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That’s the whole problem with science. You've got a bunch of empiricists trying to

describe things of unimaginable wonder.

— Bill Watterson, Calvin and Hobbes



Abstract

Complex disease risk is characterised by a combination of multiple genetic
factors along with the environment. Since 2005, genome-wide association
studies have discovered thousands of genetic variants associated with hundreds
of such diseases. Following on from these types of studies, custom genotyping
arrays with dense SNP content have allowed for greater refinement across risk
loci, while their low cost has enabled powerful locus discovery projects and
cross-phenotype comparisons in very large sample sizes. Combining risk loci
with disease-relevant functional genomic data allows for insights into the biology
of disease. In this dissertation, I explore locus discovery, cross-phenotype
comparisons and functional data integration across four immune-mediated
complex diseases - primary biliary cirrhosis, primary sclerosing cholangitis, and
the two forms of inflammatory bowel disease - Crohn’s disease and ulcerative

colitis.

In Chapter 1, [ provide a historical background of our understanding of how
genetic variation contributes to phenotypic variation, and the technological and
theoretical advances in the last twenty years that have lead to the large-scale

high-throughput locus discovery projects of today.

In Chapter 2, I describe a locus discovery project using the Immunochip
custom genotyping array for primary biliary cirrhosis. In addition to identifying
three new risk loci and refining associated variants within known risk loci, I
explore how integrating association results with functional genomic annotations
across various cell lines from the ENCODE Project can provide insights into the

cell types and genomic features most relevant to disease.

In Chapter 3, I describe a similar locus discovery project using the
Immunochip for primary sclerosing cholangitis (PSC), where nine novel risk loci
were identified. Over 80% of PSC patients are also diagnosed with inflammatory

bowel disease, the majority of which is ulcerative colitis. I explore genetic factors
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that may explain this overlap, and show that despite this high comorbidity,

around half of PSC risk loci appear unique to PSC.

In Chapter 4, I describe a trans-ethnic genome-wide association meta-
analysis for inflammatory bowel disease (IBD) comprising individuals of
European, East Asian, Indian and Iranian ancestry genotyped on a combination
of genome-wide arrays and the Immunochip. Forty new IBD loci were discovered
associated with Crohn’s disease, ulcerative colitis or both. I show that there
exists pervasive sharing of IBD risk loci between European and non-European
populations, while also noting specific loci where effect sizes differ between
populations. The study demonstrates the utility of performing large-scale GWAS

meta-analyses across different populations to identify novel susceptibility loci.

I then move beyond locus discovery in Chapter 5, where I describe a simple
method for integrating differential gene expression datasets with disease risk
loci. I applied the method to two gene expression datasets reflecting the genes
that are involved in maintaining intestinal T cell homeostasis, and those
triggered in the gut in response to infection. I find that in both cases, genes that
are differentially expressed between these conditions are significantly
overrepresented among risk loci for a range of autoimmune disorders, allowing
for the identification of additional candidate genes at these loci and the
generation of hypotheses about the mechanism through which they mediate

disease.

Finally, in Chapter 6, I discuss the major themes of the preceding chapters on
unravelling the genetic architecture of complex diseases. I then look to the types
locus discovery projects that will shape the field in the coming years, and the
potential for these to be ultimately translated into better treatment outcomes for

patients.
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Chapter 1. Introduction and historical

perspective

Members of the human race are fascinatingly diverse. No two individuals - not
even identical twins - are exactly alike in height, body weight, skin colour, blood
type, personality, or football club allegiance. Yet it is no coincidence that for most
traits, people who are related to each other are, on average, more similar than
those who are not. Part of this reflects the shared environments of closely related
individuals. Families live under one roof, eat the same food, with children going
to the same schools and playing with the same toys. Then there are genetics
factors. Individuals who are related to each other also share more stretches of

identical DNA.

Of all the traits that vary between individuals, understanding the causes of
disease susceptibility is perhaps the most pertinent. Identifying the specific
genetic factors that are associated with disease risk will offer insights into
understanding disease biology with a goal for better treatment outcomes for
patients. Much of this dissertation describes the identification of genetic loci
associated with risk for four poorly understood autoimmune and
autoinflammatory disorders: primary biliary cirrhosis, primary sclerosing
cholangitis, Crohn’s disease and ulcerative colitis. For the remainder of this
chapter, I provide a rationale for studying these diseases, as well as a historical
perspective on how our understanding of the genetic contribution to complex

traits has been shaped.



1.1 Immune-mediated diseases
1.1.1 The immune system

The human immune system encompasses three broad layers of protection
against infectious agents such as bacteria and viruses. Firstly, physical barriers
such as the skin prevent pathogens from entering the body in the first place.
When these are breached, the innate immune system, consisting of ever-present
cells ready at the site of infection, provides an immediate and generic response
to the pathogen. If the agent is able to overcome these innate defences, the
adaptive immune system may become activated. Here, pathogen recognition is
specific and becomes part of immunological memory, allowing for a more potent

response to infection and acquisition of immunity.

How the human immune system discriminates between its own cells and that
of a pathogen is one of the central questions of immunology. To be effective, the
immune system needs to strike a balance between its ability to recognise and
destroy a pathogen while leaving endogenous cells alone. A weak immune
response can lead to immunodeficiency and a greater risk of infection, while an
overactive response, whereby the host's own cells are targeted, can result in

autoimmune and autoinflammatory diseases.

Over 100 such immune-mediated diseases (IMDs) have been described, and
together represent a diverse array of clinical features, epidemiological profiles
and risk factors (Ricard Cervera and Munther, 2009). Such disorders can affect
either a single tissue type or organ, such as inflammatory bowel disease or type 1
diabetes, or can affect multiple parts of the body, such as systemic lupus
erythematosus. For the majority of these diseases, symptoms are chronic there
are no known cures or preventive measures, and are thought to be triggered by
combinations of environmental factors (e.g. an infection from a pathogen or a
microbiome imbalance) in a genetically susceptible host. Treatments to control
symptoms generally begin with medication to suppress the immune response,

though for some disorders, an organ transplant may ultimately be required.



1.1.2 Epidemiology

Individually, IMDs are quite rare, though they collectively affect 3-7% of the
population and represent a large and growing public health issue (Cooper et al,
2009; Parkes et al, 2013). It has been estimated that the direct annual medical
cost of IMDs in the United States is over $125 billion (Blumberg et al, 2012),
with further economic costs incurred through loss in productivity and working
days from these chronic conditions. Indeed, the prevalence of many IMDs has
increased over the past 50 years, and is thought to be a reflection of greater
awareness and better disease diagnoses, as well as changing environmental
factors (Cooper et al, 2009). One often-cited explanation for the rising
prevalence is the “hygiene hypothesis”, whereby the decreasing incidence of
infections in developed countries inhibits proper development of the immune
system, which in turn increases risk to allergies and IMDs in later life (Okada et

al, 2010).

Epidemiological studies have also shown significant comorbidity between
several IMDs, where an individual with one IMD is at significantly increased risk
to develop a second IMD (Cooper et al, 2009). For instance, patients with
inflammatory bowel disease are at higher risk of also developing primary
sclerosing cholangitis and primary biliary cirrhosis (Roman and Munoz, 2011;
Saich and Chapman, 2008). It is also possible having one IMD can offer
protection against others. For instance, it has been suggested sufferers of
multiple sclerosis have reduced risk of rheumatoid arthritis (Somers et al,
2009). Increased risks for IMDs also extends to family members of affected
individuals, both for the same disease and increased risk for other IMDs (Cooper
et al, 2009). In Crohn’s disease, for instance, familial clustering showed that 2-
14% of patients have a family history of Crohn’s (Halme et al, 2006), while
estimates of the sibling recurrence risk ratio (the ratio of disease risk among
siblings of patients compared with that in the general population, i.e. the
population prevalence) ranged from 15-42 (Halme et al, 2006). The variation in
these estimates highlights the difficulty in obtaining accurate prevalence and

comorbidity measures for relatively rare disorders. Confounders also include
3



inconsistent study design (e.g. only counting first degree relatives rather than all
relatives), sample selection bias (e.g. hospitalised cases that are likely to have a
more severe form of the disease than those sent home), and variation in disease
prevalence, both between different populations and over time (Farrokhyar et al,
2001; Halme et al, 2006; Hiatt and Kaufman, 1988; Mathew and Lewis, 2004;
Shivananda et al, 1996). Nevertheless, this “kaleidoscope of autoimmunity”
(Anaya et al, 2007) suggests shared biological mechanisms present in many of
these disorders, for which genetic factors are likely to play a role. Identifying the
genes that underlie disease risk allows for a greater understanding of disease

biology, and potentially, better treatment options for patients.
1.2 Genetic studies of complex autoimmune disorders
1.2.1 Mendelian inheritance, multifactorial traits and heritability

First laid out by Gregor Mendel in the 1860s and rediscovered in the 1900s, the
Mendelian laws of inheritance describe how heredity factors (genes), of which an
offspring acquires two versions (alleles - one from each parent) can affect
variation in phenotypes (Bateson and Mendel, 1902). Mendel observed through
the crossing of pea plants how a phenotype, in his case the colour of the flower, is
passed through to subsequent generations in a discrete manner (rather then
being a blend of the colour of the parents) via certain principles of segregation.
For a given gene, which of the two parental alleles an offspring receives is
random, and by performing a large number of crosses, Mendel was able to infer
the two alleles (genotype) of each individual plant depending on whether the
phenotype displayed dominance or recessive characteristics (Figure 1.1). Traits
that adhere to this mode of inheritance are known as Mendelian traits, and
include diseases such as sickle-cell anaemia and cystic fibrosis, where a single

recessive allele is responsible for disease.

While Mendel’s laws could adequately describe the observed discrete
inheritance patterns of some traits, they did not appear to apply to the majority

of traits where variation appeared to be continuous, nor to discrete traits that
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did not follow any obvious patterns of Mendelian inheritance. Moreover,
Mendel’s laws appeared to be inconsistent with natural selection, where
evolution occurs via the accumulation of small, gradual changes. These apparent
conflicting observations were reconciled in the 1930s in what became known as
the modern evolutionary synthesis. Ronald Fisher and others showed that
quantitative traits such as height can be described by multiple genes, each with
small, additive effects acting according Mendel’s laws of inheritance (Fisher,
1930). Together, these small independent effects, along with the environment

give rise to a phenotype that approximates the normal distribution (Figure 1.2).
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Figure 1.1. Mendel’s laws of inheritance. In this example, there are two
alleles: W and R which give rise to either a white or red phenotype
respectively when both copies are present. Red is dominant and white is
recessive. In (1) the parental generation, the parents are homozygotes for
each of the alleles. In (2) the first generation, all offspring are heterozygotes
and will show the red phenotype. When heterozygotes cross, (3) the
offspring will show a 3:1 red:white ratio depending on which of the two
alleles they inherit. (Image source: Magnus Manske, Wikimedia Commons)

Binary phenotypes such as disease status are also often the result of multiple
genes, each with small effects, and the environment. These complex (or
multifactorial /polygenic) disorders can be modelled quantitatively with a
liability threshold model in a similar manner to that proposed by Fisher

(Falconer and Mackay, 1996). Each individual of a population will have a disease
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liability - a quantitative measure that incorporates all genetic and environment
factors in disease risk. Disease liability itself is rarely observed directly, but can
be described in a population as a normally distributed continuous trait. When an
individual’s liability exceeds a given threshold, they are said to be affected by the
disease (Figure 1.3).
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Figure 1.2. Polygenic inheritance in a normally distributed trait: height.
Using 12 SNPs associated with height, 7,566 individuals were grouped
according to the number of height-increasing alleles they carried (height
score on x-axis). The gray bars represent the fraction of individuals in each
height score group. For each height score, the average heights in men and
women are plotted. The diagonal regression line indicates that each height-
increasing allele increases height by 0.4 cm. Figure sourced from Lettre et al.
(2008)
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Figure 1.3. The liability threshold model. Disease liability can be thought of
as a continuous trait that incorporates all environmental and genetic risk
factors of a disease and is normally distributed in the population.
Individuals who exceed a given threshold (dashed vertical line) will be
affected by the disease (shaded orange area).

The concept of heritability is often used when describing the genetic
contribution to variation in a trait or disease. The variation of a continuous trait
seen in the population can be partitioned into genetic (heritable) and non-
genetic (environmental) components. The heritable component can also be
further partitioned into additive and non-additive components. Additive genetic
variation, or narrow sense heritability, describes the extent to which an
individual’s phenotype can be determined by that of their parents. In the context
of a gene affecting a quantitative trait, this means that each additional copy of an
allele increases (or decreases) the value of the trait by the same amount. Non-
additive components include dominance and gene-gene interaction effects, and
together with the additive effects, make up broad sense heritability. In the
context of complex diseases and for the remainder of this dissertation, I will refer
to the narrow-sense heritability of disease liability as “heritability” (Falconer and
Mackay, 1996). These components of phenotypic variation have typically been
estimated based on expected genetic relatedness across families, the most useful
of which is the twin study (described below). In recent years, heritability can also
be estimated from directly observed genotypes (e.g. SNP microarrays) across

both related (Visscher et al, 2006) and unrelated individuals (Yang et al,, 2010).



1.2.2 Twin studies

Familial recurrence and disease comorbidity do not always themselves suggest a
role for genetics in disease, as these observations can also be a consequence of
shared environment. Twin studies, however, can provide compelling evidence
for a significant genetic component to disease risk. Identical (monozygotic) twins
are genetically identical, while non-identical twins (dizygotic) share half their
polymorphic alleles. The twin design assumes that the environmental
component to phenotypic variation is the same between monozygotic and
dizygotic twins, and thus the difference in disease concordance rates between
sets of monozygotic and dizygotic twin pairs can be used to estimate the additive
genetic, shared environmental and unique environmental components of disease

risk.

The assumptions that underlie the twin study have often been the subject of
scrutiny. For instance, the assumption of shared environment does not hold
when considering the pre-natal intrauterine environment. Monozygotic twins,
for example, often share a single placenta, whereas dizygotic twins have separate
placentas. Moreover, it may be the case that monozygotic twins tend to copy
each other more or are treated differently by those around them than dizygotic
twins throughout their lives. These assumptions are often difficult to test and
violations may lead to inflated heritability estimates (Devlin et al, 1997).
Nevertheless, studies that use twins reared apart, which do not rely on the equal
environment assumption, consistently show higher concordance between
monozygotic twins than dizygotic twins for a range of traits and diseases
(Bouchard et al,, 1990; Hanson et al, 1991). In addition, recent assumption-free
methods of estimating heritability from directly genotyped genetic markers in
related (Visscher et al, 2006) and unrelated (Lee et al, 2011; Yang et al, 2010)

individuals are consistent with those estimated from twin studies.

Twin studies have demonstrated that most IMDs do have a significant
genetic component. In Crohn’s disease, the largest meta-analysis of 112

monozygotic and 196 dizygotic twins reported concordance rates of 30.3% and
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3.6% respectively (Brant, 2011). Significant differences in
monozygotic/dizygotic concordance rates have also been found for multiple
sclerosis (25.4% and 5.4%) (Willer et al, 2003), coeliac disease (75% and 11%)
(Greco et al, 2002) and type 1 diabetes (27.3% and 3.8%) (Hyttinen et al,, 2003).
These results implied that that given sufficient sample sizes and genetic markers,
it is theoretically possible to identify the genetic variants that contribute to

disease risk.
1.2.3 The major histocompatibility complex

The first robust associations between a genetic locus and IMDs were identified in
the major histocompatibility complex (MHC) in the 1970s, many decades before
the genes and genetic variants in question were mapped. The human MHC is
located on chromosome 6 and contains many genes that are collectively known
as the human leucocyte antigen (HLA). These genes encode cell surface
molecules that are responsible for a range of immune-related functions,
including the establishment of adaptive immunity and the destruction of infected
cells. As part of the immune system’s self/non-self recognition processes, genes
in the MHC were first discovered as being crucial for whether an organ
transplant was successful (Sheldon and Poulton, 2006). Throughout the 70s and
80s, HLA variants were found to be associated with almost all IMDs, albeit with
larger effects in some than others. These early studies took a molecular rather
than genetic approach to identifying disease associations. That is, associations
were inferred via serological typing in affected and unaffected individuals rather
than later genetic studies that sought to capture genetic variation directly. These
later approaches, starting with linkage mapping and then moving on to
association, would become the prevailing methods by which genetic risk factors

for complex disease are discovered.
1.2.4 Linkage

A linkage study identifies regions of the human genome underlying disease

susceptibility by testing a series of marker alleles for cosegregation (linkage)



with disease status across a family or number of families. Technological
advances in the 1970s and 1980s lead to the easy genotyping of restriction
fragment length polymorphisms (RFLPs) (Botstein et al, 1980) spread
throughout the genome, and later, denser maps of repeat regions
(microsatellites) (Weber and May, 1989). Owing to the large size of
chromosomal segments segregating within a typical family, around 300-400
evenly distributed around one every 10 cM microsatellite markers are usually
sufficient to capture the majority of recombination events (Evans and Cardon,
2004). The evidence for linkage in a region is evaluated by metrics such as a LOD
(logarithm of odds) score, which compares the probability that the genotyped
marker and the hypothetical disease locus are inherited together in the observed
data versus the probability of observing the cosegregation pattern purely by
chance. A typical linkage study will report all loci with LOD scores greater than
three, which corresponds to the data being 1000 times more likely to arise due to
cosegregation with disease than by chance (Lander and Kruglyak, 1995). By the
mid-1990s, linkage studies had proven to be a robust means of identifying highly
penetrant loci underlying monogenic disease such as cystic fibrosis (Tsui et al,
1985) and Huntington’s disease (Gusella et al, 1983) and the utility of the

method for mapping complex disease loci was increasingly being explored.

In addition to confirming many of the known associations with the HLA, an
early success for linkage studies in complex traits was the identification of the
NODZ locus associated with Crohn’s disease in 1996 (Hugot et al, 1996). This
result was confirmed in subsequent studies (Brant et al, 1998; Cavanaugh, 2001;
Cavanaugh et al, 1998; Cho et al, 1998; Curran et al, 1998; Mirza et al, 1998;
Ohmen et al, 1996) and in 2001 the specific causal mutations that underlie risk
were localised to three low frequency coding variants (R702W, G908R and
L1007fs) within the NODZ2 gene (at that time, also known as CARD15) (Cuthbert
etal, 2002; Hampe et al, 2001; Hugot et al,, 2001; Ogura et al, 2001; Vermeire et
al, 2002). These three variants individually had odds ratios (ORs) of 2-4 in
heterozygotes and 20-40 for homozygotes, and at least one mutation was

present in 30-40% of Crohn’s disease cases compared with 6-7% in European
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controls (Mathew and Lewis, 2004). Other notable well-replicated linkage
findings in IMDs during this time include INS and CTLA4 in type 1 diabetes (Bain
et al, 1992; Bennett et al, 1997; Nistico et al, 1996) and PTPNZ22 in rheumatoid
arthritis (Begovich et al, 2004; Jawaheer et al, 2003).

It soon became apparent that strong linkage signals for complex disorders
were the exception rather than the rule. Overall, the results of linkage studies
were largely disappointing, with few loci being consistently replicated across
different studies. This lack of reproducibility suggested that complex diseases, in
contrast to Mendelian diseases, were unlikely to be driven by the highly
penetrant risk loci that linkage is well powered to detect. In 1996 a seminal
paper was published in Science proposing that complex diseases are
underpinned by common variants of modest effect (Risch and Merikangas,
1996). The authors demonstrated that, for a risk allele of 50% frequency and OR
of 1.5, around 18,000 affected sib-pairs would be needed to detect the locus via
linkage. In contrast, they reported that less than 1000 trios would be needed to
detect such a locus adopting the transmission/disequilibrium association test of
Spielman et al. (1993). Technological limitations at the time restricted the
immediate uptake of the association study design; such studies require that a
causal variant (or another variant in high linkage disequilibrium to the causal
variant) is directly genotyped in order to detect a significant signal of

association.
1.2.5 Candidate genes

While it was infeasible to test for association at markers across the entire
genome, technological improvements during the late 1990s and through the
2000s made it possible to genotype markers within individual genes to then test
for association. Genes were selected based on a priori knowledge of biological
function or because they reside within a region implicated through linkage
analysis. These candidate gene studies typically involved genotyping a set of
markers within a gene of interest in a sample of disease cases and controls, and

testing for statistically significant differences in allele frequencies between the
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two groups. Other study designs such as transmission disequilibrium tests in

parent-offspring trios were also often used.

Results from the majority of candidate gene studies for complex traits were
disappointing, with initial findings often failing to replicate in subsequent
experiments. A combination of small sample sizes, false-positive association,
publication bias and failure to account for multiple comparisons meant that as
many as 95% of findings from candidate gene studies of complex traits during
this era were false (Colhoun et al, 2003; loannidis et al, 2001). In some cases,
the lack of power in these studies meant that variants in genes that later became
established risk loci were missed altogether (for instance, IL10 in Crohn’s
disease) (Parkes et al, 1998; Castro-Santos et al, 2006; Franke et al, 2010).
Ultimately however, it would take a combination of technological advances and a
greater appreciation of the need for much larger sample sizes to make the

identification of bona fide risk loci routine.
1.2.6 Genome-wide association studies

In the early 2000s, along with the closing phases of Human Genome Project,
concurrent efforts were underway to gauge the extent of human genetic
variation at the population level. Projects such as the SNP Consortium and dbSNP
had catalogued over 1.4 million single nucleotide polymorphisms (SNPs) by
2001 (Sachidanandam et al, 2001; Sherry et al, 1999). It was found that
common SNPs in physical proximity formed LD blocks punctuated by hotspots of
recombination (McVean et al, 2004). These correlation patterns were further
characterised through the International Hapmap Project, which by 2007 had
identified a further 3.1 million SNPs across 270 individuals from three distinct
ancestry groups (International HapMap Consortium et al, 2007). At the same
time, technological advances in microarray technologies made possible the cost-
effective genotyping of hundreds of thousands of SNPs spread throughout the
genome (Syvanen, 2005). The patterns of LD meant that these arrays could
effectively survey the majority of common genetic variation in a population by

directly genotyping only a fraction of the total number of variants in the genome.
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In Europeans and East Asians, around 5 million common SNPs (those with minor
allele frequency greater than 5%) can be almost entirely tagged by a selection of
approximately 500,000 SNPs (Barrett and Cardon, 2006; International HapMap
Consortium et al, 2007). Together, these advances paved the way for
researchers to perform genome-wide association studies (GWAS) in order to

identify loci associated with complex traits or disease risk.

Genome-wide association studies typically look for statistically significant
differences in allele (or genotype) frequencies between a large number of
diseased individuals and population controls across hundreds of thousands of
SNPs spread throughout the genome. The SNPs that show significant association
with disease status point to regions of the genome likely to harbour disease
relevant genes. Unlike linkage studies, GWAS are not restricted to sibling pairs
and families, and also have generally greater statistical power to detect
associated loci of small to moderate effect sizes (Figure 1.4) (Risch and
Merikangas, 1996). Due to patterns of LD, there is no reason to conclude that an
associated SNP is the causal variant, but rather it is correlated with (“tags”) the
true causal variant. In addition, genotypes at SNPs that were not directed
assayed can be inferred through imputation algorithms (Li et al, 2009; Marchini
and Howie, 2010) based on the genotypes from a representative reference set of
haplotypes (International HapMap Consortium et al, 2007; 1000 Genomes
Project Consortium et al, 2012; International HapMap Consortium et al, 2010),
allowing for individual studies using different genotyping platforms to be

effectively combined into meta-analyses.
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Figure 1.4. Power of linkage vs. association outlined in Risch and
Merikengas (1996). The minimum number of samples required to detect a
genetic variant with genotypic relative risks of 1.5, 2 and 4 at 80% power (at
genome-wide significance) are plotted for linkage studies using related
individuals (solid lines) and association studies using unrelated individuals
(dashed lines). At all effect sizes and allele frequencies, association designs
have greater power than linkage.

The first successful GWAS was published in 2005 for age-related macular
degeneration (AMD) (Klein et al, 2005), where the authors genotyped ~100,000
SNPs and identified a variant in the CFH gene that increased the risk of AMD by a
factor of ~7.4. Some of the first GWAS for autoimmune disorders such as Crohn’s
disease and ulcerative colitis also appeared during this period (Duerr et al,
2006; Yamazaki et al, 2005). These early studies typically used small sample
sizes compared to modern studies (usually a few hundred) and often differed in
terms of association methods, the strength of statistical evidence used to declare
significance, and quality control procedures. Standard protocols for GWAS
became established following the seminal publication from the Wellcome Trust
Case Control Consortium in 2007 of 14,000 cases across seven diseases and 3000
common controls (Wellcome Trust Case Control Consortium, 2007). Methods to

deal with population stratification, HapMap imputation, manual inspection of
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intensity cluster plots, large sample sizes, stringent statistical criteria for
declaring association and the requirement for independent replication were
some of the many protocols in this paper that became standard in subsequent
GWAS. The genome-wide significance threshold for association of p < 5x10-8 was
also established around this time. This figure roughly corresponds to a 5% type-I
error rate when considering the number of independent regions tagged by
common variants in the genome in individuals of European descent (~1-2
million) (Hoggart et al, 2008; International HapMap, 2005). Unlike linkage
studies, these standardised protocols and strict statistical criteria meant that the

vast majority SNPs that exceeded genome-wide significance were true positives.

These early GWAS showed that, with the exception of the HLA, the typical
effect size of a susceptibility locus for complex traits was modest (OR < 1.3), such
that the loci identified only explain a fraction of the estimated genetic component
of disease risk (often referred to as the “missing heritability” (Maher, 2008;
Manolio et al, 2009)). While it is likely that a proportion of this missing
heritability is due to rare (minor allele frequency less than 1%) and structural
variants that are not well-captured on the current generation of GWAS
microarrays, a substantial number of common variants will have even smaller
effects than those identified, requiring much larger sample sizes to detect (Yang
et al, 2010). Indeed, for Crohn’s disease, it has been estimated that 22% of the
variance in disease liability can be explained by common variants tagged on
microarrays (Lee et al, 2011) - more than double that explained by known risk
loci at the time (Barrett et al, 2008). Heritability is not missing, but rather
resides at common variants with small effects that cannot be confidently

associated with disease risk.

After the first wave of GWAS, an appreciation of the need for larger sample
sizes lead to many studies being combined to perform meta-analyses. Again,
taking the example from Crohn’s disease, three GWAS meta-analyses were
published from 2008 to 2012. The first of these combined data for ~13,000
individuals from three previously published GWAS and identified 21 new

Crohn’s susceptibility loci (Barrett et al, 2008). This was followed two years
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later by a meta-analysis of six GWAS with a total sample size of ~50,000
individuals where 30 new loci were identified, bringing the total count to 71
(Franke et al, 2010). The most recent meta-analysis in 2012 included 75,000
individuals, including both Crohn’s disease and ulcerative colitis, and in total
identified 163 inflammatory bowel disease loci, the most for any complex disease
to date (Jostins et al, 2012). One hundred and ten of these loci were associated
with both Crohn’s disease and ulcerative colitis. Similar large-scale meta-
analyses have also been performed for other IMDs such as type 1 diabetes
(30,000 individuals and 40 loci) (Barrett et al, 2009), multiple sclerosis (80,000
individuals and 110 loci) (International Multiple Sclerosis Genetics, 2013),
rheumatoid arthritis (48,000 individuals and 46 loci) (Eyre et al, 2012) and
celiac disease (24,000 individuals and 40 loci) (Trynka et al, 2011a).

1.3 Insights from GWAS
1.3.1 Biology

The genes (and their corresponding pathways) implicated the variants identified
through GWAS have provided invaluable insights into the biological processes
underlying IMDs. In multiple sclerosis, most of the associated genes are involved
in known immunological pathways (e.g. cytokine pathway, T-cell differentiation
and signal transduction) rather than neurodegeneration (International Multiple
Sclerosis Genetics Consortium, 2013; Sawcer et al,, 2011). Moreover, the KIF21B
gene that may be involved in neurodegeneration is also associated with Crohn'’s
disease and ankylosing spondylitis, suggesting that this gene may also have an
immune-related function despite being exclusively expressed in the brain and
spleen (Visscher et al, 2012). Additionally, two of the genes identified were
previously known targets for multiple sclerosis drugs (natalizumab for VCAM1
and daclizumab for ILZRA) (Sawcer et al, 2011), suggesting that there is great

therapeutic potential among the list of associated genes.
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Figure 1.5. Number of publications indexed in PubMed with the terms
“autophagy” and “Crohn’s” in the abstract since 2006.

GWAS have also provided biological insights into inflammatory bowel
disease. Perhaps most notably, early GWAS for Crohn’s disease for suggested a
role for autophagy via associations at ATG16L1 and IRGM, in disease etiology
(Hampe et al, 2007; Khor et al, 2011; Parkes et al, 2007). Autophagy is the
process by which a cell cleanses and recycles unnecessary components, including
the elimination of pathogens. It has been suggested that the coding variant in
ATG16L1 associated with Crohn’s disease degrades this protein, thus impairing
autophagy function such that cells were unable to clear bacterial infections
(Murthy et al, 2014). Autophagy is now an active area of Crohn’s disease
research, perhaps best illustrated by the number of Pubmed abstracts containing
“Crohn’s” and “autophagy” that have appeared since 2007 (Figure 1.5). These
and other examples of previously unsuspected pathways in inflammatory bowel
disease (e.g. IL23R pathway, innate immunity) demonstrate the value of
hypothesis-generating genetic associations studies in enabling a greater

understanding of disease biology (Visscher et al, 2012).
1.3.2 Genetic overlap between immune-mediated disorders

Insights into biology can also be gained from identifying shared and unique
associations among a set of related disorders. While the role of the HLA in

autoimmunity has been known since the 1970s, one of the major findings of
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early GWAS was the extent to which non-HLA risk loci are shared among IMDs.
Perhaps surprisingly, where patterns of familial aggregation appeared to cluster
into seropositive autoimmune (e.g. primary biliary cirrhosis, celiac disease and
type 1 diabetes) and seronegative disorders (e.g. Crohn’s disease, psoriasis and
anklyosing spondylitis) the pattern of pleiotropic loci has been observed across

all these diseases (Parkes et al,, 2013).

