.1, valid from March 2017) list the 

amoxicillin breakpoint MIC for Enterobacteriaceae as 8 mg/L: Enterobacteriaceae isolates 

with an amoxicillin MIC equal to or less than 8 mg/L are considered susceptible and those with 

MICs over 8 mg/L are considered resistant. This type of data also allows for antibiotic 

resistance over time and space and between related isolates to be monitored. This is critical 

for prescribing practices – if there is an increasing trend in resistance to an antibiotic by a 

bacterial pathogen in a particular area, then the local doctors can include this in their 

consideration when choosing which antibiotics to prescribe.  

The situation is very different for bacteria that are typically considered non-pathogenic, such 

as gut bacteria, which until recently have been comparatively under-studied. Due to their 

adaption to conditions in the gut, including the requirement for anaerobic conditions146, they 

have also been hard to culture and study physically. The spectrum of antibiotics is therefore 

often only based upon the testing of Gram-negative, facultatively anaerobic or aerobic 

pathogens plus a select few Gram-positive or anaerobic species147, such as Enterococcus 

faecalis or Bacteroides fragilis (both opportunistic pathogens)147. Therefore, antibiotic 

breakpoints of resistance/susceptibility in commensal gut bacteria are not defined. Moreover, 
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it means we do not fully understand the impact of different antibiotics across the diversity of 

our gut microbiota. However, since gut bacteria can sometimes act as opportunistic 

pathogens (like B. fragilis, a common cause of post-operative infections148) and in combination 

with their role as an ARG reservoir, it is important to understand their variation in antibiotic 

sensitivity. In particular, it would be useful to know which antibiotics might be useful for 

treating infections caused by opportunistic pathogenesis by our commensal gut bacteria, 

which antibiotics we should avoid if we wish to limit harm to out gut microbiota, and what 

types of antibiotic resistance these organisms might contribute to spreading. Fortunately, 

with recent developments in culturing of gut bacteria146,149-151, we can now culture over 90 % 

of species of gut bacteria found in an individual146. This offers an exciting opportunity to 

investigate phenotypic antibiotic resistance in gut bacteria at an unprecedented scale. 

 

1.8.2 Genome sequencing 

In addition to phenotypic antibiotic resistance, antibiotic resistance genotypes can also be 

studied. Genomic-based predictions of resistance is typically relied upon for the surveillance 

of antibiotic resistance in non-pathogenic bacteria, including intestinal microbiota152. 

Databases and tools designed for this purpose (summarised in Table 1.3) have been used to 

study antibiotic resistance genotypes of whole genomes, either from raw sequence reads or 

assembled contigs. These types of methods have become popular for monitoring or tracking 

antibiotic resistance genes in bacterial isolates over time and/or space. This is largely used for 

clinical isolates to see trends in increasing or more widespread antibiotic resistance; such as 

the Global Pneumococcus Project studying 20,000 isolates of Streptococcus pneumoniae that 

found resistance genotypes for five antibiotics of different classes were strongly associated 
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with the country of isolation153. Relatively few studies of this type have been performed in gut 

microbiota, due to a proportionate lack of multiple cultured isolates and thus whole genomes 

for a particular species: for example, a study of the genus Bifidobacterium, a dominant 

component of the early-life microbiome, assessed ten classes of antibiotic resistance 

genotypes and phenotypes of 91 isolates from 54 subspecies154. 

In addition, these described tools have been used in combination with whole genome shotgun 

metagenomics (sequencing all the DNA in a sample) to study the resistome155 (the collection 

of antibiotic resistance genes, mutations and their precursors) in diverse microbiome 

environments – such as soils, wastewater or sludge, smog and sediments156. These whole 

genome shotgun metagenomic studies have demonstrated that antibiotic resistance genes 

are widespread throughout natural and human-associated environments156. However, the 

databases are often based upon knowledge from clinically relevant pathogens – which as 

demonstrated earlier in Figure 1.2 are predominantly Gram-negative, facultatively anaerobic 

Proteobacteria. Since the majority of commensal gut bacteria are strictly anaerobic Gram-

positives126,157, they are distantly related to clinically relevant pathogens and may harbour 

currently unknown antibiotic resistances139. These have the potential to become clinically 

relevant either through direct opportunistic pathogenesis of commensal species158 or through 

the transfer of ARGs to pathogens152.  



  

Table 1.3. Summary of databases and tools for predicting antibiotic resistance genotypes from sequence data. A brief summary of each database and/or tool is provided alongside 
an overview of the advantages and disadvantages. 

Resource Type Advantages Disadvantages 

Antibiotic Resistance Database 
(ARDB)159 

• Database of 
resistance gene 
nucleotide 
sequences 

• Large number of sequences 
• Extensive metadata 

• Last updated 2009 
• Redundancy 

Antibiotic Resistance Identification 
by Assembly (ARIBA)160 

• Tool • Tool uses sequence reads 
• Detailed, customisable, easily interpretable output 
• Removes redundancy from databases used 
• Can identify resistance mutations including new variants 

• Relies on input databases 
• Not really suited for metagenomic data 

ARG-ANNOT161 • Database • Extensive list of resistance gene sequences combined 
from multiple sources 

• Can be used to identify mutations 

• Redundancy  
• Last updated 2017 
• Data no longer appears to be available on 

website 
Bacterial Antimicrobial Resistance 
Reference Gene Database 
 

• Database of 
antibiotic 
resistance genes 

• Combines data from several sources 
• Regularly updated 

• Redundancy  
• Does not include resistance mutations 

Bush-Jacoby Database162 • Database of 
beta-lactamases 

• Highly curated database of sequences and metadata 
associated with beta-lactamases 

• Website no longer appears to work 

Comprehensive Antibiotic 
Resistance Database (CARD)163,164 

• Database of 
resistance genes 

• Tools to identify 
resistance 
genes/mutations  

• Regularly updated 
• Includes both genes (including all ARDB sequences) and 

mutations 
• Online tool to apply methods and command-line tool 

available 
• Extensive metadata 
• Can account for gene or mutation conferring resistance 

to multiple antibiotics 
• Tool has built in option to look for candidate novel 

resistance genes 
 

• Redundancy  
• Ontology complex 
• Tool requires assembled genomes 

41 



 

  

Resource 
 

Type Advantages Disadvantages 

DeepARG165 • Database of 
resistance genes 

• Tool using 
machine 
learning to 
characterise and 
annotate 
resistance genes 

• Online and command-line tool 
• Can be applied to sequence reads (e.g. for metagenomic 

samples) and assembled genomes 
• Highly curated database 
• Does not just rely on best-hit 

• Database last updated 2017 
• Does not account for mutations 

Lactamase Engineering Database166 • Database of 
beta-lactamases 

• Highly curated database of sequences and metadata 
associated with beta-lactamases 

• Only two families of beta-lactamases 
included 

• Unsure when last updated, website does not 
appear up to date or completely functional 

MegaRes167 • Database of 
resistance gene 
nucleotide 
sequences 

• Tool to identify 
resistance genes 

• Simple ontology and metadata 
• Good for population level analysis (e.g. count-based 

analyses in metagenomic samples) 
• Easy to interpret results 
• Tool uses sequence reads 
• Non-redundant 

• Does not include resistance mutations 
• Cannot account for gene or mutation 

conferring resistance to multiple antibiotics 
• Last updated 2016 

PointFinder168 • Database of 
chromosomal 
resistance 
mutations 

• Tool to identify 
mutations 

• Good for chromosomal point mutations 
• Online or command-line tool, can be run together with 

ResFinder 
• Regularly updated 

• Focuses on small range of species and genes 
• Difficult to analyse many samples at once 

ResFams169 • Database of 
profile HMMs of 
resistance genes 

• Combines resistance genes from multiple sources 
• Includes HMMs based on resistance genes identified in 

functional metagenomic screens 
• Can be used to identify candidate novel resistance genes 

• Last updated 2015 
• Mainly intended for use for functional 

metagenomic screens, rather than 
surveillance of resistance genes 
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Resource 
 

Type Advantages Disadvantages 

ResFinder170 • Curated 
database of 
resistance genes 

• Tool to identify 
resistance genes 

• Regularly updated 
• Online tool, can be run together with Pointfinder 
• Add-on function for functional metagenomic screens 

• Difficult to analyse many samples at once 

Resqu 
https://1928diagnostics.com/resdb/ 
 

• Database of 
resistance genes 

• Highly curated database 
• Non-redundant 
• DNA and protein sequences 

• Does not account for mutations 
• Focuses only on genes that can be 

transferred horizontally 
• Database does not appear to be publicly 

available 
• Last updated 2013 

SRST2_ARG-ANNOT171 • Curated 
database of 
resistance genes 

• Tool to identify 
resistance genes 
or mutations in 
genomes 

• Uses sequence reads 
• Removes redundancy from ARGANNOT 
• Can identify mutations 

• Relies on ARGANNOT database 
• Last updated 2017 
• Can only identify pre-defined mutations or 

variants 

Structured ARG database172 • Database of 
resistance genes 

• Tool to identify 
resistance genes 

• Nucleotide sequences and profile HMMs 
• Online analysis pipeline and command-line tools 
• Good for metagenomic samples 
• Claims to frequently update 

• Redundancy 
• Does not account for mutations 
• Last updated 2018 
• Not designed for whole genomes 

43 



  

Functional metagenomic studies, such as Sommer et al. 2009139, have shown that ARGs unlike 

those seen in pathogens exist in gut bacteria. This technology clones DNA fragments that have 

been extracted directly from an environmental sample, such as a stool sample, into another 

bacterium, often E. coli, and screened for antibiotic resistance phenotypes by plating on agar 

containing antibiotics. This bypasses the issue of culturing gut microbiota, making functional 

metagenomics a very powerful tool for studying a community in a relatively unbiased way. 

Indeed, this method has been important in understanding antibiotic resistance genes in a 

range of microbiomes and environments, including but not limited to: chicken guts173; 

uncontacted Amerindians174; faeces from domesticated animals as well as soil, water and 

sanitation facilities of rural villages and “shanty” towns in Peru143; seawater175; and Alaskan 

soil176. From functional metagenomic studies, we have learned that antibiotic resistance genes 

not currently found in pathogenic bacteria are both diverse, abundant and widely distributed. 

In addition, bacteria do not have to have been exposed to clinical antibiotics to harbour 

antibiotic resistance genes, even ones that have been found in pathogenic bacteria. However, 

these studies tend to rely on cloning of genes into E. coli143 and may miss genetic determinants 

that cannot be expressed in this organism; plus, there is extensive bacterial diversity across 

the planet that has not been studied in depth177. This leaves the possibility that there are still 

more unknown antibiotic resistance determinants waiting to be discovered – not just in the 

gut, but in the Earth’s total microbiome. 

Genomic methods can be combined for more in-depth analyses of antibiotic resistomes. An 

important study of reservoirs of antibiotic resistance used 16S rRNA gene sequencing 

(amplification and sequencing of variable regions in the 16S rRNA gene, used as markers for 

bacterial species or genera), functional metagenomics and whole genome shotgun 

metagenomic sequencing to explore the similarity of resistomes between different 
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environments143. This included the human gut, domesticated animal gut microbiomes, soil, 

water, and sanitation facilities143. This multi-genomics approach allows antibiotic resistance 

genes to be quantified in terms of their relative abundance and associated with particular 

taxa, rather than just observing their presence. The resistomes of the different samples 

correlated with the phylogenetic diversity of each sample across an ecological gradient but 

certain antibiotic resistance genes were able to move between more diverse habitats and 

were linked to mobile genetic elements143. For example, the sulphonamide resistance gene 

sul2 was found in 50 % of samples from six of seven environments studied and appeared to 

be localised in integrons – indicating it has the potential to transfer between bacteria143. 

Combining next-generation sequencing methods is therefore a powerful tool for 

understanding resistomes.  

In addition to using genomics to discover or monitor ARGs, it has been used to assess the 

impact of antibiotics on communities of bacteria. For example, 16S rRNA gene sequencing of 

gut bacteria following antibiotic treatment in humans has shown that diverse gut taxa are 

impacted by antibiotic therapy; however, the extent varies between individuals178. Moreover, 

16S rRNA gene-based studies have revealed the long-lasting impact of antibiotics on the gut 

microbiota, where often the gut microbiome does not fully return to its pre-antibiotic 

treatment state179. However, 16S rRNA gene sequencing only allows for species- or genus-

level resolution, meaning detailed analysis of species or strains is not possible. Whole genome 

shotgun metagenomics adds more resolution, and has been used to identify that the initial 

state of the gut microbiome determines the impact antibiotics will have180. However, both 16S 

rRNA gene sequencing and whole genome shotgun metagenomics depend on reference 16S 

rRNA gene or genome sequences181. Therefore, the effect of antibiotics on bacteria for which 

reference genomes are not available cannot be readily detected. As previously discussed, 
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there are uncharacterised organisms without reference sequences, meaning there is still 

much to be learned about the development of antibiotic resistance following antibiotic 

therapy in humans. 

1.9 Thesis aims 

Clearly antibiotic resistance is a global issue and whilst the gut has been described as an 

antibiotic resistance reservoir, the full capacity for antibiotic resistance and which antibiotics 

are effective against gut bacteria are not well defined. This thesis therefore sets out to 

characterise the antibiotic resistance potential of human gut bacteria. To do this, I will exploit 

recent developments in culturing of gut bacteria and characterise the genotypic and 

phenotypic resistance profiles of intestinal microbiota. Moreover, I will seek direct 

experimental evidence of the selection of antibiotic resistance within communities of 

commensal human microbiota to help understand the dynamics of antibiotic resistance in the 

gut microbiota. The thesis can be broken down into three key parts: 

• Characterisation of genomic antibiotic resistance in commensal gut bacteria: 

Determine a comprehensive overview of antibiotic resistance genes and mutations 

in commensal human gut bacteria representing the phylogenetic diversity of the 

human gut microbiome. 

• Determination of phenotypic antibiotic resistance in commensal gut bacteria and 

the accuracy of genotypes: Measure antibiotic sensitivity phenotypes in 

commensal human gut bacteria representing the phylogenetic diversity of the 

human gut microbiome and compare this to antibiotic genotypes. 

• Modelling the development of antibiotic resistance in vivo: Assess the impact of 

amoxicillin therapy on amoxicillin resistance in mice with human-derived gut 

microbiota at both community- and strain-level. 
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Chapter 2: Materials and Methods 

All analysis was performed by me, unless otherwise stated. 

2.1 Anaerobic gut bacteria culture collection  

The human commensal gut microbiota used in this thesis belong to the Human 

Gastrointestinal Bacteria Culture Collection (HBC)151 that I helped to develop (published in 

2019). The HBC contains 737 gut bacteria isolated from 20 humans, 8 from the UK and 12 from 

North America151. Any 16S rRNA gene sequences of less than 98.7 % similarity to known 

sequences are considered to belong to novel species, < 94.5 % to novel genera, < 86.5 % to 

novel families, < 82.0 % novel orders, < 78.5 % novel classes and 75.0 % novel phyla182. 

Genomic DNA was extracted from the 737 HBC isolates using a phenol:chloroform 

procedure146,151 by Dr Hilary Browne. DNA was sequenced by the Sanger Sequencing Pipelines 

(Wellcome Sanger Institute, WSI) team using the Illumina HiSeq platform, generating paired-

end reads of 125 or 150 bp; these reads were assembled using the pipeline described by Page 

et al. 2016146,151,183. The amino acid sequences of forty core genes were extracted from each 

genome using FetchMG184, concatenated and aligned using MAFFT v7.0185,186.  A phylogeny 

was inferred using FastTree v2.1.3 SSE3187,188 and the JTT+CAT model of amino acid evolution.  

 

2.2 Genome-based predictions of antibiotic resistance in the HBC 

Raw paired-end sequencing reads for each genome were used as input for the Antibiotic 

Resistance Identification By Assembly (ARIBA) algorithm160, which performs local assemblies 

and maps them against a database of antibiotic resistance genes and mutations (genetic 
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resistance determinants). In this study, the Comprehensive Antibiotic Resistance 

Database163,164 (CARD; version 2.0.2 June 2018) was used with default ARIBA parameters: 90% 

nucleotide identity for clustering sequences (ARIBA prepareref task), plus minimum 90 % 

alignment identity, minimum 20 % alignment length, minimum 50 reads assembly coverage 

and 95 % of gene cluster sequence must be assembled to call a gene cluster present (ARIBA 

run task). The observed determinants were grouped by the class of antibiotics they are 

reported to confer resistance to, using the CARD ontology. If a determinant was described as 

conferring resistance to more than one antibiotic, it was classified as ‘nonspecific’ antibiotic 

resistance. The exception is for resistances to Macrolide, Lincosamide, Pleuromutilin and 

Streptogramin (MLPS) antibiotics, as resistance determinants against these antibiotics can 

have cross-resistance to each other and are grouped together in a single, separate category. 

The grouping of these determinants was visualised using Krona189. The proportion of identified 

genetic antibiotic resistance determinants that belonged to a particular antibiotic class were 

calculated and visualized using Krona189. The proportion of isolates with at least one resistance 

determinant was calculated. The interquartile range (determined using the Tukey method190) 

and mean number of predicted antibiotic resistance determinants in an individual isolate was 

plotted according to the bacterial phyla of each isolate. This was repeated for the number of 

antibiotic classes isolates were predicted to be resistant to. 

In addition, the presence of predicted resistance to a particular antibiotic class was visualised 

against a core genome phylogeny (generated as described in section 2.1) using the online 

interactive Tree of Life (iTOL) tool191. To identify which antibiotic resistances were enriched in 

certain phyla, the proportion of isolates with at least one resistance determinant in each phyla 

was compared to the proportion of the overall HBC with Fisher exact tests192 and corrected 

using two-stage linear step-up procedures of Benjamini, Krieger and Yekutieli193. These 
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analyses were repeated in bacterial families containing more than five HBC isolates and in 

novel versus characterised isolates, plus the proportion of predicted resistances were 

determined for each antibiotic in novel versus characterised genomes.  

ARIBA was also implemented with the MegaRes167, ResFinder170 and SRST2-ARGANNOT161 

databases, plus the CARD-RGI164 tool was applied, with default parameters to predict 

antibiotic resistance in the HBC genomes.  

 

2.3 Genome-based predictions of antibiotic resistance in pathogenic genomes 

PATRIC194 was searched for genomes for the ESKAPE pathogens (E. faecium, S. aureus, K. 

pneumoniae, A. baumannii, P. aeruginosa and Enterobacter species). E. coli and C. difficile 

were also included as both are important causes of gut-related bacterial infections, and there 

are commensal isolates of these species in the HBC. I filtered for bacteria isolated from 

humans in clinical settings to ensure they were definitely pathogenic isolates. In addition, I 

chose bacteria isolated from 2010 or after, and from Canada, the US or the UK, to be 

consistent with the HBC isolates. From this list, I selected isolates that were considered to 

have ‘good’ quality genomes and with a high level of completeness (CheckM195 completeness 

score equal to or greater than 98 %). PATRIC considers genomes good or poor quality based 

on summary annotation statistics and from comparisons with other PATRIC genomes after 

they have been through the PATRIC comprehensive genome analysis service194. There were 

no E. faecium isolates with post-2010 dates in the official isolation date meta-data column, 

but looking at other meta-data columns I identified 37 isolates from 2012 or later, two from 

2001, one from 2000 and one from 1997; these were all included in the subsequent analyses. 

From the resultant list of genomes, I downloaded paired-end short read sequences and 
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predicted the presence of genetic antibiotic resistance determinants in CARD using ARIBA as 

in section 2.2. I then repeated the analyses of the proportion of isolates with predicted 

resistance, the interquartile range and mean number of resistance determinants per isolate, 

and the proportion of predicted resistances per antibiotic as in section 2.3 for each of the eight 

pathogenic species and between the pathogenic isolates and HBC isolates. 

 

2.4 Phenotypic antibiotic sensitivity in commensal gut bacteria 

HBC isolates were streaked out from glycerol stocks onto modified YCFA146,151,196 agar (Table 

2.1) plates in anaerobic conditions in a Whitley DG250 workstation at 37°C and left for 48 

hours. Single colonies were sub-cultured and left to grow for another 48 hours; this was 

repeated once more, then a single colony for each isolate was used to inoculate 1ml of YCFA 

broth in a 96 well plate. Three separate inoculations were performed per isolate to allow three 

biological replicates to be tested. After 48 hours in broth, a cotton swab was dipped in each 

culture and streaked on a YCFA agar plate three times, turning 60° each time. An Oxoid 

antibiotic disk dispenser was used to place single-concentration antibiotic disks onto the 

inoculated agar plates. Mr Mark Stares assisted with these phenotypic tests.  
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Table 2.1 Modified YCFA media. Volumes are to make 500 ml of YCFA broth or agar. The solutions and mixes are 
prepared separately and added in the required volume when the media is being prepared. d.H2O = distilled water. 

 

Ingredient 
(part number) 

Amount  Components of solutions and mixes 
(part number) 

 Amount 

Before autoclaving   Resazurin Solution  
Agar (optional) 8 g  Resazurin (10269990) 0.1 g 
Tryptone (84610.0500) 5.0 g  d.H2O 100 ml 
Yeast extract (LP021B) 1.25 g    
NaHCO3 (10583381) 2.0 g  Mineral Solution I  
(D)+Glucose (G8270) 1.0 g  K2HPO4 (10677623) 3 g 
(D)+Maltose (CHE1900) 1.0 g  d.H2O 1 L 
(D)+Cellobiose (10207603) 1.0 g    
L-cysteine (30089) 0.5 g  Mineral Solution II  
Mineral Solution I 75 ml  KH2PO4 (P9791) 3 g 
Mineral Solution II 75 ml  (NH4)2SO4 (A4418) 6 g 
Resazurin Solution 0.5 ml  NaCl (10616082) 6 g 
Haemin Solution  5 ml  MgSO4 (CHE2458) 0.6 g 
Vitamin Solution I 0.5 ml  CaCl2 (dry) (10704492) 0.6 g 
d.H2O Up to 500 ml  d.H2O 1 L 
VFA mix 3.1 ml    
NaOH (CHSO0041) pH to 7.45  VFA mix  
   Acetic acid (10304980) 17 ml 
After autoclaving   Propionic acid (15658000) 6 ml 
Vitamin Solution II 0.5 ml  n-Valeric acid (10686584) 1 ml 
   Iso-valeric acid (129542) 1 ml 
   Isobutyric acid (11366766) 1 ml 
     
   Haemin Solution  
   KOH (8143530100) 0.28 g 
   Ethanol 95 % 25 ml 
   Haemin (10506591) 0.1 g 
   d.H2O Up to 100 ml 
     
   Vitamin Solution I  
   Biotin (B4501) 5 mg 
   Cobalamin (Vitamin B12) (47869) 5 mg 
   PABA (4-Aminobenzoic Acid) (A9878) 15 mg 

   Folic acid (F7876) 25 mg 
   Pyridoxine (P5669) 75 mg 
   d.H2O Up to 500ml 
     
   Vitamin Solution II  
   Thiamine hydrochloride (T4625) 25 mg 
   Riboflavin (R4500) 25 mg 
   d.H2O Up to 500 ml 
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Disk concentrations were selected based on advice for Enterococcus from CLSI, EUCAST and 

BSAC as a Gram-positive, facultative anaerobic Firmicute (Table 2.1). Though Bacteroidetes 

are Gram-negative, the same concentration disks were used for consistency. Zone of inhibition 

diameters were measured using a digital caliper after 48 hours and averaged across the 

biological replicates. The identity of each culture was confirmed using full-length PCR of the 

16S rRNA gene (7F forward primer (5ʹ-AGAGTTTGATYMTGGCTCAG-3ʹ) and 1510R reverse 

primer (5ʹ-ACGGYTACCTTGTTACGACTT-3ʹ)) with the following program: 95 °C 15 mins; 35 

cycles of 95 °C 30 s, 58 °C 30 s, 72 °C 2 mins; 72 °C 8 mins. DNA purification and capillary 

sequencing was performed by Eurofins Genomics (Germany). The forward and reverse 

sequences were trimmed and those shorter than 400bp discarded. The remaining forward and 

reverse reads were merged using Merger (Emboss: 6.3.1197) and BLASTn was used to identify 

a closest taxonomic match against the 16S rRNA gene sequences of the HBC151. 

Table 2.2. Single-concentration antibiotic disks used for phenotypic susceptibility testing. Antibiotics were 
chosen based on clinical relevance and presence of genetic determinants of antibiotic resistance in the HBC 
genomes. 

Antibiotic 
(part number) 

Antibiotic class Oxoid Disk 
Concentration (μg) 

Based on guidelines 

Amoxicillin 
(11952962) 

Beta-lactams: penicillin 10 Enterococcus; CLSI 2015 

Ceftriaxone 
(11963812) 

Beta-lactams: 
cephalosporin 

10 Enterococcus; EUCAST 2018 

Ciprofloxacin 
(11499838) 

Fluoroquinolones 10 Enterococcus; CLSI 2015 

Erythromycin 
(10280243) 

Macrolides 15 Enterococcus; CLSI 2015 

Gentamicin 
(10299772) 

Aminoglycosides 30 Enterococcus; EUCAST 2018 

Metronidazole 
(11913972) 

Nitroimidazoles 5 Miscellaneous; BSAC 2015 

Tetracycline 
(11963872) 

Tetracyclines 30 Enterococcus; CLSI 2015 

Trimethoprim 
(10597083) 

Dihydrofolate reductase 
inhibitor 

5 Enterococcus; EUCAST 2018 

Vancomycin 
(11974012) 

Glycopeptide 30 Enterococcus; CLSI 2015 
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Density curves of average zone of inhibition diameters for each phylum and antibiotic was 

plotted using R198 and ggplot2199. In addition, the interquartile range of average zone sizes in 

isolates with and without genetic determinants of resistance were determined using the 

Tukey method190. 

 

2.5   Defining a scale for categorising resistant/susceptible phenotypes 

Guidelines for defining resistance and susceptibility exist for a range of pathogens, though are 

less well-characterised in anaerobes and Gram-positive bacteria. Moreover, they are used for 

categorising closely related taxa, usually at the species level. In this thesis I wanted to compare 

at higher taxonomic levels, therefore I used the phenotypic data that I generated to create a 

scale, considering isolates ‘resistant’ if the zone size was in the lower quartile or smallest 25 

% of all zone sizes for a particular antibiotic. Similarly, isolates were considered ‘susceptible’ 

if the zone size was in the upper quartile or largest 25 % of all zone sizes for a particular 

antibiotic. Isolates with zone sizes in the middle 50 % require further testing to determine 

whether or not they should be considered susceptible or resistant (see Fig. 4.4, Table 4.1 and 

Table 4.3 in Chapter 4). In combination with the genotypic data, there are four key 

genotype/phenotype combinations of confirmed or unpredicted susceptibility or resistance. 

These genotype/phenotype combinations were then converted to a four-number system and 

visualised as a heatmap in iTOL191 against the phylogeny of the 73 isolates (generated as 

described in section 2.1). In addition, the proportions of these categories were determined 

for both the antibiotics tested and in each phylum. The enrichment of each combination in 

antibiotics or phyla was determined using Fisher exact tests192 and corrected using the 

Benjamini, Hochberg, and Yekutieli method193 (q significant < 0.05). The proportion and 
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enrichment of Unpredicted Resistances per phylum was determined for each antibiotic in the 

same way. Proportions of genotype/phenotype combinations were compared between 

databases or prediction methods as described in section 2.2. to the proportions first 

calculated using ARIBA160 with CARD163,164 with two-proportion z tests plus Yates correction (q 

value significant < 0.05). 

 

2.6 Further investigations of Unpredicted Resistance 

All phenotyped HBC isolates were ranked from most ceftriaxone-resistant to least ceftriaxone-

resistant (i.e., from smallest to largest mean ceftriaxone zone of inhibition). Each average 

ceftriaxone zone of inhibition size was then plotted next to each isolate in this ranked order. 

Isolates in the top five most ceftriaxone-resistant isolates without beta-lactam resistance 

genes or mutations and with unexpectedly large average ceftriaxone zones of diameter 

(determined as described in section 2.4 using the Tukey method190) were investigated further 

(Bacteroides faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18). The HBC core gene 

phylogeny visualised in iTOL191 from section 2.1 was used to identify the most closely related 

isolates in the HBC to Bacteroides faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18. 

Average Nucleotide Identity (ANI) between the isolates of interest and close relatives was 

performed using FastANI200 with default parameters. The Minimum Inhibitory Concentration 

(MIC) for ceftriaxone was determined using Biomerieux Etest strips. Isolates were purified, 

grown in YCFA broth culture and used to inoculate YCFA agar plates as described for disk 

testing in section 2.4. Etest strips (ceftriaxone gradient 0.016-256 μg/mL; Biomerieux part 

number 506618) were placed on the plates and MIC measured after 48 hours growth in 

anaerobic conditions as for disk tests described in section 2.4. The most closely related isolate 
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to Lachnospiraceae nov. 20287_6#18 that was susceptible to ceftriaxone was only 81 % similar 

by ANI and so these isolates were excluded from subsequent analyses. 

Roary201 was used to identify genes unique to the resistant B. faecis isolates (MIC > 256 μg/mL) 

and genes unique to the susceptible B. faecis isolates (MIC < 48 μg/mL) as well as genes shared 

by both sets. The NCBI Protein database was searched for “beta-lactamase” and the amino 

acid sequence of all results was downloaded. ShortBRED194 was used to group these 

sequences into unique amino acid markers. ShortBRED was also used to search the genes 

unique to the resistant isolates for the amino acid markers of beta-lactamase related 

sequences. A range of similarity cut offs from 90 % to 25 % were tested. The highest cut off, 

90 %, represents a high level of similarity that can be used to infer function. A single beta-

lactamase was identified in the B. faecis isolate (“Group 2384”) with 90 % identity. The 

presence of this gene in the 737 HBC isolates was predicted using ARIBA160 as in section 2.2 

and was found in 16 additional HBC isolates. Five of those isolates also contained other beta-

lactam resistance genes or mutations and so were excluded from downstream analyses. The 

MIC of ceftriaxone for the remaining 11 additional Group 2384-positive isolates and their most 

closely related Group 2384-negative isolates in the HBC was determined using Etests as 

before. ANI analysis was also performed for these isolates as above. The nucleotide sequence 

for the Group 2384 gene was extracted from each phenotyped Group 2384-positive isolate, 

aligned using Muscle202,203 (visualised in SeaView204) and a phylogenetic tree inferred using 

the General Time Reversible model with FastTree187,188. 

The Group 2384 candidate beta-lactamase was synthesised in a plasmid vector containing a 

chloramphenicol resistance gene using GeneArt (ThermoFisherScientific, plasmid 

pACYC184205, construct ID 18ADVNOP). The construct was transformed into 

electrocompetent ElectroMAX DH10B T1 Phage-Resistant Competent E. coli Cells 
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(ThermoFisherScientific, part number 12033015, via electroporation according to the 

manufacturer’s instructions and with assistance from Mr Matthew Dorman). The ceftriaxone 

MIC of the recipient E. coli strain was determined using Etests as earlier described. The 

transformed cells were grown on LB agar plates containing chloramphenicol (12.5 μg/mL ) and 

ceftriaxone at a concentration of 256 μg/mL (representing the observed B. faecis phenotype) 

or 4 μg/mL (slightly above the E. coli’s initial MIC).  

Bacteroides faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18 isolates with 

unpredicted ceftriaxone resistance were purified and Mr Mark Stares isolated genomic DNA 

using phenol:chloroform extractions. The genomic DNA was separated by size using a 1 % low-

melting point agarose gel and fragments of approximately 40kb extracted using the Copy 

Control Fosmid Cloning Kit (Lucigen part number CCFOS059) according to manufacturer’s 

instructions. These fragments were cloned into ceftriaxone susceptible E. coli using the Copy 

Control Fosmid Cloning Kit (Lucigen part number CCFOS059) according to manufacturer’s 

instructions. The vector contains a chloramphenicol resistance gene; clones were selected for 

on LB agar containing  chloramphenicol (12.5 μg/mL). The ceftriaxone MIC of the recipient E. 

coli strain was determined using Etests as earlier described. The transformed E. coli were 

screened for gain of ceftriaxone resistance by growth on LB agar containing ceftriaxone at a 

concentration of 256 μg/mL (representing the observed B. faecis phenotype) and 4 μg/mL 

(slightly above the E. coli’s initial MIC).  
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2.7 Humanised microbiota mouse experiments 

A mouse line with microbiota derived from a healthy human had been established previously 

by Dr Simon Clare, Dr Sam Forster, Dr B. Anne Neville and colleagues in the Wellcome Sanger 

Institute Research Support Facility, by oral gavage of homogenised stool into germ-free (GF) 

mice (“Donor 2 humanised microbiota mice”). A second mouse line with microbiota derived 

from a different healthy human had also previously been established using the same 

techniques (“Donor 7 humanised microbiota mice”) by the same persons. Full details are 

described in section 5.2.1. 

Mice were given a theoretically therapeutic dose (approximately 45 mg/kg/day), based on the 

concentration required to adequately exceed the MIC of sensitive organisms in otitis media 

infections206 and assuming that the average mouse weighs 30 g and consumes approximately 

5 ml of water per day (according to John Hopkins University, 

http://web.jhu.edu/animalcare/procedures/mouse.html, accessed June 2015 and June 2019, 

and as advised by Dr Simon Clare). Amoxicillin sodium (TOKU-E part number A059) was 

dissolved in water, sterilized using a 0.2 μm filter and given to the mice via drinking water for 

seven days by Dr Simon Clare and his team. Faecal pellets were collected from each mouse at 

various time points before and after treatment by Dr Simon Clare and his team. At each time 

point, I weighed each individual faecal pellet and homogenised them in 100 mg/ml in sterile 

PBS; faecal homogenates were pooled per cage. An aliquot of the undiluted pooled 

homogenate was treated with ethanol for 30 minutes (1:3 volumes of 70 % v/v ethanol) to 

select for ethanol-resistant and spore-forming organisms146, and washed by centrifugation for 

13200 g for five minutes at room temperature, before removal of the supernatant and 

resuspension in four volumes PBS. The wash was repeated twice more and after the third 

wash and removal of supernatant, the sample was resuspended in the original volume of PBS. 
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Untreated and ethanol-treated pooled homogenates were serially diluted 1 in 10 from 10-1 to 

10-7.  Untreated dilutions were plated on modified complex, broad-range YCFA188 (Table 2.1), 

with or without amoxicillin added, under aerobic conditions (37 °C in a New Brunswick 

Scientific Innova 42 incubator) and anaerobic conditions (37 °C in a Whitley DG250 

workstation. Amoxicillin was included in the agar at a concentration representative of clinical 

resistance according to EUCAST and CLSI guidelines for anaerobic bacteria (8 mg/L). Ethanol-

treated dilutions were plated as above except that the agar plates also contained the bile salt 

sodium taurocholate (STC; Fisher Scientific UK Ltd part number 10629452) to promote 

germination of spores146. 

