
Efficient sequence assembly and
variant calling using compressed

data structures

Jared Thomas Simpson

Queens’ College

Wellcome Trust Sanger Institute

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2012

I took a lengthy path to reach this point and my family supported

me the entire way. I dedicate this work to them - thank you Mom,

Dad, Calley and Kim.

Declaration

This dissertation describes work carried out from May 2009 to July

2012 under the supervision of Dr Richard Durbin at the Wellcome

Trust Sanger Institute, while a member of Queens’ College, Cam-

bridge. This dissertation is the result of my own work and includes

nothing which is the outcome of work done in collaboration except

where specifically indicated in the text. The content in Chapter 2

was published in Simpson and Durbin [2010]. The content of Chapter

3 was published in Simpson and Durbin [2012].

This thesis does not exceed the length limit of 60,000 words as speci-

fied by the Biology Degree Committee.

Jared Thomas Simpson

August 29, 2012

Acknowledgements

My decision to undertake a Ph.D. was influenced by many of my

friends and colleagues. I owe thanks to my close friends Gwynn Elfring

and Scott Drader, who have been a constant source of support and

advice. My friend Christian Steidl introduced me to Computational

Biology. This introduction led me to work on the sequence assembly

problem, which directly led to this work.

My Ph.D. benefitted from many people at the Sanger Institute, most

importantly my supervisor Richard Durbin. Without Richard’s guid-

ance and insight this work would be greatly diminished. I am very

appreciative of the opportunity to work with Richard and proud of

the work we accomplished over the last four years. I had many great

discussions within Richard’s group in journal clubs, group meetings,

lunches and over coffee. These discussions introduced me to many

areas of genetics and provided a great environment for developing

as a scientist. A strength of the Ph.D. program at Sanger is the

opportunity to build collaborations across many different research ar-

eas. Within Richard’s group I enjoyed collaborating with Leopold

Parts, Aylwyn Scally and Kees Albers. I also appreciate the time I

spent working in David Adams’ lab and the Cancer Genome Project

under Peter Campbell. I owe thanks to the Wellcome Trust for fi-

nancially supporting my Ph.D. and Annabel Smith and Christina

Hedberg-Delouka for making sure the graduate program at Sanger

runs smoothly.

Summary

De novo genome assembly is one of the most computationally de-

manding problems in genomics. In this thesis, I describe a collection

of novel algorithms for performing de novo assembly using compressed

data structures. First, I describe an algorithm to directly construct

the assembly string graph - a model of overlap-based sequence as-

sembly - using the compressed FM-index data structure. Previous

algorithms for constructing the string graph required the intermedi-

ate step of building a full overlap graph, then removing transitive

edges from the graph. My novel FM-index based algorithm does not

require this time-consuming intermediate step. This algorithm allows

fast and memory efficient overlap-based assembly. In Chapter 3, I

extend my FM-index algorithms to build a space-efficient assembler

for real sequencing data by designing error correction, read merging

and scaffolding algorithms. Using these efficient algorithms I am able

to reduce the memory requirement for assembling a human genome

to 54GB.

In Chapter 4, I address the problem of detecting DNA sequence dif-

ferences between two related genomes - the variant calling problem.

Traditional approaches to variant calling align short sequence reads to

a reference genome. While this approach is effective for simple differ-

ences, like isolated SNPs, it is more difficult to find complex changes

like the insertion or deletion of sequence. My approach is based on

analyzing the structure of an assembly graph built from the sequence

data from multiple individuals. In Chapter 5, I apply this approach

to real sequencing problems, including finding de novo mutations in

the child of two parents, somatically acquired mutations in cancer and

polymorphic variants present in a large human population.

Contents

Contents v

List of Figures ix

1 Introduction 1

1.1 DNA Sequencing . 2

1.1.1 High Throughput Sequencing 4

1.2 Sequence Assembly . 6

1.2.1 A Practical Overview of Assembly 9

1.2.2 The Topology of Assembly Graphs 10

1.2.2.1 Graph Tips . 10

1.2.2.2 Graph Bubbles 11

1.2.2.3 Repeats . 11

1.2.2.4 Unipaths . 12

1.2.2.5 Assembly Software 13

1.3 Resequencing and Variant Calling 14

1.4 Compressed Data Structures . 15

1.5 Overview of this work . 17

2 The FM-Index and Genome Assembly 19

2.1 Introduction . 19

2.1.1 Publication Note . 19

2.2 Definitions and Notation . 19

2.2.1 Genomes and Sequence Reads 20

2.3 Assembly Graphs . 21

v

CONTENTS

2.3.1 Overlap Graphs . 21

2.3.2 de Bruijn Graphs . 23

2.3.3 The String Graph . 24

2.4 The Suffix Array, BWT and FM-Index 28

2.4.1 The Generalized Suffix Array 31

2.5 Direct Construction of the String Graph 31

2.5.1 Building an FM-index from a set of sequence reads 31

2.5.2 Overlap detection using the FM-Index 32

2.5.3 Detecting irreducible overlaps 34

2.5.4 Results . 38

2.6 Representing a de Bruijn Graph using the FM-Index 41

3 The SGA Assembler 44

3.1 Introduction . 44

3.1.1 Publication Note . 44

3.1.2 Algorithm Overview . 45

3.2 SGA Algorithms . 46

3.2.1 Construction of the FM-index for large read sets 46

3.2.2 k-mer based error correction algorithm 47

3.2.3 Overlap based error correction 49

3.2.3.1 Finding Inexact Overlaps with the FM-Index . . 50

3.2.3.2 Overlap Based Error Correction Algorithm 52

3.2.4 Read filtering . 53

3.2.5 Read merging and assembly algorithm 53

3.2.6 Paired end reads/Scaffolding 55

3.2.7 Implementation Details . 57

3.2.7.1 FM-Index Implementation 57

3.2.7.2 Progam Design, Implementation and Libraries . . 58

3.3 Results . 59

3.3.1 Index construction results 60

3.3.2 C. elegans Assembly . 61

3.3.2.1 Substring coverage 62

3.3.2.2 Assembly Contiguity 63

vi

CONTENTS

3.3.2.3 Assembly Completeness 64

3.3.2.4 Assembly Accuracy 65

3.3.2.5 Computational Requirements 66

3.3.3 Human Genome Assembly 66

3.3.4 The Assemblathon . 70

3.3.5 Schizosaccharomyces pombe assemblies 71

4 Algorithms for Variant Detection from an Assembly Graph 74

4.1 Introduction . 74

4.1.1 Collaboration Note . 75

4.2 Algorithms . 76

4.2.1 Motivating Example . 77

4.2.2 Discovering Candidate Variants 78

4.2.3 de Bruijn graph haplotype generation 80

4.2.4 String graph haplotype generation 83

4.2.5 Haplotype quality control 86

4.3 Probabilistic realignment . 86

4.3.1 Extracting Haplotype Reads from the FM-Index 87

4.3.2 Probabilistic read-haplotype alignment 88

4.3.3 Annotating variants in the candidate haplotypes 88

4.3.4 Aligning haplotypes to a reference genome 89

4.3.5 Comparative variant-calling 89

4.3.6 Population calling . 91

4.4 Discussion . 92

5 Assembly-Based Variant Calling Results 94

5.1 Introduction . 94

5.1.1 Implementation Note . 95

5.2 The power to detect variants using unique k-mers 95

5.3 Simulated single-genome variants calls 96

5.3.1 Computation Requirements 99

5.4 Simulated genome comparison . 99

5.4.1 Computation Requirements 101

vii

CONTENTS

5.5 Reference-based Substitution Calls 101

5.6 Estimating the background error rate for comparative variant calling105

5.7 Calling de novo mutations in a trio 106

5.8 Cancer mutations . 109

5.8.1 Analysis Notes . 115

5.9 Low-Coverage Population Calls 115

5.9.0.1 Computation Requirements 117

5.10 Discussion . 118

6 Conclusions 119

References 121

viii

List of Figures

1.1 A simple tip in an assembly graph. The red vertices contain se-

quencing errors - due to these errors the sequence of this branch

diverges from the rest of the graph (grey vertices). The arrows

on the terminal grey vertices are to indicate the graph continues

off-page. 10

1.2 A bubble in the graph showing the distinctive divergence/collapsing

signature. 11

1.3 A simple repeat in the assembly graph. The red nodes represent

sequences present multiple times in the genome. 12

1.4 A unipath graph constructed from the graph depicted in figure 1.3.

The unambiguously connected vertices have been merged together. 13

2.1 Diagram of a simple assembly graph. Three overlapping reads

(R1,R2,R3) are shown in panel A. Panel B shows the graph con-

structed from the overlaps between the reads. The arrowheads

pointing into the nodes depict an edge of type P and arrowheads

pointing away from the nodes depict edges of type S. For example

the edge between R1 and R2 is a SP -edge. The edge R1 ↔ R3 is

transitive. Removing this edge will turn the graph into a string

graph. 27

2.2 The running time of the direct and exhaustive overlap algorithms

for simulated E. coli data with sequence depth from 5X to 100X. . 39

3.1 Schematic of the flow of data through SGA. 45

ix

LIST OF FIGURES

3.2 k-mer occurrence histogram for simulated perfect data (left) and

simulated data with 1% uniform base calling errors (right). The y-

axis records the number of times a k-mer with frequency x occurs

in samples of the data set. For example, there are 57,059 k-mers

seen 20 times in the perfect data set. The histogram was calculated

by sampling 10,000 random reads. 48

3.3 Reference string coverage analysis for the C. elegans N2 assembly.

For string lengths from 50bp up to 5,000bp, 10,000 strings were

sampled from the consensus-corrected C. elegans reference genome.

The proportion of the strings found in the SGA, Velvet, ABySS

and SOAPdenovo assemblies is plotted. 63

3.4 The number of bases of the C. elegans reference genome covered

as a function of minimum contig alignment length. 64

3.5 The amount of the human reference genome covered by a contig

as a function of the minimum contig alignment length. For each

length L on the x-axis, contig alignments less than L bp in length

were filtered out and the amount of the reference genome covered

by the remaining alignments was calculated. 69

3.6 The relationship between sequence coverage and contig N50 for the

S. pombe data set. The plot in the left panel displays the complete

data set. The plot in the right panel only shows strains that have

<100X coverage. 72

3.7 The relationship between sequence coverage and CPU time for the

S. pombe data set. 73

4.1 A bubble in a de Bruijn graph built from Gv and Gc. The grey

k-mers (labelled K1 and K2) are shared between Gv and Gc and

are the entry/exit points of the bubble. The red and blue vertices

represented k-mers unique to Gv and Gc, respectively. 77

5.1 The k-mer detectability of point mutations introduced into the

human reference genome. The black line indicates the proportion

of introduced variants that are detectable at a given k. The red

line indicates the proportion of variants that form clean bubbles. . 96

x

LIST OF FIGURES

5.2 Sensitivity (left panel) and precision (right panel) of reference-

based calls on simulated data. Note the different range of the

y-axis in each panel. 98

5.3 Sensitivity (left panel) and precision (right panel) of the simulated

genome comparison. Note the different range of the y-axis in each

panel. 101

5.4 The left panel plots the proportion of mapping-based SNP calls

using GATK that were found by the de Bruijn graph and string

graph callers as a function of k. In the right panel, the proportion

of SNP calls that are found in dbSNP v1.32 is plotted. 103

5.5 The proportion of mapping-based SNPs found (left) and the pro-

portion of our SNP calls contained in dbSNP v1.32 (right) for the

downsampled data set. 104

5.6 The allele frequency distribution for substitution calls made by the

string graph caller . 113

5.7 The allele frequency calculated by the string graph caller (x-axis)

and CGP (y-axis) for calls made a common sites 114

5.8 The allele frequency distribution for SNP and Indel calls on the

AFR continental group of the 1000 Genomes Project 116

5.9 The distribution of insertion (positive) and deletion (negative)

lengths for the 1000 Genomes data set. The data set consists

of 35, 846 assembly indel calls (black points) and 64, 319 map-

ping calls from Phase 1 of the 1000 Genomes Project (red points).

Events larger than 50bp were excluded from this plot. 117

xi

Chapter 1

Introduction

A hallmark of modern science is the collection of large volumes of data by measur-

ing physical processes. Experiments which collect terabytes of data are common

in particle physics and astronomy. In biology, we can now sequence the DNA

of previously uncharacterized organisms, entire human populations or thousands

of human cancers. These applications need extremely computationally efficient

algorithms to process the data. In this work, I will present efficient algorithms

for processing raw DNA sequence data. The algorithms I will develop are based

on the idea of querying a compressed data structure. These data structures be-

come more efficient in memory use as the redundancy in the data increases, while

retaining the ability to perform efficient queries. Throughout this text I will

develop algorithms for building and querying these structures in the context of

DNA sequence data. Using the algorithms I develop, I will address two major

problems in sequence analysis. The first problem is the efficient reconstruction

of a genome - the full complement of DNA within a cell - using only the output

from a DNA sequencing instrument. Given the scale of the problem, often re-

quiring hundreds of gigabytes of data, computation time and memory efficiency

is a primary concern. The second problem that I will address is the detection

of differences in the sequence of DNA between related genomes. The approach I

will develop does not require the alignment of raw sequence reads to a reference

genome - it works directly from the sequence reads themselves.

In the remainder of this chapter, I will introduce DNA sequencing and the

key problem of reconstructing a genome from a set of sequence reads. I will

1

also discuss previous approaches to the reconstruction problem and give a brief

overview of compressed data structures. At the end of this chapter, I provide an

overview of the remainder of this text.

1.1 DNA Sequencing

The field of molecular biology developed rapidly in the second half of the 20th

century. Watson and Crick’s discovery of the double-helix structure of DNA told

us how genetic information is copied within a cell and transmitted from generation

to generation. The determination of the genetic code - how the sequence of

nucleotides in genes encode the information necessary for constructing proteins -

led to the formation of the central dogma of molecular biology, which describes

how DNA encodes RNA which encodes proteins. It was thus readily apparent

that the sequence of nucleotides making up an individual’s genome underlies

the protein complement of the cell and hence much phenotypic variation that

we see between individuals. The development of methods for determining the

sequence of nucleotides in DNA molecules would have great importance to the

study of human health and the evolution of life. Using techniques developed

by Sanger and colleagues to determine the nucleotide sequence of short RNA

fragments [Sanger et al., 1965], Walter Fiers and colleagues sequenced the first

gene, the coat protein of bacteriophage MS2 [Jou et al., 1972]. Later in 1976 the

complete sequence of bacteriophage MS2 would be determined [Fiers et al., 1976].

Maxam and Gilbert developed a method for directly determining the sequence

of nucleotides in DNA based on breaking radioactively-labelled DNA at specific

positions, then size-sorting the DNA fragments using gel electrophoresis [Maxam

and Gilbert, 1977]. Also in 1977 Sanger, Nicklen and Coulson developed a method

that would dominate DNA sequencing for almost three decades. This method,

called chain-termination sequencing and widely known as Sanger sequencing, is

based on introducing specially modified nucleotides which do not allow extension

of a DNA chain. When these terminating nucleotides are incorporated into a

growing DNA chain, they stop the reaction from proceeding any further. The

result is a mixture of partial copies of the original template DNA. This mixture

can be sorted by fragment length using gel electrophoresis, and the sequence of

2

the DNA template can be read from the gel by the pattern of bands indicating

which modified base (A, C, G or T) stopped the chain at a given position [Sanger

et al., 1977]. Sanger and Gilbert’s contributions to DNA sequencing would earn

them the 1980 Nobel Prize in Chemistry (shared with Paul Berg).

Over the next three decades the efficiency and throughput of chain-termination

sequencing was greatly improved, particularly as a result of automation of the se-

quencing process. Gel electrophoresis and radioactively labelled nucleotides were

replaced by capillary tubes and fluorescent nucleotides, allowing the automated

imaging and analysis of the sequencing reaction using a computer [Smith et al.,

1986]. Multiple sequencing reactions were run in parallel. The read length - the

number of contiguous bases sequenced in a single reaction - improved to 500-1000

bases. These improvements to the throughput of DNA sequencing led to the start

of the genomics era, where entire genomes could be sequenced. The first com-

plete genome sequenced of a free-living organism was the 1.8 megabase genome

of Haemophilus influenzae published in 1995 [Fleischmann et al., 1995]. As the

cost of sequencing continued to fall, larger genomes were sequenced like that of

Escherichia coli [Blattner et al., 1997], Saccharomyces cerevisiae [Goffeau et al.,

1996], Caenorhabditis elegans [C. elegans Sequencing Consortium, 1998] and the

model plant Arabidopsis thaliana [Arabidopsis Genome Initiative, 2000].

An international consortium to sequence the human genome was formed in

the early 1990s. A competing privately funded project was later started by the

Celera corporation. These competing projects progressed in contrasting styles.

As the human genome was already known to be highly repetitive [Schmid and

Deininger, 1975], the publicly funded Human Genome Project (HGP) took a con-

servative approach to sequencing. They developed libraries of Bacterial Artificial

Chromosomes (BACs), 150 kilobase fragments of human DNA copied in a bac-

terial cell. Restriction digestions of the BACs were created and ordered into a

‘map’ based on the overlapping patterns of restriction fragments formed by gel

electrophoresis. Using the map, individual BACs were selected for direct sequenc-

ing to tile across each chromosome. The BAC map gave a scaffold on which to

place the individually sequenced clones. The privately funded project opted for

a more aggressive, faster approach. This method, termed whole genome shot-

gun sequencing, did not construct a map but rather sampled random sequence

3

reads from the entire genome. These raw shotgun reads would be augmented by

‘mate-pair’ reads where both ends of a long DNA fragment would be sequenced,

with unknown sequence in between. This strategy relied on the development of

sophisticated computational algorithms to determine the order of the sequence

reads and assemble them into the genome. In 2001, the two projects published

their drafts of the human genome [International Human Genome Sequencing Con-

sortium, 2001; Venter et al., 2001]. A vigorous debate on the effectiveness and

independence of Celera’s approach to sequencing the human genome ensued in

the literature for a number of years [Adams et al., 2003; Green, 2002; Myers

et al., 2002; Waterston et al., 2002, 2003]. Subsequent to the sequencing of the

human genome, the genome of a laboratory strain of mouse was sequenced using

a combination of BAC-based and whole genome shotgun data [Mouse Genome

Sequencing Consortium, 2002].

More recently many genomes have been sequenced including the Chimpanzee

[Chimpanzee Sequencing and Analysis Consortium, 2005], the Giant Panda [Li

et al., 2010a], the Gorilla [Scally et al., 2012] and the Bonobo [Prufer et al.,

2012]. The default is now whole genome shotgun assembly, which can provide

the complete genome sequence for small prokaryotic genomes but for larger and

more complex genomes assemblies are typically incomplete.

1.1.1 High Throughput Sequencing

While the efficiency of Sanger sequencing was improved by orders of magnitude

since its conception, the cost of sequencing remained too high for the routine

sequencing of entire human genomes. A second generation of sequencing tech-

nology arose in the mid-2000s, based on performing and measuring millions of

sequencing reactions in parallel. These technologies are collectively referred to as

High Throughput Sequencing (HTS) or Next Generation Sequencing (NGS).

The first HTS technology developed is termed “pyrosequencing” and was com-

mercialized by 454 Life Sciences1. In this method of sequencing, single-stranded

DNA is captured by beads, amplified and loaded into picoliter reaction wells.

Fluorescently labelled nucleotides are added to the reaction in a predefined or-

1Later acquired by Roche

4

der. When a labelled base is bound to the template DNA, a short pulse of light

is released which can be detected with a CCD camera. After each reaction, the

reagents are cleared before the next addition of bases. The captured images

are analyzed in real time to determine the sequence of each template molecule

[Wheeler et al., 2008]. This method of sequencing produces far more data per

run than Sanger sequencing, generating up to 700 megabases of sequence per 23

hour run, with up to 1000bp read lengths1.

A second massively parallel sequencing technology was developed from work

begun by Balasubramanian and Klenerman at the University of Cambridge and

subsequently commercialized by Solexa2. In this method, template DNA is ligated

to sequences fixed on a slide. The template DNA is amplified in place to generate

a cluster of molecules. The sequencing process occurs over a number of cycles.

In each cycle reversibly-terminated nucleotides, each labelled with a fluorescent

dye, is added to the reaction. An image is taken, then the dye and terminator

are chemically removed to allow the reaction to proceed to the next base in the

chain. The captured images are analyzed after the run, and the identity of which

base was incorporated during each cycle is determined by the color of each cluster

[Bentley et al., 2008]. This method now produces up to 600 gigabases per run,

when 100bp reads are taken from both ends of a DNA fragment3.

Other approaches include sequencing-by-ligation (SOLiD by Life Technolo-

gies, first used in Valouev et al. 2008, and Complete Genomics Drmanac et al.

2010). Recently single molecule methods requiring no DNA amplification have

become available (PacBio, Eid et al. 2009). In principle these can give very

long reads, beyond the effective limit of 1000bp for preceding technologies, but

currently they are not cost and accuracy competitive.

The enormous volume of data generated by HTS instruments has allowed pop-

ulation surveys of human genome variation [1000 Genomes Project Consortium,

2010] and plans to sequence thousands of human cancers [The International Can-

cer Genome Consortium, 2010] and 10,000 vertebrate genomes de novo [Genome

10K Community of Scientists, 2009]. High throughput sequencing has also gen-

1This information was taken from http://454.com/ on July 16th, 2012
2Later acquired by Illumina, Inc
3This information was taken from http://www.illumina.com on July 16th, 2012

5

erated new analysis challenges. As whole genome sequencing is now a routine

experimental measure, we need algorithms and software that can scale to match

the data generated. This is particularly important for the computationally de-

manding de novo assembly problem.

1.2 Sequence Assembly

Even at the earliest stages of DNA sequencing, when the genomes sequenced were

only a few kilobases in length, it was apparent that computers would be needed to

help analyze the data. In [Staden, 1979] Roger Staden observes that “It became

clear during the sequencing of bacteriophage φX174 DNA that it was necessary

to use computers to handle and analyze the data”. As sequencing technology has

progressed over the last 30 years, computational techniques to analyze the data

have developed in parallel. One of the fundamental computational problems in

DNA sequence analysis is the reconstruction of a genome from a set of sequence

reads. This problem is known as de novo assembly. For large genomes, billions

of reads may be used in the assembly and the time and space efficiency of the

algorithm is crucial. In this section we give an overview of assembly algorithms.

These will be discussed in more technical detail in the following chapter.

Early assemblers were not fully automated but helped a user identify and

merge overlapping sequence reads. The Staden package referenced above is an

example of this approach. As the size of sequence data sets grew, fully automated

assemblers needed to be developed. Early assemblers often used a greedy algo-

rithm. Pairs of reads would be compared to find overlaps and each overlap would

be scored based on the number of matching and mismatching bases. The reads

sharing the highest scoring overlap would be merged together and the process

would iterate. As this process made a greedy choice, care needed to be taken to

avoid merging reads that originate from similar repeats. The Phrap program1,

designed for assemblies of BACs and used by the Human Genome Project, used

base quality scores2 to help distinguish between true overlaps and those caused

by identical or nearly identical repeats.

1Unpublished, algorithm described here http://www.phrap.org/phredphrap/phrap.html
2An estimation of the probability that a given nucleotide in the read is incorrect

6

http://www.phrap.org/phredphrap/phrap.html

In a move away from greedy algorithms, Kececioglu and Myers modelled the

assembly problem as a variant of the Shortest Common Superstring problem,

which was known to be NP-Hard [Kececioglu and Myers, 1993]. Their formula-

tion of the problem used the concept of an overlap graph. In an overlap graph,

each sequence read is a vertex and two vertices are connected by an edge if their

corresponding reads have a significant overlap. The assembly problem is thus to

find walks through the graph that are consistent with the overlap relationships. A

final consensus sequence can be computed from a multiple alignment constructed

from the set of overlapping reads implied by the walk. The three stages of as-

sembly - overlap computation, layout, consensus gave rise to the “OLC” acronym

used to describe assemblers following this paradigm. The overlap computation

stage is typically the computational bottleneck in the assembly. In the worst case

this requires O(N2) time where N is the total number of bases in the sequence

reads. In the Celera assembly of the human genome, they compared all reads

against each other, which required 10,000 CPU hours on a cluster of 40 machines

[Venter et al., 2001]. In [Myers, 2005], Gene Myers reformulated overlap graph

assembly in terms of string graphs. Myers’ string graph construction algorithm

removes transitive edges from an overlap graph. As this requires the full overlap

graph to be constructed it shares the same computational bottleneck as OLC

assembly. Various strategies to accelerate overlap detection have been developed,

including limiting overlap computation to pairs of reads that have an exact, short

match [Rasmussen et al., 2006]. Despite such improvements, overlap computa-

tion remained a significant bottleneck. This became particularly important when

High Throughput Sequencing instruments became widely available, as traditional

overlap-based strategies could not cope with the volume of data.

In the late 1980s, a new approach to DNA sequencing was proposed in which

DNA is hybridized to an array containing short oligonucleotide probes with known

sequences. A signal is read from each probe, indicating whether or not the par-

ticular sequence is present in the genome. Thus, the assembly problem is to

reconstruct the genome from the spectrum of short sequences that it contains.

This approach to DNA sequencing, called Sequencing by Hybridization, did not

have a significant impact on the de novo sequencing of genomes but in studying

this problem a new class of assembly algorithms was developed, pioneered by

7

Pavel Pevzner [Pevzner, 1989; Pevzner et al., 2001] along with Idury and Water-

man [Idury and Waterman, 1995]. The defining characteristic of these algorithms

is that they break sequence reads into chains of consecutive k-mers1, overlapping

by (k− 1) bases, and construct a graph of the relationship between k-mers. Such

assembly graphs are called de Bruijn graphs after the graphs used by Nicolaas de

Bruijn to study combinatorial problems [de Bruijn, 1946]. As the construction of

a de Bruijn graph only requires performing exact matches between k-mers, the

construction can be performed in linear time using a hash table. The straight-

forward construction of the graph, along with the efficiency in which repetitive

sequences are handled by the graph, led to the de Bruijn graph becoming the

dominant method of assembly for high throughput, short read sequence data.

This approach to assembly was initially applied to HTS data by Chaisson and

Pevzner [Chaisson and Pevzner, 2008] and Zerbino and Birney [Zerbino and Bir-

ney, 2008].

While the de Bruijn graph approach to assembly solved the computation time

problem, the amount of memory required to store the graph became a major

concern. In the de Bruijn graph, there is a vertex for every unique k-mer in the

genome. In addition, sequencing errors cause new, erroneous k-mers to be added.

The de Bruijn graph of large genomes can have billions of vertices, requiring

hundreds of gigabytes of memory. Reducing the memory requirements of de

Bruijn graph assembly is a very active area of research. Simpson et al. [2009]

designed a representation of the de Bruijn graph which could be distributed across

a network of computers, spreading the memory load across multiple machines. Li

et al. [2010c] performed error correction before assembly to reduce the number of

vertices in the graph. Conway and Bromage proposed encoding the structure of

the graph using sparse bit vectors [Conway and Bromage, 2011]. Recently Pell

et al. have developed a probabilistic representation of a de Bruijn graph using a

bloom filter [Pell et al., 2012]. Chikhi and Rizk have also recently used a bloom

filter to represent a de Bruijn graph [Chikhi and Rizk, 2012].

1subsequences of a uniform length, k

8

1.2.1 A Practical Overview of Assembly

The input into a genome assembly is a set of sequence reads from the genome of

interest. Often paired-end reads will be obtained. In paired-end sequencing, both

ends of the DNA fragment will be read without reading the sequence between the

ends. For example the first and last 100 bases of a 500 base fragment of DNA

may be read - the 300bp sequence separating the ends is unknown. Mate-pair

reads may also be obtained. In mate-pair sequencing a multi-kilobase fragment

of DNA is circularized then cut twice, and the ends from the two cut points are

read. This allows a wider separation between the sequenced pair, up to 3 to 10

kilobases. When discussing sequencing data, I will refer to the coverage of the

genome. This is a measure of how redundantly the genome is sampled by the

reads. For example sequence coverage of 40X indicates that on average each base

of the genome is represented in 40 reads. This is often also called the sequencing

depth.

The assembler will read in all available data and output a set of contigs and

scaffolds. The contigs are the primary output of the assembly. These are stretches

of the genome that have been completely assembled from the raw reads. They

contain no gaps. When the assembler finds a repeat that it cannot resolve, or a

contig cannot be extended due to a lack of reads covering the genome, the contig

assembly stops. If paired-end or mate-pair reads are available the assembler can

build scaffolds from the contigs. The paired reads provide long-range information

that can jump over the coverage gap or unresolvable repeat. The scaffolds will

contain multiple contigs separated by gaps. The gaps will be encoded using

ambiguity symbols (typically runs of “N” symbols) which estimates the length

of the unresolved sequence. The lengths of the scaffolds will typically be much

greater than the lengths of the input contigs.

To measure the quality of assembly the N50 length of the contigs or scaffolds

can be calculated. The N50 of a set of contigs or scaffolds is the length x such

that contigs of length x or greater contain half of the total length of the assembly.

Misassembled contigs may inflate the N50 length of an assembly. If a reference

genome is available we may calculate NG50 instead - this calculates the N50 length

of segments of the genome that have been correctly assembled, which accounts

9

for the possibility of misassembled contigs or scaffolds [Earl et al., 2011].

1.2.2 The Topology of Assembly Graphs

The structure of the assembly graph can give important information about the

underlying genome. Here I will describe common topological features of assembly

graphs. The features below are common to both de Bruijn graphs and string

graphs. Any distinctions will be noted.

1.2.2.1 Graph Tips

On the Illumina sequencing platform, errors are more likely to occur at the end

of a read. When constructing a de Bruijn graph from the k-mers of a read

containing sequencing errors, the k-mers covering the position of the error are

typically unique. These k-mers will form a chain of vertices in the de Bruijn

graph that terminates with the last k-mer in the read. As these branches of the

graph are only connected on one end, they are typically termed tips of the graph.

A simple tip is depicted in figure 1.1. In the string graph, these structures can also

form. In this case, reads with sequencing errors will not have a suffix (or prefix)

overlap. This will break the chain of overlapping reads, leading to a disconnected

branch in the graph. The tips in a string graph will typically be shorter than

those of a de Bruijn graph, as in the de Bruijn graph a single sequencing error

may generate multiple erroneous vertices.

Figure 1.1: A simple tip in an assembly graph. The red vertices contain sequencing

errors - due to these errors the sequence of this branch diverges from the rest of the

graph (grey vertices). The arrows on the terminal grey vertices are to indicate the graph

continues off-page.

10

A standard graph cleaning operation found in most graph-based assemblers

is to identify these tips then trim them back to the point of divergence. In the

example given in 1.1 this would remove the four red vertices, which would remove

the ambiguity in the edge set of the second grey vertex.

1.2.2.2 Graph Bubbles

When the genome contains nearly-identical sequences structures known as bubbles

form in the graph. When sequencing a diploid genome bubbles will form around

heterozygous variants. The k-mers (or reads) covering the variants will cause a

branch in the graph, with two possible paths to follow. The distinguishing feature

of the bubble is that these two paths will collapse back together a short distance

later. An example of a bubble is shown in figure 1.2.

Bubbles can also form around recurrent sequencing errors or inexact copies of

repeats dispersed throughout a genome. As with tip removal, removing bubbles

is a common operation performed on assembly graphs. Typically one of the two

halves of the bubble will be deleted from the graph. A bubble removal algorithm

is described in section 3.2.5. Detecting these structures in the graph will form

the basis of the algorithms presented in Chapter 4.

