
Chapter 5

High-throughput genomic studies

of multiplex families

5.1 Introduction

The previous two chapters have discussed methods for mapping and in-

terpreting disease associations in unrelated case/control cohorts. This has

proven extremely successful at discovering common risk loci, including a

large number of risk alleles for inflammatory bowel disease (IBD). However,

case-control studies, using genotyping chips, are far from the only method of

studying genetic risk.

As I discussed in the introduction, there are many types of risk variant

that case-control GWAS studies are not well suited to study. In particu-

lar, the tag SNP approach is poorly powered to detect very low frequency
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variants, even if they have large effect sizes. The rise of next-generation se-

quencing, however, gives us the opportunity to directly assay such variants

via whole genome or whole-exome sequencing. The question is how to dis-

tinguish the (very small) number of causal risk variants from the (very large)

number of low-frequency variants that have no effect on disease.

One potentially powerful tool is the study of multiplex (or multiply af-

fected) families. Multiplex families have long been a staple of human disease

genetics, and are the starting point for both the heritability and linkage stud-

ies that underlie much of our knowledge of complex disease. In recent years

family studies have fallen out of favour in complex disease genetics as a re-

sult of the relatively poor performance of linkage studies and the success of

GWAS. However, as we will see, multiplex families are more likely to harbour

rare, high penetrance causal variants than unrelated cases. Furthermore, the

fact that these variants are shared across multiple affected individuals gives

us information that can allow us to whittle down the list of candidate vari-

ants by focusing only on those that are shared by many affecteds within the

family.

I will start this chapter with a brief discussion of the history of multiplex

family studies in complex disease (section 5.2). This section will also outline

the approach to studying multiplex families that I describe in this chapter, in

the context of the studies that have come before. I will then introduce some

statistical models for analysing multiplex families in terms of high penetrance

and polygenic risk factors (section 5.3). This will lead to the introduction of

a new method for prioritising multiplex families that are most likely to carry

a high penetrance mutation, using GWAS risk variants.

Section 5.4 will discuss a large multiplex family with over 40 family mem-

bers suffering from IBD, collected with the aim of identifying rare causal mu-
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tations. We have performed a detailed genetic investigation into this family,

using targeting and whole-genome genotyping, as well as whole-exome and

whole-genome sequencing. I will discuss the known risk in this family, and

explore the linkage and haplotype evidence for association. I will then de-

scribe the analysis of the sequencing data, calling SNPs, indels and structural

variants, and combining them with the linkage information. Finally, I will de-

scribe a filtering procedure designed to identify candidate causal variants on

the basis of their frequency, function and segregation within the family. This

identifies a total of 120 candidate variants, including coding and regulatory

SNPs and indels, and structural variants.

In the final section (section 5.5) I will describe a validation and replication

experiment designed to discover which of these candidate variants may be

causal. I will describe the error modes that can create false candidates, and

how they can be counteracted. Finally I will describe three methods for ge-

netically replicating these associations, including using case-control cohorts,

unaffected siblings and other multiplex families, and explore the power of

these approaches.
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5.2 A history of multiplex family studies in complex

disease

It was the existence of multiply affected families that first led scholars to

begin investigating what we now call disease genetics. At the turn of the

19th century John C. Otto published an extensive pedigree analysis of a

haemophilic family in New Hampshire, tracing it back for three generations

(Raabe, 2008). He also hypothesised that haemophilia may be traceable to

only a few pilgrim families, the first description of what would now be called

a founder effect. It is this very concept of family and population specific

causal mutations that underlies the research in this chapter.

Studies of disease families were a focus of many Victorian scientists. Both

French physician Paul Broca, and the English surgeon James Paget doc-

umented many multiplex cancer families, leading to the first studies into

familial aggregation in what is now called complex disease (Schneider et al.,

1986). While we may see the roots of the modern concept of family history

in these developments, in other fields the recognition of familial clustering

took a darker and more ideologically driven form. For instance, the hered-

itary degeneracy theories of psychiatric disease in late 19th century France

fed rapidly into contemporary prejudices about the mentally ill that lay far

from modern concepts of medical care (Dowbiggin, 1991).

Paget specifically argued that these cancer families were the result of a

hereditary factor, but both he and Broca noted that the high (and not pre-

cisely known) prevalence of cancer made it difficult to rule out these families

as merely chance occurrences. The reality of familial clustering was only

established with the rise of systematic epidemiological studies, and the sta-

tistical frameworks required to analyse them, at the start of the 20th century.
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As in the 19th century, studies of cancer lead the way (Schneider et al., 1986),

and these studies came of age when the pioneering epidemiological studies of

Janet Lane-Claypon (Lane-Claypon et al., 1926) conclusively demonstrated

an enrichment of familial clustering in cancer. Even at this stage the genetic

studies were informing biological knowledge: familial clustering was shown to

occur strongly in cancer at a single location (in particular breast cancer), but

only weakly in cancers from distinct locations, highlighting the importance

of considering cancers of different tissues as distinct diseases.

Despite having (as we know now) a higher heritability, the study of mul-

tiplex families in inflammatory bowel disease developed later. This is partly

because the current diagnostic landscape of IBD solidified later: while di-

agnoses of IBD stretch back to the 19th century, the distinct diagnoses of

ulcerative and Crohn’s colitis emerged only at the beginning of the 20th

century (Kirsner, 1995). The existence of families with multiple affected

individuals was noted from 1906, and nuclear families with three or more

affecteds were documented from the 1930s (Kirsner, 1995). However, it was

not until the 1960s and the advent of twin studies (Kirsner, 1973) that a

hereditary role for IBD was widely accepted. Around this time the existence

of very large IBD families in the Jewish population began to be noted, with

a particularly striking family with seven affected members being reported in

1963 (Sherlock et al., 1963).

In the latter half of the 20th century, family history was recognised as

the single strongest known predictor of IBD (Satsangi et al., 1997). Many

collections of multiplex families were made during this time: in 2004 Russell

and Satsangi (2004) reviewed studies of 19 distinct multiplex IBD family

collections. These studies were important in establishing the broad strokes

of IBD genetics. They gave the first indication that CD and UC were genet-
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ically distinct, yet related, diseases. Furthermore, they hinted at significant

substructure within IBD aetiology, by demonstrating a genetic effect on dis-

ease location, and suggesting a genetic role in disease progression. Overall,

family studies established IBD as a complex genetic disease, comparable in

heritability to other immune-mediated diseases such as type 1 diabetes and

multiple sclerosis.

Around the turn of the 21st century, linkage studies of multiplex IBD

families led to the identification of the major IBD susceptibility loci NOD2

(Hampe et al., 1999; Hugot et al., 2001) (in CD) and HLA (Williams et al.,

2002) (in UC). However, large meta-analyses of linkage studies, including

nearly 2000 families, failed to identify further genome-wide significant loci

(van Heel et al., 2004), and even had difficulty consistently replicating the (by

then fine-mapped) NOD2 locus. This ultimately led to the replacement of

family-based methods with genome-wide association studies (a phenomenon

reviewed in Chapter 1).

The failure of linkage meta-analysis in IBD showed that IBD is not caused

solely by high penetrance alleles at a small number of loci. However, it does

not imply that high penetrance alleles do not exist; only that, if they do exist,

they are individually at low frequency and are located in a number of different

loci (so-called locus heterogeneity). Indeed, many of these multiplex families

are likely to harbour high penetrance mutations, which can potentially be

detected via their co-segregation with disease status within that family. It

was this approach that identified mutations in the IL10 receptor subunits as

an important contributor to early onset IBD (Glocker et al., 2009a).

Recent developments in whole-genome and whole-exome sequencing have

opened up new avenues for the discovery of high penetrance causal variants.

The power of this approach was demonstrated with the discovery of the gene
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underlying the previously unsolved Mendelian disease Miller syndrome (Ng

et al., 2010). This study used whole-exome sequencing of four patients, com-

bined with filtering based on databases of common variation and software for

predicting the severity of coding mutations, and identified candidate causal

mutations in the gene DHODH. Over recent years, this approach has become

the dominant means of solving Mendelian diseases (Bamshad et al., 2011),

and has even been used to identify mutations that underlie syndromic forms

of IBD (Worthey et al., 2011a; Fiskerstrand et al., 2012).

Given the success of this sequencing approach, we would like to also use

it to identify penetrant mutations in multiplex families with complex IBD.

However, there are a number of challenges in generalising this approach.

Firstly, there is no guarantee that any given affected individual, and even any

given multiplex family, will carry a penetrant mutation. Ideally we would

like to sequence families that are likely to carry such mutations, and thus we

require methods to decide which families to select for study. Secondly, even

if a causal mutation is present in a family it is unlikely to be fully penetrant.

Likewise, because the disease is relatively common compared to Mendelian

diseases some family members may have the disease despite not carrying the

mutation (so-called “phenocopies”). We thus need methods that can discover

such mutations in families that may include both affected non-carriers and

unaffected carriers. Finally, as we saw in Chapter 4 many common IBD risk

variants lie in regulatory rather than coding regions, and it is possible that

this will also be true for rare risk variants. We would thus like to generalise

the variant prioritisation procedure to include potential non-coding candidate

risk variants.
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5.3 Modelling and controlling polygenic risk in mul-

tiplex families

There are many potential factors that can lead to familial aggregation in a

disease without leading to families suitable for locus mapping. An obvious

reason (and one that has been discussed since the 19th century) is chance

co-occurrence: the large number of families in the world makes it likely that

there exist families that have a large number of affecteds despite the absence

of an underlying genetic risk factor. This effect can be additionally con-

founded by uncertainty in the prevalence, or population stratification, both

of which could inflate the chance of seeing multiplex families by chance. For

instance, the higher prevalence of IBD in individuals of Ashkenazi Jewish

individuals will lead to a larger number of multiplex families in the Jew-

ish population, even if the increased risk in this group was entirely due to

environment.

Additionally, a shared exposure to an environmental risk factor can lead

a family to develop a higher incidence than would be expected by chance.

Diagnostic bias can also lead to familial clustering, as a strong family history

may lead to more vigilant screening or overdiagnosis (this is particularly

likely to occur for diseases with a high rate of undiagnosed cases, such as

prostate cancer (Fleshner, 1995)). These non-genetic causes all highlight the

importance of careful screening of multiplex families to establish a genetic

cause.

Furthermore, for the purposes of mapping loci an excess of familial aggre-

gation as a result of genetics may not be enough to make a family useful for

study. It is now becoming clear that a substantial portion of the heritabil-

ity of complex traits is due to highly polygenic risk. Williams et al. (2002)
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estimated the contribution of polygenic risk in three complex diseases in the

Wellcome Trust Case-Control Consortium data, by applying a linear mixed-

model method. This gave lower bounds on the liability-scale variance due to

polygenic risk from common loci of 22% for Crohn’s disease, 31% for Type I

Diabetes and 38% for Bipolar Disorder. In many cases a significant minority

of this polygenic risk has already been characterised, for example via the 193

independent IBD risk factors identified via the IIBDGC Immunochip study

(see Chapter 4), but much still remains undiscovered.

The risk variants that make up this polygenic risk each have a small effect

size, and thus are unlikely to individually co-segregate with affection status

in multiplex families. They are therefore outside of the scope of what can be

studied by sequencing families. However, it will contribute to familial aggre-

gation of cases within multiplex families, creating another class of families

that need to be excluded from family sequencing studies.

A good first stage in understanding the impact of polygenic and penetrant

risk on multiplex families is to construct and examine theoretical models of

risk in families. Recent theoretical studies have investigated models of high

penetrance mutations (Al-Chalabi and Lewis, 2011), as well as models of con-

tinuous polygenic risk (Yang et al., 2010) in multiplex families. However, to

answer questions about the relative contribution of penetrant and polygenic

risk, we need to construct a model that contained both elements.

In this section, I will develop a model of genetic risk that combines a

polygenic risk with the presence of dominant, high penetrance alleles, and

study how different parameterisations of this model (corresponding to differ-

ent heritabilities, prevalence and balances of polygenic/penetrant risk) alter

the distribution of affecteds in multiplex families. I will also develop and

test a method for performing genetic risk prediction in a partially genotyped
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pedigree, and using such risk prediction to prioritise multiplex families that

are likely to carry high penetrance mutations over those that are likely to

carry only polygenic risk.