In a review of six IMDs where large GWAS have been undertaken (ankylosing
spondylitis, celiac disease, inflammatory bowel disease, psoriasis, rheumatoid
arthritis and type 1 diabetes) Parkes et al (2013) found 71 loci that are
associated with two or more diseases. Notably, of the 416 pairwise combinations
of overlapping loci, 45% were concordant (same associated variant and same
direction of effect), 14% discordant (same variant, but risk increasing in one
disease and risk decreasing in the other) and 42% not correlated (same locus,

but different associated variant).

Together, these observations support the observations that the increased
occurrence of IMDs within individuals and family members may in part be driven
by the shared genetic risk factors underlying these diseases. Identifying the
genes and pathways that are shared between IMDs can provide insights into
shared biology and potential drug targets across various disorders. Conversely,
variants that are discordant between disorders may explain why some drugs
may be effective for one disorder, but ineffective or even exacerbate the
condition in another. Taking advantage of this genetic overlap was one of the

driving motivations for the development of the Immunochip genotyping array.
1.4 Locus discovery beyond GWAS
1.4.1 Dense genotyping

A feature of many locus discovery projects in IMDs since 2011 has been the use
of the Immunochip custom genotyping array. The Immunochip was designed
after the first wave of GWAS meta-analyses to aid in the replication, fine-
mapping and discovery of loci associated with inflammatory and IMDs (Cortes
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and Brown, 2011). To take advantage of the pervasive genetic overlap between
many of these diseases, the Immunochip contains a dense panel of ~130,000
SNPs located in 186 regions with known association with one or more of 12
immune-related diseases. SNPs within the regions were ascertained via dbSNP,
the 1000 Genomes Project (February 2010 release), and IMD resequencing
projects. While not all SNPs passed the Illumina design process and made it onto
the microarray, the Immunochip provides unprecedented coverage of common,
low-frequency and rare variants across these 186 genomic regions. A further
50,000 SNPs that were suggestively significant in the original GWAS studies were
also included. The cost-effectiveness of the Immunochip (at ~20% that of a
GWAS microarray at the time) allows for studies with much larger sample sizes
than GWAS and also enables powerful disease subphenotype and cross-disease

comparisons (Parkes et al, 2013).
1.4.2 Finemapping and inferring causality

The causal variants that underlie the majority of loci discovered through GWAS
remain unidentified. An associated locus will often consist of dozens of
correlated SNPs in high LD spanning across many genes, with very similar
association signals. In the 140 loci associated with Crohn’s risk, the number of
SNPs that are tagged (r? > 0.8) by the reported GWAS SNP range from 1 to 306
per locus (median 13). The IRGM locus associated with Crohn’s disease
exemplifies some of the challenges in assigning causality to a particular variant.
The initial reported associated SNP was later found to be in perfect LD with a
20kb deletion upstream of IRGM (McCarroll et al,, 2008; Parkes et al, 2007). This
deletion was thought to be causal because it affects the expression of IRGM,
which in turn regulates the efficiency of autophagy. A later study showed,
however, that this deletion is one of several highly correlated Crohn’s disease
associated variants in the region that affect IRGM expression, none of which can
reasonably be ruled out as causal (Prescott et al, 2010). Furthermore, the
variants are also not associated with Crohn’s disease in the Japanese population,

suggesting either European-specific gene-environment interactions or the
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presence of an untyped causal variant that arose after the European-Asian

population split (Prescott et al, 2010).

Narrowing multiple correlated associations signals down to a single causal
variant is difficult and will initially require a combination of many
complementary approaches. Firstly, much larger sample sizes will be required to
differentiate statistical signals at causal variants over their highly correlated
neighbours. Secondly, as patterns of LD differ between different ancestral
groups, obtaining samples from multiple populations can narrow the associated
region for risk loci that are shared across populations. Thirdly, combining
functional genetic information with association results allows variants with
relevant annotations to be up-weighted in association analyses. Data from
projects such as ENCODE (ENCODE Project Consortium et al, 2012) and GTEx
(Lonsdale et al, 2013) provide rich functional genomic information that can
potentially be integrated with GWAS results. Methods for integrating these
various data sources are under active development. In addition to providing
functional candidates, these functional annotations can also uncover potential
biological mechanisms through which variants act, either through the specific
cell type or functional element (Liu et al, 2012; Schaub et al, 2012; Trynka and
Raychaudhuri, 2013), or can be used to weight genetic association signals in

order to identify additional associations (Pickrell, 2014).
1.4.3 Sequencing and rare variant associations

The role of rare variants in complex diseases is currently an important area of
focus in human genetics. High-throughput discovery and accurate genotyping of
rare variants has recently been made feasible through large reductions in the
cost of next-generation sequencing. Often cited as a possible explanation for
missing heritability, rare variants are in theory likely to have much larger effect
sizes than common variants due to purifying selection maintaining damaging
alleles at low frequencies (Manolio et al, 2009). Indeed, loci that are associated
with complex disease are enriched for rare variants that cause known Mendelian

disorders and it has been suggested that recessive variants confer risk to related
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complex diseases when the carrier is heterozygote (Blair et al, 2013).
Independent rare variant associations are also often found in genes with known
common associated variants (Momozawa et al, 2011; Nejentsev et al, 2009;

Sanna et al, 2008).

Since the rare allele of individual rare variants are observed so infrequently,
single variant tests of association will be underpowered for all but the most
highly penetrant alleles. For instance, for an allele that doubles disease risk
(OR=2) and has a frequency of 0.1%, nearly 60,000 cases and a similar number of
controls will be required for the variant to reach genome-wide significance. To
increase power to detect association, rare variants are often aggregated based on
characteristics such as their position within genes, functional features (e.g. loss-
of-function alleles) and allele frequencies (Bansal et al, 2010). Dozens of these
burden tests have been proposed (Asimit and Zeggini, 2010; Bansal et al,, 2010;
Basu and Pan, 2011; Kiezun et al, 2012) along with methods for meta-analysis
and replication (Hu et al, 2013; Lee et al, 2013b; Liu et al, 2014). These
statistical tests typically differ in the way variants are weighted and whether
they incorporate alleles with opposite directions of effects. Indeed, the most
powerful method to use will differ from gene to gene and will depend on the

specific genetic architecture, which is seldom known in advance.

Taking Crohn’s disease as an example, the degree to which such variants
contribute to disease heritability is unclear, and the results from early large scale
sequencing studies targeted at known susceptibility genes have been
disappointing (Momozawa et al, 2011; Rivas et al, 2011; Hunt et al, 2013).
These studies typically involved sequencing the coding regions of several
candidate genes in a few hundred cases and controls followed by the direct
genotyping of putatively associated variants in a much larger replication cohort.
Coding regions are targeted because the functional consequences of variants in
these regions are much better understood than those in noncoding parts of the
genome. These variants are hypothesized to have larger effect sizes given their
direct impact on protein product and are generally more evolutionarily

conserved than noncoding variants (Chen et al, 2007). Momozawa et al.
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(Momozawa et al,, 2011) initially sequenced 63 candidate genes in 112 Crohn’s
disease cases and 112 controls with replication in an additional 288 to 928 cases
and 288 to 1216 controls, and identified four independent associations in ILZ3R,
although only one of these exceeded genome-wide significance. Similarly, Rivas
etal. (Rivas et al, 2011) sequenced 56 genes in 350 cases and 350 controls with
follow-up genotyping in 16,054 cases and 17,575 controls, and identified 12
independent rare variant associations across seven genes, of which two (coding
variants in NOD2 and CARD9) exceeded genome-wide significance. These three
genome-wide significant variants were included on the Immunochip and
subsequently confirmed in Jostins et al. (2012) using around 75,000 samples.
However, a recent sequencing study of 25 candidate genes across 41,911
individuals in seven IMDs, failed to identify any novel associations (Hunt et al,
2013). A natural extension for candidate gene sequencing studies is to sequence
the entire exome of cases and controls. A recent exome sequencing study in 42
Crohn’s cases with follow up genotyping in 9348 cases and 14,567 controls
found suggestive rare variant associations in PRDM1(Ellinghaus et al, 2013b).
Again, the variant failed to reach genome-wide significance and other whole

exome studies with much larger sample sizes are currently underway.

The sobering results from these studies highlight the challenges in rare
variant association studies. As it is currently not economically feasible to
perform high coverage whole-genome sequencing in a large number of cases and
controls, compromises often need to be made in terms of the number of genomic
regions covered and the number of individuals. Around 93% of SNPs reported in
GWAS reside in noncoding regions (Maurano et al, 2012), which have been
overlooked by the current generation of sequencing studies. A large number of
rare noncoding variants will play a role in gene regulation, though it remains to
be seen whether their effects are large enough to be a major contributor to
disease. Performing burden tests across rare variants in regulatory regions such
as promoters and enhancers may show promise. Most importantly, the sample
sizes used in these sequencing studies have thus far simply been insufficient to

robustly identify rare variant associations. Under certain assumptions about the
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effect size distribution of rare variants and selection pressures, cohorts of more
than 25,000 cases may be required in order to find these signals, along with an

equally large number for replication (Zuk et al,, 2014).

1.5 Conclusions

Putting together the results from linkage, genome-wide association and
sequencing studies, the genetic architecture of IMDs such as inflammatory bowel
disease, multiple sclerosis and type 1 diabetes represents those of a typical
multifactorial complex trait where a combination of multiple genes, along with
the environment, lead to disease. With few exceptions, individual risk loci for
these disorders confer only a modest effect on disease susceptibility and
together, the known loci explain ~5-20% of variation in disease liability. The
majority of the genetic contribution to disease risk remains to be explained, and
will likely come from a combination of both common variants with ever smaller

effects and rare variants.

1.6 Outline of dissertation

In the previous sections, I outlined the rationale for studying the genetics of
IMDs, and provided a brief historical background to our understanding of how
genetic variation contributes to phenotypic variation. I described the history of
locus discovery experiments in complex traits, with specific examples from
successful (and sometimes not so successful) efforts in IMDs. The remainder of
this dissertation describes experiments to better understand the genetic basis of
four IMDs: primary biliary cirrhosis, primary sclerosing cholangitis, and the two
major forms in inflammatory bowel disease, Crohn’s disease and ulcerative

colitis.

In chapter 2, I describe a locus discovery experiment in primary biliary
cirrhosis in 2,861 cases and 8,514 controls from the UK genotyped on the
Immunochip. Three novel disease risk loci were identified, and, taking advantage
of the much denser SNP coverage, we identified multiple novel independent

signals within known loci. We highlight one of these regions (3q25) as an
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interesting example of where testing variants independently when there are
multiple risk variants in LD can lead to both an over- and underestimation of
effect sizes and significance levels. I explore methods by which combining risk
loci with functional genomic information can provide insights into the functional

elements and cell types that are specific to a disease.

In chapter 3, I describe a locus discovery experiment in primary sclerosing
cholangitis (PSC) in 3,789 cases and 25,079 controls of European descent. Nine
novel risk loci were identified, and associations in the HLA complex were refined
via imputing the classic HLA haplotypes. A feature of PSC is the high degree of
overlap with inflammatory bowel disease (IBD). Over 70% of PSC cases also
suffer from ulcerative colitis, and the extent of genetic overlap between the
disorders is yet to be determined. I show that around half the loci associated
with PSC risk appear to be unique to PSC, and that there is little difference in the
effects of PSC risk loci in PSC/IBD subphenotypes, suggesting distinct biological

mechanisms behind PSC verses IBD.

In chapter 4, | describe a locus discovery and trans-ethnic association study
of Crohn’s disease and ulcerative colitis in ~75,000 European and ~11,000 non-
European samples. The non-European dataset includes individuals of East Asian
(Japan, South Korea, China), Indian and Iranian descent. By combining
Immunochip and GWAS datasets and performing a trans-ethnic meta-analysis,
we were able to identify 40 novel loci associated with Crohn’s disease, ulcerative
colitis or both. I showed that there is pervasive sharing of IBD risk loci between
European and non-European populations, while also noting loci that appear to be
specific to only Europeans, as well those with differences in effect sizes between
various populations. The study demonstrates the utility of performing large-
scale GWAS meta-analyses across different populations to identify novel

susceptibility loci.

In chapter 5, I move beyond locus discovery and describe a simple method of
integrating differential gene expression datasets with associated loci. I applied

this method to two differential expression datasets: the first involves genes that
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are differentially expressed in the gut T cells vs. blood T cells in healthy humans,
and the second consisting of murine cells from the cecum before and after
infection by the nematode Trichuris muris. Differentially expressed genes
between T cells in the gut are likely to be involved in maintaining intestinal
homeostatsis, while those that are differentially expressed in infected and
uninfected cells serve as a model for response to infection. I find that in both
cases, genes that are differentially expressed between these conditions are
significantly overrepresented among risk loci for a range of IMDs, allowing for
the identification of additional candidate genes at these loci and the generation

of hypotheses about the mechanism through which they mediate disease.

Finally, in chapter 6, I discuss the major themes that one can draw from the
preceding chapters, and then look to the types of studies that will shape the field

over the coming years.
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Chapter 2. Discovery, refinement and
functional genomics integration of primary biliary

cirrhosis risk loci using the Immunochip

2.1 Introduction

Primary biliary cirrhosis (PBC) is characterized by the immune-mediated
destruction of intra-hepatic bile ducts, resulting in chronic cholangitis, liver
fibrosis and ultimately cirrhosis (Kaplan and Gershwin, 2005). With a UK
prevalence of 35:100,000, rising to 94:100,000 women over 40 years of age, it is
the most common autoimmune liver disorder (James et al, 1999; Kaplan and
Gershwin, 2005). Family-based studies indicate a substantial genetic component
to PBC susceptibility, with a sibling recurrence risk of ~10.5 in the UK (Jones et
al, 1999). Genome-wide association studies (GtwitWAS) have identified 22 PBC
risk loci, and highlighted the role of NFkB signaling, T-cell differentiation, Toll-
like receptor and tumor necrosis factor signalling in disease pathogenesis
(Hirschfield et al, 2009; Liu et al, 2010b; Mells et al,, 2011). Sixteen of these loci
are also associated with other immune-mediated diseases such as multiple
sclerosis, celiac disease and type 1 diabetes (T1D), shedding light on the
involvement of common genes and pathways across these diseases (Zhernakova
et al, 2009). Despite these advances, the specific causal variant at many of these

loci remains unknown.

To better define known risk variants and identify additional susceptibility

loci, 1 performed an association study in 2,861 cases from the UK PBC
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Consortium and 8,514 UK population controls from the 1958 British Birth
Cohort and National Blood Service. All samples were genotyped using the
Immunochip, an [llumina Infinium array containing 196,524 variants (718 small
insertions/deletions and 195,806 SNPs). Two thirds of these variants reside in
186 loci with known associations with one or more autoimmune disorders, while
most of the remaining variants were included as part of GWAS replication efforts
for various autoimmune disorders (Cortes and Brown, 2011; Trynka et al,
2011a). Compared with GWAS arrays, the Immunochip has increased marker
density within known autoimmunity-associated loci, increasing the power to
detect PBC associations within these selected candidate loci and providing a
powerful means of fine mapping known PBC loci, as causal variants are more

likely to be directly genotyped.
2.1.1 Chapter overview

In this chapter, I describe the results from an association study for PBC risk loci.
In total, 19 loci reach genome-wide significance (P < 5x10-8), three of which are
novel. One of these novel loci includes a low-frequency non-synonymous SNP in
TYKZ, further implicating JAK/STAT and cytokine signalling in PBC pathogenesis.
Multiple independent common, low frequency and rare variant associations
were found at five loci. Further investigation of one of these regions (3q25)
showed that the most significantly associated signal in the locus was driven by a
shared haplotype with two other SNPs, and that this top signal was no longer
genome-wide significant when testing for association using a joint model of all
signals in the region. Imputation and association testing of HLA haplotypes also
confirmed three known independent genome-wide significant associations.
Finally, I observed that 15 of the 26 independent non-HLA association signals
overlapped with regions of open chromatin in B-lymphoblastoid cell lines as
identified in the ENCODE project, though this was not significantly different
compared to other cell lines when taking LD and the SNP composition on the

Immunochip into account (P = 0.06).
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2.1.2 Contributions

The study design was conceived by the Wellcome Trust Case Control Consortium
3 (WTCCC3) and the UK PBC Consortium. Case ascertainment and phenotyping
were performed by the UK PBC Consortium. Controls were ascertained from the
UK National Blood Service and the 1958 Birth Cohort Controls group. See
Supplementary Note in Liu et al. (2012) for the full list of contributors. Sample
and SNP quality control was performed by Mohamed Almarri. All other analyses,

unless stated, were performed by myself.

2.2 Methods

2.2.1 Samples, DNA extraction and genotyping

All subjects were of self-declared British or Irish ancestry. Cases were collected
by the UK PBC Consortium, which consists of 142 NHS trusts including all UK
liver transplant centers. All individuals were over 18 years of age with probable
or certain PBC. Three criteria were applied to diagnose the condition: a) a
positive test for the presence of anitmitochondrial antibodies (titer 1:40 or
higher), b) liver biopsy histology consistent with PBC, and c) liver biochemistry
consistent with PBC (i.e. a higher level of bilirubin, aspartate transaminase,
alanine transaminase, alkaline phosphatase or gamma-glutamyl transferase
compared to the upper reference level). Diagnosis was documented as probable
when two criteria were satisfied and certain if all three criteria were satisfied. A
total of 2,981 cases were supplied by the UK PBC Consortium. 8,970 control
samples were ascertained from the 1958 British Birth Cohort and the National
Blood Service. This study contains 1,838 cases and 2,356 controls that were also

included in a recent PBC GWAS (Mells et al,, 2011).

DNA was extracted from blood or saliva. Blood samples from PBC patients
were extracted by the East Anglian Medical Genetics Service, while saliva
samples were collected using an Oragene kit and DNA extracted at Source
BioScience Healthcare. DNA samples were plated, normalized and shipped to the

Wellcome Trust Sanger Institute for sample quality control.
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Samples were genotyped on an [llumina iSelect HD custom genotyping array
(Immunochip). All 2,981 cases and 4,537 controls were genotyped at the
Wellcome Trust Sanger Institute. A further 4,433 control samples were
genotyped at the Center for Public Health Genomics at the University of Virginia.
Genotyping of control samples was coordinated by the Immunochip consortium
for use in several Immunochip projects. The NCBI build 36 (hg18) map was used
(Illumina manifest file Immuno_BeadChip_11419691_B.bpm). Normalized probe
intensities were extracted for all samples passing standard laboratory QC
thresholds and genotypes were called using optiCall (Shah et al, 2012).
Genotypes with an individual posterior probability lower than 0.7 were defined
as unknown. optiCall was chosen because we found it to be more accurate in
calling common and low-frequency variants on Immunochip compared to other
established algorithms such as Illuminus (Teo et al, 2007) and GenoSNP
(Giannoulatou et al., 2008; Shah et al., 2012)

2.2.2 Quality control

Sample quality control (QC) was performed for each sample set separately. All
monomorphic SNPs were removed prior to QC. Samples with a call rate lower
than 98% and heterozygosity more than three standard deviations from the
mean were excluded. A set of LD-pruned SNPs with minor allele frequency
(MAF) > 20% were used to estimate identity by descent (IBD) and ancestry. For
each pair of individuals with an estimated IBD > 18.75%, the sample with the
lower call rate was removed. Principal component analysis was used to exclude

samples of non-European ancestry (Price et al, 2006) (Figure 2.1).

Following sample QC 2,861 cases and 8,514 controls remained (Table 2.1).
SNPs with a minor allele frequency less than 0.1%, Hardy-Weinberg equilibrium
P < 10-¢ in controls, call rate lower than 98%, or significantly different (P < 10-)
call rate in cases vs. controls (or between the two control sets) were excluded.
After marker QC 143,020 polymorphic SNPs were available for analysis (Table
2.2).
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Figure 2.1. Principal component analysis of PBC cases and controls. The first
two principal components were calculated for 18,995 SNPs that had MAF >
20% on the Immunochip and overlap those for the CEU, CHB, JPT and YRI
HapMap samples. The red horizontal line indicates the exclusion threshold
on the second principal component.

Heterozygosity/ Relatedness

Sample missingness Ancestry Total®
Cases 29 47 65 140
Controls 1 70 187 32 224
Controls 2 37 169 53 232
Total 136 403 150 596

Table 2.1. Sample quality control. aSSome samples failed more than one QC

metric
Total
Sample HWE? Call rate MAF® NRM¢ g
Remaining
Cases - 8,301 39,504 9.362¢
Controls 1 1,721 6,871 39,954 . 143,020
Controls2 1,771 7,372 40,048 4,605

Table 2.2. SNP quality control. aHardy-Weinberg equilibrium. PMinor allele

frequency.

cNon-random missingnes

(dbetween cases and controls,

ebetween both sets of controls). fSome SNPs failed more than one QC metric.
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The Immunochip contains 2,258 SNPs that were included as a replication
panel for non-immune-mediated disorders. These SNPs were used as null
markers to estimate the overall inflation of the distribution of association test

statistics (Devlin and Roeder, 1999).
2.2.3 Imputation

Additional genotypes were imputed using 90,977 SNPs from the 186
Immunochip high density regions with the 1000 Genomes Phase I (interim) June
2011 release reference panel and IMPUTE2 (Howie et al, 2009). Imputation was
performed separately in three batches of 3,792, 3,792 and 3,791 individuals,
with the case/control ratio constant across batches. SNPs with a posterior
probability less than 0.9, IMPUTE INFO score < 0.5 and those with differential
missingness (P < 10-°) between the three batches were removed, as were those
SNPs that failed the same exclusion thresholds used for the original Immunochip

QC. After imputation, a total of 237,619 SNPs were available for analysis.
2.2.4 Association analysis

Case-control association tests were implemented using a standard one-degree of
freedom Cochran-Armitage test for trend in PLINK v1.07 (Purcell et al, 2007).
Secondary associations were identified using step-wise logistic regression
analysis conditioning on the allelic dosage of the primary signal in each
significant locus. The process was repeated, conditioning on all independent
genome-wide significant SNPs, until all genome-wide significant signals were
accounted for (Cordell and Clayton, 2002). Cluster plots for all SNPs P < 5x10-¢
were manually checked using Evoker (Morris et al, 2010), and poorly called

SNPs were removed from further study.
2.2.5 HLA Imputation

Imputation of six classic HLA alleles (class I: HLA-A, HLA-B and HLA-C, class II:
HLA-DQA1, HLA-DQB1 and HLA-DRB1) was performed using the prediction
algorithm proposed by Leslie et al. and implemented in the program HLA*IMP

(Dilthey et al, 2011; Leslie et al, 2008). The imputation reference panel includes
31



~2,500 individuals of European ancestry with both genotype and classical HLA-
allele type data. Case-control association was performed on HLA allele posterior
probabilities generated from HLA*IMP using logistic regression to account for
genotype uncertainty following imputation. Stepwise conditional logistic
regression was used to identify independent association signals among the 21

HLA-alleles that reached P < 0.0001.
2.2.6 Variance in disease risk explained

The variance in disease risk explained by the 26 independent genome-wide
significant SNPs and four HLA-alleles was estimated using a disease liability
threshold model (Falconer and Mackay, 1996; So et al, 2011) assuming a disease
prevalence of 40/100,000 and log-additive risk. A review of population-based
epidemiological studies of PBC found prevalence rates varied from 1.9 to 40.2
per 100,000 depending on the surveyed population, time of survey and
phenotype definitions (Boonstra et al., 2012). The choice of using 40/100,000 in
variance explained calculations was based on three recent large population-
based surveys in European populations, where prevalence was estimated to be

38.3-40.2/100,000 (Podda et al., 2013).
2.2.7 eQTL analysis

Expression quantitative trait loci (eQTLs) within genome-wide significant loci
were collated from the University of Chicago eQTL Browser
(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) and a study by Gaffney et al,
(2012). The eQTL Browser contains significant eQTLs that were identified in
recent studies across multiple cell lines and populations, while Gaffney et al,
reanalysed gene expression data from 210 lymphoblastoid cell lines using a total
of 13.6M SNPs from the 1000 Genomes Project. For more details, see Gaffney, et
al.  (2012) and references listed in  http://eqtl.uchicago.edu/cgi-
bin/gbrowse/eqtl/.
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2.2.8 Enrichment of open chromatin regions

The Encyclopedia of DNA Elements (ENCODE) project annotated regions of open
chromatin using the direct sequencing of DNase-I hypersensitive sites (DNase-
seq: sixteen different cell lines) (Myers et al, 2011; Song et al, 2011). The
approach involves isolating nucleosome-depleted regions of DNA and mapping
reads from next-generation sequencing to determine their location. I estimated
the amount of enrichment for open chromatin peaks among significant PBC risk
loci across the ENCODE cell lines. SNPs were first grouped into independent loci
- beginning with the most strongly associated SNP (the “lead SNP”), I assigned
SNPs in moderate LD with the lead SNP (r? > 0.1) to the associated locus, while
those in high LD (r? > 0.8) were also considered candidate causal SNPs. The
process then proceeds to the next most significantly associated SNP (that had not
already been assigned to a locus), and assigned to the next locus this SNP along
with those in moderate and high LD to this new locus, and so on. After the

addition of each new locus, I calculated E,

_oc
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ichip
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IN

loci: loci

E
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where, for a given cell line, OCii and N are the number of candidate causal
SNPs (r2 > 0.8 with the lead SNP(s)) that lie within open chromatin peaks across
the selected loci and the total number of SNPs within the loci (r?2 > 0.1 with the
lead SNP(s)), respectively. OCichip and Nichip are the equivalent measures across all
SNPs within Immunochip high density regions. I only included the high density
regions to increase the likelihood that the causal variant was assayed, and
excluded SNPs in the HLA and those with MAF < 0.05 to avoid possible biases
due to LD structure. To compare E between cell lines, the number of candidate
causal SNPs in open chromatin (OCioci.aiiceiis) and the total number SNPs in open
chromatin (OCichip:aiicens) were first calculated for the union of open chromatin
peaks across all cell lines other than that being evaluated. I then tested the
alternative hypothesis that, for a given «cell line, the proportion

oc,.'oc,,. >0C /0C

\ehip using a one-sided binomial test.

loci loci:allcells ichip:allcells
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To ensure that the test was well calibrated under the null hypothesis I
undertook 1000 permutations of PBC case control labels, repeating the
association and enrichment analyses for each permutation. Comparing the
observed level of enrichment at the top 21 loci to the equivalent from the
permutations I obtained a similar, non-significant empirical P-value of 0.073
indicating that the proposed enrichment analysis is well calibrated under the

null. A 95% confidence interval for E was estimated using the permutations.

2.3 Results and discussion

Following quality control, 143,020 polymorphic SNPs were available across
2,861 cases and 8,514 controls. (Table 2.1, Table 2.2, Figure 2.1). A further
94,559 SNPs in the Immunochip fine-mapping regions were imputed using
genotypes from the 1000 Genomes June 2011 release. The inflation factor
inferred from 2,258 SNPs not associated with autoimmune disease showed only
a modest inflation (A=1.096), similar to that reported in a previous GWAS study
that included 4,194 overlapping samples (Mells et al,, 2011).

2.3.1 Replicating known PBC risk loci

Sixteen of the 22 known PBC risk loci reached genome-wide significance (P <
5x%10-8) (Figure 2.2) and four showed nominal evidence of association (5x10-8< P
< 5x10%). Two PBC risk loci, 14932 and 19q13, were not included on
Immunochip as the array was designed before the publication of the most recent
PBC GWAS (Mells et al, 2011). At 12 of the genome-wide significant loci, the
most associated SNP was different to that previously reported (Figure 2.3).
There was little difference in the effect-size estimates between the GWAS tagging
SNP and the most strongly associated Immunochip SNP, although this may partly
be due to a large proportion of overlapping samples between the two studies.
Nevertheless, the similarities in ORs despite the denser coverage of the
Immunochip suggests that the ORs of tag-SNPs in GWAS adequately reflect the
true ORs, and that synthetic associations are unlikely to explain the associations

at these risk loci (Anderson et al, 2011b).
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Figure 2.2. Manhattan plot and table of genome-wide significant PBC risk loci. Novel
loci are coloured in blue. Loci with multiple independent risk loci are coloured in
red. aMost significantly associated SNP in locus. PRisk allele. cBase-pair position
(NCBI36). dRisk allele frequency. ¢€Odds ratio. fP-value for primary signals calculated
from the Cochran-Armitage test for trend. Secondary signals calculated from
stepwise logistic regression. sWhether SNPs in high linkage disequilibrium (r2 >
0.8) with the lead SNP overlap one of more of the following annotations: eQTL
(expression quantitative trait loci), NS (non-synonymous SNP), OC (open

chromatin).
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Figure 2.3. PBC risk loci odds ratios from this study vs. those from Mells et
al. (2011). Colours denote the LD (r2) between the SNP reported in Mells et
al. and the most significant SNP in the same locus in this study. Error bars
represent OR 95% confidence intervals. The red dashed line is y = x.

