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Summary

Host and pathogen genetics associated with

pneumococcal meningitis

John Andrew Lees

Meningitis is an infection of the meninges, a layer of tissue surrounding the brain. In cases

of pneumococcal meningitis (where the bacterium Streptococcus pneumoniae is the causat-

ive agent) this causes severe inflammation, requiring intensive care and rapid antibiotic

treatment. The contribution of variation in host and pathogen genetics to pneumococcal

meningitis is unknown. In this thesis I develop and apply statistical genetics techniques to

identify genomic variation associated with the various stages of pneumococcal meningitis,

including colonisation, invasion and severity.

I start by describing the development of a method to perform genome-wide association

studies (GWAS) in bacteria, which can find variation in bacterial genomes associated with

bacterial traits such as antibiotic resistance and virulence. I then applied this method to

longitudinal samples from asymptomatic carriage, and found lineages and specific variants

associated with altered duration of carriage. To assess meningitis versus carriage samples

I applied similar analysis techniques, and found that the bacterial genome is crucial in

determining invasive potential. As well as bacterial serotype, which I found to be the

main effect, I discovered many independent sequence variants associated with disease.

Separately, I analysed within host-diversity during the invasive phase of disease and found

it to be of less relevance to disease progression.

Finally, I analysed host genotype data from four independent studies using GWAS

and heritability estimates to determine the contribution of human sequence variation to

pneumococcal meningitis. Host sequence accounted for some variation in susceptibility

to and severity of meningitis. The work concludes with a combined analysis of pairs

of bacterial and human sequences from meningitis cases, and finds variation correlated

between the two.
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Chapter 1

Introduction

This thesis primarily concerns the application of a modern statistical genetics technique,

the genome wide association study (GWAS), to determine how genetic variability of both

host and pathogen contributes to invasive pneumococcal disease (particularly meningitis).

Chapter 2 describes the issues with applying this technique to bacterial genomes, and a

method I developed to overcome these difficulties. In chapters 3 and 4 I then applied this

new technique, and others, to describe genetics associated with carriage duration (a pre-

requisite for disease) and invasive disease respectively. Finally, in chapter 5, I performed a

similar analysis of the association between host genetics and invasive disease, ending by

jointly analysing both host and pathogen together in a genome-to-genome analysis.

These results are therefore tied together both through the disease studied, and the

technique used to analyse genotype to phenotype associations. I start with an introduction

to the disease: the clinical manifestations of bacterial meningitis, its cause and treatment are

mentioned, with specific reference to the Netherlands where most of the new data analysed

was obtained. As the focus is on pneumococcal meningitis I then give a background

of pneumococcal genomics and pathogenesis. Though the results start with analysis of

pathogen genomes, GWAS and its development is crucial throughout. This section of

introduction starts with a short history of this method in the context of human genetics

where it was first applied. The application to host susceptibility to infectious disease, while

analysed last in this thesis, is discussed at the end of this first introductory section. I then

go on to describe the application of GWAS to bacterial genomes.

1.1 Bacterial meningitis

Bacterial meningitis is a severe inflammation of the membranes surrounding the brain,

the meninges, which is a response to the presence of bacteria in the cerebrospinal fluid

(CSF) (Mook-Kanamori et al., 2011). This inflammation can compromise brain function,

requiring immediate admission to hospital (Weisfelt et al., 2006). Other forms of meningitis
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(viral, parasitic) are common, but are generally less severe than bacterial meningitis (Attia

et al., 1999; Ginsberg, 2004). I also note early on two other terms related to this infection:

bacteremia, which is bacteria in the blood, and invasive pneumococcal disease (IPD),

which is bacteria in any normally sterile site, with the most serious disease caused when in

the blood or CSF.

1.1.1 Diagnosis, epidemiology and treatment

Accurate diagnosis of meningitis is challenging (Attia et al., 1999; Brouwer, Tunkel & van

de Beek, 2010) and requires clinical experience based on patient presentation as biomarkers,

co-occurrences with other diseases and other routine patient data are uninformative (Khatib

et al., 2016). Some symptoms such as headache, neck-stiffness, fever and altered mental

state are usually required for a diagnosis of bacterial meningitis (van de Beek et al., 2006).

The ‘gold-standard’ for confirming bacteria as the causal agent is a positive culture

from the CSF (Attia et al., 1999; van de Beek et al., 2004). Following successful culture, a

range of microbiological techniques can be used to determine the organism (such as Gram

staining, PCR or MALDI-TOF). While highly specific, the sensitivity of this technique

relies on good antibiotic stewardship in the community, and a lumbar puncture (a sample

of the CSF) being taken before treatment commences (Attia et al., 1999; van de Beek et al.,

2006). In certain settings this may be impossible, and there is debate over situations where

it may be dangerous due to increasing intra-cranial pressure (Hasbun et al., 2001; Winkler

et al., 2002; Oliver et al., 2003).

It is also interesting to note the enormous effect of varying antibiotic use in the

community and early lumbar puncture on the sensitivity of obtaining positive cultures, as

this also affects the number of isolates which can be subjected to whole-genome sequencing

using present methods. In the Netherlands, for example, antibiotic use in the community

is well regulated and lumbar puncture is taken as standard upon admission to hospital

and before antibiotic treatment commences: positive culture is obtained in 80-96% of

suspected cases of bacterial meningitis (van de Beek et al., 2004; van de Beek et al., 2006)

– an ideal location to set up a genomic study. When treatment occurred before lumbar

puncture, positive culture rate lowered to 66-80% (Bohr et al., 1983; Nigrovic et al., 2008).

As practices, and many other factors, vary by country, so do positive culture rates: in Brazil

67% (Bryan et al., 1990); UK 19% (Ragunathan et al., 2000); Kenya 1.7% (Knoll et al.,

2009). In developing countries, where disease burden is highest, positive culture rates

range from 0.8-19.4% (Levine et al., 2009).

The variability over the conditions which need to be met for a positive diagnosis leads

to difficulty in obtaining accurate estimates for the prevalence of bacterial meningitis

(Brouwer, Tunkel & van de Beek, 2010; Jafri et al., 2013). In European adults, the focus of

this thesis, the best estimates for prevalence show that bacterial meningitis is now relatively
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rare (prevalence of 0.94 cases per 100 000 per year in 2013-14) (Bijlsma et al., 2016).

In adults, defined throughout as >16 years, meningitis is more common in immunodefi-

cient patients (Brouwer, Tunkel & van de Beek, 2010; Adriani et al., 2015). That is, people

with other conditions which lower the efficacy of the immune system making them more

prone to infectious diseases. For example HIV/AIDS, while rare in the Dutch population

(incidence 0.13% in 2013 (‘Monitoring Reports SHM’, 2013)), represents 1% of patients

diagnosed with bacterial meningitis (odds-ratio (OR) ∼ 7.5). Pre-disposition to infection

also occurs due to alcoholism, diabetes mellitus and splenectomy. For pneumococcal

meningitis incidence increases with age: individuals >65 years are most at risk (OR ∼ 6).

Once bacterial meningitis has been diagnosed, treatment is with broad-spectrum antibi-

otics administered two to three times a day (Tunkel & Scheld, 2002; Brouwer, Tunkel &

van de Beek, 2010). After confirmation of the bacterial species causing the infection the

antibiotic used may be changed to more effectively treat the infection, or in response to a

measured or expected resistance. Meningitis progresses rapidly, with 47% of cases having

<24 hours of symptoms, and all cases terminating within a week (Bijlsma et al., 2016).

The disease usually rapidly worsens during this time, so rapid diagnosis and treatment is

crucial for a favourable prognosis. In the Netherlands time from arrival to treatment is

a median of four hours, and this delay has a major impact on the outcome of treatment

(Aronin et al., 1998; Proulx et al., 2005).

The risks to the patient during the treatment is due to septic shock and acute inflamma-

tion of the meninges (Brandtzaeg, 1993). The former, more common in meningococcal

meningitis, is due to blood infection (bacteremia) causing damage to organs which in turn

leads to a dangerously lowered blood pressure (Pathan et al., 2003). This is the cause of

the blotchy rash diagnosed by the ‘tumbler test’, and can lead to limb loss (perhaps the

most common image of meningitis seen in the public sphere). Inflammation is caused by

the innate immune response to bacterial infection, largely due to the action of neutrophils

(Kolaczkowska & Kubes, 2013; Kruger et al., 2015). Even after death of the cell, the

remaining material from the bacterium continues to promote further inflammation.

Inflammation of tissue is effective at, and usually essential for, clearing bacterial

infection. However it is not good for the host if the tissue in question surrounds the brain.

The expansion of tissue at the top of the cranium puts physical pressure on the brain itself,

pushing it down towards the spinal column. The reduction of pressure of the CSF in the

spinal column caused by a lumbar puncture can therefore in some cases increase this effect,

so a CT or MRI scan of the head is first recommended in these circumstances to check for

shift in position of the brain before this procedure is carried out (van de Beek et al., 2006).

This pressure, if not relieved by treatment, leads to damage of the brain tissue, and death

(Pathan et al., 2003; van de Beek et al., 2004).

In some circumstances it is therefore appropriate to seek to suppress the host immune

system during treatment to limit the inflammation and damage to the brain it causes (de
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Gans et al., 2002; Brouwer, Heckenberg et al., 2010). In the Netherlands, the use of such

adjunctive therapy (dexamethasone) has been shown to reduce the rate of poor outcome

(OR 0.54; 95% CI 0.39-0.73) (Bijlsma et al., 2016), and in particular reduce the number of

patients who suffer long-term deafness or neurological effects after they have recovered

from the infection (van de Beek et al., 2010; Brouwer et al., 2013). Of course, suppressing

the action of the immune system when it is required to fight an acute infection may not be

a good idea, and the trade-off between decreasing inflammation and decreasing the severity

of infection must be considered. In immunocompromised patients such additional therapy

is therefore inappropriate, nor is its use outside of the conditions where the randomised

control trials of its efficacy took place (Molyneux et al., 2002; Mai et al., 2007).

These considerations also raise an interesting point about the strength of the host

response, which causes the same trade-off between effectively clearing infection without

causing extreme inflammation and damage to the meninges. If there is an intrinsic (most

likely genetic) basis for strong immune response in some patients this would likely make

them this group susceptible to contracting bacterial meningitis in the first place, but should

meningitis occur they may suffer from a worse disease outcome. The converse would be

true for naturally weaker immune responders.

The five-point Glasgow outcome score (GOS) is used to report the clinical outcome

of cases: 5 is full recovery, 4 recovery with moderate disability, 3 recovery with severe

disability, 2 persistent vegatative state, 1 is death (Jennett & Bond, 1975). Throughout,

anything other than 5 is referred to as an unfavourable outcome. Sadly, despite advances in

treatment and vaccination which have reduced incidence and disease severity, the serious

nature of bacterial meningitis persists. In a recent Dutch study Bijlsma et al. (2016)

estimated the case fatality rate in adults as 17% and unfavourable outcome in 38% of cases.

1.1.2 Causal organisms

Meningitis can be caused by CSF invasion from a wide range of bacterial species. In

European countries the bacteria which most frequently cause meningitis are Streptococcus

pneumoniae and Neisseria meningitidis, both of which are respiratory pathogens which

normally exist as commensals in the upper respiratory tract of humans (Brouwer, Tunkel

& van de Beek, 2010). In the past, serotype B Haemophilus influenzae caused the highest

proportion of bacterial meningitis cases, but nationwide roll-out of an effective vaccine in

a species for which serotype switching or replacement do not cause further disease have

all but eliminated haemophilus meningitis (Schuchat et al., 1997; McIntyre et al., 2012).

Recently an increase in Listeria monocytogenes, a food-borne pathogen, has been observed

(Koopmans et al., 2017) which may be due to changes in use of antibacterial agents in the

food-production chain (Kremer et al., 2017).

Vaccines have perturbed the populations of S. pneumoniae and N. meningitidis. In
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the case of S. pneumoniae, first the 7-valent pneumococcal conjugate vaccine (PCV) and

subsequently the 10- and 13-valent vaccines have immunised against the most invasive

serotypes of S. pneumoniae in children, reducing the amount of carriage of in the population,

and the amount of disease caused by these serotypes (Klugman, 2001; Knol et al., 2015).

However, due to serotype switching and replacement allowing for vaccine escape, whether

this vaccine has an overall effect on bacterial meningitis over longer time periods is yet

to be determined (McIntyre et al., 2012) (section 1.2.3). For N. meningitidis there are

now effective vaccines available against all invasive serogroups (A, B, C, W, X and Y)

(Rouphael & Stephens, 2012), and though the B vaccine is expensive and therefore still

has limited global coverage (Christensen et al., 2014), rates of meningococcal meningitis

have fallen (McIntyre et al., 2012).

The route of infection varies depending on the species of bacteria, though in the

majority of invasive cases the final stage is from blood to CSF (Mook-Kanamori et al.,

2011). These respiratory pathogens are carried asymptomatically in the nasopharynx by a

proportion of the population at any given time (Caugant et al., 1994; Hammitt et al., 2006).

In a small number of cases commensal nasopharyngeal bacteria may invade the blood

through a single cell bottleneck (bacteraemia) (Gerlini et al., 2014; Kono et al., 2016), then

cross the blood-brain barrier into the CSF where they cause meningitis (Weisfelt et al.,

2006). In some meningitis patients the CSF may be invaded directly due to CSF leakage or

otitis media (Adriani et al., 2015), in which case the progression of bacteria after carriage

is reversed: CSF to blood.

1.1.3 Immune response to pneumococcal meningitis

The host response to pneumococcal invasion mostly involves the innate immune system

(Janoff et al., 1999; Paterson & Mitchell, 2006). Initial defence is through anti-microbial

peptides (AMPs) such as lactoferrin and lysozyme which are secreted into mucosal surfaces

and are active against a broad range of infectious agents (Brogden, 2005; André et al.,

2015). Invading pneumococci are then detected by range of pattern recognition receptors

(including the Toll-like receptors) which are primarily activated in response to their outer

capsule but also other antigenic proteins such as pneumolysin (Paterson & Mitchell, 2006).

The two most important signalling molecules in this process are TNF-α and IL-1 (Jones

et al., 2005; Paterson & Orihuela, 2010), which are the first to be activated after infection

(Takashima et al., 1997; Quinton et al., 2007). These receptors regulate the inflammatory

response to infection (Koppe et al., 2012), causing recruitment of macrophages, which

engulf and destroy the pneumococci (Janoff et al., 1999), and neutrophils, which as well

as phagocytosis can release AMPs which cause inflammation and direct damage to the

bacteria (Craig et al., 2009; Hyams et al., 2010).

This immune response is aided by the complement pathway, a system of over thirty
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cascading proteins which aid the innate and adaptive immune responses (Walport, 2001a,

2001b). The pathway is activated in one of three ways (Serruto et al., 2010):

• Classical pathway – antibody recognition of of the bacteria, followed by binding of

complement C1 to the pathogen’s surface.

• Lectin pathway – recognises particular patterns of sugars on pathogen cell surfaces.

• Alternative pathway – constantly activated at low levels, positive feedback amplifies

the response over time. Factor H binds to host cell surfaces to suppress the activity

against self cells.

All three starting points end up with cleavage of C3 into C3a and C3b (Lambris et al.,

2008). C3a triggers a pro-inflammatory response and enhances recruitment of immune

cells to the region (through chemotaxis). C3b covalently bonds to the bacterial surfaces

causing three further effects: making them more susceptible to phagocytosis (known as

opsonisation); forming a C3→ C3a + C3b convertase on the cell surface, which amplifies

the response through a positive feedback loop; cleavage of C5 to C5a and C5b near the cell

surface. C5a fills a similar role to C3a and increases inflammation, whereas C5b causes

a cascade of proteins through C6-C9. This results in formation of the membrane attack

complex (MAC), which forms pores in the bacterial surface resulting in cell lysis and

death.

Due to the rapid progression of disease, and the acute nature of symptoms, the adaptive

immune system plays little role in fighting invasive infections (Paterson & Orihuela, 2010).

However, in carriage, antibodies (immunoglobulins) produced by the adaptive immune

system play a more important role. These antibodies increase opsonisation targeted

phagocytosis, neutralise toxins, and inhibit adhesion of pneumococci to host tissue surfaces

(Anttila et al., 1999; Janoff et al., 1999). In the nasopharynx the most abundant antibody

type is IgA (Kett et al., 1986). This antibody type can bind S. pneumoniae, and through

interaction with the complement pathway increases killing above the level of the innate

immune system alone (Janoff et al., 1999). IgG plays a similar role, and is the type of

antibody elicited by the pneumococcal vaccine against the capsule (McCool et al., 2002;

Balmer et al., 2003; Croucher et al., 2017).

S. pneumoniae and humans have co-evolved, hence the pathogen has methods to evade

each of the immune mechanisms discussed here (Lambris et al., 2008; Hyams et al., 2010).

I discuss the mechanisms S. pneumoniae uses to evade these responses in more detail in

section 1.2.2.

1.1.4 A nationwide Dutch cohort

The analysis presented in chapters 4 and 5 uses the MeninGene cohort: a prospective

cohort running from 2006 onwards in the Netherlands (Bijlsma et al., 2016). The study
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collects and combines data from cases of bacterial meningitis from across the Netherlands

using a number of means. Firstly, the national reference laboratory for bacterial meningitis

automatically receives blood and CSF isolates from about 85% of all culture-confirmed

cases, along with limited metadata. This metadata allows the identification of adult cases

along with the hospital the patient was treated at. The hospital is contacted, and the

attending physician is invited to seek patient consent to fill out a report on their case. If the

patient agrees to this, the physician also fills out more detailed information (treatment given,

clinical course, neurological findings at discharge) which is submitted to the MeninGene

database (http://www.meningitisamc.nl/en/inclusion-new-patient/meningene/). Bottles of

wine in bespoke MeninGene wooden cases are sent from an AMC office to physicians

each time they submit a patient, as an incentive to take part (fig. 1.1).

Figure 1.1: The incentive sent to physicians enrolling patients in the MeninGene study. Available in red or

white.

To ensure the study focuses on the normal route of infection, patients are excluded if

they have had neurosurgery or head trauma in the month prior to their meningitis, or if

they have a neurosurgical device present in their central nervous system (for example a

deep brain stimulation electrode). Patients who acquired bacterial meningitis nosicomially

(occurring during a hospital stay, or within a week after) rather than in the community are

also excluded. Around 200 cases not excluded for these reasons are added to the cohort

each year, mostly during the winter.

The aim of this collection is to identify host and bacterial genetic variants which

affect the susceptibility to and severity of bacterial meningitis. Consenting patients were

genotyped (using human tissue collected during the lumbar puncture) and positive bacterial

cultures whole-genome sequenced with the aim to link genetic variation to the extensive

clinical metadata collected for the cohort. In this thesis I am primarily concerned with
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pneumococcal meningitis: it was the largest and therefore most well powered part of the

collection. Before describing the necessary background to this analysis I first consider the

issues encountered when working with pneumococcal genomes.

1.2 Pneumococcal biology

In this section I first describe the basic biology of the pneumococcus, its pathogenesis and

how genetic studies have increased our understanding of its evolution.

S. pneumoniae is a Gram-positive bacterium, only found in human hosts. It is normally

a commensal in the nasopharynx, where it is challenged by host immune system (Paterson

& Orihuela, 2010), other bacteria such as H. influenzae (Pericone et al., 2000; Lysenko et

al., 2005) and Staphlyococcus aureus (Bogaert et al., 2004; Regev-Yochay et al., 2006)) and

itself (Dawid et al., 2007; Cobey & Lipsitch, 2012). The closest relative to S. pneumoniae

is Streptococcus mitis, a commensal with many, but not all, of the same virulence factors

and a much higher intra-species diversity (Denapaite et al., 2010).

Pneumococcal carriage in the nasopharynx is asymptomatic. Estimates of carriage

rates depend on the population, and the time of measurement (largely due to vaccination)

but are high enough to suggest that most people will be exposed to the pathogen during

their lifetime. Some examples of measured carriage rates in unvaccinated populations are:

66% in Kenyan children (Lipsitch et al., 2012); 68-84% in Karen infants on the Thailand-

Myanmar border, 17-30% in Karen adults (P. Turner et al., 2012). In the Netherlands

example estimates after vaccine introduction are: 69%-88% of children (Wyllie et al.,

2014; Wyllie et al., 2016); 3-15% of adults (Spijkerman et al., 2011; Bosch et al., 2016).

The duration of carriage ranges from a few days to many months (Abdullahi et al., 2012a;

P. Turner et al., 2012), and generally decreases with age (P. C. Hill et al., 2010). Outside

of the nasopharynx, S. pneumoniae infection can cause a variety of diseases. As well

as causing IPD (meningitis and bacteremia), the pneumococcus can cause less serious

diseases such as pneumonia and empyema (by entering the lungs), or sinusitis and otitis

media (by entering the inner ear).

1.2.1 Importance of capsular serotype

One of the most important distinguishing factors between members of the pneumococcal

species is their capsular type. The capsule is a polysaccharide structure which is bound to

the outer pneumococcal cell wall (with the exception of serotypes 3 and 37 (Dillard et al.,

1995; Llull et al., 1999)), and is important in most extra-cellular interactions. The capsule

is immunogenic (AlonsoDeVelasco et al., 1995), defends against the host immune system

(Hyams et al., 2010) and is likely required to survive in blood and so cause invasive disease

(Kadioglu et al., 2008).
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The different capsules are defined by their interaction with antisera (Lund & Henrichsen,

1978), though since the publication of the sequences of all known capsule loci by Bentley

et al. (2006) the genome has increasingly been used to define the serotype of an isolate.

This original publication consisted of 90 capsular types, however more are being discovered

(Kapatai et al., 2017) and the current count stands at 98. Other than serotypes 3 and 37 the

capsule locus consists of around 15 genes on the forward strand between dexB and aliA

(Yother, 2011). Nucleotide variation within these genes, and structural variation of the

locus leads to different antigenic serotypes.

The serotype is broadly correlated with the background genotype as the two are

vertically inherited (Croucher, Finkelstein et al., 2013; Chewapreecha, Harris et al., 2014).

However switching of serotype locus through recombination (horizontal inheritance) is

possible (Croucher, Harris, Fraser et al., 2011), though usually happens within a serogroup

(Croucher, Kagedan et al., 2015). Non-typable (NT) strains do not express capsule, either

due to a complete or partial deletion of the capsule locus (Chewapreecha, Harris et al.,

2014) or other surface proteins in its place (Salter et al., 2012; Park et al., 2012). They do

not generally cause invasive disease, but are observed to be frequent donors of DNA in

recombination events (Chewapreecha, Harris et al., 2014).

Serotypes have been shown to be associated with a number of important pneumococcal

phenotypes, most notably invasive potential (Brueggemann et al., 2003). The exact

mechanism is unknown, but capsular charge, thickness and expression seem to make a

difference (Y. Li, Weinberger et al., 2013; Manso et al., 2014). Capsule type has also

been shown to affect carriage duration (P. C. Hill et al., 2010; Abdullahi et al., 2012a;

P. Turner et al., 2012), recombination frequency (Croucher, Kagedan et al., 2015; Chaguza

et al., 2016), growth phenotype (Hathaway et al., 2012) and the ability to colonise the host

(Trzciński et al., 2015).

Why over 90 different serotypes of pneumococci should be able to continue to coexist

over long times when some have much higher fitness than others is puzzling (Lipsitch et al.,

2009) – should the fitter serotypes not simply out-compete the less fit strains? Modelling

work by Cobey and Lipsitch (2012) has suggested that serotype specific immunity working

to stabilise competition, combined with acquired immunity to non-capsular antigens

(section 1.2.2) reduces differences between fitness, allowing the continued prevalence of

different serotypes and strains of S. pneumoniae.

1.2.2 Pneumococcal pathogenesis and immune evasion

As mentioned in section 1.2.1, the capsule is an important virulence factor, decreasing

binding of complement (C3b) and IgG to the cell surface (Musher, 1992; Abeyta et al.,

2003; Hyams et al., 2010). Its negative charge prevents phagocytosis (C. J. Lee et al.,

1991), and reduces susceptibility to neutrophil extracellular traps (Wartha et al., 2007).
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The pneumococcal genome encodes a variety of other proteins which directly interact with

the host, mostly to enhance colonisation and avoid the host immune response (Kadioglu

et al., 2008). Though the role of these antigens in colonisation and disease is known,

whether sequence variation at these loci has an effect on pathogenesis in human disease

remains unclear. Some antigens such as pneumolysin (ply) are essential for transmission

and colonisation (Zafar et al., 2017; Rubins et al., 1998), whereas others such as pspA and

pspC enhance virulence (Ogunniyi et al., 2007) but are not required for disease. These

antigens can vary their sequence rapidly through recombination (Brooks-Walter et al.,

1999; Iannelli et al., 2002; Lipsitch & O’Hagan, 2007; Croucher, Harris, Fraser et al.,

2011) and are therefore highly variable. This mechanism may aid bacteria in evading

detection by the immune system (Lambris et al., 2008).

In fig. 1.2 I review the immune system’s response to pneumococcal infection (sec-

tion 1.1.3), and the mechanisms the bacteria use to evade destruction. One of the first

defences against pathogens is lactoferrin, encoded by the LTF gene. The core pneumococ-

cal protein PspA binds lactoferrin strongly, preventing killing by this mechanism (Shaper

et al., 2004; André et al., 2015). PspA has a further role in complement evasion, preventing

deposition of C3b on the pneumococcal surface, and by inhibiting the formation of C3

convertases (Tu et al., 1999; Hyams et al., 2010).

The pneumococcal protein PspC also interacts with the complement system. PspC

comes in two main forms, concordant with the genetic distances between their coding

sequences, either with a choline binding domain or an LPXTG motif instead anchors them

to the bacterial cell wall (Iannelli et al., 2002). PspC binds C3 using the choline binding

domain, inhibiting this immune pathway in a similar way to PspA (Q. Cheng et al., 2000).

On the bacterial cell surface, PspC can bind complement factor H (Janulczyk et al., 2000;

Dave et al., 2001). This downregulates the alternative complement pathway in the vicinity

of the cell, making the bacterial surface appear more like a host cell (Herbert et al., 2015).

To evade immunoglobulin, the pneumococcal genome encodes up to four proteases

which cleaves the heavy chain of human IgA (iga/zmpA, zmpB, zmpC, zmpD) of which two

(zmpA and zmpB) are core genes (Bek-Thomsen et al., 2012). This interaction inhibits the

action of these antibodies on S. pneumoniae, primarily in the mucous membranes (Poulsen

et al., 1996; Wani et al., 1996).

A number of other genes have been confidently implicated in pneumococcal virulence.

Dlt, which causes D-alanylation of teichoic acids in the cell wall (Deininger et al., 2007)

protects the cell against host AMPs (Kovács et al., 2006; Habets et al., 2012) and neutrophil

extracellular traps (Wartha et al., 2007). ply is confined to the cell cytoplasm due to lack

of a signal sequence, it is only released upon bacterial cell lysis. At low levels it can

cause apoptosis, activate complement, and is pro-inflammatory (Kadioglu et al., 2002).

Through inflammation this can increase shedding of S. pneumoniae during carriage, which

is essential from transmission (Zafar et al., 2017). At higher levels pneumolysin forms
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pores in the membranes host cells, causing direct damage to the host tissues (Hirst et al.,

2004; Harvey et al., 2011). LytA, an autolysin, was thought to enhance virulence through

self-killing and release of pneumolysin (Berry & Paton, 2000), but has since been shown to

be independently associated with virulence in a mouse model (Balachandran et al., 2001).

Other known virulence factors include metabolic genes such as pflA (Yesilkaya et

al., 2009), adhesins allowing colonisation of host cell surfaces such as the Pht proteins

(Khan & Pichichero, 2012; Plumptre et al., 2013) and pclA (Paterson et al., 2008), and

the neuraminidases nanA/nanB which cleave sugars from host proteins contributing to

adherence and immune evasion (S. J. King et al., 2004; Manco et al., 2006). An imaging-

based localisation study has suggested that interaction between host factors pIgR and

PECAM-1 with pneumococcal adhesins PspC and RrgA is involved in brain invasion

during bacterial meningitis (Iovino et al., 2017).

Most of the studies confirming the effect of these proteins on virulence and the mech-

anism through which they do this have been by creating isogenic loss of function (LoF)

knock-out mutants, which completely lack the protein of interest, and investigating vari-

ance in their ability to cause disease in a mouse (Ogunniyi et al., 2007). While this reveals

interesting basic biology, and can be a useful approach for finding vaccine candidates

which are immunogenic and required for invasive disease, the relevance of these virulence

factors in clinical cases of disease (i.e. in humans) is currently unknown. More subtle

variation within these genes, and its overall importance compared to other virulence factors

is generally understudied, though some lab-based work has found capsular type to be more

important than antigenic variation (Abeyta et al., 2003; Weinberger et al., 2009; Hyams

et al., 2013) consistent with epidemiological studies (Weinberger et al., 2008; Weinberger,

Harboe et al., 2011). Woehrl et al. (2011) showed that C5 cleavage affects the outcome of

pneumococcal meningitis in a mouse model, but their sample size and statistical approach

was insufficient to show similar relevance in clinical cases.

Complete knock-out of a gene is not naturally (or only rarely) occurring variation in

the pneumococcal population due to the fitness cost it would incur. Rather than choosing

candidate proteins and showing they have an effect on disease in an animal model, an

alternative approach is to take a collection of clinical cases of disease and carriage and then

agnostically test all naturally observed variants for association with each niche. Animal

models can then lend further evidence to these results, and propose functional mechanisms.

I discuss the power of this approach and its potential application to pneumococcal virulence

in detail in sections 1.3 and 1.4.

Antibiotic resistance mechanisms

Since the introduction of antibiotics to treat S. pneumoniae infection, resistance has

arisen to each treatment, in some cases through multiple mechanisms. The most effective
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treatment in patients without allergies to penicillins are β -lactams, whose target is the

penicillin binding proteins (pbps). This disrupts cell-wall biosynthesis, leading to cell

death and lysis. Variation of these target proteins, while at a general cost to fitness, gives

rise to resistance to these antibiotics (Spratt, 1994b, 1994a).

Resistance to tetracycline and chloramphenicol are mediated through the tetM and

cat genes respectively, which are carried on the integrative conjugative element (ICE)

(Croucher et al., 2009). Erythromycin resistance can be gained through ermB which

methylates the target ribosomal site, or the mel/mef efflux pump; both of these mechanisms

are carried on transposable elements (Croucher, Harris, Fraser et al., 2011). Single base

changes in parC, parE and gyrA cause fluoroquinolone resistance (Pletz et al., 2006),

and single base changes in rpoB cause rifampicin resistance (Ferrándiz et al., 2005).

Trimethoprim resistance is through the mutation I100L in folA/dyr, though it has been

suggested other mutations in this gene can also contribute to resistance (Maskell et al.,

2001).

As expected, there is an association between the amount of use of antibiotics and the

levels of resistance in the population (Lipsitch, 2001; Samore et al., 2006). Similarly to

the existence of multiple serotypes, the continued existence of both antibiotic resistant

and sensitive pneumococci at a stable ratio over time is evolutionarily puzzling. In a

simple model, when treatment is being applied the resistant bacteria should out-compete

the sensitive, and when treatment is not being applied the sensitive bacteria should out-

compete the resistant. More complex models proposing linkage with carriage duration

modifying alleles (through altering carriage duration) or through including host structure

and treatment frequency have been proposed to address this conundrum (Lehtinen et al.,

2017; Cobey et al., 2017).

1.2.3 Population studies of S. pneumoniae

The first sequence of a pneumococcal genome was reported by Tettelin et al. (2001): the

virulent TIGR4 (serotype 4) strain. It was found to be a singular circular chromosome

of 2.16Mb, with a GC content of 39.7% encoding 2 236 genes. 84% of the genome was

found to be protein coding. The authors noted that the genome contained a relatively high

proportion of insertion sequence elements (5%), and the presence of a type I restriction-

modification system. Various specificity domains invertible from upstream in the genome

were found, which the authors hypothesised could allow rapid variation of the methylated

motif, inhibiting DNA transfer between clonal strains. Despite its early discovery, it

took another 13 years to fully describe the function and variation of this locus in the

pneumococcal population (see below and section 4.3.2).

The publication of the TIGR4 genome was shortly followed by the avirulent (non-

capsular) R6 strain (Hoskins et al., 2001). With more than one genome comparative
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genomics within the species could be performed, using breaks in synteny to find differences

in gene content or other variation between the sequences (Bentley & Parkhill, 2004). Lanie

et al. (2007) added the sequence of the serotype 2 D39 strain, and were able to find

different evolutionary rates in the three genomes, and further found that these mutations

affected the expression of regulatory, virulence and metabolic genes. Further analysis of

the sequence of a multidrug resistant clone using these techniques highlighted the role of

mobile elements in the evolution of S. pneumoniae (Croucher et al., 2009).

In parallel to single complete genomes and comparisons between them, other studies

based on the population genetics of the pneumococcus using a subset of the overall

genomic variation were taking place. Early population genetic studies used the sequences

of seven housekeeping genes to define a multi-locus sequence typing (MLST) scheme for

S. pneumoniae, where a single base change in any of these genes defines a new allele, and

any combination of alleles of the genes is a unique sequence type (Enright & Spratt, 1998).

An advantage to this scheme is that a recombination event is more correctly counted as

a single evolutionary change equivalent to a single base change, whereas counting the

number of base changes itself would overestimate the distance from recombination events

(Maiden et al., 1998). However, the designers of the scheme in S. pneumoniae later found

it to be somewhat flawed: one of the chosen genes (ddl) is in linkage disequilibrium (LD)

with the pbp2b gene, which is under diversifying selection due to its role in β -lactam

resistance, driving excess diversity in ddl through hitch-hiking of mutations (Enright &

Spratt, 1999).

Through the use of MLST schemes the genotype of S. pneumoniae could be defined

for large numbers (>100) of isolates, allowing association between background genotype

and traits such as serotype, resistance, virulence factors and recombination to be tested

(Hanage et al., 2005; Hanage et al., 2009). It was not until the availability of high

throughput sequencing that full length genomes of multiple isolates could be obtained,

unifying the two approaches of studying bacterial genomics.

The importance of recombination and mobile elements

Hiller et al. (2007) performed one of the first multi-whole genome studies of S. pneumoniae,

going beyond pairwise synteny comparisons between isolates. Using the whole genome

sequences of 17 S. pneumoniae isolates, they aligned all 3 170 clusters of orthologous

genes (COGs) and showed that there exists a ‘core’ of genes present in all isolates in a

population, but that the majority of genes are ‘accessory’ and are only present in a subset

of isolates. The mode frequency was presence in only one isolate (singleton genes). More

recent estimates using a larger sample size of 616 genomes found 1 194 core genes from a

total of 5 442 COGs (22%) (Croucher, Finkelstein et al., 2013).

The first large-scale study to fully unite techniques from both whole genome analysis
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and bacterial population genetics sequenced 240 isolates from the PMEN1 serotype 23F

multidrug resistant clone (variously referred to as Spain23F, ST81 and ATCC 700669).

Croucher, Harris, Fraser et al. (2011) were able to both find recombination events and

map them to specific regions of the genome. These recombinations were found most

frequently in antigens (pspA, pspC and psrP), prophage and a large ICE carrying drug-

resistance conferring genes. They also found that the capsule locus itself is frequently

involved in recombination events, leading to a switching of serotype; later work in a larger

population quantified the selective constraints on serotype switching, finding most switches

happen within a serogroup (Croucher, Kagedan et al., 2015). Overall, this showed that

pneumococcal variation can occur on much shorter timescales than previously thought,

allowing adaptation to environmental perturbations such as antibiotic use and vaccination.

The first high efficacy vaccine against S. pneumoniae was the seven-valent PCV, which

offered protection against the seven most common disease causing serotypes in the US

(Obaro et al., 1996; Klugman, 2001). Later vaccines have expanded this to ten and then

thirteen serotypes. The vaccination of children successfully reduced carriage rates of

these serotypes, and therefore disease. Since mass vaccination began the S. pneumoniae

population has started to escape the vaccine through two mechanisms. At a population

level, other serotypes not in the vaccine have less competition and are now found more

frequently in carriage (Weinberger, Malley & Lipsitch, 2011). At a genomic level serotype

switching to a non-vaccine type can directly aid vaccine escape (Croucher, Finkelstein

et al., 2013).

The frequency and role of recombination in pneumococcal evolution has continued

to be a theme in studies of population genetics. Subsequent work has quantified the

length of recombinant DNA fragments, and found them most likely to be a mechanism to

repair damaging mutations and guard against selfish mobile genetic elements rather than a

mechanism to exchange accessory genes (Croucher et al., 2012; Croucher et al., 2016). A

pneumococcal population can cease to be transformable due to a prophage inserting into

the comYC gene, interrupting its competence machinery (Croucher, Hanage et al., 2014).

The role of single nucleotide polymorphism (SNP) variation compared to recombin-

ation in evolution differs by lineage (Croucher, Mitchell et al., 2013). In one of the first

papers to move from analysis of a single lineage to a species-wide genomic analysis,

Chewapreecha, Harris et al. (2014) calculated the ratio of recombination to mutation events

r/m across the main lineages within the species: despite a similar number of mutations

per site per year, they found estimates to vary between 0.06-0.25 depending on serotype.

NT (unencapsulated) isolates had a significantly higher recombination rate than capsular

strains (r/m = 0.3-0.35), and were more frequently donors of recombinant DNA. This

suggested that NT serve as a reservoir for DNA, which is easily passed on without capsular

polysaccharides providing steric hindrance.

Prophage sequence, viral DNA inserted into the bacterial host genome in the lysogenic
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phase of replication, varies rapidly (Romero et al., 2009; Croucher, Coupland et al., 2014)

and reduces host cell fitness (DeBardeleben et al., 2014). While in other species prophage

can be found to carry ‘cargo’ genes which can advantage the host cell and partially offset

the fitness reduction of carrying the phage, this is uncommon in S. pneumoniae. Exceptions

are the phage MM1 which has been found to increase pneumococcal adherence (Loeffler

& Fischetti, 2006), and the phage-carried virulence genes pblB and vapE (Romero et al.,

2009).

The function of the inversions of the type I restriction-modification system, originally

noted in the first pneumococcal genome sequence, could now be explained by these studies

of population level variation. Despite the relatively rapid rate at which S. pneumoniae can

vary its genome, the rate of variation in prophage inserted into pneumococcal genomes

is much higher (Croucher, Coupland et al., 2014). The rapid phase variation of systems

such as this inverting variable restriction (ivr) locus is therefore required to defend the host

from foreign DNA. In parallel, in vitro work found that this phase variation also causes

genome-wide methylation and transcriptional changes, which have been suggested to have

knock-on effects on virulence (Manso et al., 2014; J. Li et al., 2016).

1.2.4 Within-host variation of S. pneumoniae

In the nasopharynx, evolution of S. pneumoniae is limited by a small effective population

size (Y. Li, Thompson et al., 2013), which limits efficient selection or purging of mutations

arising in the population . Combined with a single-cell bottleneck at transmission, likely

due to the airborne route of infection (Gerlini et al., 2014; Kono et al., 2016), this means

drift is the dominant evolutionary force within the host (Didelot et al., 2016).

Previously, it was thought that mutation rates in bacterial genomes were low, and

as such there would be no change within a single host (Ochman et al., 1999). Through

whole genome sequencing however, variation over the course of a single bacterial infection

was found to exist (Mwangi et al., 2007; E. E. Smith et al., 2006). Additionally, many

studies sequencing bacterial populations of various different species gave estimates of

mutation rates three orders of magnitude higher than previously expected (Bryant et al.,

2013; Morelli et al., 2010; Wilson et al., 2009). These new estimates of mutation rate were

also supported by evidence that DNA sequence variation can occur over the course of a

single infection (Eyre et al., 2013).

Such within-host variation has been shown to occur through a variety of mechanisms

such as recombination (Kennemann et al., 2011), gene loss (Ehrlich et al., 2010; Rau et al.,

2012) and variation in regulatory regions (J. Li et al., 2016; Manso et al., 2014; Marvig

et al., 2014). The rapid variation that occurs in these regions of the genome can increase

the population’s fitness as the bacteria adapt to the host environment (Barrick et al., 2009;

L. Yang et al., 2011), and potentially affect the course of disease (Young et al., 2012).
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Previous studies in single patients have shown variation between strains even during the

rapid clinical progression of bacterial meningitis (Croucher, Mitchell et al., 2013; Omer

et al., 2011).

In mixed infections the main mechanism through which S. pneumoniae compete

with each other is through the fitness effect of their capsule (Trzciński et al., 2015). A

mechanism for intra-strain competition is the bacteroicins, encoded by a blp cassette

(Dawid et al., 2007), though pneumococcal genomes are diverse in which combination

of these bacteriocins they encode (Bogaardt et al., 2015). These produce peptides with

antibacteriocidal activity against other strains, and the cell may also contain immunity

proteins which protect against this (Moll et al., 1996). As there is a fitness defect from

producing these toxins and anti-toxins this can lead to a number of different interactions

affecting population dynamics (Miller et al., 2017). One example would be a ‘rock-paper-

scissors’ interaction: bacteriocin producing bacteria are fitter than those not producing;

those with the immunity protein are fitter than the bacteriocin producing bacteria; bacteria

with neither are fitter than the immunity protein producing.

1.3 Association mapping in humans

Before going on to describe how GWAS can be applied to the problems in pneumococcal

biology discussed in section 1.2, I first describe how this study design was first developed

in human genetics and its application to host genetics affecting pneumococcal meningitis.

It has long been a goal of genetics to map heritable traits to the genes which affect them.

Early attempts to map genetic regions to traits focused on simple Mendelian inheritance

within families. Mendelian traits are those which are caused by a single, fully penetrant,

allele. Dominant traits require just a single copy of the allele to mainfest the phenotype,

whereas recessive traits require both the maternal and paternal chromosomes to carry the

causal allele. The inheritance pattern within a family can determine whether a trait is

fully Mendelian, or if the alleles are likely to display incomplete penetrance (there is a

probability of an allele carrier having the trait, rather than certainty).

Given a family with a known pedigree where all members have been phenotyped for

a trait of interest, if a candidate allele is genotyped one can then calculate the logarithm

of odds (LOD) score which can be used to assess whether the allele co-segregates with

the trait (Morton, 1955). If it does, then the allele is either associated with the trait or

closely linked to an associated allele. How then, to choose the candidate allele? Some first

attempts were based on speculation and known biology, but an approach able to test all

genes was desired. By exploiting the linkage structure of the genome this became possible.

During meiosis, the maternal and paternal chromosomes undergo recombination, ex-

changing the order of alleles on each inherited chromosome. The recombination frequency
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varies along each chromosome and is more likely at certain positions. Sites with a small

physical distance between them are unlikely to have had a recombination event between

them, and are inherited as a single piece of DNA. When averaged over a population, this

results in high LD (which can be thought of as correlation between alleles at two different

sites) between nearby sites, an approximately exponential decay of LD moving away

from the site, and perfect linkage equilibrium (no correlation) between alleles on different

chromosomes (Reich et al., 2001).

Botstein et al. (1980) were the first to map linkage across the human genome, finding

linkage blocks which are inherited as a single unit and polymorphic loci which can be used

to determine which of these blocks an individual has. Complementary DNA probes which

genotype an allele can then determine the linkage block present. These ‘linkage’ studies

were the first attempts at searching the whole genome for association with a trait of interest,

and had a number of successes in rare diseases (Gusella et al., 1983; Siddique et al., 1991).

