
Chapter 2

Statistical methods and models of

genetic risk

2.1 Introduction

The field of complex disease genetics is inherently statistical, both in the

sense that it studies a phenomenon (complex disease) that is by definition

probabilistic, and in the sense that it relies on statistical methods to make

inferences from the data under study. Examples of these statistical methods

include risk prediction (either using relative risks or odds ratios), regression

analyses (usually using logistic regression) and family analyses (generally

using liability threshold models). Each of these methods is built around

assumptions, and these assumptions themselves form a model (either explicit

or implicit) about the distributions of genetic risk in the population. In
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42 Chapter 2. Statistical methods and models of genetic risk

many cases, these methods imply very different and mutually incompatible

assumptions.

In the last few years the interest in statistical models of genetic risk has in-

creased dramatically. Recent papers include general discussions of modelling

issues arising from GWAS (e.g. Sawcer and Wason (2012)), and detailed ex-

aminations of specific models (e.g. Wray et al. (2010)). Two recent reviews

(Wray and Goddard, 2010; Clayton, 2012) have made broad comparisons of

different models of genetic risk, noting a number of inconsistencies between

models and describing different implications for association studies and risk

prediction. However, neither provided a systematic survey of the properties

of genetic risk models, and in particular neither gave a detailed investigation

into the relationships between different models, and between models and

statistical methods. The time is thus ripe for a unified analysis that places

different statistical methods and models of risk into a single framework.

In this chapter I will lay out a simple framework for classifying such

models, and discuss three major models of genetic risk. Together, these

three models underlie most standard models and methods used in the field. I

will investigate how these models differ, how suitable each is to the tasks that

they have been used for, and how their predictions about the distributions

of genetic risk differ from each other.

In the introduction, I will formulate a general description of a model of

genetic risk, and discuss a specific family of models that are specified in terms

of a normally distributed genetic risk score and a link function. In Section

2.2, I will go on to discuss in more detail the relationship between locus-

based models of genetic risk (such as those fitted in GWAS) and continuous

risk scores. Sections 2.3-2.5 will discuss and critically assess three specific

models of risk that correspond to three link functions (the log, probit and
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logit models), and in Section 2.6 I will compare how these models differ in

their predictions about the distribution of genetic risk. In the final section I

will discuss how confusion between these models can generate real problems

in statistical genetics, as well as discussion some of the limitations of this

approach.

2.1.1 Definition of a genetic risk model

In general, a model of genetic risk has two properties. Firstly, it specifies a

distribution of a genetic risk value pi ∈ [0, 1] for a randomly selected individ-

ual i

pi ∼ Distribution(θ), (2.1)

where the probability of an individual developing the disease is equal to pi,

or

P (di = 1|pi) = pi. (2.2)

Here, di is an indicator variable taking on value di = 1 if the individual

i has the disease (if we are modelling the prevalence) or will develop the

disease in their lifetime (if we are modelling the lifetime risk).

Secondly, a model of genetic risk specifies a joint distribution for genetic

risk values pi and pj for individuals i and j that share a family relationship

rij

(pi, pj) ∼ Distribution(θ, rij). (2.3)

For a purely genetic model, we make the additional assumption that
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disease incidence is independent in families conditional on their genetic risk,

i.e.

P (di = 1, dj = 1|pi, pj) = P (di = 1|pi)P (dj = 1|pj)

= pipj. (2.4)

In essence, we assume that relatives have no shared environmental risk. In

this chapter we will almost exclusively consider purely genetic models. In the

case where environmental and genetic risks act independently, these models

can be reasonably interpreted as the behaviour of the genetic component,

and are easily extended to include environmental risk (as discussed in Section

2.4.1). In the presence of strong gene-environment interaction, however, these

purely genetic models will become inaccurate, and the true model will depend

on the form of the interaction.

We refer to pi as the genetic risk or the genetic disease probability. Its

distribution can be discrete or continuous, though we will only consider con-

tinuous distributions in this chapter.

2.1.2 Observable parameters of a genetic risk model

While each model of genetic risk has its own set of parameters θ, there are a

number of common parameters that we can calculate for any model, which

in turn are measurable in real populations.

The first parameter I will consider is the population prevalence of the

disease, or the probability that a randomly selected individual has the disease

in question. This is equal to
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K = P (d = 1)

=

∫
p

P (d = 1|p)f(p)dp

=

∫
p

pf(p)dp

= E[p], (2.5)

where f(·) is the probability density function of p.

A more complicated measure is how “genetic” a disease is. This concept

is relatively ill defined. The heritability of liability h2 is often used for this

purpose, which is equal to the proportion of variance in the total risk that

can be attributed to genetics, where risk is measured on the liability scale

(discussed in Section 2.4.1). However, this parameter is model specific.

Instead, for comparison across models we will use the relative recurrence

risk, equal to the fold enrichment of disease prevalence in relatives of affected

individuals. For relatives of type rij, this is calculated as

λr =
P (di = 1|dj = 1, rij)

P (di = 1)

=
P (di = 1, dj = 1|rij)

P (di = 1)2

=

∫
pi

∫
pj
P (di = 1|pi)P (dj = 1|pj)f(pi, pj|rij)dpidpj

K2
. (2.6)

This can in theory be measured directly from population data, if common

environment can be controlled for. Regardless of whether or not it can actu-

ally be measured, the definition is model independent, and acts as a useful

benchmark to compare across models.
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Finally, we will be interested in the distribution of p in cases and controls

f(p|d = 1) =
P (d = 1|p)f(p)

P (d = 1)

=
p

K
f(p) (2.7)

f(p|d = 0) =
1− p
1−K

f(p). (2.8)

2.1.3 Genetic risk scores and link functions

In this chapter, we will consider a specific family of continuous genetic risk

models. These models have two components, firstly a normally distributed

genetic risk score

η ∼ N(µ, σ2) (2.9)

and secondly a link function g that connects this genetic risk score to the

genetic risk probability

p = g(η). (2.10)

We can thus write down the probability density function of p as

f(p) =
dη

dg

1

σ
φ

(
η − µ
σ

)
, (2.11)

where φ is the density of the standard normal distribution.

In the following section, we will describe the relationship between discrete

genotypes ~x and risk scores η. We will then consider three link functions: the

log link g(η) = exp(η), the logit link g(η) = (1 + exp(−η))−1 and the probit

link g(η) = Φ−1(η).
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2.2 From discrete genotypes to continuous risk

The conversion from discrete genotypes to a continuous genetic trait was

first outlined by Fisher (1918), who showed not only that a large number

of discrete genetic factors can give rise to a continuous trait, but also that

certain correlation structures in this continuous trait exist between family

members as a consequence of Mendelian inheritance. In this section I will

outline the relationship between discrete genetic risk factors and a continuous

risk score, and outline the distribution and parameters of this score.

Note that in the following section I will use lowercase x and y to refer to

random variables that represent genotype dosages (i.e. x ∈ (0, 1, 2)), upper-

case X and Y to refer to general random variables, and lowercase z to refer

to a standard normal random variable.

The above described η score is constructed from a combination of geno-

types across n loci, ~x = (x1, ..., xn). The general form is

η = t(~x), (2.12)

where t is the function that maps from genotype to score. Note that, in this

general formulation, there is no requirement that η be normally distributed

(as described in Equation 2.9).

We can simplify this by assuming that the loci are all independent, and

each contributes independently to η, i.e.

η = a0 +
n∑
l=1

tl(xl). (2.13)

As the random variables xl are independent, and providing that the trans-

formed variables tl(xl) have finite means and variances that are independent

of the indicator variable l, it follows from the central limit theorum that η
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tends to a normal distribution as n increases.

We can modify the score to include interaction terms between genotypes,

e.g. by including second-degree interaction

η = a0 +
n∑
i=1

n∑
j=i

tij(xi, xj). (2.14)

In this section we discuss the particulars of going from a combination of

genotypes to a continuous risk score. We will discuss the problem in general

in terms of the properties of sums of independent variables, and then discuss

the specific case where η is a linear function, i.e. fl(xl) = alxl. Finally, we

will discuss issues with non-linear functions.