2.3.2 Multiple independent signals

Stepwise conditional regression (Cordell and Clayton, 2002) revealed multiple
independent signals at five loci, with 16p13 harbouring three, and 3q25 four
such associations (Figure 2.2, Figure 2.4). At the 16pl13 locus, the third
independent signal, rs80073729, is a rare SNP (MAF < 0.5%) recently associated
with celiac disease (Trynka et al, 2011). In the same study, Trynka et al. (2011)
also identified multiple independent signals at 3q25, though rs80014155, a rare
SNP that best tags the fourth independent PBC association at this locus, was not

among them.

Further dissection of the four independent signals in 3q25 region revealed a

complex genetic architecture. While stepwise conditional regression revealed
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four independently associated SNPs (henceforth referred to as SNPs 1 through 4,
as ordered according to P-value), jointly modelling the four SNPs in a multiple
logistic regression model revealed large differences in the strength of association
for SNPs 1 and 2 when compared with univariate regression (Figure 2.4, Table

2.3). For SNP 1, the strength of association fell from P = 5.58x10-22 to P

5.23x10-7. Conversely, the strength of association for SNP 2 increased from P
6.75x10-12 to P = 2.93x10-25. These changes are in part driven by the LD patterns
within this region. SNP 1 is in moderate LD with SNPs 3 (r? = 0.322, D’ = 0.75)
and 4 (r2 = 0.004, D’ = 0.91), such that the risk increasing alleles for all three
SNPs reside more often on the same haplotype background. Thus the strong
association signal for SNP 1 from a univariate association test is partly driven by
its correlation with SNPs 3 and 4. Conversely, SNPs 2 and 3 are also in moderate
LD (r2 = 0.10, D’ = 0.90), although in this case, the risk increasing allele of SNP 2
more often shares the same haplotype as the risk decreasing allele of SNP 3.
Hence, the signal for SNP 2 is diluted by the risk decreasing effects of SNP 3 when
performing a univariate test. Indeed, by accounting for the effects of independent
SNPs in this region, it appears that SNP 2 is the most strongly associated signal
(P = 2.93 x 10-25) while SNP 1 is no longer genome-wide significant (P = 5.23 x
107).

SNP RAF® RA" uncond OR® uncond P° cond OR? cond P!
1 rs2366643 057 A 1.36 5.58x10% 1.22 5.23x107
2 rs62270414 015 G 1.32 6.75x10"12 1.59 2.93x10°%
3 rs668998 044 G 1.26 1.98x10"1 1.31 3.05x10"!!
4 rs80014155 0.004 A 3.07 6.66x10"1° 3.44 2 64x10™"!

Table 2.3. Unconditioned and conditioned association results for the four
independent signals at 3q25. aRisk allele frequency. bRisk allele. cOdds
ratios and P-values from univariate (unconditioned) association tests.
dOdds ratios and P-values from multiple logistic regression model that
includes all four SNPs as covariates.
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Figure 2.4. Multiple independent signals at 3q25 from stepwise conditional
regression. Panel 1 shows the regional association plot of all SNPs with no
conditioning. Panel 2 shows association results when conditioned on
rs2366632. Panel 3 shows association results when conditioned on
rs2366632 and rs62270414. Panel 4 shows association results when
conditioned on rs2366632, rs62270414 and rs668998. The colour gradient
(from red to grey) represents the strength of LD between the lead SNP (in

blue) and others in the region.

The architecture of the 3q25 region demonstrates how the haplotype
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structure between associated SNPs can both dilute and inflate marginal
association signals, such that stepwise regression may not completely reveal the
true effect sizes of multiple associated SNPs within a region. In these situations, a

two-stage procedure consisting of SNP-selection using conditional regression
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and then performing joint multiple regression including the selected SNPs, may

be more appropriate.

The identification of multiple independent signals show that resequencing
efforts in large number of cases across known GWAS loci will be a powerful
means of identifying additional independent signals (Hunt et al, 2013). It is
likely that the two rare SNP associations at 3q25 and 16p13 would have been
overlooked using standard GWAS arrays due to poor tagging, unless they were
directly genotyped. For example, in a case control study of 10,000 cases and
10,000 controls, there is only 0.07% power to detect association with the closest
tagging SNP of rs80073739 on the [llumina Human1M chip, rs11649025 (minor
allele frequency = 10%, r? = 0.04, D’ = 1), at P < 5x108. These additional
independent association signals thus yield a more complete understanding of the
genetic architecture of PBC and enable more informative genotype-based recall

and fine-mapping studies to be conducted.

2.3.3 Novel PBCrisk loci

Three newly-associated PBC risk loci reached genome-wide significance (Figure
2.2). The strongest association on 19p12, rs34536443 (OR = 1.91, P = 1.24x10-
12) is a low-frequency (MAF = 0.05) non-synonymous SNP in the tyrosine kinase
2 gene (TYKZ2), and is also associated with multiple sclerosis (Ban et al, 2009).
The locus has also been implicated in T1D (Wallace et al, 2010), psoriasis
(Strange et al, 2010) and Crohn’s disease (Franke et al, 2010), although
rs34536443 was not genotyped as part of these studies. For T1D and psoriasis,
the strongest associations were to common SNPs that reside on the same
haplotype (rs2304256: r2 = 0.06, D’ = 0.9 and rs280519: r2 = 0.03, D’ = 1). The
most associated SNP in Crohn’s disease and the second psoriasis signal
(rs12720356) is independent of rs34536443 (r2 = 0, D’ = 0.003). The 12q24
locus has been associated with celiac disease (Hunt et al, 2008; Trynka et al,
2011a), rheumatoid arthritis (Stahl et al, 2010) and T1D (Barrett et al, 2009),
though it was a non-synonymous SNP in SHZB3, rs3184504 (OR = 1.19, P =
1.11x10-8), rather than the most significant SNP in this study, rs11065979 (OR =
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1.2, P = 2.87x10), that was most strongly associated. The two SNPs are in high
LD (r? = 0.81) and further studies are required to narrow the set of potential
causal variants underlying the PBC association signal at this locus. The most
associated SNP in the 17q21 region, rs17564829 (OR = 1.25, P = 2.15x109), is
located in MAPT, a gene that has been associated with cognitive symptoms in
Parkinson’s disease. While cognitive symptoms sometimes associated with PBC,
it remains to be seen if the true causal variant at the locus has its functional effect
through MAPT, and whether this functional effect then results in cognitive
changes in PBC patients.

Both TYKZ and SHZ2B3 are involved in the production of cytokines, adding to
the evidence that cytokine imbalances play a role in PBC and other autoimmune
diseases (Rong et al, 2009; Wang et al, 2010a). TYKZ is a member of the Janus
kinase family, which transduce cytokine signals by phosphorylating STAT
transcription factors. Couturier et al. (2011) showed that heterozygotes for
rs34536443 have significantly reduced TYKZ activity, which promotes the
secretion of Th2 cytokines (Couturier et al, 2011). For SHZB3, carriers of the A
risk allele of rs3184504 show a moderate increase in production of cytokines
and stronger activation of the NOD2 recognition pathway compared to carriers
of the G allele (Zhernakova et al, 2010), suggesting a possible role in helping

prevent bacterial infection.
2.3.4 Associations with HLA haplotypes

Candidate genes studies have implicated several HLA-DR alleles in PBC
susceptibility, particularly the DRB1*08 allele (Donaldson et al,, 2006; Invernizzi
et al, 2008; Mullarkey et al, 2005; Wassmuth et al,, 2002). However, such studies
were hindered by small sample sizes resulting in low power. As the Immunochip
includes much denser SNP coverage of the MHC, it is expected that more HLA-
types will be able to be imputed at greater accuracy than using traditional GWAS
SNP chips. Here, the classical HLA alleles (HLA-A, B, C, DQA1, DQB1 and DRB1)
were imputed from genotyped SNPs in the MHC (Dilthey et al,, 2011; Leslie et al,

2008). Fourteen HLA-alleles reached genome-wide significance and conditional
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analysis clustered these associations into four independent signals (Table 2.4).
The most significant association was the HLA-DQA1*0401 allele (OR = 3.06, P =
5.9x10-4%), which forms a haplotype with two other HLA class II alleles
(DQB1*0402 and DRB1*0801) and is an established PBC risk locus (Donaldson et
al, 2006; Invernizzi et al, 2008; Mullarkey et al, 2005; Wassmuth et al,, 2002).
The second and third most significant clusters, DQB1*0602 (OR = 0.64, P =
2.32x10-1%) and DQB1*0301 (OR = 0.70, P = 6.48x10-14) both have protective
effects, confirming previous studies showing suggestive associations between
these loci and PBC susceptibility (Donaldson et al, 2006; Mullarkey et al,, 2005).
The fourth most associated cluster, DRB1*0404 (OR = 1.57, P = 1.22x10-9) has
not been previously associated with PBC. The variance in disease liability
explained by the 26 independent SNPs and four HLA-types are 4.9% and 1.4%

respectively.

Haplotype HLA type Freq Cases Freq Controls OR P-value

HLA*DQA1:0401  0.063 0.022 3.07 590x10™*
. HLA*DQB1:0402  0.06 0.021 3.04 191x10™"
HLA*DRB1:0801  0.054 0.018 3.18 1.14x10™
HLA*B:3905 0.01 0.003 548 4.81x10™2
HLA*DQB1:0602  0.09 0.132 0.64 232x10"°
5 HLA*DRB1:1501  0.092 0.135 0.65 2.78x10™"°
HLA*DQA1:0102  0.136 0.184 0.69 4.19x10™°
HLA*B:0702 0.109 0.144 0.73 4.93x10™°
HLA*DQB1:0301  0.134 0.179 0.7 648x10"
3 HLA*DRB1:1101  0.015 0.032 0.33 2.14x10™"
HLA*DQA1:0501  0.193 0.24 0.75 4.76x10™"?
HLA*DRB1:1104  0.008 0.018 024 372x10°
HLA*DRB1:0404  0.072 0.052 1.57 1.22x10%
4 HLA*DQB1:0302  0.133 0.104 134 6.96x10°

Table 2.4. Genome-wide significant HLA-type associations. Conditional
analysis revealed four independent haplotypes.

2.3.5 Functional annotations and enrichment of open chromatin regions among

risk loci

To identify candidate causal variants, I searched for non-synonymous variants in
high LD (r? > 0.8) with the most associated variants at each PBC risk locus. I
identified 39 such variants (of which 13 were directly genotyped) within seven
risk loci (Figure 2.2), including two of the novel PBC associations identified in

this study, TYK2 and SHZB3. Functional follow-up studies are needed before
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these non-synonymous variants can be confirmed as the causal disease variants

at these loci.

As variation in gene expression is also likely to influence PBC risk, I
evaluated the extent to which the most associated SNP at each locus tags
expression quantitative trait loci (eQTLs) or regions of open chromatin. Known
eQTLs were collated from the University of Chicago eQTL Browser

(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) and Gaffney et al. (2012).

Open chromatin regions in a range of cell lines were identified as part of the
Encyclopedia of DNA Elements (ENCODE) project (Myers et al, 2011; Song et al,
2011) using DNase I hypersensitive sites sequencing (DNase-seq). Of the 26
independent non-HLA genome-wide significant SNPs identified in this study, 15
have an r2>0.8 with SNPs that overlap DNase-seq peaks in a B-lymphoblastoid
cell line (GM12878), and seven are also significant eQTLs in the same cell line

(Figure 2.2).

To test if the enrichment of GM12878 open chromatin in regions was
significantly greater than that for all other cell lines, associated SNPs were
grouped into independent loci, and an enrichment score calculated for all loci
that contained a genome-wide significant SNP (Section 2.2.8). Overall, GM12878
had the highest enrichment score compared with the other cell lines, though the

difference in enrichment was non-significant (P = 0.068) (Figure 2.5).

The enrichment analysis protocol described here is predicated on the
observation that the majority of complex disease risk loci do not lie within
protein coding regions, and are likely to influence disease through their effects
on gene expression, perhaps in a cell-specific manner. GWAS loci are indeed
enriched for eQTLs (Nicolae et al, 2010), though assigning causality to an
associated variant based on eQTLs remains challenging due to LD and
uncertainty over the precise regulatory mechanisms. Integrating functional
genomic annotations may help bridge this gap between disease risk loci and
eQTLs. Here, I used regions of open chromatin (as measured by DNase-I
hypersensitivity) as it is a general indicator of potential regulatory activity (Bell

et al, 2011). These accessible regions make up 1-2% of the genome of a given
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cell type, and are correlated with a range of other regulatory factors such as
promoter and enhancer histone marks and transcription factor binding sites.
Genetic variation in these regions have been shown to modify chromatin
accessibility and transcription factor binding, which in turn lead to changes in
gene expression (Degner et al, 2012; Kasowski et al, 2010). As such, variants
within these regions that are in high LD with disease risk variants are good
causal candidates, and enrichment in certain cell types may point to the relevant

cells of interest in a particular disease.
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Figure 2.5. Enrichment of DNase-seq peaks among PBC risk loci in Gm12878
compared to other ENCODE cell lines. The relative enrichment (E) of SNPs
within DNase-seq peaks was calculated across the 21 most associated loci.
There is suggestive, though non-significant, evidence that genome-wide
significant loci (P < 5x10-8 - vertical blue line) are more likely to lie within
DNase-seq peaks in B-lymphoblastoid cell lines (solid red line) than they are
to lie within the union of all other annotated cell lines (solid black line) (P =
0.068). Dotted grey lines denote E for other annotated cell lines. The shaded
grey area represents the 95% confidence interval of E for Gm12878 from
1000 permutations. Cell types: Gm12878: B-lymphoblastoid, Hlhesc:
embryonic stem cells, H9es: embryonic stem cells, Helas3: cervical
carcinoma, Hepg2: liver carcinoma, Hsmm: skeletal muscle myoblasts,
Huvec: umbilical vein endothelial cells, K562: leukemia, Lhsr: prostate
epithelial cells, Mcf7: mammary gland adenocarcinoma, Medullo:
medulloblastoma, Melano: epidermal melanocytes, Myometr: Myometrial
cells, Nhbe: bronchial epithelial cells, Nhek: epidermal keratinocytes,
Panislets: pancreatic islets, Progfib: fibroblasts.
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Fifteen of the 25 non-HLA PBC risk loci overlap regions of open chromatin in
the GM12878 B-lymphoblastoid cell lines. While this number appears not to be
significant when compared with the other ENCODE cell lines (P = 0.068), as a
classical autoimmune disorder with a well-defined antibody presence (Jones,
2003), PBC risk is likely to be influenced by B cell activity. Moreover, it is
important in these types of analyses not to bias results due to LD. Had I naively
performed the enrichment analysis based on association P-value thresholds
rather than pre-binning SNPs into independent loci, the evidence for enrichment
with GM12878 open chromatin would have been much stronger (P = 0.0012)
(Figure 2.6). This P-value enrichment approach, while seen in other studies
(Maurano et al, 2012), has the potential to bias results when SNPs that are
moderately correlated with each other are counted multiple times if they overlap
with functional annotations. In contrast, the approach presented here only
considers a single potential causal variant per locus (i.e. SNPs that are in LD with
the most strongly associated SNP is removed from further consideration), with

all other variants in moderate LD are excluded from further analysis.
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Figure 2.6. Enrichment of DNase-seq peaks among PBC risk loci calculated
from P-value bins.
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The thresholds used to define causal candidates at associated loci (r? > 0.8
with most associated SNP) as well as SNPs in LD to exclude (r? > 0.1) are
somewhat subjective choices. The r? > 0.8 cut-off is based on a ubiquitous
definition for which a SNP is “tagged” (Wang et al., 2005), and is used throughout
this chapter and the remainder of this thesis when defining causal candidate
SNPs. This threshold has previously been shown to be effective at trading off
power and the number of SNPs that need to be genotyped (de Bakker et al,
2005), assessing the coverage of genotyping arrays (Barrett and Cardon, 2006)
and resolving haplotypes (Carlson et al, 2004). The threshold of r? > 0.1 to
remove SNPs in LD with the most associated SNP in a locus (the lead SNP) was
used to ensure that genome-wide significant SNPs whose signals are driven by
their moderate LD with a much more strongly associated SNP are not considered
causal candidates, while also allowing for additional truly independent variants
to be counted. This approach yielded 21 genome-wide significant loci (Figure
2.5). Of the 26 independently associated SNPs identified in this study (Figure
2.2), 22 reside in the Immunochip high density regions considered in this
enrichment analysis. The one ostensibly independently associated SNP that was
excluded (rs668988) had r? = 0.32 with another lead SNP, rs2366643. Raising
the r2 threshold of 0.1 would have meant more SNPs denoted as “independently
loci” even if their signals were entirely driven by a more strongly associated SNP
nearby. For instance, at the rs72678531 (P = 2.47x10-3¢) locus, a second genome-
wide significant SNP (rs17129749; P = 3.50x10-8) would have been declared
independent had a minimum r2 threshold of 0.3 been used. On the other hand, a
lower threshold may exclude truly independently associated SNPs. Overall, any
choice of LD thresholds involves trade-offs between excluding SNPs in LD and

capturing truly independent association signals.

Finally, it should be noted that enrichment in a certain cell type does not
automatically implicate that cell in disease. A certain amount of enrichment may
be expected given that many gene promoters are active across multiple cell types
(e.g. housekeeping genes). Between two given cell types, 30-40% of open
chromatin regions may be shared (Song et al, 2011). Moreover, lack of

enrichment cannot rule out that cell’s involvement in disease. This study was
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also limited by the availability of cell types where the same functional genomic
annotations were obtained in a consistent manner. It is likely that similar studies
in autoimmune disorders will incorporate annotations from a range of immune
cells (e.g. various types T cells, monocytes, dendritic cells, macrophages). For
instance, recent approaches examining gene expression in murine immune cells
found significant enrichment for B cell expressed genes among systemic lupus
erythematosus risk loci, CD4 T cell genes among rheumatoid arthritis loci, and
dentritic cell genes among Crohn’s disease loci (Hu et al, 2011; Jostins et al,
2012). Moreover, the power to detect enrichment will only increase as the list of

associated risk loci ever expands.

2.4 Conclusion

Through genotyping of 2,861 PBC cases and 8,514 controls on the Immunochip
genotyping array, three novel PBC risk loci were identified, including a low-
frequency non-synonymous SNP in TYKZ, further implicating the JAK-STAT and
cytokine signalling in disease pathogenesis. Together, these newly discovered
risk loci in conjunction with 16 previously known loci offer further leads into the

biological pathways that underlie PBC risk.

Within the 186 high density regions, the Immunochip includes ~90,000
directly genotyped SNPs compared with ~10,000 SNPs on the [llumina Human-
660W Quad array used in Mells et al,, (2011). This denser coverage suggests that
common causal variants are more likely to be genotyped directly or offer better
tagging than SNPs from GWAS arrays. Reassuringly, odds ratios at known loci did
not significantly differ to those from Mells et al, (2011) despite the lead SNP
changing at all but five of these loci. This suggests that the loci discovered in this
study were primarily driven by sample size rather than SNP density, and that

further GWAS of ever larger sample sizes will continue to discovery new risk loci.

The dense coverage also allows for greater refinement of the genetic
architecture at risk loci. Multiple independent association signals were identified
at five loci, including low-frequency and rare variants that are poorly tagged on
GWAS arrays. At the 3qg25 locus, four independent signals were identified,
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though the effect sizes at two of the SNPs varied significantly when assessed
under a joint model than when considering SNPs one at a time, highlighting that
the haplotype structure of these regions with multiple signals should be

considered when reporting association results.

Finally, I also explored the potential of integrating association results with
large-scale functional genomic annotations to identify the cell types in which PBC
associated variants are likely to be influencing disease. Future association
studies in larger sample sizes in combination with disease-relevant functional
genomic datasets will greatly improve the understanding of PBC and other

complex disorders.
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Chapter 3. Discovery of primary sclerosing
cholangitis risk loci and the genetic relationship

with inflammatory bowel disease

3.1 Introduction

Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown
etiology that results in the fibrotic destruction of the bile ducts (Aadland et al,
1987; Broome et al, 1996; Farrant et al, 1991). The pathogenesis of PSC is
poorly understood, and due to the lack of effective medical therapy, PSC remains
a leading indicator for liver transplantation in Northern Europe and the US
(Karlsen et al, 2010b), despite the relatively low prevalence (~10/100,000).
Affected individuals are diagnosed at a median age of 30-40 years and suffer
from an increased frequency of inflammatory bowel disease (IBD) (60-80%)
(Karlsen and Kaser, 2011; Karlsen et al, 2010b) and autoimmune diseases
(25%) (Saarinen et al, 2000). Conversely, approximately only 5% of patients
with IBD develop PSC (Karlsen and Kaser, 2011; Karlsen et al,, 2010b). A 9-39-
fold sibling recurrence risk indicates a strong genetic component to PSC risk
(Bergquist et al, 2008). In addition to multiple strong associations within the
human leukocyte antigen (HLA) complex, recent association studies have
identified genome-wide significant loci at 1p36 (MMEL1/TNFRSF14), 2q13
(BCL2L11), 2q37 (GPR35), 3p21 (MST1), 10p15 (ILZRA) and 18q21 (TCF4)
(Ellinghaus et al,, 2012; Folseraas et al, 2012; Karlsen et al, 2010a; Melum et al,
2011; Srivastava et al, 2012).
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In order to identify additional risk loci associated with PSC risk, 3,789 PSC
cases from Europe and North America, along with 25,079 population matched
controls, were genotyped on the Immunochip. The IBD status were also available
for 3,283 of the PSC cases, and, along with results from a recent GWAS of IBD

(Jostins et al, 2012), allowed for powerful cross-phenotype genetic comparisons.
3.1.1 Chapter overview

In this chapter, I discuss the identification of twelve genome-wide significant PSC
risk loci outside the HLA region, nine of which are implicated in PSC risk for the
first time. Within the HLA region, HLA-allele imputation revealed five
independent associations. Due to the high comorbidity with IBD (72% of cases
have Crohn’s disease (CD), ulcerative colitis (UC) or indeterminate IBD),
investigating the shared and unique genetic basis between the two disorders has
implications in understanding shared biology and disease classification. I
investigated this sharing at PSC risk loci, and considered in aggregate IBD risk
and variants genome-wide, showing the presence of both overlapping and

distinct genetic architectures for PSC and IBD.

3.1.2 Contributions

The study design was conceived by the International PSC Genetics Study Group
(IPSCSG). Cases and controls were ascertained through the IPSCSG and the
International IBD Genetics Consortium (IIBDGC). Genotyping was performed at
various centres described in section 3.2.1 and the Supplementary Note of Liu et
al. (2013). GRAIL analysis was performed by Trine Folseraas. Quality control on
unpublished GWAS data was performed by Sun-Gou Ji. All other analyses were
performed by myself.

3.2 Methods

3.2.1 Samples, DNA extraction and genotyping

Recruitment of PSC cases was performed in 14 countries in Europe and North

America (Table 3.1). Diagnosis of PSC was based on standard clinical,
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biochemical, cholangiographic and histological criteria with exclusion of
secondary causes of sclerosing cholangitis (Chapman et al, 1980). Controls were
recruited from blood donors, population-based studies as part of this study, or
via the International Immunochip Consortium. See Supplementary Note of Liu et

al. (2013) for details.

Controls PSC cases Total
Scandinavia 4,324 917 5,241
North Central Europe 9,438 1,136 10,574
Southern Europe 580 115 695
UK 8,663 1,033 9,696
North America 2,074 588 2,662
Total 25,079 3,789 28,868

Table 3.1. Post-QC patient and control panels. PSC cases and controls in the
study sorted by broad geographic panels (based on participating centre
information, not genotypes). Scandinavia: Finland, Norway, Sweden; North
Central Europe: Belgium, Germany, The Netherlands, Poland; Southern
Europe: France, Greece, Italy, Spain; UK: United Kingdom; North America:
Canada, USA.

DNA was extracted from whole blood, transformed lymphocytes or liver
tissue using commercially available kits or an in-house out-salting method. DNA
samples were genotyped using the Immunochip according to Illumina protocols.
The NCBI build 36 (hg18) reference was used and normalised probe intensities
were extracted for all samples passing standard laboratory quality control
thresholds. All genotypes were called specifically for this study using optiCall
(Shah et al, 2012), but separately across each genotyping batch. Genotypes with
a posterior probability lower than 0.7 were defined as unknown. All PSC cases
were genotyped at the Institute of Clinical Molecular Biology in Kiel, Germany, or
at the department of Genetics, University of Groningen and University Medical

Centre Groningen, The Netherlands.
3.2.2 Quality control

SNPs with a call rate < 80% were removed prior to sample QC (n = 235). Per

individual genotype call rate and heterozygosity rate were calculated using

PLINK (Purcell et al, 2007) and outlying samples were identified using Aberrant

(Figure 3.1) (Bellenguez et al, 2012), which identifies outliers from otherwise

Gaussian distributions. A set of 20,837 LD-pruned (r? < 0.1) SNPs with minor
50



allele frequency > 10% present in both the Immunochip and the Illumina
Omni2.5-8 array used in the 1000 Genomes Project (Genomes Project et al,
2012) were used to estimate identity by descent and ancestry. For each pair of
individuals with estimated identity by descent = 0.9, the sample with the lower
call rate was removed (unless case/control status was discordant between the
pair, in which case both samples were removed, n = 92). Related individuals
(0.1875 < identity by descent < 0.9) remained in the analysis to maximize power
because the mixed model association analysis can correctly account for the
relatedness between individuals. Principal components analysis was performed
using SMARTPCA (Patterson et al, 2006). Principal components were defined
using population samples from the 1000 Genomes Project genotyped using the
[llumina Omni2.5-8 genotyping array and then projected into PSC cases and
controls, with non-European outliers identified using Aberrant and removed
(Figure 3.2). Following sample QC, 3,789 PSC cases and 25,079 remained. SNPs
with a minor allele frequency less than 0.1%, Hardy-Weinberg equilibrium P <
10-> in controls, call rate lower than 98%, or significant differential missing data
rate between cases and controls (P < 10-°) were excluded. After completion of
marker QC, 131,220 SNPs were available for analysis - further reduced to
130,422 after cluster plot inspection of nominally associated SNPs. The genomic
inflation factor (Devlin et al,, 1997) was calculated using 2,544 “null” SNPs. These
SNPs were included on the Immunochip as part of replication panels for bipolar

disease and other non-immune-related studies.
3.2.3 Imputation

Using 85,747 post-QC SNPs located in the Immunochip high density regions,
additional genotypes were imputed using IMPUTEZ with the 1000 Genomes
Phase 1 (March, 2012) reference panel of 1,092 individuals (Genomes Project et
al, 2012) and 744,740 SNPs. Imputation was performed separately across ten
batches, with the case:control and country of origin ratios constant across
batches. SNPs with a posterior probability less than 0.9 and those with

differential missingness (P < 10-5) between the 10 batches were removed, as
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were SNPs failing the exclusion thresholds used for genotyped SNP QC. After

imputation, a total of 208,852 SNPs were available for analysis.

Heterozygosity rate
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Figure 3.1. Heterozygosity rate and proportion of missing genotypes for PSC
cases and controls. The grey points represent outlying individuals.
Heterozygosity proportions and missingness were calculated using PLINK
(Purcell et al.,, 2007). Outliers were detected using Aberrant (Bellenguez et
al, 2012).
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Figure 3.2. Principal components analysis of PSC cases and controls with
1000 Genomes Omni2.5-8 data. The red, purple and green points represent
1000 Genomes CEU (Utah residents with Northern and Western European
ancestry), YRI (African) and CHB+JPT (Han Chinese and Japanese)
populations respectively. The blue points represent the included PSC cases
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and controls, overlapping the CEU population, with the grey points showing
those who were identified as ancestry outliers (and therefore excluded).
The principal components were generated using 20,837 common
(MAF>0.10) SNPs overlapping between the Immunochip (this study) and
the Omni2.5-8 array.

3.2.4 Association analysis

Case-control association tests were performed using a linear mixed model as
implemented in MMM (Pirinen et al, 2012). A covariance matrix, R, of a random
effects component was included in the model to explicitly account for
confounding due to population stratification and cryptic relatedness between
individuals. This method has been shown to better control for population
stratification than correction for principal components or meta-analyses of
matched subgroups of cases and controls (Korte et al, 2012; Sawcer et al,, 2011).
R is a symmetric nxn matrix with each entry representing the relative sharing of
alleles between two individuals compared to the average in the sample, and is
typically estimated using genome-wide SNP data. To avoid biases in the
estimation of R due to the design of the Immunochip, SNPs were first pruned for
LD (r? < 0.1). Of the remaining SNPs, I then removed those that lie in the HLA
region or have a minor allele frequency < 10%. Finally, I excluded SNPs that
showed modest association (P < 0.005) with PSC in a linear regression model
fitting the first 10 principal components as covariates. A total of 17,260 SNPs
were used to estimate R. The following parameters were used in MMM: logOR = 2
(more accurate when genotypes are coded 0,1,2 and no predictors other than
genotyes), mean_center = 1 (genotypes are mean-centred), impute_missing = 1
(missing genotypes are set to mean of non-missing genotypes), min_d = 0.1

(lower bound for accepted eigenvalues of R).