However, despite methodological improvements (Spielman et al., 1993), they suffered

from a number of fundamental issues in association mapping for common traits. Firstly,

they are designed to find associations between highly penetrant variants tending towards

the Mendelian case, so for less penetrant variants quickly loses power. This is well suited

for rare disease, but did not appear to be working for common diseases. A second, more

practical limitation is that it is difficult to collect entire families of affected cases and

genotype and phenotype every member of the pedigree – it would be much easier to

collected affected cases and unaffected controls opportunistically.

Testing every linkage block in the genome for co-segregation with a trait leads to many

thousands of tests, necessitating a heavy multiple testing correction burden (Lander &

Kruglyak, 1995). Risch and Merikangas (1996) showed that under this multiple testing

burden even a fairly penetrant common allele (OR = 2; minor allele frequency (MAF) =

13%) would require around 12 000 families to map the association. The lack of linkage

based associations was providing increasing evidence that common traits were affected

by multiple alleles with smaller individual effect sizes, this was good evidence that the

linkage study was not the right design for discovering complex disease genes. In other

animals linkage studies can still be a powerful approach, thanks to the ability to create and

design crosses rather than having to rely on observed natural pedigrees. For the study of

rare disease linkage studies can also be useful, as whole genome-sequencing has been able

to increase their association mapping specificity (Ott et al., 2015).

In the same paper, Risch and Merikangas (1996) calculated that a population study

would only need 640 samples to find the association. It had previously been proposed that

by sampling affected and unaffected individuals from a population, association between

an allele and the trait could be found by simple correlation. Population structure was

known to confound such studies, as alleles are present at different frequencies in different

populations due to their demographic history (for example, passing through a population
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bottleneck can cause alleles to be lost from the new population, and previously rare alleles

to become common). Therefore if there are uneven numbers of cases and controls from

different populations, allele frequency will appear to associate with case status. However,

sampling cases and controls from a single population can be used to address this issue

(Hirschhorn & Daly, 2005).

The real barrier to the proposal of performing population association studies of common

diseases was therefore the lack of knowledge about the human genome, and of human

genetic variation (Hirschhorn & Daly, 2005). The low throughput resequencing available

at the time was also an issue, and limited sample size and the number of markers tested.

‘Candidate gene’ studies had to guess a gene or region which may be associated with the

trait, and then performed an analysis of correlation between the trait and polymorphisms

in the gene. This initial guess was difficult to make, and not conducive to discovering

association of genes where little prior biological knowledge is available. Despite well-

known statistical guidelines for reporting associations (Lander & Kruglyak, 1995), many

candidate gene studies did not follow the correct multiple testing correction, leading to

very few results replicating in independent samples (Altshuler et al., 2008).

Such results have appeared between candidate genes and susceptibility to bacterial

meningitis (Khor et al., 2007; Woehrl et al., 2011), however I do not review them here.

Instead I quote a line from the review of Brouwer et al. (2009), whose meta-analysis was

unable to confirm any of the published results: ‘Results of the 44 case–control studies

were hampered by methodological flaws. First, and most importantly, sample sizes were

inadequate, preventing robust conclusions on the influence of the studied genetic variants

. . . control populations were heterogeneously selected and often not matched for age and

sex . . . quality control procedures for DNA extraction and genotyping were rarely done

. . . most studies that assessed multiple polymorphisms did not correct for multiple testing’.

It is perhaps surprising that over twenty years later similar mistakes are still being made,

and published (Stessman et al., 2017; Barrett et al., 2017).

1.3.1 Genome-wide association studies

A better design for genetic mapping with a common trait was therefore a population study

using all polymorphisms present in the population: this could test, in an unbiased manner,

every gene and region of the genome for association with the trait (Hirschhorn & Daly,

2005; Altshuler et al., 2008). The first steps towards this goal were the sequencing of

the human genome (Lander et al., 2001), and the genome-wide discovery of SNPs it

facilitated (Sachidanandam et al., 2001). These efforts led to an improved mapping of

linkage blocks in globally distributed populations, and the design of arrays which could

genotype hundreds of thousands of SNPs in a high-throughput manner, with the SNPs

chosen to capture variation across the entire genome through LD (International HapMap

35



Host and pathogen genetics associated with pneumococcal meningitis

Consortium, 2005). Using whole-genome sequencing these population maps of variation

were later expanded in terms of variant frequency range, variant types, number and diversity

of samples (1000 Genomes Project Consortium et al., 2012).

Using these advances Klein et al. (2005) performed the first GWAS in 96 cases and 50

controls, mapping an association between age-related macular degeneration and the CFH

gene – narrowing the association to a region of a chromosome known from linkage based

studies to a single gene, and showing this method could be used to understand complex trait

genetics. The first large scale GWAS was the Welcome Trust Case-Control Consortium,

which was performed on seven common diseases, using 2 000 cases for each and a shared

set of 3 000 controls (Burton et al., 2007). The study was particularly successful in finding

genetic loci associated with autoimmune disorders, and also set out the methodology for

future studies.

I refer here to binary traits of interest (cases and controls), which can easily be gen-

eralised to multi-level or continuous traits. First, cases and controls are collected and

genotyped together on arrays. The arrays have green and red fluorescent probes which

bind to one of the two possible alleles (A and B, with B the effect/minor allele here) at

each SNP location, so by clustering based on intensity of each colour samples can be

called as AA, AB or BB. Crucially these SNPs were chosen to be roughly equally and

densely spaced across the genome, be common (MAF >5%) in the study population, and

‘tag’ nearby untyped variants through LD. This design later allowed for the incorporation

of population level variation to gain greater information at untyped sites using genotype

imputation.

After careful quality control (QC) of the genotype called on the samples, a test for

association is performed independently at every site. The test for association is, at its

simplest, a 3x2 contingency table between the genotypes and phenotypes with significance

tested using a χ2 test with two degrees of freedom (d.f.). Regression of the phenotype

against the genotype gives similar results, but can also include covariates (often age and

sex) or priors in the association. Most studies test for additive effects, where each extra copy

of the effect allele has an equal effect on the phenotype. Recessive effects can be modelled

by instead combining the AA and AB genotypes, and dominant effects by combining the

AB and BB genotypes. A p-value against the null hypothesis of no association is generated

at every site, and plotted on a log-scale against physical location on a ‘Manhattan plot’.

Association of a locus is usually declared when p < 5×10−8, which is a family-wise error

rate (FWER) of 0.05 with a Bonferroni correction for multiple testing using the number of

independent linkage blocks as the number of multiple tests. Figure 1.3 shows the overall

study design of a GWAS based on these methods, and the methods are described in more

detail when applied to the MeninGene cohort in chapter 5.

With the main technological limitations overcome, and the fact that a simple regression

model works well for the analysis of GWAS data, finding more associations has mostly
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been a case of increasing the number of samples. The discovery power of GWAS is a

function of MAF, effect size and sample size – an increase in any of these increases power.

As MAF and effect size are determined by underlying biology and population history,

increasing the number of cases (and controls, though as the number of GWAS studies has

increased more samples have become available to use as shared controls) is how GWAS

study design has progressed from the first successes. Meta-analysis, where separate GWAS

studies are pooled in a combined analysis, both increases discovery power and makes

discoveries less likely to be artefacts due to technical noise in a single cohort (Altshuler

et al., 2008; A. Franke et al., 2010). Some studies, to minimise cost, genotype only their top

p-value markers in a second cohort using ‘MASSARRAY’. This uses mass spectrometry

to genotype a small number of specifically designed probes, so unlike running a whole

genotyping array this only allows validation at the chosen markers. Of course, evidence

from an orthogonal approach (functional analysis in an animal model for example) that

relates an associated locus/gene to the phenotype will also increase confidence that the

association is not an artefact of the specific cohort. A meta-analysis can be performed

using just the p-values, effect size and direction and sample size at each site (known

collectively as ‘summary statistics’) and does not require the full genotype of every sample.

By sharing this data at each incremental increase in sample size, GWAS consortia have

greatly increased the number of loci associated with a range of common diseases (Liu &

Anderson, 2014; de Lange & Barrett, 2015).

Due to LD between nearby variants, signals of association are not found to a single

SNP. Usually a set of between a few and hundreds of genotyped or imputed SNPs in the

region of the signal will be associated with the trait (albeit with different p-values), so

interpretation of the chain of causation from genetic variant to effect on phenotype is not

simple. However, with enough samples methods do exist to assign a probability of being

the causal variant (Spain & Barrett, 2015). In coding regions knowledge of the codon table

can predict the effect on proteins of genetic changes (McLaren et al., 2010), and analysis

of conversation of amino acids across species can predict the effect of amino acid changes

on protein function (Ng & Henikoff, 2003; Kircher et al., 2014) which can help fill in more

of the chain of causation. In some cases an associated locus may contain multiple causal

variants, in which case conditional analysis can be used to determine which variants are

independently associated.

GWAS in humans has gone from strength to strength, and as of June 2017 2 500 studies

have found over 40 000 significant associations (MacArthur et al., 2017).

Methodological advances

The issue of population structure driving association effects was initially dealt with by

sampling participants from a single country, and excluding individuals found to have
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divergent ancestry (which given their genotype can be determined). A. L. Price et al.

(2006) showed that performing principal component analysis (PCA) on study participants’

genotypes, and then including the leading principal components as fixed-effect covariates

in the association model could correct for this effect without as much power loss as

completely excluding samples. By instead including the kinship (relatedness) matrix as

random effects in a linear mixed model (LMM) type II error rate can be controlled when

combining samples of any ancestry, maximising sample size and discovery power (A. L.

Price, Zaitlen et al., 2010). Subsequent computational improvements and approximations

have made it possible to apply this to the millions of regressions needed when using

imputed variants (Lippert et al., 2011; Zhou & Stephens, 2012; Loh et al., 2015).

The availability of lower cost high throughput whole-genome sequencing has not

increased discovery power for common variants or enhanced the ability to fine-map

association signals. Money is best spent on obtaining many samples at the lower price-

point of genotyping arrays, rather than many sites. Whole-genome sequencing instead

increases the range of the allele frequency spectrum which can be tested for association

with a trait.

The design of GWAS genotyping arrays and tag-SNPs, when combined with improved

imputation panels and techniques, has been very successful in discovering loci down to

lower MAFs than originally thought possible (1%) (de Lange & Barrett, 2015; de Lange

et al., 2017). In the case of uncommon (0.1% <MAF <5%) variants, which are less well

tagged and are therefore poorly imputed (The Genome of the Netherlands Consortium,

2014), and rare variants (MAF <0.1%), which are not even present at a population level in

current reference panels, direct sequencing of these variants can help find new associations.

More complex rare variants, such as copy number variants (CNVs), long insertions or

deletions (INDELs) and structural variants, which were not included on genotyping arrays

can be tested using whole-genome sequencing. Very rare variants appearing in a single

sample (singletons) or two samples (doubletons) are the mode variant frequency in the

human genome (1000 Genomes Project Consortium et al., 2012). Without time for

them to become common in the population, strong selection may not arise against their

potential fitness defects. They may therefore play a role in determining complex trait

phenotypes. These variants are challenging to genotype from low coverage sequencing

data as population level variation cannot inform the genotype call, and they are difficult

to distinguish from sequencing errors (particularly at heterozygous sites). In the future,

cheaper high coverage whole genomes will help deal with some of these challenges.

While there is not enough information at a single site to perform a regression against

the phenotype, by grouping sets of these variants by their predicted functional effect

sufficient power to perform association tests can be reached (S. Lee et al., 2014). Rare

variants can be grouped for example by LoF of a gene or any element in an entire pathway,

or within a region around a gene or haplotype. The simplest association test of these
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variant sets is a burden test, which works best when the variants are causal and their effect

sizes are in the same direction. More complex tests relaxing these assumptions, such as

SKAT-O, are available (Wu et al., 2011; S. Lee et al., 2012). It therefore has been possible

to discover the role of rare variation in common auto-immune disorders such as type II

diabetes and inflammatory bowel disease using whole genome sequencing and newer

methods (Fuchsberger et al., 2016; Luo et al., 2017).

As well as expansion in terms of genotyping space, recent efforts have been made to ex-

pand the phenotype space. The compilation of large biobanks containing hundreds of thou-

sands of genotyped individuals each with thousands of phenotypic measurements (usually

through electronic health records) has inspired the creation of ‘PheWAS’ (phenome-wide

association study), in which the focus is instead on variants and the spectrum of diseases

and traits they are associated with (Denny et al., 2013; Bush et al., 2016). By association

of many diseases in the same set of individuals, the overlap in genetic architecture and

co-heritability between phenotypes can be assessed (Ge et al., 2017).

By exploiting the unidirectional causality of genetics on phenotype, the causality of

association between phenotypes can be determined using Mendelian randomisation (Davey

Smith & Hemani, 2014). Current efforts are being made to exploit the known hierarchical

relation between phenotypes to increase the power of PheWAS studies given their increased

multiple-testing burden, and also incorporate self-reported phenotype information (Cortes

et al., 2017).

1.3.2 Heritability

Heritability is a classical concept in quantitative genetics which represents the amount of

variation in a trait which can be ascribed to genetics (and is therefore inherited between

generations) versus other environmental factors (Lynch & Walsh, 1998). Fisher (1919) was

the first to reconcile Mendelian inheritance patterns, which are fully penetrant, with normal

variance about the mean observed in most human traits by proposing multiple inherited

genetic mechanisms each with their own variance components. Wright (1920) applied

this theory to guinea pig coat patterning, and so defined heritability H2 as the proportion

of variance in a phenotype σ2
P which can be attributed to genetics σ2

G, compared to the

environment σ2
E:

σ2
P = σ2

G +σ2
E

H2 =
σ2

G

σ2
G +σ2

E
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The proportion of heritability which can be ascribed to additive variation σ2
A as opposed to

dominant σ2
D or epistatic σ2

I interaction is known as the narrow-sense heritability h2:

σ2
G = σ2

A +σ2
D +σ2

I

h2 =
σ2

A

σ2
P

If a trait is not heritable then one will not be able to find genetic variation associated

with it, but even significant evidence for small but non-zero heritability may have additive

genetic variants associated. Heritability does not however tell us about the distribution of

effect sizes of associated variants, nor is it constant between populations (Visscher et al.,

2008). Heritability is therefore an important parameter in estimating the power of GWAS,

and can also be used to describe the proportion of overall variance described by sets of

variants in the genome.

Before the availability of sequencing, known genetic relationships could be exploited

to determine H2. For example, monozygotic twins have an identical genetic sequence,

whereas dizygotic twins share only half of their sequence. However both cases share a

similar environment, so by comparing the correlation between phenotype of these two

cases with the overall phenotypic variance then H2 can be calculated (Lynch & Walsh,

1998).

The availability of genomic data has allowed calculation of the narrow-sense herit-

ability h2 directly from genetic variation detected in unrelated individuals. Taking the

significantly associated variants from GWAS and regressing them against the phenotype to

calculate the variance explained (R2) directly gives the heritability. However, these estim-

ates are systematically lower than estimates from twin studies across a range of human

traits, leading to the coining of the phrase ‘missing heritability’ (Manolio et al., 2009;

Eichler et al., 2010). Various reasons that heritability is being missed have been proposed

(untyped rare variants, structural variants, non-additive inheritance such as epistasis), but

the inclusion of weak effects which do not reach significance in GWAS has been shown to

be important (S. H. Lee et al., 2011).

To include all variants, a regression could be performed between all genotyped or

imputed sites and the phenotype to calculate the variance explained (so h2 = R2). However

the number of variants vastly exceeds the available number of samples, meaning this

regression cannot be directly performed. By instead assuming that effect sizes of genetic

variants on the trait are normally distributed with a mean of zero and variance of
σ2

G
m (where

m is the number of markers) a linear mixed model can be fitted by restricted maximum

likelihood to determine h2. In analogy with classic methods of heritability estimation, this

uses the kinship (amount of shared sequence) estimate from the sequence to determine

the relatedness of samples in the study. This is known as the ‘GCTA’ model (J. Yang,
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Lee et al., 2011) and has been successfully used to narrow the gap between heritability

estimates for human height from genomic and twin studies (J. Yang et al., 2010). This

technique has been shown to be robust to deviations from the model assumptions, with the

exception of varying LD between predictors (Speed et al., 2012), genotype certainty and

inclusion of predictors across the MAF spectrum. These issues which have been addressed

in recent advances by Speed et al. (2017). Including sets of predictors in this model, known

as ‘genomic partitioning’, has been shown to fulfil the desire to attribute part of the overall

h2 to selected pathways and/or regions of the genome (J. Yang, Manolio et al., 2011).

1.3.3 Host susceptibility to infectious disease

While GWAS has enjoyed great success at finding loci associated with auto-immune dis-

orders and anthropometric traits such as height and body-mass index, far fewer associations

with susceptibility to infectious disease have been found (Newport & Finan, 2011; Ko &

Urban, 2013). Twin-study and epidemiology based estimates of H2 have convincingly

shown that there is a genetic component to host susceptibility to a range of infectious

diseases (Jepson, 1998; Burgner et al., 2006), so why are associations hard to find?

Firstly, candidate gene studies ensnared the study of infectious disease association

studies for a number of years, without producing many reproducible findings (Abel &

Dessein, 1997, 1997; Brouwer et al., 2009). When GWAS became feasible, infectious

disease phenotypes began to be used. However, potential variability in exposure to the

pathogen being studied (in some cases making it difficult to find equally exposed controls),

difficulty of determining the exact pathogen causing a disease and lack of funding leading

to lack of samples have been suggested as reasons why associated loci have been hard to

find (Chapman & Hill, 2012).

An interesting debate continues over the genetic architecture of infectious disease sus-

ceptibility (A. Hill, 2012). In human history, susceptibility to infectious disease (especially

in childhood) would be associated with a serious fitness disadvantage, given the lack of

effective treatment. Given a sufficient effective population size these damaging variants

would therefore be purged from the population. However, autoimmune disease would have

had a small fitness cost, and recent changes in environment combined with population

bottlenecks allowing relatively rare alleles to become common may explain the relative

ease of finding these GWAS hits (Amos & Hoffman, 2010; Schraiber & Akey, 2015).

It has therefore been suggested that common variants which explain infectious disease

susceptibility may not exist, with variation in susceptibility caused by single variants

unique to each patient (monogenic cause) (Casanova, 2015).

Most likely, as in other complex traits, both modes of causation are possible in some

proportion. In bacterial infections, Zhang et al. (2009) performed a successful common

variant GWAS on leprosy susceptibility, and common variants in the ASAP1 gene and

42



Chapter 1. Introduction

the human leukocyte antigen (HLA) have since been associated with susceptibility to

Mycobacterium tuberculosis infection (Curtis et al., 2015; Sveinbjornsson et al., 2016).

Similar results have been found for viral and parasitic infections (Fellay et al., 2007; Jallow

et al., 2009; Khor et al., 2011).

Host genetics of meningitis

Meningitis has been a relative success story for infectious disease GWAS. Davila et al.

(2010) performed one of the first successful studies on a bacterial infection, and found

variants in the CFH region to be associated with susceptibility to meningococcal meningitis

in 1 443 European children. In a similar manner to S. pneumoniae, N. meningitidis is

known to bind factor H with fHBP to inhibit activation of the alternative complement

pathway (McNeil et al., 2013). The minor alleles were found to be protective, so the

authors hypothesised that these less common forms of fH were more weakly bound by

fHBP, increasing the effectiveness of the host immune response.

Rautanen et al. (2016) performed a GWAS in 542 cases of pneumococcal bacteremia in

Kenyan children. They found variants on chromosome 17 in a long intergenic non-coding

RNA gene (AC011288.2) to be associated with doubled susceptibility to invasive disease.

The variants are specific to African populations so would not be found in a GWAS of a

European population. Expression of these gene was found only in neutrophils, a cell type

involved in the innate immune response to S. pneumoniae infection.

Finally, Davenport et al. (2016) assayed both genomic and transcriptomic variation in

384 British adults with sepsis. They found two classes of gene expression as response to

infection, activated depending on whether the patient was immunodeficient or not. They

were then able to map genetic variants which affected these transcriptional networks,

defining sepsis related eQTLs.

1.4 Association mapping in bacteria

The trend of scaling from a single genome to represent a bacterial species, to performing

comparative genomics between two genomes to analysis of populations of whole genomes

was seen not just in S. pneumoniae (section 1.2.3), but most pathogens deemed important

enough to undergo the first sequencing attempts. There has been increasing availability of

whole-genome sequence data from populations of bacteria along with phenotypes such as

antibiotic resistance, virulence and host specificity. A natural question is therefore which

pathogen variation, if any, contributes to these traits. The move to whole genomes of

populations occurred well after GWAS had been established in human genetics, yet the

first bacterial GWAS only started to appear years later. Falush and Bowden (2006) were

the first to formally address this disparity. There are three main issues which frustrate the
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simple study design so successful in the study of human complex traits: strong population

structure, greater variation of the pan-genome and low sample sizes.

1.4.1 The effect of population structure

The strong population structure of bacteria is both a technical limitation to be addressed

by the association model, and a fundamental limitation to the resolution of association

mapping. Humans are diploid eukaryotes which recombine during meiosis every gener-

ation. Over a population, this shuffling of alleles makes separate variants independent,

with the exception of nearby variants where LD is only partially broken by meiosis causes

some level of correlation. Bacteria are haploid prokaryotes, where between generations

the entire chromosome is clonally copied to the daughter cells, meaning all sites across the

entire genome are perfectly correlated. If a set of mutations are introduced de novo over

time, one of which is causal for the phenotype of interest, a naive association will find the

entire set of mutations to be associated with the phenotype (i.e. the causal mutation, and

the genetic background). While this is locally true around causal variants in the human

genome, the exponential LD decay still allows mapping the association to a single region.

However in bacteria LD extends across the entire genome and does not quickly decay over

the chromosome (P. E. Chen & Shapiro, 2015; Earle et al., 2016), so the set of associations

will also be genome-wide, preventing mapping of the causal association to a specific

region.

Another way to understand the issue of population structure is through the more

bacteria-centric idea of phylogeny (fig. 1.4). If a mutation which is causal for a phenotype

has arisen on an ancestral branch, the descendants will be more likely to have the phenotype

and the variant will be positively associated with the phenotype. However, any other

mutation on that branch (potentially thousands, depending on the branch length) will

appear equally associated. Again, these associations will not map to a single region of the

genome.

Such associations, variants correlated with a specific genetic background and the

phenotype, are known as ‘lineage’ associations. The best bacterial GWAS can reasonably

hope to achieve with such associations is to identify them as such (and not treat them

as potentially causal), and prioritise sets of associated variants for study by other means.

Alongside the formal use of GWAS, genomic epidemiology studies have investigated the

properties of clonal lineages with the phenotype of interest, using comparative genomics

to identify possible sets of genes or other variants which differ between phenotype positive

and negative clones (Shea et al., 2011; De Chiara et al., 2014; Cleary et al., 2016). Some

studies explicitly followed a GWAS of frequency differences between genes without

adjusting for population structure, and were lucky enough to find sets of only a handful of

variants associated (Holt et al., 2015).
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Figure 1.4: Phylogenetic illustration of lineage and locus variants. Depicted is an example phylogeny, with

cases identified by red dots at the tips, and controls without dots. Variant presence is shown as coloured

arcs. a): The yellow variant is a causal lineage variant, and will be associated with the phenotype in a naive

analysis. However the green variant, present in the same clade, is not causal but will also appear associated

at the same level of significance. Indeed, any mutation that has occurred on the branch indicated by the arrow

will appear associated, hindering association mapping. b): The magenta variant has arisen independently

in three separate clades containing cases, giving more independence from genetic background and more

evidence for association with the phenotype. The association should have a higher p-value, and slightly

lower OR than the green and yellow variants due to the reduced penetrance observed.

However, it is possible for variants to be associated with a phenotype independent of

genetic background. These ‘locus’ variants can be mapped to a region of the genome,

and are currently the main focus of bacterial GWAS studies. This is not because they are

less important than lineage variants (both types of variant may explain any amount of the

heritability), but are easier to find and map.

The phylogeny picture described above also allows us to understand two mechanisms

by which locus associations may arise. Firstly, if a causal variant has happened more than

once, that is independently on multiple ancestral branches, it will remain associated with

the phenotype but now be uncorrelated with genetic background. These are homoplasic

variants, which are likely to occur when there is selection for the phenotype across the

species, for example with antibiotic use. Similarly, recombination between strains causes

horizontal inheritance of DNA which cannot be represented by a phylogeny (which only

represents vertical inheritance). Variants introduced by recombination are independent of

genetic background, and may be associated with the phenotype across the tree. In the LD

picture both these mechanisms break the correlation between variants and the rest of the

genome, though not in a simple way. I note that I have only explicitly considered ancestral

mutations so far. Mutations at the tips of the tree, if they have happened multiple times, are
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valid homoplasies. However, if they have only happened at a handful of tips, even if they

are causal, standard association will lack power to detect them regardless of population

structure.

The relative prevalence and importance of recombination and homoplasy varies by

the species and population of interest (as different selection pressures may have acted

on different populations over time). In highly diverse and recombinogenic species such

as S. pneumoniae and N. meningitidis, a phylogeny-based adjustment for population

structure is likely to be the wrong approach as this will cause the tree to be inaccurate

(Croucher, Page et al., 2015). However, the recombination makes genome-wide LD of

the population less prevalent and somewhat more like the human genome, so a suitable

regression approach may be used instead. In a clonal species such as M. tuberculosis, the

availability of an accurate phylogeny and the huge levels of LD make direct identification

of homoplasy more applicable than regression methods (Farhat et al., 2013; P. E. Chen &

Shapiro, 2015).

1.4.2 More variation and fewer samples

Most human genetic variation is due to small variants which can be detected by resequen-

cing and mapping to a reference from a single population (1000 Genomes Project Con-

sortium et al., 2015). Though some variation is lost by considering a single reference, the

contribution of pan-genomic variation is small (~1% of the overall sequence) (R. Li et al.,

2010). In bacteria short variants in core genes are undoubtedly important, but the presence

of an accessory genome not covered by simple SNP mapping, not to mention variation

within accessory genes, is a significant source of variation (McInerney et al., 2017).

A successful bacterial GWAS therefore needs to assess not only SNP and INDEL

variation, but also gene level variation. A simple way this can be achieved with modern

techniques (Page et al., 2015) is by associating the presence and absence of common

accessory COGs against the phenotype. This of course does not account for variation within

the accessory genes unless multiple alleles are clustered separately, however adjusting

this tradeoff of specificity and sensitivity in pan-genome estimation is difficult to tailor

specifically to GWAS.

An alignment-free method of variant detection is therefore ideal, as the computational

burden of multiple reference mappings, the bias of available references and the issue of

varying levels of missing calls across the genome makes alignment generally less suitable

than in human genomes. Genome assembly uses sequence words of length k, called k-mers,

to align sequence internally within a sample without requiring use of a reference (Zerbino

& Birney, 2008; Compeau et al., 2011). Further work has been able to co-assemble

multiple samples calling variation across the pan-genome in a reference free manner (Iqbal

et al., 2012), or call variation directly from k-mers in sequence reads (Gardner & Hall,
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2013). One of the first bacterial GWAS studies used k-mers as the variant to perform a

pan-genome-wide association study (Sheppard et al., 2013) (see section 1.4.3), and in

chapter 2 I will propose this as the unit of variation in bacterial GWAS.

The pan-genome and strong population structure makes it difficult to design genotyping

arrays of tag SNPs, especially as microbiologists do not have the luxury of an entire field

being able to focus on a single organism (albeit a fascinating and complex one). MLST

schemes can be used to define population structure with less sequencing effort, but do not

have sufficient precision to perform GWAS. Without the possibility of relatively cheap

genotyping arrays, bacterial sequencing has necessarily been whole-genome. The expense

of this sequencing, as well as the difficulty inherent in obtaining clinically relevant bacterial

samples has therefore limited sample sizes. Compounding this, the high level of variation

in bacteria despite their relatively short genome size increases the multiple testing burden,

necessitating large sample collections. Only recently were the first studies with thousands

of phenotyped genomes published (Shea et al., 2011; Chewapreecha, Harris et al., 2014),

with well powered GWAS studies following closely behind (Chewapreecha, Marttinen

et al., 2014).

1.4.3 Early successes

In perhaps the first bacterial GWAS, Bille et al. (2005) were able to develop a gene-based

microarray for N. meningitidis, and look for frequency differences between carriage and

invasive isolates deliberately chosen to cover the diversity of the species. Without explicitly

adjusting for population structure and only assaying a single form of variation they were

able to find a phage associated with hypervirulence (Bille et al., 2008).

By equally representing isolates from different genetic backgrounds, as defined by

MLST, in both cases and controls Bille et al. (2005) implicitly controlled for population

structure. If the representation of different genetic backgrounds was unequal in cases

and controls, in an identical way to human population structure this would confound the

results. A more direct method to inform sampling before sequencing is to take pairs

of phylogenetically close but phenotypically discordant isolates across the tree (Farhat

et al., 2014). While it would of course increase study power to simply sequence the entire

collection and adjust for population structure during analysis, the existing availability of

MLST of very large isolate collections can be used to perform this targeted approach at a

lower cost. Despite the limited resolution of MLST to determine genetic background, this

approach has been able to find functionally confirmed associations for L. monocytogenes

virulence (Maury et al., 2016) and M. tuberculosis transmissibility (Nebenzahl-Guimaraes

et al., 2016).

Sheppard et al. (2013) performed a ground-breaking bacterial GWAS, which was the

first to properly account for population structure and assay variation across the pan-genome
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using k-mers. The authors used k-mers of length 30 to test for association of genetic

variation in 29 Campylobacter jejuni and Campylobacter coli isolates with host specificity.

A Monte Carlo simulation of characters on the tree was used to define a null distribution

of the association test statistic when following the correlation structure of the phylogeny,

thus adjusting for population structure. K-mers which were significantly associated with

presence in isolates from cattle rather than isolates from birds were found to map to a

seven gene cluster, which included genes coding for vitamin B5 synthesis, a molecule

present in grains but not grasses. While an important leap forward methodologically, the

Monte Carlo simulation method was unfortunately not scalable to the large collections

of isolates needed for greater study power, and the reliance on a recombination removed

phylogeny is restrictive in many settings. The association found had a very large effect

size (OR 95% confidence interval (CI) 28−∞), hence the ability to find it using a small

number of samples.

It is worth noting that a similar issue with population structure exists with viral GWAS,

though in RNA viruses the high mutation rate and within-host diversity makes it a generally

weaker effect than in bacteria. Viral sequences are (almost always) shorter than bacterial

sequences, and though calling variation for association testing faces different challenges,

the eventual multiple testing burden is lower. By using principal components to adjust

for population structure, like in early human GWAS (A. L. Price et al., 2006), Bartha

et al. (2013) performed an association between HIV-1 amino acid changes and viral load.

Though they did not find any hits, this showed human genetics derived methods could

control type I error rate. This study was notable for being the first genome-to-genome

analysis of host and pathogen (section 5.3 covers this in more detail).

GWAS in S. pneumoniae

Given the high recombination rate and relatively high availability of samples, S. pneu-

moniae is a good candidate for bacterial GWAS. Chewapreecha, Marttinen et al. (2014)

therefore performed the first well powered bacterial GWAS, using 3 085 genomes from

pneumococcal carriage in an unvaccinated population to associate core SNPs called against

a single reference with resistance to β -lactams. With this many species-wide isolates

a phylogeny-independent method was required, and the authors opted to use the Co-

chran–Mantel–Haenszel (CMH) test to control for population structure. Using 188 discrete

population clusters defined by Bayesian analysis of population structure (BAPS) as groups,

this essentially performs a χ2 test for association within each clonal group, and then

meta-analyses the results from each cluster. This gave an overinflated test statistic, though

substantially lower inflation than the use of 35 less finely resolved clusters. Though both

have clearly been successful, the power and false positive rate of using discrete population

clusters through the CMH test or as binary covariates in a regression, versus the use of
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continuous covariates such as principal components remains unknown.

While they did not perform a formal meta-analysis, the results were validated in a

second population of 616 carriage isolates from children in Massachusetts (Croucher,

Finkelstein et al., 2013) finding 303 SNPs in the intersection of significant hits. Though

mosaic alleles of the pbp genes are known to cause resistance (section 1.2.2), the authors

aimed to identify the individual SNPs causal for resistance. However extensive and

complex LD across these regions stymied this inferential aim. The lowest OR of detected

hits in this study was around 2, a substantial improvement on previous smaller studies.

Aside from antibiotic resistance, only a single study has reported a GWAS for an

association between pneumococcal variation and a clinical outcome. Tunjungputri et al.

(2017) used an identical association model but tested COGs for association with 30-day

mortality in 349 cases of bacteremia, finding that the platelet binding protein pblB (Bensing

et al., 2001) was associated with increased mortality.

1.4.4 Phylogenetic methods

Having discussed the issues facing bacterial GWAS compared to human GWAS, and how

they were approached by early studies I will now cover the state-of-the-art methods and

analysis currently available for bacterial GWAS. As mentioned above these broadly fall

into two categories: phylogenetic methods and regression methods.

Phylogenetic methods offer precise control of type I error rate when accounting for

population structure, but rely on having a trusted phylogeny; not tainted by recombination

and with good branch supports. This is possible for small collections of isolates where

recombination can be removed (Croucher, Page et al., 2015; Didelot & Wilson, 2015;

Mostowy et al., 2017), but not feasible across a diverse species such as S. pneumoniae.

In some cases a posterior of trees can be used as input rather than a single representative,

which can partly account for poorly supported branch splits at the expense of a greater

computational burden. The total computational burden of these methods is generally high,

especially if they use Monte Carlo simulations, and they are therefore unlikely to scale to

millions of tests needed to assay variation across the entire pan-genome. Hence application

has mostly been limited to analysis of accessory COGs, or species/clades with limited

levels of SNP variation.

The history of these methods is rooted in assessing correlations between traits measured

across different species (Garland & Ives, 2000). Felsenstein (1985) first proposed the use

of independent contrasts, motivated by a Brownian motion model of trait evolution on

the tree, using the difference in phenotype between phylogenetic sister isolates and their

branch lengths to adjust for expected correlations between species (which has echoes of

the approach of Farhat et al. (2014)). A tool has been written to apply this instead to binary

traits using this form of approach (Brynildsrud et al., 2016). It associates COGs with
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phenotypes in a naive manner, then also uses pairwise comparisons (A. F. Read & Nee,

1995) on the phylogeny to estimate the number of times the trait has evolved independently.

However this model does not offer a way of combining the test of evolutionary convergence

with phenotypic association.

An alternative approach is to use a generalised least squares regression, but instead

of assuming independent and identically distributed error terms they use the phylogeny

to estimate covariances between error terms in the model (Pagel, 1997). Desjardins et al.

(2016) used this approach to test for correlated evolution between antibiotic resistance

and genetic variants in M. tuberculosis, which in conjunction with a naive association was

found to improve type II error rate without affecting type I rate in a handful of cases.

It is possible to simulate the null distribution of test statistics accounting phylogenetic

correlations using Monte Carlo simulations (Martins & Garland, 1991), which was the

method used by Sheppard et al. (2013) with the correlation between phenotype and genetic

variants at tips of the tree as the test statistic. A recently proposed extension specific

to bacterial GWAS also calculates test statistics which capture variants with correlated

evolution with the phenotype through changes at nodes, and integrating across branches

and therefore evolutionary history (Collins & Didelot, 2017).

1.4.5 Regression methods

In contrast to phylogenetic methods regression based methods are fast, do not require

an accurate phylogeny (and therefore may also be alignment-free) and are more in-sync

with the active development of human GWAS methods. They are therefore more scalable

with the large sample sizes needed for high powered GWAS studies, and the high number

of variants which must be tested across the pan-genome. However, compared to well-

calibrated phylogenetic methods these methods may have an elevated type I error rate.

Regression methods with similar control of the type I error rate have recently appeared,

but are generally restricted to the discovery of locus variants, and can only test association

at the tips of the tree rather than over the evolutionary history of the bacteria.

Following the approach of using principal components as fixed effects in a regression,

variants associated with phenotypes such as drug resistance and virulence have successfully

been found in a number of species other than those mentioned above (Laabei et al., 2014;

Alam et al., 2014; Salipante et al., 2015). This method is fast, and has been successfully

scaled to analysis of k-mer variants across the pan-genome (Weinert et al., 2015). The first

attempt to improve upon this method in terms of population structure control leveraged the

efficiency boosts in LMMs being used for trans-ethnic human GWAS studies. By applying

an efficient LMM, using the relationship between strains as random effects, to their top

variants from a naive association test, Earle et al. (2016) were able to find locus variants

affecting antibiotic resistance while controlling type I error from population structure.
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Within their model they were also able to identify potential lineage associations which

were associated with both the phenotype and the population structure components, albeit

with greatly reduced power.

Advances in expanding the variant space tested using regression methods have included

k-mers being assembled over a sample collection into unitigs – high confidence contigs

extracted from the de Bruijn graph without needing repeat resolution – thereby giving

larger haplotype-like variants to test (Jaillard et al., 2017). The inclusion of rare variants

by grouping LoF variants in genes has also been successful (Desjardins et al., 2016).

1.5 Conclusions

Since it became possible, GWAS has become the first step in the genetic analysis of complex

traits, taking an agnostic association approach across the entire genome to generate a

hypothesis for further work. By meta-analysis of data with other cohorts these associations

can be asserted with more confidence. With enough samples the association can be fine-

mapped, and in some cases the specific causal variant discovered. The focus of the field

of human genetics on this method has led to many methodological advances, which have

made this analysis more routine and more powerful.

The simple study design makes it relatively easy to collect large sample sizes, giving

high power for association mapping of polygenic traits. Compared to a lab-based or in

vivo assay, where a bottom-up approach of knocking out a gene and then testing for an

effect on phenotype may well be followed, GWAS has four potential advantages:

1. The top-down approach tests all regions of the genome simultaneously, and can find

associations which necessarily have any effect on phenotype without the need for

any prior biological hypothesis.

2. The variation tested occurs naturally in the study population, where more subtle

effects than a gene knock-out are likely important, and do not rely on a potentially

inaccurate animal model.

3. The phenotype tested can be anything quantifiable. This allows investigation of

important traits such as invasiveness or transmissibility which can’t be determined

in the lab.

4. Genetics has one way causation on phenotype, so in some cases successful associ-

ation mapping can be used to determine a causal link without worrying about other

epidemiological confounders. This can also be used to determine causal correlations

using Mendelian randomisation.
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These advantages, and the likely heritable and polygenic nature of bacterial meningitis

noted so far, therefore make it an ideal technique to discover more about genetic risk

factors for pneumococcal meningitis susceptibility and severity. Historically, studies have

been held back by only assessing candidate genes, and current studies have not had large

enough sample sizes or well-defined phenotypes in bacterial meningitis. The availability

of the MeninGene cohort addresses this by adding many more samples of culture-proven

pneumococcal meningitis, along with clinical outcomes.

The same benefits apply to traits in bacteria as well as humans, however issues of strong

population structure, pan-genomic variation and limited sample sizes make these studies

more difficult. Recent methods have successfully addressed a subset of these concerns, but

an approach which deals with all of these issues and is broadly applicable is still lacking.

Given the large sample sizes becoming available, a well-designed GWAS in bacteria is a

promising avenue for research. In the next chapter, I will start by developing and testing

a new method to perform bacterial GWAS in an efficient manner, which simultaneously

addresses the difficulties listed above.
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Bacterial genome-wide association
studies
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2.1 Introduction

The goal of GWAS is to determine which genetic variants, anywhere in the genome, are

associated with a trait of interest. For a binary phenotype, DNA from unrelated cases

and controls are collected (ideally in the ratio 1:1 to maximise power). The simplicity

of sample collection and the power of the resulting test has made GWAS a compelling

study design in human genetics. In this I present work I undertook to apply this study to

populations of bacterial genomes.

I wished to overcome the following issues, which were yet to be simultaneously solved

by existing methods:

• Account for strong clonal population structure.

• A test which works for both complex and Mendelian-like traits.

• Test variation in the entire pan-genome.

• A computationally tractable method, implemented in a form others can use.

The first issue requires the development of an appropriate association test. The simplest

test between a variant and binary phenotype is a χ2 test based on the difference between

observed and expected counts in a 2x2 contingency table comparing the proportion of case

isolates an element is present in to the proportion of control isolates an element is present

in. This does not account for population structure described in section 2.3, leading to many

non-causal lineage associated variants reaching significance. Chewapreecha, Marttinen

et al. (2014) showed that performing this test separately in each discrete defined population

cluster, then combining the results (i.e. the CMH test) can mitigate this problem.

However, the definition of these clusters requires a core genome alignment and running

external software (BAPS). The former may not always be available, and the latter can be

computationally prohibitive to run. Additionally, when there are many population clusters

compared to the total number of samples, power may be reduced. I first investigated

the accuracy and computational requirements of a number of methods which represent

bacterial population structure, with the goal of finding one which is fast to run and does

not require a core genome alignment. Given such a definition of population structure, this

could then included as fixed effects in a logistic regression. This is similar to a χ2 test,

but allows covariates to be included in the model fit, in this case to account for clonal

population structure. I additionally gave consideration to the performance of this test when

a single highly penetrant variant causes the phenotype, as for many antibiotic resistance

determinants. This is closer to a Mendelian-like trait, as opposed to a complex trait which

is affected by many lower penetrance variants.

The issue of assaying variation in the bacterial pan-genome relates to what variant is

used as the predictor in these tests. Taking SNPs in the core genome, as in early human
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GWAS, will miss phenotypes caused by diverse forms of variation. This can include indels,

recombinations, variable promoter architecture, and differences in gene content as well

as capturing these variations in regions not present in all genomes. I compared calling

variation in terms of SNPs and COGs with k-mers – short words of DNA of length k,

that have the potential to capture all these forms of variation. In the present chapter only

common (≥ 1% MAF) variants are considered. The testing of rare variants (< 1%) is

underpowered in the sample sizes used here. The use of burden testing to approach this

issue is discussed and performed in section 4.4.

Finally, after coming up with a test framework to overcome these issues, I designed

the software package SEER to implement it. I used object oriented C++ code for speed

and maintainability, as well as access to efficient linear algebra and optimisation packages

(Sanderson, 2010; Sanderson & Curtin, 2016; D. E. King, 2009). I released SEER on github

(https://github.com/johnlees/seer), where user comments have contributed to continued

improvement and maintenance of the software.

The following sections describe how I dealt with each of these issues in turn. Section 2.6

then describes how the finished method was then applied to three datasets: on simulated

data to compare its performance to existing methods, and two real datasets. The first real

dataset tested whether known associations with antibiotic resistance can be recapitulated,

and the second attempted to find new associations with virulence.

2.2 K-mers as a generalised variant

K-mers have the potential to allow simultaneous discovery of both short genetic variants

and entire genes associated with a phenotype. Longer k-mers provide higher specificity but

less sensitivity than shorter k-mers (Ondov et al., 2016). Rather than arbitrarily selecting

a length prior to analysis or having to count k-mers at multiple lengths and combine the

results, I wished to count all k-mers at lengths over nine bases long (as below this mapping

specificity is poor).

Over all N samples, all k-mers over 9 bases long that occur in more than one sample

are counted. All non-informative k-mers are omitted from the output; a k-mer X is not

informative if any one base extension to the left (aX) or right (Xa) has exactly the same

frequency support vector as X. The frequency support vector has N entries, each being

the number of occurrences of k-mer X in each sample. Further filtering conditions are

explained in section 2.2.1 below.