 

2.8 Colony count data 

At each time point, the number of colonies growing in each condition from each cage was 

counted and converted to colony forming units (CFU) per gram of stool. CFU/g values were 

averaged across both experiments for each culture condition: aerobic plates without 

amoxicillin, anaerobic vegetative plates without amoxicillin, anaerobic spore-forming plates 

without amoxicillin, aerobic plates with amoxicillin, anaerobic vegetative plates with 

amoxicillin and anaerobic spore-forming plates with amoxicillin. Standard deviation was 

determined for each of these six conditions. The colony count data was then tested for normal 

or log-normal distribution using the Anderson-Darling, D’Agostino and Pearson, Shapiro-Wilk, 

and Kolmogorov-Smirnov tests. As many of the conditions did not pass the normality tests, a 

non-normal distribution was assumed for performing Kruskal-Wallis (One-way ANOVA of non-

parametric data) tests to determine statistically significant changes in bacterial load over the 

time course of the mouse experiments (comparisons were performed between time points). 
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The two-stage step-up method of Benjamini, Krieger and Yekutieli193 was used to correct for 

multiple comparisons. 

 

2.9 Isolation of individual isolates and analysis 

Non-confluent colonies were picked from culture plates, after 24-hour and 48-hours of growth 

in aerobic and anaerobic conditions respectively, directly into 300 μl YCFA broth. This was 

done with the assistance of Dr Hilary Browne, Dr Sam Forster, Dr Elisa Viciani and Dr Ana Zhu 

alongside other members of the Host-Microbiota Interactions Laboratory. The aerobic 

colonies were left to grow in broth for another 24 hours; anaerobic colonies were left for 48 

hours. Half a millilitre of each broth culture was mixed with 0.5ml of 50 % glycerol to create 

glycerol stocks and stored at -80 °C. The full-length 16S rRNA gene was amplified from each 

isolate using PCR and sequenced by Eurofins as described in section 2.4. Reads were aligned 

using ssu-align v0.1.1207 and the STK alignment converted to MSA. Consensus OTU sequences 

were aligned with Mafft185,186 and a phylogeny inferred using FastTree187,188 for visualisation 

with ITOL191. The tree leaves were annotated based on the BLASTn results and Operational 

Taxonomic Units (OTUs) were assigned with Mothur v1.35.1208 with a defined cutoff of 0.01 

(i.e., 99 % similarity).  The number of isolates in each OTU was visualised using Krona189. 

Isolates of interest were purified and genomic DNA extracted using phenol:chloroform by Mr 

Mark Stares. Sequencing was performed by the Sanger Sequencing Pipelines (WSI) team using 

Illumina X10 technology, generating 150 bp paired-end reads. 

Paired-end sequence reads were filtered and assembled using the pipeline as earlier 

mentioned183. To perform phylogenetic analyses, the amino acid sequences of 40 core genes 

were extracted, aligned and visualised as for the HBC184-188,191 in section 2.1. Each genome was 
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searched for the presence of known antibiotic resistance determinants described in 

CARD163,164 using ARIBA160 with default parameters, as for the HBC in section 2.2. The ARIBA 

results were compared between genomes from isolates cultured on agar with amoxicillin after 

the mice received amoxicillin and genomes of the same strain (>99 % 16S identity) from agar 

without amoxicillin before treatment. The sequence of the cfxA beta-lactamase was identified 

in isolates of one OTU, Odoribacter splanchnicus 99.556 %, after amoxicillin therapy but was 

not present in isolates of the same OTU from before therapy. The nucleotide sequences of 

cfxA were extracted from all the whole genomes generated in this study (where present) and 

aligned using Muscle202,203. The amoxicillin MIC was determined for four isolates of 

Odoribacter splanchnicus 99.556 %, as described in section 2.6 (amoxicillin gradient 0.016-256 

μg/mL; Biomerieux part number 500918). 

For each candidate OTU, Roary201 was used to identify genes found in the isolates from culture 

plates containing amoxicillin after mice were treated with amoxicillin but absent from isolates 

in the same candidate OTU from culture plates without amoxicillin before the mice received 

treatment. Genes meeting this criteria were searched for sequences with 90 % similarity to 

the ShortBRED209 beta-lactamase markers developed in section 2.6. In addition, paired-end 

sequencing reads from bacteria isolated after amoxicillin treatment were mapped against 

assembled contigs from an isolate of the same OTU cultured before amoxicillin treatment 

using Smalt (https://www.sanger.ac.uk/science/tools/smalt-0). Variant bcf files were 

produced and used to identify SNPs in coding sequences (open reading frames annotated as 

such if over 100 bases) in Artemis210. Coding sequences containing SNPs were compared to 

known protein sequences using BLASTx. 
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2.10 Metascrape and metagenomic analysis 

The total growth on a culture plate was mixed with 1 ml sterile PBS and scraped off 

(“metascrape”) for total DNA extraction using the FastDNA Spin Kit for Soil (MP Biomedicals 

part number 1149200) according to manufacturer’s instructions. Metagenomic sequencing 

was performed by the Sanger Sequencing Pipelines (WSI) team using Illumina HiSeq 4000 

technology, generating paired-end reads of 150 bp. Metagenomic samples were multiplexed 

at 32 samples per lane. Metagenomic data was analysed using Kraken211 with default 

parameters to compare the sequence reads to databases of reference genomes and assign 

taxonomy. Raw read counts per species were used to determine alpha and beta diversity using 

R scripts developed by Dr Kevin Vervier at each experimental time point for three culture 

conditions (aerobic, anaerobic vegetative and anaerobic spore-forming), on agar plates with 

or without 8 mg/L amoxicillin added. Statistical significance was determined by Mann-

Whitney U tests212, adjusted for multiple-testing with the Benjamini, Hochberg, and Yekutieli 

method193; q value significant < 0.05. Read counts were normalised per sample and the 

normalised values were averaged across samples for each of the three conditions (aerobic, 

anaerobic vegetative and anaerobic spore-forming) from plates containing amoxicillin. The 

species were then ranked by their mean relative abundance in each culture condition and the 

mean relative abundance of the top 10 most abundant species plotted as stacked bar charts, 

with the relative abundances of the remaining species grouped as “Other”. Relative 

abundance of species was compared between consecutive time points and the start and end 

of the experiment using two-proportion z tests with Yates correction (q value significant when 

q < 0.05). Finally, the whole genome sequences generated in this study were searched for in 

the metascrape data to confirm the presence or absence of candidate OTUs of increased 

amoxicillin resistance on plates containing amoxicillin using Mash213 with default parameters. 
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An identity cut off of 0.99 (99 %) was used to conclude that a particular strain was present in 

a metascrape sample. 
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Chapter 3: Characterisation of genomic antibiotic resistance 

in commensal gut bacteria 
 
 
3.1 Introduction 

The gut microbiome is considered a reservoir of antibiotic resistance214 through the sharing of 

antibiotic resistance genes (ARGs) amongst autochthonous, commensal gut bacteria. In 

addition, these ARGs may be shared with allochthonous, transient bacteria passing through 

the gastrointestinal tract, which can include bacterial pathogens123. This is evidenced by 

studies that have identified both known, clinically relevant antibiotic resistance genes in 

samples collected from the gut microbiome as well as ‘novel’ antibiotic resistance genes (not 

previously identified or seen in pathogenic bacteria). For example, the functional 

metagenomics study by Sommer, Dantas and Church in 2009139 identified ARGs identical at 

the nucleotide level to genes previously identified in clinical isolates of disease-causing 

bacteria, proving that the gut microbiota do harbour clinically relevant ARGs. However, the 

majority of antibiotic resistance-conferring inserts (82 %) were distantly related to known 

antibiotic resistance genes from pathogens (nucleotide identity 60.7 % on average)139. These 

results highlight both the diversity of genetic antibiotic resistance determinants in the gut but 

also their potential to be shared between commensal and pathogenic bacteria. 

Another interesting study of the gut as a reservoir of antibiotic resistance used whole genome 

shotgun metagenomic sequencing to examine the resistomes of 180 healthy individuals from 

11 different countries across Europe, Asia, North and South America representing 

industrialised, low-income and remote societies215. In total, 507 different ARGs were 

identified, including eight shared by all 180 individuals215. This further highlights how 

antibiotic resistance appears to be widely distributed across gut microbiomes. If those ARGs 
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are acquired by pathogenic bacteria passing through the gut, or if the gut bacterium hosting 

the ARG moves outside of its usual location in the gut and causes an infection elsewhere in 

the body, then gut microbiota are part of the antibiotic resistance problem.  

These types of metagenomic studies investigate the entire community but not individual 

bacteria, therefore it is essentially impossible to say exactly which bacterium a particular 

antibiotic resistance determinant might have come from. Antibiotic resistance genes are often 

located on mobile genetic elements; since mobile genetic elements can be shared between 

different bacteria, it is hard to place the nucleotide sequence of a mobile genetic element 

identified from a mixed sample into its original genomic context. It can also be difficult to 

validate the results, as without knowing the host or having an isolate of the suspected host a 

phenotype cannot be measured and correlated with the presence or absence of the ARG in 

question. Therefore, these studies are good for observing the presence and abundance of 

known or putative ARGs in an environment, but not determining exactly which bacteria they 

belong to. This means that we do not necessarily fully understand the taxonomic placement 

of antibiotic resistance determinants among the bacterial community in a mixed sample, such 

as a stool sample that represents the gut microbiome. Combined with the fact that we are still 

discovering new members of the gut microbiota through metagenome-assembled genomes 

and high-throughput culturing146,151,216 the full potential of the gut microbiome as an antibiotic 

resistance reservoir remains to be understood. 

With recent developments in culturing of anaerobic commensal gut bacteria146,151, there is 

now the opportunity to use these methods to determine a comprehensive map of antibiotic 

resistance determinants in these diverse and relatively uncharacterised microorganisms. It is 

important to determine which commensal gut bacteria harbour antibiotic resistance genes as 

this information will help understand which ones are of concern for acting as donors to spread 
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antibiotic resistance. In this chapter, I use a unique collection of reference genomes to study 

the presence of known antibiotic resistance determinants in diverse commensal human gut 

bacteria.  

 

3.2 Results  

3.2.1 Summary of resources used in this chapter 

To determine the presence of antibiotic-resistant determinants in diverse commensal human 

gut bacteria, I have used the genomes from the Human Gastrointestinal Bacteria Culture 

Collection (HBC)151. Each isolate has been whole genome sequenced using Illumina short-read 

paired-end sequencing, assembled and annotated183, and the physical isolates are held in 

glycerol stocks at -80 °C allowing for phenotypic validation and characterisation (Chapter 4). 

The HBC contains 737 gut bacteria isolated from healthy adult humans, who had not taken 

antibiotics in the six months prior to sampling, using broad range culturing and targeted 

phenotype culturing for spore-forming bacteria146,151 (Fig. 3.1). The collection contains 273 

species in total, 105 of which are considered novel (Table 3.1).  
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Figure 3.1 Phylogeny of the HBC commensal gut bacteria. The Human Gut Bacteria Culture Collection contains 
737 isolates of human gut bacteria151. The amino acid sequences of 40 core genes were extracted from these 
genomes and used to infer a phylogeny to illustrate the taxonomic diversity of this culture collection. The stars 
mark which genomes are considered novel based on the similarity of their 16S rRNA gene sequence to known 
16S rRNA gene sequences in RefSeq. 
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Table 3.1. Taxonomic information for the HBC. The number of total or novel isolates, species and families is 
summarized for the four phyla of the HBC and the HBC overall. 
 

 

Species were defined by considering the sequence identity of each genome’s full length 16S 

rRNA gene. 16S rRNA gene sequences at least 97.8 % identical to each other are considered 

the same species182. In addition, the HBC 16S rRNA gene sequences were compared to RefSeq 

16S rRNA sequences to assign taxonomic classification. Any 16S rRNA gene sequences of less 

than 94.5 % similarity to known sequences are considered to belong to novel genera, < 86.5 

% to novel families, < 82.0 % novel orders, < 78.5 % novel classes and 75.0 % novel phyla182. 

In total, there are 276 isolates that belong to novel taxonomic groups in the HBC. This unique 

collection offers extensive and novel phylogenetic diversity, compared to the six ESKAPE 

pathogenic species (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa and 

Enterobacter spp.) that represent just six species from two orders within the Firmicutes and 

Proteobacteria. ESKAPE pathogens are included later as a comparator as they have been the 

focus of most antibiotic resistance gene and mutation research. 

Sequence reads for each genome were searched against the Comprehensive Antibiotic 

Resistance Database (CARD)163,164 as it is one of the largest resistance determinant databases, 

contains both ARGs and resistance-associated mutations, and is updated regularly. It is also 

commonly used as a reference database for studying antibiotic resistance genes and 

 
Actinobacteria Bacteroidetes Firmicutes Proteobacteria All HBC 

Total isolates 53 143 496 45 737 

Novel isolates 0 18 253 5 276 

Total species 16 40 203 14 273 

Novel species 0 13 91 1 105 

Total families 6 4 18 3 31 

Novel families 0 1 0 0 1 
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mutations (e.g.143,215,217,218). Version 2.0.2 of CARD (from June 2018, analysis performed in July 

2018), contains 2426 antibiotic resistance determinants. The CARD ontology describes which 

antibiotics each determinant confers resistance to; these descriptions were further grouped 

by the major antibiotic class – for example all sub-classes of beta-lactams were combined (Fig. 

3.2; see Appendix 1 for Table A1.1 describing groupings). In total, there are 29 different 

antibiotic classes or categories represented in CARD. Determinants conferring resistance to 

Macrolide, Lincosamide, Pleuromutilin and Streptogramin antibiotics were grouped together 

(MLPS) as resistance determinants against these antibiotics can have cross-resistance each 

other219 and are grouped together in a single, separate category. Any other determinants 

described as conferring resistance to more than one class of antibiotics were grouped under 

“non-specific antibiotic resistance” for the purpose of this study.  

Figure 3.2. The proportions of antibiotic categories in the Comprehensive Antibiotic Resistance Database. 2426 
antibiotic resistance determinants are described in CARD. The CARD ontology describes which antibiotics each 
determinant confers resistance to. If determinants were described as conferring resistance to multiple classes of 
antibiotics, these were grouped under “non-specific” antibiotic resistance. The exception is for resistances to 
Macrolide, Lincosamide, Pleuromutilin and Streptogramin (MLPS) antibiotics, as resistance determinants against 
these antibiotics can have cross-resistance to each other and are grouped together in a single, separate category. 
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3.2.2 Computational predictions of antibiotic resistance in 737 whole genome sequences of 

anaerobic gut bacteria 

Approximately 60 % of the determinants in CARD are associated with beta-lactam resistance 

(Fig. 3.2). The CARD database includes redundancy, therefore I used ARIBA160 (Antibiotic 

Resistance Identification By Assembly) to predict the presence of CARD determinants in the 

HBC genomes. ARIBA clusters gene sequences from CARD by similarity, so that only the 

presence of “unique” non-redundant antibiotic resistance determinants are considered. 

Following the ARIBA ‘prepareref’ command, which performs the clustering of determinants, 

1024 clusters were created. ARIBA then performs local assemblies of sequence reads, in this 

case for each individual genome, against the reference sequence for each antibiotic resistance 

determinant cluster. If an assembled gene was 90 % similar to a reference antibiotic resistance 

determinant cluster sequence at the nucleotide level, that cluster was reported as present in 

that genome.  

In total, 178 unique clusters of genetic antibiotic resistance determinants were observed in 

the HBC (Fig. 3.3, see Appendix 2, Table A2.1 for full description and 

https://docs.google.com/spreadsheets/d/1zwmhUicOW3JVW_9y6P6LssbavW47EFiRq4_ww

nS9CMg/edit?usp=sharing for Table A2.2), with a combined total of 1434 occurrences across 

the 737 genomes. The determinants were grouped as described before: 19 of the 29 possible 

categories of antibiotics were represented by the HBC genomic resistances. The largest 

proportion of identified resistance determinants (29 %) were those considered “non-specific” 

determinants (Fig. 3.3). Beta-lactam antibiotic resistance determinants were the second most 

common type (13 %) to be observed. All antibiotic classes from the WHO List of Essential 

Medicines21 are represented in these observations, with the exception of oxazolidinone; it is 
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possible oxazolidinone resistance may be present via non-specific determinants if they alter 

the 23S and 30S rRNA subunits targeted by this antibiotic.  

Figure 3.3. Proportions of 178 antibiotic resistance determinants identified in 737 isolates of human gut 
bacteria. The determinants were grouped by the antibiotic class that they are described as conferring resistance 
to according to the CARD ontology. MLPS = Macrolide, Lincosamide, Pleuromutillin and Streptogramin A. 

 

Approximately half of the HBC genomes (390/737; 52.9 %) were predicted to contain at least 

one antibiotic resistance determinant (Fig. 3.4A). The number of unique determinants in a 

single genome ranged from 1 to 56 (including non-specific resistance determinants; Fig. 3.4B), 

although approximately three-quarters of the genomes were observed to contain just one or 

two antibiotic resistance determinants. Individual isolates carried resistances to 10 different 

classes of antibiotics (excluding the non-specific antibiotic resistance category; Fig. 3.4C), 
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though again approximately three quarters of the HBC only harboured resistance to two or 

fewer antibiotic categories. Overall, the majority of this phylogenetically diverse collection of 

human commensal gut microbiota contain antibiotic resistance determinants, despite not 

having been exposed to antibiotics for at least six months. In addition, the range in number of 

resistance determinants, and the number of antibiotic classes resistance is predicted to, per 

isolate indicates variability in antibiotic resistance genotypes across the HBC.  

Figure 3.4. Summary of genetic determinants of antibiotic resistance in the HBC.  
A) The proportion of the 737 genomes with genetic determinants of resistance identified using CARD and ARIBA. 
B) The range in the number of genetic determinants of resistance predicted in an individual genome.  
C) The range in different antibiotic classes an individual genome was predicted to be resistant against (excluding 
non-specific antibiotic resistance). 
For B) and C), the boxes show the interquartile range determined using the Tukey method; the black circles 
indicate outlier observations and the thick black line represents the median. The red dashed line represents the 
mean. 
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3.2.3 Variation of predicted genomic resistance across the four key gut bacteria phyla 

The presence of a resistance determinant to a particular antibiotic is assumed to confer 

phenotypic resistance to that antibiotic (e.g., the presence of a beta-lactam resistance gene 

predicts that isolate to be resistant to beta-lactam antibiotics). Therefore in this thesis these 

observations are considered “predicted resistance”. The distribution of predicted resistances 

belonging to the 19 categories of antibiotic among the 737 genomes is demonstrated in Figure 

3.5. This shows that antibiotic resistance is predicted throughout all four phyla in the HBC, and 

that predicted resistances vary, even between closely related isolates. However, 

Proteobacteria, and certain members of the Firmicutes, have more predicted antibiotic 

resistances than other isolates. These isolates belong to species known to be able to act as 

opportunistic pathogens such as Enterobacter cloacae220, Klebsiella oxytoca221, K. 

pneumoniae221 (Proteobacteria) and E. faecalis222 and E. faecium222 (Firmicutes). These initial 

findings support the role of the gut microbiota as a reservoir of antibiotic resistance and its 

potential to contribute to antibiotic-resistant infections.  
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Figure 3.5. Observations of predicted antibiotic resistance in the HBC isolates against the core genome 
phylogeny. The phylogeny represents the core genomes of 737 whole genome sequences of gut microbiota 
isolated from healthy human faecal samples. Antibiotic resistance genes and mutations described in CARD were 
identified in these genomes, which were grouped by the corresponding class of antibiotic. If more than one, then 
these were classified as ‘non-specific resistances’ or MLPS if Macrolide, Lincosamide, Pleuromutillin or 
Streptogramin A. The outer rings of coloured bars show the presence of at least one resistance determinant to 
a particular antibiotic class. Proteobacteria isolates appear to have the highest number of resistances to different 
antibiotic classes. 

 

Having determined the overall occurrence of known antibiotic resistance determinants in the 

HBC and gained a broad idea of their distribution, I next sought to understand the prevalence 

of antibiotic resistance predicted in each of the four main gut microbiota. From the phylogeny 

in Figure 3.5, Proteobacteria have the highest number of resistances to different antibiotic 

classes. Looking more specifically at the proportion of isolates within phyla (Fig. 3.6) further 

demonstrates this: 95.6 % of Proteobacteria are predicted to harbour resistances compared 
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to 82.5 % of Bacteroidetes, 43.5 % of Firmicutes and just 24.5 % of Actinobacteria. 

Proteobacteria and Bacteroidetes also have a significantly higher proportion of predicted 

resistant isolates than expected based on the HBC proportion overall (q values of < 0.0001, 

determined by Fisher exact tests and corrected for multiple testing; significant < 0.05).  

 
Figure 3.6. Proportions of isolates with at least one genetic antibiotic resistance determinant in each phyla, 
compared to the overall HBC. The numbers of genomes with at least one genetic antibiotic resistance 
determinant were counted for the complete HBC and for each of the four HBC phyla. HBC 52.9 %; Actinobacteria 
24.5 %; Bacteroidetes 82.5 %; Firmicutes 43.5 %; Proteobacteria 95.6 %. Proteobacteria and Bacteroidetes had 
significantly more isolates with predicted resistance than expected based on the overall HBC collection. Statistical 
significance determined by Fisher exact tests, and corrected using the Benjamini, Hochberg, and Yekutieli 
method; q = significant < 0.05. n = total number of isolates in that group. 

 

Moreover, Proteobacteria showed a bigger range and higher maximum number of antibiotic 

resistance determinants per isolate than the other three phyla (Fig. 3.7) and again, this was 

found to be statistically significant (q < 0.0001). Overall, the data from Figures 3.5 to 3.7 so far 

show that antibiotic resistance determinants are not distributed evenly between or within 
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phyla: more Bacteroidetes isolates are found to contain resistance determinants than 

expected, but the number of determinants per isolate was not significantly different to the 

HBC overall. The Proteobacteria phylum is significantly enriched for the number of isolates 

with resistance and the number of resistance determinants per isolate.  

Figure 3.7. Interquartile range of number of antibiotic resistance determinants per isolate in each phyla, 
compared to the overall HBC. The total number of antibiotic resistance determinants was calculated for each 
isolate and the interquartile range in this number plotted for all 737 HBC genomes and for each of the four HBC 
phyla. Actinobacteria had the smallest range (0-2) and lowest total number of antibiotic resistance determinants 
per isolate of all the phyla. In contrast, Proteobacteria had the biggest range (0-56) and highest total number of 
antibiotic resistance determinants per isolate. Interquartile range was determined using the Tukey method; the 
black circles indicate outlier observations and the thick black line represents the median. The red dashed line 
represents the mean. The mean number of determinants per isolate was statistically higher in Proteobacteria 
than the HBC. Statistical significance determined by Mann-Whitney U test; p = significant < 0.05. n = number of 
isolates in that group with predicted resistance (i.e., excluding isolates without resistance). 
 

Similarly, Proteobacteria display a bigger range in the number of specific antibiotic categories 

resistance is predicted to (i.e., excluding non-specific antibiotic resistances; Fig. 3.8): the 

Proteobacteria isolates are on average predicted to be resistant to four different antibiotics 

but could be resistant to up to 10 different antibiotics. Actinobacteria, Bacteroidetes and 
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Firmicutes are only predicted to be resistant to 1.0 or 1.5 antibiotics on average respectively. 

Again, these results were found to be statistically significant (p < 0.0001). This analysis 

excludes the non-specific antibiotic resistances. That the range in number of predicted 

resistances appears similar to the range in number of antibiotic resistance determinants per 

isolate suggests that non-specific antibiotic resistance is not a major factor for Actinobacteria, 

Bacteroidetes and Firmicutes. There is a bigger difference in the Proteobacteria, indicating 

that these isolates contain more non-specific resistances.  

Figure 3.8. Interquartile range of number of antibiotic classes resistance is predicted to per isolate in each 
phylum, compared to the overall HBC. After grouping the determinants by the antibiotic class they are described 
as conferring resistance against by CARD, the total number of specific antibiotic classes a single isolate was 
predicted to harbor genetic resistances against was counted (i.e., excluding non-specific resistances), Again, 
Proteobacteria had the biggest range and highest maximum number of antibiotic classes per isolate. Interquartile 
range was determined using the Tukey method; the black circles indicate outlier observations and the thick black 
line represents the median. The red dashed line represents the mean. The mean number of different antibiotic 
classes per isolate was statistically higher in Proteobacteria than the HBC. Statistical significance determined by 
Mann-Whitney U test; p = significant < 0.05. n = number of isolates in that group with predicted resistance (i.e., 
excluding isolates without resistance). 
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Next, I considered whether certain phyla were enriched for particular antibiotic resistances. 

Fisher exact tests were performed to compare the proportion of isolates with resistance 

determinants for a particular antibiotic category within phyla compared to the proportion of 

all HBC isolates; p-values were adjusted for multiple testing using the Benjamini, Hochberg, 

and Yekutieli method (Table 3.2). Overall, every phylum except Actinobacteria is enriched for 

resistance to specific antibiotic classes. Bacteroidetes were enriched for beta-lactam 

resistance and tetracycline resistance (q values both < 0.001, significant < 0.05) and Firmicutes 

were enriched for diaminopyrimidine antibiotic resistances (q value 0.001). Proteobacteria 

were statistically enriched for determinants belonging to nine different classes of antibiotics, 

as well as non-specific antibiotic resistance determinants (q values all < 0.001). In several 

cases, resistance to antibiotic classes was observed significantly less often than expected – for 

example, beta-lactam resistance in Actinobacteria. This further indicates that genetic 

determinants of resistance are unevenly distributed between phyla. Overall, Proteobacteria 

are enriched for the most antibiotic classes and known resistance determinants, thus 

appearing to harbour more clinically relevant antibiotic resistance determinants than the 

other three key gut microbiota phyla.  



  

Table 3.2. The proportion of isolates with resistance to particular antibiotic categories is compared between phyla and the overall HBC. Percentage represents proportion of 
predicted resistances for an antibiotic in the HBC or individual phyla. The individual phylum proportions were compared to the HBC proportion to determine the direction of statistical 
significance. The arrows denote the direction of significance; ↑ indicates that antibiotic resistance was observed more than expected and ↓ that antibiotic resistance was observed 
less than expected. No arrow means that any change in the proportion was not statistically significant. Q values significant < 0.05 (Fisher exact tests and adjusted using the Benjamini, 
Hochberg, and Yekutieli method).  

  Phylum (number of genomes) 

    Actinobacteria (53) Bacteroidetes (143) Firmicutes (496) Proteobacteria (45) 

Antibiotic HBC % Phylum % q-value* Direction Phylum % q-value* Direction Phylum % q-value* Direction Phylum % q-value* Direction 

Acridine Dye 0.3 0.0 1.000   0.0 1.000   0.4 1.000   0.0 1.000   
Aminocoumarin 1.6 0.0 1.000   0.0 1.000   0.0 < 0.001* ↓ 26.7 < 0.001* ↑ 

Aminoglycoside 5.2 0.0 1.000   1.4 0.227   3.4 0.096   33.3 < 0.001* ↑ 
Beta-lactam 12.1 0.0 0.023* ↓ 31.5 < 0.001* ↑ 1.4 < 0.001* ↓ 82.2 < 0.001* ↑ 

Chloramphenicol 0.5 0.0 1.000   0.0 1.000   0.8 1.000   0.0 1.000   
Diaminopyrimidine  5.2 1.9 1.000   0.0 0.007* ↓ 7.3 0.001* ↑ 2.2 1.000   

Elfamycin 1.1 0.0 1.000   0.0 1.000   0.0 0.002* ↓ 17.8 < 0.001* ↑ 
Fluoroquinolone 1.6 0.0 1.000   0.0 1.000   0.0 < 0.001* ↓ 26.7 < 0.001* ↑ 

Fosfomycin 3.5 0.0 1.000   0.0 0.066   0.4 < 0.001* ↓ 53.3 < 0.001* ↑ 
Glycopeptide 1.5 0.0 1.000   0.0 1.000   2.2 0.227   0.0 1.000   

MLPS 9.4 0.0 0.087  11.9 1.000   14.1 1.000   6.7 1.000   
Mupirocin 0.1 1.9 0.767   0.0 1.000   0.0 1.000   0.0 1.000   

Nitrofuran 1.5 0.0 1.000   0.0 1.000   0.0 < 0.001* ↓ 24.4 < 0.001* ↑ 
Nitroimidazole 1.6 0.0 1.000   0.0 1.000   0.0 < 0.001* ↓ 26.7 < 0.001* ↑ 

Non-specific 11.8 5.7 1.000   0.0 < 0.001* ↓ 8.7 0.004* ↓ 91.1 < 0.001* ↑ 
Nucleoside 1.2 0.0 1.000   1.4 1.000   1.2 1.000   2.2 1.000   

Peptide 4.2 0.0 1.000   0.0 0.026* ↓ 3.8 1.000   26.7 < 0.001* ↑ 
Sulphonamide 0.5 0.0 1.000   1.4 1.000   0.0 0.140   4.4 0.227   

Tetracycline 37.2 17.0 0.227  76.9 < 0.001* ↑ 28.6 < 0.001* ↓ 28.9 1.000   
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3.2.4 Variation of predicted genomic resistance across different human commensal bacterial 

Families 

Having identified significantly more antibiotic resistance overall in Proteobacteria so far, I 

wanted to see whether this was also true at the family level. Families with more than 5 isolates 

were selected to be analysed to allow a certain degree of robustness. Those 14 families were 

ranked by the proportion of isolates with predicted resistance (Fig. 3.9). 

Figure 3.9. Proportions of isolates with at least one genetic antibiotic resistance determinant in taxonomic 
families. The numbers of genomes with at least one genetic antibiotic resistance determinant were counted for 

families in the HBC. The two families with the highest average number of resistance determinants per isolate or 
with more than five isolates are shown for each phylum. 

 

This shows that as for phyla, families vary in their proportion of isolates with predicted 

antibiotic resistance. In particular, the highest rates of isolates with predicted antibiotic 
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resistance occur in Enterobacteriaceae, Streptococcaceae, Enterococcaceae, and 

Bacteroidaceae. These families are known to contain opportunistic pathogenic species. 

However, so is the family Peptostreptococacceae (namely, the diarrhoea-causing 

Clostridioides difficile), yet this family has a much lower proportion of isolates with predicted 

resistance. If we consider the number of genetic determinants per isolate between families 

(Fig. 3.10), even though Streptococcaceae and Bacteroidaceae have high proportions of 

isolates with predicted resistance, they only harbour relatively few resistance determinants 

per isolate. In comparison, Enterococcaceae and Enterobacteriaceae both have significantly 

more resistance determinants per isolate on average compared to Bacteroidaceae and 

Streptococcaceae. However, Enterobacteriaceae did not have significantly more resistance 

determinants on average than Enterococcaceae. Together so far, this data suggests that gut 

microbiota taxa known to contain isolates of species that can act as opportunistic pathogens 

are enriched for genetic determinants of antibiotic resistance.  
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Figure 3.10. Interquartile range of number of antibiotic resistance determinants per isolate in commensal gut 
bacterial families. The total number of antibiotic resistance determinants was calculated for each isolate and 

the distribution in this number plotted at the family level. This included non-specific antibiotic resistance 
determinants. Interquartile range was determined using the Tukey method; the points show outlier observations 

and the thick black line represents the median. The red line represents the mean. n = number of isolates in that 
group with predicted resistance. Only families with more than five isolates were included. Statistical significance 

was determined between families known to contain pathogenic bacteria (Bacteroidaceae, Enterococcaceae, 
Peptostreptococacceae, Streptococcaceae and Enterobacteriaceae) by Kruskal-Wallis tests and corrected using 

the Benjamini, Hochberg, and Yekutieli method; q = significant < 0.05. Only significant results are shown. 

 

3.2.5 Distribution of predicted genomic resistance between known and novel isolates 

So far, I have identified that families containing species that can act as opportunistic 

pathogens are enriched for genetic determinants of antibiotic resistance. Having such a 

diverse and novel collection of gut bacteria has also allowed me to investigate whether 

clinically relevant antibiotic resistance determinants are harboured not just by bacteria 

belonging to previously published or described (“known”) taxa, but those considered to be 

novel and thus uncharacterised. As we do not have novel isolates for many of the families in 
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the HBC, I performed this analysis at the phylum level. Fewer novel genomes overall harbour 

clinically relevant antibiotic resistances (Fig. 3.11); this is also true for the Bacteroidetes 

phylum. There were no novel Actinobacteria in this dataset so the rates in this phylum could 

not be compared. In Proteobacteria and Firmicutes (which has the most novel genomes at 

253), it is the novel genomes that harbour more clinically relevant antibiotic resistances. 

However, the only statistically significant results were that the HBC overall and Bacteroides 

phyla had more known isolates with resistance than novel isolates; the observations in the 

Firmicutes were not significantly different. Nonetheless, these results indicate that 

uncharacterised bacteria contribute to the intestinal reservoir of known antibiotic resistance.  

Figure 3.11. Proportions of resistant isolates in known versus novel isolates. The numbers of isolates that were 
novel were counted for all 737 HBC genomes and for each of the four HBC phyla. For each sub-group (known or 

novel), isolates with at least one genetic antibiotic resistance determinant were counted as before. 47.4 % of the 
novel genomes in the HBC were predicted to have at least one genetic antibiotic resistance determinant overall. 

There were no novel Actinobacteria genomes; the majority (91.7 %) of novel genomes belong to Firmicutes, with 
46.6 % of novel Firmicutes predicted to have at least one genetic antibiotic resistance determinant overall. 