Due to computational limitations, I estimated the R matrix and performed all
association analyses separately for UK (n = 9,696) and non-UK (n = 19,172)
samples, and then combined the results using a fixed-effects (inverse-variance
weighting) meta-analysis. This reduced the Agc (estimated using the 2,544 “null”
SNPS and using the first 10 PCs as covariates) from 1.13 to 1.02 (Figure 3.3),
suggesting population stratification was well-controlled for. Stepwise

conditional regression was used to identify possible independent associations at
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genome-wide significant loci. SNPxSNP interactions between all pairs of genome-
wide significant SNPs were tested using the PLINK --epistasis command. Signal
intensity plots of all non-HLA loci with association P < 5x10-¢ were visually

inspected using Evoker (Morris et al, 2010). SNPs that clustered poorly were
removed (N = 800).

-logo (p) observed

-logyo (p) expected

Figure 3.3. Quantile-quantile plots and genomic inflation factors of observed
vs. expected P-values. Association tests were compared for logistic
regression with no covariates, logistic regression with the first 10 principal
components as covariates, and a linear mixed model implemented in MMM
(Pirinen et al., 2012). Tests were performed on 2,544 “null” SNPs with no
evidence for association with immune-related phenotypes. The dashed red
lineisy =x.

3.2.5 Functional annotation of risk loci

Gene regulatory elements from the Encyclopedia of DNA elements (ENCODE)
and coding SNPs were annotated using HaploReg (Ward and Kellis, 2012). For
each risk locus, SNPs in high linkage disequilibrium (r? > 0.8) with the most
significantly associated SNP were assessed as to whether they lie within regions
with promoter and enhancer marks, DNAse-I hypersensitivity, protein binding or
regulatory motifs in one or more of 147 cell types. Expression quantitative trait
loci (eQTLs) were collated from the University of Chicago eQTL Browser

(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/).
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3.2.6 GRAIL and DAPPLE analyses

To assess the functional relationship among established genomic PSC risk
regions, we performed a GRAIL pathway analysis. GRAIL is a statistical tool that
uses text mining of published abstracts in the PubMed database to identify and
quantify functional similarity among genes within disease-associated regions
(Raychaudhuri et al, 2009). The output GRAIL score is a significance score, Ptext,
which is adjusted for multiple hypothesis testing. Sixteen PSC risk loci (7 known

and 9 novel) were used as input for this analysis.

Similarly, DAPPLE assesses functional similarity through constructing
networks of protein-protein interactions (Rossin et al, 2011). Gene connectivity
is assessed based on the number of direct and indirect (via other proteins)
connections and a permuted P-value is calculated. The 16 PSC risk loci were used

as input into DAPPLE. Genes with P < 0.05 were listed as causal candidates.
3.2.7 HLA imputation and association analysis

Imputation of HLA class I and II genes was performed using HLA*IMPv2 (Dilthey
etal, 2011; Leslie et al, 2008). The imputation reference panel includes ~2,500
individuals of European ancestry with both genotype and classical HLA-allele
type data. Cluster plots for all SNPs contributing to the imputation of HLA types
were manually inspected and poorly clustered SNPs were removed. Case-control
association was performed on HLA allele posterior probabilities using the mixed
model framework described previously. Stepwise conditional regression was

used to determine independent HLA association signals.
3.2.8 Heritability explained

The proportion of variance explained by the genome-wide significant SNPs and
HLA alleles was calculated using a disease liability threshold model (Falconer
and Mackay, 1996; So et al, 2011) assuming a disease prevalence of 10/100,000

and multiplicative disease risk.
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3.2.9 Prediction of PSC using IBD risk loci

Odds ratios (ORs) for Crohn’s disease and ulcerative colitis in 163 IBD-associated
SNPs were obtained from Jostins et al. (2012). I used the R package Mangrove

(http://cran.r-project.org/web/packages/Mangrove) to generate risk scores and

estimate each individual’s probability of developing PSC among the 3,789 PSC
cases and 25,079 controls assuming additive risk (log-additive OR). The
performance of the predictor using either Crohn’s disease or ulcerative colitis
ORs was assessed by constructing a receiver operating characteristic (ROC)
curve, which shows the proportion of true and false positives at each probability
threshold. The area under the curve (AUC) was calculated to compare the

predictive power of the ulcerative colitis and Crohn’s disease ORs.

The DeLong method was used to test if the AUC using ulcerative colitis ORs was
significantly different to the AUC using Crohn’s disease ORs (DeLong et al,, 1988).
The method is a non-parametric approach for test the alternative hypothesis that
two (or more) AUCs estimated from different sets of predictors in the same
samples are significantly different. As the AUC is equivalent to the Mann Whitney
U statistic for comparing the distribution values from two samples, variances of
correlated U statistics can be estimated using the approach of Sen (1960). The
method is equivalent to a jackknife resampling approach for estimating the

variance of the AUC (DeLong et al., 1988).

3.2.10 Genetic correlation between PSC and IBD

Genome-wide SNP data were available for 5,322 Crohn’s disease cases, 6,307
ulcerative colitis cases and 12,164 population matched controls genotyped as
part of previous GWAS meta-analyses (Anderson et al, 2011a; Franke et al,
2010; Jostins et al, 2012). Genome-wide data from an ongoing GWAS for PSC
(2,871 cases and 12,019 controls) were also obtained (Sun-Gou Ji, personal
communication). All datasets were obtained post-QC. The IBD dataset was
imputed using the HapMap phase 2+3 reference panel, while the PSC dataset was
imputed using a combined 1000 Genomes Phase I plus UK10K reference panel.

Additional QC included removing 35 cases 3803 controls from the IBD dataset
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that were duplicated or related with individuals in the PSC dataset using PLINK
(pi_hat > 0.1). SNPs with a missingness rate of greater than 2% in the combined
data were also removed. In total, 721,733 autosomal SNPs that overlap the two
datasets remained. The top 20 Principal components estimated from the 1000
Genomes Phase I individuals were projected onto all IBD and PSC cases and

controls.

The proportion of genetic variation (as tagged by common genome-wide
SNPs) that is shared between PSC and IBD was estimated using the bivariate
linear mixed-effects model implemented in GCTA (Lee et al, 2012). The method
uses genome-wide SNPs to estimate genetic similarities between pairs of
individuals, and uses bivariate restricted maximum likelihood to estimate
covariance components (rg) of the linear mixed model. In all, each of four PSC
subphenotypes (all PSC cases, PSC cases with UC, PSC cases with CD and PSC
cases with no IBD) were tested against CD and UC. To test whether rg is
significantly different from O (i.e. there is no genetic overlap between the two
phenotypes), r¢ was fixed at 0 and a likelihood ratio test comparing this

constrained model and the unconstrained model was applied.

3.3 Results and discussion

Following quality control and imputation, 208,852 SNPs from 3,789 cases and
25,079 population controls were available for analysis, of which 80,183 SNPs
located in the Immunochip high density regions were imputed using the 1000
Genomes reference panel. Case-control association testing was performed using
a linear mixed model as implemented in MMM to minimise the effect of

population stratification (Agc = 1.02, estimated using 2,544 “null” SNPs).
3.3.1 Locus discovery

Twelve non-HLA genome-wide significant (P < 5x10-%) PSC susceptibility loci
were identified, nine of which were implicated in PSC for the first time (Table
3.2, Figure 3.4, Figure 3.5). The most associated SNP within each locus was a

common variant (all risk allele frequencies >0.18) of moderate effect (ORs
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between 1.15 and 1.4) (Table 3.2). Genotype imputation and stepwise
conditional regressions within each locus did not identify additional independent
genome-wide significant signals, nor did genotype-genotype or sex-genotype

interaction analyses.

For seven of the nine novel loci, the most significantly associated SNP in the
locus was the same SNP or was in strong linkage disequilibrium (LD; r? > 0.8)
with the original association reports for another disease (Table 3.3). The two
exceptions were 11q23, where only independent disease associations (r? < 0.01)
have so far been reported for colorectal cancer (Peters et al, 2012), and 6q15,
where the most significantly associated PSC variant, rs56258221 (OR = 1.23,P =
8.36x10-12), is in low-to-moderate LD with the previously reported BACHZ
variants in Crohn’s disease (12 = 0.23) and type 1 diabetes (r2 = 0.12).

RefSeq Notable

Chr SNP* RA® RAF cases® RAT P-value OR LD region‘(Kb) genesinLD  nearby FMCtio.nal
controls® (95%CI) region gene(s)’ annotation’
1p36 13748816 A 0.698 0.656  7.41x10" (1.12'_211.27] 2,398-2,775 9 T"A’;’FV;%/! OEST:]E,MHSM
2q33 rs7426056 A 0.277 0229  1.89x10% (1.231:?37] 204,155-204,397 1 cD28 HM, 0C
3p21 rs3197999 A 0.352 0.285 2.45%10°2% (1.21'63_?4) 48,388-51,358 90 MST1 SSTPLBI\:&
4q27 rs13140464 C 0.871 0836  gg7x10" (1_211'_31_4) 123,204-123,784 4 112, 1121 0C, PB
6q15 rs56258221 G 0.213 0183  g836x102 (1.116'_213.31] 90,967-91,150 1 BACH2 0C, PB
10p15 rs4147359 A 0.401 0349  819x10" (1.11;‘;3) 6,070-6,206 2 IL2RA PB
11923 rs7937682 G 0.298 0.265 317x10" (1.111'_117.24] 110,824-111,492 19 SIK2 0C, PB, HM
12q13 rs11168249 G 0.506 0466  5.49x10" (1.11:1:’21) 46,442-46,534 3 HDAC7  OC,PB,HM
12924 rs3184504 A 0.527 0488  591x10" (1.112'?18.24) 110,186-111,512 16 j’g{ﬁfz MS, 0C, HM
18q22 rs1788097 A 0.518 0.483 3.06x10°" (1_11:;521) 65,633-65,721 2 €D226 MS'P({’EII'PB'
19q13 rs60652743 A 0.864 0836  £51x10" (1.11,)'_215.34] 51,850-51,998 6 ’;’;’;Zi' 0C, PB, HM
21q22 rs2836883 G 0.777 0728  319x10" (1.211'_218.36] 39,374-39,404 - PSMGI ~ OC, PB,HM

Table 3.2. Association results of twelve non-HLA genome-wide significant
risk loci for PSC. aSNPs from novel PSC-associated loci are shown in bold.
bRisk increasing allele. cRisk allele frequency. dLD regions around lead SNPs
were calculated by extending in both directions a distance of 0.1
centimorgans as defined by the HapMap recombination map. eSelect
candidate gene(s) within same LD region as the associated SNPs. fDenotes if
there are SNPs with r2>0.8 with the hit SNP that have functional
annotations: eQTL: expression quantitative trait locus, HM: overlaps a
region of histone modification MS: missense mutation; OC: open chromatin;
PB: protein binding.
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Figure 3.4. Regional association plots for genome-wide significant
associations at previously established PSC risk loci. Filled-in circles are
directly genotyped and hollow-triangles are imputed SNPs. The colour of the
marker (see legend in panel a) illustrates the linkage disequilibrium
between the most associated SNP and others in the locus.
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Figure 3.5. Regional association plots of nine newly associated PSC risk loci.
In panels d and e, the most associated SNPs are located outside Immunochip
fine-mapping regions. Association signals from the discovery panel of the
largest PSC GWAS to date are shown as hollow circles and the most
associated SNP as a hollow diamond (genotyped and imputed to HapMap
release 22 SNPs, cases overlap with the current study).
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Locus SNP Same signal Different signal

1p36 rs3748816 CeD,RA,UC

2933 157426056 CeD AA,CeD,CHD,GD,Ht,MI,RA, T1D
3p21 rs3197999 CDh,uC

4q27 rs13140464 CD,CeD,RA,UC AAT1D
6q15 rs56258221 CD,CeD,MS,T1D,Vi
10p15 rs4147359 AAMS,RA T1D,Vi
11923 rs7937682 Colorectal cancer
12q13 rs11168249 CD,uC

12924 rs3184504 BP,CeD,Ch,CKD,EC,He, HgHt,PBC,RVC,T1D

18922 rs1788097 T1D

19q13 rs60652743 T1D CLL
21922 rs2836883 AS,CD,UC

Table 3.3. Association of genome-wide significant PSC risk loci with other
diseases. A SNP association for another disease is defined to be the same
signal if this SNP is in high LD (r2 > 0.8) with one or more genome-wide
significant PSC associated SNPs in the locus. Diseases highlighted in bold
denote associations where the lead SNP is the same in both diseases.
Previously associated SNPs were obtained from the Catalog of Published
Genome-wide Association Studies (http://www.genome.gov/gwastudies).
SNPs reported in other Immunochip experiments were available for CeD,
CD, UC and PBC (Jostins et al.,, 2012; Liu et al,, 2012; Trynka et al., 2011b).
AA: Alopecia areata, AS: Ankylosing spondylitis, BP: Blood pressure, CD:
Crohn's disease, CeD: Celiac disease, Ch: Cholesterol, CHD: Coronary heart
disease, CKD: Chronic kidney disease, CLL: Chronic lymphocytic leukaemia,
EC: Eosinophil counts, GD: Grave's disease, He: Haematocrit, Hg:
Haemoglobin, HT: Hypothyroidism, MI: Myocardial infarction, MS: Multiple
sclerosis, PBC: Primary biliary cirrhosis, RA: Rheumatoid arthritis, RVC:
Retinal vascular calibre, T1D: Type 1 diabetes, UC: Ulcerative colitis, Vi:
Vitiligo

3.3.2 Associations at previously reported non-HLA PSC risk loci

In the main association analysis, three out of six previously reported genome-
wide significant (P < 5x10-%) non-HLA risk loci (rs3748816 at 1p36, rs3197999
at 3p21 and rs4147359 at 10p15) (Folseraas et al, 2012; Melum et al, 2011;
Srivastava et al, 2012) were genome-wide significant (Table 3.2, Figure 3.4).In a
fourth locus, the genome-wide significant SNPs from the previous study
(rs3749171 and rs4676410 at 2q37) (Ellinghaus et al, 2012) failed genotyping
in one of the genotyping batches and was excluded. However, the peak SNP in
this dataset (rs2011743) was in moderate linkage disequilibrium (r2 = 0.29)
with the lead SNP from the previous study (rs3749171) and showed nominal
association, (P =5.0x10-5, OR = 1.17, 95% CI 1.08-1.26). The previously reported
PSC associations at 2q13 and 18q21 were not covered on the Immunochip

(Ellinghaus et al, 2012; Melum et al, 2011).
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3.3.3 Candidate gene prioritisation

To prioritize candidate genes within the non-HLA genome-wide significant loci, |
searched for nonsynonymous coding and known eQTLs among the SNPs in high
LD (r? > 0.8) with the most associated SNPs. Risk loci were als functionally
annotated using data from the ENCODE project (Ward and Kellis, 2012).
Networks were constructed based on known protein-protein interactions
(DAPPLE) (Rossin et al, 2011) and the text mining published literature (GRAIL)
(Raychaudhuri et al, 2009) to identify potentially important disease-relevant
genes. For four of the 12 genome-wide significant loci, the same gene (MMELI,
MST1, SHZ2B3, and CD226) was annotated by more than one method (Table 3.4),

suggesting these as candidates for further investigation at these loci.

Two newly associated loci are located outside of the Immunochip fine
mapping regions (Figure 3.5). At 11q23, the most strongly associated SNP,
rs7937682 (OR = 1.17, P = 3.18x10?), is located in an intron of salt-inducible
kinase 2 (SIKZ), which both influences the expression of interleukin-10 in
macrophages and Nur77, an important transcription factor in leukocytes (Hanna
etal, 2011). The association at 12q13 is with an intronic SNP (rs11168249, OR =
1.15, P = 5.49x10-°) within the histone deacetylase 7 (HDAC7) gene, which has
also been associated with IBD (Jostins et al, 2012). HDAC7 has been implicated in
negative selection of T cells in the thymus (Kasler et al,, 2011), a key factor in the
development of immune tolerance. A role for HDAC7 in PSC etiology is supported
by the novel association at 19q13, where the most associated SNP, rs60652743
(OR = 1.25, P = 6.51x10'19) is located within an intron of serine-threonine
protein kinase D2 (PRKDZ2). When T cell receptors of thymocytes are engaged,
PRKDZ phosphorylates HDAC?7, leading to nuclear exclusion of HDAC7 and loss of
its gene regulatory functions, ultimately resulting in apoptosis and negative
selection of immature T cells (Dequiedt et al, 2003; Dequiedt et al, 2005).
Interestingly, this negative selection takes place due to a loss of HDAC7-mediated
repression of Nur77 (regulated by SIK2) (Clark et al, 2012), linking three novel
PSC loci to this pathway.
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Locus SNP ENCODE e0QTL’ Missense” GRAIL® DAPPLE¢ No. of genes

1p36 rs3748816 P,EDPBRM MMEL1 MMELI 1
2933 rs7426056 ED,PB,RM CD28 1
3p21 rs3197999 PED,PBRM USP4 BSNMSTI GPX1,MST1 5
4q27 rs13140464 D,PB,RM IL2 1
6ql5 rs56258221 D,PB,RM BACH2 1
10p15 rs4147359 PB,RM ILZRA 1
11923 rs7937682 P,E,D,PB,RM CRYAB,HSPB2 SIK2 3
12913 rs11168249 E,D,PB,RM VDR 1
12924 rs3184504  P,ED,RM SH2B3  SH2B3,TRAFD1 C12o0rf51 3
18922 rs1788097 E,D,PB,RM CD226 CD226 1
19q13 rs60652743 P,E,D,PB,RM 0
21922 rs2836883 ED,PB,RM ETS2 1

Table 3.4. Candidate functional annotations and genes among genome-wide
significant PSC risk loci. aSSNPs in high LD (r2 > 0.8)with the lead SNP that
overlap one or more of the following ENCODE annotations in at least one of
147 cell types identified using HaploReg (Ward and Kellis, 2012). P:
promotor histone markers; E: enhancer histone markers; D: DNAse-I
hypersensitivity; PB: protein binding; RM: regulatory motifs. PSNPs in high
LD with the most significantly associated SNP in the locus that are either
known eQTLs or missense mutations. ¢<Genes implicated by GRAIL, DAPPLE
or functional similarity networks that show nominally significant (P < 0.05)
number of connections.

3.3.4 HLA association

The associations at the HLA complex at 6p21 were refined by imputing HLA
haplotypes at HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQB1, HLA-DQA and HLA-
DPB1 (Dilthey et al, 2011). Imputation was highly accurate at 2 digit level for
HLA-B and HLA-DRB1, with >96% and 98% concordance respectively when
compared with previous in-house sequencing-based HLA typing data (Karlsen et
al, 2007; Melum et al,, 2011). The lead SNP in the HLA complex (rs4143332; P =
6.39x10-249) was in perfect linkage disequilibrium with the lead SNP in the
previous genome-wide association study (rs3134792, r? = 1.0) (Melum et al,
2011), and in almost perfect linkage disequilibrium with HLA-B*08:01 (r? =
0.996 with imputed HLA- B*08:01 in this dataset). HLA-B*08:01 is encoded on
the ancestral HLA-B*08:01-DRB1*03:01 haplotype (AH8.1) which is associated

with multiple autoimmune diseases (Candore et al.,, 2002).

Stepwise conditional analysis was performed including both SNP and HLA
haplotypes. The SNP rs4143332 (tagging HLA-B*08:01) and a complex HLA class
I association signal determined by HLA-DQA1*01:03 and SNPs rs532098,
rs1794282 and rs9263964 explain all of the genome-wide significant HLA
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association signals in the data (Figure 3.6). Stepwise conditional regression with
only HLA alleles showed significant associations with the established PSC
haplotypes HLA-B*08:01, HLA-DQA*01:03, HLA-DQA*05:01, DRB1*15:01 and
DQA*01:01, confirming previously reported associations with HLA haplotypes in
PSC (Table 3.5) (Chapman et al, 1983; Donaldson et al, 1991; Donaldson and
Norris, 2002; Wiencke et al, 2007).

The HLA-DRB1*15:01 association overlaps with that of ulcerative colitis
(risk increasing) and Crohn’s disease (risk decreasing) (Okada et al, 2011;
Stokkers et al, 1999). Since imputed genotypes at the class II region were only
available for four (HLA-DRB1, HLA-DQB1, HLA-DQA1 and HLA-DPB1) out of 20
loci (Horton et al, 2004), further studies involving direct sequencing of all HLA
class II loci along with assessments of their protein structure and peptide
binding are required to causally resolve the link between this HLA subregion and
PSC development (Hov et al, 2011; Hovhannisyan et al, 2008).
Per-allele model Full model
HLA allele MAF| OR P-value OR P-value

B*08:01 0.12[2.82 370x102% [2.53  3.79x10™
DQA*01:03 0.07|2.23 120x10% |3.66  7.43x107
DQA*05:01 0.16|2.39 g00x1075 | 1.87  5.41x107°

DRB1:15:01 0.14| 1.04 0.28 157  7.41x10%
DQA*01:01 0.09|0.83 120x10° |1.31 6.60x10"°

Table 3.5. Odds ratio and P-value of independent HLA allele associations
with PSC. Five independent HLA allele associations were identified via
stepwise conditional analysis. The per-allele model denotes ORs and P-
values of each HLA-allele from a univariate model (no covariates), while the
full model includes all five HLA alleles as covariates in a multivariate model.
Association testing was performed using the linear mixed model
implemented in MMM (Pirinen et al., 2012).
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Figure 3.6. Regional association plots
from stepwise conditional regression in
the HLA complex in PSC. Regional
association plots show both SNPs (filled
circles and imputed HLA alleles (hollow
triangles). Panel a displays associations
with no conditioning, showing the peak
association with rs4143332, which is in
strong linkage disequilibrium with HLA-
B*08:01. Panel b shows the association
results when conditioned on rs4143332,
panel c conditioned on rs4143332 and
HLA-DQA1*01:03 and so on. Points are
coloured according to linkage
disequilibrium with the most strongly
associated variant (see panel a for
colour legend), which is sown as a filled
in red diamond. Recombination rates in
the region are shown by the red lines (in
cM/MB).
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3.3.5 Genetic overlap with IBD

IBD subphenotypes were available for 3,285 of the 3,789 cases (Table 3.6).
Although 72% of the PSC patients in this study have a diagnosis of concomitant
IBD, only half of the genome-wide significant loci were associated with IBD in the
recent International IBD Genetics Consortium (IIBDGC) GWAS meta-analysis
(Jostins et al, 2012), despite the greater sample size of that study (~75,000 cases
and controls) (Figure 3.7). Three of the six PSC risk alleles with no evidence of
association in IBD (BACHZ, ILZRA and PRKDZ) contain other variants nearby that
are associated with IBD. Across the 12 PSC loci, there was greater similarity
between the OR estimates for PSC and ulcerative colitis than for PSC and Crohn’s
disease. Indeed, all but one of the CD/UC ORs for PSC-only risk alleles are > 1,
suggesting that some of these may also be IBD risk loci, or that these ORs are
partly driven by the small number of IBD cases in Jostins et al. who also have

PSC.

Subphenotype N
Crohn's disease 355
Ulcerative colitis 1898
Indeterminate IBD 108

No IBD 922
Unknown 506
3789

Table 3.6. IBD Subphenotypes among PSC cases.

Significant genetic overlap between PSC and IBD was also observed at the
163 known IBD risk loci. While only six of these loci exceeded genome-wide
significance in the PSC association analysis, 123 of the 163 IBD risk loci showed
the same direction of effect (P = 5.07x10-11) (Figure 3.8). If the two phenotypes
were unrelated, this fraction would be closer to 50%. This positive correlation in
the direction of effects was stronger for loci associated with just UC (74%
concordance, P = 0.0053) than those only associated with CD (60% concordance,
P = 0.1). The greatest concordance was seen for loci that were associated with

both CD and UC (80% concordance, P = 1.1x10-11).
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Figure 3.7. Odds ratio comparisons for PSC risk loci in IBD. IBD ORs and
designation of loci as UC, CD or both (IBD) were obtained from Jostins et al.
(2012). Error bars represent 95% confidence intervals. *The PSC associated
alleles at 6ql5 (BACHZ), 10p15 (ILZRA) and 19q13 (PRKDZ2) are
independent of the reported IBD associations (r2 < 0.3) but are located in
the same broad genetic regions as the IBD-associated SNPs.
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Figure 3.8. Venn diagram of directions of effect in PSC of SNPs associated
with either CD, UC or both (IBD). The numbers within each segment denote
the number of variants that have the same direction of effect in PSC as
CD/UC/IBD over the total number of CD/UC/IBD variants. P-values were
obtained from a binomial test (H1: proportion # 0.5).

This trend for a greater genetic similarity between PSC and UC than CD also
extends to the aggregate effect sizes at these loci. | used the Crohn’s disease and
ulcerative colitis OR estimates for the 163 IBD-associated loci to generate risk
scores and predict case/control status in the PSC sample. There was a
significantly greater area under the receiver operating characteristic curve
(AUC) when prediction was performed using UC ORs compared to CD ORs (UC
AUC =0.62,CD AUC = 0.56, P = 1.2 x 10-57) (Figure 3.9).
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Figure 3.10. Predicting the IBD subphenotypes of PSC patients using OR
estimates from CD and UC risk loci. PSC cases were divided into whether
they have also been diagnosed with CD, UC, or no IBD, and the performance
of the UC and CD ORs predictors assessed for each subphenotype.

That prediction accuracy is greater when performed using UC ORs suggests
that PSC is genetically more similar to UC than CD, consistent with clinical

observations of greater comorbidity between PSC and UC than CD. However, this
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conclusion creates a slight circular argument. It may well be that the higher
number of PSC patients with UC than CD is driving this improved prediction. To
test this, [ repeated the analysis on predicting subsets of PSC cases. PSC cases
were divided into whether they have UC, CD, or no IBD (hence referred to as
PSC+UC, PSC+CD or PSC+no IBD repsectively) (Table 3.6), and an AUC was
estimated using UC and CD ORs on their ability to distinguish each PSC-IBD
subset with controls. Notably, the results show that the better predictive
performance using UC ORs extends to both PSC+UC and PSC+CD, with little
difference in AUCs between the two subsets (PSC+UC AUC = 0.64, PSC+CD AUC =
0.67) (Figure 3.10). This suggests that the previous predictive performance on all
PSC cases using UC ORs was not driven by the greater comorbidity between PSC
and UC than with CD.

Thus far, I have used the PSC risk loci identified in this study and the IBD risk
loci identified in Jostins et al. (2012) to illustrate genetic risk factors that are
shared and those that are unique to the two diseases. I next considered the
degree of sharing that exists genome-wide. Using a linear mixed model that
simultaneously considers the effects of all genome-wide SNPs on a phenotype, it
is possible to estimate the size of additive genetic variance component, or the
total proportion of variance explained, of these SNPs (Yang et al, 2010). In a
bivariate extension of the method, it is also possible to estimate additive
covariance components due to the SNPs, and provide an estimate of the genetic
correlation (rg) between two phenotypes (Lee et al, 2012). 1 estimated the
degree of genetic correlation between PSC and IBD using individual-level
genotype data from an on-going PSC GWAS (2,871 cases and 12,091 controls)
(Sun-Gou Ji, personal communication) and from previous IBD GWAS meta-
analyses (5,322 CD caess, 6,307 UC cases and 12,164 controls) (Franke et al,
2010; Anderson et al, 2011a; Jostins et al.,, 2012).

When considering all PSC cases, the genetic correlation was higher between
PSC and UC (rg = 0.47) than PSC and CD (rg = 0.21), in line with the previous
results showing that overlap at specific risk loci (Figure 3.11). Repeating the
analysis on subsets of PSC according to their IBD diagnoses (Table 3.6) also

showed similar levels of genetic correlation, with the exception of between
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PSC+no IBD patients and CD (rg = 0.038), which was not significantly different
from 0 (P = 0.23). Removing the HLA region from the analysis increased
estimates of rg for both between PSC and CD (r¢ = 0.26) and PSC and UC (rg =
0.55), suggesting that variants in the HLA complex confer different effects on PSC
and IBD. This is not surprising given differences in effect sizes between HLA
variants in PSC and UC. For instance, rs4143332, which tags the HLA-B*08:01
haplotype, shows no evidence of association in UC (P = 0.12; UC data from
Chapter 4), while it is by far the strongest associated variant in PSC in this study
(P =6.39x10-249) (Table 3.5 and Figure 3.6).
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Figure 3.11. Genetic correlation (r¢) estimates using genome-wide SNP data
between CD/UC and PSC subphenotypes. Error bars represent standard
errors. The dashed error bars and points represent rg estimates when the
HLA region is excluded.

The previous sets of analyses looked at three levels of the genetic overlap
between PSC and IBD: within 12 PSC risk loci, within 163 IBD risk loci, and
genome-wide. Taken together, the results demonstrate that there is indeed a
high degree of genetic overlap between PSC and IBD, that this overlap is stronger
between PSC and UC, and does not appear dependent on the IBD-status of the
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PSC patient. Given the unclear aetiology of PSC, this raises questions about how
pleiotropy can arise. Is PSC a direct result of IBD (and in particular, UC), in which
a number of genetic and environmental modifiers affecting existing IBD patients
give rise to PSC? Or is PSC a distinct disorder in its own right that shares
phenotypic features and genetic risk factors with IBD, much in the same way that

CD and UC are considered distinct?