Figure 1.2: A bubble in the graph showing the distinctive divergence/collapsing signa-

ture.

1.2.2.3 Repeats

Genomes contain identical or nearly-identical repeat sequences. These sequences

cause ambiguity in the assembly graph. Figure 1.3 depicts the simplest possible

situtation where there are two exact copies of a repeat in a genome. The red nodes

in this example graph indicate the repetitive sequence. The repeat segment of

11

the graph has two entry and exit points. This indicates there are four possible

paths through this segment of the graph - XRW, XRZ, YRW, YRZ - only two of

which are correct. In the absence of all other information we cannot resolve this

repeat. When working with a de Bruijn graph, we may try to thread the original

sequence reads through the graph in an attempt to resolve the repeat. If we can

find reads that contain both X and W or X and Z it will help us determine

the correct pair of paths traversing this segment of the graph. If the repeat is

very long or has many copies in the genome, it is unlikely that it can be easily

resolved. Paired end or mate pair data can be used to help resolve these cases.

Y

W

Z

X X1 2

Y1 2

W

Z1 2

1 2

Figure 1.3: A simple repeat in the assembly graph. The red nodes represent sequences

present multiple times in the genome.

1.2.2.4 Unipaths

Vertices in the graph that are connected to only one neighbor are unambiguous.

Such vertices can be merged together into a single vertex without the loss of

information or the possibility of making a misassembly. Chains of unambiguous

vertices are referred to as unipaths. Finding unipaths is the primary method of

contig assembly in most graph based assemblers. Figure 1.4 shows the unipath

graph of the simple repeat from figure 1.3.

12

Figure 1.4: A unipath graph constructed from the graph depicted in figure 1.3. The

unambiguously connected vertices have been merged together.

1.2.2.5 Assembly Software

The development of short read assemblers has been one of the most active areas

of bioinformatics since the introduction of high-throughput sequencing. SSAKE

was one of the first assemblers designed specifically for short reads [Warren

et al., 2007]. The Velvet assembler [Zerbino and Birney, 2008] was introduced

shortly afterwards and became very popular for assembling small-to-medium sized

genomes. Velvet uses an explicit representation of the de Bruijn graph based on

memory pointers in the C programming language. This representation of the

graph requires large amounts of memory when the de Bruijn graph has many

vertices, like in the case of assembling a human genome. The ABySS assembler

was designed specifically for large genomes [Simpson et al., 2009]. ABySS does

not use an explicit pointer-based de Bruijn graph, rather it stores a collection of

k-mers in a sparse hash table from which the structure of the graph can be in-

ferred. This representation of the graph allows the memory load to be distributed

over a cluster of computers. ABySS was used in the Gorilla [Scally et al., 2012]

and Tomato genome projects [Tomato Genome Consortium, 2012]. The SOAPde-

novo assembler [Li et al., 2010c] was also designed for large genomes and reduces

memory consumption by first performing k-mer based error correction to avoid

adding erroneous k-mers to the de Bruijn graph. SOAPdenovo was one of the

first short read assemblers to focus on the use of multiple large-insert mate-pair

libraries for scaffold construction. This technique was used in the Giant Panda

genome project [Li et al., 2010a]. The ALLPATHS series of assemblers is de-

signed by the Broad Institute [Butler et al., 2008; Gnerre et al., 2011; Maccallum

13

et al., 2009]. ALLPATHS is unique in that it requires specific types of sequencing

reads1. The algorithms are optimized for this input, allowing high-quality assem-

blies to be generated when the requirements are met [Gnerre et al., 2011]. In the

Assemblathon competition [Earl et al., 2011], ALLPATHS-LG and SOAPdenovo

were the top two entries out of seventeen groups who submitted assemblies. The

assembler described in Chapter 3 of this thesis, SGA, was ranked third. ABySS

was seventh.

The computational requirements for these popular assemblers varies widely.

Velvet is very fast but cannot run on large data sets. For a human genome,

ABySS requires 150-400GB of aggregate memory across the assembly cluster.

SOAPdenovo requires a similar amount of memory after the error correction step.

The authors of ALLPATHS-LG suggest the use of a multi-core 512GB server and

estimate the run time to be 3.5 weeks for a human genome [Gnerre et al., 2011].

New assemblers have been developed recently with a focus on memory effi-

ciency. Cortex [Iqbal et al., 2012] uses an approach similar to ABySS and encodes

a de Bruijn graph using an efficient hash table of k-mers. Gossamer [Conway

et al., 2012; Conway and Bromage, 2011] uses sparse bit arrays to represent the de

Bruijn graph. Fermi [Li, 2012] uses modified versions of the algorithms described

in this thesis to construct a string graph using the FM-index data structure.

1.3 Resequencing and Variant Calling

Often when we sequence an individual a reference genome for that species is

already available. In the case of humans the individual is expected to match the

reference at 99.9% of the bases. The resequencing problem is to discover the 1 in

1000 bases that differ between the individual and the reference. These differences

can be substitutions, where the identity of a symbol is swapped with another

symbol, or indels, where some bases have been inserted or deleted with respect to

the reference. There are also larger structural variants. These are large deletions,

copy number changes, inverted segments or chromosomal rearrangements. The

process of finding the ways in which a sequenced genome differs from the reference

is referred to as variant calling.

1Overlapping paired-end reads and at least one long-insert mate pair library

14

Standard approaches to variant calling will map the sequence reads to the

reference genome. This is the process of finding the location on the reference

genome that a sequence read (or read pair) was sampled from. The result of

mapping is an alignment of a read against the reference, which is a one-to-one

mapping from individual bases of the read to individual bases of the reference.

The mapping and alignment process must take into consideration errors that

occur during sequencing, for instance incorrectly identifying a base, and possible

variants between the individual and the reference genome. Once all reads have

been mapped to the reference, variants are called by finding consistent differences

between the aligned bases and the reference genome. For example if the reference

base is a T at a given position and all read bases aligned to that position are C,

we may say there is a T to C substitution. The strength of the evidence for each

variant will be typically assessed in a probabilistic model to distinguish between

sequencing or alignment errors and true variants. A comprehensive description

of the mathematics involved in the variant calling process can be found in [Li,

2011].

Variant calling by mapping reads to a reference genome is effective for isolated

substitutions and small indels and has formed the basis of many resequencing

projects, like the 1000 Genomes Project [1000 Genomes Project Consortium,

2010]. However, the mapping and alignment process can fail when there are

significant differences between the individual and the reference genome, like multi-

base substitutions or larger indels. In the worst case the sequence reads will be

misaligned to the reference and false variant calls will be made. The primary

source of misalignments (and therefore false positive variants) is polymorphic

indels [Li and Homer, 2010]. For this reason, assembly-based methods of variant

calling have recently been proposed [Iqbal et al., 2012; Li, 2012]. In Chapter 4, I

will also address the variant calling problem with assembly-based algorithms.

1.4 Compressed Data Structures

A text index is a data structure which allows string queries to be performed

without requiring scanning the full text. For example, given a text collection T

and a pattern P , we may wish to check whether P is a substring of T , count

15

the number of occurrences of P in T or locate the positions of P in T . Text

indices are used frequently in bioinformatics to accelerate searches over large

sequence collections. Sequence alignment is a classic application of text indices.

The BLAT [Kent, 2002] and SSAHA [Ning et al., 2001] algorithms use an index

of short subsequences of a reference genome to find candidate mapping locations

of a query sequence which are refined by dynamic programming.

Some of the most time efficient indices use suffix data structures. The suffix

tree and suffix array data structures store an ordering of the suffixes of a text.

The suffix tree can be searched for a pattern by matching the symbols of a pattern

to labels on the edges of the tree. A suffix array uses considerably less space than

a suffix tree and allows pattern matching via a binary search [Manber and Myers,

1990]. These data structures are extensively studied in Gusfield’s classic sequence

analysis text [Gusfield, 1997]. The suffix array is used widely in bioinformatics, for

example in sequence clustering [Malde et al., 2003], repeat detection [Abouelhoda

et al., 2002], microarray design [Li and Stormo, 2001] and k-mer counting [Kurtz

et al., 2008].

Despite the widespread use of the suffix array, its memory requirements (8

bytes per input base for large sequence collections) has limited its use to rela-

tively small analysis problems. In the past decade, compressed text indices related

to the suffix array have been developed. These indices store a compressed ver-

sion of the text, and define auxiliary data structures that allow the compressed

text to be searched without the need for complete decompression. In 2000, Fer-

ragina and Manzini described the FM-index (full-text, minute-space) [Ferragina

and Manzini, 2000]. The FM-index is based on the Burrows-Wheeler transform

[Burrows and Wheeler, 1994] and allows similar queries as the suffix array. Early

applications of the FM-index in bioinformatics were for counting substrings in

genomes [Healy et al., 2003] and finding local alignments between a query se-

quence and a reference genome [Lam et al., 2008]. The FM-index would later

become the dominant data structure for mapping high throughput short reads

to a reference genome [Langmead et al., 2009; Li and Durbin, 2009; Li et al.,

2009]. The algorithms I develop in this thesis are based on the FM-index, and

a full description of the data structures and how it is used is given in chapter

2. Compressed versions of the suffix array and suffix tree have been developed,

16

significantly shrinking their memory requirement [Grossi and Vitter, 2000]. As

of yet, these structures have not been widely used within bioinformatics.

1.5 Overview of this work

In Chapter 2, I introduce my technical notation and definitions then describe an

algorithm to efficiently construct the assembly string graph from a set of sequence

reads, without the need to build the full overlap graph first. This will solve the

time bottleneck for performing overlap-based assembly. The algorithm that I

develop is based on the FM-index. As this is a compressed data structure, its

memory footprint is much smaller than other full-text indices, like the suffix array.

This will allow the reduction of the memory bottleneck of assembly. While the

primary focus of this work is overlap-based assembly, in section 2.6 I will describe

how the FM-index can be used as a memory efficient representation of a de Bruijn

graph for all k.

In Chapter 3, I describe the implementation of these assembly algorithms

into a fully functional sequence assembler called SGA. This assembler has algo-

rithms for building the FM-index from very large sequence collections and cor-

recting sequencing errors. I demonstrate the use of SGA on real sequence data

from Schizosaccharomyces pombe, Caenorhabditis elegans and the human genome.

Also, I compare the output of SGA to leading de Bruijn graph assemblers.

In chapter 4, I study the problem of finding differences between a pair of

related genomes. I will address this problem by using assembly graphs to model

the variation structure within the genomes. I will describe the use of both de

Bruijn graphs and string graphs for this problem. Again, this work is based on

the FM-index. This allows efficient access to the complete read sequences, which

I will use when developing a probabilistic model to distinguish between sequence

errors and true variation1. In Chapter 5, I study the sensitivity and accuracy

of this approach with simulations. I also apply this approach to the problems

of detecting newly acquired mutations in the offspring of two parents (de novo

mutations), detecting somatically acquired mutations in cancer and detecting

variation within a population of individuals.

1This work is performed in collaboration, details are provided at the start of Chapter 4

17

In Chapter 6, I offer concluding remarks including the prospects of expanding

upon this work for upcoming sequencing technology.

18

Chapter 2

The FM-Index and Genome

Assembly

2.1 Introduction

2.1.1 Publication Note

The work described in this chapter was previously published in [Simpson and

Durbin, 2010]. Section 2.6 describes unpublished results. The work described is

the sole work of the author, under the supervision of his PhD supervisor, Richard

Durbin.

2.2 Definitions and Notation

Let X be a string of symbols a1, ..., al from an alphabet Σ. The length of X

is denoted |X|. X[i] = ai is the i-th symbol of X and X[i, j] is the substring

ai, ..., aj. Let X ′ = al, al−i, ..., a1 denote the reverse of X. When discussing

lexicographically ordered alphabets, b+ 1 will refer to the next highest symbol in

the alphabet after b.

If Y is a substring of X and Y 6= X, then we say that Y is a proper substring

of X. A substring X[k, |X|] is a suffix of X and a substring X[1, k] is a prefix of

19

X. We will often refer to substrings of length n as a n-mers 1.

When discussing text indices, we will consider all strings to be terminated by

a sentinel symbol $ that is not in Σ and is lexicographically lower than all the

symbols in Σ. In this work the DNA alphabet will be used. The lexicographic

ordering of this alphabet and the sentinel is $ < A < C < G < T .

2.2.1 Genomes and Sequence Reads

We define a genome to be a long string from the alphabet {A,C,G, T} rep-

resenting the complete DNA sequence of an individual, for simplicity ignoring

potential subdivisions into chromosomes. A sequence read is a short substring

from a genome. DNA is a double stranded molecule and sequence reads can orig-

inate from either strand. We use the notation X for the reverse-complement of

a read X.

Reads may contain sequencing errors. These occur when the sequencing in-

strument incorrectly identifies a symbol (substitution error), or when a symbol

is incorrectly inserted into, or deleted from, the string (indel error). We will oc-

casionally assume that reads are error-free. It will be clearly stated when this is

the case.

We say that two reads X and Y overlap if a prefix of X is equal to a suffix

of Y or vice versa. If X and Y originate from opposite strands, they overlap if

the reverse complement of one of them overlaps the other. If X (or X) has the

same sequence as Y then we say that the two reads are identical, or duplicates.

If X (or X) is a proper substring of Y , then we say that X is contained within

Y . When two reads X and Y overlap, we can merge them into a new sequence

Z which contains both X and Y . In this case we say that we have assembled X

and Y . We will refer to the new sequences that result from assembly as contigs.

In a shotgun sequencing experiment a set of sequence reads is randomly sam-

pled from a genome, G, with an unknown sequence. We will denote the indexed

set of reads by R, with the i-th read in the set denoted by Ri. The de novo assem-

bly problem is to reconstruct the sequence of G given only R. If the sequence of

1Such substrings are also referred to as n-grams or n-tuples, particularly in Computer
Science. We will use n-mer for consistency with most literature in the sequence assembly field.

20

G was drawn randomly from {A,C,G, T} the assembly problem would be easy -

even very short reads with length on the order of log |G| would suffice to assemble

nearly all of G unambiguously. In reality, the problem is far more complicated.

Eukaryotic genomes are shaped by the duplication and divergence of large seg-

ments, along with the proliferation of transposon elements. The difficulty of the

assembly problem stems from these repetitive regions.

2.3 Assembly Graphs

To help reconstruct G from R, we can build a graph of the relationships between

sequence reads. We will discuss three different types of assembly graph - the

overlap graph, the de Bruijn graph and the string graph. The common thread

between these graphs is that the structure of the underlying genome is reflected

in the structure of the graph. Walks through these graphs describe assemblies of

the reads into segments of the genome. We begin with the overlap graph.

2.3.1 Overlap Graphs

In the overlap graph each sequence read in R is a vertex. Two vertices are joined

by an edge if their corresponding reads overlap. To help distinguish true overlaps

from spurious overlaps we set a threshold of τmin on the minimum acceptable

overlap length. When allowing for sequencing errors, a threshold on the maximum

error rate of εmax will also be set. For the remainder of this chapter, we will

consider only error-free reads. This constraint will be relaxed in Chapter 3. We

associate coordinates with each edge describing the matching segments of the

linked reads.

The overlap graph is computationally demanding to construct. A naive algo-

rithm (suitable only for very small sequencing projects) would compare all pairs

of reads to discover overlapping pairs. Such an algorithm has O(N2) time com-

plexity where N =

|R|∑
i=1

|Ri|. For larger sequencing projects, comparing all pairs

of reads is impractical. To accelerate overlap detection, an index of all l-mer

sequences appearing in the reads can first be constructed, and only reads sharing

21

an l-mer would be checked for an overlap, avoiding the need to compare all pairs.

In Myers [2005] the use of a q-gram filter (subsequently described in Rasmussen

et al. [2006]) is suggested for finding all (τmin, εmax) overlaps in O(N2/D) time

where D is a function of the amount of memory available. In Gusfield [1997] an

algorithm to solve the all-pairs maximal overlap problem in O(N + |R|2) time

using a suffix tree is described. The quadratic term is due to the requirement

that an overlap between all pairs must be found - if we instead require that only

τmin-overlaps are found, a faster version of this algorithm is possible. However,

the suffix tree requires a very large amount of memory to store [Abouelhoda et al.,

2004], so in practice this data structure is not commonly used for indexing large

sequence collections.

An optimal algorithm for overlap detection would require O(N + |E|) time,

where |E| is the number edges in the resulting graph. Even with such an algo-

rithm, overlap-based assemblers suffer from two computational problems. First,

as all reads covering the same position of the genome will mutually overlap, the

number of overlaps (and therefore edges in the graph) is quadratic in sequencing

depth. This is a significant problem when assembling high-throughput sequence

data as the genomes tend to be covered very deeply to ensure each base is cov-

ered multiple times (typically greater than 40 reads cover each base). Second, for

reads originating from repetitive regions, the number of overlaps will be quadratic

in the product of the sequencing depth and the number of copies of the repeat.

This leads to greatly increased computational cost and a much larger graph when

assembling highly repetitive genomes. For this reason, overlap assemblers occa-

sionally take the step of masking known repeats and low-complexity sequence as

a pre-processing step, as exemplified by Celera’s assembly of the human genome

[Venter et al., 2001].

As each read in R was sampled from a distinct location in G, the optimal

solution will assign a linear ordering {1, 2, ..., |R|} to the elements of R, reflecting

their position along G. Such a solution requires finding a path through the overlap

graph which visits each vertex exactly once. This is the Hamiltonian path problem

which is known to be NP-complete. For this reason a global solution to the

assembly problem is rarely sought. Instead, the assembly of reads into contigs

typically focuses on finding local groups of reads that can be unambiguously

22

assembled together.

2.3.2 de Bruijn Graphs

We follow Pevzner’s formulation of the de Bruijn graph [Pevzner et al., 2001]. Set

a fixed value ρ and let P be the set of all distinct ρ-mers in R. Let k = ρ− 1 and

V be the set of all distinct k-mers in R. V is the set of vertices of the graph. For

each P ∈ P we create a bidirected edge K1 ↔ K2 where K1 is the length-k prefix

of P and K2 is the length-k suffix of P . To handle the double-stranded nature of

DNA, we can also introduce the reverse-complements of the ρ-mers and k-mers

into the graph1.

Unlike the overlap graph, the de Bruijn graph is computationally easy to

construct. The construction of the vertex and edge set only requires iterating

over distinct k or p-mers, which can easily be implemented with hash tables,

sorted arrays of strings, red-black trees or any other data structure allowing

efficient queries for whether a string is present in a collection. A second important

property, perhaps the most important, is how repeats appear in the graph. Let

R be a long repeated substring of G (|R| > k). By definition each instance of

R contains the same sequence of k-mers. As the de Bruijn graph only contains

distinct k-mers, there is a single vertex for each of these k-mers. Therefore unlike

the overlap graph the repeat copies do not contribute extra edges to the graph - all

copies are represented by a single segment of the graph (see figure 1.3). Coupled

with the efficient construction algorithms, this property has made the de Bruijn

graph the dominant data structure for assembly of genomes from high-throughput

short read data.

The reconstruction of G from the de Bruijn graph requires a tour that vis-

its each edge at least once. This is the route-inspection problem (also known

as the Chinese Postman Problem). Pevzner proposed [2001] to introduce edge

multiplicities in the graph to transform the problem into one in which each edge

must be visited exactly once. This is a classic graph theory problem originally

studied by Euler [Euler, 1741] and hence known as a Eulerian path problem.

1Some assemblers, like ABySS, represent a k-mer and its reverse complement as a single
vertex

23

As the Eulerian path problem has a known polynomial-time algorithm [Fleury,

1883], this was a promising approach to reducing the computational complexity

of genome assembly. However, with long repeats in the genome the problem is

underconstrained - many possible solutions may exist with only one representing

the true sequence of G [Nagarajan and Pop, 2009]. For this reason, assembling

contigs from the de Bruijn graph mainly focuses on local segments of the graph

that can be unambiguously assembled, like in the case of the overlap graph.

2.3.3 The String Graph

As a refinement to the overlap graph, Myers formulated the String Graph [2005].

The String Graph has a number of important differences with the overlap graph.

First, we remove duplicated or contained reads from R to provide a new non-

redundant vertex set. Second, we label each edge with the unmatched substrings

of each read. Let X = X1X2 and Y = Y1Y2 be two overlapping reads. When X

and Y are from the same sequencing strand, either X2 = Y1 or X1 = Y2. When

X and Y are from opposite sequencing strands, either X1 = Y1 or X2 = Y2. We

will call the substrings that are found in both X and Y the matched substrings.

The other substrings are the unmatched substrings. We define the labels of an

edge to be the unmatched substrings of the reads. Specifically:

Lxy =


Y2 if X2 = Y1

Y1 if X1 = Y2

Y2 if X1 = Y1

Y1 if X2 = Y2

The reciprocal label Lyx is defined similarly. Note that in the case that X and

Y are from opposite sequencing strands, then the label is the reverse-complement

of the unmatched substring. The concatenation of X and Lxy is an assembly of

reads X and Y - the resulting string contains both the sequence of X and Y . As

there are no duplicated or contained reads in the graph, the labels are necessarily

non-empty strings.

We can also associate with each edge in the graph a type describing the rela-

tionship between the pair of reads it links.

24

typexy =

{
S if X2 = Y1 or X2 = Y2

P if X1 = Y2 or X1 = Y1

If a suffix of X overlaps a prefix of Y , we will call the edge an SP -edge.

Likewise when a prefix of X overlaps a suffix of Y , we will call the edge a PS-

edge. When a reverse-complemented prefix (suffix) of X overlaps a prefix (suffix)

of Y , we call the edge a PP -edge (SS-edge). We note that when typexy = typeyx

X and Y are necessarily from opposite sequencing strands.

Walks through the graph must respect the edge types. For example, for the

walk X ↔ Y ↔ Z to be valid, if typeyx = S then typeyz must be P and vice

versa. In other words, if we enter a vertex via a suffix overlap, we must leave the

vertex using a prefix overlap. This makes the string graph bidirected. We can

associate a string with a walk through the graph by concatenating the label of

each edge in the walk to the sequence of the first vertex in the walk.

Definition 1. Let X1 ↔ X2 ↔ ...↔ Xn be a valid walk through the edge-labelled

graph. We assume that X1, X2, ..., Xn are from the same sequencing strand. If

not, we preprocess the walk by changing the strand of each edge label to match the

strand of X1. After such a step, we define the string corresponding to the walk to

be:

Ax1x2...xn =

{
X1Lx1x2 ...Lxn−1xn if typex1x2 = S

Lxn−1xn ...Lx1x2X1 if typex1x2 = P

The final difference between the string graph and the overlap graph is that

transitive edges are removed.

Definition 2. Consider a read X that overlaps reads Y and Z, which mutually

overlap. The initial overlap graph will contain the edges X ↔ Y , X ↔ Z and

Y ↔ Z. We will say an edge X ↔ Z is transitive when the string spelled by path

X ↔ Z is the same as the string spelled by path X ↔ Y ↔ Z.

Transitive edges can be removed from the graph without reducing the set of

strings that can be spelled by the graph. We will refer to non-transitive edges

as irreducible. We will now define useful properties of transitive edges. For

25

the following properties we will assume without loss of generality that typexy =

typexz = S and all three reads are from the same strand. This implies X ↔ Y ,

X ↔ Z and Y ↔ Z are all SP -edges.

Property 1. The label of the transitive edge X ↔ Z is the concatenation of the

edge labels of the walk X ↔ Y ↔ Z.

Property 2. Lxy is a prefix of Lxz.

Proof. From the definition of a transitive edge Axz = Axyz. From definition 1,

Axz = XLxz and Axyz = XLxyLyz therefore Lxz = LxyLyz and Lxy is a prefix of

the transitive edge.

Property 3. Let C be the matched substring between X and Z. C is also a

substring of Y .

Proof. We can write X and Z in terms of C as X = X ′C and Z = CLxz.

Assume C is not a substring of Y and let C = C1C2 where C2 is the prefix of

Y that matches a suffix of X and C1 is not empty. Write Y and Z in terms

of these substrings as Y = C2Lxy and Z = C1C2Lxz. From property 1 we have

Lxz = LxyLyz therefore Z = C1C2LxyLyz. This implies that Y is contained within

Z which contradicts a precondition on the graph therefore C must be a substring

of Y .

Property 4. C is not a prefix of Y

Proof. The proof is similar to that of property 3 except we assume the prefix of

Y is C to arrive at a contradiction.

Property 5. The overlap between X and Y is longer than the overlap between

X and Z.

Proof. Again let C be the matched substring between X and Z. The length of

C is the length of the overlap between X and Z. As C is a substring of Y but

26

not a prefix of Y , the matched substring between X and Y is MC where M is

non-empty. The length of MC is therefore greater than the length of C.

An example string graph built from three overlapping reads is given in figure

2.1.

ACATACGATACA
   TACGATACAGTT
      GATACAGTTGCA

R1
R2
R3

R3
GTTGCA
ACATAC

GT
T

AC
A

GCATAC

A

B

R1

R2

Figure 2.1: Diagram of a simple assembly graph. Three overlapping reads (R1, R2, R3)

are shown in panel A. Panel B shows the graph constructed from the overlaps between

the reads. The arrowheads pointing into the nodes depict an edge of type P and ar-

rowheads pointing away from the nodes depict edges of type S. For example the edge

between R1 and R2 is a SP -edge. The edge R1 ↔ R3 is transitive. Removing this edge

will turn the graph into a string graph.

Transforming an overlap graph into a string graph by removing duplicated

and contained reads, along with transitive edges, avoids the quadratic expansion

of edges with sequencing depth and repeat copy number. Like in the de Bruijn

graph, repeats are collapsed to single segments in the graph. The string graph

therefore represents an alternative to the de Bruijn graph, with the important

benefit that the graph contains the full read sequences, representing the complete

information present in R.

27

The string graph can be built indirectly by first constructing an overlap graph

then removing duplicate and contained reads, then removing transitive edges.

Myers provides an O(|E|) expected-time algorithm to perform transitive reduc-

tion on an existing overlap graph Myers [2005]. The fundamental problem of

overlap assembly remains however, in that the computation of the overlap graph

is the computational bottleneck. This is the problem that we address in this

chapter by devising an algorithm to directly output the string graph, without

the need to transitively reduce an overlap graph. This algorithm will allow us

to construct the graph in linear-time, bringing the algorithmic complexity of the

string graph in line of that of the de Bruijn graph. We begin the description of

this algorithm with an introduction to text indices.

2.4 The Suffix Array, BWT and FM-Index

The suffix array data structure was introduced by Manber and Myers [1990] as

a succinct representation of the lexicographic ordering of the suffixes of a string.

The suffix array of a string X, denoted SAX, is a permutation of the integers

{1, 2, ..., |X|} such that SAX[i] = j iff X[j, |X|] is the i-th lexicographically lowest

suffix of X. For example, if X = AAGTA$ then SAX = [6, 5, 1, 2, 3, 4]. Since the

suffix array is a sorted data structure, the start positions of all the instances of a

pattern Q in X will occur in an interval in SAX. We refer to such an interval as

a suffix array interval and associate with it a pair of integers [l, u] denoting the

first and last index in SAX that correspond to a position in X of an instance of

Q. Using SAX and the original string X, l and u can be efficiently found with a

binary search for Q. Ferragina and Manzini [2000] developed a related method of

indexing text, called the FM-index, which requires considerably less memory than

a suffix array and can compute l and u in O(|Q|) time, independent of the size of

the text being searched. Central to the FM-index is the Burrows-Wheeler trans-

form (BWT). Originally developed for text compression [Burrows and Wheeler,

1994] the Burrows-Wheeler transform of X, denoted BX, is a permutation of the

symbols of X such that:

28

BX[i] =

{
X[SAX[i]− 1] if SAX[i] > 1

$ if SAX[i] = 1

Restated, BX[i] is the symbol preceding the first symbol of the suffix starting

at position SAX[i]. For the example string X from above, BX = AT$AAG.

Ferragina and Manzini extended the BWT representation of a string by adding

two additional data structures to create a structure known as the FM-index. Let

CX(a) be the index in SAX of the first suffix starting with symbol a. If v is the

number of symbols lexicographically lower than a in X, then CX(a) = v+ 1. Let

OccX(a, i) be the number of occurrences of the symbol a in BX[1, i]1. We note

that CX and OccX include counts for the sentinel symbol, $.

CX(a) for the example string X is:

a $ A C G T

CX(a) 1 2 5 5 6

OccX(a, i) for X is:

a $ A C G T

OccX(a, 1) 0 1 0 0 0

OccX(a, 2) 0 1 0 0 1

OccX(a, 3) 1 1 0 0 1

OccX(a, 4) 1 2 0 0 1

OccX(a, 5) 1 3 0 0 1

OccX(a, 6) 1 3 0 1 1

Using CX(a) and OccX(a, 1), Ferragina and Manzini provided an algorithm

to search for a string Q in X. Let S be a string whose suffix array interval is

1These definitions use 1-based coordinates. When implementing these data structures 0-
based coordinates are preferred. To allow this, we modify the definition of CX(a) to equal v
and OccX(a, i) to count over BX[0, i]. The following algorithms work in either case.

29

known to be [l, u]. The interval for the string aS can be calculated from [l, u]

using CX and OccX by the following:

l′ = CX(a) + OccX(a, l − 1) (2.1)

u′ = CX(a) + OccX(a, u)− 1 (2.2)

We encapsulate equations (2.1) and (2.2) in the following algorithm, updateBackward.

Algorithm 1 updateBackward([l, u], a)

l← CX(a) + OccX(a, l − 1)
u← CX(a) + OccX(a, u)− 1
return [l, u]

To search for a string Q, we need to first calculate the interval for the last

symbol in Q then use equations (2.1) and (2.2) to iteratively calculate the interval

for the remainder of Q. The initial interval for a single symbol a is simply

[CX(a),CX(a+1)−1] where a+1 denotes the next largest symbol in the alphabet1.

The backwardsSearch algorithm presents the searching procedure in detail. If

backwardsSearch returns an interval where l > u, Q is not contained in X

otherwise SAX[i] is the position in X of each occurrence of Q for l ≤ i ≤ u.

Algorithm 2 backwardsSearch(Q) - find the interval in SAX for the pattern Q

i← |Q|
l← CX(Q[i])
u← CX(Q[i] + 1)− 1
i← i− 1
while l ≤ u & i ≥ 1 do

[l, u]← updateBackward([l, u], Q[i])
i← i− 1

return [l, u]

The backwardsSearch algorithm requires updating the suffix array inter-

val |Q| times. As each update is a constant-time operation, the complexity of

backwardsSearch is O(|Q|) given that the FM-index is already constructed.

1If a is the largest symbol in Σ, then CX(a + 1) simply returns n + 1 where n is the highest
index in SAX

30

2.4.1 The Generalized Suffix Array

We can easily expand the definition of a suffix array to include sets of strings. Let

T be an indexed set of strings and Ti be element T[i]. We define SAT[i] = (j, k)

iff Tj[k, |Tj|] is the i-th lowest suffix in T. In the generalized suffix array, unlike

the suffix array of a single string, two suffixes can be lexicographically equal. We

break ties in this case by comparing the indices of the strings. In other words

we treat each string in T as if it was terminated by a unique sentinel character

$i where $i < $j when i < j. We extend the definition of the Burrows-Wheeler

transform to collections of strings as follows. Let SAT[i] = (j, k) then:

BT[i] =

{
Tj[k − 1] if k > 1

$ if k = 1

Like the BWT of a single string, BT is a permutation of the symbols in T;

therefore the definitions of the auxiliary data structures for the FM-index, CT(a)

and OccT(a, i), do not change.