Overall, the HBC had significantly more known isolates with predicted resistance than novel isolates; within phyla 
only Bacteroides showed a significant difference. Statistical significance determined by Fisher exact tests, and 

corrected using the Benjamini, Hochberg, and Yekutieli method; q = significant < 0.05. n = total number of isolates 
in that group. 
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Overall, the known genomes of the HBC harboured resistances to all 19 categories of 

antibiotics, whereas the novel genomes only harboured resistances to 12 categories of 

antibiotics (Figure 3.12, showing the proportion of predicted resistances). Known and novel 

Bacteroidetes genomes harboured resistances to the same six antibiotics, although there was 

proportionately more diversity in the resistances of novel Bacteroidetes. Similarly, novel 

Firmicutes harboured resistances to the same 11 categories of antibiotic as known Firmicutes, 

though there were more tetracycline resistances in the novel Firmicutes compared to known 

Firmicutes. The proportion of resistances in known and novel Bacteroidetes and Firmicutes 

appears broadly similar, largely dominated by tetracycline resistance. In contrast, the 

Actinobacteria and Proteobacteria have different patterns in predicted resistances: the known 

Actinobacteria have resistances to all 19 classes of antibiotics and known Proteobacteria to 

14 classes of antibiotics, whereas the novel Proteobacteria only have eight classes of antibiotic 

resistance predicted. In addition, the novel Proteobacteria have different classes of antibiotic 

resistance predicted (i.e., acridine dye, diaminopyrimidine, glycopeptide) than the known 

Proteobacteria. Together, these observations make it clear that although Proteobacteria is 

enriched for antibiotic resistance, non-Proteobacteria and uncharacterised gut microbiota 

harbour diverse antibiotic resistances, underlining the importance of understanding this 

extensive reservoir and its clinical relevance. 
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Figure 3.12. Proportions of antibiotic categories that resistances are predicted against in HBC genomes. The 

number of predicted resistance phenotypes in known and novel genomes per antibiotic class was calculated for 
the HBC and each phylum. The majority of predicted resistances in those novel Firmicutes were against 

tetracycline antibiotics. r = total number of predicted resistance phenotypes for that group; g = genomes with 
predicted resistance in that group. 

 

3.2.6 Comparison of predicted genomic resistance in commensal versus pathogenic isolates 

I next compared the presence of antibiotic resistance in commensals of the HBC to pathogens. 

To do this, I searched PATRIC194 for genomes for the ESKAPE pathogens (E. faecium, S. aureus, 

K. pneumoniae, A. baumannii, P. aeruginosa and Enterobacter species). E. coli and C. difficile 

were also included as both are important causes of bacterial infections, and there are 

commensal isolates of these species in the HBC for comparisons. I filtered for bacteria isolated 

from humans in clinical settings to ensure they were definitely pathogenic isolates. In addition, 

I chose bacteria isolated from 2010 or after, and from Canada, the US or the UK, to be 
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contemporaneous with the HBC isolates. From this list, I selected isolates that were 

considered to have ‘good’ quality genomes and with a high level of completeness (CheckM195 

completeness score equal to or greater than 98). PATRIC considers genomes good or poor 

quality based on summary annotation statistics and from comparisons with other PATRIC 

genomes after they have been through the PATRIC comprehensive genome analysis service194. 

There were no Enterococcus faecium isolates with official isolation dates post-2010, but 

looking at other meta-data identified 37 isolates from 2012 or later, two from 2001, one from 

2000 and one from 1997; these were all included in the subsequent analyses. For the 1725 

genomes, I predicted the presence of genetic antibiotic resistance determinants in CARD using 

ARIBA as for the HBC. 

Importantly, 97 % of these pathogenic genomes had at least one predicted resistance. 

However, there is more variation in the number of resistance determinants per isolate 

between species (Fig. 3.13) than was seen for the commensal isolates in section 3.2.4. This 

shows that although resistance is predicted in the majority of pathogenic isolates, different 

pathogenic species of bacteria have different antibiotic resistance potential. Pathogenic E. coli 

has the highest maximum, median and mean number of determinants per genome; this is 

similar to the observations in commensal HBC Proteobacteria. 
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Figure 3.13. Interquartile range of number of antibiotic resistance determinants per isolate in pathogenic 
bacterial species. The total number of antibiotic resistance determinants was calculated for each pathogenic 
genome studied and the distribution in this number plotted at the species level. This included non-specific 

antibiotic resistance determinants. n = number of isolates in that group with predicted resistance. Interquartile 
range was determined using the Tukey method; the points show outlier observations and the thick black line 

represents the median. The red line represents the mean. 

 

In addition, different pathogenic species have different profiles of predicted resistances (Fig. 

3.14). Thus, not all of these pathogen groups are equal in their predicted propensity to 

harbour antibiotic resistances. The Proteobacteria species and S. aureus appear broadly 

similar, with eight or more different resistances predicted. In contrast, C. difficile and E. 

faecium appear less similar, with only three and seven categories of antibiotic resistances 

predicted respectively. 

 

0

25

50

75

N
um

be
r o

f r
es

is
ta

nc
e 

de
te

rm
in

an
ts

 p
er

 is
ol

at
e

Firmicutes Proteobacteria

_

C.
 d

iff
ici

le

n = 99 

_

E.
 fa

ec
iu

m

n = 39

_

S.
 a

ur
eu

s

n = 872

_

A.
 b

au
m

an
ni

i

n = 17

_

En
te

ro
ba

ct
er

n = 99 

_

E.
 c

ol
i

n = 305

_

K.
 p

ne
um

on
ia

e

n = 139

_

P.
 a

er
ug

in
os

a

n = 42



 

 87 

Figure 3.14. Proportions of antibiotic categories that resistances are predicted against in pathogenic bacterial 
genomes. The percentage of predicted resistance phenotypes in pathogenic genomes per antibiotic class was 
calculated for each species. r = total number of predicted resistance phenotypes for that group; g = genomes 

with predicted resistance in that group. 

 

Having assessed the frequency and proportions of genomic resistance in certain pathogenic 

species, I wanted to directly compare between pathogenic and commensal (from the HBC) 

genomes of related species. I have performed this analysis at the family level for 

Enterococcaceae (includes pathogenic E. faecium), Peptostreptococacceae (includes 

pathogenic C. difficile), Staphylococcaceae (includes pathogenic S. aureus), and 

Enterobacteriaceae (includes pathogenic Enterobacter, E. coli and K. pneumoniae) due to 

limitations in numbers of HBC genomes for certain species. Comparing the number of 

determinants per genome directly between commensal HBC and pathogenic isolates of the 
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same families, we can see that the pathogenic isolates have significantly more determinants 

per genome on average, except for Peptostreptococcaceae (Fig. 3.15).  

Figure 3.15. Interquartile range of number of antibiotic resistance determinants per isolate in commensal 
versus pathogenic isolates. The total number of antibiotic resistance determinants was calculated for each 

genome studied and the distribution in this number plotted at the family level, where families were represented 
by more than one isolate in both datasets. n = number of isolates in that group with predicted resistance. 

Interquartile range was determined using the Tukey method; the black circles show outlier observations and the 
thick black line represents the median. The red line represents the mean. Statistical significance determined by 

Mann-Whitney U test; p = significant < 0.05. 
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similar resistance profiles in both commensal HBC and pathogenic isolates of these families 

(Fig. 3.16). In contrast, pathogenic Staphylococacceae have more categories of antibiotic 

resistances predicted than commensal HBC isolates. Peptostreptococacceae demonstrate a 
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different pattern again: the pathogenic isolates are dominated by non-specific resistances, 

whereas the commensal isolates have more tetracycline and MLPS resistances predicted. This 

data shows that although pathogenic isolates of Enterococcaceae and Enterobacteriaceae 

carry more resistance determinants, overall commensal and pathogenic isolates in these 

families are predicted to be resistant to similar antibiotics. In contrast, commensal isolates of 

Peptostreptococacceae and Staphylococcaceae are predicted to be resistant to different 

antibiotics than pathogenic isolates. 

 

Figure 3.16. Proportions of antibiotic categories that resistances are predicted against in commensal HBC 
versus pathogenic bacterial genomes. The number of predicted resistance phenotypes in genomes per antibiotic 

class was calculated for each family. r = total number of predicted resistance phenotypes for that group; g = 
genomes with predicted resistance in that group. 
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3.3 Discussion  

In this chapter, I aimed to determine the presence of known antibiotic resistance 

determinants in pure isolates of commensal gut bacteria and see if the whole gut microbiome 

may contribute to the problem of antibiotic resistance or only certain members. I therefore 

screened a collection of 737 phylogenetically diverse human gut bacterial genomes for known 

antibiotic resistance determinants described by CARD. This identified 178 unique antibiotic 

resistance determinants across the HBC, predicted to confer resistance against 19 antibiotic 

categories (including a category for non-specific antibiotic resistance). This included all but 

one of the antibiotics on the WHO Essential Medicines List, oxazolidinone. As in previous 

studies140,142, tetracycline resistance genes were some of the most prevalent across the 

diversity of the HBC. 

There were nine other antibiotics described in CARD to which there were not any predicted 

specific resistances: rifamycin, polyamine, triclosan, isoniazid, para-aminosalicylic acid, 

antibacterial free fatty acids, bicyclomycin and pyrazinamide (listed in order of the number of 

resistance determinants against these antibiotics in CARD). Rifamycin has broad-spectrum 

activity against Gram-negatives and Gram-positives, but is mainly used to treat TB 

infections223. There are no Mycobacterium isolates in the HBC, which we would expect given 

the criteria for the human donors for the HBC study to be healthy and without any bacterial 

infections. Rifamycin resistance develops by mutations in the RNA polymerase gene, and if 

the donors had not received rifampicin treatment recently then this may explain the absence 

of rifamycin-conferring resistance mutations in genomes of gut bacteria isolated from those 

people. Isoniazid224, para-aminosalicylic acid and pyrazinamide are also used to treat TB and 

so a similar explanation may apply. However, there were non-specific determinants present 

in these genomes that included rifamycin as one of the antibiotics they are described as 
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conferring resistance to (Appendix II). Similarly, triclosan and oxazolidinone were included in 

some non-specific determinant descriptions. Bicyclomycin is an old antibiotic with weak 

activity that is being revived for combinatorial therapy of drug resistant infections225. 

Polyamine is a compound that can increase the susceptibility of bacteria to other 

antibiotics226, such as beta-lactams, that is also being developed as an option combinatorial 

therapy227. Antibacterial free fatty acids are another experimental alternative to antibiotics228. 

Since these antibiotics are not currently commonly used as treatment of bacterial infections, 

resistance is less likely to have had the chance to develop or spread as often as resistance to 

other, more commonly used antibiotics. This could explain the absence of resistance 

determinants to these three antibiotics in the HBC. 

Overall, resistances were enriched among the Proteobacteria, and particularly the 

Enterobacteriaceae, in terms of diversity of resistance determinants, abundance of resistance 

determinants per isolate, and the number of isolates with predicted resistance. Isolates of 

Enterobacteriaceae harboured between 1 and 31 non-specific resistance determinants; this 

means the Proteobacteria could be resistant to more antibiotics than assumed when just 

considering the specific antibiotic resistance determinants. Since the HBC isolates were 

isolated from the guts of healthy adults who had not taken antibiotics in at least six months, 

and the microbiome is a diverse population of microorganisms, it is unlikely that the 

Enterobacteriaceae isolates have been more exposed to antibiotics than non-Proteobacteria 

isolates. As many of the most important bacterial pathogens are Gram-negatives – often 

Enterobacteriaceae or other Proteobacteria – some of the most commonly used antibiotics 

are those that target Gram-negatives. Therefore, it is possible that when taking antibiotics the 

commensal Enterobacteriaceae are theoretically more likely to be impacted and thus under 

more selective pressure to develop antibiotic resistance. If this were maintained long-term 
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(beyond the period of antibiotic treatment), this may explain the observations in this chapter. 

This is plausible, however there is often a fitness cost associated with antibiotic resistance229, 

implying that any acquired antibiotic resistance genes or mutations are not likely to be 

maintained in the absence of antibiotic selective pressure.  

Alternatively, it is possible that the HBC Enterobacteriaceae acquired resistance genes from 

bacteria in the environment or diet, in line with the “One Health” concept discussed in the 

Introduction to this thesis, and that this has happened more commonly in this taxon. However, 

horizontal gene transfer is not necessarily more common in Proteobacteria than other phyla: 

a recent study found that phylogeny did not have a significant impact on genome fluidity230. 

Conversely, and more likely, these results may reflect how the databases are predominantly 

created from information generated by studying bacterial pathogens; throughout this chapter 

it is the families of bacteria known to contain pathogenic species that have the most antibiotic 

resistance predicted. The databases would therefore be biased towards predicting antibiotic 

resistance genes or mutations in bacterial genomes more similar to those studied for the 

creation of said databases. This bias could explain the enrichment of resistance in 

Enterobacteriaceae over more distantly related bacteria, such as the Firmicutes. 

Despite the apparent enrichment in Proteobacteria, there is still a diverse range of antibiotic 

resistance predicted in large proportions of the other phyla in the HBC. For example, 

Firmicutes were enriched for diaminopyrimidine (trimethoprim) resistance; dfr trimethoprim 

resistance genes have been described in both Gram-negative and Gram-positive bacteria, but 

are thought to be intrinsic to enterococci231. Moreover, Bacteroidetes were enriched for beta-

lactam resistance; beta-lactamases are often endogenously produced by these bacteria232. 

Finally, tetracycline resistance was enriched in Bacteroidetes, and was the most common type 

of resistance in the HBC. Tetracycline resistance has been reported as increasingly common in 
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Bacteroidetes233 and the gut microbiota generally123, and serves to highlight how antibiotic 

resistance can become widespread in commensal bacteria. Whilst tetracyclines are now 

infrequently used in human medicine for this reason, there is a possibility of cross resistance 

with the last resort glycylcycline antibiotic tigecycline, and so the presence of tetracycline 

resistance determinants remains relevant. There were also instances of resistance to 

antibiotic classes being observed significantly less often than expected, such as to beta-

lactams in the Actinobacteria isolates; this would suggest either the isolates of those phyla are 

all susceptible to that antibiotic, or that there are alternative resistance mechanisms not 

identified using the methods applied here. 

Many of the predicted resistances in novel HBC genomes, most of which belong to the phylum 

Firmicutes, were to tetracycline. Other resistances were also predicted such as MLPS, beta-

lactams and diaminopyrimidine (trimethoprim). If known resistance genes were not identified 

in novel isolates, then the fact there are still gut bacteria to be discovered216 does not 

necessarily have serious consequences for the problem of antibiotic resistance. However, 

almost half of the novel HBC isolates did contain antibiotic resistance genes or mutations. 

Since there are uncharacterised gut bacteria, this emphasises that we do not yet fully 

understand the gut microbiota and the extent of their contribution to antibiotic resistance. 

Overall, significantly more known HBC genomes contained resistance determinants than novel 

HBC genomes; the same statement is true for the Bacteroidetes phylum specifically. There 

was no significant difference between the numbers of known or novel Firmicutes or 

Proteobacteria with resistance determinants. For the Proteobacteria, it is possible that this is 

due to sample bias, as there were only five novel Proteobacteria isolates, whereas in 

Firmicutes it is almost a 50:50 division of novel and known genomes. This suggests that known 

bacteria, which are more likely to be more closely related to known pathogenic bacteria, are 
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more likely to contain antibiotic resistance, and that more distantly related (novel and 

uncharacterised) bacteria are less likely to contain antibiotic resistance. However, it is possible 

that again database bias is impacting these results, and that known bacteria are more likely 

to be predicted to contain antibiotic resistance than more distantly related bacteria. Overall 

though, this data emphasises that commensal gut microbiota do harbour clinically relevant 

antibiotic resistances and that this reservoir, much of which remains uncharacterised, is more 

extensive than currently realised. 

Antibiotic resistances were commonly predicted throughout the HBC and there was variation 

observed even between closely related isolates; these statements are known to be true for 

pathogens as well as commensals. The commensal families most enriched for genetic 

determinants of antibiotic resistance are those known to contain opportunistic pathogenic 

species or isolates, such as Enterobacteriaceae and Enterococcaceae. In the last part of this 

chapter, I studied the differences in antibiotic resistance genotypes between commensal and 

pathogenic bacteria. I found that resistance determinants were observed more frequently in 

pathogenic isolates, and again especially in Proteobacteria.  

As mentioned, antibiotics are often targeted towards these bacteria since many pathogenic 

species are Gram-negative Proteobacteria (Fig. 1.3); it is possible then that these bacteria are 

more exposed to antibiotics and thus more likely to develop antibiotic resistance. This may be 

partially true, but antibiotics can have “off-target” effects on other bacteria; other antibiotics 

are broad-spectrum and thus designed to target several types of bacteria, including Gram-

positives. This means that other members of the gut microbiome will also be impacted by 

antibiotic use and thus also under selective pressure to develop resistance. Potentially, 

Proteobacteria might be more genetically capable of developing antibiotic resistance: 

Gammaproteobacteria (which includes Enterobacteriaceae) are known to have super-
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integrons as an integral component in their genomes234, allowing for multiple-drug resistance 

to develop rapidly. However, this concept of increased HGT in particular taxa was discussed 

earlier in this section and is unlikely to be the case. Alternatively, the enrichment of antibiotic 

resistance determinants in Proteobacteria may be due to efflux pumps being more common 

in Gram-negative bacteria than in Gram-positives235. Here, the majority of resistance 

determinants in the Proteobacteria were non-specific, of which efflux mechanisms 

dominated. This confirms that these non-specific mechanisms are a major contributor to the 

antibiotic resistance potential in Proteobacteria and may explain why pathogenic 

Proteobacteria are so prone to cause multi-drug resistant infections. 

However, the average number of determinants per genome was lower in Enterobacter spp. 

than in E. faecium and S. aureus. Since Enterobacter spp. are Proteobacteria, this is perhaps 

unexpected based on my earlier findings, but could be explained by the fact that these 

bacteria have only relatively recently been described as an emerging multi-drug resistant 

threat236. In addition, pathogenic E. faecium and C. difficile genomes had resistances predicted 

to fewer antibiotic categories than pathogenic S. aureus or the Proteobacteria species. 

Pathogenic Gram-negative Proteobacteria are known for having mobile genetic elements that 

can contain several resistance genes at once that can confer resistance to different 

antibiotics237. In addition, pathogenic S. aureus is well-known for being resistant to multiple 

antibiotics238, despite being Gram-positive. This may explain the difference in predicted 

resistance profiles observed.  

When I compared the pathogenic versus commensal genomes, pathogenic isolates were 

generally found to have more genetic resistance determinants per genome on average than 

commensal isolates, particularly Enterobacteriaceae. The exception was for 

Peptostreptococcaceae, although it is possible that this is due to the number of genomes 
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studied (five commensals versus 99 pathogens) and studying additional genomes of 

commensal Peptostreptococcaceae will determine whether this pattern continues to be seen. 

In general for the comparisons between commensals and pathogens, the sample bias means 

these results should be treated with caution.  

Finally, I found that for Peptostreptococacceae and Staphylococacceae, commensal genomes 

had different profiles of predicted antibiotic resistances to pathogenic isolates, whereas 

Enterobacteriaceae and Enterococcaceae shared similar predicted resistance profiles 

between commensal and pathogenic isolates. It is possible that this could be explained by 

more frequent horizontal sharing of resistance determinants within Enterobacteriaceae or 

Enterococcaceae than other bacterial families, though as discussed above phylogeny has not 

been observed to impact this process230. However, that study was performed at the species 

level, and so in the future it would be interesting to more specifically estimate and compare 

the frequency of horizontal gene transfer at other taxonomic levels, such as within and 

between bacterial families. This will also help to understand the spread of antibiotic resistance 

better. Yet again, it is important to consider the potential bias of the database of antibiotic 

resistance genes and mutations. This bias could also explain the observed higher proportions 

of pathogenic species with predicted resistance (and the high numbers of resistance 

determinants per genome) compared to commensal HBC isolates: the pathogenic isolates will 

be more similar to the isolates studied and used to create the database. 

It is important to acknowledge that this study has only used one collection of commensal gut 

bacteria and one database of antibiotic resistance determinants; repeating these analyses 

with additional genomes and alternative databases will help confirm these findings. However, 

since the CARD database is a regularly updated and extensive collection of antibiotic 

resistance determinants, and the HBC is a recent and diverse collection of gut bacteria, these 
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new findings add to current knowledge regarding the gut microbiome as a reservoir of 

antibiotic resistance. The most important message from this chapter is that antibiotic 

resistance genotypes are common in commensals and often share similar predicted resistance 

profiles to related pathogens. In addition, many of the resistance genotypes are to antibiotics 

on the WHO list of essential medicines21, emphasising the potential clinical relevance of these 

observations. 

As the findings in this chapter are based purely on predicted genotypes using known antibiotic 

resistance determinants, this does not necessarily preclude that the isolates studied here are 

not resistant to other antibiotics – or even that they are resistant to the ones predicted. As 

discussed, there may be a database bias that makes it more likely to predict antibiotic 

resistance in bacteria more closely related to pathogenic species. Only phenotypic testing of 

antibiotic sensitivity of HBC isolates will confirm whether or not the observations in this 

chapter are accurate predictions of phenotypic antibiotic resistance. I will investigate this in 

the next chapter. 
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Chapter 4: Determination of phenotypic antibiotic resistance 

in commensal gut bacteria and the accuracy of genomic 

predictions 
 
4.1 Introduction 

4.1.1. Overview 

In the previous chapter, I identified the presence of a range of clinically relevant genetic 

antibiotic resistance genes and mutations in the 737 genomes of the HBC. This analysis 

identified a significant enrichment of ARGs in the Proteobacteria members of the HBC. In this 

chapter I investigate whether Proteobacteria are phenotypically enriched for antibiotic 

resistance using the HBC culture collection, or whether CARD is biased towards identifying 

resistance genotypes in this phylum. In addition, I assess how accurate these predictions of 

antibiotic resistance in commensal gut bacteria are by determining phenotypic susceptibility 

and resistance to a range of clinically relevant antibiotics in a subset of the HBC. 

The gold-standard method for determining isolate-specific and phenotypic antibiotic 

susceptibility is culture-based antibiotic susceptibility testing (AST). Developed mainly for 

clinical isolates of pathogenic bacteria, AST involves culturing the bacterium of interest in the 

presence of an antibiotic and observing its ability to grow. One common method is measuring 

the size of a zone of inhibition: this features a paper disk containing a single concentration of 

the antibiotic that is placed on an agar plate that has been inoculated all over with the isolate 

of interest – after 24 hours incubation this produces a bacterial lawn. The sensitivity of the 

isolate to that antibiotic determines how close to the disk it can grow: the more sensitive the 

isolate, the less close to the disk it will be able to grow. The diameter of the zone where no 

growth occurs (the zone of inhibition) is measured. The antibiotic disks are 0.5cm in diameter, 
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allowing several disks to be placed on a single inoculated plate and many antibiotic and isolate 

combinations to be tested using few resources239. Another method includes measuring the 

minimum inhibitory concentration (MIC). This involves exposing a bacterial isolate to a 

stepwise increasing range of antibiotic concentrations. This can be performed using broth 

microdilution (a series of prepared liquid culture mediums each with a different antibiotic 

concentration is inoculated with the isolate of interest) or using antibiotic gradient strips. 

These are small rectangular paper strips that contain a gradient of an antibiotic and are placed 

on top of an agar plate that has been inoculated to produce a bacterial lawn. The antibiotic 

diffuses into the agar – the more concentrated end will diffuse further – and then after 24 

hours incubation the antibiotic concentration at which the isolate is no longer able to grow 

alongside the strip (the MIC), is measured.  

 

4.1.2. Defining isolates as antibiotic-susceptible or -resistant 

The zone of inhibition or MIC is compared to guidelines provided by the European Committee 

on Antimicrobial Susceptibility Testing (EUCAST) or the Clinical and Laboratory Standards 

Institute (CLSI); international agencies who study and determine zone of inhibition 

breakpoints that categorise a certain isolate as resistant, susceptible or having intermediate 

sensitivity. This depends on having culturable, purified isolates of the bacteria of interest – 

which, until recently has been difficult to achieve for the majority of gut bacteria. Therefore, 

these breakpoint guidelines are only available for a small number of pathogenic bacteria 

species. 

As the costs of DNA sequencing decrease, whole genome sequencing antibiotic susceptibility 

testing (WGS-AST) is being investigated as an alternative method to culture-based AST to 
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determine antibiotic sensitivity. For example, the genome of a disease-causing bacterium 

isolated from a patient is sequenced and then searched for known antibiotic resistance 

determinants; any found are assumed to confer phenotypic resistance to the corresponding 

antibiotic. This approach is considered a rule-based WGS-AST method: the presence of 

antibiotic resistance determinant A in the genome confers resistance to antibiotic B. 

Therefore, rule-based methods rely on databases that contain information regarding the 

nucleotide or amino acid sequence of resistance determinants and which antibiotics they 

confer resistance to240. These methods are attractive as they offer the potential for results to 

be available in a matter of hours rather than days and to screen many more bacteria than 

culture-based methods. Moreover, rule-based approaches offer easily interpretable results 

and are currently the most popular methods for translation of WGS-AST into a clinical setting. 

However, the reliance on databases of known resistance determinants can introduce 

problems; as discussed in the previous chapter, these databases may introduce bias towards 

certain bacteria. This can lead to a “false negative” result: no genetic resistance determinant 

is present in an isolate, but the isolate is phenotypically resistant to a particular antibiotic. 

These rule-based methods therefore vary in their accuracy for antibiotic/taxon 

combinations241; to my knowledge, how accurate they are for gut bacteria has not yet been 

assessed. 

In this chapter, I generate and study the in vitro phenotypes of a diverse set of human 

commensal gut bacteria in the HBC against nine clinically relevant antibiotics (all of which 

belong to classes on the WHO List of Essential Medicines). As previously discussed, phenotypic 

data can be used to determine breakpoints of antibiotic concentrations where isolates are 

considered susceptible or resistant. Since published breakpoints are limited for gut bacteria, I 

defined a system for determining whether the isolates I studied should be considered 
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susceptible or resistant. I then determined the enrichment of phenotypic resistance in isolates 

representing the four main gut phyla of bacteria: Actinobacteria, Bacteroidetes, Firmicutes 

and Proteobacteria242. I also combined this phenotypic data with the genotypic data from the 

previous chapter to determine whether a rule-based prediction method of antibiotic 

resistance inferred from the presence of known resistance determinants can be accurately 

applied to human commensal gut bacteria. I then applied a comparative genomics and 

phenotype approach to identify and study candidate novel antibiotic resistance genes. 

 

4.2 Results 

4.2.1 Phenotypic screening of antibiotic resistance in a subset of 73 HBC isolates 

Having identified the presence of genetic antibiotic resistance determinants using CARD, I 

leveraged our ability to culture anaerobic gut bacteria146,151 to assess the phenotypic response 

to antibiotics. 73 phylogenetically diverse isolates from the HBC (Fig. 4.1) were selected, 

representing all four phyla, approximately 10 % of the culture collection and 14 % of the 

number of different species (39/273) contained in the HBC: 16 isolates of Proteobacteria 

(seven species in two families); 21 isolates of Bacteroidetes (11 species in two families); 11 

isolates of Actinobacteria (five species in two families); 25 isolates of Firmicutes (16 species in 

three families). These isolates have a total of 115 predicted resistance phenotypes against 16 

of the 17 antibiotic resistance classes discussed in Chapter 4 (acridine dye was not included 

since it is not a clinically relevant antibiotic243). Each isolate was tested for in vitro sensitivity 

against nine antibiotics that are clinically relevant and on the WHO list of essential 

medicines21: amoxicillin and ceftriaxone (two different sub-types of beta-lactams), 

ciprofloxacin (a fluoroquinolone), erythromycin (a macrolide), gentamicin (an 
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aminoglycoside), metronidazole (a nitroimidazole), tetracycline, trimethoprim (a 

diaminopyrimidine), vancomycin (a glycopeptide).  

 
Figure 4.1. A phylogeny of 73 isolates from the HBC selected for selective phenotypic screening of antibiotic 
sensitivity. The phylogeny was inferred from 40 core genes of 73 whole genome sequences of gut microbiota 

isolated from healthy human faecal samples. These samples are a subset of the 737 isolates in the Human 
Gastrointestinal Bacterial Culture Collection (HBC) chosen to represent all four phyla. 
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To measure antibiotic sensitivity, I performed zone of inhibition analysis, due to the benefits 

described and because it is easy to perform in the confines of an anaerobic cabinet, where 

culturing anaerobic gut bacteria must take place. This method places single-concentration 

antibiotic disks (Table 4.1) on agar plates inoculated with the isolate of interest and measures 

the diameter of the zone of inhibition (the area surrounding the antibiotic disk where the 

isolate does not grow). An average zone of inhibition diameter was calculated from three 

biological replicates of each isolate/antibiotic combination (73 isolates x 9 antibiotics = 657 

combinations). These phenotypic tests were set up by myself and Mr Mark Stares. 

 
Table 4.1. Single-concentration antibiotic disks used for phenotypic sensitivity testing. Disks were 

manufactured by Oxoid and the concentration chosen was based on CLSI or EUCAST or BSAC guidelines as 
indicated in the table. Disk concentrations are usually selected based on guidance from EUCAST or CLSI 

breakpoint information; however, information for anaerobes is lacking. Therefore, concentrations were mainly 
selected based on advice for Enterococcus, as a Gram-positive, facultative anaerobic Firmicute. Though 

Bacteroides are Gram-negative, the same concentration disks were used for consistency and to allow 
comparisons. 

 

Antibiotic Antibiotic class Disk Concentration 
(μg) 

Based on guidelines 

Amoxicillin Beta-lactam: 

penicillin 

10 Enterococcus; CLSI 2015 

Ceftriaxone Beta-lactam: 

cephalosporin 

10 Enterococcus; EUCAST 2018 

Ciprofloxacin Fluoroquinolone 10 Enterococcus; CLSI 2015 

Erythromycin Macrolide 15 Enterococcus; CLSI 2015 

Gentamicin Aminoglycoside 30 Enterococcus; EUCAST 2018 

Metronidazole Nitroimidazole 5 Miscellaneous; BSAC 2015 

Tetracycline Tetracycline 30 Enterococcus; CLSI 2015 

Trimethoprim Diaminopyrimidine 5 Enterococcus; EUCAST 2018 

Vancomycin Glycopeptide 30 Enterococcus; CLSI 2015 
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Density curves were plotted for average zone of inhibition diameter for each antibiotic (Fig. 

4.2), where each dot represents an average zone size for a particular isolate/antibiotic 

combination. These graphs therefore represent the proportions of isolates in each phylum 

with a certain zone size. Visualising the data in this way identifies trends in the range and 

frequency of zone of inhibition sizes for each antibiotic and each phylum. A larger zone of 

inhibition size (e.g. 60 mm) suggests that that isolate was very sensitive to that antibiotic; in 

contrast, a smaller zone of inhibition size (e.g. 5 mm) suggests that the isolate was less 

sensitive.  

A very narrow range of zone of inhibition sizes occurs several times: Actinobacteria with 

amoxicillin, gentamicin, tetracycline and vancomycin; Bacteroidetes with gentamicin; 

Proteobacteria with ciprofloxacin, gentamicin, metronidazole, tetracycline and vancomycin 

(Fig. 4.2) These narrow distributions generally appear around the mid-range of average zone 

of inhibition sizes (20-40 mm), suggesting that all the isolates tested in those categories were 

sensitive (i.e., the antibiotic had an effect on these isolates). The exception is for Bacteroidetes 

and gentamicin, where the majority of isolates were not sensitive at all (zone of inhibition = 0 

mm). Only two Bacteroidetes isolates were slightly sensitive with a zone of inhibition that was 

always smaller than 10 mm. This suggests that this phylum is particularly unaffected by 

gentamicin. Moreover, in some cases all isolates of a phylum were not sensitive to an 

antibiotic, such as Proteobacteria for metronidazole and vancomycin. Much bigger ranges in 

zone of inhibition size and thus sensitivity are also present: for example Actinobacteria with 

metronidazole; Bacteroidetes with amoxicillin, ceftriaxone, erythromycin and tetracycline; 

Firmicutes with ceftriaxone, erythromycin, tetracycline and trimethoprim. This indicates that 

some isolates in those phyla are more resistant to these antibiotics than other isolates. Since 

only eight bacterial families are represented by these 73 isolates, and the majority of isolates 
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in each phylum belong to a single family, the observed variation in antibiotic sensitivity also 

occurs within bacterial families as well as phyla.  

 
Figure 4.2. Density curves of zone of inhibition size among 73 isolates of the four main phyla of human gut 
bacteria. The isolates were screened for phenotypic antibiotic resistance against the following antibiotics: 
amoxicillin and ceftriaxone (beta-lactams), ciprofloxacin (a fluoroquinolone), erythromycin (a macrolide), 

gentamicin (an aminoglycoside), metronidazole (a nitroimidazole), tetracycline, trimethoprim (a 
diaminopyrimidine), and vancomycin (a glycopeptide) using disks containing a single concentration of an 

antibiotic. The screen was repeated in three biological replicates and zone of inhibition diameter averaged per 
isolate. Density curves for average zone of inhibition size was plotted for each phyla and antibiotic: each dot 

represents an average zone of inhibition size for a particular isolate/antibiotic combination. The x axis is the zone 
of inhibition size in millimetres: a larger average zone of inhibition means that isolate was more sensitive to an 

antibiotic than a smaller zone of inhibition. The y axis is the density or proportion of isolates with a particular 
zone size. Some phyla have a very narrow range of zone of inhibition sizes, e.g. Proteobacteria and ciprofloxacin 

or Actinobacteria and vancomycin. Other phyla have a much bigger range in zone of inhibition or susceptibility, 
e.g. Firmicutes and tetracycline. Mr Mark Stares helped generate zone of inhibition data. 
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4.2.2 Comparison of zone of inhibition sizes between isolates with and without genetic 

antibiotic resistance determinants 

Combining the phenotypic data for these 73 isolates with the genomic data generated in the 

previous chapter it is possible to assess whether the antibiotic resistance genotype (or 

predicted phenotype) corresponds with the actual antibiotic resistance phenotype. Thus, the 

accuracy of the proposed rule-based method of predicting antibiotic resistance in gut bacteria 

is determined. To my knowledge, this is the first time this comparison of genotypic and 

phenotypic antibiotic resistance data has been performed for a diverse collection of gut 

bacteria isolated from healthy humans. 

Initially, I used the Tukey method to study the range of zone sizes in isolates with and without 

predicted resistance and identify outliers with abnormally small zone diameters for each 

antibiotic (Fig. 4.3). This showed that there were isolates completely resistant (zone diameter 

= 0 mm) to an antibiotic despite not harbouring any resistance determinants from CARD to 

that drug. This occurs for all antibiotics and indicates that the CARD based predictions of 

genetic resistance determinants are not completely accurate for these gut bacteria. To 

investigate this further, the bacteria need to be categorised as resistant or susceptible to each 

antibiotic. 
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Figure 4.3. Range of average zone of inhibition between isolates with and without the presence of genetic 
resistance determinants. The average zone of inhibition diameters in isolates with predicted genetic resistance 
determinants against a certain antibiotic were compared against those in isolates with no predicted resistance. 