5.3.1 A combined polygenic/penetrant model of multiplex

families

To describe the combined polygenic/penetrant model of genetic risk, I will

first lay out the two components: a liability threshold model for polygenic risk

due to common variants of low effect, and a dominant Mendelian model for

higher penetrance variants. I will then combine these two models together to

produce a general model of which both component models are special cases.

Throughout this section I will consider a nuclear family, with two parents

denoted by subscripts m and f (for mother and father, treated as inter-

changeable), and O offspring denoted by subscripts ci : i = 1, ..., O. I will

use indicator variables di to denote the affection status of individuals. I use

a parameter K to denote the disease prevalence in the population.

The polygenic model

We model the polygenic component of the disease using a liability threshold

model (as described in Chapter 2). To recap, each individual in the family

is given a liability Li = Ai + Ei, where the genetic liability Ai ∼ N(0, h2)

is an additive polygenic component of risk, and the environmental liability

Ei ∼ N(0, 1 − h2) is an (individual-specific) environmental component. h2

is called the heritability of liability, and measures the proportion of liability

that is shared by identical twins: as this model assumes additive polygenic

risk, h2 is also the narrow-sense heritability. An individual is affected (i.e.
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di = 1) if Li > T , where T is the liability threshold T = Φ−1(1−K) and Φ

is the cumulative distribution function of the standard normal distribution.

The liabilities for each family member are

Lm = Am + Em (5.1)

Lf = Af + Ef (5.2)

Lci = Aci + Eci =
1

2
(Am + Af ) +Mci + Eci , (5.3)

whereMci ∼ N(0, h2/2) is a Mendelian segregation term. We can reformulate

these equations in terms of 4 +O standard normal variables Zi,

Lm = hZ1 +
√

1− h2Z3 (5.4)

Lf = hZ2 +
√

1− h2Z4 (5.5)

Lci =
h

2
(Z1 + Z2) +

√
1− h2

2
Zci , (5.6)

The probability of an individual having disease state di given a genetic

liability ai is given by

P (di|Ai) =

 Φ( T−Ai√
1−h2 ) if di = 1;

1− Φ( T−Ai√
1−h2 ) if di = 0

. (5.7)

We can write down a similar expression conditional on parental genetic

liabilities

P (dc|Am, Af ) =


Φ(

T−(Am+Af )/2√
1−h2/2

) if di = 1;

1− Φ(
T−(Am+Af )/2√

1−h2/2
) if di = 0

. (5.8)
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The probably mass function for a set of affection statuses

~d = (dm, df , dc1 , ..., dcO) is thus given by

P (~d) =

∫∫ ∞
−∞

P (dm|hz1)P (df |hz2)φ(z1)φ(z2)

×
O∏
i=1

P (dci |hz1, hz2)dz1dz2. (5.9)

Because siblings are interchangeable and independent conditional on

parental genetic liabilities, we can model the number of affected offspring

using a binomial distribution. The joint probability of observing parent

genotypes (dm, df ), and also observing a total of yc affected offspring is thus

P (dm, df ,
∑
dci = yc) =∫∫∞

−∞ P (dm|hz1)P (df |hz2)φ(z1)φ(z2)
(
O
yc

)
×P (d = 1|hz1, hz2)ycP (d = 0|hz1, hz2)O−ycdz1dz2. (5.10)

Finally, because parents are interchangeable, we can write down the prob-

ability of observing y total affecteds in the family (including parents and

children) as

P (
∑

d = y) = P (dm = 1, df = 1,
∑
dci = y − 2)

+2P (dm = 1, df = 0,
∑
dci = y − 1)

+P (dm = 0, df = 0,
∑
dci = y). (5.11)
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The dominant penetrant model

The dominant penetrant model assumes that a large number of individually

rare variants exist in the population, each of which has a dominant effect

with intermediate penetrance. Certain diseases are known to show such a

heterogeneity of genetic architecture, for instance in diabetes (Molven and

Njølstad, 2011) and breast cancer (Chen and Parmigiani, 2007), and it is

possible this is true for other diseases.

This model assumes that a proportion R of cases have a dominant mu-

tation with a penetrance of π > K. The total combined frequency of these

mutations is thus KR/π (and therefore π/R > K): note that this is the pro-

portion of people who carry at least one mutation, not the allele frequency.

We will use the indicator variable ri = 1 to denote that individual i carries

a mutation, and assume that each individual carries at most one mutation.

The disease probabilities, conditional on genotype, are given by

P (di = 1|ri = 1) = π (5.12)

P (dI = 1|ri = 0) =
K(1−R)

1−KR/π
, (5.13)

and transmission probabilities from parents to child are given by

P (rci = 1|rm = 0, rf = 0) = 0 (5.14)

P (rci = 1|rm = 1, rf = 0) =
1

2
(5.15)

P (rci = 1|rm = 1, rf = 1) =
3

4
. (5.16)

We can combine these two together to give disease probabilities condi-
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tional on parental genotype

P (dci = 1|rm = 0, rf = 0) =
K −KR

1−KR/π
(5.17)

P (dci = 1|rm = 1, rf = 0) =
K + π − 2KR

2(1−KR/π)
(5.18)

P (dci = 1|rm = 1, rf = 1) =
K + 3π − 4KR

4(1−KR/π)
. (5.19)

As with the polygenic model, offspring are interchangeable and indepen-

dent conditional on parental genotype, so again we model the number of

affected offspring binomially:

P (
∑
dci = yc|rm = 1, rf = 0) =(

O
yc

)
[P (dci = 1|rm, rf )]yc [1− P (dci = 1|rm, rf )]O−yc . (5.20)

We can then incorporate parental affection status, conditional on geno-

type, into the total count of affecteds y

P (
∑
di = y|rm, rf ) =

P (dm = 1, dm = 1|rm, rf )P (
∑
dci = y − 2|rm, rf )

+P (dm = 1 or df = 1|rm, rf )P (
∑
dci = y − 1|rm, rf )

+(1− P (dm = 1|rm))(1− P (df = 1|rm))P (
∑
dci = y|rm, rf ), (5.21)

where



5.3. Modelling and controlling polygenic risk in multiplex families 235

P (dm = 1 or df = 1|rm, rf ) =

P (dm = 1|rm) + P (df = 1|rf )− 2P (dm = 1|rm)P (df = 1|rf ). (5.22)

Finally we marginalize out parental genotypes using the population fre-

quency

P (
∑

di = y) =
(
KR
π

)2
P (
∑
di = y|rm = 1, rf = 1)

+2KR
π

(1− KR
π

)P (
∑
di = y|rm = 1, rf = 0)

+(1− KR
π

)2P (
∑
di = y|rm = 0, rf = 0). (5.23)

The combined polygenic/dominant penetrant model

The combined model takes into account both polygenic risk and the presence

of penetrant dominant risk alleles. To do this we set two thresholds, one for

non-carriers for the dominant risk alleles Twt = Φ−1
(

1− K−KR
1−KR/π

)
, and one

for carriers Tdom = Φ−1 (1− π). We then model transmission of both the

penetrant risk alleles and a continuous liability.

The continuous liability is again given as Li = Ai +Ei, where the genetic

liability Ai ∼ N(0, h2
d) only includes heritability due to common variants,

excluding the rare penetrant mutations. This polygenetic heritability is given

by h2
p = h2 − h2

d, where h2
d =

σ2
d

1+σ2
d

is the variance explained on the liability

scale by the penetrant risk alleles, where

σ2
d =

KR

π
[Tdom − T ]2 + (1− KR

π
) [Twt − T ]2 . (5.24)

Note that h2
d → 1 as π → 1 and as R→ 1.
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We now specify the disease probability conditional on both the polyge-

netic liability (Ai) and the presence of absence of a penetrant mutation (ri)

P (di = 1|Ai, ri) =

 Φ(Tdom−Ai√
1−h2 ) if di = 1 and r = 1;

Φ(Twt−Ai√
1−h2 ) if di = 1 and r = 0

. (5.25)

Again we can give a child’s disease probability conditional on the genetic

liability and presence of penetrant mutations in the parents, by taking into

account the multiple thresholds with different transmission probabilities

P (dci = 1|Am, Af , rm, rf ) =
Φ(

Twt−(Am+Af )/2√
1−h2/2

) if rm = 0 and rf = 0;

1
2
Φ(

Tdom−(Am+Af )/2√
1−h2/2

) + 1
2
Φ(

Twt−(Am+Af )/2√
1−h2/2

) if rm = 1 xor rf = 1;

3
4
Φ(

Tdom−(Am+Af )/2√
1−h2/2

) + 1
4
Φ(

Twt−(Am+Af )/2√
1−h2/2

) if rm = 1 and rf = 1

.(5.26)

As before, we can write down the probability of observing yc affected

offspring given parental genotypes by modelling the number of affecteds as

a binomial

P (dm, df ,
∑
dci = yc|rm, rf ) =∫∫∞

−∞ P (dm|hpz1, rm)P (df |hpz2, rf )φ(z1)φ(z2)

×
(
O
yc

)
P (d = 1|hpz1, hpz2, rm, rf )

yc

×(1− P (d = 1|hpz1, hpz2, rm, rf )
yc)O−ycdz1dz2. (5.27)

We then include parental affection status to give the probability mass
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function for the total number of affecteds y given parental genotypes

P (
∑

d = y|rm, rf ) = P (dm = 1, df = 1,
∑
dci = y − 2|rm, rf )

+2P (dm = 1, df = 0,
∑
dci = y − 1|rm, rf )

+P (dm = 0, df = 0,
∑
dci = y|rm, rf ), (5.28)

and finally we marginalize out parental genotypes using the population fre-

quency to give the final probability mass function

P (
∑

di = y) =
(
KR
π

)2
P (
∑
di = y|rm = 1, rf = 1)

+2KR
π

(1− KR
π

)P (
∑
di = y|rm = 1, rf = 0)

+(1− KR
π

)2P (
∑
di = y|rm = 0, rf = 0). (5.29)

Results

I have implemented the above combined model using R, and used it to explore

how the expected number of affecteds in multiplex families for a relatively

uncommon disease (K = 0.01) varies depending on model and model param-

eters.

Figures 5.1a and 5.1b show the results of this multiplex model to families

of 8 (O = 6), with dominant penetrance of π = 0.5. The solid lines give

the purely polygenic model R = 0, the black lines give the purely penetrant

model h2 = 0, and other lines give various parameterisations of the combined

model.

The first thing to note is that multiplex nuclear families can be very

common given only a moderate degree of polygenic risk. Families with 5 or
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Figure 5.1: The results of the combined multiplex family model. a) Distribution
of number of affecteds per nuclear family with 6 children, for different values of
h2 and R. b) A zoomed in view of the same model c) The probability that a
nuclear family harbours a penetrant mutation, for different values of h2 and R d)
Comparison of sibships (O = 6) and cousinships (k = 2, O1 = 2, O2 = 2), with
h2 = 0.5 (generated by simulation). In both cases I used K = 0.01 and π = 0.5.
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more affecteds, an occurrence that is virtually impossible under the null (less

than one family in 200 million) become possible (one family in 500 thousand)

for a moderate polygenic heritability of 0.25 and positively common (one

family in 30 thousand) for strong heritability of 0.5. Multiplex families are

likely to be relatively common, even without high penetrance mutations.

However, the flip-side of this is that a high degree of familial aggregation

can be seen even for not particularly heritable diseases given a small con-

tribution of dominant alleles. A disease with no polygenic liability, but 5%

of cases caused by penetrant mutations, will show as many families with 4

affecteds as a disease with 50% heritability (despite the former case having

a heritability of less than 1%). This seems to lead to the somewhat coun-

terintuitive conclusion that families multiply affected by a weakly heritable

disease will be easier to map than equivalent families with a strongly heritable

disease, though this may be confounded by correlations between polygenic

and penetrant heritabilities.