2.5 Direct Construction of the String Graph

In this section we describe the first results of this work, string graph construction

algorithms based on the FM-index of a set of reads. We will show that by using

the FM-index of R the set of overlaps can be computed in O(N + C) time for

error-free reads where C is the total number of overlaps found. We then provide

an algorithm which detects only the overlaps for irreducible edges - removing the

need for the transitive reduction algorithm and allowing the direct construction

of the string graph.

2.5.1 Building an FM-index from a set of sequence reads

To build the FM-index of R, we can first compute the generalized suffix array

of R. We could do this by creating a string which is the concatenation of all

members of R, S = R1R2...Rm and then use one of the well-known efficient suffix

array construction algorithms to compute SAS [Puglisi et al., 2007]. We have

adopted a different strategy and have modified the induced-copying suffix array

31

construction algorithm [Nong et al., 2009] to handle an indexed set of strings R

where each suffix array entry is a pair (j, k) as described in section 2.4.1. This

suffix array construction algorithm is similar to the Ko-Aluru algorithm [2005].

A set of substrings of the text (termed LMS substrings) is sorted from which

the ordering of all the suffixes in the text is induced. Our algorithm differs from

the Nong-Zhang-Chan algorithm as we directly sort the LMS substrings using

multikey quicksort [Bentley and Sedgewick, 1997] instead of sorting them recur-

sively. This method of construction is fast in practice as typically only 30− 40%

of the substrings must be directly sorted. Once SAR has been constructed, the

Burrows-Wheeler transform of R, and hence the FM-Index is easily computed as

described above. We also compute the FM-index for the set of reversed reads, de-

noted R′, which is necessary to compute overlaps between reverse complemented

reads. We also output the lexicographic index of R, which is a permutation of the

indices {1, 2, ..., |R|} of R sorted by the lexicographic order of the strings. This

can be found directly from SAR and is used to determine the identities of the

reads in R from the suffix array interval positions once an overlap has been found.

Alternatively, when all reads in R are short (≈ 100bp) then the Bauer-Cox-

Rosone algorithm [Bauer et al., 2011] can be used to construct BR. This topic

will be revisited in 3.2.1 when discussing our software implementation.

2.5.2 Overlap detection using the FM-Index

We now consider the problem of computing the set of τmin overlaps between reads

in R. Consider two reads X and Y . If a suffix of X matches a prefix of Y a SP -

edge will be created in the initial overlap graph. We will describe a procedure

to detect overlaps of this type from the FM-index of R. Let X be an arbitrary

read in R. If we perform the backwardsSearch procedure on the string X, after

k steps we have calculated the interval [l, u] for the suffix of length k of X. The

reads indicated by the suffix array entries in [l, u] therefore have a substring that

matches a suffix of X. Our task is to determine which of these substrings are

prefixes of the reads. Recall that if a given element in the suffix array, SAR[i], is

a prefix of a string then SAR[i] = (j, 1) for some j and BR[i] = $ by definition.

Therefore, if we know the suffix array interval for a string Q, the interval for the

32

strings beginning with Q can be determined by calculating the interval for the

string $Q using equations (2.1) and (2.2). This interval, denoted [l$, u$], indicates

that the reads with prefix Q are the l$-th to u$-th lexicographically lowest strings

in R. We can therefore recover the indices in R of the reads overlapping X using

lexicographic index of R. The algorithm is presented below in findOverlaps.

Algorithm 3 findOverlaps(X, τ) - determine the reads in R that overlap X by
at least τ symbols

i← |X|
l← CR(X[i])
u← CR(X[i] + 1)− 1
i← i− 1
while l ≤ u & i ≥ 1 do

if |X| − i+ 1 ≥ τ then
[l$, u$]← updateBackwards([l, u], $)
if l$ ≤ u$ then
outputOverlaps(X, [l$, u$])

[l, u]← updateBackward([l, u], X[i])
i← i− 1

if l ≤ u then
outputContained(X, [l, u])

The findOverlaps algorithm is similar to the backwards search procedure

presented in section 2.4. It begins by initializing [l, u] to the interval containing

all suffixes that begin with the last symbol of X. The interval [l, u] is then

iteratively updated for longer suffixes of X. When the length of the suffix is at

least the minimum overlap size, τ , we determine the interval for the reads that

have a prefix matching the suffix of X and output an overlap record for each entry

(using the subroutine outputOverlaps). When the update loop terminates, [l, u]

holds the interval corresponding to the full length of X. The outputContained

procedure writes a containment record for X if X is contained by any read in

[l, u]. The overlaps detected by findOverlaps correspond to SP -edges. We

must also calculate the overlaps for SS-edges and PP -edges, which arise from

overlapping reads originating from opposite strands. To calculate SS-edges we

use findOverlaps on the complement of X (not reversed) and the FM-index of

R′. Similarly, to calculate PP -edges we use findOverlaps on X (the reverse

33

complement of X) and the FM-index of R.

In rare cases, multiple valid overlaps may occur between a pair of reads. In this

case the interval set returned by findOverlaps will contain intersecting intervals.

To account for this, we sort the intervals and only keep the interval representing

a maximal overlap when two adjacent intervals intersect.

The overlap records created by outputOverlaps are constructed in constant

time as they only require a lookup in the lexicographic index of R. Let ci be

the number of overlaps for read Ri. The findOverlaps algorithm makes at most

|Ri| calls to updateBackwards and a total of ci iterations in outputOverlaps

for a total complexity of O(|Ri| + ci). For the entire set R, the complexity is

O(N +C) where C =

|R|∑
i=1

ci. Note that the majority of these edges are transitive

and subsequently removed. We can therefore improve this algorithm by only

outputting the set of irreducible edges, allowing the direct construction of the

string graph. We address this in the next section.

2.5.3 Detecting irreducible overlaps

To directly construct the string graph, we must only output irreducible edges.

Recall from section 2.3.3 that the labels of the irreducible edges for a given read

are prefixes of the labels of transitive edges. We use this fact to differentiate be-

tween irreducible and transitive edges during the overlap computation. Consider

a read X and the set of reads that overlap a suffix of X, O. We could devise an

algorithm to find the subset consisting only of irreducible edges by calculating the

edge-labels of all members of O and filtering out the members whose label is the

extension of the label of some other read. This would require iterating over all

members of O which can be quite large for repetitive reads or high-depth data.

We will now show that the labels of the irreducible edges can be constructed

directly from the suffix array intervals using the FM-index.

Consider a substring S that occurs in R and its suffix array interval [l, u].

Let a left extension of S be a string of length |S| + 1 of the form aS. We

can use BR[l, u] to determine the set of left extensions of S. Let B be the set

of symbols that appear in the substring BR[l, u]. The left extensions of S are

34

the strings aS such that a ∈ B. Note that we do not have to iterate over the

range BR[l, u] to determine B. Since OccR(a, i) is defined to be the number

of times symbol a occurs in BR[1, i] we can count the number of occurrences

of a in BR[l, u] (and hence aS in R) in constant time by taking the difference

OccR(a, u) − OccR(a, l − 1). If the $ symbol occurs in BR[l, u] we say that S

is left terminal, in other words one of the elements of R has S as a prefix. We

similarly define a right extension of S as a string of length |S|+ 1 of the form Sa.

While we cannot build the right extensions of S directly from the FM-index, the

right extensions of S are equivalent to left extensions of S ′ (the reverse of S) in

R′. Let S be right terminal if $ exists in BR’[l
′, u′], in other words S is a suffix of

some string in R.

The procedure to find all the irreducible edges of a read X and construct their

labels is to find all the intervals containing the prefixes of reads that overlap a suf-

fix of X, then iteratively extend them rightwards until a right-terminal extension

is found. The terminated read forms an irreducible edge with X and the label of

the edge is the sequence of bases that were used during the right-extension. All

non-terminated strings with the same sequence of extensions are transitive and

therefore not considered further.

The algorithm requires searching the FM-index in two directions, first back-

wards to determine the intervals of overlapping prefixes and then forwards to

extend those prefixes and build the irreducible labels. Naively this would re-

quire first determining the intervals [l, u] for each matching prefix, P , and then

reversing the prefix and performing a backwards search on the FM-index of R′

to find the interval [l′, u′] for P ′. The intervals [l′, u′] would then be used in the

extension stage to determine the labels of the irreducible edges. We can do better

however by noting that the interval [l′, u′] can be calculated directly during the

backwards search without using the FM-index of R′. We define OccLTR(a, i)

to be the number of symbols that are lexicographically lower than a in BR[1, i].

Let S = X[i, |X|] be a suffix of X and [li, ui] its suffix array interval. Suppose

we know the interval [l′i, u
′
i] for S ′ in R′. Let a = X[i − 1]. The interval for

S ′a = [l′i−1, u
′
i−1] is therefore:

l′i−1 = l′i + (OccLTR(a, ui)−OccLTR(a, li − 1)) (2.3)

35

u′i−1 = l′i−1 + (OccR(a, ui)−OccR(a, li − 1)− 1) (2.4)

The interval for X ′[1] is identical to that of X[|X|] since BR and BR’ are both

permutations of symbols in R therefore CR = CR’. We can therefore initialize

the interval [l′, u′] to the same initial value of [l, u] and perform a forward search

of X ′ simultaneously while performing a backward search of X using only the

FM-index of R. This does not require any additional storage as the OccLTR

array can easily be computed from OccR by summing the values for symbols less

than a. This procedure is similar to the 2way-BWT search recently proposed by

Lam et al. (2009) . The updateFwdBwd algorithm implements equations (2.3)

and (2.4) along with updateBackward to calculate the pair of intervals. The F

parameter to updateFwdBwd indicates the FM-index used - that of R or R′.

Algorithm 4 updateFwdBwd([l, u, l′, u′], a, F)

l′ ← l′ + (OccLTF(a, u)−OccLTF(a, l − 1))
u′ ← l′ + (OccF(a, u)−OccF(a, l − 1)− 1)
[l, u]← updateBackwards(l, u, a,F)
return [l, u, l′, u′]

We now give the full algorithm for detecting the irreducible overlaps for a

read X. The algorithm is performed in two stages, first a backwards search on

X is performed to collect the set of interval pairs, denoted I, for prefixes that

match a suffix of X. This algorithm is presented in findIntervals below and is

conceptually similar to findOverlaps.

The interval set found by findIntervals is processed by extractIrreducible

to find the intervals corresponding to the irreducible edges of X. This algorithm

has two parts. First, the set of intervals is tested to see if some read in the interval

set is right terminal. If so, the intervals corresponding to the right terminal reads

form irreducible edges with X and are returned. If no interval has terminated,

we create a subset of intervals for each right extension of I and recursively call

extractIrreducible on each subset.

The algorithm above assumes that R does not have any contained reads. If this

is not the case, a slight modification must be made. If the set of reads overlapping

X includes a read that is a proper substring of some other read it is possible that

36

Algorithm 5 findIntervals(X, τ)

I← ∅
i← |X|
l← C(X[i])
u← C(X[i] + 1)− 1
[l′, u′]← [l, u]
i← i− 1
while l ≤ u & i ≥ 1 do

if |X| − i+ 1 ≥ τ then
[l$, u$, l

′
$, u
′
$]← updateFwdBwd([l, u, l′, u′], $,R)

if l$ ≤ u$ then
I← I ∪ [l$, u$, l

′
$, u
′
$]

[l, u, l′, u′]← updateFwdBwd([l, u, l′, u′], X[i],R)
i← i− 1

return I

Algorithm 6 extractIrreducible(I)

if I = ∅ then
return ∅

L← ∅
for all [l, u, l′, u′] ∈ I do

[l′$, u
′
$, l$, u$]← updateFwdBwd([l′, u′, l, u], $,R′)

if l$ ≤ u$ then
L← L ∪ [l$, u$]

if L 6= ∅ then
return L

for all a ∈ Σ do
Ia ← ∅
for all [l, u, l′, u′] ∈ I do

[l′a, u
′
a, la, ua]← updateFwdBwd([l′, u′, l, u], a,R′)

if la ≤ ua then
Ia ← Ia ∪ [la, ua, l

′
a, u
′
a]

L← L ∪ extractIrreducible(Ia)
return L

37

the first right terminal extension found is not that of an irreducible edge but of

the contained read. It is straightforward to handle this case by observing that

such a read will have an overlap that is strictly shorter than that of the irreducible

edge. In other words, the only acceptable right terminal extension is to the reads

in I that have the longest overlap with X.

We can similarly modify extractIrreducible to handle overlaps for reads

from opposite strands. To do this, we use findIntervals to determine the

intervals for overlaps for the same strand as X and overlaps from the opposite

strand of X (using the complement of X as in the previous section). When

extending an interval that was found by the complement of X, we extend it by

the complement of a. In other words if we are extending same-strand intervals

by A, we extend opposite strand intervals by T and so on.

We now offer a sketch of the complexity of the irreducible overlap algorithm

in the case where all edges in the graph are part of the walk spelling the genome

sequence G. Let Li be the label of irreducible edge i. During the construc-

tion of Li at most ki intervals must be updated, corresponding to the number

of reads that have an edge-label containing Li. The sum over all irreducible

edges, E =
∑
i

(|Li|ki), is the total number of interval updates performed by

extractIrreducible. Note that each read in R is represented by a path through

the string graph. The total number of times edge i is used in the set of paths

spelling all the reads in R is ki and the amount of sequence in R contributed

by edge i is |Li|ki. This implies E can be no larger than N , the total amount

of sequence in R, and extractIrreducible is O(N). As findIntervals is also

O(N), the entire irreducible overlap detection algorithm is O(N).

2.5.4 Results

The algorithms described in this chapter form the basis of the assembler I de-

veloped, SGA1. As a proof of concept, I profiled these algorithms on simulated

error-free sequence reads. The assembly is broken into three stages: index, over-

lap and assemble. The index stage constructs the FM-index for a set of sequence

reads, the overlap stage computes the set of overlaps between the reads and

1String Graph Assembler

38

the assemble stage loads the graph, performs transitive reduction if necessary,

then compacts unambiguous paths in the graph and writes them out as a set

of contigs. I performed two sets of simulations. In all simulations the faster

Bauer-Cox-Rosone algorithm was used to calculate the FM-index. In both sets

of simulations, I compared the exhaustive overlap algorithm (which constructs

the set of all overlaps) and the direct construction algorithm (which only outputs

overlaps for irreducible edges). First, I simulated E. coli reads with average se-

quence depth from 5X to 100X to investigate the computational complexity of

the overlap algorithms as a function of sequence depth. After constructing the

index for each data set, I ran the overlap step in exhaustive and direct mode with

fixed τ = 27. The running times of these simulations are shown in figure 2.2. As

expected, the direct overlap algorithm scales linearly with sequence depth. The

exhaustive overlap algorithm exhibits the expected above-linear scaling as the

number of overlaps for a given read grows quadratically with sequence depth.

20 40 60 80 100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

Sequence Depth

C
P

U
 T

im
e

(s
)

Overlap (exhaustive)
Overlap (direct)

Figure 2.2: The running time of the direct and exhaustive overlap algorithms for sim-

ulated E. coli data with sequence depth from 5X to 100X.

39

I also simulated data from human chromosomes 22, 15, 7 and 2 to assess how

the algorithms scale with the size of the genome. I pre-processed the chromo-

some sequences to remove sequence gaps then generated 100bp error-free reads

randomly at an average coverage of 20X for each chromosome. Again I compared

the direct construction algorithm to the exhaustive construction algorithm. The

overlap length was set to 45. The results of these simulations are summarized in

table 2.1.

chr 22 chr 15 chr 7 chr 2 ratio

Chr. size (bp) 34.9M 81.7M 155.4M 238.2M 6.8

Number of reads 7.0M 16.3M 31.1M 47.6M 6.8

Duplicated reads 684k 1,663k 3,103k 4,709k 6.9

Duplicated % 9.8% 10.2% 10.0% 9.9% -

Transitive edges 70.0M 176.4M 364.2M 583.8M 8.3

Irreducible edges 7.2M 17.2M 36.2M 57.4M 8.0

Assembly N50 (bp) 3.0k 4.1k 4.3k 4.8k -

Longest contig (bp) 41.4k 51.9k 63.2k 57.9k -

Index time 1,486s 3,652s 7,284s 11,443s 7.7

Overlap time (e) 3,595s 9,393s 27,736s 30,176s 8.4

Overlap time (d) 2,204s 7,885s 11,516s 17,596s 8.0

Assemble time (e) 1,399s 4,795s 15,287s 33,140s 23.7

Assemble time (d) 280s 694s 1,518s 2,432s 8.7

Index memory 1.0GB 2.2GB 4.2GB 6.5GB 6.5

Overlap mem. (e) 0.5GB 1.2GB 2.3GB 3.5GB 7.0

Overlap mem. (d) 0.5GB 1.2GB 2.3GB 3.5GB 7.0

Assemble mem. (e) 8.9GB 24.5GB 27.2GB 99.7GB 11.2

Assemble mem. (d) 2.1GB 5.0GB 10.0GB 15.7GB 7.5

Table 2.1: Simulation results for human chromosomes 22, 15, 7 and 2. For the overlap

and assemble rows, (e) and (d) indicate the exhaustive and direct algorithms, respec-

tively. The last column is the ratio between chromosome 2 and 22.

For all chromosomes the direct overlap computation algorithm was faster.

The direct overlap calculation step required almost half the run time when com-

40

pared to the exhaustive overlap calculation. When the full overlap graph was

constructed (exhaustive case) the assemble step required performing Myers’ tran-

sitive reduction algorithm on the graph. This step was over 23 times longer for

chromosome 2 than chromosome 22, as the chromosome 22 graph contained over

500 million transitive edges that needed to be removed. The vast number of tran-

sitive edges in this case caused the chromosome 2 graph to require nearly 100GB

of memory. The assemble step for the direct case was over 13 times faster on

chromosome 2 as the initial graph was much smaller and transitive reduction did

not need to be performed. These results verify the efficiency of my direct string

graph construction algorithm and the benefits when compared to building the

full overlap graph first.

The memory bottleneck in these assemblies is loading the string graph into

memory during the assemble step. This bottleneck will be addressed in the next

chapter, where I describe an algorithm to find and compress unipaths in the graph

without the need to load the entire string graph in memory.

2.6 Representing a de Bruijn Graph using the

FM-Index

Recall from section 2.3.2 that the set of distinct k-mers of R defines the vertices

of its de Bruijn graph. Likewise, the set of distinct ρ-mers defines the edges of the

graph. This observation allows us to use the FM-index as a representation of the

de Bruijn graph of R. Here we describe queries to compute the local structure of

the graph around a single vertex. To test whether a given k-mer is a vertex in the

graph, we can use algorithm isDBGVertex. This performs a simple backwards

search to check whether the k-mer, or its reverse-complement, has a non-empty

suffix array interval.

41

Algorithm 7 isDBGVertex(K, R)

[l1, u1]← backwardsSearch(K,R)

[l2, u2]← backwardsSearch(K,R)

if l1 ≤ u1 or l2 ≤ u2 then

return true

else

return false

We can also use the FM-Index to get the neighbors of a particular vertex

in the graph. For a k-mer K, there are 8 possible neighbors. To find which

are actually present in R, we can simply directly query for the 16 possible ρ-mers

describing these neighbors (including their reverse complements). Pseudocode for

this algorithm is shown in getDBGNeighborsSingleIndex. This requires 16(k+1)

interval updates.

If the FM-index of both R and R′ is available, we can implement a faster

procedure based on performing extension queries like those described in our string

graph construction algorithm in section 2.5.3. We start by calculating the interval

pair for K, then using OccR to calculate the possible left-extensions of K. This

query provides the ρ-mers of the form xK which define prefix neighbors of K.

To calculate suffix neighbors of K (of the form Kx), we can use right-extension

queries. These queries must also be performed with the reverse complement of

K, to cover both strands. In total, this procedure requires 4K interval updates

plus 8 accesses of the occurrence array. As we need the FM-index of R and R′ to

do the right-extension queries, the memory usage is doubled when compared to

getDBGNeighborsSingleIndex.

The description within this section uses Pevzner’s ρ-mer based formulation

of the de Bruijn graph. In our implementation of these algorithms we use a

slight modification. Instead of querying for ρ-mers, we directly query for the

neighboring k-mers (of the form xK[1, k − 1] and K[2, k]x for x ∈ {a, c, g, t}).
This is subtly different as connected vertices do not necessarily need to share a

ρ-mer - they only need to overlap by k − 1 bases.

42

Algorithm 8 getDBGNeighborsSingleIndex(K, R)

k ← |K|
for all Q ∈ {aK, cK, gK, tK} do

[l, u]← backwardsSearch(Q,R)
[l′, u′]← backwardsSearch(Q,R)
if l ≤ u or l′ ≤ u′ then

I← I ∪ {Q[1, k]}
for all Q ∈ {Ka,Kc,Kg,Kt} do

[l, u]← backwardsSearch(Q,R)
[l′, u′]← backwardsSearch(Q,R)
if l ≤ u or l′ ≤ u′ then

I← I ∪ {Q[2, k + 1]}
return I

43

Chapter 3

The SGA Assembler

3.1 Introduction

In the previous chapter, I described an algorithm to construct an assembly string

graph Myers [2005] for a set of error-free sequence reads using the FM-index. In

this chapter, I expand upon the algorithms to build a fully-functional sequence

assembly program. I will describe algorithms to correct base calling errors, remove

duplicate and contained sequences and construct contigs and scaffolds for real

sequencing data. These algorithms are implemented in my software called SGA

(String Graph Assembler)1. SGA is implemented as a modular pipeline, which

allows it to be easily extended as improved algorithms are developed or sequencing

technology changes.

3.1.1 Publication Note

The work described in this chapter was previously published in [Simpson and

Durbin, 2012]. Sections 3.2.7, 3.3.1 and 3.3.5 describe currently unpublished

results. The work described is the sole work of the author, under the supervision

of his PhD supervisor, Richard Durbin.

1Source code available at www.github.com/jts/sga

44

3.1.2 Algorithm Overview

The SGA algorithm is based on performing queries over an FM-index constructed

from a set of sequence reads. The SGA pipeline begins by preprocessing the

sequence reads to filter or trim reads with multiple low-quality or ambiguous

base calls. The FM-index is constructed from the filtered set of reads and base-

calling substitution errors are detected and corrected using k-mer frequencies.

The corrected reads are re-indexed then duplicated and contained sequences are

removed, remaining low-quality sequences are filtered out and a string graph is

built. Contigs are assembled from the string graph and constructed into scaffolds

if paired end or mate pair data is available. Figure 3.1 depicts the flow of data

through the SGA pipeline. I discuss the major components of SGA below.

scaffolding

assembly

correction
sga	
 index	

sga	
 correct	

sga	
 index	

sga	
 filter	

sga	
 assemble	

bwa	
 align	

sga	
 scaffold	

FASTQ Reads
(FASTQ)

Scaffolds
(FASTA)

Corrected reads

Contigs / String Graph

Figure 3.1: Schematic of the flow of data through SGA.

45

3.2 SGA Algorithms

3.2.1 Construction of the FM-index for large read sets

The algorithm begins with the construction of the FM-index for the complete set

of reads. In Chapter 2, I described a modified version of the Nong-Zhang-Chan

algorithm [Nong et al., 2009]. This algorithm has the drawback that to compute

the Burrows-Wheeler transform of a set of reads, R, it must first construct the

full suffix array for a read set. The full suffix array requires N log(N) bits of

memory, where N is the total number of bases in the read set. For a human

genome sequenced to 30X coverage, this would require over 400GB of memory.

As using this amount of memory during index construction would eliminate any

benefit of using a compressed data structure for assembly, I have taken a different

approach. I have implemented a distributed construction algorithm that builds

an FM-index for subsets of R, R1, R2,..,Rm. I then iteratively merge pairs of

the intermediate indices together using a BWT merging algorithm [Ferragina

et al., 2010] until a single index of the entire data set is obtained. As the space

occupancy of the FM-index is typically less than an order of magnitude smaller

than that of a suffix array, this indexing strategy allows us to efficiently build the

FM-index for very large sequence collections. This construction strategy can be

easily parallelized as the construction of the FM-index for each read subset, and

most merging operations, can be computed independently.

Recently Bauer, Cox and Rosone designed an algorithm specifically tailored to

the problem of computing the BWT for a very large collection of short (≈ 100bp)

sequence reads [Bauer et al., 2011]. Their algorithm directly computes the BWT

of a read set without the need to first construct a suffix array. Their algorithm

has two variants. Let n be the number of reads and l be the read length. The

first variant, named BCR, uses O(n log(nl)) bits of working space, and O(lsort(n))

time, where sort(n) is the time required to sort n integers. The second variant,

BCRext, uses external memory (disk storage) for most data structures. It requires

O(ln) time with constant memory usage and overall I/O volume O(l2n). Both

algorithms work by progressively building partial BWTs, starting from the last

base of each read. At each iteration j, the position to insert the next base of

46

each read into the partial BWT can be calculated from the previous iteration,

j − 1. In both variants of the algorithm the partial BWTs are stored on disk to

save memory. As BCR and BCRext use disk-based storage to store intermediate

files, their performance is dependent on the I/O and seek times of the underlying

harware1. For this reason, I implemented a variant of BCR within SGA that uses

in-memory storage of the partial BWT files. I compare the performance of the

indexing algorithms in section 3.3.1. All algorithms can be used by SGA - the

Nong-Zhang-Chan and in-memory BCR algorithms are natively implemented in

SGA. BCR and BCRext are available by running the authors’ reference implemen-

tation (BEETL2) then running a script to convert the output into SGA’s BWT

file format.

3.2.2 k-mer based error correction algorithm

Real sequencing data contains base calling errors. SGA’s error corrector is cur-

rently designed to handle substitution errors, which are the dominant error mode

in the Illumina sequencing platform [Bentley et al., 2008]. I have implemented two

error correction methods. The first is a k-mer frequency-based corrector, which

has been successfully used in other sequence assemblers [Kelley et al., 2010; Li

et al., 2010c; Pevzner et al., 2001]. The second algorithm is based on finding

inexact overlaps between sequence reads. In my tests the k-mer based corrector

is faster than the overlap-based corrector and is therefore the default method of

correction using SGA. Both correction methods have an option to use per-base

quality scores of the read being corrected to vary the coverage threshold required

to support a base call.

The primary error correction algorithm in SGA is based on k -mer frequencies.

Assuming base-calling errors are a random process that occur independently, k -

mers covering a incorrectly-called base in a read will occur in the entire data set

with low frequency (typically k -mers covering an error will form unique strings).

This is illustrated in figure 3.2, which plots a histogram of k-mer frequencies for

simulated error-free data and simulated data with 1% error rate. For both data

1The authors of BCRext found that Solid State Drives offered the fastest indexing perfor-
mance

2www.github.com/BEETL/BEETL

47

sets, 30X coverage of 100bp reads from the E. coli genome was generated. In the

perfect data, there are almost no k-mers in the read set that are seen less than

5 times. In contrast, for the 1% error rate data, there is a large proportion of

k-mers are low frequency (<5 occurrences). These are k-mers that are very likely

to contain sequencing errors. We can therefore use k-mer occurrence counts to

distinguish between correct and erroneous k-mer strings.

0 20 40 60

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Perfect reads

k−mer occurrences

C
ou

nt

0 20 40 60

0
50

00
0

10
00

00
15

00
00

1% error reads

k−mer occurrences

C
ou

nt

Figure 3.2: k-mer occurrence histogram for simulated perfect data (left) and simulated
data with 1% uniform base calling errors (right). The y-axis records the number of
times a k-mer with frequency x occurs in samples of the data set. For example, there
are 57,059 k-mers seen 20 times in the perfect data set. The histogram was calculated
by sampling 10,000 random reads.

Our correction algorithm follows from other k -mer based correctors [Kelley

et al., 2010; Li et al., 2010c; Pevzner et al., 2001] in that it attempts to identify

positions in the read that are incorrect, then searches for a suitable correction.

The algorithm scans each read left-to-right to identify bases that are not present

in a k -mer of frequency at least c. We iterate over the potentially incorrect bases

and change the base in the left-most k -mer covering the position to the 3 other

possibilities. If exactly one of the possibilities yields a k -mer with frequency at

least c, the correction is made. If no correction can be found using the left-

most covering k -mer, the right-most covering k -mer is tested. If this test also

fails the procedure terminates and returns the original read sequence. If a set

48

of corrections is found that makes all bases in the read trusted (frequency ≥ c),

then the procedure terminates and returns the modified sequence.

The minimum coverage parameter c is conservatively chosen to avoid collaps-

ing SNPs (if the genome is diploid) or distinct copies of a repeat. This parameter

can either be manually provided or automatically selected by SGA by finding the

trough in the k-mer frequency histogram.

Unlike previous k-mer based error correctors, the k-mer frequencies are not

stored in a lookup or hash-table but rather directly calculated from the FM-

index. Each k-mer frequency lookup in the FM-index only requires O(k) time

when using the algorithm countOccurrences.

Algorithm 9 countOccurrences(R, Q) - count the number of times Q and its

reverse complement occurs in R

c← 0

[l, u]← backwardsSearch(R, Q)

if l ≤ u then

c← u− l + 1

[l, u]← backwardsSearch(R, Q)

if l ≤ u then

c← c+ u− l + 1

return c

In addition to being computationally efficient, this has the advantage of using

comparatively little memory and allowing greater flexibility in the parameter

choices as the FM-index can support any value of k, unlike a hash table which

must be reconstructed for each choice of k.

3.2.3 Overlap based error correction

The second error correction algorithm in SGA is based on finding inexact overlaps

between reads. In the next section, I describe the algorithm to compute overlaps.

In the following section, I describe how these overlaps are used to correct reads.

49

3.2.3.1 Finding Inexact Overlaps with the FM-Index

The overlap algorithm from 2.5.2 can be extended to allow mismatches in the

overlaps. Let ε be the maximum allowed mismatch rate between two overlapping

strings (for example ε = 0.05 would allow 1 mismatch in a 20bp overlap). At each

stage of the overlap extension, we can branch to each possible base A,C,G, T .

If the base that we extend to is different from the current position in X, we

increment a mismatch counter d. If the value of d exceeds the maximum number

of mismatches for an overlap of length |X|−1 the current search path is terminated

as a valid overlap cannot possibly be found. When an overlap of length at least τ is

found and the mismatch rate is at most ε we output overlaps as in findOverlaps.

We then recursively branch the search, updating the mismatch counter as needed.

The pseudocode for this algorithm is presented below in findOverlapsInexact

and findOverlapsInexactExtend. While this matching algorithm will return

the complete set of τ, ε-overlaps, it is inefficient. This naive search will branch

excessively at the beginning of the search (when i is close to |X|) as the overlap

lengths are not large enough to exclude strings that are matched by chance.

Once the overlap length becomes long enough (i.e. for |X| − i ≈ 16) then most

branches will not form valid matches (and hence have empty suffix array intervals)

and therefore stop the recursion.