The boxplots show the interquartile range, median and limits at 1.5IQR above and below. Overall, there was a 
large range in zone of inhibition size in isolates without predicted genetic resistance determinants, with some 

isolates completely resistant to each antibiotic studied even in the absence of genomic resistance.  

 

4.2.3 Defining a system for categorising gut bacteria as resistant or susceptible to antibiotics 

and considering the spectrum of antibiotics 

Guidelines for defining resistance and susceptibility exist for a range of pathogens, though are 

less well-characterised in anaerobes and Gram-positive bacteria. Moreover, they are used for 

categorising closely related taxa, usually at the species level. In this thesis I wanted to compare 

at higher taxonomic levels, therefore I defined a scale using the phenotypic data I generated. 

Where very narrow ranges in sensitivity occur, cut-off points (breakpoints) in zone of 

inhibition size for categorising isolates as susceptible or resistant will be closer together (e.g. 

zone > 7.5 mm = susceptible but zone < 2.5 mm = resistant). Where broad ranges in sensitivity 

occur, breakpoints will be further apart (e.g. zone > 45 mm = susceptible and zone < 15 mm = 

resistant). This makes it clear that breakpoints for susceptibility/resistance must be defined 

for each antibiotic. Ideally, this would also be defined for individual taxa – in pathogens this is 
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done at the species level using thousands of clinical and sometimes environmental isolates. In 

this study, there are not enough isolates to be able to do that and a scale was defined using 

all 73 HBC isolates for each individual antibiotic. I determined the interquartile range of the 

zone of inhibition sizes and categorised isolates ‘resistant’ if the zone of inhibition size was in 

the lower quartile or smallest 25 % of all zone sizes for a particular antibiotic (Fig. 4.4, Table 

4.2). Similarly, isolates were categorised ‘susceptible’ if the zone size was in the upper quartile 

or largest 25 % of all zone sizes for a particular antibiotic. Isolates with zone sizes in the middle 

50 % require further testing to determine whether or not they should be considered 

susceptible or resistant and are referred to as intermediate sensitivity; these will be excluded 

from downstream analyses. 

Figure 4.4. Proposed scale to define antibiotic resistance and susceptibility in human gut microbiota. I 

measured antibiotic susceptibility using single-concentration antibiotic disks and zone of inhibition size for nine 
antibiotics in 73 isolates (657 phenotypes in total). I ordered the zone of inhibition sizes for an individual 

antibiotic from largest to smallest and determined the interquartile range. I considered isolates ‘resistant’ if the 
zone size was in the lower quartile or smallest 25 % of all zone sizes for a particular antibiotic. Similarly, isolates 

were considered ‘susceptible’ if the zone size was in the upper quartile or largest 25 % of all zone sizes for a 
particular antibiotic. Isolates with zone sizes in the middle 50 % require further testing to determine whether or 

not they should be considered susceptible or resistant. Z = zone of inhibition diameter. 
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Table 4.2. Zone of inhibition limits used to categorise isolates of human gut bacteria as antibiotic-resistant or 
-susceptible. Zone of inhibition sizes for nine antibiotics in 73 isolates of human gut bacteria were determined. I 
ordered the zone of inhibition sizes for an individual antibiotic from largest to smallest and determined the 

interquartile range. I considered isolates ‘resistant’ if the zone size was in the lower quartile (min ≤ z < q1, where 
z = average of zone of inhibition in millimetres) or smallest 25 % of all zone sizes for a particular antibiotic. 

Similarly, isolates were considered ‘susceptible’ if the zone size was in the upper quartile (q3 ≤ z ≤ q4 (max)) or 
largest 25 % of all zone sizes for a particular antibiotic. Isolates with zone sizes in the middle 50 % (q1 ≤ z < q3) 

require further testing to determine whether or not they should be considered susceptible or resistant. For 
gentamicin, metronidazole and trimethoprim, all isolates with no zone of inhibition (0.00 mm) were considered 

resistant; any zone larger than 0.00 mm but smaller than the q3 value was considered intermediate. 

 

With this data it is possible to comment on the spectrum of antibiotic efficacy against diverse 

human commensal gut microbiota. For example, ceftriaxone appears a good example of a 

broad-spectrum antibiotic (i.e., an antibiotic that impacts several different bacterial taxa): all 

four phyla contain isolates that are very sensitive to this antibiotic (zone of inhibition > 25 mm, 

the midpoint in the range of zone of inhibitions measured). However, the proportions of 

isolates vary: for Proteobacteria, only one in 16 isolates (6.3 %) was susceptible to ceftriaxone, 

with one isolate (6.3 %) being resistant and the other 14 of intermediate sensitivity (87.5 %). 

In Bacteroidetes, one in 21 isolates (4.8 %) was susceptible to ceftriaxone, 12 isolates were 

resistant (57.1 %), and eight isolates were of intermediate sensitivity (38.1 %). In 

Actinobacteria, three in 12 isolates (25 %) were susceptible, one isolate was resistant (8.3 %) 

and eight isolates were of intermediate sensitivity (66.7 %). In Firmicutes, 14 in 25 isolates (56 

%) were susceptible to ceftriaxone, four isolates were resistant (16 %) and seven were of 

intermediate sensitivity (28 %). On the other hand, gentamicin would be considered a more 

Antibiotic Resistant (min ≤ z < q1) Intermediate (q1 ≤ z < q3) Susceptible (q3 ≤ z ≤ q4 (max)) 
Amoxicillin 0.00 ≤ z < 11.09 11.09 ≤ z < 36.76 36.76≤ z ≤ 52.85 

Ceftriaxone 0.00 ≤ z < 25.88 25.88 ≤ z < 34.90 34.90 ≤ z ≤ 48.85 

Ciprofloxacin 0.00 ≤ z < 8.12 8.12 ≤ z < 25.61 25.61 ≤ z ≤ 30.98 

Erythromycin 0.00 ≤ z < 11.35 11.35 ≤ z < 37.19 37.19 ≤ z ≤ 49.45 

Gentamicin 0.00 ≤ z ≤ 0.00 0.00 < z < 19.92 19.92 ≤ z ≤ 25.21 

Metronidazole 0.00 ≤ z ≤ 0.00 0.00 < z < 35.72 35.72 ≤ z ≤ 56.80 

Tetracycline 0.00 ≤ z < 9.87 9.87 ≤ z < 30.31 30.31 ≤ z ≤ 45.80 

Trimethoprim 0.00 ≤ z ≤ 0.00 0.00 < z < 21.32 21.32 ≤ z ≤ 55.91 

Vancomycin 0.00 ≤ z < 6.85 6.85 ≤ z < 25.47 25.47 ≤ z ≤ 36.205 
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narrow spectrum antibiotic (i.e., an antibiotic that impacts only specific taxa): no 

Bacteroidetes isolates were susceptible, but 19 were resistant (90.5 %; the other two isolates 

were of intermediate sensitivity (9.5 %)). In addition, no Actinobacteria were susceptible to 

gentamicin; all Actinobacteria isolates were of intermediate sensitivity. Four Firmicutes 

isolates were resistant to gentamicin (16 %) and another four were susceptible, with 17 

isolates (68 %) of intermediate sensitivity. Overall, these observations suggest that sensitivity 

varies within bacterial families and phyla and that different antibiotics affect certain families 

and phyla to different extents.  

 

4.2.4 Comparison of genomic predictions of antibiotic resistance with bacterial phenotypes 

and identification of unpredicted resistances 

Four key genotype/phenotype combinations can be defined by comparing these two datsets 

(Table 4.3): Confirmed Resistance (genetic resistance and phenotypic resistance both 

observed); Confirmed Susceptibility (no genetic or phenotypic resistance); Unpredicted 

Susceptibility (genetic resistance predicted but phenotypically susceptible) and Unpredicted 

Resistance (no genetic resistance predicted but phenotypically resistant).  

Table 4.3. Genotype/phenotype combinations of antibiotic sensitivity. Genotypes were determined by 
predicting the presence of antibiotic resistance genes and mutations described in CARD in the genomes of 73 

isolates of human gut bacteria. Phenotypes were determined by zone of inhibition antibiotic susceptibility testing 
and categorized as resistant or susceptible. This produces four possible genotype/phenotype combinations. 

 

 

  Presence of genetic resistance determinant (genotype) 

  Yes (Predicted Resistance) No (Predicted Susceptibility) 

Phenotype 
Resistant Confirmed Resistance Unpredicted Resistance 

Susceptible Unpredicted Susceptibility Confirmed Susceptibility 
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The distribution of these genotype/phenotype combinations among the 73 isolates is 

visualized in Figure 4.5 against their core genome phylogeny. Each cell represents a 

genotype/phenotype combination for a particular isolate and antibiotic. Visualising the data 

in this way shows patterns that can be generalized to each phylum. For example, Confirmed 

Resistances appear most common in the Proteobacteria and Bacteroidetes, whereas 

Actinobacteria have the fewest Confirmed Resistances. In contrast, Firmicutes appear to have 

the most Confirmed Susceptible isolates. In addition, the Proteobacteria isolates have the 

most Unpredicted Susceptibility genotype/phenotype combinations. All phyla feature 

Unpredicted Resistances; in some cases, these occur in every isolate of a particular phylum. 

For example, Proteobacteria and vancomycin; Bacteroidetes and Gentamicin; Firmicutes and 

ciprofloxacin. These observations will now be explored in more detail. 
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Figure 4.5. Distribution of antibiotic sensitivity genotype/phenotype combinations in 73 phylogenetically 
diverse isolates of human gut bacteria reveals many “unpredicted” resistances. The phylogeny was inferred 
from 40 core genes of 73 whole genome sequences of gut microbiota isolated from healthy human faecal 

samples. Each isolate was screened for antibiotic resistance to 9 antibiotics; in total 657 phenotypes were 
determined. Each cell in the figure represents an isolate’s genotype/phenotype combination for a particular 

antibiotic. Dark blue = Confirmed Resistance (genetic resistance and phenotypic resistance both observed); Light 
blue = Confirmed Susceptibility (no genetic or phenotypic resistance); Mid-blue = Unpredicted Susceptibility 

(genetic resistance predicted, but phenotypically susceptible) and Unpredicted Resistance (no genetic resistance 
predicted, but phenotypically resistant). White cells represent combinations involving intermediate antibiotic 

sensitivity.  
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Examining the proportion of these genotype/phenotype combinations per phylum more 

closely (Fig. 4.6) showed that Confirmed Resistance is significantly higher in Bacteroidetes 

compared to the overall set of 73 isolates (q value < 0.0001; p-values determined by Fisher 

exact tests, adjusted using the Benjamini, Hochberg, and Yekutieli method for q-values, 

significant when q < 0.05) and Confirmed Susceptibility is significantly higher in Firmicutes (q 

value < 0.0001). Unpredicted Susceptibility mainly occurs in Proteobacteria, where it was 

significantly enriched (q value < 0.001), plus a very small amount in Firmicutes. All phyla 

demonstrate Unpredicted Resistance, but this occurs significantly more so than expected in 

Bacteroidetes (q value < 0.001). The proportion of Unpredicted Resistance 

genotype/phenotype combinations can be considered as the rate of False Negatives (i.e., the 

absence of CARD resistance determinants but phenotypic resistance indicates susceptibility 

was falsely predicted). In addition, the proportion of Unpredicted Susceptibility can be 

considered as the rate of False Positives (i.e., the presence of CARD resistance determinants 

but phenotypic susceptibility indicates resistance was falsely predicted). Thus, the overall 

False Negative rate for all genotype/phenotype combinations in all isolates was 38.6 %: the 

highest False Negative rate (Unpredicted Resistance, 51.9 %) occurs in Bacteroidetes, followed 

by 40.5 % in Actinobacteria, 39.6 % in Proteobacteria and 29.7 % in Firmicutes. The overall 

False Positive (Unpredicted Susceptibility) rate is 3.2 %: the highest False Positive rate occurs 

in Proteobacteria (11.0 %) and the lowest is 0.72 % in Firmicutes. There were no False Positives 

in Actinobacteria or Firmicutes. Therefore, antibiotic resistance seems to be more accurately 

predicted in some phyla of human gut microbiota than others. 
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Figure 4.6. The proportion of genotype/phenotype combinations for each phylum. The number of 

genotype/phenotype combinations overall for all 73 isolates and each phylum was counted: All – 352; 
Actinobacteria – 37; Bacteroidetes – 81; Firmicutes – 138; Proteobacteria – 96. The proportion of specific 

combinations e.g. Confirmed Resistance, Confirmed Susceptibility, Unpredicted Resistance and Unpredicted 
Susceptibility was also determined across all 73 isolates tested and in each phylum. Confirmed Resistance was 

significantly enriched in Bacteroidetes (q value < 0.0001) compared to the overall Confirmed Resistance rate and 
was significantly lower in Firmicutes (q < 0.0001). Confirmed Susceptibility was enriched in Firmicutes (q < 

0.0001) and occurred significantly less in Bacteroidetes than expected (q < 0.0001). Unpredicted Resistance was 
found in all phyla, but significantly more in Bacteroidetes (q = 0.0354). Unpredicted Susceptibility significantly 

occurs in Proteobacteria (q < 0.0001), with a very small amount in Firmicutes. P-values determined by Fisher 
exact tests, adjusted for multiple-testing using the Benjamini, Hochberg, and Yekutieli method; significant when 

q < 0.05. Unpredicted Resistance can also be considered a False Negative result and Unpredicted Susceptibility 
can be considered a False Positive result. 

 

Assessing the proportion of genotype/phenotype for each antibiotic (Fig. 4.7) reveals that 

resistance is also more accurately predicted for some antibiotics than others. For example, 

both amoxicillin and tetracycline have significantly more Confirmed Resistances (34.2 % and 

44.7 % respectively) than expected compared to the overall rate of Confirmed Resistances 

0

25

50

75

100

Ac
tin

ob
ac

te
ria

Ba
ct

er
oi

de
te

s

Fi
rm

icu
te

s

Pr
ot

eo
ba

ct
er

ia

P
er

ce
nt

 o
f g

en
ot

yp
e/

ph
en

ot
yp

e 
co

m
bi

na
tio

ns

Genotype/Phenotype combination
Unpredicted Resistance

Unpredicted Susceptibility

Confirmed Resistance

Confirmed Susceptibility

n = 37 n = 81 n = 138 n = 96



 

 116 

(13.9 %) across all genotype/phenotype combinations (q values 0.035 and < 0.0001 

respectively; p-values determined by Fisher exact tests, adjusted using the Benjamini, 

Hochberg, and Yekutieli method for q-values; significant when q < 0.05). Confirmed 

Susceptibility was not significantly different for any antibiotic compared to the overall rate 

(45.2 % of genotype/phenotype combinations across all antibiotics, ranging from 33.3 % to 

50.0 % for individual antibiotics). Unpredicted Susceptibility is only observed for ceftriaxone, 

ciprofloxacin, gentamicin, and vancomycin, although was not significantly enriched in any of 

these antibiotics. The overall False Positive (Unpredicted Susceptibility) rate was 3.13 % of 

genotype/phenotype combinations, with the highest False Positive rate occurring for 

gentamicin (11.9 %), closely followed by ciprofloxacin (10.5 %), then dropping to 2.63 % for 

vancomycin; False Positives were not observed for amoxicillin erythromycin, metronidazole, 

tetracycline and trimethoprim. The overall False Negative (Unpredicted Resistance) rate was 

much higher, at 37.8 % of genotype/phenotype combinations. Whilst no antibiotic was 

enriched for more Unpredicted Resistances than expected, the False Negative rate was also 

highest for gentamicin (54.8 %), and similarly high for ciprofloxacin (50.0 %), vancomycin (50.0 

%), and trimethoprim (48.8 %). The lowest False Negative rates occurred for amoxicillin (15.8 

%) and tetracycline (5.26 %); indeed, False Negatives (Unpredicted Resistances) were 

observed significantly less often for tetracycline (q value < 0.0001) than expected, based on 

the overall rate. Overall, that all nine antibiotics have False Negative results (Unpredicted 

Resistances) further indicates that the isolates examined contain more antibiotic resistance 

than was predicted using the CARD database of known, clinically relevant antibiotic resistance 

determinants. 
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Figure 4.7. The proportion of genotype/phenotype combinations for each antibiotic. The number of 
genotype/phenotype combinations overall for all antibiotics (“All”) and each antibiotic was counted: All – 352; 

Amoxicillin – 38; Ceftriaxone – 38; Ciprofloxacin– 38; Erythromycin – 37; Gentamicin – 42; Metronidazole – 42; 
Tetracycline – 38; Trimethoprim – 41; Vancomycin – 38. The proportion of specific combinations e.g. Confirmed 

Resistance, Confirmed Susceptibility, Unpredicted Resistance and Unpredicted Susceptibility was also 
determined across all and for each antibiotic. Confirmed Resistance is enriched in amoxicillin and tetracycline (q 

values = 0.035 and < 0.0001 respectively). Unpredicted resistance was observed significantly fewer times than 
expected for tetracycline compared to all antibiotics (q < 0.0001). P-values determined by Fisher exact tests, 

adjusted for multiple-testing using the Benjamini, Hochberg, and Yekutieli method; significant when q < 0.05. 
Unpredicted Resistance can also be considered a False Negative result and Unpredicted Susceptibility can be 

considered a False Positive result. 
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4.2.5 Comparison of antibiotic resistance databases and prediction methods 

Having identified that the ARIBA with CARD rule-based method is not completely accurate, 

other databases and methods were applied to the 73 isolates to provide alternative 

predictions of resistance genotypes (Fig. 4.8): the CARD’s own Resistance Gene Identifier tool 

(CARD-RGI) and ARIBA with the MegaRes, ResFinder, and SRST2-ARGANNOT databases were 

used. I then compared the newly generated resistance genotypes to the phenotypic data 

generated for the nine antibiotics to determine proportions of each genotype/phenotype 

combination (Confirmed Resistance, Confirmed Susceptibility, Unpredicted Resistance and 

Unpredicted Susceptibility) for each method. The proportion of each combination in the four 

new methods was compared to the proportion from the initial ARIBA with CARD analysis 

performed in this thesis. This shows that the ResFinder and SRST2-ARGANNOT databases had 

significantly higher proportions of Confirmed Susceptibility, but no significant differences in 

the other three genotype/phenotype combinations. All databases perform similarly in terms 

of the rate of False Negatives (Unpredicted Resistances), though it was highest when using 

ARIBA with the MegaRes database (45.5 %, compared to 45.1 % for ARIBA with CARD, 39.8 % 

for CARD-RGI, 39.2 % for ARIBA with ResFinder, and 38.9 % for ARIBA with SRST2-ARGANNOT). 

Despite a significant increase in Confirmed Resistance genotype/phenotype combinations 

with CARD-RGI, this tool also had a higher rate of False Positives (Unpredicted Susceptibility; 

8.5 % compared to 3.1 % for ARIBA with CARD, 2.8 % for ARIBA with MegaRes, and 0.9 % for 

ARIBA with SRST2-ARGANNOT). Therefore, CARD-RGI in particular seems to overpredict 

resistance using genomic data (predicting resistance when the isolate is susceptible). For these 

reasons, the original ARIBA with CARD results are used for subsequent analyses. 
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Figure 4.8. The proportion of genotype/phenotype combinations for each resistance database or method 
tested. The proportion of specific combinations e.g. Confirmed Resistance, Confirmed Susceptibility, 

Unpredicted Resistance and Unpredicted Susceptibility was determined for each database and method (total 
combinations = 352 for each method). These proportions were compared to the original ARIBA+CARD 

proportions using a two-proportion z test with Yates correction (q value significant when q < 0.05). The CARD 
Resistance Gene Identifier (CARD-RGI) method had significantly lower proportion of Confirmed Susceptibility (q 

= 0.0385) and significantly higher proportions of Confirmed Resistance and Unpredicted Susceptibility (q values 
0.0103 and 0.0377 respectively). ARIBA with the RESFINDER and SRST2-ARGANNOT databases both had 

significantly higher proportions of Confirmed Susceptibility than ARIBA+CARD (q = 0.0147 and 0.0119 
respectively). Unpredicted Resistance can also be considered a False Negative result and Unpredicted 

Susceptibility can be considered a False Positive result. 
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4.2.6 Identifying enrichment of unpredicted resistance to certain antibiotics in particular 

phyla 

Determining which phyla have Unpredicted Resistances to certain antibiotics (Fig. 4.9) shows 

that Actinobacteria and Proteobacteria only have Unpredicted Resistance against three and 

four antibiotics respectively, whereas Firmicutes and Bacteroidetes demonstrate Unpredicted 

Resistance for six and eight antibiotics respectively. In particular, Actinobacteria were 

enriched in unpredicted metronidazole and trimethoprim resistance (q values 0.027 and 0.042 

respectively; p-values determined by Fisher exact tests, adjusted using the Benjamini, 

Hochberg, and Yekutieli method for q-values, significant when q < 0.05). Bacteroidetes were 

especially enriched in unpredicted gentamicin resistance (q < 0.0001). Firmicutes were 

enriched in unpredicted ciprofloxacin resistance (q value 0.014), but fewer unpredicted 

metronidazole and vancomycin resistances were observed than expected (q values both 

0.005). Proteobacteria were not enriched for any unpredicted resistances. Therefore, each 

phylum has different profiles of Unpredicted Resistances. In addition, this data supports the 

previous findings that Proteobacteria appears to have resistance more accurately predicted, 

and that unpredicted resistance overall was more common in non-Proteobacteria. However, 

as we previously saw that the Proteobacteria have large proportions of Unpredicted 

Susceptibility (Fig. 4.6), it appears that resistance may also be overpredicted in these isolates. 
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Figure 4.9. The percentage of Unpredicted Resistance antibiotic genotype/phenotype combinations by which 
phyla those combinations were observed in. Proteobacteria and Actinobacteria only demonstrate unpredicted 
resistance for three antibiotics, whereas Bacteroidetes and Firmicutes demonstrate unpredicted resistance for 

eight and six antibiotics respectively. Actinobacteria were enriched for Unpredicted Resistance to Metronidazole 
and Trimethoprim (q = 0.027 and 0.042 respectively). Bacteroidetes were enriched overall for Unpredicted 

Resistance (q = 0.042) but especially gentamicin Unpredicted Resistance (q < 0.0001). Firmicutes were enriched 
for ciprofloxacin Unpredicted Resistance (q = 0.014) but significantly fewer metronidazole and vancomycin 

Unpredicted Resistances were observed compared to the complete dataset (q values both 0.005). Proteobacteria 
were not enriched for any Unpredicted Resistances; significantly fewer Unpredicted Resistances were observed 

for ciprofloxacin (q = 0.042), gentamicin (q = 0.027), metronidazole (q = 0.042), trimethoprim (q = 0.042) and 
vancomycin (q < 0.0001). P-values determined by Fisher exact tests, adjusted for multiple-testing using the 

Benjamini, Hochberg, and Yekutieli method; significant when q < 0.05. 
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Considering the data so far, it is clear that the ARIBA + CARD method used here to initially 

predict antibiotic resistance in these human commensal gut bacteria is not accurate. In 

addition, the isolates studied contain more antibiotic resistance than is predicted using a rule-

based method with the CARD database of known, clinically relevant antibiotic resistance 

determinants. In particular, the Bacteroidetes isolates were enriched for False Negatives 

(Unpredicted Resistance) and Proteobacteria isolates were enriched for False Positives 

(Unpredicted Susceptibility). 

 

4.2.7 Further investigations of unpredicted resistance 

Unpredicted Resistance genotype/phenotype combinations represent instances of a 

mismatch between two important methods for determining antibiotic sensitivity (culture-

based- and WGS-AST). Some of these unpredicted resistance observations are likely explained 

by intrinsic resistance; for example, where they occur in all isolates of a particular phyla, 

including gentamicin in the Bacteroidetes isolates studied or vancomycin in the 

Proteobacteria (Fig. 4.5). However, where these unpredicted resistances occur in isolates that 

are closely related to isolates susceptible to that same antibiotic, these may be explained by 

genetic resistance determinants that are novel, or not described in CARD. This offers the 

opportunity to look for candidate novel antibiotic resistance genes or mutations in isolates 

with unpredicted resistance. In particular, there are instances of unpredicted ceftriaxone 

resistances observed in Bacteroidetes and Firmicutes where closely related isolates 

demonstrate Confirmed Susceptibility or Confirmed Resistance. As ceftriaxone resistance is 

often mediated by beta-lactamase enzymes these examples may indicate the presence of 

novel beta-lactamases in these human commensal gut microbiota. 
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Two particular isolates appeared good targets for novel beta-lactamases: Bacteroides faecis 

18048_2#66 and Lachnospiraceae nov. 20287_6#18. These isolates both had ceftriaxone zone 

of inhibition sizes of 0 mm, indicating complete resistance to this beta-lactam antibiotic. They 

were also in the top five most ceftriaxone-resistant isolates (Fig. 4.10), but were the only two 

of those five without genetic determinants of beta-lactam resistance in their genomes. 

  



  

Figure 4.10. Ranking of isolates by ceftriaxone sensitivity. The average zone of inhibition sizes was used to rank the 73 HBC isolates by ceftriaxone sensitivity (bottom = most 
sensitive, largest zone of inhibition; top = least sensitive, smallest zone of inhibition). Five isolates were completely resistant to ceftriaxone (no zone at all). 
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4.2.8 Searching for novel antibiotic resistance determinants in human gut commensal 

microbiota 

A comparative phenotyping and genomics approach was used to identify candidate novel 

resistance genes from Bacteroides faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18. 

I determined the average nucleotide identity (ANI), a measure of genomic similarity between 

the coding regions of two genomes, for each isolate under investigation and its closest two 

relatives from the HBC (Fig. 4.11). The two related B. faecis isolates, B. faecis 13470_2#65 and 

B. faecis 12718_7#26 were both more than 99 % similar by ANI to B. faecis 18048_2#66. 

Lachnospiraceae nov. 20287_6#18 had a very close relative of 99.24 % ANI, Lachnospiraceae 

nov. 8080_1#94, but the second next most closely related isolate from the HBC (Coprococcus 

nov. 20298_3#65) was only 81 % similar by ANI. 

I determined the average Minimum Inhibitory Concentration (MIC) for ceftriaxone for each of 

the six isolates using Biomerieux Etests (antibiotic gradient strips) across three biological 

replicates (Figure 4.11). The average MIC for the two isolates with Unpredicted Resistance to 

ceftriaxone, B. faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18, was at least 256 

µg/ml. The maximum concentration of ceftriaxone in the Etest strip was 256 µg/ml; these 

results mean that those two isolates were completely resistant to ceftriaxone at the maximum 

concentration tested and so the MIC is greater than or equal to 256 µg/ml. For B. faecis 

18048_2#66, both related isolates B. faecis 13470_2#65 and B. faecis 12718_7#26 were more 

sensitive to ceftriaxone, with MICs under 60 µg/ml. The Lachnospiraceae nov. 8080_1#94 

isolate shared the same phenotype as Lachnospiraceae nov. 20287_6#18 with an MIC of at 

least 256 µg/ml, and the Coprococcus nov. 20298_3#65 was much more sensitive with an MIC 

of just 0.5 µg/ml.  
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Figure 4.11. Comparison of ceftriaxone sensitivity in two sets of isolates from the HBC. Bacteroides faecis 
18048_2#66 and Lachnospiraceae nov. 20287_6#18 were identified as having unpredicted ceftriaxone 
resistance. Their two closest relatives each were identified from the HBC using a 40 core gene phylogeny and 
Average Nucleotide Identity (ANI) was determined for the two closest relatives compared to the isolate in which 
unpredicted resistance was observed. The ceftriaxone Minimum Inhibitory Concentration (MIC, µg/ml) was 
determined for each isolate. 

 

This data offers the opportunity to identify genomic differences between those isolates that 

may explain phenotypic differences. The Lachnospiraceae nov. 20287_6#18 isolate will be 

excluded since its most closely related isolate shared a ceftriaxone resistant phenotype and 

the ceftriaxone-susceptible Coprococcus nov. 20298_3#65 is a different species making 

genomic identification impractical. The B. faecis isolates, however, represent an ideal 

situation of very closely related isolates with differing phenotypic ceftriaxone sensitivity. In 

the rest of this section, I will investigate genomic differences between these B. faecis isolates 

to identify potential candidate beta-lactamase genes or mutations that may confer the 

unpredicted ceftriaxone resistance observed in B. faecis 18048_2#66. 

Core genome analysis was performed using Roary201 on the three B. faecis isolates and 

identified 3652 genes shared by all three isolates (“shared core genes”) and 614 genes unique 

to the ceftriaxone resistant B. faecis 18048_2#66 (“resistant-unique genes”, absent from the 

two more sensitive B. faecis isolates). ShortBRED209 was used to reduce the amino acid 

sequences of 235,009 proteins containing the phrase “beta-lactamase” in their name from the 
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NCBI Protein database as of July 2018) into a database of reference amino acid markers. This 

includes beta-lactamase regulatory proteins so can possibly account for regulatory mutations 

too. These markers were used to search the translated amino acid sequences of the 614 

resistant-unique genes and the 3652 shared core genes with 90 % identity. Other cut offs were 

tested (Table 4.4); however for subsequent analyses the 90 % cut off was used as a high level 

of similarity is typically required to infer functionality. Seven of the shared core genes were 

found to have amino acid sequences 90 % similar to reference amino acid markers from beta-

lactamases (Table 4.5). A single gene labelled “Group 2384” was annotated as a candidate 

beta-lactamase.  

 

Table 4.4. Numbers of resistant-unique and shared core genes with similarity to beta-lactamase markers in 
the human gut bacteria isolate Bacteroides faecis 18048_2#66. ShortBRED194 was used to reduce the amino acid 
sequences of 235,009 proteins containing the phrase “beta-lactamase” in their name from NCBI Protein database 
(as of July 2018) into a database of reference amino acid markers. These markers were used to search the 
translated amino acid sequences of the 614 resistant-unique genes and the 3652 shared core genes with a variety 
of similarity cut offs. 

Identity cut off (%) No. of resistant-unique genes matched No. of shared core genes matched 
90 1 7 
80 1 15 
70 1 20 
60 2 30 
50 3 52 
25 23 244 



  

Table 4.5. A summary of candidate beta-lactamases that may explain an unpredicted ceftriaxone resistance phenotype observed in the human gut bacteria isolate Bacteroides 

faecis 18048_2#66. This isolate was phenotypically resistant to ceftriaxone in the absence of genetic determinants of beta-lactam resistance described in CARD. The closest two 

relatives from the HBC were identified and also phenotyped; they were both more sensitive to ceftriaxone. Roary core genome analysis was performed to identify genes unique to 

the resistant isolate (“resistant unique”) and genes shared by all three isolates (“shared core”). These genes were searched for sequences with 90 % similarity to amino acid markers 

derived from 230,009 beta-lactamase related proteins in the NCBI Protein database. The table describes the genes that were found to contain markers of these proteins, what the 

genes were annotated as by Roary and the protein that the observed marker is derived from. 

Category Gene Annotation NCBI Beta-lactamase marker hit 

Resistant unique Group 2384 Beta-lactamase domain-containing protein WP004329300 MULTISPECIES: MBL fold metallo-hydrolase [Bacteroidales] 

Shared core ampG1 Major Facilitator Superfamily NP812531 AmpG protein, beta-lactamase induction signal transducer [Bacteroides 
thetaiotaomicron VPI-5482] 

Shared core ampG2 Signal transducer NP809947 signal transducer [Bacteroides thetaiotaomicron VPI-5482] 

Shared core blaR1 Transcriptional regulator WP010538315 MULTISPECIES: M56 family metallopeptidase [Bacteroides] 

Shared core Group 106 TonB WP062695069 M56 family peptidase [Bacteroides thetaiotaomicron] 

Shared core Group 3492 Protein of unknown function (DUF2874) WP062695288 hypothetical protein [Bacteroides thetaiotaomicron]; Putative beta-
lactamase-inhibitor-like, PepSY-like; pfam11396 

Shared core Group 4547 Protein of unknown function (DUF2874) WP008766859 hypothetical protein [Bacteroides thetaiotaomicron]; Putative beta-
lactamase-inhibitor-like, PepSY-like; pfam11396 

Shared core Group 6146 Putative exported beta-lactamase protein WP008769828 DUF302 domain-containing protein [Bacteroides fragilis]; Beta-lactamase; 
pfam00144 
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Subsequently, I investigated whether any of these candidate beta-lactamases might explain 

the unpredicted ceftriaxone resistance in B. faecis 18048_2#66. Firstly, I determined whether 

the candidate beta-lactamase gene Group 2384 unique to the resistant isolates corresponded 

with increased ceftriaxone MIC. To do this, I looked for the presence of Group 2384 in the 

complete set of HBC genomes with 100 % sequence length and nucleotide identity. This gene 

was identified in 16 other HBC isolates, all in the Bacteroidetes phylum. Five of these 

Bacteroidetes isolates were excluded from further analysis due to the presence of other 

genetic beta-lactam resistance determinants (identified in the analyses discussed in Chapter 

3). For the 11 remaining Bacteroidetes isolates, I measured the ceftriaxone MICs for their 

closest relatives in the HBC (Fig. 4.12). In theory, if Group 2384 was responsible for the 

ceftriaxone-resistance phenotype in B. faecis 18048_2#66 and potentially other Bacteroidetes 

isolates, I would expect the presence of Group 2384 in an isolate’s genome to correspond with 

a higher ceftriaxone MIC. This correlation was not observed, suggesting that this candidate 

beta-lactamase may not be responsible for this phenotype, or that it is not functional in the 

other eleven Bacteroidetes isolates.  
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Figure 4.12. Ceftriaxone MIC in isolates with and without the Group 2384 candidate beta-lactamase gene. 
Group 2384 is a candidate beta-lactamase first identified in the Bacteroides faecis 18048_2#66, an isolate with 
unpredicted ceftriaxone resistance (highlighted in yellow). The presence of the Group 2384 gene was searched 
for in the HBC (100 % sequence length and ID) and was identified in 16 isolates. 11 Group 2384-positive isolates 
without any other predicted beta-lactam resistance (determined using CARD) plus each of their two closest 
relatives from the HBC were selected. ANI analysis was used to determine how similar the Group2384-negative 
isolates were to their closest Group 2384-positive relative. Ceftriaxone MICs were measured using Etests in three 
biological replicates of ach isolate. The presence of Group2384 was not correlated with a lower MIC for 
amoxicillin and ceftriaxone. 

 

Although the presence of Group 2384 did not correlate with increased ceftriaxone MIC and 

thus resistance in other HBC isolates, this does not necessarily rule out its function as a 

ceftriaxone-resistance gene in B. faecis 18048_2#66. It is possible that it is not expressed in 

the other isolates or contains mutations that leave it non-functional. To rule out the latter 

hypothesis, I extracted and aligned the Group 2384 sequences from the twelve Group 2384-

positive isolates I tested for phenotypic ceftriaxone sensitivity to infer a phylogenetic tree (Fig. 

