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SUMMARY 

All cancers originate from a single cell that starts to behave abnormally due to 

acquired somatic mutations in its genome. These somatic mutations may be the 

consequence of the intrinsic slight infidelity of the DNA replication machinery, 

exogenous or endogenous mutagen exposures, enzymatic modification of DNA, or 

defective DNA repair. In some cancer types, a substantial proportion of somatic 

mutations are known to be generated by exposures, for example tobacco smoking in 

lung cancers and ultraviolet light in skin cancers, or by abnormalities of DNA 

maintenance, for example defective DNA mismatch repair in some colorectal cancers. 

However, our understanding of the mutational processes that cause somatic mutations 

in most cancer classes has been remarkably limited. 

Different mutational processes often generate different combinations of 

mutation types, termed “signatures.” There is strong evidence from analyses of known 

cancer genes in lung cancers and skin cancers that the classes of mutations found and 

their characteristics match those induced experimentally by tobacco carcinogens and 

ultraviolet light respectively, the known carcinogenic influences in these cancer types. 

Thus, the analysis of mutational signatures found in human cancers can provide clues 

to the processes that have been operative during their development. 

In this thesis, I create a theoretical model describing the signatures of 

mutational processes operative in cancer genomes and develop a systematic 

computational framework to decipher mutational signatures from mutational 

catalogues of cancer genomes. The approach is extensively evaluated with simulated 

data and initially applied to 119 breast cancer whole-genome sequences and 844 

breast cancer whole-exome sequences. Novel and known breast cancer mutational 

signatures are revealed and the contribution of each signature to each cancer sample is 

estimated.  

After this initial application, I use the developed computational framework to 

perform a comprehensive analysis of cancer genomics data. The approach is applied 

to 4,938,362 somatic substitutions and insertion/deletions from 7,042 human cancers 

of 30 classes revealing more than 20 distinct mutational signatures. Some are present 

in many cancer types, notably a signature attributed to the APOBEC family of 

cytidine deaminases, whereas others are confined to a single cancer class. For some of 

these processes the underlying biological mechanism is unknown. However, some of 



the identified mutational signatures associate to age of cancer diagnosis, smoking, UV 

light, anticancer drug exposure, presence of BRCA1 and BRCA2 mutations, and 

inactivation of mismatch repair genes. 

This thesis provides both a basis for characterizing mutational signatures from 

cancer-derived somatic mutational catalogues and the first large-scale examination of 

mutational signatures across multiple cancer types. The results reveal the diversity of 

mutational processes underlying the development of cancer, with potential 

implications for understanding of cancer etiology, prevention, and therapy. 
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Chapter 1 
Overview of the literature and a historical perspective 

1.1 Introduction 

The first known historical record in which cancer is described as a disease 

dates back to c. 2600 BCE and it is attributed to Imhotep, the high priest of the Sun 

god Ra during the rule of king Djoser of the Third Dynasty of ancient Egypt. 

Evidence of early attempts for surgical treatments of malignancies can be found in the 

records of the ancient Greek historian Herodotus around the fifth century BCE 

(Mukherjee, 2010). Throughout the last 4,600 years, our understanding of cancer has 

evolved and changed numerous times. Many hypotheses proposing the causes of 

cancer and potential ways to treat cancer have been put forward only to be rejected, 

and later re-proposed, and then rejected once again (Mukherjee, 2010). In the past 50 

years, cancer research has become both a national and, more recently, an international 

priority. Perhaps the most famous on-going national initiative is the so-called “War on 

Cancer” – a federal law signed by the former United States president Richard Nixon 

in 1971 with the goal “to more effectively carry out the national effort against cancer” 

– resulting in billions of U.S. dollars for funding for cancer research every year. 

While significant scientific advances have been made in understanding cancer, the 

general public has perceived these initiatives as “lacking progress” (Rettig, 2006) and 

consider cancer one of its biggest fears (Roberts, 2010). This fear is, perhaps, well-

grounded as ~8 million deaths worldwide each year are attributed to cancer and it is 

expected that this number will significantly rise with the anticipated increase of 

human life expectancy (Jemal et al., 2011). 



Currently, the term “cancer” encompasses a broad group of over two hundred 

different diseases characterized by abnormal cellular growth. It is generally agreed 

that all cancers progress from a single cell that starts to behave abnormally, to divide 

uncontrollably, and (eventually) to invade adjacent tissues (Hanahan and Weinberg, 

2000). It is also believed that the reason this single cell begins to behave abnormally 

is because of acquired changes to its genetic material, known as somatic DNA 

mutations.

In this thesis, I will examine patterns of somatic DNA mutations from cancer 

genomes in order to provide a better understanding of the processes that have caused 

these mutations and, as such, are the origins of cancer. The aim of this first chapter is 

to provide a general overview of the state of cancer genetics and cancer genomics as 

well as to summarize the current knowledge of DNA damage and repair processes. It 

should be noted that this chapter does not review any of the articles that have been 

published as part of this thesis as these will be presented in the next few chapters. A 

complete list of publications associated with this thesis can be found in Appendix VII. 

1.1.1 The somatic mutation theory of cancer

The somatic mutation theory of cancer research was initially proposed in the 

late nineteen century. In 1890, David von Hansemann examined 13 different 

carcinoma samples and observed an asymmetric distribution of 'chromatin loops' (von 

Hansemann, 1890). He proposed that aberrant cell divisions are responsible for 

cellular defects that result in the development of cancer cells. This idea was largely 

ignored, but 25 years later the German biologist Theodor Boveri revived it and 

speculated that ‘a malignant cell [should be regarded] as one that carries an 

irreparable defect’ and that ‘this defect is located in the nucleus’ (Boveri, 2008; 

Manchester, 1995). Boveri’s and von Hansemann’s work came in a time before DNA 

was identified as the molecule of inheritance (Avery et al., 1944) and, as such, the 

defects they were referring to were anomalous chromosomes following aberrant 

cellular divisions. New observations allowed refinement of Boveri’s theory and, in 

1953, Carl Nordling published his multi-mutation “theory on cancer-inducing 

mechanism” (Nordling, 1953). Nordling observed that in the United States, the United 

Kingdom, France, and Norway cancer death rates increased according to the sixth 

power of the age of the patient. He speculated that cancer development requires an 

accumulation of at least six consecutive mutations. While Nordling’s hypothesis 



appealed to medical statisticians (Armitage and Doll, 1954), it was not widely 

accepted at the time. 

Two decades later, Alfred Knudson refined Nordling’s theory by examining 

retinoblastomas. Knudson observed that the heritable form of retinoblastoma occurred 

at a much earlier age than the non-heritable form, and he explained this observation 

by speculating that at least two mutational events were necessary for the development 

of this cancer (Knudson, 1971). Patients that present with the heritable form of 

retinoblastoma harbour a germline mutation since conception and require only one 

DNA mutation in a somatic cell to develop the cancer. In contrast, in the 

nonhereditary type of retinoblastoma, two DNA mutations need to occur in a somatic 

cell in order to initiate oncogenesis. 

Further work on retinoblastoma revealed that the gene harbouring germline 

mutations is the retinoblastoma gene RB1 (Murphree and Benedict, 1984). One of the 

functions of RB1 is to inhibit cell cycle progression and, as such, to prevent excessive 

cellular growth. This was the first discovery of a tumour suppressor gene (also known 

as anti-oncogene) as RB1 was directly inhibiting neoplastic development. In principle, 

most tumour suppressor genes are recessive since even one copy of the gene is 

sufficient to produce the correct protein and suppress tumorigenesis. 

The discovery of the structure of deoxyribonucleic acid (Watson and Crick, 

1953) and the experimental work that followed from it reinforced the notion that 

cancer has a genetic etiology. Early cytogenetic examinations of chromosomal 

abnormalities demonstrated that specific translocations are associated with particular 

cancer types. Perhaps the best-known example is that of the “Philadelphia 

chromosome,” a translocation between chromosomes 9 and 22 found in 

approximately 95% of chronic myelogenous leukaemias (Nowell, 1962; Rowley, 

1973). Subsequently, seminal studies in the 1970s and 1980s revealed that mutated 

genes could cause neoplastic transformation. Most notably, Harold Varmus and J. 

Michael Bishop demonstrated that the oncogene of the Rous sarcoma virus is required 

to transform infected chicken cells into neoplastic cells (Parker et al., 1984; Stehelin 

et al., 1976). A few years later, by transferring genomic DNA from tumour cell lines 

of mouse and human origin, Robert Weinberg and colleagues established that mouse 

fibroblasts could be converted into neoplastic cells (Shih et al., 1981). 
Further studies demonstrated that the transformation of a normal cell to a 

neoplastic cell is due to mutated genes responsible for cellular growth control 



(Perucho et al., 1981; Pulciani et al., 1982). Such genes were termed proto-oncogenes

since they are able to induce oncogenesis when mutated. HRAS is generally 

considered to be the first discovered “naturally occurring” oncogene since it was 

shown that in the NIH/3T3 cell line a single point mutation, which results in an amino 

acid change of glycine to valine in codon 12 of HRAS, is sufficient for tumour 

initiation (Reddy et al., 1982). In principle, most oncogenes are dominant, as even a 

single malfunction copy of the gene may be able to provide clonal growth advantage.

The seminal findings summarized in this section have had colossal 

implications that have shaped the last 30 years of cancer research and underpinned the 

on-going hunt for mutated genes that cause human cancer. 

1.1.2 Acquiring somatic mutations: drivers and their passengers 

The somatic mutation theory postulates that cancer is due to the accumulation 

of somatic mutations, where a somatic mutation is defined as the change of the 

nucleotide sequence of the genome of a somatic cell since the first division of the 

zygote. These mutations are the by-product of the endogenous or exogenous DNA 

damaging processes (reviewed in section 1.2 of this chapter) and are affected by the 

activity of the operative DNA repair processes (reviewed in section 1.3). I will refer 

to the combination of DNA damaging and repair processes, operating together and 

resulting in the generation of somatic mutations, as a “mutational process”.

In general, it is accepted that somatic mutations occur somewhat randomly 

across the genome and that they can be broadly separated into two categories – (i) 

mutations that provide selective advantage for clonal expansion and (ii) mutations that 

do not result in growth advantage (Stratton et al., 2009). The latter have been termed 

passenger mutations, while the former are referred to as driver mutations. It is widely 

believed that the number of driver mutations in a cancer sample is limited to a 

handful, usually two or more but less than ten (Hanahan and Weinberg, 2000). In 

contrast, the genome of a cancer can harbour more than a million somatic mutations 

(Alexandrov et al., 2013a) most of which are considered to be passengers. Passenger 

mutations are not per se involved in cancer development but are rather the residual 

molecular fingerprints of the operative mutational processes. 



1.1.3 Mutational catalogues of cancer genomes 

Even before the official start of the Human Genome Project, it was 

hypothesized that systematically analysing the genetic information of cancer cells at a 

single base resolution could give significant insights into the mechanisms of cancer 

development (Dulbecco, 1986). While previous approaches allowed identification of

large genomic events (e.g., copy number changes, chromosomal translocations, etc.)

examining cancer genes by interrogating their sequence held the promise of observing 

previously unseen mutational events. At first, such sequencing examinations were

performed using polymerase chain reaction (PCR)-based capillary sequencing for a 

targeted set of genes; however, the development of next-generation sequencing 

methods allowed rapidly sequencing of the complete set of exons in a cancer genome 

and even, at a low cost, the whole cancer genome of a patient.

Regardless of the experimental approach, the idea behind sequencing cancer 

genomes (or parts of these genomes) is simple. Genomic DNA is extracted from both 

the cancer and from normal tissue (which is usually but not always blood) and then 

these genomic DNAs are sequenced separately. The identified normal and cancer 

nucleotide sequences are aligned to the reference human genome, are compared to it, 

and are then compared to each other. The nucleotide differences found in both the 

normal and the cancer tissues are attributed to germline polymorphisms while DNA 

sequence changes identified only in the cancer tissues are attributed to somatic 

Figure 1.1: Somatic mutations in cancer versus nucleotide polymorphisms in the germline. 
Illustrated example demonstrating the identification of germline polymorphisms and somatic 
mutations from sequencing data.   



mutations. The DNA changes identified only in the cancer tissue constitute the 

mutational catalogue of the cancer genomes. These can be single-base substitutions, 

small insertion or deletions (usually referred to as indels), copy number changes, 

intra-chromosomal rearrangements, or inter-chromosomal rearrangements. An 

illustrative example of the identification of a somatic base substitution and a single 

nucleotide polymorphism from next generation sequencing reads is shown in Figure 

1.1.

The majority of somatic mutations identified in the mutational catalogues of 

cancer genomes are passenger mutations (Stratton et al., 2009). The ability to examine 

hundreds and even thousands of mutational catalogues of cancer genomes has resulted 

in the development of advanced statistical methods that allow pinpointing a handful 

of driver mutations from an ocean of passenger mutations. In simple terms, these 

algorithms evaluate which genes are mutated more often than purely expected by 

chance while correcting for multitude of different factors (Garraway and Lander, 

2013).

Using targeted capillary sequencing, an early cancer genomics sequencing 

study demonstrated that mutations in the BRAF gene are found in ~70% of 

melanomas (Davies et al., 2002). This was followed by later studies identifying 

PIK3CA (Samuels et al., 2004) and EGFR (Lynch et al., 2004; Paez et al., 2004; Pao 

et al., 2004) as genes commonly mutated in human cancer. These early successes and 

their clinical significance (Antoniu, 2011; Chapman et al., 2011b) made the 

identification of cancer genes through the systematic sequencing of cancer genomes, 

one of the main topics of cancer research. The emergence of next generation 

sequencing technologies allowed rapid and cheap examination of the genetic material 

of cancer cells. This led to the formation of the International Cancer Genome 

Consortium (ICGC) (Hudson et al., 2010). The goal of the ICGC is the identification 

of novel cancer genes through the molecular characterization of tumours of 50 types 

(and their adjacent normal tissues) from more than 25,000 patients. Nowadays, large-

scale initiatives, such as the ICGC, continue to identify genes causally implicated 

with tumorigenesis and the census of human cancer genes gets updated on nearly a 

monthly basis. 



1.1.4 Mutational signatures - the fingerprints of mutational processes

The somatic mutations in a cancer genome are the cumulative result of the 

mutational processes that have been operative since the very first division of the 

fertilized egg from which the cancer cell was derived (Stratton, 2011; Stratton et al., 

2009). Each of these mutations was caused by the activity of endogenous and/or 

exogenous mutational processes with different strengths. A mutational process can 

leave a characteristic imprint of mutation types, termed mutational signature, on the 

genome of a cancer cell. Some of these processes have been active throughout the 

whole lifetime of the cancer patient while others have been sporadically triggered, for 

example, due to lifestyle choices. As multiple mutational processes are operative at 

different times, multiple mutational signatures have been imprinted on the genome of 

a cancer cell (Figure 1.2). Thus, the mutational catalogues of a sequenced cancer 

Figure 1.2: Illustration of mutational processes operative in a cancer. This simulated example 
illustrates four distinct mutational processes with variable strengths operative at different times 
throughout the lifetime of a patient. Each of these processes has a unique mutational signature 
exemplified by the six classes of somatic substitutions. At the beginning, all mutations in the cell 
(from which the cancer eventually developed) were due to the activity of the endogenous 
mutational process 1. As time progresses, other mutational processes get activated and the spectrum 
of the mutational catalogue continues to change. Note that the final sequenced cancer genome does 
not resemble any of the operative mutational signatures. 



genome can be examined as an archaeological record moulded by the many different 

mutational processes operative since the very first division of the zygote. As such, the 

pattern of mutations found in the genome of a cancer cell may not resemble the 

signatures of any single individual operative mutational process; rather, it will be a 

mixture of these signatures (Figure 1.2). An exception from this rule will be when one 

of the mutational processes is dominant and generates the large majority of somatic 

mutations in a cancer sample (e.g., ultraviolet light in skin cancer or tobacco smoking 

in some types of lung cancer).

1.2 Molecular processes that damage or mutate DNA 

DNA damage plays a key role in the gradual decline of cellular functionality 

over time and it has significant implications for both neoplastic development 

(Stratton, 2011; Stratton et al., 2009) and ageing (Park and Gerson, 2005). A 

significant proportion of known DNA damage has been attributed to mutagens 

generated by normal cellular processes (De Bont and van Larebeke, 2004; Jackson 

and Loeb, 2001), while some DNA damage is due to the activity of exogenous 

mutagens (Morley and Turner, 1999). Damaged DNA can be repaired by the cellular 

machinery, trigger cellular senescence, activate apoptosis mechanisms, or result in a 

somatic mutation (Hoeijmakers, 2009). Although DNA damage is very common 

throughout the lifetime of a cell, it is widely believed that most of this damage is 

repaired and only a very small proportion results in subsequent somatic mutations 

(Sancar et al., 2004). In the next section I will discuss the most common types of 

DNA damage and the types of somatic mutations they may cause if unrepaired or 

repaired incorrectly. Summary of the known patterns of somatic mutations due to 

DNA damage is provided in Table 1.1. This list is in no way exhaustive as it is most 

probable that the current knowledge of DNA damage is incomplete.

DNA damage Type of damage Mutational pattern 

Generation of 

apurinic/apyrimidinic sites 

Spontaneous or enzymatic 

conversions

C>T substitutions 

Deamination of methylated 

cytosine

Spontaneous or enzymatic 

conversions

C>T substitutions at CpG 

dinucleotides



Deamination of cytosine Spontaneous or enzymatic 

conversions

C>T substitutions at TpC 

dinucleotides

C>G substitutions at TpC 

dinucleotides

Deamination of adenine Spontaneous or enzymatic 

conversions (extremely rare 

in humans) 

T>C substitutions 

Deamination of guanine Spontaneous or enzymatic 

conversions

C>T substitutions in some rare 

cases

Ionizing radiation Physical agents Rearrangements due to double 

strand breaks 

Non-ionizing radiation Physical agents C>T substitutions and CC>TT 

double substitutions at 

dipyrimidines 

Oxidative damage Spontaneous conversions, 

enzymatic conversions, or 

physical agents  

Many different types but best-

described spectrum of 

mutations for 8-oxoG: C>A 

with a preference for CpCpC 

trinucleotides

Alkylating agents Chemical compound C>T substitutions 

Psoralen Chemical compound T>X substitutions 

Polycyclic aromatic 

hydrocarbons

Chemical compound C>A substitutions 

Mineral fibres Chemical compound C>A substitutions 

Table 1.1: Known mutational signatures due to DNA damage. All substitutions are referred to by 

the pyrimidine of the mutated Watson–Crick base pair. Mutated bases are underlined when the 

mutation depends on the immediate sequence context. 



1.2.1 Spontaneously occurring endogenous DNA lesions and mutations 

Perhaps the best-described endogenous DNA damaging processes are those 

due to spontaneous reactions (mostly hydrolysis), chemicals generated by cellular 

metabolic processes (viz., reactive oxygen species, lipid peroxidation products, 

endogenous alkylating agents, etc.), errors during cellular division and 

misincorporation by DNA polymerases. Naturally and spontaneously occurring DNA 

damage and its consequent somatic mutations are continuously eroding the genome of 

every cell in the human body throughout the person’s lifetime. It has been estimated 

that spontaneous DNA damage arises with an average rate of ~70,000 lesions and/or 

strand breaks per day per mammalian cell (most of which get repaired by the cellular 

machinery) with these ranging from 50,000 up to 200,000 between different cell types 

(Bernstein et al., 2013). In the next few paragraphs, I will briefly review some of the 

best-known DNA damaging processes. 

1.2.1.1 Double-strand and single-strand DNA breaks 

Double-strand and single-strand DNA breaks occur endogenously in 

mammalian cells and the cell employs different mechanisms to repair them. Non-

homologous end joining, microhomology-mediated end joining, and homologous 

recombination are used by the cell to repair double-strand DNA breaks; in contrast 

single-strand breaks are repaired by the cellular excision repair mechanisms: base 

excision repair, nucleotide excision repair, or mismatch repair (see section 1.3 for 

more details). Endogenous double-strand breaks are particularly damaging for the cell 

and are generally driven by single-strand lesions. It has been estimated that ~1% of all 

single-strand lesions result in double-strand breaks after every cellular division 

(Vilenchik and Knudson, 2003). This results in approximately 50 double-strand 

breaks per cell per cell cycle. In contrast, endogenous single-strand breaks are 

believed to be more ubiquitous and it has been estimated that thousands (and even 

tens of thousands) of single-strand breaks occur in each human cell every single day 

(Tice and Setlow, 1985). Single-strand breaks can be caused by a variety of damaging 

agents such as oxidation, alkylation, formation of pyrimidine dimers, deamination, 

etc. The majority of single-strand breaks are repaired by the cellular repair 

mechanisms (Tice and Setlow, 1985). 



1.2.1.2 Oxidative DNA damage

Oxidative DNA damage can be generated as both a product of normal activity 

of cellular metabolism and as a result of exogenous agents such as radiation exposure 

or air pollutants (Cooke et al., 2003). It is estimated that spontaneous oxidative DNA 

damage results in at least 12,000 lesions per cell per day in human cells (Helbock et 

al., 1998). In principle, reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) are the intermediates responsible for the majority of oxidative damage 

(Wiseman and Halliwell, 1996). ROS is a collective term used to include O2-derived

free radicals as well as O2-derived non-radical species that easily convert to radicals 

or that can act as oxidizing agents (Circu and Aw, 2010). Similarly, RNS is a very 

broad term that encompasses all oxides of nitrogen (Patel et al., 1999). Currently, 

more than 25 distinct DNA lesions have been described and associated with the 

activity of ROS/RNS. However, the exact chemistry of somatic mutations potentially 

arising from these lesions has only been well characterized for a few of these 

ROS/RNS (Evans et al., 2004).

The variety of ROS/RNS accounts for the plethora of DNA lesions that these 

substrates can induce on the deoxyribonucleic acids: generation of apurinic and 

apyrimidinic sites, single-strand and double-strand DNA breaks, deamination, etc.

(Hori et al., 2011; Wang et al., 2012). The wide variety of DNA lesions that can be 

generated by RNS/ROS challenges the development of a comprehensive 

characterization of the spectrum of oxidation-arising somatic mutations. Perhaps the 

best-described spectrum of mutations is 7,8-dihydro-8-oxoguanine (8-oxoG), an 

oxidatively damaged form of guanine. 8-oxoG can lead to the misincorporation of 

adenine opposite the 8-oxoG resulting in a higher prevalence for C:G>A:T 

transversions upon replication (Michaels et al., 1992). It has been speculated that 

somatic mutations due to 8-oxoG might be dependent on the immediate sequence 

context with preference for C>A transversions at CpCpC sequences, (the mutated 

base is underlined; all substitutions are referred to by the pyrimidine of the mutated 

Watson–Crick base pair) (Oikawa and Kawanishi, 1999; Oikawa et al., 2001). 

1.2.1.3 Depurination and depyrimidination 

Depurination and depyrimidination are some of the most common hydrolytic 

reactions that cleave the N-glycosidic bond of a nucleic acid base and damage DNA 

by respectively resulting in an apurinic or an apyrimidinic site (also known as abasic 



site). The rate of generation of depurination is estimated to be ~10,000 per cell per 

day (Lindahl, 1993), while depyrimidination arises with a rate of about 700 lesions 

per cell per day (Tice and Setlow, 1985).  While abasic sites lack genetic information 

and the majority of them are repaired by base excision repair (BER), some (especially 

the ones present during the DNA synthesis phase of the cell cycle) can present a 

challenge for the replicative polymerases during cellular division and cause 

replication fork stalling (Obeid et al., 2010). It has been previously demonstrated in 

yeast that the joint actions of DNA polymerases  and  allow bypassing of abasic 

lesions and continuation of DNA replication (Haracska et al., 2001); however, the 

cost of continuing the replication process is the misincorporation of a nucleotide 

opposite the abasic site. This nucleotide is most commonly an adenine (also referred 

as the “A-rule”) but in rare cases it can also be cytosine, guanine, or thymine 

(Haracska et al., 2001). 

1.2.1.4 Methylation of DNA nucleotides 

The addition of a methyl group to adenine or cytosine is referred to as DNA 

methylation. Methylation of a cytosine results in either N4-methylcytosine or 5-

methylcytosine, whereas adenine methylation leads to the formation of N6-

methyladenine (Ratel et al., 2006). Early examination of mammalian DNA revealed 

the widespread nature of 5-methylcytosine (Ehrlich et al., 1982). In contrast, N4-

methylcytosine and N6-methyladenine are found almost exclusively in bacteria, 

although it has been speculated that they might exist at extremely low levels (less than 

a hundred nucleotides) in the genomic DNA of some human cells (Ratel et al., 2006).

In somatic mammalian cells, 5-methylcytosine occurs predominantly at a 

cytosine followed by a 3’ guanine (i.e., CpG dinucleotide), while cytosine 

methylation at non-CpG sites is ubiquitous in embryonic stem cells (Dodge et al., 

2002; Haines et al., 2001; Lister et al., 2009). Interestingly, 5-methylcytosine plays 

the role of a double-edged sword. On the one hand, it carries epigenetic information 

that is leveraged by the cell, for example, in regard to regulating gene expression in 

different tissue types (Jones, 2012b); on the other hand, a 5-methylcytosine can easily 

be hydrolytically deaminated to a thymine, resulting in perhaps the best-described 

mutational pattern: C>T mutations at CpG dinucleotides (see below for details about 

spontaneous deamination).



Recently, it was shown that in mammalian tissues the ten-eleven translocation 

methylcytosine dioxygenase (TET) family of enzymes could facilitate the oxidation of 

5-methylcytosine resulting in 5–hydroxymethylcytosine (Tahiliani et al., 2009). 

Further, studies have demonstrated that 5–hydroxymethylcytosine is widespread in 

embryonic stem cells as well as somatic brain tissue in mice and humans (Kriaucionis 

and Heintz, 2009; Tahiliani et al., 2009). The implications of these findings in regard 

to cancer and somatic mutagenesis are currently unknown (Pfeifer et al., 2013). 

1.2.1.5 Deamination of DNA nucleotides 

Deamination is an endogenously occurring molecular process that results in 

the removal of an amine group from a molecule. In the genome of eukaryotic cells, it 

is has been demonstrated that cytosine, 5-methylcytosine, 5-hydroxymethylcytosine, 

guanine, and adenine can be spontaneously deaminated.

1.2.1.5.1 Deamination of cytosine 

Enzymes deaminate cytosine and convert it to uracil ~500 times per human 

cell per day (Lindahl and Nyberg, 1974). As uracil has the aptitude to pair with 

adenine, this DNA damage can give rise to C>T mutations. In general, the activation-

induced cytosine deaminase (AID) and the family of apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like (APOBEC) enzymes have been associated with 

cytosine deamination. AID has been exhaustively studied in regards to somatic 

hypermutation, a process that mutates antibody genes in order for the immune system 

to respond to an invasion of foreign molecular agents (Liu and Schatz, 2009), and its 

pattern of somatic mutations has been well described. AID predominantly deaminates 

cytosine that is flanked by a 5’ purine (Pham et al., 2003).

The APOBEC family of enzymes, which includes APOBEC1, APOBEC2,

APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D/E, APOBEC3F, APOBEC3G,

APOBEC3H, and APOBEC4, can also deaminate cytosine. Note that some 

classifications include AID in the APOBEC family of deaminases while others refer to 

it as the AID/APOBEC family (Conticello, 2008). With the exception of APOBEC4,

which has been inferred only bioinformatically (Rogozin et al., 2005), all other 

APOBEC enzymes have a known nucleotide-editing capability at least in relation to 

mutating RNA (Conticello, 2008; Teng et al., 1993). The activities of these enzymes 

exhibit a characteristic set of base changes but different members of the enzyme 



family act at different sequence contexts. Importantly, previous in vitro cell line 

studies have demonstrated that APOBEC1, APOBEC3A, and APOBEC3B are capable 

of mutating DNA by the deamination of cytosine flanked by a 5’ thymine and thus 

result in C>T mutations at TpCpN trinucleotides (Harris et al., 2002; Hultquist et al., 

2011; Suspene et al., 2011; Taylor et al., 2013). Furthermore, it has been shown that 

the activation of APOBEC3A and APOBEC3B in yeast can also result in C>G at 

TpCpN trinucleotides (Taylor et al., 2013). This mutational pattern was attributed to 

replication over an abasic site, formed when an APOBEC deaminated cytosine is 

excised by uracil-DNA glycosylase, which is catalysed by REV1 (Taylor et al., 2013). 

1.2.1.5.2 Deamination of 5-methylcytosine 

In contrast to the spontaneous deamination of cytosine, which results in the 

formation of uracil, the methylated form of cytosine (viz., 5-methylcytosine) is 

hydrolytically deaminated to thymine. In addition to hydrolytic deamination, 

deamination of 5-methylcytosine has also been attributed to the activity of AID and 

APOBEC1 (Morgan et al., 2004). The overall rate of 5-methylcytosine deaminations 

is approximately 1,500 deaminations per human cell per day with the majority of 

mutations occurring at CpG dinucleotides (Shen et al., 1994). This DNA damaging 

process has a very well-documented mutational profile, resulting in C:G>T:A 

mutations at CpG dinucleotides, and plays an important role in both evolution 

(Zemach et al., 2010) and neoplastic development (Laird and Jaenisch, 1996). 

1.2.1.5.3 Deamination of 5-hydroxymethylcytosine 

Deamination of 5-hydroxymethylcytosine results in the production of 5-

hydroxymethyluracil, which is generally removed by the activity of base excision 

repair (Rusmintratip and Sowers, 2000). The rate of this deamination as well as the 

implications of the formation of 5-hydroxymethyluracil in regards to somatic 

mutations and cancer development are currently unknown (Pfeifer et al., 2013). 

1.2.1.5.4 Deamination of adenine 

Adenine is oxidatively deaminated to hypoxanthine with a rate of ~50 

deaminations per human cell per day (Lindahl, 1993). During DNA replication, 

hypoxanthine preferentially pairs with guanine resulting in the formation of T:A>C:G 

mutations (Lindahl, 1993). 



1.2.1.5.5 Deamination of guanine 

Guanine can also be spontaneously deaminated and the resulting product is 

xanthine (Fernandez et al., 2009). Xanthine preferentially pairs with cytosine and, as 

such, in the majority of cases this product is not mutagenic. Nevertheless, it has been 

shown that xanthine can also pair (albeit less frequently) with thymine resulting in the 

C:G>T:A mutations after replication (Fernandez et al., 2009). 

1.2.1.6 DNA mutations due to cellular replication 

DNA replication is an essential biological process that occurs in all living 

organisms and underlies the basic inheritance of genetic information. In human 

beings, the mitosis of a cell involves accurately copying approximately six billion 

base pairs and, as such, DNA replication has been evolutionarily optimized to have an 

astonishing fidelity and to produce only a very limited number of errors during each 

cellular division (Masai et al., 2010).

DNA replication starts simultaneously from multiple specific locations of the 

genome, termed origins of replication. Between 30,000 and 50,000 such origins of 

replication are activated in a human cell during each cellular division (Mechali, 

2010). In eukaryotic cells, prior to the initiation of replication, the double-stranded 

DNA is opened by DNA helicases to form the so-called “replication fork", which 

contains the two separated single strands of DNA – known as the leading and the 

lagging strand. Replication is a complex molecular process, recently reviewed in 

(Masai et al., 2010), that entails the coordinated activity of three distinct types of 

DNA polymerases: polymerase , polymerase , and polymerase . Briefly, 

polymerase  is the enzyme that starts DNA replication by playing the role of a 

replicative primase. The closely related polymerases  and  are responsible for the 

synthesis of respectively the lagging and leading strands. Both polymerase  and 

polymerase  have intrinsic proofreading mechanisms and their probability for 

making a mistake has been estimated to be approximately 10-7 for each nucleotide 

(McCulloch and Kunkel, 2008). This error probability is further reduced to about 10-9

by the post-replicative activity of mismatch repair (McCulloch and Kunkel, 2008). 

Thus, theoretically, replicating the genome of a human cell that does not contain any 

damaged DNA will result in only ~6 somatic mutations. However, in practice, it is 

rare (if ever) for a cell to have a completely damage-free genome. 



Replication is a sophisticated and fine-tuned molecular process that can be 

affected by the presence of most types of DNA damage (Sale et al., 2012). The 

existence of DNA damage presents a conundrum to a mitotic cell since it needs to 

replicate its damaged genome. The task of performing replication of a damaged 

genomic segment is referred to as DNA damage tolerance and attributed to a set of 

DNA polymerases that are members of the Y-family of polymerases. These 

polymerases are able to replicate damaged DNA but they lack any proofreading 

capabilities and, as such, have a probability for making an error between 10-1 and 10-4

(Sale et al., 2012). Nevertheless, it is generally believed that only very short stretches 

of DNA are being synthesized due to DNA damage tolerance, thus keeping the 

number of newly generated somatic mutations to a minimum (Sale et al., 2012). 

