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Abstract

The first generation of genome-wide association studies (GWAS) uncovered thou-

sands of genetic risk factors for hundreds of complex human diseases. However,

over the past five years new high-throughput techniques, including next-generation

sequencing and low-cost custom genotyping, have allowed us to expand disease as-

sociation studies into larger sample sizes and across the entire spectrum of human

variation. This thesis will explore the potential of these new technologies, and

in particular their application to the study of Inflammatory Bowel Disease (IBD)

genetics. After reviewing the historical context of complex disease genetics, I in-

troduce the statistical methods and models used in this thesis, and demonstrate

how they can be placed into a unified framework of genetic risk models. I then

detail three analysis projects that focus on identifying risk variants that the first

generation of GWAS was unable to study. The first investigates how genotype

imputation, coupled with high-density sequencing reference sets, can aid locus dis-

covery in both European and African populations. The second discusses the use

of a custom genotyping chip (the Immunochip) to discover risk variants with low

effect sizes, by allowing low-cost genotyping of a very large number of samples.

The third investigates the use of next-generation sequencing of multiply affected

(or “multiplex”) families in order to identify low-frequency, high penetrance risk

alleles. Throughout these three projects I describe the discovery of a large number

of novel IBD risk loci, and discuss how statistical and biological interrogation of

these risk loci can help us to develop and expand biological hypotheses.
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