2.2.1 Properties of a sum of independent variables

Suppose we have two sets of random variables, X1 and X2, and Y1 and Y2,

such that Xi ⊥ Yj ∀(i, j).

We construct scores by adding these variables together, i.e. ηi = Xi + Yi.

The expectation and variance of this score are given by

E[ηi] = E[Xi + Yi]

= E[Xi] + E[Yi] (2.15)

V ar[ηi] = V ar[Xi + Yi]

= V ar[Xi] + V ar[Yi], (2.16)

and the covariance are given by
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cov(η1, η2) = E[η1η2]− E[η1]E[η2]

= E[(X1 + Y1)(X2 + Y2)]− E[X1 + Y1]E[X2 + Y2]

= E[X1X2] + E[Y1]E[X2] + E[X1]E[Y2] + E[Y1Y2]−

E[X1]E[X2]− E[X1]E[Y2]− E[X2]E[Y1]− E[Y1]E[Y2]

= E[X1X2]− E[X1]E[X2] + E[Y1Y2]− E[Y1]E[Y2]

= cov[X1, X2] + cov[Y1, Y2]. (2.17)

We can generalise this to the sum of n variables ηi =
∑n

j=1 Xij such that

Xab ⊥ Xcd∀a, c, b 6= d, to give

E[ηi] =
n∑
j=1

E[Xij] (2.18)

V ar[ηi] =
n∑
j=1

V ar[Xij] (2.19)

cov(η1, η2) =
n∑
j=1

cov(X1j, X2j). (2.20)

If the Xij’s have finite mean and variance, then when n is large we can

approximate (η1, η2) as a multivariate normal with

~µ = (E[η1], E[η1]) (2.21)

Σ =

 V ar[η1] cov(η1, η2)

cov(η1, η2) V ar[η1].

 (2.22)

If we imagine that the Xij’s are functions of allele count for independently
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segregating genetic risk loci, we can see that to calculate the covariance of a

function that is a sum of such functions only requires the calculation of the

covariance of each function individually.

2.2.2 General covariance for linear functions of allele count

A linear, or additive, risk score has the form

ηi = a0 +
n∑
l=1

alxil. (2.23)

Again we will assume that the variants in the score are in linkage equilib-

rium, and thus the allele counts at different loci are independent (xia ⊥ xib∀a 6= b).

The score ηi has expectation and variance

E[ηi] = a0 +
n∑
l=1

alE[xil]

= a0 +
n∑
l=1

al2fl (2.24)

V ar[ηi] =
n∑
l=1

a2
l V ar[xil]

=
n∑
l=1

a2
l 2fl(1− fl), (2.25)

where fi is the allele frequency of variant l.

To calculate the covariance, suppose two individuals i and j have a coeffi-

cient of relatedness ρij. This is equal to the probability that any given allele

on any given chromosome will be shared IBD (with ρij = 0.5 for siblings i

and j, etc).
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For a variant with allele frequency f , we can denote the allele count

for individual i as xi = xi1 + xi2, where xik are allele counts on individual

chromosomes k = 1, 2 for individual i. We will use Sijk = 1 to denote that

this allele is shared IBD between individuals i and j on chromosome k, with

P (Sijk = 1) = ρij. For now I will assume Sij1 ⊥ Sij2 , i.e. that the IBD sharing

states for the two chromosomes are independent (as is the case for siblings,

for example). The next section will generalize this to arbitrary IBD distribu-

tions.

The joint distribution of genotypes on a particular chromosome k for two

individuals i and j with coefficient of relatedness ρij is given by

P (xik, xjk) = ρijP (xik, xjk|Sijk = 1) + (1− ρij)P (xik, xjk|Sijk = 0), (2.26)

where

P (xik, xjk|Sijk = 1) =

 P (xik) if xik = xjk;

0 otherwise,
(2.27)

(2.28)

and

P (xik, xjk|Sijk = 0) = P (xik)P (xjk). (2.29)

We can calculate the covariance in allele counts between two individuals

of xik and xjk by first calculating
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E[xikxjk] =
∑

xikxjkP (xik, xjk)

= P (xik = 1, xjk = 1)

= ρijP (xik = 1, xjk = 1|Sijk = 1) + (1− ρij)P (xik = 1, xjk = 1|Sijk = 0)

= ρijf + (1− ρij)f 2, (2.30)

and then by using this to calculate the covariance

cov[xik, xjk] = E[xikxjk]− E[xik]E[xjk]

= ρijf + (1− ρij)f 2 − f 2

= ρijf(1− f).

We can use Equation 2.17 to give cov[xi, xj] = 2ρijf(1 − f). Note that

var[xi] = 2f(1 − f), so cor[xi, xj] = ρij. This means that, as well as being

the probability of sharing any given allele IBD, the coefficient of relatedness

is also equal to the correlation in genotype counts.

We can therefore give the covariance of ηi and ηj as

cov[ηi, ηj] = cov[
n∑
l=1

alxil,
n∑
l=1

alxjl]

=
n∑
l=1

cov[alx1l, alx2l]

= ρij

n∑
l=1

a2
l 2fl(1− fl)

= ρijvar[ηj]. (2.31)



2.2. From discrete genotypes to continuous risk 53

Again, note that cor[ηi, ηj] = ρij.

When I refer to “additive” genetic risk throughout this thesis, I refer a

to risk score which can be expressed thus on some scale. This assumption of

additivity is important because it allows us to assume that the correlation

between individuals on this scale is equal to their coefficient of relatedness.

2.2.3 Covariance for non-linear functions of allele count

The coefficient of relatedness is not sufficient to give the full joint genotype

distribution for two individuals. For instance, while full siblings and parent-

offspring pairs both have the same coefficient of relatedness (ρ = 0.5), they

have distinct patterns of allele sharing due to the fact that parent-offspring

always share exactly one allele IBD, but siblings can share zero, one or two.

We write the proportion of alleles shared IBD 1 and 2 as p1, p2 (with

1− p1− p2 with IBD 0). We can calculate the coefficient of relatedness from

the IBD probabilities as ρ = 1
2
p1 + p2. Parent-offspring pairs have p1 = 1

and p2 = 0, siblings have p1 = 0.5 and p2 = 0.25.

The table below shows the joint genotype distributions depending on IBD

status.

Genotype (xi,xj) IBD = 0 IBD = 1 IBD = 2

0,0 (1− f)4 (1− f)3 (1− f)2

0,1 2f(1− f)3 f(1− f)2 0

0,2 f 2(1− f)2 0 0

1,1 4f 2(1− f)2 f(1− f) 2f(1− f)

1,2 2f 3(1− f) f 2(1− f) 0

2,2 f 4 f 3 f 2

Note that certain genotype combinations can occor multiple ways. For in-
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stance, there are two possible ways of having one individual with two alleles

and one with zero, (xi,xj) = (0,2) and (xi,xj) = (2,0). This means that the

probability of being in either of these two states is equal to 2f 2(1− f)2.

We can then calculate the expected values of various non-linear func-

tions of genotype count. For instance, the product of genotype values has

expectation

E[xixj|IBD = 0] = 4f 2(1− f)2 + 8f 3(1− f) + 4f 4

= 4f 2 (2.32)

E[xixj|IBD = 1] = f(1− f) + 4f 2(1− f) + 4f 3

= f(1 + 3f) (2.33)

E[xixj|IBD = 2] = 2f(1− f) + 4f 2

= 2f(1 + f) (2.34)

E[xixj] = (1− p1 − p2)E[xixj|IBD = 0]

+p1E[xixj|IBD = 1] + p2E[xixj|IBD = 2]

= (1− p1 − p2)4f 2 + p1(f(1 + 3f)) + p22f(1 + f)

= f(p1 + 2p2) + f 2(4− p1 − 2p2)

= 2fρ+ 2f 2(2− ρ). (2.35)

As we saw above, the expectation of the product is dependent only on ρ,

and not on the specific IBD distribution.