The synthesis of a new genome is heavily dependent on the availability of 

substrates for the use of the DNA polymerizing enzymes, viz., deoxynucleoside 

triphosphates (dNTPs). Changes in the levels of dNTPs have been associated with 

significant variation in mutagenesis. In eukaryotes, it has been demonstrated that 

imbalances (mostly reduction) of the dNTP pools result in decreased genome stability 

that increases the probability of somatic insertions and misalignments (Kumar et al., 

2011). Interestingly, a recent study showed that, in Escherichia coli, decreasing the 

level of the dNTP pool is associated with improved accuracy of the DNA polymerases 

(Laureti et al., 2013). Thus, the interplay between DNA polymerases and dNTP pools 

might be more complex than was previously believed and it may result in both 

increased and decreased mutagenesis (Laureti et al., 2013). Nevertheless, analyses of 

somatic mutations in cancer genomes, as well as variation in the human germline, 

have shown that indels and point mutations are enriched in late replicating regions 

and this has been generally attributed to the reduced levels of dNTP (Koren et al., 

2012).

Replication does not per se damage DNA but it does result in the generation 

of somatic mutations. While there is no comprehensive pattern of the mutations due to 

DNA replication, there are several known commonly occurring mutation types. 

Perhaps the best-described mutations are the ones due to “replication slippage”, where 

one of the strands forms a loop, which may result in the misincorporation of small 

insertions or the deletion of nucleotides. Specific regions (viz., microsatellite and 

other repetitive regions) of the human genomes are more susceptible to replication 

slippage and, as such, are “hotspots” of mutations due to replication (Viguera et al., 



2001). Nevertheless, future studies are required to determine the precise patterns of all 

mutations induced by DNA replication. 

1.2.2 Exogenous mutagens causing DNA damage and somatic mutations 

In addition to endogenous DNA damage, the integrity of the double helix is 

constantly under attack by the activity of exogenous mutagens. These may be 

physical, chemical, and even biological agents. The list of external substances that are 

implicated in DNA mutagenesis is extensive and an exhaustive account is beyond the 

scope of this thesis.

Perhaps the most detailed catalogue of human carcinogens is the one provided 

under the auspices of the International Agency for Research on Cancer (IARC). The 

IARC catalogue includes over 100 confirmed human carcinogens as well as over 300 

probable/possible human carcinogens, most recently reviewed in (Cogliano et al., 

2011). The majority of these carcinogens have been identified by IARC via 

epidemiological studies. However, studies that used the in vitro Ames test have 

demonstrated that ~90% of known carcinogens are also mutagenic (McCann and 

Ames, 1976). In this section, I provide a concise overview of the DNA damage 

induced by exogenous mutagens that are of interest in regards to the subsequent 

chapters of this thesis. I will also discuss in detail the patterns of somatic mutations 

induced by known exogenous substances in human cancer in section 1.4 of this 

chapter.

1.2.2.1 Therapeutic agents inducing DNA damage 

The majority of chemotherapeutic drugs work by damaging DNA (Kim et al., 

2000). Notable examples of such chemotherapeutic drugs are alkylating agents and 

inorganic platinum-based compounds. Other types of therapeutics have also been 

known to cause DNA damage, viz., psoralens and intercalating agents. It should be 

noted that cancer radiation therapy also results in DNA damage (Kim et al., 2000). 

DNA radiation damage will be examined in a wider context in section 1.2.2.3 of this 

chapter.

1.2.2.1.1 Alkylating agents 

Alkylation of DNA is a molecular process in which an alkyl group is 



transferred to a DNA nucleotide or the backbone of the double helix (Drablos et al., 

2004). Monofunctional alkylating agents bind covalently to one side of DNA, 

whereas bifunctional alkylating agents create an inter-strand or an intra-strand DNA 

crosslink. Alkylating agents can arise from normal metabolic processes, 

environmental compounds, or be cytotoxic/cytostatic chemotherapy drugs. While 

there are many possible sources of endogenous DNA alkylation, currently their 

significance for cancer development or their rates of alkylation remain unknown 

(Drablos et al., 2004). 

Although there is a lack of quantitative data in regards to environmental 

alkylation, it is generally believed that N-nitroso compounds formed in tobacco 

smoke are the most significant environmental alkylating agent for humans (Hecht, 

1999). Nevertheless, a low concentration of N-nitroso compounds is also well 

established in some types of food such as cured meats (Goldman and Shields, 2003). 

Chemotherapeutic anti-cancer drugs expose patients to extremely high doses 

of alkylation. Most commonly, these are chloroethylating drugs based on bifunctional 

alkylating compounds that result in the formation of either an inter-strand or an intra-

strand DNA crosslink. This may affect a cancer cell in a wide range of ways: DNA 

breaks, S-phase arrest, accumulation of high levels of TP53, and apoptosis 

(Engelward et al., 1998). The somatic mutational pattern of treatment with alkylating 

agents has been characterized as C:G>T:A transitions exhibiting a specific immediate 

sequence context (Greenman et al., 2007; Parsons et al., 2008). 

1.2.2.1.2 Inorganic platinum based compounds

Inorganic platinum-based compounds are commonly used as anti-cancer 

drugs. They form bulky adducts with DNA that result in inter-strand or intra-strand 

crosslinks. Platinum-based therapy is commonly described as "alkylating-like" due to 

the similar effects of these two types of antineoplastic drugs (Cruet-Hennequart et al., 

2008). While the pattern of somatic mutations due to platinum treatment has not been 

yet characterized, it has been observed that the majority of platinum-based DNA 

adducts result in the formation of crosslinks via the coordination of two adjacent 

guanines (Poklar et al., 1996). 



1.2.2.1.3 Intercalating agents 

Molecules that may insert themselves between the two strands of the 

deoxyribonucleic acid (thus, effectively blocking DNA replication) are referred to as 

intercalating agents (Wakelin, 1986). Intercalating agents have found a wide-range of 

applications in human diseases and have been used for both antibacterial and 

anticancer treatment (Sissi and Palumbo, 2003). While these compounds damage 

DNA and block DNA synthesis, there is currently no known pattern of somatic 

mutations associated with treatment with intercalating agents.

1.2.2.1.4 Psoralen 

Psoralen is a family of chemical compounds commonly used (in combination 

with ultraviolet light) for treatment of inflammatory conditions such as dermatitis and 

psoriasis (Stern, 2007). The interaction between ultraviolet light and psoralen 

compounds results in the formation of monoadducts as well as inter-strand crosslinks 

(Chiou and Yang, 1995). In human lymphoblasts treated with psoralen and ultraviolet 

light, examination of the mutational spectra of the hprt reporter locus revealed a high 

level of single base mutations exhibiting a preference for a (mutated) thymine 

followed by adenine (i.e., T:A>X at TpA) (Papadopoulo et al., 1993). 

1.2.2.2 Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are fused aromatic rings usually 

produced by the burning of fuel. While there are at least a dozen known PAHs 

implicated in human carcinogenesis (Harvey, 1991), the best described polycyclic 

aromatic hydrocarbon (in regards to DNA damage and mutagenesis) is 

benzo[a]pyrene. Benzo[a]pyrene is the first discovered chemical carcinogen and it is 

one of the many carcinogens found in cigarette smoke (Harvey, 1991). The 

mutational pattern of benzo[a]pyrene is well described as this compound is able to 

form bulky adducts with a very high preference for guanines, thus resulting in 

C:G>T:A transversions. Examining the patterns of TP53 mutations in lung cancers of 

tobacco smokers revealed a strong preference for mutations occurring on the 

untranscribed strand when compared to mutations occurring on the transcribed strand 

(Hollstein et al., 1999). This strand preference is known as transcriptional strand-bias 

and it is presumably due to the activity of transcription-coupled nucleotide excision 



repair (see sections 1.3 and 1.4 for more details). It should be noted that a whole-

genome examination of the mutational patterns of a tobacco smoker revealed that 

transcriptional strand-bias is present in all transcribed regions of the human genome 

(Pleasance et al., 2010b). 

1.2.2.3 Mineral fibres 

Early epidemiological studies have implicated mineral fibres in human and 

animal carcinogenesis (Barrett et al., 1989). Perhaps the most notable of these mineral 

fibres is asbestos as this mineral is believed to be “the leading cause of occupational 

related cancer death” (Tweedale, 2002). Asbestos is a carcinogen implicated in the 

development of the majority of mesotheliomas, cancers that usually arise in the outer 

lining of the lungs but could also be found in other organs (Tweedale, 2002). Using an 

in vivo mutagenesis assay based on transgenic rats with a lacI reporter gene, a distinct 

spectrum of somatic mutations was observed after exposure to asbestos (Unfried et 

al., 2002). This mutational pattern exhibits a combination of C:G>A:T transversions 

and small (1 to 3 bp long) deletions (Unfried et al., 2002). 

1.2.2.3 DNA damage induced by exposure to radiation 

 Radiation is defined as a process in which an electromagnetic wave travels 

through a medium or through a vacuum (Vesley, 1999). Radiation can be broadly 

separated into two categories based on the spectrum of the electromagnetic wave: (i) 

ionizing radiation and (ii) non-ionizing radiation. The boundary between ionizing and 

non-ionizing radiation has not been clearly defined and different thresholds of photon 

energies have been suggested (most commonly either 10 electronvolts or 33 

electronvolts). Nevertheless, it is generally agreed that the threshold falls somewhere 

in the spectrum of the ultraviolet light (Vesley, 1999). 

By definition, ionizing radiation has sufficient energy to knock out an electron 

from its atom and thus to ionize the atom. In contrast, the photons of non-ionizing 

radiation do not have sufficient energy to ionize an atom. However, non-ionizing 

radiation may increase the temperature of a medium resulting in thermal-ionization 

(Vesley, 1999). In a living cell, an exposure to ionizing and (to a much lesser extent) 

non-ionizing radiation could also indirectly result in the generation of intermediate 

oxidants, such as reactive oxygen species, which can damage DNA (see section 

1.2.1.2).



In the next subsections, I will discuss the different types of DNA damage that 

can be induced by ionizing and non-ionizing radiation while paying special attention 

to ultraviolet light.

1.2.2.3.1 DNA damage due to ionizing radiation 

Ionizing radiation is an electromagnetic wave with a high frequency (and, 

thus, a short wavelength) that can break chemical bonds and ionize atoms. Due to its 

high energy, ionizing radiation is particularly damaging for biological matter (Vesley, 

1999). In general there are three main types of ionizing radiation: (i) alpha particles, 

(ii) beta particles, and (iii) gamma rays. An alpha particle is similar to a helium 

nucleus as it contains two neutrons and two protons; a simple sheet of paper can 

absorb this type of radiation. A beta particle is a high-speed electron or positron and 

an aluminium sheet is required to stop this type of radiation. Lastly, gamma rays are a 

radiation with extremely high frequency and, thus, contain a very high energy per 

photon; thick lead walls are required for the complete absorption of high-energy 

gamma rays. 

 All three types of ionizing radiation have sufficient energy to break the sugar-

phosphate backbone of DNA, disturb the hydrogen bonds in a DNA base pair, or 

damage a nucleotide (Ward, 1988). However, the best-described mutational signature 

due to ionizing radiation is the generation of single and double-strand DNA breaks 

resulting in the generation of small somatic insertions or deletions (Friedberg and 

Friedberg, 2006). Nevertheless, large numbers of single base substitutions have also 

been observed in mammalian cells exposed to ionizing radiation (Grosovsky et al., 

1988). The spectrum of these mutations is heavily dependent on the type of ionizing 

radiation and this spectrum has been systematically characterized almost exclusively 

for ultraviolet light (see below).

1.2.2.3.2 DNA damage due to non-ionizing radiation 

Non-ionizing radiation does not carry enough energy to ionize an atom but it 

can result in atom excitation – the movement of an electron from a ground energy 

state level to a higher (excited) energy state. DNA exposed to non-ionizing radiation 

results in excited molecular bonds that commonly form cyclobutane pyrimidine 

dimers (CPDs, including thymine dimers) and 6,4-photoproducts. These DNA lesions 

are generally repaired by nucleotide excision repair (Pfeifer et al., 2005) but (if left 



unrepaired) they affect DNA base pairing and may result in replication stalling or 

mutagenesis. In general, 6,4-photoproducts are more mutagenic than CPDs but they 

occur only at a third of the rate of CPDs (Pfeifer et al., 2005).

In principle, non-ionizing radiation could result in a significant temperature 

increase and generate intermediate oxidants, such as reactive oxygen species, which 

can damage DNA (see section 1.2.1.2).

1.2.2.3.3 DNA somatic mutations due to exposure to ultraviolet light 

The wavelength of ultraviolet light (UV) is situated between the wavelengths 

of ionizing radiation and non-ionizing radiation. Thus, exposure to UV light may 

result in DNA damage consistent with exposure to both types of radiation. 

UV light is standardly separated into nine different categories based on the 

range of the length of the electromagnetic wave. However, with regard to biological 

organisms, the main interest is in three of these categories - ultraviolet A (UV-A), 

ultraviolet B (UV-B), and ultraviolet (UV-C) – as these types of UV light are emitted 

by the Sun and may reach the surface of the Earth. In general, all of UV-C and the 

majority of UV-B coming from the Sun are absorbed by either the ozone layer or the 

stratospheric oxygen. About 95% of the UV light reaching the Earth’s surfaces is UV-

A with the remaining 5% being UV-B. However, in places with a depleted ozone 

layer (such as Australia) these proportions vary and even some UV-C light may reach 

the planetary surface.

While UV-C has the highest energy, it has not been implicated in human 

cancer as, even if not completely stopped by the ozone layer, the outer dead layers of 

the epidermis easily absorb any residual UV-C (Campbell et al., 1993). UV-B is the 

ultraviolet light that has been implicated in skin reddening and sunburn. UV-B can 

penetrate the skin epidermis layer and it can reach (but it is usually absorbed by) the 

dermis layer. UV-A has been implicated in skin aging and wrinkling. This type of UV 

light can penetrate deeply in the skin reaching the subcutaneous layer. Both UV-A 

and UV-B are mutagenic and they have been implicated in cancer development. 

In vitro irradiation of mouse embryonic fibroblasts with UV-A and UV-B 

coupled with the examination of the cII transgene was used to characterize the 

patterns of somatic mutations induced by these two types of radiation. This analysis 

revealed that ~75% of all examined somatic mutations due to UV-B irradiation result 

in C:G>T:A transitions including significant numbers of CC:GG>TT:AA dinucleotide 



substitutions (You et al., 2001). In contrast, only ~30% of all somatic mutations due 

to UV-A irradiation are C:G>T:A transitions and this type of irradiation generates 

only very few dinucleotide substitutions (Besaratinia et al., 2004). Further, UV-A 

radiation results in significant numbers of other types of somatic substitutions: ~25% 

C:G>A:T mutations, ~10% T:A>C:G mutations, and ~10% T:A>G:C mutations; and 

high numbers of small insertions and deletions (Besaratinia et al., 2004). These and 

other studies, reviewed in (Pfeifer et al., 2005), have demonstrated that the type of 

DNA damage and the arising spectrum of somatic mutations is highly dependent on 

the type of ultraviolet light irradiation.

1.2.2.3 Biological agents implicated in cancer development and their mutagenesis 

In addition to chemical and physical agents, biological agents play an 

important role in cancer development. Oncoviruses have been implicated in 

approximately 12% of all human cancers and vaccination initiatives are on-going to 

reduce this rate (Schiller and Lowy, 2010). Bacterial infections have also been 

associated with oncogenesis due to the generation of bacterial metabolites and the 

initiation of chronic inflammation (Parsonnet, 1995). Nevertheless, currently there is 

no known type of DNA damage or pattern of somatic mutations due to either bacterial 

or viral infection. 

1.3 Molecular processes responsible for DNA repair

The focus of the prior section was to review some of the most common types 

of DNA damage. The cell employs a variety of different defence mechanisms to 

alleviate DNA damage and reduce its effect on the genetic material. When these 

repair pathways are working properly only very few mutations accumulate in the 

genome of a cell. However, when one or more of these mechanisms goes awry the 

result is an increase in the mutational burden, which may produce (and thus it could 

be detected by) a specific mutational pattern.

In principle, DNA repair pathways can be separated into two categories based 

on the induced DNA damage. The first category encompasses processes that are 

operative on single-strand breaks and/or lesions. In contrast, the second type of repair 

processes has been evolutionary optimized to work on double-strand breaks. In this 



section, I will briefly discuss the different repair pathways leveraged by the cell and 

their relationship with both the previously described types of DNA damage and 

human cancer. Summary of the known patterns of somatic mutations due to the 

activity of or the failure of DNA repair mechanisms is provided in Table 1.2. 

DNA repair process Repair activity Mutational pattern 

Base excision repair Partial failure  C>T substitutions when SMUG1

is mutated; C>A substitutions 

when OGG1 is mutated 

Transcription coupled base excision 

repair  (very limited evidence) 

Normal function Transcriptional stand-bias with 

fewer mutations observed on the 

transcribed strand? 

Transcription-coupled nucleotide 

excision repair 

Normal function Transcriptional stand-bias with 

fewer mutations observed on the 

transcribed strand 

Transcription-coupled nucleotide 

excision repair 

Failure  Lack of transcriptional strand bias 

for known exposure (e.g.,

ultraviolet light)

DNA mismatch repair Failure Increase mutational burden with 

high prevalence for 

insertions/deletions at 

mononucleotide or polynucleotide 

repeats

Double strand break repair via non-

homologous end joining (NHEJ) 

Normal function Increased numbers of 

insertions/deletions and 

translocations near 

microhomologies lengths <= 4bp 

Double strand break repair via 

microhomology mediated end joining 

(MMEJ) 

Normal function Increased numbers of 

insertions/deletions and 

translocations near 

microhomologies lengths > 4bp 



Double strand break repair via 

homologous recombination 

Failure Double strand breaks get repaired 

with either NHEJ or MMEJ 

resulting in a higher numbers of 

mutations with the mutational 

patterns of NHEJ/MMEJ 

Table 1.2: Known mutational signatures due to the activity of DNA repair mechanisms. All 

substitutions are referred to by the pyrimidine of the mutated Watson–Crick base pair. 

1.3.1 Repairing broken or damaged single strands of DNA

The repair mechanisms that operate on a damaged or broken single strand of 

DNA are nucleotide excision repair, base excision repair, and mismatch repair. Each 

of these processes gets activated due to different stimuli and will be reviewed in the 

next few sections. 

1.3.1.1 Nucleotide excision repair 

Nucleotide excision repair (NER) is arguably the most multipurpose repair 

pathway and acts on DNA distortions caused by biochemical modifications 

(Nouspikel, 2009). The ability of NER to repair a wide-range of DNA damage is 

based on a simple principle – this repair pathway does not leverage specific enzymes 

to recognize different DNA lesions but it rather detects any distortions of the DNA 

double helix (de Laat et al., 1999). When a DNA distortion is identified, a 25 to 30 

bases long oligonucleotide (that includes the damage) is excised and replicative 

polymerases fill the gap by using the complementary undamaged DNA strand (de 

Laat et al., 1999). The versatility of NER allows it to act on a plethora of different 

types of DNA damage. Some examples are bulky adducts, aromatic amine 

compounds, photodimers, and any other lesion that distorts the DNA structure 

(Nouspikel, 2009). Defective NER in the germline has been associated with several 

human syndromes, most notably xeroderma pigmentosum, Cockayne syndrome, and 

trichothiodystrophy (de Boer and Hoeijmakers, 2000). 

NER is evolutionary conserved between eukaryotes and prokaryotes, albeit its 

molecular mechanisms are more complex in eukaryotic cells (Nouspikel, 2009). In 

eukaryotic cells, NER is generally separated into two subcategories as different 

proteins are responsible for the recognition of DNA distortion: (i) transcription 



coupled nucleotide excision repair, recently reviewed in (Nouspikel, 2009), and (ii) 

global genomic nucleotide excision repair, recently reviewed in (Tornaletti, 2009). 

Additionally, it is also believed that there is a third type of NER, termed domain 

associated nucleotide excision repair, which has not yet been well described. Domain 

associated nucleotide excision has also been recently reviewed in (Nouspikel, 2009). 

1.3.1.1.1 Global genome wide nucleotide excision repair 

The global genome-wide nucleotide excision repair (GG-NER) is a molecular 

process that is constantly scanning the complete genome of a eukaryotic cell. This 

process leverages an XPC-HR23B protein complex to detect any structural 

modification of DNA and to bind to any such lesions (Nouspikel, 2009). The bound 

XPC-HR23B recruits a TFIIH complex that opens a denaturation bubble around the 

DNA damage and, in turn, it recruits the ERCC1–XPF heterodimer (McNeil and 

Melton, 2012). The ERCC1–XPF complex is a 5’ to 3’ structure specific 

endonuclease that excises the damaged DNA strand. The removed ~30 nucleotides 

are resynthesized by PCNA in combination with either DNA polymerase  or DNA 

polymerase  (Essers et al., 2005). Lastly, the chromosomal nicks are sealed by 

XRCC1 in association with either DNA ligase I or DNA ligase III (Moser et al., 

2007).

The ability of GG-NER to repair a wide variety of different types of DNA 

damage complicates its detection by the means of mutational patterns. Nevertheless, it 

is foreseeable that a cancer cell in which GG-NER has been disabled will accumulate 

somatic mutations at a higher rate and, as such, failure of GG-NER might be 

identifiable based on a higher mutational burden. 

1.3.1.1.2 Transcription coupled nucleotide excision repair 

The molecular mechanisms underlying transcription coupled nucleotide 

excision repair (TC-NER) are extremely similar to the ones of GG-NER (Tornaletti, 

2009). The main difference is that TC-NER does not require the XPC-HR23B protein 

complex used by GG-NER to recognize a DNA lesion. Instead, it is believed that TC-

NER is initiated due to stalling of RNA polymerase II (Pol II); such stalling is usually 

due to the polymerase encountering a damaged DNA base while transcribing a DNA 

sequence to an RNA sequence. Once Pol II recognizes the damaged DNA, the repair 



process continues as previously described for global genome wide nucleotide excision 

repair (Tornaletti, 2009). 

TC-NER repairs DNA damage that is exclusively occurring on the transcribed 

strand. Thus, when both TC-NER and GG-NER are active, damage occurring on the 

transcribed strand is more efficiently repaired than damage occurring on the 

untranscribed strand (Tornaletti, 2009). This has been initially observed in in vitro 

experiments and confirmed in more recent genomic studies. Notably, examining TP53

mutational patterns from ultraviolet light associated skin cancers and tobacco 

associated lung cancers revealed the presence of mutational strand-bias (Greenblatt et 

al., 1994; Hollstein et al., 1999; Hollstein et al., 1991). Furthermore, analyses of the 

whole cancer genome of a small cell lung carcinoma and the whole cancer genome of 

malignant melanoma revealed that a mutational strand-bias is present on a genome 

wide scale (Pleasance et al., 2010a; Pleasance et al., 2010b). Thus, the activity of TC-

NER can be evaluated based on the observed strand-bias in the transcribed regions of 

cancer genomes. Nevertheless, it is plausible that there are other mechanisms (in 

addition to TC-NER) that protect transcribed genomic regions and, thus, the observed 

strand-bias might not be exclusively due to the activity of TC-NER. 

1.3.1.1.3 Domain associated nucleotide excision repair 

The existence of a domain associated nucleotide excision repair (DA-NER) 

has been inferred based on experimental observations. Most notably, in terminally 

differentiated human neurons with attenuated GG-NER, it was observed that the DNA 

damage on the untranscribed strand of genic regions is efficiently repaired (Nouspikel 

and Hanawalt, 2000). Since there is almost no GG-NER activity in these cells and this 

type of repair cannot be performed by TC-NER, the existence of a third type of 

nucleotide excision repair has been proposed. Currently, the molecular mechanisms 

underlying DA-NER remain unclear. Further, there has been no genome scale 

mutational analysis associating a mutational pattern with the activity of DA-NER. 

1.3.1.2 Base excision repair 

Base excision repair (BER) is an evolutionary conserved molecular 

mechanism responsible for the repair of small lesions that do not distort the structural 

integrity of the double helix. This repair pathway has been recently extensively 

reviewed (Robertson et al., 2009; Wilson and Bohr, 2007). These lesions are most 



commonly due to: oxidation, alkylation, deamination, depurination, or 

depyrimidination. In contrast to nucleotide excision repair, BER relies on a plethora 

of DNA glycosylases that recognize specific types of DNA damage and catalyse their 

removal (Robertson et al., 2009). The removal of a damaged DNA results in a 

creation of an abasic site, which subsequently is cleaved by the apurinic/apyrimidinic 

endonuclease (APEX1) thus forming a single-strand break.

In principle, BER can repair single-strand breaks in two distinct pathways (i) 

short patch base excision repair and (ii) long patch base excision repair. The former is 

activated most commonly when only a single nucleotide needs to be repaired, while 

the latter is leveraged when more than one nucleotide (usually between 2 and 10) 

must be replaced (Robertson et al., 2009). It should be noted that the decision of 

whether BER leverages short or long patch excision is poorly understood (Hashimoto 

et al., 2004; Robertson et al., 2009). Short patch and long patch repair will be briefly 

reviewed in the next two subsections. 

Similarly to nucleotide excision repair, a complete failure of base excision 

repair in a cancer cell (provided that this cell remains viable) will be detectable due to 

a highly increased mutational burden. It should be noted that as BER is dependent on 

more than 20 distinct DNA glycosylases (Robertson et al., 2009), a partial failure of 

BER is also possible when one (or more) of these glycosylases are defective. In vitro 

experiments have demonstrated that a defect in SMUG1 results in C:G>T:A 

mutations, while a defect in OGG1 results in C:G>A:T (Robertson et al., 2009). 

Nevertheless, currently, there are no known in vivo mutational signatures due the 

failure of BER. 

It should be noted that there has been some limited evidence for the existence 

of transcription coupled base excision repair (TC-BER) in regards to the repair of 

oxidative DNA damage (Hazra et al., 2007; Izumi et al., 2003). Nevertheless, the 

existence of TC-BER has not been widely accepted and it will not be reviewed in this 

thesis.

1.3.1.2.1 Short patch base excision repair 

Short patch base excision repair (SP-BER) accounts for almost 90% of the 

DNA damage repaired by BER. In SP-BER, DNA polymerase  is responsible for 

catalysing the removal of the 5’-deoxyriboso-phosphate residue (generated by the 

APEX1 cleaving) and re-synthesizing the previously removed damaged single 



nucleotide (Robertson et al., 2009). Lastly, the residual chromosomal nick is sealed 

by XRCC1 in association with either DNA ligase I or DNA ligase III (Robertson et 

al., 2009). 

1.3.1.2.2 Long patch base excision repair 

Long patch base excision repair (LP-BER) is generally recruited when more 

than one nucleotide needs to be repaired and LP-BER accounts for only ~10% of the 

DNA damage repair by BER (Robertson et al., 2009). After APEX1 has catalysed the 

formation of a 5’ nick to the abasic site, LP-BER recruits a set of DNA polymerases 

and ligases to replenish the previously excised nucleotide track (Robertson et al., 

2009). In contrast to short patch base excision repair, in LP-BER the synthesis of 

nucleotides is mediated by DNA polymerases , , and  and it requires the 

availability of both PCNA and FEN1 (Robertson et al., 2009; Wilson and Bohr, 2007). 

1.3.1.3 DNA mismatch repair 

DNA mismatch repair (MMR) is a molecular mechanism leveraged by both 

prokaryotes and eukaryotes to repair any insertions, deletions, or misincorporations of 

bases that have arisen during DNA replication or DNA recombination. MMR is a 

complex process that has been extensively reviewed in recent publications (Jiricny, 

2006; Pena-Diaz and Jiricny, 2012). In principle, mismatch repair encompasses two 

essential tasks: (i) recognition of a mismatch of a DNA base pair and (ii) directing the 

repair mechanisms towards the newly synthesized strand that carries the erroneous 

genetic information. In bacteria, distinguishing between the two parental strands and 

the newly synthesized strand is done via hemimethylation as only the adenine on the 

parental strands is methylated at 5’-GATC-3’ sequences (Jiricny, 2006; Pena-Diaz 

and Jiricny, 2012). The exact recognition mechanism in eukaryotes is currently 

unknown.

In bacteria, the MutS protein binds to the mismatch while the MutH protein 

binds to the hemimethylated 5’-GATC-3’ sequence. The actions of MutH are latent 

until it gets activated upon contact with a MutL dimer, which binds the MutS-DNA

complex (Jiricny, 2006). MutH recruits an UvrD helicase to separate the two strands 

and then the entire complex slides along the DNA in the direction of the mismatch. 



This liberates the strand that needs to be excised and the molecular complex is 

followed by an exonuclease that digests the single-stranded DNA. The recruited 

exonuclease is dependent on whether the nick is on the 3’ end of the mismatch or on 

the 5’ end. The result from this process is excision of the mismatch and its 

surrounding nucleotides. DNA Polymerase III (in combination with a single-strand 

binding protein and a ligase) is used to repair the single-stranded gap using the 

remaining strand as a template (Jiricny, 2006). Lastly, a deoxyadenosine methylase is 

recruited to methylate the nascent strand.

In human beings, the exact molecular mechanisms of mismatch repair are not 

completely understood. The human MSH proteins are heterodimeric orthologs of 

MutS. MSH2 dimerizes with MSH6 to form the MutS  complex, while MSH3

dimerizes with MSH6 to form the MutS  complex (Friedberg and Friedberg, 2006). 

These two complexes perform function similar to the one of the bacterial complex 

MutS. The functions of the bacterial MutL dimer are mimicked by its human orthologs 

Mlh1 and Pms1, which form a heterodimer. This human heterodimer has three forms 

– MutL  made of MLH1 and PMS2, MutL  made of MLH1 and PMS1, and MutL

made of MLH1 and MLH3 – each with its own unique function (Friedberg and 

Friedberg, 2006). While there are no current known eukaryotic proteins that 

performed the roles of MutH or DNA helicase, recent studies have shown that MMR 

in eukaryotic organisms requires additional factors, viz., PCNA and replication factor 

C (RFC) (Kadyrov et al., 2006).

DNA mismatch repair plays an essential role in reducing the number of 

replication-associated errors. When MMR is functioning correctly, no specific pattern 

of somatic mutations has been associated with its activity. However, defects in MMR 

increase the spontaneous mutation rate and they have been associated with hereditary 

and sporadic human cancers (Friedberg and Friedberg, 2006). In particular, a large 

proportion of human colorectal and uterine cancers (termed microsatellite unstable 

cancers) have been attributed to mutations in MLH1 and/or MSH2. The mutational 

signature observed in this cancer types is highly reproducible and, in addition to an 

elevated base substitution mutational burden, contains a high number of small 

insertions and deletions at mononucleotide or polynucleotide repeats. 



1.3.2 Repair of double-strand DNA breaks 

Double-strand breaks are probably the most lethal type of DNA damage and 

even a single double-strand break may result in a cellular death. Three distinct 

molecular pathways can generally repair double-strand breaks: (i) homologous 

recombination, (ii) non-homologous end joining, and (ii) microhomology mediated 

end joining. Repair of DNA double-strand breaks by homologous recombination 

generally occurs between the late the S phase and the G2 phase of the cell cycle. In 

contrast, the cell uses non-homologous end joining predominantly during the early S 

phase and the G0/G1 phases, while microhomology mediated end joining occurs 

almost exclusively during the synthesis phase of the cell cycle (Friedberg and 

Friedberg, 2006). The cell attempts to repair a double-strand break as soon as the 

damage occurs preferentially relying, when possible, on homologous recombination 

instead of the alternative error-prone pathways (Boulton, 2010; Friedberg and 

Friedberg, 2006). The molecular mechanisms of the three double-stand repair 

pathways will be briefly reviewed in the next subsections.

1.3.2.1 Repair of DNA double-strand breaks by homologous recombination

 Homologous recombination is the processes of exchanging DNA strands of 

identical (or extremely similar) nucleotide sequence. This pathway is widely used for 

accurately repairing the majority of double-strand breaks and interstrand crosslinks 

(San Filippo et al., 2008).  Currently, there are at least four known models of the 

mechanisms underlying repair of DNA double-strand breaks by homologous 

recombination: classical double-strand break repair (DSBR), synthesis-dependent 

strand annealing (SDSA), break-induced replication (BIR) and single-strand 

annealing (SSA). These four molecular pathways are similar in their initial steps.

After the occurrence of a double-strand break, the MRN/MRX complex (MRN

in human beings; MRX in S. cerevisiae) binds to the DNA on either side of the break 

and it performs a variety of functions: checkpoint signalling, tethering the ends of the 

double-strand break, and cleaving DNA nucleotide links. The actions of the 

MRN/MRX complex are followed by resection, a process in which sections of DNA 

around the 5’ ends on either side of the break are removed by the Sae2/CtIP protein.

