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Abstract

Noncoding RNAs (ncRNAs) have become implicated in a variety of regulatory
mechanisms as well as structural roles, suggesting that functional ncRNAs may be more
prevalent in genomes than previously supposed. Nonetheless, in silico ncRNA finding is
difficult, even though a mass of genome sequence is publicly available. Few computational
approaches are really reliable for genome-wide ncRNA finding. This thesis is devoted to

assessing available approaches and trying new solutions for finding ncRNAs in genomes.

In the first half of this thesis, reasons that may contribute to the slow progress of
genome-wide ncRNA finding are explored. A comprehensive analysis on a genome-wide scale
of the credibility of currently used signals for classifying ncRNAs is conducted. Two factors,
conservation of ncRNAs in human-mouse syntenic regions and abundance of covariations
between human-mouse synteny-conserved ncRNAs, are evaluated. The result reveals that
current comparative-genomics-based methods may not be able to find ncRNAs effectively in
mammalian genomes. In addition, possible genomic features that could distinguish real
ncRNAs from pseudogenes are investigated. Two different criteria, distribution of bit scores
and physical clustering in genomes, are applied to filter out tRNA pseudogenes and to enrich
bona-fide tRNA genes. Physiological roles of the tRNA genes in human-mouse
synteny-conserved clusters are discussed and the degradation patterns of tRNA pseudogenes

are analyzed.

In the second half of this thesis, computational techniques are applied to model signals
that may be potentially useful for genome-wide ncRNA finding. A sparse Bayesian learning
algorithm, Eponine, is applied to model the transcription start sites of mammalian ncRNA
genes that are transcribed by RNA polymerase III. In addition to modelling cis-regulatory

elements for transcription, a new computational module, which extends the capability of



Eponine to learn motifs consisting of both primary sequences and RNA secondary structures,
is created. The capability of this new module is demonstrated by applying it to analyze several
known cases of ncRNA motifs. The strength and the weakness of applying this new

computational approach for finding ncRNAs are discussed.
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Chapter 1. Introduction

Over the past decade, numerous novel non-coding RNAs (ncRNAs) have been discovered.
As opposed to classic ncRNAs including transfer RNAs (tRNA), and ribosomal RNAs (rRNA),
these novel ncRNAs are not directly involved in producing proteins. Instead, they are implicated
in a wide variety of regulatory mechanisms, including transcriptional regulation, chromosome
replication, RNA processing and modification, modulation of messenger RNA stability and

translation, and even protein degradation and translocation (for review see Storz 2002).

Although a vast amount of genomic sequence is publicly available, it is unknown how many
ncRNAs there are in different organisms. Much evidence suggests that there are still many
unannotated ncRNA genes in mammalian genomes. For example, a survey on human
chromosomes 21 and 22 suggests that much of the human transcriptome could be transcripts of
ncRNA genes (Kampa et al. 2004). Based on functional annotation of experimentally defined
transcription units, it was claimed that as much as one-third of the mammalian transcriptome
might consist of ncRNA genes (Okazaki et al. 2002). In addition to ncRNA genes, there might be
other functional RNA elements that are hitherto undiscovered. For example, some cis-regulatory
RNA motifs are known to regulate prokaryotic and eukaryotic gene expression at the
post-transcriptional level, however their abundance, distribution, and possible classifications are

generally unknown (for review see Kozak 2005).

Systematic ncRNA finding in complex organisms such as vertebrates is difficult. Although
experimental approaches can collect thousands of transcripts efficiently, ncRNAs, as well as
mRNAs, with low expression levels or with temporal expression patterns may be absent from
experimental preparations. At the same time, most gene finding algorithms have been designed
to predict protein-coding genes, not ncRNAs. Algorithms for ab initio prediction of

protein-coding genes take advantage of propensities in base composition of protein-coding
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regions. These propensities, including usage of amino acids, usage of synonymous codons, and
usage of hexamers (for review see Rogic et al. 2001), cannot be used to distinguish ncRNAs
from random genomic sequences. Although signals that are not specific to protein-coding genes,
such as patterns of splice sites and polyadenylation signals, have also been used by many ab
initio gene finders, many of these signals do not exist in genomic loci of single-exon ncRNAs,
non-polymerase-II transcribed ncRNAs, and non-polyadenylated ncRNAs. Recently attempts
have been made to use the information from comparative genomics to boost the accuracy of ab
initio gene finding in vertebrate genomes (for review see Brent 2005). However, the
development of similarity-based gene finders has also focused on the prediction of

protein-coding genes.

Compared to computational protein-coding gene finding, computational ncRNA finding has
been a relatively neglected field until recently. Before discussing the reasons that may contribute
to the slow progress of genome-wide ncRNA finding (see section 1.4. ), some basic knowledge
of the biological importance of ncRNAs is required and is therefore introduced in the next

section.

1.1. What are ncRNASs

An RNA (ribonucleic acid) molecule is a chain of ribonucleosides that are covalently linked.
The only compositional difference between RNA and DNA (deoxyribonucleic acid) molecules is
the use of ribose sugar in RNA, instead of 2’-deoxyribose sugar in DNA (Figure 1-1), and for

one of the four bases the use of uracil instead of thymine.
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Figure 1-1. Organization of repeating units in RNA and DNA respectively.