We can turn these results around and instead ask what proportion of mul-

tiplex families of a certain size harbour a penetrant mutation (Figure 5.1c).

In the absence of polygenic risk, the vast majority of nuclear families with

more than 4 affecteds harbour a penetrant mutation, even if such mutations

explain a very small proportion of the total disease burden (R > 0.001).

However, this becomes progressively less true as the heritability rises, and

for highly heritable diseases penetrant mutations only become common in

multiplex nuclear families if they already explain a non-trivial amount of all

cases to start with (greater than 1% for h2 = 0.5, and greater than 5% for

h2 = 0.75).

Figure 5.1d compares the results of the combined model for nuclear and

extended families of the same size. Specifically, I have compared a nuclear
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family with eight individuals (two parents and six children, i.e. O = 6 off-

spring) to an extended family with eight individuals (two siblings, their part-

ners, and their two children each, i.e. k = 2,O1 = O2 = 2, with grandparental

state disregarded). I consider only a heritability of h2 = 0.5.

As we have already seen, under the polygenic model with h2 = 0.5, ob-

serving five or more affected nuclear family members is not unlikely (1 in

30 thousand). However, Figure 5.1d shows that for an extended family of

the same size this is a relatively rare even (1 in 400 thousand). This gap

between nuclear and extended families is reduced if the presence of high pen-

etrance mutations is considered. Introducing a small number of penetrant

mutations (R = 0.05, π = 0.5) increases the number of families with at least

5 affecteds 9-fold for the cousinship (to 1 in 42 thousand), but only 4-fold for

the nuclear family (to 1 in 7200). This corresponds to a 93% of cousinships

with 5 affecteds carrying a penetrant mutation, compared to 83% for nuclear

families.

From these analyses we can draw a number of lessons for studying mul-

tiplex families

• Even if only a minority of variance is explained by rare variants, these

rare variants can still result in the occurrence of a relatively large num-

ber of multiplex families.

• However, relatively large numbers of multiplex families are also ex-

pected given the levels of polygenic risk (h2 = 0.2−0.5) that have been

shown to exist for many complex diseases. Thus the presence of strong

familial clustering is not alone evidence of a penetrant mutation.

• Extended multiplex families, with aggregation occurring across cousins

as well as siblings, is stronger evidence of a penetrant mutation.
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• Using additional methods to decrease or factor out the contribution of

polygenic risk will be valuable in identifying families that are likely to

harbour penetrant risk variants

5.3.2 Risk prediction in multiplex families

An outline of risk prediction in families

As we have seen in the above section, the presence of polygenic risk can lead

to a high frequency of multiplex families even in the absence of penetrant

mutations. However, for many diseases we already have a grasp on this poly-

genic variation via the results of GWAS. For instance, the 193 independent

associations to Crohn’s Disease explain 12.7% of variance in disease liability

(see Chapter 4). Using the upper bound of 84% (calculated in Chapter 1)

and a lower bound of 22% (from Williams et al. (2002)), we know that we

have discovered somewhere between 15% and 58% of the polygenic risk for

Crohn’s disease.

We can use these GWAS loci to produce estimates of polygenic risk, and

use this polygenic risk to prioritise those families that are more likely to

harbour penetrant mutations. Assume that a given family has N members,

of whom y are affected. We wish to select families for which y is significantly

larger than what would be expected given the observed genotypes, G, i.e.

those that minimize:

P (ŷ > y|N,G) (5.30)

If G is known for all family members then disease probabilities for each

individual can be calculated directly from the odds ratios as described in

Chapter 2, and then used to calculate equation (5.30) by sampling. How-
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ever, most family based experiments will not generate genotype data across

all members of the pedigree for a variety of reasons, including cost, DNA

availability, consent, or death. A solution is to sample disease status as in

the complete information case, conditional on a set of unobserved genotypes

Gunobs that are themselves sampled from the conditional distribution

P (Gunobs|f, T,Gobs), (5.31)

where f is the population allele frequency, T is the family structure, and Gobs

are the known genotypes. Sampling from this distribution is not trivial, but

is possible via a modified Inside-Outside algorithm (Baker, 1979) (itself a

generalisation of the forward-backwards algorithm used in Hidden Markov

Models). The Inside-Outside is used for inference on tree-like data struc-

tures, and has been applied to certain multiple sequence alignment problems

(Durbin, 1998). Here, we instead use Inside-Outside to sample from the pos-

terior distribution of genotypes across a family. Briefly, we decompose the

marginal genotype posteriors into inside and outside probabilities, similar to

the forward and backward probabilities from an HMM. The inside proba-

bility accounts for information from each individual and their descendants,

whereas the outside probability accounts for the individual’s other relatives

(including ancestors, siblings and cousins).

These values can be computed recursively via the standard Inside-Outside

approach (Section 5.3.2), which enables the sampling of one individual’s geno-

types. When sampling an entire family, however, we must sample down the

tree from the root, with each individual’s genotypes conditioned on their par-

ents’ sampled genotypes (Section 5.3.2). We accomplish this by modifying

the outside probability to include parental genotypes (Section 5.3.2).
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Description of the Inside-Outside algorithm in trees

Definitions

The Inside-Outside algorithm is a generalisation of the Forward Backward

algorithm, originally designed to extend parameter estimation from Hidden

Markov Models to stochastic context-free grammars (Baker, 1979). Here we

reformulate the Inside Outside algorithm as a method of performing param-

eter estimation and sampling on a directed tree.

A directed tree is a directed acyclic graph in which all nodes have a unique

path originating from a single node. We will denote nodes by subscripts i,

j, k. Each node i may have a parent pi, offspring oi and/or siblings si. A

node without parents is called a “root node” or “root”, and a node without

children is called a “leaf node” or “leaf”.

Each node i has an associated emission di (e.g, an observed genotype), as

well as a hidden state xi (e.g. an unobserved genotype) with statespace Si.

The values of hidden states will be denoted a, b, c etc, e.g. (xi = a) denotes

that node i has hidden state value a.

The tree defines a graphical model that specifies the probability density

functions for all the variables (hidden states and emissions) as conditional

probabilities. Specifically, the probability density function of emission di is

specified conditional on hidden state xi taking value a by the likelihood

Li(a) = P (di|xi = a). (5.32)

The probability density function for a non-root hidden state variable xi taking

on value b is specified conditional on the parent’s hidden state xpi taking on

value a by the transition probability
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Ti(b|a) = P (xi = b|xpi = a). (5.33)

The probability distribution of the hidden state associated with the root xroot

is given by the root prior

π(a) = P (xroot = a). (5.34)

We will refer to all emissions associated with node i and nodes descended from

node i as Di, and all emissions not associated with node i or its descendants

as D!i. Note that these can both be expressed recursively

Di = {di, Doi} (5.35)

for non-leaves and Di = di for leaves, and

D!i = {Dsi , D!pi , dpi} (5.36)

for non-roots and D!i = ∅ for the root. All emissions associated with all

nodes can be expressed as D, and D = {Di, D!i} for any i.

We will use the Inside-Outside algorithm to deduce the probability density

functions of hidden states xi conditional on observed emissions associated

with all nodes D.

The Inside Probability

The inside probability αi(a) is defined as the probability of observing emission

associated with node i and all its descendants, given that the hidden state

xi takes on value a
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αi(a) = P (Di|xi = a). (5.37)

For leaves, Di = di, and hence αi(a) = Li(a). For non-leaves we have

αi(a) = P (Di|xi = a)

= P (di|xi = a)
∏
j∈oi

P (Dj|xi = a)

= P (di|xi = a)
∏
j∈oi

∑
b∈Sj

P (Dj|xi = b)P (xj = b|xi = a)

= Li(a)
∏
j∈oi

∑
b∈Sj

αj(b)Tj(b|a). (5.38)

Because we require the inside probabilities of all offspring of a node to cal-

culate its own inside probability we calculate the inside probabilities first for

the leaves, and then propagate them recursively up the tree. The overall

likelihood of all emissions D is

P (D) =
∑

a∈Sroot

αroot(a)π(a). (5.39)

The Outside Probability

The outside probability βi(a) is defined as the joint probability of observing

emissions not associated with node i and its descendants, and the node i

being in hidden state xi = a is

βi(a) = P (D!i, xi = a). (5.40)

For the root node, D!i = ∅, so βroot(a) = P (xroot = a) = π(a). For non-root

nodes, we can calculate the outside probability recursively as
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βi(a) = P (D!i, xi = a)

=
∑
c∈Spi

P (xpi = c, xi = a,D!i)

=
∑
c∈Spi

P (xpi = c, xi = a,D!pi)P (di|xpi = c)
∏
j∈si

P (Dj|xpi = c)

=
∑
c∈Spi

P (xpi = c,D!pi)P (xi = a|xpi = c)P (di|xpi = c)

×
∏
j∈si

∑
b∈Sj

P (Dj|xj = b)P (xj = b|xpi = c)

=
∑
c∈Spi

βpi(c)Ti(a|c)Lpi(c)
∏
j∈si

∑
b∈Sj

αj(b)Tj(b|c). (5.41)

The outside probability for each node requires the outside probability of the

node’s parent. We thus calculate it first for the root, and then propagate

recursively down the tree. The outside probabilities are also dependent on

the inside probabilities, which are therefore calculated first.

Conditional sampling across the tree

We can calculate the posterior distribution of hidden state xi conditional on

all emissions D in terms of the inside and outside probabilities as

P (xi = a|D) =
αi(a)βi(a)

P (D)
. (5.42)

We can sample from this posterior distribution for each node. However,

this approach cannot jointly sample hidden states across the entire tree. To

do this we need to propagate sampled states down the tree, starting with

the root. The hidden state for the root can be sampled from the posterior

distribution
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P (xroot = a|D) =
αroot(a)π(a)

P (D)
. (5.43)

To sample non-roots, we must first calculate the partial outside variable,

which includes the hidden state c of the parent, and can be calculated as

βpi (a, c) = P (xi = a, xpi = c,D!i)

= βpi(c)Ti(a|c)Lpi(c)
∏
j∈si

∑
b∈Sj

αj(b)Tjpi(b|c). (5.44)

The hidden state of node i can then be sampled from the posterior conditional

on the sampled state of the parent c

P (xi = a|D, xpi = c) =
βpi (a, c)αi(a)∑
a∈Si

βpi (a, c)αi(a)
. (5.45)

Like the calculation of the outside probabilities, the samples are propagated

down the tree.

Application of the Inside-Outside algorithm to family trees

A family is not strictly a directed tree, due to the addition of new founders

(via marriage) in each generation. However, we can make a family into a di-

rected tree by treating parent couples as a single node, consisting of a founder

and a non-founder individual. The root node of this directed family tree con-

sists of the top pair of founders. While I have currently only used this method

for family trees with only one founder-founder couple, in fact any family re-

lationships that do not include inbreeding (i.e. any that take the form of a

polytree) can be modelled if the polytree is transformed to a directed tree

by reversing the transition matrix (using Tpi(a|b) = Ti(b|a)P (xpi)/P (xi)).
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We use the Inside-Outside algorithm to sample unobserved genotypes

conditional on all other genotypes for a single biallelic polymorphism with

allele frequency f (although this is readily generalised to an arbitrary number

of independent polymorphisms). We model individuals as nodes, and geno-

types as hidden states for each node. For non-parent couples the state-space

is

xi ∈ Si = {AA,AB,BB}, (5.46)

and for parent couples it is

xi = (xfi , x
nf
i ) ∈ {AA,AB,BB}2, (5.47)

where xfi is the founder’s genotype state and xnfi is the non-founder’s geno-

type.

Genotype calls for each individual are modelled as emissions, and we

assume that these genotypes are certain and thus for genotyped individuals xi

and di are identical (though genotype error can be included by modifying the

likelihoods below). Genotypes can also be missing (N). Thus the emissions

for a non-parent couple node is

di = gi, (5.48)

and for parent couples is

di = {gfi , g
nf
i }. (5.49)

Likelihoods for non-parent couples are
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Li(a) =

 1 if a = gi or gi = N ;

0 otherwise.
, (5.50)

and for parent couples are

Li(a) =



1 if afi = gfi and anfi = gnfi ;

1 if afi = gfi and gnfi = N or anfi = gnfi and gfi = N ;

1 if gfi = gnfi = N ;

0 otherwise.