I used three different methods to count informative k-mers from all samples in a study.

For very large studies, or for counting directly from reads rather than assemblies, I used an

implementation of distributed string mining (DSM) (Välimäki & Puglisi, 2012; Seth et al.,

2014) which limits maximum memory usage per core, but requires a large cluster to run.
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DSM parallelises to as much as one sample per core, and either 16 or 64 master server

processes. DSM includes an optional entropy-filtering setting that filters the output k-mers

based on both number of samples present and frequency distribution. On 3 069 simulated

genomes this took 2 hrs 38 min on 16 cores, and used 1Gb RAM per core. The distributed

approach is applicable up to terabytes of short-read data (Seth et al., 2014), but requires a

cluster environment to run.

For data sets up to around 5 000 sample assemblies (gigabyte-scale data) we implemen-

ted a single core version, fsm-lite, which is easier to install and run. We based fsm-lite on

a succinct data structure library (Gog et al., 2014) to produce the same output as DSM. On

675 S. pyogenes genomes this took 3hrs 44min and used 22.3Gb RAM.

For comparison with older datasets, or where resources do not allow the storage of

the entire k-mer index in memory, I used DSK (Rizk et al., 2013) to count a single k-

mer length in each sample individually, then combined the results. I wrote the program

combineKmers using an associative array in C++ to combine the results from DSK in

memory. I concatenated results from k-mer lengths of 21, 31 and 41, as in Sheppard et al.

(2013). This could in future be scaled to larger genome numbers by instead using external

sorting to avoid storing the entire array in memory.

To get an idea of how much of the total genomic variance of the population each type

of variant (gene, SNP or word) captured, I compared the site frequency spectrum (SFS) of

informative k-mers with COGs and SNPs. Figure 2.1 shows this comparison for the 1 144

S. pneumoniae genomes described in chapter 4. The k-mer SFS is a similar distribution to

the SNP SFS, though there are in total two orders of magnitude more words. There are also

more fixed k-mers (> 99% allele frequency (AF)) – these are due to the core COGs seen in

the final row. Removing rare variants which are not tested for association, the k-mer SFS

remains representative of the two other variation types, and appears to be capturing both.

2.2.1 Filtering k-mers

Before testing for association, I filtered k-mers based on their frequency and unadjusted

p-value. This reduced false positives from testing underpowered k-mers and reduce

computational time. If not biologically plausible, k-mers with negative effect sizes are

filtered at this point.

K-mers are filtered if either they appear in < 1% or > 99% of samples, or are over 100

bases long when counted by DSM. I also first test if the p-value of association in a simple

χ2 test (with 1 d.f.) is less than 10−5, and remove it otherwise. In the case of a continuous

phenotype a two-sample t-test is used instead. The effect of these filters is discussed in

section 2.4.1.
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Figure 2.1: The SFS of 1 144 S. pneumoniae genomes. The x-axis is AF, the y-axis is the number of variants

with allele-frequencies in that bin. Each row uses different sites: the first row shows k-mer presence, the

second row SNPs as the sites (with respect to the ATCC 700669 reference), the third COGs. The first column

shows all sites, the second column only common sites with > 5% AF.

2.3 Accounting for population structure

Due to the clonal reproduction of bacteria, rather than eukaryotic sexual reproduction

resulting in recombination every generation, the genomes from a sampled population will

usually be highly related. This leads to extensive LD across the chromosome, and a simple

GWAS will therefore find many variants reaching significance due to their correlation with

causal variants. The relatedness between all the bacteria in the study must therefore be

quantified, and then appropriately used in the association model to control for this effect.
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In this section I detail ways in which the population structure may be quantified, then in

section 2.4 I explain how this is incorporated into an appropriate association test.

2.3.1 Phylogenetic simulation of genomes

To test the accuracy of population structure estimation, I simulated realistic data with a

known phylogenetic relationship. I then used a suite of methods that infer this phylogeny

from the resulting genome sequence assemblies or alignments, and evaluated them in terms

of accuracy, efficiency and ease of implementation. The use of simulated data under a

realistic model was desirable, as using a tree inferred from real read data as the true tree

would be circular, and would necessarily result in the model that was used to infer the tree

in the first place as being the most accurate.

I used artificial life framework (ALF) (Dalquen et al., 2012) to simulate evolution along

a given phylogenetic tree, using the 2 232 coding sequences in the ATCC 700669 genome

as the most recent common ancestor (MRCA). I used a phylogeny (fig. 2.2), originally

produced by Kremer et al. (2017) from a core genome alignment of 96 L. monocytogenes

genomes from patients with bacterial meningitis, possessing a number of qualities I wished

to be able to reproduce: two distinct lineages, several clonal groups within each lineage,

long branches and a polyphyletic cluster. I define N as the number of strains in the study

and M as the number of aligned sites.

To estimate rates in the generalised time reversible (GTR) matrix and the size dis-

tribution of insertions and deletions, I aligned S. pneumoniae strains R6 (AE007317),

19F (CP000921) and S. mitis B6 (FN568063.) using Progressive Cactus (Paten et al.,

2011). I used previously determined parameters for the rate of codon evolution (Kosiol

et al., 2007), relative rate of SNPs to indels in coding regions (J. Q. Chen et al., 2009),

rates of gene loss and horizontal gene transfer (Chewapreecha, Harris et al., 2014) when

running the simulation. In parallel, I used DAWG (Cartwright, 2005) to simulate evolution

of intergenic regions using the same GTR matrix parameters and previously estimated

intergenic SNP to indel rate (J. Q. Chen et al., 2009). I combined the resulting sequences

of coding and non-coding regions at tips of the phylogeny while accounting for gene loss

and transfer, and finally generated error prone Illumina reads from these sequences using

pIRS (Hu et al., 2012).

To generate input to phylogenetic inference algorithms, I created assemblies and

alignments from the simulated reads. I assembled the simulated reads into contigs with

velvet (Zerbino & Birney, 2008), then improved and annotated the resulting scaffolds

(Page et al., 2016). I generated alignments by mapping reads to the TIGR4 reference using

bwa-mem with default settings (H. Li, 2013), and called variants from these alignments

using samtools mpileup and bcftools call (H. Li, 2011). I used Roary (Page et al., 2015)

with a 95% BLAST ID cutoff to construct a pan-genome from the annotated assemblies,
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Figure 2.2: a) The phylogeny inferred by Kremer et al. (2017) used as the true tree in simulations. Tips

are coloured by BAPS cluster inferred from the core genome alignment. b) The UPGMA tree using k-mer

distances as used by SEER; tip colours are the original BAPS clusters shown in a).

from which a core gene alignment was extracted. I then created alignments by two further

methods. For a MLST alignment I selected seven genes at random from the core alignment

(present in all strains) which had not been involved in horizontal transfer events. For a

Progressive Cactus alignment, I ran the software on the assemblies using default settings,

and extracted regions aligned between all genomes from the hierarchical alignment file
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and concatenated them.

Using the nucleotide alignments described above as input, I ran the following phylo-

genetic inference methods:

• RAxML 7.8.6 (Stamatakis, 2014) with a GTR+gamma model (-m GTRGAMMA).

• RAxML 7.8.6 with a binary+gamma sites model (-m BINGAMMA).

• FastTree 2.1.9 (M. N. Price et al., 2009) using the GTR model (denoted slow) and

using the -pseudo and -fastest options (denoted fast).

• Parsnp 1.2 (Treangen et al., 2014) on all assemblies using the -c and -x options

(removing recombination with PhiPack).

I also created pairwise distance matrices using:

• Mash 1.0 (Ondov et al., 2016) (default settings) between assemblies.

• Andi 0.9.2 (Haubold et al., 2015) (default settings) between assemblies.

• Hamming distance between informative k-mers using a subsample of 1% of counted

k-mers from assemblies.

• Hamming distance between rows of the gene presence/absence matrix produced by

Roary (using 95% blast ID cutoff).

• Jukes-Cantor (JC) and logdet distances between sequences in the alignment, as

implemented in SeaView 4.0 (Gouy et al., 2010).

• Distances between core gene alleles (add a distance of zero for each core gene with

identical sequence, add a distance of one if non-identical), as used in the BIGSdb

genome comparator module (Jolley & Maiden, 2010).

• Normalised compression distance (NCD) (Vitányi et al., 2009), using PPMZ as the

compression tool (Alfonseca et al., 2005).

For all the above distance matrix methods I then constructed a neighbour joining (NJ)

tree, a BIONJ tree (Gascuel, 1997) using the R package ape, and an UPGMA tree using

the R package phangorn. In the comparison I retained the tree building method from these

three with the lowest Kendall-Colijn (KC) distance from the true tree.

To measure the differences in topology between the produced trees (either between the

true tree and an inferred tree, or between all different inferred trees) I used two measures.

As a sensitive measure of changes in topology I used the metric proposed by Kendall and

Colijn (2016) with λ = 0 (ignoring branch length differences). I compared the true tree
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against midpoint rooted random trees giving 286 (95% CI 276-293) as an upper limit on

poor topology inference.

For trees distant from the true tree by the KC metric it was useful to test whether

the tree was accurate overall and only a few clade structures were poorly resolved, or

whether the tree failed to capture important clusters at all. I therefore used a measure of

the clustering of the BAPS clusters from the true alignment on each inferred tree. For

each pair of isolates in a BAPS cluster, a one is added to the score if any children of their

most recent common ancestor is from a different cluster. I applied this to both the primary

BAPS cluster, which separates the two main lineages, and the secondary BAPS clusters

which define finer structure in the data. For the primary BAPS cluster a score of 0 was

achieved by the true tree, which maintained these clusters, and 2437 (95% CI 2401-2457)

for random trees. For the secondary BAPS clusters (excluding the ‘bin’ cluster) a score of

63 was achieved by the true tree, as one cluster is polyphyletic (removing this cluster gives

a score of 0 to the true tree), and 535 to random trees (95% CI 531-539).

Method KC BAPS 1 BAPS 2 CPU time Memory Overheads Parallelisability Accessory genome?

(0-286) (0-2437) (0-535)

RAxML + close 4.63 0 63 806.5 minutes 2.7 Gb Mapped alignment Pthreads No

reference alignment

RAxML 11.2 0 63 587 minutes 3 Gb Mapped alignment Pthreads No

+ alignment

Parsnp 14.0 0 63 42.5 minutes 2.6 Gb Assemblies Threads No

FastTree 16.0 0 63 189 minutes 10.6 Gb Mapped alignment Threads No

+ alignment (up to 4)

RAxML + core 18.6 0 63 29.2 minutes 0.15 Gb Core gene Pthreads No

gene alignment alignment

NJ + SNP 20.5 0 63 Negligible Negligible Mapped alignment No No

alignment

BIONJ + mash 51.7 0 63 0.75 minutes 10 Mb Assembly Embarrassingly Yes

distances

RAxML + MLST 62.6 0 63 1.4 minutes 19 Mb Assembly Pthreads No

alignment

BIONJ + andi 66.0 0 60 7.48 minutes 290 Mb Assembly Embarrassingly Yes

distances

RAxML + Cactus 67.2 0 63 9 600 minutes 37.4 Gb Assembly Threads No

alignment

RAxML + gene 77.3 0 57 4.28 minutes 20 Mb Core gene Threads Yes

presence/absence alignment

BIONJ + k-mer 89.6 0 63 37.3 minutes 180 Mb Assembly Threads Yes

distances

BIONJ + BIGSdb 149.8 0 22 0.48 minutes Negligible Assembly Embarrassingly No

UPGMA + NCD 210 0 627 1 040 minutes Negligible Assembly Embarrassingly Yes

Table 2.1: Accuracy and resource usage of phylogenetic reconstruction methods, ordered by KC metric score.

The method lists the best combinations of all alignment with phylogenetic method, and distance matrices

with phylogenetic methods. Three scores of accuracy of the phylogeny are shown; values in the header are

the range the values can take. Parallelisability shown is that built into the software, ‘embarrassingly’ is when

every value in a distance matrix is independent so can be parallelised up to N2 times.

Table 2.1 and fig. 2.3 show the results of my simulations. I used these simulations

to guide the population structure correction to use in SEER bearing in mind the criteria

laid out above, and also for efficiency/accuracy tradeoffs when constructing phylogenies
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True tree

Alignment-based

Partial alignment

Distance-based 
(alignment)

Distance-based 
(alignment-free)

Figure 2.3: Using the KC metric between all the inferred phylogenies in table 2.1 to create a pairwise

distance matrix, then an NJ tree from this matrix. This shows how the topologies from all methods are related

to each other (a tree-of-trees, or supertree). The true tree is in orange and was used to root the tree, and four

classes of method are labelled.

throughout the rest of this thesis.

Firstly I note that all methods except for the NCD were able to recapitulate the pop-

ulation clusters as defined by BAPS. Therefore for analyses which require identifying

clusters on the phylogeny, but not finer scale topology, quicker but less accurate methods

are sufficient. For construction of a maximum likelihood tree RAxML is currently the

most efficient software available. This was the most accurate method tested, and also the

most resource heavy. RAxML’s model fits the way the data was generated, and is expected

to be a good model of evolution. There was no significant difference in fit between the

inferred tree and the true tree (likelihood ratio test (LRT) = 2.34; p = 0.13). When applied

to an alignment with a reference genome more distant from the root, this method was still

the most accurate. Using a core genome alignment slightly reduces the accuracy, as the

number of sites M used in the inference was reduced compared to the pseudo-alignment

from mapping. Using an MLST alignment of seven genes reduces the accuracy greatly, as

only a small proportion of the genomic variants are now used the the inference.

I found parsnp and FastTree on a whole genome alignment to be the methods which,

while slightly less accurate than RAxML, were able to produce a good quality phylogeny

rapidly. This is useful for alignments with large N and M. Distance matrix and NJ methods

generally performed more poorly, but were still able to resolve large scale population

structure differences.

I now discuss in detail a method which fulfilled the criteria for SEER’s population
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structure correction: it accurately represented the BAPS clusters without needing a core-

genome alignment, used only the information already needed to perform and association

test on k-mers, could be efficiently implemented in C++ with the rest of SEER, and could

be used to provide covariates for a logistic or linear regression rather than using discrete

clusters or a phylogeny.

2.3.2 K-mer distance method producing covariates to control for pop-
ulation structure

Compared with modelling SNP variation, the use of k-mers as variable sequence elements

has been previously shown to accurately estimate bacterial population structure (Tasoulis

et al., 2014). As k-mers are going to be used as the input to the association test, it would

be convenient if they could also be used to control for population strucutre. I defined the

k-mer distance in table 2.1 as follows. First I take a random sample of between 0.1% and

1% of k-mers appearing in between 5-95% of isolates. I then construct a pairwise distance

matrix DDD, with each element being equal to a sum over all m sampled k-mers:

di j = ∑
m
||kim− k jm|| (2.1)

where kim is 1 if the mth sampled k-mer is present in sample i, and 0 otherwise. Each

element di j is therefore an estimate of the number of non-shared k-mers between a pair

of samples i and j, and furthermore is proportional to the Jaccard distance between the

samples (Levandowsky & Winter, 1971). When I clustered samples using these distances,

I got the same results as clustering core alignment SNPs using hierBAPS (L. Cheng et al.,

2013) as shown in fig. 2.2b). These clusters have been used in previous bacterial GWAS

studies to correct for population structure (Chewapreecha, Marttinen et al., 2014). However,

this distance matrix has the clear advantage that no core gene alignment or SNP calling is

needed, so it can be directly applied to the the k-mer counting result.

In an analogous way to the standard method used in human genetics of using principal

components of the SNP matrix to correct for divergent ancestry (A. L. Price et al., 2006;

Chengsong & Jianming, 2009), I then wrote C++ code to perform metric multidimensional

scaling (MDS) on DDD, projecting these distances into a reduced number of dimensions.

The normalised eigenvectors of each dimension of this projection can then be used as

covariates in the regression model, where the number of dimensions used is a user-

adjustable parameter, and can be evaluated by the goodness-of-fit and the magnitude

of the eigenvalues. For the tree shown in fig. 2.2, one dimension was sufficient as a

population control (fig. 2.4a), whereas for the larger collection of 3 069 isolates 10-15

dimensions were needed to give tight control (fig. 2.4b). The small collection has much

of the variance explained by the first dimension/eigenvector, as there is a large separation
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between two main lineages. In the other collections there is a strain structure with multiple

lineages, so more dimensions must be included to capture this. Over all the studies I tested,

generally three dimensions appeared a good trade-off between sensitivity and specificity,

but I automatically provide a scree plot as output so users can choose an appropriate

number of dimensions to retain.
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Figure 2.4: a) Stress against first thirty dimensions, calculated for the S. pneumoniae simulations in

section 2.6.1 (orange in panel b). Stress is defined as S2 = 1−R2, where the R2 statistic is calculated from a

regression between the upper triangle of entries in the distance matrix (i.e. pairwise between all samples)

and the Euclidean distance between samples in the reduced dimension space. b) Eigenvalues for the first

fifty dimensions of the 96 simulated S. pneumoniae isolates in black (section 2.3.1), 3 069 S. pneumoniae
isolates in orange (section 2.6.1), and 675 S. pyogenes isolates (section 2.6.3) in blue.

I noted above that the distance used to approximate bacterial population structure is

an estimate of the k-mer Jaccard distance. After the first version of SEER, the software

mash was developed. This instead uses the MinHash algorithm on k-mers to estimate the

Jaccard distance between sequences in a highly efficient manner (Ondov et al., 2016). As

shown in table 2.1 and fig. 2.3 this distance matrix is considerably more computationally

efficient than the subsampling proposed above, works from the same input data, and

produced a more accurate version of the tree topology in tests. Since version acc4bc1 I

have recommended the use of mash over the above calculation I implemented in SEER,

and provide scripts to run mash and MDS in a manner compatible with the rest of the

package.

2.4 Association testing

Using k-mers as a generalised variant and the above population structure definition I used

general linear models with fixed effects to test for association between genetic variation

and phenotypes. For each k-mer, I wrote code to fit a logistic curve to binary phenotype

data, and a linear model to continuous data. I took care to use time efficient optimisation

routines to allow testing of all k-mers. Bacteria can be subject to extremely strong selection

pressures, producing common variants with very large effect sizes, such as antibiotics
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inducing resistance-conferring variants. This can make the data perfectly separable, and

consequently the maximum likelihood estimate ceases to exist for the logistic model. Firth

regression has been used to obtain results in these cases (Heinze & Ploner, 2003).

In detail, the SEER association testing code does the following. For samples with

binary outcome vector yyy, it fits a logistic model to each k-mer:

log

(
yyy

III− yyy

)
= XXXβββ (2.2)

where absence and presence for each k-mer are coded as 0 and 1 respectively in column 2

of the design matrix XXX (column 1 is a vector of ones, giving an intercept term). Subsequent

columns j of XXX contain the eigenvectors of the MDS projection, any input categorical

covariates (automatically dummy encoded), and quantitative covariates (automatically nor-

malised). I used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to maximise

the log likelihood L in terms of the gradient vector βββ (using an analytic expression for

d(logL )/dβββ ):

log(L ) ∝ ∑
i
[yi · log(sig(XXXβββ )i)+(1− yi) · log(sig(1−XXXβββ )i)] (2.3)

where sig is the sigmoid function. If this fails to converge, n Newton-Raphson iterations

are applied to βββ :

βββ n+1 = βββ n +[−L ′′(βββ n)]
−1 ·L ′(βββ n) (2.4)

from a starting point using the mean phenotype as the intercept, and the root-mean squared

beta from a test of k-mers passing filtering:

β0,0 =
∑yi

n
β0, j>0 = 0.1

This is slower than using BFGS, but has a higher success rate.

If any entries for the observed counts in the contingency table were one or zero, or if

two counts were five or less then Firth logistic regression is used instead. This regression

is also used if after 1 000 Newton-Raphson iterations convergence is not reached, due to

the observed points being separable, or the standard error of the slope is greater than 3

(which empirically indicated almost separable data). Firth regression adds an adjustment

to log(L ):

log[L (βββ )]∗ = log[L (βββ )]+
1

2
·
{

d2L

dβββ 2
(βββ )

}
(2.5)

using which I applied Newton-Raphson iterations as above.
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In the case of a continuous phenotype a linear model is fitted:

yyy = XXXβββ (2.6)

to find βββ , I used the BFGS algorithm to minimise the squared distance U(βββ ):

U(βββ ) = ||yyy−XXXβββ ||2 (2.7)

If this fails to converge then the solution is instead obtained by orthogonal decomposition

of the design matrix:

XXX = QQQRRR (2.8)

then back-solving for beta in:

RRRβββ = QQQT yyy (2.9)

For both the logistic and linear model the standard error on the slope β1 is calculated

by inverting the Fisher information matrix d2L /dβββ 2
to obtain the variance-covariance

matrix. Inversions are performed using the Cholesky decomposition, or if this fails due to

the matrix being almost singular I used the Moore-Penrose pseudoinverse. In the initial

version of SEER, I used the Wald statistic to test the probability null hypothesis of no

association (β1 = 0)

W =
β1

SE(β1)
(2.10)

which is the test statistic of a χ2 distribution with 1 d.f. This is equivalent to the positive

tail of a standard normal distribution, one minus the integral of which gives the p-value.

The Wald test loses power when large effect sizes are tested (Agresti, 2015); I observed

this when testing k-mers of a mosaic penA allele which are known to be causal for

cephalosporin resistance in Neisseria gonorrhoeae (Unemo & Shafer, 2014). A χ2 test

gave a p-value of 3.5×10−181 whereas a logistic regression using the Wald test gave a

p-value of 1.9×10−45, less significant than some non-causal k-mers. A better test is the

LRT: in this case, the LRT of the logistic model gave a p-value of 8.4×10−190, making

these k-mers the top hit.

Here, the LRT test statistic D is defined as

D =−2 · log

(
L (alternative model)

L (null model)

)

= 2 · [log{L (β1 = βfit)}− log{L (β1 = 0)}]

using eq. (2.3) as the likelihood. The distribution of D is χ2 with dfalt− dfnull. In this

case, two times the difference between the log-likelihood at the fitted value and the log-

likelihood of a fit where the k-mer presence/absence column is removed from the design
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matrix is tested using a χ2 distribution with one degree of freedom. Since version 038c4cd

of SEER the p-value for logistic regression is instead calculated using the LRT by default,

though the Wald test p-value is still reported for backwards compatibility.

2.4.1 Significance cut-off

For the basal cut-off for significance I used p < 0.05, with which I used the conservative

Bonferroni correction for multiple testing to give the threshold 1×10−8 based on every

position in the S. pneumoniae genome having three possible mutations (Ford et al., 2013),

and all this variation being uncorrelated. This is a strict cut-off level that prevents a large

number of false-positives due to the extensive amount of k-mers being tested, but does

not over-penalise by correcting directly on the basis of the number of k-mers counted. To

calculate an empirical significance testing cut-off for the p-value under multiple correlated

tests, I generated the distribution of p-values from 100 random permutations of phenotype.

For the 3 069 Maela genomes setting the FWER at 0.05 gave a cut-off of 1.4× 10−8,

supporting the above reasoning.

In general, the number of k-mers and the correlations between their frequency vectors

will vary depending on the species and specific samples in the study, so the p-value cut-off

should be chosen in this manner (either by considering possible variation given the genome

length, or by permutation testing) for individual studies. I have also included association

effect size and p-value of the MDS components in the output of SEER, to compare lineage

and variant effects on the phenotype variation.

The effect the initial χ2 filtering step can be seen by plotting the unadjusted and adjusted

p-values of the k-mers from the simulated data set described in section 2.6.1 against each

other (fig. 2.5). 430 k-mers of 12.7M passing frequency filtering have an unadjusted

p-value which fail to meet the χ2 significance threshold, but would be significant using

the adjusted test (and have a positive direction of effect). These k-mers were all short

words (10-21 bases; median 12) that appear multiple times per sample, and therefore

are of low specificity. When I tested the top p-value k-mer in this set it showed a strong

association of the presence/absence vector with three population structure covariates used

(p = 1.4×10−24; p = 1.2×10−46; p = 1.5×10−9 respectively). Using lasso regression,

the second population structure covariate has a higher effect in the model than the k-mer

frequency vector. Together, this suggested that these filtered k-mers are associated to a

lineage related to the phenotype, but are unlikely to be causal for the phenotype themselves.

To confirm this, I mapped these k-mers back to the reference sequence. None of these

k-mers map to the gene causal to the phenotype.
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Figure 2.5: The − log10 p-values from a χ2 test against the p-value from a logistic regression using the

first three MDS components as covariates. The points are from all the simulated k-mers passing frequency

filtering. The cut-offs used for each test are shown as red dashed lines. Top panel: marginal distribution

of χ2 p-values. Right panel: marginal distribution of logistic regression p-values. a) k-mers meeting the

threshold for significance (a cut-off of 1×10−8) in the logistic regression which map to the causal gene are

coloured in red. b) shading of each point is by MAF. Most of the k-mers with a high χ2 p-value and low

logistic regression p-value are at low frequency, as are those with equal p-values from each test.
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2.4.2 Downstream interpretation of significant k-mers

Significant k-mers can be interpreted directly through mapping to annotated genomes, or

by assembling them first. Assembly may be better at searching for gene clusters associ-

ated with phenotype as longer and more specific k-mers will be generated. I assembled

significant k-mers assembled using Velvet (Zerbino & Birney, 2008) choosing a smaller

sub-k-mer size which maximises longest contig length of the final assembly. K-mers in the

output which are substrings of other longer significant k-mers are removed.

I used BLAT (Kent, 2002) with a step size of 2 and minimum match size of 15 to

find inexact but close matches to a well annotated reference sequence. Small k-mers are

more likely than full reads to map equally well to multiple places in the reference genome,

so reporting both mappings increases the sensitivity. For the tested dataset an average

of 21% of k-mers significantly associated with antibiotic resistance report secondary

mappings. These k-mers are short (median 15bp), and therefore have low specificity and

high sensitivity as expected. I wrote a script which combines the p-values from SEER and

co-ordinates from mapping of the significant k-mers into a .plot file, which can be loaded

into visualisation software http://jameshadfield.github.io/phandango/ to create a Manhattan

plot.

When k-mers do not map to a reference genome, I wrote the C++ program map back

to help interpret these. This reads in all the tested assemblies from which the k-mers

were generated into memory, and threads are spawned which search for k-mers (and their

reverse complement) by exact string match. Using the mapped co-ordinates, annotations

of features in these regions can examined for overlap of function.

2.5 Development of SEER

I implemented SEER in C++ using the armadillo linear algebra library (Sanderson, 2010;

Sanderson & Curtin, 2016), and dlib optimisation library (D. E. King, 2009). When the

code was stable, I profiled its execution over a test dataset of 1 000 k-mers. Most of the

processing time was spent evaluating the exp() function, which is required O(N) times

per k-mer when calculating the likelihood function and its gradient during the logistic fit,

where N is number of samples. I was satisfied that this demonstrated an efficient usage of

CPU time, and further did not identify any memory leaks when profiling with valgrind.

For ease of deployment on non-cluster machines I also threaded each filtered k-mer’s

fitting routine; on four cores this achieved a 2.1 times speedup. While this could probably

be improved by increasing the number of k-mers handled by each thread, the algorithm is

embarrassingly parallel – in practise I split the k-mer file into 16 and ran an independent

process on each one. I also threaded the calculation of entries in the distance matrix D,

using mutex locks to ensure only one process wrote an entry to the matrix at a time. This
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was over 99% efficient.

On my simulation of 3 069 diverse 0.4Mb genomes described in section 2.6.1, 143M

k-mers were counted by DSM and 25M 31-mers by DSK. On the largest DSM set, using 16

cores and subsampling 0.3M k-mers (0.2% of the total), calculating population covariates

took 6hr 42min and 8.33GB RAM. This step is O(N2M) where M is number of k-mers,

but can be parallelised across up to N2 cores.

Processing all 143M informative k-mers as described took 69min 44s and 23MB RAM

on 16 cores. This step is O(NM) and can be parallelised across up to M cores.

After the initial release I added the following features, fixes and improvements in

response to user comments on github:

• Convergence errors and the type of regression used are added in a comment field for

each k-mer.

• Created a virtual machine with SEER installed, without the requirement for further

dependencies.

• Statically complied version (includes libraries in executable).

• Add scripts to map significant k-mers and create a Manhattan plot.

• An alternative implementation of the population structure correction, written in R.

• Tests of all features of SEER, and continuous integration of these through travis.

• Improved installation and usage instructions, including a self-contained tutorial.

2.6 Benchmarking SEER

I benchmarked the performance of SEER on three datasets. The first was a large simulated

set of S. pneumoniae genomes where I was able to define the associated element and

set its effect size manually – this allowed me to calculate the discovery power of SEER

for different sample sizes under different situations. The second dataset was 3 069 real

S. pneumoniae genomes with five antibiotic resistance phenotypes available which helped

me evaluate whether SEER could capture both gene and SNP mediated resistances (which

have large effect sizes, and are often homoplasic, so should be easy to find), and how SEER

compares to previous methods. Finally, I tested SEER on 675 S. pyogenes genomes from

invasive and non-invasive samples to see if SEER could discover any new associations

with a clinically relevant phenotype other than resistance.
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2.6.1 Simulated data

I used a framework similar to that described in section 2.3.1 to simulate genetic sequences.

To make running the simulation tractable for such a large population size, I took a random

subset of 450 genes from the S. pneumoniae ATCC 70066916 strain as the starting genome

for ALF (Dalquen et al., 2012). Using the same parameters as in section 2.3.1 I simulated

3 069 final genomes along the phylogeny observed in a Thai refugee camp (Chewapreecha,

Harris et al., 2014). pIRS (Hu et al., 2012) was again used to simulate error-prone reads

from genomes at the tips of the tree, which I then assembled by Velvet (Zerbino & Birney,

2008). DSM was used to count k-mers from these de novo assemblies. I counted 143M

informative k-mers from this simulated data, though on the real dataset of full length

genomes only 68M informative k-mers were counted.

I used a gamma plus invariant sites model as the distribution of rate heterogeneity

among sites. As I did not have estimates for the parameters of this distribution directly

from the data, I used the estimate given by ALF. The resulting gamma distribution must

have a longer tail than the real data, as some sites vary at high frequency. This created

many low-frequency k-mers. As the simulation is computationally very expensive to run,

I decided that rather than running it lots of times with different parameters until a k-mer

distribution identical to the observed data was reached it would be sufficient to use the

original result. The excess of low frequency k-mers would be filtered out in the common

variation associations I am testing. 24.7M k-mers passed frequency filtering from the

real data, whereas 12.7M passed from the simulated data – while this wasn’t quite the

linear scaling expected with genome length (which would predict around 7M k-mers) the

amount of common variation at the gene level was similar to real data. For the purpose I

used the simulations for, a gene driven association at different ORs, this result was still an

appropriate test.

I then simulated the phenotype based on the genetic sequence. I set the ratio of cases

to controls in the population (SR) at 50% to represent typical antibiotic resistance, and

designated a single variant (which could be either gene presence/absence or a SNP) as

causal. MAF in the population is set from the simulation of genomes, and OR can be

varied. The number of cases DE is then the solution to a quadratic equation (Newman,

2003), which is related to probability of a sample being a case by

P(case|major allele) =
DE

MAF
(2.11)

P(case|minor allele) =

SR
SR+1 −DE

1−MAF
(2.12)

I generated random subsamples of the population 100 times at a range of sample sizes

below the total, with case and control status assigned for each run using these formulae. I

defined power by the proportion of runs that had at least one k-mer in the gene significantly
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associated with the phenotype.
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Figure 2.6: Using simulations and subsamples of the population as described, power for detecting associ-

ations. All curves are logistic fits to the mean power over 100 subsamples.

Having knowledge of the true alignments, I then artificially associated an accessory

gene with a phenotype over a range of odds-ratios and evaluated power at different sample

sizes (fig. 2.6a). The expected pattern for this power calculation is seen, with higher odds-

ratio effects being easier to detect. Currently detected associations in bacteria have had

large effect sizes (OR > 28 host-specificity (Sheppard et al., 2013); OR > 3 beta-lactam

resistance (Chewapreecha, Marttinen et al., 2014)), and the required sample sizes predicted

are consistent with these discoveries.

The large k-mer diversity, along with the population stratification of gene loss, makes

the simulated estimate of the sample size required to reach the stated power conservative.

Convergent evolution along multiple branches of a phylogeny for a real population reacting

to selection pressures will reduce the required sample size (Farhat et al., 2013).

I also compared the performance when using k-mers counted at constant lengths by

DSK (Rizk et al., 2013) to perform the gene presence/absence association. Counting all

informative k-mers rather than a pre-defined k-mer length gave greater power to detect
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associations, with 80% power being reached at around 1 500 samples, compared with

2 000 samples required by 31-mers (fig. 2.6b). The slightly lower power at low sample

numbers is due to a stricter Bonferroni adjustment being applied to the larger number of

DSM k-mers over the DSK k-mers. This is exactly the expected advantage from including

shorter k-mers to increase sensitivity, but as k-mers are correlated with each other due to

evolving along the same phylogeny, using the same Bonferroni correction for multiple

testing does not decrease specificity.

The strong LD caused by the clonal reproduction of bacterial populations means that

non-causal k-mers may also appear to be associated. This is well documented in human

genetics; non-causal variants tag the causal variant increasing discovery power, but make it

more difficult to fine-map the true link between genotype and phenotype (Spain & Barrett,

2015). In simulations it is difficult to replicate the LD patterns observed in real populations,

as recombination maps for specific bacterial lineages are not yet known. To evaluate the

power of fine-mapping and associated locus to the single causal SNP I instead used the

real sequence data and the effect size of a known causal variant, and evaluated the physical

distance of significant k-mers from the variant site.

I tested the 68M k-mers from DSM for association with trimethoprim resistance: 2 639

k-mers reached significance, were mapped to a reference genome, and were found to cover

most of the genome with a peak at the causal variant (fig. 2.7). I placed mapped k-mers

near the correct physical location into three categories: those containing the causal variant

I100L (10 k-mers), those within the same gene (74 k-mers), or those within 2.5kb in either

direction (207 k-mers). Figure 2.6c shows the resulting power when random subsamples

of the population are taken. As expected, power is higher when not specifying that the

causal variant must be hit, as there are many more k-mers which are in LD with the SNP

than directly overlapping it, thus increasing sensitivity.
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Figure 2.7: K-mers are mapped to the ATCC 700669 reference genome. Plotted coverage is the rolling

average over 100bp windows over the genome. The red dashed line at 1 533 003bp shows the location of the

causal variant, overlapping with the peak in coverage.

73



Host and pathogen genetics associated with pneumococcal meningitis

2.6.2 Antibiotic resistance in pneumococcal carriage

I then applied SEER to the sequenced genomes from the study described in section 2.6.1

(Chewapreecha, Harris et al., 2014), using measured resistance to five different antibi-

otics as the phenotypes: chloramphenicol, erythromycin, β−lactams, tetracycline and

trimethoprim. Chloramphenicol resistance is conferred by the cat gene, and tetracycline

resistance is conferred by the tetM gene, both carried on the ICE ICESp23FST81 in the

S. pneumoniae ATCC 700669 chromosome (Croucher et al., 2009). For both of these drug

resistance phenotypes the ICE contained 99% of the significant k-mers, and the causal

genes rank highly within the clusters (table 2.2).

Antibiotic Resistant samples Number of significant k-mers

Total Mapped to reference Highest coverage annotation Causal element

Chloramphenicol 204 (7%) 1 526 1 526 1 508 – ICE 166 – cat

288 – ORF (UniParc B8ZK82)

206 – rep

166 – cat

Erythromycin 803 (26%) 1 154 112 10 – permease (UniParc B8ZKV5) 4 – mega element

8 – prfC 2 – mef

6 – gatA 2 – omega element

4 – ICE

β−lactams 1 563 (51%) 23 876 17 453 381 – ICE 47 – pbp2x

145 – prophage MM1 20 – pbp2b

50 – SPN23F15110 (UniParc B8ZLE7) 8 – pbp1a

49 – ICE orf16

Tetracycline 1 958 (64%) 962 962 962 – ICE 96 – tetM

136 – ICE orf16

121 – ICE orf15

96 – tetM

Trimethoprim 2 553 (83%) 2 639 210 21 – dyr 21 – dyr

Table 2.2: Results from SEER for antibiotic resistance binary outcome on a population of 3 069 S. pneumo-
niae genomes. Significant k-mers were first interpreted by mapping to the ATCC 700669 reference genome.

Up to the first four highest covered annotations are shown, and if the known mechanism is amongst these

it is highlighted in orange. The ICE is the top hit in three analyses, as it carries multiple drug-resistance

elements and is commonly found in multi-drug resistant strains (Croucher et al., 2009).

Resistance to erythromycin is also conferred by presence of a gene, but there are

multiple genes that can be causal for this resistance: ermB causes resistance by methylating

rRNA whereas mef /mel is an efflux pump system (Croucher, Harris, Fraser et al., 2011).

In this population, this phenotype was strongly associated with two large lineages, making

the task of disentangling association with a lineage versus a specific locus more difficult. I

mapped some of the significant k-mers to the mega and omega cassettes, which carry the

mel/mef and ermB resistance elements respectively.

I also mapped hits to other sites within the ICE, a permease directly upstream of

folP, prfC and gatA. Macrolide resistance cassettes frequently insert into the ICE in

S. pneumoniae, so it is in LD with the genes discussed above. In sulphamethoxazole

resistance folP is modified by small insertions, with which the adjacent permease is in LD
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with. Finally, prfC and gatA are both involved in translation, so could conceivably contain

compensatory mutations when ermB mediated resistance is present. Further evidence of

these compensatory mutations would be required to rule out the k-mers mapping to them

simply being false positives driven by population structure.

Some k-mers did not map to the reference, as they are due to lineage specific asso-

ciations with genetic elements not found in the reference strain. This highlighted both

the need to map to a close reference or draft assembly to interpret hits described in sec-

tion 2.4.2, as well as the importance of functional follow-up to validate potential hits from

GWAS methods such as SEER.

Multiple mechanisms of resistance to β−lactams are possible (Chewapreecha, Mart-

tinen et al., 2014). I considered just the most important (i.e. highest effect size) mutations,

which are SNPs in the penicillin binding proteins pbp2x, pbp2b and pbp1a. In this case

ranking annotations by highest coverage found these genes ranked top, but this was not

sufficient evidence for discovery as so many k-mers were significant – either due to other

mechanisms of resistance, physical linkage with causal variants or co-selection for res-

istance conferring mutations. Instead, I looked at the k-mers with the most significant

p-values: the top four hit loci were pbp2b (p = 10−132), pbp2x (p = 10−96), putative RNA

pseudouridylate synthase – UniParc B8ZPU5 (p = 10−92) and pbp1a (p = 10−89). The

non-pbp hit is a homologue of a gene in linkage disequilibrium with pbp2b, which would

suggest mismapping rather than causation of resistance.

Trimethoprim resistance in S. pneumoniae is conferred by the I100L mutation in the

folA/dyr gene (Maskell et al., 2001). The dpr and dyr genes, which are adjacent in the

genome, had the highest coverage of significant k-mers (fig. 2.8). To try and find the

specific variant causal for the phenotype (i.e fine-mapping) I used the BLAT mapping

of significant k-mers to a reference sequence, and called SNPs using bcftools (H. Li,

2011). I set quality scores for a read to be identical, as the Phred-scaled Holm-adjusted

p-values from association. I then filtered for high quality (QUAL > 100) SNPs, and then

annotated the predicted effect using SnpEff (Cingolani et al., 2012). I finally ranked

the effect of missense SNPs on protein function using SIFT, which uses whether sites

are conserved across the protein family to predict whether amino acid changes will alter

protein function (Ng & Henikoff, 2003). Following this fine-mapping procedure, I called

four high-confidence mutations that are predicted to be non-synonymous SNPs. One is the

causal SNP, and the others appear to be hitchhikers in LD with I100L. The SIFT ranking

places the known causal SNP top, showing that in this case fine-mapping is possible using

the output from SEER.

I compared the performance of SEER to two existing methods. Chewapreecha, Mart-

tinen et al. (2014) tested variants from a core-genome SNP mapping using plink (Purcell

et al., 2007); population clusters were used to perform a CMH test to control for population

structure. Sheppard et al. (2013) used fixed k-mer lengths of 21, 31 and 41 as counted
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Figure 2.8: Fine mapping the causal variant for trimethoprim resistance. The locus pictured contains 72

significant k-mers, the most of any gene cluster (fig. 2.7). Coverage over the locus is pictured at the bottom of

the figure. Shown above the genes are high quality missense SNPs, plotted using their p-value for affecting

protein function as predicted by SIFT. Scale bar is 200 base pairs.

by DSK (Rizk et al., 2013), with a Monte Carlo phylogeny-based population control. As

the second method is not scalable to this population size, I used the SEER population

control as calculated from all genomes in the population and a subsample of 100 samples

to calculate association statistics, which is roughly the number computationally accessible

by this method. In both cases, the same Bonferroni correction is used as for SEER.

Antibiotic Causal variant Significant sites Near correct site Notes

plink dsk plink

Tetracycline ICE, tetM 8 029 0 tetM – 124 ICE – 2240

Chloramphenicol ICE, cat 5 310 0 cat – 0 ICE – 1137

β−lactams pbp2x, pbp1a, pbp2b 858 0 pbp2x – 210 pbp1a – 113 pbp2b – 81

Trimethoprim dyr (I100L) 4 009 0 dyr – 47 dpr – 53 Causal SNP ranked 22nd

Erythromycin ermB, mef, mel, mefA 8 469 0 None Element not present in reference

Table 2.3: The power to find genetic associations with antibiotic resistance in the Maela study using existing

methods. For each of the five antibiotics, the true causal variant is listed, as are the number of hits passing

the significance threshold for each method (plink and DSK) and the number which map to the correct region.

Both SEER and association by core mapping of SNPs (using plink) identified res-

istances caused by presence of a gene, when it was present in the reference used for

mapping (table 2.3). Both produced their most significant p-values in the causal element,

though SEER appeared to have a lower false-positive rate. However, as demonstrated

by chloramphenicol resistance, if not enough SNP calls are made in the causal gene this

hinders fine-mapping. SNP-mediated resistance showed the same pattern since many other

SNPs were ranked above the causal variant. In the case of β−lactam resistance both

methods seem to perform equally well, likely due to the higher rate of recombination and

the creation of mosaic pbp genes.

Additionally, as for erythromycin resistance, when an element is not present in the
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reference it is not detectable in SNP-based association analysis. In such cases multiple

mappings against other reference genomes would have to be made, which is a tedious and

computationally costly procedure. Since the k-mer results from SEER are reference-free,

the computational cost of mapping reads to different reference genomes is minimised

as only the significant k-mers are mapped to all available references. Alternatively, the

significant k-mers can be mapped to all draft assemblies in the study, at least one of which

is guaranteed to contain the k-mer, to check if any annotations are overlapped.

The small sample, combined with fixed length 31-mer, approach did not lead to any

words reaching significance for chloramphenicol, tetracycline or trimethoprim as the effect

size of any k-mer is too small to be detected in the number of samples accessible by the

method. I found 19 307 hits for erythromycin, and 419 hits for β−lactams, at between

1-2% MAF which are all false positives that would likely have been excluded by a fully

robust population structure correction method such as the one the authors originally used.