4.13). Whilst the Group 2384 genes were not identical, very few mutations were identified: 

Bacteroides vulgatus 18048 2#68 has base T at position 545 where the other eleven isolates 

have an A, seven of the Group 2384-positive isolates (including B. faecis 18048_2#66) have 
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base C at gene position 15, whereas the other five Group 2384-positive isolates have base T 

(Fig. 4.13). These mutations were all synonymous and did not alter the amino acid sequence. 

Therefore, it is unlikely that these mutations had any direct impact on the hypothetical 

function of Group 2384 as a ceftriaxone beta-lactamase, especially since six of the eleven 

Group 2384 sequences were identical to the one from B. faecis 18048_2#66. 
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Figure 4.13. Group 2384 gene sequences from twelve HBC isolates. Group 2384 is a candidate beta-lactamase 
first identified in the Bacteroides faecis 18048_2#66, an isolate with unpredicted ceftriaxone resistance 
(highlighted in yellow). A: the nucleotide sequence for the Group 2384 gene was extracted from 11 other HBC 
isolates in which it was identified, aligned and used to infer a phylogeny and identify mutations (labelled at 
branch points). B: the alignment of nucleotides 1-40 and 521-560 are shown to illustrate the single nucleotide 
polymorphisms in the Group 2384 gene sequences. 
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nt15:C

nt15:T

nt15:T; nt545:T

                                            1         40
          Bacteroides finegoldii 13414_6#45 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
           Alistipes onderdonkii 21673_4#13 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
           Alistipes onderdonkii 21673_4#9  ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
           Alistipes onderdonkii 13414_6#74 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
        Odoribacter splanchnicus 18048_2#90 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
           Alistipes onderdonkii 11861_6#62 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
              Bacteroides faecis 18048_2#66 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
       Bacteroides xylanisolvens 20298_3#31 ATGAAAAAGA CATCTACAGT ACAATTGGTG CGCAATGCCA
      Parabacteroides distasonis 18048_2#71 ATGAAAAAGA CATCTACAGT ACAATTGGTG CGCAATGCCA
       Bacteroides xylanisolvens 12718_7#32 ATGAAAAAGA CATCTACAGT ACAATTGGTG CGCAATGCCA
      Parabacteroides distasonis 18048_2#61 ATGAAAAAGA CATCCACAGT ACAATTGGTG CGCAATGCCA
            Bacteroides vulgatus 18048_2#68 ATGAAAAAGA CATCTACAGT ACAATTGGTG CGCAATGCCA
                                          521         560
          Bacteroides finegoldii 13414_6#45 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
           Alistipes onderdonkii 21673_4#13 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
           Alistipes onderdonkii 21673_4#9  TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
           Alistipes onderdonkii 13414_6#74 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
        Odoribacter splanchnicus 18048_2#90 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
           Alistipes onderdonkii 11861_6#62 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
              Bacteroides faecis 18048_2#66 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
       Bacteroides xylanisolvens 20298_3#31 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
      Parabacteroides distasonis 18048_2#71 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
       Bacteroides xylanisolvens 12718_7#32 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
      Parabacteroides distasonis 18048_2#61 TGACTATATC GTGGTAAACT CCGGAGGTGC AATCTTTCCC
            Bacteroides vulgatus 18048_2#68 TGACTATATC GTGGTAAACT CCGGTGGTGC AATCTTTCCC

B)
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To further investigate the potential function of Group 2384 as a ceftriaxone resistance-

conferring beta-lactamase I performed a gain-of-function cloning experiment. A plasmid 

carrying a chloramphenicol resistance marker gene and the Group 2384 gene was designed 

with GeneArt (ThermoFisherScientific; Fig. 4.14). The Group 2384 gene was inserted within a 

tetracycline resistance gene, under the control of the tetracycline resistance gene promoter. 

The synthesised construct was transformed into electrocompetent E. coli cells via 

electroporation with the assistance of Mr Matthew Dorman. The transformed cells were 

grown on LB agar plates containing chloramphenicol (12.5 μg/mL) to check that the vector 

had been taken up by the E. coli cells. Transformed cells were also plated on LB agar containing 

chloramphenicol (12.5 μg/mL) and ceftriaxone at a concentration of 256 μg/mL (representing 

the observed B. faecis 18048_2#66 phenotype) and 4 μg/mL (slightly above the MIC of the 

untransformed E. coli). Whilst colonies were observed on the chloramphenicol control plates, 

no colonies were observed in the presence of either concentration of ceftriaxone. This 

suggests the Group 2384 gene may not infer ceftriaxone resistance and explain the 

unpredicted phenotype in B. faecis 18048_2#66.  

Figure 4.14. GeneArt construct containing Group 2384 candidate beta-lactamase gene. The plasmid pACYC184 
was used as the cloning vector, designed and synthesised using GeneArt (ThermoFisherScientific) to contain the 
gene sequence of the Group 2384 candidate beta-lactamase identified from Bacteroides faecis 18048_2#66. The 
Group 2384 gene was inserted within a tetracycline resistance gene, under the control of the tetracycline 
resistance gene promoter. Mr Matthew Dorman assisted with the design of the plasmid construct. 

Chloramphenicol 
resistance gene
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It is possible that a mutation in a shared candidate beta-lactamase in the B. faecis isolates 

could cause the unpredicted ceftriaxone resistance phenotype. The gene sequence for each 

of the seven shared candidate beta-lactamases were extracted from the three B. faecis 

isolates and used to infer phylogenetic trees for each gene from the nucleotide sequences 

(Fig. 4.15). I looked for non-synonymous mutations that would alter the amino acid sequence 

of the protein product and could result in altered activity between the resistant B. faecis 

18048_2#66 and more sensitive B. faecis 12718_7#26 and B. faecis 13470_2#65. Amino acid 

substitutions were identified in five of seven shared candidate beta-lactamases; in only one 

of these, “ampG2”, was there a substitution unique to resistant B. faecis 18048_2#66. AmpG2 

is a putative transporter related to AmpG, which possibly transports signal molecules into P. 

aeruginosa cells for the induction of the ampC beta-lactamase244. AmpG2 may function in a 

similar way; a non-synonymous mutation in this gene could potentially explain the phenotypic 

differences in these three isolates; however, it does not tell us exactly which beta-lactamase 

is degrading the ceftriaxone and amoxicillin antibiotics in B. faecis 18048_2#66. It could be 

controlling Group 2384, but further experiments would be required to investigate this. 
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Figure 4.15. Gene phylogenies of candidate shared beta-lactamases in three HBC Bacteroides faecis isolates. 

Seven genes (A-G) shared between three isolates of B. faecis from the HBC were found to contain markers of 
beta-lactamase related proteins from the NCBI Protein database. One of the isolates was observed to be resistant 
to ceftriaxone in the absence of any known clinically relevant beta-lactam resistance determinant. Amino acid 
substitutions were observed in five of the seven genes; only in one gene was the mutation unique to the resistant 
isolate (B, ampG2). 
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Following these experiments, I applied a shotgun cloning approach to look for novel beta-

lactam resistance genes from the whole genomes of B. faecis 18048_2#66 and 

Lachnospiraceae nov. 20287_6#18. Both isolates were regrown from HBC glycerol stocks kept 

at -80 °C, single colonies purified and grown in culture overnight. The full length 16S rRNA 

sequences were amplified from these cultures using 7f and 1510r PCR primers and sequenced 

by Sanger sequencing at Eurofins Scientific (Germany). The 16S rRNA sequences were then 

checked against the whole genome sequence data for these isolates to confirm their identity 

and check for contamination. Following this quality control, genomic DNA was extracted from 

the culture pellets of each isolate using phenol:chloroform extraction method by Mr Mark 

Stares. These genomic samples were used as starting material for the Copy Control Fosmid 

Cloning Kit (Lucigen) to clone 25-40 kb fragments into E. coli using fosmid vectors and Lambda 

phages. I determined the ceftriaxone MIC of the recipient E. coli strain using Etests as before. 

The Copy Control Fosmid Cloning method was applied to each isolate individually and 

therefore represents shotgun cloning from purified isolates rather than mixed samples. This 

enables identification of the host of any novel antibiotic resistance genes discovered in these 

experiments. The kit includes control DNA of 40kb fragments, which was included as quality 

control alongside shotgun cloning of the two isolates with unpredicted ceftriaxone resistance. 

The fosmid vector carries a chloramphenicol resistance marker gene; the transformed cells 

were grown on LB agar plates containing chloramphenicol to check that the vector had been 

taken up by the E. coli cells. The transformed E. coli cells were also grown on LB agar plates 

containing ceftriaxone at a concentration of 256 μg/mL (representing the observed B. faecis 

18048_2#66 phenotype) and 4 μg/mL (slightly above the MIC of the untransformed E. coli).  

This procedure was repeated four times. Each time, hundreds of colonies were observed on 

the LB plates with chloramphenicol from the E. coli transformed with the control insert DNA. 
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However, only one or two colonies were observed from E. coli transformed with DNA from 

Bacteroides faecis 18048_2#66 or Lachnospiraceae nov. 20287_6#18 on the LB plates with 

chloramphenicol and no colonies on plates containing chloramphenicol and ceftriaxone.  

 

4.3 Discussion 

In this chapter I have determined the susceptibility or resistance of 73 phylogenetically diverse 

human commensal gut bacteria isolates against nine commonly used, clinically relevant 

antibiotics from the WHO list of essential medicines21. This phenotypic data helps to 

determine a comprehensive view of the impact of commonly used antibiotics across the 

diversity of gut microbiota. This offers insights into the spectrum of antibiotics which may be 

used to inform healthcare practices – such as which antibiotics to prescribe for infections 

caused by opportunistic pathogens from the gut. The main antibiotic from this study that 

would be useful to specifically target opportunistic anaerobic or gut bacteria is metronidazole, 

as most Bacteroidetes and Firmicutes tested were generally sensitive to this antibiotic, 

although this increases the likelihood of impacting more members of the gut microbiota.  

In addition to knowing which antibiotics to use in the case of infections by opportunistic gut 

bacteria, this phenotypic data can advise on which antibiotics to avoid if trying to minimise 

the impact on commensal gut microbiota. For example, ceftriaxone is a broad-spectrum 

antibiotic245 and therefore is useful for treating infections of unknown cause or with resistance 

to narrower spectrum antibiotics. Although typically administered via injection, not orally, 

ceftriaxone is known to have an impact on the commensal gut microbiota246 and here I have 

showed that members of all four key gut microbiota could be affected. On the other hand, 

amoxicillin is also considered relatively broad spectrum, but here the only isolates that were 
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sensitive were Firmicutes, and one Bacteroidetes. Amoxicillin is one of the most commonly 

prescribed drugs in the world and typically administered orally for e.g. ear infections or throat 

infections. Amoxicillin also showed high levels of Confirmed Resistance; therefore, this 

antibiotic should also be used with caution as it may target Firmicutes, some of our most 

important gut microbiota. Moreover, there are already relatively high levels of amoxicillin 

resistance caused by known genetic determinants in commensal Proteobacteria that could 

potentially be transferred to pathogenic bacteria, especially under the selective pressure of 

amoxicillin therapy. 

Another example of note is that of gentamicin: gentamicin is considered a broad-spectrum 

antibiotic, but one that does not work on anaerobes and streptococci. This is because 

gentamicin relies on oxygen-dependent transport into bacteria cells24. The results in Figure 

4.5 demonstrate that this appears true for anaerobic Bacteroidetes, which were largely 

considered resistant to gentamicin. However, several Firmicute isolates were considered 

intermediate sensitivity or even susceptible, despite Lachnospiraceae (making up the majority 

of the Firmicutes isolates screened here) reported to be obligate anaerobes247. Therefore, 

gentamicin may have a more extensive impact on commensal gut microbiota than previously 

realized. Interestingly, there were no antibiotics that both Bacteroidetes and Firmicutes were 

both generally resistant to: all the antibiotics tested here have the potential to cause harm to 

common commensal gut microbiota.  

The antibiotic resistance phenotypes were compared to the predicted resistance profiles 

based on the presence of genetic resistance determinants described in CARD, as determined 

in the previous chapter. The observations in this chapter follow a rule-based method of 

predicting antibiotic sensitivity phenotypes from antibiotic resistance genotypes. Rule-based 

methods have been found to be accurate for predicting antibiotic resistance in several species 
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of bacterial pathogens240,242,248. However, to my knowledge they have not been tested for 

accuracy in human gut commensal bacteria. I created a system to define the combined data 

as Confirmed Susceptibility, Confirmed Resistance, intermediate sensitivity (with or without 

genetic resistance determinants present), Unpredicted Susceptibility and Unpredicted 

Resistance. This revealed Unpredicted Susceptibility (False Positive results) to be most 

common in Proteobacteria and Unpredicted Resistance (False Negative results) most common 

in Bacteroidetes, but observed for all four phyla and all nine antibiotics.  

By identifying unpredicted resistances, this suggests that the results in the previous chapter 

where antibiotic resistance determinants are enriched in Proteobacteria is not a true 

reflection of an enrichment of phenotypic antibiotic resistance. As in the previous chapter, it 

is important to note that database bias may explain this: a database designed from pathogenic 

bacteria (which are predominantly Proteobacteria, see Fig 1.3) may be more likely to identify 

similar antibiotic resistance genes or mutations in bacterial isolates more closely related to 

pathogens. It is likely that this partially explains the difference in observed enrichment of 

antibiotic resistance genotypes and antibiotic resistance phenotypes. Indeed, using 

alternative databases with generally similar False Positive and False Negative rates supports 

this. Moreover, the system I defined to classify isolates as phenotypically susceptible or 

resistant used all the isolates studied. In the future, the system should be redefined using 

isolates within more closely related taxa. Once studies approach the magnitude of those 

performed in pathogenic isolates (e.g. hundreds or thousands of isolates per species), the 

species level would be the most appropriate taxon to use. However, that resistance is better 

predicted to some antibiotics than others may also reflect the main mechanism of resistance 

for these enzymes: antibiotic resistance caused by the presence or absence of a particular 

gene (e.g. beta-lactamases or tetracycline resistance proteins are more likely to be called 
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accurately than a single nucleotide mutation). The largest proportion of the Unpredicted 

Resistances in Bacteroidetes were for gentamicin (46 %), which as discussed is thought not to 

work on anaerobic organisms such as Bacteroidetes. However, there are several other types 

of Unpredicted Resistance observed in the Bacteroidetes isolates, as well as relatively high 

levels of Confirmed Resistance. This indicates that Bacteroidetes make important 

contributions to the antibiotic resistance potential of the gut microbiota, which may have 

implications for the treatment of opportunistic pathogens caused by members of this phylum.  

It was difficult to account for potential intrinsic resistances in this study to allow for the fact 

that current rules of antibiotic spectrum might not apply across the diversity of gut bacteria. I 

have already discussed one instance where Unpredicted Resistances might have been due to 

intrinsic resistance (gentamicin), but all the Proteobacteria isolates were also resistant to 

vancomycin as well. This antibiotic targets Gram-positive bacteria specifically, so this result is 

not surprising. In other cases, where there is variation on genotype/phenotype combinations 

between very closely related isolates, Unpredicted Resistances might indicate instances of 

novel antibiotic resistance genes or mutations.  

In this study I identified two isolates with the highest possible ceftriaxone resistance measured 

in the absence of any genetic determinants of beta-lactam resistance. I investigated these 

isolates, Bacteroides faecis 18048_2#66 and Lachnospiraceae nov. 20287_6#18, for novel 

antibiotic resistance genes. This included detailed analysis and experiments regarding one 

particular candidate beta-lactamase (“Group 2384”), although I was not able to confirm its 

function. The Group 2384 gene was integrated into the pACYAC184 plasmid within a 

tetracycline resistance gene and thus was under the control of the tetracycline resistance gene 

promoter. Accordingly, the Group 2384 gene should have been expressed; however, the 

mRNA may not have been translated into the protein product with potential beta-lactamase 
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activity. It is also possible that the observed phenotypic variation in the three B. faecis isolates 

could be caused by differences in gene expression that cannot be detected with WGS alone. 

Q-PCR or RNA-sequencing of isolates growing in the presence of antibiotics, such as 

ceftriaxone, are two methods that may help determine if this is the case. In particular, qPCR 

experiments would help identify if the expression level of the candidate Group 2384 beta-

lactamase is associated with the presence of mutations (as discussed towards the end of 

section 4.2.8) and/or differences in ceftriaxone sensitivity. 

Furthermore, I was unable to identify any other candidate novel antibiotic resistance genes 

with the comparative genomics method. This could be due to the presence of novel beta-

lactamases of less than 90 % similarity to beta-lactamases in the NCBI Protein database, 

though above 60 % similarity, no additional candidate beta-lactamases were identified. Below 

50 % similarity, additional candidate beta-lactamase genes were identified and so these may 

be of interest; however, high sequence similarity is usually required to infer functional 

similarity249. This can be extended to other observations of Unpredicted Resistance; less 

stringent similarity cut offs when searching for the presence of antibiotic resistance 

determinants may produce more hits that could explain these observations, however, the 

Unpredicted Susceptibility rate is likely to rise in response.  

The shotgun cloning method did not prove successful in identifying candidate novel antibiotic 

resistance genes during this study either. As hundreds of colonies were yielded from the 

control input DNA, this suggests the problem lies with the input DNA from Bacteroides faecis 

18048_2#66 and Lachnospiraceae nov. 20287_6#18. The input DNA is therefore likely a highly 

critical factor for this protocol. In the future, this method will continue to be optimised within 

our laboratory as it would be a valuable tool to have available. Identifying genes conferring 

phenotypes such as antibiotic resistance and improve genome annotation in these organisms, 
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many of which are novel and/or uncharacterized, would be especially useful. In particular, any 

novel antibiotic resistance genes from gut bacteria should be curated into databases of known 

antibiotic resistance genes so that they can be included in antibiotic resistance surveillance 

programmes, such as the European Antimicrobial Resistance Genes Surveillance Network 

(EURGen-Net)250. 

Although susceptibility was generally better predicted than resistance, there were relatively 

high rates of Unpredicted Susceptibility in the Proteobacteria. This means that antibiotic 

resistance can be overpredicted. This also has relevance for healthcare: if a bacterium was 

predicted to be resistant to a particular antibiotic, a patient might be prescribed a different 

antibiotic that could pose more harm by being broader spectrum or more toxic than was 

required. Unpredicted susceptibility could be due to mis-calling a mutation as present when 

it is in fact absent, or by identifying the presence of housekeeping genes involved in the 

regulation of antibiotic resistance genes (such as the vanR regulator of vancomycin 

resistance251) . It could also be due to lack of expression or compensatory mutations to offset 

any fitness cost associated with the predicted antibiotic resistance mechanism. Alternatively, 

the observed genetic determinants of resistance could be taxon-specific. If a resistance 

determinant is observed in a taxon other than what it has been described in in the literature, 

something may be missing from the original host that is required for the determinant to be 

expressed or functional. It is again important to acknowledge the caveat of using CARD, 

whereby the majority of its antibiotic resistance genes and mutations have been described in 

just a few species of pathogenic bacteria. Therefore, in the context of commensal gut bacteria, 

they may not function as described in pathogenic isolates. It would be interesting to 

investigate these Unpredicted Susceptibilities in more depth. For example, the impact of 

individual genes on false predictions could be studied: if the presence of a gene or mutation 
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always results in Unpredicted Susceptibility (i.e., despite its presence the isolate is susceptible 

to that antibiotic), then determinants with this pattern could be filtered out as a poor 

predictor of antibiotic resistance. Taking this work forward must also involve looking for 

antibiotic resistance genes from other sources (e.g. curating those from functional 

metagenomic studies of bacterial communities) and determining specific relationships 

between the presence of antibiotic resistance determinants in a genome and antibiotic 

sensitivity. To really understand these relationships, more isolates of commensal gut bacteria 

should be studied (on a scale similar to that of pathogenic bacteria) and MICs should be 

determined for a more specific antibiotic sensitivity measurement.  

This chapter highlights that currently a rule-based approach to estimating antibiotic sensitivity 

in human gut microbiota is not without flaws. Databases of antibiotic resistance determinants 

established through research on a relatively small number of pathogens, such as CARD, should 

therefore be used with caution when applied to more diverse, less well-characterised 

organisms – such as the human gut microbiota. As demonstrated, these methods can under-

predict the antibiotic resistance of such isolates and show bias towards Proteobacteria. These 

databases can be useful and accurate for well-studied pathogenic bacteria168,252, but if we are 

to accurately predict antibiotic resistance in the human gut microbiota and in metagenomic 

samples, more comprehensive databases of resistance genes are required. It may be 

necessary to have separate databases for common pathogens and for other bacteria, such as 

opportunistic pathogens, commensal gut microbiota, or other types of environmental 

bacteria. Since pathogens can acquire antibiotic resistance genes from environmental 

bacteria, these types of databases would be useful to help monitor the emergence of clinically 

relevant antibiotic resistance in clinical isolates of disease-causing bacteria. However, this will 

require additional similar studies comparing antibiotic resistance genotypes and phenotypes 
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but at a much larger scale, perhaps using high throughput alternative phenotyping methods 

such as plate based assays253,254.  

Moreover, functional metagenomics can be a very useful tool for identifying candidate novel 

antibiotic resistance genes139,141,169,176,255,256, but requires optimization if used to study 

individual isolates. Putative ARGs are often annotated as such based on nucleotide or amino 

acid similarity to known antibiotic resistance genes/proteins and as such it is unknown 

whether they will confer phenotypic resistance. Determining the level of resistance that can 

be conferred and the distribution of novel resistance genes should become a routine part of 

these experiments. Since understanding antibiotic resistance genes among communities of 

bacteria and in individual, uncharacterized bacteria is difficult, perhaps prioritising 

bacteria/antibiotics of special interest – such as clinical or ecological relevance – is needed to 

focus the efforts of novel antibiotic resistance gene discovery. 

Overall, this chapter shows that phenotypic antibiotic resistance in gut microbiota can vary 

between closely related isolates of commensal gut bacteria, much like in pathogenic bacterial 

species. Moreover, the Bacteroidetes and Firmicutes also demonstrate extensive phenotypic 

resistance, despite Proteobacteria appearing enriched for clinically relevant genetic 

determinants of antibiotic resistance in the previous chapter. These results further emphasise 

the role of the human gut microbiome as a reservoir for antibiotic resistance in terms of its 

occurrence and prevalence, but also that the extent of this is not yet fully known. In the next 

chapter, I will investigate the dynamics of antibiotic resistance in human gut microbiota and 

how commensal gut bacteria can evolve and spread antibiotic resistance.  
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Chapter 5. Modelling the development of antibiotic 

resistance in vivo 
 

5.1 Introduction 

In the previous two chapters antibiotic resistance genotypes and phenotypes in commensal 

human gut bacteria were investigated. In addition to determining the taxonomic distribution 

of genetic determinants of resistance and comparing antibiotic resistance genotype with 

phenotype, it is also important to understand the dynamics of how gut bacteria develop and 

spread antibiotic resistance in the human microbiota. Several in vitro studies have 

investigated the horizontal transfer of antibiotic resistance genes between closely related 

bacterial species, such as plasmids from Salmonella into E. coli257 or from Lactococcus spp. 

into Bacteroides, Bifidobacterium and Enterococcus spp.258, but results from in vitro 

experiments cannot easily be extrapolated to in vivo situations. In silico analysis of publicly 

available bacterial genomes has identified antibiotic resistance genes with high sequence 

similarity between human and animal gut bacteria and pathogens152,259, indicating horizontal 

transfer, but this is indirect evidence. For direct evidence, we need to study a baseline level of 

antibiotic resistance in the human gut microbiome and observe how it can change in response 

to selective pressure caused by antibiotic therapy.  

Studies with this goal have been performed before, such as those that use 16S rRNA gene 

sequencing to assess impact of antibiotics on the overall community178,260-262. For example, a 

study of combined amoxicillin and metronidazole on wild-type mice found that approximately 

70 % of 16S rRNA gene sequences in antibiotic treated mice were Proteobacteria, compared 

to just 1 % in control non-treated mice179. In addition, prolonged reductions in overall diversity 

were observed even after antibiotic treatment was stopped179. However, 16S rRNA gene 
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profiling studies do not allow for high-resolution taxonomic analysis, as often species share 

similar 16S rRNA gene sequences. Because of this, strains and some species (such as E. coli 

and Shigella) cannot be distinguished with this method263. Moreover, these studies rely on 

databases of characterised 16S rRNA gene sequences. As discussed previously, there are still 

uncharacterised human gut bacteria without reference genomes available, meaning not all 

16S rRNA gene sequences can be classified taxonomically and are therefore difficult to study. 

This is also true of whole genome shotgun metagenomics, which relies on databases of 

published reference bacterial genomes: previous studies using whole genome shotgun 

metagenomics have identified high levels of unclassified sequences264. Reference genome 

based metagenomics, where a custom database of reference genomes is curated and tailored 

for metagenomic analysis relating to the study being performed, is an emerging method to 

circumnavigate these problems151,265,266. This involves culturing bacteria present in the sample 

to be studied, identifying novel bacteria and generating new reference genomes for these 

organisms, and combining these into a database of reference genomes146,151. Reference 

genome based metagenomics was implemented in the present study to provide this tailored, 

high-resolution analysis of antibiotic resistance dynamics in gut microbiota. The culturing and 

WGS component of reference genome based metagenomics also assists strain-level 

resolution, which has typically been difficult with whole genome shotgun metagenomics due 

to limitations with sequencing depth and reference databases267. 

Studies on humans are often confounded by factors such as different genetics, diets, lifestyles, 

health condition, infection state and being limited to relatively few participants. Experiments 

in mice therefore offer a much higher level of control, as we can use mice with the same 

genetic background, from the same litter, that are fed the same diet and kept in controlled 

living conditions, and it is possible to study large numbers of individuals in these controlled 
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conditions. Previous models have used the di-associated mouse, in which a recipient and 

donor strain of interest are introduced into GF mice to assess plasmid conjugation frequency 

in the gut environment. This model has indicated that inter-species transfer is possible 

through the transfer of tetracycline and erythromycin resistance from Lactobacillus plantarum 

to Enterococcus faecalis268. Conventional mouse models have helped identify that transfer of 

plasmids bearing antibiotic resistance genes (ARGs) can occur at high frequency in the gut269, 

even when colonisation resistance is present. However, the di-associated model is considered 

the “worst case scenario” model due to the lack of colonisation resistance from indigenous 

microbiota and so does not model the typical gut environment270. Moreover, studies in wild-

type mice are not fully representative of biological processes in humans as mice have gut 

microbiomes that differ from humans271. Our lab has established methods to colonize mice 

with human-derived gut microbiota: these are GF mice colonised by gut bacteria of healthy 

humans following faecal transplant of human stool into the GF mice. This provides a very 

powerful tool for controlled experiments regarding the gut microbiome in a manner that is 

more representative of processes in humans. In addition, by culturing and sequencing whole 

genomes of bacteria isolated before and after antibiotic exposure, there is tremendous power 

to discriminate ARG-HGT events at a level not previously possible. 

In this chapter, I use mice with humanised gut microbiota to model dynamics of antibiotic 

resistance in the human gut bacterial community and individual strain evolution following 

antibiotic therapy. Amoxicillin was used as the antibiotic providing selective pressure on the 

gut bacteria of these humanised microbiota mice. Amoxicillin is considered a relatively broad-

spectrum penicillin, and is one of the most prescribed drugs globally18. Moreover, amoxicillin 

is often administered orally, and so can directly impact on our indigenous gut microbiota as 

well as the infections it is prescribed to treat. As we are still discovering novel and 
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uncharacterised members of the human gut microbiota, the full impact of broad-spectrum 

antibiotics such as amoxicillin on commensal gut bacteria remains to be defined. To 

investigate the comprehensive impact of amoxicillin on human gut bacteria including those 

considered uncharacterised, I combined large-scale culturing, reference genome based 

shotgun metagenomics and whole genome sequencing with experiments in humanised 

microbiota mice. Large-scale culturing of thousands of strains of human gut bacteria allows 

the type and extent of any genomic and phenotypic changes caused by amoxicillin therapy to 

be investigated by actively tracking the movement of genes conferring AMR. Therefore, this 

chapter aims to assess the impact of amoxicillin therapy on amoxicillin resistance in gut 

bacteria of mice colonised with human-derived intestinal microbiota, uniquely at both the 

community level and genome level of individual strains. 

 

5.2 Results 

5.2.1 Overview of mouse models 

To model the impact of amoxicillin on antibiotic resistance in the human gut microbiome, I 

utilised two mouse lines with human-derived gut microbiota that had been established in our 

laboratory prior to the start of my PhD. The mouse lines were established by performing faecal 

microbiota transplant (FMT) of homogenised stool from “healthy” human donors (“Donor 2” 

and “Donor 7”, who also contributed faecal samples for developing the HBC143) into germ free 

mice. Donors were considered healthy if they had not taken antibiotics in the six months prior 

to donating stool, suffered any gastrointestinal conditions or taken oral medications. FMTs 

were performed via oral gavage to each GF mouse weekly for three weeks to establish Donor 

2 and Donor 7 specific cohorts. This was repeated in several GF mice, which were then bred 

(e.g. Donor 2 mouse with Donor 2 mouse or Donor 7 mouse with Donor 7 mouse) to produce 



 

 149 

two separate mouse lines. Culturing has been performed extensively on samples from human 

Donor 2 and Donor 7146,151. The gut microbiota of Donor 2 mice differs from Donor 7 mice in 

the following ways: different community composition (i.e., different bacteria, see Appendix 3, 

Fig. A3.1); different antibiotic resistance potential, including amoxicillin-resistant organisms 

and antibiotic-resistance genes present in each community (Appendix 3, Figure A3.2 & A3.3); 

colonisation resistance.  

Mice from each line were given amoxicillin orally via drinking water for seven days. Faecal 

samples were collected immediately before and after amoxicillin treatment. The amoxicillin 

was provided at a theoretically therapeutic dose (approximately 45 mg/kg/day), based on the 

concentration required to adequately exceed the minimum inhibitory concentration (MIC) of 

sensitive organisms in otitis media ear infections206. The quantity and concentration of 

drinking water containing amoxicillin was determined using the average weight of a mouse 

(30 g) and approximate volume of water consumed per mouse per day (5 ml). I performed 

deep bacterial culturing with three conditions (aerobic, anaerobic, and targeted for spore-

formers) on YCFA agar plates. YCFA is considered a medium able to culture a broad range of 

bacteria. Metascrape samples (metagenomic sequencing of the total bacterial growth on a 

culture plate) from vegetative bacterial growth on YCFA plates in anaerobic conditions have 

been shown to be representative of the community in the original stool sample that was 

cultured from146. Thus, we can use anaerobic vegetative metascrape samples  to represent 

the overall gut bacteria community, as well as targeted metascrapes for particular phenotypes 

such as antibiotic resistance. Each condition was plated in duplicate: with and without the 

addition of amoxicillin at a concentration of 8 mg/L in the agar plates. This concentration 

represents a MIC level where if some pathogenic bacteria are still able to grow in its presence 

they are considered clinically resistant according to EUCAST and CLSI guidelines; thus, this 
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concentration is used to select what can be considered amoxicillin-resistant bacteria. Details 

of each experiment performed are described and summarised below (Fig. 5.1, Table 5.1). 

In the initial experiment (“D7AMX1”), eight Donor 7 humanised microbiota mice were divided 

into two cages. Both cages received a therapeutic dose of amoxicillin as described above. Two 

faecal pellets were collected from each mouse on experimental days 0 (immediately before 

amoxicillin regime started), 3, 7 (amoxicillin regime ended), 10, 14 (seven day recovery) and 

35 (28 day recovery). Both pellets per mouse were weighed, then one was immediately frozen 

at -80°C and the remaining pellets were pooled per cage. Pooled pellets were homogenised 

100 mg/ml in sterile PBS and serially diluted 1 in 10, from 10-1 to 10-7. Dilutions were plated as 

described above (Fig. 5.1). In this experiment, individual colonies were isolated (Table 5.1). 

The Donor 7 humanised microbiota mouse experiment was repeated (“LJP01”), but instead of 

isolating individual colonies metascrapes were collected (Table 5.1). In this experiment, three 

cages each containing six Donor 7 humanised microbiota mice were treated with amoxicillin 

as before. Faecal samples were collected and processed as described for D7AMX1. Colonies 

were counted for all samples, conditions and time points. Bacterial growth on culture plates 

was mixed with 0.5 ml sterile PBS, scraped off each plate for Day 0, 7, 14 and 35 and collected 

for whole genome shotgun metagenomic extraction and sequencing. 
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Figure 5.1. Diagram of experiments assessing the impact of amoxicillin on mice with human-derived gut 

microbiota. The timeline illustrates the sampling days of the experiments and the duration of amoxicillin 
treatment. The experiments were performed in both Donor 2 and Donor 7 humanised microbiota mice. The 
lower diagram illustrates the sample processing and different culture conditions and culture plate set ups: faecal 
pellets were collected from each mouse at each experimental time point. Faecal pellets were weighed and 
homogenised 100 mg/ml in sterile PBS, then pooled in equal amounts per cage. Pooled faecal homogenates were 
diluted 1:10 from 10-1 to 10-7 and appropriate dilutions plated on YCFA agar plates, without and with amoxicillin 
added (final concentration 8 mg/L amoxicillin). Plates were incubated for 24 hours at 37°C in aerobic conditions, 
or 48 hours at 37°C in anaerobic conditions. In addition, aliquots of the pooled faecal homogenates were ethanol 
shocked (diluted 1:4 in 70 % ethanol for 30 minutes) to kill vegetative bacteria and select for ethanol-resistant 
spores. Ethanol shocked samples were plated on YCFA plus sodium taurocholate (STC, a bile salt to promote 
spore germination) and incubated at 37°C in anaerobic conditions. All conditions were plated in duplicate to 
allow metascrape collection (collection of the total bacterial growth on agar plate for total DNA extraction and 
metagenomic sequencing) and the isolation of individual colonies. Individual colonies were picked into 96 well 
plates (one isolate per well) containing YCFA broth and incubated for 24 hours (aerobic) and 48 hours (anaerobic) 
at 37°C. The full length 16S rRNA gene sequence was amplified by PCR from each isolated colony in broth and 
sequenced by Sanger sequencing to assign species- or genus-level taxonomy based on similarity to reference 16S 
rRNA gene sequences. 
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A similar mouse model experiment was performed using three cages each containing six 

Donor 2 humanised microbiota mice (LJP02). The experiment set up was identical to that of 

LJP01 (Fig. 5.1) except that Day 0 samples were collected from all cages. In the LJP02 

experiment all culturing plates were duplicated to allow both metascrapes to be collected and 

individual colonies to be isolated (Table 5.1). 