. (5.51)

Transitions can only occur from a parent couple to a non-parent couple, or

from a parent couple to a parent couple. For a parent couple to a non-parent

couple, transmission is simple Mendelian inheritance

Tij(a|b) = P (C = a|P1 = bf , P2 = bnf ), (5.52)

where C is the child’s genotype, and P1 and P2 are parental genotypes.

For parent couple to parent couple transmission, we need to include the

probability density on the founder genotype

Ti(a|b) = P (C = anf |P1 = bf , P2 = bnf )P (af |f), (5.53)

where P (af |f) is the population frequency of the founder’s genotype, assum-

ing Hardy-Weinberg equilibrium. Finally, the prior on the root node is given

by the population frequency

π(a) = P (af |f)P (anf |f). (5.54)

Using this formulation, marginal posteriors can be calculated for each unob-
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served genotype, and joint genotypes for the entire family can be sampled

from the joint posterior distribution.

Mangrove: An R package for risk prediction in families

To summarise the above approach, we can calculate the probability of seeing

at least y affected families members in a family given known GWAS risk loci

P (y|Gobs, β, f) using the following process:

1. Convert the family tree with genotype data into a true directed tree

with emissions as described in section 5.3.2

2. Calculate αi, βi and βpi statistics using the Inside-Outside algorithm as

described in section 5.3.2

3. Sample N sets of genotypes for ungenotyped family members using the

method in 5.3.2

4. Sample affection status for each individual conditional on samples geno-

typed, using standard risk prediction (Chapter 2)

5. Count the number of families with more than y affected family members

These stages have all been implemented in the R package Mangrove,

which is available from the Comprehensive R Archive Network (CRAN).

Mangrove is specifically designed to use genetic risk prediction to prioritise

individuals or families for sequencing. As well as risk prediction in families,

Mangrove can also perform both risk prediction and quantitative trait pre-

diction in unrelated individuals. I have provided detailed documentation,

and a vignette containing usage examples for both families and unrelated

individuals, with the package.
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Figure 5.2: Ability to predict the presence of a high penetrance mutation (mea-
sured by AUC) in multiplex families using a polygenic risk score. We assume a
disease with a prevalence of 1%, a heritability of 50%, and a genetic risk score
that captures 12.5% of variance. All families have three affected individuals, and
the AUC is shown for families of different total size and dominant mutations of
varying penetrance.

Assessing the efficacy of risk prediction in families in prioritising penetrant

mutations

The aim of the risk prediction prioritisation described above is to increase the

chance that a family selected for sequencing carries a high penetrance muta-

tion. To investigate how powerful this approach is I performed simulations

of families with and without a high penetrance mutation.

Consider two families both subject to polygenic risk for a disease and one

additionally containing a high penetrance dominant mutation. We would

like to be able to identify the latter family for the type of family sequencing

experiment described above. To evaluate the ability of the above method
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to identify families containing such high penetrance mutations I simulated

nuclear families with between 2 and 8 offspring, where three total family

members were affected by a disease having 1% prevalence and heritability of

50% (these values correspond approximately to immune mediated diseases

such as Crohn’s disease). Half the families contained a dominant mutation

with a penetrance from 10–100%, and the other half arose simply from poly-

genic risk and chance.

For each family, we computed the value of equation (5.30) based on a

GWAS risk predictor explaining 25% of heritability (again by analogy to

Crohn’s disease). Figure 5.2 shows the area under the ROC curve (AUC),

which in this instance can be interpreted as the probability of correctly dis-

tinguishing between one family with a penetrant mutation and one without.

For a low-penetrance mutation in a small family AUC is only ∼0.6, but for a

medium-penetrance mutation in a large family, AUC is ∼0.85, which would

provide a substantial advantage over simply selecting the family with the

largest number of affected individuals.
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5.4 Linkage and sequence analysis of a multiplex

IBD family

We have seen how multiplex families are likely to show an enrichment for

rare, high penetrance risk variants. This is particularly true for multiplex

families that span extended pedigrees, and in pedigrees with a low predicted

risk given common variants. Via linkage and haplotyping methods, these

families can also be analysed for candidate regions that may harbour such

mutations. The falling cost of sequencing means that whole-exome or whole-

genome sequencing can then be used to attempt to identify causal candidates

in the family using linkage data and functional information.

To attempt to discovery such high penetrance mutations, we collected

samples from extended families with multiple members affected by inflam-

matory bowel disease (IBD). Here I discuss the analysis of one such family.

Note that some non-important details of the family have been altered in

this chapter to ensure anonymity. These include the gender of subjects, the

number of offspring and the details of family relationships. In no case does

this affect the conclusions drawn, though it may lead to small inconsistencies

in the precise details of results.

5.4.1 Description of the family

The family comprises over 800 individuals of Ashkenazi Jewish descent, span-

ning four generations connected via a founding couple born at the turn of the

20th century (Figure 5.3). The family is characterised by its large number

of offspring per parental couple, with an average of 9. The founding couple

had seven offspring (including two identical twins), six of these have at least

two descendants with IBD.
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Figure 5.3: A pedigree for the family under study, showing affecteds and parents
of affecteds. The top figure shows how the founders of the six subpedigrees (a-f)
are related. The founders of subpedigrees a) and b) are identical twins.

A total of 41 individuals have been diagnosed with IBD, including 35 with

a diagnosis of Crohn’s disease and 7 with a diagnosis of ulcerative colitis. We

were able to independently confirm the diagnosis via medical records in all

but five cases. The location of disease in the bowel was variable. The average

age of onset was 18.8 years (95% CI: 16-22, n=30) and at the time of sample

collection, one-quarter of the patients had undergone surgical resections.

This family is a good candidate for discovering a high penetrance mu-

tation. They have a wide geographic distribution, with affected individuals

present in seven cities around the world, making an environmental cause of

the disease less likely. Additionally, because the affecteds are spread across

first and second cousins, polygenic risk is far less likely to explain the large

number of affecteds.
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5.4.2 Segregation analysis

Before looking at any genetic data, we can use the structure of the family to

make a plausible guess at what sort of genetic risk factors we may be looking

for. We will look specifically at subfamilies (a) and (b) as the identical twin

founders make the analysis significantly easier.

Suppose we take the most optimistic view of the genetics of this family,

i.e. that all cases are explained by a single dominant mutation. Together,

the two identical twins have 18 offspring, of which 10 are either affected, or

have affected children (or both). The most favourable model would be to

suppose that these 10 individuals all inherited a causal mutation from these

identical twins, and the rest did not. Furthermore, we will assume that all

affected family members carry this mutation.

Under this favourable model, 9 parents and 18 affected children, as well as

approximately half of their 66 unaffected siblings, will carry the mutation, of

which 21 have the disease. This gives a penetrance of 35% (21 out of 60). In

fact, as discussed in section 5.5.2, unaffected siblings are less likely to inherit

a causal mutation. If we correct for this, the estimated penetrance in the

highly favourable model is 41%, with a 95% confidence interval of 24-48%.

This model is almost certainly overly optimistic, as in a family of this size

many of the cases are likely to be phenocopies, and likewise causal mutations

may be segregating in parts of the family with no affecteds. It is also possi-

ble that the mutation is recessive, interacts with another risk factor (either

genetic or environmental), or is only one of many undiscovered risk factors

in the family. However, the model does illustrate how, even in the best-case

scenario, we are looking for a mutation with incomplete penetrance (<50%).



256 Chapter 5. High-throughput genomic studies of multiplex families

Family N y E(y|K) E(y|G) y
E(y|G)

P (y|G)

Whole family 806 41 6.04 (1 - 11) 10.24 4.00 < 10−4

Subfamily (a) 112 6 0.84 (0-3) 1.02 (0-4) 5.90 0.0012
Subfamily (b) 112 15 0.84 (0 - 3) 0.97 (0-4) 15.42 <10−4

Subfamily (c) 140 14 1.05 (0 - 3) 1.56 (0 - 5) 8.97 <10−4

Subfamily (d) 147 2 1.10 (0-3) 1.24 (0-4) 1.62 0.352
Subfamily (e) 81 3 0.61 (0 - 2) 1.63 (0 - 5) 1.84 0.243
Subfamily (f) 138 2 1.04 (0 - 3) 3.11 (0 - 7) 0.74 0.706

Table 5.1: A Mangrove analysis of the IBD family, including analyses of the
six subfamilies. N is the total number of individuals in this subfamily, y is the
number of affected individuals, E(y|K) is the expected number of affected given
the prevalence alone, E(y|G) is the expected number given genotyped common
variants. y

E(y|G) is the enrichment of cases over that predicted by common variants,

and P (y|G) is the probability of observing y or more affected in this pedigree given
common variation. Numbers in brackets are 95% confidence intervals.

5.4.3 Known IBD risk variants in the family

We successfully genotyped 38 CD and UC risk variants in 152 family members

across the entire family in order to assess the extent to which the increased

incidence may be explained by known genetic risk factors. I used odds ratios

and frequencies taken from the IIBDGC GWAS meta-analysis data (using

only Jewish samples), except for the 3 NOD2 variants for which I used the

Immunochip data (described in Chapter 4). Together, these variants explain

7.8% of variance in CD liability and 2.0% in UC liability.

I used the R package Mangrove (described in Section 5.3.2) to assess the

number of cases we would expect in the family given these common variants.

I used population prevalence of CD and UC of 0.6% and 0.15%, collected

by Adam Levine from Jewish patients in GP surgeries in North London

(personal communication).

Compared to the baseline prevalence, the family shows a 6.8-fold enrich-

ment in IBD. While the family does show a marked increase in risk (1.7-fold)
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SNP ORhet ORhom P-value
rs2066844 1.83 8.65 1.6 x 10−12

rs2066845 1.90 11.61 2.1 x 10−4

rs2066847 2.56 29.8 1.8 x 10−16

Compound heterozygous x3.46 - 2.0 x 10−55

(Excess odds ratio over additivity)

Table 5.2: Odds ratios for NOD2 mutations under a non-additive model, fitted
from the IIBDGC Immunochip data described in Chapter 4. The p-values give
the significance of the full model compared to a model with this term replicated
with a purely additive term.

due to common risk variants, there is still a 4-fold enrichment in IBD even

given these common variants (Table 5.1).

We can further break this down by subfamily (Table 5.1). Subfamilies (d)-

(f) show a particularly marked enrichment in common risk variants, which

would predict a 2.2-fold increase in prevalence. The expected number of af-

fected given common risk variants (5.98) is remarkable close to the observed

number (7), suggesting that there is unlikely to be any high penetrance mu-

tations in this area of the family. By contrast, subfamilies (a)-(c) show a very

large gap between the predicted and actual number of affecteds (9.9 times

that predicted by common variants), suggesting that these subfamilies are

good candidates for harbouring high penetrance mutations.

Modelling non-additivity in NOD2 risk variants

One complication is that the above analysis assumes an additivity genetic

architecture. While this model fits most of the IBD risk variants well, it

does not accurately model the NOD2 risk variants, which show significant

evidence of both recessive effects at single coding variants and epistatic in-

teraction between coding variants (Table 5.2).

In subfamilies (a) and (b) NOD2 mutations are relatively uncommon,
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Figure 5.4: The distributed of cases expected in subfamily (c) under an additive
and a non-additive model of NOD2 risk.

and no individuals were homozygous or compound heterozygous for NOD2,

suggesting that the non-additive model will only decrease the total number

of predicted affecteds. However, in subfamily (c) seven individuals are either

homozygous or compound heterozygous for one of the three classical NOD2

mutations, suggesting that the contribution of known genetics in this family

could be larger than an additive analysis suggests.