As early as the 1960s, it was known that cells contained RNA genes that did not code for
proteins. The transcripts of these RNA genes are called ncRNAs. Classic ncRNAs, such as
tRNAs and rRNAs, were considered as adaptors and scaffolds respectively for protein
production. For a long time, DNA attracted much more attention than RNA, because the latter
did not seem to possess specifically useful features. For example, RNA molecules are more
easily degraded in solution than DNA molecules. In addition, an initial impression was that RNA
might not provide as much structural flexibility as DNA, since RNA helices appear to be more
rigid than DNA helices due to the physical constraints rendered by the 2’-hydroxyl group of the

ribose sugar (see Varani and Pardi 1994).

Nonetheless, RNA-unique features do enable ncRNAs to be functionally active molecules.
Firstly, the 2’-hydroxyl group on the ribose sugar, which is the culprit for RNA’s easy
degradation in solution, blesses RNA with high chemical reactivity. As a result, RNAs can
catalyse chemical reactions without the assistance of proteins. For example, group I and II
introns can perform the functions of spliceosomes by RNA alone (Cech et al. 1981; Kruger et al.

1982). The ability of RNA to catalyze chemical reactions has made many people believe that
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there was an ancient RNA world before the current DNA-and-protein-dominant world (for
review see Joyce 2002). Recent evidence also suggests that n.cRNAs may be responsible for core
mechanisms, such as catalyzing the formation of peptide bonds in protein synthesis in all
organisms (Nissen et al. 2000; Schmeing et al. 2002), and catalyzing the splicing of pre-mRNAs

in eukaryotes (For review see Will and Luhrmann 2001).

Secondly, single-stranded RNA molecules can fold into high-order structures (see section
1.2. for details). Some people believe that the complexity of RNA structures is comparable to
that of proteins (see Klosterman et al. 2004). A variety of regions in RNA molecules can be
functional elements that interact with other molecules. For instance, both the double-stranded
regions and single-stranded regions in folded RNA molecules have been reported as important

protein-binding motifs (see Varani and Pardi 1994).

In recent years, novel regulatory functions have been found to be associated with ncRNAs.
For example, conservation of a microRNA (miRNA), let-7, and conservation of its targets were
found in diverse animals (Pasquinelli et al. 2000; Slack et al. 2000). miRNAs, which are 20-26
bases in length, can regulate expression of other genes by inducing translation repression or
degradation of target mRNAs (for review see Bartel 2004). With pure experimental approaches
and also strategies assisted by in silico comparative genomics, many novel miRNAs have been
discovered (see Grosshans and Slack 2002; see Bentwich et al. 2005) and the number of unique

miRNAs is still growing (Griffiths-Jones et al. 2006).

One stereotype about ncRNA genes is that they are much shorter than protein-coding genes,
because the lengths of all classic ncRNA genes are shorter than 400 bases. The same rule seems
applicable to other novel ncRNAs such as miRNAs. Nonetheless, evidence suggests that short
ncRNA genes might not cover all the hidden ncRNA mass in mammalian genomes. In addition
to short and structural ncRNA genes, thousands of mRNA-like ncRNAs (nc-mRNAs) have been

found (Okazaki et al. 2002; Ota et al. 2004; Carninci et al. 2005; Ravasi et al. 2006). These
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nc-mRNAs can be several kilo bases in length and their gene structures may contain introns.
Little is known about their functions except that they do not appear to code for proteins. Existing
evidence suggests that nc-mRNAs may be implicated in important regulatory mechanisms. One
example is H19, which encodes a 2.3-kb nc-mRNA that appears to influence growth (for review
see Arney 2003) and may behave as a putative tumour suppressor gene (Matouk et al. 2007).
Besides, some mammalian nc-mRNAs, which have been shown to be antisense to normal
transcripts of protein-coding genes (Katayama et al. 2005), seem capable of interfering with
transcription or mRNA stability of protein-coding genes. However, it is still unknown whether
these noncoding transcripts can escape the surveillance of the nonsense-mediated decay (NMD)
system which can eliminate aberrant transcripts with premature stop codons (for review see
Weischenfeldt et al. 2005). The discovery of nc-mRNA transcripts has brought us more

questions than answers to the roles of ncRNAs in vertebrates.

In addition to recently discovered regulatory roles of many ncRNA genes, RNA motifs in
transcripts have long been known as important regulators of gene expression. Cis-regulatory
RNA motifs can regulate transcription termination, mRNA decay (for review see Steege 2000),
translation regulation (for review see Kozak 2005), etc. For example, rho-independent
transcriptional terminators, which are believed to be composed of a stable hairpin and a
uridine-rich region, can determine the 3’ boundaries of polycistronic transcription units in E. coli
and in B. subtilis (Farnham and Platt 1981; Ingham et al. 1999). Recently, novel ncRNA motifs
in bacterial transcripts have also been found to form switch controls of gene expression, which
can respond to concentration changes of small metabolites (Mandal et al. 2003; Nahvi et al.
2004). Cis-regulatory RNA motifs are also implicated in the efficiency of translation initiation
(for review see Lopez-Lastra et al. 2005) and the decay of mRNAs (Ringner and Krogh 2005) in
eukaryotes. The word ncRNA is actually a common name for diverse classes of

non-protein-coding genes and versatile functional elements in transcripts. For simplicity, both
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ncRNA genes and intragenic RNA motifs are generally referred to as ncRNAs in the rest of this

thesis.