In order to answer help answer these nosological questions, it is important
to distinguish between the various situations in which pleiotropy can arise. If it is
assumed that a single causal variant underlies a locus that is associated with two
correlated phenotypes, the observed pleiotropy can either be mediated by
shared biology (biological pleiotropy) or via only one of the phenotypes
(mediated pleiotropy). In the former case, the causal variant may reflect
molecular processes that result in distinct pathological features (e.g. in different
cell types), leading to increased risk for both diseases. In the later case, apparent
pleiotropy will be observed if the first phenotype directly causes the second,
such that associations with the second phenotype are due entirely to this
phenotypic correlation. These two models are illustrated in Figure 3.12, where
PSC and UC are modelled as two distinct phenotypes that share a causal genetic
variant, or where PSC is a direct consequence of UC. Mediated pleiotropy can be
tested by looking for an association in the second phenotype in individuals
where the first phenotype is not present. If the association signal persists, then
the observed pleiotropy is more likely due to shared biology rather than being
mediated by one of the phenotypes (Solovieff et al, 2013). More generally,
Mendelian randomisation can also be used to tease out the causal relationships,
however, neither approach can distinguish between the models of pleiotropy
when there exists one or more confounding factors that affect both the

phenotypes and is also influenced by genotype (Lawlor et al, 2008).
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Figure 3.12. Two models of pleiotropy. The star represents a causal genetic
variant tagged by a SNP associated to both UC and PSC. The arrows indicate
the directions of causality between the SNP and phenotypes. Figure adapted
from Solovieff et al. (2013).

Of the 12 genome-wide significant PSC risk variants identified here, six were
also reported to be associated with UC (Figure 3.7). If PSC is partly mediated via
IBD (and UC in particular), then it may be that these observed PSC associations at
UC SNPs are due to mediated rather than biological pleiotropy. To test this, I
again stratified PSC cases into subsets of whether they were also diagnosed with
UC (n = 1,898) or had no IBD (n = 922) (Table 3.6). I then repeated the
association analysis for each subset against controls. There was no evidence for
any differences in odds ratios at any of the PSC and UC-associated variants, nor
for that matter, any of the other six genome-wide significant PSC risk variants
(Figure 3.13). It would have also been possible to stratify PSC cases into those
with CD or indeterminate IBD, though there were much fewer samples of these

and hence little power to detect any differences.

While these results suggest that common biology rather than phenotypic
correlation explains the pleiotropy between PSC and IBD at these loci, caution
must be applied when extrapolating these to all PSC and IBD associated loci.
Firstly, this analysis was only performed on risk loci that were detected using all
PSC cases. Hence variants that affect all PSC individuals are much more likely to
be discovered than those associated with only a subphenotypes of PSC. Secondly,
it remains to be seen how many of the non-IBD PSC cases will go on to develop
IBD. The two diseases share some gastrointestinal symptoms, and while IBD
precedes PSC in the majority of cases, the onset of both conditions may be
separated be several years (Saich and Chapman, 2008). Finally, larger sample

sizes will be required to obtain an accurate assessment of whether any
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associations at additional risk loci, especially those with known IBD associations,

are driven by the correlated phenotypes or shared biology.
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Figure 3.13. Odds ratios of PSC risk loci calculated using all PSC cases
compared with odds ratios calculated using PSC+UC and PSC+no IBD
subphenotypes. The error bars represent 95% confidence intervals.
Designation of whether loci are associated with just PSC or both PSC and
IBD follows that of Figure 3.7.

Overall, I showed that the genetic overlap between PSC and IBD is pervasive,
and that this overlap is stronger between PSC and UC than between PSC and CD,
mirroring the phenotypic comorbidity between the diseases. Within PSC risk
loci, the genetic effects appear independent of whether UC was diagnosed along
with PSC, suggesting that these loci reflect shared biology between the two
diseases rather than a UC to PSC causal relationship. Incorporating association
results with disease relevant functional genomic datasets may provide leads in
uncovering the mechanisms behind this pleiotropy: does the causal variant
result in distinct pathological features in different cells types, and do these
differences reflect different disease states? 1 will explore approaches of
integrating functional genomic datasets with disease risk loci to help answer

these types of questions in Chapter 5.

3.4 Conclusion

Through genotyping of 3,789 PSC cases and 25,079 controls using the

Immunochip, this study identified 12 non-HLA genome-wide significant loci, of
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which nine are implicated in PSC for the first time. Network analysis using GRAIL
and DAPPLE, along with searching for known eQTLs and coding variants
revealed at least one candidate gene in at 11 of these loci, three of which are
linked by genes that interact with each other to mediate T cell apoptosis (SIKZ,
HDAC7 and PRKDZ), offering new leads into the pathogensis of PSC.

The data also convincingly show pervasive overlap between genetic variants
that affect PSC and IBD, and that this overlap is greater between PSC and UC than
between PSC and CD, reflecting the observed comorbidity between the disorders.
As many as half the variants are shared between PSC and UC when considering
PSC and UC risk loci, as well as the genetic covariance between the two disorders
tagged by SNPs genome-wide. Stratifying PSC cases into those with and without
UC strongly suggests that this overlap is due to biological rather than mediated
pleiotropy. This study demonstrates the utility of cheap high-density genotyping
arrays in discovering novel loci and enabling powerful cross-phenotype

comparisons.
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Chapter 4. Trans-ethnic meta-analysis for
inflammatory bowel disease risk loci and

population comparisons

4.1 Introduction

Inflammatory bowel disease (IBD) describes chronic inflammatory conditions
that affect the gastrointestinal tract. Crohn’s disease (CD) and ulcerative colitis
(UC) are the two main forms of IBD. In CD, inflammation can occur in patches
anywhere along the gastrointestinal tract, while in UC, inflammation occurs
continuously and is restricted to the colon. The exact causes of IBD are unknown,
though it is likely to involve a disrupted immunological response to gut
microbiota in genetically susceptible individuals (Khor et al, 2011). There is
currently no known cure, and disease is managed by a combination of immune-

suppressing medications, dietary changes or surgery.

The prevalence of IBD in European populations ranges from 26-322 cases
per 100,000 for CD and 24-505 per 100,000 for UC (Loftus, 2004; Molodecky et
al, 2012). The prevalence of IBD in Asian populations is lower (1-18 per 100,000
for CD; 5-57 per 100,000 for UC) though has been rapidly increasing in recent
decades (Molodecky et al, 2012; Prideaux et al, 2012). This increase is
hypothesised to be a result of lifestyle changes such as westernisation of diet,
improved hygiene, vaccinations and antibiotics use, as well as genetic differences

between Europeans and Asians (Prideaux et al., 2012).

75



In 2012, a GWAS meta-analysis of IBD in ~75,000 European individuals
identified 163 loci (representing 193 independent signals) associated with CD,
UC or IBD (both CD and UC) at genome-wide significance (P < 5x10-8) (Jostins et
al, 2012). Smaller GWAS in populations from Korea, Japan and India (Asano et
al, 2009; Juyal et al, 2014; Yamazaki et al, 2013; Yang et al, 2014b) have
revealed six associated risk loci at genome-wide significance. Three of these loci
overlap with those identified in Europeans (13q12, FCGRZA and SLC26A3), while
the remaining three are nominally associated in Europeans (P < 5x10-4) and also
show consistent directions of effect (Jostins et al, 2012). This sharing of risk loci
suggest that combining samples from different populations will give greater
power to identify risk loci. Nevertheless, despite the much smaller sample sizes
(typically a discovery cohort of a few hundred cases), these studies also hinted at
genes that differ in their effect on European and Asian IBD. These differences
include variants that confer significantly different effect sizes (e.g. TNFSF15,
HLA), established susceptibility genes with no evidence of associations in East

Asians (e.g. NOD2,ATG16L1), and vice versa (e.g. ATG16L2).

Here, 1 describe a trans-ethnic genetic association study of 10,216
individuals (2,043 CD, 2,801 UC and 5,372 controls) of East Asian, Indian and
Indo-European descent and 65,642 European individuals (17,897 CD, 13,768 UC
and 33,977 controls - an extension of Jostins et al. (2012)) genotyped on the
Immunochip. I combined Immunochip data with the Jostins et al. GWAS data
(5,956 CD, 6968 UC and 21,770 controls) in a transethnic meta-analysis with a
total of 96,620 individuals (13,654 European samples were genotyped on both
Immunochip and GWAS arrays and removed from the Immunochip cohort). In
addition to locus discovery, I also used Immunochip data to compare the effects
of IBD risk loci between European and non-European populations in an effort to
identify both commonalities and differences in the genetic risk of IBD between

the populations.

4.1.1 Contributions

The study design was conceived by the International IBD Genetics Consortium

(IIBDGC). Cases and controls were ascertained through the IIBDGC and the
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International Multiple Sclerosis Genetics Consortium. Genotyping was performed
at various centres described in Jostins et al. (2012). Immunochip SNP and sample
quality control were performed by Suzanne van Sommeren and Hailiang Huang.
Association studies in individual non-European populations on the Immunochip
were performed by Suzanne van Sommeren. GWAS QC, meta-analysis and
imputation in Europeans were performed by Stephan Ripke and described in
Jostins et al. 2012. GRAIL and DAPPLE analyses was performed by Hailiang
Huang. Coding variant analyses were performed by Atshushi Takahashi. All other

analyses were performed by myself.

4.2 Methods

4.2.1 Sample collection and genotyping

Non-European IBD patients and matched controls were recruited from centres in
Japan, China, Hong Kong, South Korea, India, Iran and the UK. Recruitment of
European patients and matched controls genotyped on the Immunochip was
performed in 15 countries in Europe, North America, Australia and New Zealand.
GWAS samples were originally obtained from seven CD and eight UC collections.
See Jostins et al. (2012), Anderson et al. (2011) and Franke et al. (2010) for
details. Controls consisted of blood donors or population-based studies. IBD
diagnosis was based on accepted radiologic, endoscopic and histopathologic

evaluations. All included cases fulfil clinical criteria for IBD.
4.2.2 Immunochip quality control

Quality control on Immunochip samples was performed separately for each
cohort (European, East Asian, Indian and Iranian). SNP QC consisted of removing
SNPs with a low call rate (< 98% across all genotyping batches in the ethnic
population, or < 90% in one batch), SNPs that fail Hardy Weinberg equilibrium in
controls (P < 10-5), SNPs that have heterogeneous allele frequencies among the
different genotyping batches within one ethnic population (P < 10->), SNPs that
are not present in 1000 genomes phase 1, SNPs with a different missingness rate

between cases and controls (P < 10-5) and monomorphic SNPs. Following SNP
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QC, 108,803 SNPs remained in the East Asian dataset, 146,785 SNPs in the Indian
dataset, 153,982 in the Iranian dataset and 143,098 in the European dataset. The
fewer number of SNPs in the East Asian cohort is primarily driven by the greater
number of monomorphic SNPs. For the sample QC, samples with a low call rate
(<98%) and outlying heterozygosity rate (P < 0.01) were removed. To identify
duplicated and related samples, a subset of SNPs that 1) did not contain SNPs in
high-LD regions, 2) have a minor allele frequency (MAF) of <0.05 and 3) pruned
for LD (r? < 0.1), was used to estimate identity by descent. Sample pairs with an
identity by descent of >0.8 were considered duplicates, pairs with an identity by
descent of >0.4 where considered related. For these pairs, the sample with the

lowest genotype call rate was removed.

Principal component analysis (PCA) was performed with the first two PCs
estimated from 1000 Genomes Phase I samples and projected onto each of the
non-European samples (Price et al,, 2006). A clear separation of the populations

can be seen, with the samples clustering as expected (Figure 4.1).

After sample QC, 65,642 European (17,897 CD, 13,768 UC and 33,977
controls), 6,543 East Asian (1,690 CD, 1,134 UC and 3,719 controls), 2,413 Indian
(184 CD, 1,239 UC and 990 controls) and 1,260 Iranian (169 CD, 428 UC, 663
controls) individuals remained (Table 4.1). Compared with the samples used in
Jostins et al. (2012), this transethnic study includes an additional 3,548 cases and
16,406 controls (Figure 4.2).

Immunochip samples

Population CD UC Controls Total
European 17,897 13,768 33,977 65,642
East Asian 1,690 1,134 3,719 6,543

Indian 184 1,239 990 2,413
Iranian 169 428 663 1,260

Table 4.1. Post-QC patient and control panels genotyped on the
Immunochip.
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Figure 4.1. Principal components analysis of (1) European, (2) East Asian,
(3) Indian and (4) Iranian IBD patients and controls. PCs 1 and 2 are plotted
for each cohort as brown circles along with those from the 1000 Genomes

Phase I samples.
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Jostins et al.

GWAS EU overlap Immunochip EU

12,882 cases 5,154 cases 25,683 cases
21,770 controls 6,465 controls 15,977 controls

Transethnic analyses

GWAS EU overlap Immunochip EU nE(Ln

12,924 cases 6,392 cases 25,273 cases 5,154 cases
21,770 controls 7,262 controls 26,715 controls 6,465 controls

Figure 4.2. Comparison of samples used in this study with those from Jostins
etal. (2012).

4.2.3 Per-population association analysis

Case-control association tests per population (European, East Asian, Indian and
[ranian) per phenotype (CD, UC and IBD combined) were performed using a
linear mixed model implemented in MMM (Pirinen et al, 2012). The random
effects component covariance matrix, R, was calculated using a set of SNPs with
MAF > 0.1, pruned for LD (r?< 0.2) and showed no evidence of association using
logistic regression with 10 PCs as covariates (P > 0.005). A total of ~14,000 SNPs
were used for calculating R (varies between populations). For European samples,
two separate association analyses were performed - one including all European
Immunochip individuals (used for population comparisons), and one where
13,654 samples that overlap or are related to GWAS individuals were removed

(used in the GWAS Immunochip meta analysis).
4.2.4 Transethnic meta-analysis

For European samples, association results for 1000 Genomes-imputed GWAS
and Immunochip individuals (with overlaps removed) were combined using an
inverse variance weighted fixed-effects meta-analysis for each of the three
phenotypes. These European meta-analysis results were combined with the East

Asian, Indian and Iranian association results using MANTRA (Morris, 2011), a
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transethnic GWAS meta-analysis method that allows for heterogeneity of effect
sizes between distantly related populations. In total, this transethnic meta-
analysis was performed on 96,856 individuals and 126,990 SNPs that overlap the
Immunochip and GWAS (Table 4.2). Signal intensity plots for all non-HLA loci
with P-value < 10-7 (in the per-population association tests) or logio Bayes factor
(BF) > 6 in the meta-analysis were visually inspected using Evoker, and SNPs

that clustered poorly were removed (Morris et al., 2010).

Significantly associated loci were defined by an LD window of r? > 0.6 from
the most associated SNP in the region with a per-population association P <
5x10% or logio BF > 6. Regions less than 250 kb apart from each other were

merged into a single associated locus.

Population CD CDcontrols UC UCcontrols IBD IBD controls
European GWAS 5,956 14,927 6,968 20,464 12,882 21,770
European Immunochip 14,594 26,715 10,679 26,715 25,273 26,715
Non-European Immunochip 2,043 5,372 2,801 5,372 4,844 5,372
Total 22,593 47,014 20,448 52,551 42,999 53,857

Table 4.2. Post-QC case and control panels used in the transethnic meta-
analysis.

Associated loci were classified according to their strength of association with
CD, UC or both using a multinomial logistic regression likelihood modelling
approach within the Europeans only (Jostins et al, 2012). Four multinomial
logistic regression models with parameters Bcp and PBuc were fitted with the

following constraints:
1. CD-specific model: Buc =0 (1 d.f.)
2. UC-specific model: Bcp =0 (1 d.f)
3. IBD unsaturated model: Bc¢p = Buc = Bisp (1 d.f.)

A fourth unconstrained model with 2 d.f. was also estimated with B¢p and Buc
both fitted by maximum likelihood. Log-likelihoods were calculated for each
model, and three likelihood-ratio tests were performed comparing models 1-3

against the unconstrained model. If the P-values of all three tests were less than
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0.05, the SNP was classified as associated with both CD and UC but with evidence
of different effect sizes. Otherwise, of the three constrained models, the SNP was
classified according to the model with the largest likelihood. If IBD unsaturated’
is the best fitting model the locus can be interpreted as associated with both CD

and UC but with no evidence for different effect sizes.
4.2.5 Gene prioritisation

Two functional annotations: coding variants and expression quantitative trait
loci (eQTLs), and two network approaches: GRAIL (Raychaudhuri et al, 2009)
and DAPPLE (Rossin et al, 2011), were used to prioritise candidate genes within
novel associated loci. Coding SNPs were identified if a missense or nonsense SNP
was in high LD (r? > 0.8) with a lead SNP in either the 1000 Genomes Phase 1
European (CEU, FIN, GBR and IBS samples) or East Asian (CHB, CHS and JPT
samples) populations (Genomes Project et al, 2012). Expression quantitative
trait loci were collated from the University of Chicago eQTL browser

(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl). New IBD associated SNPs with

r2 > 0.8 (1000 Genomes European or East Asian cohort) with a known eQTL were

reported.
4.2.6 Variance explained

The proportion of variance explained by each associated locus per population
was calculated using a liability threshold model (So et al, 2011) assuming a

disease prevalence of 500 per 100,000 and log-additive disease risk.
4.2.7 Heterogeneity of effect sizes and allele frequencies between populations

For an associated SNP, differences in the effect size between two populations
were tested using a t-test for a significant difference in log odds ratios (ORs).
Overall heterogeneity between all four populations was assessed using Cochran’s
Q test, and the percentage of differences in ORs due to heterogeneity rather than
chance was evaluated using the fixed effects 12 statistic (Higgins and Thompson,

2002). Fixation index (Fs;) values for a SNP between two populations were
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calculated using the Weir and Cockerham method on allele frequencies in control

samples only (Weir and Cockerham, 1984).
4.2.8 Genetic correlation

The proportion of genetic variation tagged by Immunochip SNPs that is shared
between pairs of each of four populations was estimated using the bivariate
linear mixed-effects model implemented in GCTA (Lee et al, 2012). The method
uses high-density SNP data to estimate genetic similarities between pairs of
individuals to estimate covariance components (r¢) of the mixed model. I applied
the method across Immunochip individuals for all pairwise combinations of
population comparisons for CD and UC with 20 PCs as covariates, assuming a
disease prevalence of 0.005. To test whether r¢ is significantly different from 0
(or 1), rc was fixed at 0 (or 1) and a likelihood ratio test comparing this
constrained model with the unconstrained model was applied. An rg of 0 means
that no genetic variants are shared between the two populations, while a value of
1 means that all the genetic variance tagged in one population is shared with the
other. In Europeans, only 10,000 cases and 10,000 controls (selected at random)
were included due to computation limitations, while all non-Europeans samples

were included.
4.2.9 Gene-based likelihood ratio test

Due to the much larger sample sizes, there is greater power to detect loci with
multiple independent signals in Europeans than the non-European populations.
However, if these independent SNPs within a locus are also associated in a non-
European population, there may be greater power to detect these signals by
jointly modelling them in the non-European population rather than single-SNP
tests. To investigate this, [ describe an approach that 1) identifies independently
associated SNPs among SNPs within the Immunochip high-density regions in the
European cohort, 2) assign the independently associated SNPs to genes, and 3)
for genes with multiple associated SNPs, tests these SNPs jointly in a per-gene

manner for association in a non-European cohort.

83



1

2)

3)

Independently associated SNPs were identified using the conditional and
joint multi-SNP approach implemented in GCTA (GCTA-COJO) (Yang et al,
2012). GCTA-COJO wuses summary association statistics and LD
information from a reference panel to approximate independently
associated signals. GCTA-COJO was applied to CD, UC and IBD summary
statistics from the Immunochip European analysis using the same
European individuals as the reference panel. A joint association P < 5x10-¢
and r? < 0.9 were used as cut-offs for assigning independent signals. It has
been shown that the LD-based approximation approach of GCTA-COJO
generates almost identical results to conditional logistic regression when
the individual genotypes used in the association study and the reference
panel are identical, as was the case in this study (Yang et al, 2012).
Significant independently associated SNPs that were identified via this

approach were taken forward.

The independently associated SNPs identified in 1) were grouped
according to their proximity to genes. A SNP was assigned to a gene if it
lies within +50kb of that gene’s transcript start/stop positions (GENCODE
17 definitions) (Harrow et al,, 2012). Due to some genes overlapping each
other, some SNPs may be assigned to multiple genes. Genes with more
than one assigned SNP were taken forward for joint modelling in the non-

European cohorts.

For a gene where more than one independently associated SNP was
identified, the K independent SNPs were modelled jointly in a multiple
logistic regression model (for the phenotype in which it was originally
identified in) in each of the non-European populations and the total log-
likelihood for the model calculated. I then performed a likelihood ratio
test (with K - 1 degrees of freedom) comparing the log-likelihoods of this
joint model with K SNPs and one from a null model without SNP effects.
Genes with P-values less than 5x10-> (equivalent to a 5% Bonferroni
correction for ~1000 genes - roughly the number tagged by SNPs on the

Immunochip) were considered statistically significant.
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4.3 Results and discussion
4.3.1 Per-population association and transethnic meta-analysis

Per-population association analysis and the meta-analysis across all populations
identified 40 novel risk loci at genome-wide significance (MANTRA logio BF > 6
or per-population association P < 5x10-8 in at least one of the phenotypes) (Table
4.3). Likelihood modelling classified eight of these to be only associated with CD,
four with UC, and 28 with IBD (both UC and CD). Of the 28 IBD loci, eight showed
significant evidence of different CD/UC effect sizes (Table 4.3). Owing to the
much larger sample sizes, 25 of the 40 novel loci were genome-wide significant
in Europeans alone. Indeed, only three loci showed stronger evidence of
association in a non-European population than European (rs10774482: IBD
European P = 0.30, Iranian P = 2.17x10-7, Indian P = 1.12x10-3; rs2072711: CD
European P = 7.51x10-3, East Asian P = 2.17x10-7; rs6856616: IBD European P =
9.72x107, East Asian P = 1.33x107). Of these, rs6856616 was previously
reported as a novel CD risk locus in a GWAS in Korean individuals (Yang et al,

2014b).

The strongest signal in the European-only analysis was rs395157 (IBD P =
2.22x10-29). The magnitude of this association was unexpectedly high, given that
the number of Europeans in this study was only modestly greater than that of
Jostins et al. (2012) (86,640 vs. 76,312), such that this SNP should have exceeded
genome-wide significance and reported in the previous study. The reason why
this was not originally reported in Jostins et al. was a result of an error in the
GWAS and Immunochip meta-analysis, where discordant alleles were merged
(and effects cancelled out). This was due to the SNP having an allele frequency
very close to 0.5, such that the minor allele of the GWAS and Immunochip were

different. No other associated signals appeared to be affected by this issue.
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Chr. SNP position  trait trait  BF et I2 OR Eur. P OR Eas.P OR Ind. P OR Ira. P
1 rs1748195 62822181 CcDh CD 6.08 0 1.07 7.13x10®% 1.04 0.41 1.11 0.36 1.05 0.73
1 rs34856868 92326871 IBD IBD_.U 6.16 0 0.82 9.80x10° 0.11 0.43 1.47 0.34 1.36 0.69
1 rs11583043 101238642 UC IBD.U 834 6651 108 go5%10® 118 0032 127  380x10° 146  980x10°
1 rs6025 167785673 IBD IBD_U 6.43 0 0.84 2.51x10° - - 0.81 0.41 0.7 0.31
1 rs10798069 185142082 CD IBD.S 7.24 0 0.93 425x10° 094 0.12 1.06 0.59 1.01 0.92
1 rs7555082 196865286 CD IBD_U 7.97 0 113 147x10™° 0.6 0.67 1.02 0.92 0.85 0.44
2 rs11681525 145208852 CD  CD 88 593 086 408x10 - - 15 0.12 0.69 0.22
2 rs4664304 160502254 IBD IBD_U 6.34 0 1.06 2.61x10® 1.01 0.77 1.04 0.51 1.18 0.12
2 rs3116494 204300266 UC IBD.S 7.03 0 1.08 1.30x107 1.17 0.1 1.21 0.043 1.19 0.15
2 r1s111781203 228368356 IBD IBD_U 10.04 0 094 216x10 091 0.031 0.88 0.033 0.98 0.84
2 rs35320439 242386014 CD IBD.S 771 0 109 oggox1pl® 1.04 0.37 1.07 0.54 1.03 0.81
3 rs113010081 46432416 uc IBD_.U 745 0 1.14  902x10%° 0.02 0.5 0.84 0.38 1.12 0.71
3 rs616597 103052416 UC  UC  6.68 5468 093  934x10® 0.85  104x10° 0.84 0.029 0.79 0.044
3 rs724016 142588260 CD  CD  7.41 7087 1.06 336x10° 121  556x10° 1.13 03 0.97 0.86
4 rs2073505 3414301 IBD IBD.U 687 0 11 146x107 114  gg3x10° 1.04 0.62 0.95 0.76
4  rs4692386 25741459 IBD IBD.U 647 0 094 121x10® 097 0.49 0.98 0.7 0.9 0.27
4 rs6856616 38001431 IBD IBD.U 978 6159 1.1  972x107 124  133x107 1.07 0.35 1.18 0.31
4 152189234 106294947 UC uc 8.85 0 1.08 195x10"° 1.11 0.033 0.98 0.76 1.06 0.61
5 rs395157 38903489 IBD IBD_.U 19.5 0 1.1 222x10% 109 0.027 1.12 0.065 0.99 0.93
5 rs4703855 71729655 IBD IBD.U 683 7026 093 71ex10M 1 0.97 1.04 0.52 115 0.18
5  rs564349 172257584 IBD IBD_U 812 37.54 1.06  154x107 115  154x10* 1.09 0.22 1.07 0.51
6 157773324 327559 CD IBD.U 7.67 0 0.92 1.06x10° 0.97 0.53 0.88 0.27 1 0.98
6 1s13204048 3365405 CD IBD.S 7.23 5354 093 g9x10° 0.94 0.13 0.6  323x10° 097 0.85
6 rs7758080 149618772 CD IBD.S 7.88 0 108 727x10° 111 0017  1.06 0.62 0.93 0.63
7  rs1077773 17409204 uc uc 586 76.72 093 596x10° 111 0.053 1.01 0.85 1.05 0.66
7 rs2538470 147851381 IBD IBD_U 10.93 54.64 107 300x10" 115 97gx10* 0.97 0.63 1.22 0.059
8 rs17057051 27283471 IBD IBD_.U 6.74 1592 0.94 5.50x10° 0.9 0.022 1.02 0.7 0.87 0.16
8 rs7011507 49291795 UC IBD.U 749 3932 09  g40x10° 082  742x10 094 0.47 113 0.43
10 rs3740415 104222706 1BD IBD.U 626 0 095 103x107 093 0073 098 0.75 1 0.99
12 rs10774482* 971525 IBD CD  6.02 913 1.01 0.3 1 0.97 121 112x10° 163  217x10”
12 rs7954567 6361386 CD CD 8.25 0 1.09 1.30x10° 1.17 0.076 1.12 0.35 1.12 0.47
12 rs653178 110492139 IBD IBD_U 6.57 49.67 1.06 1.11x10® 0.02 0.042 1.15 0.13 0.97 0.72
12 rs11064881 118631308 IBD IBD_U 7.02 31.65 1.1 595x10®% 0.01 0.29 1.22 0.053 1.4 0.03
13 1rs9525625 41916030 CD  CD 855 3725 108 141x10° 107 0.22 1.11 0.34 146 708x10°
17 rs3853824 52235992 Ch IBD.S 846 5042 092 117x10%® 095 0.32 0.88 0.29 1.31 0.066
17 rs17736589 74248713 UC  UC 653 5341 1.09  434x10° 105  730x10° 1.03 0.73 1.34 0.026
18 1s9319943 55030807 CD  CD 633 3339 108 gg5x107 119  203x10® 095 0.69 1.21 0.22
18 rs7236492 75321604 CD IBD.S 6.6 0 091 9.09x10° 1.44 0.68 1.14 0.62 0.84 0.64
22 rs2072711 35598501 CD IBD.S 6.2 9156 096 751x10° 126 217x107 1 0.98 1.28 0.17
22 rs727563 40197323 CcD CD 7.1  76.01 1.1 1.88x10° 0.95 0.23 0.93 0.52 0.93 0.61
Table 4.3. Table of novel IBD risk loci from MANTRA transethnic meta-analysis or

individual per-population analyses. aPhenotype with the largest MANTRA Bayes factor.
bLikelihood modelling classification. IBD_S and IBD_U refer to IBD saturated and
unsaturated respectively. cMANTRA log10 Bayes factor. dHeterogeneity 12 percentage.
Per-population ORs and P-values refer the Best trait column.
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4.3.2 Candidate genes

Candidate genes for each of the novel loci were identified using two SNP
annotations: coding SNPs, known eQTLs, and two network approaches: GRAIL
and DAPPLE. These methods identified at least one candidate gene in 28 of 40
novel risk loci, four of which harbour genes identified by multiple methods
(Table 4.4 A-B). Including the new 40 loci in GRAIL and DAPPLE analyses with
known IBD risk loci revealed additional candidate genes with significant
connectivity scores (P < 0.05 in either GRAIL and DAPPLE) at 34 of the 163
known loci that weren’t reported in Jostins et al. (Table 4.5). A visual inspection
of the GRAIL network plot reveals the interconnectedness between the novel and

known IBD risk loci (Figure 4.3).