I used data from the IIBDGC Immunochip dataset (described in Chap-

ter 4) to fit a non-additive NOD2 model by logistic regression (Table 5.2),

and used the Mangrove method to perform risk prediction in subfamily (c)

using this model. Non-additivity increases the expected number of affecteds

slightly, from 1.56 to 1.88 (p = 5.5 x 10−11). However, the real increase is on

the extremes (Figure 5.4), where the probability of seeing 6 or more affecteds

increases by a factor of three (from 0.4% to 1.3%). Despite this increase, the
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Figure 5.5: A principal component analysis of the family, using HapMap popu-
lations (TSI=Italian, CEU=Northern European) and Ashkenazi Jewish (AJ) ref-
erence populations.

probability of seeing 14 affecteds in subfamily (c) given common variation

remains very small (<< 10−4).

5.4.4 Linkage and haplotype analysis of the family

Genotyping data

A total of 60 individuals (30 affected and 30 unaffected) from subfamilies

(a)-(c) were genotyped on an Illumina CytoSNP 12 BeadChip array. Geno-

types were called using BeadStudio. Genotypes inconsistent with Mendelian

segregation were set to missing, and SNPs with greater than 1% missing-

ness, minor allele frequency less than 1% in founders or Hardy-Weinberg

Equilibrium p-value less than 10−5 in founders were removed.
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Figure 5.6: Non-parametric linkage results for the family.

As a reference population, we used genetic data from a study of 471

Ashkenazi Jewish individuals genotyped on the Affymetrix Human SNP Ar-

ray 6.0 (Bray et al., 2010), obtained via the NCBI’s Gene Expression Om-

nibus (GEO) database (Barrett et al., 2011). Principal component analysis

confirmed that the family members clustered with the Ashkenazi reference

population (Figure 5.5).

We created a 1cM maximally informative genetic map by taking all SNPs

present in both the reference set and the family, and for which there was

no missing data in the family. We performed LD thinning in the reference

dataset (such that r2 < 0.2 for all SNPs). We then selected the SNP with

the highest heterozygosity in the family founders in every 1cM block. Allele

frequencies for these SNPs were calculated from the reference set.

Linkage analysis

We performed non-parametric linkage using Merlin (Abecasis et al., 2002)

(v1.1.2). As we expect large increases in allele sharing due to high pene-
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trance mutations, the standard linear approximation used by Merlin is too

conservative, so we used the more accurate Kong and Cox exponential model

(Kong and Cox, 1997). We used the maximally informative map and allele

frequencies described above.

We ran linkage separately on the three subfamilies (a)-(c). We also used

Fisher’s method to combine the results for subfamilies (a)-(b) (i.e. the off-

spring of the identical twins), and for all subfamilies (a)-(c). The results are

shown in Figure 5.6. None of the results meet the criteria for genome-wide

significance (a LOD score of 3.3 (Lander and Kruglyak, 1995)). A number

of linkage peaks reached the level of significance that Lander and Kruglyak

(1995) suggest can be interpreted as “suggestive evidence” (a LOD score of

1.9). These are shown in Table 5.3.

The linkage peaks inferred are broad, and contain many genes. Even if

we reduce this down to genes that are expressed in the immune or digestive

systems, there are still between 7 and 89 genes in each linkage peak (Table

5.3). Low-throughput sequencing of exons in some of these candidates did

not produce any likely candidate causal variants.

Haplotype analysis

As well as using the genotype data to find evidence of significant linkage,

we can also use it for the related purpose of inferring the flow of haplotypes

within the family. This can allow us to identify regions of the genome that

are widely shared across subfamilies, and identify which family members do

and do not share a candidate mutation on a particular haplotype. It can be

used to inform the analysis of sequence data.

The computing resources required to carry out a full haplotype analysis

grows exponentially with the number of samples. As a result, directly infer-
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Chr Pos in Mb LOD score P-value Genes
(subfamilies) (expressed)

Subfamily (b)
18 6.98-9.71 2.62 2.54 x 10−4 10 (7)
Subfamily (c)
10 72.59-82.39 2.81 1.62 x 10−4 81 (23)
Subfamily (a)+(b)
13 89.61-96.75 2.23 (0.95, 1.58) 6.78 x 10−4 24 (8)
18 6.98-9.71 2.05 (0.01, 2.62) 1.05 x 10−3 10 (7)
Subfamily (a)-(c)
10 19.17-81.96 2.72 (1.80, 0.12, 1.49) 2.01 x 10−4 256 (89)
18 6.99-9.71 2.49 (0.01, 2.62, 0.69) 3.57 x 10−4 10 (7)

Table 5.3: Suggestive linkage peaks (LOD > 1.9) in the family. Positions are
given as the region in which markers have LOD > MAXLOD - 1. Numbers in
brackets are LOD scores of the individual subfamilies that went into the analysis.
The number of genes expressed in either the immune or digestive systems in the
linkage peak is calculated from the expression datasets described in section 5.4.7
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Figure 5.7: Haplotype sharing in affecteds across the genome for subfamilies
(a)+(b) (of 18 total) and subfamilies (a)-(c) (of 31 total).
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ring haplotypes across subfamilies using Merlin was not possible. Instead,

we developed a method for parallelising the calculating of haplotypes across

subfamilies, involving the following steps:

1. Perform haplotype analysis in two subfamilies separately

2. For each pair of individuals across the two subfamilies, produce a small

pedigree consisting of siblings of these individuals, and ancestors that

connect them together. Use this to perform genome-wide identity-by-

descent estimation in these two individuals.

3. For every possible set of haplotype assignments at every point in the

genome, calculate the difference between the calculated identity-by-

descent value and the value predicted by the haplotypes generated in

step 1, summed across all pairs of individuals.

4. At each position in the genome, pick the haplotype assignment that

minimises this value

We carried out this analysis on subfamilies (a)+(b) using this method,

and on subfamilies (a)-(c) by then matching up haplotypes between subfam-

ilies (a)+(b) and (c).

Haplotype sharing in subfamilies (a) and (b)

The maximum number of affected family members sharing the same haplo-

type across the genome for subfamilies (a) and (b) is shown in Figure 5.7a.

The most widely shared haplotype is on chromosome 18 (corresponding to

the suggestive linkage peak in Table 5.3), and is shared by 14 of the 18 geno-

typed affecteds. This haplotype is present in all five affected nuclear families

in subfamily (b), and two of the four in subfamily (a).
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Using the same approach as described in section 5.4.2, we can use this

haplotype information to estimate the potential penetrance of a dominant

mutation that lies on this haplotype. This model produces an estimate of

the penetrance of 39% (95% CI 27-56%). It also implies between 4 and 7

phenocopies, corresponding to a phenocopy rate of 2.6% (95% CI 1.0-6.3%).

While this is elevated compared to the population prevalence, this may be

partly explained by ascertainment bias: this family, and in particular this

subfamily, was selected for investigation due to the large number of affecteds,

and this is likely to slightly inflate the number of affecteds due to winner’s

curse.

Haplotype sharing in subfamilies (a)-(c)

The maximum degree of haplotype sharing in subfamilies (a)-(c) is found

on chromosome 2 (between 13.3Mb and 14.3Mb). This does not correspond

to any of the suggestive peaks in the linkage analysis. This haplotype is

shared across 10 of the 16 affected nuclear families, and affects 20 of the 31

genotyped affecteds in this part of the family.

A dominant causal mutation on this haplotype could have a relatively high

penetrance (48%, 95% CI 36-64%). However, it would also imply between

11 and 14 phenocopies, corresponding to a phenocopy rate of 4.2% (95% CI:

2.4%-7.1%). This is more than 5-fold higher than the population prevalence,

and 4-fold higher than the rate predicted from common risk variants in this

part of the family, suggesting that a dominant mutation on this haplotype

alone would be insufficient to explain the incidence of IBD in this family.
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(a) (b)

Figure 5.8: The founder subpedigree used for whole-genome sequencing.

5.4.5 Whole-genome sequencing in the family

Samples chosen for sequencing

Whole-genome sequencing allows a complete survey of variation within a

family. It allows us to characterise structural variation, as well as SNPs and

indels in non-coding DNA that may have a regulatory function. However, the

cost is substantially higher, and thus we can only perform sequencing on a

limited number of individuals. We decided to concentrate on subfamilies (a)

and (b), as they are descended from two identical twins. This both increases

the chance that a shared mutation is acting in both families, and reduces the

cost of sequencing (because two founders can be sequenced for the price of

one).

Figure 5.8 shows the 8 samples that we decided to sequence. These sam-

ples have been picked to capture the shared haplotypes introduced by the

identical twins who founded subfamilies (a) and (b). Additionally, we in-

cluded enough offspring to allow us to assign mutations to haplotypes, and

thus allow us to impute variants on shared haplotypes into all affected mem-

bers of subfamilies (a) and (b).

Generating and quality controlling raw sequence

We performed whole-genome sequencing using the Illumina HiSeq 2000, gen-

erating 2x100bp reads. A total of 407.5Gb of sequence was generated, and
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Call set SNPs % dbSNP Ts/Tv
Union 7.46M 79.5% 1.76
Intersection 6.09M 90.2% 2.07
VQSR (99%) 5.86M 92.2% 2.04
VQSR (90%) 5.16M 94.7% 2.12

Table 5.4: Summary statistics for various whole-genome sequencing call sets

aligned to build 37 of the human genome using BWA (Li and Durbin, 2009)

v0.5.9. The mapping rate was 95.49% (range 94.07-96.35%), and the average

coverage across the eight individuals was 16.1X (range 12.3 - 23.6X).

QC of the sequence data was performed using the BAMCheck pipeline

developed by Petr Danecek, and all sequencing lanes passed. Samples were

checked against their CytoSNP12 genotyping data (described above) to as-

sure that samples swaps had not occurred. GATK (McKenna et al., 2010)

v1.2 was used to perform local realignment around known indels, and to

recalibrate base pair quality scores.

Calling SNPs and indels

Raw lists of SNPs and indels were generated using the GATK UnifiedGeno-

typer and samtools mpileup (Li et al., 2009) (v0.1.17). A total of 7.46M

SNPs and 1.50M indels were called, of which 82% and 53% respectively were

called by both approaches. This union SNP set is relatively poor: over 20%

of SNPs are not seen in dbSNP, and the transition to transversion ratio

(which should be above 2) is only 1.76 (Table 5.4). To improve the dataset,

we carried out Variant Quality Score Recalibration (VQSR) using GATK.

This technique fits a mixture model of true and false positive variants using

QC metrics and a truth set of known polymorphic variants, and uses this to

produce a calibrated quality score (the VQSLOD) for each variant.
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Statistic Call sets Description
QD SNP/Indel Variant quality divided by depth
HaplotypeScore SNP/Indel Data consistency with exactly two

haplotypes per individual
MQ SNP RMS mapping quality of reads map-

ping to site
MQRankSum SNP Test statistic for bias in MQ
DP SNP Total depth of reads at site
FS SNP/Indel Test statistic for bias in strand
ReadPosRankSum SNP/Indel Test statistic for bias in position in

read

Table 5.5: QC statistics used for VQSR. In all cases “bias” refers to a difference
in reference and non-reference reads. RMS stands for “root-mean-square”, i.e.√

1
N

∑N
i x

2
i .

We used a variety of QC statistics as input for VQSR (Table 5.5). For SNP

truth datasets, we used HapMap3 and 1000 Genomes Omni2.5 polymorphic

sites, and for an indel truth dataset we used indels observed twice in the Mills

and Devine (Mills et al., 2011a) dataset. A total of 5.86M SNPs and 1.22M

indels passed the basic VQSR filter (VSQR99, equivalent to VQSLOD >

2.52 for SNPs and > 0.13 for indels), and these call sets had very favourable

statistics (Table 5.4). A more stringent level of filtering (VQSR90, equivalent

to VQSLOD > 5.18 for SNPs and VQSLOD > 3.20 for indels) provides a

very high quality dataset at the expense of calling fewer variants.

We can use the CytoSNP 12 genotype data to test the sensitivity of the

SNP call sets. Figure 5.9 shows this sensitivity as a function of non-reference

allele count. As well as showing good quality statistics, the VQSR datasets

have a very high sensitivity: the basic VQSR99 set has a 99.7% sensitivity for

variants present in at least two individuals, and the stringent VQSR90 set,

while less sensitive, still has a very high sensitivity (99.0%). A caveat to this

analysis is that the CytoSNP 12 was designed late in the Illumina BeadChip
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Figure 5.9: The sensitivity of the various WGS call-sets compared to array
genotyping, as a function of non-reference allele count (AC).

line (in 2008) in order to genotype low concentrations of DNA, and as such is

strongly biased towards “genotypeable” (i.e. complex, well-behaved) SNPs.