Algorithm 10 findOverlapsInexact(X, R, τ , ε) - find all reads overlapping X

by at least τ bases with error rate at most ε

i← |X|
for all b ∈ [A,C,G, T] do

l← CR(b)

u← CR(b+ 1)− 1

if X[i] 6= b then

findOverlapsInexactExtend(X, i, 1, [l, u],R, τ, ε)

else

findOverlapsInexactExtend(X, i, 0, [l, u],R, τ, ε)

50

Algorithm 11 findOverlapsInexactExtend(X, i, d, [l, u], R, τ , ε) - perform one

round of extension of the inexact search. The current suffix array interval is

given by l and u which corresponds to a string from the end of X to base i with

d mismatches.
// check if the number of mismatches exceeds the maximum

// possible for a valid overlap

m← b(|X| − 1) ∗ εc
if d > m then

return

// check if overlaps should be output

o← |X| − i+ 1

r ← d/o

if o ≥ τ and r ≤ ε then

[l$, u$]← updateBackwards(R, [l, u], $)

if l$ ≤ u$ then

outputOverlaps(X, [l$, u$])

// perform branched extension

if i > 1 then

i← i− 1

for all b ∈ [A,C,G, T] do

[l′, u′]← updateBackward(R, [l, u], b,R)

if l′ ≤ u′ then

if X[i] 6= b then

findOverlapsInexactExtend(X, i, d+ 1, [l′, u′],R, τ, ε)

else

findOverlapsInexactExtend(X, i, d, [l′, u′],R, τ, ε)

We can design a more efficient algorithm using the seed-and-extend method

of sequence alignment. This method is based on the principle that if we want to

align a string X to a text T with up to d mismatches, we can create d+ 1 seeds

over the sequence of X, one of which must be matched exactly to T . The seed

matches can then be extended allowing for mismatches. We have adapted this

method of alignment to finding inexact overlaps with the FM-index. We must

51

take care when choosing the seed length to ensure that at least one seed matches

exactly between any two reads that have a τ, ε-overlap. Let dτ = bετc be the

maximum number of differences between two reads that overlap by the minimum

amount. We define the minimal seed region of the read as rmin = ddτ/εe and

calculate the seed length lseed = brmin/(dτ + 1)c. This value of lseed is small

enough such that for all overlap lengths i ≥ τ we are guaranteed to have biεc+ 1

seeds covering the suffix of X of length i and hence we can find all τ, ε-overlaps.

Once the seed positions of X have been calculated, we can find the suffix ar-

ray intervals for the seeds using an exact match with the FM-index. The seeds can

then be extended with a branching algorithm similar to that of findOverlapsInexact.

We note that in this case, the extensions are not a strict right-to-left search as

in findOverlapsInexact as some seeds start in the middle of the read. We use

the bidirectional search procedure outlined in Chapter 2 to extend the seeds both

left-to-right and right-to-left. See also [Välimäki et al., 2010] for a discussion of

other inexact prefix-suffix matching algorithms.

3.2.3.2 Overlap Based Error Correction Algorithm

Let X be a read in R that we want to correct. We use the seed-and-extend

algorithm presented in the previous section to find all reads in R with a τ, ε-

overlap with X. This set of reads forms a multiple alignment with respect to

X. Let C[i] be a 4 element vector of the counts for each base call in column i

of the multiple alignment. A simple consensus-based correction algorithm would

be to set X[i] to the element of C[i] with the highest value. However, we must

take care to avoid collapsing variation (if the sequenced genome is diploid) or

distinct copies of a repeat. We filter the multiple alignment by excluding reads

that have consistent mismatches with respect to X. If two elements of C[i] have

a count of at least v, we label position i as conflicted. The reads that match X at

all conflicted columns are kept and the remainder excluded; C[i] is re-calculated

from the filtered multiple alignment. We correct X[i] to be the consensus base

indicated by C[i] if there is a single base in C[i] that occurs more than c times.

This condition helps avoid setting X[i] to an incorrect base in the situation that

multiple well-supported bases remain in the multiple alignment. The values of

52

v (the conflict threshold) and c (the minimum base call support required) are

command line parameters (the default values are 5 and 3, respectively).

As the number of overlaps for a given read is dependent on sequence depth, the

runtime of the overlap based algorithm is dependent on the depth of sequencing.

The run time of k-mer based algorithm presented in the previous section does

not depend on the sequence depth. For this reason, it tends to be much faster

than the overlap-based algorithm presented here, and therefore the k-mer based

algorithm is the default method of correction used in SGA.

3.2.4 Read filtering

To construct the string graph we require a subset of R consisting of unique reads.

We achieve this by removing contained and duplicated reads. To compute this

subset, we use the FM-index to calculate full-length matches for each read in R.

If a read Ri has a full length match (including reverse complements) to some

other read Rj we keep Ri iff i < j, otherwise Ri is discarded. Once the unique

subset U of R has been calculated, we do not need to re-compute the FM-index

of U from scratch. The BWT of U can be derived from the FM-index of R by

marking the positions in BR that correspond to reads that were discarded and

exporting only the unmarked positions as BU [Sirén, 2009].

Some reads remain uncorrected after error correction. To prevent these se-

quences from impacting the assembly, we remove sequences with unique k-mers.

By default, this filter requires all 27-mers in a read to be seen at least twice.

3.2.5 Read merging and assembly algorithm

After correction and filtering, the vast majority of the remaining reads do not

contain errors. We could directly apply our string graph construction algorithm

(section 2.5.3) to these, however the resulting graph would have a vertex for every

read and therefore require a substantial amount of memory when assembling very

large genomes (as demonstrated in table 2.1). The majority of reads in the initial

graph are simply connected (that is, without branching) to two other reads - one

matching a prefix of the read and one matching a suffix. Such chains of reads,

referred to as unipaths, can be unambiguously merged to reduce the size of the

53

graph. We have developed an algorithm to merge unipaths by locally constructing

the assembly graph around each read. For each read, we find the predecessor

and successor vertices in the graph by querying the FM-index for its irreducible

edge set using findIntervals and extractIrreducible from section 2.5.3. If

the read connects to its neighbors without branching, we continue the search

from the neighboring reads. This search stops when a branch in the graph, or no

possible extension, is found. This procedure will discover all non-branching chains

in the graph and allow the chain to be replaced by a single merged sequence. As

the predecessor/successor queries only require the FM-index, not the complete

structure of the graph, this merging step requires comparatively little memory.

Once we have performed this merging step, we build an FM-index for the merged

sequences and use this FM-index to construct the full string graph. We then

perform the standard assembly graph post-processing step of removing tips (see

section 1.2.2.1) from the graph where a vertex only has a connection in one

direction [Chaisson and Pevzner, 2008; Li et al., 2010c; Simpson et al., 2009;

Zerbino and Birney, 2008].

To account for heterozygosity in a diploid genome, we have developed an

algorithm to find and catalog variation described by the structure of the graph,

similar to the “bubble-popping” approaches taken by de Bruijn graph assemblers.

Let v be a vertex in the graph which branches (the prefix or suffix of v has multiple

overlaps). Following each branch, we search outwards from v for a set of walks,

W, which meets the following conditions: 1) all walks terminate at a common

vertex u and 2) no vertex visited in any walk between v and u has an edge to

a vertex that is not present in a walk in W. The first condition ensures that

the walks describe equivalent sequence in G - any assembly of G that visits v

and u must use one of the found walks. The second condition ensures that the

induced subgraph of G described by the walks is self-contained - we can remove

any walk in W without breaking any walk in G \W . Once a set of walks meeting

these conditions has been found, we select one of the walks to remain in the

graph. We align the sequence described by the other walks to the sequence of

the selected walk and, if the sequence similarity is within tolerance (by default

95%) in all cases, the non-selected walks are removed from the graph. We retain

the sequences of the removed walks in a FASTA file to allow the heterozygous

54

variation present in the genome to be analyzed after assembly.

3.2.6 Paired end reads/Scaffolding

The final stage of the assembly is to build scaffolds from the contigs using paired-

end or mate-pair data. Similar to other approaches to scaffolding [Pop et al.,

2004], our method is based on constructing a graph of the relationships between

contigs. We begin by re-aligning the paired reads to the contigs using bwa [Li and

Durbin, 2009]. The copy number of each contig in the source genome is estimated

from the number of reads aligned to the contig using Myers’ A-statistic which

approximates the log-odds ratio between the contig being unique and a collapsed

repeat [Myers, 2005]. By default, we classify contigs with an A-statistic ≥ 20

as unique and the remainder as repetitive. We construct a scaffold graph where

each unique contig is a vertex. Contigs linked with read pairs are connected by a

bidirected edge labeled with the estimated gap size separating the contigs. Paths

through this scaffold graph describe layouts of the contigs into scaffolds. The gap

sizes are estimated using the DistanceEst subprogram from ABySS [Simpson

et al., 2009].

Our scaffolder first removes ambiguous or likely erroneous edges from the

graph. For each contig in the graph with more than one edge in a particular

direction, we test whether the linked contigs have an ordering that is consistent

with each pairwise distance estimate. An ordering of contigs C1, C2, ..., Cn is

called consistent if no pair of contigs has an overlap (implied by their positions

in the layout) greater than α bases (α = 400 by default). If the contigs cannot

be consistently ordered, we break the graph by removing all edges of the affected

contigs.

Once the graph has been cleaned of inconsistent edges, we find and isolate any

directed cycles then compute the connected components of the graph. For each

connected component, we find the terminal vertices of the component (vertices

that have an edge in only one direction) and find all paths between each pair of

terminal vertices. The path containing the largest amount of sequence is retained

as the primary layout of the scaffold. The SGA scaffolder supports multiple

libraries of different sizes.

55

The scaffolds are represented as an alternating list of contigs and gaps, C1, g1, C2, g2, ..., Cn.

We attempt to fill in the gaps through a three-stage process. Let Ci and Cj be

two adjacent contigs separated by a distance of gi. As Ci and Cj are vertices in

the string graph we previously constructed, we search the string graph for a walk

connecting these vertices with the constraint that the total walk length can be

no larger than |Ci| + |Cj| + gi + θi where θi allows for the inexact distance esti-

mate (by default 3 times the standard error of the distance estimate). If a single

walk is found to meet this constraint, we replace Ci, gi, Cj in the scaffold by the

walk string. If no walk can be found connecting the vertices and gi is negative

(the contigs are predicted to overlap), we align the ends of Ci and Cj. If the

predicted overlap is confirmed to exist, the sequences of Ci and Cj are merged. If

the gap cannot be resolved, we simply fill the sequence between Ci and Cj with

gi ambiguity (“N”) symbols.

As described in section 2.6, we can use the FM-index as a representation of

the de Bruijn graph for all k. In the latest version of SGA, we can use this

feature to optionally fill in scaffold gaps by finding walks through a de Bruijn

graph. Let Ci, gi, Cj be two contigs in a scaffold separated by a gap. Starting at

k = 91, we use the last k-mer of Ci to seed a breadth-first search through the

91-mer de Bruijn graph. If a path through the graph ending at the first k-mer

of Cj can be found, and the length of the path is within 100bp of the estimated

size of the gap, the gap is replaced by the string corresponding to the path. To

avoid searching very dense regions of the graph, the breadth-first search aborts

if more than 2000 vertices have been visited, if the search branches more than 50

times or if more than 20 branches are being simultaneously following. If the gap

cannot be successfully filled, k is decreased by 10 and the procedure restarts. This

continues until the gap is filled or k is less than 51. The starting and stopping k

are parameters to the program. There also exists an option to ignore k-mers that

are seen less than t times in the reads (t = 3 by default). This method is typically

able to fill 10-20% of the scaffold gaps, leading to slightly increased contig N50.

This de Bruijn graph gap-filling procedure is a standalone component of SGA -

it can be used on scaffolds from any assembler.

56

3.2.7 Implementation Details

3.2.7.1 FM-Index Implementation

SGA relies on pattern searches over the FM-index for both error correction and

the construction of the string graph. While the FM-index provides optimal O(|P |)
queries for a pattern P , the implementation of the data structure has a signifi-

cant impact on the performance of these queries. In this section I describe the

implementation of the FM-index within SGA.

As described in section 2.4, the FM-index of a string X over an alphabet Σ

consists of three data structures:

• BX - the Burrows-Wheeler transform of X

• OccX(a, i) - the number of occurrences of the symbol a in BX[1, i].

• CX(a) - the number of symbols in X that are lexicographically lower than

the symbol a

CX only requires storing |Σ| integers. If we explicitly stored OccX(a, i) for all

i ∈ {1, |X|} the amount of memory required would be |X||Σ| log2(|X|). In our

case with an alphabet of size 5, |Σ| log2(|X|) ≈ 40 bytes. This huge memory cost

would offset any benefit of using the FM-index. A common method to reduce

the memory usage is to only store OccX(a, i) for i which is a multiple of a fixed

value d. When a value OccX(a, j) is requested that is not explicitly stored,

the closest stored value to j, OccX(a, k) is looked up and the requested value

is calculated by explicitly counting the symbols in BX between j and k. This

allows the memory usage to be reduced to 40|X|/d bytes. The value of d offers

a tradeoff between space and time. Larger values of d will use less memory but

require longer stretches of BX to be traversed during counting. In SGA, we use a

two-tier encoding of the occurrence array similar to the encoding used in [Healy

et al., 2003]1. We store the absolute number of times each symbol have been

seen in BX[1, i] using an 8 byte integer for all i divisible by 8192. We call these

absolute counts large markers. For all i divisible by d, we store a two-byte integer

small marker which is the symbol count relative to the previous large marker.

1This implementation of the occurrence array was suggested to us by Travis Wheeler

57

This encoding requires an extra addition when calculating a value of OccX, but

lowers the memory usage to 40|X|/8192 + 10|X|/d bytes. The d parameter is

chosen by the user at runtime and defaults to 128.

A naive encoding of BX would require |X| log2 |Σ| bits. However, as the

Burrows-Wheeler transform sorts substrings of X, BX contains long runs of re-

peated symbols. To account for this, we use run length encoding for BX. Each

run is a byte encoding a <symbol, length> pair. We use 3 bits for the symbol

and 5 bits for the length of the run. This encoding scheme is efficient for high-

coverage data and requires ≈ 1.3 bits per base on average for high-depth data.

However, when the run lengths are short due to lack of coverage or sequenc-

ing errors, this encoding scheme is inefficient. During the development of SGA

I experimented with different methods of encoding BX, including Huffman and

Golomb coding. Each of these encodings offered greater space efficiency than the

<symbol, length> pair encoding, however they were all slower to decode during

the critical OccX counting procedure. This issue remains to be further investi-

gated as significant space savings could be made in SGA. Ideally, the FM-index

would be implemented as a separate software library, allowing the time/space

tradeoff to be selectable by the user.

3.2.7.2 Progam Design, Implementation and Libraries

SGA is implemented in C++. It uses zlib (www.zlib.net) to read compressed

files and BamTools [Barnett et al., 2011] to read SAM/BAM files. It is multi-

threaded using pthreads and the hoard parallel memory allocator [Berger et al.,

2000]. The source code is licensed under GPLv3 and freely available online

www.github.com/jts/sga.

SGA is designed to be modular, so that components of the assembler can be

replaced as improved algorithms are available. The major components of SGA

are listed below.

• sga index - constructs the FM-index for a set of sequence reads.

• sga merge - merges two indices together into a single index.

58

www.zlib.net
www.github.com/jts/sga

• sga correct - performs the error correction routines described in section

3.2.2 and 3.2.3.

• sga filter - removes duplicate reads and reads that contain low-frequency

k -mers from the read set.

• sga stats - infers the error rate for a set of reads.

• sga overlap - constructs a string graph from the FM-index using the al-

gorithm described in Simpson and Durbin [2010].

• sga fm-merge - detects and merges unipaths in the string graph.

• sga assemble - simplifies the string graph by removing sequence variation

bubbles and outputs contigs.

• sga scaffold - reads in a scaffold graph and constructs linear scaffolds

with gap size estimates.

• sga scaffold2fasta - attempts to fill in scaffold gaps and outputs the

scaffolds in FASTA format.

• sga gapfill - standalone gapfiller based on de Bruijn graphs.

3.3 Results

In this section, I demonstrate the use of SGA on a variety of real data sets. I

begin by benchmarking the indexing performance of the algorithms discussed in

section 3.2.1. I then perform an assembly of a medium sized genome to compare

the performance of SGA against widely used de Bruijn graph assemblers. I also

use SGA to assemble a human genome, demonstrating the benefits of using a

compressed data structure on memory usage. Finally, I describe the assembly of

104 Schizosaccharomyces pombe yeast strains.

59

Program CPU time Walltime Max Memory
sga-sais 12581s 12567s 17.0 GB
sga-bcr 5393s 5367s 9.3 GB
BCR 9553s 18184s 1.1 GB
BCRext 4761s 7953s 0.05 GB

Table 3.1: Running time and memory usage for four different methods of constructing
the BWT for 66.7 million 100bp reads.

3.3.1 Index construction results

I profiled the SGA implemention of Nong-Zhang-Chan (sga-sais), BCR, BCRext

and the SGA implementation of in-memory BCR (sga-bcr) on 66.7 million 100bp

reads from the C. elegans genome. In this test, I used version 0.9.20 of SGA

and version 0.0.2 of the BCR authors’ non-commerical reference implementation,

named BEETL1. To conserve memory in sga-sais, the read set was broken into

4 subsets. sga-sais was used to calculate the BWT of each subset, then 2 BWT

merging rounds were performed to compute the final result. For the other three

algorithms the BWT was directly constructed from the full read set.

Each test was run on an Intel Xeon X5650 CPU (2.67GHz) with 38GB of

available memory. The input, temporary and output files were stored on a Lustre

parallel distributed file system. All programs were run with a single thread. The

results are summarized in table 3.1. The wall-clock, cpu time and memory usage

was all measured by our cluster computing environment, LSF (Load Sharing

Facility).

The BCRext algorithm required negligable memory and was the fastest pro-

gram when measured by CPU time. My in-memory implementation of BCR was

the fastest program when measured by wall-clock time, however it required 9.3GB

of memory. The Nong-Zhang-Chan algorithm implemented in SGA required the

most CPU time and the most memory.

1www.github.com/BEETL/BEETL

60

www.github.com/BEETL/BEETL

3.3.2 C. elegans Assembly

To assess the performance of SGA I performed assemblies of the nematode C.

elegans using SGA and three other assemblers. The Velvet assembler [Zerbino

and Birney, 2008] was one of the first de Bruijn graph-based assemblers for short

reads and has become a standard tool for assembling small to medium sized

genomes. The ABySS assembler [Simpson et al., 2009] was developed to handle

large genomes by distributing a de Bruijn graph across a cluster of computers.

SOAPdenovo is also based on the de Bruijn graph and designed to assemble large

genomes [Li et al., 2010b,c].

C. elegans provides a good real-world test case for assembly algorithms be-

cause it has a complete and accurate reference sequence [C. elegans Sequencing

Consortium, 1998], it propagates as a hermaphrodite so the genome of an in-

dividual (or strain) is homozygous and essentially free of SNPs and structural

variants, and the genome is a reasonable size for evaluation (100 Mbp). I down-

loaded C. elegans sequence reads (strain N2) from the NCBI SRA (accession

SRX026594). The data set consists of 33.8M read pairs sequenced using the Illu-

mina Genome Analyzer II. The mean DNA fragment size is 250 bp from which

reads of length 100 bp were taken from both ends of the fragment. To reduce

the impact of differences between the sequenced individual and the reference se-

quence, I called a new consensus sequence for the C. elegans reference genome

(build WS222, www.wormbase.org) based on alignments of the reads to the ref-

erence using samtools as specified by the documentation1.

As sequence assemblers are often sensitive to the input parameters, I per-

formed multiple runs with each assembler. The de Bruijn graph assemblers were

run for all odd k-mer sizes between 51 and 73 (inclusive). The k-mer size provid-

ing the largest scaffold N50 was selected for further analysis (67 for ABySS, 61

for Velvet, 59 for SOAPdenovo). Similarly, for SGA the k-mer size used for error

correction and the minimum overlap parameter for assembly were selected to pro-

vide the largest scaffold N50 (k=41 for error correction, τ=75 for the minimum

overlap). I also performed a SOAPdenovo assembly using their GapCloser pro-

gram after scaffolding. GapCloser was able to fill in many gaps within scaffolds,

1The command run was samtools mpileup -uf ref.fa aln.bam | bcftools view -cg
-

61

which increased the contig N50 and genome coverage. However, these increases

came at the cost of substantially lowered accuracy. In the following analysis, I

use the SOAPdenovo assembly without using GapCloser.

I broke the assembled scaffolds into their constituent contigs by splitting each

scaffold whenever a run of “N” bases was found. I filtered the contig set by

removing short contigs (< 200bp in length). The remaining contigs were aligned

to the consensus-corrected reference genome using bwa-sw [Li and Durbin, 2010]

with default parameters. I considered a number of different assessment criteria,

which are described below and summarized in table 3.2.

SGA Velvet ABySS SOAPdenovo

Scaffold N50 size 26.3 kbp 31.3 kbp 23.8 kbp 31.1 kbp
Aligned contig N50 size 16.8 kbp 13.6 kbp 18.4 kbp 16.0 kbp
Mean aligned contig size 4.9 kbp 5.3 kbp 6.0 kbp 5.6 kbp
Sum aligned contig size 96.8 Mbp 95.2 Mbp 98.3 Mbp 95.4 Mbp
Reference bases covered 96.2 Mbp 94.8 Mbp 95.9 Mbp 95.1 Mbp
Reference bases covered
by contigs ≥ 1kb

93.0 Mbp 92.1 Mbp 93.9 Mbp 92.3 Mbp

Mismatch rate at all as-
sembled bases

1 per 21,545 bp 1 per 8,786 bp 1 per 5,577 bp 1 per 26,585 bp

Mismatch rate at bases
covered by all assemblies

1 per 82,573 bp 1 per 18,012 bp 1 per 8,209 bp 1 per 81,025 bp

Contigs with split/bad
alignment (Sum size)

458 (4.4 Mbp) 787 (7.2 Mbp) 638 (9.1 Mbp) 483 (4.4 Mbp)

Total CPU time 41 hr 2 hr 5 hr 13 hr
Max Memory usage 4.5 GB 23.0 GB 14.1 GB 38.8 GB

Table 3.2: Assessment of various assembly programs on the C. elegans data set.

3.3.2.1 Substring coverage

For the first assessment, I sampled strings from the consensus sequence and tested

whether they were exactly present in the contigs. I sampled 10,000 strings of

length from 50 bp up to 5,000 bp. This assessment combines three measures; the

contigs must be accurate (as exact matches are required), complete (as the string

must be present in the contig) and contiguous (as strings broken between multiple

62

contigs will not be found). Figure 3.3 plots the proportion of strings found in the

contigs as a function of the string length. All assemblers perform well for short

strings (50 to 100 bp). For longer string lengths, SGA slightly outperforms the

other three assemblers.

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

String length (bp)

P
ro

po
rt

io
n

fo
un

d

SGA
SOAPdenovo
Velvet
ABySS

Figure 3.3: Reference string coverage analysis for the C. elegans N2 assembly. For

string lengths from 50bp up to 5,000bp, 10,000 strings were sampled from the consensus-

corrected C. elegans reference genome. The proportion of the strings found in the SGA,

Velvet, ABySS and SOAPdenovo assemblies is plotted.

3.3.2.2 Assembly Contiguity

I assessed the contiguity of the assemblies by calculating the contig alignment

length N50. By analyzing the contig alignment lengths, as opposed to the length

of contigs themselves, I account for misassembled contigs that can inflate the

assembly statistics. For SGA, contig alignments 16.8 kbp and greater covered

63

50% of the reference genome (50 Mbp). ABySS, SOAPdenovo and Velvet had

contig alignment N50s of 18.4 kbp, 16.0 kbp and 13.6 kbp, respectively.

3.3.2.3 Assembly Completeness

The contigs assembled by SGA covered 95.9% of the reference genome. The

ABySS assembly covered 95.6%, Velvet covered 94.5% and SOAPdenovo covered

94.8%. Figure 3.4 plots the reference genome coverage as a function of minimum

contig alignment length. In this assessment ABySS generated the best assembly

as it covered more of the reference genome with long contigs.

0 5000 10000 15000 20000

0
20

40
60

80
10

0

Minimum alignment length (bp)

R
ef

er
en

ce
 b

as
es

 c
ov

er
ed

 (
M

bp
)

SGA
SOAPdenovo
Velvet
ABySS

Figure 3.4: The number of bases of the C. elegans reference genome covered as a func-

tion of minimum contig alignment length.

64

3.3.2.4 Assembly Accuracy

I assessed both the structural accuracy and the per-base mismatch rate of the

contigs. First, I categorized the contig alignments into three groups. The first

group (“full-length”) contains contigs that had a single alignment to the reference

containing at least 95% of the contig length. The second group (“split”) contained

contigs that had two alignments to the same chromosome in close proximity

(<10,000bp). These split contigs may either contain local assembly errors, or

structural variation (for example a large insertion or deletion) with respect to

the reference. All remaining alignments (“bad”) were partially aligned (< 95%

of the contig aligned to the reference), aligned to multiple chromosomes, aligned

in greater than 2 pieces or did not align to the reference at all. For all assemblies

a substantial proportion of the contigs were found to match the E. coli genome.

As C. elegans eat E. coli, this is an expected contaminant and one might suspect

other bacterial sequences to also be present. For this reason contigs that did not

align to the C. elegans reference were not included in this analysis.

For the first measure of assembly accuracy, I counted the number and to-

tal size of contigs with split or bad alignments. The accuracy of the SGA and

SOAPdenovo contigs was similar - 458 contigs for SGA (totaling 4.4 Mbp) and

483 contigs for SOAPdenovo (4.4 Mbp) had split or bad alignments. Velvet and

ABySS had 787 contigs (7.2 Mbp) and 638 contigs (9.1 Mbp) with split or bad

alignments, respectively.

For the second accuracy assessment, I calculated the rate at which aligned

contig bases did not match the reference. In this assessment, I used the fully-

aligned contigs only. I evaluated each assembly at all reference positions covered

by its contigs, and also at the subset of positions that were covered by all assem-

blies. The latter case provides a fairer basis for comparison, removing the effect

of differences of coverage of repetitive or complex sequence between the four as-

semblies. The results are summarized in table 3.2. Again, the accuracy of the

SGA and SOAPdenovo assemblies was comparable, and both were more accurate

than Velvet and ABySS. The mismatch rate of the SGA assembly at reference

positions assembled by all four programs was approximately 1 mismatch per 83

kbp. SOAPdenovo, Velvet and ABySS had error rates at shared positions of 1

65

per 81 kbp, 1 per 18 kbp and 1 per 8 kbp, respectively.

3.3.2.5 Computational Requirements

Of the four assemblers, SGA used the least memory (4.5 GB vs 14.1 GB, 23.0 GB

and 38.8 GB for ABySS, Velvet and SOAPdenovo, respectively). The de Bruijn

graph assemblers were considerably more computationally efficient however as

the SGA assembly required 8 times more CPU hours than ABySS, 20 times

more than Velvet and 3 times more than SOAPdenovo. This speed difference

is largely due to the time required to build the FM-index. However, we can

reuse one FM-index for multiple runs of SGA, for instance to try different error

correction or assembly parameters, whereas the de Bruijn table for ABySS, Velvet

and SOAPdenovo must be re-calculated for each choice of k.

3.3.3 Human Genome Assembly

As a second demonstration, I assessed the ability of SGA to scale to very large

data sets by assembling a human genome. I downloaded 2.5 billion reads (252 Gbp

of sequence) for a member of the CEU HapMap population (identifier NA12878)

sequenced by the Broad Institute1. The reads are 101bp in length from a paired-

end insert library of 380 bp mean separation. As the total sequence depth is 84x,

I chose to only assemble half the data to reflect typical coverage depths seen for

human shotgun sequence data sets.

I constructed an FM-index for subsets of 20 million reads at a time (using

the sga-sais variant of our indexing algorithm), then iteratively merged the

sub-indices in pairs to obtain a single FM-index for the entire data set. I ran

the error correction process using a cluster of computers. Each process used the

full FM-index to correct 20 million reads. An FM-index was constructed for the

corrected reads, duplicate and low-quality reads were removed, and non-branching

chains of reads were merged together. A string graph was constructed from the

merged sequences using a minimum overlap parameter τ = 77. I re-aligned the

reads to the resulting contig set using bwa [Li and Durbin, 2009] and constructed

1ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_
NA12878/NA12878.hiseq.wgs.bwa.raw.bam

66

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20101201_cg_NA12878/NA12878.hiseq.wgs.bwa.raw.bam

scaffolds.

In total, the assembly took 1,427 CPU hours across 140 wall clock hours,

just under 6 days. The most compute intensive stages were error correcting the

reads and building the FM-index of the corrected reads, which each required 355

CPU hours. However these stages were distributed across a cluster of comput-

ers by simply splitting the input data, substantially reducing the elapsed (wall

clock) time. I ran 123 indexing/merging processes and 63 correction processes;

the elapsed time for these stages was 32 hours and 1 hour, respectively. The

post correction read filtering stage - where duplicate and low quality reads are

discarded - was the memory high-water mark, requiring 54 GB of memory. Com-

plete details of the number of processes, running time and memory usage for each

stage of the assembly can be found in table 3.3.

Stage Processes Wall time CPU time Max Memory

Build index (raw) 123 23 hr 187 hr 45 GB
Correct reads 63 1 hr 355 hr 28 GB
Build index (corrected) 123 32 hr 355 hr 44 GB
Filter reads 1 33 hr 167 hr 54 GB
Merge reads 1 15 hr 105 hr 48 GB
Assemble reads 3 23 hr 41 hr 16 GB
Align to contigs 62 6 hr 210 hr 10 GB
Build scaffolds 4 7 hr 7 hr 13 GB

All stages - 140 hr 1427 hr 54 GB

Table 3.3: Running time and memory summary for the SGA human genome assembly

I also assembled the data with SOAPdenovo [Li et al., 2010c]. I first error

corrected the reads using the SOAPdenovo error correction tool then performed

three assemblies, with k-mer sizes 55, 61 and 67. The 61-mer assembly had the

largest scaffold and contig N50 and was used for the subsequent analysis. The 61-

mer SOAPdenovo assembly (including error correction) required 479 CPU hours

across 121 wall clock hours. The maximum amount of memory used was 118 GB.

As with the C. elegans assembly described above, I did not use the SOAPdenovo

GapCloser.

I evaluated the assemblies in terms of contiguity, completeness and accuracy.

Note that unlike for the C. elegans assembly, in this case the sequenced sample

67

differs from the reference genome. As in the C. elegans analysis, I broke the

assembled scaffolds into their constituent contigs, filtered out contigs less than

200bp in length then aligned the remaining contigs to the human reference genome

(build GRC 37) using bwa-sw [Li and Durbin, 2010].

The SGA contig alignments cover 2.69 Gbp of the human reference autosomes

and chromosome X (95.0% of the non-N portions of these chromosomes). The

SOAPdenovo contigs cover 2.65 Gbp of the human reference (93.6%). The SGA

contig alignment N50 is 9.4 kbp and the SOAPdenovo contig alignment N50 is

6.6 kbp. The corresponding raw contig N50s are 9.9 kbp and 7.2 kbp. Figure 3.5

plots the amount of the reference genome covered by each assembly as a function

of the minimum contig alignment length. Across all contig alignment lengths,

the SGA assembly covered more of the reference genome than SOAPdenovo. In

contrast, SOAPdenovo gave larger scaffolds (N50 length of 34.8 kbp compared to

25.1 kbp for SGA), though the single short insert library for this data set limits

the ability to build larger scaffolds.

The overall assembly accuracy for both SGA and SOAPdenovo was high;

94.5% of SGA contigs (totaling 2.64 Gbp) had full-length alignments to the ref-

erence genome, 1.1% (68 Mbp) had split alignments and 4.3% (50 Mbp) had

low-quality alignments or did not align at all. 96.8% of the SOAPdenovo contigs

had a full-length alignment to the reference (totaling 2.60 Gbp), 1.0% had split

alignments (53 Mbp) and 2.2% (33 Mbp) had low-quality alignments or did not

align to the reference at all. This is consistent with the SGA assembly being a

little larger, covering a little more of the reference but also containing a little

more additional material.