1.2. RNA structures

One of the most important characteristics of many ncRNAs is their capability to fold into
high-order structures. It is widely believed that conservation of structure is more important than
of primary-sequence motifs for ncRNA function. Features of RNA structures, such as folding
stability and multi-species conservation of structures, have been used for genome-wide ncRNA
finding (Rivas et al. 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 2005).
Consequently, before further discussion of the current status of genome-wide ncRNA finding
(see section 1.4. for details), it is necessary to give an overview of RNA structures and available

algorithms for RNA structure prediction.

RNA folding seems to be a hierarchical process: initially secondary-structure motifs form in
the primary sequence, and then tertiary structures are formed through interactions between
secondary-structure motifs (see Onoa and Tinoco 2004). Although the details of RNA folding
may require further refinement, this hierarchical view has been a useful guideline for studying
and predicting RNA structures. RNA secondary-structure motifs are introduced in subsection
1.2.1. and RNA tertiary-structure motifs are introduced in subsection 1.2.2. Algorithms for

predicting RNA structures are introduced in section 1.3.

1.2.1. RNA secondary-structure motifs

Similar to DNA double helices, RNA can form anti-parallel helices (see Westhof and
Michel 1994). By and large, RNA helices are held together by the hydrogen bonds formed
between Watson-Crick base pairs. In addition to standard types of A-U and G-C pairs, G-U type

pairs are frequently seen in RNA helices and are regarded as valid wobble pairs. Base pairs other
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than A-U, G-C or G-U are regarded as non-canonical in RNA helices. Non-canonical base pairs
are not completely prohibited from real-world RNA secondary structures and may play key roles
in tertiary interactions (for review see Gutell et al. 1994). They may also serve as specialized

sites for interacting with other macromolecules, such as proteins (for review see Hermann and

Westhof 1999).

Whereas DNA double helices preferably adopt B-form structures in solution, RNA helices
adopt mainly A-form structures. Due to the presence of a 2’-hydroxyl group of each RNA ribose
sugar, each ribose should assume the 3’-endo conformation to avoid steric clashes beween the
2’-hydroxyl group and the C8 atom (of the purine) or C6 atom (of the pyrimidine) that are
attached to the ribose (see Neidle 2002). No B-form RNA helices have ever been reported.

Consequently, the thermodynamic parameters for RNA helices are different from those of DNA

helices.
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Figure 1-2. Elements of RNA secondary structures

RNA helices can be formed either intra-molecularly or inter-molecularly, although
inter-molecular helices are not further discussed in this thesis. Only the features of the secondary
structures formed intra-molecularly are of interest, because inter-molecular interactions are

currently not used for genome-wide ncRNA finding.
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When an RNA molecule fold back on itself, a number of paired regions may form. All the
base pairs formed intra-molecularly at the secondary-structure level are supposed to obey the
nested rule: for any two base pairs, i-j and k-1, where i < j, k <, and, 1 <k, the order of the 4
bases should be either i <k < | <j (Figure 1-2, A) or i <j <k < (Figure 1-2, B). A region of

continuous base pairs in an RNA secondary structure is referred to as a stem.

For the unpaired regions in an RNA secondary structure, a series of names can be used to
describe them according to their respective relations to the nearest neighbouring stems. A
“hairpin loop” is the terminal unpaired region of a stem (Figure 1-2, hairpin loop). A “bulge
loop” is a region where at least one unpaired ribonucleotide is on one strand of a stem, while all
ribonucleotides on the opposite strand are base paired (Figure 1-2, bulge loop). An “interior
loop”, which linearly separates two stems, is formed when there is at least one unpaired

ribonucleotide on each strand (Figure 1-2, interior loop).

A hairpin loop together with its nearest stem is referred to as a hairpin. The formation of
hairpins is possibly one of the most fascinating features of ncRNAs. One of the best known
examples of hairpins is that of tRNA which has a canonical cloverleaf-like secondary structure

(Figure 1-3).
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Figure 1-3. The cloverleaf-like secondary structure of a tRNA

This diagram of the cloverleaf-like secondary structure of a human Lys-tRNA is plotted by RNAplot of
ViennaRNA package (Hofacker 2006). The human Lys-tRNA sequence 1is retrieved from
NCBI35:Chr11:59080478-59080550.

1.2.2. RNA tertiary structures

Specific combinations of RNA secondary-structure motifs are necessary for RNA molecules
to fold into functional tertiary structures. Well known RNA tertiary-structure motifs include base
triples, kissing hairpin loops, ribose zippers, etc. (see Tamura et al. 2004). Predicting the
complete tertiary structure of ncRNAs is not investigated in this thesis, because determining it
using pure computational approaches is very difficult and it is not essential for the algorithms

devoted to simply finding ncRNAs in genomes.