Many of the genes associated with IBD highlight the importance of T cells in
IBD pathogenesis. T cells are an integral component in the adaptive immune
response, and become activated in response to MHC-bound antigens via
signalling through the T cell receptor. This process depends on PRKCQ signalling,
which results in increased expression of CD44. Co-stimulation via other ligands
such as CD28, CD81 and CD27 are also required for T cells to generate memory.
Impaired immune responses may occur from inappropriate co-stimulation, and
is characterised by increased expression of PDCD1. Other processes that can
impair immune responses also include apoptosis (implicating UBASH3A) and
recruitment of immunosuppressive regulatory T cells, driven partly by the
chemokine CCL20. The genes mentioned are all within loci associated with IBD
risk from this study and others, highlighting the importance of genetic risk
factors in T cell responses in IBD pathogenesis, and may provide targets for

development of future therapies.
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Genes

Chr. SNP Cis-eQTL Nonsynonymous GRAIL pappLg  mplicated
coding by multiple
methods
DOCK7,AF086387,
1 11748195 ANCPTLS
1 134856868 BTBDS
1 rs11583043 EDG1
1 16025 SELP, SELE, SELL
1 rs10798069 PTGS2,PLA2G4A
1 17555082 PTPRC
2 rs4664304 LY75 PLAZR1 LY75 LY75
2 rs3116494 1C0S,CD28, CTLA4
2 rs111781203 CCL20
2 135320439 PDCD1, ATG4B
FLj78302,LTF,CCR1,
3 rs113010081 J ST CCR2
3 rs616597 NFKBIZ
4 12073505 HGFAC
5 rs395157 OSMRFYB LIFR, OSMR OSMR
5 1564349 DUSP1
6 rs7773324 IRF4,DUSP22
6 17758080 MAP3K7IP2
7 rs1077773 AHR
7 152538470 CNTNAP2
8 1517057051 PTK2B PTK2B PTK2B
PDCD11,TMEM180,
10 rs3740415 ACTRIA NFKB2
12 1s7954567 CD27,TNFRSF1A,LTBR
12 rs653178 SH2B3
12 rs11064881 PRKAB1
13 rs9525625 TNFSF11
18 157236492 NFATCI
22 12072711 CSF2RB NCF4 CSF2RB IL2RB,CSF2RB  CSF2RB
22 15727563 MEI1,PHF54,

NFP2L1,TOB2

Table 4.4A. Candidate genes implicated by coding variants, eQTLs, GRAIL
and DAPPLE in 28 of the 40 novel IBD risk loci.

Chr. SNP eQTLSNP LD (%) Gene Type Tissue
1 rs1748195 rs1748195 1 DOCK7 Cis Monocytes
rs10889353 0.99 AF086387 Cis Liver

rs1168089 1 ANGPTL3 Cis Liver

2 rs4664304  rs7601374 0.97 LY75 Cis Liver
rs17057051 rs17057051 1 PTK2B Cis Monocytes

10 rs3740415  rs3740415 1 PDCD11 Cis LCLs
rs7342070 0.98 TMEM180 Cis Liver

rs5870 0.93 ACTRI1A Cis LCLs

12 rs11064881 rs11064881 1 PRKAB1 Cis LCLs
rs11064881 1 PRKAB1 Cis Monocytes

22 rs2072711  rs2072711 1 CSF2RB Cis LCLs
22 rs727563  rs12165508 1 MEI1 Cis LCLs
rs203319 0.99 PHF5A Cis Monocytes

rs202628 0.96 NHPZL1 Cis Liver

rs202614 0.94 TOB2 Cis Liver

Table 4.4B. Known eQTLs tagged by novel IBD associated SNPs. eQTL SNPs,
gene, eQTL type (cis or trans) and tissue studied were extracted from
publications collated in the University of Chicago eQTL Browser
(http://eqtl.uchicago.edu/cgi-bin/gbrowse/). LD (r2) values were extracted
from the European and East Asian cohorts of the 1000 Genomes Project
Phase I (the larger r2 of the two cohorts are reported).
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Chr. SNP New GRAIL New DAPPLE *Uniquely new
1 rs35675666 PARK7, ERRFI1 PARK7, ERRFI1
1 rs6426833 PLA2G2A PLA2G2A
1 rs4845604 S100A11 S100A11
1 rs3024505 IL10
2 rs7608910 REL
2 rs10865331 COMMD1 COMMD1
2 rs2382817 IL8RA, IL8RB, ILSRBP IL8RA, IL8RB, ILS8RBP
5 rs7702331 BTF3 BTF3
5 rs2188962 RAD50 RAD50, IL5 RAD50, RAD50
6 rs3851228 FYN
6 rs212388 TAGAP EZR TAGAP ,EZR
7 rs10486483 SKAP2 SKAP2
7 rs1456896 IKZF1 IKZF1
7 rs9297145 SMURF1 SMURF1
8 rs7015630 NBN NBN
8 rs1991866 FAM49B FAM49B
9 rs4743820 SYK SYK
10 rs2227564 PLAU VCL PLAU, VCL

11  rs10896794 ZFP91 ZFP91
11 rs11230563 GPR44 GPR44
11 rs2231884 SIPA1 SIPA1

12 rs11612508 DUSP16 DUSP16
12 rs11168249 RAPGEF3, SENP1 RAPGEF3, SENP1
12 rs7134599 IL22, IL26

13 rs9557195 EBI2 EBI2

15  rs17293632 SMAD3

17 rs2945412 NOS2A NOS2A
17 rs3091316 CCL1,CCL7 CCL1, CCL7
18 rs1893217 PTPN2 PTPN2
18 rs727088 DOK6 DOK6
19  rs11879191 ICAM3 ICAM3
19  rs17694108 CEBPG

19 rs4802307 CALM3 CALM3
19 rs1126510 PTGIR PTGIR
20 rs6142618 HCK HCK

20 rs4911259 COMMD7 COMMD7
20 rs6088765 PROCR PROCR
20 rs913678 PTPN1, TMEM189-UBE2V1 PTPN1, TMEM189-UBE2V1
21 rs2284553 IL10RB, IFNAR2

21 rs7282490 AIRE AIRE

22 rs2266959 MAPK1

22 rs2413583 MAP3K7IP1 MAP3K7I1P1

Table 4.5. New genes in known IBD risk loci implicated from GRAIL and
DAPPLE network analyses. aNew genes that weren’t previously implicated
by either GRAIL or DAPPLE
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Figure 4.3. GRAIL network for all genes with GRAIL P < 0.05. Yellow nodes
represent newly associated genes, light blue nodes represent known genes,
dark blue genes represents new genes in known loci that now reach GRAIL P
< 0.05 after including the novel loci.

4.3.3 Validation of known loci

Of the 163 IBD risk loci identified in Jostins et al. (2012), all but 16 exceeded
genome-wide significance (P < 5x10-8) in the European only analysis here.
Fifteen of these loci continue to show suggestive levels of significance (P <
1.44x10-%). This is equivalent to a false discovery rate of < 0.001, and not beyond
what’s expected given the initially reported P-values for these SNPs in Jostins et
al. (3.60x10° < P < 3.71x10-8) and the sampling variability in replication vs.
discovery P-values (Lazzeroni et al, 2014). However, one SNP, rs2226628, fell to
P = 0.0023 in this analysis, suggesting that this may have been an initial false
positive report, and larger samples will be required to unequivocally implicate
this locus. Nevertheless, as expected, the majority of signals (107/163) become

more significant with the additional European samples (Figure 4.4).
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Figure 4.4. Comparison of association P-values reported in Jostins et al
(2012) and Europeans in this present study. LD r2 values are between the
SNP reported here and that from Jostins et al. Different SNPs may have been
reported if there was stronger signal was found in this study or the
previously reported SNP was removed during QC. The blue dashed line
represents y = X.

The discrepancy in the rs2226628 GWAS + Immunochip meta-analysis
between our study and Jostins et al. is driven almost entirely by the Immunochip
samples (Immunochip IBD Jostins et al. P = 7.52x10-7 vs. P = 0.012 in this study).
Several factors may be driving this discrepancy. Firstly, in the Jostins et al. study,
it was later found that ~1,200 samples were mistakenly included in both the
initial GWAS and the subsequent Immunochip replication effort. This may have
led to an inflation of the P-values for rs2226628 and other SNPs, for which we
have now corrected in this latest analysis. Another factor may be the different
association methods used on Immunochip samples. In Jostins et al., association
was performed using logistic regression with 4 PCs as covariates, while in this
study, we applied a linear (logistic) mixed model. If the SNP shows within-
European population stratification that was not adequately captured by the first
4 PCs, then this may have also lead to an inflated P-value. Indeed, this SNP does

appear to show varying frequencies across the European populations in the 1000
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Genomes data (MAF = 0.2 in GBR to 0.47 in FIN) (Genomes Project et al,, 2012).
In our Immunochip samples, using logistic regression with 4 PCs as covariates
did result in this SNP being more significant than the mixed model (P = 0.012 vs.
P = 1.85x10-4), though it still did not reach the same level of significance as that
of Jostins et al. Finally, the Jostins et al. meta-analysis was performed using two
different SNPs - the final reported P-value was a meta-analysis of rs6592362
from the GWAS cohort and rs2226628 from the Immunochip samples. This was
done since the original GWAS hit SNP, rs6592362, was not present on
Immunochip and rs2226628 was selected as it was the best tag (r? = 0.50). In
this study, I only combined GWAS and Immunochip at rs2226628, though would
have achieved a more significant signal had I combined the two different SNPs (P
= 7.38x10¢). Notably, rs2226628 is non-significant in the GWAS (P = 0.08), and it
may be the case that combining two different SNPs that are only in moderate LD

with each other did not reflect the true signal in this region (if there is one).
4.3.4 Population comparisons

Recent large-scale transethnic genetic studies of complex diseases have shown
that the majority of risk loci originally identified in Europeans are shared across
other populations (Dastani et al, 2012; Okada et al, 2014; Replication et al,
2014; Teslovich et al, 2010). The true extent of sharing is difficult to characterise
as the GWAS sample sizes in non-European populations are often much smaller
than their European counterparts, limiting power to detect associated loci.
Despite this study including over 10,000 non-European samples and being the
largest non-European study of its type, this still pales in comparison with the
European sample size of over 85,000. As such, we expect that the majority of
known risk loci will not replicate in the non-European populations at genome-
wide significance. Nevertheless, there were significant trends both in terms of
directions of effect and strength of the correlation across all three phenotypes
when comparing the 233 independently associated SNPs in Europeans and the

individual non-European populations (Figure 4.5).
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Figure 4.5. Odds ratio comparison between European and non-European
populations at 233 SNPs associated with CD, UC other both. For each SNP,
ORs (on log-scale) were taken for the corresponding phenotype in the
European and non-European population if it was classified as associated
with that phenotype in the likelihood modelling (section 4.2.4). Points are
coloured according to the strength of association for the respective
phenotype in the non-European population. The red line indicates the best-
fitting linear regression line, weighted by the inverse variance of the log ORs
in the non-European population. Regression coefficients, significance and
goodness of fit are listed in the bottom right corner of each plot.

Consistent with the concordant effect sizes at associated SNPs, there were
high genetic correlations (rc) when considering all SNPs on the Immunochip for
all pairwise population comparisons (Table 4.6). Estimates of r¢ ranged from
0.42 (between East Asian and Indian CD) to 0.92 (between Indian and Iranian

CD). Given that rare SNPs are more likely to be population-specific, high rg values



also support the notion that the majority of causal variants are common. It is also
unsurprising that rg is significantly smaller than 1 for all pairwise comparisons
(apart for those involving Iranian CD, though with only 169 cases, this most
likely reflects lack of power) as there are examples of IBD risk loci that are not
present in some populations, or where there are differences in effect size
between populations (discussed below). Nevertheless, r¢ is significantly greater
than 0 (P < 0.021) for all pairwise population comparisons across both CD and
UC. Together, these results indicate that a large proportion of IBD risk loci are
shared across different populations, though accurate assessments of the actual
number of shared loci and their effect sizes will require much larger sample

sizes.

Standard P-value P-value
Error (Hi:rg>0) (Hyirg<1)
East Asian Indian 0.42 0.13 8.02x10*  3.45x10™

Phenotype Population 1Population 2 r¢

()

g EastAsian  Iranian 073 026  gs5ex10*  0.223

2]

5 European  EastAsian 0.76 0.04 0 4.47x10
= European Indian 0.56 0.09 6.58x10°  3.43x10™*
E European [ranian 0.82 0.34 5.06x107 0.357
~ Indian Iranian 0.92 0.63 0.0209 0.456
© East Asian Indian 0.83 0.08 0 0.011
§ East Asian Iranian  0.56 0.12 137x10°  4.59x10™
© European  EastAsian 0.79 0.04 0 6.61x107°
g European Indian 0.84 0.05 0 8.23x10™*
8 European Iranian 0.67 0.08 2.61x10" 6.75x10™
= Indian [ranian  0.53 0.14 1.11x10"*  2.64x10°

Table 4.6. Pairwise genetic correlation (rG) tagged by Immunochip SNPs.

While there was significant correlation in the effect sizes of IBD loci between
different populations, identifying loci that differ in their effects between
populations may reveal differences in disease pathogenesis. As discussed, a
comprehensive comparison of effect sizes will require much larger sample sizes
in non-Europeans than the one in this study. However, there was sufficient
power to detect genetic heterogeneity between our East Asian and European
cohorts at several alleles with reported large effect size in Europeans. For
instance, consistent with previous genetic studies of Crohn’s disease in East
Asians (Ng et al,, 2012), the three coding variants in NOD2 (nucleotide-binding
oligomerisation domain-containing protein 2) with the largest effect sizes in
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Europeans are all monomorphic in East Asians. Furthermore, across all NOD2
variants, no association signals were observed in the East Asian cohort beyond
what is expected under a null distribution given the number of SNPs (83)
assayed in this region on the Immunochip (minimum P = 7.18x10-4). Similarly, at
the IL23R (interleukin 23 receptor) gene, previous studies have shown that the
most associated variants in Europeans are either monomorphic or do not appear
to be associated in East Asians, though there is evidence of additional variants in
IL23R that are associated in East Asians (Ng et al, 2012). In line with these
observations, the ILZ3R SNP with the largest effect in European CD and UC
(rs11209026) is monomorphic in East Asians, while two secondary ILZ3R
variants observed in Europeans were also non-significant (rs6588248, P = 0.65;
rs7517847, P = 0.04) in East Asian IBD. Nevertheless, there was strong evidence
for an association at rs76418789 with both CD and UC in East Asians (IBD P =
1.83x10-13). The same variant was previously implicated in a GWAS of CD in
Koreans (Yang et al, 2014). This variant demonstrates suggestive evidence of
association in European IBD (P = 3.99x10-¢, OR = 0.66), though has a much lower
allele frequency than in East Asian populations (MAF = 0.004 vs. 0.07).

The identification of CD risk variants in ATG16L1 (autophagy-related protein
16-1), first implicated autophagy as an important process in CD pathogenesis
(Hampe et al, 2007; Parkes et al, 2007; Rioux et al, 2007). At ATG16L1, the
variant most strongly associated with Crohn’s disease in Europeans
(rs12994997) has a risk allele frequency (RAF) of 0.53 and OR of 1.27. The
variant shows no evidence of association in East Asians, (P = 0.21), driven at
least in part by a significant difference in allele frequency (RAF = 0.24, Fs = 0.15).
However, assuming the effect size at this SNP in the East Asian cohort was equal
to that seen in the European cohort, there would have more than 80% power to
detect association of suggestive significance (P < 5x10-°) in this study. Indeed,
there was also evidence for heterogeneity of odds at this SNP (East Asian OR =
1.06; P = 8.45x104). Association in European individuals to a locus containing
IRGM further implicated authophagy in IBD risk, and the most associated SNP at
this locus in Europeans shows only nominally significant evidence of association

in East Asian CD (rs11741861, European P = 5.89x10-44, East Asian P = 2.62x10-
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3) as well as evidence of heterogeneity of effect (European OR = 1.33 vs. East
Asian OR = 1.13; heterogeneity P = 1.2x10-3). Given these results it is tempting to
speculate that autophagy plays a lesser role in East Asian IBD compared to
European IBD. However, a previous GWAS in a Japanese population identified
suggestive evidence of association near another autophagy-related gene,
ATG16L2 (Yamazaki et al, 2013), though this finding was unable to be confirmed
because the reported variant (rs11235667) is monomorphic in Europeans and

the locus is not covered on the Immunochip.
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Figure 4.6. Belgravia plot of (A) CD and (B) UC risk variants in Europeans
and East Asians. Each box represents an independent association for each
disease. The East Asian panel only contains SNPs with association P < 0.01.
The size of the box is proportional to the amount of variance explained in
disease risk (liability scale) for that variant. The colours of the boxes
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represent whether any difference in variance is due to differences in allele
frequencies (Fst > 0.1), odds ratios (P < 2.5x10-4) or both.

Inflammatory cytokines may play a more important role in East Asian CD,
with the greatest variance in disease risk explained for any IBD risk variant
observed at the TNFSF15/TNFSF8 (tumour necrosis factor superfamily 15/8)
locus. Compared with the modest effect sizes in Europeans, two of the three
independent signals at TNFSF15/TNFSF8 showed much larger effects in East
Asians: rs4246905 (European OR = 1.14 [95%CI: 1.11-1.18], East Asian OR =
1.73 [1.57-1.91], Ppet = 5.91x10-1%) and rs13300483 (European OR = 1.14 [1.11-
1.17], East Asian OR = 1.70 [1.57-1.84], Pret = 1.98x10-19) despite similar allele
frequencies. The third variant was non-significant in East Asians (rs11554257, P

=0.21).

An experiment testing the effect size of these variants in East Asian CD cases
and controls who are >2nd generation immigrants in Western countries will help
disentangle the role of environment. If differences still persist, this raises the
intriguing possibility that genetic factors are the cause of this heterogeneity.
Alternative explanations include gene-gene interactions with other population-
specific variants, or that these differences are explained by as-yet undetermined
causal variant(s) that may reflect different patterns of LD with the reported
SNPs. It is not possible to rule out this hypothesis using the data in this study.
Although the Immunochip provides dense coverage at 186 loci with known
associations to at least one immune-mediated disease, the selection of SNPs was
based on low-coverage sequence data from the pilot release of the 1000
Genomes Project and only incorporates variants identified in the CEU (European
ancestry) cohort. Approximately 240,000 SNPs were selected for inclusion with
and array design success rate of 80%. A further ~30% of SNPs were also
excluded during QC. Therefore, it remains possible that the causal variants
remained untyped, and the chances of this occurring are greater in the
populations of non-European ancestry. Until the causal variants that underlie
these associated loci have been identified (or all SNPs within these loci are
included in association tests) the possibility that differential tagging of untyped

causal variants are driving this heterogeneity of effect cannot be ruled out.
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4.3.5 Gene-based likelihood ratio test

In the previous section, I discussed how the small sample size of the non-
European cohorts limits our ability to estimate the effect of known IBD risk loci
in these populations. In loci where there a multiple known independent signals
in Europeans, it may be possible to use this prior information and test whether
the aggregate of these signals show significant associations in non-European
populations. Gene-based aggregate approaches for common variants are
potentially more powerful than single-SNP approaches for situations where
multiple SNPs within a gene are independently associated, and also due to a less
stringent gene-wide P-value threshold (Neale and Sham, 2004). By only
aggregating SNPs with prior evidence of association in the European cohort, this
approach may also have greater power than traditional gene-based tests for
common variants that consider all SNPs within a gene (Liu et al, 2010a; Huang et
al, 2011). To do this, I first identified loci with multiple independent associations
in Europeans, and then modelled these SNPs jointly within each gene in each of
the non-European populations. Significance of the model was tested using a

likelihood ratio test.

Genes were first selected if they have transcript start/stop boundaries (£50
kb) that overlap the most associated SNP in each locus and were located within
the Immunochip high-density regions. Within each gene, independent
associations were identified using the conditional and joint multi-SNP model
selection approach implemented in GCTA (Yang et al, 2012). I applied this to
European Immunochip chip samples within each of the three phenotypes: CD UC
and IBD, and identified 111 genes with more than one independent signal. When
considering the overlap between genes (a SNP may be assigned to multiple
genes), this corresponds to 41 non-overlapping loci. Performing the likelihood
ratio tests on SNPs in these loci in the non-European samples revealed nine loci
with significant evidence of association (P < 5x10-%). At six of these loci, the P-
value form the likelihood ratio test was smaller than the smallest univariate SNP
P-value in the non-European cohort. Nevertheless, this power improvement is

only marginal, as with the exception of the TNFSF15/TNFSF8 locus, significance
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of the likelihood ratio test never exceeded the univariate SNP P-value by more

than one order of magnitude.

Gene Chr. Gene Gene Pop Pheno SNPs Gene P- BestSNPP- Locus
start  stop value value number

TMCO4 1 19.83 20.05 IND IBD 3 3.37x107° 8.33x10° 1
TMCO4 1 19.83 20.05 EAS UC 3 3.18x107 2.36x10°° 1
TMCO4 1 19.83 20.05 IND UC 3 2.97x10° 2.95x10™* 1
RNF186 1 19.96 20.06 IND IBD 3 3.37x10° 8.33x10° 1
RNF186 1 1996 20.06 EAS UC 3 3.18x107 2.36x10° 1
RNF186 1 19.96 20.06 IND UC 3 2.97x10° 2.95x10™* 1
FCGR2A 1 159.69 159.81 EAS UC 3 5.53x10°° 2.62x107° 2
HSPA6 1 159.71 159.81 EAS UC 3 5.53x10°° 2.62x107° 2
FCGR3A 1 159.73 159.84 EAS UC 3 5.53x10°¢ 2.62x10° 2
IL10 1 20496 205.06 EAS UC 2 1.22x10°% 5.72x107 3
IL19 1 20499 205.13 EAS UC 2 1.22x10° 5.72x107 3
IL18RAP 2 102.35 102.49 EAS IBD 3 4.81x10° 9.09x107 4
MIR4772 2 102.37 102.47 EAS IBD 2 1.12x10°® 9.09x107 4
SLC9A4 2 10241 102.57 EAS IBD 2 1.12x10°® 9.09x107 4
LOC285626 5 158.64 158.77 EAS CD 3 8.46x10""  3.46x10™° 5
LOC285626 5 158.64 158.77 EAS IBD 3 1.03x107° 3.70x10"° 5
L0OC285627 5 158.76 158.88 EAS CD 2 6.01x10"  3.46x10™"° 5
LOC285627 5 158.76 158.88 EAS IBD 2 1.35x107 3.70x10"° 5
TNFSF15 9 116.54 116.66 EAS CD 2 2.80x10™*° 2.83x10™% 6
TNFSF15 9 116.54 116.66 EAS IBD 3 1.40x103°  1.65x103° 6
TNFSF8 9 116.65 116.78 EAS IBD 2 3.08x10"°  1.13x10"" 6
DKFZP434A062 9 138.29 138.39 IND IBD 2 3.63x10° 1.46x107° 7
DKFZP434A062 9 138.29 13839 IND UC 2 2.36x10° 8.71x10° 7
GPSM1 9 13829 13842 IND IBD 2 3.63x10° 1.46x107° 7
GPSM1 9 13829 13842 IND UC 2 2.36x107° 8.71x10° 7
DNLZ 9 13833 138.43 IND IBD 2 3.63x10° 1.46x107° 7
DNLZ 9 138.33 138.43 IND ucC 2 2.36x107° 8.71x10° 7
CARD9 9 138.33 138.44 IND IBD 2 3.63x107° 1.46x107° 7
CARD9 9 13833 13844 IND UC 2 2.36x10° 8.71x10°® 7
SNAPC4 9 13834 13846 IND IBD 2 3.63x10° 1.46x10° 7
SNAPC4 9 13834 13846 IND UC 2 2.36x10° 8.71x10°° 7
SDCCAG3 9 13837 138.47 IND IBD 2 3.63x10° 1.46x107° 7
SDCCAG3 9 13837 13847 IND UC 2 2.36x10° 8.71x10° 7
PMPCA 9 13837 13849 IND IBD 2 3.63x10° 1.46x107° 7
PMPCA 9 13837 13849 IND UC 2 2.36x107° 8.71x10° 7
C9orf163 9 138.45 138.55 IND IBD 3 2.52x10° 1.04x10* 7
ADO 10 64.18 64.29 EAS CD 2 9.13x10°® 4.24%x107° 8
EGR2 10 64.19 6430 EAS CD 2 6.56x108 3.05x10° 8
NKX2-3 10 101.23 101.34 EAS CD 2 4.67x10® 2.00x10° 9
NKX2-3 10 101.23 101.34 EAS 1IBD 2 2.45x10°  2.79x10M 9
NKX2-3 10 101.23 101.34 EAS UC 2 3.89x10° 3.07x10°° 9

Table 4.7. Genes that exceeded P < 5x10-5 in at least one non-European
cohort in the likelihood ratio locus-based test.

The likelihood ratio approach described here is similar to polygenic risk
modelling, a commonly used method for identifying pleiotropy between a pair of
phenotypes in genotyped individuals (International Schizophrenia Consortium et

al, 2009). Here, rather than comparing two phenotypes, I compared the same
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phenotype in two populations. In polygenic risk modelling, the effect sizes for a
set of SNPs (for example, those with association P < 5x10-8) are first estimated
for one phenotype, and then used to construct risk scores based on genotypes for
each individual in a second trait from a non-overlapping population. The degree
to which these risk scores are correlated with phenotype in this second
population are then assessed via linear regression (or logistic regression for
dichotomous traits), where the size of the pleiotropic effect and its significance

can be estimated.

It is possible to apply the polygenic risk score method to this study, where
for a given gene, effect sizes estimated in Europeans are used to generate risk
scores in a non-European cohort. However, this type of analysis assumes that LD
patterns between the two cohorts tested are identical (or the SNPs being tested
are in linkage equilibrium in both populations), which is often not the case when
comparing divergent populations. Significant independent SNPs estimated in one
population may be correlated with each other in another population, making the
true pleiotropic effect difficult to interpret. The likelihood ratio testing approach
overcomes this potential bias due to LD by only considering independent signals
in the European cohort, and then re-estimating their effects jointly in the non-
European cohort. These joint effect sizes will reflect the patterns of LD. Indeed, in
situations where LD patterns and allele frequencies are identical between the
two cohorts, the likelihood ratio method and the polygenic risk score should
provide almost identical results. Of course, neither method is suitable in
situations where there are heterogeneous effects exist between the two

populations.

4.3.6 Conclusions

In this, the largest trans-ethnic study of IBD in 96,856 individuals of European,
East Asian, Indian and Iranian populations, 40 newly associated risk loci were
identified, bringing the total number of IBD risk loci to 203. The large number of
risk loci shared between populations and high genetic correlations also suggests
that the underlying causal variants are common (allele frequencies > 5%), thus

adding further weight to the growing number of arguments against the synthetic
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association model for explaining common variant associations (Dickson et al,

2010; Anderson et al,, 2011b; Wray et al, 2011).

The population comparisons at known IBD risk loci also identified several
associated loci that are population specific. For instance, variants in NODZ and
IL23R with major effects in Europeans are monomorphic in East Asians. Given
the smaller sample size of the non European cohorts, and that Imnmunochip SNP
selection was based on resequencing data from individuals of European ancestry,
there was little power in this study to identify variants that are monomorphic in
Europeans but are associated in non-Europeans. Other loci polymorphic across
populations also showed evidence for differences in effect size (for instance,
TNFSF15 in Europeans and East Asians; Phec = 1.98x10-19). Loci with large
differences in effect size raises the intriguing possibility of gene-environment

interactions, though the presence of untyped causal alleles cannot be ruled out.

The newly identified loci along with the concordance in directions of effect
between populations demonstrates that trans-ethnic association studies are a
powerful means of identifying novel risk loci in complex diseases such as IBD. By
leveraging imputation based on tens of thousand of reference haplotypes, or
directly sequencing large numbers of cases and controls, these studies will more
thoroughly survey causal variants and thus have increased ability to model the

genetic architecture of IBD across diverse ancestral populations.
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Chapter 5. Immune-mediated disease risk loci
are enriched for differentially expressed genes

from tissue-relevant functional genomic datasets

5.1 Introduction

Identifying the causal variants that are tagged by complex disease risk loci
remains challenging. Blocks of linkage disequilibrium often contain multiple
correlated association signals that are statistically indistinguishable from each
other, and can span dozens of genes with multiple functional candidates. It is
clear that the majority of common risk variants do not reside in protein coding
regions (Hindorff et al.), suggesting that important aspects of disease etiology are
driven by gene expression. While identifying specific causal variants is difficult,
approaches that integrate GWAS association results with disease relevant
functional genomic datasets may help in narrowing down potential candidate

genes and the cell types in which they act.

Expression quantitative trait loci (eQTLs) provide a direct bridge between
GWAS and gene expression. These studies measure gene expression across many
individuals (typically in a genome-wide approach using microarrays or RNAseq),
and then treat the expression level of each gene as a separate quantitative trait to
test for association with SNPs - either at the same locus (cis-eQTLs) or genome-
wide (trans-eQTLs). Loci that are associated with both gene expression and
disease risk implicate particular genes as potential biologically relevant

candidates. A limitation of eQTL studies is difficulty in obtaining large sample
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sizes in relevant tissues. The largest eQTL studies in over 1000 individuals have
generally focused on easy-to-obtain tissue such as heterogeneous cell types
within peripheral blood (Hemani et al, 2014; Westra et al,, 2013), while smaller
studies (typically with sample sizes in the hundreds) have been performed in cell
types such as lymphoblastoid cell lines (LCLs), monocytes (Fairfax et al, 2014),
dendritic cells (Lee et al, 2014) and heterogeneous tissues such as liver, adipose
tissue, skin and brain (Gibbs et al, 2010; Grundberg et al, 2012; Schadt et al,
2008). Despite having identified hundreds of eQTLs, the majority of the
heritability of gene expression remains to be uncovered, much like the case with
complex disease risk loci. For instance, in a large eQTL study of LCLs, adipose
tissue and skin in 856 twins, the reported cis-eQTLs explain on average only 9-
12% of the total genetic variance at each gene (Grundberg et al, 2012).
Nevertheless, these studies are an invaluable tool for interpreting the findings
from GWAS. Indeed, in Chapters 2-4, eQTL datasets were used to prioritise
candidate genes at PBC, PSC and IBD risk loci.