I also calculated the per-base mismatch rate of the contigs using the same

methodology as the C. elegans assembly. In this case, I used the human reference

genome combined with SNP calls produced by the Broad Institute in the same

individual from the same data set by a mapping rather than assembly based ap-

proach [DePristo et al., 2011]. I only counted mismatches at positions that did

not match the reference and did not match a Broad SNP call. I also calculated

the mismatch rate at the subset of positions assembled by both SGA and SOAP-

denovo. As both SNP calling and assembly can be confused by genomic repeats

and segmental duplications, I also calculated the per-base accuracy at positions

68

0 5000 10000 15000 20000

0
50

0
10

00
15

00
20

00
25

00
30

00

Minimum alignment length (bp)

R
ef

er
en

ce
 b

as
es

 c
ov

er
ed

 (
M

bp
)

SGA
SOAPdenovo

Figure 3.5: The amount of the human reference genome covered by a contig as a func-
tion of the minimum contig alignment length. For each length L on the x-axis, contig
alignments less than L bp in length were filtered out and the amount of the reference
genome covered by the remaining alignments was calculated.

of the reference that are not masked by RepeatMasker1 and not annotated as

segmental duplications (1.3 Gbp of the reference genome remains after this fil-

ter). Both assemblies were highly accurate. The mismatch rate for SGA over

all covered positions of the reference was 1 per 3,574 bp. For SOAPdenovo, the

mismatch rate was 1 per 4,285 bp. If I only consider reference positions covered

by a contig from both assemblies, the mismatch rates are 1 in 4,325 bp for SGA

and 1 per 5,041 bp for SOAPdenovo. When restricting the analysis to positions

not masked by RepeatMasker and not annotated as segmental duplications, the

mismatch rate is 1 per 52,464 bp for SGA and 1 per 51,125 for SOAPdenovo. At

1http://www.repeatmasker.org

69

http://www.repeatmasker.org

positions assembled by both programs and not masked as repeats or segmental

duplications, the mismatch rates are 1 per 59,884 bp and 1 per 60,511 bp, for

SGA and SOAPdenovo, respectively.

I note that both the contig mismatches and the mapping-based SNP calls will

contain false-positive variants due to mapping errors between the contig or read

sequences and the reference. These false positives will have an opposing effect; if

the contig sequence is misaligned to the reference, we may count a mismatch in the

assembly that is not truly present. This will cause the error rate in the assembly

to be overestimated. It is also possible that false positives from misalignments in

the mapping-based call set may overlap errors in the assembly. This would lead

to an underestimate of the assembly error rate. As I cannot assess the magnitude

of these effects it is difficult to accurately estimate the true base-level error rate in

the assemblies. However, if we conservatively consider all remaining mismatches

to be assembly errors it would indicate the per-base accuracy of the SGA and

SOAPdenovo assemblies are very similar and better than 1 error in 50 kbp in

non-repetitive regions. The accuracy of SGA is supported by an independent

assessment of our assemblers performed during the Assemblathon competition,

which is described in the next section.

3.3.4 The Assemblathon

In 2010, a community organized project was launched with the goal of providing

a simulated data set to benchmark and evaluate assembly software. This project

was organized by UC Davis and UC Santa Cruz. They simulated a diploid genome

derived from human chromosome 13. The organizers sampled simulated sequence

reads from this genome from both short insert (200-300bp paired end separation)

and long insert (3kb and 10kb) libraries. With the goal of modelling real sequence

data, the organizers introduced base-calling errors, PCR duplications and bacte-

rial contamination [Earl et al., 2011]. The sequence reads were openly released to

the community and the developers of assembly software were invited to submit

assemblies of the data. The organizers performed the analysis of the submitted

assemblies, providing an unbiased comparison of assemblers on simulated data. I

entered SGA into the competition. In the assessment, SGA had the largest scaf-

70

fold path NG50 (a measure of scaffold length, corrected for assembly errors), the

lowest number of substitution errors, and the second lowest number of structural

errors [Earl et al., 2011], highlighting the accuracy of my software. Overall, SGA

placed 3rd out of 17 groups, behind ALLPATHS-LG [Gnerre et al., 2011] and

SOAPdenovo [Li et al., 2010c].

3.3.5 Schizosaccharomyces pombe assemblies

As a final assessment of SGA, I assembled 104 strains of the fission yeast, Schizosac-

charomyces pombe. These strains were sequenced as part of a project to determine

the genetic diversity across the S. pombe population. There are two groups of

strains. The first group (97 strains) had 65X sequence depth on average (range

29-91X). The second group (7 strains) were sequenced much deeper (mean 210X,

range 107-436). I assembled each strain with SGA using a minimum overlap pa-

rameter (τ) of 65. Additionally for the ≥ 100X strains, I set a fixed threshold

of 5 k-mer occurrences when running error correction. For the other strains, this

parameter was automatically learned from the data.

With such a high number of samples, I am able to evaluate the impact of

sequence coverage depth on contig N50, as well as run time and memory usage.

The relationship between coverage and contig N50 is shown in figure 3.6. Contig

N50 increases with coverage up to 100X, likely due to being able to use a longer

overlap at higher coverage. Beyond 100X, adding additional coverage does not

help and may actually be detrimental to assembly contiguity at very high depth

(>200X). The relationship between coverage and CPU time is almost perfectly

linear (figure 3.7).

71

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

100 200 300 400

10
00

0
20

00
0

30
00

0
40

00
0

Coverage (X)

C
on

tig
 N

50

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

30 40 50 60 70 80

50
00

10
00

0
15

00
0

20
00

0
25

00
0

30
00

0
35

00
0

Coverage (X)

C
on

tig
 N

50

Figure 3.6: The relationship between sequence coverage and contig N50 for the S. pombe
data set. The plot in the left panel displays the complete data set. The plot in the right
panel only shows strains that have <100X coverage.

72

●

●

●●
●

● ●●

●
●●

●●●●●●●

●

●
●

●●
●

●
●

●
●

●●●●
●

●
●●

●●
●

●
●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●

●

●

●

●
●

●●
●

●
●

●●
●

●●

●

●
●

●●
●●●

●

●

●

●●●●

●●
●

●
●

●●
●●●

●

●
●●●

●●

100 200 300 400

5
10

15
20

Coverage (X)

C
P

U
 ti

m
e

(h
r)

Figure 3.7: The relationship between sequence coverage and CPU time for the S. pombe
data set.

73

Chapter 4

Algorithms for Variant Detection

from an Assembly Graph

4.1 Introduction

In the preceding chapters, I described algorithms for assembling the complete

genome of an individual from a set of sequence reads. Often we are only interested

in the ways in which two (or more) genomes differ. For example, we may be

interested in the differences between a sequenced individual and the reference

genome for a species, or differences between a child and its parents. I will refer

to the problem of finding genomic differences between closely related genomes as

variant detection.

Reference-based variant detection algorithms map and align reads to a refer-

ence genome then find substrings of the reads that are consistently different with

respect to the reference. As reads contain sequencing errors, the differences be-

tween the reads and reference are typically assessed using a probabilistic model

to help distinguish between errors (either due to base-calling errors during se-

quencing or mis-aligning the reads to the reference) and true variants. While

mapping-based algorithms have become the standard method for variant detec-

tion, it is considerably more difficult to accurately find indel variants than it is to

find substitution variants [Li and Homer, 2010]. For this reason, assembly-based

variant calling algorithms have been proposed [Catchen et al., 2011; Iqbal et al.,

74

2012]. In chapter 3 we saw how allelic differences present in a diploid genome

form “bubbles” in the assembly graph. Typically assemblers will find and remove

these structures to output a linear contig, with one of the two possible allelles

chosen to represent the locus in the contig. Most assemblers will catalog these

structures for later consideration as candidate variants1. However, for a diploid

genome this will only find heterozygous sites. The Cortex program [2012] uses

multi-colored de Bruijn graphs to directly compare the sequences of two or more

genomes - each color in the graph represents a single individual. Walks following

a single color in the graph provide partial assemblies of a single individual. By

analyzing the pattern of colors through bubbles in the graph, variants can be

found and attributed to particular individuals.

The method I discuss below is conceptually similar to that of Cortex with the

major difference being that we use the FM-index as the underlying representation

of the assembly graph, instead of explicitly using a hash-table based de Bruijn

graph with a fixed k-mer size. As described in Chapter 2, the FM-index can

represent both the de Bruijn graph (for all k up to the read length) and the

string graph. We use this property to develop both de Bruijn graph and string

graph-based variant detection algorithms. Additionally, we can use the fact that

the FM-index stores the complete sequence of each read to extract all reads

harboring a potential variant and use them as input into a Bayesian model to

distinguish between true variants and sequencing errors.

The remainder of this chapter will describe the algorithms I have developed.

In the following chapter I demonstrate the versatility of these algorithms by

finding polymorphisms present in a human population, finding de novo mutations

acquired by a child with respect to its parents and to discover mutations occurring

in a tumour with respect to an individual’s inherited genome.

4.1.1 Collaboration Note

The methods described in this chapter were developed in collaboration with Cor-

nelis Albers. The variant detection, haplotype assembly, haplotype alignment

1ABySS and SGA write the sequences of the bubbles to a file, ALLPATHS-LG uses a
marked-up FASTA file to describe the ambiguity in the assembly.

75

and read extraction algorithms are by the author. The probabilistic realignment

model described in section 4.3 was developed by Cornelis Albers. Its description

is included in this text to complete the description of the variant calling model.

4.2 Algorithms

We use the FM-index to represent the assembly graphs formed from the sets of

sequencing reads. We will typically compare two sets of sequences against each

other. We will call one set of sequences the control set and one set of sequences

the variant set. We will call the underlying genomes Gc and Gv, respectively.

The variant sequences will always be a set of sequence reads drawn from Gv.

We will denote this read set as Rv. The control sequences can either be a set

of reads or the chromosomes of a reference genome. Below, we will describe the

algorithms in general terms to cover both cases, with minor modifications that

will be stated. We will refer to the set of control sequences in general as C.

Our goal is to determine the loci in Gv that differ with respect to Gc. When a

reference genome Gr is available, we will use it to provide a common coordinate

system to describe the differences between Gv and Gc. The differences between

one of the genomes and Gr will be described in terms of changes to Gr with tuples

of the form:

<reference-position, reference-sequence, variant-sequence>1

These tuples encode the information required to locally change Gr into Gv at

the variant site. Let Avr be the set of tuples describing differences between Gv

and Gr and Acr be the corresponding set of tuples describing differences between

Gc and Gr. The set of positions we are interested in finding is B = Avr − Acr.

When the control genome is the reference genome, this is just Avr.

We begin by building an FM-index for each of Rv and C using the methods

presented in Chapter 3. We load the pair of FM-indices into memory, then our

algorithm has four stages. First, we find a set of substrings that are present in

Rv but not C. These substrings may cover locations in Gv that are different with

respect to Gc. We then extend these substrings into candidate haplotypes using

1This is information is typically encoded in a Variant Call Format (VCF) file

76

the joint assembly graph of Rv and C, as represented by the pair of FM-indices.

We then align the candidate haplotypes to Gr. Finally, we use a probabilistic

model to assess whether the assembled haplotypes represent true differences be-

tween Gv and Gc or sequencing errors. The tuples for variants that are called

by our probabilistic model are output to a VCF file. Each stage is discussed in

detail below.

4.2.1 Motivating Example

Consider the simple case where Gv and Gc are random genomes that differ at

a single position. For some k large enough to avoid spurious matches between

unrelated sequence, let Sv = K1xK2 and Sc = K1yK2 be the 2k + 1 substrings

of Gv and Gc surrounding this single difference. Sv[1, k] = Sc[1, k] = K1 and

Sv[k + 2, 2k + 1] = Sc[k + 2, 2k + 1] = K2 are the k-mers that occur immediately

before and after the single difference. These k-mers are shared between Gv and

Gc. The k-mers covering x and y are unique to Gv and Gc. There are k such

k-mers, which are the substrings Sv[1+ i, 1+ i+k] for all i ∈ {1..k} (respectively,

Sc). Under our assumption that k is sufficiently large, then Sv[1 + i, 1 + i + k]

k-mers are unique to Gv. It is this set of k-mers that we wish to find as the set

of candidate variant k-mers. This situation is depicted in figure 4.1.

K
1

K
2

Figure 4.1: A bubble in a de Bruijn graph built from Gv and Gc. The grey k-mers

(labelled K1 and K2) are shared between Gv and Gc and are the entry/exit points of the

bubble. The red and blue vertices represented k-mers unique to Gv and Gc, respectively.

Once we have found the candidate variant k-mers, we assemble them into

77

haplotypes. In the context of the de Bruijn graph1 shown in figure 4.1, we would

start the haplotype generation process from one of the six red k-mers. The

haplotype generation would perform a breadth-first search by starting from a

red node and continue until both grey junction nodes have been found. The set

of nodes found during this search would define a path through the red half of

the bubble. We can calculate the assembly string corresponding to this path and

output it as a candidate haplotype. We can perform an additional search between

the two grey junction nodes using just the control sequences. This will search

the blue half of the bubble and generate candidate haplotypes in the control

sequences. It is worth noting that these haplotypes may also be present in the

variant sequences.

After haplotypes have been generated, we align them to the reference genome

then extract all the raw sequence reads from the FM-index that share a k-mer

with a candidate haplotype. The candidate haplotypes, their alignments to the

reference and the raw sequence reads are input into the Bayesian model which

assesses the evidence for each haplotype and makes the final variant calls.

4.2.2 Discovering Candidate Variants

The first stage of the algorithm attempts to find k-mers of Gv that are not present

in Gc. If we know the sequence of Gv and Gc this problem is easy. We could

decompose the genomes into their k-mer sets Kv and Kc and compute the set

D = Kv \ Kc. Of course, we do not know the full sequence of Gv so we must

approach the problem from a different direction. In Pevzner’s original paper on

de Bruijn graph assembly [2001], he observed that the set of k-mers present in a

set of sequence reads drawn from Gv approximates the set of k-mers of Gv itself.

In Chapter 3 we used this fact to correct substitution sequencing errors. Here,

we use it again to solve the problem of finding k-mers unique to Gv. We could

explicitly subtract the k-mers of C from the k-mers of Rv but this would require

the intermediate storage of the full k-mer sets. Instead, we developed an efficient

streaming algorithm.

For the moment we will ignore sequencing errors. The algorithm begins by

1A string graph based algorithm is given in section 4.2.4

78

iterating over all reads in Rv and all k-mers in each read. For each k-mer, Q, we

use the FM-index to count the number of occurrences of Q in Rv and the number

of occurrences in C. If Q only appears in Rv, we emit it as a candidate variant.

As the same k-mer may appear in multiple reads, we want to avoid emitting

duplicate k-mers. To do this, we use an efficient bit-vector marking procedure.

At the program’s start, we create a bit vector B with one bit per base in Rv,

initialized to zero. When we first visit a k-mer Q, we calculate its suffix array

interval [lQ, uQ] and set the bit B[lQ] to be one. Subsequent visits to Q will see

that B[lQ] is one and skip it as it has already been visited. This avoids emitting

duplicate candidate variants for the same k-mer and also accelerates the search

by avoiding redundant k-mer occurrence queries.

An alternative approach to finding k-mers unique to Rv can avoid traversing

over each read in Rv. We can simulate a breadth-first traversal of the implicit

suffix tree represented by the FM-index of Rv, stopping once we have reached

depth k. Such a traversal operates over suffix array intervals instead of individual

k-mers, and hence visits each distinct k-mer only once without the need of the

bit vector. When we visit a k-mer, we can check its count in the FM-index of

C to determine whether it should be emitted as a candidate variant. While this

algorithm is cleaner than iterating over every read in Rv, it is faster in practice

only for small k. The bit-vector based algorithm is very easy to parallelize using

multiple threads. Our implementation uses atomic marking (implemented with

compare-and-swap instructions) to allow concurrent updates of the bit vector

without requiring locks. This highly parallel implementation makes the k-mer

discovery portion of the algorithm very fast in practice.

In the presence of sequencing errors, the above algorithms require minor

modifications. As discussed in the previous chapter, sequencing errors gener-

ate low-frequency k-mers. To help distinguish between unique k-mers arising

from errors and unique k-mers arising from true variants, we set a threshold of

d (typically 3-5) on the minimum number of occurrences of Q in Rv to emit the

k-mer as a candidate variant. As an additional filter we require that both Q

and Q are present in Rv - this requires that k-mer is seen on both sequencing

strands, which helps discard systematic errors [Meacham et al., 2011]. Algorithm

generateCandidateVariant encapsulates the procedure for finding candidate

79

variants.

Algorithm 12 generateCandidateVariants(k, d, Rv, C) - find candidate variant

substrings

for all R ∈ Rv do

n← |R| − k + 1

for i = 1→ n do

Q← R[i, i+ k]

if not isMarked(Q) then

mark(Q)

vf ← countOccurrences(Q,Rv)

vr ← countOccurrences(Q,Rv)

c← countOccurrences(Q,C) + countOccurrences(Q,C)

if c = 0 and vf > 0 and vr > 0 and vf + vr ≥ d then

emit(Q)

Once the candidate variant k-mers have been found, we attempt to assemble

them into haplotypes. We have two procedures for doing this, one which uses a

de Bruijn graph and one which uses a string graph. We describe both below.

4.2.3 de Bruijn graph haplotype generation

Let Q be a variant k-mer found during the previous portion of the algorithm.

If Q represents a true difference with respect to Gc it will lie on one branch of

a bubble in the de Bruijn graph formed from the union of Rv and C. For each

vertex (k-mer) of this de Bruijn graph, we can indicate whether it is a k-mer from

Rv, C or both (see figure 4.1). By definition, Q is a k-mer present only in Rv.

The algorithm to assemble Q into a candidate haplotype proceeds by performing

a breadth-first search starting from Q. The search proceeds until we find k-mers

that are present in both Rv and C. In the context of figure 4.1 we would start the

search on one of the red k-mers, and perform the breadth first search outwards

in both directions until one of the grey shared k-mers is reached. These join

k-mers are the entry/exit points of the bubble. As sequencing errors generate

new k-mers and paths in the graph, when searching the graph we ignore k-mers

80

that have not been seen at least m times (typically m is 1 to 3). Pseudocode for

this algorithm is presented in generateDeBruijnHaplotypes.

The generateDeBruijnHaplotypes algorithm begins by initializing an empty

de Bruijn graph (line 1) and two empty arrays (lines 2 and 3). The arrays will

hold the join vertices, where the two halves of the bubble converge. We perform

a breadth-first search for these vertices, starting at Q. Lines 5-7 initialize a

direction-specific traversal queue with an element for searching from the prefix

(left) side of Q and an element for searching from the suffix (right) side of Q.

As de Bruijn graphs can be very complex in repetitive regions, we set a limit

on how far we will search before aborting the process (lines 9 and 10). The

algorithm then loops over all elements of the queue (lines 12-28). As each node

is popped from the queue, its neighbors in the de Bruijn graph are found (lines

15-27) and added as vertices if they meet the minimum coverage parameter of m

(lines 23,26). If the vertex is found in both Rv and C, then the vertex is added

to the LEFT or RIGHT join array, depending on the direction of traversal (lines

22-24). If the vertex is only present in Rv, it is enqueued and the main loop

starts over. Once the graph exploration phase of the algorithm is complete if we

have found left and right join vertices we generate candidate haplotype strings

by following the graph through each pair of join vertices (lines 28-33). This uses

the function buildHaplotypes which takes a pair of vertices in the de Bruijn

graph and generates all possible paths between the pair of vertices and returns

the corresponding assembly string for each path. The strings generated by this

procedure are the candidate haplotypes covering the input k-mer.

After candidate variant haplotypes have been generated, we use a similar

procedure to generate candidate haplotypes using the control sequences. We

perform a directed search of the de Bruijn graph of the control sequences between

each pair of join vertices. The assembly string for each path found during this

procedure is added to the set of candidate haplotypes.

81

Algorithm 13 generateDeBruijnHaplotypes(Q, k, m, Rv, C) - assemble candi-

date variant into a haplotype

1: init(graph, Q)

2: joins[LEFT] ← ∅
3: joins[RIGHT] ← ∅
4: queue ← ∅
5: append(queue,kmer=Q, direction=LEFT)

6: append(queue,kmer=Q, direction=RIGHT)

7: iterations ← 0

8: max iterations ← 10000

9:

10: while queue not empty and iterations < max iterations do

11: n← pop(queue)

12: S ← n.kmer

13: for all b ∈ {A,C,G, T} do

14: if n.direction is LEFT then

15: T ← bS[1, k − 1]

16: else

17: T ← S[2, k]b

18: v ← countOccurrences(T,Rv) + countOccurrences(T ,Rv)

19: c← countOccurrences(T,C) + countOccurrences(T ,C)

20: if v ≥ m and c > 0 then

21: addDBGVertex(graph, T, BOTH)

22: append(joins[n.direction], T)

23: else if v ≥ m then

24: addDBGVertex(graph, T, n.direction)

25: append(queue,kmer=T , direction=n.direction)

26: iterations ← iterations +1

27:

28: haplotypes ← ∅
29: if joins[LEFT] not empty and joins[RIGHT] not empty then

30: for all l ∈ joins[LEFT] do

31: for all r ∈ joins[RIGHT] do

32: push(haplotypes, buildHaplotypes(graph, l, r)

33: return haplotypes

82

4.2.4 String graph haplotype generation

The second haplotype generation function uses the string graph. The string

graph haplotype generation algorithm is a composition of algorithms described

previously in chapters 2 and 3. Like in Chapter 3, we require all reads to be

error corrected before inserting them in the graph. Likewise, we only allow exact

overlaps between reads. Unlike our whole genome assembly algorithm we do not

error correct the full read set. When Gv and Gc are closely related it is expected

that they will have very few differences. In this case it would be inefficient to

error correct every read, as most would not harbor variation. Instead, we correct

each read as it is processed by the algorithm. The algorithm is described at high

level in generateStringGraphHaplotypes.

We begin by initializing an empty graph, and arrays to hold join vertices. We

extract all reads containing the input k-mer Q from the FM-index of Rv. This set

of reads is error corrected using the k-mer correction method described in Chapter

3. The corrected reads are inserted into the graph, and exact overlaps between

the vertices are computed. Here, we simply use a hash of τ -mer sequences to

compute candidate overlaps. The main loop of the algorithm finds “tip” reads

in the graph - those that only have a neighbor on one side (a prefix neighbor

or suffix neighbor). Reads sharing a substring with a tip vertex are extracted

from the FM-Index (by findNewOverlaps) and corrected. The newly corrected

reads are then added into the graph. As each read is inserted into the graph,

we determine if it is a join vertex. If the k-mer at the start of read X occurs in

both Rv and C, we say that X is a left-join vertex. If the k-mer at the end of

read X occurs in both Rv and C, we say that X is a right-join vertex. After all

new vertices have been added to the graph, we run Myers’ transitive reduction

algorithm [Myers, 2005] on the graph. We then attempt to find walks from the

left-joins to the right-joins that cover the reads containing the candidate variant

k-mer Q. If these reads are covered by walks, the walks are returned as the

candidate haplotypes. As in generateDeBruijnHaplotypes we set a bound of

max iterations on the number of times to extend the graph before aborting.

Finally, we generate haplotypes for the control sequences using the same pro-

cedure as section 4.2.3. Here, we do not explicitly have the set of join vertices

83

in the implicit de Bruijn graph. Instead, we use the first and last k-mer of each

variant candidate haplotype to seed the directed search through the de Bruijn

graph.

84

Algorithm 14 generateStringGraphHaplotypes(Q, k, τ , Rv, C) - assemble can-

didate variant into a haplotype

1: init(graph)

2:

3: joins[LEFT] ← ∅
4: joins[RIGHT] ← ∅
5: iterations ← 0

6: max iterations ← 1000

7:

8: I ← extractReads(Q,Rv)

9: Ic ← correctReads(I,Rv)

10: for all r ∈ IC do

11: addStringVertex(graph, r)

12: while iterations < max iterations do

13: T ← findGraphTips(graph)

14: if T is ∅ then

15: return ∅
16: for all t ∈ T do

17: O ← findNewOverlaps(graph, t, τ,Rv)

18: Oc ← correctReads(O,Rv)

19: for all o ∈ Oc do

20: addStringVertex(graph, o)

21: if isLeftJoin(o, k,C) then

22: push(joins[LEFT], o)

23: if isRightJoin(o, k,C) then

24: push(joins[RIGHT], o)

25: myersTransitiveReduction(graph)

26: if joins[LEFT] 6= ∅ and joins[RIGHT] 6= ∅ then

27: haplotypes ← findHapWalks(graph, joins[LEFT], joins[RIGHT])

28: if haplotypes 6= ∅ then

29: return haplotypes

30: iterations ← iterations + 1

85

4.2.5 Haplotype quality control

After we generate candidate haplotypes we perform a quality check. For a hap-

lotype string H and a set of reads, let kmax be the largest k such that all k-mers

in H are seen at least l times in the reads. In other words, all kmax-mers in H

are seen at least l times in the FM-index but some (kmax + 1)-mers of H are not

found l times. We expect that haplotypes that are truly present in a genome and

well-covered by sequence reads will have a large value kmax. Conversely, if a hap-

lotype is not present in a genome, kmax will be very small as it will require random

k-mer matches to find covering k-mers (we would expect kmax to be ≈ log(|G|)
for a random haplotype not present in a genome). We can use these observations

to define a quality check on the haplotypes that we assembled above. For a hap-

lotype H, let v be kmax for the haplotype in the variant read set R. Let c be the

corresponding value for kmax for the control sequences. We filter out haplotypes

when c ≥ 31 or when v − c < 10. The first check (c ≥ 31) indicates that the

haplotype is well-supported in the control sequence set. In this case it is unlikely

that it represents a true difference between Gv and Gc. The second check requires

the support for a haplotype to be significantly stronger in the variant sequences

than the control sequences. The parameter of l (the number of times each k-mer

must be seen) is determined by the control sequences. If we are calling variants

between two sets of reads, we use l = 2 (every k-mer must be seen twice). If we

are calling variants against a reference genome we use l = 1.

4.3 Probabilistic realignment

To distinguish between sequencing errors and true variants, we use a probabilistic

model to determine how well each candidate haplotype is supported by the raw

read sequences. Our FM-index based approach easily allows this, as we are able

to efficiently extract the full sequence of each read from the index. Our realign-

ment method begins by extracting reads from the FM-index that may match one

of the assembled candidate haplotypes. These reads, along with the candidate

haplotypes, are the input into our Bayesian model.

86

4.3.1 Extracting Haplotype Reads from the FM-Index

Extracting a single indexed read from the FM-index is straightforward. Let Ri be

the read in the indexed sequence collection whose sequence we wish to extract.

From the definition of the BWT in section 2.4, we know that the suffix array

interval for the empty suffix of Ri is I = [i, i]. Correspondingly, the last base of

Ri is given by BR[i]. Let this base be denoted by b. We can use the function

updateBackward(I, b) from section 2.4 to calculate the suffix array interval for

the one-base suffix of Ri, consisting of the string b$. The corresponding character

in the BWT gives the second-last base of Ri. If we iterate this procedure until

we reach the $ symbol in the BWT string, we will have extracted the complete

sequence of Ri, as desired.

The procedure to extract haplotype reads is based on k-mer matches. Let

H be a haplotype that we wish to find reads for. Let K1, K2, K3...Kn be the

sequence of k-mers for a haplotype H. We use the FM-index (of Rv or C) to find

suffix array intervals for each of these k-mers. From these k-mer intervals, we

backtrack in the FM-index until we reach the terminating $ symbols. Once the

dollar symbols are reached, we use the lexicographic index (section 2.5.1) to map

from the lexicographic order of a read to its numeric index in R. These numeric

indices are then used in the procedure described in the previous paragraph to

extract the full read sequence.

As some reads will share multiple k-mers with a haplotype, the procedure

described above is inefficient. To account for multiple k-mers we cache visited

intervals during backtracking. If a previously visited interval is visited during

backtracking, we exclude that position from further consideration.

For each candidate haplotype we extract the reads from both Rv and C match-

ing the haplotype. The set of haplotypes and their matching raw sequence reads

are passed to the probabilistic model.

When performing multi-sample calling, like when calling variants present in a

low-coverage population of individuals, we need to associate with each read the

sample that it originated from. To do this, we create a single FM-index from all

samples. We construct the read set R such that all the reads for sample i are

before all reads for sample j. We can then build a simple interval index associating

87

a range of indices in R with which sample those reads came from. When extracting

read i from the FM-index, we can then return the sample identifier along with

the read sequence.

4.3.2 Probabilistic read-haplotype alignment

The purpose of realigning reads to candidate haplotype is to obtain the likelihoods

P (Ri|Hj, θ). Here, Ri is the sequence of read i as generated by the sequencing

machine and extracted from the FM-index in the previous section, Hj is the

sequence of candidate haplotype j assembled in section 4.2.3 or 4.2.4, and θ is

the vector of model parameters. As we do not currently use quality scores for the

read bases the model parameters include an assumption that each read base is

Q20. The parameters also include homopolymer sequencing error indel rates as

described in [Albers et al., 2011]. These read-haplotype likelihoods are combined

with a suitable prior probability distribution1 over the haplotypes to infer which

haplotypes are present in a sample or population of samples. The model that

underlies the likelihood P (Ri|Hj, θ) is the Bayesian network described previously

[Albers et al., 2011]. Here we use a fast approximate version of this model. The

approximation consists of testing only two seed alignments rather than all possible

alignments. The two seed alignments are computed using a 8-base hash of the

read and haplotype sequence.

4.3.3 Annotating variants in the candidate haplotypes

The strategy for calling sequence variation in a reference-free fashion is to first

determine which haplotypes are supported by the data, and only then to anno-

tate the haplotypes with respect to a particular coordinate system or reference

sequence. In principle the alignment of haplotypes to a reference sequence is

a post-processing step. However, there are several advantages of having haplo-

type mapping locations available during the inference of the haplotypes. The

confidence in a variant call depends on whether the haplotype(s) containing the

variant is supported by the data, and whether the haplotype can be confidently

1The choice of prior probability distribution depends on whether we are calling variants by
comparing two genomes or multiple individuals sequenced at low coverage

88

placed onto the reference. If one of these two factors is uncertain the variant call

quality will be low. Furthermore, it is desirable to have available a number of

statistics for each variant call that can be used for filtering. For instance, it is

useful to know how many reads cover the variant without any mismatch. To be

able to provide this information it is necessary to know all the possible mapping

locations of a haplotype to a given reference sequence. To the end-user it may be

also be useful to know that a novel haplotype is strongly supported by the data

but cannot be confidently placed.

4.3.4 Aligning haplotypes to a reference genome

We align the candidate haplotypes to the reference genome, Gr. Our alignment

method uses the FM-index of Gr to find l-mer seed matches between each hap-

lotype and the reference genome Gr. These candidate alignments are refined by

dynamic programming. During dynamic programming, we require a semi-global

alignment between the haplotype and the reference (we require an end-to-end

alignment of the haplotype but a local alignment to the reference). We do not

require the alignment of the haplotype to the reference genome to be unique.

For each candidate alignment, we calculate the number of edit events in the

alignment. An edit event is a contiguous stretch of differences in the alignment

between the haplotype and the reference (for example a 5bp deletion counts as

one event, not 5). We keep all alignments that have fewer than 9 edit events.

For a repetitive haplotype this may result in multiple locations with a reasonable

alignment score.