 
Mouse line No. mice Sex Colony counts Isolated colonies for WGS Metagenomics 

Donor 2 18 across 3 
cages 

F LJP02 LJP02 LJP02 

Donor 7 18 across 3 
cages 

F LJP01 û LJP01 

Donor 7 8 across 2 
cages 

M(4), F(4) û D7AMX1 û 

Table 5.1. Summary of experiments assessing the impact of amoxicillin on mice with human-derived gut 

microbiota and samples or data generated. The table details the mice groups included in each experiment and 
rationale. Sex: F = female, M = male (brackets indicate number of each). The last three columns indicate what 
data was collected from which experiments (D7AMX, LJP01 or LJP02). û indicates not generated as part of that 
experiment. 

 

5.2.2 Impact of amoxicillin on the bacterial load in mice with humanised gut microbiota 

The total number of colonies growing on each plate for all pooled homogenates, conditions 

and time points were counted to determine changes in bacterial load over the time course of 

the LJP01 and LJP02 mouse experiments (Fig. 5.3). Raw colony counts were converted to 

colony forming units of bacteria per gram (CFU/g) of stool, representing bacterial load. The 

data was combined across the Donor 2 and Donor 7 experiments to look for general trends in 

bacterial load. The CFU/g data was then tested for normal or log-normal distribution using the 

Anderson-Darling272, D’Agostino and Pearson273, Shapiro-Wilk274, and Kolmogorov- Smirnov 

tests275. As many of the colony count datasets did not pass the normality tests, a 
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Figure 5.2. Bacterial load over the course of humanised microbiota mouse amoxicillin model experiments. 
Donor 2 and Donor 7 humanised microbiota mice were given a therapeutic dose of amoxicillin orally via drinking 
water for seven days; faecal pellets were collected per mouse, homogenized and pooled per cage per time point. 
The pooled homogenates were diluted and spread on agar plates in a variety of conditions: YCFA agar and 
anaerobic; YCFA agar plus 8 mg/L amoxicillin and anaerobic; YCFA agar, and aerobic; YCFA agar plus 8 mg/L 
amoxicillin and aerobic. Aliquots of each pooled homogenate was treated with 70 % ethanol for 30 minutes to 
select for spores, which were plated on YCFA agar + 1 % sodium taurocholate (STC) with and without 8 mg/L 
amoxicillin and grown anaerobically. Colonies were counted after 24 hours (aerobic growth) or 48 hours 
(anaerobic growth) and used to calculate the average bacterial load (colony forming units (CFU)/g stool) and 
standard deviation per cohort. A non-normal distribution was assumed for performing One-Way Anova (Kruskal-
Wallis) tests to determine statistically significant changes in bacterial load over the time course of the mouse 
experiments (comparisons were performed between consecutive time points for all time points e.g. Day 0 vs. 
Day 1, Day 1 vs. Day 3, etc. and between major time points i.e., Day 0 vs. Day 7, Day 7 vs. Day 14, Day 14 vs. Day 
35, Day 0 vs. 14, Day 0 vs. 35 and Day 7 vs. 35. The two-stage step-up method of Benjamini, Krieger and 
Yekutieli193 was used to correct for multiple comparisons by controlling the false discovery rate. * marks where 
statistical significance (q < 0.05) was observed between marked time points.  

0

5

10

15

0

5

10

15

0

5

10

15

0 1 3 7 10 14 35

Aerobic vegetative 

Anaerobic vegetative 

From plates with amoxicillin

From plates without amoxicillin

Anaerobic spore-forming

0 1 3 7 10 14 35

0 1 3 7 10 14 350 1 3 7 10 14 35

0 1 3 7 10 14 350 1 3 7 10 14 35

Lo
g1

0 
C

FU
/g

 s
to

ol

Day

* *
*

* *

*

*
*

*

*
* *

*

* *

*
**

* *

0

5

10

15

0

5

10

15

0

5

10

15

0 1 3 7 10 14 35

Aerobic vegetative 

Anaerobic vegetative 

From plates with amoxicillin

From plates without amoxicillin

Anaerobic spore-forming

0 1 3 7 10 14 35

0 1 3 7 10 14 350 1 3 7 10 14 35

0 1 3 7 10 14 350 1 3 7 10 14 35

Lo
g1

0 
C

FU
/g

 s
to

ol

Day

* *
*

* *

*

*
*

*

*
* *

*

* *

*
**

* *



 

 154 

non-normal distribution was assumed for performing Kruskal-Wallis (One-way ANOVA of non-

parametric data) tests. Comparisons were performed between consecutive time points for all 

time points e.g. Day 0 vs. Day 1, Day 1 vs. Day 3, etc. and between major time points e.g. Day 

0 vs. Day 7, Day 7 vs. Day 14, Day 14 vs. Day 35, Day 0 vs. Day 14, Day 0 vs. Day 35, Day 7 vs. 

Day 35. The two-stage step-up method of Benjamini, Krieger and Yekutieli193 was used to 

correct for multiple comparisons by controlling the false discovery rate (q value significant < 

0.05). There were no significant changes to aerobic bacterial load.  

There was a significant increase in anaerobic vegetative bacterial load from plates without 

amoxicillin after the first day of treatment (Day 0 vs. Day 1, q value < 0.0001) and over the 

course of the amoxicillin therapy (Day 0 vs. Day 7, q value <0.0001). In addition, despite a 

significant reduction between Day 7 and Day 10 (q value 0.0124), the anaerobic vegetative 

load at recovery time points remained significantly higher than Day 0 (vs. Day 14 and Day 35, 

q values 0.0087 and 0.0201 respectively). However, Day 35 was significantly lower than Day 7 

(0.0087). This indicates that the total anaerobic vegetative load increased after amoxicillin 

treatment began and then decreased after the treatment was stopped, but not back to its 

original level. There was also a significant decrease in anaerobic vegetative bacterial load from 

plates containing amoxicillin between Day 7 and Day 10 (q value 0.0138), and overall between 

Day 7 and Day 35 (q value 0.0026). There was an overall significant decrease in anaerobic 

vegetative bacterial load from plates containing amoxicillin (Day 0 vs. Day 14 and Day 35, q 

values 0.0010 and 0.0002 respectively). This indicates an overall decline in the load of 

amoxicillin-resistant anaerobic vegetative bacteria during the experiment. 

The load of anaerobic spore-forming bacteria cultured on both plates with and without 

amoxicillin significantly decreased between Day 0 and Day 1 (q values 0.0003 and < 0.0001 

respectively). In addition, both sets of anaerobic spore-forming bacteria showed significant 
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decreases in load between Day 0 and Day 7 (q values 0.0019 and < 0.0001 respectively). There 

was a subsequent significant increase in anaerobic spore-forming bacteria from plates with 

without amoxicillin after treatment stopped (Day 7 vs. Day 10, q value < 0.0001). The load of 

anaerobic spore-forming bacteria from plates without amoxicillin were significantly higher at 

Day 35 than Day 7 (q value <0.0001), but not significantly different to Day 0. Anaerobic spore-

formers from plates with amoxicillin significantly increased between Day 10 and Day 14 (q 

value 0.0003), and between Day 14 and Day 35 (q value 0.0076). The Day 14 level was 

significantly higher than Day 0 (q value 0.00206) but whilst Day 35 was significantly higher 

than Day 7 (0.0163), it was not significantly different to Day 0. This indicates that the 

amoxicillin had a significant impact on reducing the load of spore-forming bacteria during the 

antibiotic treatment but that this community recovered in terms of CFU/g after the treatment 

stopped.  

 

5.2.3 Deep culturing and whole genome sequencing to improve taxonomic classification of 

metagenomic data 

Having studied the gross impact on bacterial load, the impact of amoxicillin on the diversity of 

the gut bacterial communities in these mice was investigated using high resolution 

metagenomics that can resolve to species and subspecies level. I first classified the 

metagenomic sequence reads from the metascrapes (total bacterial growth collected from 

culture plates) using Kraken211, comparing them to a database of publicly available reference 

genomes of gut bacteria (including the 737 from the HBC151; this database was created in 

December 2017 by Dr Sam Forster). To determine the taxonomic resolution, I calculated the 

percentage of reads in each sample that could be classified to species level using this Kraken 
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database and determined the average proportion of classified sequence reads for each culture 

condition (aerobic, anaerobic vegetative and anaerobic spore-forming; Figure 5.4). Although 

the aerobic and anaerobic vegetative metascrapes were relatively well classified (> 95 %), 

lower levels of classified sequence reads were observed for spore-forming metascrapes (71.9 

%). This indicates that this database is not optimal for classifying all of the metagenomic data 

generated in this study and I therefore sought to culture and whole genome sequence 

additional isolates to improve the taxonomic classification and downstream analysis. 

Figure 5.3. Proportion of classified metagenomic sequences reads from metascrapes of cultured faecal bacteria 

from mice with humanised gut microbiota. Sequence reads were assigned taxonomic classification using Kraken 
and a database containing publicly available gut bacterial and archaeal genomes, including those in the HBC151. 
The average percentage of classified reads for each culture condition was determined. Bars represent Standard 
Error of the Mean. This shows that this database was not capable of assigning taxa to all sequence reads, 
especially for spore-forming bacteria.  

 

To identify candidates of novel reference genomes that might explain some of the unclassified 

sequence reads, I assembled contigs de novo from unclassified reads in one metascrape 

sample from the Donor 7 and one from the Donor 2 mouse experiments. I then performed a 

BLASTn analysis of those contigs against the NCBI RefSeq database (as of April 2017). Overall, 
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of the contigs had high similarity to a Turicibacter genome (Fig. 5.4A); this was also true of the 

Donor 2 mouse unclassified contigs (Fig. 5.4B). This indicated a Turicibacter-like organism 

could explain some of the unclassified data and would be a good candidate for a novel 

reference genome to add to the Kraken database.  

Subsequently, I isolated approximately 11,000 colonies from across all the culture conditions 

to identify previously uncultured bacteria, including this candidate Turicibacter-like organism, 

and obtain as much diversity from the gut microbiota of these mice as possible. Capillary 

sequencing of the  16S rRNA gene was performed for all isolates. This resulted in 8838 full 

length 16S rRNA gene sequences being returned; the reduction in numbers of isolates to 16S 

rRNA gene sequences is likely caused by the failure to grow in broth or contamination of 

isolates. The 16S rRNA gene sequences were analysed and assigned OTUs with Mothur208 

using a 99 % identity cut off (i.e., sequences 99 % similar to each other were grouped into one 

OTU) in terms of similarity to the HBC143 16S rRNA gene sequences. In total, 367 OTUs were 

observed.  



  

Figure 5.4. Diversity of the contigs assembled de novo from unclassified metagenomic sequence reads. De novo assembly was performed on the unclassified reads from a single 

metagenomic sample, with a high level of unclassified sequence reads, and the resulting contigs analysed using the NCBI RefSeq BLAST database containing all published genomes 

(as of April 2017). The chart shows the proportion of sequence reads by their most closely related reference genome (inner most ring: lowest taxonomic level e.g. domain; outer 

most ring: highest taxonomic level e.g. species). In this sample, the highest proportion of unclassified reads were most closely related to Turicibacter sanguinis, indicating that 

bacteria similar to this species would be useful to culture and generate new genomes from. 
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A rarefaction curve of this data was plotted: as the number of colonies picked increased, the 

number of OTUs isolated continued to increase even past 8000 colonies (Fig. 5.5). The trend 

was modelled to predict that the maximum OTU richness would feature 427 OTUs across the 

two mouse lines, but that approximately 30,000 colonies would be needed to be picked to 

recover all 427 OTUs. The 8838 colonies I isolated recovered approximately 86 % of the 

predicted total number of OTUs in gut microbiota of these mice.  

Figure 5.5. A rarefaction curve of the number of OTUs observed against the number of colonies picked. 11,000 
individual bacterial colonies were isolated from mice with humanised gut microbiota before and after amoxicillin 
treatment. 8838 full length 16S rRNA gene sequences were generated and grouped into operational taxonomic 
units (OTUs) using a 99 % similarity cut off. The number of new OTUs observed as the number of colonies picked 
increases was plotted, showing that even as we reach almost 9000 colonies new OTUs are still being obtained. 
The blue dotted lines mark the maximum numbers of isolates picked and number of OTUs observed. The trend 
in part A was modelled using nonlinear regression to produce a rarefaction curve (solid red line) and estimate 
the maximum number of OTUs likely to be found across the two mouse lines with humanised gut microbiota: 
the red dotted line represents this predicted maximum of 427 OTUs. It would be necessary to pick approximately 
30,000 colonies to recover the 427 OTUs. Dr Hilary Browne, Dr Sam Forster, Dr B. Anne Neville, Mr Mark Stares, 
Dr Elisa Viciani and Dr Ana Zhu all helped pick colonies from culture plates into broth cultures. 
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The consensus 16S rRNA gene sequence for each OTU was compared to 16S rRNA gene 

sequences in NCBI RefSeq (April 2017); the majority belong to Firmicutes (54.8%, Fig. 5.6) and 

Bacteroidetes (33.8%), with just a few Proteobacteria (11.4%) and Actinobacteria (1.36%).  

 
Figure 5.6. A phylogeny of the consensus sequences of 367 OTUs identified from 8838 full length 16S sequences 
generated in this study. 11,000 individual bacterial colonies were isolated from mice with humanised gut 
microbiota before and after amoxicillin treatment. 8838 full length 16S sequences were generated and grouped 
into operational taxonomic units (OTUs) using a 99 % similarity cut off. Consensus sequences of the 367 OTUs 
were compared to NCBI RefSeq (April 2017). The majority of the OTUs belong to the Bacteroidetes and Firmicutes 
phyla. 
 

Looking at the proportion of colonies picked per OTU shows that approximately 1100, or 13 

%, of the 8838 16S rRNA gene sequences were clustered in an OTU with 97 % nucleotide 

identity to Turicibacter sanguinis (Figure 5.7A). 16S rRNA gene sequences most similar to 

Turicibacter also demonstrated variability (Figure 5.7B), showing that these isolates are not all 

identical. Three isolates related to Turicibacter and 49 others with less than 97 % identity  



  

Figure 5.7. Diversity of OTUs isolated by culture from mice with human-derived microbiota. A) 16S rRNA gene amplification and Sanger sequencing was performed for all bacteria 
isolated in the mouse experiments described in this chapter, resulting in 8838 16S full length sequences. These were grouped into OTUs using Mothur and a 99 % cut off (i.e., 16S 
rRNA gene sequences >99 % similar to each other were considered one OTU); consensus OTU sequences were generated as part of this process. OTUs were named after the reference 
genome of highest similarity plus the length of the sequenced 16S rRNA gene and the percentage nucleotide identity to the reference sequence. For example, 
Turicibacter_sanguinis_strain_MOL361_1358_97.496 is the name of an OTU whose 16S rRNA gene is 1358 bases in length and 97.496% similar to the 16S rRNA gene sequence of 
Turicibacter sanguinis strain_ OL361. The proportion of all isolates each OTU contributed was calculated: 1127, or 13 %, were clustered in an OTU with 97 % identity to Turicibacter 
sanguinis. B) A phylogenetic tree of approximately 1127 16S rRNA gene sequences with 97 % identity to the reference Turicibacter sanguinis strain MOL361 genome shows there is 
considerable diversity even within the taxon. The red stars mark three isolates that were purified and DNA extracted for WGS. 
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to known 16S rRNA gene sequences (and therefore potentially novel species) were purified 

and whole genome sequenced. In addition, 11 isolates representing very common OTUs (>20 

colonies isolated per OTU) and 135 isolates representing taxa that appeared to have increased 

in amoxicillin resistance during the experiment were purified and whole genome sequenced. 

Their relationship with the HBC isolates is demonstrated in Figure 5.8. 

 
Figure 5.8. The phylogenetic relationship between the HBC and 198 new genomes generated in this study. The 
Human Gut Bacteria Culture Collection currently contains 737 isolates of human gut bacteria. The amino acid 
sequences of 40 core genes were extracted from all genomes and used to infer a phylogeny to illustrate the 
taxonomic diversity of the HBC and 198 genomes generated in this thesis. The stars mark which genomes are 
considered ‘novel’ based on the similarity of their 16S rRNA gene sequence to known 16S rRNA gene sequences 
in RefSeq. Mr Mark Stares performed genomic DNA extractions for the 198 D7AMX1 or LJP02 isolates. 
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All 198 new genomes were added to the Kraken database used earlier for reclassification of 

the metagenomic sequence reads from the metascrape data. The custom database contains 

publicly available gut bacteria genomes plus the 198 genome assemblies generated in this 

study (of which 52 represent isolates of potentially novel new taxa (16S ID < 98.7 %). The 

classification of metagenomic sequence reads to species level was improved from 95.6 % to 

99.1 % in aerobic metascrapes and 95.3 % to 96.5 % in anaerobic vegetative metascrapes 

(Figure 5.9). The spore-forming samples were still less well classified at 86.6 % but also the 

most improved (up from 71.9 %). The resolution of downstream metagenomic data analysis 

was higher as a consequence. 

Figure 5.9. Comparisons of proportion of classified metagenomic sequences reads from metascrapes of 
cultured faecal bacteria from mice with humanised gut microbiota using different databases of reference 
bacterial genomes. Sequence reads were assigned taxonomic classification using Kraken and a database 
containing publicly available gut bacterial and archaeal genomes, including those published by Forster et al. 
2019151 (the “original” database), plus the same collection with new genomes generated in this thesis added 
(“custom”). The average percentage of classified reads for each condition was determined. Bars represent 
Standard Error of the Mean. This shows improved classification rates for all conditions when using the custom 
database compared to using the original database. 
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5.2.4 Impact of amoxicillin on the amoxicillin-resistant community 

The updated custom Kraken database was used to assign taxonomy to sequence reads and 

assess the impact of amoxicillin on the diversity of the amoxicillin-resistant community in 

humanised microbiota mice. Firstly, the raw read counts assigned to each species in the 

Kraken database were used to determine the Shannon index of alpha diversity. Alpha diversity 

indices were averaged over metascrape samples from plates containing 8 mg/L amoxicillin, 

combined across both the Donor 2 and Donor 7 experiments, for each of the three culture 

conditions (i.e., aerobic, anaerobic vegetative and anaerobic spore-forming from plates 

containing amoxicillin). 

Mean alpha diversity increased in aerobic and anaerobic vegetative metascrapes from plates 

with amoxicillin (Fig. 5.10) between Day 0 and Day 7, then decreased again after amoxicillin 

treatment had stopped, though remained higher than initial levels. This may indicate that the 

amoxicillin caused additional species to become resistant to amoxicillin within an individual, 

although this was not maintained after the treatment stopped. Alternatively, it may be that 

amoxicillin-resistant bacteria expanded in abundance from below detection level to above 

detection level, or that certain species of the same relative abundance were harmed by the 

amoxicillin, allowing the remaining species of that initial relative abundance to become 

detectable. In contrast,  anaerobic spore-forming metascrapes from plates with amoxicillin, 

alpha diversity increased over all time points. This indicates that more spore-forming species 

became resistant over the experiment, or became more detectable, even after the treatment 

was stopped. However, there was no significant difference between any consecutive time 

points (i.e., Day 0 vs. Day 7 , Day 7 vs. 14, Day 14 vs. 35), nor between the start and end of the 

experiment (Day 0 vs. 35) for any culture condition (statistical significance determined by 
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Mann-Whitney U tests212, adjusted for multiple-testing with the Benjamini, Hochberg, and 

Yekutieli method193; q value significant < 0.05). 

 

Figure 5.10. Changes in alpha diversity in metascrapes of cultured faecal bacteria from mice with humanised 
gut microbiota treated with amoxicillin. Sequence reads were assigned taxonomic classification using Kraken 
and a database containing publicly available gut bacterial and archaeal genomes plus genomes generated in this 
study. Raw read counts per species were used to determine alpha diversity at each experimental time point (Day 
0, 7, 14, 35) for three culture conditions (aerobic, anaerobic vegetative and anaerobic spore-forming), on agar 
plates with 8 mg/L amoxicillin added. The median alpha diversity increased in aerobic metascrapes from plates 
with amoxicillin during the amoxicillin treatment (between Day 0 and Day 7) and reduced after amoxicillin 
treatment had stopped (Day 14 and Day 35), but remained higher than its initial level. A similar pattern was seen 
in anaerobic vegetative metascrapes from plates with amoxicillin but to a lesser extent. In anaerobic spore-
forming metascrapes from plates with amoxicillin, where alpha diversity increased over all time points. There 
were no significant differences between consecutive time points (i.e., Day 0- vs. , Day 7 vs. 14, Day 14 vs. 35), 
nor between the start and end of the experiment (Day 0 vs.35) for any culture condition. Statistical significance 
determined by Mann-Whitney U tests212, adjusted for multiple-testing with the Benjamini, Hochberg, and 
Yekutieli method193; q value significant < 0.05. Error bars represent the range. Dr Kevin Vervier wrote the R scripts 
that measured and compared alpha diversity. 
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Beta diversity (Fig. 5.11) was also determined to identify whether individual samples (i.e., 

metascrapes from a particular cage of mice) changed in similar ways during the experiment. 

Bray-Curtis dissimilarity measures were determined from raw read counts and averaged over 

metascrape samples from plates containing 8 mg/L amoxicillin, across both experiments, for 

each of the three culture conditions (i.e., aerobic, anaerobic vegetative and anaerobic spore-

forming from plates containing amoxicillin). Although in all culture conditions beta diversity 

increased over the time course of the experiment, indicating that the amoxicillin-resistant 

communities belonging to different cages of mice became slightly more different from each 

other following amoxicillin therapy ( i.e., there was a cage-specific effect), again, there were 

no significant differences between consecutive time points (i.e., Day 0 vs. Day 7, Day 7 vs. 14, 

Day 14 vs. 35), nor between the start and end of the experiment (Day 0 vs. 35) for any culture 

condition (determined as described for alpha diversity). This indicates that overall, the 

amoxicillin-resistant communities belonging to different cages did not become significantly 

different from each other during or after amoxicillin treatment.  
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Figure 5.11. Changes in beta diversity in metascrapes of cultured faecal bacteria from mice with humanised 
gut microbiota treated with amoxicillin. Sequence reads were assigned taxonomic classification using Kraken 
and a database containing publicly available gut bacterial and archaeal genomes plus genomes generated in this 
study. Raw read counts per species were used to determine beta diversity at each experimental time point (Day 
0, 7, 14, 35) for three culture conditions (aerobic, anaerobic vegetative and anaerobic spore-forming), on agar 
plates with 8 mg/L amoxicillin added. Median beta diversity increased in aerobic metascrapes over all time 
points. In both anaerobic vegetative and anaerobic spore forming metascrapes from plates without amoxicillin, 
beta diversity increased between Day 0 and Day 7, dropped slightly at Day 14 then increased again at Day 35. 
Anaerobic vegetative and anaerobic spore-forming metascrapes from plates with amoxicillin also show an 
increase in beta diversity from Day 0 to Day 7 which then decreases at both Day 14 and Day 35. There were no 
significant differences between consecutive time points (i.e., Day 0- vs. Day 7, Day 7 vs. 14, Day 14 vs. 35), nor 
between the start and end of the experiment (Day 0 vs.35). for any culture condition. Statistical significance 
determined by Mann-Whitney U test212, p value significant < 0.05. Error bars represent the range. Dr Kevin 
Vervier wrote the R scripts that measured and compared beta diversity. 
 
 

Despite the overall changes in diversity not being significant, it is possible that there were 

significant changes occurring in individual taxa. To assess this, the relative abundance of 

species in the amoxicillin-resistant communities for each culture condition (aerobic, anaerobic 

vegetative and anaerobic spore-forming metascrapes from plates containing amoxicillin) was 
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conditions. The species were then ranked by their mean relative abundance in each culture 

condition and the mean relative abundance of the top ten most abundant species plotted, 

with the relative abundance of the remaining species grouped as “Other”. This “Other” 

category formed the majority of (>92 %) the relative abundance of species in the anaerobic 

vegetative and spore-forming metascrapes from plates with amoxicillin (Fig. 5.12) at all time 

points.  

For the aerobic amoxicillin-resistant community, Enterococcus faecalis dominated at Day 0 

before amoxicillin therapy (mean relative abundance 78.5 % of sequence reads per sample) 

and was significantly reduced at Day 7 (0.88 % mean relative abundance, q value < 0.001; 

determined by unpaired t-tests with Welch’s correction276, adjusted for multiple-testing with 

the Benjamini, Hochberg, and Yekutieli method193 and significant < 0.05). The mean relative 

abundance of E. faecalis then increased by Day 14 (to 8.19 %), and was dominant again at Day 

35 (80.0 %, significantly increased from Day 14; q value < 0.001). Overall, there was no 

significant difference between the initial (Day 0, 78.5 %) and final measured mean relative 

abundance of E. faecalis (Day 35, 80.0 %), showing that although this species reduced in 

relative abundance following amoxicillin therapy it recovered to its initial level after treatment 

stopped.  
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Figure 5.12. Relative abundance of species in metascrape samples cultured from mice following amoxicillin 
therapy. Sequence reads were assigned taxonomic classification using Kraken and a database containing publicly 
available gut bacterial and archaeal genomes plus genomes generated in this study. Read counts were 
normalized per sample and the relative abundance of each species averaged across all samples for each culture 
condition. Species were ranked from highest to lowest mean relative abundance per culture condition and the 
top 10 species for each are shown in these bar plots. All other species were grouped as “Other”; this category 
made up over 92 % of the total relative abundance of bacteria in the anaerobic vegetative and anaerobic spore-
forming samples and so the y axis for these two conditions is limited to show the ten most abundant species 
more closely. Only metascrapes from plates containing amoxicillin are shown to represent the amoxicillin-
resistant community. The aerobic amoxicillin resistant community was dominated by Enterococcus faecalis at 
the start of the experiment and end of the experiment (Day 0 and Day 35) but was much less relatively abundant 
at days 7 and 14, which were dominated by Sporosarcina newyorkensis or Bacteroides fragilis and B. 
cellulosilyticus respectively. The anaerobic vegetative amoxicillin resistant community most obviously shows a 
reduction in Ralstonia picketti and expansion of B. cellulosilyticus from Day 0 over all other time points, plus an 
increase in “Other” species at Day 7 that was not maintained at days 14 or 35. Similarly, the anaerobic spore-
forming amoxicillin resistant community shows continual increases in “Other” species as well as a reduction in 
Hungatella hathewayi. 
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Whilst E. faecalis was less relatively abundant at Day 7 than Day 0, the amoxicillin-resistant 

aerobic community at Day 7 was dominated by Sporosarcina newyorkensis: S. newyorkensis 

was significantly higher at Day 7 (48.2 %) than Day 0 (0.17 %, q value < 0.001), but had reduced 

again by Day 14 (0.003 %, q value < 0.001). The relative abundance of S. newyorkensis was 

lowest at the end of the experiment (Day 35, 0.0005 %) but this was not significantly different 

from Day 14 or Day 0. Again, this shows that although this species increased in relative 

abundance following amoxicillin therapy it also returned to its initial level after treatment 

stopped. Bacteroides fragilis and B. cellulosilyticus were the dominant species at Day 14 (mean 

relative abundance 25.5 % and 25.3 % respectively). These two species were both significantly 

more relatively abundant at Day 14 than Day 7 (B. fragilis 1.2 %, B. cellulosilyticus 2.19 %) or 

Day 35 (B. fragilis 0.99 %, B. cellulosilyticus 0.47 %; q values all < 0.001). There was no 

significant difference between the initial and final relative abundance of B. fragilis and B. 

cellulosilyticus (Day 0: 0.16 % and 0.06 % respectively; Day 35: 0.99 % and 0.47 % respectively). 

This shows that these Bacteroides species became dominant in the aerobic amoxicillin-

resistant community in the initial seven day recovery period following treatment, but had 

returned to their initial level by the end of the experiment. Finally, the relative abundance of 

“Other” species increased significantly from Day 0 (4.40 %) to Day 7 (29.6 %, q value < 0.0001) 

and significantly decreased again between Day 7 and Day 14 (4.97 %, q value < 0.0001). There 

was a slight increase in the relative abundance of “Other” species at Day 35 (9.96 %), but this 

was not significantly different from Day 14 or Day 0. This indicates that less abundant 

amoxicillin-resistant aerobic species became more abundant during the amoxicillin therapy 

and then returned to their initial level after the treatment ended. Overall, this suggests the 

amoxicillin therapy caused significant changes to the relative abundance of several 

amoxicillin-resistant species capable of growing in aerobic conditions, but that the final overall 

composition of this community was similar to its initial state. 
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The amoxicillin-resistant anaerobic vegetative community was less dominated by particular 

species: the mean relative abundance of “Other” species was consistently high (>92 % of 

sequence reads), though there was a slight increase at Day 7 (94.0 % compared to 92.2 % at 

Day 0) that was not maintained by Day 14 (92.6 %) or 35 (92.3 %). Bacteroides fragilis was the 

most relatively abundant species at 2.38 % of sequence reads per sample at Day 0; this 

reduced to 1.14 % at Day 7, then increased to 1.73 % at Day 14 and 2.00 % at Day 35. There 

was also a reduction in Ralstonia picketti (1.24 % at Day 0 to < 0.0001 % at Day 7, 14 and 35) 

and an increase of B. cellulosilyticus from Day 0 (0.45 %) over all other time points (1.47 % at 

Day 7, 1.16 % at Day 14, 1.67 % at Day 35). However, none of these changes were statistically 

significant. This shows that the relative abundance of individual species in the amoxicillin-

resistant anaerobic vegetative community was not significantly affected by amoxicillin 

therapy. 

In the amoxicillin-resistant anaerobic spore-forming community, Hungatella hathewayi was 

the most relatively abundant species at Day 0 (4.55 %) that steadily reduced at each time point 

(2.04 % at Day 7, 1.92 % at Day 14 and 0.33 % at Day 35). There was also a slight increase in 

“Other” species overall (94.6 % at Day 0, 96.0 % at Day 7, 95.5 % at Day 14 and 97.8 % at Day 

35). However, none of these changes were statistically significant: the amoxicillin treatment 

did not have a major impact on the relative abundance of amoxicillin-resistant anaerobic 

spore-forming species. Overall, this suggests the amoxicillin therapy had more of an impact 

on the relative abundance of species in the amoxicillin-resistant aerobic community than the 

anaerobic vegetative or anaerobic spore-forming communities. 
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5.2.5 Characterisation of strain- and sequence-level changes in gut microbiota following 

exposure to amoxicillin  

While metagenomics provides interesting insights of particular taxa within a community, 

individual isolates provide the opportunity to link genotype to experimentally validated 

phenotype. As earlier discussed, 8838 isolates with 16S rRNA gene sequences were obtained 

in these experiments and assigned to 367 OTUs. A record was kept of which culture plates and 

thus conditions, experimental time point and mouse line that each colony was picked from. 

This allowed the investigation of the impact of amoxicillin therapy on particular OTUs. The 16S 

rRNA gene sequence data was used to determine which OTUs were picked from agar plates 

containing 8 mg/L amoxicillin after the mice received antibiotic treatment (Day 7, 14 or 35) 

but not before (Day 0). OTUs that fit this criteria therefore represent lineages of bacteria that 

have either increased in relative abundance to above the detection limit or have increased in 

amoxicillin resistance (from under to over 8mg/L) during the course of the experiment. 14 

OTUs fitted this criteria of only being picked from the amoxicillin agar plates after the mice 

received treatment. Isolates from before and after amoxicillin treatment in the mice of the 14 

candidate OTUs of increased amoxicillin resistance were purified and whole genome 

sequenced (Table 5.2). These whole genome sequences were then searched for in the 

metascrape data from plates containing amoxicillin at Day 0 using Mash213 to confirm the 

observations based on isolated colonies. All OTUs except Bacteroides stercoris 99.703 % and 

Shigella sonnei 99.757 % still fitted the criteria. For this reason, these two OTUs plus Alistipes 

senegalensis 98.49 %, Alistipes shahii 99.703 % and Anaerostipes caccae 99.773 % (isolates of 

which could not be recovered sufficiently for whole genome sequencing) are excluded from 

downstream analyses. 
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Table 5.2. Candidate OTUs of potential increase in amoxicillin resistance following in vivo exposure to 
amoxicillin. OTUs were considered candidates of increased amoxicillin resistance if they were only isolated from 
agar containing amoxicillin after the mice received amoxicillin (Day 7/14/35) but not before (Day 0). The number 
of isolates in each OTU at Day 0 (plates without amoxicillin), Day 0 (plates with amoxicillin) and the later time 
points (Day 7, 14, 35 with amoxicillin) were calculated. Isolates of these OTUs were purified for whole genome 
sequencing to assess the impact of amoxicillin exposure on the genomes of these particular taxa. Beta-lactam 
resistance genes and mutations were predicted using ARIBA and CARD (none: no beta-lactam determinants). 
Phylum key: B: Bacteroidetes, F: Firmicutes; P: Proteobacteria. No WGS indicates where isolates could not be 
recovered or purified sufficiently for genomic DNA extractions: either the glycerol stocks were contaminated or 
unviable. Excluded indicates OTUs that did not pass the Mash analysis and were found with 99 % identity in Day 
0 metascrapes from plates containing amoxicillin. % in OTU column represents the similarity of the consensus 
16S rRNA gene sequence of that OTU to reference 16S rRNA gene sequences for that species. 

 

 

 
 

 Number of isolated colonies Beta-lactam 
resistance genotype 

Mouse 
line 

OTU Phylum Day 0  
– 

Amox 

Day 0  
+ 

Amox 

Day 
7/14/35  
+ Amox 

Before After 

7 Alistipes senegalensis 
98.49 % 

B 1 0 1 No WGS No WGS 

7 Bacteroides stercoris 
99.703 % 

B 1 0 9 Excluded Excluded 

7 [Clostridium] populeti 
94.435 % 

F 2 0 2 None None 

7 Coprobacillus 
cateniformis 99.270 % 

F 1 0 1 None None 

7 Coprobacillus 
cateniformis 92.211 % 

F 6 0 2 None None 

7 Marvinbryantia 
formatexigens 92.942 % 

F 0 0 8 None None 

7 Sporosarcina 
newyorkensis 99.710 % 

F 9 0 1 None None 

2 Alistipes finegoldii 
99.851 % 

B 4 0 1 None None 

2 Alistipes shahii 99.703 % B 1 0 17 No WGS cfxA 

2 Anaerostipes caccae 
99.773 % 

B 2 0 2 None No WGS 

2 Enterococcus faecium 
99.791 % 

F 19 0 48 None None 

2 Flavonifractor plautii 
99.702 % 

F 1 0 22 None None 

2 Odoribacter splanchnicus 
99.556 % 

B 2 0 2 None cfxA 

2 Shigella sonnei 99.757 % P 2 0 7 Excluded Excluded 
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To assess strain-level genomic changes such as antibiotic resistance gene acquisition, the 

presence of known, clinically relevant beta-lactam resistance genes and mutations in these 

genomes was determined using the ARIBA and CARD as in Chapter 3. Table 5.2 summarises 

the different isolates that were whole genome sequenced for this purpose and whether or 

not and they were predicted to harbour beta-lactam resistance genes. Genetic determinants 

of beta-lactam resistance were observed in the genomes isolated after amoxicillin treatment 

in the mice, but not before, in one candidate OTU (Odoribacter splanchnicus 99.56 %). 