Next, Sgs1/YMR190C helicase opens the double-stranded DNA and two nucleases 

(Exo1/EXO1 and Dna2/DNA2KL) cut the single-stranded DNA produced by 

Sgs1/YMR190C. The formed single-stranded DNA is coated with the Rad51/RAD51



recombinase protein, which is dependent on RPA and Rad52/BRCA2 (San Filippo et 

al., 2008). The final result of this molecular process are 3’ single-stranded 

nucleoprotein filaments that can first search for a homologous DNA template and 

then can perform an invasion (San Filippo et al., 2008). In mitotic cells, the 

homologous template is usually a sister chromatid that is mostly identical to the 

damaged DNA. When a template is found, the invasive 3’end displaces one strand of 

a homologous duplex called a displacement-loop (D-loop) and pairs with the other to 

form a heteroduplex. After the strand invasion, a DNA polymerase is recruited to 

extend the end of the invading 3' strand changing the D-loop in a cross shaped 

structure commonly known as Holliday junction. 

 While the steps listed above are mostly shared by the four types of repair of 

DNA double-strand breaks by homologous recombination (viz., SDSA, DSBR, BIR, 

and SSA), there are distinct differences between these molecular mechanisms, which 

are extensively reviewed in (Friedberg and Friedberg, 2006). Briefly, double-strand 

break repair relies on two-end invasion and it forms double Holliday junctions that 

may result in both crossover and (albeit rarely) non-crossover products. Due to its 

propensity to form crossover chromosomal products, DSBR is likely the mechanism 

that underlies homologous recombination occurring during meiosis (Friedberg and 

Friedberg, 2006).

Synthesis-dependent strand annealing also relies on two-end invasion, but 

SDSA produces only non-crossover recombinants. This process occurs in both 

mitotically and meiotically dividing cells. 

Break-induced replication does not require two-end invasion, but it rather 

relies on the availability of a one-end invasion homologue. Most commonly, a cell 

undergoing replication makes use of BIR when a double-strand break is encountered 

by a DNA helicase at a replication fork (Friedberg and Friedberg, 2006). While the 

precise molecular mechanisms of BIR are still unclear, it is believe that a homologous 

sequence is invaded by the broken end resulting in the initiation of unidirectional 

DNA synthesis from the site of strand invasion. The DNA synthesis can lead to 

replicating up to a few hundred kilobases of the template chromosome and it is 

followed by repeated cycles of separation, reinvasion, and synthesis until the damaged 

DNA is repaired. 

Single-stranded annealing is a special type of homologous repair that arises 

when no invasion occurs and it is used to repair breaks between repeat sequences 



(Friedberg and Friedberg, 2006). During resection, SSA uncovers direct repeat 

sequences and repairs the double-strand break by annealing together both single-

stranded ends. This type of homologous repair is mutagenic as any sequences that 

have existed between the two repeat sequences prior to the double-strand break will 

be lost.

In general, no specific and reproducible mutational signature has been 

identified for any of the types of DNA double-strand break repair by homologous 

recombination. Both, DSBR and SDSA are considered “highly faithful” repair 

pathways and it is unlikely that they result in the generation of any somatic mutations 

(Friedberg and Friedberg, 2006). In contrast, using yeast models, it was demonstrated 

that BIR is highly inaccurate but no specific mutational pattern was associated with 

this repair mechanism (Deem et al., 2011). SSA is potentially the most mutagenic of 

the four types of DNA double-strand break repair by homologous recombination. 

However, no specific mutational signature has been attributed to the activity of SSA. 

Lastly, it should be noted that complete (or even partial) failure of DNA 

double-strand break repair by homologous recombination may result in a specific 

mutational signature as the cell starts predominantly relying on other, more 

mutagenic, molecular mechanisms for repairing the DNA double-strand breaks. These 

molecular mechanisms will be discussed in the next few sections. 

1.3.2.2 Non-homologous end joining

Non-homologous end joining (NHEJ) repairs DNA double-strand breaks by 

ligating the two broken ends of the double helix. This molecular pathway does not 

require a long homologous sequence but rather the DNA repair is guided by short 

(less than four bases in S. cerevisiae) homologous sequences known as 

microhomologies (Friedberg and Friedberg, 2006). The single-stranded overhangs on 

the ends of the broken double-stranded DNA often contain these microhomologies. 

The NHEJ repair pathway is nonmutagenic in the rare cases when the overhangs are 

ideally matching; however, in the majority of NHEJ repairs, these overhangs are only 

partially compatible resulting in translocations or micro-insertions/micro-deletions at 

regions of microhomologies (Friedberg and Friedberg, 2006). 

There are three molecular machineries involved in NHEJ: MRN/MRX (MRN in

human beings; MRX in S. cerevisiae), DNA-PK/Ku, and Ligase IV/ Lig4 complexes.

Shortly after the double-strand break formation, the MRN/MRX and DNA-PK/Ku



complexes bind DNA to inhibit degradation by bridging and tethering the two broken 

ends. The MRN/MRX complex recruits the DNA ligases Ligase IV/ Lig4, while the 

DNA-PK/Ku is believe to stabilize DNA preventing repair based on homologous 

recombination (Friedberg and Friedberg, 2006). The Ligase IV/ Lig4 complex

facilitates the joining of the broken DNA strands. It should be noted that there is an 

intricate interaction between Ligase IV/ Lig4 and DNA-PK/Ku providing NHEJ with 

significant flexibility that allows mismatch correction, gap-filling or removal of non-

ligatable ends (Friedberg and Friedberg, 2006). 

The activity of non-homologous end joining is associated with a specific 

pattern of somatic mutations: translocations and/or indels at regions of (or near) 

microhomologies (Friedberg and Friedberg, 2006). This mutational signature is 

thought to be especially prominent in samples where the molecular mechanisms of 

DNA double-strand break repair by homologous recombination have failed and the 

majority of double-strand breaks are repaired by NHEJ. 

1.3.2.3 Microhomology mediated end joining 

Microhomology mediated end joining (MMEJ) repairs a double-strand DNA 

break by relying on microhomologies with lengths between 5 and 20 nucleotides. The 

molecular mechanisms behind MMEJ are not precisely known but it is believed to 

reply to some extent on factors implicated both in repair based on homologous 

recombination (viz., MRN/MRX, Rad51/RAD51, and Rad52/BRCA2) as well as non-

homologous end joining (viz., MRN/MRX, DNA-PK/Ku, and Ligase IV/ Lig4)

(Friedberg and Friedberg, 2006). There is no known mutational signature associated 

with the activity of microhomology mediated end joining; however, it is foreseeable 

that the pattern of mutations generated by this error-prone repair process is very 

similar to the one of non-homologous end-joining, albeit with potentially longer 

microhomologous sequences near indels and/or translocations.

1.4 Mutational processes and patterns of somatic mutations 

In the previous sections, I provided a literature review of the DNA damaging 

and repair processes. Here, I will review the known patterns of somatic mutations 

derived from examining cancer samples and put them in perspective of these 

damaging and repair processes.



As previously discussed, early studies have demonstrated that exposure to 

ultraviolet (UV) light can lead to the formation of dimers of any two adjacent 

pyrimidine bases on the same DNA strand with a preference for thymine-thymine 

dimers (Witkin, 1969). It was further shown that UV irradiation damage 

predominantly results in cytosine to thymine or cytosine-cytosine to thymine-thymine 

changes, preferentially occurring at these pyrimidine dimers (i.e., C>T or CC>TT 

DNA mutations at dipyrimidine sites) (Howard and Tessman, 1964; Setlow and 

Carrier, 1966). This was the first detailed in vitro characterization of the pattern of 

DNA changes occurring due to the activity of an exogenous mutagen and, as such, the 

very first description of a signature of a mutational process. 

While these early examinations established the mutational signature of UV 

light, it was unclear whether UV induced mutations are present and involved in the 

neoplastic expansion of human cancers. The development of the DNA sequencing 

technique with chain-terminating inhibitors by Fred Sanger (Sanger et al., 1977) 

allowed rapid examination of the genetic material contained in cancer cells. In the 

early 1990s, two studies sequenced exons of the gene TP53 (Brash et al., 1991; 

Ozturk, 1991; Bressac et al., 1991) from several patients and provided experimental 

evidence that aflatoxin and UV light leave distinct patterns (consistent with the ones 

observed in experimental systems) of DNA mutations respectively in hepatocellular 

and squamous-cell carcinomas. These studies confirmed that the mutational 

signatures of carcinogens are left as “evidence” in the genomes of cancer cells 

(Vogelstein and Kinzler, 1992) thus spawning research which first examined the 

mutations across TP53 and later across multiple genes and even whole cancer 

genomes in order to provide a better understanding of the mutational processes 

involved in human carcinogenesis. In the next few sections, I summarize the current 

knowledge of the patterns of somatic mutations identified in human cancer.

1.4.1 Patterns of somatic mutations in TP53 

Multiple independent studies used Sanger sequencing of some (or all) exons of 

a cancer gene to provide clues to the etiology of both endogenous and exogenous 

factors of human carcinogenesis. TP53 was usually selected for this analysis due to its 

relatively small size of only 11 exons, high conservation in vertebrates, and its high 

prevalence of somatic mutations in almost all tumour classes (Greenblatt et al., 1994).



Further, the observed TP53 mutations are predominantly missense thus subject to less 

restricted sets of mutated bases and sequence contents when compared to nonsense 

mutations.  Commonly, each of these studies involved multiple samples of a cancer 

type that were examined for somatic mutations in TP53, studies reviewed in refs 

(Greenblatt et al., 1994; Hollstein et al., 1999; Hollstein et al., 1991). The TP53

somatic mutations were aggregated, their spectrum was reported as specific for the 

given cancer type, and this spectrum was then compared to mutations generated 

experimentally in in vitro or in vivo systems (Greenblatt et al., 1994; Hollstein et al., 

1999). It should be noted that the mutational spectra of other genes, albeit only 

occasionally, were also used for such analysis (Capella et al., 1991). 

These early studies revealed a significant heterogeneity of the TP53 spectra

across different cancer types, which allowed associating some patterns of mutation to 

known carcinogens. Here, I provide a concise summary of some of the more 

important findings while details could be found in refs (Greenblatt et al., 1994; 

Hollstein et al., 1999; Hollstein et al., 1991). The TP53 spectrum of skin carcinomas 

exhibited C>T and CC>TT mutations at dipyrimidines with a strong transcriptional 

strand-bias (all substitutions and dinucleotide substitutions are referred to by the 

pyrimidine(s) of the mutated Watson-Crick base pair). This was consistent with the in

vitro described mutational signature of UV light. The TP53 mutational spectrum 

derived from lung cancers in tobacco smokers was overwhelmed by C>A 

substitutions with a strong transcriptional strand-bias, which coincided with the class 

of mutation produced experimentally as a result of bulky adduct formation by tobacco 

carcinogens on guanine (Rodin and Rodin, 2005). In other tobacco associated cancers, 

such as oesophageal and head and neck tumours, C>A mutations (while still 

ubiquitous) were less common while there was a significant increase of T>C 

mutations. Interestingly, in both smokers and non-smokers, C>T and C>G mutations 

at non-CpG sites were elevated when compared to all other cancer types, with bladder 

tumours harbouring the most C>G mutations (Greenblatt et al., 1994). Additionally, it 

was demonstrated that C>A transversions were common in hepatocellular cancers and 

these mutations were believed to be associated with aflatoxin, a known carcinogen 

commonly found in food from southern Africa and Asia (Wogan, 1992). Lastly, all 

cancer types harboured at least some C>T mutations at CpG dinucleotides, a process 



attributed to the normal cellular event of deamination of 5-methylcytosine (Greenblatt 

et al., 1994).

The analyses of TP53 spectra were the first attempts to bridge the gap between 

molecular cancer genetics and epidemiology (Hainaut et al., 2001). The large number 

of studies examining TP53 spectra required a computational resource to facilitate and 

retrieve the already identified somatic mutations. At first these data were managed by 

the researchers that were generating it but in 1994 the International Agency for 

Research on Cancer stepped in and started to maintain a database while providing a 

free access to it (Hainaut et al., 2001). The first release of the IARC TP53 database 

contained ~3,000 somatic mutations while the most recent version (R17) released in 

November of 2013, which can be found at http://p53.iarc.fr/, contains over 28,000 

somatic mutations in TP53.

Though extremely informative, the data gathered from single gene studies 

have significant limitations. In these studies, the spectrum of a cancer type is reported 

by aggregating mutations from multiple samples. This may be adequate when a single 

mutational process generates the majority of mutations in the particular cancer (e.g.,

UV light is the predominant mutational process in melanoma (Alexandrov et al., 

2013a)). However, usually multiple mutational processes are operative in a single 

cancer sample, and combining their mutations generates a mixed composition of the 

patterns of somatic mutations. In most cases, reporting this jumbled spectrum is 

uninformative for the diversity of the mutational processes operative in a single 

cancer type or even in a single cancer sample (Alexandrov et al., 2013a). Moreover, 

the examined TP53 exons are both under selection and also have a specific nucleotide 

sequence. This affects the opportunity for observing a somatic mutation and as such, 

in addition to the processes of mutation, the reported spectrum can be a reflection of 

the processes of selection and/or the nucleotide architecture of the TP53 gene

(Stratton, 2011; Stratton et al., 2009).

Two studies tried to overcome some of the single gene limitations by 

leveraging a targeted capillary sequencing approach of large number of genes. A 

survey of the 518 protein kinase genes in 25 human breast cancer samples revealed 92 

somatic mutations (90 substitutions and 2 indels) in which C>T transitions and C>G 

transversions preceded by thymine (i.e., C>T and C>G at TpC) occurred with a higher 



than expected frequency (Stephens et al., 2005). This survey was later expanded to 

210 cancer samples and it revealed more than 1,000 somatic mutations with 

significant variations in their patterns across the examined twelve cancer types 

(Greenman et al., 2007). Only a small fraction of the mutations reported in these 

screens are likely to be affected by selection (Rubin and Green, 2009), thus indicating 

that the observed mutational patterns reflect the operative mutational processes in the 

analysed samples and not the processes of negative or positive selection. 

1.4.2 Mutational patterns identified in next generation sequencing data 

The development of second-generation sequencing technologies allowed 

examination of cancer exomes (i.e., the combined protein coding exons) and even 

whole cancer genomes. Sequencing cancer exomes has been generally preferred as 

the majority of known cancer-causing driver somatic substitutions, indels, and copy 

number changes (although generally not rearrangements) (Stratton, 2011) are located 

in protein coding genes. As the nucleotide sequence of protein coding genes is ~1% of 

the whole genome, analysis of exomes is considered an advantageous and cost 

effective methodology for discovering the genes involved in neoplastic development. 

As a result, many studies have focused predominantly on the generation and analysis 

of exome sequences (Hudson et al., 2010). 

Early next generation sequencing studies started revealing patterns of somatic 

substitutions in different cancer types. In 2010, two back-to-back studies in Nature

reported the patterns of somatic mutations in a malignant melanoma (Pleasance et al., 

2010a) and a small cell lung carcinoma (Pleasance et al., 2010b). As expected, a 

strong signature of tobacco carcinogens was found in the genome of the lung cancer, 

while the mutational signature of ultraviolet light overwhelmed the melanoma 

genome. These studies demonstrated the value of whole genome sequencing for 

evaluating signatures of mutational processes by providing greater resolution and 

mechanistic insight into mutational signatures due to known carcinogens, for example 

through the identification of a lower prevalence of mutations over the footprints of 

genes.

Multiple independent studies and international consortiums started sequencing 

large numbers of samples from both cancer genomes and exomes (Hudson et al., 



2010). An integrated genomic characterization was reported for many different cancer 

types including: acute lymphoblast leukaemia (De Keersmaecker et al., 2013; 

Holmfeldt et al., 2013; Zhang et al., 2012), acute myeloid leukaemia (Govindan et al., 

2012), breast cancer (Nik-Zainal et al., 2012; Shah et al., 2012; Stephens et al., 2012), 

chronic lymphocytic leukaemia (Puente et al., 2011; Quesada et al., 2012), colorectal 

cancer (Cancer Genome Atlas, 2012; Seshagiri et al., 2012), oesophageal cancer 

(Dulak et al., 2013), glioblastoma (Parsons et al., 2008), cancers of the head and neck 

(Agrawal et al., 2011; Stransky et al., 2011), kidney cancer (Cancer Genome Atlas, 

2013; Guo et al., 2012; Pena-Llopis et al., 2012), liver cancer (Fujimoto et al., 2012; 

Kan et al., 2013), lung cancer (Ding et al., 2008; Govindan et al., 2012; Imielinski et 

al., 2012; Peifer et al., 2012; Rudin et al., 2012; Seo et al., 2012), lymphomas (Love et 

al., 2012; Morin et al., 2011), melanoma (Berger et al., 2012; Hodis et al., 2012; 

Huang et al., 2013; Stark et al., 2012), multiple myeloma (Chapman et al., 2011a), 

ovarian cancer (Jones et al., 2010a), pancreatic cancer (Jiao et al., 2011; Wu et al., 

2011), prostate cancer (Baca et al., 2013; Barbieri et al., 2012; Berger et al., 2011; 

Grasso et al., 2012),  stomach cancer (Nagarajan et al., 2012; Wang et al., 2011; Zang 

et al., 2012), uterine cancer (Cancer Genome Atlas, 2013), and several different types 

of paediatric tumours (Jones et al., 2012a; Pugh et al., 2013; Pugh et al., 2012; Rausch 

et al., 2012; Robinson et al., 2012; Sausen et al., 2013; Zhang et al., 2013). While 

these studies focused on the identification of novel cancer genes, mutational spectra 

were usually reported for each of the examined samples and some studies even tried 

to associate certain types of somatic mutations with the activity of mutagens or the 

failure of polymerases and/or DNA repair mechanisms. A brief summary of the 

mutational patterns identified in these cancer genomics studies is provided in the next 

paragraph.

In lung cancer, comparison between tobacco smokers and non-smokers 

revealed that smokers have on average 10-fold increase in the burden of somatic 

mutations in their cancer genomes (Govindan et al., 2012; Imielinski et al., 2012). 

Consistent with the experimental evidence for tobacco carcinogens, this elevation is 

mainly due to the increase of the number of C>A transversions (Rodin and Rodin, 

2005). Examination of the cancer genomes of melanomas confirmed that the majority 

of mutations are C>T and CC>TT at dipyrimidines in the ultraviolet-associated 

tumours, while acral melanomas exhibit predominantly C>T transitions at CpG sites 



(Berger et al., 2012; Hodis et al., 2012). In glioblastoma multiforme, it was 

demonstrated that treatment with an alkylating agent, such as temozolomide, 

significantly elevates the numbers of somatic mutations and results in a distinct 

mutational pattern of C>T transitions (Parsons et al., 2008). In chronic lymphocytic 

leukaemia, it was observed that samples with mutations in the immunoglobulin genes 

have a higher proportion of T>G transversions (Puente et al., 2011). This mutational 

pattern and its immediate sequencing context are consistent with the activity of the 

error-prone polymerase  during somatic hypermutation (Puente et al., 2011; Spencer 

and Dunn-Walters, 2005). In endometrial and colorectal tumours, a set of ultra-

hypermutators with increased mutational frequency of transversions was associated 

with somatic mutations in polymerase  (Cancer Genome Atlas, 2012; Cancer 

Genome Atlas, 2013). Microsatellite unstable gastric cancer were observed to have a 

higher mutation prevalence of both C>T transitions and C>A transversions 

(Nagarajan et al., 2012). Examining the cancer exomes of patients with urothelial 

carcinoma (of the upper urinary tract) revealed a large number of somatic mutations 

with an unique pattern of T>A transversions predominantly located at CpTpG sites 

and possessing a very strong transcription strand-bias (Hoang et al., 2013; Poon et al., 

2013). This pattern of mutations was associated with exposure to aristolochic acid. In 

oesophageal cancer, a high prevalence of T>G transversions was observed (Dulak et 

al., 2013) while certain breast cancer genomes were found to be overwhelmed with 

C>T and C>G mutations at TpC sites (Stephens et al., 2012). 

These next generation sequencing studies provided an unbiased look into the 

patterns of DNA changes across cancer genomes. While they resolved some of the 

previous limitations from TP53 studies (mostly by examining large portions of the 

human genome which are usually not under selection and which have a nucleotide 

context that is representative of the whole human genome) they still did not address 

the important issue of disentangling mixtures of mutations generated by different 

mutational processes.

1.5 Summary 

In this chapter, I have provided a literature review encompassing cancer 

genetics, DNA damaging and mutational processes, DNA repair processes, and the 

patterns of somatic mutations observed in cancer genomes. In the next few chapters, I 



will use the reviewed information to first introduce a theoretical model describing the 

activity of a set of mutational processes operative in cancer genomes as well as to 

develop a computational approach that can extract the signatures of these mutational 

processes from mutational catalogues of cancer genomes. The approach will be 

extensively evaluated with simulated data and, in the first instance, will be applied to 

genome and exome sequences from breast cancer. Further, I will perform a global 

analysis of mutational signatures across human cancer using the majority of common 

cancer classes and samples from more than seven thousand cancer patients. Lastly, 

using statistical analysis, I will propose etiology for some of the identified mutational 

signatures and discuss the implications of the performed analysis in the context of 

cancer research and cancer treatment. 



 

 

 

 

 

 

 

Chapter 2 
Deciphering signatures of mutational processes from mutational 

catalogues of cancer genomes 
 

2.1 Introduction 

 The first chapter of this thesis defined somatic mutations as any change of 

DNA that is present in the genome of a somatic cell and has occurred after 

conception. Building upon this well-known definition, the chapter introduced several 

important concepts. A somatic mutational process was defined as a mixture of DNA 

damaging and repair mechanisms that act collectively and have the ability to cause 

mutations in somatic cells. A mutational signature was described as a characteristic 

pattern of somatic mutations exhibited by an operative mutational process in a 

genome of a cell. Lastly, a mutational catalogue of a cancer genome was defined as 

the conglomeration of all detected somatic mutations. 

The main focus of the present chapter is to mathematically connect these 

biological terms and provide both the theoretical model and computational approach 

for examining and deciphering mutational signatures from sets of mutational 

catalogues of cancer genomes. The approach is evaluated extensively with simulated 

data, demonstrating that the developed computational framework is robust to a large 

range of different parameters and can be applied to both genome and exome 

sequences.  

 

 

 



2.2 Theoretical model of mutational processes operative in cancer genomes 

The mutational catalogue of a cancer genome is the cumulative result of all 

somatic mutational mechanisms, including DNA damage and repair processes, which 

have been operative during the cellular lineage of the cancer cell. Since the cellular 

lineage of the cancer cell can be traced back to the zygote, the mutational catalogue 

reflects the activity of all processes operative from the very first division of the 

fertilized egg (Stratton, 2011). The large majority of mutations in cancer genomes are 

believed to be passengers, and by definition their patterns are largely unmodified by 

selection (Rubin and Green, 2009). Thus, the mutational catalogue derived from a 

cancer cell may be treated as a representative archaeological record bearing the 

combined imprints (or signatures) of the mutational processes that have been 

operative. 

 

2.2.1 Alphabets of mutation types 

A mutational catalogue can include a diverse set of mutation classes including 

base substitutions, insertions/deletions, structural rearrangements and copy number 

changes. Each class of mutation can then be further subclassified. For example, base 

substitutions can be subclassified according to the six types of single base 

substitutions (using the pyrimidine of the Watson-Crick base pair as the reference, 

C>T, C>A, C>G, T>A, T>C, T>G) or the classification can be further elaborated to 

include a variety of mutational features such as the sequence context of the mutated 

base and the transcriptional strand on which the substitution has arisen. 

For the purpose of mathematical modelling, a limited number of features of a 

mutational catalogue need to be selected. The choice of features may be influenced by 

prior biological knowledge. The choice is also often constrained by statistical 

considerations and the available data. Mathematically, a set of mutational features can 

be expressed as a finite alphabet  with  letters, where each letter corresponds to a 

mutation feature. The simplest alphabet in this case,  contains  letters, and is 

based on the 6 types of single base substitution. The letters of this  alphabet are 

C>A, C>T, C>G, T>A, T>C, and T>G. It should be noted that this alphabet of 

mutation types could be easily extended by, for example, including other mutation 

types such as double substitutions.  



In this thesis, mutational catalogues as well as the mutational signatures that 

contribute to these catalogues are examined predominantly using five distinct 

alphabets termed , , , , and . These five alphabets are discussed in 

further detail below as well as in Appendix I. 

The  alphabet is perhaps the simplest possible alphabet as it considers only 

the six types of somatic substitutions. This alphabet will not be used in any analysis 

but, rather, its simplicity will be leveraged to provide examples and visual 

representations clarifying the developed mathematical model and computational 

approach.  

The  alphabet provides greater resolution for examining the six types of 

single nucleotide variants (i.e., the  alphabet) by including the immediate sequence 

context of each mutated base. In this alphabet, a mutation type contains a somatic 

substitution and both the 5’ and 3’ base next to the somatic mutation. For example, a 

C>T mutation can be characterized as …TpCpG…>…TpTpG… (mutated base 

underlined and presented as the pyrimidine partner of the mutated base pair) 

generating 96 possible mutation types – (6 types of substitutions) * (4 types of 5’ 

bases) * (4 types of 3’ bases). 

The  further extends  by including two bases 5’ and 3’ to the mutated 

base resulting in 1,536 possible mutated pentanucleotides - (6 types of substitutions) * 

(16 types of the two immediate 5’ bases) * (16 types of the two immediate 3’ bases). 

For example, using the  alphabet, one of the 256 subclasses of a C>T mutation is 

…ApTpCpGpC… > …ApTpTpGpC… 

The  alphabet extends  by including three additional mutation types, 

viz.,  (i) double nucleotide substitutions, (ii) small insertions or deletions at short 

tandem repeats, and (iii) small insertions or deletions overlapping with 

microhomologies at breakpoints.  

Lastly,  elaborates  by considering the transcriptional strand on which 

a substitution resides. In contrast to all previously discussed alphabets,  is defined 

only in the regions of the genome where transcription occurs, which in these analyses 

has been limited to the genomic footprints of protein coding genes. Thus, the 

previously defined 96 substitution types are extended to 192 mutation types. For 



example, the C>T mutations at TpCpA are split into two categories: the C>T 

mutations at TpCpA occurring on the untranscribed strand of a gene and the C>T 

mutations at TpCpA occurring on the transcribed strand. In general, one would expect 

that these two numbers are approximately the same unless the mutational processes 

are influenced by the activity of the transcriptional machinery. This could happen, for 

example, due to recruitment of the transcription-coupled component of nucleotide 

excision repair (NER). For example, if a mutational process has a higher number of 

C>A substitutions on the transcribed strand compared to C>A substitutions on the 

untranscribed strand (note that a C>A mutation on the untranscribed strand is the 

same as a G>T mutation on the transcribed strand), this could indicate that the 

mutations caused by this process are being repaired by NER, although other 

explanations are not excluded. A known example of such strand-bias due to interplay 

between a mutational process and a repair mechanism is the formation of photodimers 

due to ultraviolet light exposure that are repaired by NER resulting in a higher 

number of C>T mutations on the untranscribed strand (van Zeeland et al., 2005). 

 

2.2.2 Mathematical definition of a signature of a mutational process 

A signature of a mutational process is mathematically defined in the context of 

a pre-selected mutational alphabet. A mutational signature is defined as a discrete 

probability density function with a domain of mutation features based on a pre-

selected alphabet  . Thus, by definition, a mutational signature is a 

lexicographically ordered k-tuple;  ...,  where is the probability of 

process  to cause the mutation feature corresponding to the -th letter of the pre-

selected alphabet , and since  are probabilities: 

 

Examples of four mutational signatures defined over  and two mutational 

signatures defined over  are given respectively in panels A and B of Figure 2.1. In 

the four examples of mutational signatures defined over , the mutational probability 

for each alphabet letter is displayed. For example, it can be seen that 35% of the 

mutations attributed to Signature 1 are C>G while only 3% of the mutations are T>G. 



Further, while Signatures 1 through 4 are defined over , Signature 2 does not 

generate any C>T, T>A, and T>C mutations as the probability for each of these 

mutation types is equal to zero. Signatures 1 and 4 are defined both over  and 

to illustrate that, while a mutation type based on a given alphabet can be similar in 

two signatures (e.g., C>A mutations are respectively 12% and 14% in these two 

signatures). Extending this alphabet may reveal an intrinsic internal structure making 

these mutation types significantly different.  

Geometrically, a mutational signature can be examined as a vector in a K

dimensional space. Since a mutational signature is modelled as a discrete probability 

density function defined over a given alphabet (see equation 2.1), all its components 

Figure 2.1: Simulated examples of mutational signatures defined over different mutational 
alphabets. (A) Four mutational signatures defined over  and (B) two mutational signatures 
defined over .  



are nonnegative and this vector belongs to the first hyperoctant of this K dimensional 

space, .  Further, as the sum of the vector components equals one, this vector is 

constrained by K-1 dimensional hyperplane. Examining two mutational signatures as 

vectors in a high dimensional space allows a convenient way for comparing these 

signatures based on the angle between the vectors. Thus, comparison between two 

mutational signatures  and  each defined over an alphabet  with K mutation 

types, is done using a cosine similarity: 

Since the elements of  and  are nonnegative, the cosine similarity has a range 

between 0 and 1. When a cosine similarity between two signatures is 1, these 

signatures are 

exactly the same. In 

contrast, when the 

similarity is 0, the 

mutation types of 

these signatures are 

completely independent. The cosine similarity is a commutative function as

. Two signatures should be compared only if they are defined 

over the same mutational alphabet. For example, one cannot compare a signature 

defined over with a signature defined over . Lastly, one can also define a

cosine distance between two mutational signatures as .  

Table 2.1 contains the similarities between the simulated mutational processes 

displayed in Figure 2.1A. The two signatures that are most similar are Signatures 1 

and Signature 4 with a cosine similarity of 0.88 while the signatures that are most 

different are Signatures 2 and 3 with a similarity of only 0.43. As expected, the 

similarity of Signatures 1 and Signature 4 is not the same when the signatures are 

defined and compared over different mutational alphabets. While Signatures 1 and 

Signature 4 have a similarity of 0.88 when defined over , they have a similarity of 

only 0.53 when defined over . As previously mentioned, this is due to the 

existence of an internal structure. In this simulated example, all C>X mutations 

Table 2.1: Similarities between simulated mutational signatures. The 
values of the cosine similarities between the signatures displayed in panel 
A of Figure 2.1 are shown in this table. 



belonging to Signature 4 are in ApCpN sequence context while Signature 1 has no 

specific sequence context (Figure 2.1). 

2.2.3 Mathematical definition of a mutational catalogue of a cancer genome 

Quantitatively, a mutational catalogue of a cancer genome is a vector, , 

containing the number of somatic mutations of a genome, , defined over a finite 

alphabet of mutation types . Mathematically, a mutational catalog is a morphism 

between the pre-defined finite alphabet,  and 

a set of K nonnegative integers, , i.e., 

 Thus, for a given genome, its 

mutational catalogue can be expressed as a K-

tuple of natural numbers,  ..., 

. A simulated example of a cancer 

genome defined over the mutational alphabet 

 is provided in Figure 2.2. This cancer 

genome has a total of 3,315 somatic 

substitutions and does not have any specific mutational features. 

Comparing the mutational catalogues of two cancer genomes, 

...  and  ... , requires that both mutational catalogues are 

defined over the same mutational alphabet . The similarity of two mutational 

catalogues can be evaluated in two distinct ways. The first comparison is based on 

Euclidean distance and examines whether mutational catalogues  and are 

exactly the same: 

With this comparison, a distance of zero is equivalent to the two mutational 

catalogues being exactly the same. Further, the larger the distance the more different 

the mutational catalogues.  

Figure 2.2: Simulated example of a 
mutational catalogue of cancer 
genome. The mutational catalogue is 
defined over the alphabet.



While two mutational catalogues can have different numbers of somatic 

mutations (and therefore a large Euclidean distance between them) they can have 

exactly the same patterns of somatic mutations. Thus, a correlation distance is used to 

compare whether the patterns of mutations of two mutational catalogues are similar. 

The simplest correlation distance is based on the Pearson product-moment correlation 

coefficient. However, this correlation coefficient is very sensitive to outliers and it 

might be misleading if a small subset of mutation types have significantly larger 

values when compared to the rest of the mutation types (Abdullah, 1990). More 

robust measurements of correlations are Spearman’s rank correlation coefficient and 

Kendal’s rank correlation coefficient (Croux and Dehon, 2010). These two rank 

correlations usually produce very similar results and rarely is there a reason to choose 

one over the other (Croux and Dehon, 2010). In this work, I make use of Spearman’s 

correlation coefficient to compare the patterns of mutations in two mutational 

catalogues. Spearman’s correlation is defined as the Pearson’s correlation coefficient 

between the ranked variables. Thus, the patterns of mutations in mutational catalogues 

 and  can be compared by the formula: 

 

where  is the rank of the -th letter of the pre-selected alphabet  in ,  is the 

rank of the -th letter in ,  is the mean of , and  is the mean of 

. 

In general, the Euclidean distance will be used to compare two mutational 

catalogues when one wants them to be as similar as possible. For example, a 

Euclidean distance will be used when extracting mutational signatures and evaluating 

the accuracy of the extraction. In contrast, the correlation distance will be used to 

compare the similarity of the patterns of somatic mutations between two mutational 

catalogues. For example, a correlation distance will be used when performing 

clustering of cancer genomes in order to identify distinct groups of mutational 

patterns. 