The expectation of xix
2
j is given by
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E[xix
2
j |IBD = 0] = 4f 2(1− f)2 + 12f 3(1− f) + 8f 4

= 2f 2(2(1− f)2 + 6f(1− f) + 4f 4)

= 4f 2(1 + f) (2.36)

E[xix
2
j |IBD = 1] = f(1− f) + 6f 2(1− f) + 8f 3

= f(1 + 5f + 2f 2) (2.37)

E[xix
2
j |IBD = 2] = 2f(1− f) + 8f 2

= 2f(1 + 3f) (2.38)

E[xix
2
j ] = (1− p1 − p2)E[xix

2
j |IBD = 0] + p1E[xix

2
j |IBD = 1]

+p2E[xix
2
j |IBD = 2]

= (1− p1 − p2)4f 2(1 + f) + p1f(1 + 5f + 2f 2) + p22f(1 + 3f)

= (p1 + 2p2)f + (4 + p1 + 2p2)f 2 + 2(4− p1 − 2p2)f 3

= 2ρf + 2(2 + ρ)f 2 + 4(2− ρ)f 3. (2.39)

Again, this expression is only dependent on ρ. Finally, the expectation

of x2
ix

2
j is given by
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E[x2
ix

2
j |IBD = 0] = 4f 2(1− f)2 + 16f 3(1− f) + 16f 4

= 4f 2(1 + f)2 (2.40)

E[x2
ix

2
j |IBD = 1] = f(1− f) + 8f 2(1− f) + 16f 3

= f(1 + 7f + 8f 2) (2.41)

E[x2
ix

2
j |IBD = 2] = 2f(1− f) + 16f 2

= 2f(1 + 7f) (2.42)

E[x2
ix

2
j ] = (1− p1 − p2)E[x2

ix
2
j |IBD = 0]

+p1E[x2
ix

2
j |IBD = 1] + p2E[x2

ix
2
j |IBD = 2]

= (1− p1 − p2)4f 2(1 + f)2 + p1f(1 + 7f + 8f 2) + p22f(1 + 7f)

= f(p1 + 2p2) + f 2(4 + 3p1 + 10p2)

+8f 3(1− p2) + 4f 4(1− p1 − p2). (2.43)

And these in turn allow to us to calculate covariance and correlations of

non-linear functions of allele count between relatives. For instance, consider

the non-linear function ηi = xi + bx2
i with dominance term b.
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E[ηi] = E[xi] + bE[x2
i ]

= 2f(1 + b) + 2bf 2 (2.44)

E[ηi]
2 = E[xi] + bE[x2

i ]

= 4f 2(1 + b)2 + 8f 3b(1 + b) + 4b2f 4 (2.45)

E[η2
i ] = E[(xi + bx2

i )
2]

= E[x2
i ] + 2bE[x3

i ] + b2E[x4
i ]

= 2f(1 + b)2 + 2f 2(1 + 6b+ 7b2) (2.46)

V ar[ηi] = E[η2
i ]− E[ηi]

2

= 2f(1 + b)2 − 2f 2(1− 2b− 5b2)

−8f 3b(1 + b)− 4f 4b2 (2.47)

E[ηiηj] = E[(xi + bx2
i )(xj + bx2

j)]

= E[xixj] + 2bE[xix
2
j ] + b2E[x2

ix
2
j ] (2.48)

cov[ηi, ηj] = E[ηiηj]− E[ηi]E[ηj] (2.49)

cor[ηi, ηj] =
cov[ηi, ηj]

var[ηi, ηj]
. (2.50)

We can find the maximum and minimum values of the correlation by

differentiating cor[ηi, ηj] with respect to b. We find that the correlation takes

on the minimum value of p2 when b = −1
1+2f

, and a maximum value of ρ when

b = 0.

As Figure 2.1 shows, low frequency variants show very little drop off in

correlation until very high degrees of dominance, whereas higher frequency

variants show a smoother drop off in correlation. Dominance effects thus

have a stronger impact on the risk score correlation when the variants have

higher frequency.
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Figure 2.1: The decrease in correlation in risk score for siblings and parent-
child pairs with increasing value of the dominance term (normalised such that the
maximum value is −1

1+2f ). Different colour lines represent variants with different
allele frequencies.

2.3 The log risk model

The log risk model was defined by Pharoah et al. (2002) and more recently

elaborated on by Clayton (2009). It has most commonly been used to make

inferences about the utility of genetic risk prediction (Clayton, 2009; Sawcer

et al., 2010; Chatterjee et al., 2011), though it has also been used to estimate

sibling recurrence ratios in twin studies (Clayton, 2009).

As we will see, the model is asymptotically equivalent to the Risch multi-

locus model of genetic risk. It is also equivalent to the assumption of mul-

tiplicative combination of relative risk that is often used in genetic risk pre-
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diction (e.g. by the genetic testing company deCODEme).

This model is the least realistic of the models that I will consider, due

to the fact that the probability is not bounded, though it is also one of the

more widely used, probably due to its analytic tractability.

The link function for the log risk model is

p = exp(η). (2.51)

Substituting this into Equation 2.11, the density function for p is given

by

f(p) =
1

pσ
φ

(
log(p)− µ

σ

)
. (2.52)

2.3.1 Calculating parameters

The prevalence parameter K is given by

K = E[p]

=

∫
exp(µ+ σx)φ(x)dx

=

∫
1√
2π

exp(µ+ σx− 1

2
x2)dx

=

∫
1√
2π

exp(µ+ σ2/2− 1

2
(x− σ)2)dx

= exp(µ+
σ2

2
)

∫
φ(x− σ)dx

= exp(µ+
σ2

2
), (2.53)

i.e. the expectation of the log-normal distribution (Johnson et al., 1994).
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As we saw in Section 2.2.2, under additivity the correlation in log risk

score is equal to their coefficient of relatedness ρ. We can thus express the

genetic risk for relatives p1 and p2 as

p1 = exp(µ+ σz1) (2.54)

p2 = exp(µ+ ρσz1 +
√

1− ρσz2), (2.55)

where zi are standard normal variables.

The probability of both relatives developing the disease given zis is

P (d1 = 1, d2 = 1|η1, η2) = p(d1|η1)p(d2|η2)

= p1p2

= exp(µ+ σz1 + µ+ ρσz1 +
√

1− ρ2σz2)

= exp(2µ+ σ(1 + ρ)z1 + σ
√

1− ρ2z2). (2.56)

The mean rate of co-occurrence is thus
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E[p1p2] =

∫
p1φ(z1)p2φ(z2)dz1dz2

= exp(2µ)

∫
exp(

1

2
(z2

1 − 2σ(1 + ρ)))p2φ(z2)dz1dz2

= exp(2µ)

∫
exp(

1

2
((z1 − σ(1 + ρ))2 − σ2(1 + ρ)2))p2φ(z2)dz1dz2

= exp(2µ+
1

2
σ(1 + ρ))2)

∫
φ(z1 − σ(1 + ρ))p2φ(z2)dz1dz2

= exp(2µ+
1

2
σ(1 + ρ)2)

×
∫
φ(z1 − σ(1 + ρ)) exp(

1

2
(z2

2 − 2σ
√

1− ρ2))dz1dz2

= exp(2µ+
1

2
σ(1 + ρ)2)

×
∫
φ(z1 − σ(1 + ρ)) exp(

1

2
((z2 − σ

√
1− ρ2)2 − σ2(1− ρ2)))dz1dz2

= exp(2µ+
1

2
σ(1 + ρ)2 +

1

2
σ2(1− ρ2)))