There are a number of reasons for the prediction of ncRNA tertiary structures being difficult.
Firstly, the interactions between interacting strands of RNA molecules do not always adhere to
the Watson-Crick base-pairing rule (for review see Leontis and Westhof 2003). Secondly, the
interaction rules governing the formation of tertiary-structure motifs have still not been studied
in detail. Thirdly, the computational complexity of predicting RNA tertiary structures is much

higher than that of predicting RNA secondary structures (see subsection 1.3.3.3. ). Therefore
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only those tertiary-structure motifs that can be simultaneously predicted by existing

secondary-structure prediction algorithms are covered in the next two subsections (1.2.2.1. and

1.2.2.2.).

1.2.2.1. Co-axial stacking

A quasi-continuous helix can be formed when two adjacent stems stack co-axially. For
instance, in the final inverted L-shaped conformation of tRNAs, there are two co-axial stackings:
one is between the acceptor arm and the T arm (Figure 1-3) and the other is between the D-arm

and the anticodon arm (Figure 1-3).

Co-axial stacking is an important force to guide secondary-structure motifs of an RNA
molecule to fold into functional tertiary structures. Co-axial stacking proved to enhance the
stability of RNA secondary structures (Walter et al. 1994). Besides, co-axial stacking may be
important for stabilizing the multi-loop junctions in RNA secondary structures (Walter et al.
1994). Evidence suggests that taking the co-axial stacking into consideration can be useful for

improving the predictions of RNA secondary structures (Walter et al. 1994).

1.2.2.2. Pseudoknots
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Figure 1-4. Non-nested base pairs in a pseudoknot

A pseudoknot is defined as a double-stranded region, which is formed between the loop
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region of a hairpin and the single-stranded region outside this loop (Figure 1-4). The first
experimental example of pseudoknots was found at the 3’ end of turnip yellow mosaic virus
(TYMV) RNA (Rietveld et al. 1982). The nested rule of base pairs in stems at the
secondary-structure level (for details see subsection 1.2.1. ) is broken by the formation of base
pairs in pseudoknots. Developing prediction algorithms that consider pseudoknots is
considerably harder because of this. A pseudoknot is sometimes categorized as a
secondary-structure motif, because it can be decomposed into individual hairpins. However, due
to the relationships between base pairs in a pseudoknot, pseudoknots are sometimes classified as

tertiary-structure motifs.

Pseudoknots have been found to play diverse and important roles, such as forming the
catalytic core of ribozymes, binding of regulators for translation, and inducing ribosomal

frameshifting in many viruses (see Staple and Butcher 2005).

1.2.3. The dynamic aspect of RNA structures

Instead of regarding RNAs as static molecules consisting of static stem-loop structures, a
“dynamic” view should be considered. One RNA molecule can potentially fold into various
conformations (see Flamm et al. 2000). In response to certain circumstances, such as fluctuations
of ligand concentrations (Mandal et al. 2003), or particular ionic strength (Olson et al. 1976;
Rangan and Woodson 2003), RNA molecules may fold into alternative structures. Besides,
interaction of RNA molecules with other macromolecules can induce conformational changes
(Rould et al. 1991; Cavarelli et al. 1993). Post-transcriptional modification of ncRNAs can also
affect the stability of RNA structures (for review see Helm 2006). Prediction strategies for
ncRNAs should therefore take into account the potential for RNA molecules to adopt alternative
structures under different conditions. This is considered further when developing loop-dependent

rules for predicting RNA secondary structures (for details see subsection 1.3.1.2. ) and in
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locating local hairpins for creating models of RNA motifs (for details see subsection 4.2.1.1.).

1.2.4. The definition of “RNA motifs used in this thesis

In the remainder of this thesis, “RNA motifs” are used to describe combinations of
primary-sequence motifs and stem-loop structures, where stem structures consist mainly of
Watson-Crick base pairs. However, it should be noted that the exact meaning of this term might
not be consistent across all research fields. For example, “RNA motifs” in structural biology
specifically refer to combinations of non-Watson-Crick base pairs that enable the phosphodiester

backbones of interacting RNA strands to form distinctive folds (see Leontis and Westhof 2003).

1.3. Prediction of RNA structures

Although experimental approaches are available for determining structures of RNA
molecules (for review see Neidle 2002), there are certain limitations. For example, X-ray
crystallography can provide high-resolution structural information, however the process of
crystallization is a slow process and not very predictable (see Ke and Doudna 2004). Besides,
ncRNAs can be larger than the size at which current nuclear magnetic resonance (NMR)

methods can work effectively (see Lukavsky and Puglisi 2005).