 

 



2.2.4 Modelling mutational processes operative in a cancer genome 

 In the previous sections of this chapter, I provided mathematical definitions 

for mutation types, mutational signatures, and mutational catalogues. In this section, I 

make use of these definitions to provide a linear model of mutational processes 

operative in cancer genomes. 

Different cancer genomes can be exposed to a particular mutational process at 

different intensities. For example, a mutational process could cause 1,000 mutations 

in one cancer genome while causing 20,000 in another. I will refer to this number of 

mutations as a mutational exposure (or simply exposure) of a signature of a 

mutational process in a cancer genome. Hence, one may say that a mutational process 

with a signature  has an exposure corresponding to the number of mutations 

caused by this process, in a mutational catalogue  of a given cancer genome.  

Multiple mutational processes can be operative in a single cancer genome 

(Stratton, 2011) and each of these processes can have a distinct mutational exposure. 

In this section, I model a cancer somatic mutational catalogue as a linear combination 

of the signatures and intensities of the exposure of the mutational processes active at 

some point in the lineage of cells leading to the cancer cell, plus added noise vector 

accounting for non-systematic sequencing or analysis errors. Thus, the mutational 

catalogue of a cancer genome defined over the mutation 

alphabet  with  letters, is a superposition of the signatures of the operative 

mutational processes  ... each defined over the mutation 

alphabet , with their respective exposures , and non-systematic noise . 

In particular, the number of the -the mutation type in  is: 

 

Note that in this definition, , , and  are vectors, while is expressed as a 

matrix. Indeed, a set of signatures of  mutational processes, can be represented by a 

nonnegative matrix  with size where  is the 



number of mutation types and  is the number of signatures. The subscript index 

indicates the signature, while the superscript index corresponds to the mutation type. 

A simulated example illustrating this model is provided in Figure 2.3. Each of 

the signatures has a specific pattern over the six base substitutions. The first signature 

has a substantial proportion of C>T mutations and contributes, in total, 1,000 

mutations to the cancer genome. The second process has a high proportion of C>A 

mutations while contributing 1,500 mutations. The third process generates substantial 

numbers of T>C mutations and contributes 750 mutations (Figure 2.3). The 

mutational catalogue of the cancer genome formed by these three processes, however, 

does not have any notable or specific features and does not obviously resemble any of 

the mutational signatures that are operative in it. This simulated mutational catalogue

contains, in total, 3,315 mutations, 3,250 (~98%) contributed by the three mutational 

processes and the remaining 65 (~2%) by white noise corresponding to minor 

processes or experimental errors in generating the mutation catalogue of the genome. 

2.3 Deciphering mutational signatures from a set of cancer genomes 

In the previous section of this chapter, I described a mutational catalogue of a 

cancer genome as a linear combination of the signatures of the underlying mutational 

processes active in this cancer genome. A single mutational catalogue does not allow 

identification of the operative mutational signatures since there are many ways to 

decompose a single mutational catalogue into multiple mutational signatures. 

However, the availability of hundreds and even thousands of mutational catalogues of 

cancer genomes can address this limitation, as mutational signatures will have 

Figure 2.3: Simulated example of three mutational signatures active in a single cancer 
genome. The three mutational signatures were defined over the  alphabet. The mutational 
catalogue of the cancer genome is modelled as a linear superposition of the signatures of three 
processes and the respective number of mutations contributed by each signature, plus added non-



different exposures in different catalogues, constraining the number of solutions and 

thus allowing deconvolution of the signatures.  

In summary, the approach developed here is used to identify the signatures of 

mutational processes from a large number of mutational catalogues. In order to do 

this, I will start by introducing matrix notations for mutational signatures, mutational 

catalogues, exposures of mutational signatures, and noise terms. These matrix 

notations are necessary to alleviate and shorten the description of the developed 

algorithm for deciphering mutational signatures. 

 

2.3.1 Matrix notations for deciphering mutational signatures 

The signature of a mutational process, defined over an alphabet  with K 

letters, can be expressed as a nonnegative K-tuple,  ... , where 

 and  is the probability of the mutational processes  to cause the 

mutation type corresponding to the -th letter of the alphabet . As previously 

described, a set of  mutational signatures can be expressed as a nonnegative 

mutational signature matrix  with size where  

is the number of mutation types and  is the number of signatures. The subscript 

index indicates the signature, while the superscript index corresponds to the mutation 

type. 

The mutational catalogue of a cancer genome, defined over the alphabet of 

mutation types , is represented by a morphism , where  For a given 

genome its mutational catalogue can be expressed as a nonnegative K-tuple, 

 ... . Hence, the mutational catalogues of  cancer genomes can 

be expressed as a nonnegative matrix of mutational catalogues 

 of size . In this case, the mutational 

catalogues form the columns of the matrix, where  is the number of mutation types 

and  is the number of genomes. The subscript index indicates the mutational 

catalogue while the superscript index corresponds to the mutation type. 



The exposure to a mutational process with a signature  ...  is 

a scalar describing the number of mutations,  , attributed to that signature in a 

given mutational catalogue. In this notation, the product  is the number of 

mutations of type corresponding to the 2nd letter of alphabet  caused by the 

mutational process  in a cancer genome with number . Hence, one can define a set 

of exposures of  genomes to a set of  processes as a nonnegative matrix 

 with size . Here, the subscript index indicates the 

genome while the superscript index corresponds to the signature. 

In addition to the signatures of the operative mutational processes, the 

mutational catalogue of a cancer genome also reflects the effect of random error 

processes, which may occur due to the used experimental approach (e.g., DNA 

sequencing) and/or bioinformatics methods (e.g., algorithms for identifying somatic 

mutations from next-generation sequencing data). To reflect the existence of such 

errors, a random noise term is introduced in equation 2.5.  This noise term  reflects 

an additive white Gaussian noise that occurs due to non-systematic errors. The noise 

term is specific to each mutational catalogue and it is defined over the alphabet  of 

the mutational catalog, where . Hence, for a set of mutational catalogues of 

 cancer genomes, the noise term can be expressed as a matrix 

  of real numbers with size . The subscript index 

indicates the noise term for the mutational catalogue while the superscript index 

corresponds to the mutation type. It should be noted that systematic sequencing and 

analysis errors are considered as “synthetic mutational processes” with specific 

profiles present in some (or all) genomes. A whole subsection in chapter 4 is devoted 

to examining such systematic sequencing and analysis errors across a large set of 

cancer genomes. 

2.3.2 Defining the mutational signatures deciphering problem 

The signatures of different mutational processes and their respective 

exposures need to be extracted from the mutational catalogues of  cancer genomes 

(Figure 2.4). Using the introduced matrix notation, this could be expressed as: 



           

or one can simplify equation 2.6 in a matrix form as: 

In practice, one knows only the mutational catalogues in the matrix  and the 

goal is to identify and such that these matrices best describe the original matrix 

without over-fitting the data. Figure 2.4 provides a graphic representation of the 

problem for deciphering signatures of mutational processes from a set of mutational 

catalogues. 

2.3.3 Examining the problem as a blind source separation 

The examined problem can be considered as a specific case of the classic 

“cocktail party” problem, where multiple people attending a party are speaking 

simultaneously while several microphones placed at different locations are recording 

Figure 2.4: Simulated example of mutational signatures deciphered from a set of mutational 
catalogues. The mutational catalogues of G cancer genomes are used to decipher the signatures 
of N mutational processes as well as the number of mutations caused by each of the processes in 
each of the genomes. The extracted signatures and contributions do not allow an exact 
reconstruction of the original set, thus resulting in genome-specific reconstruction error. 



the conversations. Each microphone captures a mixture of all sounds and the problem 

is to decipher the individual conversations from the recordings. This becomes 

possible because each microphone captures each conversation with a different 

intensity depending on the distance between the microphone and the conversation. 

Analogously, the provision of a catalogue of somatic mutations from a cancer genome 

only provides the final mixture of the signatures of all mutational processes operative 

in a cancer sample, and the goal is to decipher these signatures from a set of available 

mixtures (Figure 2.4). Thus, the mutational processes and their signatures are the 

“conversations,” the exposure to a process is the “loudness of the conversation,” the 

cancers themselves are the “microphones,” and the final mutational catalogues are the 

“recordings.” 

The “cocktail party” problem is a type of blind source separation (BSS) 

problem that involves unscrambling latent (not observed) signals from a set of 

mixtures of these signals, without knowing anything about the mixing. To be able to 

”unmix” and reconstruct the original sources from the records, a BSS algorithm is 

needed for best possible extraction of the original signals from the mixtures. These 

BSS algorithms are capable of revealing hidden features and dependencies in large 

sets of observed data, and, based on these features, building a representation of the 

data that can contribute to understanding the biological mechanisms behind these 

data. The unmixing and reconstruction of the original signals is usually based on 

some constrained and/or regularized optimization procedure minimizing an objective 

(cost) function together with a few imposed constraints, such as: maximum 

variability, statistical independence, nonnegativity, smoothness, sparsity, simplicity, 

etc. The choice of the optimization constraints is usually based on a priori knowledge 

about the processed data, and hence the constraints could be different for every 

particular case. 

The main difficulty in solving a BSS problem is that it is usually an under-

determined (ill-posed) problem. There are two main/widely-used methods for 

resolving the under-determination of BSS: Independent Component Analysis (ICA) 

and Nonnegative Matrix factorization (NMF) (Comon, 2010; Roberts and Everson, 

2001). Below, I briefly describe the basic principles of ICA and NMF. 



ICA estimates the source and the mixing matrices by maximizing the 

statistical independence of the retrieved source signals (i.e., the matrix columns are 

expected to be statistically independent). Typically, the source independence is 

achieved by maximizing some high-order statistics for each source signal, such as the 

kurtosis or negentropy (negative entropy). The main idea behind ICA is that while the 

probability distribution of a linear mixture of sources is expected to be close to a 

Gaussian (according to the Central Limit Theorem), the probability distribution of the 

original independent sources is expected to be non-Gaussian. As a result, ICA aims to 

maximize the non-Gaussian characteristics in the estimated sources with the goal of 

finding statistically independent non-Gaussian sources that reproduce the 

experimental data.  

In contrast to ICA, NMF does not seek statistical independence or constrain 

any other statistical property. Thus, nonnegative matrix factorization allows the 

estimated sources to be partially or entirely correlated. Instead, NMF enforces a 

nonnegativity constraint on the original sources and their mixing components (i.e., all 

the estimated matrix elements are greater than or equal to zero).  

The differences between NMF and ICA have important implications for 

choosing one method over another. In general, ICA is used when one is looking for 

statistically independent signals. However, in practice, there are many cases where the 

ICA assumption of statistical independence contradicts the biological reality. For 

example, two distinct mutational processes may be reliant on the same components of 

the cellular machinery making them (at least partially) statistically dependent and, as 

such, these signals cannot be deciphered with an algorithm whose basis is to seek 

statistical independence. In contrast to ICA, NMF focuses purely on part-based 

decomposition (Lee and Seung, 1999). The part-based decomposition is particularly 

useful as it allows describing the original data only by additive signals that cannot 

cancel one another. This part-based decomposition results in “natural sparseness” of 

the underlying processes and it has been shown to extract meaningful components 

from complex datasets (Lee and Seung, 1999). 

The nonnegative nature of the developed model in equation 2.7 requires a 

method that assumes (at the very least) nonnegativity of the original sources. The 

elegance, simplicity, and ability to extract meaningful processes make NMF the 



method of choice in this thesis. It should be noted that there are different algorithms 

that can be used for nonnegative matrix factorization. The results presented in this 

study are exclusively based on the multiplicative update algorithm (Lee and Seung, 

1999). 

 

2.3.4 Approach for deciphering signatures of mutational processes 

For a given mutational catalogue  that contains  cancer genomes defined 

over an alphabet  with  letters corresponding to mutation types (i.e.,  has a size 

), the algorithm extracts  mutational signatures defined over the same alphabet 

. The algorithm has the following steps: 

STEP 1 (Dimension Reduction): Reduce the dimensions of the original matrix  by 

removing any mutation types that together account for of the mutations in all 

genomes, i.e. remove the maximum set of rows  in  for which:  

 

and the cardinality of the set R, , is maximized. The matrix  is transformed into a 

new matrix  with dimensions , where . 

STEP 2 (Bootstrap): Apply Monte Carlo bootstrap resampling to avoid over-fitting 

the extracted mutational signatures. The dimensionally reduced matrix  resulting in 

a new matrix , where the probability for getting a mutation of type corresponding to 

the letter in the alphabet  in a genome  is  while the total 

number of mutations in each genome  remains unaffected, i.e.,  

STEP 3 (NMF): Apply the multiplicative update algorithm (Lee and Seung, 1999) 

for nonnegative matrix factorization to the bootstrapped data by finding the solution 

to  : 

I. Initialize matrices  and  as random nonnegative matrices with 

respective sizes  and , where N is the number of signatures. 



II. Iterate until convergence, defined as 10,000 iterations without change, or 

until the maximum number of 1,000,000 iterations is reached: 

 

 

The notation  is equivalent to the  element of the matrix , 

where . 

III. Store the identified signatures  and their respective exposures . 

STEP 4 (Iterate): Perform steps 2 and 3 for  iterations. I is determined by evaluating 

the convergence of the iteration-averaged signature matrix  (see below for deriving 

). I is selected in such a way that performing  iterations (i.e., doubling the 

iterations) does not significantly change . In most cases between 400 and 500 

iterations are needed, however, in some cases solutions could be found for  

while in rare cases more than 1,000 iterations might be required. In general, the value 

of  is strongly dependent on the size and type of the initial matrix . 

STEP 5 (Cluster): The iterations performed in step 4 result in two sets of matrices, 

and  that correspond respectively to the mutational 

signatures and their exposures generated over the I iterations. A partition-clustering 

algorithm is applied to the set of matrices  to cluster the data into  clusters. A 

variation of k-means (Jain, 2010), where each signature for  is assigned to 

exactly one cluster, is used to partition the data. Similarities between mutational 

signatures are evaluated using a cosine similarity while the  centroids are calculated 

by averaging the signatures belonging to each cluster. The iteration-averaged matrix  

is formed by combining the  centroid vectors ordered by their reproducibility (see 

Step 6). The error bars reported for each mutation type in each signature in  are 

calculated as the standard deviations of the corresponding mutation type in each 

centroid over the I iterations. Note that clustering the data in effectively results in 

clustering  as each signature unambiguously corresponds to exactly one exposure, 

thus allowing derivation of . 



STEP 6 (Evaluate): The reproducibility of the derived average signatures  is 

evaluated by examining the tightness and separation of the clusters used to form the 

centroids in  (see Step 5). More specifically, using cosine similarity, the average 

silhouette width for each of the  clusters is calculated. An average silhouette width 

of 1.00 is equivalent to consistently deciphering the same mutational signature, while 

a low silhouette width indicates a lack of reproducibility of the solution. The average 

silhouette width (Rousseeuw, 1987) of the  clusters is used as a measure of 

reproducibility for the whole solution. In addition to reproducibility, the average 

Frobenius reconstruction error is used to evaluate the accuracy with which the 

deciphered mutational signatures and their respective exposures describe the original 

matrix , i.e., , where a lower Frobenius reconstruction error 

corresponds to a better description of the original matrix. There is some association 

between the reproducibility of a solution and its reconstruction error. For example, 

solutions with very low reproducibility usually have high Frobenius reconstruction 

errors.  

The developed framework for deciphering signatures of mutational processes 

relies on two input parameters, the original matrix  (size ) and the number of 

mutational signatures  to be deciphered from . However, in most cases, the value 

of  is unknown and needs to be determined from . The model selection framework 

relies on applying the framework for deciphering signatures of mutational processes 

for values of  between  and  The reproducibility and average 

Frobenius reconstruction error is evaluated for each , and the value of N is selected 

such that the extracted mutational signatures are reproducible and the reconstruction 

error is low. 

 

2.3.5 Computational implementation of the algorithm 

The framework for deciphering signatures of mutational processes —

including its source code, brief documentation, and several examples of applying it to 

mutational catalogues — is freely available for download from: 

http://www.mathworks.com/matlabcentral/fileexchange/38724 

 



2.4 Evaluating the computational framework using simulated data 

In the previous section of this chapter, I introduced a theoretical model of 

signatures of mutational processes operative in a cancer genome. Based on this 

model, I mathematically introduced the problem of deciphering mutational signatures 

from a set of mutational catalogues of cancer genomes. Further, I proposed an 

algorithm and developed a computational framework that allows to decipher these 

signatures. In this section, I focus on evaluating the developed approach with 

simulated data. The application of the approach to experimental data is performed in 

chapters 3 and 4. 

 

2.4.1 Generating the simulation data 

Signatures of mutational processes with different exposures are randomly 

generated and used to simulate mutational catalogues of cancer genomes. The 

simulated mutational catalogues are leveraged to assess the ability of the developed 

approach to decipher the mutational signatures with which the data are simulated. In 

most cases (unless specified otherwise in the text), the signatures of mutational 

processes are stochastically generated over the alphabet  with similarities between 

them comparable to those previously observed in breast cancer genomes (Nik-Zainal 

et al., 2012). Similarly, unless specified otherwise, the exposures to mutational 

processes are uniformly distributed across the set of simulated cancer genomes while 

the total number of mutations in each mutational catalogue is drawn from a 

distribution comparable to the distribution of the total substitutions found in many 

human cancer genomes (Greenman et al., 2007; Nik-Zainal et al., 2012; Stratton, 

2011; Wood et al., 2007). For every mutational process with signature  ... 

, defined over an alphabet  with K letters, contributing mutations in a cancer 

genome , each mutation is assigned to one of the K mutation types according to the 

discrete probability density function of  Poisson noise and additive white Gaussian 

noise are added to every simulated mutational catalogue. Lastly, each simulation 

scenario is repeated 100 times and the standard deviations of the results over these 

100 repeats are reported as error bars in the respective figures. 

 



2.4.2 Extracting mutational signatures from 100 simulated cancer genomes 

An example of applying the developed theoretical approach to a set of 100 

simulated mutational catalogues of cancer genomes is shown in Figure 2.5. Similar to 

many human cancer genomes (Greenman et al., 2007; Nik-Zainal et al., 2012; 

Stratton, 2011; Wood et al., 2007), every simulated genome contains between 500 and 

Figure 2.5: Deciphering mutational signatures from a set of 100 simulated mutational catalogues. (A) 

Identifying the number of processes operative in a set of 100 simulated cancer genomes based on 

reproducibility of their signatures and low error for reconstructing the original catalogues. (B) Comparison 

between the ten deciphered signatures and the ten signatures used to simulate the catalogues. Signature 

recognition, measured using cosine similarity, and signature reproducibility, measured using average 

silhouette width, is given for each mutational signature. (C) Comparison between deciphered and simulated 

contributions of one of the ten mutational processes in all cancer genomes. (D) Comparison between 

deciphered and simulated contributions of all signatures in a typical cancer genome. (E) Comparison 

between the profiles of typical deciphered and simulated signature. (F) Comparison between the mutational 

catalogues of a typical deciphered (red line) and simulated (dark blue line) cancer genome.  



50,000 substitutions. The simulated mutations are generated using 10 mutational 

processes with distinct signatures each with 96 mutation types (i.e., signatures are 

defined over ).  

Identifying the number, N, of mutational processes operative in a set of cancer 

genomes is required prior to deciphering their signatures. The developed model 

selection approach identifies N by applying the method for different values of N (see 

section 2.3.4). For every N, the similarity between the extracted processes (i.e., 

process reproducibility) is evaluated from the stochastically initialized iterations. 

Further, for every N, the model selection approach assesses the average Frobenius 

reconstruction error of the averaged deciphered signatures  and their exposures , 

i.e., . Low reconstruction error is indicative of an accurate description 

of the original cancer genome catalogues. N is selected such that the extracted 

processes are reproducible and the reconstruction error is low. Over-fitting the 

mutational signatures is avoided by bootstrapping the data (in each iteration) before 

applying NMF to them (see section 2.3.4). 

For the 100 simulated cancer genomes, the approach is able to identify 

reproducible solutions for N between 2 and 10 (Figure 2.5A). Increasing the number 

of signatures from 2 to 10 substantially reduces the reconstruction error, but 

increasing beyond 10 does not further reduce it (Figure 2.5A). This indicates that the 

computational approach can optimally distinguish the signatures of 10 mutational 

processes, precisely the number originally used to simulate the mutational catalogues 

of these 100 cancer genomes. The 10 deciphered signatures are very reproducible 

(average silhouette width ) as well as extremely similar (average cosine 

similarity ) to the ones used to generate the 100 mutational catalogues (Figure 

2.5B). Further, the computational approach is able to accurately identify the number 

of mutations contributed by each of the 10 processes in each of the genomes. 

Comparison between original and deciphered exposures of one of the signatures in all 

genomes is shown in Figure 2.5C and a comparison of the contributions of all 10 

signatures in a single genome is shown in Figure 2.5D. A typical comparison between 

an original and deciphered signature is shown in Figure 2.5E and a typical 

comparison between an original and reconstructed mutational catalogue of a genome 

is depicted in Figure 2.5F. In summary, the applied approach is able to accurately 



identify the underlying mutational signatures and their respective exposures in this set 

of 100 simulated mutational catalogues. 

2.4.3 Identifying factors that influence extraction of mutational signatures 

To identify factors that affect the ability to extract mutational signatures, 

signatures of mutational processes 

and their respective exposures are 

simulated under a number of 

different scenarios. The original 

signatures used to simulate the data 

are compared to the deciphered 

signatures in order to evaluate both 

the limitations and robustness of the 

developed computational 

framework. All comparisons 

between mutational signatures are

done using a cosine similarity as 

previously described in section 

2.2.2.  

To evaluate how the degree of similarity between mutational signatures affects 

their extraction, sets of four randomly generated signatures are simulated; two of the 

signatures are very different from any of the other signatures, while the similarity of

the remaining two to each other is varied (Figure 2.6). Hence, Signatures I and II are

Figure 2.6: Design for simulating four mutational 

signatures with different similarities between them. 

Signatures I and II differ significantly from each other 

as well as from the other two Signatures (cosine 

similarity between 0.00 and 0.20). Signatures III and 

IV are simulated with varying similarities between 

them. 

Figure 2.7: Deciphering mutational signatures with different similarities between them. (A) 

Different numbers of mutational catalogues are examined while Signatures III and IV are simulated 

with very similar profiles. (B) The mutational catalogues of 20 cancer genomes are simulated while 

the similarity between Signatures III and IV is varied. 



simulated such as the cosine similarity between each of these signatures and any other 

signature is always within the range of 0.00 and 0.20 (i.e., signatures with very 

different mutational profiles) while the similarity range between Signatures III and IV 

is varied, as described below.  

Sets of Signatures III and IV are simulated with a cosine similarity ranging 

between 0.90 and 1.00 (i.e., signatures with extremely similar profiles). In addition, 

different numbers of mutational catalogues are examined (Figure 2.7A). The 

performed simulations indicate that 30 mutational catalogues are sufficient for 

adequately identifying the four mutational signatures, while 50 or more cancer 

genomes allow to perfectly decipher signatures that are extremely similar (Figure

2.7A). Further simulations are carried out in which sets of mutational catalogues of 20 

Figure 2.8: Deciphering mutational signatures from different sets of cancer genomes. 

Evaluating the effect of deciphering between two and thirty mutational signatures from sets of 

mutational catalogues derived from 10, 20, 30, 50, 70, 100, and 200 cancer genomes. 

Figure 2.9: Dependencies between mutational signatures and mutational catalogues of cancer 

genomes. (A) Exponential dependency between accurately deciphered signatures (i.e., cosine 

similarity between simulated and deciphered signature ) and the number of mutational 

catalogs needed to decipher these signatures. (B) Identification of the maximum number of 

accurately deciphered signatures (cosine similarity between simulated and deciphered signature 

shown in the legend) from sets of mutational catalogues simulated using the signatures of 20 

mutational processes. 



cancer genomes are evaluated with a varied distance range between Signatures III and 

IV. Interestingly, even though 20 mutational catalogues are insufficient to decipher 

the profiles of very similar looking signatures, they are suitable for effectively 

extracting signatures that have similarities  (Figure 2.7B).  

The number of available cancer genomes mathematically limits the number of 

signatures that can be extracted from the mutational catalogues of these genomes. For 

example, accurately deconvoluting signatures of 15 mutational processes from the 

mutational catalogues of only 10 cancer genomes is ineffective. To evaluate the effect 

of the number of mutational catalogues on extracting mutational signatures, 

simulations with different numbers of cancer genomes generated using a varying

number of mutational signatures are performed. Between 10 and 200 sets of 

mutational catalogues are simulated using up to thirty mutational signatures (

. Interestingly, the number of mutational catalogues required to accurately 

decipher the signatures operative in them increases exponentially with the number of 

signatures (Figure 2.9A). Thus, while mutational catalogues from 100 cancer

genomes are necessary to extract the signatures of fifteen mutational processes, at 

least 200 cancer genome catalogues are required to deconvolute twenty signatures 

(Figure 2.8). Nevertheless, it is possible to decipher at least some of the 20 mutational 

signatures from a set of 100 or fewer mutational catalogues (Figure 2.9B).  

The number of somatic mutations in each cancer genome affects the ability to 

decipher the signatures of the operative mutational processes. In all previous 

Figure 2.10: Dependencies between mutational signatures and numbers of somatic mutations. 

(A) Evaluating the effect of deciphering different number of mutational signatures from sets of 

mutational catalogues derived from 50 cancer genomes. The catalogues are simulated with different 

average number of mutations in a cancer genome. (B) Evaluating the effect of deciphering 2, 3, 5, or 

7 mutational signatures from large sets of mutational catalogues containing small number of average 

mutations per cancer genome. The line colours correspond to the ones in the legend of panel A. 



simulations, it is assumed that the distributions used to simulate the number of 

somatic mutations in cancer genomes are similar to those of some common cancers 

such as breast and prostate cancer. However, recent studies have demonstrated that 

there is substantial heterogeneity between the mutational burdens across major cancer 

types (Alexandrov et al., 2013a; Lawrence et al., 2013). In this section, simulations of 

50 mutational catalogues with different average numbers of somatic mutations are 

performed. Each mutational catalogue is simulated using between two and ten 

mutational signatures. Obviously, having more somatic mutations (i.e., more data for 

each sample) allows to better distinguish the profiles of the mutational signatures. As 

such, the focus of these simulations is to examine how lower average numbers of 

mutations (i.e., between 48 and 7,200 mutations) affect the ability of the approach to 

identify mutational signatures. The results indicate that two or three signatures can be 

effectively extracted from 

catalogues with less than a 

hundred somatic mutations 

(Figure 2.10A). In contrast, 

extracting seven or more 

mutational signatures 

requires an average of at 

least 1,000 mutations per 

catalogue.  

The combined 

protein coding exons (the 

“exome”) constitute only 

~1% of the human genome. 

The analysis of exomes 

compared to whole-genome 

sequences is often perceived 

as advantageous because of 

lower costs and because a 

substantial proportion of cancer-causing driver somatic mutations may be found using 

this strategy. As a result, many more exome sequences of cancers have currently 

being generated than whole-genomes. To further evaluate the applicability of the 

Figure 2.11: Deciphering mutational signatures with 

different contributions in mutational catalogues. Fifty 

mutational catalogues are simulated using mutational 

signatures with different contributions. Signature I’s 

contributions are fixed to contribute a fixed percentage of all 

mutations in either the whole set of mutational catalogues (i.e., 

the overall contribution is fixed but different genomes can have 

different contributions of Signature I; blue bars) or in each 

individual cancer genome (i.e., Signature I’s contributions are 

fixed in every single mutational catalogue; red bars). 



approach to only parts of the genome (and more specifically exome sequences), large 

sets of mutational catalogues simulated with small average numbers of somatic 

mutations are examined. The results reveal that at least 500 mutational catalogues

with an average of 96 mutations per catalogue (a total of ~50,000 mutations) are 

needed to decipher five mutational processes (Figure 2.10A), but these five 

mutational processes can be more easily deciphered from 50 cancer genomes 

containing an average of 480 mutations (a total of ~25,000 mutations, Figure 2.10B). 

This result indicates that it is more effective to decipher mutational signatures from a 

small number of catalogues containing many mutations than from many catalogues

containing few mutations.  

The strength of exposure of a mutational process in a set of genomes also

influences the ability to decipher its signature. Two types of simulations of seven 

signatures operating with different strengths in 50 mutational catalogues are

performed. In the first type, the percentage of exposures of Signature I in all samples

is simulated as a constant parameter with values between 5% and 95% of all 

mutations (Figure 2.11). In contrast, in the second type of simulation, the exposures to 

Signature I are kept as a constant parameter in every sample, again, with values 

between 5% and 95% of all mutations (Figure 2.11). The results demonstrate that 

signatures contributing <5% 

of all mutations can be 

difficult to distinguish. 

Similarly, deciphering the 

members of a set of 

mutational signatures that 

have similar exposures with 

respect to each other over a 

set of cancer genomes is 

challenging (Figure 2.11). 

To overcome this problem, 

it may be advantageous to 

combine sets of mutational 

catalogues in which 

mutational processes are 

Figure 2.12: Deciphering errors of exposures and accuracy 

of mutational signatures. Comparison, across all previously 

performed simulations, between the accuracy of the deciphered 

mutational signatures and the deciphering error for identifying 

the contributions of these signatures. The deciphering 

Frobenius reconstruction error is calculated and averaged for 

each contribution and normalized based on the numbers of 

mutations in the respective mutational catalogue. 



more likely to be active in different proportions (e.g., from different cancer types). 

However, combining sets of mutational catalogues in this way ought to be considered

with caution as the number of cancer genomes required for the extraction of 

signatures increases exponentially with the number of operative signatures and more 

cancer types may well entail more signatures (Figure 2.8 and Figure 2.9). 

In addition to deciphering mutational signatures, the developed computational 

approach identifies the number of somatic mutations that each signature contributes to 

each mutational catalogue. In general, one would expect that the developed algorithm 

is, at least to some degree, symmetrical. Thus, when the algorithm correctly identifies 

the mutational signatures, it should also accurately estimate the contributions of these 

signatures (see section 2.3.4 in regards to the symmetric clustering of the data 

extracted in the sets of signatures, , and the sets of exposures, ). Evaluating the 

average deciphering error for identifying contributions, for all previously performed 

simulations, confirms that the majority of accurately deciphered mutational signatures 

(i.e., cosine similarity between simulated and extracted signatures ) are 

associated with a low error (i.e., normalized Frobenius error rate ) for their 

respective signature contributions (Figure 2.12). Further examination reveals that only 

very few of the accurately extracted signatures are associated with a normalized 

Frobenius error rate  (Figure 2.13A). Interestingly, the analysis indicates that 

the contributions of signatures generating large numbers of mutations ( are 

generally associated with lower error rates (Figure 2.13B). 



2.5 Discussion 

In this chapter, I have modelled the signatures of somatic mutational processes 

in cancer genomes as a blind source separation problem and introduced a 

computational framework that extracts these mutational signatures from the 

mutational catalogues obtained from cancer genome sequences. To identify these 

signatures, the intrinsic nonnegativity of mutations mandates employment of a 

method incorporating a nonnegative constraint. The extensive evaluations of the 

approach with simulated data demonstrate that the developed algorithm is effective in 

deciphering mutational signatures from mutational catalogues. 

The efficiency of the algorithm could be further improved by incorporating 

additional constraints. For example, the current implementation of the computational 

framework relies on nonnegative matrix factorization, which has a natural weak 

sparsity constraint; however, a strong sparsity constraint could be applied to the 

exposure matrix . This would guarantee that the mutational catalogue of a cancer 

genome is described by a minimum number of processes. Algorithms implementing 

this and other constraints have been previously developed (Berry et al., 2007; Gao and 

Church, 2005; Peharz and Pernkopf, 2012; Zheng et al., 2006) and could be applied to 

cancer genomics data. Nonetheless, this study demonstrates that an approach based on 

the simplest (i.e., without additional constraints) NMF algorithm is sufficient to 

decipher both the signatures of the mutational processes operative in a set of cancer 

genomes as well as the number of mutations each signature contributes to the 

mutational catalogue of each cancer genome. 

Parameters to which solutions are sensitive include the number of operative 

mutational processes, the strength of their exposures, the degree of difference between 

mutational signatures, the number of analysed cancer genomes, the number of 

mutations per cancer genome, and the number of mutation types that are incorporated 

into the model (Figures 2.6 through 2.13). These factors will determine the manner in 

which the method will be applied in the next chapters of this thesis. Importantly, the 

results show that, despite relatively few mutations present in each case, the approach 

can be applied to exome data, extracting at least some of the signatures of the 

operative processes.  



It should be noted that when the number of samples in a dataset is too low or 

when the mutational burden is insufficient, the developed approach will lack the 

power to decipher the signatures of all operative mutational processes. Thus, in some 

cases, the extracted signatures will represent mixtures of multiple independent 

patterns of mutations and only additional samples will allow further differentiating 

these mutational signatures.  