×
∫
φ(z1 − σ(1 + ρ))φ(z2 − σ

√
1− ρ2)dz1dz2

= exp(2µ+
1

2
σ(1 + ρ)2 +

1

2
σ2(1− ρ2)))

= exp(2µ+ σ(1 + ρ)). (2.57)

The recurrence ratio in relatives is thus

λr =
E[p1p2]

K2

= exp(ρσ). (2.58)

We can rearrange equations 2.53 and 2.58 to give parameters µ and σ,

given a prevalence K and a sibling recurrence ratio λs
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σ2 = 2log(λs) (2.59)

µ = log(K)− σ2. (2.60)

2.3.2 Case and control distributions

The distribution of η in cases is given by the probability density function

P (η|d = 1) =
P (d = 1|η)P (η)

P (d = 1)

=
eηφ(η−µ

σ
)

σK
. (2.61)

This can be simplified to

P (η|d = 1) =
exp(η) 1

σ
√

2π
exp(−(η−µ)2

2σ2 )

exp(µ+ σ2)

=
1

σ
√

2π
exp(η +

−(η − µ)2

2σ2
− µ− σ2)

=
1

σ
√

2π
exp(
−(η − (µ+ σ2))2

2σ2
)

=
1

σ
φ(
η − (µ+ σ2)

σ
), (2.62)

i.e. normally distributed with a mean µ + σ2 and a variance σ2. Thus, the

distribution of log risk for cases is the same as for the population as a whole,

but shifted upwards by σ2.

The distribution for risk in controls is given by
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Figure 2.2: The case and control distributions of probability p and risk score η
for a rare disease (K = 0.01, λs = 9) and a common disease (K = 0.05, λs = 3)

P (η|d = 0) =
(1− eη)φ(η)

σ(1−K)
. (2.63)

The distribution of probability and risk score in cases and controls is

shown for example parameters (simulating a common and rare disease) in

Figure 2.2. Note that, in both parameter sets, a not insignificant number of

cases have a value of η > 0 and therefore p > 1 (see Section 2.3.5 for more

on this issue).
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2.3.3 Relationship to Risch model

The log risk model can be seen as an approximation to the Risch multilocus

model, introduced by Risch (1990), that has been used to make inferences

about genetic risk prediction (Wray et al., 2007). The Risch model assumes

that n loci exist, each with the same relative risk r and a risk allele frequency

f . An individual’s disease probability is based on the number of risk alleles

they carry x, and is given by

p = p0r
x

= exp [log(p0) + xlog(r)] , (2.64)

where p0 is the disease probability in individuals with zero risk alleles.

x is binomially distributed, with x ∼ Binom(2n, f). As we saw above,

as n grows larger, x tends in distribution to N(2nf, 2nf(1− f)), and thus

p→ exp (η) where η ∼ N
(
log(p0) + 2nf, 2nf(1− f)log(r)2

)
, (2.65)

i.e. the Risch model is asymptotically equivalent to the log risk model with

µ = log(p0) + 2nf and σ2 = 2nf(1− f)log(r)2.

2.3.4 Relationship to multiplicative relative risk model and

log-linked regression

A commonly used risk prediction method is the multiplicative relative risk

model (also known as the log-linear relative risk model). This is the most

widely used of the relative risk models in epidemiology (Breslow and Storer,
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1985), and has been used in genetics, as a model for genetic risk prediction

(Lu and Elston, 2008). Notably, it is the model used by the genetic test-

ing company deCODEme to produce individual disease probabilities given a

customer’s genotypes (deCODEme, 2012).

Under the multiplicative relative risk model, we have n loci, with each

having a frequency fi and a genotypic relative risk ri. The probability for an

individual who has allele counts xi is given by

p = f0

∏
rxii

= exp

[
log(f0) +

n∑
i=1

xilog(ri)

]
. (2.66)

Note that this can be seen as a generalisation of the Risch model, with

identical f = fi and r = ri for all i, and x =
∑

i xi.

As long as the values ri are finite, the terms xilog(ri) will have finite mean

and variance, and thus the central limit theorum states that the summation

above will tend towards a normal distribution as n grows, giving

p→ exp (η) where η ∼ N (µ, σ) , (2.67)

where

µ = log(f0) +
n∑
i=1

2filog(ri) (2.68)

σ2 =
n∑
i=1

2fi(1− fi)log(ri)
2, (2.69)
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i.e. equivalent to the log risk model with µ and σ.

2.3.5 Problem with probabilities greater than 1

Wray and Goddard (2010) noted a problem with the log risk and Risch mod-

els, in that they can predict probabilities greater than one. The authors

suggest a modified version of the model, where probabilities are capped at

1. In practice, capping at 1 may not be conservative enough: the genetic

testing company deCODEme cap their genetic risk probabilities at 90% (de-

CODEme, 2012). In contrast, Clayton (2012) argued that this is not a major

problem with the model, as for relatively uncommon diseases probabilities

greater than 1 are relatively rare in the general population.

However, I will show that this is a real problem with the model in many

circumstances. It is true that unless the disease is very common, the total

number of individuals with p > 1 is small. For a disease with K = 0.01 and

λs = 9, less than 0.1% of individuals have p > 1, and even for a disease with

K = 0.05 and λs = 3 only 0.3% of individuals have this property (Figure

2.2). However, these values rise dramatically if we only consider cases, to

0.5% and 2.2% respectively, and if we consider identical twins where both

are affected, 7% and 23% of twin pairs have a probability greater than 1.

So, while probabilities for randomly selected individuals are unlikely to

suffer from this problem, the individuals in those groups we are often most

concerned with (i.e. those with a family history and those who will go on

to develop the disease) are far more likely to. In particular, the very high

proportion of doubly-affected twin pairs with probabilities greater than 1 is

concerning given that the expectation of the product of these probabilities

is used to calculate the sibling recurrence ratio in Equation 2.58. Because

this expectation is likely to be overestimated due to the greater-than-one
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Figure 2.3: The λs predicted under the log risk model compared to the observed
value under the truncated log model with all probabilities greater than 1 set to 1,
for varying prevalence.

probabilities, it will follow that the value of λs could be greatly overesti-

mated, and likewise the size of the genetic variance and parameter σ could

be underestimated given a value λs.

To investigate the degree to which this will lead to errors, I simulated

families under a truncated model (i.e. setting all p > 1 to p = 1), and

compared the observed λs values to those predicted by Equation 2.58. Figure

2.3 shows that the log risk model significantly overestimates virtually all

values of λs when K = 0.1, all values of λs > 5 for K = 0.01, and values of

λs > 10 for K = 0.001. Only for very rare diseases (K < 0.0001) does the

log risk model perform well regardless of the value of λs.
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2.4 The probit risk model

The probit model of risk, also called the liability threshold model, was intro-

duced by Falconer (1965), and further refined by Reich et al. (1972) and Fal-

coner and Mackay (1996). Due to its compatibility with structural equation

modelling and the popularity of the Mx program (Neale and Cardon, 1992),

it has come to be used as the dominant model for twin studies of binary traits

(Rijsdijk and Sham, 2002). Outside of family studies, it has also been used to

study the potential limits of genetic risk prediction (Wray et al., 2010), and

has even been important in influencing how many non-statisticians develop

their theories of disease (see for instance Haegert (2004)).

The link function for the probit risk model is

p = Φ(η), (2.70)

where Φ is the cumulative distribution function of the standard normal dis-

tribution. Substituting this into Equation 2.11 gives a probability density

of

f(p) =
1

σφ (Φ−1(p))
φ(

Φ−1(p)− µ
σ

), (2.71)

where Φ−1(·) is the inverse cumulative distribution (or quantile) function of

the standard normal distribution.

2.4.1 Relationship to the liability threshold model

The probit risk distribution in Equation 2.70 is derived from the liability

threshold model. The liability threshold model assumes that individuals

have a liability score L ∼ N(0, 1), and an individual is assumed to have the
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disease if L is larger than some threshold T . A simple form of the liabil-

ity model assumes that L can be expressed in terms of an additive genetic

component A and an environmental component E as

L = A+ E, (2.72)

where A ∼ N(0, h2), E ∼ N(0, 1− h2) and A ⊥ E.