Given these limitations, computational methods can be valuable, especially when the
lengths of the ncRNAs of interest are longer than 100 bases, which is the upper limit for NMR
RNA structure determination (for review see Riek et al. 2000). The prediction of RNA structures
is often narrowed down through first predicting RNA secondary structures. One reason is that
RNA tertiary structures seem to be held by tertiary interactions between secondary-structure
motifs. It is generally believed that with reliable predictions of secondary structures, it should be
possible to infer the tertiary structures, although as discussed in 1.2.2. predicting complete RNA

tertiary structures is not the objective of this thesis.
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Intuitively, predicting RNA secondary structure is similar to finding the alignments between
two nucleic acid sequences, except that in this case the aligned strand is composed of
complementary bases rather than identical or similar bases. Various algorithms have been
designed for predicting RNA secondary structures. These algorithms can be generally
categorized into three classes: minimization of free energy, phylogenetic comparative analysis,
and probabilistic models. These algorithms are introduced in subsections 1.3.1. , 1.3.2. | and

1.3.3.

1.3.1. Minimization of free energy (MFE)

1.3.1.1. Base-pair dependent energy rule

Energy minimization is one of the favourite ab initio methods for predicting RNA
secondary structures. The first algorithm that was introduced is the base-pair dependent energy
rule (Nussinov and Jacobson 1980). In this energy model, formation of hydrogen bonds for each
base pair is assumed to be independent from its neighbouring base pairs. The overall energy is

expressed as of the sum of energies of individual base pairs in an RNA molecule:

E(S) = Ze(i,j) [1.1]

i.j in S
The optimal solution can be found by using a dynamic programming algorithm. The

recursion for this can be written as

W(i,j)zoptimal{w(?H’j_l)+e(i’.j)_ .
W(ai,k-1)+W(Kk,j), i<k<]j

[1.2]
where W(i, j) is the minimum folding energy for the region from base i to base j in a given

RNA sequence. In [1.2], if base i can pair with base j, e(i, j) returns the pairing energy

(presumably some negative values), positive infinity otherwise. “k” is sometimes called the

branching site, because sequence i to j is divided into two parts: i to kK — 1, and K to j. In real

hairpins, short-range base pairs are not permitted due to sterical hindrance. If (j — i) is smaller



14 Chapter 1. Introduction

than 4, W(i, j) returns positive infinity. The time complexity of the recursion is O(N*), where N is
the length of each sequence. W(i, j) can also be used to find the structure with the maximum
number of base pairs for any given RNA molecule, if used with an energy function e(i, j) that

returns 1 when base i and base j are paired, and 0 otherwise.

However, based on biochemical data, it has been generally accepted that the thermodynamic
stability of a base pair depends on the identity of nearest neighbours (for review see Borer et al.
1974). This rule is also termed as the individual nearest-neighbour (INN) rule (Gray 1997).
Clearly, the base-pair dependent energy rule is not compatible with the INN rule, because the
energy term, €(i, j), considers only the energy contributed by formation of hydrogen bonds

between base i and j, but not the energy contributed by the stacking of neighbouring bases.

1.3.1.2. Loop-dependent rule

The first free-energy formulation that takes dependence of base pair energy on nearest
neighbours into consideration is the loop-dependent rule. The main idea is to decompose an

RNA secondary structure into combinations of individual hairpins (Zuker and Stiegler 1981):

E®S) = D e, j)+e(ly) [1.3]

i.j in s
, where Le is the structure that may fold by sequence outside the range between i and j.

The optimal solution can be found by using a dynamic programming algorithm. The

recursion 1s:

W(i+1,))
W, j-1)
W(i,j) = optimal Vi, j) [1.4]
optimal W (i,k)+W (k +1, j)

i<k<j
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hd, J)
R () FAY/ (RS A S )
V(i,j) = optimal VBI . j) [1.5]

VM(i, J)

VBI(i,j)= optimal ebi(i, j,k,1)+V (k1)

i<k<l<j [1.6]
keis+ 12
VM(i,j) = a+optimal W({i+1,k)+W(k+1,j-1) [1.7]

i<k<j-1

W(i, ) is similar to the energy term in the recursion for the base-pair dependent energy rule
(see subsection 1.3.1.1.). V(i, j) is the minimum energy for sequence i to j, when base i can pair
with base j. There are several cases for V(i, j): 1) base pair i-j closes a hairpin loop and h is the
energy for this loop; 2) base pair i-j stacks on base pair (i+1)-(j-1) and s is the stacking energy; 3)
base pair i-j closes a bulge or internal loop and the energy for this loop is VBI; 4) base pair i-j
closes a multi-loop and VM is the energy for this situation, where a is the energy penalty for
opening a multi-loop. In VBI [1.6], ebi denotes the loop region closed by base pair i-j and

containing base pair k-I.

The computational complexity of [1.7] is O(N®), and the complexity of [1.6] is O(N*). In
order to limit the time complexity of [1.6], an additional constraint, where (k - i + j — |) must be
no greater than some fixed number, can be added. Lots of extensions have been made to include
additional energy terms, such as single-base stacking, mismatched pair stacking, coaxial helix
stacking (Walter et al. 1994; Rivas and Eddy 1999), empirical rules, and pseudoknots (Rivas and

Eddy 1999).