Diverse mutation classes can be included in this type of analysis. Thus the 

application of the developed approach can, if desired, be limited to single base 

substitutions or be widened to include double nucleotide substitutions, insertions, 

deletions, geographically localized forms of mutation and mutation features such as 

transcriptional strand-bias. Following this principle, rearrangements and copy number 

changes (and potentially even epigenetic modifications) could be incorporated in 

order to derive a comprehensive overview of operative mutational processes. 

The complexity of the mutational processes operative in some cancers and the 

inherent challenges in extracting their attendant mutational signatures should not be 

underestimated. For example, tobacco smoke contains around 7,000 chemicals from 

which over 60 are known to be mutagenic (Rodgman and Perfetti, 2008). Thus, the 

mutational pattern of a lung cancer in a tobacco smoker will reflect the activity and 

potency of (at least) several of these chemicals. Each of these chemicals may have its 

unique mutational signature. A group of smokers loyal to the same brand will be 

simultaneously exposed to the same combination of mutagens. Analysis of tumours 

from this group of individuals therefore may not allow the mutagens to be 

distinguished from one another and the developed computational approach will 

extract only a single signature that encompasses the combined mutational activity of 

the most mutagenically potent chemicals. However, as different cigarette brands may 

contain different combinations and amounts of mutagens, analysis of mutational 

catalogues from cancers due to different tobacco brands could allow differentiation 

between the signatures of each of the different chemicals. An ambitious aspiration of 

this nature would, however, probably only be feasible with data from thousands of 

cases, coupled to the statistical power and resolution provided by whole-genome 

mutational catalogues. 



 

 

 

 

 

 

 

Chapter 3 
Signatures of mutational processes operative in breast cancer 
 

3.1 Introduction 

 The previous chapter introduced a novel mathematical model of mutational 

processes operative in cancer genomes and a computational framework that allows 

deciphering of the signatures of these processes from a set of mutational catalogues. 

The newly developed computational approach was extensively evaluated with 

simulated data demonstrating its applicability to mutational catalogues derived from 

sequencing both cancer genomes and cancer exomes. Further, the performed 

simulations demonstrated that the method is robust to a wide range of different 

parameters. In this chapter, I present and discuss the application of the developed 

framework to experimentally generated data. The framework is used to examine the 

mutational catalogues derived from the sequences of 844 breast cancer exomes and 

119 breast cancer whole-genomes. The aim of this chapter is to describe the 

signatures of the mutational processes operative in breast cancer as well as to serve as 

a prelude to chapter 4 in which analogous analysis will be performed for another 29 

different types of human cancer. 

 

3.2 Data generation and filtering of mutational catalogues 

It should be noted that none of the examined data are generated for the 

purposes of this thesis. Rather, the analysis relies on previously identified somatic 

mutations by curating freely available published data as well as data that was 

unpublished at the time. Any unpublished breast cancer data were generated internally 

at the Cancer Genome Project (CGP) for the purposes of other projects. The majority 

of breast cancer exomes are taken from The Cancer Genome Atlas (TCGA) data 



portal as well as from peer-reviewed publications. In contrast, the majority of breast 

cancer whole-genomes are previously unpublished data. Summary of the numbers of 

samples based on their data source is provided in Table 3.1, whereas a complete list 

including all samples, all examined 

cancer types, and their respective 

data sources is provided in Appendix 

II. 

The somatic mutations of the

844 breast cancer exomes and the 

119 breast cancer whole-genomes are 

curated, filtered, and mutational 

catalogues are generated for each 

sample based on the , , , , and  alphabets. It should be noted that 

there is no sample overlap between the breast cancer genomes and exomes (i.e., breast 

cancer whole-genomes are not included twice as exomes and genomes).  

As these data are retrieved from many different sources and generated using 

different next-generation sequencing platforms and bioinformatics approaches, 

quality control is performed in order to remove any germline contamination and 

technology specific sequencing artefacts. Germline mutations are filtered out from the 

list of reported mutations using the data from dbSNP (Sherry et al., 2001), 1000 

genomes project (Abecasis et al., 2012), NHLBI GO Exome Sequencing Project (Fu 

et al., 2013), and 69 Complete Genomics panel 

(http://www.completegenomics.com/public-data/69-Genomes/). Any mutation at a 

position of a previously identified germline variant in any of these datasets is removed 

from the signatures analysis. Furthermore, technology specific sequencing artefacts

are filtered out by using panels of (unmatched) BAM files for normal tissue 

containing 137 normal genomes and 532 normal exomes. Any somatic mutation 

present in at least three well-mapping reads in at least two normal BAM files is

discarded. The remaining somatic mutations are used for the generation of mutational 

catalogues and the extraction of mutational signatures.  

Table 3.1: Summary of breast cancer samples 
and their data sources.  



The immediate 5’ and 3’ sequence context is extracted using the ENSEMBL 

Core APIs for human genome build GRCh37. Curated data originally mapped to an 

older version of the human genome is re-mapped using UCSC’s freely available lift 

genome annotations tool. Dinucleotide substitutions are identified when two 

substitutions are present in consecutive bases on the same chromosome (sequence 

context is ignored). The immediate 5’ and 3’ sequence content of all small insertions 

Figure 3.1: Mutational signatures extracted from 119 breast cancer genomes. Six signatures of 
mutational processes are deciphered from the base substitutions (including their immediate 5’ and 
3’ sequence context) identified in the examined 119 breast cancer genomes. Each signature is 
depicted on an independent panel, where each type of substitution is displayed in a different colour. 
Mutational signatures are plotted based on the genome trinucleotide frequency. 



and deletions (indels) is examined and the ones present at mono/polynucleotide 

repeats or microhomologies are included in the analysed mutational catalogues as 

their respective types. Strand-bias catalogues are derived for each sample using only 

substitutions identified in the transcribed regions of well-annotated protein coding 

genes. Mutational signatures are independently derived from the mutational 

catalogues of breast cancer exomes and breast genomes (see below).  

 

3.3 Deciphering the signatures of mutational processes from whole-genome 

sequencing of breast cancers 

The developed computational approach presented in chapter 2 is applied to the 

mutational catalogue of 119 breast cancer whole-genomes that contain 654,308 

somatic substitutions and indels. Mutational signatures are extracted based on the , 

,  and  alphabets. The approach reveals six consistent and reproducible 

mutational signatures for all four alphabets – termed Signatures BC-WG-S1, BC-WG-

S2, BC-WG-S3, BC-WG-S4, BC-WG-S5, and BC-WG-S6 (BC-WG-S stands here for 

breast cancer whole-genome signature).  

The patterns of somatic substitutions for the signatures extracted using  are 

depicted in Figure 3.1. Signature BC-WG-S1 is characterized by 50% C>T 

substitutions predominantly occurring at CpG dinucleotides and 25% T>C mutations   

with    peaks   at   ApTpN   trinucleotides.   Signature   BC-WG-S has predominantly 

(~76%) C>T mutations at TpCpN trinucleotides and (~20%) C>G mutations 

occurring at TpCpN trinucleotides. In contrast, Signature BC-WG-S3 is mirroring 

Signature BC-WG-S2 with ~65% of its substitutions being C>G at TpCpN 

trinucleotides, ~22% being C>T at TpCpN trinucleotides, and ~11% C>A at TpCpN 

trinucleotides. Signature BC-WG-S4 has a rather flat mutational pattern including all 

types of somatic mutations. While this mutational signature does not exhibit any 

strong features based on the immediate 5’ or 3’ sequence context, such as Signatures 

BC-WG-S2 or BC-WG-S3, the pattern of its substitutions is not completely uniform. 

Rather, the mutational pattern of Signature BC-WG-S4 has subtle trinucleotide 

features. Similar to BC-WG-S4, Signature BC-WG-S5 has a generally flat mutational 

pattern with subtle sequence context features. However, in addition, Signature BC-

WG-S5 exhibits a predominance of C>A mutations (~40%) compared to the other 



types of substitutions. Lastly, Signature BC-WG-S6 has a very strong sequence 

context with ~40% of all mutations being T>G at GpTpG.  

As previously demonstrated, the developed computational framework can be 

applied to a wider repertoire of mutation types than the 96 mutated trinucleotides. The 

 alphabet can be extended to the  alphabet by including three additional 

mutational subclasses: double nucleotide substitutions, indels at microhomologies,

and indels at mono/polynucleotide repeats. This analysis reveals that Signature BC-

WG-S4 is associated with 91% of the 8,915 indels at microhomologies found in the 

119 whole breast genomes, 39% of the 12,555 indels found at mono/polynucleotide 

repeats, and 21% of the 3,974 dinucleotide substitutions (Figure 3.2). The activity of 

Signature BC-WG-S1 is associated with 52% of indels found at mono/polynucleotide 

repeats, whereas Signature BC-WG-S5 accounts for 65% of all dinucleotide 

substitutions. It should be noted that a significant proportion of the dinucleotide 

substitutions associated with Signature BC-WG-S5 are CC>AA. Signatures BC-WG-

S2, BC-WG-S3, and BC-WG-S6 do not have a strong association with any type of 

indels or dinucleotide substitutions. 

Previous examination of the mutational catalogues of 21 breast cancer genome

showed a weak transcriptional strand-bias for all C>A mutations (Nik-Zainal et al., 

2012). This bias results in C>A mutations being more common on the transcribed 

than the untranscribed strands of genes (and vice versa for G>T mutations). To 

investigate whether a particular mutational signature is associated with this (or any 

other) transcriptional strand-bias, the  substitution alphabet is extended to include 

information on whether a substitution is on the transcribed or non-transcribed strand, 

Figure 3.2: Breast cancer whole-genome mutational signatures with indels and dinucleotides. 
Mutational signatures analysis of the 119 breast cancer whole-genomes is extended to incorporate 
indels at microhomologies, indels at repetitive regions, and dinucleotide substitutions (i.e.,  
alphabet). The percentage of mutations attributed to these three additional mutation types is 
displayed for all signatures that contribute at least 5%. Each signature is displayed in a different 
colour. 



thus increasing the 96 trinucleotide substitutions to 192. The developed model 

selection approach again reveals the signature of six reproducible mutational 

processes (Figure 3.3) with patterns resembling the ones based on the  alphabet 

(Figure 3.1). Examining the mutational signatures based on the  alphabet reveals

that Signature BC-WG-S2, Signature BC-WG-S3, Signature BC-WG-S4, and 

Signature BC-WG-S6 do not have statistically significant strand-bias (Figure 3.3). In 

contrast, Signature BC-WG-S1 exhibits a weak T>C strand-bias (Q = 1.4 × 10−3; in all 

cases Q refers to a q-value, see chapter 7), while Signature BC-WG-S5 is associated 

with a C>A strand-bias (Q = 5.2 × 10−7). The nature of the mutational process(es)

underlying these transcription strand-biases is currently unknown, but it could be due 

to past activity of transcription-coupled nucleotide excision repair.  

Figure 3.3: Breast cancer whole-genome mutational signatures with strand-bias. Signatures of 
mutational processes with strand-bias are extracted from the mutational catalogues of 119 breast 
cancer genomes. Six mutational signatures deciphered from the base substitutions (including their 
immediate 5’ and 3’ sequence context) identified in the transcribed regions of 119 breast cancer 
genomes. Each signature is depicted on an independent panel, where each type of substitution is 
highlighted in a different colour. The probability of a mutation to occur on a transcribed strand is 
depicted in blue, while red is used to display the probability of a mutation to occur on the 
untranscribed strand. Mutational signatures are plotted based on the genome trinucleotide 
frequency. Asterisk indicates mutation type exceeding 20%.  



The previous assessment of the impact of sequence context on classification of 

mutational processes is limited to the bases immediately 5’ and 3’ to each mutated 

base. However, other sequence motifs close to or distant from the mutant base could 

be important in defining a mutational process. Here, I extend the sequence context to 

include the two bases 5’ and 3’ to each mutated base, which results in 1,536 possible 

mutated pentanucleotides (i.e., mutational signatures are examined based on the 

alphabet). The model selection approach is able to find six reproducible mutational 

signatures based on the 1,536 mutation types. New sequence context dependencies are

found in several of the previously identified mutational signatures. Signature BC-

WG-2 substitutions at TpCpN trinucleotides are dependent on the next base 5’, which 

is predominantly a pyrimidine (Figure 3.4A and 3.4B). Of all C>X at TpCpN 

mutations caused by Signature 2, 40% are at CpTpCpN, 33% at TpTpCpN and the 

remaining 27% are either G or A 5’ to the TpCpN trinucleotide (Figure 3.4C). Such a 

tetranucleotide distribution is highly unlikely to happen purely by chance in the 

human genome (Q = 7.1 × 10−14). Exactly the same set of observations can be made 

for Signature BC-WG-3 when additional sequence context is included (data not 

shown).  

Figure 3.4: Signature BC-WG-2 with additional sequence context. (A) Signature BC-WG-2 is 
deciphered from the base substitutions (including the two bases 5’ and 3’ to each mutated base 
resulting in 1,536 possible mutated pentanucleotides) identified in 119 breast cancer genomes. (B) 
Detailed view of C>T mutation types in Signature BC-WG-2. (C) Summary of all mutation types 
caused by Signature BC-WG-2. 



In addition to Signatures BC-WG-2 and BC-WG-3, Signature BC-WG-6 also 

exhibits a strong context dependency when it is examined based on the  alphabet 

(Figure 3.5). Approximately 20% of all somatic mutations due to this mutational 

signature are T>G at GpGpTpGpG pentanucleotides (Q = 2.7 × 10−31). It should be 

noted that, when extracted based on the  alphabet, Signatures BC-WG-1, BC-

WG-4, and BC-WG-5 do not show any specific pentanucleotide patterns. 

3.4 Deciphering the signatures of mutational processes from exome sequencing 

of breast cancers 

The developed computational approach presented in chapter 2 is applied to the 

mutational catalogues of 884 breast cancer exomes that contain 39,480 somatic 

substitutions and indels. Mutational signatures are extracted based on the , ,

and  alphabets. The approach reveals three reproducible mutational signatures for 

all alphabets – termed Signatures BC-EX-S-1, BC-EX-S-2, and BC-EX-S-3 (BC-EX-

S stands here for breast cancer exome signature). The numbers of somatic mutations 

in these exome data (average ~45 somatic mutations per sample) are found to be too 

low to perform signature analysis using 1,536 mutation types and, as such, no 

mutational signatures are derived based on the  alphabet. 

The patterns of somatic substitutions for the signatures extracted from the 

breast cancer exomes using  are depicted in Figure 3.6. Signature BC-EX-S-1 is 

characterized by 60% C>T substitutions predominantly occurring at CpG 

dinucleotides and 17% T>C mutations with peaks at ApTpN trinucleotides. The 

pattern of mutations of Signature BC-EX-S-1 (Figure 3.6) closely resembles the one 

of Signature BC-WG-S1 (Figure 3.1). In fact, these two mutational signatures have a 

Figure 3.5: Signature BC-WG-6 with additional sequence context. Signature BC-WG-5 is 
deciphered from the base substitutions (including the two bases 5’ and 3’ to each mutated base 
resulting in 1,536 possible mutated pentanucleotides) identified in 119 breast cancer genomes. 



Pearson correlation of 0.91. It should be noted that Signature BC-EX-S-1 is extracted 

from exome sequencing data while Signature BC-WG-S1 is extracted from whole-

genome sequencing data. As exome sequencing samples only ~1.5% of the human 

genome, the examined trinucleotide frequencies in exomes is different than the one 

found in whole-genome sequencing. Correcting for the trinucleotide frequencies in 

the exome derived mutational signatures improves the correlation between Signatures 

BC-WG-S1 and BC-EX-S1 to 0.95.  

The pattern of somatic substitutions of Signature BC-EX-S-2 is predominantly 

C>T, C>G, and C>A mutations at TpCpN trinucleotides. This exome-extracted 

signature resembles Signature BC-WG-S2, which is extracted from the mutational 

catalogues of whole-genomes. Nevertheless, Signature BC-EX-S-2 exhibits a strong 

preference of C>G mutations at TpCpN trinucleotides which is not as pronounced as 

the one in Signature BC-WG-S2. Thus, Signature BC-EX-S-2 is most likely a linear 

combination between Signatures BC-WG-S2 and BC-WG-S3 (Figure 3.1 and 3.6).  

Signature BC-EX-S-3 is characterized by a flat mutational pattern with only 

subtle features based on the immediate sequence context. This subtle pattern of 

Figure 3.6: Mutational signatures extracted from 884 breast cancer exomes. Signatures of 
mutational processes are extracted from the mutational catalogues of 884 breast cancer exomes. 
Three mutational signatures deciphered from the base substitutions (including their immediate 5’ 
and 3’ sequence context) identified in the 884 breast cancer exomes. Each signature is depicted on 
an independent panel, where each type of substitution is displayed in a different colour. Mutational 
signatures are plotted based on the exome trinucleotide frequency. 



mutations resembles to some degree two of the signatures extracted from whole-

genome sequencing data: Signature BC-WG-S-4 (Pearson correlation 0.65, after 

correcting for trinucleotide context) and Signature BC-WG-S-5 (Pearson correlation 

0.49, after correcting for trinucleotide context). Signature BC-EX-S-3 has almost no 

correlation with any of the other mutational signatures extracted from whole-genome 

sequencing data. Thus, Signature BC-EX-S-3 is likely a combination of at least two 

previously identified signatures: Signature BC-WG-S-4 and Signature BC-WG-S-5.  

The whole-genome signatures analysis is based on 654,308 somatic mutations 

and it reveals 6 distinct mutational signatures. In contrast, the exome signatures 

analysis is based on only 39,480 somatic substitutions and indels (~6% of the whole-

genome data) and it reveals only 3 mutational signatures. The performed analyses 

demonstrate that mutational catalogues from exomes can be used to extract signatures 

of mutational processes. Furthermore, regardless of the fact that the DNA sequencing 

and initial bioinformatics analysis of these data were performed by different 

sequencing centres, the mutational signatures deciphered using exome sequencing are 

very similar to the ones extracted from whole-genome sequencing data. This 

illustrates the overall reproducibility of the results together with some vulnerability,

particularly when the amount of data are limited or some of the mutational signatures 

are similar to each other. While using whole-genome sequencing data provides a great 

resolution for examining common mutational signatures, analysis of smaller, exome 

derived mutational catalogues (or catalogues from other subcomponents of the 

genome) may be beneficial as thousands of samples will allow sampling for the 

activity of mutational processes that are present only in rare cancer cases.  

Figure 3.7: Breast cancer exome mutational signatures with indels and dinucleotides. The 
mutational signatures analysis is extended to incorporate indels at microhomologies, indels at 
repetitive regions, and dinucleotide substitutions (i.e.,  alphabet). The percentage of mutations 
attributed to these three additional mutation types is displayed for all signatures that contribute at 
least 5%. Each signature is displayed in a different colour. 



The mutational signatures analysis of breast cancer exomes is extended to 

evaluate double nucleotide substitutions, indels at microhomologies, and indels at 

mono/polynucleotide repeats. The results from this analysis are consistent with the 

indel/dinuc mutational signatures analysis of whole breast cancer genomes (Figure 

3.2). Signature BC-EX-3 (which appears to be a mixture of Signatures BC-WG-S-4 

and BC-WG-S-5) associated with the majority (>80%) of indels at microhomologies 

and dinucleotide substitutions as well as with some (~29%) indels at repetitive 

elements (Figure 3.7). Furthermore, Signature BC-EX-1 accounted for ~70% of indels 

at repetitive elements (Figure 3.7). 

Analysis of smaller, exome derived mutational catalogues (or catalogues from 

other subcomponents of the genome) may also be useful in detecting biologically 

revealing features of mutational processes that are particular to coding, transcribed, 

non-transcribed, or other functionally distinct regions. Consistent with the strand-bias 

analysis of whole-genome cancer samples, Signature BC-EX-S1 exhibited a weak 

T>C strand-bias (Q = 7.2 × 10−4). In contrast, no C>A strand-bias is observed in any 

of the mutational signatures derived from exome sequences (Figure 3.8). This could 

be due to the lack of somatic mutations to definitively separate Signature BC-EX-S-3

into two distinct mutational signatures. Further, incorporating transcriptional strand in 

the analysis of the 884 breast cancer exomes reveals strand-bias in BC-EX-S-2 for

C>T and C>G mutations with a preference for specific trinucleotide context, i.e., 

Figure 3.8: Breast cancer exome mutational signatures with strand-bias. Signatures of 
mutational processes with strand-bias are extracted from the mutational catalogues of 884 breast 
cancer exomes. Three mutational signatures are deciphered from the base substitutions (including 
their immediate 5’ and 3’ sequence context). Each signature is depicted on an independent panel, 
where each type of substitution is highlighted in a different colour. The probability of a mutation to 
occur on the transcribed strand is depicted in blue, while red is used to display the probability of a 
mutation to occur on the untranscribed strand. Mutational signatures are plotted based on the exome 
trinucleotide frequency. 



TpCpT (Figure 3.8). However, this strand-bias is not observed in the versions of 

Signature BC-EX-S-3 (i.e., Signatures BC-WG-S-2 and BC-WG-S-3) extracted from 

whole cancer genome sequences, which include complete footprints (including 

introns and untranslated exons) of protein coding genes, suggesting that the 

underlying mechanism generating strand-bias is restricted to exons (Figures 3.8 and 

3.3). Examining only the exon compartments of the whole cancer genome sequences 

reveals the presence of this strand-bias in samples with substantial exposure to 

Signature BC-WG-S-2 and/or Signature BC-WG-S-3, supporting this conclusion. 

This result is biologically surprising and the mechanism underlying this difference in 

strand-bias between exons and introns is currently unknown. 

3.5 Deriving and validating consensus mutational signatures in breast cancer 

In the previous two sections, the signatures of the operative mutational 

processes in breast cancer are extracted by performing two independent analyses. One 

encompasses 654,308 somatic substitutions and indels derived from the mutational 

catalogues of 119 whole breast cancer genomes and reveals the existence of 6 

mutational signatures. The second analysis examines only 39,480 somatic mutations 

from the mutational catalogues of 884 breast cancer exomes and it reveals the 

existence of 3 mutational signatures. While the patterns of somatic mutations between 

the signatures extracted from genomes and exomes are very similar, in this section, I

Figure 3.9: Clustering of breast cancer signatures derived from whole-genome and exome 
data. The originally deciphered mutational signatures are displayed inside the dendrogram near 
their respective branches. The consensus mutational signatures are displayed on the right-hand side 
of the dendrogram. Each of the six unique clusters is displayed in a distinct colour. Cosine distance 
threshold for separating the signatures into clusters is set at 0.09. Note that any threshold between 
0.09 and 0.29 results in exactly the same clusters. 



use the previous two analyses and leverage unsupervised hierarchical clustering to 

derive consensus mutational signatures that are operative in breast cancer. The 

previously extracted 9 mutational signatures (3 from exome mutational catalogues 

and 6 from genome mutational catalogues) are clustered using a cosine distance 

(Figure 3.9). The exome derived mutational signatures are re-normalized towards the 

genome trinucleotide frequency prior to clustering and a threshold of 0.09 is used to 

separate the original 9 mutational signatures into 6 unique consensus clusters (Figure 

3.9). 

The value of 0.09 is selected as a conservative measure for the different 

mutational signatures operative in breast cancer. This threshold is low enough to not 

cluster mutational signatures with different characteristics (e.g., Signature BC-WG-S5 

which exhibits C>A strand-bias and Signature BC-WG-S4 which is associated with 

indels at microhomologies) and it is high enough to cluster together extremely similar 

mutational signatures (e.g., Signature BC-EX-S1 and Signature BC-WG-S1, which 

have a Pearson correlation of 0.95). Nevertheless, this threshold may result in a 

conservative estimate of the consensus mutational signatures as it may be clustering 

and mixing together distinct mutational patterns.  

Each consensus mutational signature is derived using a weighted average of 

the signatures belonging to its respective cluster. For example, Signature BC-2 is 

constructed as a weighted average of genome Signature BC-WG-S2, which accounts 

for 152,762 somatic mutations, and exome Signature BC-EX-S2, which accounts only 

for 19,922 somatic mutations (Figure 3.9). As the majority of somatic mutations are 

found in the whole-genome sequencing data, in this case, the patterns of somatic 

mutations in the consensus mutational signatures are visually indistinguishable from 

the ones derived from whole-genome sequencing data (Figure 3.1). Thus, the pattern 

of mutations of the consensus Signature BC-2 is very similar to the one of Signature 

BC-WG-S2. It should be noted that the number of mutations attributed to a consensus 

mutational signature in a sample is set to the number of mutations of the original 

mutational signature identified in this sample and belonging to the cluster used to 

derive the consensus mutational signature. For example, Signature BC-2 contributes 

69 somatic mutations in exome sample PD6042a as this is the number of somatic 

mutations attributed to Signature BC-EX-S2 in this sample. In total, Signature BC-2 

accounts for 172,684 somatic mutations in the exome and genome breast cancer data 

(~24.9% of all mutations used in this breast cancer analysis).  



In addition to deriving the consensus mutational signatures, in this section, I

validate these signatures to check whether any of them might be due to sequencing 

artefacts or bioinformatics analysis. Validating a mutational signature requires 

ensuring that a large set of somatic mutations attributed to its pattern is genuine in at 

least one sample. Validation is complicated as multiple mutational processes are 

usually operative in most cancer samples, and thus every individual somatic mutation 

can be probabilistically assigned to several mutational signatures. To overcome this 

limitation, when possible, I examine the curated dataset for samples that are

predominantly generated by one mutational signature (i.e., more than 50% of the 

somatic mutations in the sample belong to an individual mutational signature) and for 

which validation data were available. The optimal sample for validating each of the 

six mutational signatures is identified and a subset of somatic mutations characteristic 

for this signature (e.g., C>T and C>G substitutions at TpC dinucleotides for Signature 

BC-2) are chosen for validation through re-sequencing with an orthogonal sequencing 

technology. 

The results reveal that Signatures BC-1, BC-2, BC-3, BC-4 and BC-5 are most 

likely genuine biological patterns of somatic mutations as they have validation rates 

of more than 90% (Table 3.2). In contrast, Signature BC-6 is probably due to a 

sequencing artifact as 98% of the mutations characteristic for this signature (i.e., T>G 

at GpTpG trinucleotides) failed to validate using an alternative orthogonal sequencing 

approach. Further investigation into this signature reveals that it is an artifact specific 

to the configuration of some Illumina sequencing machines at the Wellcome Trust 

Sanger Institute. 

Table 3.2: Validating consensus mutational signatures found in breast cancer. Validation is performed with an 
orthogonal sequencing approach. The precise validation approach is outlined in the text.  



3.6 Prevalence of mutational processes in breast cancer samples 

In the previous sections of this chapter, I extract mutational signatures 

separately from exome and 

genome sequencing data, 

and identified the consensus 

mutational signatures 

operative in breast cancer. 

However, the developed 

computational approach 

(chapter 2) also allows 

quantifying the number of 

somatic mutations attributed 

to each mutational signature 

in each cancer sample.  

An example of a selected set of 25 cancer samples is displayed in Figure 3.10 

(note that the contributions of all 

mutational signatures in all 

examined cancer samples is 

provided in Appendix V). This plot 

reveals the diversity of the activity 

of the mutational processes 

underlying the signatures identified 

in these breast cancer samples. For 

example, a small minority of 

samples exhibit a hypermutator 

phenotype with somatic mutational 

patterns best explained by 

Signatures BC-2 and BC-3 (Figure 

3.10).  A further subset of samples 

seems to be overwhelmed by the 

activity of the mutational process 

underlying Signature BC-4. In 

contrast, Signature BC-1 is 

Figure 3.10: Contributions of mutational signatures in a 
selected set of 25 breast cancer samples. Each sample is 
displayed as a column with a height corresponding to the number 
of somatic mutations per megabase found in this sample. Every 
column is proportionately coloured to reflect the percentage of 
mutations attributed to different mutational signatures. 

Figure 3.11: Summary of the contributions of the 
mutational signatures in breast cancer. (A) 
Percentage of total mutations contributed by each of 
the operative mutational signatures. (B) Percentage 
and number of samples in which each mutational 
signature contributes significant number of somatic 
mutations. For most signatures, significant number of 
mutations in a sample is defined as more than 100 
substitutions or more than 25% of all mutations in that 
sample. Mutational signatures are displayed in distinct 
colours.



ubiquitously found at low levels in almost every examined sample (Figure 3.10).  

 In addition to examining the contributions of mutational signatures at the 

level of individual samples, one can evaluate the contributions of these signatures 

across all breast cancer samples and thus provide a mutational signature summary 

(Figure 3.11). Such an evaluation reveals that while Signature BC-1 accounts for only  

~35% of all somatic mutations, it is the most prevalent mutational signature in breast 

cancer as it is found in 81% of all examined samples (Figure 3.11). In contrast, the 

next most prevalent signature is Signature BC-4, which is found in only 29% of the 

samples. Examining the prevalence of mutational signatures across breast cancer 

samples provides the means to propose etiologies underlying these mutational 

signatures based on statistical associations. 

 

3.7 Etiology of the consensus mutational signatures in breast cancer 

The analysis of breast cancer samples reveals the signatures of 6 distinct 

mutational processes. However, no molecular mechanisms or etiologies are proposed 

here for the identified mutational signatures. In principle, several approaches can be 

leveraged to make propositions for the mechanisms of the underlying mutational 

mechanisms. In this section, I consider potential mechanisms or underlying causes by 

comparing signatures with mutation patterns of known causation in the scientific 

literature or by associating contributions of mutational signatures with 

epidemiological and biological features specific for breast cancer. 

The mutational pattern of Signature BC-1 is predominantly C>T mutations 

occurring at CpG dinucleotides. This signature is likely due to deamination of 5-

methylcytosine, a relatively well-characterized endogenous mutational process 

present in most normal and neoplastic cells (chapter 1).  

Signature BC-2 exhibits predominantly C>T mutations occurring at TpC 

dinucleotides, while Signature BC-3 generates mostly C>G substitutions occurring at 

TpC dinucleotides. On the basis of similarities in the sequence context of cytosine 

mutations caused by APOBEC deaminases in experimental systems, these two 

mutational signatures may be attributable to the activity of APOBEC1, APOBEC3A 

and/or APOBEC3B (chapter 1). Previous experimental studies have demonstrated that 

the activity of these proteins results in enzymatic deamination of cytosine to thymine 

at TpC dinucleotides and it has been speculated that these C>T mutations arise 

 Furthermore, it has been shown that these 



deaminases can also generate C>G substitutions at TpC dinucleotides and it has been 

suggested that this mutational pattern is generated when an APOBEC deaminated 

cytosine is excised by uracil-DNA glycosylase with subsequent non-templated DNA 

replication across the abasic site by REV1 (Taylor et al., 2013). Thus, Signature BC-2 

is likely due to the activity of the APOBEC family of deaminases, while Signature 

BC-3 encompasses an interaction between APOBEC enzymes and REV1.  

Substantial numbers of larger deletions (up to 50 bp) with overlapping 

microhomology at breakpoint junctions are found in some breast cancer samples with 

major contributions from Signature BC-4 (Figure 3.2). A subset of breast cancer cases 

is known to be due to inactivating mutations in BRCA1 and BRCA2, and the presence 

of Signature BC-4 is strongly associated (Q = 1.6 × 10−8) with BRCA1 and BRCA2

mutations (Figure 3.12). No other mutational signature associated with the numbers of 

mutations in samples harbouring BRCA1 and/or BRCA2 mutations (Figure 3.12). 

BRCA1 and BRCA2 are implicated in homologous-recombination-based DNA double-

strand break repair. Abrogation of their functions results in recruitment of non-

homologous end-joining mechanisms, which can use microhomology at 

rearrangement junctions to re-join double-strand breaks, to take over DNA double-

strand break repair. Indeed, almost all cases with BRCA1 and BRCA2 mutations 

showed a large contribution from Signature BC-4. However, some cases with a 

substantial contribution from Signature BC-4 do not have BRCA1 and BRCA2

Figure 3.12: Samples harbouring BRCA1/2 mutations and contributions of mutational 
signatures. Samples are separated into two sets: BRCA1/2 positive samples (i.e., with BRCA1/2 
mutations, green) and BRCA1/2 negative samples (i.e., without BRCA1/2 mutations orange). A box 
plot of the mutations contributed by each mutational signature is displayed for each of the two sets. 
Outliers with more than 2.5 mutations per megabase are not shown but they are included in the 
statistical analysis. The only statistically significant difference in signature’s contributions between 
the BRCA1/2 positive and negative sets is the one due to Signature BC-4 (Q = 1.6 × 10−8). 



mutations, suggesting that other mechanisms of BRCA1 and BRCA2 inactivation or 

abnormalities of other genes may also generate this mutational signature.  

Evaluating the enrichment of mutational signatures based on the molecular 

subtypes of breast cancer reveals that estrogen receptor negative breast cancer 

samples have significantly higher numbers of mutations due to Signature BC-4, Q = 

7.9 × 10−5, and Signature BC-5, Q =  1.6 × 10−6 (Figure 3.13). No other molecular 

subtype associated with the numbers of somatic mutations attributed to any other

mutational signature. Estrogen receptor negative breast cancer samples are enriched 

for BRCA1 and BRCA2 

mutations. To evaluate whether 

the differences of contributions of 

mutational signatures are due to 

BRCA1/2 mutations, these 

samples are re-examined after 

stratification. BRCA1/2 wild-type 

samples do not show statistically 

significant differences based on 

their estrogen receptor status for 

Signature BC-4 (Q =  0.09). However, estrogen receptor negative BRCA1/2 wild-type 

samples have significantly higher numbers of mutations attributable to Signature BC-

5 when compared to estrogen 

receptor positive BRCA1/2 

wild-type breast cancers (Q =  

3.8 × 10−3). 