Each alignment location may result in a different set of variants. We also com-

pute a mapping quality for each mapping location using the haplotype-reference

alignment scores. This mapping quality will be used in the calculation of the

variant qualities as described below.

4.3.5 Comparative variant-calling

In comparative variant calling we have reads for both Gv and Gc and we wish to

detect variants that are only found in Gv but not Gc. A primary application of

comparative variant calling is finding somatically acquired mutations in a cancer

89

from a sequenced tumour-normal pair. We describe our comparative variant

calling model in these terms. Since a tumour sample is not clonal and many

contain entire chromosome duplications or loss, one can not assume a diploid

model. We therefore assume that the number of haplotypes present in the tumour

sample can be greater than two. For simplicity we made the same assumption

for the normal sample.

To deal with a possibly large number of haplotypes, we apply a model selection

approach to infer which haplotypes are supported by the reads. In this model

selection approach, haplotypes are iteratively added until the improvement to the

total score is below the minimum threshold required for adding a new haplotype.

After the model selection algorithm has converged, the haplotype frequencies are

estimated using the Expectation-Maximization algorithm [Dempster et al., 1977].

The scores for the haplotypes used in the model selection are defined as follows.

The increase to the total score by adding a candidate haplotype j to the model

is given by

∆Sj =
∑
i

(logP (Ri|Hj, θ)− si) , (4.1)

where

si = arg max
k∈selected haplotypes

logP (Ri|Hk, θ). (4.2)

For the first iteration, when no haplotypes have been selected yet, si is set to a

default minimum score. This minimum score is approximately log 10−6 (Q60), so

that in practice a read-haplotype alignment with more than indel (penalty of Q40

outside homopolymer runs) or four mismatches (Q20 per mismatch) will not be

above this minimum threshold. This minimum score prevents reads that do not

have a reasonable alignment to any of the candidate haplotypes from favoring one

haplotype over the other because of irrelevant differences in the read-haplotype

likelihood.

To estimate the probability that a candidate variant is a somatic variant,

a joint set of candidate haplotypes is created from the candidate haplotypes

detected in the normal sample and the candidate haplotypes detected in the

tumour sample. Conditional on the joint set of candidate haplotypes, inference

in the normal and the tumour sample can be performed independently.

90

The quality scores for a somatic variant v are next computed as follows:

P (v is somatic|Rnormal,Rtumour) = P (v is present|Rtumour)P (v is absent|Rnormal),

(4.3)

where P (v is present|Rtumour) is the probability that a haplotype containing the

variant v is present in the tumour, and P (v is absent|Rnormal) is the probability

that there is no haplotype containing the variant v in the normal sample. The

quality score for a variant being present in a sample is calculated as follows:

P (v is not present|Rsample) ≈∏
j∈selected,Hjcontains v

(
1− P (Hj is present|Rsample)P (Hj maps to reference location of v)

)
≈
∏
j

(
1−

(
1− exp(−∆Sj)

)
P (Hjmaps to reference location of v)

)
(4.4)

Thus, the variant quality takes into account both the uncertainty in the presence

of the haplotype containing the variant, as well as the uncertainty that each of

those haplotypes maps to the location of the variant.

4.3.6 Population calling

The algorithm for population calling is similar to the comparative variant-calling

algorithm. The main difference is the calculation of the increase in the score from

selecting a haplotype. Instead of Eq. 4.1 we use a multisample EM algorithm

to estimate the increase in the likelihood achieved by adding a haplotype j. The

log-likelihood for the model consisting of the candidate haplotypes selected in

iterations 1, . . . , k − 1 and candidate haplotype j in iteration k is defined as:

expLkj = max
fk−1,j

∏
i

∑
h1

i

∑
h2

i

P (h1
i |fk−1,j)P (h2

i |fk−1,j)
∏

l∈reads

(1

2
P (Rl

i|Hh1
i
, θ)+

1

2
P (Rl

i|Hh2
i
, θ)
)

(4.5)

Here h1
i and h2

i are indicator variables for the two haplotypes present in sam-

ple i; we explicitly assume a diploid model. P (Rl
i|Hh1

i
, θ) is the read-haplotype

likelihood computed by the probabilistic realignment algorithm for read l from

individual i. fk−1,j is the vector of haplotype frequencies that is estimated using

91

the EM algorithm. The frequencies fk−1,j are optimized subject to the constraint

that only the haplotypes selected in iterations 1, . . . , k − 1 and the candidate

haplotype j can have non-negative values; other candidate haplotypes (not yet

added to the model) are set to zero.

We then define the score as:

∆Sj = Lkj − Lk−1, (4.6)

with Lk−1 the log-likelihood of Eq. 4.5 for the candidate haplotype added at

iteration k − 1. Finally, in iteration k we add the candidate haplotype with the

largest ∆Sj to the model. Candidate haplotype are added to the model until

there is no candidate haplotype with a score ∆Sj above the threshold.

4.4 Discussion

In this chapter I described a framework for performing assembly based variant

calling with a probabilistic model. There are a number of improvements to this

model that could be made in the future. In section 4.2.2 we assume that a

variant k-mer does not appear in the control sequence set. In the case of high-

depth sequence data, there may be sequencing errors that generate k-mers in

the control sequences that match the variant k-mers by chance. These erroneous

k-mers may mask the presence of variant k-mers and cause our model to miss

variants. In practice this is not a significant problem because there is redundancy

in the k-mer detection step, as up to k k-mers may contain the variant sequence -

we will detect the variant k-mer if any of these is unique to the variant sequence

set. When k is greater than half the read length, the same sequencing error

would need to occur in multiple reads to mask all of these k-mers. Despite this

redundancy in detection, we are likely to lose some variant calls due to errors,

therefore this is a possible point of improvement.

In our probabilistic model, we do not use the per-base quality scores output

by the sequencing instrument. An obvious point of improvement is to incorporate

these into our model. Quality scores are typically encoded using a single ASCII

character, which requires one byte per base. If we naively recorded the quality

92

scores for each base, this amount of memory would be far larger than the size

of the FM-index to store the reads. In the future we intend to investigate other

means of storing and accessing the quality values, including compressed repre-

sentations (for example, Huffman coding) or downsampling the quality scores to

a smaller range (for example using 2 bits per score by quantizing the scores to 4

levels).

Two recently published programs also take an assembly-based approach to

variant calling. Cortex [Iqbal et al., 2012] builds a colored de Bruijn graph from

the sequence reads from multiple individuals. It then searches for diverging paths

in the graph, which are assembled into haplotypes. The haplotypes are mapped to

the reference genome in a post-processing step. While my fundamental approach -

finding divergent paths through an assembly graph built from multiple individuals

- is similar to Cortex there are a number of important differences. The FM-index

represents all de Bruijn graphs for k up to the read length. This allows flexibility

in parameter choice as the graph does not need to be reconstructed for every k.

Cortex represents the graph as a fixed hash table of k-mers and therefore needs to

construct a new graph for every k that is used. The FM-index also allows string

graph-based haplotype generation, as demonstrated in section 4.2.41. Finally, the

FM-index provides access to the full read sequences, allowing the haplotypes to

be assessed in our probabilistic model after assembly (section 4.3).

Fermi [Li, 2012] uses modified versions of the algorithms in Chapter 2 and

3 to assemble reads into contigs using a string graph. After assembly the con-

tigs are aligned to a reference genome and variants are parsed from the align-

ments. Fermi performs full assembly, in contrast to Cortex and the algorithms

described in this chapter which only assemble the haplotypes that are expected

to contain variation. The author of Fermi demonstrates impressive performance

for human genome variation detection, with SNP calling sensitivity approaching

that of mapping-based methods. However at this time Fermi is limited to single

samples and does not support comparing multiple individuals.

1In the following chapter the difference in performance between the de Bruijn graph and
string graph based approaches will be explored

93

Chapter 5

Assembly-Based Variant Calling

Results

5.1 Introduction

In the previous chapter, I described methods for finding sequence variation by

comparing sets of reads using a de Bruijn graph or string graph. In this chapter,

I explore this approach to variant calling.

In section 4.2.2 I proposed that k-mers unique to a particular genome (or set

of reads) can be used to discover candidate variant sequences. In section 5.2 I

test this idea by simulating random mutations in the human reference genome. In

sections 5.3 and 5.4 I test the full variant calling pipeline by simulating variants

and sequence reads. The benefit of using simulated data is that the true set of

variants is known, which allows direct calculation of the sensitivity and precision

of the variant calling procedure. However, these simulations do not model some

complications found in real data, like biased sequencing coverage, systematic

sequencing errors or large structural variants. The remainder of the chapter uses

real sequencing data from the Illumina platform. In section 5.5 I make variant

calls for an individual genome compared to the human reference sequence. The

variant calls for this individual are compared to previously published variants to

assess the performance of my method. In 5.6 I explore the false positive rate of

my variant caller.

94

In sections 5.7, 5.8 and 5.9 I apply my variant caller to three key variant calling

problems. In section 5.7 I call mutations that occur in the child of two parents

(de novo mutations) where all three individuals have been sequenced. Section

5.8 explores finding somatic mutations that occur during progression of cancer.

Section 5.9 describes the use of assembly-based variant calling for a population of

individuals, where each member of the population is sequenced at low coverage.

The data used in this section is part of the 1000 Genomes Project. The results in

this chapter demonstrate the performance of our algorithms and their software

implementation in a wide variety of contexts. In the last section of this chapter

the results are discussed in a broader context including future areas of work.

5.1.1 Implementation Note

The algorithms from Chapter 4 are implemented within my FM-Index assembler,

SGA. Version 0.9.30 of SGA was used for this chapter. The source code is freely

available online at www.github.com/jts/sga.

5.2 The power to detect variants using unique

k-mers

In section 4.2.2 I described an algorithm to find candidate variants between two

genomes, Gv and Gc, by finding k-mers unique to Gv. To assess the power of

detecting candidate variants using this approach, I performed a simulation by

introducing point mutations randomly into the human reference genome (build

GRC 37, preprocessed to remove sequence gaps). If any k-mer containing the

introduced point mutation is not found in the human reference genome (it is a

unique k-mer), I call the mutation detectable. If all k-mers containing the point

mutation are unique, I say that the mutation forms a clean bubble. I performed

this simulation for all k from 16 to 71. In each simulation, 10, 000, 000 random

mutations were introduced.

The results of this simulation are plotted in figure 5.1. When k = 21, 93.8%

of variants are detectable but only 63.6% of variants form clean bubbles. When

k = 51, 99.6% of variants are detectable and 93.7% form clean bubbles. These

95

www.github.com/jts/sga

results highlight the power of using unique k-mers for finding potential variants

- even for relatively small k most changes generate unique k-mers which we can

use to start the haplotype assembly process described in the previous chapter.

20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

P
ro

po
rt

io
n

Detectable
Clean Bubble

Figure 5.1: The k-mer detectability of point mutations introduced into the human ref-

erence genome. The black line indicates the proportion of introduced variants that are

detectable at a given k. The red line indicates the proportion of variants that form clean

bubbles.

5.3 Simulated single-genome variants calls

As an initial test of our complete variant calling algorithm, I generated two new

chromosomes derived from human chromosome 20. First, the human chromo-

some 20 sequence was pre-processed to remove “N”s from the reference without

changing the coordinate system by choosing a random base for each “N” symbol.

I then generated two sets of mutations - one set of homozygous changes and one

96

set of heterozygous changes. Each set contained random substitution mutations

at a frequency of 1 in 2, 000bp and random indel mutations at frequency 1 in

20, 000bp. The indel size was generated by starting at 1bp and extending the

event with probability 0.3. In total, 34, 701 homozygous and 34, 670 heterozy-

gous events were created. The heterozygous events were randomly partitioned

into two subsets. To derive the new chromosomes from chromosome 20, all ho-

mozygous events were applied to chromosome 20 and one of the two heterozygous

subsets using the tool FastaAlternateReferenceMaker from the Genome Anal-

ysis Toolkit [DePristo et al., 2011]. I will refer to the derived chromosomes as G1

and G2.

I sampled 20X read coverage from each of G1 and G2 (100bp reads, uniform

1% error rate) using DWGSIM1. The 20X read sets were mixed together into one

40X read set, which simulates random shotgun coverage of a diploid genome. I

built an FM-index from the 40X reads using the sga-bcr algorithm. Variant

calls were made by comparing these reads against the chromosome 20 reference

sequence. This is the reference-based calling mode of our program - the reference

genome serves as the set of control sequences. To assess the performance of

the de Bruijn graph haplotype generator (4.2.3) and the string graph haplotype

generator (4.2.4), calls were made using both modes. I will refer to these modes

as the de Bruijn graph caller and the string graph caller, respectively. To assess

the effect of the k-mer parameter, I ran multiple trials with each caller, using k

from 33 to 75 in increments of 3. A minimum of 5 variant k-mer occurrences were

required to trigger haplotype assembly.

Figure 5.2 plots the sensitivity (true positives / (true positives + false nega-

tives)) and precision ((true positives / (true positives + false positives)) for each

caller as a function of k. Here k refers to the variant detection k-mer for the

string graph caller and both the variant detection and haplotype assembly k-mer

for the de Bruijn graph caller.

1https://github.com/nh13/DWGSIM

97

https://github.com/nh13/DWGSIM

40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Genome Sensitivity

k

S
en

si
tiv

ity

String Graph
de Bruijn Graph

40 50 60 70
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Single Genome Precision

k

P
re

ci
si

on
String Graph
de Bruijn Graph

Figure 5.2: Sensitivity (left panel) and precision (right panel) of reference-based calls

on simulated data. Note the different range of the y-axis in each panel.

The sensitivity of the de Bruijn graph method decreased sharply with increas-

ing k. This is due to the need to sample a k-mer for every position overlapping

the point of variation. When k is large there is insufficient read coverage to en-

sure that each position has been sampled. This has a weaker effect on the string

graph method, as k-mers are only used to detect the variant and a perfect tiling

of k-mers is not necessary. Additionally, by performing error correction the string

graph caller is able to recover some k-mers that are lost to the de Bruijn graph

caller due to sequencing errors.

The peak sensitivity for the de Bruijn method was 0.9476 at k = 42. At this

k, 96.16% of the homozygous variants were found and 93.34% of the heterozy-

gous variants were found. The increased sensitivity for homozygous variants is

expected as they have twice the sequence coverage as heterozygous differences.

The sensitivity for indels was slightly higher than that of SNPs (0.9553 vs 0.9469).

The peak sensitivity for the string graph method was 0.9770 at k = 36. At

k = 36, the string graph method recovered 98.50% of the homozygous variants

and 96.88% of the heterozygous variants. Like for the de Bruijn graph method,

the sensitivity for indels was slightly higher than that of SNPs (0.9821 and 0.9764,

98

respectively).

At the k-mer chosen to maximize sensitivity the precision of the two meth-

ods was 0.9445 (de Bruijn graph) and 0.9781 (string graph). Of the 3, 865 false

positive calls for the de Bruijn graph method, 360 (9.3%) are within annotated

segmental duplications of the human genome1. The string graph method gen-

erated 1, 520 false positives at k = 36, 1, 289 (85%) of which are in segmental

duplications. The lower precision for the de Bruijn graph method is due to the

low k-mer used to maximize sensitivity. When a low k-mer is chosen, it is much

more likely that a complete bubble forms around sequencing errors. As an illus-

tration of this principle consider the case when k is less than half the read length.

When an error occurs in the middle of the read, the erroneous k-mers may be

flanked by correct k-mers at the ends of the read. This sequence of k-mers will

generate a complete path in the de Bruijn graph between the correct k-mers.

When k is high, this situation is much less likely to occur as the sequencing error

would need to occur in multiple reads for a complete bubble to form. This effect

will be offset to an extent by the requirement that each variant k-mer is seen in

at least 5 reads.

In practice the string graph caller with k in the range 50 − 60 gives better

precision (0.9912 to 0.9937) and good sensitivity (0.9690 to 0.9435). For this

reason, the default k-mer is set to 54.

5.3.1 Computation Requirements

The de Bruijn graph caller is significantly faster than the string graph caller

(10.4 CPU hours versus 24.5 CPU hours, respectively). As both algorithms use

the same compressed FM-index, both modes have the same peak memory usage

of 1.5GB.

5.4 Simulated genome comparison

Our variant calling model is designed to directly detect variation between two

related genomes by directly comparing their sequence reads. I designed a second

1as annotated by the UCSC genome browser

99

simulation to test this method. I started from the pair of chromosomes G1 and

G2 used in the previous simulation. I generated a new set of substitution variants

at frequency 1 in 10, 000bp and indels at 1 in 100, 000bp. These variants were

split into two sets and one set was applied to G1 and one set was applied to G2

to generate two new genomes G3 and G4
1. I sampled 20X coverage from each of

G3 and G4 and mixed the reads into one 40X set. Let RA be the reads generated

from G1 and G2 in the previous section and RB be the new reads generated from

G3 and G4 in this section. I made comparative calls using RB as the variant

sequences and RA being the control sequences. Chromosome 20 was used as the

reference genome. To trigger assembly, a unique k-mer in RB must occur at least

5 times in the RB reads and not be present in RA. Again I used both the de

Bruijn graph caller and string graph caller over a range of k.

The results are presented in figure 5.3. The overall trend - that sensitivity

decreases as a function k - is similar to the single-genome assessment. At peak

sensitivity, the string graph method made slightly more calls (sensitivity 0.9290

at k = 45) than the de Bruijn graph method (sensitivity 0.9205 at k = 36) and

was more accurate (precision 0.9954 vs 0.9752). As in the previous simulation

the sensitivity to detect indels was slightly higher (string graph 0.9489 vs 0.9271,

de Bruijn graph 0.9425 vs 0.9183).

1Note this implies all variants are heterozygous in this simulation

100

40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Paired Genome Sensitivity

k

S
en

si
tiv

ity

String Graph
de Bruijn Graph

40 50 60 70
0.

90
0.

92
0.

94
0.

96
0.

98
1.

00

Paired Genome Precision

k

P
re

ci
si

on
String Graph
de Bruijn Graph

Figure 5.3: Sensitivity (left panel) and precision (right panel) of the simulated genome

comparison. Note the different range of the y-axis in each panel.

5.4.1 Computation Requirements

The de Bruijn graph caller required 10.3 CPU hours to make calls at k = 36. The

string graph caller required 11.4 CPU hours at k = 45. Despite having the same

number of reads as the reference-based simulation in the previous section both

programs were faster in a comparative calling framework. This is particularly true

for the string graph caller, which required less than half the time. These results

highlight that the number of variants is a crucial determinant of the runtime of

the program. The memory usage for both modes was 2.4GB.

5.5 Reference-based Substitution Calls

The results presented above validates that our assembly-based variant calling

method can recover the vast majority of simulated SNPs and indels, while retain-

ing high accuracy. Real sequencing data is more challenging however as sequence

bias, systematic errors and large structural variants complicate variant calling.

To explore the application of our approach to real data, I made reference-based

101

calls for an individual genome. I used 100bp Illumina sequence data from the

NA12878 individual of the CEU population, which has been extensively studied

before [Conrad et al., 2011; DePristo et al., 2011; Simpson and Durbin, 2012]. The

input data set is available online at ftp://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/technical/working/20120117_ceu_trio_b37_decoy/. I used human chro-

mosome 20 as a test case. Reads for this chromosome were extracted from the

whole genome BAM file. An FM-index of this subset of reads was created using

the sga-bcr algorithm. When aligning haplotypes to the reference, I did not limit

the alignment to chromosome 20 but rather used the entire reference genome as I

found that this helped to reduce the number of false positive variants due to the

input reads being mapped to the wrong chromosome. I made two call sets, one

using the full set of reads (over 80X coverage) and one using half of the reads. As

before, calls were made using both the de Bruijn graph caller and string graph

caller.

As the true differences between NA12878 and the reference genome are un-

known, I cannot directly evaluate the sensitivity and precision of my variant calls.

Instead, I assessed the completeness of my call set by calculating the proportion

of mapping-based calls that were found by the assembly callers. The mapping-

based calls are from the publication of the GATK variant caller [DePristo et al.,

2011]. As a measure of the accuracy of my calls, I compared the calls to variants

present in dbSNP v1.32. This build of dbSNP contains variants found by the pilot

project of the 1000 Genomes Project which includes NA12878 as a sample. Both

of these assessments are restricted to SNP calls. The results are summarized in

figure 5.4.

102

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/

40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of GATK SNPs Found

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

40 50 60 70
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Proportion of SNPs in DBSNP v1.32

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

Figure 5.4: The left panel plots the proportion of mapping-based SNP calls using GATK

that were found by the de Bruijn graph and string graph callers as a function of k. In

the right panel, the proportion of SNP calls that are found in dbSNP v1.32 is plotted.

The peak proportion of mapping SNP calls recovered by the string graph

method was 0.8764 at k = 51. For the de Bruijn graph method, the peak was

0.8512 at k = 54. The performance of the string graph caller was more consistent

across the range of k. The proportion of variants found by the de Bruijn graph

caller dropped at low and high k-mer values, highlighting the importance of care-

fully choosing this parameter. Both methods were accurate when assessed by the

number of variant calls that are already present in dbSNP v1.32 - 96.88% for the

string graph calls (k = 51) and 96.74% for the de Bruijn graph calls (k = 54)

were in dbSNP.

When downsampling the coverage to 42X, the differences between the algo-

rithms become more apparent (figure 5.5). The peak proportion of mapping calls

dropped from 0.8764 to 0.8498 for the string graph method (k = 39) and 0.8512

to 0.8248 for the de Bruijn graph method (k = 45). The profile of the de Bruijn

graph caller was similar to the results for simulated data in section 5.3 - there was

a steep drop in sensitivity for large k due to lack of coverage. The accuracy was

largely unaffected by the decrease in coverage. The proportion of SNPs found

103

in dbSNP v1.32 for the string graph method at k = 39 was 97.25%. For the de

Bruijn graph method the dbSNP proportion was 96.87% at k = 45.

40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of GATK SNPs Found

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

40 50 60 70

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Proportion of SNPs in DBSNP v1.32

k

P
ro

po
rt

io
n

String Graph
de Bruijn Graph

Figure 5.5: The proportion of mapping-based SNPs found (left) and the proportion of

our SNP calls contained in dbSNP v1.32 (right) for the downsampled data set.

To further characterize the performance of my assembly based variant caller,

I investigated the variant calls that were found by the mapping-based caller

(GATK) but not called by the assembly-based callers. In total, GATK called

75, 838 substitutions on chromosome 20. Of these, 42, 686 (56.3%) are in known

segmental duplications or repetitive elements masked by RepeatMasker1. The

string graph caller (k = 51) did not find 9, 391 GATK calls in the high depth

(>80X) data set. Of these 8, 093 (86.2%) lie within annotated repeats. Similarly

the de Bruijn graph caller (k = 54) missed 11, 300 variants, 9, 714 (86.0%) of

which are in known repeats. This suggests that our ability to make assembly

calls is higher in non-repetitive regions of the genome. This is expected as repet-

itive regions will lead to a more complicated assembly graph making it less likely

that clean haplotypes can be assembled. It is also possible that the false positive

rate of the mapping caller is higher in these difficult regions of the genome.

1Annotations were downloaded from the UCSC genome browser

104

5.6 Estimating the background error rate for

comparative variant calling

I used the NA12878 sequence data to estimate the false positive rate of our

comparative variant caller. I split the NA12878 chromosome 20 reads into two

subsets of approximately 40X each by randomly assigning each read pair to one

of two files. I will refer to these two halves as H1 and H2. I made comparative

calls by using H1 as the variant sequences and H2 as the control sequences. As all

the reads were drawn from the same individual no variants should be called - all

variants found by this procedure are false positives either due to sequencing errors,

assembly errors or incorrectly aligning the assembled haplotypes to the reference

genome. As before, I ran the caller in both the string graph mode and de Bruijn

graph mode over a range of k. I required 5 occurrences of a k-mer to trigger

variant assembly. I classified the errors into three categories - substitutions,

indels in homopolymer sequences (a string of ≥ 7 or more occurrences of the

same base) or indels outside of homopolymers. The results are summarized in

table 5.1. The number of false positive calls drops sharply with increasing k. In

all cases, the majority of false positive calls are due to mis-calling the length of a

long homopolymer run. This is likely due to the increased sequencing error rate

associated with these regions [Albers et al., 2011; Li, 2012].

105

Table 5.1: False positive variant calls found by splitting the NA12878 chromosome 20

data into two halves. The variants are classified into substitutions (Subs), indels outside

of homopolymer runs (non-HP indels) and indels within homopolymer runs (HP indels).

de Bruijn Graph Calls String Graph Calls

k Subs Non-HP indels HP indels Subs Non-HP indels HP indels

33 41 6 118 15 2 48

36 24 6 112 13 4 50

39 20 7 97 15 3 48

42 18 6 83 16 2 45

45 8 4 71 16 2 46

48 5 3 55 16 1 47

51 11 2 39 12 1 44

54 3 2 31 14 1 39

57 1 2 15 10 1 30

60 2 2 6 10 1 22

63 2 0 4 7 1 18

66 0 1 2 6 1 17

69 0 1 2 7 2 9

72 0 0 0 2 2 5

75 0 0 0 2 3 3

5.7 Calling de novo mutations in a trio

I will now describe the application of our comparative variant caller to real se-

quencing problems. The first problem I will address is the discovery of de novo

mutations. These are mutations that occur in the germline of an individual’s

parents and are subsequently passed along to the child. De novo mutations have

been implicated in a number of human diseases including schizophrenia [Girard

et al., 2011] and autism [Sanders et al., 2012]. To find de novo mutations the

genome of a child is sequenced along with the genome of both of its parents (this

is commonly referred to as a sequencing a “trio”). Conrad et al. [2011] devel-

oped an algorithm to call de novo mutations using reads mapped to a reference

genome. Their framework considers the three individuals jointly in a Bayesian

106

framework1.

I used our assembly-based approach to call de novo mutations in a trio from

the CEU population, which was also studied by Conrad et al. [2011] using lym-

phoblastoid cell line DNA. It is known there are many somatic cell line mutations

in this sample. The individual NA12878 used in section 5.5 is the child in this

trio. Conrad et al. used early Illumina sequencing data from the pilot of the 1000

Genomes Project. In this section, I use more recent data consisting of 101bp

reads2. In this data set, NA12878 was sequenced to 81X depth. The parents

were sequenced to 71X (identifier NA12891) and 70X (NA12892). I used the

read set of the child, Rc, as the variant sequences and the union of the read sets

from the two parents, Rp, as the control set. For computational convenience, I

made calls chromosome-by-chromosome by taking reads mapped to the reference

genome and separating them into subsets based on the chromosome the reads

mapped to. While this introduces a weak bias towards the reference genome, I

believe this drawback is offset by the reduction in run time and memory usage.

I used k = 54 when making calls and required 5 occurrences of a variant k-mer

to trigger assembly. Candidate haplotypes were mapped to the full reference

genome.

In Conrad et al.’s original paper, they selected a large number of calls for

experimental validation. The selected calls were validated by PCR amplifica-

tion followed by Illumina sequencing or target enrichment followed by SOLiD

sequencing. As the first measure of the performance of my software on calling de

novo mutations, I compared our calls to the successfully validated mapping calls.

The results are presented in table 5.2. In total, the de Bruijn graph caller found

908 of the 936 (97.0%) of the validated subset of calls. The string graph caller

found 898 of 936 (95.6%). While these results are encouraging, it is worth noting

that the calls selected for validation were filtered to avoid difficult regions of the

genome. Mapping-based calls in simple repeats, known copy number variants,

segmental duplications or in dbSNP v1.29 were excluded from this validation set.

Additionally, sites without read coverage in all three individuals or near a short

1Details can be found in [Conrad et al., 2011]
2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_

trio_b37_decoy/

107

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20120117_ceu_trio_b37_decoy/

polymorphic indel were removed. In total, these filters excluded 468 Mbp of the

genome.

Table 5.2: Chromosome by chromosome breakdown of the number of de novo substi-

tution calls in the validation set and for the de Bruijn (DBG) and string graph (SG)

callers.

Chr. Validated DBG Calls Found by DBG (%) SG Calls Found by SG (%)

1 51 184 51 (100.0%) 199 50 (98.0%)

2 63 235 63 (100.0%) 267 61 (96.8%)

3 71 201 71 (100.0%) 219 70 (98.6%)

4 100 252 97 (97.0%) 276 99 (99.0%)

5 92 187 92 (100.0%) 213 92 (100.0%)

6 64 176 60 (93.8%) 190 58 (90.6%)

7 64 115 60 (93.8%) 118 59 (92.2%)

8 75 155 73 (97.3%) 165 72 (96.0%)

9 58 128 56 (96.6%) 146 57 (98.3%)

10 47 113 45 (95.7%) 131 45 (95.7%)

11 27 128 26 (96.3%) 144 26 (96.3%)

12 17 89 16 (94.1%) 95 15 (88.2%)

13 31 119 30 (96.8%) 128 30 (96.8%)

14 31 121 29 (93.5%) 129 28 (90.3%)

15 28 94 28 (100.0%) 104 28 (100.0%)

16 23 63 21 (91.3%) 73 18 (78.3%)

17 20 49 20 (100.0%) 64 20 (100.0%)

18 33 80 30 (90.9%) 89 30 (90.9%)

19 8 97 7 (87.5%) 114 7 (87.5%)

20 22 62 22 (100.0%) 69 22 (100.0%)

21 8 24 8 (100.0%) 38 8 (100.0%)

22 3 27 3 (100.0%) 31 3 (100.0%)

total 936 2699 908 (97.0%) 3002 898 (95.9%)

The assembly-based callers found thousands of substitutions that are not

present in the validation set. To get a more complete measure of the perfor-

mance of the assembly caller, I compared the assembly calls to the raw output of

108

Conrad’s caller, DeNovoGears. Here I did not use the same DeNovoGears callset

as in [Conrad et al., 2011] but rather I used an updated call set using the most

recent version of the program (v0.3) on the recent 101bp sequencing data 1. I

parsed the raw DeNovoGear output to remove SNP calls that had a posterior

probability of being a de novo mutation less than 0.75. After this filter, 4488

calls remained. 2006 of the 2699 de Bruijn graph SNP calls (74.3%) are found in

this set of DeNovoGears calls. For the string graph caller, 2003 of 3002 (66.7%)

are found in the DeNovoGear set. This suggests that the majority of the assembly

substitution calls are true de novo mutations, not false positives.

The de Bruijn graph caller made 2,157 indel calls. After filtering out indels

that occur in homopolymers of length 7 or greater, 245 indels remain. The String

Graph caller made 2,795 indel calls, 321 of which are not in homopolymer runs.

In both call sets the non-homopolymer events are biased towards deletions. In

the de Bruijn graph call set the ratio of deletions to insertions is 4.3:1. In the

string graph call set the ratio is 3.2:1.

5.8 Cancer mutations

As a second test of our comparative assembly algorithm, I called mutations in a

human breast cancer. A typical cancer sequencing experiment sequences a tumor

along with the individual’s matched normal genome. Variants found only in the

tumor are putative somatic mutations. In this test, I used a breast cancer sample

sequenced at the Sanger Institute as part of the Cancer Genome Project. The

tumor read set consists of 1.65 billion 100bp reads (55X). The matched normal

genome has 1.32 billion reads (44X). This data set was recently used as part of

a large project to catalog mutations [Nik-Zainal et al., 2012a] and mutational

history [Nik-Zainal et al., 2012b] in 21 breast cancers. Finding cancer mutations

is a more difficult use case than other applications as tumors typically exhibit

subclonal structure and some mutations are found only in a subset of tumor cells.