The general problem of predicting pseudoknots has been proven to a non-deterministic

polynomial (NP-complete) problem (Lyngso and Pedersen 2000). Several algorithms are now
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available for predicting optimal pseudoknot-inclusive structures under certain constraints (Rivas
and Eddy 1999; Dirks and Pierce 2003; Matsui et al. 2004). However using these algorithms,
predictions of some complex cases, such as interlaced pseudoknots, are not guaranteed to be
optimal. Besides this, the computational complexities in time and space can be as high as O(N°)
and O(N*) respectively. Therefore, only simple pseudoknots in short RNA sequences can be

predicted within a reasonable period of time using these approaches.

1.3.1.3. Considerations when using MFE based approaches

One concern about using MFE based approaches to predict RNA secondary structures is its
high error rate. It is suggested that only 50% — 70% of base pairs in RNA secondary structures
can be correctly predicted by using minimization of free energy (Eddy 2004). Several reasons
account for this situation. Firstly, thermodynamic parameters are not complete. Not all possible
combinations of sequences in loops, stacked bases, etc. have been experimentally evaluated.
Secondly, structures with minimal free energies are not necessarily the biologically functional
ones (Konings and Gutell 1995; Fields and Gutell 1996). In order to address this problem of
alternative structures, programs such as MFOLD (Zuker 1989) were designed to predict multiple
alternative, but less stable, secondary structures for one RNA molecule. MFOLD can also use
experimental results as folding constraints (Zuker 1989). Further experiments can be designed to
test predictions and feed back into the prediction process. This iterative process is very useful in

the determination of RNA secondary structures.

1.3.2. Phylogenetic covariation analysis

Unlike MFE based methods, which can be used on a single sequence, phylogenetic
covariation analysis depends on alignments of multiple related sequences. These could be either
expressed ncRNA or genome sequence and could be from different species or from paralogous

regions within a single genome. The approach takes compensatory mutations (covariations)
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found within these alignments as indicators of conserved double-stranded regions. The basic
assumption is that the functions of ncRNAs depend more on high-order structures than on
primary sequences. Therefore compensatory mutations that preserve the pairing potential in
helices can support the existence of conserved structures. Conversely, if the mutations that are
found in naturally existing homologues can destabilize the putative helical regions, the structures

are unlikely to be truly functional in vivo.

Phylogenetic covariation analyses have been successfully applied to the elucidation of the
structures of rRNAs, class I and class II introns, and snRNAs (James et al. 1989). Putative
covariations can also be used as constraints in running programs using MFE to refine the
predicted structure (Shanab and Maxwell 1991). This approach has been demonstrated to be one

effective approach for determining the higher-order structures of large RNAs (Gutell et al. 1994)

A phylogenetic covariation analysis for RNA secondary structure prediction depends on
appropriate alignments of homologous sequences. If functionally related ncRNAs are really
divergent, too many mutations may prevent us from obtaining optimal alignments for structure
predictions. On the other hand, if the number of covariations in ncRNA homologues is small, the
information content may not be sufficient to validate putative stem regions. This paradox is also
applicable to other algorithms that use comparative genomics for ncRNA finding. The suitability
of using comparative genomics for genome-wide ncRNA finding is further investigated in

subsection 1.4.2. and in chapter 2.

1.3.3. Grammatical approaches for RNA sequence analysis

Ideas from computational linguistics have been applied to RNA secondary structure
analysis. One important example is the application of stochastic context-free grammars to RNA
structure (RNA SCFGs) (Eddy and Durbin 1994; Sakakibara et al. 1994), which provide a way

to perform probabilistic modelling of RNA secondary structures. SCFGs are a stochastic version
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of context-free grammars, which correspond to the second level of the Chomsky hierarchy of
transformational grammars (Chomsky 1959). Other grammar-based approaches have also been
proposed to model limited types of RNA tertiary-structure motifs. Before further discussing

grammar-based RNA analysis, I introduce some basics of computational linguistics.

In computational linguistics, an important task is to determine whether an observed string is
grammatically correct. The Chomsky hierarchy of transformational grammars (Chomsky 1959)
provides a general theory for modelling strings of symbols. A transformation grammar can be
considered as a device that can generate strings of symbols. A transformational grammar consists
of several components: 1) a finite set of terminal symbols; 2) a finite set of nonterminal symbols;
3) a finite set of production rules. Terminal symbols correspond to the actual symbols that may
appear in a string that can be observed in a particular language. Nonterminals can be transformed,
by a production rule, into a new string of terminals and/or nonterminals. Transformational
grammars are also called generative grammars because of their capability of generating strings of
symbols. Here is an example of a simple generative grammar in which there is only one

production rule:

S>aS|e.

S is a nonterminal; & is a terminal; & is a special terminal to represent an empty string; “=>”
means transformation; a vertical bar means “or”. This production rule says that a nonterminal S
can be transformed into aS or ¢. Such a simple generative grammar is capable of generating

strings consisting of a’s of any length.

By incorporating more nonterminals and more terminals into a generative grammar, a string
of symbols with a more complicated structure can be modelled. An important feature of the
Chomsky hierarchy is its capability to model a variety of strings with different levels of

structural complexities. In computational linguistics, “structure” is used to indicate the
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correlations between different symbols in a string. In order to model structures of different
complexities, Chomsky described four levels of restrictions on the production rules. Accordingly,
transformational grammars are classified into four classes, which form the Chomsky hierarchy of

transformational grammars. The Chomsky hierarchy can be expressed in a set inclusion form:

regular — context-free < context-sensitive < unrestricted.