We can express A = hz where z ∼ N(0, 1), and thus the distribution of

genetic disease probabilities is

p = P (A+ E > T )

= P (E > T − A)

= Φ

(
− T − hz√

1− h2

)
= Φ(η). (2.73)

We thus see that the liability threshold model is equivalent to the probit

model with

µ = − T√
1− h2

(2.74)

σ =

√
h2

1− h2
, (2.75)

and likewise



70 Chapter 2. Statistical methods and models of genetic risk

T = − µ√
1 + σ2

(2.76)

h2 =
σ2

1 + σ2
(2.77)

A note on the ACDE liability model

Liability threshold modelling is often extended to partition the liability in

more detail. A general formulation is the “ACDE” model, where

L = A+ C +D + E, (2.78)

and where A is an additive genetic risk score, D is a dominant genetic risk

score, C is an environmental risk shared between family members and E is

non-shared environmental risk. All these terms have their own individual

variances σ2
X , and

∑
X σ

2
X = 1.

As we have already seen, the correlation in additive risk score A is ρij,

and as we saw in Section 2.2.3 the correlation in a fully dominant risk score is

p2 = p(IBD = 2). The correlation in common environment is by definition

1. It is this formulation that is generally used in twin studies, where the

model is fitted (ideally by maximum likelihood, though often by approximate

methods) to a set of identical twins (i.e. ρij = 1 and p2 = 1) and non-identical

twins (i.e. ρij =0.5 and p2 =0.25). In practice, having only two distinct levels

of relatedness means that only two parameters can be fitted, so in general we

either set D = 0 (the “ACE” model), or C = 0 (the “ADE” model, generally

used for twins reared apart). Note that this formulation is not specific to the

liability threshold model, similar covariance relationships can be defined for
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any model that is expressed in terms of a normally distributed risk score.

2.4.2 Calculating parameters

By definition, the threshold T is selected such that a proportion K of indi-

viduals have a value greater than T , i.e. T = Φ−1(1−K). We can thus write

K in terms as µ and σ as

K = 1− Φ

(
µ√

1 + σ2

)
. (2.79)

The heritability, provided by Wray et al. (2010) using equations derived

by Reich et al. (1972), is given by

h2 = 2
T − Ts

√
1− (T 2 − T 2

s )(1− T/z)

z + T 2
s (i− T )

, (2.80)

where Ts = Φ−1(1− λsK), and z = φ(T )
K

.

2.4.3 Case and control distributions

Wray et al. (2010) calculated an approximate normal density for the genetic

liability A in cases as

P (A|d = 1) ≈ 1√
h2(1− h2z(z − T ))

φ(
zh2 − A√

h2(1− h2z(z − T ))
).(2.81)

This is an approximation to the exact density



72 Chapter 2. Statistical methods and models of genetic risk

0.0 0.2 0.4 0.6 0.8 1.0

-4
-3

-2
-1

h2

M
ea

n 
er

ro
r

K=
10%
1%
0.1%
0.01%

(a)

0.5 0.6 0.7 0.8 0.9 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

True AUC
A

pp
ro

xi
m

at
e 

A
U

C

K=
50%
10%
1%

(b)

Figure 2.4: a) The log10 mean error (average squared distrance from the true
value) of the normal density approximation to the genetic liability in cases P (A|d =
1), as a function of prevalence K and heritability h2. b) The Area Under the ROC
Curve calculated using the exact and approximate equations, as a function of K
and h2

P (A|d = 1) =
P (A+ E > T |A)P (A)

P (A+ E > T )
(2.82)

=
1

K
Φ

(
A− T√
1− h2

)
φ

(
A√
h2

)
. (2.83)

Similar expressions exist for the genetic liability in controls.

Figure 2.4A shows the mean accuracy of this normal approximation as a

function of the heritability and prevalence. Note that there is significant error

in this approximation at high heritabilities, particularly if the prevalence is

also high.

This approximation is used by Wray et al. (2010) to calculate the max-

imum possible predictive capacity of genetic risk prediction for various dis-
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Figure 2.5: The case and control distributions of probability p and risk score η
for a rare disease (K = 0.01, λs = 9) and a common disease (K = 0.05, λs = 3),
under the probit model.

eases. The error in this function for highly heritable common diseases sug-

gests that these values could be in error. However, Figure 2.4B shows that,

in practice, this error only serves to slightly underestimate the very largest

AUCs for very common K > 0.1 diseases, which does not substantially

change the conclusions drawn from these results.

Examples of the distributions of η and p in cases and controls are shown

in Figure 2.5.
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2.4.4 Relationship to probit regression and latent variable

modelling

Probit regression is a form of latent variable regression introduced by Bliss

(1935) in 1935 as a model for bio-assay analysis. It was the dominant method

of analysis for dichotomous traits until the 1960s, when the logistic regression

model began to overtake it (see discussion of the logistic model below).

The probit model is a latent variable model, based on a continuous score

y = β0 +
∑
i

βixi + e, (2.84)

where ~β are parameters of the model, ~x are observed variables, and e ∼

N(0, 1) is an unobserved (or latent) variable. The observed outcome is a

binary indicator variable

d(y) =

 1 if y > 0;

0 otherwise.
(2.85)

The probit regression model is fitted to determine the values of ~β.

We write X = β0 +
∑

i βixi, which, given a large number of predictors,

can be approximated as X ∼ N(µx, σ
2
x), where

µx = β0 +
∑
i

2fiβi (2.86)

σ2
x =

∑
i

2fi(1− fi)β2
i . (2.87)

We can write the probability of d = 1 as
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P (d = 1) = p(y > 0)

= P (X + e > 0)

= P

(
X − µx√

1 + σ2
x

+
e√

1 + σ2
x

> − µx√
1 + σ2

x

)
= P (A+ E > T ), (2.88)

i.e. equivalent to the liability threshold model where

h2 =
σx√

1 + σ2
x

=

∑
i 2fi(1− fi)β2

i√
1 +

∑
i 2fi(1− fi)β2

i

(2.89)

T = −µx
σ2
x

= − β0 +
∑

i 2fiβi√
1 +

∑
i 2fi(1− fi)β2

i

. (2.90)

We can use this to fit the liability threshold or probit model directly from

the results of probit regression, and thus calculate the variance explained by

a set of genetic markers. While this is generally not used as a method for

calculating heritability, if the liability threshold model is, in fact, the true

model of genetic risk, this method should give the best approximation to the

true variance explained by a set of genetic predictors.
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2.5 The logit risk model

The general logit-normal (or logistic-normal) distribution was first defined

by Mead (1965) in 1965, who noted that its moments have no analytic closed

form, and its parameters can only be estimated iteratively (and even then

only with some difficulty). However, the logit link itself is much older, having

been used in bio-assay since the 1930s (see discussion of logistic regression

below).

The logistic-normal distribution has been used previously to model serial

observations under a random effects model (Stiratelli et al., 1984), but I

believe has only been used directly in quantitative genetics once. Commenges

et al. (1995) used a logistic-normal model to test hypotheses about familial

aggregation in Alzheimer’s disease conditional on known risk factors, much

like the standard use of the probit model described above.

The implicit importance of the logit model is much larger than its lack of

direct application may suggest. The most common methods used in modern

statistical genetics, multiplicative odds ratio analysis and logistic regression,

both implicitly assume the existence of logit-normally distributed risk. In

essence, a model of genetic risk in the population is implicitly assumed by

the methodology of almost all human complex disease genetics, but almost

never directly investigated. This disconnect between the common usage of

the regression technique and the infrequent use of the limiting normal has

been noted in other fields (Frederic and Lad, 2003).