The sensitivity values should thus be considered the sensitivity to detect

“easy” SNPs.

Calling structural variants

Unlike for SNP and indel calling, there is no single well-established method

for calling structural variants (SVs) from sequence data. Instead, most SV

calling efforts combine information from a range of different complementary

calling methods (Mills et al., 2011b).

To call SVs from the whole-genome sequencing data I used six different
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Method Insertions Deletions Inversions Complex
BreakDancer 0 4630 517 0
CNVnator 2816 17371 0 0
Pindel 2573 2574 165433 0
RDXplorer 491 335 0 0
SECluster 1347 0 0 0
Genome STRiP 0 1377 0 0
SVMerge confirmed 814 3519 19184 8355

Table 5.6: Summary statistics for the different whole-genome sequencing struc-
tural variant callsets, along with the combined SVMerge set

calling methods to generate candidates. These included two methods that

call SVs based on read-depth (RDXplorer (Yoon et al., 2009) and CNVnator

(Abyzov et al., 2011)), two that call based on paired end reads (BreakDancer

(Chen et al., 2009) and SECluster (Wong et al., 2010)), one that uses a

combined read-length and paired-end method (Genome STRiP (Handsaker

et al., 2011)) and one that calls based on split reads (Pindel (Wong et al.,

2010)). We used the program SVMerge to combine these candidates together

into a single set. We used the recommended SVMerge settings for filtering

candidate sets, and removed calls that overlapped centromeres, teleomeres or

gaps in the reference. The merged list of variants was then checked by local

assembly (using the assembly program Velvet (Zerbino and Birney, 2008)) to

confirm breakpoints. A breakdown of the number of variants called is shown

in Table 5.6. Note that a very large number of inversions and complex events

are called, coming almost exclusively from Pindel. As Pindel already uses

local realignment, the 19,184 inversions could not actually be confirmed by

an independent method, and should thus be considered suspect.

A total of 1210 SVs had at least a 50% reciprocal overlap with known

structural variants (taken from Zhang et al. (2006), Conrad et al. (2010) and

Mills et al. (2011b)). Of these, 179 of the 814 insertions had been previously
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Figure 5.10: The distribution of deletion size in our call set, combined with the
proportion observed (with >50% reciprocal overlap) in at least one of the three
external datasets.

discovered, and 968 of the 3519 deletions. However, only 23 of the inversions

and 37 of the complex events were previously known, suggesting again that

these classes of variants are unreliably called. We decided that the likely

very high false positive rate in inversions and complex events made them

unreliable, and discarded them.

Looking in detail at the deletions, the number of called mutations also

seen in the databases varies widely with the size of deletion (Figure 5.10) .

88.8% of deletions sized between 100 and 1000bp are novel, compared to only

9.6% of deletions greater than 1000bp. This likely represents a combination

of false negatives in the database (for instance, Conrad et al. (2010) only
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examined SVs larger than 443bp), and false positives in our call set.

5.4.6 Whole-exome sequencing in the family

Samples chosen for sequencing

Whole-exome sequencing is a more limited approach than whole-genome se-

quencing, and only allows the assessment of small-scale variation in coding

regions. However, the substantially lower cost means that many more sam-

ples can be sequenced, potentially allowing a far more extensive study of

coding variation than can be afforded by whole-genome sequencing.

All affected individuals from the family with DNA available (a total of

40) were sequenced, along with 13 unaffected family members to allow phas-

ing. Additionally, we sequenced 26 control exomes, taken from unaffected

members from the same ethnic group and geographic region as the family,

to allow us to identify population-specific variation that may otherwise be

mistaken for risk variants.

Processing of whole-exome sequencing data

We performed whole-exome sequencing, using a SureSelect Human All Exon

50 Mb kit for target enrichment and the Illumina HiSeq 2000 for sequenc-

ing. We used the same pipeline for quality control, mapping, realignment,

recalibration and variant calling that was developed for the whole-genome

sequencing (sections 5.4.5 and 5.4.5). The samples had a mean coverage of

154.0X in the target region (range 131.2X - 186.4X).

The VQSR99 set contained 128410 SNPs (87% known, Ts/Ts = 2.84),

of which 105243 were also in the VQSR90 set (89% known, Ts/Tv = 2.96).

The indel dataset contained too few indels to apply VQSR, so instead we
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used the default GATK hard-filters to create a high-quality indel set. This

included 9906 indels (52% known).

5.4.7 Identifying candidate variants in the family

Identifying candidate mutations

Between the whole-genome and whole-exome sequencing we have called over

7.5 million SNPs, indels and structural variants. Given the analyses reported

above, we can be nearly certain that there exists, somewhere in this list, at

least one mutation that causes a substantial increase in risk of inflammatory

bowel disease. To identify such mutations, we need to filter out the vast

majority of variants that do not contribute to IBD risk.

We have developed separate filtering procedures for the three different

classes of variants: coding SNPs and indels, non-coding SNPs and indels and

structural variants (laid out in detail in Table 5.7). Each filtering procedure

begins with a platform-specific quality filter to remove poorly performing

variants, followed by the removal of high-frequency variants using various

databases of common variation.

Our next stage is to filter out any variants that are not present in at

least half of the family members being considered. In the case of the data

deriving from whole-genome sequencing we infer this from the haplotype

flow information discussed in Section 5.4.4. For the SNPs and indels, we

examine the consistency of the genotypes with what would be expected if

the variant lay on the maximimally shared haplotype at that point in the

genome. If the genotypes are consistent with this haplotype (given at most

one genotyping error), and the haplotype is shared by at least half of affecteds

in subfamilies (a)+(b), we include the variant. This approach has the notable
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Filter Description
Filters for coding variants:
High quality Genotype quality > 10 in at least 60% of samples
Uncommon coding
variant

Frequency <2.5% in ESPa, and less than <5% in our 26
AJ controls (annotated using ANNOVARb)

Affected sharing Is shared by at least 50% of sequenced affecteds in either
subfamilies (a)+(b), subfamily (c), or the entire family

Coding conse-
quence

Is a missense, nonsense, essential splice, stop or
frameshift mutation (annotated using Ensembl VEPc)

Deleteriousness Predicted to be deleterious to protein function (measured
using Condeld).

Filters for non-coding variants:
Haplotype consis-
tency

Genotypes are consistent with maximally shared haplo-
type in linkage data (given at most one genotyping error).

Uncommon variant Has an non-reference allele frequency <2.5% in 1000
Genomes Phase 1 Europeanse

Haplotype sharing Variant is predicted to lie on a haplotype shared by at
least 9 affected members of subfamilies (a) and (b)

Conserved GERPf score > 2 or phastConsg score > 0.5, using UCSC
vertebrate alignmentsh

Regulatory func-
tion

Within an Ensembl regulatory region (via VEPc) or
within both a transcription factor binding site (TFBS)
and a region of open chromatic (DNase1) in at least one
ENCODE cell linei (via UCSCj)

Filters for structural variants:
Novel Does not have >50% reciprocal overlap with a variant in

Conrad et alk, 1000 Genomesl or HGVm.
Not a CNV region Overlaps no more than 5 variants in HGVm

Haplotype sharing Variant overlaps a haplotype shared by at least 9 affected
members of subfamilies (a) and (b)

Potential function Overlaps at least one coding base
Filters for all variants:
Genic variant Overlaps a gene region in GenCode release 7n

Expressed gene Gene is expressed in at least one immune or gut tissue
type, either in the Gene Expression Barcodeo or our gene
expression datasets.

Table 5.7: Filters used to identify candidate causal variants. aNHLBI GO Exome
Sequencing Project (ESP) (2012). bWang et al. (2010) cMcLaren et al. (2010)
dGonzalez-Perez and Lopez-Bigas (2011) eProject (2012) fDavydov et al. (2010)
gSiepel et al. (2005) hDreszer et al. (2012) iThe ENCODE Project Consortium
(2012) jRosenbloom et al. (2012) kConrad et al. (2010) lMills et al. (2011b) mZhang
et al. (2006) nHarrow et al. (2006) oMcCall et al. (2011)
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advantage of allowing us to assess the variant in more affecteds than were

sequenced. However, if a causal variant has been introduced to the family

multiple times on separate haplotypes, this variant will be missed (in the

family this is true for the NOD2 mutations, for example). Thus for the

exome sequencing, where data is available for nearly all affecteds, we did

not use the haplotype information, instead directly counting the number of

affected individuals carrying each haplotype.

The next stage involves removing variants that are unlikely to have a func-

tional impact. Coding SNPs and indels are filtered based on their predicted

impact on protein function. Non-coding SNPs and indels from the whole-

genome sequence are filtered based on their level of evolutionary conservation

and their presence in putative regulatory features. Structural variants are

filtered based on whether they delete coding sequence.

The final stage is to remove variants that, while possibly functional, are

unlikely to be functionally relevant to IBD risk. We use two sets of gene

expression data (one public reference set, one dataset generated by us) to

identify genes that are expressed in tissues relevant to IBD (tissues of the

immune or digestive systems). All mutations are filtered out if they do not

overlap a gene identified as expressed in a relevant tissue.

In the next three sections I will describe the results of this filtering on the

three different classes of variant, and discuss some of the candidate variants

that this analysis uncovers.

Coding SNPs and indels

Across the entire family there were 7,626 protein-changing mutations that

are at low frequency in the general population. Of these, 223 were shared by

at least 50% of affecteds in at least one subfamily, and 36 were implicated as
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Filter SNPs Indels
Low frequency protein mutations 7462 164
Shared by 50% of a subfamily 220 3
Deleterious 72 3
Expressed 35 1

Table 5.8: Summary of the filtering procedure for exome variants

functional in a relevant tissue (Table 5.8).

Ordering by the maximum frequency in affecteds in either subfamily, or

across the entire family, the NOD2 frameshift mutation ranks second in

the list of candidates (Table 5.9). This mutation is a the strongest known

risk factor for Crohn’s disease, and acts as a reassuring positive control,

demonstrating that this method can prioritise mutations with relatively low

penetrance. This is particularly reassuring as the NOD2 region was not

identified as a suggestive linkage peak or widely shared haplotype, due to

it being introduced by multiple founders: this shows that the sequencing

and prioritisation approach can identify true associations that the linkage

approaches cannot.

The most widely shared novel candidate mutation across the family was a

missense mutation in the gene PDE4FIP, encoding the protein Myomegalin.

This gene has not previously been implicated as having a role in immunity.

Next down, a mutation in the gene PIK3C2A was found to be widely shared

in subfamily (c): this gene is relatively poorly understood, but may play

a role in autophagy (Vanhaesebroeck et al., 2010). Towards the top of the

list we also find a missense variant in NLRP2 (a protein known to regulate

inflammation in macrophages (Fontalba et al., 2007)) that is shared across

subfamilies.
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Chr:Pos Alleles Affected carriers Gene Mutation
(a+b) (c) All

1:144871738 C/A 16 11 27 PDE4DIP Aka1742Ser (0.73)
16:50763778 G/GC 0 10 15 NOD2 Leu1007Fs
11:17191207 T/C 0 10 10 PIK3C2A Lys28Glu (0.55)
11:64527189 C/T 14 0 14 PYGM Arg61His (0.82)
19:55481394 C/T 4 9 13 NLRP2 Ser4Leu (0.74)
3:148601439 G/C 1 9 11 CPA3 Arg273Pro (0.70)
11:5536759 G/A 0 9 10 UBQLNL Gln305X
3:136664737 C/T 13 1 15 NCK1 Ala180Val (0.50)
11:5424701 T/C 5 8 15 OR51B5 Ile292Thr (0.86)
11:64854223 C/A 0 8 8 ZFPL1 Pro147His (0.55)

Table 5.9: Top 10 SNP protein coding candidate mutations. The number after
the amino acid change is the Condel score on the canonical transcript.