2.6.3 Virulence of Streptococcus pyogenes

Most bacterial GWAS studies to date have searched for genotypic variants that contribute

towards or completely explain antibiotic resistance phenotypes. As a proof of principle

that SEER could be used for the discovery stage of sequence elements associated with

other clinically important phenotypes, I applied the tool to 675 S. pyogenes (group A

Streptococcus) genomes obtained from population diversity studies for genetic signatures

of invasive propensity.

347 isolates of S. pyogenes collected from Fiji (Steer et al., 2009) were sequenced

on the Illumina HiSeq platform, which I then combined with 328 existing sequences

from Kilifi, Kenya (Seale et al., 2016). I defined those isolated from blood, CSF or

bronchopulmonary aspirate as invasive (n = 185), and those isolated from throat, skin

or urine as non-invasive (n = 490). I then ran SEER to determine k-mers significantly

associated with invasion, followed by a BLAST of the k-mers with the nr/nt database to

determine a suitable reference for mapping purposes.

After this preliminary analysis, I found the top hit was the tetM gene from a conjugative

transposon (Tn916) carried by 23% of isolates (fig. 2.9a). These elements are known to

be variably present in the chromosome of S. pyogenes (Roberts & Mullany, 2009), and

the lack of co-segregation with population structure explained the power to discover the

association. However, as a different proportion of the isolates from each collection were

invasive (Fiji – 13%; Kilifi – 43%), the significant k-mers will also include elements

specific to the Kilifi dataset. Indeed, I found that this version of Tn916 was never present

in genomes collected from Fiji. To correct for this geographic bias, I repeated the SEER

analysis by including country of origin as a covariate in the regression. This analysis

removed tetM as being significantly associated with invasiveness, and highlighted the
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importance of such covariate considerations in performing association studies on large

bacterial populations.

Figure 2.9: Phandango view of S. pyogenes HKU488 reference genome (blue blocks at top genes on forward

and reverse strands, tetM highlighted in red) and Manhattan plot of start positions of significant k-mers:

a) associated with invasiveness when not adjusted for country of origin; b) and c) adjusted for country of

isolation.

After applying this correction, I identified two significant hits (fig. 2.9b,c). The first

corresponded to SNPs associating a specific allele of pepF (Oligoendopeptidase F; UniProt

P54124) with invasive isolates. This could indicate a recombination event, due to the

high SNP density and discordance with vertical evolution with respect to the inferred

phylogeny (Dubnau, 1999; Lefébure & Stanhope, 2007). The second hit represented

SNPs in the intergenic region upstream of both IgG-binding protein H (sph) and nrdI

(ribonucleotide reductase). In support of these findings, previous work in murine models

have found differential expression of sph during invasive disease (Raeder & Boyle, 1993,

1995; T. C. Smith et al., 2003b), but little to no expression outside of this niche (T. C.

Smith et al., 2003a). If these k-mers were found to affect expression of the IgG-binding

protein, this would be a plausible genetic mechanism affecting pathogenesis and invasive

propensity (Walker et al., 2014). The association of both of these variations would have

to be validated either in vitro or a within a replication cohort, and functional follow-up

such as RNA-seq may also help with determining the role of these genetic variants in
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S. pyogenes pathogenesis.

In contrast, when I applied existing association methods described above (plink and

DSK) to this S. pyogenes population dataset I found no sites significantly associated with

invasiveness. The CMH test (stratified by BAPS cluster) that uses SNPs called against

a reference sequence failed to identify the tetM gene and transposon as these elements

are not found in the reference sequence. Furthermore, the population structure of this

dataset is so diverse that 88 different BAPS clusters were found, which overcorrected for

population structure when using the DSK method, leaving too few samples within each

group to provide the power to discover associations.

2.7 Conclusions

SEER is a reference-independent, scalable pipeline capable of finding bacterial sequence

elements associated with a range of phenotypes while controlling for clonal population

structure. The sequence elements can be interpreted in terms of protein function using

sequence databases, and I have shown that even single causal variants can be fine-mapped

using the SEER output.

My use of all informative k-mers less than 100 bases long, a robust regression protocol

and the ability to analyse very large sample sizes showed improved sensitivity over existing

methods. This provides a generic approach capable of analysing the rapidly increasing

number of bacterial whole genome sequences linked with a range of different phenotypes.

The output can readily be used in a meta-analysis of sequence elements to facilitate the

combination of new studies with published data, increasing both discovery power and

confirming the significance of results.

As with all association methods, the approach is limited by the amount of recombination

and convergent evolution that occurs in the observed population, since the discovery of

causal sequence elements is principally constrained by the extent of LD. However, by

introducing improved computational scalability and statistical sensitivity SEER improved

on previous GWAS methods for answering important biologically and medically relevant

questions.

In subsequent chapters I will start by using the GWAS techniques developed here to

assess the contribution of bacterial variation to various stages of pneumococcal infection.
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3.1 Introduction

In chapter 2 I developed a method and piece of software to perform GWAS on bacterial

populations. The main test of SEER was finding known antibiotic resistance determinants.

These are one of the easiest GWASs to perform in bacteria, as the effect size of these

variants is so high (close to fully penetrant, hence the need to use Firth regression in some

cases) and the selection pressure over time has led to the causal variants being homoplasic

and broadly spread evenly across the population. In this chapter I test the method on a

phenotype likely to be polygenic in origin, with causal variants that are both population

stratified (lineage effects) and independent of population structure (locus effects) (Earle

et al., 2016).

S. pneumoniae spends most of the transmission cycle in the nasopharynx, and so

understanding and predicting the amount of time spent in this niche is critical for under-

standing this bacterium’s epidemiology, and therefore controlling transmission (Abdullahi

et al., 2012a; Melegaro et al., 2007). The nasopharynx is a complex niche in which

each pneumococcal genotype must tackle a wide range of factors including host immune

defence (McCool et al., 2002), other bacterial species (Pericone et al., 2000), and other

pneumococcal lineages (Auranen et al., 2010; Cobey & Lipsitch, 2012) in order to main-

tain the genotype’s population. The average nasopharyngeal duration period is therefore

affected by a large number of factors, which may, themselves, interact.

A major potential advantage of GWAS in bacteria is the ability to test association

with less well defined phenotypes, for example transmissibility (Nebenzahl-Guimaraes

et al., 2016), or phenotypes which would be difficult to test in a lab. Here I assess genetic

variation associated with pneumococcal carriage duration. Traditionally this would be

difficult to assess due to the complexity of the nasopharyngeal niche, and the length of

time experiments would need to be run for.

One factor that is known to strongly associate with carriage duration is serotype: as cap-

sular polysaccharides are important in bacterial physiology and determining host immune

response, different serotypes have different clearance and acquisition rates (Abdullahi

et al., 2012a; P. C. Hill et al., 2010; Högberg et al., 2007; Melegaro et al., 2007; P. Turner

et al., 2012). Additionally, a range of other proteins have been identified as critical to

the colonisation process (Kadioglu et al., 2008), some of which exhibit similar levels of

diversity to the capsule polysaccharide synthesis locus (Iannelli et al., 2002; Jedrzejas

et al., 2001). However, the overall and relative contributions of these sequence variations

to carriage rate have not yet been characterised. In addition variation of pathogen protein

sequence, accessory genes and interaction effects between genetic elements may also have

as yet unknown effects on carriage duration.

Changes in average carriage duration have been shown to be linked with recombination

rate (Chaguza et al., 2016), which has been found to correlate with antibiotic resistance
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(Hanage et al., 2009) and invasive potential (Chaguza et al., 2016). The carriage duration

by different serotypes is widely used in models of pneumococcal epidemiology, and

consequently is important in evaluating the efficacy of the PCV (Melegaro et al., 2007;

Weinberger, Harboe et al., 2011). Additionally, modelling work has proposed that if

alleles exist which alter carriage duration, these explain the long standing puzzle of how

antibiotic-resistant and sensitive strains stably coexist in the population (Lehtinen et al.,

2017). Measurement of carriage duration and the analysis of its variance beyond the

resolution of serotype will have important consequences for these models.

I sought to determine the overall importance of the pathogen genotype in carriage

duration in a human population, and to identify and quantify the elements of the genome

responsible for the variation in carriage duration using GWAS. By combining epidemi-

ological modelling of longitudinal swab data with and genome wide association study

methods on the connected sequences, I made heritability estimates for carriage duration.

I further partitioned the heritability into contributions from lineage and locus effects to

quantify the variation caused by each individual factor.

3.2 Ascertainment of carriage episode duration using epi-
demiological modelling

I first estimated carriage duration from longitudinal swab data available for the study

population. For 598 unvaccinated children up to 24 swabs taken over a two year period

were available. The study population was a subset of infants from the Maela longitudinal

birth cohort (C. Turner et al., 2013), and was split into two cohorts. In the ‘routine’

cohort, 364 infants were swabbed monthly from birth, 24 times in total. All swabs had

been cultured and serotyped using the latex sweep method (P. Turner et al., 2013). In the

‘immunology’ cohort 234 infants were swabbed on the same time schedule, but cultured

and serotyped following the World Health Organisation (WHO) method (P. Turner et al.,

2012). NT pneumococci had been confirmed by bile solubility, optochin susceptibility and

Omniserum Quellung negative.

I only considered swabs from infants in the study, as mothers did not have sufficient

sampling resolution relative to their average length of carriage to determine carriage

duration. Furthermore, the immune response of mothers to bacterial pathogens is different

to children (Maródi, 2006), leading to shorter carriage durations (Gritzfeld et al., 2014).

To estimate carriage duration from the longitudinal swab data I constructed a set of

hidden Markov models (HMMs) with hidden states corresponding to whether a child was

carrying a serotype at a given time point, and observed states corresponding to whether a

positive swab was observed for this serotype at this time point. The most general model

for the swab data would be a vector with an entry of 0 or 1 for every possible serotype (of
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56 observed in the population), corresponding to whether each serotype was observed in

the swab at each time point. However, the number of parameters to estimate in this model

(with over 6 million states) is much larger than the number of data points (around 14000),

and in particular some serotypes have very few positive observations. Instead, I modelled

each serotype separately.

The models fitted, and their permitted transitions and emissions are shown in fig. 3.2.

In model one, observation i emits state 2 if positively swabbed for the serotype, and state

1 otherwise. The unobserved states correspond to the child ‘carrying’ and being ‘clear’

of the serotype respectively. I assumed swabs have a specificity of one, so do not show

positive culture when the child is clear of the carried serotype; I therefore set the coefficient

for the chance of observing positive culture when no bacteria are present to zero (e21 = 0

in the emission matrix). Model two added a third state of ‘multiple carriage’ which is

occupied when the serotype and at least one other are being carried. Both models were

compared with a version which allows the parameters to covary with whether the child has

carried pneumococcus previously. In model three I accounted for this explicitly by having

separate states and emissions based on whether carriage has previously been observed.

Clear Carrying

Negative
swab

Positive
swab

q12

q21

q11 q22

e22e11

e21

e12 = 0

Clear Carrying

Negative
swab

Single
serotype

q12

q21

q11

q22

e22e11 e21

e12 = 0
e13 = 0

Multiple
Carriage

>1 
serotype

q33

e33

q23

q32

e23 = 0

e32

e31

Clear Carrying

No swabs Positive
swab

q12
q11

q22

e22e11

Previous
Carriage

Previous
swab

q33

e33

q23

q32

e12 = 0
e13 = 0 e21 e23

e31

e32 = 0

Hidden/truth state

Emitted/observed state

Allowed transition between 
hidden states with rate qij
Correct observation of swab,
with probability eii
Incorrect observation of swab,
with probability eij

Model 3
Did not converge

Model 1
AIC = 7097.66
AICcovar = 7093.58

Model 2
Did not converge

Figure 3.2: HMMs of swab time series, and their goodness-of-fit. I fitted three different models to the

processed time-series data with states, allowed transitions and emissions as shown. I refitted each model

allowing the transitions probabilities to covary with the age of the child and whether the child had carried

pneumococcus previously. For the converged model the Akaike information criterion (AIC) is shown for the

original fit, and when including these covariates (AICcovar).

I modelled the time series of swab data using a continuous-time HMM, as implemented

in the R package msm (Jackson, 2011). Unobserved (true) states correspond to whether the

child is carrying bacteria in their nasopharynx, and observed (emitted) states correspond to

whether a positive swab was seen at each point. Transition probabilities between each state
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Q and the emission probabilities E were jointly estimated by maximum likelihood using

the BOBYQA algorithm. To get a good fit of the HMM, I normalised observation times for

each sample. Defining infant birth as t = 0, subsequent sampling times ti were measured

in days, and normalised to have a variance of one. I then constructed the most likely

path through the unobserved states for each child using the Viterbi algorithm (Forney,

1973) with the observed data and estimated model parameters. Assuming that continuous

occupation of the carried state corresponded to a single carriage episode, I calculated the

duration for each such episode from the inferred true states.

I applied all three models to 19F carriage episodes, as these had the most data available,

and calculated the AIC (Akaike, 1974) for each model that converged. Only the simplest

model (model one) converged, as judged by having a positive-definite Hessian and a

converged BOBYQA run. The more complex models had lower log-likelihoods: as

extensions of the simpler model they should have higher log-likelihoods, so this result

was not consistent with model convergence. I tried fitting models two and three using a

fixed false positive values slightly greater than zero: this lead to better log-likelihoods,

but the models still didn’t converge. This failure of the more complex models is probably

because most children in the study immediately enter the carrying state, and episodes of

dual carriage (when split up by serotype) are rare. Therefore there were not enough events

between these carriage states to estimate to the transition and emission intensities, without

sensitivity to initial conditions during the fitting.

I then fitted the best performing model in this test for all serotypes separately. Latex

sweeps could not differentiate 6A and 6C serotypes, so I treated these as a single serotype

(in WHO serotyping PCR was used to differentiate these serotypes, but I still combined

them for consistency across the two cohorts). 15B and 15C serotypes spontaneously

interconvert, so were combined. I also removed two duplicated swabs (08B09098 from the

immunology cohort; 09B02164 from the routine observation cohort). The models for 19F,

23F, 6A/C, 6B, 14 and NT converged, but other serotypes did not have enough observations

to successfully fit the parameters of the model. For these less prevalent serotypes I used the

transition and emission parameters from the 19F model fitted with the correct observations

when reconstructing the most likely route taken through the hidden states. I manually

inspected the results to ensure this did not cause systematic overestimation when compared

with previous studies.
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I found that the fit for NT swabs produced results which overestimated carriage duration

when compared to previously reported estimates. The best fit to the model overestimated

the e21 parameter, which measures the false negative rate of swabbing, in favour of reduced

transition intensities. I therefore fitted the model again, fixing this rate at 0.12. I based this

figure on non-typable S. pneumoniae abundance as defined by 16S survey sequencing. At

1% proportional abundance in the sample, 12% came out as culture negative (table 3.1).

Abundance Culture positive Number

>1% Cultured 361

>1% Not cultured 44

<1% Cultured 56

<1% Not cultured 54

Table 3.1: Success of culturing unencapsulated S. pneumoniae. Based on having >1% abundance of 16S

reads showing the bacteria as being present, 44/361 true positive swabs were not successfully cultured.

3.2.1 Combining epidemiological data with genomic data

From all the swab data, I estimated that there were a total of 4 382 carriage episodes (7.3

per child), of which 2 254 had a complete set of AMR data available (fig. 3.3). After

removing ten outlier observations (fig. A.3) from swabs taken accidentally during disease,

I was able to match 2 157 sequenced genomes with a carriage duration.

As I aimed to fit a multiple linear regression model to the carriage duration y against

binary lineage associated predictors, I first ensured the data was appropriate for this model.

The phenotype distribution was positively skewed, with an approximately exponential

distribution. Residuals were therefore non-normally distributed, potentially reducing power

(McCulloch, 2003). In the regression setting, a monotonic function can be applied to

transform the response variable to avoid this problem. I first took the natural logarithm of

the carriage duration

ŷ = ln(y)

which led to the residuals being much closer to being normally distributed (figs. 3.3

and A.2). I applied the same transformation to child age, when it was used as a covariate

in association. For association with a LMM I instead took a monotonic transform of the

carriage duration using warped-lmm (Fusi et al., 2014) to maximise the study’s power to

discover associations and estimate heritability (figs. A.1 and A.2). This used a sum over

three nonlinear step functions, plus a linear term, to transform the residuals into Gaussians

(Snelson et al., 2004).

For each isolate with an inferred carriage duration I extracted SNPs from the previously

generated alignment against the ATCC 700669 genome (Chewapreecha, Marttinen et al.,
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Figure 3.3: Distribution of carriage duration, and effect of monotonic transformation. Panel a) shows a

histogram of the inferred carriage duration, b) shows this result after the natural logarithm is taken, and c)
after the warping function is applied.

2014). Consequences of SNPs were annotated with VEP, using a manually prepared

reference (McLaren et al., 2010). I generated a phylogenetic tree from this alignment using

FastTree under the GTR+gamma model (M. N. Price et al., 2009). The carriage duration

was mapped on to this phylogeny using phytools (Revell, 2013). I then filtered the sites

in the alignment to remove any where the major allele was an ‘N’, any sites with a minor

allele frequency lower than 1%, and any sites where over 5% of calls were missing. This

left 115 210 sites for association testing and narrow-sense heritability estimation. I also

used the 68M non-redundant k-mers with lengths 9-100 from the de novo assemblies of

the genomes counted in section 2.2. I filtered out low frequency variants by removing any

k-mers with a minor allele frequency below 2%, leaving 17M for association testing.

3.3 Overall heritability of carriage duration is high

To recap section 1.3.2, the variation in carriage duration σ2
P is partly caused by variance

in pneumococcal genetics, and variance in other potentially unknown factors such as

host age and host genetics. It is common to write this sum as two components: genetic

effects σ2
G and environmental effects σ2

E. The proportion of the overall variation which

can be explained by the genetics of the bacterium is known as the broad-sense heritability
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H2 =
σ2

G

σ2
G+σ2

E

. Variants which are directly associated with carriage duration independently

of other variants (non-epistatic effects) contribute to the narrow-sense heritability h2, which

is smaller than the overall broad-sense heritability (Visscher et al., 2008).

H2 can be estimated by linear regression on the phenotype of donor-recipient pairs

which nearly share their genetics (Fraser et al., 2014). However in this dataset previous

work was only able to confidently identify five transmission events, which was not enough

to apply this method. Alternatively, analysis of variance of the phenotype between patho-

gens with similar genetics can be used to estimate heritability (T. J. C. Anderson et al.,

2010). By applying this to phylogenetically similar bacteria (fig. 3.4), I estimated broad

sense heritability H2 with the ANOVA-CPP method in the patherit R package (Mitov

& Stadler, 2016), using a patristic distance cutoff of 0.04 (fig. A.4). This estimated that

H2 = 0.634 (95% CI 0.592-0.686), implying that the genetics of S. pneumoniae is an

important factor in determining carriage duration in this population. If environmental

conditions are associated with streptococcal genotype between populations (such as host

vaccination status) the heritability estimate may differ.

A lower bound on h2 can be calculated by fitting a LMM through maximum likelihood

to common SNPs (h2
SNP) (S. H. Lee et al., 2011; Manolio et al., 2009). I used the ‘GCTA’

model implemented in warped-lmm (Fusi et al., 2014) to estimate h2
SNP for carriage

duration data, using the filtered SNPs and including child age and previous carriage as

covariates. This yielded an estimate of 0.445, consistent with the estimate for H2. I

also estimated h2
SNP using LDAK (Speed et al., 2012) with default settings, which gave an

estimate of 0.437 (<1% difference from the warped-lmm estimate).

3.4 Lineage effects on carriage duration

After calculating the overall heritability, I wished to determine the amount that the specific

variation in the pathogen genome contributes to changing carriage duration. However the

strong LD present across the entire genome of S. pneumoniae, makes it difficult to pinpoint

variants associated with carriage duration and not just present in the background of longer

or shorter carried lineages (P. E. Chen & Shapiro, 2015). Serotype and antibiogram are

correlated with the overall genome sequence (Brueggemann et al., 2003; Chewapreecha,

Harris et al., 2014; Enright & Spratt, 1998), so if these factors are associated with carriage

duration, large sets of variants which define long-carried and short-carried lineages will be

correlated with carriage duration in a naive association test (P. E. Chen & Shapiro, 2015;

T. D. Read & Massey, 2014).

I use the distinction between variants which evolve convergently and affect a phenotype

independently of lineage – termed locus effects – to those which are collinear with a

genotype which is associated with the phenotype, termed lineage effects (Earle et al., 2016).
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Figure 3.4: Mapping of carriage duration onto phylogeny. Using the carriage duration as a continuous trait,

the ancestral state at every node of the rooted phylogeny was reconstructed. Red branches are carriage for a

short time, blue for a long time. Clusters identified in previous analysis have been labelled.

Locus effects may be associated with a change in carriage duration due to convergent

evolution (which may occur through recombination between lineages). In such regions,

the causal loci and corresponding phenotypic effects are easier to identify (Power et al.,

2016). The fixed effect model of SEER (chapter 2) or LMMs can be used to find these

variants which are associated with a bacterial phenotype independent of lineage; discovery

of homoplasic and polygenic variation associated with the phenotype across the entire tree

is well powered (Earle et al., 2016).

While the high heritability suggests many pathogen variants do affect carriage duration,

it does not give information on how many of these will be locus or lineage effects. I

mapped carriage duration onto the phylogeny, reconstructing the ancestral state at each

node. Consistent with the high heritability of carriage duration I found that carriage length

was clearly stratified by lineage (fig. 3.4): I calculated Pagel’s lambda as 0.56 (p < 10−10)

(Pagel, 1997). λ = 0 corresponds to a star-like tree, whereas λ = 1 is Brownian-motion

evolution of the trait. I also modelled the evolution of carriage duration along the tree using
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an Ornstein-Uhlenbeck model as implemented in patherit, and compared the likelihood

of the full fit to that with no genetic effect on the trait (σ2
G = 0) using a LRT with one

degree of freedom. This also suggested that lineage genetics were significantly correlated

with the trait (LRT = 952; p < 10−10)

3.4.1 Serotype and drug resistance explain part of the narrow-sense
heritability

I first tested for the association of serotype with carriage duration using lasso regression

and with a LMM. Serotype is correlated with sequence type (Croucher, Harris, Fraser et al.,

2011) and has previously been associated with differences in carriage duration (Abdullahi

et al., 2012a; P. Turner et al., 2012). I also included resistance to six antibiotics, the causal

element to some of which are known to be associated with specific lineages (section 2.6.2) .

These are therefore possible lineage effects which would be unlikely to be found associated

under a model which adjusts for population structure.

Not all serotypes and resistances may have an effect on carriage duration, or there

may not be enough carriage episodes observed to reach significance. As including extra

predictors in a linear regression always increases the variance explained, I first performed

variable selection using lasso regression (Efron et al., 2004) to obtain a more reliable

estimate of the amount of variation explained. Where a resistance and serotype are

correlated and both associated with a change in carriage duration, this will produce a robust

selection of the predictors (Hebiri & Lederer, 2012).

I encoded all 56 observed serotypes (including NT) and phenotypic resistance to the

six antibiotics (chloramphenicol, β -lactams, clindamycin, erythromycin, trimethoprim

and tetracycline) as dummy variables. I used serotype 6A/C as the reference level, as this

had a mean carriage duration close to the grand mean in previous analysis. Orthogonal

polynomial coding was used for the latter four antibiotics, where resistance could be

intermediate or full. I then regressed this design matrix X against the transformed carriage

duration ŷ. I removed three observations with low carriage lengths due to a delayed initial

swab, and seven observations with leverages of one (fig. A.3).

I performed variable selection using lasso regression (Efron et al., 2004), implemented

in the R package glmnet (Friedman et al., 2010). I used leave-one-out cross-validation

to choose a value for the �1 penalty; the value one standard error above the minimum

cross-validated error (Tibshirani et al., 2001) was selected (λ = 0.033; fig. A.5). The 20

predictors with non-zero coefficients in the model at this value of λ were used in a linear

regression to calculate the multiple R2, which corresponds to the proportion of variance

explained by these predictors.

I also estimated the variance components from serotype and resistance using genomic

partitioning (J. Yang, Manolio et al., 2011), as implemented in LDAK. This estimates h2
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from a subset of the overall genetic loci, allowing for the heritability associated with a

particular region of the genome to be tested. I used SNPs in the capsule locus to calculate

a kinship matrix approximating the contribution from serotype variation. For antibiotic

resistance I used SNPs in the pbp genes, dyr gene and ICE transposon to calculate a kinship

matrix. Restricted maximum likelihood was used to estimate the variance explained by

each of these components.

The selected predictors and their effect on carriage duration are shown in table 3.2.

The total variance explained by these lineage factors was 0.19, 0.178 for serotype alone

and 0.092 for resistance alone. When I used genomic partitioning of variance components

these were instead estimated to be 0.253, 0.135 and 0.113, respectively. I applied the

covariance test (Lockhart et al., 2014) to determine which lineage effects were significantly

associated with carriage duration and found that 19F, erythromycin resistance, 23F, 6B

caused significant (α < 0.05) increase in carriage duration and being non-typable caused a

significant decrease.
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Factor Effect on carriage duration (days)

Mean (intercept) 59.5

Erythromycin resistance +7.5
Tetracycline resistance +3.0

Trimethoprim resistance +2.9

Clindamycin resistance +1.8

Penicillin intermediate resistance +1.3

Serotype 19F +46.9
Serotype 23F +21.0
Serotype 6B +16.2
Serotype 14 +7.2

Serotype 21 +1.6

Serotype 19B -0.1

Serotype 18C -1.9

Serotype 29 -4.3

Serotype 3 -4.5

Serotype 4 -7.2

Serotype 24F -8.5

Non-typable -12.3
Serotype 5 -18.6

Table 3.2: Coefficients from lasso regression model of carriage duration. The mean (intercept) corresponds

to a sensitive 6A/C carriage episode, and different serotypes and resistances are perturbations about this

mean. Positive effects are expected to have a greater magnitude, due to the positive skew of carriage duration.

Rows in bold were significant predictors in the covariance test.

3.4.2 Independent effects of serotype and genetic background

Previous studies have used isogenic strains to look for effects of serotype of colonisation

and carriage duration independent of genetic background. Resistance to killing (Weinberger

et al., 2009), growth phenotype (Hathaway et al., 2012) and resistance to complement

(Melin et al., 2010) have all been shown to affect carriage through serotype rather than

genetic background. Conversely, some bacterial genetic variation has been shown to be

able to affect colonisation independent of serotype (Nadeem Khan et al., 2014).

I therefore wished to test whether the detected effect of serotype and resistance on

carriage duration was entirely mediated through their covariance with lineage, or whether

they are independently associated with carriage duration. I first looked for differences

in duration over three recent capsule gain/loss events; if there is an effect of serotype

independent of genetic background, these would be predicted have the largest difference
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between serotypes while controlling for the relatedness of isolates. Capsule switch events

had been previously identified by first reconstructing of the ancestral state of the serotype

at each node through maximum parsimony (Chewapreecha, Harris et al., 2014). For

each node involving loss or gain of the capsule, those with at least one child being a tip

were selected to find recent switches (all were capsule gain). The carriage duration of all

unencapsulated children (in the phylogenetic sense) of the identified node were used as

the null distribution to calculate an empirical p-value for the switched isolate. P-values

were combined using Fisher’s method (Rosenthal, 1978). No significant difference in

duration was seen between isolates with or without capsule within the same lineage (p =

0.39; fig. 3.5).

However, as these events were limited in number, assumed genetic independence within

the clade and occurred only in part of the population, I also performed the same regression

as above while also including lineage (defined by discrete population clusters) as a predictor.

This therefore allows serotypes which appear in different population clusters to distinguish

whether lineage or serotype had a greater effect on carriage duration. The covariance test

found that 19F, erythromycin resistance and being non-typable had significant effects on

the model (in that order). As these terms enter the model before any lineage specific effect,

this suggested these serotypes and resistances are associated with variation in carriage

duration independent of background genotype

This lasso-based analysis may be vulnerable to confounding from unmeasured variables

which may be associated with the explanatory variables (serotype and resistance). To fully

account for the effect of the bacterial genome rather than relying on discrete clusters as

covariates in the regression, I then performed regression of these lineage effects under a

LMM where the relatedness between strains was instead included as a random effect. The

predictors had the same order of significance, but only serotype 19F reached genome-wide

significance (p = 3.8×10−7).

Together, this suggested that the main lineage effect on carriage duration is the serotype,

but only some serotypes (19F) have an association independent of genetic background. I

also found that erythromycin resistance may be significantly associated with an increased

carriage duration. While being a relatively uncommon treatment in this setting (3% of

treatments captured), I did not find that other antibiotics were associated. This may

be because erythromycin resistance would be expected to cause an almost four order

magnitude increase in minimum inhibitory concentration (MIC), whereas other resistance

acquisitions have a much smaller effect.

3.4.3 Average carriage duration by serotype

Additionally, I calculated the mean sojourn times (average length of time children are

expected to remain in the carrying state of the model with the given serotype) and mean
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Figure 3.5: Change in carriage duration associated with capsule switching events. For each of the three

events analysed the subtree containing the switch is shown on the left. For each isolate within the subtree,

carriage duration (on a roughly exponential scale), warped carriage duration (on a roughly linear scale) and

serotype are shown as coloured bars aligned with the tip.
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number of carriage episodes from the fit to the HMM for commonly carried serotypes

(table 3.3), which gave results similar to the regression performed above. These estimates

are comparable to the previous analysis on a subset of these samples. The majority of

carriage episodes were due to five of the seven paediatric serotypes (Shapiro & Austrian,

1994), or non-typeable isolates. The results show 19F, 23F and 14 were carried the longest,

6A/C and 6B for intermediate lengths, and NT the shortest.

Serotype Sojourn time (days) Expected number of infections

19F 292* 0.85

23F 112 0.83

6A/C 76.4 0.88

6B 114 0.75

14 137* 0.58

NT 40.6 2.05

Table 3.3: Mean length of carriage, and expected number of carriage episodes within the first two years of

life. Only serotypes with enough data for the HMM fit to converge are shown. Starred observations have a

standard error which is larger than the estimated value, indicating low confidence in the estimate.

The overall picture of the first two years of infant carriage is one containing one or

two long (over 90 day) carriage episodes of a common serotype (6A/C, 6B, 14, 19F, 23F)

and around two short (under a month) carriage episodes of non-typable S. pneumoniae.

Colonisation by other serotypes seem to cause slightly shorter carriage episodes, though the

relative rarity of these events naturally limits the confidence in this inference. That some

serotypes are rarer and carried for shorter time periods may be evidence of competitive

exclusion (Hardin, 1960; Trzciński et al., 2015), as fitter serotypes quickly replace less fit

serotypes thus leading to reduced carriage duration. The calculated mean carriage duration

of NT pneumococci is similar to the minimum resolution I was able to measure by the

study design, which suggests carriage episodes may actually be shorter than one month.

Unfortunately the only existing study with higher resolution did not check for colonisation

by NT pneumococci (Abdullahi et al., 2012a).

These estimates are similar to previous longitudinal studies in different populations

(P. C. Hill et al., 2010; Högberg et al., 2007; Melegaro et al., 2007), though against

the Kilifi study these estimates are systematically larger. This may be due to the lower

resolution swabbing we performed, or may be because the previous study was unable to

resolve multiple carriage (11% of positive swabs). While the heritability estimates are

specific to this population due to differences in host, vaccine deployment and transmission

dynamics, the similarity of the estimates of serotype effect to those from different study

populations suggests our results may be somewhat generalisable.
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3.5 Additional loci identified by genome-wide association

To search for locus effects I used the linear mixed model implemented in fast-lmm

(Lippert et al., 2011) to associate genetic elements with carriage duration, independent of

overall lineage effects. I used the warped phenotype as the response, the kinship matrix

(calculated from SNPs) as random effects, and variant presence, child age and previous

carriage as fixed effects. For SNPs I used a Bonferroni correction with α < 0.05 and

an N of 92 487 phylogenetically independent sites to derive a genome-wide significance

cutoff of p < 5.4×10−7, and a suggestive significance cutoff (Lander & Kruglyak, 1995;

Stranger et al., 2011) of p = 1.1× 10−4. I tested pairwise LD between the significant

SNPs by calculating the R2 between them. I removed those with R2 > 0.2, assuming these

represented the same underlying signal, to define the significant loci. For k-mers I counted

5 254 876 phylogenetically independent sites, giving a genome wide significance cutoff

of 9.5×10−9. I used blastn with default settings to map the significant k-mers to seven

reference genomes (ATCC 700669, INV104B, OXC141, SPNA45, Taiwan19F, TIGR4 and

NT 110 58), and the possible Tn916 sequences (Croucher, Harris, Fraser et al., 2011).

The results for SNPs are shown in fig. 3.6 and table 3.4, with 14 loci reaching suggestive

significance and two reaching genome-wide significance (top hit β = 0.17; p = 2.1×10−7;

MAF = 1%). I also found that 424 k-mers reached genome-wide significance (top hit

β = 0.11; p = 2.1×10−12; MAF = 2%), which I filtered to 321 k-mers over 20 bases long

to remove low specificity sequences (fig. A.7). To determine their function, I mapped these

k-mers to the coordinates of reference sequences.
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Co-ordinate Nearest annotation Effect size P-value Significance level

6753 trcF -0.12 6.2×10−5 Suggestive

254312 pepS -0.11 6.4×10−5 Suggestive

303239 IS630-Spn1 transposase 0.078 9.2×10−5 Suggestive

333632 pbp1a 0.079 2.5×10−5 Suggestive

971849 SPRITE repeat region 0.078 9.4×10−5 Suggestive

1013978 IS630-Spn1 transposase 0.11 3.7×10−5 Suggestive

1073185 FM211187.3435

(pseudogene)

0.086 3.3×10−5 Suggestive

1308604 aroA -0.27 3.8×10−5 Suggestive

1472933 Upstream of fms -0.23 5.3×10−5 Suggestive

1473700 putative glutathione S-

transferase

-0.16 8.8×10−5 Suggestive

1515497 hypothetical phage pro-

tein

-0.099 5.2×10−5 Suggestive

1516293 putative phage Holliday

junction resolvase

-0.10 5.1×10−6 Suggestive

1516350 putative phage Holliday

junction resolvase

-0.12 2.1×10−7 Genome-wide sig-

nificant

1517063 phage protein -0.11 3.3×10−7 Genome-wide sig-

nificant

1613197 pbp2b -0.21 4.8×10−5 Suggestive

1813192 thioesterase superfamily

protein

-0.12 4.8×10−6 Suggestive

Table 3.4: SNP locus effects at genome-wide and suggestive significance. Co-ordinates are with respect to

the ATCC 700669 reference genome, and are for the lead SNP in each locus after LD-pruning. Effect sizes

are for the warped phenotype.

3.5.1 Prophage sequences associated with reduced carriage duration

The only genome-wide significant SNP hits are synonymous changes in the replication

module of the prophage in the ATCC 700669 genome (MAF = 1%), a highly variable

component of the pneumococcal genome (Croucher, Coupland et al., 2014) (fig. 3.7). The

LD structure suggested there were two separate significant signals found in this region. I

therefore performed another GWAS conditioning on the top hit (using it as a fixed effect

in the regression at other sites, and removing it from kinship estimation) to test if there

was a second independent signal, but found that the second hit in this region was no longer

significant (position 1526024; p = 2.2×10−4). The current data is therefore consistent
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with only a single significant hit to prophage.

The most significant k-mer hits were also located in phage sequence (MAF 2%) and

were associated with a reduced duration of carriage. As these mobile genetic elements

are less weakly population stratified than other regions of the genome, they are easier

to find as locus effects. The LD in this region is less than in the rest of the genome, as

prophage sequence is highly variable within S. pneumoniae lineages (Croucher, Coupland

et al., 2014). Multiple independent phage variants may therefore affect carriage duration,

which will increase their significance using a LMM. Indeed, the significant results from the

LMM (top SNP p = 2.1×10−7; top k-mer p = 2.1×10−12) are not significant (top SNP

p = 5.1× 10−6; top k-mer p = 5.7× 10−8) under a model of association using a linear

regression with the first 30 principal components as fixed effects to control for population

structure rather than random effects, and are strongly associated with the population

structure components of the model (highest association p = 5.2× 10−75 with principal

component 2).

I first postulated that presence of any phage in the genome may cause a reduction in

carriage duration. I identified the presence of phage by performing a blastn of the de

novo assemblies against a reference database of phage sequence (Croucher et al., 2016).

If the length of the top hit was over 5000 I defined the isolate as having phage present

(fig. A.6). I then used the presence of phage as a trait under the same linear mixed model,

however I found no evidence of association when correcting for population structure (p =

0.35). These results are therefore evidence that infection with a specific phage sequence is

associated with a slight decrease in carriage duration. A similar result has previously been

found in a genome-wide screen in N. meningitidis, where a specific phage sequence was

found to affect the virulence and epidemiology of strains (Bille et al., 2005; Bille et al.,

2008). Additionally, previous in vivo tests have shown phage elements to cause a fitness

decrease of S. pneumoniae during carriage (DeBardeleben et al., 2014).

The genetic polymorphisms in the prophage associated with changes in carriage dur-

ation, found in 2% of viral sequences, were within coding sequences inside the phage

replication module (Romero et al., 2009). It is unlikely the specific variants of these

proteins cause a significant difference in phenotype, because they are only highly ex-

pressed after the prophage is activated, and cell lysis usually happens shortly afterwards.

One explanation for these results is that some subpopulations of prophage do not cause

a significant decrease in their host bacterium’s carriage duration, which could be due

to beneficial ‘cargo’ genes. However previous surveys of pneumococcal prophage have

found little evidence of these elements carrying such sequences (Croucher, Coupland et al.,

2014; Romero et al., 2009). One phage protein that has been found to alter the bacterial

phenotype is PblB, a phage structural protein that can also mediate bacterial adhesion to

platelets (Loeffler & Fischetti, 2006). However, pblB is within the morphology module

(Romero et al., 2009) and as an adhesin might if anything be expected to increase carriage
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Figure 3.7: Manhattan plots of phage-associated SNPs associated with carriage duration. As in fig. 3.6,

but enlarging the phage region found to be significant. SNPs are coloured by their LD with the lead SNP

(the highest P-value in the region plotted), and are crosses if they are predicted to cause a change in coding

sequence. Panel a) shows LD in relation to the lead SNP at position 1516350. Panel b) plots genes in the

region, with the start and end of the phage genes labelled. Panel c) shows LD in relation to the second SNP

signal at position 1517063.
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duration, and was not detected in the association analysis. Hence the detected association

is unlikely to represent expression of viral machinery or cargo genes in the host cell while

the prophage is dormant.

Alternatively, the association with only a subset of prophage may have been a con-

sequence of the study sampling design. Using a monthly swabbing approach, it was only

possible to infer changes in the carriage duration of genotypes that colonise hosts for

relative long periods. Therefore any prophage variant that enhances a virus’ ability to

infect long carriage duration pneumococci may have an increased association with the

variation in the observed phenotype. As phage commonly exhibit high levels of strain

specificity (Duplessis & Moineau, 2001), this is a plausible mechanism, although the role

of the replication module in such host preference is unclear.

An additional mechanism by which prophage can affect host phenotype is by inserting

into, and thereby disrupting, functional genes. Pneumococcal prophage frequently insert

into comYC, thereby preventing the host cell undergoing transformation (Croucher, Harris,

Fraser et al., 2011; Croucher, Hanage et al., 2014). Using previous categorisation of

the comYC gene in this collection into intact versus interrupted or missing (Croucher

et al., 2016), I found that having an intact comYC gene (23% of isolates) was significantly

associated with an increased carriage duration (β = 0.29; p = 1.4× 10−44). The effect

size is similar to the associated phage k-mers, but has at a higher allele frequency (hence

the increased significance of the result). An interpretation consistent with these findings

would be that the effect of phage k-mers is actually through interrupting comYC. The

k-mers themselves were spread out to lower frequencies due to their sequence variability,

and none of the references I used allowed mapping to find the comYC interruption directly.

3.5.2 Other loci associated with altered carriage duration

Signals at the suggestive level included pbp1a and pbp2b, which suggested as above that

penicillin resistance may slightly increase carriage duration, but there are not enough

samples in this analysis to confirm or refute this. Other signals near genes at a suggest-

ive level included SNPs in trcF (transcription coupled DNA repair), padR (repressor of

phenolic acid stress response), pepS (aminopeptidase), aroA (aromatic amino acid syn-

thesis), fms (peptide deformylase) and a thioesterase superfamily protein. K-mers from

erythromycin resistance genes (ermB, mel, mef ) were expected to reach significance from

the above analysis, but did not: however I showed in section 2.6.2 that the power to detect

these elements in a larger sample set taken from the same population is limited due to the

multiple resistance mechanisms and stratification of resistance with lineage.

The test statistic from fast-lmm roughly followed the null-hypothesis, with the excep-

tion of the significant phage k-mers (fig. A.8). However there is limited power to detect

effects associated with both the lineage and phenotype. This effect has been previously
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noted, and while LMMs have improved power for detecting locus specific effects they

lose power when detecting associated variants which segregate with background genotype

(Earle et al., 2016). To search for candidate regions which may be independently associated

with both a lineage and increased carriage duration, I ran an association test with SEER

(chapter 2) using a set number of fixed effects as the population structure correction. In

this case I used the patristic distances from the phylogenetic tree as the kinship matrix,

which I then projected into 30 dimensions using metric multidimensional scaling to obtain

covariates. This may be expected to have higher power than an LMM for true associated

variants on ancestral branches as some association with population structure is permit-

ted, but will also increase the number of false positives (variants co-occurring on these

branches which do not directly affect the carriage duration themselves). To reduce the

number of false positives I used a strict threshold of p < 10−14. I separately tested SNPs

for their association with those principal components which were themselves significantly

associated with carriage duration, and therefore may be driving the lineage associations

using the model of Earle et al. (2016).

The most highly associated SNPs were in all three pbp regions associated with β -

lactam resistance, the capsule locus, recA (DNA repair and homologous recombination),

bgaA (beta-galactosidase), phoH-like protein (phosphate starvation-inducible protein),

ftsZ (cell division protein) and groEL (chaperonin). As 19F, the serotype most associated

with carriage duration, is predominantly the β -lactam resistant PMEN14 lineage the pbp

association may be driven through strong LD between with this serotype. Figure A.9

shows the analysis of SNPs which may be driving significant lineage associations – this

also suggested dnaB (DNA replication) may be associated with altered carriage duration.

Associated k-mers were also found in phtD (host cell surface adhesion), mraY (cell wall

biosynthesis), tlyA (rRNA methylase), zinT (zinc recruitment), adcA (zinc recruitment)

and recJ (DNA repair). Additionally I found k-mers in the bacteriocin blpZ and immunity

protein pncM (Bogaardt et al., 2015) to be associated with variability in carriage duration.

This could be evidence that intra-strain competition occurs within host via this mechanism,

consistent with previous in vitro mouse models (Dawid et al., 2007).

It is not possible to determine whether variation in these genes is associated with

a change in carriage duration or if the variation is present in longer carried, generally

more prevalent lineages. For example, β -lactam resistance may appear associated as the

long carried lineages 19F (dominated by PMEN14, as noted above) and 23F are more

frequently resistant, or it may genuinely provide an advantage in the nasopharynx that

extends carriage duration independent of other factors. Future studies of carriage duration,

or further experimental evidence will be needed to determine which is the case for these

regions.