Enrichment analysis provides a complementary approach to linking GWAS
risk loci with gene expression. These types of analyses ask whether disease risk
loci are found disproportionately more often overlapping certain genomic
annotations (for example, coding variants, UTRs, or epigenetic marks) than by
chance. For instance, GWAS loci across a range of phenotypes appear to be
enriched for known eQTLs (Nicolae et al, 2010). Under the further assumption
that disease loci act in only a small number of cell types and under certain cell
states, questions about the relative importance of specific cells and disease states
in disease pathogenesis can also be studied using the enrichment approach.
These studies have an advantage over eQTL studies in that genomic annotations
can be generated from only a small number of individuals. Such enrichment
studies of gene regulatory annotations or genes that are expressed in specific cell
types are now common place in the literature (Cowper-Sallari et al,, 2012; Ernst

etal, 2011; Hu et al; Liu et al, 2012; Maurano et al, 2012; Trynka et al,, 2013).

An important consideration in these types of approaches is the estimation of

the null distribution - what amount of overlap, given the number risk loci and
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frequency of genomic annotations, is expected just by chance? It is incorrect to
assume that functional annotations and risk loci are both randomly distributed
across the genome - both are more likely to be found nearer to genes than away
from them (Hindorff et al.). Hence it is possible that sets of risk loci associated
with any number of traits will be enriched for functional elements purely
because of their colocalisation around genes rather than their functional
relevance. For this reason, parametric approaches assuming independence or
permutation approaches that randomly resample SNPs (while not accounting for
LD) or switch case/control labels to construct “null” GWAS datasets may be

upwardly biased in their enrichment estimation.

In this study, I combined GWAS results for four immune-mediated and two
non-immune related quantitative traits with two differential expression datasets
that are relevant to intestinal inflammatory diseases (e.g. Crohn’s disease,
ulcerative colitis and coeliac disease). The first dataset consists of a gene
expression experiment of four intestinal T cell populations and their blood
counterparts in healthy individuals (Raine et al, 2014). T cells are the dominant
population of immunocytes in the gastrointestinal tract, and display distinct
characteristics in their cell surface marker expression, activation pathways and
function compared with the blood counterparts. The expression of genes that
drive these differences and maintain intestinal homeostasis may be prime
candidates to also modulate risk immune-mediated diseases of the

gastrointestinal tract.

The second dataset consists of differentially expressed transcripts in mice
following infection with the whipworm Trichuris muris. Gene expression levels
were measured in infected and uninfected populations of heterogeneous cells in
cecum tissue (Foth et al, 2014). High dose infections of T. muris in mice typically
generates a Tu2 response characterised by eosinophil activation, macrophage
inhibition and the production of antibodies, such that immunity is acquired. Low
dose infection generates a Tyl response, characterised by macrophage activation
other cellular immunity response, ultimately leading to chronic infection. These

low dose infections have been used to model the response in humans to infection
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by Trichuris trichuira, which exhibit striking phenotypic similarities to IBD
(Levison et al, 2013; Levison et al, 2010). Early exposure to whipworms in
humans is also thought to be protective against IBD, and the hygiene hypothesis
suggests that a lack of exposure to pathogens has contributed to the increasing
incidences of immune-mediated disorders in developed countries (Elliot et al,
2000; Okada et al, 2010). Furthermore, there is some evidence that by triggering
an immune response, whipworms are an effective treatment for IBD (Croese et
al, 2006; Summers et al, 2005a; Summers et al, 2005b). For these reasons, if
genes that are differentially expressed upon infection are enriched in risk-loci for
IBD and other immune-mediated diseases, they may be excellent candidates

through which disease is mediated.
5.1.1 Contributions

Generation of gene expression datasets and identification of differential
expressed genes were performed by Tim Raine, Adam Reid and others, and are
described in Raine et al. (2014) and Foth et al. (2014). All other analyses were
performed by myself.

5.2 Methods
5.2.1 Human T cell transcripts

Differential gene expression data were obtained from Raine et al. (2014). Briefly,
six healthy subjects underwent biopsy collection at the terminal ileum. These
samples were sorted using fluorescence activated cell sorting (FACS), and total
RNA from four major T effector memory cell populations isolated: CD4* and CD8*
expressing intraepithelial lymphocytes (IELs), and CD4* and CD8* expressing
lamina propria lymphocytes (LPLs). Paired reference CD4+* and CD8* T cells from
the peripheral blood were also isolated. Gene expression was measured using
the Affymetrix Gene ST 1.0 microarrays. After QC filtering, expression of 9,468
transcripts that passed in all six cell populations were obtained. Differential
expression was analysed pairwise with each gut T cell population paired with its

corresponding peripheral blood population taken from the same individual
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(CD4+ IEL vs. CD4+* blood, CD4* LPL vs. CD4* blood, CD8* IEL vs. CD8* blood, and
CD8* LPL vs. CD8* blood). Transcripts that were significantly up-or-down-
regulated in either IEL or LPLs vs. blood were taken forward for enrichment

analysis.
5.2.2 Mouse cecum transcripts

Differential expression data were obtained from Foth et al. (2014). Briefly, 14
male C57BL/6 were infected with a low dose of T. muris (25 eggs by oral gavage)
at 6-8 weeks of age. The section of the cecum where the worms reside and those
without infection were extracted. Transcriptome libraries for RNA-seq were
created following standard Illumina protocols and sequencing was performed on
[llumina HiSeq 2000 machines. The number of reads per gene was calculated by
summing over all transcripts that map to the gene. Genes that showed
differential expression between the infected cases and uninfected controls were
estimated at a false discovery rate of 5% using DESeq (Anders and Huber, 2010).
Only protein coding genes and those with a unique human orthologue were

included for downstream analysis. After filtering, 15,278 genes remained.

5.2.3 GWAS enrichment

The SNP with the strongest association signal (the lead SNP) in each of the
associated loci (reported at P < 5x10-8) from the largest published genome-wide
association studies (GWAS) were extracted for four immune-mediated complex
diseases: Crohn’s disease (CD), ulcerative colitis (UC), celiac disease (CeD) and
type 1 diabetes (T1D) (Barrett et al, 2009; Jostins et al, 2012; Trynka et al,
2011b), as well as two complex traits: height and body mass index (BMI) (Lango
Allen et al, 2010; Speliotes et al, 2010). The two complex traits are unlikely to be
strongly influenced by immune-related genes and were included as effective
negative controls for the method. For each lead SNP, an associated locus was
defined as the genomic region spanning a 0.2cM window either side of the lead
SNP, estimated from HapMap Phase II genotypes (The International HapMap
Consortium 2007). Where SNPs showed overlapping windows, only the window

assigned to the SNP with the most significant p-value was considered.
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For each differentially expressed gene, I defined its gene-region spanning
+50kb window from the gene’s transcription start/stop site. To account for
potential non-random clustering of genes with similar expression patterns and
function (Hurst et al, 2004), groups of differentially expressed genes that have

overlapping windows were combined into a single window.

For each GWAS phenotype, the number of times a risk locus overlaps with at
least one differentially expressed gene-window was counted. To assess the
statistical significance of this overlap, | randomly sampled the same number of
differentially express genes from the full list of expressed genes. If a sampled
gene has a +50kb window overlapping that of another previously sampled gene,
then the windows are merged and these genes are only counted once. I then
calculated the number of associated loci that overlap at least one of these
randomly sampled lists of genes. The sampling process was repeated 100,000
times for each disease/trait, and the empirical p-value was the number times the
overlap with the randomly sampled genes exceeds the overlap with the observed

differentially expressed genes, divided by 100,000.
5.3 Results
5.3.1 Human T cell transcripts

Using a 1.4-fold change (adjusted P < 0.05), 246, 275, 115 and 142 genes were
identified to be upregulated in LPL CD4+, LPL CD8*, IEL CD4* and IEL CD8* T cells
respectively compared with their counterparts in the blood. Using a P-value cut-
off of P < 2x10-3 (equivalent to a 5% Bonferroni correction for 24 tests), a
significant enrichment among T1D risk loci were identified for genes
upregulated in LPL CD4* (P = 10->) and LPL CD8* cells (P = 10-°), with 17 and 18
respectively of the 54 associated risk loci overlapping at least one upregulated
gene. Strong suggestive evidence for enrichment was also identified for
upregulated genes in LPL CD4* cells in CD (P = 0.0053) and CeD (P = 0.0045),
LPL CD8* cells in CD (P = 0.0038), IEL CD4* cells in T1D (P = 0.0053) and IEL CD8
cells in T1D (P = 0.001) (Table 5.1). Only modest levels of enrichment were
identified in for LPL T cells in UC (P = 0.037, 0.029), almost all of which is driven
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by UC risk loci that are also associated with CD (Table 5.3). The lack of

enrichment in UC may reflect that fact that inflammation occurs in the colon,

while the experiments described here were on cells extracted from small bowel

biopsies.
LPL upregulated vs. blood IEL upregulated vs. blood
CD4+ (246) CD8* (275) CD4+ (115) CD8* (142)
Phenotype Risk loci | Overlap P Overlap P Overlap P Overlap P
Crohn’s disease 140 23 0.0053 25 0.0038 7 0.56 10 0.33
Ulcerative colitis 133 21 0.0368 23 0.0291 5 0.88 8 0.69
Celiac disease 38 10 0.0045 10 0.0104 5 0.0161 5 0.0841
Type 1 diabetes 54 17 10 18 105 7 0.0053 10 0.0010
Body mass index 73 2 0.98 3 0.94 5 0.55 6 0.044
Height 192 21 0.87 18 0.99 5 0.98 7 0.99

Table 5.1. Enrichment of genes that are upregulated in gut T cells compared
with blood T cells in loci associated with six phenotypes. The numbers in
parentheses next to each cell type is the number of upregulated genes in
that gut cell type vs. its equivalent in blood.

CD4 IEL CD8 IEL

CD4 LPL ¢ 20 S~

CD8 LPL

Figure 5.1. Number of upregulated genes that overlap among CD4+ LPL,
CD8+ LPL, CD4+ IEL and CD8+ IEL T cells vs. counterparts in blood.

Genes that were downregulated in LPL or IEL T cells compared with their

blood counterparts were also tested for enrichment, though no evidence was

found for any of the phenotypes (P > 0.01) (data not shown). As expected, height

and BMI also showed no evidence for enrichment for any of the gene sets tested.

These two traits were selected as they include a similar number of associated

loci as the immune-mediated diseases tested and, given that immune-related

processes are unlikely to play a strong role in these traits, any enrichment
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observed in these traits may have been the result of biases in the method that

were unaccounted for.
5.3.2 Mouse cecum transcripts

After filtering, 824 genes showed evidence for differential expression (FDR =
5%) between infected and uninfected cecum tissue in C57BL/6 mice. A unique
human ortholog was taken forward for 454 of these genes. Significant evidence
for enrichment of differentially expressed genes and GWAS risk loci were found
for all four immune-related diseases (P < 0.0024), the strongest of which were
seen in Crohn’s disease (P = 2.0x10-4) and ulcerative colitis (P = 5.7x10-4). As
with the case for the IEL and LPL T cells, no evidence for enrichment was

identified across height or BMI associated loci.

Phenotype Risk loci Overlap P
Crohn’s disease 140 34 2.0x10#
Ulcerative colitis 133 33 6.7x10#
Celiac disease 38 11 0.0012
Type 1 diabetes 54 15 0.0024
Body mass index 73 6 0.33
Height 192 23 0.52

Table 5.2. Enrichment of genes that are differentially expressed between
infected and uninfected cecum tissue among loci associated with six
phenotypes.
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D4+ LPL DB+ LPL D4+ IEL DB+ IEL Cecum
Chr. BPwindow (Mb)| €D uc CeD TID D uc CeD TID ceD TID 1D & uc CeD 1D
1 778827 ERRFI1 ERRFIL
1 2518-2532 RUNX3 RUNX3
ILIZRB2,  ILIZRBZ,
1 6790-679 e 128D ILIZRB2  ILIZRB2
1 7791-7899 | DNAJB4 DNAJB4
BCL2LI5, BCL2LIS,
1 11382-11462 | PTPN22 PTPN22 PTPN2Z PIPN2Z BCL2L1S | PTPN22 oL ez
1 15497-15621 |  LMNA LMNA LMNA LMNA FDPS FDPS
1 16068-16115 LY9, SLAMF7  LY9, SLAMF?
1 17246-17294 FASLG
1 19246- 19255 RGS1 RGS1 RGS1 RGS1 RGS1 RGS1 RGS1
1 197.19-197.94 DENNDIB  DENNDIB
1 20679-207.04 1L10 1L10 1L10
2 2858-2867 FosL2 FosL.2 FOSL2 FOSL2
2 4345-4405 ZFP36L2  ZFP36L2
2 6078-6212 REL REL REL REL REL REL
2 68.51-68.89 PLEK
2 10269-10327 | ILIRI IL1R1 IL1R1 ILI8RAP  ILISRAP  ILISRAP
2 19181-19201 STATI, STAT4 STATI, STAT4 STAT,STAT4 STATI, STAT#
2 198.14-199.11 00108
2 204.17-20482 crLA4 crLA4 icos 1cos 1C0S, CTLA4  ICOS, CTLA4
CXCRz, CXCR2,
o RS SLC11A1  SLC11A1
2 24170-2417 |  GPR35 GPR3S
3 4589-4671 LZTFLE L2ZTFLY LZTFLE LZTFLY LZTFLE LZTFLY ccro CCRLZ CCRL2
BSN, GMPPB,  BSN, GMPPE,
3 4817-5183 SHISAS, AMT  SHISAS, AMT
4 10337-10425 NFKBI
4 12290-12377 12 12 12 12 12 1Lz 12 12 12 1Lz 1z
5 040-079 TPPP
5 40.18-40.98 | PTGER# PTGER4 PTGER# PTGER4
5 7238-7259 TMEM171
5 13128-132.14 KIF3A KIF3A SLC22A4  SLC22A4
5 15040-150.4 | Coorfsz Csorfs2 DCTN4 DCTN4
6 036-047 IRF4 IRF4
6 127.79-12834 THEMIS THEMIS
6 13781-13829 | TNFAIP3  TNFAIP3  TNFAIP3  TNFAIP3 | TNFAIP3  TNFAIP3  TNFAIP3  TNFAIP3 | TNFAIP3  TNFAIP3
6 167.34-16755 |  CCR6 CCR6 CCR6 CCR6
7 2663-27.22 SKAP2 sKAP2
7 5036-50.75 DpDC
7 98.71-9937 INF394 INF394
7 107.60-107.6 SLC26A3
CFTR, CFIR,
7 11678- 11745 CTTNBP2  CTTNBPZ
7 12855-12882 IRES
8  12644-12663 |  TRIBI TRIBI
9 9386-9417 NFIL3 NFIL3
10 600-6.18 1L2RA 1L2RA IL2RA, PFKFB3|  IL2RA 1L2RA IL2RA, PFKFB3
10 3067-3083 | MAPSKS  MAP3KS MAP3KS ~ MAP3KS
10 3510-3597 CREM CREM CREM CREM
10 6430-6476 EGR2 EGR2 EGR2 EGR2
10 8094-8115 PPIF PPIF PPIF PPIF PPIF PPIF PPIF PPIF
11 6055-6097 SLC15A3,CD6 SLC15A3, CD6
11 6137-6176 FTHI FTHI FTHI FTHI FEN1 FEN1
STIPI, STIPI,
Ul CEE-GuE FERMT3 FERMT3
LTBP3, CSTS, LTBP3, CST6,
11 6513-66.08 g gk
1 9597-9647 MAML2
11 118.90- 1189 HYOU1 HYOU1 PHLDBI
12 947-1002 LB D69 D69 D69
S CLEC2B
12 1253-1273 | DUSPI6 DUSP16 DUSP16 DUSP16
12 5623-5684 RPL41 11234
12 5775-5853 ARHGAP9 ARHGAPS ARHGAP9 |  ARHGAP9
12 6832-6863 IFNG IFNG IFNG IENG
12 11154-113.13 c1zorfs1
13 9961-10011 | GPRIS3 GPR183 GPR183 GPRIS GPR18 GPR18 GPRIS GPR18 GPRIS
14 69.14-6936 ZFP36L1  ZFP36L1  ZFP36LI  ZFP36LI
14 7542-7575 Fos Fos Fos oS
14 8819-8873 GPR65 GPR65 GPR65 GPR65
15 7455-7594 SEMA7A
15 7891-7926 MORF4L1 MORF4L1 TSH
16 11.00-110 socs1 S0CSI CIITA SOCSI  CIITA, SOCS1
16 2828-29.03 APOBR
16 2989-3136 CORO1A
16 7503-7553 ZNRF1
16 8596-86.04 IRE8 IRF8
17 3270-327 CCL2,CCL7  CCL2, CCL7
17 3735-3825 NR1DI NR1D1 NRID1
17 4029-4105 STAT3 STAT3 WNK4 WNK#
17 5820-582 MiR21 MIR21
18 4634-4651 SMAD7 SMAD7
19 1037-1063 IcaM1 Icam1 Icam1 IcAM1 IcaM1 Icam1 Icam1 Icam1 Icam1
19 47.14-4733 SLCIAS
20 4434-4482 40 D40
20 62.18-6249 PTKG PTK6
CCDC116,  CCDCI6  CCDCIL6,
B Bl SDF2L1 SDF2L1 SDF2L1
22 2981-3087 SF3A1 SF3A1 SF3A1 UQCR10 UQCRI0 UQCRI0
CYTH4, IL2RB,
22 3750-3757 IL2RB 1L2RB .t

Table 5.3. Annotation of disease-associated loci that are show nominal levels
of enrichment (P < 0.05) for genes that show differential expression in
healthy gut vs. blood T cells and in infected vs. uninfected mouse cecum
tissue. The BP (base pair) window denotes a +0.2cM around an associated
SNP. Windows that overlap were combined into a single window.
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5.4 Discussion

The broad patterns of enrichment among disease risk loci and genes expressed
in both healthy and in inflamed tissues points to the importance of multiple
biological pathways involved in disease risk. The lack of overlap between the
expression of genes upregulated in healthy human T cell populations and
infected /uninfected mouse cecum samples (Table 5.3) reflects both the different
cell composition of the samples and biological processes involved in maintaining
homeostasis and responses to infection. That differentially expressed genes in T
cells from the gut compared with those from peripheral blood appear to play a
role in disease risk serves as an important reminder of the limitations of
inferring biology from easily accessible blood cell types. Ideally, further
understanding of how gene expression modulates disease risk will involve
efforts that combine expression patterns multiple immune cell types under both

healthy conditions and disease states.

A major utility of gene expression experiments in relevant tissue types is to
identify potential candidate genes among GWAS risk loci. Many of the candidate
genes listed here (Table 5.3) were also implicated in other in silico approaches
reported in the original locus discovery projects. For instance the IBD associated
SNP rs1819333 lies 160kb upstream of CCR6, a gene that is upregulated CD4+*
and CD8* LPL T cells. CCR6 is an important regulator of lymphocyte homeostasis
in the mucosa (Cook et al, 2000), and was implicated as a candidate gene
through the text-mining-based GRAIL network analysis in the original IBD GWAS
(Jostins et al, 2012; Raychaudhuri et al, 2009). Similarly, at the IBD associated
SNP rs11209026, IL12RB was differentially expressed in both CD4* LPL T cells
and cecum tissue. This gene was also implicated in the original IBD GWAS via
DAPPLE, a method identifies candidate genes based on reported protein

interaction networks (Rossin et al., 2011).

At other loci, the approach also offers new leads at loci with no obvious
candidate gene, or alternative candidate genes to those previously proposed. For

instance, at the IBD-associated SNP rs35675666, GRAIL analysis originally
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suggested TNFRSF9 as the sole candidate gene at this locus. Here, another nearby
gene, ERRFI1, was highly expressed in CD8* LPL T cells. ERRFII belongs to a
family of epidermal growth factor receptors that share a common signal
transduction pathway through ERK-MAPK with the T cell receptor. This growth
factor-mediated signalling has been suggested to modulate intestinal T cell
regulation in a murine colitis model (Zaiss et al., 2013), highlighting ERRFI1 as an
alternative candidate gene at this locus. Similarly, at rs17391694, the nearby
gene DNAJB4 was highly expressed in LPL CD4+* and CD8* T cells. No candidate
genes were reported in the original IBD GWAS at this locus, partly reflecting the
fact that DNAJB4 has only recently been described.

Notably, T1D loci also appeared to be enriched for genes differentially
expressed among the intestinal tissue described. Even though T1D does not
manifest itself in the intestines, part of this enrichment may be a reflection of
risk loci that are shared between T1D and the other intestinal diseases tested
here. However, several genes residing near T1D-specific risk loci were also
observed to be differentially expressed across all the experiments (Table 5.3).
There is evidence to suggest that intestinal microbiota not only modulates local
inflammation, but also systemic immune-mediated pathologies (Kamada et al,
2013). Moreover, interactions between gut microbiota and the innate immune
system have been suggested to partly modulate risk for T1D in mice (Wen et al,
2008). The genes here that appear differentially expressed in populations of
intestinal cell types may offer insights in the host-environment interactions

across systemic immune-mediated disorders.

The method I described for estimating the degree of enrichment is in line
with similar approaches that look to test whether a set of genes is
overrepresented by genes from another pre-defined and biologically relevant
gene set. Perhaps the most popular of these, Gene Set Enrichment Analysis
(GSEA), was developed to estimate whether a set of genes identified from
microarray experiments were enriched for genes involved in various biological

pathways (Subramanian et al, 2005). The advent of GWAS has spawned a
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number of GSEA-type methods for analysing biological pathways that are
enriched among GWAS risk loci (reviewed in Wang et al. (2010b)).

In the original GSEA approach, a set of genes is first identified and ranked
(e.g. according to differential expression P-value between a set of cases and
controls), and then tested to see if this rank correlates with a set of genes from
another set (e.g. a particular biological pathway) via Kolmogorov-Smirnov-like
statistics (Subramanian et al, 2005). Significance is then assessed via
permutation of the case-control status and repeating the original analysis in
order to obtain a null distribution of correlations. In the context of GWAS, this
approach is analogous to permuting case-control status and repeating the GWAS
many times - which is both time-consuming and not possible without individual-
level genotype data. GWAS adaptations to GSEA have sought to overcome this by
only permuting SNP labels on summary GWAS statistics (Zhang et al, 2010),
however, this does not account for the correlated structure of SNPs due to LD.
Furthermore, neither the phenotype-label nor SNP-label permutation approach
takes into account the fact that SNPs that are associated with a complex trait are
not randomly distributed throughout the genome, but are rather more likely to

be found near functional elements such as genes or regulatory regions.

The approach described here tries to overcome these biases by permuting
the set of differentially expressed genes rather than risk loci. While this accounts
for both LD and the non-random distribution of risk loci, our method may also be
biased by gene size and correlation of expression patterns of certain genes.
Larger genes are more likely to overlap with an associated risk locus, such that
permuting sets of genes will not be a true reflection of the null distribution. In
the T cell datasets, there was modest evidence that differentially expressed genes
were longer than the total set of genes tested, potentially inflating enrichment
estimates (Figure 5.2 A). The opposite appeared to be the case for the cecum
tissue, where the length of differentially expressed genes were shorter than

expected, potentially making the test more conservative (Figure 5.2 B).

Similarly, the permutation approach will not truly estimate a null

distribution in situations of gene-gene expression correlations. Genes with
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coordinated expression are often clustered in areas of low recombination (Hurst
et al, 2004), and cis eQTLs may affect the expression of multiple nearby genes. I
try to overcome this by combining genes that have overlapping windows (*50kb
from the transcript start/stop sites) into a single window. Moreover, the
empirical P-value is calculated on the number of risk loci that overlap at least
one gene region, not the number of gene regions that overlap at least one risk
locus. This distinction is subtle, but in situations where a risk locus overlaps
more than one differentially expressed gene region, the test is conservative since
these genes only count towards a single overlap, yet multiple genes are sampled
during the permutations. Had the empirical P-value been calculated instead on
the number of genes that overlap a risk locus, the empirical P-value may have
been inflated as now multiple genes can potentially overlap with a single risk
locus (Dixson et al, 2014). Nevertheless, the approach will not account for

situations where coexpressed genes lie far away from each other.
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Figure 5.2. Quantile-quantile plots of gene length of differentially expressed
genes in (A) gut T cells vs. blood and (B) infected vs. uninfected cecum
tissue. The distribution of the expected length was the empirical
distribution of all genes tested for differential expression in the respective
experiments.

The choice of thresholds when defining locus and gene boundaries is often
subjective. In this study, a #0.2cM window around an associated SNP and a

+50kb window around a gene’s transcript start/stop positions were used to
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define whether an associated locus overlaps with a gene. The 0.2cM window
describes the boundaries in which a causal variant that is tagged by an
associated SNP may lie. The same window size was also used in the design of
Immunochip high density regions (Tsoi et al., 2012 and Jostins, 2012). Similarly,
the 50kb gene boundary region was chosen to adequately encompass regions
where variants that affect that gene’s expression may reside. This window size
captures the majority (>93%) identified cis-eQTLs (Veyrieras et al, 2008),
though there are examples of some genes with cis-eQTLs greater than 100kb
away from a transcription start site (Stranger et al., 2012 and Veyrieras et al.,
2008). Larger windows may lead to more SNPs incorrectly assigned to genes, as
well as a greater chance that independent loci overlap. In this study, if SNPs are
incorrectly assigned to genes, power will decrease as more noise is introduced. A
larger gene-boundary window will also mean that more differentially expressed
genes will overlap each other and merged together. Since the resampling process
cannot explicitly take this overlap into account, the results may be upwardly
biased. On the other hand, using more stringent boundaries may also reduce

power if truly regulatory SNPs are not assigned to its corresponding gene.

In Hu et al, (2011) a similar approach looking at the overlap between gene
expression in a set of immune cells and GWAS risk loci is described. Promisingly,
they try to overcome the potential biases described by estimating the null
distribution of enrichment by randomly selecting SNPs from a predefined, LD-
pruned set of SNPs that have similar properties to disease-associated SNPs in
terms of the number of genes that are located nearby. The accuracy of this
approach of course depends on how this set of null SNPs is estimated, and will be
more accurate for diseases where there are a large number of associated loci,

such that a more representative set of null SNPs can be generated.

5.4.1 Conclusions

In summary, this study describes an approach testing whether disease risk loci
are enriched for a set of functionally relevant genes. Evidence for enrichment
provides additional candidate genes at associated loci, as well as generating

hypotheses as to how these genes mediate disease. There was evidence for
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enrichment among risk loci in four immune-mediated disorders with two
differential expression datasets - the first comparing T cell subsets in healthy gut
tissue with blood counterparts, and the second from samples in the cecum of
mice in the presence or absence of T. muris infection, implicating processes in
both maintaining intestinal homeostasis and response to infection in disease
risk. There is a great deal of potential in these integrative approaches as a
greater number of functional genomic datasets are generated for a range human
tissue across multiple disease states, though care must be taken to ensure that

methods employed are unbiased and statistically robust.
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Chapter 6. Conclusions and future prospects

This dissertation described four distinct projects that share the common theme
of unravelling the genetic basis of complex diseases. In Chapter 1, I gave a
historical perspective of our understanding of the genetics of complex traits,
from early 20t century efforts at reconciling Mendel’s laws with the inheritance
of quantitative phenotypes, to attempts throughout the 1980s to early 2000s at
identifying complex disease risk loci via linkage scans, and finally to the success
of GWAS from the mid-2000s up to the present day. In Chapters 2, 3 and 4, |
described such locus discovery projects in PBC, PSC and IBD respectively, much
of which was undertaken using the Immunochip custom genotyping array. The
dense SNP content of the array has allowed for greater refinement across risk
loci, while its low cost has enabled powerful locus discovery projects and cross-
phenotype comparisons in very large sample sizes. Once a set of risk loci for a
particular disease is found, there is also the question of what to do next. In
Chapter 5, I described a simple method of combing disease risk loci with tissue-
relevant functional genomic datasets in order to identify candidate genes at
these risk loci, as well as potential mechanisms through which they mediate

disease.

Pick up any issue of a reputable genetics journal from the past seven years
and it may seem that locus discovery in complex traits is routine, if a little
tedious for some. Visiting the NHGRI GWAS Catalog (Hindorff et al., 2014) leaves
one in no doubt, with 1,961 publications listed and 14,012 reported associated
variants as of September, 2014. In the following pages, I will discuss the general

lessons learnt from these types of studies, and then will look to future prospects

117



and challenges for locus discovery, understanding biology, and ultimately

translating these findings into better treatment outcomes.
6.1 Effect sizes, power and the genetic architecture of complex traits

For genetic studies of complex traits, sample size is key. With few exceptions (e.g.
HLA region in immune-mediated disorders and NODZ in CD), the effect of
individual common genetic variants on disease risk is modest - allelic odds ratios
are typically less than 1.2, and almost always less than 1.5. Robustly identifying
these loci requires a combination of large sample sizes, genome-wide coverage
and strict statistical criteria for determining significance - three aspects that
were overlooked in early linkage and candidate genes studies. Figure 6.1
illustrates the appreciation of the need for large samples in order to robustly
identify susceptibility loci - there is clear positive correlation between the

number of loci discovered and the sample size of the study.