Filter SNPs Indels
Low frequency mutations on maximal haplotype 125189 38290
Shared by at least 9 affecteds 26993 8501
Conserved base 3143 584
Regulatory function 110 12
Expressed in relevant tissue 74 7

Table 5.10: Summary of the filter procedure for non-coding variants

Non-coding SNPs and indels

A total of 35,494 SNPs and indels were at low frequency in the population,

and were shared by at least 9 affecteds in subfamilies (a)+(b) (Table 5.10).

Further filtering produced 81 candidate variants, which were both conserved

and lay in putative regulatory regions (Table 5.11).
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Filter SNPs Indels
Novel insertions or deletions >100bp 2332 262
Shared by at least 9 affecteds 645 80
Delete coding sequence 5 0
Expressed 3 0

Table 5.12: Summary of the filtering procedure for structural variants

No single candidate stood out as both clearly functional and widely

shared. Only one potential regulatory mutation was on the maximally shared

haplotype (i.e. shared by 14 individuals). This was a novel mutation in a

putative regulatory region of TWSG1 (a gene implicated in BMP signalling

and B cell differentiation). However, of the 4 cell lines the regulatory feature

was detected as active in, none was related to the immune or digestive sys-

tem, and there was no clear evidence of transcription factor binding at this

position.

There were some promising candidate mutations that were shared by a

reduced number of affecteds. A mutation in a B- and T-cell active regulatory

region near PRKCH (involved in T-cell activation (Fu et al., 2011)) is shared

by eleven affecteds. This gene has previously been implicated in susceptibility

to atrophic gastritis by a candidate gene study (Goto et al., 2010). Another

strong candidate is IL18RAP, a receptor for interleukin-18 (known to be

important in Crohn’s disease (Maerten et al., 2004)), and a candidate causal

gene in the IIBDGC Immunochip analysis (Chapter 4). The mutation itself is

in a binding site for STAT2, a transcription factor known to be downregulated

in IBD (Mudter et al., 2005), though only 10 individuals share this mutation.
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Chrom:Pos Alleles Affected Gene (bases
deleted)

7:142494034-142495142 1108bp deletion 12 TRBJ2 (50bp) to
TRBJ6 (48bp)

13:95363645-95363829 184bp deletion 10 SOX21 (184bp)
4:84221936-84222193 257bp deletion 9 HSPE (77bp)

Table 5.13: The three candidate structural variants

Structural variants

725 novel structural variants lay within regions of the genome with haplotypes

shared by at least 9 individuals (Table 5.12). Because of the difficulty in

genotyping structural variants we were not able to test whether these variants

fell on the maximally shared haplotype. Of the 725 mutations, 5 deleted

coding sequence, and 3 of these lay within genes expressed in the digestive

or immune system (Table 5.13).

The functional structural variant that is most widely shared lies in the

T-cell receptor β (TCRB) locus, and appears to delete seven TCRBJ genes

(including all the most commonly used ones (Freeman et al., 2009)). At first

glance, this makes it an excellent candidate. However, the TCRB region

undergoes VDJ recombination during T cell development, and the deletion

may well have occurred during normal somatic development. Furthermore,

parts of the TCRB region are known to be copy number variable in healthy

individuals (Mackelprang et al., 2002), meaning that even a germ-line mu-

tation may be benign. The other two candidate SVs are not particularly

widely shared, and do not lie in any obvious candidate genes.
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New NOD2 variants

I mentioned above that the well-established NOD2 frameshift mutation

ranked second in the list of coding candidate variants in the family. The

importance of this mutation in the genetics of Crohn’s disease led us to

specifically investigate NOD2 variants that our above prioritisation analysis

may have missed. Doing so uncovered two new NOD2 mutations that are

likely increasing the risk of IBD in this family.

One mutation was carried in a heterozygous state by one of the spouses

that underwent whole-genome sequencing. This mutation (Arg791Gln) is

present in dbSNP (rs104895464), but is at very low frequency in the general

population (0.1%). It has a high Condel score (0.997) and lies in the middle

of the LRR domain: this places it in the “CD sensitive region” described in

Chapter 4, section 6.1, and thus is very likely to increase the risk of Crohn’s

disease. However, the mutation is not very common in the family: It was

observed once in the sequencing, and from the haplotype flow we can infer

that it was only passed on to one affected offspring.

A second novel NOD2 mutation is found in the exome sequencing, and

occurs at the same base pair as one of the traditional NOD2 mutations

(Gly908Arg). This mutation, Gly908Cys, is not present in 1000 Genomes

or ESP datasets, though it has been observed twice (in 662 individuals)

in the NIH ClinSeq project (Biesecker et al., 2009; Biesecker, 2012). This

allele has an even higher Condel score than the established variant (0.999 vs

0.997), suggesting that it too will increase the risk of Crohn’s disease. This

mutation was introduced by a spouse, and was passed on to two affected

children (both of whom are thus discovered to be compound heterozygous

for this and a second NOD2 mutation). Because of the striking nature of this

mutation and the fact that it had (at the time) never been reported before,
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we performed capillary sequence validation to confirm its existence.

While both of these mutations likely increase the risk of IBD, both were

introduced by spouses and thus are not carried on a haplotype shared across

nuclear families. Additionally, as they are together only carried by three af-

fected individuals, they can only explain only a small fraction of the affecteds

in the family.
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Sample set N Reason
Affecteds and parents 74 Validation of sites and genotypes
Jewish controls ∼100 Validation of allele frequency
Case/control cohort ∼600 Replication via association
Unaffected siblings ∼250 Replication via transmission
Other multiplex families ∼200 Replication via additional families
Total ∼1200

Table 5.14: Summary of the samples used for in the replication and validation
effort. The columns give the name of the sample set, the number of samples
included, the reason for their inclusion.

5.5 Follow-up of candidate causal variants

In the previous section I described a number of candidate variants (120)

that could be driving the prevalence of IBD in a multiplex family. The vast

majority of these are not associated with IBD: instead, they are likely to

be a combination of technical errors and variants that have risen to high

frequency in the family by chance.

To reduce the number of candidate causal variants, we have designed a

validation and replication exercise to identify erroneous and non-associated

candidates. This involves genotyping approximately 1200 samples using 8

Sequenom plexes (around 220 variants). These will consist of candidates

from the IBD family discussed above, as well as candidate variants from

other families and other important known risk variants (such as the NOD2

mutations). The samples to be used, as well as the reasons that they are

included, are shown in Table 5.14. In this section I will describe the intended

validation and replication tests, and discuss their power to confirm or falsify

candidate causal variants.

Once these tests have been carried out, and if candidate variants still

remain, these variants will be carried forward into functional studies to iden-
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tify likely causal mechanisms. I will not discuss these functional experiments

here.

5.5.1 Technical validation of causal variants

During the 1000 Genomes loss-of-function project described in chapter 3,

we learned that LoF variants are greatly enriched for technical errors com-

pared to other classes of variations (MacArthur et al., 2012). This was not

due to any particular property of the variants themselves, but instead due

to the fact that loss-of-function variants are extremely rare. In essence, be-

cause the number of true loss-of-function variants is depleted relative to other

categories, while the number of technical errors is approximately constant re-

gardless of functional category, the proportion of errors is much higher.

The list of candidate variants from the family suffers from a similar effect.

We have picked these candidates based on a number of criteria that will

diminish the pool of true variants and increase the relative number of errors.

The classes of functional variants that we have selected for are known to be

under negative selection: coding SNPs predicted to be damaging to protein

structure are under strong negative selection (Barreiro et al., 2008), and

mutations inside non-coding regulatory regions are also known to be rarer

than in the genome as a whole (The ENCODE Project Consortium, 2012).

We have also selected variants that are common within the family, but rare

in the general population, which itself will inflate the error rate.

In this section I will discuss some sources of technical error in the candi-

dates, and discuss validation strategies that can overcome these problems.



284 Chapter 5. High-throughput genomic studies of multiplex families

●
●
●

●

●

●

●

●●

●

●
●
●●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●
●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●
●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●●
●

●
●
●

●●

●

●
●

●

●

●●

●●
●

●

●
●●
●
●
●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●
●
●
●●
●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●●

●
●●

●

●

●
●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●
●●

●

●

●

●●

●●

●●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●●

●●

●
●●
●

●

●●

●

●

●

●

●

●●
●

●
●●

●

●

●
●

●
●●

●
●

●

●●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●
●●
●

●●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●
●
●

●

●

●●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●

●●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●
●
●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●
●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●●●

●

●
●

●

●

●

●
●●●

●●
●

●●

●
●●●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●●●
●
●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●●●
●

●●●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●●

●

●
●

●

●

●●●●

●
●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●●

●

●
●
●

●

●

●

●
●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●
●

●

●
●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●●
●

●●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●●
●

●

●

●
●
●

●
●●
●●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●
●

●
●

●

●●
●
●●

●
●

●●●
●●
●
●●
●●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●●

●●

●

●
●

●●
●
●

●

●●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●
●●

●●
●

●

●●

●

●

●
●

●
●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●●
●
●

●

●
●
●●

●

●

●

●
●●
●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●
●

●

●●
●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●
●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●

●

●

●
●
●
●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●
●

●

●

●●

●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●

●

●

●
●

●
●●

●

●

●●

●

●
●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●
●

●

●
●
●
●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●●
●

●

●
●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●
●

●
●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●●

●
●
●

●

●

●

●
●

●●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●●●

●

●

●

●●●

●●

●●

●

●

●

●●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●●

●
●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●●

●

●●

●
●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●
●●

●
●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●●

●
●
●

●●●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●●
●
●
●

●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●●
●

●●

●

●

●●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●
●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●
●●
●●●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●

●●
●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●
●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●
●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●●●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●
●●●

●

●

●
●

●
●

●
●
●
●●

●

●

●

●
●

●

●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●
●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●

●
●

●
●●

●

●●

●

●●●
●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●●
●●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●●

●●

●

●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●

●

●●
●
●
●

●●●

●

●
●

●
●
●
●

●
●

●

●

●●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●
●

●
●

●

●

●
●
●
●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●●

●
●●

●

●

●

●●
●
●

●

●
●

●●

●

●

●●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●●
●
●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●●
●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●●
●●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●●●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●
●
●●●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●
●●
●

●

●

●●
●●

●
●

●

●
●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●●

●●
●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●●
●

●

●●

●

●

●●

●●
●

●

●●

●

●
●

●

●

●
●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●

●

●

●

●

●●
●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●
●

●
●
●
●

●

●

●

●
●

●

●

●

●●●

●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●
●
●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●●●●

●●
●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●●

●●●●
●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●
●

●●
●●

●●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●
●

●
●

●

●
●

●

●

●●

●

●●●

●

●

●

●●
●
●

●

●

●

●

●
●

●●●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●
●

●●●
●●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●
●

●●
●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●
●

●

●●●

●
●

●●

●
●
●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●
●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●
●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●●●

●

●

●●
●

●
●

●●●

●

●

●

●●
●

●

●●
●
●
●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●●

●●
●

●
●
●

●

●
●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●
●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●
●
●●●

●

●●

●

●

●

●

●

●

●

●

●
●●●●

●
●
●

●●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●
●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●
●●●●●

●

●

●

●
●

●

●

●

●

●

●●●

●●●
●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●●
●

●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●●

●

●
●●

●

●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●●
●●

●

●

●

●
●●

●
●●

●
●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●●

●

●

●
●
●

●

●

●

●●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●
●
●

●

●●

●

●

●
●●

●

●
●

●

●
●●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●
●
●
●

●
●●

●

●

●
●

●

●

●
●
●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●●

●
●●

●

●
●●
●

●
●

●

●

●

●

●

●●

●
●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●●

●●

●●

●

●
●

●

●
●●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●
●●

●

●

●

●

●
●

●

●

●
●●●

●●

●

●

●

●

●
●
●●
●

●●

●

●●

●
●●

●

●

●
●●

●

●

●

●
●
●●

●

●

●●

●●

●

●
●

●●
●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●
●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●●
●

●

●

●

●

●●

●
●

●●

●
●

●

●●

●

●

●
●

●

●

●
●

●●●

●●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●●

●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●
●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●
●
●

●

●

●●
●

●

●

●
●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●
●
●

●

●

●
●●

●
●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●
●●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●●

●

●

●
●

●

●

●
●
●

●

●

ALL NONSYN LOWFREQ SHARED

2
4

6
8

10
12

14

Set

V
Q

S
LO

D

Figure 5.11: The VQSLOD scores for the exome call sets after various sequential
filtering steps.