Specifically, isolates of this OTU did not appear to contain the cfxA beta-lactamase before 

amoxicillin treatment, but did afterwards. The 198 genome sequences generated in these 

mouse experiments were searched for the cfxA gene, identifying 46 observations of this gene. 

All cfxA genes from bacteria cultured from Donor 7 mice were identical (Fig. 5.13), and all cfxA 

genes from bacteria cultured from Donor 2 mice were identical, with the only difference 

between the two groups being a single nucleotide polymorphism at position 775 (A in Donor 

7 mouse cfxA genes, T in Donor 2 mouse cfxA genes). This suggests the O. splanchnicus 99.56 

% isolates may have acquired the cfxA beta-lactamase during the course of the experiment 

from Alistipes shahii 99.703 %, Bacteroides vulgatus 88.703 %, or Bacteroides ovatus 99.48 %. 
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Figure 5.13. A phylogeny of the cfxA gene from 46 genomes from isolates cultured from mice with human-
derived microbiota. Beta-lactam resistance genes and mutations were predicted using ARIBA148 with CARD151,152 
in genomes of OTUs considered candidates of increased amoxicillin resistance (only isolated from agar containing 
amoxicillin after the mice received amoxicillin (Day 7/14/35) but not before (Day 0)) and other genomes 
generated during this study. This identified cfxA genes in 46 isolates; the nucleotide genes were extracted and 
used to infer a phylogeny, showing that cfxA genes were identical across genomes from a particular mouse line. 
No isolates with the cfxA gene were whole genome sequenced from the Donor 2 mouse before the mice received 
amoxicillin. In the Donor 7 mice, there were a number of isolates with cfxA sequenced from before and after the 
mice received amoxicillin. 

 

The four O. splanchnicus isolates were cultured and three well-isolated colonies of each were 

used for amoxicillin MIC measurement with Etests as described previously. The two O. 
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of 13.3 mg/L; the two isolates from after amoxicillin treatment both had an average 

amoxicillin of > 256 mg/L (i.e., all biological replicates of these isolates grew at the maximum 

amoxicillin concentration of the Etest gradient). This suggests the acquisition of the cfxA  

beta-lactamase caused an approximately 19-fold increase in amoxicillin resistance in O. 

splanchnicus 99.56 %. O. splanchnicus is considered strictly anaerobic and non-spore-

forming277, therefore the relative abundance of O. splanchnicus in the anaerobic vegetative 

metascrape data from plates containing amoxicillin was determined (Fig. 5.14). This species 

was the 30th most abundant across these samples, and the mean relative abundance increased 

from 0.0033 % at Day 0 to 0.022 % at the end of the experiment (Day 35). However, there 

were no significant differences between the mean relative abundance values of O. 

splanchnicus between consecutive time points (Day 0 vs. Day 7, Day 7 vs. Day 14, Day 14 vs. 

Day 35), or after either recovery periods compared to the beginning (Day 0 vs. Day 14 and 35, 

q values determined by unpaired t-tests with Welch’s correction276 and adjusted for multiple-

testing with the Benjamini, Hochberg, and Yekutieli method193; q value significant < 0.05). 

Figure 5.14. Relative abundance of Odoribacter splanchnicus in anaerobic vegetative metascrape samples. The 
relative abundance of the “strictly anaerobic, non-spore-forming” Odoribacter splanchnicus species was 
determined in the anaerobic vegetative metascrapes from plates containing amoxicillin. The relative abundance 
of this species increased between Day 0 and Day 7 following amoxicillin therapy in mice with human-derived 
microbiota, decreased slightly at Day 14 and slightly increased again by Day 35. However, these differences were 
not significant. Q values were determined by unpaired t-tests with Welch’s correction276, adjusted for multiple-
testing with the Benjamini, Hochberg, and Yekutieli method193; q value significant < 0.05. Bars represent Standard 
Error of the Mean. 
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Eight of the candidate OTUs that had whole genome sequences for before and after 

amoxicillin therapy and were not excluded following the Mash213 analysis did not appear to 

have acquired a beta-lactamase that would explain the described observations. Consequently, 

a comparative genomics approach as described in Chapter 4 was applied to identify potentially 

novel beta-lactamases. Genes in each OTU that were shared by all isolates cultured on plates 

containing amoxicillin after the mice were treated with amoxicillin, but absent from isolates 

of the same OTU cultured on plates not containing amoxicillin from before the mice received 

therapy, were identified. Genes fitting these criteria were searched for 90 % similarity to beta-

lactamase amino acid markers as generated and described in Chapter 4. No genes were found 

to contain these markers with 90 % identity. 

Finally, single nucleotide polymorphisms (SNPs) were searched for in the same eight OTUs as 

above, plus Odoribacter splanchnicus 99.56 %. Paired-end sequencing reads from bacteria 

isolated after amoxicillin treatment were mapped against assembled contigs from an isolate 

cultured before amoxicillin treatment. Variant bcf files were produced and used to identify 

SNPs in coding sequences (open reading frames (ORFs) annotated as such if over 100 bases) 

and non-coding regions. ORFs and non-coding regions containing SNPs were compared to 

known protein sequences using BLASTx or to the nr/nt database using BLASTn (Table 5.3). 

Twenty-two ORFs containing SNPs were most similar to enzymes involved in metabolic 

processes such as kinases or reductase and three ORFs were most similar to restriction 

endonucleases, plus one ORF was annotated as an ABC transporter ATP binding protein. 

However, ten ORFs were annotated as uncharacterised or hypothetical proteins. 



  

Table 5.3. Mutations in open reading frames and non-coding regions of gut bacteria isolated after amoxicillin therapy in mice with human-derived gut microbiota. Raw sequencing 

reads from bacteria cultured from mice with human-derived gut microbiota after amoxicillin therapy (query samples) were mapped against reference genomes of bacteria from the 

same OTU that had been isolated before amoxicillin therapy. Variants were identified in open reading frames (ORFs) of more than 100 bases and non-coding regions: NS 

nonsynonymous; S synonymous; I insertion; SNP single nucleotide polymorphism. The sequence of ORFs and non-coding regions containing mutations were analysed with BLASTx 

(nr database) to identify the most similar proteins or with BLASTn (nr/nt database) to identify the most similar nucleotide sequences. 

 
O.T.U. Reference  Query  Feature Mutations Top BLAST hit 
[Clostridium] populeti 
94.435 % 

25620_1#243 25620_1#295 ORF 1 S Sensor histidine kinase [Eubacterium ramulus] 

   ORF 1 S Sensor histidine kinase [Eubacterium ramulus] 

   ORF 1 NS TPA: beta-glucosidase [Lachnospiraceae bacterium] 

   ORF 1 NS TPA: beta-glucosidase [Lachnospiraceae bacterium] 

   ORF 1 NS Putative uncharacterized protein [Clostridium sp. CAG:352] 

   Non-coding 1 SNP No similarity BLASTn nr/nt or BLASTx 

   ORF 3 NS Nitroreductase family protein [Beduini massiliensis] 

   ORF 4 NS; 1 S Uncharacterised protein RAG0 10061 [Rhynchosporium agropyri] 
   ORF 1 S TPA: phosphoenolpyruvate carboxykinase (ATP) [Blautia sp.] 

   ORF 1 NS Phosphoenolpyruvate carboxykinase [ATP] [[Clostridium] clostridioforme 90A7] 

   ORF 1 S MULTISPECIES: phosphoenolpyruvate carboxykinase (ATP) [Clostridiales] 

   ORF 1 S ABC transporter ATP-binding protein [Flavonifractor plautii] 

   Non-coding 1 SNP No similarity BLASTn nr/nt or BLASTx 

   ORF 5 NS; 2 S Gfo/Idh/MocA family oxidoreductase [Anaerobium acetethylicum] 

   ORF 6 NS; 1 S Gfo/Idh/MocA family oxidoreductase [Anaerobium acetethylicum] 

   ORF 1 NS Glucan 1,6-alpha-glucosidase [Clostridium sp. KLE 1755] 

   ORF 1 NS Alpha-glucosidase [Eisenbergiella massiliensis] 

Coprobacillus 
cateniformis 99.270 % 

25620_1#240 25620_1#297 Non-coding 1 SNP Helix-turn-helix domain-containing protein [Massilimicrobiota timonensis] 

Coprobacillus 
cateniformis 99.211 % 

25620_1#293 25620_1#300 ORF 1 S Hypothetical protein [Coprobacillus cateniformis] 

Marvinbryantia 
formatexigens 92.942 % 

25620_1#287  25620_1#309 ORF 1 NS Peptidase [Anaerotruncus sp. 1XD22-93] 

178 



 

  

O.T.U. Reference  Query  Feature Mutations Top BLAST hit 
   ORF 1 NS Peptidase [Lachnospiraceae bacterium] or Penicillin-binding protein A [uncultured 

Clostridium sp.] 

Sporosarcina 
newyorkensis 99.710 % 

25620_1#231 25620_1#325 ORF 1 NS Preprotein translocase subunit SecA [Sporosarcina newyorkensis] 

   ORF 1 NS; 1 S TrkH family potassium uptake protein [Sporosarcina newyorkensis] 

Sporosarcina 
newyorkensis 99.710 % 

25620_1#232 25620_1#325 ORF 1 NS; 1 S TrkH family potassium uptake protein [Sporosarcina newyorkensis] 

Alistipes finegoldii 
99.851 % 

27261_7#7 27339_1#174 ORF 1 NS Hypothetical protein/restriction endonuclease 

   ORF 1 NS Restriction endonuclease 

   ORF 1 I Leucine-rich repeat domain-containing protein [Alistipes finegoldii] 
   ORF 1 I Leucine-rich repeat domain-containing protein [Alistipes finegoldii] 
   ORF 1 I Leucine-rich repeat domain-containing protein [Alistipes finegoldii] 
   ORF 1 I Uncharacterised protein BN754_01505 [Alistipes finegoldii CAG:68] 

   ORF 2 I Glycosyl transferase 

   ORF 3 NS; 5 S Restriction endonuclease 

   ORF 2 NS: 5 S Restriction endonuclease 

Enterococcus faecium 
99.791 % 

27339_1#100 27339_1#138 ORF 1 NS Heavy metal translocating P-type ATPase [Enterococcus faecium] 

   ORF 1 NS MULTISPECIES: aldo/keto reductase [Enterococcus] 

Flavonifractor plautii 
99.702 % 

27339_1#70 27339_1#26 ORF 1 NS No similarity BLASTx; BLASTn similarity to Flavonifractor genome 

   ORF 1 NS Acetaldehyde dehydrogenase [Flavonifractor plautii ATCC 29863] 

   ORF 1 S Acetaldehyde dehydrogenase [Flavonifractor plautii ATCC 29863] 
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5.3  Discussion 

In this chapter I have studied the impact of amoxicillin therapy on amoxicillin resistance in 

mice with human-derived gut microbiota. Reference genome based metagenomics was used 

to observe changes to the pre-existing amoxicillin-resistant community that lasted beyond the 

end of the antibiotic treatment. A recent study on amoxicillin combined with clavulanate 

therapy in healthy adult humans also found gut microbiota compositional changes 

immediately after one week’s treatment278. Two weeks after treatment stopped, these 

changes were no longer apparent and the gut microbiota communities had reverted back to 

pre-treatment profiles278. However, that study mainly used 16S rRNA sequencing for profiling 

the gut community and only looked at relative abundances of bacterial families, whereas I 

have assessed the species level. In addition, the combination of culturing and WGS to generate 

study-specific reference genome databases for taxonomic classifications means my analysis in 

this thesis is tailored to the gut microbiomes being studied, providing higher taxonomic 

resolution. This may explain the disparity between the two studies. 

The amoxicillin-resistant community was studied in mice with human-derived microbiota by 

culturing faecal samples on agar plates, including plates containing amoxicillin at 8 mg/L 

amoxicillin, a concentration above which pathogenic bacteria can be considered resistant to 

amoxicillin. This was further divided into the aerobic, anaerobic vegetative and anaerobic 

spore-forming communities. The key findings from these humanised microbiota mouse 

experiments are illustrated in Figure 5.15. The amoxicillin therapy appeared to have an impact 

on the bacterial load of each of these communities, including the reduction of the amount of 

anaerobic spore-forming bacteria. An overall reduction in the total amount of gut bacteria 

following amoxicillin has been observed in previous studies179. However, in this study 
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Figure 5.15. The key findings from the humanised microbiota mouse experiments. An illustration of the changes to the amoxicillin-resistant spore-forming community (bacterial 
load and alpha diversity) and individual strains (relative abundance of Sporosarcina newyorkensis and acquisition of cfxA by Odoribacter splanchnicus). Mice with humanised gut 
microbiota were given amoxicillin therapy for seven days at a therapeutic concentration. Faecal pellets were collected before and after therapy to allow culturing of individual 
isolates, WGS and whole genome shotgun metagenomic sequencing of metascrape samples. 
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there was a slight increase in anaerobic vegetative bacteria – perhaps utilising the space that 

had been made available by reductions in other bacteria. The amoxicillin-resistant anaerobic 

spore-forming bacteria also showed significant reductions in load; this indicates that the 

recommended therapeutic dose of amoxicillin206 is sufficient to kill some bacteria considered 

resistant. This is in line with what is expected for amoxicillin – even though it is considered 

broad spectrum, it targets more Gram-negatives than Gram-positives31. 

That spore-formers, a major but comparatively understudied part of the gut microbiome, are 

significantly reduced by amoxicillin highlights that the impact of antibiotics on the gut 

microbiota is not yet fully understood; this result is unexpected given the described amoxicillin 

spectrum of activity. To my knowledge, this is the first time the spore-forming community has 

specifically been studied for its response to antibiotics, by using a combination of culturing, 

WGS and reference genome based metagenomics. Antibiotic treatment can promote spore 

formation279 and the assumption could be made that spore-forming bacteria would therefore 

be protected against significant effects to their total abundance in the gut. However, if the 

spores re-enter the vegetative state they may not be protected and be impacted by the 

amoxicillin treatment. This could result in fewer spore-forming bacteria present to produce 

spores; during the targeted culturing there would then be fewer spores present. After the 

amoxicillin therapy ends, the spore-formers are able to recover and produce spores again, 

hypothetically leading to the findings observed in this chapter. In the future, quantitative 

methods for measuring bacterial load may provide more precise and insightful information280.  

Comparing alpha diversity in the amoxicillin-resistant spore-formers appeared to suggest that 

the richness of this community increased following amoxicillin treatment. This could be 

explained by previously susceptible species developing resistance. However, the amoxicillin-

resistant anaerobic vegetative and spore-forming communities comprised mostly lowly 
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abundant or rare species (> 90 % cumulative relative abundance), compared to the amoxicillin-

resistant aerobic community. The increase in richness could be due to a reduction in species 

such as E. faecalis, allowing lowly-abundant ones such as S. newyorkensis to reach the 

detectable limit in the metagenomic sequencing analyses and appear more relatively 

abundant. 

The amoxicillin-resistant aerobic community was initially dominated by E. faecalis, a Gram-

positive facultative anaerobe that is common in the gut281. This species was significantly less 

relatively abundant following amoxicillin therapy. In previous studies of antibiotics on the gut 

microbiome, enterococci have been observed to expand in the gut following antibiotic 

therapy282; however, this is dependent on the type of antibiotic. Amoxicillin has previously 

been shown to reduce Gram-positive cocci such as enterococci and increase enterobacteria 

instead283,284. Here, there was a small but insignificant increase in the relative abundance 

Enterobacteriaceae member E. coli. Two Bacteroides species (B. fragilis and B. cellulosilyticus) 

were dominant at Day 14, and three other Bacteroides species (B. thetaiotaomicron, B. 

uniformis and B. vulgatus) were also in the top ten most relatively abundant species at this 

time point in aerobic metascrapes. This is surprising given Bacteroides species are thought to 

be obligate anaerobes148. Colonies of these five Bacteroides species plus B. faecis, B. stercoris 

and B. xylanisolvens were all isolated from aerobic culture plates, indicating that this was not 

a “false positive” result in the metagenomic data. B. fragilis has been reported as growing in 

microaerophilic environments (≤ 0.05 % oxygen)285, and specific DNA mutations have resulted 

in strains being able to grow in up to 2 % oxygen. In addition, B. thetaiotaomicron has been 

shown to express scavenging enzymes when exposed to oxygen to degrade oxygen 

compounds and reduce their toxicity286. The Bacteroides strains growing under aerobic 

conditions here may have contained or developed mutations that were selected for, allowing 
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their growth under aerobic conditions. Whether or not this was caused by the amoxicillin 

treatment or by exposure to oxygen is not determinable in this study. How Bacteroides might 

adapt to aerobic conditions would be interesting to investigate in the future, as this would 

provide novel insights into their biology. 

The most obvious increase in relative abundance in the aerobic metascrapes was that of S. 

newyorkensis. S. newyorkensis is another Gram-positive cocci but one that is rare in its ability 

to form spores; it is also facultatively anaerobic. This may explain its presence and increase in 

relative abundance in the amoxicillin-resistant aerobic community (Fig. 5.15), following the 

reduction of E. faecalis. Sporosarcina species have only recently begun to be studied using 

genomics287, with S. newyorkensis first being described in 2012288. This species was first 

isolated from human blood288, which is typically considered a sterile environment and as such, 

the presence of bacteria in blood indicates infection. Therefore, this study provides insights 

into the effect of amoxicillin on newly-discovered bacteria, including ones that may have 

clinical relevance through the potential to cause infections. Another recent study has 

identified an increase in the relative abundance of a spore-former following beta-lactam 

treatment: Candidatus Borkfalkia ceftriaxoniphila289 was relatively lowly abundant in the gut 

prior to ceftriaxone treatment in humans and then dominated the community after 

ceftriaxone treatment264. There, Candidatus Borkfalkia ceftriaxoniphila was considered a 

potential keystone species in the recovery of the gut community following antibiotics; perhaps 

these temporarily dominant spore-formers aid the re-establishment of a diverse gut 

microbiome. 

In addition to examining the impact of amoxicillin on the amoxicillin-resistant community, I 

studied the impact on individual strains of gut bacteria. Detecting changes in the genotypic 

and phenotypic resistance profiles before and after therapeutic antibiotic exposure using 
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broad identified the acquisition of a known beta-lactamase by a commensal strain of gut 

bacteria). The cfxA beta-lactamase gene is localised on a mobile transposon290, and since being 

first described in B. fragilis290, cfxA and related genes have also commonly been found in 

Prevotella, Porphyromonas and Capnocytophaga species291. Prevotella species are common 

members of the gut microbiota292 and cfxA in Prevotella in particular is associated with 

increased beta-lactam resistance in periodontal infections292. Thus, the presence of cfxA in gut 

microbiota that can act as opportunistic pathogens has potential clinical relevance. 

Here, cfxA appears to have been acquired by an O. splanchnicus strain following amoxicillin 

therapy, possibly from another Bacteroidetes species, apparently conferring a 19-fold 

increase in amoxicillin resistance (Fig. 5.15). O. splanchnicus has been described as an 

opportunistic pathogen277; if we extrapolate beyond these experiments, the ability of O. 

splanchnicus to acquire beta-lactamases from the gut microbiome therefore has direct 

potential clinical relevance. A recent porcine model of amoxicillin treatment showed that 

amoxicillin promoted the enrichment of beta-lactamases including cfxA293. However, as 

previously discussed, using whole genome shotgun metagenomics to assess gene prevalence 

does not allow for the hosts of those genes to be identified, nor can it distinguish whether an 

increase in gene abundance is caused by the spread of that gene to additional species or the 

relative increase in abundance of the original host species. Here, I have used broad culturing 

and WGS to discriminate new hosts of antibiotic resistance genes. Therefore, the unique 

combination of humanised gnotobiotic mouse models, advanced culturing and genomic 

analysis in this chapter provides novel and deep understanding of how antibiotic treatment 

changes the resistance profile of the gut microbiota community and individual strains, with 

implications relevant to the dissemination of antibiotic resistance and the evolution of drug-

resistant infections.  



 

 186 

There were other candidate OTUs that appeared to have acquired amoxicillin resistance over 

the course of the experiment in the absence of known beta-lactam resistance genes or 

mutations using the methods applied in this study. These OTUs could represent pre-existing 

amoxicillin-resistant species that have increased in relative abundance above the detection 

level. Alternatively, it could be due to other resistance mechanisms, such as developing 

mutations not listed in CARD that increased resistance. This would be in line with the issues 

predicting resistance in commensal gut bacteria using genomics from the previous chapter, 

and further highlights how improved annotation of intestinal microbiota would be beneficial. 

Isolates of these OTUs from after the amoxicillin treatment had SNPs compared to isolates 

from before the antibiotic therapy. The majority of the ORFs containing variant sites were 

involved with metabolic processes. One was annotated as a transporter protein, which could 

potentially be involved in the efflux or export of amoxicillin. In addition, one was similar to a 

penicillin-binding protein; the observed non-synonymous mutation could have resulted in a 

reduced affinity for amoxicillin. Several of the ORFs were annotated as hypothetical or 

uncharacterised proteins; thus their function is unclear. Potentially these may also be 

candidate novel amoxicillin-resistance genes – though this additionally emphasises the issues 

surrounding annotation of bacterial genomes and proteins. 

Overall, this chapter shows that amoxicillin has significant impacts on the amoxicillin-resistant 

community of gut bacteria in mice with human-derived microbiota, including relatively 

uncharacterised spore-forming bacteria. Moreover, a commensal Bacteroidetes strain of O. 

splanchnicus acquired the cfxA beta-lactamase gene from the surrounding gut microbiome 

following exposure to amoxicillin in vivo in these mice. Thus, this chapter further emphasises 

the role of the human gut microbiome as a reservoir for antibiotic resistance in terms of its 

antibiotic-resistant community- and strain-level changes following antibiotic treatment. 
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Chapter 6: Discussion 
  
6.1. Key messages and future work 

In this thesis, I explored the capacity of the human gut microbiome as a reservoir of antibiotic 

resistance. I determined that the majority of bacterial members of a normal, healthy gut 

microbiota possess genetic antibiotic resistance determinants using genomic studies of a 

unique human gut bacteria culture collection. I also generated antibiotic resistance 

phenotypes to link to these genotypes and identified the presence of resistances to antibiotics 

essential in medicine that were not predicted using a range of genome-based databases and 

methods. To my knowledge, this is the first time that such a large phylogenetically diverse 

collection of human commensal gut bacteria has been tested for resistance to multiple 

clinically relevant classes of antibiotics using phenotypic and/or genotypic approaches. This 

identified multiple instances of antibiotic resistance that could not be predicted using 

genomics, signifying that the full extent of antibiotic resistance in the microbiome is currently 

unknown. In addition, I combined deep culturing with reference genome-based 

metagenomics to study the impact of amoxicillin on the gut bacteria in mice with humanised 

microbiota, identifying the acquisition of a clinically relevant beta-lactamase by a potential 

opportunistic gut pathogen via HGT. This unique combination of techniques therefore enabled 

strain-level discrimination of antibiotic-induced genetic changes. Overall, this thesis highlights 

the power of a combined genomic and culture-based approach to investigate the gut 

resistome. 

The overall widespread distribution of resistance determinants in the HBC (Chapter 3) is 

concerning in its implications for the potential horizontal transfer of antibiotic resistance 

genes among resident and transient members of the gut microbiome. With approximately 52 
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% of commensal gut bacteria possessing ARGs there are more opportunities for these HGT 

events to occur than if only a small minority of gut bacteria harboured ARGs. Thus, the 

majority of the human microbiome is in theory capable of contributing to the spread of 

antibiotic resistance. Indeed, this was in part demonstrated by the acquisition of the cfxA 

beta-lactamase gene in isolates of Odoribacter splanchnicus following exposure to amoxicillin 

(Chapter 5); this transfer event conferred high-level beta-lactam resistance in the recipient O. 

splanchnicus strain. This shows how antibiotics can lead to the movement of clinically relevant 

ARGs and cause increased antibiotic resistance in gut bacteria. If this occurs in pathogens or 

opportunistic pathogens, then this could result in antibiotic-resistant infections. Though cfxA 

has not currently been detected in bacteria belonging to other phyla, possibly due to phyla 

HGT barriers, O. splanchnicus has been described as an opportunistic pathogen and thus this 

event has potentially direct clinical impacts. Moreover, if cfxA were to become located within 

a more promiscuous mobile element or plasmid, it could hypothetically spread to more 

distantly related taxa such as Enterobacteriaceae and cause highly beta-lactam resistant 

infections. 

However, antibiotic resistance in commensal gut bacteria can also be a benefit to the gut 

microbiome: for example, beta-lactamase-producing resident bacteria may be protected 

against the effects of beta-lactam therapy. The action of the beta-lactamase to degrade the 

antibiotic may also protect other resident commensal bacteria. Moreover, antibiotic resistant 

commensals can protect against colonisation by antibiotic-resistant pathogens294. As 

antibiotic resistance in commensals can be considered both an issue and a benefit, it is 

important in the future to define which antibiotic resistance genes are most likely to spread 

to opportunistic or obligate pathogens, plus which commensal gut bacteria are most likely to 

cause opportunistic infections. 
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That isolates representing novel taxa were also found to contain known antibiotic resistance 

genes highlights that we cannot fully understand which bacteria carry antibiotic resistance 

genes until we have identified all bacterial species that inhabit the gastrointestinal tract. One 

approach for this would be continuing to predict the presence of antibiotic resistance genes 

and mutations in genomes of newly cultured human gut bacteria as they become publicly 

available. For example, PATRIC194 provides a genome annotation services that includes 

CARD163,164 for annotating antibiotic resistance genes; NCBI has its own AMRFinderPlus295 tool 

for identifying antimicrobial resistance genes in whole genome sequences. These tools could 

be programmed to run automatically when new bacterial genomes are uploaded, allowing 

antibiotic resistance genotype to be readily available and curated. An alternative approach for 

determining which bacteria carry antibiotic resistance genes or mutations would be to search 

for known genetic antibiotic resistance determinants in metagenome-assembled genomes 

(MAGs); this may help to increase the phylogenetic diversity being studied. However, MAGs 

are limited due to the absence of isolates for phenotypic analysis plus can result from mixed-

assemblies of closely related strains296, potentially introducing spurious results. Unless this 

can be resolved, culturing and studying whole genome sequences remains the most accurate 

way of surveying the distribution of genetic determinants of antibiotic resistance. 

Continuing to culture gut bacteria from stool samples remains imperative for identifying novel 

isolates and studying the presence of antibiotic resistance genes and mutations. In addition, 

this will help improve taxonomic classification of metagenomic sequencing. In Chapter 5, 

despite isolating approximately 11,000 individual isolates and generating study-specific 

reference genomes there were still metagenomic sequences identified in metascrapes 

derived from faecal samples that could not be assigned taxa. Isolating additional colonies 

could be beneficial, though I predicted that around three times as many colonies picked in this 
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study would need to be isolated to recover all predicted OTUs. Presently, this would require 

huge manual effort, as culturing anaerobic bacteria is difficult to automate due to the space 

restrictions inside an anaerobic cabinet. The culturomics approach297 could be implemented, 

which uses multiple types of media to select for different bacteria and mass-spectrometry to 

rapidly identify those bacteria. Targeted culturing such as ethanol selection for spore-formers 

may help reduce the number of additional colonies that need to be picked; developing more 

advanced selective culturing may assist further. As technology improves, it will become easier 

to isolate all the possible bacteria residing in the gut. There is a particular need for high-

throughput, broad-scale culturing of gut bacteria from diverse peoples across the globe to 

recover maximum diversity. 

In addition to isolating and studying novel genomes, novel antibiotic resistance genes are also 

important to discover for improving the annotation of antibiotic resistance in bacterial 

genomes and metagenomes belonging to diverse microbiomes. As shown in this thesis, rule-

based methods are not accurate for predicting phenotypic resistance in gut bacteria, which as 

discussed could have direct clinical implications. Though other studies have shown higher 

rates of accuracy for rule-based genomic prediction of antibiotic resistance in 

pathogens240,242,248, a recent bioRxiv preprint showed that accuracy could vary between 

laboratories studying the same WGS datasets of carbapenem-resistant clinical isolates240,298. 

Identifying known point mutations is especially difficult as they could be masked by 

sequencing errors or consensus sequences240. In addition, it can be hard to identify mutations 

causing antibiotic resistance phenotypes in the first place299, and so databases of point 

mutations should be considered particularly incomplete299.  

In Chapter 4, it was shown difficult to identify or validate candidate novel antibiotic resistance 

genes from individual gut bacteria using functional metagenomics or cloning of a specific 
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candidate gene. In the future, qPCR or RNASeq of candidate resistance genes or mutations 

may provide insights into their expression that could explain differing antibiotic resistance 

phenotypes been closely related bacteria. In addition, integration sites of cloning vectors 

(such as of the GeneArt synthesised Group2384-carrying plasmid) could be investigated to see 

if this affects the expression of the insert candidate gene. Alternative recipient strains instead 

of E. coli could be used; however, classic genetics techniques are more limited for gut bacteria 

than for pathogens and so presently few alternatives exist.  Moreover, successful shotgun 

cloning from pure cultures of isolated bacteria is crucial for better annotating gut bacteria and 

should continue to be optimised. Developing genetic techniques for gut bacteria will take time 

but is essential if we are to better understand our gut microbiota. In particular, improving 

annotation of antibiotic resistance would be useful to study antibiotic resistance on a global 

scale: it is possible that one day commercial microbiome sequencing services could be 

combined with surveillance of antibiotic resistance genes to help achieve this. 

Discovering novel antibiotic resistance genes and mutations will help improve the accuracy of 

rule-based antibiotic resistance prediction methods. It is important for these methods to be 

accurate: if WGS-AST becomes a routine procedure in healthcare, we need to ensure patients 

are receiving antibiotics that are effective but not causing unnecessary harm to their gut 

microbiota. False predictions of susceptibility or resistance may result in patients being 

treated with antibiotics that do not work or with antibiotics that cause significant impacts to 

their gut microbiota when a narrower-spectrum antibiotic would have been sufficient. 

Fortunately, rule-based methods have been shown to be more accurate for specific species of 

pathogenic bacteria299. If this type of study is expanded with additional isolates per species or 

isolation source, comparable to that of studies in pathogens, we may be able to increase the 

accuracy of genome-based antibiotic resistance predictions in gut bacteria. Studying more 
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isolates would allow the approach developed in this thesis to define gut bacteria resistant or 

susceptible to be limited to more specific taxa (such as species rather than across all four phyla 

studied here), which may further improve WST-AST accuracy. Measuring MIC instead of zone 

of inhibition would also provide more direct information and enable antibiotic concentration 

breakpoints to be determined for gut bacteria. Moreover, expanded databases with genetic 

antibiotic resistance determinants from a wide range of bacterial sources may result in less 

bias towards pathogenic Proteobacteria. In the future, WGS-AST could become a gold-

standard method for inferring phenotypic antibiotic resistance in commensal gut bacteria, as 

well as clinical isolates of bacterial pathogens. 

Expanding the number of bacteria (e.g., the entire HBC) and range of antibiotics (e.g. all of 

those on the WHO essential list) studied in this thesis would provide further insights into the 

impact of antibiotic spectrum on the gut microbiome. For example, in Chapter 4 gentamicin 

was effective against four Firmicutes bacteria considered strict anaerobes. Aminoglycoside 

uptake is thought to require quinones, lipid-soluble membrane electron carriers required for 

aerobic respiration300 – which are typically only present in Alpha-, Beta- and 

Gammaproteobacteria300. These findings highlight how current knowledge of antibiotic 

spectrum is based on a limited set of bacterial species and that some antibiotics – such as 

gentamicin – may have under-realised impacts on the gut microbiota. This is important to 

understand more fully since the use of antibiotics is known to have long term impacts on the 

gut microbiome with potentially serious implications for our health. This knowledge could 

eventually be used to establish a framework to guide antibiotic selection in a clinical setting 

and ultimately guide microbiota-dependent personalised medicine. Furthermore, with 

research into gut microbiota-based therapeutics advancing rapidly, perhaps in the future a 

scenario will exist where when taking an antibiotic the patient is also prescribed a specific 
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probiotic containing bacteria likely to be harmed by that antibiotic or that aid gut microbiome 

recovery. Mouse models with humanised microbiota are essential for early testing of these 

proposed probiotics or any gut microbiota-based therapy. 

Though the mouse model system described requires optimisation, it resulted in remarkable 

discrimination that identified the acquisition of a beta-lactamase by a commensal strain of gut 

bacteria. Eight other OTUs were observed to have gained several SNPs following antibiotic 

therapy, but these require further investigation and validation to confirm their hypothetical 

role in increased amoxicillin resistance. Moreover, the model could be easily altered to study 

other antibiotics, such as those of last resort, or gut microbiomes with different features from 

alternative human donors. Off-target effects of particular antibiotic therapy (e.g. increased 

resistance to other antibiotics that were not used as the therapy) could also be studied. These 

experiments will help to understand the species- and strain-level ecological dynamics of 

antibiotic resistance that occur in the gut following antibiotic treatment. This information 

could aid personalised microbiome-based medicine. 

 

6.2. Concluding remarks 

High-throughput ‘omics’ studies have been extremely useful for gaining understanding into 

the gut microbiota and resistome, and microbiomes more generally. In this thesis, whole 

genome sequencing was used to map the distribution of genetic antibiotic resistance 

determinants in individual isolates of phylogenetically diverse commensal gut bacteria and 

identify many unpredicted resistances to antibiotics considered essential in medicine. 