Antigenic variation in known regions (of pspA, pspC, zmpA or zmpB) may be expected

to cause a change in carriage duration (Lipsitch & O’Hagan, 2007), however I did not find
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any of these to be associated with a change in carriage duration. This was likely due to

stratification of variation in these regions with lineage, but may also be caused by a larger

diversity of k-mers in the region reducing power to detect an association.

3.6 Child age independently affects variance in carriage
duration

Finally, I wished to determine the importance of two environmental factors which are

known to contribute to variance in this phenotype: child age and whether the carriage

episode is the first the child has been exposed to (Abdullahi et al., 2012a, 2012b; P. Turner

et al., 2012). These have been applied throughout the analysis as covariates, both in the

estimation of carriage episodes and in associating genetic variation with change in carriage

duration.
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Figure 3.8: Predicted mean carriage duration as a function of child age. Fit is an exponential decay over the

first two years of life, using the decay rate inferred from a linear regression of log(carriage duration).

I applied linear regression to these factors while using the first 30 PCs to correct for

the effect of the bacterial genome, which showed they were both significantly associated

with carriage duration as expected (age p = 3.9×10−7; previous carriage p = 2.5×10−8).

Using the linear mixed model to control for bacterial genotype both factors were again

significant (LRT = 26.4; p = 1.8×10−6). Together, they explained 0.046 of variation in

carriage duration. As found previously, increasing child age contributes to a decrease in

the duration of carriage episodes. From a mean of 68 days long, I calculated a drop of 19

days after a year, and 32 days after two years. Extrapolating, this causes carriage episodes

longer than two days to cease by age 11 (fig. 3.8). Previous carriage of any serotype was
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estimated to cause an increase in the duration of future carriage episodes, though previous

studies have found no overall effect (Weinberger et al., 2008). It has previously been

shown that prior exposure to non-typables in this cohort make colonisation by another

non-typable occur later, and for a shorter time (P. Turner et al., 2012). The positive effect

observed in this analysis is therefore likely to be an artefact due to subsequent carriage

episodes being more likely to be due to typable pneumococci.

Additional environmental factors that explain some of the remainder of the variance

may include the variation of the host immune response and interaction with other infections

or co-colonisation. In particular, co-infection with influenza A was not recorded but

is known to affect population dynamics within the nasopharynx (Kono et al., 2016).

Fundamentally, imprecise inference of the carriage duration will limit the ability to fully

explain its variance here.
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3.7 Conclusions

Other than serotype, the genetic determinants of pneumococcal carriage duration were

previously unknown. By developing models for longitudinal swab data and combining

the results with whole genome sequence data I have quantified and mapped the genetic

contribution to the carriage duration of S. pneumoniae. I found that despite a range of other

factors such as host age which are known to cause carriage duration to differ, sequence

variation of the pneumococcal genome explains most of this variability (63%). Common

serotypes and resistance to erythromycin caused some of this effect (19% total), as does the

presence or absence of particular prophage sequence in the genome. Table 3.5 summarises

the sources I found to be significantly associated with variation in carriage duration.

Source of which is Total variance explained Proportion of total

heritability explained

Total heritability (H2) 0.634 (CPP) 1.00

Common SNP heritability (h2
SNP) 0.438 (LMM) 0.691

Serotype and resistance 0.190 (R2) 0.300 (R2)

0.253 (LMM) 0.399 (LMM)

Serotype only 0.178 (R2) 0.281 (R2)

0.135 (LMM) 0.213 (LMM)

Resistance only 0.092 (R2) 0.145 (R2)

0.113 (LMM) 0.178 (LMM)

Phage k-mers 0.067 (LMM) 0.106

Intact comYC 0.127 (LMM) 0.201

Measured environmental Age and previous carriage 0.046 (R2) -

effects

Table 3.5: Summary of variance of carriage duration explained by genetic and environmental factors. H2

encompasses all rows, other than the measured environmental effects. For each variant component the

method used to estimate it is reported: CPP - closest phylogenetic pairs; LMM - variance component using a

linear mixed model with pathogen genotype as random effects; R2 - linear regression using lasso to select

predictors.

I have provided a quantitative estimate of how closely transmission pairs share their

carriage duration, and show evidence for differences both between and within serotypes.

The implication of phage as having a significant effect on carriage duration has interesting

corollaries on pneumococcal genome diversification through frequent infection and loss of

prophage, even during carriage episodes in this dataset.

Investigating a mechanism for the prophage association, I found that having an intact

comYC gene, which is frequently interrupted by prophage causing loss of function of

the competence system, was associated with increased carriage duration. While the

competence system is observed to remain intact over the evolutionary history of the

species, these disruptive mutations spread irreversibly through the population as competent

bacteria can acquire the mutation, and non-competent bacteria can no longer reverse it

through recombination (Croucher, Hanage et al., 2014). Selection must therefore maintain
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the function at this locus over short timescales, and an increased carriage duration may

be evidence of this. I therefore hypothesise that the associated prophage sequences may

haved affected carriage duration through disruption of the competence system.

The results presented here have important implications for the modelling of pneumo-

coccal transmission and their response to perturbation of the population by vaccine. Im-

portantly, the analysis of heritability shows that variants other than serotype affect carriage

duration, consistent with recent theoretical work (Lehtinen et al., 2017). Here I have shown

that these alleles do exist in a natural population, and also identified candidates for the loci

which fulfil this role. Together these studies suggest that variants exist in the pneumococcal

genome which alter carriage duration, which in turn is linked to antibiotic resistance.

I was not able to fully explain the basis for heritability of carriage duration for a

number of reasons. The close association of the phenotype with lineage limited our power

to fine-map lineage associated variants other than capsule type which may affect carriage

duration. Meta-analysis with more large studies with higher resolution may help to resolve

these issues. Additional environmental factors that explain some of the remainder of the

variance may include the variation of the host immune response and interaction with other

infections or co-colonisation. In particular, co-infection with influenza A was not recorded

but is known to affect population dynamics within the nasopharynx (Kono et al., 2016).

This is a phenotype which would have been difficult to assay by traditional methods

such as in an animal model due to the cohort size needed and the length of time experiments

would need to be run for. By using GWAS I have been able to quantitatively investigate a

complex phenotype in a natural population. This chapter has also advanced the application

of GWAS methods applied to bacteria started in chapter 2 by application to a more

difficult to define phenotype, introducing heritability and genomic partitioning, and testing

specifically for locus effects. I have also implicitly compared fixed effect and random effect

models to control for population structure. In the next chapter I will continue using these

approaches to identify pneumococcal genetic variation associated with bacterial meningitis,

while developing a more thorough catalogue of variation within the pneumococcal genome.
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4.1 Introduction

This chapter deals with the contribution of variation in the pathogen genome to bacterial

meningitis. Using a GWAS framework, I first wished to test whether any variation in

the pneumococcal genome is associated with susceptibility to meningitis or with a poor

outcome of the infection. To study this, I used isolates collected as part of the MeninGene

study (section 1.1.4). This part of the study consists of 3 089 pathogen isolates from the

culture-proven cases of bacterial meningitis from the Netherlands. DNA was extracted

from CSF and blood cultures and sequenced with 100bp paired end reads on the Illumina

HiSeq platform. Of these sequences, 1 984 were S. pneumoniae. 751 carriage genomes

from Dutch adults and children were also sequenced to use as controls for susceptibility

analysis.

I first catalogued all forms of variation to use as the loci to test in a GWAS (section 4.3).

While k-mers cover most of this variation, I also included tests of SNPs and genes due to

their more straightforward interpretation. Some forms of variation such as inverting repeats,

CNVs, recombinogenic antigens cannot be captured by these methods, so I developed new

techniques to call variants at these loci. While this covered all forms of common variation

detectable by short reads in the pneumococcal genome, rare variants may also play a role

in disease pathogenesis. I annotated the predicted effect of rare coding variants to choose

which to use in burden tests.

Using the SNP variation to tag other forms of variation in the genome, I was able to

estimate the heritability of each of these traits (the proportion of variance in the phenotype

is explained by variation within the genome). Finding evidence for pneumococcal genetic

variants contributing to invasiveness other than serotype, I then used the methods presented

in chapters 2 and 3 to test whether any of the specific variants that I called were associated

with susceptibility to or severity of meningitis.

Section 4.5 concerns pathogen variation that occurs over the course of a single infection.

Croucher, Mitchell et al. (2013) have previously shown that in a single patient bacteria

appeared to adapt to the distinct conditions of blood and CSF. These are very different

niches from that of nasopharyngeal carriage where this variation is well documented

(Cremers et al., 2014), not least because the bacteria are exposed to different immune

pressures (Habets et al., 2012) and have less time over which to accumulate mutations.

It is possible that bacteria inhabiting the nasopharynx are already well adapted for CSF

invasion. However, genetic variants that enable invasion of the CSF are not expected to

be under positive selection, since invasion is an evolutionary dead end for the bacterium.

Studies of carriage alone will therefore be unable to detect selection during invasion.

Current knowledge on within-host variation during invasive disease is mostly focused at

the serotype and MLST level, and lacks the resolution and sample size to be able to address

this question (Brueggemann et al., 2003; del Amo et al., 2015; D. A. Robinson et al., 2001).
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Though the only whole genome based study suggests there is no difference between blood

and CSF populations (at the gene level) in S. pneumoniae (Kulohoma et al., 2015), larger

sample sizes are needed to better answer this question.

I therefore wished to expand the analysis of Croucher, Mitchell et al. (2013) by

including more cases of disease, and used 938 pairs of genomes from the blood and the

CSF of the same patient, and 54 pairs from the nasopharynx and CSF of the same patient

sequenced as part of the MeninGene study described above. This sample set included both

N. meningitidis isolates and S. pneumoniae isolates, each of which was analysed separately.

As isolate pairs are matched they are closely related; the issue of population structure

affecting bacterial GWAS is no longer a problem. Variants between pairs can be grouped

by functional effect and tested for association with a niche straightforwardly.

4.2 Quality control and processing

In this section I discuss initial QC of isolates in the collection, and evaluations of both

assembly and variant calling software to be used throughout the chapter.

Using a single S. pneumoniae isolate, I compared the quality of three assembly methods

that have previously been shown to perform well on bacterial genomes (Magoc et al., 2013):

Velvet (Zerbino & Birney, 2008), SPAdes (Bankevich et al., 2012) and SOAPdenovo2 &

MaSuRCA (Zimin et al., 2013). Statistics from this comparison are shown in table 4.1.

I decided that the SPAdes pipeline provided good quality assemblies while being easy

to run, so assembled all isolates in the collection with v3.5 of the software using default

settings. Additionally I ran velvet on all samples, which when k-mer length is optimised

and scaffolds are improved, gave similar results to SPAdes. I corrected the resulting velvet

assemblies with SSpace and GapFiller (Page et al., 2016). The assembly result used for

each purpose will be stated throughout the rest of the thesis.

Velvet SPAdes SOAPdenovo2 & MaSuRCA

# contigs 48 7 7
Total length 2 096 048 2 205 585 2 139 022

N50 77 648 429 779 481 453
# genes 2 073 2 208 2 166

CPU time 6 h 7.2 h 5.5 h

Maximum memory 3.7 GB 7.0 GB 4.3 GB

Disk space 0.1 GB 0.6 GB 4.2 GB

Table 4.1: Assembly and annotation of S. pneumoniae isolate 11822 8 30. N50 is the median contig length.

For each performance metric the best scoring method is in bold.
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I then analysed the quality of the SPAdes assemblies using quast (Gurevich et al.,

2013) and kraken (Wood & Salzberg, 2014). I performed this analysis at the sample level,

rather than at the contig level. As the primary aim is a GWAS I desired complete and

comparable assemblies, so the number of included samples at each variant is the same. I

found two assemblies which were predominantly another species, and discarded them. I

also discarded five sequence runs with low yield, 17 with total lengths over 2.5Mb, two

with total lengths under 1.8Mb and one with a GC content of 31.4%. This left 1 144 CSF

isolates and 674 pairs of blood and CSF isolates for downstream analysis. For the carriage

samples I removed 29 isolates contaminated with another species (determined by kraken,

and the position on a preliminary core gene alignment phylogeny), and 8 isolates which

showed evidence of being mixed samples (number of heterozygous SNPs in preliminary

mapping was greater than two standard deviations above the mean). This left 693 carriage

isolates for downstream analysis.

To compare variant calling methods I produced a set of true variant calls for 30 samples.

I did this by simulating evolution of S. pneumoniae genomes along the branch of the tree

between S. pneumoniae R6 (Hoskins et al., 2001) and the common ancestor with S. mitis

B6 (Denapaite et al., 2010). The rates in the GTR matrix and insertion/deletion frequency

distributions were estimated as in section 2.3.1. I created an average of 10 000 mutations

with these rates, and Illumina paired end read data at 200x coverage simulated using pIRS

(Hu et al., 2012).

Method True positives False negatives False positives

bcftools 24922 900 244

freebayes 22253 3569 1465

GATK 25024 798 191

Table 4.2: Performance of variant calling algorithms on simulated data. True positives are SNPs or INDELs

correctly called; false negatives are variant sites which were missed by the caller; false positives are sites

without variation but called as a variant.

I mapped the reads with bwa-mem (H. Li, 2013), followed by samtools fixmate, sort

and markdup. I then called variants using bcftools, freebayes (Garrison & Marth, 2012)

and GATK (Van der Auwera et al., 2002). The results are shown in table 4.2. freebayes

performed poorly due to its use on multiple nucleotide polymorphism (MNP)s, which were

difficult to compare to the simulations. GATK performed the best on all measures, and

in particular achieved much better power at calling indels. I used it for calling SNPs and

indels throughout, unless otherwise stated.
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4.3 Catalogue of all pneumococcal variation

In this section I detail how I catalogued population level variation in the pneumococcal

genome. These variants are then used throughout the rest of this chapter as the predictor

variable in GWAS with various phenotypes of interest, analysis of within-host variation and

in chapter 5 as the phenotype in a genome to genome analysis. As discussed in section 2.2,

variation in bacterial genomes is not well represented by short changes compared to a

linear reference due to extensive variation of the accessory genome (Donati et al., 2010;

McInerney et al., 2017), mosaic alleles created by recombination (Hanage et al., 2009),

structural variation (Croucher, Coupland et al., 2014; Manso et al., 2014) and copy number

variation (Howden et al., 2015). I used different techniques to determine the variation

present in each sample from each of these sources to ensure maximum discovery power of

the GWAS performed.

While short variants (i.e. SNPs and small indels) with respect to a single linear

reference only partially covers the variation present in the pneumococcal population, it

is still a useful dataset to produce. A genome alignment produced this way can be used

to generate the phylogenetic relationship between all samples from the population and

create discrete related clusters. Both of these are useful for QC, heritability analysis

and evaluating population structure. Additionally, the effect of these variants on protein

function can be straightforwardly predicted, making conclusions drawn from them more

easily interpreted and also of use in indirect tests of association section 4.4.2.

I produced a whole genome alignment in two ways. Firstly I mapped reads to the

ATCC 700669 reference using bwa mem with default settings

bwa mem r e f e r e n c e . f a f o r w a r d r e a d s . f a s t q r e v e r s e r e a d s .

f a s t q | s a m t o o l s f i x m a t e −O bam − > o u t p u t . bam

and finally marked duplicate reads in these binary sequence alignment/map (BAM) files

using Picard. I then called variants from each of these BAM files separately using samtools

mpileup and bcftools call, and as a population using GATK HaplotypeCaller. I then applied

hard quality filters to each of these call sets to create initial calls. To select variants based

on a correctly scaled sensitivity and specificity I used GATK VariantRecalibrator to scale

the variant quality scores. This tool requires known true positive calls as a prior – I used the

intersection of hard filtered variants from GATK and bcftools with 90% confidence (Q10),

and filtered variants from the Maela and Massachusetts studies with 68% confidence (Q5)

as recommended. After recalibration, I applied 99.9% power as the cut-off for variants to

maximise sensitivity at this stage. Finally, I annotated the predicted consequence of all

passing variants with variant effect predictor (VEP) (McLaren et al., 2010).

I also produced a core-genome alignment using roary (Page et al., 2015) with a 95%

blast ID cut-off. Roary efficiently performs all by all alignment using every annotated
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protein in the dataset. Those matches with over 95% ID are assumed to be orthologs

and are clustered and undergo multiple sequence alignment. Using a single cut-off will

mean that some genes with orthologous function but without sequence homology (for

example different alleles of a gene) will not be clustered together, and that some genes

without orthologous function but with sequence homology will be incorrectly clustered.

We chose the cut-off of 95% based on having the best balanced accuracy of these two error

classes when using reciprocal best BLAST hits to define true orthologs (Ward & Moreno-

Hagelsieb, 2014). As well as core genes (present in at least 99% of samples) roary also

clusters accessory genes into COGs, which I later used as a variant in association. In this

case the annotated function helped determine whether the cluster is showing presence or

absence of gene or groups of different alleles of a gene that is being tested for association.

I counted k-mers using fsm-lite (section 2.2), which required 75Gb RAM and 14hrs

CPU time to count all informative k-mers with a minor allele count (MAC) of ten or more.

In this sample set there were 11.7M informative k-mers with 2.6M unique patterns. I

called CNVs from the BAM files produced above using cn.mops (Klambauer et al., 2012)

which fitted the coverage of mapped reads in 1kb windows with a mixture of Poisson

distributions, and determined the most likely integer coverage value for each sample in

each window. I extracted the inferred copy number from those windows which had support

for a CNV from more than one sample.

4.3.1 Allelic variation of three pneumococcal antigens

I wished to determine whether sequence variation of pneumococcal antigens is associated

with virulence and disease outcome. As well as being plausible GWAS hits, these antigens

vary rapidly (Croucher, Vernikos et al., 2011), meaning sequence variation is not popula-

tion stratified, which increases discovery power. Conversely, while the k-mer approach

(section 2.2) either directly assays or indirectly tags most variation in the population,

variation of these antigens may not be captured by this method. For example, pspC can

be difficult to assemble due to repeats and copy number variation (Iannelli et al., 2002),

and therefore k-mers from the gene sequence will not appear in the assembly, and not be

counted or tested. In pspA and zmpA, mapping of k-mers may not be specific to the allele

sequence due to sequence homology with orthologous and paralogous genes (Hollingshead

et al., 2000; Bek-Thomsen et al., 2012).

Here I consider pspC/cbpA, pspA and zmpA, which have all been shown to have

interactions with the host immune system (Croucher et al., 2017), but have variability

that may not be assessed by the methods discussed above. I needed to develop a way

first to classify possible alleles, then determine the allele of each sample from short read

sequence data. For the latter issue, de novo assembly (followed by a BLAST with a set

of reference alleles) is unreliable for completely reconstructing the gene sequences, but
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usually contained some information about the allele present. Alternatively mapping the

sequence reads to a set of reference alleles is less affected by repeat sequences and may be

more accurately used to find the allele of genes (Inouye et al., 2014), but determining the

closest match is non-trivial. I decided to use a method which combines summary statistics

from both of these techniques to determine the allele type. This has previously shown to

be advantageous for antibiotic resistance typing from genomic data; Hunt et al. (2017)

designed a method using combination of assembly and mapping which had improved type

I and type II error rate over either technique alone.

I defer discussion of the variability and construction of a reference panel specific to

each of these alleles until the sections below, and first discuss the typing method I applied

to determine the allele of all three antigens given such a reference panel. I first generated

statistics from the assemblies of all samples by running blastp between the annotated genes

in both the velvet and SPAdes assemblies and the reference panel. From this, I extracted

the % ID, number of mismatches, number of gaps, E-value and bitscore between the two

assemblies of sample and every possible reference. For mapping I used srst2 (Inouye et al.,

2014) in a mode which maps reads to all reference sequences, and reports information

about coverage over every possible allele. I used the coverage, number of SNP mismatches,

number of indel mismatches and number of truncated bases.

This led to a data frame with 16 predictors for every reference sequence, per sample

(for example pspC had 48 references, so there were 768 predictors). When a match was

not reported by blastp or srst2 I filled in value with the minimum reported value of the

predictor (or maximum for the number of mismatch fields), and removed predictors without

variation.

To produce labelled training data I performed the same process on the reference panel

itself, for each sequence using blastp against all the reference sequences and srst2 with

simulated reads (these were error-free 100bp reads with 200x coverage and 350bp insert

size with 80bp standard deviation (s.d.)). In all cases, on the test data simple variance

analysis showed these statistics could be used to predict classification of alleles successfully

(fig. A.13). I fitted a classifier to this training data (see section 4.3.1 for details), then finally

used the trained model to predict the allele for all samples. The results are shown in fig. 4.1.

As expected, all the antigens show some, but not total, concordance with background

genotype. I used the above process for typing all antigens; I now discuss the specifics of

constructing the reference panel for each antigen.

pspC/cbpA allele

The pspC gene, also known as cbpA, hic, spsA or pbcA, is paralogous to pspA and is known

to have a number of immunogenic functions. These include binding host proteins C3, CFH

and IgA, all of which are involved in the immune response to pneumococcal colonisation
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Figure 4.1: The inferred allele of pneumococcal antigens zmpA, pspA and pspC. Left: phylogenetic tree of

CSF isolates. Right: tips coloured by the inferred allele for three antigens, and key. The first two columns

are alleles 1–6 and 7–11 of pspC, which may have two copies present (Iannelli et al., 2002).
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Figure 4.2: Pictographic alignment of the two forms of PspC, as in Iannelli et al. (2002). The top shows

cbpA-5; all alleles cbpA 1-6 have a choline anchor, and otherwise vary in their α helix content. The bottom

shows pspC-7; all alleles pspC 7-11 have an LPXTG anchor instead of a choline anchor.

(Brooks-Walter et al., 1999). The locus encoding PspC varies extensively, and two main

forms exist (fig. 4.2) which are distinguished by having a choline anchor (alleles 1-6) or

a LPXTG anchor (alleles 7-11) (Iannelli et al., 2002). Each genome may encode neither,

one or both of these forms and they are normally found in tandem.

I used the existing classification of 11 alleles described by Iannelli et al. (2002), and the

48 sequences reported by these authors (fig. A.10). To allow for the fact that each of the two

forms may be present or absent I trained two classifiers. The first, referred to as the cbpA

allele, used alleles 1–6 and treated 7–11 as missing. The second, referred to as the pspC

allele, used alleles 7–11 and treated 1–6 as missing. Though there was correlation between

the two allele types (for example 4 and 10 were more likely to co-occur) I trained the

two classifiers independently. I first checked whether the reference data could distinguish

between the labels using PCA, and then predicted two different alleles for each sample.

I tried four different ‘out of the box’ classifiers: support vector machine (SVM) with a

linear kernel, weighted k-nearest neighbours, random forests and DAPC (Jombart et al.,

2010). I inspected the statistics and annotations to manually assign the allele pair for 25

genomes from across the tree, then using these truth values and compared the classification

accuracy of each method. Table 4.3 shows that the SVM performed best; I used it for all

four classifiers. Inspection of the feature importance showed the blastp bitscore, E-value,

and number of mismatches as well as the srst2 number of truncated bases and number of

mismatches were the most informative predictors.

Method Balanced accuracy

SVM 0.86

kknn 0.73

Random forest 0.50

DAPC 0.14

Table 4.3: Comparison of classifiers of antigen alleles. The balanced accuracy is given by the average of
1
2 (sensitivity+ specificity) for all alleles.
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pspA and zmpA alleles

PspA is a well studied pneumococcal antigen (Crain et al., 1990) which binds C3 (Tu et al.,

1999) and lactoferrin (Shaper et al., 2004). Its locus is involved in both ancestral and recent

recombination events which has created variation at the locus (Hollingshead et al., 2000;

Croucher, Harris, Fraser et al., 2011). ZmpA, also known as Iga, is a zinc metalloprotease

which cleaves IgA molecules (Wani et al., 1996). Similarly to pspA, the sequence is

variable within the population and is under diversifying selection (Bek-Thomsen et al.,

2012).

Croucher et al. (2017) have manually created clusters of sequences for both of these

antigens using 616 carriage genomes (Croucher, Finkelstein et al., 2013). Sequences were

combined into the same allele if their translated sequence was identical, giving 39 possible

sequences for pspA and 18 possible sequences for zmpA. I used these sequences as the

reference panel for each allele.

Unlike pspC where sequences had been further clustered based on functional domains

by Iannelli et al. (2002), this reference panel contained very similar sequences with different

allele labels. Using this directly for GWAS would lead to low power as the number of

sequences with each allele would be very small, and the classification would also likely

be poor due to the relative paucity of reference data for each allele. To avoid this I used

the phylogentic relationship between sequences to clustered similar sequences into allele

groups before training each classifier.

For both antigens I aligned the reference panel of amino acid sequences using MUSCLE

(Edgar, 2004), and built a phylogeny with RAxML with a CAT+GAMMA model. To test

the robustness of these phylogenies I ran 100 maximum-likelihood bootstrap replicates,

and 106 mrbayes Markov-chain Monte Carlo (MCMC) iterations (discarding the first 25%

as burn-in, sampling every 103 steps) to generate a sample of 750 trees from the posterior

distribution. I compared the topology of these trees using treescape (Kendall & Colijn,

2015), and found the placement of ancestral branches of the topology were poorly resolved,

though placement of sequences in main clades was well supported. I therefore took a cut

through the deep branches of the two phylogenies, defining four alleles for pspA (fig. A.11)

and three alleles for zmpA (fig. A.12). This phylogeny and classification is similar to three

families previously defined for pspA, and three families previously seen for zmpA. Using

these alleles I then fitted classifiers to the reference panels as in section 4.3.1, and predicted

the allele for all samples in the study.

4.3.2 Phase variable type I R-M system allele (ivr)

Croucher, Coupland et al. (2014), J. Li et al. (2016), Manso et al. (2014) have highlighted

a potential role in virulence for the ivr locus, a type I restriction-modification system with

a phase-variable specificity gene allele of hsdS in the host specificity domain (fig. 4.3).
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Figure 4.3: The structure of the ivr type I restriction-modification locus. The restriction (hsdR) and

methylation (hsdM) subunits, and the 5’ end of the specificity subunit (hsdS) are generally conserved.

Inverted repeats IR1 (85bp) and IR2 (333bp) facilitate switching of downstream incomplete hsdS elements

into the transcribed region. Top: The green read pair has the expected insert size, and suggests allele A

(1.1, 2.1) is present. The red read pair is in the wrong orientation and has an anomalously large insert size.

Bottom: The red read pair is consistent with the displayed inversion, suggesting allele D (1.2, 2.1) is present.

There are six possible different alleles A-F for hsdS, each corresponding to a different level

of capsule expression. Some of these alleles are more successful in a murine model of

invasion, whereas others are more successful in carriage.

Due to the high variation rate and structural rearrangement mediating the change the

allele cannot reliably be determined using assembly and/or standard mapping of short read

data. Instead, I extracted mates of reads mapping to the reverse strand of the conserved

5’ region for each sample, and mapped with BLAT (Kent, 2002) to the possible alleles in

position 1. This forms a vector ri of length two for each sample i, with the number of reads

mapped to 1.1 and 1.2. Similarly, to determine the 3’ allele (position 2), I extracted pairs

of reads mapping to each of the reverse strand of allele 1.1 and the forward strand of allele

1.2 and mapped to the three possible alleles in position 2. This forms a vector qi of length

six for each sample i, with the number of reads mapped to each allele A-F.

I performed this on all samples in the collection and found 677 of 693 carriage samples

and 1 052 of 1 144 invasive CSF samples had at least one read mapping to an allele of the

ivr locus hsdS gene. In the invasive samples, this corresponded to 621 CSF blood sample

pairs. Those without any reads mapping had either a deletion of one component of the

locus, or a large insertion mediated by the ivr recombinase.

4.4 GWAS of bacterial variants associated with meningitis

While it is well known that pneumococcal serotype contributes to invasive propensity

(Hausdorff et al., 2000; Brueggemann et al., 2003), it is of great interest in the field of

pneumococcal biology whether variation in other regions of the genome can independently

affect invasiveness. Many virulence factors are known to be involved in and essential

for pneumococcal colonisation and disease (Kadioglu et al., 2008), but whether natural

variation in these regions affects clinical cases of disease has yet to be assessed. Indeed,

the overall role of pneumococcal variation in invasive disease is as yet unknown, and

therefore the proportion of variation in invasiveness which can be ascribed to the capsule

and the proportion due to other factors cannot be determined. Additionally, the lack of
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large cohorts combining detailed clinical metadata with bacterial data means that little is

known about about the effect of pneumococcal variation on disease outcome. Previous

studies with small sample sizes have suggested a role for platelet binding (Tunjungputri

et al., 2017) and arginine synthesis (Piet et al., 2014), with additional evidence from in

vitro observations.

I first performed a heritability analysis to quantify the amount of variation due to the

pneumococcal genome for each phenotype. As well as using the methods described in

section 3.3 I also applied a phylogenetic mixed model assuming an Ornstein-Uhlenbeck

(OU) process of trait evolution as implemented in the patherit package (Mitov & Stadler,

2016), which has previously been shown to be less biased than other techniques for

estimating the heritability of pathogen traits (Blanquart et al., 2017). I performed 200 000

MCMC iterations, discarding the first half as burn-in and thinning the chain to every

hundredth value. LDAK performs heritability estimation of this binary trait on the liability

scale (Lynch & Walsh, 1998). I peformed this analysis within genomes collected from

meningitis, stratified using GOS to define clinical outcome, and between genomes from

carriage and genomes from meningitis (referred to as ‘invasiveness’).

Trait Method

LDAK OU closest phylogenetic-pairs (CPP)

Invasiveness 0.983±0.003 0.9936 (0.9928-0.9943) 0.995 (0.991-0.998)

Unfavourable outcome 0.006* did not converge 0.05 (-0.04-0.16)

Death 0.0001* 0.02 (-0.07-0.11) 0.07 (-0.03-0.17)

Table 4.4: Estimated heritability of pneumococcal invasiveness and outcome due to variation of the pathogen

genome. Values shown in brackets are the 95% CIs, where provided by the method, for LDAK the standard

error is shown, unless the LRT p-value was > 0.05 so there is no support for a non-zero heritability (shown

by an asterisk).

Table 4.4 shows the predicted heritability from each method. There is evidence that

invasive propensity is highly heritable, but that disease outcome is not determined by

natural variation of pathogen genetics. The latter is not surprising as invasive disease as

an evolutionary dead end for the pathogen, adaptations affecting virulence over the short

course of infection are unlikely to be selected for. The dependence on invasiveness is well

known to depend on pneumococcal genetics, but not the degree. The high heritability

estimated here, supported by three different techniques, suggests that in this population

some bacteria are able to invade while others are not, with almost certainty depending on

the genetic background. This is consistent with some serotypes not being found in invasive

disease (Hausdorff et al., 2000), and their wide genetic separation from invasive serotypes.

The complete heritability is likely an overestimate due to the binary nature of the trait,

but does show that pathogen genetics are important in invasiveness and not likely to be

important in severity.
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I then wished to quantify the amount of this heritability which was due to serotype,

which is the current focus of pneumococcal vaccination and the most well known invas-

iveness determinant, versus other factors. As in section 3.4.1 I used leave-one-out cross

validation with lasso logistic regression to select the 36 serotypes (of 63 observed) which

were informative of invasiveness. I then assessed the variance in invasiveness explained

by these serotypes using Nagelkerke’s pseudo R2 from logistic regression (International

Schizophrenia Consortium et al., 2009; Hosmer et al., 2013), which was 0.45. Caution

should be used in directly interpreting this R2 as variance explained, but it does show the

model fit from serotype alone is not as good as using the pneumococcal kinships, suggest-

ing there are factors other than serotype which affect invasiveness. I also checked whether

invasiveness is well predicted by capsule charge, as has been previously suggested by Y. Li,

Weinberger et al. (2013). Using the previously measured zeta potentials, and using the

serogroup average when a serotype charge was not available, I performed the same logistic

regression using charge as the predictor rather than serotype. Charge significantly affected

invasiveness but was not as informative as the specific serotype (p < 10−10; Nagelkerke’s

R2 = 0.08), suggesting a role for finer structure of the capsule structure (Bentley et al.,

2006).

In the rest of this section, using the variation defined for all samples as in section 4.3

and the GWAS methods developed in chapters 2 and 3, I tried to find the pneumococcal

variants other than serotype which affect invasivness. Even though there is no evidence

from the above heritability analysis that variation in the pneumococcal genome contributes

to disease outcome I ran the same analysis on these phenotypes anyway – it may be that

the common/core variation used to produce these estimates fails to tag variation in the

accessory genome or phase variable regions which may contribute to outcome. In this

case a lack of association will also provide further support for zero heritability due to the

bacterial genome.

In the first section I consider association of common variants in the pan-genome (all of

those described in section 4.3) with the phenotypes predominantly using the techniques

already described. I then go on to asses the role of rare variation firstly using tests

of selection, and more directly using an association combining variants with the same

predicted effects. Finally I developed a model to test whether any particular ivr allele, or

the amount of variation of the allele is associated with any of the phenotypes.

4.4.1 Role of common variation

Using the variants catalogued above, with previously described filtering thresholds, I

performed a GWAS between the isolates from invasive disease and asymptomatic carriage,

as well as unfavourable outcomes and/or death within the invasive isolates. I used SEER

with the first ten MDS components to correct for population structure, as well as FaST-
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LMM (Lippert et al., 2011) using the kinship matrix estimated from SNPs and INDELs as

random effects.

Figure 4.4 shows the Q-Q plots of the resulting p-values from these methods on SNPs

and k-mers with invasive versus carriage isolates. In both cases the test statistic from SEER

is clearly highly overinflated for this population and phenotype, meaning a high significance

threshold would be needed to remove population structure confounded associations. I

have shown that invasiveness is highly heritable, so population structure being highly

confounding is unsurprising. Increasing the number of fixed effect population structure

covariates may help alleviate this issue, but as the LMM test statistic is better controlled,

and as it was a successful method in chapter 3, I have used it for all associations of common

variants with the three phenotypes. For significance thresholds I used the unique number

of patterns as the number of tests in a Bonferroni correction, giving p < 8.2×10−7 for

SNPs and p < 1.9×10−8 for k-mers. However, inspection of the Q-Q plots shows that for

k-mers the LMM is still overinflated, so I have instead taken p < 1×10−16 to describe the

top hits.

From all three of SNPs, COGs and k-mers by far the most highly associated variants are

transposons. These mobile elements of DNA can insert into different places in the bacterial

host genome through inverted repeat sequences, and coevolve with the bacterial population

(Kleckner, 1981; Levin & Moran, 2011). In some cases transposons can carry cargo genes,

such as antibiotic resistance conferring mechanisms, which increase host fitness (Croucher,

Harris, Fraser et al., 2011). However, the transposons here appear to be simple elements

lacking such cargo, and are therefore unlikely to explain a difference between carriage

and invasive isolates directly. Most likely these transposons are present in some genetic

backgrounds and not others, and are therefore a population structure confounded result.

Their variability in position in the genome and specific sequence may mean they are less

well controlled for against genetic background. Due to the lack of plausible functional link

with the phenotype I do not consider them further here.

Other hits are shown in table 4.5, ordered by the variant type discovered. In some

cases COGs were incorrectly clustered and actually represent two alleles of the a gene

orthologs. For three of these alleles I found a positive association with invasive isolates

from one allele, and a negative association from the alternative allele. To annotate the

genes here I used the best blastp match to the core and accessory genome defined by

Croucher, Finkelstein et al. (2013), and if not annotated already I used blastp with the

nt/nr database to find annotated orthologs, and hmmscan and cd-hit to find functional

domains to inform the annotation.
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Figure 4.4: Quantile-Quantile plots for invasive S. pneumoniae GWAS methods. Red line is for observations

following the null-hypothesis of no association, plotted points are observed p-values from each method. Top

row: p-values from SNPs and INDELs from mapping; bottom row: p-values from k-mers. Left column:

SEER run with the first ten population structure components. Right column: FaST-LMM run on the same

input.
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Gene ID Annotation Core Method p-value

FM211187.6011 tlyC; Membrane protein

(upstream)

Yes Mapped variants 7.7×10−31

FM211187.977 pbpX; penicillin binding

protein

Yes Mapped variants 3.6×10−18

FM211187.313 hypothetical protein (up-

stream)

Yes Mapped variants 2×10−16

FM211187.1802 yhfE; Aminopeptidase

(upstream)

Yes Mapped variants 1.0×10−9

FM211187.1019 wzh; capsule synthesis No Mapped variants 3.6×10−9

FM211187.150 comA; bacteriocin/com-

petence (upstream)

Yes Mapped variants 9.9×10−9

FM211187.3083 pbl3e/pldT; bacteroicin No COG absent 4.0×10−10

N/A transcriptional regulator

(pseudogene)

No COG absent 1.4×10−8

FM211187.3090 bacteriocin precursor No COG absent 1.7×10−8

FM211187.6181 FtsX-family trans-

port protein (ABC

transporter permease)

No COG alleles 4.7×10−9

FM211187.6189 C4-dicarboxylate (cit-

rate) ABC transporter

Yes COG alleles 1.4×10−7

FM211187.5843 23S rRNA (uracil-5-

)-methyltransferase

RumA2

Yes COG alleles 5.5×10−7

FM211187.939 galactose-6-phosphate

isomerase

No K-mers 3.0×10−60

N/A phage-related chromo-

somal island protein

No K-mers 3.0×10−60

FM211187.4259 Peptidase U32 Yes K-mers 1.7×10−59

FM211187.4090 aroK; Shikimate kinase Yes K-mers 1.7×10−59

FM211187.1923 yehU; Sensor kinase Yes K-mers 3.1×10−59

FM211187.6369 patA; efflux pump (up-

stream)

Yes K-mers 2.0×10−54
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FM211187.6823 tauA; Nitrate/sulf-

onate/taurine ABC

transporter solute-

binding protein

Yes K-mers 1.9×10−43

FM211187.213 Galactose uptake PTS

transporter, IIB subunit

Yes K-mers 2.5×10−42

FM211187.3677 pyrB; Aspartate car-

bamoyltransferase

PyrB

Yes K-mers 4.6×10−38

FM211187.6594 ulaA; Pentose PTS

transporter IIA

Yes K-mers 3.7×10−25

Table 4.5: Common variation associated with invasiveness using FaST-LMM. I have annotated the gene the

significant locus overlaps, and intergenic variants are annotated with the nearest downstream genes as noted.

Gene ID is the name in the ATCC 700669 reference if present; ‘core’ refers to whether this gene was in the

core genome defined by Croucher, Finkelstein et al. (2013); method describes the type of variant that was

found to be associated.

The wzh gene is involved in capsule synthesis and is part of the gene cassette which

determines serotype (Bentley et al., 2006). As shown above and in previous studies,

serotype has a large effect on invasiveness and hence this association serves as a positive

control. The association of variants in pbpX is likely due to mosaic alleles which confer

resistance to β -lactams being common in invasive serotypes, similar to what I found in

section 3.5.2. The bacteriocins mediate intraspecies competition and determine strain

fitness (Dawid et al., 2007), but a specific association with invasiveness independent of

strain background has not previously been reported. comA, a core gene essential for

competence, affects the expression of these bacteriocins so may represent an effect through

the same pathway (Kjos et al., 2016).

The adhesin yhfE has previously been associated with virulence of S. pneumoniae

(M. W. Robinson et al., 2013). This adhesin functions as a peptidase, hence the other

peptidase may found to be associated also have similar role. Other genes found here

previously associated with virulence in animal models include: ulaA which utilises ascorbic

acid has been found to be upregulated in invasion (Afzal et al., 2015; Mahdi et al., 2015);

pyrB is involved in cell wall biosynthesis and can affect virulence (Mohedano et al., 2005);

aroK is involved in biofilm formation (Domenech et al., 2012); both comA and tauA were

found to be essential for growth during meningitis using a genome-wide screen (Molzen,

Burghout, Bootsma, Brandt, van der Gaast-de Jongh et al., 2011). For the other identified

regions I couldn’t find reference to a previous report relating them to a role in invasiveness

or virulence of S. pneumoniae.
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For unfavourable outcome and death, none of the above classes of variant reached

genome-wide significance. This is consistent with the low heritability estimated for these

phenotypes. No alleles of pspC, pspA or zmpA or any CNVs reached genome-wide

significance for any of the phenotypes.

4.4.2 Role of rare variation

The availability of whole genome sequence data for these samples allows the identification

of rare variants, here defined as those present in the population with MAF < 1%, which

are also plausible as having an effect on the phenotypes of interest. The amount of rare

variation compared to common variation present in a population is informative of recent

selection and population size changes (Ziheng Yang, 2006). An overall difference may

therefore be informative of different selection on regions of the genome depending on

the niche. In fig. 4.5a I have plotted the SFS by niche and predicted consequence to

look for an overall difference. Across the range of common MAFs in both niches the

proportion of synonymous/nonsynonymous/intergenic/LoF mutations is roughly constant

and as expected (Ziheng Yang, 2006; Thorpe et al., 2017), though at low frequencies, there

is an excess of potentially damaging variants.

Interestingly, there is a clear excess of rare variants in invasive samples compared to

carriage samples. To quantify this difference and identify which regions of the genome are

responsible for the excess of rare alleles I calculated Tajima’s D for each coding sequence in

the genome, and looked for differing signs of selection between cases and controls. Tajima

(1989) developed the summary statistic D to look for differences between an observed

population and an idealised population of a stable size evolving under neutral selection,

where mutation frequency is dominated by drift rather than selection. By comparing

the number of segregating sites with the average number of differences between pairs of

sequences, a statistic D can be calculated. Deviations with D < 0 are indicative of selective

sweeps and/or recent population expansion, whereas D > 0 is indicative of balancing

selection and/or recent population contraction. In terms of differences between SFS, a

negative D manifests as an excess of rare variants whereas a positive D manifests as a

uniform distribution (Bamshad & Wooding, 2003).

For speed, I implemented code in C++ (https://github.com/johnlees/tajima-D) which

uses the same optimised strain-wise distance calculation as SEER (section 2.3.2) to

calculate the average number of pairwise strain differences k̂. Unknown or gap sites

are ignored in the calculation, and the codes produces the same value of D on standard test

data. The code uses a variant call format (VCF) file as input, so is readily generalisable to

other applications. Using this code, I calculated D for all coding sequences in the ATCC

700669 reference separately for carriage and invasive isolates, and the difference in D

between niches.
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Figure 4.5: Differing burden and frequency of rare variation between invasive and carriage isolates, based

on short variation called from mapping against the ATCC 700669 reference genome. LoF are frameshift

or nonsense mutations. a) The SFS stratified by niche and by predicted consequence. Frequency has

been normalised with respect to the number of samples in each population. b) Histogram of Tajima’s D

for all coding sequences in the genome, stratified by niche. c) Boxplot of number of rare variants per

sample, stratified by niche and predicted consequence. Damaging mutations are LoF mutations and missense

mutations predicted damaging by SIFT.

Comparison between D values to test for different selection between niches will only

work within the same population, otherwise changing population size may cause an overall

difference in D. The assumption that invasive and carriage populations are the same

is potentially reasonable, as all invasive isolates must first have been carriage isolates,

however the biased selection of case isolates used for GWAS and potential adaptation

and population growth after invasion (described futher in section 4.5) may violate this

assumption. In GWAS terms, although the calculation of Tajima’s D uses rare variation,

which is less prone to population structure confounding, common variation is also used

which is affected by population structure.