The performed 

validation experiments (Table 

3.2) indicate that Signature BC-

6 is most likely a centre specific 

sequencing artifact.  

 Lastly, I evaluate the 

correlations between age of 

diagnosis and the number of 

mutations attributable to each 

Figure 3.14: Age of diagnosis and mutations due to 
different mutational signatures. Each sign corresponds 
to a contribution of a given mutational signature for a 
patient at a given age. From the six mutational signatures 
identified in breast cancer, only Signature BC-1 (shown in 
red) correlates with age of diagnosis. Signatures BC-2 
(blue) and BC-4 (green) are shown to illustrate the lack of 
correlation of other mutational signatures. 

Figure 3.13: Estrogen receptor positive/negative 
samples and contributions of mutational signatures. 
Samples are separated into two sets: estrogen receptor 
negative samples (red) and estrogen receptor negative 
samples (green). The distributions of somatic mutations 
between the two sets are compared for each of the 
mutational signatures.  



signature in each sample. Only Signature BC-1 exhibited a strong positive correlation 

with age of diagnosis, Q =  1.5 × 10−8 (Figure 3.14). The mutations in a cancer 

genome may be acquired at any stage in the cellular lineage from the fertilized egg to 

the sequenced cancer cell. The correlation with age of diagnosis is consistent with the 

hypothesis that a substantial proportion of Signature BC-1 mutations in cancer 

genomes have been acquired over the lifetime of the cancer patient, at a relatively 

constant rate that is similar in different people, probably in normal somatic tissues. 

 

3.8 Discussion  

  In this chapter of the thesis, I examine the mutational catalogues of 119 breast 

cancer genomes as well as 884 breast cancer exomes. Mutational signatures are 

deciphered separately from genome and exome sequencing data. The signatures 

analysis incorporated somatic single base substitutions and their immediate 

sequencing context as well as indels at mono/polynucleotide repeats, indels at 

microhomologies, and dinucleotide substitutions.  

 The identified genome-based and exome-based mutational signatures are used 

to derive the 6 consensus breast cancer signatures. Validation using an orthogonal 

sequencing technology reveals that one of these mutational signatures is most likely 

due to a sequencing artifact, while the remaining five are most likely genuine. An 

etiology is proposed for each of these five mutational signatures based on similarities 

of the mutational patterns with experimental data previously reported in the literature 

or a statistical association with a specific molecular phenotype.  

Lastly, it should be noted that one of the objectives of this chapter is to serve 

as an exemplar for performing mutational signatures analysis in a cancer type. The 

next chapter presents analogous analyses performed for another 29 types of human 

cancer. 



 

 

 

 

 

 

 

Chapter 4 
Signatures of mutational processes in human cancer 
 

4.1 Introduction 

In the previous chapter of this thesis, I applied a newly developed 

computational approach to somatic mutational data derived from breast cancer 

genome and exome sequences, which revealed multiple signatures with distinct 

patterns of somatic mutations. Comparing these mutational patterns with the scientific 

literature as well as statistically associating them with molecular phenotypes provided 

an indication for the etiology of the mutational processes responsible for these 

signatures. In this chapter, I expand the scope of the mutational signatures analysis 

and apply the developed computational framework to 30 distinct cancer types. The 

approach taken in this chapter is analogous to the one used for breast cancer in the 

previous chapter; mutational signatures are extracted from mutational catalogues 

based on the , , , and  alphabets separately for each cancer type (with 

further separation for samples derived from whole-genome and exome sequencing in 

a single cancer type). The deciphered mutational signatures are hierarchically 

clustered, as demonstrated in the previous chapter, to derive the consensus mutational 

signatures in human cancer. In this chapter, I will focus on extracting the signatures of 

the operative mutational processes in 7,042 samples across 30 cancer classes, 

examining their patterns of somatic mutations, and discussing them in the context of 

the different cancer types in which they are found. It should be noted that this chapter 

does not discuss the potential etiologies of the identified consensus mutational 

signatures since these will be the focus of chapter 5. 

 



4.2 Data generation and filtering of mutational catalogues 

Similarly to breast cancer, no data were generated solely for the purposes of 

this thesis. Rather, I curate already identified somatic mutations from freely available

previously published and (at the time) unpublished data. The curated freely available 

data are taken from three distinct sources: 

 The data portal of The Cancer Genome Atlas (TCGA) 

 The data portal of the International Cancer Genome Consortium (ICGC) 

 Previously published in peer-review journals cancer genomics mutational data: 

(Agrawal et al., 2011; Barbieri et al., 2012; Berger et al., 2011; Biankin et al., 

2012; Dulak et al., 2013; Fujimoto et al., 2012; Govindan et al., 2012; Grasso et 

al., 2012; Gui et al., 2011; Imielinski et al., 2012; Jiao et al., 2011; Jones et al., 

2012a; Jones et al., 2010; Krauthammer et al., 2012; Le Gallo et al., 2012; Liu 

et al., 2012a; Liu et al., 2012b; Love et al., 2012; Morin et al., 2011; Nik-Zainal 

et al., 2012; Peifer et al., 2012; Puente et al., 2011; Pugh et al., 2013; Rudin et 

al., 2012; Sausen et al., 2013; Seo et al., 2012; Seshagiri et al., 2012; Shah et al., 

2012; Stephens et al., 2012; TCGA, 2012; Wang et al., 2011; Wei et al., 2011; 

Wiegand et al., 2010; Wu et al., 2011; Zang et al., 2012; Zhang et al., 2013) 

The unpublished data are generated internally by the Cancer Genome Project 

(CGP) or donated by collaborating investigators that were willing to participate in the 

performed large-scale pan-cancer mutational signatures analysis. The majority of 

exome data are taken from the ICGC data portal, TCGA data portal, or from the 

abovementioned published peer-reviewed publications. In contrast, the majority of 

whole-genomes are previously unpublished data. A summary of the number of 

Figure 4.1: Samples used for deciphering signatures of mutational processes in human cancer. 
Mutational catalogues of (A) 7,042 primary cancers derived from 30 different cancer types are 
examined for mutational signatures, including (B) 507 whole cancer genomes with matched normal 
pairs. 



samples based on cancer types is shown in Figure 4.1; in addition, a complete list 

including all samples, all examined cancer types, and their respective data sources is 

provided in Appendix II.  

In total, I compiled the mutational catalogues of 7,042 primary cancers of 30 

different classes: 507 from whole-genome and 6,535 from exome sequences (Figure 

4.1). In all cases, normal DNAs from the same individuals have been sequenced to 

establish the somatic origin of the variants. The somatic mutations are extensively

filtered to remove germline polymorphisms and sequencing artefacts as previously 

described for breast cancer (see chapter 3) and the final filtered dataset contains

4,938,362 somatic substitutions and small insertions/deletions (indels). The somatic 

mutations found in these 7,042 matched normal tumour pairs are used to decipher the

mutational signatures from catalogues based on the , , , and 

alphabets (see below). 

Examining the mutational catalogues of the 7,042 primary cancers revealed 

that the prevalence of somatic substitutions and indels is highly variable between and 

within cancer classes, ranging from about 0.001 somatic mutations per megabase to 

more than 400 somatic mutations per megabase (Figure 4.2). Certain childhood 

cancers carried fewest mutations whereas cancers related to chronic mutagenic 

exposures such as lung (tobacco smoking) and malignant melanoma (exposure to 

ultraviolet light) exhibited the highest prevalence. This variation in mutation 

prevalence is attributable to differences between cancers in the duration of the cellular 

Figure 4.2: Mutational burden in human cancer. Every dot represents a sample whereas the red horizontal 
lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the 
number of mutations per megabase whereas the different cancer types are ordered on the horizontal axis based 
on their median numbers of somatic mutations. ALL stands for acute lymphoblastic leukaemia; AML for acute 
myeloid leukaemia; CLL for chronic lymphocytic leukaemia. 



lineage between the fertilized egg and the sequenced cancer cell and/or to differences 

in somatic mutation rates during the whole or parts of that cellular lineage (Stratton et 

al., 2009). 

 

4.3 Deciphering signatures of mutational processes in 30 human cancer types 

Mutational signatures are extracted using the previously defined four 

mutational alphabets: , , , and  (Appendix I). Briefly,  examines 

all somatic substitutions and additionally includes information on the sequence 

context of each substitution. This classification has 96 possible mutations since there 

are six classes of base substitution C>A, C>G, C>T, T>A, T>C, T>G (all 

substitutions are referred to by the pyrimidine of the mutated Watson-Crick base pair) 

and the bases immediately 5’ and 3’ to each mutated base are incorporated. The   

alphabet extends the  alphabet by incorporating three additional mutation types: 

dinucleotide substitutions, indels at repetitive elements, and indels at 

microhomologies. The  alphabet examines substitutions and their immediate 

sequence context; however, this alphabet incorporates two bases 5’ and 3’ to each 

mutated base instead of the one base used in the  alphabet. Lastly, the  

alphabet examines all somatic mutations in transcribed regions of the human genome. 

This alphabet has all the features of  but it also incorporates information on 

whether the mutation is occurring on the transcribed or the untranscribed strand of 

protein-coding genes. The 96 and 1,536 substitution classifications are particularly 

useful for distinguishing mutational signatures which cause the same substitutions but 

in different sequence contexts. In contrast, the  alphabet allows the evaluation of 

the amount of indels and dinucleotide substitutions caused by different mutational 

processes, while the  alphabet is leveraged to evaluate the activity of repair 

processes operative on the transcribed regions of the human genome. 

 Mutational signatures are deciphered independently for each of the 30 cancer 

types following the same analysis procedure as the one previously used in breast 

cancer (chapter 3). In total, 106 mutational signatures based on the  alphabet are 

extracted from these 30 cancer types. These mutational signatures are clustered using 

an unsupervised hierarchical clustering, where a cosine distance is used as a measure 



for comparing mutational signatures (Figure 4.3). Any signature derived from exome 

sequencing data is re-normalized towards the genome trinucleotide frequency prior to 

applying the clustering procedure.   

A threshold of 0.18 is used to separate the original 106 mutational signatures 

into 27 unique clusters. This threshold is conservatively selected based on visual 

inspection and prior biological knowledge. More specifically, annotation 1 in Figure 

4.3 shows the separation of two mutational patterns overwhelmed by C>T mutations 

with a difference in their immediate sequence context (later referred to as Signature 7 

and Signature 11, Figure 4.5). The upper branch of annotation 1 contains patterns of 

mutations that are consistent with exposure to ultraviolet light, while the signatures in 

the lower branch are exclusively found in samples that are treated with an alkylating 

agent (see chapter 5). Since these two sets of mutational signatures have distinct 

patterns and etiologies, the selected clustering threshold needs to separate them and as 

such it needs to be lower than 0.184. Visual inspection of clustering of the original

mutational signatures (annotation 2, Figure 4.3) shows that all of these signatures

possess similar patterns of somatic mutations (e.g., C>T at CpG). However, these 

patterns are contaminated since, most probably, they cannot be extracted with the 

Figure 4.3: Clustering of mutational signatures. Clustering of 106 original mutational signatures 
deciphered from the mutational catalogues of 7,042 cancer samples. Each of the 27 unique clusters is 
displayed in a different colour. The cosine distance threshold for separating the signatures into 
clusters is set at 0.18 based on annotation 1 (green) and annotation 2 (red). 



same accuracy from different datasets (e.g., less than 40 samples are used for 

signature analysis in cervical cancer versus the almost 1,000 samples used for 

signature analysis in breast cancer). To ensure that these visually similar mutational 

signatures cluster together, a threshold of 0.18 is selected. It should be noted that 

visual examination may be misleading and it may result in clustering mutational 

signatures that are different. Nevertheless, this analysis provides a conservative 

estimation of the mutational signatures found in human cancer and it is foreseeable 

that some of the reported mutational signatures are, in fact, mixtures of multiple 

distinct signatures. Only further samples across all types of human cancer will allow a 

further separation of these mutational signatures. As was previously performed for 

breast cancer, each consensus mutational signature is derived using a weighted 

average of the signatures belonging to its respective cluster and the number of somatic 

mutations attributed to a consensus mutational signature in a sample is set to the 

number of mutations of the original signature found in that sample.  

In addition to deciphering mutational signatures using mutational catalogues

based on the  alphabet, an analysis is performed also for the , , and 

alphabets. In all cases the consensus signatures results from the  and 

catalogues are consistent with the previous observations based on the  alphabet. 

However, deciphering mutational signatures for the  alphabet produced results 

only for a few of the cancer types (see below). The inability to decipher mutational 

signatures using the 1,536 mutation types is, most probably, due to the absence of 

sufficient numbers of somatic mutations in the examined mutational catalogues. This 

is perhaps unsurprising

as ~93% of the 

examined mutational 

catalogues are derived 

from exome sequences, 

which harbour very few 

somatic mutations. 

Furthermore, the 

majority of whole-genome sequences are from childhood cancers and they have a low 

mutational burden (Figure 4.2). 

Figure 4.4: Types of statuses for validating mutational 
signatures. 



4.4 Validating consensus mutational signatures 

Validating a signature of a mutational process requires ensuring that a large 

set of somatic mutations, with a mutational spectrum resembling the one of the 

mutational signature of interest, is genuine in at least one sample in which this process 

is operative. As previously discussed with regard to breast cancer (chapter 3), 

validation is complicated as various mutational processes are found in a single cancer 

sample and, as such, every individual somatic mutation can be probabilistically 

assigned to several mutational signatures. In this analysis, I leveraged the same 

approach as the one used in validating mutational signatures in breast cancer: the 

dataset is examined for samples that are predominantly generated by one mutational 

signature (i.e., more than 50% of the somatic mutations in the sample belong to an 

individual mutational signature). Since I did not have access to the biological 

samples, I mostly relied on previously performed validation experiments (e.g., 

samples in TCGA sequenced by two different groups using two different next-

generation sequencing technologies) as well as visual validation of BAM files by an 

experienced curator. Based on the data, I identified the optimal available sample for 

every mutational signature and attempted to validate a subset of somatic mutations 

attributed to this signature using one of three methods (Figure 3.3): 

 Validation by re-sequencing with an orthogonal sequencing technology 

 Validation by re-sequencing with the same sequencing technology 

(including RNA-Seq, bisulfide sequencing, etc.) 

 Validation by visual examination of somatic mutations performed by an 

experienced curator using a genomic browser and BAM files for both the 

tumour and its matched normal 

When possible, somatic mutations are validated by either re-sequencing with 

orthogonal technology or re-sequencing using the same sequencing technology. I 

resorted to visual validation only when there is no other possibility for validating a 

mutational signature. 22 of the 27 consensus mutational signatures were validated 

(Table 4.1 and Figure 4.4). Three of the mutational signatures failed validation 

(termed Signatures R1 to R3), while another two mutational signatures were not 

validated (termed Signatures U1 and U2) due to lack of access to biological samples 

and BAM files for the samples with sufficient numbers of somatic mutations 

generated by these two mutational signatures. A validation summary for all consensus 



mutational signatures is provided in Table 4.1. The validated mutational signatures 

are depicted in Figure 4.5, while the signatures that failed validation and the 

signatures that remain with unknown validation status are shown respectively in 

Figure 4.6 and Figure 4.7.  

4.5 The landscape of consensus mutational signatures in human cancer 

Applying the developed computational approach to the 7,042 samples derived 

from 30 cancer types revealed 22 distinct and validated mutational signatures (Figure 

4.5; an individual figure for each signature can be found in Appendix III). These 22 

mutational signatures show substantial diversity in their patterns of somatic 

mutations. There are signatures characterized by the prominence of only one or two of 

the 96 possible substitution mutations, indicating a remarkable specificity of mutation 

type and sequence context. One such example is Signature 10, which is 

Mutational 
Signature

Validation 
Type 

Total Mutations in 
Sample 

Total Mutations 
by Signature 

Examined 
Mutations 

Validated 
Mutations 

Signature 1A VA 48 40  48 48 (100%) 
Signature 1B VA 58 55 58 56 (97%) 
Signature 2 VA 76 75 76 72 (95%) 
Signature 3 VA 70 65 70 69 (99%) 
Signature 4 VA 196 192 196 182 (95%) 
Signature 5 VC 332 286 91 75 (82%) 
Signature 6 VA 598 440 598 540 (90%) 
Signature 7 VA 470 432 470 412 (88%) 
Signature 8 VA 4,514 1,558 250 227 (91%)
Signature 9 VB 4,423 2,811 4,423 3,977 (90%) 
Signature 10 VA 12,848 10,558 12,848 9,420 (74%) 
Signature 11 VA 102 100 102 67 (66%) 
Signature 12 VC 2,808 2,327 100 93 (93%) 
Signature 13 VA 8,612 5,697 200 190 (95%) 
Signature 14 VC 12,984 12,984 100 86 (86%) 
Signature 15 VA 784 784 31 30 (97%) 
Signature 16 VA 793 678 73 69 (95%) 
Signature 17 VB 2,627 1,959 2,627 2,476 (94%) 
Signature 18 VA 158 156 158 142 (90%) 
Signature 19 VC 769 769 103 102 (99%) 
Signature 20 VA 885 488 198 198 (100%) 
Signature 21 VC 6,790 4,368 121 103(85%) 
Signature U1 N/A N/A N/A N/A N/A 
Signature U2 N/A N/A N/A N/A N/A 
Signature R1  FC 11,869 7,955 100 2(2%) 
Signature R2 FC 738 738 50 1(2%) 
Signature R3 FC 385 235 83 3(4%) 
Table 4.1. Validating consensus mutational signatures found in human cancer. The precise validation approach is 
outlined in the text. The codes of validation types are explained in Figure 4.4.



predominantly characterized by C>A mutations at TpCpT and C>T mutations at 

TpCpG. At the other extreme, some mutational signatures exhibit a more-or-less 

equal representation of all 96 mutations. Examples of such mutational signatures are 

Signatures 3 and 8. A large proportion of the validated consensus mutational 

signatures are characterized predominantly by C>T substitutions at different 

trinucleotide sequence contexts: Signatures 1A, 1B, 6, 7, 11, 15, and 19. Signatures 4, 

8, and 18 have a prevalence for C>A mutations, while Signatures 5, 12, 16, and 21 

exhibit a preference for T>C substitutions. Signatures 9 and 17 exhibit a preference of 

T>G mutations at specific sequence contexts. Lastly, no mutational signatures in this 

series are dominated by T>A substitutions.  

Figure 4.5: Consensus validated mutational signatures in human cancer. Each signature is displayed according 
to the 96 substitution classification defined by the substitution class and sequence context immediately 3’ and 5’ to 
the mutated base. The probability bars for the six types of substitutions are displayed in different colours. The 
mutation types are on the horizontal axes, whereas vertical axes depict the percentage of mutations attributed to a 
specific mutation type. All mutational signatures are displayed on the basis of the trinucleotide frequency of the 
human genome. A higher resolution of each panel is found Appendix III. Asterisk indicates mutation type exceeding 
20%. 



Signatures 1A and 1B are observed in 25 of the 30 cancer classes (Figure 4.9). 

Both are characterized by a prominence of C>T substitutions at NpCpG 

trinucleotides. Since they are almost mutually exclusive among tumour types (Figure 

4.9) they probably represent the 

same underlying process, with 

Signature 1B representing a 

less efficient separation from 

other signatures in some cancer 

types. Signature 1A/B is most 

likely related to the relatively 

elevated rate of spontaneous 

deamination of 5-methyl-

cytosine which results in C>T 

transitions and which 

predominantly occurs at 

NpCpG trinucleotides (Pfeifer, 

2006). This mutational process 

operates in the germline, where 

it has resulted in substantial depletion of NpCpG sequences, as well as in normal 

somatic cells (Welch et al., 2012). 

 In addition to the 22 

consensus mutational signatures 

that validated (Table 4.1), three 

signatures failed validation, and 

thus most likely reflect 

technology specific sequencing 

artefacts (Figure 4.6). Signature 

R1 is previously described in 

chapter 3 and is predominantly 

characterized by T>G mutations 

at GpGpTpGpG. Signature R2 

exhibits a C>A pattern of 

Figure 4.6: Consensus mutational signatures that failed 
validation. Each signature is displayed according to the 96 
substitution classification defined by the substitution class 
and sequence context immediately 3’ and 5’ to the mutated 
base. The probability bars for the six types of substitutions 
are displayed in different colours. The mutation types are 
on the horizontal axes, whereas vertical axes depict the 
percentage of mutations attributed to a specific mutation 
type. All mutational signatures are displayed on the basis 
of the trinucleotide frequency of the human genome. A 
higher resolution of each panel is found Appendix III. 
Asterisk indicates mutation type exceeding 40%. 

Figure 4.7: Consensus mutational signatures for which 
it is not possible to perform validation. Each signature is 
displayed according to the 96 substitution classification 
defined by the substitution class and sequence context 
immediately 3’ and 5’ to the mutated base. The probability 
bars for the six types of substitutions are displayed in 
different colours. The mutation types are on the horizontal 
axes, whereas vertical axes depict the percentage of 
mutations attributed to a specific mutation type. All 
mutational signatures are displayed on the basis of the 
trinucleotide frequency of the human genome. A higher 
resolution of each panel is found Appendix III. 



mutations with a preference for CpC and TpC dinucleotides. Finally, Signature R3 is 

predominantly composed of T>C mutations with a specific trinucleotide pattern 

(Figure 4.6). Interestingly, these mutational signatures are confined to samples from 

specific sequencing centres. Signature R1 is found in samples analysed by the Sanger 

Institute, Signature R2 in samples sequenced at the Broad Institute, and Signature R3 

is found only in data generated by the Baylor College of Medicine. This observation 

further confirms the suspicion that these three mutational processes reflect 

technical/analysis artefacts rather than real biological processes.  

For three of the 27 consensus mutational signatures, I was unable to identify 

available samples that could be used to validate these signatures (Figure 4.7). Both 

Signatures U1 and U2 exhibit a rather uniform pattern of mutations across the six 

types of substitutions without any mutation type exceeding 10%. It should be noted 

that the patterns of these two mutational signatures are different from the previously 

identified and validated uniform mutational signatures: Signature 3 and Signature 8 

(Figure 4.5). 

 Lastly, all of the previously identified breast cancer mutational signatures are 

found by this pan-cancer analysis. Breast cancer Signature BC-1 (chapter 3) has the 

same pattern of mutations as the global consensus Signature 1B, Signature BC-2 

corresponds to Signature 2, Signature BC-3 corresponds to Signature 13, Signature 

BC-4 corresponds to Signature 3, Signature BC-5 corresponds Signature 8, and 

Signature BC-6 corresponds to Signature R1. 

 

4.5.1 Consensus mutational signatures with transcriptional strand-bias 

The efficiency of DNA damage and DNA maintenance processes can differ 

between the transcribed and untranscribed strands of genes. The most celebrated 

cause of this phenomenon is transcription-coupled nucleotide excision repair (NER) 

that operates exclusively on the transcribed strand of genes and is recruited by RNA 

polymerase II when it encounters bulky DNA helix-distorting lesions (Hanawalt and 

Spivak, 2008). Evaluation of the efficiency of transcription-coupled DNA repair is 

done analogously to the analysis performed for breast cancer (chapter 3). Briefly, 



mutational signatures are re-extracted incorporating the transcriptional strand on 

which each mutation has taken place.  

Nine consensus signatures showed substantial differences in mutation 

prevalence between transcribed and untranscribed strands, known as transcriptional 

strand-bias (Figure 4.8; an individual figure for each signature can be found in 

Appendix IV). This strand-bias is observed only for validated mutational signatures 

(Figure 4.5) and it is absent in the signatures that failed validation (Figure 4.6) or for 

Figure 4.8: Consensus mutational signatures with strand-bias. Mutations are shown according to 
the 192 mutation classification incorporating the substitution type, the sequence context 
immediately 5’ and 3’ to the mutated base and whether the mutated pyrimidine is on the transcribed 
or untranscribed strand. The mutation types are displayed on the horizontal axis, whereas the 
vertical axis depicts the percentage of mutations attributed to a specific mutation type. A higher 
resolution version of all mutational signatures with transcriptional strand-bias is found in Appendix 
IV. 



which validation is not possible (Figure 4.7). In eight of these nine signatures the 

strand-bias is observed across the complete footprints of transcribed protein coding 

genes. In contrast, the strand-bias in Signature 2 is observed only in exons and it is 

lacking in intronic regions. 

Two of the nine mutational signatures likely implicate activity of 

transcription-coupled nucleotide excision repair. Signature 4 shows transcriptional 

strand-bias for C>A mutations (Figure 4.8). Signature 4 is observed in lung 

adenocarcinoma, squamous and small cell carcinomas, head and neck squamous, and 

liver cancers (Figure 4.9), most of which are caused by tobacco smoking. Therefore, 

Signature 4 is probably an imprint of the bulky DNA adducts generated by polycyclic 

hydrocarbons found in tobacco smoke and their removal by transcription-coupled 

NER (Pfeifer et al., 2002). The higher prevalence of C>A mutations on transcribed 

compared to untranscribed strands is consistent with the propensity of many tobacco 

carcinogens to form adducts on guanine. 

Similarly, Signature 7, mainly found in malignant melanoma, shows a higher 

prevalence of C>T mutations on the untranscribed compared to the transcribed strands 

consistent with the formation, through ultraviolet light exposure, of pyrimidine dimers 

and other lesions which are known to be repaired by transcription-coupled NER 

(Pfeifer et al., 2005). 

Beyond these known examples of DNA damage processed by transcription-

coupled NER, other signatures show strong transcriptional strand-bias: Signatures 1B, 

2, 5, 8, 10, 12, and 16. Notably, Signature 16, which is characterized by T>C 

mutations at ApTpA, ApTpG, and ApTpT trinucleotides and is observed in 

hepatocellular carcinomas, shows the strongest transcriptional strand-bias of any 

signature, with T>C mutations occurring almost exclusively on the transcribed strand 

(Figure 4.8). Similarly, Signature 12, which features T>C mutations at NpTpN 

trinucleotides, also found in hepatocellular carcinomas, shows strong transcriptional 

strand-bias with more T>C mutations on the transcribed than untranscribed strands 

(Figure 4.8). Based on the assumption that the transcriptional strand-biases in 

Signatures 12 and 16 are introduced by transcription-coupled NER, these currently 

unexplained signatures might be the result of bulky DNA helix distorting adducts on 

adenine. However, there is no prior basis for invoking transcription-coupled NER in 



the genesis of these signatures (or any of the other mutational signatures) and other 

causes of transcriptional strand-bias may exist. 

 

4.5.2 Mutational signatures with dinucleotide substitutions and indels 

Mutational signatures are re-extracted including, in addition to the 96 

substitution types, three further classes of mutation: dinucleotide substitutions, indels 

at short nucleotide repeats, and indels with overlapping microhomology at breakpoint 

junctions. This analysis also revealed 27 consensus mutational signatures (annotated 

on Figure 4.5). No indels or dinucleotide substitutions are found in the signatures that 

are not validated. Six of the validated mutational signatures are associated with indels, 

while five of the validated mutational signatures are associated with double nucleotide 

substitutions. 

Signature 1A and Signature 1B both associate with indels at repetitive 

elements. Interestingly, these mutational signatures do not contribute large amounts of 

indels (or substitutions) in any given sample but, rather, these mutational signatures 

are present at low background levels in almost all samples in which they are found. 

Four of the 22 base substitution signatures associated with large numbers of 

indels. Signature 6, which is characterized predominantly by C>T at NpCpG 

mutations, but is distinct from Signature 1A/B, contributes very large numbers of 

substitutions and small indels (mostly of 1bp) at nucleotide repeats to subsets of 

colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic cancers.  

Signature 15 and Signature 20 also contribute very large numbers of 

substitutions and small indels at nucleotide repeats but, compared to Signature 6, 

Signature 15 exhibits greater prominence of C>T at GpCpN trinucleotides, whereas 

Signature 20 contains C>A and T>C mutations. Signature 15 is found in several 

samples of lung and stomach cancer, whereas Signature 20 is found only in few 

gastric carcinomas (Figure 4.9). The origin of both mutational signatures is currently 

unknown. 

By contrast, substantial numbers of larger deletions (up to 50 bp) with 

overlapping microhomology at breakpoint junctions are found in breast, ovarian and 



pancreatic cancer cases with major contributions from Signature 3. In the chapter 3, I 

associated this particular mutational signature with inactivating mutations in BRCA1

and/or BRCA2 in breast cancer. This association will be further elaborated upon in the 

next chapter for ovarian and pancreatic cancers.  

Signatures 1B, 5, 4, 7, and 8 are associated with double nucleotide 

substitutions. Samples with Signature 1B, 5, or 8 have low numbers of dinucleotide 

substitutions. In contrast, overwhelming numbers of dinucleotide substitutions are

present in samples in which Signature 4 or Signature 7 is found. CC>AA/GG>TT or 

TC>AA/GA>TT are the predominant types of dinucleotide substitutions caused by 

Signatures 1B and 5. Signature 4 and 8 generate mostly CC>AA/GG>TT mutations, 

while Signature 7 is characterized by CC>TT/GG>AA mutations occurring 

predominantly at dipyrimidines.  

4.5.3 Mutational signatures with additional sequence context 

Mutational signatures are further extracted using mutational catalogues based 

on the  alphabet. Unfortunately, the majority of the examined cancer types are

Figure 4.9: Signatures of mutational processes and the cancer types in which they are found. 
Cancer types are ordered alphabetically as columns, whereas mutational signatures are displayed 
numerically as rows. ‘Other’ indicates mutational signatures for which validation was not performed 
or for which validation failed. 



derived from exome sequencing data and, as such, they harbour too few somatic 

mutations for this analysis. The examination of low numbers of somatic mutations 

based on a classification system that contains 1,536 types of mutations resulted in 

predominantly binary matrix data and, for the majority of cancer types, the analysis 

either fails or it does not reveal any further elaborations of the consensus mutational 

signatures. 

Nevertheless, there are four mutational signatures that are refined by this 

analysis. As previously demonstrated for breast cancer, Signature 2 and Signature 13 

exhibit a preference for a pyrimidine prior to the mutated TpC dinucleotide while the 

majority of Signature R1’s T>G substitutions occur at T>G at GpGpTpGpG 

pentanucleotides (chapter 3). Further, this analysis demonstrated that the T>X peaks 

at CpT dinucleotides characteristic for Signature 17 are, in fact, dependent on the 

presence of an adenine located 5’ prior to the dinucleotide; thus these peaks occur at 

ApCpTpN tetranucleotides (Q = 1.3 × 10−11; in all cases Q refers to a q-value, see 

chapter 7). Lastly, Signature 10 also displays a pentanucleotide pattern different than 

the one expected purely by chance (Q = 4.5 × 10−42). The three large peaks of 

Signature 10 are highly dependent on either an adenine or thymine two bases 5’ to the 

somatic mutation. 

4.6 Prevalence of consensus mutational signatures in human cancer  

The previous sections of this chapter discussed the identified consensus 

mutational signatures. In 

this section, I will 

examine and summarize 

their prevalence across the 

analysed 30 human cancer 

types. In most cancer 

classes at least two 

mutational signatures are 

observed, with a 

maximum of six in 

cancers of the liver, 

Figure 4.10: Prevalence of validated mutational signatures 
across all cancer types. The X-axis depicts the mutational 
signatures. The right Y-axis reflects the number of cancer types 
in which the validated consensus signature has been identified, 
while the left Y-axis indicates the percentage of samples from the 
data set of 7,042 cancers in which the signature contributed a 
significant number of somatic mutations. 



uterus, and stomach (Figure 4.9 and Figure 4.10). Although these differences may, in 

part, be due to the available data in each cancer type, it seems likely that some cancers 

have a more complex repertoire of mutational processes than others. Signature 1A/B 

is found in the majority of the samples (Figure 4.10), while Signatures 2, 3, 4, 5, and 7 

are present in at least ~5% of the samples. Notably Signature 2 is found in 16 of the 

30 cancer types and in ~14% of all samples.  

Most individual cancer genomes exhibit more than one mutational signature 

and many different combinations of signatures are observed (Figure 4.11). An 

individual figure for each cancer type depicting the contributions of the mutational 

signatures in each sample of that cancer type can be found in Appendix V. Further, an 

individual figure for each cancer type depicting the summary of the signatures’ 

contributions in that cancer type can be found in Appendix VI.  Liver cancers have 

the richest mutational landscape since the average liver cancer sample has at least 5 

signatures imprinted by different mutational processes (Appendix V).   