The ordering in this hierarchy indicates the relative descriptive power of the grammars. The
grammars on the left-hand side are more restricted than the ones that are on the right-hand side.
Regular grammars, which are the most restricted and lowest level of the Chomsky hierarchy,
allows production rules only in the form of “W - aS”, “W > a”, or “W - &, where W and S
can be any nonterminals and terminals, respectively. & is an empty string. Regular grammars
can generate any strings. However, regular grammars are unsuitable for describing high-order
correlations, such as the nested pairwise correlations (Figure 1-5 A) in the secondary structures
that can be folded in an RNA molecule. In the next two subsections, I introduce the
grammar-based approaches for determining RNA secondary structures and for finding related

RNA sequences in sequence databases, respectively.
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Figure 1-5 Two representations of the pairwise correlations in an RNA molecule with two non-interlaced hairpins

(A) The nested pairwise correlations formed in an RNA molecule with two hairpins (B) The parse tree of the nested
pairwise correlations in (A)

1.3.3.1. SCFG-based RNA secondary structure analysis

Context-free grammars, which are a higher level in the Chomsky hierarchy than are regular
grammars, have been used to model the RNA secondary structures. For instance, any stems in
RNA secondary structures, such as the arms in figure 1-3, can be generated by the following

production rule that adheres to CFGs:

S > aSu| cSg | gSc | uSa | gSu | uSg | £ . (paired production)

Bulges or loops in RNA secondary structures can be generated by

S > aS|cS|gS|uS, or (left unpaired production)

S = Sa | Sc| Sg| Su. (right unpaired production)
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Taking the RNA secondary structures in Figure 1-2 as the example, the hairpin loops can be
generated by left unpaired productions; the bulge shown on the right-hand side of Figure 1-2 B

can be generated by right unpaired productions.

For the cases where there are multiple hairpins folded by an RNA molecule, as in the case

in Figure 1-5 A, a rule of bifurcation is required:

S = SS. (bifurcation)

The secondary structure of an RNA molecule can be represented as a so-called parse tree

(Figure 1-5 B).

The RNA CFG described above essentially follows the base-pair dependent rule, which is
used in the Nussinov’s algorithm for predicting RNA secondary structures. In terms of predicting
the RNA secondary structure for an RNA sequence, a better energy rule, as suggested at the end
of subsection 1.3.1.1, is the individual nearest-neighbour rule. An RNA CFG can also be
extended to follow the INN rule by incorporating more nonterminals and modifying the original

production rules (Durbin et al. 1998).

One problem with using an RNA CFG is that it is only possible to decide whether an RNA
sequence can be generated by this grammar. In the cases where many parse trees exist for an
RNA sequence given an RNA CFQG, it is impossible to determine which tree (i.e. secondary
structure) is the most probable one. One solution to improve this situation is using a stochastic
form of RNA CFGs. In stochastic SCFGs, probabilities can be assigned to different production
rules. For instance, in an RNA SCFG, non-Watson-Crick G-U pairs are accepted in RNA helices
but should be generated with a lower frequency than Watson-Crick G-C and A-U pairs are. The
probabilities of different production rules, including bifurcations, paired production, and
unpaired productions, can be estimated from the known secondary structures folded in

well-studied RNA sequences.
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In order to use an RNA SCFG to determine RNA secondary structures, we need algorithms
that can align sequences to the grammar. The relevant algorithms include the
Cocke-Younger-Kasami (CYK) algorithm, the inside-outside algorithm, etc. The CYK algorithm
(Durbin et al. 1998) can be used to find the most probable parse tree for a sequence given a
SCFG. The inside-outside algorithm (Durbin et al. 1998) can be used to calculate the probability
of a sequence with an RNA SCFG. For predicting RNA secondary structures, both the CYK and
inside-outside algorithms have the same the algorithmic complexity as the Zuker’s algorithm

does (see subsection 1.3.1.2).

The score of a sequence X is often given as a log-odds ratio, log (P(X,zA' |8)/P(X|¢)) (Durbin
et al. 1998). P(X,; |9) is the probability of a sequence and the best alignment given an RNA

SCFG. This probability, P(X,; |@), is calculated by multiplying together the probabilities of the

productions chosen to generate the best alignment ( zA' ) of X to the RNA SCFG 4. P(X|@), is the
probability of generating X by a null (random) model ¢. When base-2 logarithms are used to

calculate the log-odds ratios, scores are reported in bits and are so called bit scores.

1.3.3.2. RNA covariance models

SCFGs can be applied to searching for the homologous members of a family of related
RNAs in a sequence database. One approach is the “covariance model” (CM) (Eddy and
Durbin 1994), which is so named because it can describe the compensatory mutations

(covariations) in the consensus secondary structure of homologous ncRNAs.