To test for an overall difference I compared the distributions of D by gene in each
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phenotype shown in fig. 4.5b. Genes in invasive isolates had a lower average D (difference

in medians -0.34; W = 1 996 100, p< 10−10) and a more positively skewed D (difference in

skewness 0.30; 95% bootstrapped CI 0.17-0.44). This difference in D may be representative

of a difference in population dynamics or population structure between niches, or may

show genuine differences in selection. To find individual genes which show a difference

in selection between niches I then ran 44 000 permutations per gene with randomised

phenotype labels to calculate a p-value on the difference in D between niches, to which I

applied a Bonferroni correction to adjust for testing of all genes (Winantea et al., 2006).

156 genes had a significantly different D between niches; in table 4.6 I report 18 of these

coding sequences which were outside of the 95% central mass of the D distribution for

one niche but not the other. Due to potential population structure effects results should

therefore be seen as suggestive, and potential for follow-up work.

Gene ID Annotation Invasive D Carriage D Direction

FM211187.1040 wzx; capsule synthesis -2.53094 -1.79867 Negative in

invasive

FM211187.5843 23S rRNA (uracil-5-

)-methyltransferase

RumA2

-2.4028 -1.63478 Negative in

invasive

FM211187.2360 ezrA; septation ring

formation regulator

-1.1051 -2.17726 Negative in

carriage

FM211187.4024 replication initiator pro-

tein (on ICE)

-1.55767 -2.16733 Negative in

carriage

FM211187.4026 hypothetical, contains

FtsK gamma domain

(on ICE)

-1.61993 -2.21525 Negative in

carriage

FM211187.357 bacteriocin 4.19212 1.30796 Positive in

invasive

FM211187.420 tsaB; tRNA threonylcar-

bamoyladenosine bio-

synthesis protein

3.49345 1.39805 Positive in

invasive

FM211187.769 aceytltransferase 2.9055 1.80787 Positive in

invasive

FM211187.1019 wzh; capsule synthesis 2.76882 1.63677 Positive in

invasive

FM211187.1802 yhfE; Aminopeptidase 2.28654 1.19784 Positive in

invasive
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FM211187.1804 bacteroiocin 1.94491 -0.56384 Positive in

invasive

FM211187.1806 dacC; D-alanyl-D-

alanine carboxypepti-

dase

2.23028 0.722447 Positive in

invasive

FM211187.5184 dnaI; primosomal pro-

tein

2.32212 0.197632 Positive in

invasive

FM211187.3651 tarI; -0.146237 2.34171 Positive in

carriage

Ribitol-5-phosphate

cytidylyltransferase

FM211187.3804 nanB; neuraminidase 1.6805 3.19937 Positive in

carriage

FM211187.5053 membrane protein 0.311619 2.46774 Positive in

carriage

FM211187.5358 secY; accessory secre-

tion system translocase

0.471641 2.36541 Positive in

carriage

Table 4.6: Coding sequences with extreme values of Tajima’s D, with a difference between carriage and

invasive isolates as determined by permutation testing.

A positive D statistic implies common variants are being maintained in the population

more than expected, suggesting that multiple alleles of the gene are common. The positive

estimates of D in bacteriocins are consistent with their function, where having a different

allele to competing strains is advantageous and increases fitness (Bogaardt et al., 2015;

Miller et al., 2017). nanB is similarly involved in competition and in virulence (Shakh-

novich et al., 2002; Brittan et al., 2012); the difference in D I found suggests that this

selection may be more important in carriage where more common alleles appear to be

maintained. A negative D suggests purifying selection acting on a gene. For example,

ezrA is essential for growth in carriage (van Opijnen et al., 2009; Cleverley et al., 2014),

so a negative D suggests that changes to the protein are not tolerated in this niche. As

wzx, wzh, yhfE, RumA2 and bacteriocins were found to be associated with invasiveness

above, this suggests that the difference in D I observed is less likely to be due to population

stratification and more likely a real sign of selection. Genes found through these approach

which may affect cell growth such as ezrA, secY, dnaI and tarI may make the population

more or less immune stimulating, depending on their direction of effect.
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Burden testing of coding sequences

I then wished to consider whether rare variants were associated with any of the three

phenotypes. These variants will have occurred on terminal (or close to terminal) branches

and therefore population structure is less of an issue than for common variants. Power to

detect associations is proportional to MAF and OR, so and at low MAF, there is only power

to detect those variants with a large effect size (Liu & Anderson, 2014). However, for rare

alleles the statistical tests described so far lack the power to test for an association even

for an infinite OR. In human genetics combining sets of variants with the same predicted

effect on a more complex biological function (yet simpler than the whole phenotype), for

example grouping rare LoF variants in the same gene, then testing the group for association

with the phenotype of interest has been the most common approach (B. Li & Leal, 2008;

Morris & Zeggini, 2010). This is known as a burden test – in bacterial genomes this

technique has successfully found LoF variants associated with antibiotic resistance in

M. tuberculosis (Desjardins et al., 2016).

In each test I used only variants with MAF < 1% from the variant calls derived from

mapping. Using the annotations from VEP, I defined frameshift and stop gained mutations

as LoF – 6 825 variants in total. I also analysed the effect of all predicted missense variants

using Provean (Ng & Henikoff, 2003; Choi et al., 2012), and used the default threshold

of -2.5 to select variants with a predicted effect on protein function – 26 206 of 50 383

missense variants passed this threshold. I combined these variants with LoF variants to

define a damaging class. Figure 4.5c shows the overall burden of damaging rare variants

between carriage and invasive samples; in both classes there was higher burden in carriage

isolates (median LoF: invasive 7, carriage 11, W = 297 440, p < 10−10; median damaging:

invasive 22, carriage 26, W = 345 370, p = 8× 10−4), so results showing a burden in

carriage should be interpreted with caution.

I then used plink/seq to perform a burden test on all coding regions in the ATCC

700669 reference genome, which looked for an excess of rare damaging alleles in genes,

and Bonferroni corrected all resulting p-values. I tested all six possible phenotypes:

invasiveness, carriage, favourable outcome, unfavourable outcome, survival, death. For the

latter four phenotypes based on clinical outcome no genes showed a significant burden of

LoF or damaging variants. Table 4.7 shows the results for carriage and invasive isolates.
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Gene ID Annotation p-value Class Direction

FM211187.1036 wchV; capsule synthesis 0.0022 LoF Carriage

FM211187.1143 membrane protein 0.0022 LoF Carriage

FM211187.1634 bglG; transcription anti-

terminator

0.0022 LoF Carriage

FM211187.3315 zmpD; zinc metallopro-

tease

0.0022 LoF Carriage

FM211187.4588 pclA; collagen-like

surface-anchored

protein

0.0022 LoF Carriage

FM211187.4679 platelet binding phage

protein

0.0022 LoF Carriage

FM211187.4714 prophage protein 0.0022 LoF Carriage

FM211187.4939 membrane protein 0.0022 LoF Carriage

FM211187.5113 nanA; neuraminidase 0.0022 LoF Carriage

FM211187.5328 uncharacterised repeat

protein

0.0022 LoF Carriage

FM211187.5369 PsrP glycosyltrans-

ferase

0.0045 LoF Carriage

FM211187.6773 dusB; tRNA-

dihydrouridine synthase

0.0045 LoF Carriage

FM211187.1025 wze; capsule synthesis 0.0067 LoF Carriage

FM211187.4017 hypothetical protein (on

ICE)

0.0067 LoF Carriage

FM211187.1040 wzx; capsule synthesis 0.0089 LoF Carriage

FM211187.92 cell wall-binding ami-

dase/autolysin (pseudo-

gene)

0.0089 LoF Carriage

FM211187.6861 comFC; competence 0.011 LoF Carriage

FM211187.6608 pcpA; choline binding

protein

0.016 LoF Carriage

FM211187.4717 prophage protein 0.018 LoF Carriage

FM211187.2642 chlorohydrolase 0.029 LoF Carriage

FM211187.5374 PsrP glycosyltrans-

ferase

0.038 LoF Carriage

FM211187.1804 bacteriocin 0.039 LoF Carriage
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FM211187.3950 conjugal transfer pro-

tein (on ICE)

0.042 LoF Carriage

FM211187.3204 ybaB; DNA-binding

protein

0.0089 Damaging Carriage

FM211187.4311 multidrug transporter 0.050 Damaging Carriage

FM211187.4424 sortase-sorted sur-

face anchored protein

(pseudogene)

0.0067 LoF Invasive

FM211187.2661 bceA; ABC exporter AT-

Pase

0.0045 Damaging Invasive

FM211187.3585 smc; Chromosome par-

tition protein

0.0045 Damaging Invasive

FM211187.5524 trpD; anthranilate phos-

phoribosyltransferase

0.0045 Damaging Invasive

FM211187.2550 fruA; Fructose PTS

ABC transporter

0.027 Damaging Invasive

FM211187.3460 ispA; Farnesyl diphos-

phate synthase

0.038 Damaging Invasive

FM211187.2615 pfkA; ATP-dependent 6-

phosphofructokinase

0.042 Damaging Invasive

Table 4.7: Burden testing of rare LoF and damaging variants in coding sequences associated with invasive

or carriage isolates. P-values are Bonferroni corrected using the total number of genes.

Those regions found with a larger number of LoF variants in carriage than disease

represent genes which are advantageous in invasion, and hence include a number of well-

known virulence factors. Specifically, capsule related genes, zmpD and nanA have all been

previously described as increasing virulence in animal models (Brueggemann et al., 2003;

Bek-Thomsen et al., 2012; Brittan et al., 2012) and have some overlap with associations

found through common variant association. The large effect size caused by these LoF

mutations is similar to the gene knock-outs used in these experiments.

As well as these well-described virulence factors, I found four more genes which were

more likely to be functional in invasive isolates which had been previously described as

virulence related in a single or small number of studies. PsrP is an adhesin which has been

shown to increase virulence in mice (Obert et al., 2006; Shivshankar et al., 2009), and

found here were two genes which affect the protein’s function. pcpA (Glover et al., 2008;

Sánchez-Beato et al., 1998) and pclA (Paterson et al., 2008) are choline binding and surface
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anchored proteins respectively, both previously associated with virulence. Tunjungputri

et al. (2017) have reported association with presence of the phage-derived platelet binding

protein PblB with 30-day mortality of meningitis in humans – the platelet binding protein

found here may have a similar role in invasiveness (though I did not find it to be associated

with severity or mortality).

I could not find previous reports of association with virulence or invasive potential of

the other hits in this category. Also, few of the genes found to be essential in a mouse

model of meningitis (Molzen, Burghout, Bootsma, Brandt, van der Gaast-de Jongh et al.,

2011) were found here, suggesting either that the induced variants do not occur in natural

populations, that the mouse does not perfectly model human meningitis or that the sample

size here was too low to discover these effects.

Only one gene was found to lose function more frequently in invasive disease, though

as it is a pseudogene in the reference this is unlikely to be a real functional effect. For

missense variants affecting protein function the direction of effect is less clear, as the

variants may be fitness increasing or decreasing. This inconsistent direction may also make

the burden test less powerful, and a test which does not rely on this assumption such as

the SKAT test may be preferred (Wu et al., 2011; S. Lee et al., 2012). In carriage isolates,

including missense variants also found ybaB and a multidrug transporter to be significantly

altered in carriage but not in invasion. In invasive isolates a few more possible hits were

found. smc is involved in cell division and growth, but also has epistatic links to much of the

rest of the chromosome (Skwark et al., 2017). LoF in trpD has previously been associated

with attenuated virulence (Hava & Camilli, 2002), and fruA as being associated with

the switch in virulence between nasopharyngeal colonisation and bloodstream invasion

(Trappetti et al., 2017).

4.4.3 Hierarchical Bayesian model for ivr allele prevalence

Manso et al. (2014), J. Li et al. (2016) have reported an association with ivr allele and

invasive propensity in a murine model; this dataset offers the opportunity to test whether

such as an association exists in clinical samples. As the ivr varies rapidly and independently

from population structure (Croucher, Coupland et al., 2014) a simple association test can

be performed for each allele. I first used the mapping approached described in section 4.3.2

to determine the ivr allele for each sample. However, as even a single colony contains

heterogeneity at this locus, simply taking the allele with the most reads mapping to it in

each sample gives a poor estimate of the overall presence of each allele in the invasive

and carriage niches. To take into account the mix of alleles present in each sample, and to

calculate confidence intervals, I developed a hierarchical Bayesian model for the allele in

each niche (fig. 4.6). This simultaneously estimates the proportion of each colony pick

with alleles A-F for both individual isolates (π), and summed over all the samples in each
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niche (μ). The model is applied this over i samples and c niches (in this case c can be

blood, CSF or carriage).

I first modelled the state of the 5’ allele (TRD1.j) only. For the two possible alleles 1.1

and 1.2, the number of reads mapping to each allele (a 2-vector ri) was used as the number

of successes in multinomial distribution zc (c – index for niche). From these I inferred the

proportion of each allele in each individual sample πi, and in each niche overall μc. This

was done by defining Dirichlet priors expressing the expected proportion of an allele in a

given sample πi to be drawn from a Dirichlet hyperprior representing the proportion of the

allele that is found in each niche as a whole μc. The κ parameter sets the variance of all

the individual sample allele distributions πic about the tissue average μc, with a higher κ
corresponding to a smaller variance.

The hyperparameter Aμ , which encodes the total proportion of each allele we expected

to see over all samples, was set to the average amount of the allele observed from the long

range polymerase chain reaction (PCR) in a subset of 53 paired samples, as described in

section 4.5.4.

The observed number of reads mapping to each allele, prior distributions defined above,

and structure of the model in fig. 4.6 defines a likelihood which can be used to infer the

most likely values of the parameters of interest π and μ . I used Rjags to perform MCMC

sampling to simulate the posterior distribution of these parameters. I used 3 different

starting points (i.e. three chains), and took and discarded 30 000 burn in steps, followed by

45 000 sampling steps. Noticeable auto-correlation was seen between consecutive samples,

so only every third step in the chain was kept when sampling from the posterior. I manually

inspected plots of each hyperparameter value and mean at each point in the chain, as

well as the Gelman and Rubin convergence diagnostic, which showed that the chains had

converged over the sampling interval.

To model both the 5’ end (TRD 1.1 and 1.2) and the 3’ end (TRD 2.1, 2.2 and 2.3)

together, so each isolate i is represented by an allele A-F, for each isolate the total number

of reads mapping ni was drawn from the distribution in equation eq. (4.1)

ni ∼∑
j

πi j · ri j (4.1)

where j is the index of the TRD region, ri j is the number of reads in sample i that had a

mate pair downstream from TRD1. j mapping to any TRD2 region, and πi is the posterior

for allele frequency in the sample.
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Figure 4.6: Hierarchical model for ivr allele. Solid double arrows denote a deterministic relationship; wavy

arrows represent a value drawn from a distribution. z is a vector of the number of reads mapping to each

allele from a total of N reads mapping to the variable region; i is the sample number; c is an index for tissue

type. μc, κ are hyperparameters for mean allele prevalence and how closely a sample is representative of a

tissue type respectively. Aμ , Bμ are priors for allele prevalence in invasive disease. Sκ , Rκ are the shape and

rate parameters for a gamma distribution, which were used to set a broad prior on κ .
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The distribution for the number of reads mapping to each allele j, zi j was then defined

as in equation eq. (4.2)

zi, j ∼

⎧⎪⎨
⎪⎩

ni · qi, j

‖�qi‖ ·πi,1.1, if j ∈ A, B, E

ni · qi, j

‖�qi‖ ·πi,1.2, if j ∈ C, D, F
(4.2)

where qi is a vector of length six which contains the number of reads mapped to each allele

A-F as described above, and π , i and n are as previously. A single sample for z was taken

for each isolate i. This 6-vector zi j is then used as the observed data in the same model as

above to infer πi, and μc for the whole locus allele (A-F) rather than just the 5’ end.

For the 5’ allele (TRD1. j) a model using a single κ parameter rather than a κ indexed

by tissue c was preferred (change in deviance information criterion ΔDIC = −0.523

(Spiegelhalter et al., 2002)). For the 3’ allele (TRD2. j), a model with a single κ parameter

did not converge. A model with κ indexed by allele was used instead.

This simultaneously estimated the proportion of each colony pick with alleles A-F for

both each individual isolate (π), and summed over all the samples in each niche (μ). I

applied this over i samples and c niches (in this case c can be carriage/nasopharynx or

CSF). The difference in mean of μ (corresponding to the mean allele frequency over all

sample pairs for each allele) shows whether alleles are selected for in carriage or invasive

disease, however as the confidence intervals overlapped for alleles, no particular allele

was associated with invasive disease or carriage isolates. I also checked the diversity of

alleles present in each sample by calculating the Shannon diversity index for each sample

using the π vector. The median diversities were not significantly different (carriage 0.94;

invasive 1.00).

The finding that ivr allele does not associate with invasive disease is at odds with the

interpretation of Manso et al. (2014) that the capsule expression changes caused by each

allele (through genome-wide methylation profile changes) are central to colonisation and

disease. I found that, in clinical cases of meningitis, the allele of the ivr locus continues to

be phase variable regardless of the niche the bacteria are in. Its purpose is likely to defend

against phage (Croucher, Coupland et al., 2014), with little effect on disease course in

natural human infection.
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4.5 Genetic adaptation over the course of single infections

This section concerns whether the invasive pneumococcal population accumulates muta-

tions as it moves from carriage, through blood to the CSF, and if it does whether this

mutation represents adaptation to either of these niches. By sampling the same population

longitudinally the issue of population structure is not an issue as for the convenience

samples of cases and controls collected for GWAS, which will not be from the same

population of bacteria. I called variation between pairs of samples (table 4.8), and looked

for convergent evolution between different cases and/or signals of adaptation to a specific

niche.

Organism Number of pairs sequenced Mean coverage

blood/CSF nasopharynx/CSF

S. pneumoniae 674 6 91.7x

N. meningitidis 195 48 96.6x

Table 4.8: The number of paired samples analysed from the MeninGene study, and the average sequencing

coverage.

I made assumptions about the evolution of bacteria within the host, under which I

discuss the power of pairwise comparisons between single colonies taken from each niche

to capture repeated evolution occurring post-invasion:

1. There is a bottleneck of a single bacterium upon invasion into the first sterile niche

(usually blood), which then founds the post-invasion population (Gerlini et al., 2014;

Moxon & Murphy, 1978).

2. A large invasive population is quickly established, as the population size approaches

the carrying capacity of the blood/CSF. The population size is large enough for

selection to operate efficiently.

3. As infection occurs in a mass transport system, populations are well mixed without

any substructure. Therefore, the effective population size equals the census popula-

tion size.

4. The bacterial growth rate within blood and CSF is similar.

Initially the population size is small, so selection is inefficient and the population-wide

mutation rate is low. However, the eventual carrying capacity (the maximum number of

cells) of the blood and CSF are large enough (> 1.5×105 colony forming units (CFUs))

(Brown et al., 2004; La Scolea & Dryja, 1984) for beneficial mutations to fix rapidly.

Due to the short generation time of around an hour (Allegrucci et al., 2006), this carrying

capacity is reached early in the course of the disease (after 1-2 days) (Gang et al., 2015).
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Crucially, population sizes where selection acts efficiently (Patwa & Wahl, 2008) are

reached even earlier than this – a few hours after invasion. Therefore, mutations with a

selective advantage occurring after the first stages of infection will eventually become

fixed in the niche’s population. So, sequence comparison between colony picks from each

niche is likely to find adaptation that has occurred post invasion.

Similarity of the bacterial growth rate within blood and CSF is an important assumption

because in 45% of the pneumococcal cases there was evidence that CSF invasion happened

before blood invasion (patients had a documented prior CSF leak, otitis media or sinusitis

(Brouwer, Heckenberg et al., 2010; Heckenberg et al., 2012)). This allowed me to search

for post-adaptation invasion that happens in either direction in this species. I investigated

the validity of this assumption using analysis of data on the ivr locus (section 4.5.4).

In carriage samples, although the population size is small (Y. Li, Thompson et al.,

2013) carriage episodes can persist over many months (chapter 3), therefore allowing the

potential for mutations conferring an advantage in an invasive niche to arise. Additionally,

during carriage there is known to be population wide diversity (Cremers et al., 2014) and in

some cases competition between strains (Cobey & Lipsitch, 2012). I only had access to the

sequence of a single strain sampled from this diverse pool, which means I had less power

to detect mutations either side of the bottleneck. Combined with the small sample size,

this means only adaptive mutations with large selective advantages could be discovered in

this part of the study.

Finally, I considered whether the culturing process will bias the results. In S. pneu-

moniae I found that two additional passages of the previous sample pair resulted in one

additional insertion. In N. meningitidis a low rate of variation and no selection on phase-

variable regions and no variation of other regions have been observed during the culture

steps (Fransen et al., 2009; van der Ende et al., 1995; van der Ende et al., 2000). I therefore

concluded that there will be minimal bias introduced during culturing, and that which is in-

troduced will increase the frequency of mutations between pairs without bias towards either

blood or CSF. Due to the higher power to detect variation between the blood and CSF, I

present those results first in section 4.5.2, and the carriage/CSF results in section 4.5.5.

4.5.1 Reference free variant calling

As the amount of variation beween blood and CSF isolate pairs is very low, I needed to

ensure I had sufficient power to call variants and did not suffer from an elevated false

negative rate. I used the same simulation setup as in section 4.2, except generated an

average of only 200 mutations between 100 simulated sample pairs.

To avoid reference bias, and missing variants in regions not present in an arbitrarily

chosen reference genome, I then performed reference free variant calling between all

sequence pairs of isolates using two methods: the ‘hybrid’ method (Uricaru et al., 2014)
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and Cortex (Iqbal et al., 2012). The former uses de novo assembly of the CSF sequence

reads, mapping of reads from both the blood and CSF samples back to this sequence, then

calling variants based on this mapping. Cortex uses an assembly method that keeps track

of variation between samples as it traverses the de Bruijn graph.

In the hybrid method I used the SPAdes assembly of the CSF sample as the reference,

then mapped reads from both members of the sample pair to this sequence using SNAP

(Zaharia et al., 2011) followed by variant calling with bcftools v1.1 (H. Li, 2011) using the

command:

s a m t o o l s mpi leup −C 50 −m 2 −F 0 .0005 −d 1000 − t DP , SP −g −
p −L 1000 −f a s sembly . f a mapping . bam | b c f t o o l s c a l l −vm

−P 1e−3 samples . t x t

I filtered variants with QUAL < 50, MQ < 30, SP > 30, MSQB < 0.001, RPB < 0.001 or

DP < 4 out.

For Cortex I first error corrected sample reads using quake (Kelley et al., 2010) to

prevent false positive calls supported by very low coverage of reads. I then used the joint

workflow of cortex with each set of corrected reads in its own path in the de Bruijn graph,

and bubble calling was used to produce a second set of variants between samples. SNPs in

the error corrected reads were also called using the graph-diff mode of SGA (Simpson &

Durbin, 2012).

I then called variants between these sequences and a draft R6 assembly from simulated

read data using both of the above methods; comparison with the mutations known to be

introduced allowed power and false positive rate to be calculated – separately for SNPs

and INDELs.

In addition to in silico simulation, I cultured blood/CSF paired strains 4038 and 4039

(Croucher, Mitchell et al., 2013) and resequenced them using the same 100bp Illumina

paired end sequencing as the rest of the isolates in the study. The genomes of strains

4038 and 4039 have been exhaustively analysed using multiple sequencing technologies

(Illumina, 454 and capillary sequencing), so represent high quality positive control data to

assess the calling methods. I tested both methods on these data.

The highest power was achieved using hybrid mapping for SNPs and Cortex for

INDELs: median power for calling SNPs was 90% using hybrid mapping, and 74% for

INDELs using cortex (fig. 4.7a). SGA recovered few true variants. I therefore used this

combination of methods, mapping for SNPs and cortex for INDELs, across all samples.

When applied to the paired strains 4038/4039 the same mutations as originally reported

are recovered, plus a 37bp insertion in cysB which was found to be introduced during

culturing.

I used simulations to compare against a simple method of mapping against an arbitrary

reference, in this case TIGR4 (Tettelin et al., 2001). I found my reference free method has
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Figure 4.7: Performance of variant calling methods. SNPs (gold) and INDELs (blue) are shown separately.

a) Boxplot of power (recall) for each method of variant calling for 100 simulated samples. b) shows the

false discovery rate. c) Boxplot of power and false positive rate for reference based calling. Run on the same

100 simulated samples as a), calculated by number of false positives/number of true positives. d) Count of

annotated genes present in blood but not CSF (red) or vice-versa (turquoise) between the 673 S. pneumoniae
samples. The level of variation is inflated due to frequent misannotation of coding sequences (CDS)s.

greater power, especially for INDELs (fig. 4.7c), and a markedly reduced false positive

rate. I also tested an assembly method alone to compare gene presence and absence, but

this too suffered from a vastly elevated false positive rate (fig. 4.7d).

Variant direction and effect annotation

To be able to compare between samples using a consistent annotation, I mapped the called

variants to the ATCC 700669 reference (Croucher et al., 2009) for S. pneumoniae, and

MC58 reference (Tettelin et al., 2000) for N. meningitidis. This was done by taking a 300

base window around each variant and using blastn on these with the reference sequence.

‘Directionality’ was then relative to the reference used, and a binomial test with λ = 0.5

was used to test significance. I used VEP (McLaren et al., 2010) to annotate consequences

of each SNP as synonymous, non-synonymous, or stop-gained and INDELs as frameshift

or inframe.
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4.5.2 No repeated post-invasion adaptation in coding regions across
species

For each species I then counted the number of variants of any type between each blood/CSF

isolate pair taken from a patient (fig. 4.8). In S. pneumoniae 452 of 674 paired samples

(67%) were identical. The distribution of number of variants between isolate pairs is

roughly Poisson (mean = 0.547), excluding outliers. Variation between N. meningitidis

pairs also followed a roughly Poisson distribution (mean = 2.34), which when compared

to S. pneumoniae showed a higher number of variants between blood and CSF isolates

(Wilcoxon rank-sum test, W = 25 790, p < 10−10) such that most pairs have at least one

variant between the blood and CSF samples.
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Figure 4.8: Histograms binned by number of variants between a blood/CSF sample pair, for both pathogens.

Total pairs analysed in table 4.8. SNPs are from mapping, INDELs are from cortex. Three S. pneumoniae
and one N. meningitidis sample with over 10 variants are not shown.

To test whether certain genotypic backgrounds were associated with a higher number

of mutations that occurs post-invasion, I performed a linear fit of each MLST against

number of mutations between blood and CSF isolates. I Bonferroni corrected the p-values

of the slope for each MLST; at a significance level of 0.05 no MLST was associated with

an increased number of mutations.

In both species, the mutations that do exist, if they cause the same functional change,

could represent a signal of adaptation. To determine whether this is the case, the number of

mutations in each CDS annotation was counted. I then performed a single-tailed Poisson

test using the genome wide mutation rate per base pair multiplied by the gene length as the

expected number of mutations. The resulting p-values were corrected for multiple testing

using a Bonferroni correction with the total number of genes tested as the m tests; I have

reported results with p < 0.05 in table 4.9.
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Gene name Gene length (bp) Blood/CSF mutations p-value

pde1 (SPD 2032) 1973 19 < 10−10

dltD (SPD 2002) 1269 13 < 10−10

dltB (SPD 2004) 1245 12 < 10−10

dltA (SPD 2005) 1551 11 < 10−10

clpX (SPD 1399) 1233 7 1.3×10−8

wcaJ (SPD 1620) 693 6 3.4×10−8

cysB (SPD 0513) 909 5 1.6×10−5

cbpJ 1122 5 4.7×10−5

amiC (SPD 1670) 1332 4 6.0×10−3

marR 435 3 9.6×10−3

fhuC 519 3 1.6×10−2

Table 4.9: Genes containing significantly repeated mutations between blood and CSF isolate pairs in

S. pneumoniae. Ordered by increasing p-value; locus tags refer to the D39 genome, if present.

The dlt operon, responsible for D-alanylation in teichoic acids in the cell wall (Deininger

et al., 2007; Habets et al., 2012; Kovács et al., 2006), was the most frequently mutated

locus: 36 mutations in 31 sample pairs (Poisson test p < 10−10). This occurred in only 5%

of samples, so adaptation to a niche due to variation in genes is not common. To investigate

whether this represented adaptation to either blood or CSF, I annotated the effect of these

variants, and determined whether they were specific to a niche. I mapped them to the R6

S. pneumoniae strain, which has a functional dlt operon and was therefore assumed to be

the ancestral state. There was no directionality to the mutations: 19 occurred in the blood,

and 11 in the CSF (p = 0.2). Only seven of the patients infected by these strains showed

signs of blood invasion before CSF invasion (sinusitis or otitis); this also did not show

directionality. I have plotted the position and nature of the mutations in fig. 4.9. Most of

these mutations would be expected to cause LoF in the operon. Though this suggests this

locus has a deleterious effect in invasive disease generally, the lack of directionality to

the mutations means it does not show evidence of adaptation to either the blood or CSF

specifically.

The next most significantly mutated gene was pde1. The pde1 gene was first found to

be essential for growth in an experimental meningitis model (Molzen, Burghout, Bootsma,

Brandt, Der Gaast-De Jongh et al., 2011); further study by Cron et al. (2011) showed

that S. pneumoniae mutants with pde1 (SP2205 in TIGR4; SPD2032 in D39) and its

paralogue pde2 (SP1298 in TIGR4; SPD1153 in D39) knocked out exhibited reduced host

cell adherence and attenuated virulence in a mouse model of meningitis. Following work

confirmed that Pde1 acts as a phosphodiesterase, cleaving c-di-AMP into pApA (Bai et al.,

2013; Kuipers et al., 2016). These signalling molecules are known to have broad effects
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Figure 4.9: Mutations observed between all paired samples in the dlt operon. The operon consists of four

genes in the three reading frames of the reverse strand. Mutations, displayed by type, in the blood strains are

shown above the operon, and in the CSF strains below the operon.

on the cell (Tamayo et al., 2007) and were again shown to affect growth and virulence in a

mouse model of pneumonia. In both studies, the authors suggested that these proteins are

promising vaccine targets.

I therefore checked whether pde1 appeared to be under selection in the sampled

population. The ratio of nonsynonymous to synonymous mutations was neutral (dN/dS

= 0.89) and contained variants with a SFS similar to that of other genes (fig. 4.10a and

b; Tajima’s D = −1.44; p = 0.67). However, as all the within-host mutations were

nonsynonymous, this implied that selection may act on pde1 during the course of invasive

disease. I then computationally predicted the effect of the 19 mutations observed to occur

in pde1 using SnpEff and PROVEAN (Cingolani et al., 2012; Choi et al., 2012), and have

plotted these along with the predicted functional domains in fig. 4.10c. Of these mutations,

14 are predicted to change protein function, without causing LoF. The mutations are not

evenly distributed across the gene and are mostly clustered in the DHH family domain

or just before it. While this does not allow a singular interpretation of the effect of these

variants on gene function, this is consistent with selection acting on pde1 during meningitis.

This supports the conclusion of Cron et al. (2011) that pde1 is essential for virulence,

and lends credence to the idea it may be an effect component of a pneumococcal protein

vaccine.
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Figure 4.10: Evidence of selection on pde1 during meningitis. Panels a and b show the SFS of mutations in

just pde1 and in all CDS, respectively. Variants are coloured according to the predicted effect. Panel c shows

the positions and predicted effects of mutations observed in pde1 during cases of meningitis and predicted

pfam domains.

In all the other genes in table 4.9 the variants are non-synonymous SNPs distributed

evenly between blood and CSF, therefore also showing no adaptation specific to either

niche.

The most frequently mutated genes between pairs in N. meningitidis are shown in

table 4.10. Top ranked are those relating to the pilus: pilE (19), pilC (6) and pilQ (4). Pilus

genes are associated with immune interaction (Wörmann et al., 2014), and are therefore

expected to be under diversifying selection; an excess of non-synonymous mutations

(dN/dS = 1.39; p = 0.024) was consistent with this. The other notable gene with more

mutations than expected in N. meningitidis was porA, encoding a variable protein which

is a major determinant of immune reaction (Russell et al., 2004), in which 12 samples

had frameshift mutations in one of two positions. Phase variation in the gene’s promoter

region, affecting its expression, is discussed in more detail below.
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Gene name Gene length (bp) Blood/CSF mutations p-value

pilE (NMB0018) 384 18 < 10−10

lgtC 189 16 < 10−10

hyaD 327 14 < 10−10

oatA 1869 19 < 10−10

hpuB (NMB1668) 2382 17 < 10−10

porA (NMB1429) 1178 12 < 10−10

lgtA (NMB1929) 1050 10 < 10−10

kfoC 360 7 < 10−10

cotSA 1134 7 9.2×10−9

ssa1 3252 6 3.9×10−4

Table 4.10: Genes containing significantly repeated mutations between blood and CSF isolate pairs in

N. meningitidis. Ordered by increasing p-value; locus tags refer to the MC58 genome, if present.

The mutations in table 4.10 showed no association with blood or CSF specifically, so

do not represent adaptation to either niche. Genetic variation in pilE, hpuA, wbpC, porA

and lgtB within host has been observed previously in a single patient with a hypermutating

N. meningitidis infection (Omer et al., 2011). These coding sequences overlap with those

in table 4.10, which also suggests an elevated background mutation rate in these sequences,

rather than strong selection between the blood and CSF niches.

Finally, I tested whether the increased mutation rate in the genes in tables 4.9 and 4.10

was associated with a particular genotype. I performed a logistic regression for each gene

with over ten mutations reaching significance in the Poisson test, coding samples as one

and zero based on whether they had a mutation in the gene being tested or not: no genes

being mutated post invasion were associated with an MLST.

Copy number variation

I called CNVs between samples by first mapping each species to a single reference genome

(ATCC 700669), then fitting the coverage of mapped reads with a mixture of Poisson

distributions (Klambauer et al., 2012) as in section 4.3. Using windows of 1kb, I ranked

regions by the number of sample pairs containing a discordant CNV call, as defined by the

integer copy number being different between blood and CSF samples. I then inspected the

top 5% of these regions.

In S. pneumoniae the most frequently varying region was due to poor quality mapping

of a prophage region. The only other region with p <0.05 was a change in copy number of

23S rRNA seen in a small number of sample pairs. In N. meningitidis mismapping in the

pilE/pilS region accounts for the only CNV change.
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4.5.3 No evidence for repeated adaptation in intergenic regions in S.
pneumoniae and N. meningitidis

The previous result suggesting adaptation from blood to CSF was an intergenic change

affecting the transcription of the patAB genes, encoding an efflux pump (Croucher, Mitchell

et al., 2013). In general it is known that in pathogenic bacteria a common form of adaptation

is mutation in intergenic regions, which may affect global transcription levels, causing

a virulent phenotype (Gripenland et al., 2010; Johansson et al., 2002), antimicrobial

resistance (Sreevatsan et al., 1997) and changing interaction with the host immune system

(Magnusson et al., 2007). Changes in these regions have previously been shown to display

signs of adaptation during single cases of bacterial disease (Marvig et al., 2014).

I therefore separately investigated the mutations in non-coding regions. Analysing the

positions of these mutations required a consistent co-ordinate system across all sample

pairs. To achieve this, I remapped the co-ordinates of each variant discovered in an

intergenic region to the co-ordinates of the ATCC 700669 reference genome. I used the

population matched carriage isolates as the ancestral state to determine whether these

mutations occur in the blood or CSF isolate.

Figure 4.11 shows all mutations plotted genome-wide in S. pneumoniae. The peaks

correspond to mutations in genes described in table 4.9. In the remaining 121 mutations

in non-coding regions I observed no clustering by position. Over all pairs of samples,

intergenic mutations were spread between blood and CSF isolates when compared to a

carriage reference. This suggests none of the intergenic mutations are providing a selective

advantage in either invasive niche.

The mutations in N. meningitidis are plotted in fig. 4.12, 110 of which were in non-

coding regions. I observed enrichment (> 1 mutation), but no niche specificity, in the

upstream region of six genes. These mutations are listed in table 4.11. Some of the

mutations upstream of porA and opc are in phase variable homopolymeric tracts, which

are discussed more fully in section 4.5.4. The other mutations are upstream of the ad-

hesins hsf /NMB0992 and NMB1994, which are involved in colonisation (Hung & Chris-

todoulides, 2013) and immune interaction during invasion (Griffiths et al., 2011), and

frpB/NMB1988 which is a surface antigen involved in iron uptake (Delany et al., 2006).

Differential expression of these genes may be an important factor affecting invasion, but

the mutations I observed that may affect this do not appear to be specific to blood or CSF.
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Figure 4.11: Mutations observed between all S. pneumoniae pairs, overlaid onto the Spn23F reference.

Each blue point on the lower row corresponds to a SNP or INDEL variant observed between at least one

sample pair. The blocks in the upper row represent CDSs, lying above or below the central line depending on

whether they are on the forward or reverse strand respectively. The panels show a) whole genome (stacked,

grouped by 1 000 bp windows); b) dlt operon (four genes in the centre, from 2 152 238 to 2 156 543 base

pairs); c) pde1 (gene in the centre from 2 185 398 to 2 187 371 base pairs).

Coordinates Downstream gene Blood/CSF mutations

1468329–1468331 porA (NMB1429) 7

1072215–1072328 opc (NMB1429) 7

1008872–1008985 hsf (NMB0992) 6

1315621–1315672 NMB1299 6

2092257–2092552 frpB (NMB1988) 5

2100124–2100258 NMB1994 4

Table 4.11: Intergenic regions containing significantly repeated mutations between CSF and blood isolate

pairs in N. meningitidis. Ordered by increasing number of mutations; coordinates refer to the MC58 genome.
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Figure 4.12: As fig. 4.11. a) whole genome. b) pilus encoding genes. Mapping to the MC58 reference places

these incorrectly in the unexpressed pilS cassette; compared to the reference the isolates have recombined

between pilS and the expressed pilE. c) oatA.

4.5.4 No evidence for repeated adaptation in phase variable regions
in S. pneumoniae and N. meningitidis

Phase variable regions, which may also be intergenic, can mutate rapidly and are known

to be a significant source of variation in pathogenic bacteria (Bucci et al., 1999). This

mutation is an important mechanism of adaptation (Moxon et al., 1994), and meningococcal

genomes in particular contain many of these elements (Snyder et al., 2001).

In N. meningitidis I observed six samples with single base changes in length of the

phase-variable homopolymeric tract in the porA gene’s promoter sequence, and five

samples with the single base length changes in the analogous promoter sequence of opc.

While changes in the length of these tracts will affect expression of the corresponding

genes, both of which are major determinants of immune response (Sarkari et al., 1994;

van der Ende et al., 2000), the tract length does not correlate with blood or CSF specifically.

Consistent with this, porA expression has previously been found to be independent of

whether isolates were taken from CSF, blood or throat (van der Ende et al., 2000).

In S. pneumoniae I was interested in whether the allele of the phase variable ivr locus

discussed in section 4.3.2 was associated with either the blood or CSF niche specifically,

as this could be a sign of adaptation. As the locus inversion is rapid and occurs within host,
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we first ensured that cultured samples are representative of the original clinical samples

using PCR quantification of each allele. We therefore extracted DNA from a subset of 53

of 674 paired clinical CSF samples and the respective bacterial isolates.

Allele prevalence was quantified using a combined nested PCR protocol based on

PCR amplification of the ivr locus (Manso et al., 2014). Allele prevalence was identical

between the original clinical sample and cultured bacteria in 50 out of the 53 samples. The

predictive power of the in vitro detected ivr allele prevalence in a pneumococcal culture

for the original allele prevalence within the clinical sample was therefore sufficient to draw

conclusions about adaptation from.

I then used the mapping method described in section 4.3.2 to determine the allele for all

the paired samples from the read data. 621 sample pairs had reads mapping to hsdS from

which an allele can be called. However, as even a single colony contains heterogeneity

at this locus, simply taking the allele with the most reads mapping to it in each sample

gave a poor estimate of the overall presence of each allele in the blood and CSF niches. To

take into account the mix of alleles present in each sample, and to calculate confidence

intervals, I used the same hierarchical Bayesian model for the ivr allele used for GWAS

in section 4.4.3. This simultaneously estimated the proportion of each colony pick with

alleles A-F for both each individual isolate (π), and summed over all the samples in each

niche (μ). I applied this over i samples and c niches (in this case c can be blood or CSF).

For each pair of blood and CSF samples the difference in allele prevalence πCSF−πblood

was calculated. All S. pneumoniae samples had a difference in mean of at least one allele

(as the highest posterior density (HPD) overlaps zero), highlighting the speed at which this

locus inverts. While this means that between a single CSF and blood pair the allele at this

locus usually changes, it is the mean of μc (corresponding to the mean allele frequency in

each niche over all sample pairs) which tells us whether selection of an allele occurs in

either the blood or CSF more generally. This is plotted in fig. 4.13. As the HPD overlap,

no particular allele is associated with either blood or CSF S. pneumoniae isolates.

Manso et al. (2014) showed in a murine invasion model that an increase in proportion

of alleles A and B occurs over the course of infection. I did not observe the same effect in

these clinical samples, though the large confidence intervals from the mathematical model

suggest that genomic data with a small insert size relative to the size of repeats in the locus

is limited in resolving changes in this allele. A small selective effect of ivr allele between

these niches would therefore not be detected, but strong selection for a particular allele

(odds ratio > 2) can be ruled out.
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Figure 4.13: Mean and 95% HPD for μc. This shows the proportion of each allele present in each of blood

(red) and CSF (turquoise) tissues pooling across all samples.

Diversity of ivr allele within samples

As the speed of inversion is rapid, I used the subsequent polymorphism of this locus to

evaluate the assumptions about diversity of the bacterial population within each niche. I

calculated the Shannon index of each sample’s vectors μCSF and μblood to measure diversity

of the sample in each niche. The mean Shannon index across CSF samples was 1.01 (95%

HPD 0.39-1.51) and 0.98 (95% HPD 0.35-1.55) in the blood (fig. A.14). Looking at each

sample pair individually, the difference between diversity in each niche appeared normally

distributed with a mean of zero. Together, these observations suggested a similar rate

of diversity generation in each niche. This is in line with the assumption that the two

populations have similar mutation rates, and a similar number of generations between

being founded and being sampled.
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4.5.5 Carriage and invasive disease sample pairs show some evidence
of repeated adaptation

Using the same methods, I also analysed pairs of genomes from 54 patients that were

collected from the nasopharynx and CSF. Six of these were S. pneumoniae. In these

samples, I detected only one sample with any variation (fig. 4.14), which was a two

base insertion upstream of the gph gene. This is similar to the amount of mutation

observed between the blood and CSF isolates, which is expected given the similar sampling

timeframes. While I found that a functional dlt operon appears to have a deleterious effect

in invasive disease, I did not observe mutation between the carriage and disease samples.

However, this was expected given the small number of carriage samples relative to the

effect size detected for this operon.

Between the remaining 48 N. meningitidis carriage and CSF isolate pairs small numbers

of mutations were common. I went on to search for regions enriched for mutation, however

in 8 samples I observed large numbers of mutations clustered close together (fig. 4.14).

These represented single recombination events, so when analysing genes enriched for

mutation I counted each recombination as a single event (Croucher, Page et al., 2015;

Maiden et al., 1998).

Table 4.12 shows the results of this analysis. Similar genes are mutated as in the

blood/CSF pairs, again with no specificity to either niche. In phase variable intergenic

regions, I observed four sample pairs with an insertion or deletion in the porA promoter

tract with no niche specificity. Otherwise, none of the regions above showed enrichment

for mutation in either niche. These observations support the theory that these genes mutate

at a higher rate but do not confer a selective advantage in any of the three niches studied.