Moreover, high-throughput culturing and whole genome sequencing identified a 1 in 11,000 

horizontal gene transfer event of a clinically relevant beta-lactamase. However, a return to 
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classical microbiology to complement these techniques would enable better resolution of 

high-throughput and large-scale sequencing studies, as well as increased understanding of the 

biology of the individual bacteria themselves. This is critical if we are to fully understand the 

role of each member of the gut microbiota and how they contribute to the overall microbiome 

function and therefore our health. Only when this is achieved will understanding the spread 

of antibiotic resistance, the complete gut resistome, detailed microbiome function and 

personalised microbiome-based medicine become possible. 
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Appendix 1. CARD determinant groupings 

Table A1.1. Genetic determinants of antibiotic resistance as described in CARD were grouped by the antibiotic to which they are described as conferring 

resistance. If more than one antibiotic class was included for a single determinant, these determinants were grouped as “non-specific”. The exception 

is for resistances to Macrolide, Lincosamide, Pleuromutilin and Streptogramin (MLPS) antibiotics, as resistance determinants against these antibiotics 

can have cross-resistance to each other and are grouped together in a single, separate category. 

 
Number of 
determinants 

Custom group CARD antibiotic class 

1 Acridine dye Acridine dye 
9 Aminocoumarin Aminocoumarin antibiotic 
170 Aminoglycoside Aminoglycoside antibiotic 
2 Antibacterial free 

fatty acids 
Antibacterial free fatty acids 

51 Beta-lactam Carbapenem 
3 Beta-lactam Carbapenem;cephalosporin 
3 Beta-lactam Carbapenem;cephalosporin;cephamycin 
48 Beta-lactam Carbapenem;cephalosporin;cephamycin;penam 
85 Beta-lactam Carbapenem;cephalosporin;cephamycin;penam;penem 
194 Beta-lactam Carbapenem;cephalosporin;penam 
2 Beta-lactam Carbapenem;penam 
184 Beta-lactam Cephalosporin 
29 Beta-lactam Cephalosporin;cephamycin 
10 Beta-lactam Cephalosporin;cephamycin;penam 

215 



 

 

Number of 
determinants 

Custom group CARD antibiotic class 

347 Beta-lactam Cephalosporin;penam 
114 Beta-lactam Cephamycin 
31 Beta-lactam Monobactam;carbapenem;cephalosporin 
11 Beta-lactam Monobactam;carbapenem;cephalosporin;cephamycin;penam 
12 Beta-lactam Monobactam;carbapenem;cephalosporin;cephamycin;penam;penem 
18 Beta-lactam Monobactam;carbapenem;cephalosporin;penam 
7 Beta-lactam Monobactam;carbapenem;cephalosporin;penam;penem 
1 Beta-lactam Monobactam;carbapenem;penam 
11 Beta-lactam Monobactam;cephalosporin 
16 Beta-lactam Monobactam;cephalosporin;cephamycin 
8 Beta-lactam Monobactam;cephalosporin;cephamycin;penam;penem 
33 Beta-lactam Monobactam;cephalosporin;penam 
167 Beta-lactam Monobactam;cephalosporin;penam;penem 
29 Beta-lactam Penam 
24 Beta-lactam Penam;penem 
4 Beta-lactam N/A 
1 Bicyclomycin Bicyclomycin 
47 Chloramphenicol Phenicol antibiotic 
8 Elfamycin Elfamycin antibiotic 
31 Diaminopyrimidine Diaminopyrimidine antibiotic 
125 Fluoroquinolone Fluoroquinolone antibiotic 
28 Fosfomycin Fosfomycin 
6 Fusidic acid Fusidic acid 
77 Glycopeptide Glycopeptide antibiotic 
4 Isoniazid Isoniazid 
4 Mupirocin Mupirocin 

216 



 

 

Number of 
determinants 

Custom group CARD antibiotic class 

13 MLPS Lincosamide antibiotic 
1 MLPS Lincosamide antibiotic;pleuromutilin antibiotic 
5 MLPS Lincosamide antibiotic;streptogramin antibiotic;pleuromutilin antibiotic 
3 MLPS Macrolide antibiotic 
4 MLPS Macrolide antibiotic;lincosamide antibiotic 
33 MLPS Macrolide antibiotic;lincosamide antibiotic;streptogramin antibiotic 
5 MLPS Macrolide antibiotic;streptogramin antibiotic 
1 MLPS Pleuromutilin antibiotic 
11 MLPS Streptogramin antibiotic 
6 MLPS Streptogramin antibiotic;pleuromutilin antibiotic 
2 Nitrofuran Nitrofuran antibiotic 
1 Nitroimidazole Nitroimidazole antibiotic 
3 Non-specific Aminoglycoside antibiotic;aminocoumarin antibiotic 
5 Non-specific Aminoglycoside antibiotic;cephalosporin;cephamycin;penam 
2 Non-specific Aminoglycoside antibiotic;tetracycline antibiotic;phenicol antibiotic 
1 Non-specific Cephalosporin;penam;peptide antibiotic 
6 Non-specific Fluoroquinolone antibiotic;acridine dye 
1 Non-specific Fluoroquinolone antibiotic;acridine dye;triclosan 
5 Non-specific Fluoroquinolone antibiotic;aminocoumarin antibiotic 
5 Non-specific Fluoroquinolone antibiotic;aminoglycoside antibiotic 
2 Non-specific Fluoroquinolone antibiotic;cephalosporin;cephamycin;penam 
1 Non-specific Fluoroquinolone antibiotic;cephalosporin;glycylcycline;cephamycin;penam;tetracycline antibiotic;rifamycin antibiotic;phenicol 

antibiotic;triclosan 
1 Non-specific Fluoroquinolone antibiotic;cephalosporin;glycylcycline;penam;tetracycline antibiotic;acridine dye;rifamycin antibiotic;phenicol 

antibiotic;triclosan 
15 Non-specific Fluoroquinolone antibiotic;cephalosporin;glycylcycline;penam;tetracycline antibiotic;rifamycin antibiotic;phenicol antibiotic;triclosan 

217 



 

 

Number of 
determinants 

Custom group CARD antibiotic class 

1 Non-specific Fluoroquinolone antibiotic;cephalosporin;penam;tetracycline antibiotic;peptide antibiotic;acridine dye 
6 Non-specific Fluoroquinolone antibiotic;diaminopyrimidine antibiotic;phenicol antibiotic 
2 Non-specific Fluoroquinolone antibiotic;glycylcycline;tetracycline antibiotic;diaminopyrimidine antibiotic;nitrofuran antibiotic 
1 Non-specific Fluoroquinolone antibiotic;lincosamide antibiotic;nucleoside antibiotic;acridine dye;phenicol antibiotic 
1 Non-specific Fluoroquinolone antibiotic;monobactam;carbapenem;cephalosporin;cephamycin;penam;tetracycline antibiotic;phenicol 

antibiotic;penem 
4 Non-specific Fluoroquinolone antibiotic;monobactam;carbapenem;cephalosporin;glycylcycline;cephamycin;penam;tetracycline antibiotic;rifamycin 

antibiotic;phenicol antibiotic;triclosan;penem 
3 Non-specific Fluoroquinolone antibiotic;monobactam;cephalosporin 
1 Non-specific Fluoroquinolone antibiotic;nucleoside antibiotic;acridine dye;phenicol antibiotic 
16 Non-specific Fluoroquinolone antibiotic;nybomycin 
5 Non-specific Fluoroquinolone antibiotic;tetracycline antibiotic 
4 Non-specific Fluoroquinolone antibiotic;tetracycline antibiotic;acridine dye 
1 Non-specific Fluoroquinolone antibiotic;tetracycline antibiotic;nitroimidazole antibiotic 
10 Non-specific Glycylcycline;tetracycline antibiotic 
1 Non-specific Isoniazid;ethionamide 
3 Non-specific Isoniazid;triclosan 
1 Non-specific Macrolide antibiotic;aminocoumarin antibiotic 
3 Non-specific Macrolide antibiotic;carbapenem;tetracycline antibiotic;acridine dye;diaminopyrimidine antibiotic;phenicol antibiotic 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic 
3 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;aminoglycoside antibiotic;carbapenem;cephalosporin;cephamycin;penam;tetracycline 

antibiotic;acridine dye;phenicol antibiotic 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;aminoglycoside antibiotic;carbapenem;tetracycline antibiotic 
4 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;aminoglycoside antibiotic;cephalosporin;penam;tetracycline antibiotic;aminocoumarin 

antibiotic;diaminopyrimidine antibiotic;phenicol antibiotic 
4 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;aminoglycoside antibiotic;cephalosporin;tetracycline antibiotic 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;cephalosporin;cephamycin;penam;tetracycline antibiotic 

218 



 

 

Number of 
determinants 

Custom group CARD antibiotic class 

4 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;cephalosporin;fusidic acid 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;cephalosporin;glycylcycline;cephamycin;penam;tetracycline antibiotic;aminocoumarin 

antibiotic;rifamycin antibiotic;phenicol antibiotic;triclosan 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;cephalosporin;penam;tetracycline antibiotic;aminocoumarin 

antibiotic;diaminopyrimidine antibiotic;phenicol antibiotic 
4 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;lincosamide antibiotic;carbapenem;cephalosporin;tetracycline antibiotic;rifamycin 

antibiotic;diaminopyrimidine antibiotic;phenicol antibiotic;penem 
1 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;monobactam;aminoglycoside 

antibiotic;carbapenem;cephalosporin;cephamycin;penam;tetracycline antibiotic;peptide antibiotic;acridine dye;aminocoumarin 
antibiotic;diaminopyrimidine antibiotic;sulfonamide antibiotic;phenicol antibiotic;penem 

2 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;monobactam;aminoglycoside 
antibiotic;carbapenem;cephalosporin;cephamycin;penam;tetracycline antibiotic;peptide antibiotic;aminocoumarin 
antibiotic;diaminopyrimidine antibiotic;sulfonamide antibiotic;phenicol antibiotic;penem 

6 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;monobactam;carbapenem;cephalosporin;cephamycin;penam;tetracycline 
antibiotic;peptide antibiotic;aminocoumarin antibiotic;diaminopyrimidine antibiotic;sulfonamide antibiotic;phenicol antibiotic;penem 

5 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;penam 
2 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;penam;tetracycline antibiotic 
2 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;rifamycin antibiotic 
2 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;tetracycline antibiotic;acridine dye;phenicol antibiotic 
3 Non-specific Macrolide antibiotic;fluoroquinolone antibiotic;tetracycline antibiotic;phenicol antibiotic 
6 Non-specific Macrolide antibiotic;lincosamide antibiotic;streptogramin antibiotic;oxazolidinone antibiotic;phenicol antibiotic 
1 Non-specific Macrolide antibiotic;lincosamide antibiotic;streptogramin antibiotic;oxazolidinone antibiotic;phenicol antibiotic;pleuromutilin 

antibiotic 
1 Non-specific Macrolide antibiotic;lincosamide antibiotic;streptogramin antibiotic;tetracycline antibiotic 
4 Non-specific Macrolide antibiotic;monobactam;tetracycline antibiotic;aminocoumarin antibiotic 
4 Non-specific Macrolide antibiotic;penam 
1 Non-specific Macrolide antibiotic;penam;antibacterial free fatty acids 
4 Non-specific Macrolide antibiotic;peptide antibiotic 
3 Non-specific Macrolide antibiotic;tetracycline antibiotic;triclosan 
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Number of 
determinants 

Custom group CARD antibiotic class 

4 Non-specific Monobactam;carbapenem;cephalosporin;cephamycin;penam;phenicol antibiotic;penem 
1 Non-specific Monobactam;carbapenem;cephalosporin;cephamycin;penam;tetracycline antibiotic;penem 
3 Non-specific Nucleoside antibiotic;acridine dye 
1 Non-specific Peptide antibiotic;polyamine antibiotic 
6 Non-specific Peptide antibiotic;rifamycin antibiotic 
1 Non-specific Rifamycin antibiotic;isoniazid 
1 Non-specific Rifamycin antibiotic;polyamine antibiotic 
1 Non-specific Tetracycline antibiotic;benzalkonium chloride;rhodamine 
7 Non-specific N/A 
4 Nucleoside Nucleoside antibiotic 
1 Oxazolidinone Oxazolidinone antibiotic 
3 Para-aminosalicylic 

acid 
Para-aminosalicylic acid 

56 Peptide Peptide antibiotic 
8 Polyamine Polyamine antibiotic 
1 Pyrazinamide Pyrazinamide 
13 Rifamycin Rifamycin antibiotic 
1 Sulfonamide Sulfonamide antibiotic 
6 Sulfonamide Sulfonamide antibiotic;sulfone antibiotic 
52 Tetracycline Tetracycline antibiotic 
7 Triclosan Triclosan 
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Appendix 2. HBC antibiotic resistance determinant groupings 

Table A2.1. The genetic determinants of antibiotic resistance predicted in the HBC genomes, as described in CARD, were grouped by the antibiotic to 

which they are described as conferring resistance. If more than one antibiotic class was included for a single determinant, these determinants were 

grouped as “non-specific”. The exception is for resistances to Macrolide, Lincosamide, Pleuromutilin and Streptogramin (MLPS) antibiotics, as 

resistance determinants against these antibiotics can have cross-resistance to each other. 

Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Acridine dye Acridine dye emeA Antibiotic efflux 
Aminocoumarin Aminocoumarin antibiotic mdtA Antibiotic efflux 
Aminocoumarin Aminocoumarin antibiotic mdtB Antibiotic efflux 
Aminocoumarin Aminocoumarin antibiotic mdtC Antibiotic efflux 
Aminoglycoside Aminoglycoside aac(6')-Ie-aph(2'')-Ia Antibiotic inactivation 
Aminoglycoside Aminoglycoside aac(6')-Ii Antibiotic inactivation 
Aminoglycoside Aminoglycoside aac(6')-Iih Antibiotic inactivation 
Aminoglycoside Aminoglycoside aadA Antibiotic inactivation 
Aminoglycoside Aminoglycoside aadK Antibiotic inactivation 
Aminoglycoside Aminoglycoside ant(6)-Ia Antibiotic inactivation 
Aminoglycoside Aminoglycoside Ant(6)-Ib Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(2'') Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(2’’)-If Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(2’’)-IIa Antibiotic inactivation 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Aminoglycoside Aminoglycoside aph(3'')-Ib  Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(3')-Ia Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(3')-IIIa Antibiotic inactivation 
Aminoglycoside Aminoglycoside aph(6)-Id Antibiotic inactivation 
Aminoglycoside Aminoglycoside kdpE Antibiotic efflux 
Aminoglycoside Aminoglycoside antibiotic acrD Antibiotic efflux 
Beta-lactam Carbapenem, cephalosporin, penam shv Antibiotic inactivation 
Beta-lactam Cephalosporin cblA_1 Antibiotic inactivation 
Beta-lactam Cephalosporin cepA Antibiotic inactivation 
Beta-lactam Cephalosporin, monobactam, penam oxy_2 Antibiotic inactivation 
Beta-lactam Cephalosporin, penam bcI Antibiotic inactivation 
Beta-lactam Cephalosporin, penam bcII Antibiotic inactivation 
Beta-lactam Cephalosporin, penam oxa_114a Antibiotic inactivation 
Beta-lactam Cephamycin cfxA Antibiotic inactivation 
Beta-lactam Cephamycin cmy_101 Antibiotic inactivation 
Beta-lactam Monobactam, cephalosporin, penam, penem tem Antibiotic inactivation 
Beta-lactam Monobactam, cephamycin, cephalosporin, penam, carbapenem, penem K. pneumoniae ompK35 Resistance by absence or reduced 

permeability to antibiotic 
Beta-lactam Penam blaZ Antibiotic inactivation 
Beta-lactam Penam, carbapenem, cephamycin, cephalosporin act Antibiotic inactivation 
Beta-lactam Penam carbapenem, cephamycin, cephalosporin act_1 Antibiotic inactivation 
Beta-lactam Penam, carbapenem, cephamycin, cephalosporin, penem, monobactam K. pneumoniae ompK36 Resistance by absence or reduced 

permeability to antibiotic 
Beta-lactam Penam carbapenem, cephamycin, cephalosporin, penem, monobactam ompC Resistance by absence or reduced 

permeability to antibiotic 
Beta-lactam Penam, cephalosporin ampC_2 Antibiotic inactivation 

222 



 

 

Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Beta-lactam Penam, cephalosporin oxa_347 Antibiotic inactivation 
Beta-lactam Penam ,cephalosporin oxa_4 Antibiotic inactivation 
Beta-lactam Penam ,cephalosporin, monobactam acc Antibiotic inactivation 
Beta-lactam Penam, cephalosporin, monobactam oxy Antibiotic inactivation 
Beta-lactam Penam, monobactam, penam, carbapenem, cephamycin, cephalosporin K. pneumoniae ompK37 Resistance by absence or reduced 

permeability to antibiotic 
Beta-lactam Penem, penam len_1 Antibiotic inactivation 
Chloramphenicol Phenicol antibiotic cat Antibiotic inactivation 
Chloramphenicol Phenicol antibiotic E. faecalis 

chloramphenicol+ 
Antibiotic inactivation 

Diaminopyrimidine  Diaminopyrimidine antibiotic dfrA14 Antibiotic target replacement 
Diaminopyrimidine  Diaminopyrimidine antibiotic dfrC Antibiotic target replacement 
Diaminopyrimidine  Diaminopyrimidine antibiotic dfrE Antibiotic target replacement 
Diaminopyrimidine  Diaminopyrimidine antibiotic dfrF Antibiotic target replacement 
Diaminopyrimidine  Diaminopyrimidine antibiotic dfrG Antibiotic target replacement 
Elfamycin Elfamycin E. coli ef-tu Antibiotic target alteration 
Fluoroquinolone Fluoroquinolone antibiotic emrA Antibiotic efflux 
Fluoroquinolone Fluoroquinolone antibiotic emrB Antibiotic efflux 
Fluoroquinolone Fluoroquinolone antibiotic emrR Antibiotic efflux 
Fluoroquinolone Fluoroquinolone antibiotic mdtH Antibiotic efflux 
Fluoroquinolone Fluoroquinolone antibiotic patA Antibiotic efflux 
Fosfomycin Fosfomycin E. coli cyaA Antibiotic target alteration 
Fosfomycin Fosfomycin E. coli glpT Antibiotic target alteration 
Fosfomycin Fosfomycin E. coli uhpA Antibiotic target alteration 
Fosfomycin Fosfomycin E. coli uhpT Antibiotic target alteration 
Fosfomycin Fosfomycin fosA2 Antibiotic inactivation 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Fosfomycin Fosfomycin fosA5 Antibiotic inactivation 
Fosfomycin Fosfomycin fosA7 Antibiotic inactivation 
Fosfomycin Fosfomycin fosB Antibiotic inactivation 
Fosfomycin Fosfomycin mdtG Antibiotic efflux 
Glycopeptide Glycopeptide antibiotic vanA Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanC Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanD Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanHA Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanHD Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanRA Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanRC Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanRD Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanSA Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanSC Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanTC Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanXA Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanXD Antibiotic target alteration 
Glycopeptide Glycopeptide antibiotic vanXYC Antibiotic target alteration 
MLPS Lincosamide antibiotic lmrB Antibiotic efflux 
MLPS Lincosamide antibiotic lnuC Antibiotic inactivation 
MLPS Lincosamide antibiotic lnuG Antibiotic inactivation 
MLPS Lincosamide antibiotic macrolide antibiotic, streptogramin antibiotic ermB Antibiotic target alteration 
MLPS Lincosamide antibiotic, streptogramin antibiotic, macrolide antibiotic ermG Antibiotic target alteration 
MLPS Macrolide antibiotic mefA antibiotic efflux 
MLPS Macrolide antibiotic, lincosamide antibiotic, streptogramin antibiotic ermF Antibiotic target alteration 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

MLPS Pleuromutilin antibiotic, lincosamide antibiotic lsaE Antibiotic efflux 
MLPS Pleuromutilin antibiotic, lincosamide antibiotic, streptogramin antibiotic eatAv Antibiotic efflux 
MLPS Streptogramin antibiotic, lincosamide antibiotic, macrolide antibiotic ermQ Antibiotic target alteration 
MLPS Streptogramin antibiotic, lincosamide antibiotic, pleuromutilin antibiotic lsaA Antibiotic efflux 
MLPS Streptogramin antibiotic, macrolide antibiotic mel Antibiotic efflux 
MLPS Streptogramin antibiotic, macrolide antibiotic msrC Antibiotic efflux 
MLPS Streptogramin antibiotic, macrolide antibiotic, lincosamide antibiotic ermD Antibiotic efflux 
MLPS Streptogramin antibiotic, pleuromutilin antibiotic vgaC Antibiotic efflux 
Mupirocin Mupirocin ileS antibiotic target alteration 
Nitrofuran Nitrofuran antibiotic nfsA antibiotic target alteration 
Nitroimidazole Nitroimidazole antibiotic msbA Antibiotic efflux 
Non-specific Acridine dye, fluoroquinolone antibiotic blt Antibiotic efflux 
Non-specific Acridine dye, fluoroquinolone antibiotic cdeA Antibiotic efflux 
Non-specific Aminocoumarin antibiotic, aminoglycoside antibiotic baeR Antibiotic efflux 
Non-specific Aminocoumarin antibiotic, aminoglycoside antibiotic baeS Antibiotic efflux 
Non-specific Aminocoumarin antibiotic, aminoglycoside antibiotic cpxA Antibiotic efflux 
Non-specific Aminoglycoside antibiotic, fluoroquinolone antibiotic mipA Resistance by absence or reduced 

permeability to antibiotic 
Non-specific Aminoglycoside antibiotic, tetracycline antibiotic, phenicol antibiotic ykkC Antibiotic efflux 
Non-specific Cephalosporin, macrolide antibiotic, aminoglycoside antibiotic, fluoroquinolone 

antibiotic 
axyX Antibiotic efflux 

Non-specific Cephalosporin, macrolide antibiotic, aminoglycoside antibiotic, fluoroquinolone 
antibiotic 

axyZ Antibiotic efflux 

Non-specific Fluoroquinolone antibiotic, acridine dye norA Antibiotic efflux 
Non-specific Fluoroquinolone antibiotic, macrolide 

antibiotic, penam, cephamycin, cephalosporin, tetracycline antibiotic 
h_ns Antibiotic efflux 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Non-specific Fluoroquinolone antibiotic, penam, cephamycin, cephalosporin acrF Antibiotic efflux 
Non-specific Fluoroquinolone antibiotic, penam, macrolide antibiotic crp Antibiotic efflux 
Non-specific Fluoroquinolone antibiotic, penam, macrolide antibiotic mdtE Antibiotic efflux 
Non-specific Fluoroquinolone antibiotic, penam, tetracycline antibiotic, macrolide antibiotic evgA Antibiotic efflux 
Non-specific Glycopeptide antibiotic, streptogramin antibiotic, lincosamide antibiotic, macrolide 

antibiotic, phenicol antibiotic, pleuromutilin antibiotic 
Propionibacterium 23S 
rRNA 

Antibiotic target alteration 

Non-specific Glycopeptide antibiotic, streptogramin antibiotic, lincosamide antibiotic, macrolide 
antibiotic, phenicol antibiotic, pleuromutilin antibiotic 

S. pneumoniae 23S 
rRNA 

Antibiotic target alteration 

Non-specific Glycopeptide antibiotic, streptogramin antibiotic, macrolide antibiotic, phenicol 
antibiotic, lincosamide antibiotic, pleuromutilin antibiotic 

E. coli 23S rRNA Antibiotic target alteration 

Non-specific Glycopeptide antibiotic, streptogramin antibiotic, macrolide antibiotic, phenicol 
antibiotic, lincosamide antibiotic, pleuromutilin antibiotic, oxazolidinone antibiotic 

S. aureus 23S rRNA Antibiotic target alteration 

Non-specific Glycopeptide antibiotic, tetracycline antibiotic, glycylcycline, nucleoside 
antibiotic, aminoglycoside antibiotic, peptide antibiotic 

rrsB Antibiotic target alteration 

Non-specific Glycopeptide antibiotic, tetracycline antibiotic, peptide antibiotic, aminoglycoside 
antibiotic, nucleoside antibiotic, glycylcycline 

M. abscessus 16S rRNA Antibiotic target alteration 

Non-specific Macrolide antibiotic, cephalosporin, aminoglycoside antibiotic, fluoroquinolone 
antibiotic 

axyY Antibiotic efflux 

Non-specific Macrolide antibiotic, cephalosporin, aminoglycoside antibiotic, fluoroquinolone 
antibiotic 

oprZ Antibiotic efflux 

Non-specific Macrolide antibiotic, fluoroquinolone antibiotic efmA Antibiotic efflux 
Non-specific Macrolide antibiotic, penam, fluoroquinolone antibiotic gadW Antibiotic efflux 
Non-specific Macrolide antibiotic, penam, fluoroquinolone antibiotic gadX Antibiotic efflux 
Non-specific Nucleoside antibiotic, acridine dye mdtN Antibiotic efflux 
Non-specific Nucleoside antibiotic, acridine dye mdtO Antibiotic efflux 
Non-specific Nucleoside antibiotic, acridine dye mdtP Antibiotic efflux 
Non-specific Nucleoside antibiotic, phenicol antibiotic, acridine dye, fluoroquinolone antibiotic bmr Antibiotic efflux 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Non-specific Nucleoside antibiotic, phenicol antibiotic, lincosamide antibiotic, fluoroquinolone 
antibiotic, acridine dye 

mdtM Antibiotic efflux 

Non-specific Penam, cephamycin, cephalosporin, fluoroquinolone antibiotic acrE Antibiotic efflux 
Non-specific Penam, macrolide antibiotic, fluoroquinolone antibiotic mdtF Antibiotic efflux 
Non-specific Peptide antibiotic, macrolide antibiotic mgrB Resistance by absence, antibiotic efflux 

and antibiotic target alteration 
Non-specific Tetracycline antibiotic, benzalkonium chloride, rhodamine mdfA Antibiotic efflux 
Non-specific Tetracycline antibiotic, cephalosporin, rifamycin antibiotic, phenicol 

antibiotic, glycylcycline, penam, fluoroquinolone antibiotic, triclosan 
acrA1 Antibiotic efflux 

Non-specific Tetracycline antibiotic, diaminopyrimidine antibiotic, glycylcycline, nitrofuran 
antibiotic, fluoroquinolone antibiotic 

oqxA Antibiotic efflux 

Non-specific Tetracycline antibiotic, fluoroquinolone antibiotic E. coli lamB Resistance by absence or reduced 
permeability to antibiotic 

Non-specific Tetracycline antibiotic, glycylcycline, rifamycin antibiotic, phenicol 
antibiotic, fluoroquinolone antibiotic, penam, cephamycin, cephalosporin, triclosan 

acrS Antibiotic efflux 

Non-specific Tetracycline antibiotic, macrolide antibiotic, fluoroquinolone antibiotic, penam evgS Antibiotic efflux 
Non-specific Tetracycline antibiotic, nitrofuran antibiotic, fluoroquinolone 

antibiotic, glycylcycline, diaminopyrimidine antibiotic 
oqxB Antibiotic efflux 

Non-specific Tetracycline antibiotic, penam, cephalosporin, glycylcycline, rifamycin 
antibiotic, phenicol antibiotic, triclosan, fluoroquinolone antibiotic 

acrB Antibiotic efflux 

Non-specific Tetracycline antibiotic, penam, cephalosporin, rifamycin antibiotic, phenicol 
antibiotic, glycylcycline, fluoroquinolone antibiotic, triclosan 

acrA Antibiotic efflux 

Non-specific Tetracycline antibiotic, penam, cephalosporin, rifamycin antibiotic, phenicol 
antibiotic, glycylcycline, fluoroquinolone antibiotic, triclosan 

marR Antibiotic efflux and antibiotic target 
alteration 

Non-specific Tetracycline 
antibiotic, penem, penam, carbapenem, cephamycin, cephalosporin, rifamycin 
antibiotic, phenicol antibiotic, monobactam, glycylcycline, fluoroquinolone 
antibiotic, triclosan 

marA Antibiotic efflux and reduced 
permeability to beta-lactams 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Non-specific Tetracycline antibiotic, phenicol antibiotic, aminoglycoside antibiotic ykkD Antibiotic efflux 
Non-specific Tetracycline antibiotic, phenicol 

antibiotic, glycylcycline, penam, cephalosporin, rifamycin 
antibiotic, fluoroquinolone antibiotic, triclosan 

acrA2 Antibiotic efflux 

Non-specific Tetracycline antibiotic, rifamycin antibiotic, phenicol antibiotic, aminocoumarin 
antibiotic, fluoroquinolone 
antibiotic, penam, cephamycin, cephalosporin, glycylcycline, macrolide 
antibiotic, triclosan 

tolC Antibiotic efflux 

Non-specific Tetracycline antibiotic, rifamycin antibiotic, phenicol 
antibiotic, glycylcycline, penam, cephalosporin, triclosan, fluoroquinolone antibiotic 

ramR Antibiotic efflux 

Non-specific 
 

emrD Antibiotic efflux 
Non-specific 

 
emrE Antibiotic efflux 

Nucleoside Nucleoside antibiotic sat2 Antibiotic inactivation 
Nucleoside Nucleoside antibiotic sat4 Antibiotic inactivation 
Nucleoside Nucleoside antibiotic tmrB Reduced permeability to antibiotic 
Peptide Peptide antibiotic bacA Antibiotic target alteration 
Peptide Peptide antibiotic bcrA Antibiotic efflux 
Peptide Peptide antibiotic bcrB Antibiotic efflux 
Peptide Peptide antibiotic bcrC Antibiotic efflux 
Peptide Peptide antibiotic eptA Antibiotic target alteration 
Peptide Peptide antibiotic mprF Antibiotic target alteration 
Peptide Peptide antibiotic mprF3 Antibiotic target alteration 
Peptide Peptide antibiotic mprF4 Antibiotic target alteration 
Peptide Peptide antibiotic pmrF Antibiotic target alteration 
Peptide Peptide antibiotic ugd Antibiotic target alteration 
Peptide Peptide antibiotic yojI Antibiotic efflux 
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Custom Group CARD antibiotic classes Antibiotic resistance 
gene/determinant 

Mechanism 

Sulphonamide Sulfonamide antibiotic, sulfone antibiotic sul2 Antibiotic target replacement 
Tetracycline Tetracycline antibiotic emrK Antibiotic efflux 
Tetracycline Tetracycline antibiotic emrY Antibiotic efflux 
Tetracycline Tetracycline antibiotic P. acnes 16S rRNA Antibiotic target alteration 
Tetracycline Tetracycline antibiotic tet_40 Antibiotic efflux 
Tetracycline Tetracycline antibiotic tet_J Antibiotic efflux 
Tetracycline Tetracycline antibiotic tet_K Antibiotic efflux 
Tetracycline Tetracycline antibiotic tet44 Antibiotic target protection 
Tetracycline Tetracycline antibiotic tetA_46 Antibiotic efflux 
Tetracycline Tetracycline antibiotic tetA_P Antibiotic efflux 
Tetracycline Tetracycline antibiotic tetB_P Antibiotic target protection 
Tetracycline Tetracycline antibiotic tetM Antibiotic target protection 
Tetracycline Tetracycline antibiotic tetO Antibiotic target protection 
Tetracycline Tetracycline antibiotic tetQ Antibiotic target protection 
Tetracycline Tetracycline antibiotic tetS Antibiotic target protection 
Tetracycline Tetracycline antibiotic, glycylcycline tetA Antibiotic efflux 
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Table A2.2. A complete list of HBC isolates and the antibiotic resistance genes and mutations identified in their genomes. The genetic determinants 

of antibiotic resistance predicted in the HBC genomes, as described in CARD, were grouped by the antibiotic to which they are described as conferring 

resistance. If more than one antibiotic class was included for a single determinant, these determinants were grouped as “non-specific”. The exception 

is for resistances to Macrolide, Lincosamide, Pleuromutilin and Streptogramin (MLPS) antibiotics, as resistance determinants against these antibiotics 

can have cross-resistance to each other. The table can be viewed here: 

https://docs.google.com/spreadsheets/d/1zwmhUicOW3JVW_9y6P6LssbavW47EFiRq4_wwnS9CMg/edit?usp=sharing 

This table can also be found on the CD included with the hard copy of this thesis.
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Appendix 3: Gut microbiota community composition in mice 

with human-derived gut microbiota 

 
Figure A3.1. The relative abundance of species cultured from stool of Donor 2- and Donor 7-derived mice under 
anaerobic vegetative conditions. One faecal pellet was collected from each of five mice housed together in a 
single cage, of both Donor 2 and Donor 7 mouse lines. The stools were weighed and homogenised 100mg/ml, 
then pooled per mouse cage in equal volumes. The pooled samples were diluted and plated on YCFA agar and 
cultured at 37°C for 48 hours. The total growth was collected from each plate and total DNA extracted for 
metagenomic sequencing. Sequences reads were taxonomically classified using Kraken and a database of all 
publicly available gut bacterial genomes (as of December 2017) plus the HBC reference genomes. Classified read 
counts per species were normalised against the total number of classified reads per sample. The relative 
abundance of the top 25 most abundant species is shown. 
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Figure A3.2. The relative abundance of amoxicillin-resistant species cultured from stool of Donor 2- and Donor 
7-derived mice under anaerobic vegetative conditions. One stool was collected from each of five mice housed 
together in a single cage, of both Donor 2 and Donor 7 mouse lines. The stools were weighed and homogenised 
100mg/ml, then pooled per cage in equal volumes. The pooled samples were diluted and plated on YCFA agar 
containing 8 mg/L amoxicillin (a level considered ‘clinically resistant’ by CLSI and EUCAST) and cultured at 37C 
for 48 hours. The complete growth was collected from each plate and total DNA extracted for metagenomic 
sequencing. Sequences reads were taxonomically classified using Kraken and a database of all publicly available 
gut bacterial genomes plus the HBC reference genomes. Classified read counts per species were normalised 
against the total number of classified reads per sample. The relative abundance of the top 25 most abundant 
species is shown. 
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Figure A3.3. Antibiotic resistance genes (ARGs) identified in Donor 2- and Donor 7-derived mice. One stool was 
collected from each of five mice housed together in a single cage, of both Donor 2 and Donor 7 mouse lines. The 
stools were weighed and homogenised 100mg/ml, then pooled per cage in equal volumes. The pooled samples 
were diluted and plated on YCFA agar and cultured at 37C for 48 hours. The complete growth was collected from 
each plate and total DNA extracted for metagenomic sequencing. The presence of ARGs in the CARD, ResFinder 
and MegaRes databases were predicted from the metagenomic sequence reads using ARIBA. Results using each 
database were combined to count the different ARGs predicted to be present in the gut community of each 
mouse line. 19 different ARGs were predicted in total, with Donor 7 mice predicted to harbour more antibiotic 
resistance genes than Donor 2 (17 vs. 9); this includes the presence of a Class D beta-lactamase (Oxa-347) in the 
Donor 7 mice.
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