The patterns of contribution to individual cancer samples vary markedly 

between signatures. Signature 1A/B contributes relatively similar numbers of 

mutations to most cancer cases whereas most other signatures contribute 

overwhelming numbers of mutations to some cancer samples but very few to others of 

the same cancer class. Examples of such mutational signatures are Signatures 2, 3, 4, 

6, 7, 9, 10, 11, and 13 (Figure 4.11).  

Some mutational signatures are found in significant proportions of samples in 

some cancer types, while contributing only to a subset of samples in other cancer 

types. Notably, Signature 2 is identified in the majority of cervical (79%), thyroid 

(52%), and bladder (51%) samples but it is found only in a limited set of multiple 

myelomas (6%), B-cell lymphomas (11%), and breast cancers (18%) (Appendix V). 

Other examples include: Signature 6, identified in 20% of colorectal samples but only 

present in 0.6% of prostate cancer samples; Signature 13, identified in 67% of bladder 

samples but only present in 7% of breast cancer samples; Signature 17, found in 44% 

of oesophageal cancers but only in 14% of stomach cancers; Signature 3, found in 

30% of breast cancers but only in 12% of pancreatic cancers (Appendix V). The 

reasoning behind the tissue specificity of the identified mutational signatures remains 

elusive. However, it is possible that some (or even most) mutational signatures are not 

as variable by cancer type as currently appears to be the case and examination of more 



genomics data will reveal the presence of these mutational signatures in the majority 

of cancer types (albeit with low prevalence). Nevertheless, there are at least some 

mutational signatures that are most likely specific to a set of cancer types. For 

example, one would not expect to find the mutational signature of ultraviolet light in a 

primary colorectal cancer. 

4.7 Discussion 

In this chapter, I presented and discussed mutational signatures analysis 

encompassing 7,042 samples derived from 30 human cancers. The results revealed 

more than 20 consensus mutational signatures with a complex landscape across the 

different cancer types and, even, across individual cancer samples.  

It should be noted that as in any computational analysis, the extraction of 

mutational signatures is not a perfect process. In chapter 2, I described in detail the 

Figure 4.11: Contributions of mutational signatures in a selected set of cancer types. 25 samples 
are displayed for each cancer type. Each sample is displayed as a column with a height corresponding 
to the number of somatic mutations per megabase found in this sample. Every column is 
proportionately coloured to reflect the percentage of mutations attributed to different mutational 
signatures. ‘Other’ indicates mutational signatures for which validation is not performed or for which 
validation failed. 



factors that influence the extraction of mutational signatures. These included the 

number of available samples, the mutation prevalence in samples, the number of 

mutations contributed by different mutational signatures, the similarity between the 

signatures of mutational processes operative in cancer samples, as well as the 

limitations of the developed computational approach. 

In this chapter, I examined datasets with varying sizes from 30 different 

cancer types and great care has been taken to report only validated mutational 

signatures. However, the developed approach identified two similar patterns most 

likely representing the same biological process, viz., Signature 1A and 1B. The 

reasons for this is, for some cancer types, sufficient numbers of samples and/or 

mutations are available (i.e., statistical power) to decipher the cleaner version (i.e., 

Signature 1A) while for other cancer types there are not sufficient data and the 

approach extracts a version of the signature which is more contaminated by other, 

likely partially correlated, signatures present in that cancer type (i.e., Signature 1B). 

Nevertheless, the two signatures are visually very similar and they have been named 

1A and 1B. Being almost mutually exclusive amongst cancer types (i.e., finding either 

Signature 1A or Signature 1B in each cancer type but not usually both) is supportive 

of the notion that they represent the same underlying process as is the fact that 

Signatures 1A and 1B have the same overall pattern of contributions to individual 

cancer genomes. Indeed, it is likely that if there were sufficient data, Signature 1B 

would disappear and the algorithm would extract only Signature 1A. 

In summary, through examination of the mutational patterns buried within 

cancer genomes, this analysis revealed the diversity and complexity of somatic 

mutational processes underlying carcinogenesis in human beings. It is likely that more 

mutational signatures will be extracted, together with more precise definition of their 

features, as the number of whole-genome sequenced cancers increases and analytic 

methods are further refined.  

 



 

 

 

 

 

 

 

Chapter 5 
Etiology of mutational processes operative in human cancer 
 

5.1 Introduction 

The previous chapter of this thesis presented 27 consensus mutational 

signatures that were extracted from the cancer genomes of 7,042 patients across 30 

distinct classes of human cancer. The chapter discussed the mutational patterns of the 

derived consensus signatures; however, no propositions were made about potential 

endogenous or exogenous mutational processes associated with any of these patterns. 

The aim of the present chapter is to suggest etiology for the molecular and/or 

environmental processes underlying at least some of these mutational signatures. 

These suggestions will be based on either comparing the spectrum of a mutational 

signature with mutational patterns of known causation or by statistically associating a 

signature with epidemiological, biological, or molecular features specific for each of 

the cancer types in which the signature has been identified. 

 

5.2 Associating cancer etiology and mutational signatures based on mutational 

patterns with known causation 

Each mutational signature is the imprint left on a cancer genome by a 

mutational process that may include one or more DNA damage and/or DNA 

maintenance mechanisms, with the latter either functioning normally or abnormally. 

Here, I consider probable mechanisms or underlying causes of the identified 

signatures by comparing signatures with mutation patterns of known causation in the 

scientific literature. 



Signature 1A and Signature 1B exhibit a very similar mutational pattern. This 

pattern is likely related to the relatively elevated rate of spontaneous deamination of 

5-methylcytosine which results in C>T transitions and which predominantly occurs at 

NpCpG trinucleotides (Pfeifer, 2006). As discussed in chapter 4, this mutational 

process operates both in the germline and in somatic cells (Welch et al., 2012). Thus, 

Signature 1A/B is probably due to spontaneously occurring endogenous mutational 

processes present in most normal and neoplastic cells that are initiated by deamination 

of 5-methylcytosine (Pfeifer, 2006). Other signatures are likely attributable to 

exogenous mutagenic exposures or failure of cellular molecular mechanisms.  

The mutational patterns of Signature 2 and 13 are similar as they are both 

composed of C>A, C>T, and C>G substitutions at TpC dinucleotides. In chapter 3, I 

proposed that Signature 2 could be attributed to the activity of the AID/APOBEC 

family of cytidine deaminases, while Signature 13 encompasses an interaction 

between APOBEC enzymes and the DNA repair protein REV1. On the basis of 

similarities in the sequence context of cytosine mutations caused by APOBEC 

enzymes in experimental systems, a role for APOBEC1, APOBEC3A and/or 

APOBEC3B in human cancer appears more likely than for other members of the 

family (Burns et al., 2013; Harris et al., 2002; Taylor et al., 2013). Furthermore, 

recent studies have demonstrated that there is an association between the observed 

patterns of somatic mutations and the expression of APOBEC3B (Burns et al., 2013; 

Taylor et al., 2013). However, the reason for extreme activation of this mutational 

process, such as Signatures 2 and/or 13 hypermutated samples with up to 25 somatic 

mutations per megabase, remains unknown. Since APOBEC activation constitutes 

part of the innate immune response to viruses and retrotransposons (Koito and Ikeda, 

2013) it may be that these mutational signatures represent collateral damage on the 

human genome from a response originally directed at retrotransposing DNA elements 

or exogenous viruses. Confirmation of this hypothesis would establish an important 

new mechanism for initiation of human carcinogenesis. However, it is plausible that 

entirely different mechanisms (both endogenous and/or exogenous) are activating the 

APOBEC enzymes. 

In smoking-associated lung cancer, C>A transversions are the predominant 

known mutational pattern induced by tobacco carcinogens (Pfeifer et al., 2002). It is 



believed that this type of substitutions is due to the formation of bulky adducts on 

guanine. Furthermore, previous studies have shown that the tobacco carcinogenic 

lesions occurring on the transcribed strand are correctly identified and removed by 

transcription-coupled nucleotide excision repair resulting in strong transcriptional 

strand-bias on a genomic scale (Pfeifer et al., 2002; Pleasance et al., 2010b). In the 

previous chapter, I demonstrated that Signature 4 generates predominantly C>A 

substitutions and that it possesses a strong transcriptional strand-bias (chapter 4). 

Furthermore, this signature is present in cancer types with a well-known association 

to tobacco smoking: lung adenocarcinoma, lung squamous, small cell lung 

carcinomas, head and neck squamous, and liver cancers (Figure 4.9). Thus, it is 

reasonable to causally associate Signature 4 with tobacco smoking. This association 

will be further refined using statistical analysis in the next section (see below).  

Signature 7 is the predominant mutational signature found in malignant 

melanoma. This signature bears a mutational pattern that is expected from ultraviolet 

light: C>T and CC>TT mutations at dipyrimidines (chapter 4). Moreover, as expected 

from a mutational pattern of ultraviolet light, Signature 7 exhibits a strong 

transcriptional strand-bias indicating that mutations occur at pyrimidines (viz., by 

formation of pyrimidine-pyrimidine photodimers) and these mutations are being 

effectively repaired by transcription-coupled nucleotide excision repair. In addition to 

malignant melanoma, this mutational pattern is also found in two cases of squamous 

carcinoma of the head and neck. Further examination revealed that both these head 

and neck cases are the only two cancers of the lip in the dataset. Indeed, lip cancers 

have been previously associated with exposure to ultraviolet light (Pfeifer et al., 

2002). Based on the similarity of the mutational pattern to the one observed in 

experimental systems exposed to ultraviolet light and the presence of Signature 7 in 

ultraviolet associated cancers (viz., lip cancer and malignant melanoma), Signature 7 

is most likely due to exposure to ultraviolet light.  

Some anticancer drugs are mutagens that have specific patterns of somatic 

mutations (Hunter et al., 2006). Signature 11 has mutational features very similar to 

those previously reported in experimental studies of alkylating agents (Hunter et al., 

2006). Further analysis will be performed in the next section to statistically associate 

Signature 11 with a specific cancer treatment. 



Abnormalities in DNA maintenance may also be responsible for mutational 

signatures. Previous studies have demonstrated that defective DNA mismatch repair 

results in highly elevated numbers of somatic mutations and exhibits significant 

numbers of small (1bp and 2bp long) insertion and/or deletions (indels) 

predominantly found at repetitive elements (Tomita-Mitchell et al., 2000). Further, 

microsatellite unstable tumours are characteristic for colorectal, uterine, and stomach 

cancers. Taken together, these observations are consistent with the behaviours and 

patterns of three of the identified mutational signatures: Signature 6, Signature 15, 

and Signature 20. Thus, it is plausible that Signatures 6, 15, and 20 are due to the 

failure of one or more of the molecular mechanisms of DNA mismatch repair. In the 

next section, I will statistically demonstrate that at least one of these mutational 

signatures is highly elevated in microsatellite unstable samples. 

Defective repair of DNA double-strand breaks based on homologous 

recombination has also been known to cause an elevated numbers of large indels with 

overlapping microhomology at breakpoint junctions (chapter 1). This pattern of 

mutations is consistent with the behaviour of Signature 3. Further, in chapter 3, 

Signature 3 is statistically associated with failure of homologous recombination in 

breast cancer due to mutations in BRCA1 and/or BRCA2. In a latter section, I will 

demonstrate that this statistical association also holds for pancreatic and ovarian 

cancers. 

Mutational signatures may also result from the abnormal function of enzymes 

that modify DNA or the activity of error-prone polymerases. Previous studies have 

demonstrated that the activity POL η, an error prone polymerase involved in 

processing AID induced cytidine deamination, results in an excess of T>G 

transversions at ApTpN and TpTpN trinucleotides in chronic lymphocytic leukaemias 

with mutated immunoglobulin genes (Di Noia and Neuberger, 2007; Puente et al., 

2011). This pattern of mutations is consistent with Signature 9, which is found in 

chronic lymphocytic leukaemia and malignant B-cell lymphomas (Figure 4.9). 

Similarly, previous studies have associated recurrent somatic mutations 

altering the functions of the error-prone polymerase POL ɛ (POLE) with a subset of 

colorectal and uterine tumours that exhibit an ultra-hypermutator phenotype. This 



behaviour is consistent with Signature 10, which is found in cancers of the colorectum 

and uterus with an extremely high prevalence of somatic mutations.  

Many of the validated mutational signatures do not, however, have an 

established or proposed underlying mutational process or etiology. Some, for example 

Signatures 8, 12 and 16, show strong transcriptional strand-bias (Figure 4.8) and 

possibly reflect the involvement of transcription-coupled nucleotide excision repair 

acting on bulky DNA adducts due to exogenous carcinogens. Others, for example 

Signatures 14 and 21, show an overwhelming activity in a small number of cancer 

cases and are perhaps due to currently uncharacterized defects in DNA maintenance 

or abnormal activity of DNA polymerases.  

 In addition to the 22 validated consensus mutational signatures, there are 

another 5 consensus signatures identified through extraction of mutational signatures. 

The mutational patterns of Signature U1 and Signature U2 (Figure 4.7) are too 

uniform and unspecific to unambiguously associate them with any previously 

published patterns of somatic mutations. In contrast, the mutational patterns of 

Signatures R1, R2, and R3 are extremely specific and sequence-context dependent 

(Figure 4.6). Further, as discussed in chapter 4, these artifactual mutational signatures 

seem to be confined to data generated within specific sequencing centres. Signature 

R1 is associated with the next generation sequencing protocol used at the Wellcome 

Trust Sanger Institute. This protocol has been optimized to avoid the generation of 

this signature. Signature R2 is present in data from the Broad Institute and in-depth 

investigation revealed its pattern of mutations is due to the generation of 8-

oxoguanine during DNA shearing (Costello et al., 2013). Lastly, Signature R3 is 

confined to colorectal data generated by the Baylor College of Medicine. After 

investigation, this pattern is attributed to the settings of the used bioinformatics 

pipelines, which are set to call somatic mutations from only a few reads in genes 

previously associated with colorectal cancer. 

 

5.3 Associating cancer etiology and mutational signatures based on statistical 

analysis 

In the previous section, a mutational signature is causally associated with a 

potential etiology based on the similarity of its pattern to mutational patterns of 



known causation in the scientific literature. This section will focus on re-confirming

(or identifying new) associations via statistical analysis. Briefly, a cancer type is split

based on a feature of interest (e.g., smoking status separating lung adenocarcinomas 

in smokers and non-smokers) and statistical analysis is performed for all signatures 

found in that cancer type. The analysis checks whether mutations attributed to the

signature in question are statistically different between the set of samples possessing 

the feature (e.g., smokers) and the set of samples without the feature (e.g., non-

smokers). Any samples with missing information about a selected feature (e.g., when 

the smoking status is unknown) are ignored. In all cases, q-values are reported for all

statistically significant associations between a signature and a feature of interest. In 

most cases, only a single mutational signature associates with a particular feature. 

Features of interest are selected based on prior biological knowledge or based on 

advice from collaborators who are experts in a specific cancer type.  

Previous analysis of breast cancer data demonstrated that samples harbouring

BRCA1 and/or BRCA2 mutations have an elevated numbers of somatic mutations 

attributable to Signature 3 (Figure 3.12). Mutations associated to other mutational 

Figure 5.1: Samples harbouring BRCA1/2 mutations and contributions of Signature 3. 
Signature 3 is examined in breast, ovarian, and pancreatic cancers. In each cancer type samples are 
separated into two sets: BRCA1/2 positive samples (green) and BRCA1/2 negative samples 
(orange). A box plot of the mutations contributed by Signature 3 in each cancer type is displayed 
for each of the two sets. Outliers with more than 4.18 mutations per megabase are not shown but 
they are included in the statistical analysis. All consensus mutational signatures are evaluated for 
statistical association with BRCA1/2 in their respective cancer types. The only statistically 
significant difference in signatures’ contributions between the BRCA1/2 positive and negative sets 
is the one due to Signature 3 (Q = 1.6 × 10-8 for breast cancer; Q = 2.3 × 10-7 for ovarian cancer; Q 
= 0.02 for pancreatic cancer). 



signatures found in breast cancer are not statistically different between BRCA1/2 wild 

type samples and BRCA1/2 mutants (Figure 3.12). Analogous analysis is performed 

for the two additional cancer types in which Signature 3 is found: ovarian and 

pancreatic cancer (Figure 4.9). The subset of cases from these three cancer classes, 

known to be due to inactivating mutations in BRCA1 and BRCA2, is strongly 

associated with the presence of Signature 3 (Q = 1.6 × 10-8 for breast cancer; in all 

cases Q refers to a q-value, see chapter 7; Q = 2.3 × 10-7 for ovarian cancer; Q = 0.02 

for pancreatic cancer; Figure 5.1 and Figure 5.3). Similarly to breast cancer, no other 

mutational signature associated with the BRCA1/2 status in pancreatic and ovarian 

cancers. Interestingly, every single pancreatic cancer that harboured BRCA1/2 

mutations exhibited an extremely elevated mutational burden for Signature 3. Indeed, 

almost all cases with BRCA1 and BRCA2 mutations in breast and ovarian cancers also 

showed a large contribution from Signature 3. However, some ovarian and breast 

cancers with a substantial contribution from Signature 3 do not have BRCA1/2 

mutations, which suggests that other mechanisms of BRCA1/2 inactivation or 

abnormalities of other genes may also generate the mutational pattern.  

BRCA1 and BRCA2 are implicated in homologous recombination-based DNA 

double-strand break repair (Thompson, 2012). The abrogation of their functions 

results in non-homologous end-joining mechanisms, which can utilize 

microhomology at rearrangement junctions to re-join double-strand breaks, taking 

over DNA double-strand break repair. The results show that, in addition to the 

genomic structural instability conferred by defective double-strand break repair, a 

base substitution mutational signature is associated with BRCA1/2 deficiency in three 

distinct cancer types.  

The statistical analysis performed in chapter 3 associated Signature 8 with 

estrogen receptor negative breast cancer samples. Signature 8 is also found in 

medulloblastoma (Figure 4.9); however, the mutations attributed to this mutational 

signature do not associate with any molecular subtype of medulloblastoma. 

In the previous section, a causal association is proposed between tobacco 

smoking and Signature 4 based on the similarity between the mutational pattern of the 

signature and the mutational pattern observed in experimental systems exposed to 

tobacco carcinogens. This relationship is supported by a strong elevation of the 



mutations attributed to Signature 4 in current smokers when compared to non-

smokers (Q = 1.1 × 10-7 for lung adenocarcinomas; Q = 2.4 × 10-5 for head and neck 

squamous; Figure 5.2). Further, there is even a statistically significant difference 

between the numbers of mutations attributed to Signature 4 in lung adenocarcinomas 

from non-smokers when compared to the mutations found in adenocarcinomas from 

people who stopped smoking more than fifteen years prior to their tumour diagnosis 

(Figure 5.2). This association is not found in head and neck cancers; however, that 

might be partly explained by the low number of head and neck squamous cancers 

from patients that stopped smoking more than 15 years prior to their diagnosis. At the 

very least, this result confirms that tobacco smoking leaves a strong and long lasting 

mutational imprint on the genome of a lung cancer.  

Cigarette smoke contains over 60 carcinogens (Pfeifer et al., 2002) and it is 

possible that this complex mixture may initiate other mutational processes. Signature 

1B, 2, and 7 are identified in head and neck squamous but they do not associate with 

the smoking statuses of the examined patients (Figure 5.2). However, Signature 5, but 

not Signatures 1A/B and 2, also showed a positive correlation between smoking 

history and mutation contribution in lung adenocarcinomas (Q = 8.0 × 10-3, Figure 

5.2). Thus, in lung cancer, Signature 5 may also be generated by tobacco carcinogens. 

Figure 5.2: Associating exposures of mutational signatures to cigarette smoking. Samples from lung 

adenocarcinomas and head and neck squamous are examined. Each of the two cancer types is separated in 5 

categories: lifelong non-smokers (dark green); reformed smokers for more than 15 years (light green); reformed 

smokers for less than 15 years (yellow); current smokers (red); a combined set containing all current and reformed 

smokers (orange). Statistical analysis is performed for every mutational signature by comparing the set of non-

smokers with the other four sets. All reported p-values have been adjusted for multiple hypothesis testing.  

The X-axis depicts the mutational signatures operative in the respective cancer types, while the Y-axis reflects the 

median numbers of somatic mutations attributed to each signature in each of the five categories. Note that the two Y-

axes have a different scale. 



From the carcinogens present in tobacco smoke, vinyl chloride and ethyl carbamate 

have been reported to generate the T>C mutations characteristic of Signature 5 

(Pfeifer et al., 2002). However, Signature 5 is also present in nine other cancer types, 

most of which are not strongly associated with tobacco consumption, and therefore its 

overall etiology remains unclear (Figure 4.9).  

 The mutational pattern of Signature 6’s indels, often termed “microsatellite 

instability”, is characteristic of cancers with defective DNA mismatch repair (Boland 

and Goel, 2010). Consistent with this explanation, the presence of Signature 6 is 

strongly associated with the inactivation of DNA mismatch repair genes in colorectal 

cancer (Q = 3.3 × 10-5 for colorectal cancers; Figure 5.3). 

Signature 9 is observed in chronic lymphocytic leukaemia and malignant B-

cell lymphomas. This signature is characterized by a pattern of mutations that has 

been attributed to polymerase η, which is implicated with the activity of AID during 

somatic hypermutation (Puente et al., 2011). Examining chronic lymphocytic 

leukaemias that possess immunoglobulin gene hypermutation (IGHV-mutated) 

reveals a statistically significant elevation of Signature 9 (Q = 2.5 × 10−4; Figure 5.3). 

This analysis is not performed for B-cell lymphomas due to the lack of sufficient 

number of IGHV-mutated samples. Nevertheless, only one of the B-cell lymphomas 

is IGHV-mutated and this sample exhibits an extremely high level of Signature 9 

(Appendix V).  

Signature 10 generates huge numbers of mutations in subsets of colorectal and 

uterine cancers. It has been proposed that the mutational process underlying this 

signature is due to the altered activity of the error-prone polymerase POLE. To 

support this hypothesis, a high number of recurrent function modifying somatic 

mutations, viz., Pro286Arg and Val411Leu, have been observed in POLE in colorectal 

and uterine samples with high mutational burden (Kandoth et al., 2013; TCGA, 

2012). Statistical analysis reveals an extremely strong association between these 

recurrent somatic mutations and the contributions of Signature 10 (Q = 3.1 × 10-22 for 

colorectal cancer; Q = 8.8 × 10-9 for uterine cancer; Figure 5.3). 

Signature 11 exhibits a mutational pattern resembling the one of an alkylating 

agent and this signature is identified in malignant melanoma and glioblastoma 



multiforme. Examining information from the patients’ histories revealed a statistical 

association between treatments with the alkylating agent temozolomide in both cancer 

types (Q = 4.0 × 10-3 for malignant melanomas; Q = 2.1 × 10-3 for glioblastoma 

multiforme; Figure 5.3).

Signature 18 has a very specific mutational pattern of C>A transversions 

which is observed only in neuroblastomas. N-Myc amplification is a common feature 

of neuroblastomas (Brodeur et al., 1984) and statistical analysis reveals that samples 

with N-Myc amplification exhibit a significantly higher numbers of somatic mutations 

attributed to Signature 18 when compared to samples without this amplification (Q =

1.2 × 10-7; Figure 5.3). 

5.4 Activity of mutational signatures and association with age of diagnosis 

The origin of a cancer cell can be traced back to the zygote and, hence, the 

accumulation of somatic mutations identified by cancer genome sequencing can be 

roughly separated into mutations occurring prior to neoplastic development and 

mutations occurring after tumour initiation. The mutations occurring prior to 

Figure 5.3: Associating molecular or clinical features with the activity of mutational signatures. In each case, all 

signatures found in a given cancer type are evaluated for a potential association with a selected feature. Only a single 

mutational signature associates with a selected feature in each of the examined cases. Each boxplot represents numbers of 

somatic mutations for a given signature for samples possessing or lacking a specific feature in a specific cancer type. The 

examined cancer type is annotated on the left of each panel, while the evaluated mutational signature is displayed in the 

upper right corner of each panel. In all cases, the X-axis depicts the number of mutations per megabase attributable to a give 

signature. Note that a logarithmic scale is used for the X-axes of Signatures 6, 10, and 11. For clarity, some outliers are not 

displayed but all data are included in the statistical analysis.  



neoplastic development can be further separated as spontaneous somatic mutations 

occurring due to the activity of normal cellular processes and sporadic somatic 

mutations triggered by environmental exposures or lifestyle choices. Assuming that 

the accumulation of spontaneous mutations is (on average) the same across different 

people and that spontaneous pre-neoplastic mutations can be separated from all other 

somatic mutations found in a cancer, one would expect to see a strong correlation 

between the numbers of spontaneous pre-neoplastic somatic mutations and the age of 

cancer diagnosis in a large cohort of people.

A first order of approximation of this logic entails using cancer genomics data 

and attempting to correlate the age of cancer diagnosis with the mutational burden of 

the previously identified mutational signatures. Thus, examination is performed in 

Cancer Type Samples with age 
information 

Mutational 
Signature  

P-value 
(FDR corrected) 

ALL 106 Signature 1B 2.13E-04 

AML 151 Signature 1B 6.81E-06 

Breast 879 Signature 1B 7.23E-04 

Colorectum 488 Signature 1B 2.89E-02 

Glioma Low Grade  154 Signature 1A 1.50E-07 

Head and Neck 299 Signature 1B 4.54E-03 

Kidney 
Chromophobe 

21 Signature 1A 3.53E-02 

Kidney Clear Cell 294 Signature 1B 7.34E-12 

Kidney Papillary 95 Signature 5 3.10E-03 

Lymphoma B-cell 24 Signature 1B 1.06E-02 

Medulloblastoma 100 Signature 1A 2.83E-10 

Melanoma 216 Signature 1B 1.33E-03 

Melanoma 216 Signature 7 2.00E-03 

Neuroblastoma 192 Signature 1B 2.84E-05 

Ovary 425 Signature 1B 7.18E-09 

Pilocytic 
Astrocytoma 

63 Signature 1B 4.76E-02 

Stomach 148 Signature 1A 3.43E-02 

Thyroid 157 Signature 5 2.95E-03 

Table 5.1: Mutational signatures and age of diagnosis. All statistically significant correlations 
between exposures of consensus mutational signatures and age of cancer diagnosis are shown.  



each cancer type for correlations between the age of diagnosis and the number of 

mutations attributable to each signature in each sample.  

Signature 1A/B exhibits strong positive correlations with the age of diagnosis 

in the majority of cancer types of both childhood and adulthood (Table 5.1). No other 

mutational signature shows a consistent correlation with the age of diagnosis. 

Exposure to Signature 5 also correlates with the age of diagnosis in kidney papillary 

and thyroid cancers. However, in both cancer types, Signature 1A/B is not 

detected/extracted due to low number of mutations in their samples and it is likely 

that Signatures 1A/B and Signature 5 are mixed together. Further studies involving 

whole-genome sequences will be needed to validate this hypothesis. Interestingly, in 

melanoma, the age of diagnosis also correlates with exposure to Signature 7, which 

has been associated with exposure to ultraviolet light. Presumably this exposure is due 

to the relatively uniform chronic exposure to ultraviolet light throughout a person’s 

lifetime. 

The mutations in a cancer genome may be acquired at any stage in the cellular 

lineage from the fertilized egg to the sequenced cancer cell. The correlation with age 

of diagnosis is consistent with the hypothesis that a substantial proportion of 

Signature 1A/B mutations in cancer genomes have been acquired over the lifetime of 

the cancer patient, at a relatively constant rate that is similar in different people, 

probably in normal somatic tissues. The absence of consistent correlation of all other 

signatures with age of diagnosis suggests that mutations associated with these 

signatures have been generated at different rates in different people, possibly as a 

consequence of different mutagenic exposures or after neoplastic change has been 

initiated. 

 

5.5 Summary 

In this chapter, I examined the mechanistic basis of the signatures of the 

mutational processes operative in 30 distinct types of human cancer. An etiology is 

proposed either by performing a statistical comparison between sets of samples with 

and without specific characteristics or by comparing the observed mutational patterns 

with the ones in the scientific literature.  



This chapter provides an indication of the processes underlying the observed 

patterns of somatic mutations for at least some of the mutational signatures. However, 

for many of the processes their etiology remains speculative or unknown. 

Further elucidating the underlying mutational processes will depend upon two 

major streams of investigation. First, compilation of mutational signatures from 

model systems exposed to known mutagens or perturbations of the DNA maintenance 

machinery and comparing those to the ones found in human cancers. Second, 

correlating the contributions of mutational signatures with other biological 

characteristics of each cancer through diverse approaches ranging from molecular 

profiling to epidemiology. Collectively, these studies will advance understanding of 

cancer etiology with potential implications for prevention and treatment. 

  

 



 

 

 

 

 

 

 

Chapter 6 
Discussion and future explorations 
 

6.1 Introduction 

 The main aim of this thesis was to improve our understanding of the 

mutational processes underlying cancer development by examining the molecular 

patterns of mutations imprinted on cancer genomes by these processes. This goal was 

achieved by the development of a novel theoretical model that conceptualized the idea 

of a mutational signature and mathematically connected mutational signatures with 

catalogues of somatic mutations identified in cancer genomes. 

The developed mathematical model was used to create a computational 

approach to decipher the signatures of the mutational processes operative in a set of 

cancer genomes, based on the somatic mutations identified in the mutational 

catalogues of these cancers. The computational framework was extensively evaluated 

with a wide-range of simulated data and it was demonstrated that the framework is 

robust to a variety of distinct parameters and can be effectively applied to both 

genome and exome sequences. 

The developed novel computational framework was applied to genomics data 

from 7,042 cancer patients to reveal the mutational processes operative across the 

spectrum of 30 distinct types of human cancers. This largest to date analysis of cancer 

genomics data has provided the first map of the signatures of the mutational processes 

moulding the genomes of human cancers. More than 20 distinct signatures were 

identified and an etiology was proposed for some of these signatures. Nevertheless, 

the underlying mechanisms for the majority of the mutational signatures remain 

mysterious and future studies will be needed to elucidate their true nature.  



This chapter discusses the importance of the results presented throughout the 

thesis. It also provides a critical reflection on the analyses of mutational signatures 

and outlines potential future directions for improvement with regard to the 

development of novel methodologies for deciphering mutational signatures and 

further refining of the already identified signatures. 

 

6.2 Implications of the identified mutational signatures 

 In this thesis, I report the first systematic computational analysis of large-scale 

cancer genomics data in order to reveal the signatures of the mutational processes 

underlying the development of human cancer. A brief summary of the main results of 

the thesis is provided in Table 6.1. The table emphasizes the characteristic mutational 

pattern of each mutational signature, the most common cancer types in which the 

signature is observed, as well as any potential etiology proposed for a mutational 

signature. 

 

Signature name 
Characteristic 

mutational pattern 

Most common 

cancer types 
Proposed etiology 

Etiology proposed 

based on 

Signature 1A C>T at CpG All cancer types 
Deamination of 5-

methylcytosine 

Similarity of the 

mutational pattern 

Signature 1B C>T at CpG All cancer types 
Deamination of 5-

methylcytosine 

Similarity of the 

mutational pattern 

Signature 2 C>T at TpC 
Sixteen different 

cancer types 

APOBEC1, 

APOBEC3A, or 

APOBEC3B 

Similarity of the 

mutational pattern 

Signature 3 
Uniform mutational 

signature 

Breast, ovarian, 

and pancreatic 

cancer 

Defective repair of 

DNA double-strand 

breaks based on 

homologous 

recombination 

Statistical association 

Signature 4 
C>A mutations with 

strong strand bias 

Lung, head and 

neck, and liver 

cancer 

Tobacco smoking 

Similarity of the 

mutational pattern and 

statistical association 

 

Signature 5 
Mostly uniform 

mutational signature 

Nine different 

cancer types 

Mostly unknown but 

there is a weak 

Some statistical 

association 



with some peaks of 

T>C mutations at 

ApT 

association with 

tobacco smoking in 

lung cancer 

Signature 6 

C>A mutations and 

C>T at GpC 

mutations 

Nine different 

cancer types but 

most prevalent in 

colorectal and 

uterine cancers 

Defective DNA 

mismatch repair 

Similarity of the 

mutational pattern and 

statistical association 

 

Signature 7 C>T at dipyrimidines 

Malignant 

melanoma and lip 

cancers 

Ultraviolet light 
Similarity of the 

mutational pattern 

Signature 8 

C>A mutations with 

a moderate strand 

bias 

Breast cancer and 

medulloblastoma 

Higher prevalence in 

estrogen receptor 

negative breast 

cancers 

Statistical association 

Signature 9 
T>G transversions at 

ApT and TpT 

Chronic 

lymphocytic 

leukaemias and 

B-cell lymphomas 

Polymerase η 

Similarity of the 

mutational pattern and 

statistical association 

Signature 10 
C>A at TpCpT and 

C>T at TpCpG 

Colorectal and 

uterine cancers 
Polymerase ɛ Statistical association 

Signature 11 C>T substitutions 

Malignant 

melanoma and 

glioblastoma 

multiforme 

Treatment with 

temozolomide 

Similarity of the 

mutational pattern and 

statistical association 

Signature 12 
T>C substitutions 

with strand bias 

Liver and uterine 

cancer 
Unknown 

 

N/A 

Signature 13 
C>A and C>G at 

TpC 

Bladder and 

breast cancer 

APOBEC1, 

APOBEC3A, or 

APOBEC3B 

and 

REV1 

Similarity of the 

mutational pattern 

Signature 14 

C>A mutations and 

C>T at GpC 

mutations 

Low grade glioma 

and uterine cancer 
Unknown N/A 

Signature 15 C>T at GpC Stomach and lung Defective DNA  



mutations cancer mismatch repair Similarity of the 

mutational pattern 

 

Signature 16 

 

T>C mutations at 

ApT with extremely 

strong strand-bias 

 

Liver cancer Unknown  N/A 

Signature 17 

 

T>G at TpT and  

T>C at CpT 

 

 

Oesophagus 

cancer, liver 

cancer, stomach 

cancer, and B-cell 

lymphoma 

 

Unknown  N/A 

Signature 18 C>A mutations Neuroblastoma 
Amplification of N-

Myc 
Statistical association 

Signature 19 C>T mutations 
Pilocytic 

astrocytoma 
Unknown  N/A 

Signature 20 
C>A and C>T 

mutations 
Stomach cancer 

Defective DNA 

mismatch repair 

 

Similarity of the 

mutational pattern 

 

 

Signature 21 

 

T>C mutations 

 

Stomach cancer 

 

Unknown  

 

N/A 

 

Signature R1 

 

T>G at GpTpG 

 

Breast cancers 

generated by the 

Sanger Institute 

Sequencing artifact  
Fine-tuning a 

sequencing protocol 

Signature R2 C>A mutations 

Lung and kidney 

cancers generated 

by the Broad 

Institute 

Sequencing artifact  
Fine-tuning a 

sequencing protocol 

Signature R3 T>C mutations 

Colorectal cancers 

generated by the 

Baylor College of 

Medicine 

Bioinformatics 

analysis artifact 

Fine-tuning a 

bioinformatics analysis 



Signature U1 
Uniform mutational 

signature 

Glioblastoma and 

prostate cancer 
Unknown  N/A 

Signature U2 
Uniform mutational 

signature 

Liver and kidney 

cancer 
Unknown  N/A 

Table 6.1: Summary of the deciphered signatures of mutational processes in human cancer. 