Gene name Gene length (bp) Carriage/CSF mutations p-value

lgtA (NMB1929) 1050 6 5.0×10−7

oatA 1869 6 1.5×10−5

hyaD 327 4 2.6×10−5

pilE (NMB0018) 384 4 3.8×10−3

pilT (NMB0052) 1131 4 3.5×10−3

dca (NMB0415) 444 3 1.1×10−2

Table 4.12: Genes containing significantly repeated mutations between nasopharyngeal and CSF isolate

pairs in N. meningitidis. Ordered by increasing p-value; locus tags refer to the MC58 genome, if present.

A notable exception to this is the dca gene, a phase variable gene involved in compet-

ence in Neisseria gonorrhoea but of unknown function in N. meningitidis (Snyder et al.,

2001; Snyder et al., 2003), in which all mutations are protein truncating variants in the

invasive isolate. Similarly, though not reaching significance (due to the long length of the

genes) were the ggt (NMB1057) and czcD (NMB1732) genes in which three recombina-
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Figure 4.14: Histograms binned by number of variants between a carriage/CSF sample pair, for each

bacterial species. a) As fig. 4.8. In N. meningitidis eleven samples with over ten variants between them due

to recombination events are grouped. b) The number of recombination and SNP/INDEL events in samples in

the group with over ten detected variants.

tions occurred, all of which were in the invasive isolate of the pair.

The mutations in these three genes therefore may confer a selective advantage in

the invasive niche; the sequence at these loci in the invasive strains are the same as the

MC58 reference, an invasive isolate itself. ggt has previously shown to be essential for

N. meningitidis growth in CSF in rats (Takahashi et al., 2004), and metal exporters such as

czcD have been shown to increase virulence in a mouse sepsis model (Veyrier et al., 2011).

More such paired carriage and invasion samples would be needed to confirm if this is the

case in human invasive disease.
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4.6 Conclusions

In this chapter I have used a population of S. pneumoniae genomes to determine the

contribution of naturally occurring bacterial variation to the progression of meningitis from

asymptomatic carriage through blood invasion to CSF invasion. I first used a variety of

bioinformatic methods to catalogue as wide a variety of variants as possible, particularly

those which have previously been associated with virulence.

Using these variants and a matched collection of carriage and invasive isolates I found

that the bacterial genome is crucial in determining invasive potential, with serotype likely

to be the main factor. However, I did not find any evidence that the bacterial genome

contributes to severity or outcome of disease. Using GWAS of both common and rare

variants I found many regions and genes to be associated with invasive disease, independent

of genetic background. Some of these have been previously described, whereas this is

the first time others have been associated with invasive human disease. Genes involved

in capsule synthesis, yhfE, RumA2, bacteriocins, nanA and nanB were associated with

invasiveness using both common and rare variants, as well as analysis of selection.

The rare variant burden test found some well known virulence factors, showing that

large effect size LoF mutations generated in lab mutants exist in the natural population,

and further can affect disease in human infection. Common variants with smaller effect

sizes may be the most interesting result of this approach in future, as the smaller effect

sizes are harder to discover with bottom-up approaches, and their higher frequency in the

population may make them more appealing vaccine targets.

I did not find evidence for association with invasiveness for some previously described

variants. I did not find that the ivr allele was associated with invasive disease, suggesting

that its function is to defend against highly variable prophage and that the variable capsule

expression it can produce are not selected for in natural disease. The three antigen alleles

were not associated with invasiveness, suggesting the allelic variants are a general form

of diversifying selection without specific forms having a differing fitness in carriage or

invasion.

These hits, as they rely on a single study population, are susceptible to batch effects

specific to the Dutch setting or due to sampling bias of the collection. The association of

positive controls such as capsule is reassuring, but replication in an independent population

is necessary before further interpretation. The hits I have reported here will be useful for

meta-analysis when further sampling and GWAS is performed.

As well as large scale population differences, previous studies have shown that substan-

tial levels of genomic DNA sequence variation occur in bacteria colonising or infecting

human hosts (Eyre et al., 2013; Kennemann et al., 2011; Morelli et al., 2010) and suggest

that some of this variation may be due to selective adaptation (Croucher, Mitchell et al.,

2013; Jorth et al., 2015; Marvig et al., 2014; L. Yang et al., 2011; Young et al., 2012). Such
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adaptations during invasive bacterial disease could lead to new insights into the processes

of pathogenesis with the potential to inform therapies (Sudip Das et al., 2016; Didelot et al.,

2016), which would be difficult to assess with GWAS due to the rapid disease progression.

I have searched for variation in S. pneumoniae and N. meningitidis, by comparing the

pan-genomes from bacteria isolated from both blood and CSF from the same individuals

in 869 bacterial meningitis cases. The genetic background within-host is the same, so this

comparison could be performed without population structure correction.

I found overall that blood and CSF isolates have very similar genetic sequences. The

mutations observed are not randomly distributed throughout the genome, but are instead

randomly distributed between blood and CSF isolates. These mutations are therefore

an observation of a higher mutation rate in these regions during invasion (for example

the pilus in N. meningitidis, which is known to be under diversifying selection) but not

repeated adaptation to either niche. This study indicates that the previous observation

of variation between blood and CSF isolates from a single case of meningitis (Croucher,

Mitchell et al., 2013) was a rare event most likely driven by antibiotic selection pressure

during treatment. The large sample size means that this eliminates the need to search for

bacterial diversity between invaded host niches (blood and CSF) when trying to explain

pathogenesis of meningitis, which is a tempting analysis for reference labs with both sets

of samples available. However, my comparison between the genomes of carriage and

invasive isolates did show some weak signals of adaptation. I found that dlt appeared to be

deleterious in invasion, and that selection appeared to be acting on pde1 during invasion.

These genes were not associated with invasiveness in the GWAS, which may be due to

insufficient power or population stratification.

I went on to analyse 54 samples comparing carriage and invasive isolates from the

same patient. Though the sample size was lower, and fully sampled diversity within

the nasopharynx was not available, I was able to get an insight into potential genetic

differences between bacteria in these niches. I saw some of the same genes that mutate

rapidly between blood and CSF isolates also do this between carriage and invasion. This

supports the conclusion that these genes have a higher mutation rate, rather than giving

a selective advantage to a niche. However the power in these comparisons was limited

by sample size and single colony sequencing, so comparison with GWAS results is not

possible.

In the next chapter I will perform a similar analysis on the effect of host genetics on

bacterial meningitis, starting with the proportion of variability attributable to common host

genetic variation for invasiveness and disease severity. Together, this will give an overall

picture of host and pathogen genetics affecting pneumococcal meningitis.
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Human genetics contributing to invasive
pneumococcal disease
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5.1 Introduction

The previous chapter has considered variation present within the pneumococcal genome

that is associated with colonisation and invasive disease, while mostly treating the infected

hosts as identical, with the exception of section 3.6 where I showed infant age and previous

colonisation were both associated with carriage duration. However, the hosts are in reality

heterogeneous: as epidemiological parameters such as contact network (Dagan et al., 2002;

P. C. Hill et al., 2010), vaccination status (Klugman, 2001), co-infections (McCullers,

2006; Siegel et al., 2014; Cohen et al., 2013) host age and immune response (Cobey &

Lipsitch, 2012) have all been shown to affect invasive pneumococcal disease.

However, as well as varying in these ways, humans differ in the sequence content of

their genomes. The contribution of human genetics to adult pneumococcal meningitis is

presently unknown – both whether it affects the disease at all, and if so which specific

regions of the genome contribute to the effect. Twin studies (Jepson, 1998; Burgner

et al., 2006), linkage studies (Abel & Dessein, 1997) and then GWAS studies have all

suggested a role for human variation for many bacterial diseases (Chapman & Hill, 2012).

Association of HLA allele as well as other regions have been found. Despite likely being

selected against over human history, variants pre-disposing to bacterial diseases as stable

and enduring as tuberculosis have been found (Curtis et al., 2015; Sveinbjornsson et al.,

2016).

I start this chapter by using genotype data from the MeninGene (section 1.1.4) cohort

to calculate the heritability of susceptibility to and severity of meningitis (section 5.2).

After I found that human genetics is expected to explain the variation in these traits, I

performed a GWAS for each trait to find specific regions of the genome associated with

bacterial meningitis and its progression. To obtain more evidence for the associations, and

increase power, I then performed the same analysis in two additional cohorts, and finally

meta-analysed the results of all of the studies with a further two previous cohorts for which

we obtained summary statistics.

In section 5.3 I bring host and pathogen genetics together by performing a genome to

genome analysis, using cases of pneumococcal meningitis from the MeninGene cohort

where both the pathogen genome and corresponding host genotype was available. Rather

than looking for human variants which affect meningitis susceptibility and severity regard-

less of the bacterial variation, this section attempts to find specific bacterial variation which

correlates with specific host variation to contribute to disease. This can be considered an

interaction, between the genomes. As interactions between host and pathogen proteins

are known to be important in pathogenesis (Lambris et al., 2008; Serruto et al., 2010),

this is a plausible avenue to explore and may further determine the genetic architecture

contributing to infection in clinical cases of disease.
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5.2 GWAS of human variation associated with meningitis

The MeninGene collection was built up in three batches over the course of this work: the

final numbers along with each phenotype are shown in table 5.1. As the collection includes

all consenting adults with culture-proven meningitis, all causative pathogen species are

included in the collection. My analysis so far has mostly been restricted to pneumococcal

meningitis, as being the most common cause of meningitis in adults it is the most well

powered. However in this chapter I will also consider meningitis as a whole, which also

includes cases caused by N. meningitidis, L. monocytogenes and H. influenzae. As well

as microbiological data, clinical information has been collected for most cases, allowing

an association of disease severity as in section 4.4. For the association I used genotype

data from the ALS (van Es et al., 2009) and B-PROOF (van Wijngaarden et al., 2011) as

population matched controls, all of whom were adults.

Cohort Country Age Data Samples Phenotype

MeninGene Netherlands Adults Illumina Omni array 1 149 Meningitis

732 Pneumococcal meningitis

277 Unfavourable outcome

ALS & BPROOF Netherlands Adults Illumina Omni array 4 836 Controls

Benfield Denmark Children Illumina Omni array 353 Pneumococcal meningitis

873 Pneumococcal bacteremia

473 Controls

GOYA Denmark Young adults Illumina quad array 2 805 Controls

23andme European All Summary statistics 842 Bacterial meningitis

82 778 Controls

GenOSept European Adults Summary statistics 220 Pneumococcal bacteremia

WTCCC UK Adults Summary statistics 2 244 Controls

Table 5.1: Summary of cohorts with available human genotype data. The first section shows cohorts with

full genotype data where I performed a GWAS; the second section is cohorts with the summary statistics

from an existing GWAS used in meta-analysis only. Sample numbers are after the QC in section 5.2.1.

I also used data from Danish children with invasive pneumococcal disease (referred to

here as the Benfield cohort). Using archived blood spots in the Danish national biobank, we

extracted DNA for genotyping from cases of children with pneumococcal meningitis and

bacteremia, as well as 473 population controls. As additional population matched controls

I obtained the genotypes of controls from the GOYA study, which randomly sampled 2 805

healthy Danish young adults (Paternoster et al., 2011).

Finally, summary statistics were available from two existing studies. The first, per-

formed by 23andme, gave participants a questionnaire on infectious diseases. Those

responding yes to the question ‘Have you ever had bacterial meningitis?’ were classified

as cases, and those responding no as controls (‘I’m not sure’ was also an option, and

these responders were excluded from further analysis). The analysts performed a logistic
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regression at all imputed SNPs using age, sex and the first four principal components

as covariates (Tian et al., 2016). The second is the unpublished GenOSept study which

included 220 adults with sepsis, who suffered shock in intensive care unit (ICU) and were

either blood culture positive from pneumococcus, or were positive from pneumococcal

antigen in their urine. The analysts used controls from WTCCC (Burton et al., 2007) and

performed a regression at all imputed sites using a linear mixed model as implemented in

gemma (Zhou & Stephens, 2012).

5.2.1 Genetic data processing

In this section I describe the set of steps I took to prepare genotyping intensity data for

GWAS analysis. From the Dutch cohort there were initially 905 cases available from the

collection since the Meningene study began, with a second batch of 94 new cases covering

a subsequent winter, and a final third batch of 178 new cases covering a subsequent two

winters. As controls, 1 981 samples from the ALS study, and 2 898 from the B-PROOF

study were available from the start. From the Danish collections, 373 meningitis cases and

475 controls were available as called genotypes, and we genotyped 904 additional samples

with pneumococcal bacteremia. I also applied for access to 2 817 samples from the GOYA

study, which I received as quality controlled genotype calls.

The following analysis was completely repeated four times to arrive at the final SNP

calls used in the association study. The processing steps and cut-offs used were the mostly

same for all of these genotyping runs, however I do point out where steps differed based

on cohort or run, and where cohorts or runs have been merged. Throughout, I have used a

combination of plink v1.9 (Purcell et al., 2007; Chang et al., 2015) and my own perl scripts

(https://github.com/johnlees/bioinformatics) to convert between different data formats.

Genotype calling

Genotyping arrays have hundreds of thousands of SNP probes, allowing for a relatively

cheap assay of all common (> 5% MAF) positions in the human genome. For each variant,

there is a red florescently tagged probe which binds to the A allele, and a green probe

which binds to the B allele. By comparing the relative intensities of these two colours

across a large number of samples a genotype probability can be assigned to each sample in

the run.

We processed raw genotyping data using Illumina’s Beeline software to produce

normalised intensity files. In these files, for each sample an x and y intensity is recorded at

every SNP typed by the array, proportional to the amount of the A and B allele present. In

the ideal case a sample homozygous for A would have high x and low to no y intensity,

whereas a sample homozygous for B would have the opposite. Heterozygous samples

would have half of each intensity. In practice the intensities are distributions (fig. 5.2),
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and the best way to produce genotype calls is to plot x against y for many samples, and

find three discrete clusters. As a final complication, at any given site some samples will

act anomalously and either fail to produce an intensity, or worse produce an extra cluster

which confounds the identification of the real genotype clusters. Such samples should be

assigned a missing genotype at these sites.

As high quality genotyping is important for downstream imputation and any eventual

fine-mapping (Spain & Barrett, 2015), I used optiCall (Shah et al., 2012) to deal with these

issues and produce genotype calls for all the samples with genotype intensity data. This

method has been shown to throw away fewer correctly typed variants than other methods,

and produce more accurate calls overall. The algorithm first samples random intensities

from across the genotyping run to generate priors of where the three genotype clusters are

centred, then for each variant uses an EM algorithm to adjust class membership based on

these priors and the observed data.

I ran optiCall using default settings on a per chromosome basis separately for each

genotyping run, using the sample sex as a covariate. In the second and third rounds of

Dutch case samples, each batch contained fewer than 200 samples. So at the rarer end of

the SFS, less than one sample is expected to be in the homozygous rare category. While

optiCall is robust to missing classes in rare variation, it needs reliable prior information to

do so. To ensure high quality calling of these runs I therefore:

1. Combined the meningitis samples with intensity data from a run of 41 samples from

a European population on the same platform, used by another study.

2. Treated the run ID as a covariate in optiCall.

3. Used chromosome 1 to generate priors for all other chromosomes, as it contains the

most number of variants.

After calling, I discarded the samples from the other study. I will cover direct assessment

of genotype call quality in section 5.2.1.

Quality control of genotype data

When performing QC of the called genotype data I followed the advice of C. A. Anderson

et al. (2010), though using more modern and faster algorithms where appropriate. I first

merged the first two runs of Dutch cases and controls, giving five sample sets to QC (Dutch

combined, Dutch case batch three, Danish meningitis combined, Danish bacteremia and

Danish controls).

For all these datasets, I performed the following basic QC steps using plink:

1. Predict sample sex using genotypic data (heterozygosity rate on X chromosome).

Where discordant with recorded phenotypic sex, or the phenotypic sex was missing,

I replaced it with the predicted value.
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2. Remove samples with an overall heterozygosity rate above three standard deviations

from the mean.

3. Remove samples with > 3% of genotypes missing.

4. Remove markers with > 5% of genotypes missing.

5. Remove markers with a significantly different call rate between cases and controls

(p < 10−5).

6. Remove markers with MAF < 1%.

7. Remove markers out of Hardy-Weinberg equilibrium (HWE) (p < 10−5).

Failing samples were removed before failing markers, to maximise the number of markers

retained. Steps 2–5 remove those samples and markers which have not been genotyped

well on the array, whereas step 6 removes those markers with insufficient power to inform

imputation or association. Step 7 is useful in discarding genotype failures as almost all

markers are close to being in HWE, so the number of samples in each genotype group

can be related to the MAF. Departures from HWE are mainly due to genotyping failures,

where clusters have been incorrectly merged or labelled. However, while a good first step,

this step is not sufficient to remove all genotyping failures.

I then estimated sample ancestry and relatedness within each collection. To estimate

degree of relatedness between samples I used KING with default settings (Manichaikul

et al., 2010). For ancestry, I first removed palindromic SNPs (A/T or C/G) to minimise

strand issues, and merged with the genotype data with 270 individuals from four different

ancestries released as phase II of the HapMap project (International HapMap Consortium,

2005; International HapMap Consortium et al., 2007). I then used eigenstrat to perform

PCA on the merge of samples and hapmap to identify and control for ancestry (A. L. Price

et al., 2006).

I did not immediately discard these samples as they can still be included in a linear

mixed model to increase discovery power (Lippert et al., 2011; Zhou & Stephens, 2012).

Instead, I only removed identical samples, and recorded those which were related as

third-degree or closer, and samples of non-European ancestry (PC1 < 0.07 in the hapmap

projection; fig. 5.1). These were only removed in downstream analyses requiring unrelated

samples from the same population.
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Figure 5.1: Projection of samples onto first two principal components of case (green crosses) and control

(blue stars) samples from a) the Netherlands and b) Denmark with HapMap phase I populations. HapMap

populations are 3 (red crosses) – CEU, European; 4 (pink squares) – CHB, Han Chinese; 5 (turquoise

squares) – JPT, Japanese; 6 (yellow squares) – YRI, Yoruba Nigerians.
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Using this first pass of QC, I performed an initial association test at all passing sites

using a logistic regression. I removed all population divergent and third-degree or closer

related samples, and fitted the basic model

log

(
yyy

III− yyy

)
= XXXβββ (5.1)

at every marker, where yyy is the vector of binary phenotypes, XXX is the additive model matrix

of genotypes (0 for homozygous common; 1 for heterozygous; 2 for homozygous rare)

and β is the fitted slope. Using the Wald test p-values I found 226 sites suggestively

associated with the susceptible phenotype p < 10−4, and manually inspected the genotype

cluster plots using Evoker (https://sourceforge.net/projects/evoker/files/). Many of these

plots were miscalled in one or more cohorts, though in such a way that the HWE p-value

managed to pass the filter set earlier. Some examples of faulty calling are shown in fig. 5.2

– all such identified variants were removed prior to downstream analysis and imputation. In

addition, I performed an association within the control group, using the ALS study as cases

and the B-PROOF study as controls. As there should be no overall phenotypic difference

between these cohorts any significant results are likely artefacts from genotyping batch or

incorrect calling (Burton et al., 2007). I therefore removed all markers with p < 5×10−8.

Figure 5.2: Examples of manual quality control of genotype cluster plots. All were removed rather

than recalled. a) Evoker view of rs9516252. In cases missing genotypes have been mistakenly called as

homozygous rare, whereas in cases-ext they were correct (red circles). b) A common mode of failure when

cluster centres are not near the average. Left: incorrect identification of only two clusters at rs2717808.

Right: corrected identification of three clusters. c) A common mode of failure when there are only two

clusters at low MAF. Left: incorrect split into three clusters at rs17876189. Right: corrected identification of

two clusters.
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Imputation of untyped variants

To increase the power of GWAS it is common practice to impute the allele of untyped

common variants in LD with those directly typed by the array, using haplotype information

from whole genome sequenced population cohorts (Stranger et al., 2011). By finding

overlap between genotyped alleles and haplotypes drawn from the population at these

positions while taking into account population level LD it is possible to assign a probability

of each genotype at all known variable positions. This increases the number of locations at

which association can be tested for, mitigating the loss of low quality markers, and giving

more information around signals of association. During genotype imputation all sites in

the reference panel are assigned a most likely allele. At many common sites imputation

accuracy is good (R2 =∼ 0.9), and accuracy can be assessed through the INFO score which

assesses how much information has been added at each position over the worst case of

assigning the population MAF.

Humans are diploid organisms: they inherit one copy of a chromosome from their

mother and the other from their father. However, as imputation works with haplotypes,

a linear sequence along a single inherited chromosome, input genotypes must first be

‘phased’ into haplotypes. Phased data ensures that heterozygous SNPs are assigned to the

chromosome they came from: for example if two alleles A/B were called as heterozygous

and were next to each other possible haplotypes would be AA + BB or AB + BA (fig. 5.3).

Data can be directly phased by barcoding which DNA molecules are being sequenced

(Borgström et al., 2015), or by sequencing the sample’s ancestors (mother and father).

With genotype arrays used for GWAS direct phasing is not possible, but phased population

reference panel data can be used to statistically estimate the most likely haplotypes of the

input data (Delaneau et al., 2013; Loh et al., 2016).

A A
B B

A B
B A

Figure 5.3: Demonstration of the effect of phasing. The subject is heterozygous for an A/B allele at two

positions. The left panel shows one possibility, where the maternally inherited haplotype (red chromosome)

is AA and the paternally inherited haplotype (green chromosome) is BB. The right panel shows the other

possibility, of AB and BA haplotypes. Though there are another two possibilities gained from switching the

parents, phasing does not distinguish these.

I performed phasing and imputation of variants using two methods. The first method,

which I performed with the first batch of Dutch cases and controls, used the software

shapeit2 (Delaneau et al., 2013; O’Connell et al., 2014) and impute2 (B. N. Howie

et al., 2009; B. Howie et al., 2011) directly. I first merged the data, working with a file per

chromosome across all case and control samples, then performed phasing with shapeit2.

It is common to use the 1000 Genomes Project as the reference panel, as it contains a large

collection of diverse haplotypes (1000 Genomes Project Consortium et al., 2015). It has
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been shown that using a population specific reference panel can further increase imputation

accuracy due to better matching, longer haplotypes being present between the reference

panel and genotyped subjects (The Genome of the Netherlands Consortium, 2014). I

therefore used impute2 in reference panel merging mode, using both 1000 Genomes phase

3 (5 008 haplotypes) and The Genome of the Netherlands (GoNL) (998 haplotypes) as

references to try and attain the best possible imputation accuracy for Dutch samples. I

wrote a pipeline to automatically perform the imputation over a cluster system using this

method by working in parallel on chunks of 2.5Mb at a time with a 250kb buffer to avoid

loss of accuracy at the ends of each chunk, and automatically resubmitting failed jobs with

more memory or wall-time as appropriate.

As more data became available later through the project, more efficient methods and

sophisticated interfaces to phasing and imputation became available. Faster phasing became

possible with eagle2 (Loh et al., 2016) and faster imputation with PBWT (Durbin, 2014).

This allowed the collection and use of the much larger and more diverse reference panel

the haplotype reference consortium (HRC) (McCarthy et al., 2016). Though imputation

accuracy is slightly lower than impute2, the efficient data structure and matching algorithm

within PBWT allows rapid imputation even with the 63 000 haplotypes in release 1.1 of

the HRC. The larger reference panel size overall gives good imputation accuracy, and

includes both reference panels used in my previous imputation iteration. I therefore re-ran

the phasing and imputation using this procedure, through the Sanger imputation server

(https://imputation.sanger.ac.uk). Sex chromosomes were not included in this release, so

all downstream analysis is of autosomes only.

To homogenise samples before imputation I used the HRC strand checking tool (http:

//www.well.ox.ac.uk/∼wrayner/tools/#Checking). For each sample cohort, this checked

whether alleles, strand of genotyping (which should all be on the positive strand, rather than

the Illumina TOP strand), reference allele and MAF match with the reference panel. SNPs

with MAF > 0.2 different from the reference panel are removed, which may assist with

missed strand flips. I merged all samples with the same array version together (table 5.1)

and then performed phasing and imputation.

Using the imputed data, I performed a final QC check on all the markers from the

reference panel to remove low confidence sites. I re-applied the filters of MAF > 1% and

HWE p < 10−5, as well as removing any sites with an INFO score < 0.7 (suggesting poor

imputation accuracy). After this step, 6.8M good quality SNPs were left for association.

For phenotypes with lower numbers of cases (unfavourable outcome, genome to genome

analysis) I applied a stricter MAF filter of > 2%.

An initial association using eq. (5.1) revealed two quality issues not identified by

the filters described. In both cases the issue was manifested by many highly significant

p-values of markers, and non-significant values of those nearby and in LD with the lead

variant. The first was a failure to match the strand between cases and controls, and in some
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cases the imputation reference panel, at palindromic SNPs. At non-palindromic SNPs the

reference strand is unambiguous and was correctly assigned by the strand checking tool,

but at 1 722 (around 0.3% of genotyped positions) A/T or C/G SNPs with MAF > 30%

neither allele or frequency mismatch could be used to disambiguate the genotype value. I

used the Illumina genotype manifests data to ensure all genotypes were with respect to the

positive reference strand rather than the Illumina TOP strand, and re-ran the imputation

and subsequent QC on all affected cohorts.

The second issue was due to a mismatch of array design between cases and controls

for the Danish bacteremia samples and GOYA controls. Despite performing separate QC

and imputation of these cohorts to arrive at the same set of genotyped markers, a simple

merge led to spurious association results. Although the imputation model in theory should

allow for imputed sites to be merged when produced from different sets of calls, in practise

subtle differences in genotyping quality and marker density for a large number of samples

can easily lead to systematic differences between cases and controls. To match these two

cohorts without introducing technical differences between them, I took the intersection

of SNPs between the two panels and merged the genotype calls, then performed identical

QC steps on the dataset as a whole. As this left only 291 830 markers (∼ 50% of that on a

single array) I used minimac3 via the Michigan imputation server (Sayantan Das et al.,

2016) to perform imputation to the HRC, as this algorithm coped with the relative sparsity

of markers better than PBWT.

Finally, as the CFH region was of particular interest given its previously reported

association with meningococcal meningitis, we reimputed it for all the Dutch samples

using impute2. In this mode we allowed impute2 to infer the phasing during its MCMC

which is far slower, but more accurate over this small region. This imputed data was

used for meningococcal meningitis associations not reported here, and for the specific

association with antigens in section 5.3.3.

5.2.2 Association results

Using the quality controlled genotype data I was able to perform three analyses on each

cohort. The first was an estimation of heritability of each trait of interest, which represents

the proportion of phenotypic variance explained by genetic variation. As in sections 3.3

and 4.4 I performed this calculation using different methods, as various technical limitations

of each can bias estimates (Evans et al., 2017; Speed et al., 2017). All methods assume

unrelated individuals with shared ancestry, so I filtered out these samples before performing

heritability calculations.

I used the GCTA-GREML model, as implemented in bolt-lmm (Loh et al., 2015),

which assumes normally distributed effect sizes with a variance equal to the genetic

component of heritability σ2
g (J. Yang et al., 2010; J. Yang, Lee et al., 2011). Under this
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assumption, restricted maximum likelihood optimisation of a LMM can be used to estimate

h2
SNP. This model does not adjust for LD, which in some cases may lead to underestimation

of h2
SNP (Speed et al., 2012). I therefore used LD-pruned SNPs as the input, and performed

an additional heritability estimate with LDAK, which adjusts the weights of SNPs by their

LD when calculating the kinship matrix used as the random effects in the linear mixed

model.

After confirming that it is expected that a genetic contribution to the phenotype exists,

I then ran an association scan. This performs a regression between variant and phenotype

at every marker, though the use of an LMM allows ancestry and relatedness of samples to

be included as random effects in the regression model. This means ancestrally divergent

and related samples do not have to be completely removed, increasing the power to find

associations without increasing type I error (A. L. Price, Zaitlen et al., 2010). It has

previously been computationally prohibitive to fit this model to every imputed marker, but

recent efficiency advances have allowed this technique to become commonplace (Lippert

et al., 2011; Zhou & Stephens, 2012). I used bolt-lmm to perform the association (Loh

et al., 2015), using LD-pruned genotyped markers to estimate the kinship matrix and

random effects, and performing association at all genotyped and imputed sites. Where

appropriate, I have included covariates such as immunocompromised status as fixed effects

in the model.

The final question I wished to test using this data was whether there was evidence

for difference of the genetic basis between similar sub-phenotypes of invasive disease.

For example, is the association with CFH specific to meningococcal meningitis, or is it

also shared by pneumococcal meningitis too? Overall, is there a difference in genetic

susceptibility to different pathogens, or different manifestations of invasive disease? As

the case numbers are low, these studies were underpowered to detect a difference through

direct association of different sets of markers, or to calculate co-heritability. However, in

such cases, performing an association between all cases and controls, and then between

sub-phenotypes of cases may help test for an overall difference. Liley et al. (2017) have

developed the subtest method which fits a mixture of Gaussians to the Z-scores from these

two association tests, which compares the null model fit assuming no difference between

subphenotypes and the alternative model when there is a difference. It can extract a p-value

from the LRT which expresses the probability that the genetic basis for the subphenotypes

are distinct. When running subtest I used the weights from LDAK to account for LD

between associations, and performed 1 500 subsamples of 400 samples to generate the

null-distributions of the test statistic.
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Dutch cohort results

In the Meningene cohort I considered three different phenotypes: the susceptibility of

adults to bacterial meningitis (using all cases), pneumococcal meningitis only, and severe

(unfavourable clinical outcome) meningitis. In all of these associations I used immuno-

compromised status as a covariate (10% of cases) assuming that no controls were immuno-

compromised, as population prevalence is around 1% (van Veen et al., 2011; Harpaz et al.,

2016).

The heritability analysis (table 5.2) showed that human genetic variation was expected

to contribute to all of the phenotypes of interest. The size of the contribution varied, but

was relatively high in comparison to other complex traits (Ge et al., 2017). In general

LDAK estimated a higher heritability than GCTA-GREML, as expected from the structure

of the models (Evans et al., 2017). Analysis using subtest as described above did not

provide any evidence that pneumococcal meningitis was distinct from other bacterial

meningitis (PLR = 0.25; p = 0.75) or that unfavourable outcome was distinct from overall

meningitis susceptibility (PLR = 0.14; p = 1.00). However this may rely on relatively

highly associated SNPs, which were not found with this few samples. Susceptibility to any

meningitis has a significantly higher heritability than its sub-phenotypes, which also have

heritability above zero. This is more consistent with some difference in genetic architecture

between the phenotypes.

Phenotype Method Heritability Error Fit p-value

All meningitis GCTA 0.418 0.064 2.4×10−6

LDAK 0.556 0.088 3.9×10−11

Pneumococcal meningitis GCTA 0.353 0.068 2.4×10−6

LDAK 0.416 0.096 3.9×10−6

Unfavourable outcome GCTA 0.192 0.067 2.8×10−5

LDAK 0.325 0.090 1.4×10−4

Table 5.2: Human SNP heritability (h2
SNP) of three meningitis phenotypes in Dutch adult cohort. Pneumo-

coccal meningitis and unfavourable outcome are subsets from the ‘all meningitis’ phenotype. For each

phenotype I estimated heritability using both GCTA-GREML and LDAK models, in every case there was

evidence for heritability significantly above zero.

The Manhattan plots of the association results are shown in figs. 5.5 to 5.7. Across

the three traits only one locus reached genome-wide significance: position 64680775

on chromosome 1, an intronic variant in UBE2U, was associated with unfavourable

outcome (MAF = 0.43; OR = 1.62; p = 2.0× 10−8). UBE2U is part of the ubiquitin

pathway (responsible for degrading proteins in the cell) (Gregory et al., 2006), but has not

previously been associated with any other disease or trait. The signal also spanned ROR1

(fig. 5.4), a protein of unknown function (Bainbridge et al., 2014) which has previously
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been associated with cancers (Reddy et al., 1996) and pulmonary function (Lutz et al.,

2015). Signals suggestive of significance for each trait are reported in table 5.3. Despite the

lack of association from meningitis susceptibility, the heritability estimates above suggest

that meta-analysis with more samples should be able to find associations with lower OR

and MAF. I otherwise delay a detailed interpretation of results until they are replicated in

an independent study and reach genome-wide significance in section 5.2.3.

Phenotype Position Effect allele MAF OR p-value Annotation

All meningitis chr6:153582990 T 0.42 1.27 7.2×10−8 Upstream of RGS17

Pneumococcal meningitis chr6:117624549 G 0.46 0.77 8.8×10−7 ROS1 intron

chr18:48403560 T 0.43 0.65 7.6×10−8 ME2/ELAC1/SMAD4

chr22:47506160 G 0.33 0.74 5.5×10−7 TBC1D22A intron

Unfavourable meningitis chr1:64680775 A 0.43 1.62 2.0×10−8 UBE2U/ROR1

chr4:182823804 A 0.33 1.58 4.1×10−7 AC108142.1 intron

chr9:37382231 A 0.07 2.36 6.7×10−7 ZCCHC7/GRHPR

Table 5.3: Signals of association in the Dutch cohort. I report the lead SNP at each associated locus with

MAF > 5% and p < 1×10−6, and nearby annotated genes. The suggestive signal in all meningitis cases

was also present when restricted to pneumococcal cases, albeit with a lower p-value of 3.9×10−7.
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Figure 5.4: Locuszoom plot (Pruim et al., 2010) of association on chromosome 1 with unfavourable outcome,

which is a zoom of the Manhattan plot on the locus. The lead SNP is a purple diamond, other markers are

circles coloured by their r2 with the lead SNP to show LD. The bottom panel shows annotated genes in the

region, with exons as boxes and introns as lines. Recombination rate in cM/Mb is plotted as a pale blue line.
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Figure
5.6:
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Danish cohort results

Once again analysis of all invasive pneumococcal disease, pneumococcal meningitis and

pneumococcal bacteremia suggested a heritable component to each of these phenotypes

(table 5.4), with estimates consistent with the Dutch study (although with wider confidence

intervals, due to the smaller number of samples). Subtype did not provide any evidence

that bacteremia and meningitis are genetically distinct phenotypes (PLR = 311; p = 0.60),

as associations between the phenotypes followed a similar profile. No genome-wide

significant associations were found for either pneumococcal meningitis or pneumococcal

bacteremia (figs. 5.8 and 5.9). The only suggestive association (MAF > 5% and p <

1× 10−6) was found on chromosome 14 at 67181537 (MAF = 0.14; OR = 0.45; p =

2.2×10−7) in an intron of GPHN.

Phenotype Method Heritability Error Fit p-value

Invasive pneumococcal disease GCTA 0.259 0.081 1.3×10−5

LDAK 0.285 0.092 8.5×10−4

Pneumococcal meningitis GCTA 0.727 0.451 5.1×10−7

LDAK 0.849 0.569 7.3×10−2

Pneumococcal bacteremia GCTA 0.371 0.098 1.4×10−5

LDAK 0.575 0.113 2.1×10−7

Table 5.4: Human SNP heritability (h2
SNP) of three pneumococcal phenotypes in Danish children cohort, as

in table 5.2. Pneumococcal meningitis and bacteremia are subsets of the overall category of invasive disease.

5.2.3 Meta-analysis of four studies

An important step in GWAS is to confirm the results using an independent study population.

As well as avoiding possible batch effects from a single cohort, this also increases sample

size and power at true associations with an OR/MAF too low to find in the initial study.

Here I did this analysis for meningitis susceptibility, which had the most total samples

available. I used the summary statistics (p-value and β ) that I generated from the Dutch

and Danish cohorts, as well as summary statistics I received from 23andme and GenOSept

(table 5.1).

I performed the meta-analysis between these studies using METAL (Willer et al., 2010).

At each site the beta values (effect sizes and direction) and p-values from each study are

converted into z-scores, which are then combined as a weighted sum with the weights given

by the number of samples N in each study. This combined z-score gives the meta-analysis

p-value. Before doing this I made sure all marker positions and alleles were given with

respect to the same reference, as the direction of effect is crucial. For the association
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Figure
5.9:
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studies I performed using bolt-lmm I adjusted the beta values using the formula

βadjusted = β · 1

π · (1−π)

where π =
Ncases

Ncases +Ncontrols

As the weight N for each study I used the effective sample size

Neff =
4

1
Ncases

+ 1
Ncontrols

rather than the total number of samples, as some of the studies were highly biased to a

larger number of controls (for example 23andme used 842 samples and 82 778 controls). I

only included markers that had summary statistics from all studies in the meta-analysis (M

= 5 627 710), to avoid effects of sample size heterogeneity in the final p-values.

Figure 5.10 shows the results of the meta-analysis genome-wide. No sites were

significant in this analysis, and the additional data did not support the genome-wide

significant hit in an intron of CA10 reported by 23andme (Tian et al., 2016). A possible

reason for these observations is due to heterogeneity of phenotype between the cohorts in

the meta-analysis. The simple method used here assumes that sites must have the same

direction of effect, and are independent observations of significance, and are on the same

phenotype with no measurement error. However, the Dutch and Danish cohorts differ in

that they analyse adult and childhood meningitis respectively, which differ in their immune

system competence and their vaccination status (Imöhl et al., 2010; Rodrigo et al., 2014).

GenOSept includes bacteremia cases, which may be different from meningitis specifically.

Finally, 23andme uses self-reported status of bacterial meningitis. While self-reported data

has generally been shown to be as good as hospital diagnoses for phenotype association,

especially given the increased number of cases available, for difficult to diagnose infectious

diseases such as lupus this has been shown not to be the case (Tian et al., 2016; Cortes

et al., 2017). For bacterial meningitis cases have not been culture-proven, and may well be

viral meningitis or not meningitis at all. If they are meningitis, most likely a wider range

of pathogens compared to the other cohorts have been included.

A future analysis will include association statistics calculated from the UK biobank,

which has a large collection of genotyped samples (N = 500 000) and hospital diagnoses

for bacterial and pneumococcal meningitis. This may help to provide extra samples with

a well-defined phenotype. Alternatively, modelling the heterogeneity in phenotype may

help, though sample size is still likely to be a limiting factor.
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Figure
5.10:
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5.3 Genome-to-genome analysis of host and pathogen
variation

In this final section I aim to bring together data from chapter 4 and section 5.2 to search

for genome-to-genome associations between the host and pathogen in cases of bacterial

meningitis. By linking the datasets from the human and pathogen arm of the Meningene

study and performing an association study between pairs of variants drawn from each

genome over all these samples, I tested the hypothesis that certain bacteria are more likely

to cause invasive disease in specific host genotypic backgrounds. This dataset is unique,

and to the best of my knowledge the first time both host and pathogen have been sequenced

for a bacterial infection. The present analysis does not require a phenotype, an advantage

of such epistasis analyses (Skwark et al., 2017).

In viral infections, two previous analyses have been published attempting this analysis.

Bartha et al. (2013) used host genotype and the infecting viral genome from 1 071 HIV

patients to perform a logistic regression between every human SNP (of which there were

∼ 7 million) and every viral amino acid (of which there were 3 000) while using the first two

principal components to correct for viral population structure. The authors recapitulated

the well known association with viral load and HLA allele, but were unable to find any

new genome-to-genome links. They estimated having 80% power to detect a variant with

MAF of 10% with an OR of 4.2 given their sample size and the number of tests being

performed.

Azim Ansari et al. (2017) performed a similar analysis on 542 cases of hepatitis C

infection. Again using imputed human genotypes and viral amino acids they performed a

logistic regression between variants, using the first three principal components to control

for human population structure, and the first ten to control for viral population structure. As

well as finding expected associations with the HLA, they found a region of the viral genome

associated with variability in IFNL4, though not quite reaching significance. However, the

same human SNPs were found to be associated with viral load, for which the authors were

able to conclude a link between the strength of selection acting on the viral population due

to the IFNL4 response, and the resulting fitness of circulating virions.

I wished to first remain agnostic to annotation or previous knowledge of host-pathogen

interactions to attempt to uncover previously unknown genome to genome links in clinical

cases of bacterial meningitis, following a similar design to the two viral studies. To do

this, in section 5.3.1 I performed an association test between every genotyped human

SNP and every bacterial mapped SNP/INDEL. However, given the small sample size

and the large amount of variation between the two genomes, the power to overcome the

multiple testing was very low for even moderate effect sizes. I therefore used unsupervised

clustering techniques which use the correlation structure present in the bacterial population
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to produce a lower dimensional representation of the bacterial genomic variation, lowering

the multiple testing burden (section 5.3.2).

Finally I wished to test whether variation in host and pathogen protein which are well

known to interact with each other is correlated in cases of disease (section 5.3.3). I used

the detailed antigen calling already performed in section 4.3.1 as the bacterial variants,

and tested for correlation with human variation. As these bacterial proteins are known to

be broadly antigenic (Croucher et al., 2017), I tested not only the specific human gene

involved in the interactions, but every imputed human variant to try and identify potential

new interaction partners.

In the tests below I used the 460 samples which passed the QC filters from both

sections 4.2 and 5.2.1. When performing associations on a sub-phenotype, as in splitting

these samples into two based on cluster or antigen membership and testing human SNPs

against this, I only tested those sub-phenotypes which contained at least 5% of samples.

This avoided spurious results from testing rare (and underpowered) variants resulting from

partitioning lower frequency variants into yet lower frequency phenotypes.

5.3.1 All by all variant association

To perform a correlation analysis between 7×106 imputed human variants and 1×105

requires around 1012 association tests, which even given the availability of a large number

of CPU cores and the embarrassingly parallel nature of the problem is computationally

challenging.

To approach this problem, I modified the SEER C++ code from chapter 2 to perform

the association tests, as I had already optimised it for speed. I converted the VCF files with

the human and pathogen variant calls to comma separated values (CSV) files, coding the

human calls as 0, 1 or 2 based on the number of copies of the minor allele the genotype

contained (the additive model). These CSV files then only contained the genotypes, and

I stored site and sample level metadata in separate files – this separation allows much

quicker processing of genotype data, especially when accessing specific chunks (Ganna et

al., 2016). I extended the χ2 test to a 3x2 table, and added efficient code for a 3x2 Fisher’s

exact test (https://github.com/chrchang/stats) which I applied when the assumptions of

the χ2 test were violated (by small expected values in the table counts, when MAF in

either genome was low). I used a filter of p < 5×10−11 for this uncorrected test, which is

equivalent to a Bonferroni correction with a significance level of α = 1. I then tested the

pairs of variants which passed this filter with a logistic regression, using the human SNP

and the first three components of the bacterial MDS projection as the design matrix XXX and

the bacterial variant as the response vector yyy.

To parallelise the code I used 300 independent jobs. Each job first read in all the

bacterial variants from the CSV file, and parsed these into a matrix stored in main memory.
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The null log-likelihood for the logistic regression was calculated for each at this point,

to avoid having to make this calculation multiple times when the same bacterial variant

was tested against every human SNP. The chunk of human SNPs assigned to the job were

then read in, and each one passing filtering was tested for association with every bacterial

variant.