The link function for the logit risk model is

p = (1 + exp(−η))−1 : η ∼ N(µ, σ), (2.91)

and the density is
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f(p) =
1

σp(1− p)
φ

(
1

σ
log

(
p

1− p

)
− µ

σ

)
. (2.92)

Note that η is equal to the log-odds of disease

log(O) = log

(
p

1− p

)
= η. (2.93)

2.5.1 Calculating parameters

As with the moments of the logit-normal, none of the parameters of the logit

normal have closed-form analytic solutions. Instead, they must be calculated

by numeric integration.

The prevalence is given by

K = E[p]

=

∫ 1

0

pf(p)dp. (2.94)

To calculate the relative recurrence ratio, we need to look at the bivariate

distribution. Suppose we have two individuals with a relatedness coefficient

ρ. We model their genotypic risks as

pi =
1

1 + exp(−ηi)
, (2.95)

where ~η = (η1, η2) are jointly normally distributed with a mean of µ and a

covariance
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Σ = σ2

 1 ρ

ρ 1

 . (2.96)

We can transform ~η into independent standard normals ~x by noting that

~η = µ+B~x, (2.97)

where B is the Cholesky decomposition of Σ, such that BB′ = Σ and thus

B = σ

 1 0

ρ
√

1− ρ2

 . (2.98)

From this, we can transform pi, giving

x1 =
1

σ

[
log

(
p1

1− p1

)
− µ

]
(2.99)

x2 =
1

σ
√

1− ρ2

[
log

(
p2

1− p2

)
− µ− σρx1

]
. (2.100)

The determinant of the Jacobian of this transformation is

∣∣∣∣d~xd~y
∣∣∣∣ =

1

σ2
√

1− ρ2
∏2

i=1 pi(1− pi)
, (2.101)

thus the joint density of risk is given by

g(p1, p2) =
φ(~x)

σ2
√

1− ρ2p1(1− p1)P2(1− p2)
(2.102)

From this we can calculate λR

λR =

∫ ∫
p1p2f(p1, p2)dp1dp2

K2
. (2.103)
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2.5.2 Fitting the logit risk model numerically

To find parameters µ and σ given parameters K and λs, we find values that

minimize the error function

Error(µ, σ) =
(√

E[p1p2|µ, σ]−
√
λsK2

)2

+ (E[p|µ, σ]−K)2 . (2.104)

I use the Nelder-Mead algorithm (Nelder and Mead, 1965) implemented

in the statistical language R. Note that the convergence speed and reliability

of this procedure can be very dependent on the initial values of µ and σ. We

can get a good initial guess by expressing the logit risk in terms of the probit

model

We can express the probit model on the logit scale

ηprobit = Φ−1((1 + e−ηlogit)−1) (2.105)

dηprobit
dηlogit

=
[
φ(Φ−1((1 + e−ηlogit)−1)(1 + e−ηlogit)(1 + eηlogit)

]−1
.(2.106)

We can then get the density of the logit risk score given the probit model

f(ηlogit|µprobit, σprobit) = f(ηprobit|µprobit, σprobit)
dηprobit
dηlogit

, (2.107)

which can in turn give us the expectation and variance of the logit risk

variable under the probit model, which we use as an initial guess for the

parameters µ and σ under the logit risk model
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µinit =

∫
η

ηf(η|µprobit, σprobit)dη (2.108)

σinit =

∫
η

(η − µinit)2f(η|µprobit, σprobit)dη. (2.109)

2.5.3 Case and Control Distributions

There is no particularly elegant way of describing the distribution of the

probability p and the risk score η in cases and controls. Instead we can only

use the general equations given in Section 2.1.2.

Examples of the distributions of η and p in cases and controls are shown

in Figure 2.6.

2.5.4 Relationship to the multiplicative odds ratio model

Odds ratios are widely used to quantify differences between groups, and

to make probabilistic predictions for individuals given group membership

(see discussion in Morgan and Teachman (1988) for example). Odds ratios

are the most widely used summary statistic in medical studies (Bland and

Altman, 2000), mostly due to their utility in meta-analyses, though they

are not without their detractors (Sackett et al., 1996). In genetics, the odds

ratio has become the dominant method for summarising disease associations,

largely due to its connection with logistic regression.

Given an exposure a ∈ {0, 1}, and an outcome d ∈ {0, 1}, we can define

the probability conditional on exposure status a = i as pi = P (d = 1|a = i).

The odds ratio for exposure a is then defined as

ra =
p1

1− p1

1− p0

p0

. (2.110)
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Figure 2.6: The case and control distributions of probability p and risk score η
for a rare disease (K = 0.01, λs = 9) and a common disease (K = 0.05, λs = 3)

Odds ratios in genetics

Throughout this thesis, I will refer to the effect size of a genetic association

in terms of the odds ratios rhet and rhom, where



82 Chapter 2. Statistical methods and models of genetic risk

rhet =
p1(1− p0)

p0(1− p1

(2.111)

rhom =
p2(1− p0)

p0(1− p2

, (2.112)

where px = P (d = 1|g = x) are the disease probabilities conditional on

risk allele count x. We will sometimes refer to the genotypic odds ratio

r = rhet =
√
rhom (also called the additive odds ratio).

We can rearrange the odds ratio definitions to give expressions for the

disease probabilities for non-wild type genotypes in terms of the wild-type

disease probability

p1 =
p0rhet

1− p0 + p0rhet
(2.113)

p2 =
p0rhom

1− p0 + p0rhom
. (2.114)

Given a prevalence K we can get the value of p0 by solving the equation

p0(1− f)2 + p12f(1− f) + p2f
2 = K, (2.115)

which can be solved analytically (but messily), or numerically (counterintu-

itively, the numeric method is likely to be more accurate (Nievergelt, 2003)).

A common analytic approximation to calculate odds ratios is to normalize

the odds ratios such that their population mean is equal to 1

(1− f)2

r̄
+

2f(1− f)rhet
r̄

+
f 2rhom
r̄

= 1, (2.116)

i.e.
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r̄ = (1− f)2 + 2f(1− f)rhet + f 2rhom. (2.117)

We can then set

r̂0 =
1

r̄
(2.118)

r̂1 =
rhet
r̄

(2.119)

r̂2 =
rhom
r̄

, (2.120)

(2.121)

or, given a genotypic odds ratio, r̂x = rx

r̄
.

We can then set the disease probabilities using these normalised odds

ratios as

px =
1

1 + 1−K
r̂xK

. (2.122)

(2.123)

This is the method used by, for instance, the genetic testing company

23andMe (Macpherson et al., 2007).

The accuracy of this approximation varies depending on the prevalence

of the disease in question, and the size of the odds ratio (Figure 2.7). For a

rare disease (K = 0.01) the approximation is accurate to within 1% for all

realistic odds ratios and frequencies (and accurate to within 0.1% or less for

OR < 1.5). For a more common disease (K = 0.2) the approximation is only

accurate to within 1% for lower odds ratios (OR < 1.5). However, for odds

ratios typically found within GWAS (generally OR < 1.3) the approximation
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Figure 2.7: The accuracy of the odds ratio normalisation approach to genetic
risk prediction, for rare and common diseases, as a function of odds ratio and risk
allele frequency.

holds across prevalence and allele frequencies.

Combining independent odds ratios

Suppose we have two exposures a and b, with pij = P (d = 1|a = i, b = j). A

reasonable definition for these two exposures having an independent effect is

if the odds ratio ra does not depend on the value of b, and vice versa, i.e.

ra =
p10

1− p10

1− p00

p00

=
p11

1− p11

1− p01

p01

, (2.124)

and
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rb =
p01

1− p01

1− p00

p00

=
p11

1− p11

1− p10

p10

. (2.125)

We can then calculate the joint odds ratio for both exposures, rab, as

rab =
p11

1− p11

1− p00

p00

=

(
p11

1− p11

1− p01

p01

)(
p01

1− p01

1− p00

p00

)
= rarb, (2.126)

i.e. to combine independent odds ratios, multiply them together. Note that

this justifies the genotypic odds ratio r2 = rhom = r2
het, as it represents both

alleles acting independently at a single locus.