In addition the tumor is typically not an entirely pure sample and is contaminated

with normal tissue. For this reason, some mutations will be covered by few reads.

1These calls are provided by Art Wuster of the Hurles lab

109

To account for this I used a lower number of required k-mer occurrences to trigger

assembly, 3. As in the trio variant calling, I used k = 54.

In the framework of my comparative variant caller the reads from the tumor,

RT , are the variant reads, and the reads from the normal, RN are the control

set. As in the trio experiment I made calls chromosome-by-chromosome. As part

of the Cancer Genome Project’s standard pipeline they call somatic mutations

from the mapped reads using in-house software. In table 5.3 I compare CGP’s

mapping calls to the assembly calls. Of the 10, 381 calls found by CGP’s mapping

based caller, the de Bruijn graph caller found 8,035 (77.4%). The string graph

caller found 8, 593 (82.8%). There is a noteworthy excess of substitutions on

chromosome 6. Closer inspection revealed a dense cluster of C>T transitions on

this chromosome. These events occurred primarily in a TpC context (TC>TT

substitution). As these C>T events are in close proximity, they often assemble

into a single haplotype. Using the string graph calls as an example, the most

divergent chromosome 6 haplotype assembled had 35 C>T mutations. Nik-Zainal

et al. studied this hypermutation phenomenon in detail in [Nik-Zainal et al.,

2012a].

110

Table 5.3: Chromosome-by-chromosome breakdown of the substitutions called in the

breast cancer tumor.

Chr. Mapping Calls DBG Calls Found by DBG (%) SG Calls Found by SG (%)

1 783 807 612 (78.2%) 973 647 (82.6%)

2 849 827 660 (77.7%) 946 699 (82.3%)

3 632 590 489 (77.4%) 678 537 (85.0%)

4 645 613 502 (77.8%) 678 536 (83.1%)

5 480 438 366 (76.2%) 482 393 (81.9%)

6 1286 1262 1050 (81.6%) 1313 1082 (84.1%)

7 837 921 661 (79.0%) 1096 717 (85.7%)

8 459 457 352 (76.7%) 519 377 (82.1%)

9 296 309 222 (75.0%) 357 241 (81.4%)

10 519 499 399 (76.9%) 592 422 (81.3%)

11 429 431 329 (76.7%) 491 349 (81.4%)

12 391 419 311 (79.5%) 490 330 (84.4%)

13 247 224 186 (75.3%) 249 204 (82.6%)

14 186 178 143 (76.9%) 215 157 (84.4%)

15 192 185 146 (76.0%) 220 157 (81.8%)

16 260 282 194 (74.6%) 379 211 (81.2%)

17 181 205 113 (62.4%) 241 136 (75.1%)

18 379 396 316 (83.4%) 463 328 (86.5%)

19 128 144 81 (63.3%) 213 93 (72.7%)

20 228 318 176 (77.2%) 387 178 (78.1%)

21 198 197 151 (76.3%) 240 163 (82.3%)

22 95 107 66 (69.5%) 169 76 (80.0%)

X 681 661 510 (74.9%) 701 560 (82.2%)

total 10381 10470 8035 (77.4%) 12092 8593 (82.8%)

The Cancer Genome Project validated 309 of the substitution calls made by

their mapping-based caller. Of these 309, 255 were found by the de Bruijn graph

caller (82.5%) and 270 (87.4%) were found by the string graph caller.

The de Bruijn graph caller made 4, 499 indel calls, 974 of which are not in

a homopolymer run. For the string graph caller 4, 510 indel calls were made,

1, 104 outside of homopolymers. The Cancer Genome Project called indels on

111

this sample using Pindel [Ye et al., 2009], 333 of which were validated. Of the

333 validated indels, 297 (89.2%) were found by the de Bruijn graph caller and 293

(88.0%) were found by the string graph caller1. A number of the assembly indel

calls are near a CGP validated indel but did not have the exact same sequence. If

I relax the matching criteria to only require the assembly call to be within 20bp of

the CGP event, the number of matching events increases to 320 for the de Bruijn

graph caller (96.1%) and 319 for the string graph caller (95.8%)2. The reasons

that the breakpoint sequences differ in these cases remains to be investigated.

Our probabilistic realignment method estimates the allele frequency of vari-

ants. In the context of cancer sequencing, this is an estimation of the proportion

of chromosomes present in the entire tumor sample (including non-cancerous

contaminating tissue) that harbors a particular mutation. Figure 5.6 plots the

distribution of allele frequencies for the substitutions called by our string graph

method. If mutations occurred on one of the two chromosomes at random and the

mutated chromosome was present in all cells of the tumor, we would expect the

allele frequencies to be distributed around 0.5. However as cancers continuously

accumulate mutations as they evolve, all cells will not contain every mutation.

Additionally, contamination by normal tissue will shift the allele frequency dis-

tribution towards lower frequency. These effects are shown in figure 5.6 as the

median allele frequency is 0.225.

1Homopolymer indels were included in this analysis
2Calculated with BEDTools’ intersectBED program

112

String Graph Substitution Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure 5.6: The allele frequency distribution for substitution calls made by the string

graph caller

To assess the accuracy of our allele frequency estimates, I compared our es-

timates to those made by CGP’s mapping-based pipeline. The allele frequency

estimates for variants common to both call sets is plotted in figure 5.7. Our al-

lele frequency estimates are well-correlated to those of the mapping based caller

(r = 0.957).

The string graph substitution call set contains 447 substitutions with esti-

mated allele frequency 1.0. Few of these calls are also contained in the CGP

call set (figure 5.7). Of the 447 high allele frequency substitution calls, 376 are

found in dbSNP v1.32. This suggests these calls are probably homozygous SNPs

that are incorrectly called as somatic mutations. The likely cause for these false

positives is poor sequence coverage of the sites in the matched normal sample.

113

Figure 5.7: The allele frequency calculated by the string graph caller (x-axis) and CGP

(y-axis) for calls made a common sites

Finally, I assessed the functional consequences of the string graph calls. Using

the Variant Effect Predictor provided by Ensembl [Flicek et al., 2012; McLaren

et al., 2010], I predicted the effect of all substitution mutations and all non-

homopolymer indels. Ensembl release version 66 was used. My mutation call

set had 3 frameshift mutations, including a single base deletion in the important

tumor suppressor TP53. This variant was also found by the CGP and experimen-

tally validated. Two substitution mutations generated new stop codons. There

are 47 non-synonymous coding mutations and 32 synonymous changes.

114

5.8.1 Analysis Notes

The mapping-based variants, their estimated allele frequencies and validation

status were provided by Serena Nik-Zainal of the Cancer Genome Project. The

CGP variant calls were made by Caveman, an in-house caller.

5.9 Low-Coverage Population Calls

Finally, I used the assembly-based variant caller on low-coverage human popu-

lation sequencing. The data used is from Phase 2 of the 1000 Genomes Project

[1000 Genomes Project Consortium, 2010]. I used all reads mapping to chromo-

some 20 for the African continental group (LWK, YRI, ASW, ACB populations).

Only individuals that had 75bp reads or greater were included. This subset of

the data contains 191 individuals. I used the de Bruijn graph caller for this data

set with a k-mer size of 61. Five occurrences of a k-mer were required to trigger

assembly and five occurrences of a k-mer were required to use it in the de Bruijn

graph (m parameter in generateDeBruijnHaplotypes).

The de Bruijn graph caller found 218, 852 single nucleotide polymorphisms,

35, 846 indels and 2, 246 multi-nucleotide polymorphisms1. To assess the accu-

racy of my call set, I calculated the transition/transversion ratio of the SNP

variants and the proportion of variants that were previously found. For com-

pletely random mutations in random sequence the transition/transversion ratio

(Ti/Tv) would be 1:2. In actual sequence however transitions are more likely to

occur [Wakeley, 1996]. The transition/transversion ratio of the chromosome 20

calls for African samples in phase 1 of the 1000 Genomes Project is 2.37. The

transition/transversion ratio of my call set is 2.20:1. To assess the novelty of my

calls, I compared the SNP calls to dbSNP v1.32, which contains calls for the pilot

data of the 1000 Genomes Project. 89.68% of my SNP calls are known variants.

In addition to SNPs and MNPs, I called 35, 846 indels. To assess the accuracy

of my indel calls, I calculated the ratio of in-frame indels (those that do not

change the reading frame of protein translation) versus the number of frameshift

mutation. As it is expected that frameshift mutations are significantly damaging

1Block substitutions of length > 1

115

to protein function, very few frameshift mutations are expected. My call set

contains 14 in-frame and 14 frameshift indels.

Our population caller estimates genotype likelihoods for each sequenced indi-

vidual and uses these likelihoods to estimate allele frequencies in the population.

The allele frequency distribution for the de Bruijn graph SNP and indel calls is

presented in figure 5.8. As the assembly based caller requires significant read

coverage of each variant sequence to successfully assemble it into a haplotype, we

have reduced power to detect low-frequency variants (allele frequency < 5%).

SNP Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Indel Allele Frequency Distribution

Allele Frequency

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 5.8: The allele frequency distribution for SNP and Indel calls on the AFR

continental group of the 1000 Genomes Project

I also compared my indel calls to the mapping-based indel calls from phase 1

of the 1000 Genomes Project1. The mapping-based calls were made from 1,094

individuals. I made a subset of the phase 1 calls consisting of calls on chromosome

20 that are not contained in the “excluded” calls file2. The mapping-based indel

1The calls were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.
20101123.indels.low_coverage.sites.vcf.gz

2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/
supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.
indels.sites.vcf.gz

116

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/consensus_call_sets/indels/ALL.wgs.VQSR_V2_GLs_polarized.20101123.indels.low_coverage.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/excluded_indel_sites/ALL.wgs.excluded_sites_20120312.20101123.indels.sites.vcf.gz

call set contains few calls of length greater than 20bp. Despite using far fewer

samples, the assembly call set contains many more large indels, demonstrating

the benefit of assembly approaches for finding complex variation (figure 5.9).

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

−40 −20 0 20 40

1

10

100

1000

10000

Indel size (bp)

C
ou

nt

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Assembly Calls
Phase1 calls

Figure 5.9: The distribution of insertion (positive) and deletion (negative) lengths for

the 1000 Genomes data set. The data set consists of 35, 846 assembly indel calls (black

points) and 64, 319 mapping calls from Phase 1 of the 1000 Genomes Project (red

points). Events larger than 50bp were excluded from this plot.

5.9.0.1 Computation Requirements

Constructing the FM-index for the population required 162 CPU hours (59 hours

elapsed time). The peak memory usage during index construction was 26GB.

Variant calling required 359 CPU hours. Variant calling was run using 16 com-

putation threads, which allowed the task to complete in 29 wall-cloock hours.

117

The peak memory usage during variant calling was 39GB.

5.10 Discussion

In this chapter, I explored the properties of our assembly-based approach to vari-

ant calling. On simulated data, the assembly-based caller recovered the majority

of variants while retaining high accuracy. For real data, some power is clearly

lost when compared to mapping-based approaches. It is an open question of how

many of the “missed” mapping-based variants are true SNPs or indels and how

many are false positives. Assembly-based calling requires higher coverage than

mapping so it is expected that some true variants will be missed due to insuffi-

cient sequence depth. Likewise, we do not yet use read pairs in our haplotype

generation functions. This may lead to a loss of power in difficult to assem-

ble regions, which is reflected by the fact that most of the GATK SNPs that we

missed in NA12878 are found in annotated repeats. Despite these limitations, the

assembly-based approach is promising. The assembly-based caller found most of

the validated de novo mutations in the trio and validated indels in the cancer sam-

ple. The indel size distribution on the 1000 Genomes data suggests the assembly

caller has better representation of large events when compared to mapping-based

approaches.

Assembly-based variant calling is a new technique. Cortex [Iqbal et al., 2012]

and Fermi [Li, 2012] were published this year - the algorithms described in this

work were developed in parallel. I did not directly compare to Cortex and Fermi

due to the practicalities of running these programs on the range of data sets

presented here. A comparison and assessment including Cortex, SGA and state

of the art mapping and local reassembly methods is underway for phase 2 of the

1000 Genomes Project. This upcoming assessment should help demonstrate the

pros and cons of assembly based approaches.

118

Chapter 6

Conclusions

In this work, I have developed assembly and variant calling algorithms based

on the compressed FM-index data structure. Using the algorithms developed,

I performed the first overlap-based assembly of a human genome from Illumina

sequence reads [Simpson and Durbin, 2012]. Subsequent to the publication of

my assembly method in [Simpson and Durbin, 2010], other groups have followed

a similar approach. Dinh and Rajasekaran [2011] developed an efficient data

structure for representing an exact-match overlap graph. Gonnella and Kurtz

extended my idea of directly outputting only the irreducible edges of a string

graph to develop a fast string graph construction algorithm [Gonnella and Kurtz,

2012]. Heng Li reformulated the algorithms in chapter 2 and 3 based on a new

representation of the FM-index which stores the read sequences and their reverse

complement in the same data structure [Li, 2012].

I have extended upon the de novo assembly algorithms to perform comparative

variant calling between two genomes. The initial results presented in chapter 5

suggest this is a promising approach for finding relatively complex differences

between the pair of genomes. I believe that methods which work directly with

sequencing reads, rather than relying on alignments to a reference genome, will

become increasing important as sequencing technology improves.

High-throughput short read sequencing profoundly changed genomics. New

algorithms needed to be developed to cope with the volumes of data. As sequenc-

ing costs continue to fall and more genomes are sequenced there will be constant

pressure to lower the computational cost of sequence analysis. One approach that

119

has recently become prominent is to use probabilistic data structures, such as the

bloom filter. This approach has been shown to lower the memory requirements

of representing a de Bruijn graph [Chikhi and Rizk, 2012; Pell et al., 2012]. I be-

lieve these approaches are complimentary to the FM-index algorithms developed

in this work. For example, one could use a bloom filter when performing k-mer

based error correction and the FM-index when assembling the corrected reads

into contigs. These approaches can easily be implemented within our software

framework, which is designed as a modular pipeline.

As the third generation of sequencing technology is developed, which is pro-

jected to be based on directly reading the sequence of DNA as it passes through

a biological nanopore, the algorithmic landscape will change again. Already read

lengths of up to 48kbp have been publicly discussed using nanopore approaches

[Schneider and Dekker, 2012]. The algorithmic challenge of indexing the data

and constructing an assembly graph will remain, and I believe the FM-index and

string graph algorithms presented in this work are well-suited for this task. With

>10kb reads, genomic repeats become far less of a barrier to reconstructing the

complete sequence of a large genome. I believe the core algorithmic challenge

in assembly will not be to simply reconstruct the full sequence of a genome but

to reconstruct the full haplotype-resolved phased genome of diploid organisms.

The logical starting point of all sequence analysis should be the complete genetic

content of a cell, and I believe this goal is not far off.

120

References

1000 Genomes Project Consortium. A map of human genome variation from

population-scale sequencing. Nature, 467(7319):1061–1073, 2010. ISSN

0028-0836. doi:10.1038/nature09534. URL http://dx.doi.org/10.1038/

nature09534. 5, 15, 115

Abouelhoda, Mohamed I., Kurtz, Stefan, and Ohlebusch, Enno. The enhanced

suffix array and its applications to genome analysis algorithms in bioinformat-

ics. In Guigó, Roderic and Gusfield, Dan, editors, Algorithms in Bioinfor-

matics, volume 2452 of Lecture Notes in Computer Science, chapter 35, pages

449–463. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-

540-44211-0. doi:10.1007/3-540-45784-4\ 35. URL http://dx.doi.org/10.

1007/3-540-45784-4_35. 16

Abouelhoda, Mohamed I., Kurtz, Stefan, and Ohlebusch, Enno. Replacing suffix

trees with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–

86, 2004. ISSN 15708667. doi:10.1016/S1570-8667(03)00065-0. URL http:

//dx.doi.org/10.1016/S1570-8667(03)00065-0. 22

Adams, Mark D., Sutton, Granger G., Smith, Hamilton O., Myers, Eugene W.,

and Venter, J. Craig. The independence of our genome assemblies. Pro-

ceedings of the National Academy of Sciences, 100(6):3025–3026, 2003. ISSN

1091-6490. doi:10.1073/pnas.0637478100. URL http://dx.doi.org/10.1073/

pnas.0637478100. 4

Albers, Cornelis A., Lunter, Gerton, MacArthur, Daniel G., McVean, Gilean,

Ouwehand, Willem H., and Durbin, Richard. Dindel: Accurate indel calls from

121

http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1007/3-540-45784-4_35
http://dx.doi.org/10.1007/3-540-45784-4_35
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1016/S1570-8667(03)00065-0
http://dx.doi.org/10.1073/pnas.0637478100
http://dx.doi.org/10.1073/pnas.0637478100

REFERENCES

short-read data. Genome Research, 21(6):961–973, 2011. ISSN 1549-5469. doi:

10.1101/gr.112326.110. URL http://dx.doi.org/10.1101/gr.112326.110.

88, 105

Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering

plant arabidopsis thaliana. Nature, 408(6814):796–815, 2000. ISSN 0028-0836.

doi:10.1038/35048692. URL http://dx.doi.org/10.1038/35048692. 3

Barnett, Derek W., Garrison, Erik K., Quinlan, Aaron R., Strömberg, Michael P.,

and Marth, Gabor T. BamTools: a c++ API and toolkit for analyzing and

managing BAM files. Bioinformatics, 27(12):1691–1692, 2011. ISSN 1460-

2059. doi:10.1093/bioinformatics/btr174. URL http://dx.doi.org/10.1093/

bioinformatics/btr174. 58

Bauer, Markus J., Cox, Anthony J., and Rosone, Giovanna. Lightweight BWT

construction for very large string collections combinatorial pattern matching.

volume 6661 of Lecture Notes in Computer Science, chapter 20, pages 219–231.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-21457-

8. doi:10.1007/978-3-642-21458-5\ 20. URL http://dx.doi.org/10.1007/

978-3-642-21458-5_20. 32, 46

Bentley, David R., Balasubramanian, Shankar, Swerdlow, Harold P., Smith, Ge-

offrey P., Milton, John, Brown, Clive G., Hall, Kevin P., Evers, Dirk J.,

Barnes, Colin L., Bignell, Helen R., et al. Accurate whole human genome

sequencing using reversible terminator chemistry. Nature, 456(7218):53–59,

2008. ISSN 1476-4687. doi:10.1038/nature07517. URL http://dx.doi.org/

10.1038/nature07517. 5, 47

Bentley, Jon L. and Sedgewick, Robert. Fast algorithms for sorting and searching

strings. In SODA ’97: Proceedings of the eighth annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 360–369. Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, 1997. ISBN 0-89871-390-0. URL

http://portal.acm.org/citation.cfm?id=314321. 32

Berger, Emery D., McKinley, Kathryn S., Blumofe, Robert D., and Wil-

son, Paul R. Hoard: a scalable memory allocator for multithreaded ap-

122

http://dx.doi.org/10.1101/gr.112326.110
http://dx.doi.org/10.1038/35048692
http://dx.doi.org/10.1093/bioinformatics/btr174
http://dx.doi.org/10.1093/bioinformatics/btr174
http://dx.doi.org/10.1007/978-3-642-21458-5_20
http://dx.doi.org/10.1007/978-3-642-21458-5_20
http://dx.doi.org/10.1038/nature07517
http://dx.doi.org/10.1038/nature07517
http://portal.acm.org/citation.cfm?id=314321

REFERENCES

plications. SIGPLAN Not., 35(11):117–128, 2000. ISSN 0362-1340. doi:

10.1145/356989.357000. URL http://dx.doi.org/10.1145/356989.357000.

58

Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley,

M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., et al.

The complete genome sequence of escherichia coli k-12. Science (New York,

N.Y.), 277(5331):1453–1462, 1997. ISSN 0036-8075. doi:10.1126/science.277.

5331.1453. URL http://dx.doi.org/10.1126/science.277.5331.1453. 3

Burrows, M. and Wheeler, D. J. A block-sorting lossless data compression algo-

rithm. Technical Report 124, 1994. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.37.6774. 16, 28

Butler, Jonathan, MacCallum, Iain, Kleber, Michael, Shlyakhter, Ilya A., Bel-

monte, Matthew K., Lander, Eric S., Nusbaum, Chad, and Jaffe, David B.

ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome

research, 18(5):810–820, 2008. ISSN 1088-9051. doi:10.1101/gr.7337908. URL

http://dx.doi.org/10.1101/gr.7337908. 13

C. elegans Sequencing Consortium. Genome sequence of the nematode c. el-

egans: a platform for investigating biology. Science (New York, N.Y.),

282(5396):2012–2018, 1998. ISSN 0036-8075. doi:10.1126/science.282.5396.

2012. URL http://dx.doi.org/10.1126/science.282.5396.2012. 3, 61

Catchen, Julian M., Amores, Angel, Hohenlohe, Paul, Cresko, William, and

Postlethwait, John H. Stacks: Building and genotyping loci de novo from

Short-Read sequences. G3: Genes, Genomes, Genetics, 1(3):171–182, 2011.

ISSN 2160-1836. doi:10.1534/g3.111.000240. URL http://dx.doi.org/10.

1534/g3.111.000240. 74

Chaisson, Mark J. and Pevzner, Pavel A. [duplicate] short read fragment assembly

of bacterial genomes. Genome Research, 18(2):324–330, 2008. ISSN 1549-5469.

doi:10.1101/gr.7088808. URL http://dx.doi.org/10.1101/gr.7088808. 8,

54

123

http://dx.doi.org/10.1145/356989.357000
http://dx.doi.org/10.1126/science.277.5331.1453
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.6774
http://dx.doi.org/10.1101/gr.7337908
http://dx.doi.org/10.1126/science.282.5396.2012
http://dx.doi.org/10.1534/g3.111.000240
http://dx.doi.org/10.1534/g3.111.000240
http://dx.doi.org/10.1101/gr.7088808

REFERENCES

Chikhi, Rayan and Rizk, Guillaume. Space-Efficient and exact de bruijn graph

representation based on a bloom filter algorithms in bioinformatics. vol-

ume 7534 of Lecture Notes in Computer Science, chapter 19, pages 236–248.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-33121-

3. doi:10.1007/978-3-642-33122-0\ 19. URL http://dx.doi.org/10.1007/

978-3-642-33122-0_19. 8, 120

Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chim-

panzee genome and comparison with the human genome. Nature, 437(7055):69–

87, 2005. ISSN 1476-4687. doi:10.1038/nature04072. URL http://dx.doi.

org/10.1038/nature04072. 4

Conrad, Donald F., Keebler, Jonathan E., DePristo, Mark A., Lindsay, Sarah J.,

Zhang, Yujun, Casals, Ferran, Idaghdour, Youssef, Hartl, Chris L., Torroja,

Carlos, Garimella, Kiran V., et al. Variation in genome-wide mutation rates

within and between human families. Nature genetics, 43(7):712–714, 2011.

ISSN 1546-1718. doi:10.1038/ng.862. URL http://dx.doi.org/10.1038/ng.

862. 102, 106, 107, 109

Conway, Thomas, Wazny, Jeremy, Bromage, Andrew, Zobel, Justin, and

Beresford-Smith, Bryan. Gossamer a resource-efficient de novo assem-

bler. Bioinformatics, 28(14):1937–1938, 2012. ISSN 1460-2059. doi:10.1093/

bioinformatics/bts297. URL http://dx.doi.org/10.1093/bioinformatics/

bts297. 14

Conway, Thomas C. and Bromage, Andrew J. Succinct data structures for as-

sembling large genomes. Bioinformatics (Oxford, England), 27(4):479–486,

2011. ISSN 1367-4811. doi:10.1093/bioinformatics/btq697. URL http:

//dx.doi.org/10.1093/bioinformatics/btq697. 8, 14

de Bruijn, N. G. A combinatorial problem. Koninklijke Nederlandse Akademie

v. Wetenschappen, 49:758–764, 1946. 8

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

124

http://dx.doi.org/10.1007/978-3-642-33122-0_19
http://dx.doi.org/10.1007/978-3-642-33122-0_19
http://dx.doi.org/10.1038/nature04072
http://dx.doi.org/10.1038/nature04072
http://dx.doi.org/10.1038/ng.862
http://dx.doi.org/10.1038/ng.862
http://dx.doi.org/10.1093/bioinformatics/bts297
http://dx.doi.org/10.1093/bioinformatics/bts297
http://dx.doi.org/10.1093/bioinformatics/btq697
http://dx.doi.org/10.1093/bioinformatics/btq697

REFERENCES

Series B (Methodological), 39(1):1–38, 1977. ISSN 00359246. doi:10.2307/

2984875. URL http://dx.doi.org/10.2307/2984875. 90

DePristo, Mark A., Banks, Eric, Poplin, Ryan, Garimella, Kiran V., Maguire,

Jared R., Hartl, Christopher, Philippakis, Anthony A., del Angel, Guillermo,

Rivas, Manuel A., Hanna, Matt, et al. A framework for variation discovery and

genotyping using next-generation DNA sequencing data. Nat Genet, 43(5):491–

498, 2011. ISSN 1546-1718. doi:10.1038/ng.806. URL http://dx.doi.org/

10.1038/ng.806. 68, 97, 102

Dinh, Hieu and Rajasekaran, Sanguthevar. A memory-efficient data struc-

ture representing exact-match overlap graphs with application for next-

generation DNA assembly. Bioinformatics, 27(14):1901–1907, 2011. ISSN

1460-2059. doi:10.1093/bioinformatics/btr321. URL http://dx.doi.org/10.

1093/bioinformatics/btr321. 119

Drmanac, Radoje, Sparks, Andrew B., Callow, Matthew J., Halpern, Aaron L.,

Burns, Norman L., Kermani, Bahram G., Carnevali, Paolo, Nazarenko, Igor,

Nilsen, Geoffrey B., Yeung, George, et al. Human genome sequencing using

unchained base reads on self-assembling DNA nanoarrays. Science (New York,

N.Y.), 327(5961):78–81, 2010. ISSN 1095-9203. doi:10.1126/science.1181498.

URL http://dx.doi.org/10.1126/science.1181498. 5

Earl, Dent, Bradnam, Keith, St. John, John, Darling, Aaron, Lin, Dawei, Fass,

Joseph, Yu, Hung On Ken, Buffalo, Vince, Zerbino, Daniel R., Diekhans, Mark,

et al. Assemblathon 1: A competitive assessment of de novo short read assembly

methods. Genome Research, 21(12):2224–2241, 2011. ISSN 1549-5469. doi:

10.1101/gr.126599.111. URL http://dx.doi.org/10.1101/gr.126599.111.

10, 14, 70, 71

Eid, John, Fehr, Adrian, Gray, Jeremy, Luong, Khai, Lyle, John, Otto, Geoff,

Peluso, Paul, Rank, David, Baybayan, Primo, Bettman, Brad, et al. Real-Time

DNA sequencing from single polymerase molecules. Science, 323(5910):133–

138, 2009. ISSN 1095-9203. doi:10.1126/science.1162986. URL http://dx.

doi.org/10.1126/science.1162986. 5

125

http://dx.doi.org/10.2307/2984875
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1093/bioinformatics/btr321
http://dx.doi.org/10.1093/bioinformatics/btr321
http://dx.doi.org/10.1126/science.1181498
http://dx.doi.org/10.1101/gr.126599.111
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1126/science.1162986

REFERENCES

Euler, Leonard. Solutio problematis ad geometriam situs pertinentis. Com-

mentarii academiae scientiarum Petropolitanae, 8:128–140, 1741. URL http:

//www.math.dartmouth.edu/~{}euler/pages/E053.html. 23

Ferragina, P. and Manzini, G. Opportunistic data structures with applications.

In Proceedings 41st Annual Symposium on Foundations of Computer Science,

volume 0, pages 390–398. IEEE Comput. Soc, Los Alamitos, CA, USA, 2000.

ISBN 0-7695-0850-2. ISSN 0272-5428. doi:10.1109/SFCS.2000.892127. URL

http://dx.doi.org/10.1109/SFCS.2000.892127. 16, 28

Ferragina, Paolo, Gagie, Travis, and Manzini, Giovanni. Lightweight data index-

ing and compression in external memory. In Proceedings of the Latin Ameri-

can Theoretical Informatics Symposium. 2010. URL http://arxiv.org/abs/

0909.4341. 46

Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert,

J., Min Jou, W., Molemans, F., Raeymaekers, A., Van den Berghe, A., et al.

Complete nucleotide sequence of bacteriophage MS2 RNA: primary and sec-

ondary structure of the replicase gene. Nature, 260(5551):500–507, 1976. ISSN

0028-0836. URL http://view.ncbi.nlm.nih.gov/pubmed/1264203. 2

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F.,

Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M.,

et al. Whole-genome random sequencing and assembly of haemophilus influen-

zae rd. Science, 269(5223):496–512, 1995. ISSN 1095-9203. doi:10.1126/science.

7542800. URL http://dx.doi.org/10.1126/science.7542800. 3

Fleury, M. Deux problemes de geometrie de situation. Journal de mathematiques

elementaires, pages 257–261, 1883. 24

Flicek, Paul, Amode, M. Ridwan, Barrell, Daniel, Beal, Kathryn, Brent, Si-

mon, Carvalho-Silva, Denise, Clapham, Peter, Coates, Guy, Fairley, Su-

san, Fitzgerald, Stephen, et al. Ensembl 2012. Nucleic Acids Research,

40(D1):D84–D90, 2012. ISSN 1362-4962. doi:10.1093/nar/gkr991. URL

http://dx.doi.org/10.1093/nar/gkr991. 114

126

http://www.math.dartmouth.edu/~{}euler/pages/E053.html
http://www.math.dartmouth.edu/~{}euler/pages/E053.html
http://dx.doi.org/10.1109/SFCS.2000.892127
http://arxiv.org/abs/0909.4341
http://arxiv.org/abs/0909.4341
http://view.ncbi.nlm.nih.gov/pubmed/1264203
http://dx.doi.org/10.1126/science.7542800
http://dx.doi.org/10.1093/nar/gkr991

REFERENCES

Genome 10K Community of Scientists. Genome 10K: A proposal to obtain Whole-

Genome sequence for 10000 vertebrate species. Journal of Heredity, 100(6):659–

674, 2009. ISSN 1465-7333. doi:10.1093/jhered/esp086. URL http://dx.doi.

org/10.1093/jhered/esp086. 5

Girard, Simon L., Gauthier, Julie, Noreau, Anne, Xiong, Lan, Zhou, Sirui, Jouan,

Loubna, Dionne-Laporte, Alexandre, Spiegelman, Dan, Henrion, Edouard, Di-

allo, Ousmane, et al. Increased exonic de novo mutation rate in individuals

with schizophrenia. Nat Genet, 43(9):860–863, 2011. ISSN 1061-4036. doi:

10.1038/ng.886. URL http://dx.doi.org/10.1038/ng.886. 106

Gnerre, Sante, MacCallum, Iain, Przybylski, Dariusz, Ribeiro, Filipe J., Burton,

Joshua N., Walker, Bruce J., Sharpe, Ted, Hall, Giles, Shea, Terrance P.,

Sykes, Sean, et al. [duplicate] high-quality draft assemblies of mammalian

genomes from massively parallel sequence data. Proceedings of the National

Academy of Sciences, 108(4):1513–1518, 2011. ISSN 1091-6490. doi:10.1073/

pnas.1017351108. URL http://dx.doi.org/10.1073/pnas.1017351108. 13,

14, 71

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann,

H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., et al. Life with 6000

genes. Science, 274(5287):546–567, 1996. ISSN 1095-9203. doi:10.1126/science.