False positive variants

Some of the candidate variants will be false, the result of systematic errors in

sequencing. The VQSR calibration will have given us a degree of robustness

to such errors, but it is likely that at least some will remain. Figure 5.11 show

the VQSLOD score for the exome variants after various stages of filtering.

There is a difference in score of approximately 0.8 between the entire exome

dataset and the shared, low-frequency coding variants. This shows that

systematic errors of the type measured by VQSR are more common in our

datasets. More specifically, it corresponds to an estimated 2.2-fold increase

in false positive rate in filtered variants (95% CI: 1.6-3.1).

Ideally, all candidate variants should be validated using an independent

technology. Capillary resequencing is perhaps the most accurate form of vali-

dation (for example, we use this technology to validate the novel NOD2 vari-

ant discussed above), but it is low throughput. PCR amplification is another

low-throughput method that can be used to validate structural variants. A
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more high-throughput validation technology is the Sequenom (Bradic et al.,

2011) mass spectrometry method (the main method used for validation of

LoF variants in the 1000 Genomes project). This requires processing a large

number of samples to accurately validate sites, but can be combined with

the various genotyping efforts described below.

Poorly genotyped variants

Another potential source of false candidates is genotype error. A variant

may be real, and present in the family, but some samples have been assigned

the wrong genotypes. This can lead a variant that is present only in a

small number of individuals to seem to be present in a larger number. This

is particularly likely to be a problem in the whole-genome sequencing data,

where the coverage is much lower, and incorrect genotypes in a small number

of individuals can lead to a variant being incorrectly inferred to lie on a shared

haplotype. Again, the most reliable method of detecting these problems is to

perform genotyping on the same samples using an independent technology.

This can be combined with the site validation described in the previous

section.

Common variants

Some of the candidate variants may in fact be at high frequency in the gen-

eral population. While we have filtered these datasets based on population

frequency, there are two factors that may lead a high-frequency variant to

remain in the list. Firstly, the variant may be absent from the reference

set used, either because it was not detected in the original call list, or was

filtered out as poorly performing. Secondly, the variant may be at high fre-

quency exclusively in the Ashkenazi Jewish population. For instance, of the
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35,191 exome variants that were below 2.5% in Americans of both European

and African descent, 222 were detected at above 10% in the Ashkenazi Jew-

ish control exomes. For the whole-genome sequencing no Jewish controls

were available, meaning many of our non-coding candidates may be at high

frequency in the Jewish population.

The solution to this problem is to genotype all candidate variants in a

control population taken from the same ethnic group and geographic region

as the family.

5.5.2 Independent replication of causal variants

Even if the variant is real, is truly low frequency and has been correctly geno-

typed, it still may be present in a large number of affected family members

merely by chance. This is especially true in our case, where we know that

this family does not show a genome-wide significance linkage peak, and many

of our candidate variants do not lie within even suggestive linkage peaks. To

demonstrate that a variant is causal, we need to provide independent replica-

tion of the association. In this section I will discuss three different methods

of replicating a candidate mutation by genotyping in further samples.

Validation in a case-control cohort

While we filtered out variants with an allele frequency of above 2.5%, many of

our candidate variants are still polymorphic in the general population. Such

variants may well not be well tagged in GWAS, but case-control cohorts well

powered to detect them if genotyped directly. For variants at intermediate

frequency (between 0.1% and 1%) we can attempt to replicate these variants

in standard case-control cohorts of IBD.

Assuming a risk allele frequency of f , a prevalence of K and a dominant
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Figure 5.12: The same size required to have 80% power to replicate a mutation
with a given penetrance with p < 0.01, assuming a prevalence of K = 0.0075. The
colours of the lines represent the allele frequency in the general population. The
dashed line represents a small replication effort (300 cases and 300 controls), and
the dotted line represents a large effort (3000 cases and 3000 controls).

penetrance of π (such that π < K
f(2−f)

), the proportion of affecteds in the

general population who carry this mutation is

P (r = 1|d = 1) =
P (d = 1|r = 1)P (r = 1)

P (d = 1)
(5.55)

= f(2− f)
π

K
. (5.56)

Similarly, the proportion of unaffected carriers is
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P (r = 1|d = 0) = f(2− f)
1− π
1−K

. (5.57)

The sample size required to detect a difference in the number of carriers

between cases and controls, for a given penetrance and allele frequency, is

shown in Figure 5.12. A small genotyping effort (300 cases and 300 con-

trols) is well powered to detect (and therefore also to rule out) medium

penetrance mutations (>10%) with an allele frequency of greater than 0.1%.

A large genotyping effort (such as the whole-genome sequencing experiment

described in Chapter 6) would have a power to detect and rule out medium

penetrance mutations with a population frequency of greater than 0.01%.

Replicating truly rare mutations is extremely difficult using case-control

cohorts, though datasets on the scale of the International IBD Genetics Con-

sortium’s replication cohort (discussed in chapter 4) would be well powered

to replicate intermediate penetrance mutations with allele frequencies as low

as 1 in 200,000.

Validating using unaffected siblings

A standard way to validate a potential causal variant is to track its co-

segregation with affection status within the family it was discovered in. In

the approach described above, we have prioritised variants for follow-up based

on their presence in a large number of affecteds. However, the unaffected sib-

lings of these affected individuals have not been tested, and these unaffected

individuals can provide an additional validation set. Where a parent is het-

erozygous for the candidate mutation, we can test for evidence of causality

by testing whether it is transmitted to less than half of unaffected children.

Here I will consider what allele frequencies we expect in unaffected siblings

as a function of penetrance, and what power these unaffected siblings can
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Figure 5.13: a) The frequency of a dominant mutation in affected and unaf-
fected children of an individual heterozygous for this mutation. b) The number of
unaffected children of parents heterozygous for the mutation required to validate
causality with p < 0.01 by a binomial hypothesis test, as a function of the pen-
etrance of the mutation. The solid line represents the case where all unaffected
individuals are correctly diagnosed, whereas the dashed line represents a scenario
in which 5% of unaffected siblings in fact are (or will become) affected. In both
cases I assume K = 0.0075.

provide to validate causality.

We will assume that one parent caries the mutation, and there is therefore

an even chance that a child will inherit it, i.e. P (r = 1) = P (r = 0) = 1
2
.

The overall disease prevalence in the children is thus

P (d = 1) = P (d = 1|r = 0)P (r = 0) + P (d = 0|r = 0)P (r = 1)

=
K + π

2
. (5.58)

The proportion of unaffected children who are wild-type is thus
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P (r = 0|d = 0) =
P (d = 0|r = 0)P (r = 0)

P (d = 1)
(5.59)

=
1−K

(1−K) + (1− π)
. (5.60)

We can calculate the same value for affected children

P (r = 0|d = 1) =
P (d = 1|r = 0)P (r = 0)

P (d)
(5.61)

=
K

π +K
. (5.62)

These two equations are plotted as a function of π (for a fixedK = 0.0075)

in Figure 5.13a. While the mutation frequency in affected children rises very

rapidly with the penetrance, the corresponding frequency in unaffecteds falls

much more slowly. Figure 5.13b shows the number of unaffected children of

heterozygous parents required to validate a candidate mutation at p < 0.05.

For high penetrance mutations (π > 0.7) validation can be performed in

a modest number of unaffected siblings (N < 30), though for intermediate

penetrance mutations (π > 0.4) larger number of unaffecteds are required

(N ∼ 100).

This analysis assumes that all individuals who are currently believed to be

unaffected are truly unaffected. However, a proportion of these individuals

are likely to have the disease but not yet have been diagnosed, or will go on to

develop the disease later in life. This could seriously increase the frequency

of the mutation in unaffecteds.

To model this, we assume that a proportion α of the unaffected siblings

are in fact cases. We will denote the true affection status with dT , such that
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P (dT = 1|d = 0) = α. The proportion of individuals classified as unaffected

who are wild-type is given by

P (r = 0|d = 0) = P (r = 0|dT = 0)P (dT = 0|d = 0)

+P (r = 0|dT = 1)P (dT = 1|d = 0) (5.63)

= (1− α)
1−K

(1−K) + (1− π)
+ α

K

K + π
. (5.64)

This diagnostic uncertainty can seriously reduce the power of validation

using unaffected siblings. The dashed line in Figure 5.13b shows how many

more siblings are needed to account for this diagnostic uncertainty. For

instance, to validate a mutation with a penetrance of π = 0.4 requires N =

115 siblings under perfect diagnostic conditions, but N = 190 when there is

a 5% underdiagnosis rate.

For the candidate variants in the family we are studying, the number

of unaffected offspring of carrier parents varies from 50 to 250, depending

on the number of subfamilies the mutation is segregating in. We thus will

have power to replicate mutations with a high penetrance (>60%) for most

mutations, down to about 30% for more widely shared mutations.

Replication in other multiplex families

Perhaps the gold standard for replicating a causal mutation found in a family

is to show that it segregates with disease status it in a second family. As

we saw in section 5.3.1, multiplex families are more likely to carry more

penetrant mutations, and thus screening a large enough number of multiplex

families is likely to turn up other instances of the mutation even if the allele

frequency in the population is low. For instance, a 0.1% variant with a
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penetrance of 50% will be present in 1.3% of cases, but will be present in

approximately 10% of patients with at least 2 affected first degree relatives

(calculated using the model described in section 5.3). Once such families

are identified, affected children of mutation carriers can be tested for an

over-inheritance of the mutation.

As we saw in Figure 5.13a, providing that penetrance is above around

20%, affected children of heterozygous parents should be carriers at least

95% of the time. If 8 such affected children can be collected from additional

families, and the mutation is causal, more often than not (>65% of the time)

all will carry the mutation. However, if the mutation is not causal, there

is only a 0.4% chance of all children carrying this mutation. Even for a

disease with a 10% penetrance, only 12 children are required to produce the

same effect. Thus, identifying less than a dozen affected children in families

carrying the mutation is often sufficient to demonstrate causality.
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5.6 Conclusions

Discovering high penetrance mutations in multiplex families is, unsurpris-

ingly, a more complex endeavour for complex diseases than for Mendelian

disease. We have seen how a large number of multiplex families can arise

as a result of polygenic risk alone, and great care must be taken to select

families that are likely to carry penetrant mutations. Even if an affected

family is detected, a combination of phenocopies, incomplete penetrance and

less obviously severe mutations can make correct identification of the causal

variants difficult.

Given this, it is not surprising that the above approach did not pro-

duce the single, clearly highly damaging mutation shared by all affecteds

that would be expected from a Mendelian disease family. Instead, a detailed

genotyping, sequencing and filtering experiment produced a series of over

a hundred plausible candidates. One of the most valuable resources in the

identification of these variants has been tools for inferring both coding and

non-coding function, including variant effect prediction, information on reg-

ulatory regions, and tissue specific gene expression data. This has allowed us

to drastically reduce the list of candidates on the basis of putative function.

A list of multiple candidate variants is likely to be the standard out-

put for family sequencing studies in complex disease. As has been the case

with common associations, the key to turning these candidate variants into

established associations will be independent replication. I have shown, for

certain variants there is potential for replication with unaffected siblings, and

within case-control cohorts. However, the most valuable form of replication

is likely to be the detection of evidence of co-segregation with affection status

in other multiplex families. This highlights the value of collecting samples

from many multiplex families, and of collaboration between different research
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groups studying multiplex families.

From these observations, I believe that we can identify the two most

important developments that will drive forward the study of multiplex fam-

ilies in coming years. The first will be the integration of increasingly de-

tailed functional datasets, and in particular datasets that can assess regula-

tory function. The second will be collaboration, and in particular reciprocal

replication, between research groups in order to establish causal variants in

multiple families.