 

This thesis has three potential implications for cancer research and cancer 

treatment. First, from a basic science perspective, the thesis provides the first roadmap 

of the mutational signatures underlying human cancer and it reveals that these 

signatures have a complex landscape both in an individual cancer type and across 

multiple cancer types.  

Second, from a targeted therapeutics perspective, many of the described 

mutational signatures are believed to reflect failure of DNA repair mechanisms and, 

as such, they might be better predictors of clinical outcome when compared to 

mutations in genes. For example, Signature 3 is associated with mutations in BRCA1 

and BRCA2 and it is believed to reflect failure of repair of DNA double-strand breaks 

based on homologous recombination (Table 6.1). This mutational signature is 

observed in many breast and ovarian samples lacking any BRCA1/2 mutations and it 

could potentially be used for targeted treatment especially for cancers such as triple 

negative breast cancer. A similar logic may be applied to some of the other mutational 

signatures reflecting failure of DNA repair mechanisms; however, future studies will 

be required to reveal the applicability of mutational signatures in the clinic. 

Third, some of the identified mutational signatures reflect exposures to 

exogenous mutagens. These signatures might be useful for the development of cancer 

prevention strategies. For example, Signature 4 is due to tobacco smoking while 

Signature 7 is associated with exposure to ultraviolet light (Table 6.1). It is 

foreseeable that some of the other deciphered mutational signatures might be due to or 

triggered by environmental exposures. For example, Signature 2 is found in 16 cancer 

types and it is believed that this signature is due to the activity of the APOBEC family 

of enzymes, which could get activated by viral infection. In support of this claim, 

Signature 2 is found overwhelmingly in cervical cancer, which is by far the most 

common HPV-related cancer. It is highly plausible that Signature 2 is indeed 

triggered by viral infection in cervical cancer and it is foreseeable that this might be 

the case in one or more of the other fifteen cancer types in which Signature 2 is 



observed.  While future analysis will be required to evaluate the validity of this 

hypothesis, confirming it will establish an important new mechanism for initiation of 

human carcinogenesis with significant potential for cancer prevention.  
 

 6.3 Limitations of the performed analyses of mutational signatures 

The mutational signatures analyses have a number of shortcomings pertaining 

to the developed computational approach and the examined mutational data.   

With regard to the data limitations, the majority of the work is restricted to 

certain classes of mutations, namely substitutions and small insertions/deletions 

(indels), with no attention to rearrangements and copy number changes. Further, the 

examined data are taken from a range of different sources (e.g., publications, data 

portals, collaborators, etc.) in which the quality of DNA sequencing and mutation 

identification is highly variable. This is especially true for indels where the quality of 

the data allowed only limited exploration of indel-based mutational signatures.   

Most of the analysed cancer cases are derived from exome sequencing data. 

Power calculations (chapter 2) and empirical observations indicate that, in general, a 

small number of whole-genome sequences are more powerful than a large number of 

exome sequences in extracting substitution and indel signatures. Indeed, in some 

cancer types the number of substitutions and indels available from exome sequences 

is so limited that only a very crude assessment of the landscape of mutational 

signatures is possible (e.g., ovarian and thyroid cancers). Moreover, some cancer 

types with known patterns of mutations are not included at all in the analyses as data 

are either not freely available or non-existent (e.g., cancer types due to exposure to 

aristolochic acid or aflatoxin). 

While the developed computational approach is extensively evaluated with 

simulated data, this evaluation did not foresee the extreme variability of the numbers 

of somatic mutations found in cancer genomes. For example, an average cancer 

genome of a pilocytic astrocytoma has ~100 somatic mutations while a representative 

malignant melanoma harbours about 40,000 somatic mutations in its cancer genome 

(Figure 4.2). Extracting mutational signatures from a set containing equal numbers of 

mutational catalogues from melanomas and pilocytic astrocytomas will only result in 

finding the signatures of the mutational processes that are operative in malignant 

melanoma. In this example, pilocytic astrocytomas account for only 0.25% of all 

mutations in the dataset, well-below the 5% threshold used for optimizing and testing 



the computational framework (chapter 2). These differences in mutational burdens 

across cancer types required performing independent mutational signatures analyses 

for each of the 30 cancer types as, otherwise, the highly mutated cancers would 

overwhelm the extraction of mutational signatures. Further, for each of the individual 

cancer types, great care is taken to perform the analyses with and without 

hypermutated samples that may be skewing the extracted mutational signatures. 

Improving the developed method to allow analysis of all mutational catalogues 

together would be extremely beneficial, for example, to decipher common mutational 

signatures that contribute only very few mutations to a large set of samples belonging 

to different cancer types. Such mutational signatures would be most likely associated 

with underlying spontaneous endogenous mutational processes. 

Remarkably, despite all the listed obscuring factors, the analyses allowed 

identification and validation of more than 20 distinct mutational signatures. 

Nevertheless, future studies will be required to both improve and extend this 

compendium of mutational signatures. 

 

6.4 Future explorations 

The developed roadmap of mutational signatures is in no way final or 

exclusive, and future work will be required to further refine it. This will include both 

improvement of the computational approach as well as generation of more whole-

genome sequences across the complete spectrum of human cancer types. 

Briefly, the computational method will need to allow analysis, in a single run, 

of thousands of mutational catalogues (including hypermutators and ultra-

hypermutators) from multiple distinct classes of human cancer rather than artificially 

separating samples by cancer types. This will most probably require extending the 

developed framework to a hierarchical nonnegative matrix approach, where the 

current method would be applied multiple consecutive times and well-explained 

samples would be removed from further analysis after each of the performed 

iterations. Moreover, minimizing the Frobenius norm between original and 

reconstructed samples (chapter 2) might not be optimal as outliers can affect this 

measure. A more robust measure (i.e., average Spearman correlation) may prove to 

give better results with this highly variable dataset. No matter what improvements are 

made to the developed computational framework, extensive validation with simulated 

data will be require to confirm its ability to better decipher mutational signatures.   



In the previous analysis, the majority of examined data are derived from 

cancer exomes and I heavily rely on somatic mutations of variable quality as these 

mutations are identified using different mutation bioinformatics algorithms. Using the 

same mutational-calling algorithm will provide consistent results and allow exploring 

indels in greater detail and including previously neglected mutation types (viz., 

rearrangements and copy number changes). Using cancer exomes limited the extent to 

which the genome landscape is introduced into signature characterization. In 

principle, there could be many features of the landscape that can be used to 

distinguish between signatures (e.g., origins of replications, regions of open or closed 

chromatin, etc.) and hence provide further insights into the etiology and mechanisms 

underlying each signature. Further studies using whole-genome sequencing would be 

required to perform this analysis.  

It is highly likely that a future large-scale mutational signatures analysis will 

become a reality in the next year as part of the forthcoming International Cancer 

Genome Consortium’s pan-cancer initiative. This analysis will encompass 2,000 to 

3,000 whole-genome sequences and ~10,000 exome sequences across the complete 

spectrum of human cancer. The somatic mutations of these cancer samples will be 

identified by a predefined set of optimized mutation-calling algorithm and include all 

types of somatic mutations. I am currently working on improving the developed 

computational framework to address its current limitations and apply it to this set of 

cancer genomics data. This large dataset will allow substantial improvements to the 

biological insights into mutational signatures. 

 

6.5 Thesis summary 

In this thesis, I introduced and mathematically connected the concepts of 

mutational processes and mutational signatures. A mutational process was defined as 

a mixture of DNA damage and repair mechanisms that act together and have the 

ability to cause mutations in somatic cells. A mutational signature was described as a 

characteristic pattern of somatic mutations exhibited by an operative mutational 

process in a genome of a cell. The mutational catalogue of a cancer represents the 

aggregated outcome of the activity of all mutational processes that have been 

operative since the very first division of the fertilized egg. Thus, a mutational 

catalogue of a cancer genome is a linear mixture of mutational signatures and this 



catalogue can be used as an archaeological record to identify the patterns of mutations 

exhibited by the mutational processes that have been operative in the cancer.   

In this thesis, I developed a novel computational framework that allows 

extracting mutational signatures from a set of mutational catalogues, then 

exhaustively evaluated the developed method with simulated data, and applied it to 

7,042 samples across 30 distinct classes of human cancer. This revealed more than 20 

distinct signatures of mutational processes, for some of which I was able to propose 

an underlying mechanism.  

In summary, this study examined a large scale of whole-genome and whole-

exome sequencing data and provided insights into hitherto unrecognized mutational 

signatures present across the spectrum of human cancer. This study is the first of its 

kind and demonstrates the wealth of biological information that is hidden within the 

genomes of cancer cells. 



 

 

 

 

 

 

 

Chapter 7 
Materials and methods 
 

7.1 Introduction 

This chapter provides further details about the materials and methods used. As 

one of the main results of this thesis is the development of a novel method for 

analysing patterns of somatic mutations, the majority of materials and methods have 

already been presented in chapter 2. Thus, to avoid repetition, this chapter only 

discusses additional methods that were used through this thesis. It should be noted 

that I did not personally perform any DNA sequencing or mutation identification but I 

rather relied on somatic mutations previously identified by others. Thus, this chapter 

will not cover any experimental procedures for DNA sequencing or bioinformatics 

algorithms for identifying somatic mutations from next-generation sequencing data. 

 

7.2 Deciphering signatures of mutational processes 

Mutational signatures are deciphered independently for each of the 30 cancer 

types using the previously developed computational framework. The algorithm 

deciphers the minimal set of mutational signatures that optimally explains the 

proportion of each mutation type found in each catalogue and then estimates the 

contribution of each signature to each catalogue. Mutational signatures are also 

extracted separately for genomes and exomes. Mutational signatures extracted from 

exomes are normalized using the observed trinucleotide frequency in the human 

exome to the trinucleotide frequency of the human genome. All mutational signatures 

are clustered using unsupervised agglomerative hierarchical clustering and a threshold 

is selected to identify the set of consensus mutational signatures. Misclustering is 

avoided by manual examination and, whenever necessary, re-assignment of all 



signatures in all clusters. 27 consensus mutational signatures are identified across the 

30 cancer types. The computational framework for deciphering mutational signatures 

as well as all the data used in this study are freely available and can be downloaded 

from: 

http://www.mathworks.com/matlabcentral/fileexchange/38724 

 

7.3 Displaying mutational signatures 

Mutational signatures are displayed using a 96 substitution classification 

defined by the substitution class and the sequence context immediately 5’ and 3’ to 

the mutated base. Mutational signatures are displayed in the main text (unless 

otherwise specified) based on the observed trinucleotide frequency of the human 

genome, i.e., representing the relative proportions of mutations generated in each 

signature based on the actual trinucleotide frequencies of the reference human 

genome.  

 

7.4 Filtering and generating mutational catalogues 

In all examined samples, normal DNAs from the same individuals are 

sequenced to establish the somatic origin of variants. Extensive filtering is performed 

to remove any residual germline mutations and technology specific sequencing 

artefacts prior to analysing the data. Germline mutations are filtered out from the lists 

of reported mutations using the complete list of germline mutations from dbSNP 

(Sherry et al., 2001), 1000 genomes project (Abecasis et al., 2012), NHLBI GO 

Exome Sequencing Project (Fu et al., 2013), and 69 Complete Genomics panel 

(http://www.completegenomics.com/public-data/69-Genomes/). Technology specific 

sequencing artefacts are filtered out by using panels of BAM files of (unmatched) 

normal tissues containing more than 137 normal genomes and 532 normal exomes. 

Any somatic mutation present in at least three well mapping reads in at least two 

normal BAM files are discarded. The remaining somatic mutations are used for 

generating a mutational catalogue for every sample. 

The immediate 5′ and 3′ sequence context is extracted using the ENSEMBL 

Core APIs for human genome build GRCh37. Curated somatic mutations that 

originally mapped to an older version of the human genome are re-mapped using 

UCSC’s freely available lift genome annotations tool (any somatic mutations with 

ambiguous or missing mappings are discarded). Dinucleotide substitutions are 



identified when two substitutions are present in consecutive bases on the same 

chromosome (sequence context is ignored). The immediate 5′ and 3′ sequence content 

of all indels is examined and the ones present at mono/polynucleotide repeats or 

microhomologies are included in the analysed mutational catalogues as their 

respective types. Strand bias catalogues are derived for each sample using only 

substitutions identified in the transcribed regions of well-annotated protein coding 

genes. Genomic regions of bidirectional transcription are excluded from the strand 

bias analysis. 

 

7.5 Statistical evaluation of associations 

Generalized linear models (GLMs) are used to fit signatures’ exposures (i.e., 

number of mutations assigned to a signature) and the age of cancer diagnoses. For 

each cancer type, all mutational signatures operative in it are evaluated using GLMs. 

The Benjamini–Hochberg false discovery rate (FDR) procedure is used to adjust for 

multiple hypothesis testing and in all cases q-values are reported. 

Associations between all other etiologies and signature exposures are 

performed using two-sample Kolmogorov-Smirnov tests between two sets of samples. 

The first set encompasses the signature exposures of the samples with the “desired 

feature” (e.g., samples that contain immunoglobulin gene hypermutation) and the 

second set encompasses the signature exposures of the samples without the “desired 

feature” (e.g., samples that do NOT contain immunoglobulin gene hypermutation). 

Samples with unknown features status (e.g., not knowing the hypermutation status of 

the immunoglobulin gene) are ignored. Kolmogorov-Smirnov tests are performed for 

all signatures and all examined “features” in a cancer type. Similarly, the Benjamini–

Hochberg false discovery rate (FDR) procedure is used to adjust for multiple 

hypothesis testing in a particular cancer class and in all cases q-values are reported. 
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NER Nucleotide excision repair 

NHEJ Non-homologous end joining  



NHLBI National Heart, Lung, and Blood Institute 

NMF Nonnegative matrix factorization 

PAH Polycyclic aromatic hydrocarbons 

PCR Polymerase chain reaction  

Pol Polymerase 

POL II RNA polymerase II 

POLE DNA polymerase epsilon catalytic subunit A 

RFC Replication factor C 

RNA Ribonucleic acid 

RNS Reactive nitrogen species  

ROS Reactive oxygen species  

SDSA Synthesis-dependent strand annealing  

SNP Single nucleotide polymorphism 

SP-BER Short patch base excision repair  

SSA Single-strand annealing 

TC-BER Transcription coupled base excision repair 

TC-NER Transcription coupled nucleotide excision repair 

TCGA The Cancer Genome Atlas  

TET Ten-eleven translocation methylcytosine dioxygenase 

TP53 Tumour protein p53 

UCSC University of California, Santa Cruz 

UV Ultraviolet 

UV-A Ultraviolet A 

UV-B Ultraviolet B 

UV-C Ultraviolet B 

 



APPENDIX I: Alphabets of mutational types 

 This appendix contains information for the alphabets of mutation types used 

throughout the course of this thesis. These alphabets were termed , , , , 

and  in chapter 2 and each one will be discussed in more details in the next few 

sections.  

 

Mutational alphabet  

The  alphabet is perhaps the simplest possible alphabet as it considers only 

the six types of somatic substitutions: C>A, C>G, C>T, T>A, T>C, T>G. All 

mutations are denoted using the pyrimidine of the Watson-Crick base pair as the 

reference and, in this appendix, these substitutions are coloured consistently with the 

way they are plotted in the majority of figures throughout this thesis.  

 

Mutational alphabet  

The  alphabet provides greater resolution for examining the six types of 

single nucleotide variants (i.e., the  alphabet) by including the immediate sequence 

context of each mutated base. In this alphabet, a mutation type contains a somatic 

substitution and both the 5’ and 3’ base next to the somatic mutation. For example, a 

C>T mutation can be characterized as …TpCpG…>…TpTpG… (mutated base 

underlined and presented as the pyrimidine partner of the mutated base pair) 

generating 96 possible mutation types – (6 types of substitutions) * (4 types of 5’ 

bases) * (4 types of 3’ bases). Table listing each of the 96 substitution types, the 

reference trinucleotide, and the mutated trinucleotide is provided below. 

 

Sub Ref Mut Sub Ref Mut 
C>A ApCpA ApApA T>A ApTpA ApApA 
C>A ApCpC ApApC T>A ApTpC ApApC 
C>A ApCpG ApApG T>A ApTpG ApApG 
C>A ApCpT ApApT T>A ApTpT ApApT 
C>A CpCpA CpApA T>A CpTpA CpApA 
C>A CpCpC CpApC T>A CpTpC CpApC 
C>A CpCpG CpApG T>A CpTpG CpApG 
C>A CpCpT CpApT T>A CpTpT CpApT 
C>A GpCpA GpApA T>A GpTpA GpApA 
C>A GpCpC GpApC T>A GpTpC GpApC 
C>A GpCpG GpApG T>A GpTpG GpApG 
C>A GpCpT GpApT T>A GpTpT GpApT 



C>A TpCpA TpApA T>A TpTpA TpApA 
C>A TpCpC TpApC T>A TpTpC TpApC 
C>A TpCpG TpApG T>A TpTpG TpApG 
C>A TpCpT TpApT T>A TpTpT TpApT 
C>G ApCpA ApGpA T>C ApTpA ApCpA 
C>G ApCpC ApGpC T>C ApTpC ApCpC 
C>G ApCpG ApGpG T>C ApTpG ApCpG 
C>G ApCpT ApGpT T>C ApTpT ApCpT 
C>G CpCpA CpGpA T>C CpTpA CpCpA 
C>G CpCpC CpGpC T>C CpTpC CpCpC 
C>G CpCpG CpGpG T>C CpTpG CpCpG 
C>G CpCpT CpGpT T>C CpTpT CpCpT 
C>G GpCpA GpGpA T>C GpTpA GpCpA 
C>G GpCpC GpGpC T>C GpTpC GpCpC 
C>G GpCpG GpGpG T>C GpTpG GpCpG 
C>G GpCpT GpGpT T>C GpTpT GpCpT 
C>G TpCpA TpGpA T>C TpTpA TpCpA 
C>G TpCpC TpGpC T>C TpTpC TpCpC 
C>G TpCpG TpGpG T>C TpTpG TpCpG 
C>G TpCpT TpGpT T>C TpTpT TpCpT 
C>T ApCpA ApTpA T>G ApTpA ApGpA 
C>T ApCpC ApTpC T>G ApTpC ApGpC 
C>T ApCpG ApTpG T>G ApTpG ApGpG 
C>T ApCpT ApTpT T>G ApTpT ApGpT 
C>T CpCpA CpTpA T>G CpTpA CpGpA 
C>T CpCpC CpTpC T>G CpTpC CpGpC 
C>T CpCpG CpTpG T>G CpTpG CpGpG 
C>T CpCpT CpTpT T>G CpTpT CpGpT 
C>T GpCpA GpTpA T>G GpTpA GpGpA 
C>T GpCpC GpTpC T>G GpTpC GpGpC 
C>T GpCpG GpTpG T>G GpTpG GpGpG 
C>T GpCpT GpTpT T>G GpTpT GpGpT 
C>T TpCpA TpTpA T>G TpTpA TpGpA 
C>T TpCpC TpTpC T>G TpTpC TpGpC 
C>T TpCpG TpTpG T>G TpTpG TpGpG 
C>T TpCpT TpTpT T>G TpTpT TpGpT 

 

Mutational alphabet  

The  alphabet extends  by including three additional mutation types, 

viz.,  (i) double nucleotide substitutions, (ii) small insertions or deletions at short 

tandem repeats, and (iii) small insertions or deletions overlapping with 

microhomologies at breakpoints.  

 

 



Mutational alphabet  

The  alphabet elaborates  by considering the transcriptional strand on 

which a substitution resides. In contrast to all other alphabets,  is defined only in 

the regions of the genome where transcription occurs, which in these analyses has 

been limited to the genomic footprints of protein coding genes. For example, the C>T 

mutations at TpCpA are split into two categories: the C>T mutations at TpCpA 

occurring on the untranscribed strand of a gene and the C>T mutations at TpCpA 

occurring on the transcribed strand. Similarly, all 96 mutations types from  are 

extended to form the  alphabet. 

 

Mutational alphabet  

The  further extends  by including two bases 5’ and 3’ to the mutated 

base resulting in 1,536 possible mutated pentanucleotides - (6 types of substitutions) * 

(16 types of the two immediate 5’ bases) * (16 types of the two immediate 3’ bases). 

For example, using the  alphabet, one of the 256 subclasses of a C>T mutation 

is …ApTpCpGpC… > …ApTpTpGpC… For brevity, the complete list of mutation 

types included in  is not provided here.   

 



APPENDIX II: List of analysed samples 

This appendix contains a summary list of all samples analysed throughout the 

course of this thesis. Summarized information is provided for all 7,042 separated by 

sequencing types (exome sequencing versus whole-genome sequencing), cancer 

types, and respective data sources. It should be noted that the pilocytic astrocytomas 

dataset contains a small number of other paediatric low-grade gliomas and paediatric 

low-grade glioneuronal tumours. Information for each individual sample including its 

mutational catalogues and somatic mutations (both before and after filtering) could be 

found at ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl. 

 

Exome sample types and data 
sources Total 

Whole-genome sample types and data 
sources Total 

ALL  140  ALL  1  
doi:10.1038/nature10725  15  New unpublished samples  1  
doi:10.1038/ng.2508  29  AML  7  
doi:10.1038/ng.2532  42  doi:10.1038/nature10738  7  
New unpublished samples  54  Breast  119  

AML  147  doi:10.1016/j.cell.2012.04.024  21  
TCGA data portal   147  New unpublished samples  98  

Bladder  136  CLL  28  
TCGA data portal   136  doi:10.1038/nature10113  4  

Breast  844  New unpublished samples  24  
doi:10.1038/nature10933  63  Liver  88  
doi:10.1038/nature11017  9  ICGC data portal  66  
New unpublished samples  5  New unpublished samples  22  
TCGA data portal   767  Lung Adenocarcinoma  24  

Cervix  38  doi:10.1016/j.cell.2012.08.029  24  
TCGA data portal   38  Lymphoma B-cell  24  

CLL  103  doi:10.1038/ng.2468  1  
doi:10.1038/ng.1032  80  New unpublished samples  23  
ICGC data portal  23  Medulloblastoma  100  

Colorectum  559  New unpublished samples  100  
doi:10.1038/nature11282  70  Pancreas  15  
TCGA data portal   489  New unpublished samples  15  

Oesophageal  146  Pilocytic Astrocytoma  101  
doi:10.1038/ng.2591  146  doi:10.1038/ng.2611  38  

Glioblastoma  98  New unpublished samples  63  

ICGC data portal  50  Grand Total  507  
TCGA data portal   48  

Glioma Low Grade  217  
TCGA data portal   217  



Head and Neck  380  
doi:10.1126/science.1206923  12  
doi:10.1126/science.1208130  68  
TCGA data portal   300  

Kidney Chromophobe  65  
TCGA data portal   65  

Kidney Clear Cell  325  
doi:10.1038/ng.1014  10  
doi:10.1038/ng.2323  7  
TCGA data portal   308  

Kidney Papillary  100  
TCGA data portal   100  

Lung Adenocarcinoma  636  
doi:10.1016/j.cell.2012.08.029  150  
doi:10.1038/nature07423  30  
doi:10.1101/gr.145144.112   75  
TCGA data portal   381  

Lung Small Cell  70  
doi:10.1038/ng.2396  29  
doi:10.1038/ng.2405  40  
ICGC data portal  1  

Lung Squamous  176  
TCGA data portal   176  

Lymphoma B-cell  24  
doi:10.1038/nature10351  16  
doi:10.1038/ng.2468  8  

Melanoma  396  
doi:10.1016/j.cell.2012.06.024  92  
doi:10.1038/nature11071  28  
doi:10.1038/ng.1041  8  
ICGC data portal  1  
New unpublished samples  17  
TCGA data portal   250  

Myeloma  69  
New unpublished samples  69  

Neuroblastoma  210  
doi:10.1038/ng.2493   13  
doi:10.1038/ng.2529   197  

Ovary  471  
doi:10.1126/science.1196333  8  
TCGA data portal   463  

Pancreas  98  
doi:10.1073/pnas.1118046108  22  
doi:10.1126/science.120060  10  
ICGC data portal  37  



TCGA data portal   29  
Prostate  330  

doi:10.1038/nature09744  7  
doi:10.1038/nature11125  61  
doi:10.1038/ng.2279  112  
TCGA data portal   150  

Stomach  212  
doi:10.1038/ng.2246  14  
doi:10.1038/ng.982   22  
ICGC data portal  10  
TCGA data portal   166  

Thyroid  304  
TCGA data portal   304  

Uterus  241  
TCGA data portal   241  

Grand Total  6,535  



APPENDIX III: Mutational signatures in human cancer 

This appendix contains high-resolution figures for the twenty-seven consensus 

mutational signatures that were deciphered by applying the developed computational 

approach across the spectrum of human cancer (chapter 4). Each mutational signature 

is shown using the same plot. Signatures are displayed based on the trinucleotide 

frequency of the human genome. The probability bars for each of the six types of 

substitutions as well as the mutated bases are displayed in different colours. The 

mutation types are displayed on the horizontal axes, while vertical axes depict the 

percentages of mutations attributed to specific mutation types. The plots are ordered 

by signature validation types: validated mutational signatures (Signatures 1A, 1B, 2 

through 21), mutational signatures that failed validation (Signatures R1, R2, and R3), 

and mutational signatures for which it was not possible to perform validation 

(Signatures U1 and U2). 

 



Validated mutational signatures 

 

 
 

 
 









Mutational signatures that failed validation 



Mutational signatures for which validation was not performed 



APPENDIX IV: Mutational signatures with transcriptional strand-bias 

This appendix contains high-resolution figures for the nine consensus 

mutational signatures that exhibit transcriptional strand-bias. Each mutational 

signature is shown using the same figure format based on a 192 substitution 

classification incorporating the substitution type, the sequence context immediately 5’ 

and 3’ to the mutated base and whether the mutated base (in pyrimidine context) is on 

the transcribed or untranscribed strand. The panels for each of the six types of 

substitutions as well as the mutated bases are displayed in different colours. Mutations 

on the transcribed pyrimidine strand are displayed in blue while mutations on the 

untranscribed strand are displayed in red. 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



APPENDIX V: Contributions of mutational signatures in individual samples 

This appendix contains a high-resolution figure for each of the 30 examined 

cancer types (chapter 4). Each figure depicts all of the samples in a single cancer type 

and shows the contributions of the consensus mutational signatures (found in that 

cancer type) for each sample. All figures use the same format: samples are displayed 

on the horizontal axis, sorted in descending order based on the numbers of somatic 

mutations per megabase found in each sample, and the somatic mutation prevalence is 

displayed on the vertical axis. Mutational signatures are displayed in distinct colours, 

consistent in all figures. For clarity, several panels are provided (and clearly labelled) 

when the number of samples is too high or the somatic prevalence differs significantly 

between samples. Figures are displayed on individual pages, labelled to clearly show 

the names of the cancer types, and they are ordered alphabetically based on the names 

of these cancer types. In general, all samples are displayed in each cancer type and the 

two exceptions are denoted with an asterisk in the appropriate figures and listed 

below: 

 

• For clarity, in glioma low grade, one hypermutator sample purely of Signature 

14 (254 mutations per MB) is not displayed. 

• In lung squamous, one hypermutator sample purely of Signature 7 (72 

mutations per MB) is not displayed. Signature 7 is associated with exposure to 

ultraviolet light, an unlikely carcinogen for lung cancer. As such, this TCGA 

sample is most likely either a melanoma metastasis or a misannotated sample. 

Thus, the association between Signature 7 and lung squamous has not been 

discussed in chapter 4 and this association has not been displayed in Figure 

4.9. 



 



 

 

 



 

 

 



 

 



 

 



 

 



 

 



 

 
 



 

 



 

 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



APPENDIX VI: Summary of signatures’ contributions in cancer types 

This appendix contains a high-resolution figure for each of the 30 examined 

cancer types (chapter 4). Each figure depicts a single cancer type and provides a 

summary of the contributions of the mutational signatures found in this cancer type. 

All figures have two panels: panel A depicting the percentage of total mutations 

contributed by each of the operative mutational signatures in that cancer type and 

panel B depicting the percentage and number of samples in which each mutational 

signature contributes significant number of somatic mutations. For most signatures, 

significant number of mutations in a sample is defined as more than 100 substitutions 

or more than 25% of all mutations in that sample. Mutational signatures are displayed 

in distinct colours, consistent in both panels of each figure as well as in all figures in 

Appendices V and VI. Figures are displayed on individual pages, labelled to clearly 

show the names of the cancer types, and they are ordered alphabetically based on the 

names of these cancer types. In general, all samples are included in the summary of 

each cancer type. The only exception (denoted with an asterisk in the appropriate 

figure) is one lung squamous hypermutator sample purely of Signature 7 (72 

mutations per MB). Signature 7 is associated with exposure to ultraviolet light, an 

unlikely carcinogen for lung cancer. As such, this TCGA sample is most likely either 

a melanoma metastasis or a misannotated sample. Thus, the association between 

Signature 7 and lung squamous has not been discussed in chapter 4 and this 

association has not been displayed in Figure 4.9. 



 
 

 





























































APPENDIX VII: Publications associated with this thesis 

This appendix contains the references of the articles that have been written 

and published as part of this thesis. The articles are separated into two categories: (i) 

main articles – four manuscripts directly related to developing and presenting the 

approach for deciphering mutational signatures and applying this approach to a large 

scale of whole-genome and whole-exome sequencing data, and (ii) supporting articles 

– seven manuscripts in which mutational signatures (and/or patterns of somatic 

mutations) have been examined. It is worth noting that this list of manuscripts does 

not include another six published articles unrelated to mutational signatures and/or 

cancer nor does it include another seven articles currently under review with which I 

have been involved during the course of my doctoral studies. Lastly, it should be 

noted that this thesis is almost entirely written based on the four main mutational 

signatures articles.  

 



Main articles 

Alexandrov LB and Stratton MR (2014) Mutational Signatures: The Patterns of 

Somatic Mutations Hidden in Cancer Genomes. Current Opinion in Genetics & 

Development 24, 52-60 (invited review article/corresponding author). 

 

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, 

Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler 

AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves 

M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinsk M, Jager N, Jones DT, 

Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi 

NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson 

JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, 

Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-

Mas R, van Buuren MM, van 't Veer L, Vincent-Salomon A, Waddell N, Yates 

LR, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, 

Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, and 

Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 

500:415-421. 

 

Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, and Stratton MR (2013) 

Deciphering signatures of mutational processes operative in human cancer. Cell 

Reports 3:246-259. 

 

Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, 

Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K, Chen 
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Davies HR, Papaemmanuil E, Stephens PJ, McLaren S, Butler AP, Teague JW, 

Jonsson G, Garber JE, Silver D, Miron P, Fatima A, Boyault S, Langerod A, Tutt 

A, Martens JW, Aparicio SA, Borg A, Salomon AV, Thomas G, Borresen-Dale 

AL, Richardson AL, Neuberger MS, Futreal PA, Campbell PJ, Stratton MR (2012) 
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