Chapters 2, 3 and 4 described the largest genetic studies to date for PBC, PSC
and IBD respectively in terms of the number of samples recruited. However, the
total proportion of variation in disease liability explained by these loci is still
modest. Figure 6.2 illustrates the relationship between the cumulative
proportion of variance explained and the strength of association. Several
conclusions may be drawn from this graph. Firstly, extrapolating these curves
clearly suggests that many more risk loci will be discovered as sample sizes get
larger, with the total number increasing at an exponential rate (with respect to
sample size) while the effect size of each individual locus will get ever smaller
(Park et al, 2010). These effect size distributions suggest that there are

potentially thousands of susceptibility loci underlying these complex disorders.
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Figure 6.1. Effective sample size vs. number of genome-wide significant risk
loci across GWAS and Immunochip studies of nine immune-mediated
disorders. Diseases denoted in red formed Chapters 2-4 of this dissertation.
The dashed blue line indicates the best fitting line estimated from least
squares regression. The effective sample size denotes the cohort with an
equal number of cases and controls that have an equivalent power as the
sample sizes reported in the original study. This was estimated by iterating
sample sizes with a 1:1 case:control ratio until it arrives at the same non-
centrality parameter in power calculations as the reported sample size
(Purcell et al.,, 2003). The studies listed are - AS: ankylosing spondylitis
(International Genetics of Ankylosing Spondylitis Consortium, 2013), AtD:
atopic dermatitis (Ellinghaus et al., 2013a), CeD: coeliac disease (Trynka et
al, 2011b), CD: Crohn’s disease, UC: ulcerative colitis, IBD: inflammatory
bowel disease (Chapter 4), MS: multiple sclerosis (International Multiple
Sclerosis Genetics, 2013), PBC: primary biliary cirrhosis (Liu et al., 2012),
Ps: psoriasis (Tsoi et al.,, 2012), PSC: primary sclerosing cholangitis (Liu et
al, 2013), RA: rheumatoid arthritis (Eyre et al., 2012).

Secondly, the decreasing effect sizes also raises questions about how much of
total heritability can be explained by common variants. Assuming that narrow-
sense heritability in Crohn’s disease is 50% (Ahmad et al, 2001), extrapolating

the risk loci to 20,000 independent common variant associations will still explain
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less than half of this heritability (Franke et al, 2010). A similar estimate was
arrived at in Lee et al. (2011), where the variance explained in Crohn’s disease
risk tagged by all genotyped variants was only 22%. This suggests that untyped
variants (especially rare variants poorly tagged on genotyping arrays) will
contribute to the remaining heritability, though that heritability estimates were
overestimated in the first place cannot be ruled out. Due to the disease being
rare, accurate disease prevalence is hard to estimate. Similarly, familial recurrent
risk estimates are often based on ascertained families will multiple affected

individuals, potentially overestimating the true familial risk in the population.
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Figure 6.2. Cumulative proportion of variance in disease liability explained
by the genome-wide significant loci identified in Chapters 2-4. For PBC and
PSC, SNPs on the x-axis are ranked by and plotted by association P-value.
For CD, UC and the two combined (IBD), SNPs are ranked by the decreasing
MANTRA log10 Bayes factor association signal.

The different trajectories for each of the diseases in Figure 6.2 reflects the

different underlying genetic architectures for these disorders and their
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tractability to the GWAS approach. For instance, the variance explained by the 26
loci associated with PBC is more than double the equivalent number in UC. While
some of these differences may be due to winner’s curse (the sample size for PBC
was much smaller and there has yet to be any follow-up studies), this also raises

interesting questions about factors that shape these differences.

Before discussing these factors, it is interesting to compare the distribution
of effect sizes of variants associated with immune-mediated disorders with those
from other complex traits. In general, genetic studies for immune-mediated
disorders have offered much greater bang-for-genotyping-buck in terms of the
number of risk loci discovered and variance explained than other classes of
disorders. For instance, the PBC study described in Chapter 2 identified 22
genome-wide significant loci with a sample size of ~2,800 cases and 8,500
controls. In contrast, it required over 5,500 cases and 9,000 controls to identify a
single variant associated with endometriosis (Painter et al, 2011). For
psychiatric disorders, the story is just as sobering. Despite heritability estimates
of ~30-40% in major depressive disorder, only a single borderline genome-wide
significant signal was identified in a meta-analysis that included over 16,000
cases and 60,000 controls (Major Depressive Disorder Working Group of the
Psychiatric, 2013). Nevertheless, even for these classes of disorders, risk loci will
eventually be identified given large enough sample sizes. In schizophrenia, it
required 8,000 cases and 19,000 controls to implicate a single locus in disease
risk (Shi et al, 2009). Five years later, a GWAS meta-analysis that included
36,000 cases and 113,000 controls increased the number of risk loci to 108

(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).

Why then, is locus discovery in immune-mediated diseases such as PBC more
tractable to the GWAS approach than diseases such as schizophrenia and
endometriosis? One explanation is related to the hygiene hypothesis - that
evolutionary adaptations have not caught up to the rapidly changing
environment. Natural selection leaves its indelible footprints on the frequencies
of functionally relevant alleles. For much of human history, it's likely that

exposure to a range of pathogens was the norm, and alleles that best defend the
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host from infection were selected for and rose in frequency throughout the
population. In the modern world, vaccinations, better nutrition and awareness of
hygiene have greatly reduced our exposure to antigens, leading to an imbalance
in the immune system that favours chronic inflammatory conditions (Sironi and
Clerici, 2010). It is hypothesised that those same alleles that once protected us
from infection are now also those that make us most susceptible to autoimmune

disorders.

A second explanation of differences in GWAS tractability is the amount of
phenotypic and genetic heterogeneity that underlies complex traits. The
presence of heterogeneity in genetic association studies reduces power to detect
association and underestimates the effect sizes of risk variants. At the biological
level, what is classified as a single disorder may be a result of combinations of
different molecular processes, each with its own set of genetic and
environmental levers, yet all with similar phenotypic presentations. This may
especially be true for psychiatric disorders, where a yes/no diagnosis is still
often based on whether a patient shows any x number of descriptive symptoms
out of a list of y (Angst, 2007), resulting in potential for misclassification of cases
and controls. This is largely because the most useful biological categories or
dimensional categories are still unknown, and a better understanding of the
genetic basis of these disorders will help give a clearer picture of disease
pathogenesis and diagnoses. Contrast this to an autoimmune disorder such as
PBC, where diagnosis is largely based on blood tests and the presence of a

specific set of antibodies.

These two hypotheses are not mutually exclusive, and indeed are both likely
to play a role in shaping the genetic architecture of complex traits. Future efforts
at unravelling this genetic architecture will involve a combination of array-based
and sequencing approaches in ever-larger sample sizes. For the remainder of this
chapter, I will discuss these approaches, their potential challenges, and
ultimately, prospects for translating what we’ve learnt from locus discovery into

more effective treatment outcomes.
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6.2 Future prospects for complex disease genetics
6.2.1 Array-based approaches

Genome-wide association studies predominantly focused on identifying common
variant associations (variants with minor allele frequencies greater than 5%).
There are good economic reasons for why this was the case. There are only so
many SNPs that can fit on a genotyping chip, and given the patterns of linkage
disequilibrium in the population, the majority of the ~5 million common variants
in the genome can be tagged by a selection of ~500,000 SNPs (Barrett and
Cardon, 2006; International HapMap et al, 2007). Array-based studies with ever-
larger sample sizes will continue to play a role in locus discovery. This is perhaps
best exemplified by the UK Biobank’s ongoing efforts to genotype their ~450,000
samples on a custom genome-wide genotyping microarray with ~800,000
variants. Individuals recruited to the UK Biobank underwent a range of
diagnostic measures and will have their health tracked throughout their lifetime,

providing an invaluable resource in the study of complex disease.

The design of the Immunochip, along with similar arrays such as the
Metabochip (for metabolic and cardiovascular risk loci) (Voight et al, 2012) and
iCOGS (for various cancers) (Sakoda et al, 2013), was also primarily motivated
by economics. The ability to include thousands of SNPs for deep replication, high-
density regions for fine-mapping, and the genotyping of over 150,000 individuals
across multiple disease cohorts (and the sharing of population controls) meant
that the Immunochip, at ~$40/sample, was a much more cost-effective platform
for locus discovery and fine-mapping than alternative technologies at the time
(e.g. Sequenom plexes, whole-genome arrays, pull-down sequencing) (Jostins,

2012).

There are, of course, several limitations to custom high-density arrays such
as the Immunochip. Obvious pitfalls include the lack of coverage genome-wide
and the ascertainment of variants only present in European populations.
Additionally, while ~240,000 variants were initially selected for inclusion on the
Immunochip, 196,524 made it onto the final array. Running a typical quality

123



control protocol will reduce this even further to 130,000-140,000 variants (Liu
et al, 2012; Liu et al, 2013), resulting in a total array design success of ~60%.
Technical failures explain the majority of these exclusions. SNPs in high-density
regions were selected from those identified in the 1000 Genomes Pilot dataset
using low-coverage sequencing, such that many of these variants (in particular
rare variants) are poorly characterised, either due to being falsely called in the
first place and/or poor probe design. Moreover, many variants were missed all
together. As demonstrated in Chapters 2 and 3, imputation using the
subsequently much larger 1000 Genomes Phase | reference panel almost
doubled the number of variants in the high-density regions. Nevertheless, chip
design continues to improve, and there are now several custom chips currently
being developed or in the analysis phase - e.g. the Exome Chip for coding
variants, the “African Power Chip” for African-specific variants, and the “Psych
Chip” for risk variants identified in psychiatric disorders. In addition, current
genome-wide arrays such as the [llumina Omni2.5 and Omni5 are supplemented
with 200,000 and 500,000 custom variants respectively to fit with each

researcher’s requirements.
6.2.2 Sequencing approaches for rare variant studies

How then, given the state of technology and what we understand about the
genetic architecture of complex traits, should one design a locus discovery
experiment today? Array-based technologies (whole-genome and targeted
arrays) are likely to remain the most cost-effective and efficient methods for
identifying common variant associations, though a complete survey of genetic
variation in an individual will require high coverage (greater than 30X) whole-
genome sequencing - currently costing 1-2 orders of magnitude more per
sample than genotyping arrays. These sequencing approaches will be able to
capture rare variants (those with minor allele frequencies less than 1%), which
are poorly captured on arrays. While most genetic variation in an individual is at
common sites, the total number rare variants in the population far outnumber
common variants (Keinan and Clark, 2012). In chapter 1 section 1.4.3, I outlined

theoretical reasons why rare variants are likely to play a role in complex disease,
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and highlighted recent sequencing studies in known risk loci to identify rare

variant associations (Hunt et al, 2013; Rivas et al, 2011).

These targeted sequencing studies identified very few novel independent
rare variant signals (and that the common variant associations are not driven by
nearby rare variants), highlighting the need for larger sample sizes for these
types of studies. Under certain assumptions about the effect size distribution of
rare variants and selection pressures, well-powered studies may require cohorts
of more than 25,000 cases and an equal number of controls, along with equally
large numbers for replication (Zuk et al, 2014). Moreover, given the importance
of non-coding variation in complex disease risk, there is also a need for whole-

genome approaches.

While high-coverage sequencing is still prohibitively expensive, there is
currently great potential for low-coverage whole-genome sequencing
approaches (less than 6X) as a powerful and cost-effective alternative. In low-
coverage sequencing, rare variants are discovered and jointly called across many
thousands of individuals, and LD-based imputation methods are used to refine
genotype calls. For instance, for a SNP with frequency 0.2% to be discovered,
over 2000 individuals need to be sequenced at 30X coverage (60,000 genomes).
In contrast, the same SNP can be identified in ~3000 individuals sequenced at 4X
(12,000 genomes) - a five fold reduction in sequencing cost (Li et al, 2011). With
more sequenced individuals comes greater power to detect associations. Large
cohorts of low-coverage sequenced individuals can also be used as reference
panels to impute rare variants into new and existing GWAS datasets at much
greater accuracy than existing panels. Over the course of 2014-15, it is expected
that over 30,000 individuals will be sequenced at low-coverage
(www.haplotype-reference-consortium.org). Imputing the millions of new
variants discovered from this set into ~25,000 IBD cases (of which ~15,000 have
already been genotyped as part of GWAS) will, for the first time, enable dection
of association to SNPs with frequencies in the order of 0.1-1% and ORs of 2-3
(Figure 6.3). This sequencing plus imputation approach was demonstrated in a

recent study in type 2 diabetes, were variants discovered by sequencing 2,630
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samples were imputed in 11,114 cases and 267,140 controls (Steinthorsdottir et

al, 2014). The study identified risk variants at several variants with frequencies

between 0.65% and 1.5% and ORs of 1.5-2.
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Figure 6.3. The genetic architecture of inflammatory bowel disease. Known
CD and UC variants are plotted according to their minor allele frequencies
and risk increasing ORs estimated from results in Chapter 4. ORs of risk-
decreasing minor alleles were flipped for illustrative purposes. The size of
the circles represents the amount variance in disease liability explained by
that variant. The red, black and orange lines represent the minimum OR and
allele frequency combination for a locus for which a GWAS with 3000,
50,000 or 200,000 individuals (with an equal number of cases and controls)
respectively will have greater than 80% statistical power to detect
association at P < 5x10-8. The dashed lines represent the allele frequency
spectrum of variants that are typically poorly captured on GWAS
microarrays (minor allele frequencies less than 1%).

The testing of rare variant associations will also throw up new statistical

challenges. Firstly, the established genome-wide significance threshold of P <

5x10-8 is based on a 5% Bonferroni correction on the approximate number of

independent regions tagged by common variants genome-wide (in European

populations) (International HapMap et al, 2007). Rare variants, on the other
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hand, are more numerous and less likely to be in high LD with other variants,
such that a genome-wide survey of rare variants will involve many more
independent tests than with common variants. It may be the case that a more
stringent P-value threshold will be required to avoid too many false-positive
reports. Secondly, while methods such as logistic regression are frequently used
for common-variant associations, they may not be well-calibrated in rare-variant
tests were minor allele counts are low, leading to false type-1 error rates. Ma et
al. (2013) suggest a minor allele count cut-off of 400 (corresponding to a minor
allele frequency of 1% in 20,000 individuals) for when standard logistic
regression tests may need to be recalibrated. Thirdly, rare variants are more
likely to be population specific, requiring more careful consideration of sample
recruitment and study design. There is evidence that the effects of population
stratification for rare variants are stronger than for common variants, and that
existing methods such as PCA and linear mixed models may not be able to fully
account for rare such stratification (Mathieson and McVean, 2012). Family-based
association methods, which are robust to population stratification, may once
again play an important role. Fourthly, different sequencing studies are likely to
involve a range of sequencing technologies and methods, such that differences in
coverage, read lengths, variant calling and genotype refinement methods will
likely have direct effects on the properties of the variants reported. Methods that
account for these differences, especially when cases and controls are sequenced
separately, need to be developed. Finally, while I have discussed these challenges
in the context of single-variant association tests, they also equally apply to the
suite of rare-variant region-based tests. Additional challenges to these region-
based methods include the choice of test, defining regions and which SNPs to test
and difficulties in assigning causal variants (some of which I discussed in Chapter

1 section 1.4.3).

Despite these hurdles, there is a growing recognition among health policy
makers about the importance of sequencing in medical research. In December
2012, the UK Government announced an initiative to sequence 100,000 whole
genomes by the end of 2017. Patients will be recruited from NHS centres, and

will consist of those with rare diseases or various cancers. The project is
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currently in its pilot phase, and it remains to be determined exactly how the
samples will be sequenced, but will likely involve high-coverage sequencing of
40,000 patients. For rare diseases, the parents of patients will also be sequenced,
and for each cancer patient, two genomes will be sequenced - one from the

tumour and one from healthy tissue (Connor, 2014).

The immediate benefits of the UK 100K Project will be felt by patients and
their families. For example, the sequencing of rare disease families will help in
identifying highly penetrant de novo mutations, perhaps easing parents’
concerns about having additional children. Identifying the somatic driver
mutations in cancer can also inform the best course of treatment. For complex
disease researchers, the project provides an invaluable resource to use with
existing datasets (for instance, as population controls or imputation reference
panels), as well as a testing ground for methods development. In the long term,
the infrastructure, knowhow and experience gained through the project will
provide a blueprint for future sequencing efforts. With the announcement of the
[llumina HiSeq X Ten in January 2014, the raw cost of sequencing a genome at
high-coverage (30X) today is around $1000. It is no stretch to imagine that this
price will fall to a few hundred dollars within the decade, well below the price of
many routine medical diagnostic tests, such that getting your genome sequenced

(if you haven’t already) will become part-and-parcel of a trip to the doctor.

What will it mean then, for complex disease research, when every patient
with Crohn’s disease, type 2 diabetes or schizophrenia in the country will have
their genomes available? For locus discovery, the list of disease-associated
variants will continue to grow. In a study of say, 300,000 Crohn’s disease cases
and a million controls, there will be greater than 80% power to detect variants
with odds ratios greater than ~1.1 and a minor allele frequency of 1%. For
variants with frequencies around 0.1%, odds ratios greater than ~1.4 will be
detected. The total number of risk loci will likely be in the thousands, and, by this
stage, insights into disease biology will primarily come from the molecular
pathways and biological mechanisms that these risk loci cluster into and interact

with rather than investigating the genes in isolation. By having entire families
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sequenced, it will also allow the identification of any de novo and rare highly
penetrant variants in complex disease risk. In addition, such sample sizes along
with medical records will also enable well-powered studies on disease
subphenotypes such as clinical progression and drug response. Variants
associated with disease progression may not necessarily also be associated with
disease susceptibility (Lee et al, 2013a), and such studies, along with integration
with real-time monitoring of gut microbiota and cellular markers such as gene
expression and epigenetic marks in disease-relevant cells, will pave the way for

personalised treatments based on an individual’s genetic makeup.
6.2.3 Genetic studies in non-European populations

As many as 96% of published GWAS up to 2011 were conducted in populations
of European descent, yet these populations make up less than 15% of the world
(Bustamante et al, 2011). This disparity is primarily driven by resources -
Western countries overwhelmingly spend more on scientific research, both in
absolute terms and as a proportion of GDP, than do non-Western countries. It is
then no surprise that the types of studies that rely on cutting edge technology
(while costs are still at a premium) are first undertaken in these countries.
Reassuringly, efforts such as the African Genomes Project, targeted funding
efforts from research charities such as the Wellcome Trust, as well as the ever
growing stream of home grown genetic studies emerging from researchers in
Asian and Latin American countries are leading the charge in addressing this

imbalance.

There is great scientific value in expanding complex trait genetics to the rest
of the world. Firstly, as demonstrated for IBD in Chapter 4, much of the risk loci
for complex disorders are likely to be shared across populations. This means that
ascertaining samples from non-European populations is an effective way of
boosting power to detect association. Of course, researchers will need to be
aware of the potential for population stratification, though statistical methods
that account for population stratification and potential heterogeneity between
populations are now quite mature for common variant associations (Morris,

2011; Yang et al, 2014a). Secondly, genetic differences between populations can
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inform biology. SNPs that are monomorphic in Europeans will go undetected in
GWAS, yet finding associations at these variants in non-European populations
will create new leads in understanding disease pathogenesis. When one
considers the genetic diversity of African populations, this will almost certainly
be the case. Moreover, variants that show large differences in effect sizes
between populations point to potential gene-environment interactions, allowing
for insights into the environmental factors that modify disease risk. Different
population histories also create different patterns of LD. These patterns will be
instrumental in fine-mapping efforts to localise causal variants at associated loci
common across populations. Finally, aside from the scientific reasons listed
above, there are clear humanitarian arguments for expanding genetic studies to
non-Western countries and to study the diseases that most burden them. Those
most in need must not be the last to benefit from genetic research (Bustamante

etal, 2011).
6.2.4 Genetic prediction

In addition to gaining a better understanding of disease biology, genetic
information can also potentially be used for disease risk prediction. Prediction
methods for complex diseases typically involve assigning a risk score to an
individual based on their genotypes and previously estimated effect sizes (for
instance, ORs from GWAS) across risk alleles. Risk alleles can be assigned not
only based on known associations, but also include nominally associated
variants. Prediction accuracy can be evaluated by methods such as the receiver
operating characteristic curve (ROC), which estimates the true and false positive
rates of the predictor at various risk score cut-offs (Lasko et al, 2005). The area
under the ROC (AUC) is the probability that for a randomly selected pair of
diseased and healthy individuals, the diseased individual will have a higher risk
score. An AUC of 0.5 means that the prediction method is no better than chance,
while a value of 1 means that the method perfectly discriminates between

diseased and healthy individuals.

For complex autoimmune diseases, genetic risk prediction is still in its

infancy and does not currently offer much in terms of clinical utility. Estimates of
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AUC using just family history of disease, genetic risk loci or the two together in
Crohn’s disease range from 0.56 to 0.74 (Kang et al, 2011; Ruderfer et al, 2010).
Including risk factors such as smoking and age into the risk model may improve
the AUC. Nevertheless, given its high heritability, the theoretical maximum
possible AUC assuming that all Crohn’s disease risk loci have been identified and
effect sizes are accurately measured is estimated to lie between 0.96-0.98
(Jostins and Barrett, 2011; Wray et al, 2010). However, while this figure seems
high, the utility of genetic prediction is limited given the low prevalence of
Crohn’s and other immune-mediated diseases. Even assuming a generous
disease prevalence estimate of 1% and AUC of 0.98, less than 12% of individuals
who test positive (using a sensitivity cut-off of 0.93) will develop disease (Jostins
and Barrett, 2011). Increasing the threshold will increase the proportion of
positively identified individuals but also exclude a higher number of cases from
being identified. While never providing any guarantees, the use of genetic
prediction in complex diseases may ultimately at best aid in disease diagnosis,
and at worst create greater awareness among those most highly at risk for

disease.

6.3 From causal variants to treatment outcomes

In Chapter 1, I discussed potential approaches and challenges involved in
narrowing down a risk locus into a single causal variant. Assuming now that a set
of causal candidates has been identified, what is required to confirm causality?
The direct modelling of these variants in cell lines and model organisms are
likely to play an important role in answering this question, and emerging
technologies such as DNA editing through CRISPR/Cas and engineering induced
pluripotent stem cells (iPSCs) are growing in popularity (Cong et al, 2013; Mali
etal, 2013; Robinton and Daley, 2012). The CRISPR/Cas system involves guiding
a Cas-cleavage enzyme to a specific site of the genome, which is then imprecisely
cleaved and repaired, allowing for specific mutations to be introduced. In vitro
modelling of these mutations in disease relevant cells types (e.g. those generated
from iPSCs) allows for the direct investigation of how these mutations affect

cellular phenotypes such as gene expression and responses to infection;
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generating hypotheses about how these genetic variants lead to disease
susceptibility. Knocking down the relevant genes identified in model organisms
will further enable understanding of how these genes affect the organism as a

whole.

At this point, it is worth discussing about the level of proof required before
causality can be confidently assigned to a genetic variant. From a genetic
association standpoint, defining causality is straightforward, though identifying
it is difficult. A causal variant is one that can explain a statistical association
signal on its own, irrespective of its correlation with other variants. Hence an
associated tag SNP cannot be called causal. From a disease risk standpoint,
however, causality is more nuanced. Given the typical small effect sizes of
associated variants, a causal variant is neither necessary nor sufficient to cause
disease (Visscher et al, 2012). CRISPR/Cas, iPSCs and gene knockouts might
reveal a disease relevant phenotype, but this also does not prove that the
phenotype affects disease risk in the population. It may be the case that we will
never have the ability to definitively prove that the observed biological effect of a

statistically causal variant is also causal in the disease risk sense.

Defining causality may end up being a moot point if the relevant genes that
are identified and biological knowledge gained lead to better treatment
outcomes. Identifying a gene target and the creation of a therapeutic molecule is
difficult. Over 90% of compounds that enter clinical trials fail to gain approval,
reflecting the limited predictive value of preclinical disease models and a lack of
understanding of the long-term consequences of perturbing specific molecules
(Plenge et al, 2013). While GWAS have provided valuable insights into disease
biology, little of this has yet translated into more effective therapeutics. Part of
this is of course due to time - moving from a gene target through clinical trials to
a final approved drug can take well over a decade. Nevertheless, it is hoped that
knowledge of the genes that underlie disease risk will lead to more effective

treatment outcomes.

There is a strong historical precedence for the use of human genetics in drug

development. Before the large-scale identification of susceptibility genes,
132



epidemiological observations were often the catalyst for identifying potential
therapies. Genetic variation in the human population meant that many
individuals carried alleles that mimic the effects of potential therapies. For
instance, the development of statins to lower LDL cholesterol levels and treat
heart disease was based on observations in families with rare
hypercholesterolemia who carried mutations in the LDLR gene. Members of
these families both had higher levels of cholesterol and higher prevalence of
heart disease. Importantly, the number of mutations appeared to affect
cholesterol levels and risk of heart disease in a dose-dependant manner. It was
also known that the HMG-CoA reductase plays an important role in the
production of cholesterol in the liver, and natural products that inhibit this
enzyme (e.g. compactin and lovastatin) lowered LDL cholesterol levels in animal
models (Plenge et al, 2013). Later clinical trials in humans demonstrated the
efficacy and safety of statins, and ultimately showed their effectiveness at

reducing heart disease risk in individuals with high cholesterol.

The role of human genetics in drug development is also supported
retrospectively by drugs that were developed without the use of human genetics,
but whose molecular targets have since been supported by their associations
with disease. In the statins example, variants in the HMGCR gene (which encodes
the HMG-CoA enzyme) were found to be associated with LDL cholesterol by
GWAS (Kathiresan et al,, 2008). Notably, the effect size of the association bears
little relationship to its clinical relevance. The HMGCR signal has an effect on LDL
cholesterol levels of ~2.5 mg/dl per allele (Teslovich et al, 2010), or, to put
another way, approximately one-tenth of a unit of standard deviation - a tiny
effect. Yet statin drugs can reduce LDL levels by around 40 mg/dl (Cholestrol
Treatment Triallists’ Collaborators, 2005). Other retrospective examples include
the targeting of CTLA-4 by abatacept for rheumatoid arthritis (Genovese et al,
2005; Gregersen et al, 2009), IL12B by ustekinumab for Crohn’s disease
(Mannon et al, 2004; Parkes et al, 2007) and PPARG by thiazolidinediones for
type 2 diabetes (Spiegelman, 1998; Zeggini et al.,, 2007).
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The identification of shared risk loci across different diseases also enables
repurposing of existing drugs. By looking at the overlap between GWAS risk loci
and current drugs in development, Sanseau et al. (2012) identified over 100
targets that were associated with a disease other than the one the drug was
being developed for. For instance, TNFSF11 is currently inhibited by denosumab
for treatment of osteoporosis in postmenopausal women. Variants in TNFSF11
are also associated with Crohn’s disease (Franke et al, 2010), and it is tempting
to suggest that this drug may be repurposed (Sanseau et al, 2012). The use of
existing approved drugs also avoids the need for lengthy safety trials, meaning

that treatments can be marketed in a much shorter time frame.

Using GWAS risk loci to guide the development of novel drugs will be a much
bigger challenge. Plenge et al. (2013) list nine criteria for prioritising risk loci

before drug discovery should be considered:

1. The gene harbours a causal variant that is unequivocally associated with a
medical trait of interest

2. The biological function of the causal gene and causal variant are known

3. The gene harbours multiple causal variants of known biological function,
thereby enabling the generation of genotype-phenotype dose-response
curves

4. The gene harbours a loss-of-function allele that protects against disease,
or a gain-of-function allele that increases the risk of disease

5. The genetic trait is related to the clinical indication targeted for treatment

6. The causal variant is associated with an intermediate phenotype that can
be used as a biomarker

7. The gene target is druggable

8. The causal variant is not associated with other adverse event phenotypes

9. Corroborating biological data support genetic findings

Going through this list, it's clear that, with the exception of point 1, the
majority of GWAS risk loci do not yet satisfy any of these criteria. The rationale
for many of these points (e.g. the need for loss-of-function or gain-of-function

alleles) is that it is simply easier to develop drugs that inhibit certain type of
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targets with the current knowledge of assays. This will hopefully change in the
future as technology and assays improve. For instance, kinases were once
thought to be undruggable, though this is now changing with the development of
kinase-inhibitors (Gashaw et al, 2011). Moreover, some GWAS risk loci
themselves may not necessarily be the most actionable drug target, but rather
can inform molecular pathways that are relevant to disease. For instance, if a risk
locus is a ligand, knowing the corresponding receptor (for which drugs are well-
suited to exert their effects on) will offer additional potential targets. Ultimately
however, understanding the disease-relevant biological functions of risk loci will

always remain the first step on the road to drug discovery.
6.4 Concluding remarks

It is almost certain that within the coming decades, low-cost whole genome-
sequencing will become routine, and it is not too much of a stretch to imagine
locus discovery projects involving hundreds of thousands, perhaps even millions,
of whole-genome sequenced cases and controls. While the theoretical framework
of association studies as outlined in Risch and Merikengas (1996) are unlikely to
change, these types of studies will also throw up new methodological challenges
that will need to be overcome. Along with genome-sequencing, large scale
functional genomic studies will ever expand to include greater coverage of cell
types and disease states, and methods to integrate these data sources will play

an important role in understanding biology.

It needs to be emphasised that locus discovery is not an end in itself.
Challenges remain in taking what we’ve learned from genetic studies to build
more complete models of disease pathogenesis and ultimately translating these

into better patient outcomes.
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