274.5287.546. URL http://dx.doi.org/10.1126/science.274.5287.546. 3

Gonnella, Giorgio and Kurtz, Stefan. Readjoiner: a fast and memory efficient

string graph-based sequence assembler. BMC Bioinformatics, 13(1):82+, 2012.

ISSN 1471-2105. doi:10.1186/1471-2105-13-82. URL http://dx.doi.org/10.

1186/1471-2105-13-82. 119

Green, Phil. Whole-genome disassembly. Proceedings of the National Academy of

Sciences, 99(7):4143–4144, 2002. ISSN 1091-6490. doi:10.1073/pnas.082095999.

URL http://dx.doi.org/10.1073/pnas.082095999. 4

Grossi, Roberto and Vitter, Jeffrey S. Compressed suffix arrays and suffix trees

with applications to text indexing and string matching (extended abstract). In

127

http://dx.doi.org/10.1093/jhered/esp086
http://dx.doi.org/10.1093/jhered/esp086
http://dx.doi.org/10.1038/ng.886
http://dx.doi.org/10.1073/pnas.1017351108
http://dx.doi.org/10.1126/science.274.5287.546
http://dx.doi.org/10.1186/1471-2105-13-82
http://dx.doi.org/10.1186/1471-2105-13-82
http://dx.doi.org/10.1073/pnas.082095999

REFERENCES

Proceedings of the thirty-second annual ACM symposium on Theory of com-

puting, STOC ’00, pages 397–406. ACM, New York, NY, USA, 2000. ISBN 1-

58113-184-4. doi:10.1145/335305.335351. URL http://dx.doi.org/10.1145/

335305.335351. 17

Gusfield, Dan. Algorithms on strings, trees, and sequences : computer sci-

ence and computational biology. Cambridge Univ. Press, 1997. ISBN

0521585198. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20\&path=ASIN/0521585198. 16, 22

Healy, John, Thomas, Elizabeth E., Schwartz, Jacob T., and Wigler, Michael.

Annotating large genomes with exact word matches. Genome research,

13(10):2306–2315, 2003. ISSN 1088-9051. doi:10.1101/gr.1350803. URL

http://dx.doi.org/10.1101/gr.1350803. 16, 57

Idury, R. M. and Waterman, M. S. A new algorithm for DNA sequence assembly.

Journal of computational biology, 2(2):291–306, 1995. ISSN 1066-5277. URL

http://view.ncbi.nlm.nih.gov/pubmed/7497130. 8

International Human Genome Sequencing Consortium. Initial sequencing and

analysis of the human genome. Nature, 409(6822):860–921, 2001. ISSN 0028-

0836. doi:10.1038/35057062. URL http://dx.doi.org/10.1038/35057062.

4

Iqbal, Zamin, Caccamo, Mario, Turner, Isaac, Flicek, Paul, and McVean, Gil.

De novo assembly and genotyping of variants using colored de bruijn graphs.

Nature genetics, 44(2):226–232, 2012. ISSN 1546-1718. doi:10.1038/ng.1028.

URL http://dx.doi.org/10.1038/ng.1028. 14, 15, 74, 75, 93, 118

Jou, W. M., Haegeman, G., Ysebaert, M., and Fiers, W. Nucleotide sequence of

the gene coding for the bacteriophage MS2 coat protein. Nature, 237:82–88,

1972. doi:10.1038/237082a0. URL http://dx.doi.org/10.1038/237082a0. 2

Kececioglu, John D. and Myers, Eugene W. Combinatorial algorithms for DNA

sequence assembly. In Algorithmica, volume 13, pages 7–51. 1993. URL http:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.5469. 7

128

http://dx.doi.org/10.1145/335305.335351
http://dx.doi.org/10.1145/335305.335351
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0521585198
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0521585198
http://dx.doi.org/10.1101/gr.1350803
http://view.ncbi.nlm.nih.gov/pubmed/7497130
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1038/ng.1028
http://dx.doi.org/10.1038/237082a0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.5469
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.5469

REFERENCES

Kelley, David R., Schatz, Michael C., and Salzberg, Steven L. Quake:

quality-aware detection and correction of sequencing errors. Genome biology,

11(11):R116+, 2010. ISSN 1465-6914. doi:10.1186/gb-2010-11-11-r116. URL

http://dx.doi.org/10.1186/gb-2010-11-11-r116. 47, 48

Kent, W. James. BLATthe BLAST-like alignment tool. Genome Re-

search, 12(4):656–664, 2002. ISSN 1549-5469. doi:10.1101/gr.229202.

\%20Article\%20published\%20online\%20before\%20March\%202002.

URL http://dx.doi.org/10.1101/gr.229202.%20Article%20published%

20online%20before%20March%202002. 16

Ko, P. and Aluru, S. Space efficient linear time construction of suffix arrays.

Journal of Discrete Algorithms, 3(2-4):143–156, 2005. ISSN 15708667. doi:

10.1016/j.jda.2004.08.002. URL http://dx.doi.org/10.1016/j.jda.2004.

08.002. 32

Kurtz, Stefan, Narechania, Apurva, Stein, Joshua C., and Ware, Doreen. A

new method to compute k-mer frequencies and its application to annotate

large repetitive plant genomes. BMC genomics, 9(1):517+, 2008. ISSN

1471-2164. doi:10.1186/1471-2164-9-517. URL http://dx.doi.org/10.1186/

1471-2164-9-517. 16

Lam, T. W., Li, Ruiqiang, Tam, Alan, Wong, Simon, Wu, Edward, and Yiu,

S. M. High throughput short read alignment via bi-directional BWT. In 2009

IEEE International Conference on Bioinformatics and Biomedicine, volume 0,

pages 31–36. IEEE, Los Alamitos, CA, USA, 2009. ISBN 978-0-7695-3885-3.

doi:10.1109/BIBM.2009.42. URL http://dx.doi.org/10.1109/BIBM.2009.

42. 36

Lam, T. W., Sung, W. K., Tam, S. L., Wong, C. K., and Yiu, S. M. Compressed

indexing and local alignment of DNA. Bioinformatics, 24(6):791–797, 2008.

ISSN 1460-2059. doi:10.1093/bioinformatics/btn032. URL http://dx.doi.

org/10.1093/bioinformatics/btn032. 16

Langmead, Ben, Trapnell, Cole, Pop, Mihai, and Salzberg, Steven. Ultra-

fast and memory-efficient alignment of short DNA sequences to the human

129

http://dx.doi.org/10.1186/gb-2010-11-11-r116
http://dx.doi.org/10.1101/gr.229202.%20Article%20published%20online%20before%20March%202002
http://dx.doi.org/10.1101/gr.229202.%20Article%20published%20online%20before%20March%202002
http://dx.doi.org/10.1016/j.jda.2004.08.002
http://dx.doi.org/10.1016/j.jda.2004.08.002
http://dx.doi.org/10.1186/1471-2164-9-517
http://dx.doi.org/10.1186/1471-2164-9-517
http://dx.doi.org/10.1109/BIBM.2009.42
http://dx.doi.org/10.1109/BIBM.2009.42
http://dx.doi.org/10.1093/bioinformatics/btn032
http://dx.doi.org/10.1093/bioinformatics/btn032

REFERENCES

genome. Genome Biology, 10(3):R25–10, 2009. ISSN 1465-6906. doi:10.1186/

gb-2009-10-3-r25. URL http://dx.doi.org/10.1186/gb-2009-10-3-r25. 16

Li, Fugen and Stormo, Gary D. Selection of optimal DNA oligos for gene ex-

pression arrays. Bioinformatics, 17(11):1067–1076, 2001. ISSN 1460-2059.

doi:10.1093/bioinformatics/17.11.1067. URL http://dx.doi.org/10.1093/

bioinformatics/17.11.1067. 16

Li, Heng. A statistical framework for SNP calling, mutation discovery, associa-

tion mapping and population genetical parameter estimation from sequencing

data. Bioinformatics (Oxford, England), 27(21):2987–2993, 2011. ISSN 1367-

4811. doi:10.1093/bioinformatics/btr509. URL http://dx.doi.org/10.1093/

bioinformatics/btr509. 15

Li, Heng. Exploring single-sample SNP and INDEL calling with whole-genome

de novo assembly. Bioinformatics, 28(14):1838–1844, 2012. ISSN 1460-

2059. doi:10.1093/bioinformatics/bts280. URL http://dx.doi.org/10.1093/

bioinformatics/bts280. 14, 15, 93, 105, 118, 119

Li, Heng and Durbin, Richard. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics (Oxford, England), 25(14):1754–

1760, 2009. ISSN 1367-4811. doi:10.1093/bioinformatics/btp324. URL http:

//dx.doi.org/10.1093/bioinformatics/btp324. 16, 55, 66

Li, Heng and Durbin, Richard. Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics (Oxford, England), 26(5):589–

595, 2010. ISSN 1367-4811. doi:10.1093/bioinformatics/btp698. URL http:

//dx.doi.org/10.1093/bioinformatics/btp698. 62, 68

Li, Heng and Homer, Nils. A survey of sequence alignment algorithms for next-

generation sequencing. Briefings in Bioinformatics, 11(5):473–483, 2010. ISSN

1477-4054. doi:10.1093/bib/bbq015. URL http://dx.doi.org/10.1093/bib/

bbq015. 15, 74

Li, Ruiqiang, Fan, Wei, Tian, Geng, Zhu, Hongmei, He, Lin, Cai, Jing, Huang,

Quanfei, Cai, Qingle, Li, Bo, Bai, Yinqi, et al. The sequence and de novo

130

http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/10.1093/bioinformatics/17.11.1067
http://dx.doi.org/10.1093/bioinformatics/17.11.1067
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/bioinformatics/bts280
http://dx.doi.org/10.1093/bioinformatics/bts280
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bioinformatics/btp698
http://dx.doi.org/10.1093/bib/bbq015
http://dx.doi.org/10.1093/bib/bbq015

REFERENCES

assembly of the giant panda genome. Nature, 463(7279):311–317, 2010a. ISSN

1476-4687. doi:10.1038/nature08696. URL http://dx.doi.org/10.1038/

nature08696. 4, 13

Li, Ruiqiang, Li, Yingrui, Zheng, Hancheng, Luo, Ruibang, Zhu, Hongmei, Li,

Qibin, Qian, Wubin, Ren, Yuanyuan, Tian, Geng, Li, Jinxiang, et al. Building

the sequence map of the human pan-genome. Nat Biotech, 28(1):57–63, 2010b.

ISSN 1546-1696. doi:10.1038/nbt.1596. URL http://dx.doi.org/10.1038/

nbt.1596. 61

Li, Ruiqiang, Yu, Chang, Li, Yingrui, Lam, Tak-Wah, Yiu, Siu-Ming, Kris-

tiansen, Karsten, and Wang, Jun. SOAP2: an improved ultrafast tool

for short read alignment. Bioinformatics, 25(15):1966–1967, 2009. ISSN

1460-2059. doi:10.1093/bioinformatics/btp336. URL http://dx.doi.org/10.

1093/bioinformatics/btp336. 16

Li, Ruiqiang, Zhu, Hongmei, Ruan, Jue, Qian, Wubin, Fang, Xiaodong, Shi,

Zhongbin, Li, Yingrui, Li, Shengting, Shan, Gao, Kristiansen, Karsten, et al.

[duplicate] de novo assembly of human genomes with massively parallel short

read sequencing. Genome Research, 20(2):265–272, 2010c. ISSN 1549-5469. doi:

10.1101/gr.097261.109. URL http://dx.doi.org/10.1101/gr.097261.109.

8, 13, 47, 48, 54, 61, 67, 71

Maccallum, Iain, Przybylski, Dariusz, Gnerre, Sante, Burton, Joshua, Shlyakhter,

Ilya, Gnirke, Andreas, Malek, Joel, McKernan, Kevin, Ranade, Swati, Shea,

Terrance P., et al. ALLPATHS 2: small genomes assembled accurately and

with high continuity from short paired reads. Genome biology, 10(10):R103+,

2009. ISSN 1465-6914. doi:10.1186/gb-2009-10-10-r103. URL http://dx.doi.

org/10.1186/gb-2009-10-10-r103. 13

Malde, Ketil, Coward, Eivind, and Jonassen, Inge. Fast sequence clustering using

a suffix array algorithm. Bioinformatics, 19(10):1221–1226, 2003. ISSN 1460-

2059. doi:10.1093/bioinformatics/btg138. URL http://dx.doi.org/10.1093/

bioinformatics/btg138. 16

131

http://dx.doi.org/10.1038/nature08696
http://dx.doi.org/10.1038/nature08696
http://dx.doi.org/10.1038/nbt.1596
http://dx.doi.org/10.1038/nbt.1596
http://dx.doi.org/10.1093/bioinformatics/btp336
http://dx.doi.org/10.1093/bioinformatics/btp336
http://dx.doi.org/10.1101/gr.097261.109
http://dx.doi.org/10.1186/gb-2009-10-10-r103
http://dx.doi.org/10.1186/gb-2009-10-10-r103
http://dx.doi.org/10.1093/bioinformatics/btg138
http://dx.doi.org/10.1093/bioinformatics/btg138

REFERENCES

Manber, Udi and Myers, Gene. Suffix arrays: a new method for on-line string

searches. In SODA ’90: Proceedings of the first annual ACM-SIAM sympo-

sium on Discrete algorithms, pages 319–327. Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, 1990. ISBN 0-89871-251-3. URL

http://portal.acm.org/citation.cfm?id=320176.320218. 16, 28

Maxam, A. M. and Gilbert, W. A new method for sequencing DNA. Proceed-

ings of the National Academy of Sciences of the United States of America,

74(2):560–564, 1977. ISSN 0027-8424. URL http://www.ncbi.nlm.nih.gov/

pmc/articles/PMC392330/. 2

McLaren, William, Pritchard, Bethan, Rios, Daniel, Chen, Yuan, Flicek, Paul,

and Cunningham, Fiona. Deriving the consequences of genomic variants with

the ensembl API and SNP effect predictor. Bioinformatics (Oxford, England),

26(16):2069–2070, 2010. ISSN 1367-4811. doi:10.1093/bioinformatics/btq330.

URL http://dx.doi.org/10.1093/bioinformatics/btq330. 114

Meacham, Frazer, Boffelli, Dario, Dhahbi, Joseph, Martin, David, Singer,

Meromit, and Pachter, Lior. Identification and correction of systematic er-

ror in high-throughput sequence data. BMC Bioinformatics, 12(1):451+, 2011.

ISSN 1471-2105. doi:10.1186/1471-2105-12-451. URL http://dx.doi.org/

10.1186/1471-2105-12-451. 79

Mouse Genome Sequencing Consortium. Initial sequencing and comparative anal-

ysis of the mouse genome. Nature, 420(6915):520–562, 2002. ISSN 0028-0836.

doi:10.1038/nature01262. URL http://dx.doi.org/10.1038/nature01262.

4

Myers, Eugene W. The fragment assembly string graph. Bioinformatics, 21(suppl

2):ii79–ii85, 2005. ISSN 1460-2059. doi:10.1093/bioinformatics/bti1114. URL

http://dx.doi.org/10.1093/bioinformatics/bti1114. 7, 22, 24, 28, 44,

55, 83

Myers, Eugene W., Sutton, Granger G., Smith, Hamilton O., Adams, Mark D.,

and Venter, J. Craig. On the sequencing and assembly of the human genome.

Proceedings of the National Academy of Sciences, 99(7):4145–4146, 2002. ISSN

132

http://portal.acm.org/citation.cfm?id=320176.320218
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC392330/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC392330/
http://dx.doi.org/10.1093/bioinformatics/btq330
http://dx.doi.org/10.1186/1471-2105-12-451
http://dx.doi.org/10.1186/1471-2105-12-451
http://dx.doi.org/10.1038/nature01262
http://dx.doi.org/10.1093/bioinformatics/bti1114

REFERENCES

1091-6490. doi:10.1073/pnas.092136699. URL http://dx.doi.org/10.1073/

pnas.092136699. 4

Nagarajan, Niranjan and Pop, Mihai. Parametric complexity of sequence as-

sembly: theory and applications to next generation sequencing. Journal of

computational biology : a journal of computational molecular cell biology,

16(7):897–908, 2009. ISSN 1557-8666. doi:10.1089/cmb.2009.0005. URL

http://dx.doi.org/10.1089/cmb.2009.0005. 24

Nik-Zainal, Serena, Alexandrov, Ludmil B., Wedge, David C., Van Loo, Peter,

Greenman, Christopher D., Raine, Keiran, Jones, David, Hinton, Jonathan,

Marshall, John, Stebbings, Lucy A., et al. Mutational processes molding the

genomes of 21 breast cancers. Cell, 149(5):979–993, 2012a. ISSN 00928674. doi:

10.1016/j.cell.2012.04.024. URL http://dx.doi.org/10.1016/j.cell.2012.

04.024. 109, 110

Nik-Zainal, Serena, Van Loo, Peter, Wedge, David C., Alexandrov, Ludmil B.,

Greenman, Christopher D., Lau, King Wai W., Raine, Keiran, Jones, David,

Marshall, John, Ramakrishna, Manasa, et al. The life history of 21 breast

cancers. Cell, 149(5):994–1007, 2012b. ISSN 1097-4172. doi:10.1016/j.cell.

2012.04.023. URL http://dx.doi.org/10.1016/j.cell.2012.04.023. 109

Ning, Z., Cox, A. J., and Mullikin, J. C. SSAHA: a fast search method for large

DNA databases. Genome research, 11(10):1725–1729, 2001. ISSN 1088-9051.

doi:10.1101/gr.194201. URL http://dx.doi.org/10.1101/gr.194201. 16

Nong, Ge, Zhang, Sen, and Chan, Wai H. Linear suffix array construction by

almost pure Induced-Sorting. Data Compression Conference, 0:193–202, 2009.

ISSN 1068-0314. doi:10.1109/DCC.2009.42. URL http://dx.doi.org/10.

1109/DCC.2009.42. 32, 46

Pell, Jason, Hintze, Arend, Canino-Koning, Rosangela, Howe, Adina, Tiedje,

James M., and Brown, C. Titus. Scaling metagenome sequence assembly with

probabilistic de bruijn graphs. Proceedings of the National Academy of Sciences,

109(33):13272–13277, 2012. ISSN 1091-6490. doi:10.1073/pnas.1121464109.

URL http://dx.doi.org/10.1073/pnas.1121464109. 8, 120

133

http://dx.doi.org/10.1073/pnas.092136699
http://dx.doi.org/10.1073/pnas.092136699
http://dx.doi.org/10.1089/cmb.2009.0005
http://dx.doi.org/10.1016/j.cell.2012.04.024
http://dx.doi.org/10.1016/j.cell.2012.04.024
http://dx.doi.org/10.1016/j.cell.2012.04.023
http://dx.doi.org/10.1101/gr.194201
http://dx.doi.org/10.1109/DCC.2009.42
http://dx.doi.org/10.1109/DCC.2009.42
http://dx.doi.org/10.1073/pnas.1121464109

REFERENCES

Pevzner, P. A. 1-Tuple DNA sequencing: computer analysis. Journal of

biomolecular structure & dynamics, 7(1):63–73, 1989. ISSN 0739-1102. URL

http://view.ncbi.nlm.nih.gov/pubmed/2684223. 8

Pevzner, Pavel A., Tang, Haixu, and Waterman, Michael S. An eulerian path ap-

proach to DNA fragment assembly. Proceedings of the National Academy of Sci-

ences, 98(17):9748–9753, 2001. ISSN 1091-6490. doi:10.1073/pnas.171285098.

URL http://dx.doi.org/10.1073/pnas.171285098. 8, 23, 47, 48, 78

Pop, Mihai, Kosack, Daniel S., and Salzberg, Steven L. Hierarchical scaffolding

with bambus. Genome research, 14(1):149–159, 2004. ISSN 1088-9051. doi:

10.1101/gr.1536204. URL http://dx.doi.org/10.1101/gr.1536204. 55

Prufer, Kay, Munch, Kasper, Hellmann, Ines, Akagi, Keiko, Miller, Jason R.,

Walenz, Brian, Koren, Sergey, Sutton, Granger, Kodira, Chinnappa, Winer,

Roger, et al. The bonobo genome compared with the chimpanzee and human

genomes. Nature, 486(7404):527–531, 2012. ISSN 0028-0836. doi:10.1038/

nature11128. URL http://dx.doi.org/10.1038/nature11128. 4

Puglisi, Simon J., Smyth, W. F., and Turpin, Andrew H. A taxonomy of suffix

array construction algorithms. ACM Comput. Surv., 39(2):4+, 2007. ISSN

0360-0300. doi:10.1145/1242471.1242472. URL http://dx.doi.org/10.1145/

1242471.1242472. 31

Rasmussen, Kim R., Stoye, Jens, and Myers, Eugene W. Efficient q-gram filters

for finding all epsilon-matches over a given length. Journal of computational

biology : a journal of computational molecular cell biology, 13(2):296–308, 2006.

ISSN 1066-5277. doi:10.1089/cmb.2006.13.296. URL http://dx.doi.org/10.

1089/cmb.2006.13.296. 7, 22

Sanders, Stephan J., Murtha, Michael T., Gupta, Abha R., Murdoch, John D.,

Raubeson, Melanie J., Willsey, A. Jeremy, Ercan-Sencicek, A. Gulhan, DiLullo,

Nicholas M., Parikshak, Neelroop N., Stein, Jason L., et al. De novo muta-

tions revealed by whole-exome sequencing are strongly associated with autism.

Nature, 485(7397):237–241, 2012. ISSN 1476-4687. doi:10.1038/nature10945.

URL http://dx.doi.org/10.1038/nature10945. 106

134

http://view.ncbi.nlm.nih.gov/pubmed/2684223
http://dx.doi.org/10.1073/pnas.171285098
http://dx.doi.org/10.1101/gr.1536204
http://dx.doi.org/10.1038/nature11128
http://dx.doi.org/10.1145/1242471.1242472
http://dx.doi.org/10.1145/1242471.1242472
http://dx.doi.org/10.1089/cmb.2006.13.296
http://dx.doi.org/10.1089/cmb.2006.13.296
http://dx.doi.org/10.1038/nature10945

REFERENCES

Sanger, F., Brownlee, G. G., and Barrell, B. G. A two-dimensional fraction-

ation procedure for radioactive nucleotides. Journal of Molecular Biology,

14(1):303+, 1965. ISSN 00222836. doi:10.1016/S0022-2836(65)80253-4. URL

http://dx.doi.org/10.1016/S0022-2836(65)80253-4. 2

Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-

terminating inhibitors. Proceedings of the National Academy of Sciences,

74(12):5463–5467, 1977. ISSN 1091-6490. doi:10.1073/pnas.74.12.5463. URL

http://dx.doi.org/10.1073/pnas.74.12.5463. 3

Scally, Aylwyn, Dutheil, Julien Y., Hillier, LaDeana W., Jordan, Gregory E.,

Goodhead, Ian, Herrero, Javier, Hobolth, Asger, Lappalainen, Tuuli, Mailund,

Thomas, Marques-Bonet, Tomas, et al. Insights into hominid evolution from

the gorilla genome sequence. Nature, 483(7388):169–175, 2012. ISSN 1476-4687.

doi:10.1038/nature10842. URL http://dx.doi.org/10.1038/nature10842.

4, 13

Schmid, C. W. and Deininger, P. L. Sequence organization of the human genome.

Cell, 6(3):345–358, 1975. ISSN 0092-8674. URL http://view.ncbi.nlm.nih.

gov/pubmed/1052772. 3

Schneider, Gregory F. and Dekker, Cees. DNA sequencing with nanopores. Nat

Biotech, 30(4):326–328, 2012. ISSN 1087-0156. doi:10.1038/nbt.2181. URL

http://dx.doi.org/10.1038/nbt.2181. 120

Simpson, Jared T. and Durbin, Richard. Efficient construction of an assembly

string graph using the FM-index. Bioinformatics, 26(12):i367–i373, 2010. ISSN

1460-2059. doi:10.1093/bioinformatics/btq217. URL http://dx.doi.org/10.

1093/bioinformatics/btq217. ii, 19, 59, 119

Simpson, Jared T. and Durbin, Richard. [duplicate] efficient de novo assembly of

large genomes using compressed data structures. Genome research, 22(3):549–

556, 2012. ISSN 1549-5469. doi:10.1101/gr.126953.111. URL http://dx.doi.

org/10.1101/gr.126953.111. ii, 44, 102, 119

Simpson, Jared T., Wong, Kim, Jackman, Shaun D., Schein, Jacqueline E., Jones,

Steven J. M., and Birol, İnanç. ABySS: A parallel assembler for short read

135

http://dx.doi.org/10.1016/S0022-2836(65)80253-4
http://dx.doi.org/10.1073/pnas.74.12.5463
http://dx.doi.org/10.1038/nature10842
http://view.ncbi.nlm.nih.gov/pubmed/1052772
http://view.ncbi.nlm.nih.gov/pubmed/1052772
http://dx.doi.org/10.1038/nbt.2181
http://dx.doi.org/10.1093/bioinformatics/btq217
http://dx.doi.org/10.1093/bioinformatics/btq217
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.126953.111

REFERENCES

sequence data. Genome Research, 19(6):1117–1123, 2009. ISSN 1549-5469. doi:

10.1101/gr.089532.108. URL http://dx.doi.org/10.1101/gr.089532.108.

8, 13, 54, 55, 61

Sirén, Jouni. Compressed suffix arrays for massive data. In String Processing and

Information Retrieval, pages 63–74. 2009. doi:10.1007/978-3-642-03784-9\ 7.

URL http://dx.doi.org/10.1007/978-3-642-03784-9_7. 53

Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R.,

Heiner, C., Kent, S. B. H., and Hood, L. E. Fluorescence detection in auto-

mated DNA sequence analysis. Nature, 321(6071):674–679, 1986. ISSN 0028-

0836. doi:10.1038/321674a0. URL http://dx.doi.org/10.1038/321674a0.

3

Staden, R. A strategy of DNA sequencing employing computer programs. Nucleic

acids research, 6(7):2601–2610, 1979. ISSN 0305-1048. URL http://www.

ncbi.nlm.nih.gov/pmc/articles/PMC327874/. 6

The International Cancer Genome Consortium. International network of cancer

genome projects. Nature, 464(7291):993–998, 2010. ISSN 1476-4687. doi:

10.1038/nature08987. URL http://dx.doi.org/10.1038/nature08987. 5

Tomato Genome Consortium. The tomato genome sequence provides insights

into fleshy fruit evolution. Nature, 485(7400):635–641, 2012. ISSN 1476-4687.

doi:10.1038/nature11119. URL http://dx.doi.org/10.1038/nature11119.

13

Välimäki, Niko, Ladra, Susana, and Mäkinen, Veli. Approximate All-

Pairs Suffix/Prefix overlaps. In Amir, Amihood and Parida, Laxmi,

editors, Combinatorial Pattern Matching, volume 6129 of Lecture Notes

in Computer Science, pages 76–87. Springer Berlin / Heidelberg, 2010.

doi:10.1007/978-3-642-13509-5\ 8. URL http://dx.doi.org/10.1007/

978-3-642-13509-5_8. 52

Valouev, Anton, Ichikawa, Jeffrey, Tonthat, Thaisan, Stuart, Jeremy, Ranade,

Swati, Peckham, Heather, Zeng, Kathy, Malek, Joel A., Costa, Gina, McKer-

nan, Kevin, et al. A high-resolution, nucleosome position map of c. elegans

136

http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1007/978-3-642-03784-9_7
http://dx.doi.org/10.1038/321674a0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327874/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC327874/
http://dx.doi.org/10.1038/nature08987
http://dx.doi.org/10.1038/nature11119
http://dx.doi.org/10.1007/978-3-642-13509-5_8
http://dx.doi.org/10.1007/978-3-642-13509-5_8

REFERENCES

reveals a lack of universal sequence-dictated positioning. Genome research,

18(7):1051–1063, 2008. ISSN 1088-9051. doi:10.1101/gr.076463.108. URL

http://dx.doi.org/10.1101/gr.076463.108. 5

Venter, J. Craig, Adams, Mark D., Myers, Eugene W., Li, Peter W., Mural,

Richard J., Sutton, Granger G., Smith, Hamilton O., Yandell, Mark, Evans,

Cheryl A., Holt, Robert A., et al. The sequence of the human genome. Science,

291(5507):1304–1351, 2001. ISSN 1095-9203. doi:10.1126/science.1058040.

URL http://dx.doi.org/10.1126/science.1058040. 4, 7, 22

Wakeley, J. The excess of transitions among nucleotide substitutions: new

methods of estimating transition bias underscore its significance. Trends

in ecology & evolution, 11(4):158–162, 1996. ISSN 0169-5347. URL http:

//view.ncbi.nlm.nih.gov/pubmed/21237791. 115

Warren, René L., Sutton, Granger G., Jones, Steven J. M., and Holt, Robert A.

Assembling millions of short DNA sequences using SSAKE. Bioinformatics,

23(4):500–501, 2007. ISSN 1460-2059. doi:10.1093/bioinformatics/btl629. URL

http://dx.doi.org/10.1093/bioinformatics/btl629. 13

Waterston, Robert H., Lander, Eric S., and Sulston, John E. On the sequenc-

ing of the human genome. Proceedings of the National Academy of Sciences,

99(6):3712–3716, 2002. ISSN 1091-6490. doi:10.1073/pnas.042692499. URL

http://dx.doi.org/10.1073/pnas.042692499. 4

Waterston, Robert H., Lander, Eric S., and Sulston, John E. More on the sequenc-

ing of the human genome. Proceedings of the National Academy of Sciences,

100(6):3022–3024, 2003. ISSN 1091-6490. doi:10.1073/pnas.0634129100. URL

http://dx.doi.org/10.1073/pnas.0634129100. 4

Wheeler, David A., Srinivasan, Maithreyan, Egholm, Michael, Shen, Yufeng,

Chen, Lei, McGuire, Amy, He, Wen, Chen, Yi-Ju, Makhijani, Vinod, Roth,

G. Thomas, et al. The complete genome of an individual by massively parallel

DNA sequencing. Nature, 452(7189):872–876, 2008. ISSN 0028-0836. doi:

10.1038/nature06884. URL http://dx.doi.org/10.1038/nature06884. 5

137

http://dx.doi.org/10.1101/gr.076463.108
http://dx.doi.org/10.1126/science.1058040
http://view.ncbi.nlm.nih.gov/pubmed/21237791
http://view.ncbi.nlm.nih.gov/pubmed/21237791
http://dx.doi.org/10.1093/bioinformatics/btl629
http://dx.doi.org/10.1073/pnas.042692499
http://dx.doi.org/10.1073/pnas.0634129100
http://dx.doi.org/10.1038/nature06884

REFERENCES

Ye, Kai, Schulz, Marcel H., Long, Quan, Apweiler, Rolf, and Ning, Zemin. Pindel:

a pattern growth approach to detect break points of large deletions and medium

sized insertions from paired-end short reads. Bioinformatics, 25(21):2865–2871,

2009. ISSN 1460-2059. doi:10.1093/bioinformatics/btp394. URL http://dx.

doi.org/10.1093/bioinformatics/btp394. 112

Zerbino, Daniel R. and Birney, Ewan. Velvet: Algorithms for de novo short

read assembly using de bruijn graphs. Genome Research, 18(5):821–829, 2008.

ISSN 1549-5469. doi:10.1101/gr.074492.107. URL http://dx.doi.org/10.

1101/gr.074492.107. 8, 13, 54, 61

138

http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1101/gr.074492.107