As the number of imputed human SNPs was still prohibitively large, I tested the

genotyped human variants only. This is similar to testing an LD pruned subset of sites

with the advantage that their genotype calls could be further investigated if they proved

significant. Using this approach I tested 623 649 human SNPs for correlation with 113 059

associated bacterial variants (SNPs and INDELs from section 4.3). 1.8×1010 variant pairs

passed filters of MAF > 5% in both human and bacterial population with < 5% of calls

missing. Using 300 jobs the total computation time was 268 hrs, using 600Mb memory

per job. 2 433 variant pairs passed the initial p-value filter for p < 1 when adjusting for

multiple testing, but none of these were significantly associated at p < 0.05 when tested

adjusting for bacterial population structure.

Due to the high multiple testing burden from the large number of variant pairs being

tested, this number of samples would only detect strong correlations between genomic

variants. This is plotted in fig. 5.11: assuming a MAF of 25% in each population, the

sample size of 460 has 80% power to detect an epistatic effect with an odds ratio of 4.

While bacterial population structure is less likely to be an issue for this analysis, it may

still reduce the power to fine-map specific interactions. To find whether interactions exist

at lower coupling strengths it would help to have more samples, as at sample sizes double

this study the discovery power increases sharply. The number of samples is also currently

too small to do a heritability analysis of the interaction effect.

While sample size fundamentally limits this analysis, there are some further steps to be

taken. Firstly, the use of Direct Coupling Analysis has been shown to have greater power

at detecting epistatic interactions in the S. pneumoniae genome than the simple χ2 tests

I have used (Skwark et al., 2017). However, an implementation of this which will scale

to the size of the present problem does not exist. Instead, in subsequent sections I use

a representation of the pathogen genome in a lower number of dimensions to attempt to

reduce the multiple testing burden.

5.3.2 Reduced representation of pathogen genome

Given the difficulties encountered when testing every human variant against every bacterial

variant, I wished to find a way to reduce the dimensionality of the problem. This problem is

well known in eQTL studies, where both transcriptomic and genomic variation is measured,

and an association is performed between the genetic variation and altered gene expression

(Breitling et al., 2008; L. Franke & Jansen, 2009). One approach is to model the per-gene
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Figure 5.11: Power for detecting genome-to-genome interactions. Assuming no population structure effect,

the power of detecting an correlation between genome positions at 25 % MAF at a range of ORs. The 460

samples I was able to use in this study is marked as a vertical dashed line.

levels of transcript variation as a smaller number of latent variables, each of which affect a

number of transcripts. The simplest way to do this would be by PCA which would use the

linear combinations of transcripts explaining most of the variation as the latent variables,

though more sophisticated methods exist (Marttinen et al., 2013; Gillberg et al., 2016). In

the present analogy, transcript variation corresponds to bacterial sequence variation, and

the latent variables may combine these into features such as sequence type, serotype or

antibiogram type.

A method which has been successfully used for this purpose is probabilistic estima-

tion of expression residuals (PEER), which estimates latent factors and their per sample

weighting from high dimensional input (Stegle et al., 2012). PEER’s advantages over PCA

are that: the latent factors estimated from the data do not have to be orthogonal, which

may not always be biologically realistic; covariates can be included in the model fit such

as batch effects or case/control status; the factors can be controlled to not be parallel with

other known influences, for example serotype or sequence type.

I therefore ran PEER, learning 40 unobserved factors (though this is an unimportant

setting, as automatic relevance determination is used to determine this from the data). The

results are shown in fig. 5.12 – the first few factors can be seen to represent the large scale

population structure, and some later factors represent finer scale population structure. I

performed an association with all imputed variants against all the inferred factors, which

gave uninflated results for the first twelve factors. Further factors gave spurious results at

lower frequency variants.

While the PEER factors can be interpreted by the looking at the weights assigned to each

input variants for the associated factor, I found this difficult to link directly to a biological
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interpretation. Noting that the first components were describing population structure,

I instead opted to instead test discrete population clusters for correlation with human

variation as the interpretation of the bacterial variants was much more straightforward.

This is essentially testing for lineage effects correlated with human variation, as the power

to find locus effects is limited (as calculated above). I therefore created a core-genome

alignment of these strains using roary as in section 4.3, and ran BAPS on this to generate

population clusters. I found that the PEER components generally represented the same

population structure as the BAPS clusters (fig. A.15).

Cluster Serotype Samples Tested

1 4 17 -

2 - 145

3 8/11A/33F 49

4 10A/35F 22 -

5 23A/B/F 32

6 6B 14 -

7 22F 39

8 9N/15B/19A 47

9 3 47

10 7F 55

Table 5.5: Number of samples in each population cluster. Cluster two is a polyphyletic ‘bin’ cluster. The

dominant serotypes for each cluster, where they account for > 50% of the isolates, are listed.

Table 5.5 lists the ten clusters found in the data, and the dominant serotypes for each

cluster. I ran an association with the BAPS clusters with at least 10% of samples in the

subphenotype. The only result reaching genome-wide significance was an association

between cluster eight (serotypes 9N/15B/19A) and variants on chromosome 10 (fig. 5.13).

The lead variant is at position 134046136 on chromosome 10 (MAF = 0.27; OR = 4.28; p

= 1.2×10−8) located in an intron of STK32C, a serine/threonine kinase highly expressed

in the brain. The high effect size estimated for the interaction is consistent with the power

predicted in fig. 5.11.

5.3.3 Association of antigens

This section considers known interactions between host and pathogen proteins, and whether

variation in the coding sequence or surrounding regions of each gene is correlated in cases

of bacterial meningitis. S. pneumoniae has many virulence factors, some of which are

known to interact with specific human proteins (Kadioglu et al., 2008). However, I was

mostly interested in the interactions where the pneumococcal protein contains sequence

variation, ideally somewhat independent of population structure. These regions have
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Figure 5.13: Locuszoom plot of association on chromosome 10 with sequence cluster 8, as in fig. 5.4.

higher power to be detected in an association analysis, and the higher rate of variation

is potentially a sign of diversifying selection, which may mean the variation is more

likely to be associated with specific interactions with the human immune system. Using a

combined mapping and assembly approach, followed by a supervised machine learning,

in section 4.3.1 I have classified the pspA, pspC and zmpA allele of every sample in the

Meningene collection.

pspA is known to bind to C3b, preventing decomposition on the pneumococcal surface

and blocking the complement pathway response to infection (Tu et al., 1999). The LTF

gene encodes lactoferrin, an iron-binding protein found in the granules of neutrophils. This

protein is bacteriocidal, and forms part of the innate immune response against pneumococci.

It has been found that pspA binds lactoferrin to the surface of the pneumococcus, thus

reducing their killing by this protein (Shaper et al., 2004).

Like pspA, pspC has been shown to bind C3 and prevent opsonic decomposition on

the pneumococcal surface (Q. Cheng et al., 2000). In addition, some forms of pspC have

been shown to bind factor H (Janulczyk et al., 2000; Dave et al., 2001). Factor H inhibits

complement activation by preventing C3b degrading and activating the next step in the

complement pathway. By binding this protein to the surface, the pneumococcus further

prevents activation of C3. This locus in the human genome is also known to be involved in

susceptibility to invasive meningococcal disease (Davila et al., 2010).

Finally I tested allelic variation of zmpA, which is a protease known to bind IgA
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(Wani et al., 1996). This is the most abundant antibody in the nasopharynx, and is an

important part of the immune response to pneumococcal infection (Cerutti & Rescigno,

2008). However, it is not produced by simple translation from a single gene and instead

involves a pathway covering the HLA along with other regions of the genome (Fagarasan

& Honjo, 2003; Ferreira et al., 2010).

For all of the antigen alleles with enough observations (fig. 5.14) I performed an

association against all imputed human variants as in section 5.2.2. I used a more accurate

imputation of the CFH region due to its potential relevance in these interactions. For

each test I produced a genome-wide Manhattan plot, and a locuszoom plot for the known

interaction partner.

Antigen Allele Samples Tested

pspA 1 214

2 231

3 1 -

4 1 -

cbpA 0 44

1 6 -

2 17 -

3 84

4 45

5 60

6 191

pspC 0 347

7 7 -

8 39

9 45

10 6 -

11 3 -

zmpA 1 26 -

2 236

3 185

Figure 5.14: Antigen classification of pspA, pspC and zmpA. The total number of samples in the genome-to-

genome analysis with each allele is shown, and those where an association test performed are noted.
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None of the bacterial antigen alleles were significantly correlated with variants in

their human interacting counterparts at the suggestive level (p < 10−5). However, there

were two associations of pspC allele reaching genome-wide significance elsewhere in the

genome. Figure 5.15 shows a locuszoom plot of each of these associations. The first is

between pspC-8 and position 148788006 on chromosome 6 (MAF = 0.08; OR = 9.20; p =

4.1×10−9). This is in SASH1, which has previously been found to have decreased expres-

sion during meningococcal meningitis (https://www.ebi.ac.uk/arrayexpress/experiments/

E-GEOD-11755/) . The second is between pspC-9 and position 98891272 on chromosome

13 (MAF = 0.16; OR = 6.30; p = 3.6×10−8), in FARP1.
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(a) pspC allele 8, and chromosome 6 (SASH1)
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Figure 5.15: Locuszoom plot of association between pspC allele and imputed human SNPs, as in fig. 5.4.

5.4 Conclusions

This chapter has considered the effect of host variation on susceptibility to and severity of

pneumococcal meningitis. By using two relatively large well-phenotyped cohorts from the

Netherlands and Denmark, I have estimated h2
SNP to be around 30-40% for susceptibility,

and around 25% for severity. This suggests that human genetics plays a role in determining

how likely invasive disease is, given that a bacteria which is capable of invasion has

colonised the individual (chapter 4). Additionally, I have shown that host genetics explains

some of the variability in disease outcome after invasion has happened, which may occur

by variation in immune response.

I then attempted to use GWAS to find specific variants which contribute to these traits,

and while I found signals reaching significance in the Dutch population, none of them have

replicated when meta-analysed with summary statistics from other similar studies. No data

from other studies is currently available associating human variation with disease outcome,

so any planned future confirmation of the association with UBE2U may have to use an in

vivo model of pneumococcal meningitis.
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It is difficult to collect bacterial meningitis cases due to: 1) their rarity, and 2) the

difficulty to confirm the causative organism by culture. It is even more difficult to determine

which of those cases resulted in a poor clinical outcome, as this requires a study design

with patient follow-up potentially months after discharge from hospital. The number of

cases collected by the collaborators for this analysis is impressive, and this has allowed

the first heritability estimates of these traits to be made. These estimates suggest that

continuation of the Meningene cohort is warranted, as is the meta-analysis with other

well phenotyped studies. With enough cases, specific associations replicating in multiple

cohorts will be found. The attempt at meta-analysis I performed here did not find any hits,

perhaps due to heterogeneity of phenotype between cohorts. Additionally, a previously

reported association in an intron of CA10 could not be confirmed.

The only previously known genetic association with meningitis is the CFH region,

which the minor allele is protective for susceptibility to invasive meningococcal disease in

children (Davila et al., 2010). I did not find this association with pneumococcal meningitis,

though when I restricted analysis to adult meningococcal cases, meta-analysis with the

Dutch cohort did not refute its existence. This may suggest a difference in the host response

based on invading pathogen, with CFH binding being less important for pneumococcal

infection.

In the genome-to-genome analysis I was able to put a limit on the strength of inter-

actions that could be detected. Despite being underpowered given the large combined

complexity of the host and pathogen populations, I was able to find possible correlations

between lineage and host variants. Additionally, some antigen alleles showed possible

correlation with variants in the host, though not in regions they are known to interact with.

The lack of association may point at the variability of antigen binding of host-proteins

being uninvolved in disease course, or may just be limited by a combination of small

sample size and high antigenic diversity. The other possible hits from this single study will

need replication before biological meaning can confidently be inferred, but the method

here shows how such analysis might be done for a bacterial infection, and the results can

be used in any future meta-analysis with similar studies.
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Chapter 6

Conclusions

6.1 Summary of findings

S. pneumoniae is a human commensal, which in rare cases can invade a usually sterile

niche. If the blood or CSF is invaded this usually leads to serious disease, called bacteremia

and meningitis respectively. While virulence factors of the pathogen necessary for invasive

disease have been identified from bottom-up lab based approaches (often relying on

a mouse model of infection), the role of naturally occurring sequence variation in the

pathogen genome in invasive disease is generally unknown.

I have used a large cohort of S. pneumoniae genomes isolated from invasive disease

and asymptomatic carriage to determine the importance of sequence variation in disease

susceptibility and severity, and to find the specific regions of the genome which contribute

to these variations in phenotype. My main approach was to use GWAS, which is a

hypothesis-free way of testing all genomic variants for association with a given phenotype.

This approach does not require prior assumptions about which genes may affect the

phenotype and does not rely on large-effect size gene knock-outs or animal models of

disease.

In the context of bacterial populations, GWAS faces difficulties caused by strong

population structure and highly plastic genomes. I developed a piece of software to help

overcome these issues by finding an appropriate adjustment for population stratification,

and using sequence elements (k-mers) to test for variation of the pan-genome. After

testing this method using antibiotic resistance as a positive control, I then applied it to the

phenotype of pneumococcal carriage duration, where I also developed a model to estimate

carriage duration from longitudinal swab data. By adapting methods derived from human

genetics, I was able to calculate the heritability caused by the pathogen genome, and

identify which variants explained variation in this important epidemiological parameter.

Using a range of bioinformatic approaches I catalogued variation of the population

of pneumococcal genomes sampled from the Netherlands, from both carriage and dis-
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ease. I then performed associations between all of these variants and three phenotypes:

invasive disease potential, severity and mortality. This analysis showed the importance of

pneumococcal variation beyond serotype for invasive potential, but not in disease outcome,

and identified many putative genes and regions associated with increased or decreased

invasiveness. I also performed an analysis of within-host variation between blood and CSF

isolates, and while I didn’t find adaptation specific to either niche I did find evidence of

selection on genes post-invasion.

Finally I performed a GWAS of host variation with susceptibility and severity of

meningitis. I found these traits to be heritable, but despite attempts at meta-analysis with

other studies the relatively low sample size and possible prototypic heterogeneity hasn’t

yet led to a confirmed association in either case. I also attempted a genome-to-genome

analysis using both host and pathogen variation. I calculated the limit of detection given

the small sample size, and using dimensionality reduction and biological hypotheses found

possible interaction effects.

In summary, I have made the following advances. I have developed one of the first

methods to overcome the challenges of bacterial GWAS, and showed that it works better

than existing approaches. Using this technique, and others, I have quantified the effect of

pneumococcal variation on variation in carriage duration beyond the resolution of serotype,

and found some of the specific variants which affect it. I also used this top-down approach

of assessing the genetics of pneumococcal meningitis, both in host and pathogen. This

was not based around known required virulence factors, and used variation occurring

in the natural population. Analysis of within-host diversity during meningitis found

selection acting on additional genes. I calculated the heritability of host susceptibility to

pneumococcal meningitis, and performed an association study using human genetic data. I

also attempted the first genome-to-genome analysis with bacterial genomes and human

genotypes.

6.1.1 Bacterial genome-wide association studies

Bacterial GWAS approaches have faced three main difficulties: lack of large sample

collections, strong population structure confounding results and extensive pan-genomic

variation. With the first restriction starting to be lifted, there is a need for scalable GWAS

methods directly applicable to large populations of bacterial genomes. Such methods must

account for population structure, and ideally assay variation in both the core and accessory

genome without relying on a reference alignment.

The use of k-mers to assess pan-genomic variation had previously proven successful,

so I wished to implement an approach which could efficiently perform associations using

these as sequence variants. As the application of phylogeny based approaches are restricted

due to their heavy computational burden and the need for an accurate recombination-
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free tree, I opted to adapt regression-based methods used in human genetics to apply to

bacterial GWAS. I wrote code to maximise the likelihoods of these regressions in C++,

using efficient optimisation techniques as a first try, and more robust methods as a second

pass.

To work out how to deal with population structure I compared various approaches in

terms of accuracy and computational burden for phylogeny reconstruction. Knowing that I

would be using k-mers in the association, I found that a method using the Jaccard distance

between subsets of overall k-mers was sufficient to control for population structure in my

simulations, and for antibiotic resistance in S. pneumoniae. Since writing this code the

minHash distance has been adapted for distances between genetic sequences (Ondov et al.,

2016), and can now be used as a more efficient replacement for Jaccard distance. I used

the eigenvectors with the three largest eigenvalues calculated from this pairwise distance

matrices in a fixed effect logistic or linear regression, in analogy with the standard method

used in human genetics. To deal with possible very large effect sizes in these regressions I

used the LRT for significance, and Firth regression for when data was nearly separable (as

in trimethoprim resistance).

This approach proved to be broadly successful for antibiotic resistance in S. pneumo-

niae, worked with simulated data, and found a potential virulence factor in S. pyogenes.

However, in all of these cases the predicted effect size was very strong, and population

structure was generally not strongly associated with the phenotypes tested. I did not test

whether the population structure correction I applied here was more broadly applicable,

and would be sufficient in other species or phenotypes where these conditions no longer

hold. The use of more eigenvectors should improve the trade-off between false positive

rate and power, but it may be the case that including them as random-effects under a linear

mixed model may offer the best option. When used for carriage duration, I found that

a LMM had slightly higher power for detecting homoplasic low frequency effects when

compared to using fixed effects while controlling for false positive rate. However, it was

not as useful as the fixed effects model for including possible lineage associated variants

for follow-up elsewhere. For invasiveness of S. pneumoniae, the fixed effect model using

ten population structure components appeared to have a high false positive rate, where the

LMM offered better population structure control and was still powered to find associations.

I have therefore already observed situations in which different methods would be the

best to use. A comparison of these possible methods based on a range of population

structures, phenotype distribution, recombination rate/homoplasy, effect sizes, lineage and

locus associations would be useful, and is not something I attempted here. It is difficult to

simulate realistic bacterial phylogenies, and synthetic associations introduced as part of this

kind of simulation may be easier to find than associations in real populations. To perform

this comparison I would take observed sequence alignments from real populations, and

introduce synthetic associations using eq. (2.11) over the range of parameters of interest.
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A comparison of power and false positive rate of fixed and random effect regressions as

well as phylogeny based methods would be useful for future applications.

The population structure correction I used in SEER is a reasonable start, and works

well for strong effects such as antibiotic resistance. A comparison with other possibilities

with positive and negative controls (either simulated or known associations) will help

inform future development. I mostly tested methods on locus effects, and have ignored

or controlled for lineage effects in the output. In the future, a ranking of lineage effects

in the output would be useful in case lab-based follow-up of these sites is possible. Clear

assignment of sites as either lineage or locus effects would be helpful too, and ancestral

state reconstruction combined with a comparison between adjusted and unadjusted test

statistics may help classify variants into one of these two classes.

A difficulty in both cases is picking a significance threshold. In my first attempts I

reasoned that every possible site in the genome multiplied by all three possible mutations

should be used as the number of tests, and backed this up with permutation testing.

However, as samples are not independent and identically distributed due to their genetic

relatedness then permuting phenotype labels may not be appropriate, as it assumes any

switch of label has the same effect ignoring any covariance between samples. Permuting

labels within population clusters may be better, but likely too conservative. Monte Carlo

permutation using the a covariance structure calculated from the phylogeny is also possible,

though with the usual caveats of computational burden and reliance on a high-quality tree.

Inspection of Q-Q plots is useful and can visually allow for the identification of a breakpoint

between population structure effects and a significant signal, and how much the former is

affecting the association model overall. While this is not a consistent way of choosing a

threshold, it can help with ranking the top hits. For the LMM, where population structure

is well controlled at the lower end of the p-value spectrum, a conservative Bonferroni

correction based on number of patterns seems appropriate based on the Q-Q plots tested

here. For fixed effects models picking this threshold remains a challenge, though Q-Q

plots can help.

The use of k-mers worked well in the applications tested, and managed to find asso-

ciations SNPs would not. They enjoyed the expected advantages from not requiring an

alignment or clustering of orthologous genes. In cases where nearby SNPs independently

affect the phenotype, which occurs in some antibiotic resistance genes, k-mers may be split

up into lower frequency sequence units, lowering their power. In later chapters I therefore

assessed variation through k-mers, SNPs and COGs where possible. The interpretation

of k-mers has proved more challenging, due to the difficulty of mapping to the correct

place (particularly with smaller k-mers) in a well annotated genome. Ideally k-mers would

further be annotated by labelling SNPs and their predicted functional change in the k-mers,

using the ancestral state as reference. However, to map an associated region, especially

mediated by gene presence/absence and not fine-map the function, k-mers have been
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successful.

6.1.2 Epidemiological variation of S. pneumoniae

Duration of carriage of S. pneumoniae is an important measure of strain fitness in epidemi-

ological models, and its variation has been proposed as a mechanism by which antibiotic

sensitive and resistant strains can coexist. Previous analysis of the source of this variation

have been limited to serotype resolution, so using genome sequences from a longitudinal

study cohort offered the opportunity to refine the analysis of variance.

I first developed HMMs for longitudinal swabbing data per serotype, to allow carriage

acquisition and clearance rates and false negative swabbing rates to be estimated from the

whole data rather than from a set of assumptions. The only model that converged for the

most common serotypes was the simplest: two states for carrying and not-carrying. These

parameters could then be applied to individual carriage episodes to infer the most likely

durations based on the observed data. Using these durations as a continuous phenotype,

I used a LMM to investigate and quantify the variance components caused by serotype

and resistance, and GWAS to identify possible specific genetic variation which further

contributed to variation in carriage duration.

I found that bacterial genomic variation had a significant effect on carriage duration,

and that serotype was the largest lineage effect. However, only serotype 19F appeared

to have a contribution independent of the genetic background. I also identified prophage

k-mers which were associated with a lowered carriage duration, and evidence that this may

work through interruption of the competence mechanism (by inserting into the comYC

gene). These findings support the existence of duration and fitness modifying alleles in

the natural population, which can be used to explain coexistence of antibiotic resistant

and sensitive strains despite strong fitness differences depending on whether treatment is

currently being applied (Lehtinen et al., 2017). The increased precision of the carriage

estimates, per carriage episode rather than per serotype, along with provision of useful

covariates such as comYC status, host age and previous carriage will also be useful data

for models of coexistence and transmission.

However, one of the main limitations of this analysis was the monthly swabbing

resolution. While clearly a large and well-sampled collection, the design of swabs spaced

linearly in time to probe carriage durations which appear to be exponentially distributed

is suboptimal. A design that would be better for this purpose is exponentially distributed

sampling of cases that remain positive (Abdullahi et al., 2012a). Given the swabbing

design available here, the estimates of effect sizes of the explanatory variables on carriage

duration were therefore positively skewed.

As with all GWAS studies from a single population, results may be affected by batch

effects in this population. Therefore meta-analysis of the results from this section with
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another similar study would be useful before being generalised to the entire pneumococcal

species. However, as this amount of sequencing has previously been unfeasible and as

children need to be followed for two years, these studies are difficult to set up and long-

running from start to finish. There are no other studies currently combining carriage

duration estimates with genomic data, so this meta-analysis is not presently possible.

We are aware of a similar study starting collection in Cape Town, South Africa, so I

have released our results to facilitate comparison when this study’s sequencing has been

completed.

The function of altered carriage duration through comYC is an association only, and

does not prove causation through this mechanism. While it is possible to make evolutionary

arguments to support this interpretation, isogenic strains (controlling perfectly for genetic

background) in an in vivo model would be needed to bolster this claim.

6.1.3 Host and pathogen genetics of pneumococcal meningitis

In chapters 4 and 5 I have used genomic variation of infecting bacteria and human host

respectively to determine the impact of genetics on susceptibility to and severity of pneumo-

coccal meningitis. Heritability analysis showed that for susceptibility, host genetics played

a role and the genome sequence of the infecting strain is very important in whether invasive

disease can occur. For severity of disease a different picture emerged: pathogen variation

is unimportant, and host genetics is likely to play a small role. Though the estimation of

specific heritabilities with binary phenotypes can be problematic, the data and multiple

models support this overall conclusion.

I was unable to find and validate specific host associations through meta-analysis with

other studies given the current sample collection. This rules out the existence of common

variants with large effect sizes, the fitness defect of which would be unlikely to exist

evolutionarily. Whether the variation which contributes to this phenotype consists of low

effect size common variants, or rarer large effect size variants is a question that will need

to be answered by future studies with larger sample sizes and more sequencing covering

the entire variant frequency spectrum.

I did not include the sex chromosomes in the present analysis due to difficulties

with imputation, though I did perform an earlier analysis of the X chromosome when

using impute2 in the Dutch population that did not show any association with any of the

phenotypes. Tools are being developed to deal with the sex chromosomes in the same way

as the autosomes (Wise et al., 2013), and the imputation server and reference panel now

allows the X chromosome to be included. Future analyses should therefore not ignore this

variation.

Another issue was phenotype heterogeneity, as the cohorts differed in terms of par-

ticipant age and the exact disease presentation. While these differences have not been
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found to matter for many phenotypes, it is possible that differing effect sizes in the subtly

different phenotypes here are making associations impossible to find given the model used.

The sample size here may benefit from a specific model allowing for this heterogeneity

and expected correlations between effect sizes (as evidenced by the lack of signal from

subtest), though a simple first step would be to perform meta-analysis of only a subset of

the available studies to test for this possibility.

For the bacterial genetic contribution to meningitis, using GWAS I found many regions

of the genome to be associated with invasiveness. Reassuringly, positive controls such as

capsule (which I separately estimated to account for half of the variation in invasiveness)

and LoF mutations in virulence factors such as zmpD were found in this analysis. Some

other genes had previously been reported to affect virulence in invasive disease models, and

these results increase support for their importance in human disease too. The remaining

regions were associated with virulence for the first time here, and may suggest new

functions for these genes, or an impact on virulence through unknown interacting gene

networks.

I used a simple burden test when testing the effect of rare variants, which would not be

suitable if the variants included in the set had different directions of effect. While this is

probably correct for LoF variants, a different test may increase power for rare missense

variants affecting protein function. If there is still strong population structure at the tips of

the tree the method I have used has not explicitly accounted for it. It would be possible

to instead group variants manually, and perform the association using a LMM. A similar

caveat exists with the Tajima’s D analysis of differential selection, where permutation

testing may be insufficient to correct for population structure. In this case, the confounding

effect of different population histories or different effects of vaccine introduction may be

impossible to disentangle from signatures of selection.

These GWAS results are particularly susceptible to batch effects, due to the difficulty

of getting a perfectly matched sample of the population from carriage and invasive disease.

When analysing binary traits, if a covariate (such as serotype) is perfectly correlated with

the trait, then all the results will be confounded too. Therefore a crucial next step, before

further interpretation, is replication and meta-analysis with another population where both

carriage and disease have been sampled. Hits from both populations will then be much

better supported as the confounders may cancel out if in random directions, and power will

be raised for rarer and lower effect size variants. A project is underway in South Africa

which has taken such a sample, so we intend to perform this meta-analysis using those

sequences.

As mentioned in chapter 1 part of the power of GWAS over linkage studies comes from

the simple study design, where as many samples as possible are used without necessarily

worrying about matching for covariates or genetic background. These confounders can

then be adjusted for in the downstream analysis instead, which maximises discovery power.
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This is broadly true for bacterial genomes too, however the effect of population structure

is a much stronger confounder, and for some phenotypes which are tightly correlated

with genetic background (high heritability) this can make discovery of anything other

than homoplasic variants impossible. An alternative study design is to instead compare

variation from within the same bacterial population when it has divergent phenotypes. For

example, sampling the diversity of the bacterial population within-host in the carriage niche

and an invaded niche is not confounded by population structure (and also host covariates

such as age and immune response) as the genetic background is the same. Performing

a meta-analysis of the variation found to be associated with either niche across multiple

samples will then find those variants which occur during infection which have allowed

adaptation to the invaded niche.

I performed this analysis between blood and CSF isolates, as previous work on a single

case of pneumococcal meningitis had found convincing evidence for evolution occurring

during invasive disease. When I expanded to hundreds of cases, I found no evidence of

any variation causing adaptation to either the blood or CSF niche during disease. The

sample size was large enough to conclusively state that variation occurring after invasion is

rarely important for the progression of meningitis. However, when comparing the variation

present in populations from invasion to carriage reference sequences I did find signs that dlt

loses function in carriage more frequently than would be expected, and that pde1 is under

selection in invasion. To refine this analysis of variation occurring within-host between

carriage and disease I would need to use more samples than analysed here, and also deeper

sequencing of samples to assay the background of variation that exists within the founding

population that is then selected.
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6.2 Future directions

6.2.1 Bacterial GWAS methods

Since its release, I have received feedback about SEER which, if implemented, would

make it into a more broadly usable and applicable piece of software for microbiologists. In

terms of software development and installation, inclusion of SEER in a common ‘container’

would make installation automatic for those without C/C++ development experience, deal

with differences between platforms and ensure all users are working with the same version

of the code base.

I designed SEER with k-mers in mind, and therefore concentrated on making a scalable

piece of software with a single input source. As mentioned, k-mers may not be the ideal

variant when close SNPs are associated with a phenotype as the resulting k-mers will

be split up into words of smaller frequency, and therefore power. For some purposes it

may be useful to allow other forms of input such as VCF for short variants (SNPs and

INDELs) with respect to a reference, and a general presence/absence matrix for COGs and

aligned intergenic regions. The interpretation of k-mers can be challenging, both in finding

a suitable reference (even from the entire nr/nt) to map to and annotate them with, and

to determine whether they represent presence/absence of a region or variation within the

region. It has been recently argued that population variation is best represented by a pan-

genome graph, with shared haplotypes of any length being the natural variant (Marschall

et al., 2016; Paten et al., 2017). Though the counting of informative k-mers goes some

way toward testing longer variants, testing haplotypes may improve association power and

make interpretation easier. A method has been proposed using unitigs (high confidence

contigs not requiring repeat resolution), though this is not likely to scale beyond hundreds

of samples (Jaillard et al., 2017). Integrating a scalable approach such as vg (variant graph –

https://github.com/vgteam/vg) would be a promising way to include haplotype association.

Section 4.4.2 considered rare variation in GWAS assuming population structure was

not an issue, due to low frequency variants occurring at the tips of the phylogeny. Including

a way to input pathways of variants in SEER would relax this assumption, and also allow

both gene-based burden tests (in either direction) to be extended to operons and functional

pathways. Adding a model such as SKAT (Wu et al., 2011) would also improve power when

rare variants in a functional pathway do not all act in the same direction on the phenotype

of interest.

I picked a single method to adjust for population structure in SEER, but many others

could be used. For example, as shown in chapters 3 and 4, the fixed effect model of SEER is

in some cases a poor control for population structure. In the current implementation, BAPS

clusters could be used as a categorical covariate in the regression giving a similar test to the

CMH. A LMM has generally shown good control of population structure, likely thanks to
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using all SNPs in the population structure correction rather than a proportion through pick-

ing the top principal components. The LMM normally has complexity O(MN3), which is

infeasible for the GWAS problems considered here and as sample sizes grow in future. The

model of FaST-LMM rotates the design (XXX) and relatedness (GGG) matrices so the regression

becomes linear along the eigenvectors of GGG (first using a singular value decomposition of

GGG), which with correct selection of GGG has complexity O(MN) (Lippert et al., 2011; Kadie

& Heckerman, 2017). In this case, GGG is a SNP-wise distance between samples. This is

similar to the O(MN2) phylogenetic regression method of Pagel (1997) which transforms

correlated error terms (due to relatedness between samples) into uncorrelated errors by

diagonalising the variance-covariance matrix GGG. In this case, GGG is the distance between

the root and MRCA of each pair of samples. These methods could be included as new

association models in SEER to allow for population structure correction when the current

fixed effect model is not appropriate.

The effect on GWAS power and false positive rate of these different population structure

corrections is unknown, and will likely be different depending on variant penetrance, level

of homoplasy and frequency. A simulation-based comparison between these methods

over a range of situations would therefore be useful. Based on the simulations used in

section 2.6.1, the best way to do this would be by adding in synthetic associations of

different penetrance at various points of the phylogeny of a real population using eq. (2.11),

which would allow varying homoplasy and frequency.

I used heritability and genomic partitioning to support the conclusions in chapters 3

and 4. While this is well-supported for continuous trait used in the former, the use of the

liability scale for bacterial traits in the latter has not been properly explored. Extension to

binary traits would be useful, and support of the applicability and robustness of the methods

used from simulated data will be important for having faith in quantitative estimates. If

this could be shown to work, the estimates of serotype importance may be better estimated

in a framework where genetic background is separately accounted for.

The use of SEER has been exclusively to single traits, but with the increasing availabil-

ity of high dimensional phenotypes as seen in genome-to-genome analysis (section 5.3),

pheWAS (Bush et al., 2016) and eQTL studies (L. Franke & Jansen, 2009; Wang et al.,

2009) the addition of a multitrait model could be considered. Transcriptomic data is now

being produced for bacteria (Bruchmann et al., 2015), so improved association power of

SEER for this purpose will be useful. Rather than associating every phenotype or transcript

separately, necessitating a harsh multiple testing correction, the correlation structure of

multiple traits can be exploited to find latent variables (biologically representing functional

pathways) to test for association with genetic variation improving power (Marttinen &

Corander, 2010; Marttinen et al., 2013; Marttinen et al., 2014). Recent implementations of

non-negative matrix factorisation are fast, and a promising way to find latent variables in

high dimensional phenotypes (Zhirong Yang et al., 2016) – so could be added as a further
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module in SEER.

6.2.2 Genetics affecting pneumococcal meningitis

Further analysis using GWAS could further explain the biology of pneumococcal infection.

A simple additional analysis would be adult versus child colonisation using the Dutch

carriage population – I have already catalogued the variation, and host age is available for

all samples. Any results may be informative of the differences in immune system evasion

depending on host response, and could be important for vaccination which currently targets

children.

In the carriage stage, bacteria will only persist in the population if they can be transmit-

ted between hosts; ‘transmissibility’ of S. pneumoniae is therefore a measure of fitness.

Alleles which affect transmissibility may also be a promising vaccine candidate, as com-

pared to PCV they will reduce colonisation (and therefore disease) of all serotypes. Zafar

et al. (2017) have shown that ply is necessary for transmission, as the host cell damage

it causes increases shedding. A GWAS of S. pneumoniae transmissibility may be able to

detect more subtle effects of alleles which occur in the natural population.

Nebenzahl-Guimaraes et al. (2016) performed a GWAS on transmissibility of M. tuber-

culosis by selecting low transmission strains from at-risk hosts with rare genotypes and

high transmission strains from low-risk hosts with common genotypes. A similar way

to perform this analysis would be to use the carriage durations I estimated in chapter 3

and assume equilibrium transmission in an susceptible-infected-recovered (SIR) model

in the Maela population, which would then allow calculation of strain transmissibility

from carriage duration divided by strain prevalence. However, evidence from infant mouse

models suggests S. pneumoniae transmission may only occur shortly after colonisation,

when inflammation is highest promoting increased shedding (Kono et al., 2016; Zafar

et al., 2017). In this case a more complex transmission model using genetic similarity

and infection times may be more appropriate, and model comparison between different

functions of transmission intensity with respect to time would also be useful for inferring

the biology of real-life transmission. Numminen et al. (2013) proposed a more flexible

transmission model for the Maela population which was fitted with approximate Bayesian

computation. Due to many proposals of the transmission tree being inconsistent with

the observed infection times (and being assigned L = 0) the fitting was computationally

intensive; the use of the carriage durations estimated here rather than single time-points

may ameliorate this problem. Inference of alleles affecting transmissiblity could then

be jointly estimated in the process of inferring the transmission trees. Alternatively, if

the dimension of genetic variation is too high, they could be inferred separately by first

calculating strain-wise transmissibility from the transmission trees and then using these as

a phenotype in GWAS. An alternative approach would be to sample within-host diversity
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by deep sequencing of swabs, which allows finding the genotypes which make it through

the transmission bottleneck in each case through ancestral state reconstruction (where the

trait is the identity of the host). Averaged over many transmission chains, the variation

shared by these genotypes would represent transmissibility alleles.

In the analysis of host genetics affecting bacterial meningitis, a better model of the

shared architecture between the subtypes of meningitis analysed may help find associations

(Pickrell et al., 2016). Rather than using subtest with underpowered genotype data, it

may be better to use LD-score regression between summary statistics from all the studies

available, which would allow estimation of coheritabilities between the different sub-

phenotypes (Bulik-Sullivan et al., 2015). To aid in increasing power for detecting host

genetics we have applied to access the UK biobank (http://www.ukbiobank.ac.uk/), which

is about to release 500 000 genotypes of a richly phenotyped UK adult population. These

phenotypes include ICD-10 codes, which show hospital diagnoses for bacterial meningitis,

split up by causal species. Additionally, date of death is available, allowing inference of

clinical outcome. The large size and well-defined phenotype of these samples will allow

us to perform another GWAS, and meta-analyse the results with those of chapter 5 for both

susceptibility and severity increasing discovery power.

The genome-to-genome analysis was limited by the small sample size when testing

massive numbers of combinations of possible interactions. In future, the ~1 200 samples

from the Danish cohort will also have the causal S. pneumoniae sequenced, allowing this

analysis to be expanded. It may also be possible to model the effect of genome-to-genome

interactions on severity as well as bacterial and host factors, by analysing a combined

model of the form:

severity ∼ Xbacteria +Xhost +Xinteraction

where the interaction term is Xbacteria ×Xhost.

Finally, I would propose the following extensions to assessing with-host diversity

during bacterial meningitis. As I have shown that selection does not occur between blood

and CSF samples, but that it probably does occur between carriage and CSF, a greater

number of carriage and invasive samples from the same patient should be taken: greater

both in terms of the number of patients enrolled and in the depth of coverage of the

within-host diversity. This is a difficult study to set up: in the MeninGene cohort recent

attempts to swab bacteria from the nasopharynx of bacterial meningitis patients before

treatment started yielded no positive cultures, likely due to the small carriage population

(Wyllie et al., 2014; Wyllie et al., 2016). Alternative culture-free methods such as DNA

pull-down may be helpful, or alternative a study in an alternative population with high

rates of carriage may be able to achieve sufficient sample size.

The analysis of this data would benefit from an improved null model of mutation. In

section 4.5 I assumed a simple model of equal mutation rate per base and Poisson dispersion
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of number of mutations, which led to regions with higher mutation rates being found, and

may have suppressed the discovery of genes with lower mutation rates. Improving this

through a more refined model of mutation rates depending on sequence context and using

observed dispersion of the number of mutations would be a useful extension (Samocha

et al., 2014; Aggarwala & Voight, 2016). If more mutations were observed, using the

observed number of synonymous changes, which are assumed to be neutral, as a basis

for the null would also help (Ding et al., 2008). Finally, experimental evolution without

selection pressure may give the most accurate null model (Tenaillon et al., 2016), though

an experiment recreating the bottlenecks encountered in pneumococcal meningitis has not

yet been performed.

6.2.3 Future of statistical genetics in bacterial diseases

Statistical genetics, and specifically GWAS, of host and pathogen genetics contributing

bacterial diseases is still in its infancy. Looking at the boom in human genetics and given

the large sample sizes becoming available, it is reasonable to expect the field to continue to

expand. The near future is likely to consist of further methodological improvements and

analysis of new phenotypes, going on to functional validation and eventually integration

with host data. I hope that I have presented some reasonable early steps in this field in this

thesis, and that others find elements of what we’ve done useful for future research.

Thanks a lot for reading all the way to the end! (unless you skipped straight here)
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Appendix A

Supplementary information

A.1 Data access and code availability

The following new data generated as part of this work is available publicly:

• S. pyogenes sequence reads from section 2.6.3 are available on the European Nuc-

leotide Archive under study accession IDs PRJEB2839 (isolates from Fiji) and

PRJEB3313 (isolates from Kilifi).

• From the paired blood and CSF isolates in section 4.5 read data, assembled and

annotated contigs were deposited in the European Nucleotide Archive (ENA): study

accession number ERP004245.

• Sample metadata used from these paired blood and CSF isolates has been deposited

in Figshare (DOI: 10.6084/m9.figshare.4329809).

Relevant code for each section can be found on github:

• Testing of tree inference methods, section 2.3.1: https://github.com/johnlees/which

tree

• SEER, section 2.5: https://github.com/johnlees/seer

• Carriage duration analysis and results, chapter 3: https://github.com/johnlees/carriage-duration

• Paired sample analysis, section 4.5: https://github.com/johnlees/paired-samples

• Calculation of Tajima’s D, section 4.4.2: https://github.com/johnlees/tajima-D

• Fix to subtest code, section 5.2.2: https://github.com/johnlees/subtest

• Code to perform all-by-all variant association in genome-to-genome analysis, sec-

tion 5.3.1: https://github.com/johnlees/epistasis-code

• Miscellaneous code and scripts, referred to throughout: https://github.com/johnlees/

bioinformatics
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A.2 Supplementary figures

Figure A.1: Monotonic warping function from warped-lmm. x-axis shows the centred and normalised input

phenotype; y-axis shows corresponding warped value.
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Figure A.2: Normal quantile-quantile plot of carriage length, and effect of monotonic transformation. Panel

a) the inferred carriage duration, b) after the natural logarithm is taken, and c) after the warping function is

applied.
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Figure A.3: Regression diagnostics and outlier removal. Panel a) shows prior to outlier removal, b) after

outlier removal as produced by plot.lm() in R. Points deviating from normal residuals (top right plot), and

at high leverage (bottom right plot) were removed. These observations appeared to be due to swabs not taken

at the prescribed monthly intervals.
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Genetic distances between isolates
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Figure A.4: Histogram of pairwise patristic distances on the inferred phylogeny. A cut-off for heritability

estimation was chosen at 0.04, under which a clear second maxima corresponds to closely related isolates on

the tree.
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Figure A.5: Lasso regression plots for lineage effects. Panel a) shows the value of each predictor on the

y-axis for different values of the �1 penalty λ on the x-axis, which increases from left to right. The labels

along the top are the number of predictors remaining in the model for each λ . Panel b) shows the results of

leave-one-out cross validation on the mean-squared error, along the same x-scale. The λ at minimum error is

shown by the left dashed line, and the λ within one standard error is shown by the right dashed line.
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Figure A.6: Identification of phage in assemblies by blastn hit length. Histogram of the length of top hits

against a database of phage sequence by blastn. Isolates with >5000bp hits were defined as having phage

present.
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Figure A.7: The lengths of those k-mers reaching significance in the LMM analysis, binned by frequency.

Lengths below 20 bases were filtered from downstream analysis, due to having low specificity.
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Figure A.8: Quantile-quantile plots of association p-values. For fast-lmm results on a) SNPs passing

quality filters and b) k-mers of all lengths passing quality filters.
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Figure A.10: Maximum likelihood tree of pspC protein alignment, with 100 bootstrap replicates (nodes are

labelled with bootstrap supports). Tips are coloured by allele group.
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Figure A.11: Maximum likelihood tree of pspA protein alignment, with 100 bootstrap replicates (nodes are

labelled with bootstrap supports). Tips are coloured by allele group.
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Figure A.12: Maximum likelihood tree of zmpC protein alignment, with 100 bootstrap replicates (nodes are

labelled with bootstrap supports). Tips are coloured by allele group.
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Diversity difference count with Gaussian fit
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Figure A.14: Distribution of difference in Shannon diversity index between the ivr locus model πblood and

πCSF. A Gaussian distribution was fitted to the data, which has a mean of roughly zero and little skew. The

maximum possible Shannon diversity index (for equal amounts of each allele A-F) is 1.8.
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Figure A.15: Plot of the samples in the genome-to-genome analysis. x-axis is the first PEER factor loading,

y-axis is the second PEER factor loading. Sample are coloured by the BAPS cluster they were assigned to.
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