We can generalise this to make a combined odds ratio given genotypes

~x = {xl} across n loci with odds ratios ~r = {rl}

r~x =
n∏
l=1

rxll . (2.127)

The disease probability is thus given as
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p~x =
r~xp0

1− p0 + r~xp0

=
1

1 + 1
r~x

1−p0
p0

=
1

1 + exp(−η)
, (2.128)

where

η = log

(
p0

1− p0

r~x

)
= log

(
p0

1− p0

)
+ log (r~x) Fixed brackets

= log

(
p0

1− p0

)
+

n∑
l=1

xllog(rl). (2.129)

Again, by the central limit theorem η tends towards a normal distribution

with parameters

µ = log

(
p0

1− p0

)
+

n∑
l=1

2fllog(rl) (2.130)

σ2 =
n∑
l=1

2fl(1− fl)log(rl)
2 (2.131)

Thus the logit risk model is asymptotically equivalent to the assumption

that odds ratios act independently.



2.5. The logit risk model 87

2.5.5 Relationship to logistic regression

The logistic function, g = (1+exp(−η))−1, has been used since the 19th cen-

tury as a description of population growth given limited resources (Verhulst,

1838), and in the early 20th century was found to accurately model many

physiochemical responses (Reed and Berkson, 1929). It was first used as a

regression model by Berkson (1944), who introduced it as an alternative to

probit regression (and also introduced the name “logit”). Berkson later laid

down in some detail the theoretical and empirical arguments underlying logit

and probit link functions (Berkson, 1951).

In the last few decades the logit link has succeeded the probit link as the

dominant form of regression model for binary outcomes(Cramer, 2003). It

is very widely used in medical literature (though often imperfectly (Bagley

et al., 2001)), and is the dominant method for performing genome-wide asso-

ciation studies under the presence of confounding factors, particularly with

the rise of principal component methods to control population stratification

(Price et al., 2006).

The logistic regression model has the form

p = (1 + exp(−η))−1 where (2.132)

η = β0 +
∑
i

xiβi. (2.133)

This is equivalent to equations 2.128 and 2.129 with parameters β0 = p0
1−p0

and βi = log(ri). We can thus see that, given an arbitrarily large number of

predictors, the logistic regression model is approximated by the logit-normal

risk model. This also provides us with a method of fitting the logit risk model

from genetic data, using the results of logistic regression.
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2.6 Comparing models of risk

In the previous sections I outlined three continuous models of genetic risk

and noted the different assumption that underlie them. In this section I will

examine the ways in which these models differ in their predictions about the

distribution of genetic risk in the population.

I will look at the predicted distribution of disease probability in cases

across different models, and look in more detail at the differences between the

logit and probit models. I will then consider the predicted relative recurrence

risks and predicted ROC curves for the different models.

2.6.1 Comparing disease probability distributions in cases

Figure 2.8 shows the distribution of p in affected individuals under the three

different models. In both cases, the log model produces a smaller mean p

and a left-shifted distribution relative to the log and probit models. Addi-

tionally, in both scenarios the logit and probit models give relatively similar

distributions, with approximately the same mean value of p. Disregarding a

sharp peak near p = 1 for the probit model in 2.8a, the logit model seems

to show slightly more density towards the ends of the distribution, and the

probit model shows more density towards the middle.

In these comparisons, the log model stands out as clearly underestimating

both the degree of enrichment of genetic risk in cases, predicting very few

cases to have a high risk compared to the other two models. On the scale

that we have examined, however, the logit and probit models appear similar,

and it is difficult to infer the significance of these deviations. We can look at

the differences between these two models in more detail by producing values

of p given the probit model, and projecting them onto logit space using
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(a) Rare disease

(b) Common disease

Figure 2.8: The distribution of genetic disease probabilities in randomly selected
cases under the three different risk models, for a relatively rare, highly heritable
disease (K = 0.01, λs = 9), and a more common, mildly heritable disease (K =
0.05, λs = 3). The legend gives the mean value of p in cases.
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Probit model
K=0.01, λs=4.4, h2 = 0.5
Logit model (Exp-Var fit)
K=0.04, λs=4.4, h2 = 0.485
Logit model (parameter fit)
K=0.01, λs=4.4, h2 = 0.495

Figure 2.9: Different logistic approximations to a probit distribution. The exact
distribution of the logit score under the probit model for K = 0.01 and h2 =
0.5 is shown in blue (with bars representing a histogram of samples from the
distribution). The red line shows a logistic normal fitted to have the same the
mean and variance as the probit model, and the green line shows a logistic normal
fitted to have the same K and λs values as the probit model.

p = Φ(ηprobit) = (1 + exp(−ηlogit))−1 (2.134)

ηlogit = log

(
Φ(ηprobit)

1− Φ(ηprobit)

)
. (2.135)

Figure 2.9 shows this projection for a probit model with h2 = 0.5 and

K = 0.01 (bars and blue line). The red and green lines show two logit models:

the red line showing the logit model with the same mean and variance on the

logit scale as the probit model, and the green line showing the logit model

with the same K and λs values as the probit model.
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We can see that no logit model accurately models the projected probit

distribution, due to the high kurtosis of the projection. A model with the

same mean and variance, while having similar values of λs and h2, predicts

too high a prevalence. The model that has the same K and λs also has a

similar h2, but follows a very different curve with a much smaller variance.

This highlights clearly the ambiguity involved in comparing models or

results parameterised on these difference scales. Furthermore, we can see that

a logit model designed to closely mimic the probit model’s risk distribution

produces divergent parameters. Despite their superficial similarity, these

models cannot be viewed as approximations to each other.

2.6.2 Comparing relative recurrence risk

None of the above distributions reflect any quantities that can be observed

in the population. One long measured and studied property in the genetics

of disease is the increase in disease risk in relatives of affected individuals,

estimations of which are often used to draw conclusions about the genetic

architecture of the disease (Compston and Coles, 2008; Sawcer, 2009; Brown

et al., 2000).

As we saw in equation 2.58, under the log risk model

λr = exp(σρ). (2.136)

Substituting σ = 2log(λs) gives
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λr = exp(2log(λs)ρ)

= λ2ρ
s . (2.137)

This means that given the log risk model (and thus also given multi-

plicative relative risk), the recurrence ratio in relatives λr falls off with the

logarithm of the coefficient of relatedness ρ. Deviation from this log-linear

relationship is often interpreted as evidence of genetic non-additivity (Brown

et al., 2000). However, deviations from this relationship could also be evi-

dence that a different model is at play.

Figure 2.10a shows the fall-off in λr as a function of ρ for the three models

(all with K = 0.05 and λs = 3). All models give very similar predictions,

though there are slight differences between the models (Figure 2.10b). This

includes up to a 6% increase in the risk ratio for probit and logit relative

to the log model for highly related individuals (ρ > 0.5, including identical

twins and siblings of consanguineous parents), and a corresponding decrease

in risk for more distance relatives (peaking at a 3% difference at ρ = 0.25, or

avuncular relationships).

These differences are on the limit of what can be detected in family stud-

ies: for 80% power to detect a 3% deviation from λs = 3 at p < 0.05 would

require over 38 000 avuncular pairs. In addition, even if the log risk model

could be rejected, we would not be able to say whether this difference was

due to a different additive model applying, or merely a non-additive model.

In theory measurements for a large range of different relative types could re-

solve this question, but in practice an even larger number of relatives would

be required. In short, there is no plausible family study that could distinguish
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between these three models of genetic risk.

2.6.3 Comparing ROC curves for risk prediction

Many authors have attempted to make predictions about how useful genetic

risk prediction could be if we managed to account for the total load of genetic

risk predicted to exist by family studies. However, the results have been in

many cases divergent, even when authors apply their methods to the same

datasets. Some authors draw the conclusion that genetic risk prediction is

unlikely to ever be of high utility (Clayton, 2009), while others conclude that

genetic risk prediction could be of great use (Wray et al., 2010). I discussed

the general question of how and when genetic risk prediction could be useful

in the introduction, but here I will focus more specifically on how the model

used can change your conclusions about the utility of genetic risk prediction.

Figure 2.11 shows the predicted ROC curves for diseases with a prevalence

of K = 1/200 and K = 1/20, and a sibling relative risk of λS = 9 and λs = 3

for the three models. For the rarer disease all the models give divergent

answers, with the probit model giving an AUC of 0.98, a logit model an

AUC of 0.96, and the log model an AUC of 0.89. For the common disease,

the logit and probit models agree on an AUC of 0.93, though with a different

sensitivity-specificity trade-off, and the log model gives a much lower AUC

of 0.84.

The low predictive accuracies for the log model are probably due to the

problems mentioned in Section 2.3.5, and I will disregard these values. It

therefore seems like a plausible maximum AUC for rare diseases likely lies

between 0.96 and 0.98, and common diseases around 0.93, as predicted by

the logit and probit models. However, the significant variability, both in

the AUC values and in the shape of the ROC curves, highlights the degree



94 Chapter 2. Statistical methods and models of genetic risk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

ρ

lo
g(
λ r
)

Log
Probit
Logit

(a) Rare disease

0.0 0.2 0.4 0.6 0.8 1.0

0.
98

1.
00

1.
02

1.
04

1.
06

ρ

R
at

io
 o

f λ
r

Probit/Log
Logit/Log

(b) Common disease

Figure 2.10: a) The log relative risk (log(λr)) under the three models as a
function of the coefficient of relatedness ρ, Parameters are K = 0.05, λs = 3 b)
The ratio of probit and logit λr values to log λr values, as a function of ρ.
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Figure 2.11: The ROC curves for the log, logit and probit models of disease risk
for a rare disease with a prevalence K = 1/200 and sibling relative risk of λS = 9,
and a common disease with K = 1/20 and λs = 3, given that all genetic risk has
been explained. The corresponding AUCs are 0.89, 0.96 and 0.98 respectively for
the rare disease, and 0.84, 0.93 and 0.93 for the common disease.

to which forecasts of the future utility of genetic risk prediction are model

specific.
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2.7 Conclusion

2.7.1 Summary of models

As we have seen, the three models that we have examined can each be seen

as the natural result of the assumptions made in one or more major statis-

tical method. We can summarise the three models, and their corresponding

methods, using the following table:

Model Link function Equivalent models/methods

Log risk p = exp(η) Risch model, multiplicative relative

risk

Probit risk p = Φ(η) Liability threshold model, latent vari-

able model, probit regression

Logit risk p = (1 + exp(−η))−1 Multiplicative odds ratios, logistic re-

gression

We have seen that these models differ in their predictions about the dis-

tribution of risk in populations. Some of these differences are minor (they

all have a similar relationship between coefficient of relatedness and relative

recurrence risk), but some are large (they give divergent predictions about

the maximum utility of genetic risk prediction).

2.7.2 Limitations of this approach

An important caveat is that the analyses of these three models above are all

built on two major assumptions. The first is that the risk score η can be

approximated by a normal distribution, and the second is that the risk score

η is additive.



2.7. Conclusion 97

-10 -5 0 5 10

0.
00

0.
05

0.
10

0.
15

log OR

D
en
si
ty

f = 0.25
OR = 1.2
N = 923

(a) Polygenic

-10 -5 0 5 10

0.
00

0.
05

0.
10

0.
15

log OR
D
en
si
ty

f = 0.25
OR = 4
N = 16

(b) Oligogenic

-10 -5 0 5 10

0.
00

0.
05

0.
10

0.
15

log OR

D
en
si
ty

f = 0.01
OR = 5
N = 225

(c) Low-frequency

-10 -5 0 5 10

0.
00

0.
05

0.
10

0.
15

log OR

D
en
si
ty

f = 0.001
OR = 10
N = 1086

(d) Rare

Figure 2.12: The closeness of fit to the normal distribution for variants with
different frequencies and odds ratios. The black line represents the normal ap-
proximation, and the green bars are odds ratios sampled from the model. The
number of variants N is chosen to have λs = 3.

Speaking to the first assumption, Figure 2.12 illustrates how well this ap-

proximation holds across different architectures, given the same value of λs.

In fact, the normal approximation holds for almost all plausible genetic ar-

chitectures; the approximation is very accurate for polygenic and oligogenic

models, and is relatively accurate for low-frequency variants. The approxi-

mation becomes significantly less accurate for a disease driven purely by rare,
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Figure 2.13: The affected of epistasis on heritability estimation from twin studies.
The epistasis model used is the multiple threshold model of Zuk et al. (2012), in
which the risk score is the minimum of N independent liability scales, each with a
heritability h2

p. The dots represent increasing N (starting with 1, increasing in the
direction of the arrow), and the colours represent different values of h2

p. The first
panel shows the overestimation of the narrow-sense heritability, and the second
shows the overestimation of the broad-sense heritability.

highly penetrant mutations.

As for the second, non-additivity can alter the models in two ways.

Firstly, it can lead to non-normality in the risk score. However, as I men-

tioned in Section 2.2, it seems likely that most forms of pairwise interaction

can be approximated as a normal distribution, and even risk scores based on

more detailed forms of epistasis can be modelled as normal (see, for exam-

ple, Zuk et al. (2012)). Secondly, as we saw for single-locus dominance in

section 2.2.3, non-linearity can alter the correlation structure of risk scores

in related individuals. Specifically, non-additivity reduces correlation such

that cor[ηi, ηj] < ρ. This is turn can lead us to overestimate the heritability

of the disease.

We use the model of Zuk et al. (2012) to explore this effect. Figure 2.13
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examines how serious this effect will be on our estimation of heritability, and

thus the results of our models. Zuk et al. (2012) showed that, under epistasis,

the narrow sense heritability (i.e. the correlation in additive risk score) will

be greatly overestimated by twin studies (as shown in Figure 2.13a). How-

ever, for our purposes we are more interested in the overestimation of the

full heritability, which is what determines the univariate distribution of the

probit score η. Figure 2.13b shows that this value is significantly less prone

to overestimation than the narrow sense heritability, and is only seriously

overestimated in cases where H2 > 0.8.

2.7.3 Problems generated by model ambiguity

The use of methods with differing underlying models can itself create am-

biguity in results. Suppose we have performed a genome-wide association

study of a disease with K = 0.05, using logistic regression. We have identi-

fied 48 loci, each with an estimated odds ratio of 2 and a frequency of 50%.

We wish to compare these results with data from of twin studies, which have

found that the disease has a heritability of h2 = 0.8, in order to say what

proportion of genetic variance has been explained. There are three ways that

we could answer this question

1. Fit the log-normal model from the data using equation 2.131, project

the result onto the probit scale using Equation 2.134, calculate the

variance and convert to h2 using Equation 2.75. This gives h2 ≈ 0.586

2. Fit the log-normal model, calculate the value of λs, and use Equation

2.80 to calculate the corresponding h2. This gives h2 ≈ 0.634

3. Perform probit regression on the original genetic data, and use equation

2.89 to calculate h2. A simulation of this (generated under the logistic
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model) gives h2 ≈ 0.751.

The technique used can alter the percentage of heritability explained from

74% to 93%. The smallest answer may lead people to invest further to

discover the missing quarter of heritability, while the latter will likely lead to

a conclusion that the trait is essentially solved. There is no correct answer,

as the question we are asking is inherently problematic: the two results we

are comparing were generated under different models. Which of the values

is correct (if any) will depend on the true model underlying the genetic risk

in the first place, which is unknown.