Given an alignment of related RNAs that share a common structure like the one in Figure
1-5 A, a very simple CM can be written as an ordered list of production rules to model this

RNA family:
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Stem 1 Stem 2
So =2 S;Sg Si 2 cSg... Sz = aS...

S; 2 gSsc... Sg =2 gSjoc...

S; 2 gSqc... Sio 2 uSyig...

Sy = aSs... Si0 2 ¢cSyig...

S5 2 uSs... Si2 2 uSy;...

Se = aSs ... Si3 2 uSy4...

S5 ¢ Si4 > aSis...

Sis2> ¢

In a CM, one nonterminal is needed for each singlet base and one nonterminal is needed for
each base pair. Therefore the number of nonterminals in a CM is about linearly proportional to
the length of the alignment. A pairwise production that is in the form “V = aWb” should have 16
pair emission probabilities; a leftwise or rightwise production, such as “V = aW” or “V - Wa”,
should have 4 singlet emission probabilities. In the rules above, only one production per
production rule is listed and other possible productions are omitted (as indicated by “...”) for
simplicity. In a practical CM that can be used to search for RNAs in a sequence database, further
modification of the production rules is required. For example, additional nonterminals and
productions for modelling insertions and deletions may be required in either pairwise production

rules or singlet production rules.

The parameters of a CM can be estimated from a curated RNA sequence alignment, which
should reveal the consensus secondary structure of a family of related RNAs. For instance, the
probabilities of different singlet bases and base pairs are calculated per column in the sequence

alignment, and are used as the parameters in the production rules of a CM.

1.3.3.3. Modelling high-order RNA structures using grammar-based approaches

SCFGs are suitable for modelling the nested base pairs in RNA secondary structures.
However, in higher-order RNA structures, the interactions between bases may not follow the

nested rule.
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In RNA tertiary structures, there may be crossing interactions such as:

Figure 1-6. A crossing interaction that may be found in RNA tertiary structures

One example is RNA pseudoknots, as the one shown in Figure 1-4. In the standard forms of
the grammars from the Chomsky hierarchy, context-sensitive grammars (CSGs) are required to
model such structures. CSGs can reorder the nonterminals according to their local context and
thus can generate strings of symbols that contain crossing dependence. However, the general
problem of parsing strings that are generated by CSGs is a nondeterministic polynomial problem

(NP-complete problem) (Durbin et al. 1998).

Attempts have been made to apply grammars, whose computational complexity lies
between CFGs and CSGs, to the modelling of RNA pseudoknots and some limited forms of
RNA tertiary-structure motifs. Crossed-interaction grammars (CIGs) (Rivas and Eddy 2000) are
an example. In addition to the production rules of CFGs, a CIG also has a set of rearrangement
rules. It is the set of rules that make CIGs different from CFGs. The rearrangement rules apply to
reorder the terminals only after all the conventional CFG-compatible nonterminals have been
used to generate terminals. A rearrangement rule consists of a zero-length hole string A and a
set of special nonterminals. The hole string A is used to indicate the possible points that can be
inserted by another string. Special nonterminals, including x, (, and ), are used to specify how

symbols should be rearranged.
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Here is an example of how a complicated pseudoknotted structure can be derived (“—= " is
R

used to represent a rearrangement.):

(@nax(babxanrna) =

a/\axba/\ba:>
R

aba A aba.

CIGs are not the only grammars that can be used to model high-order RNA structures. In
recent years, the variant forms of tree adjoining grammars (TAGs) (Uemura et al. 1999; Matsui

et al. 2004; Chiang et al. 2006) have also been applied to RNA sequence analysis.

A major consideration in applying these grammars to genome-wide RNA analysis is high
computational complexity. The time complexity and storage complexity of parsing the CIG
above is O(n®) and O(n*), respectively, where n is the length of the string. The time complexity
of parsing a TAG variant, which has the capability of modelling RNA secondary structures
including pseudoknots, is O(n’) (Uemura et al. 1999). If more complicated crossed interactions
are allowed, the required computational complexity can be even higher (Rivas and Eddy 2000;

Chiang et al. 20006).

1.4. Current state of genome-wide ncRNA finding

Computational detection of ncRNAs in genomes is not a completely new field. Based on
RNA secondary structure prediction algorithms described above (section 1.3. ), many ad hoc
ncRNA finders have been designed to predict specific classes of ncRNAs in genomes. One of the
most successful cases is genome-wide tRNA finding. For example, tRNAscanSE can identify

99%-100% tRNA genes in genomic sequences with very low false positive rate (Lowe and Eddy



26 Chapter 1. Introduction

1997). In addition, many programs can predict miRNAs in genomes with impressive specificities
and sensitivities. (Ohler et al. 2004; Nam et al. 2005; Xue et al. 2005). In general, once a few
sequences of a particular ncRNA family are available, probabilistic models that describe the
statistical features of both primary-sequence and structural motifs can be derived (Eddy and
Durbin 1994; Sakakibara et al. 1994; Gautheret and Lambert 2001). One widely used
probabilistic model of structural motifs is the covariance model (CM) (see subsection 1.3.3.2.).
Besides, even when only a single ncRNA sequence is known, some algorithms have been created
to search sequence databases for homologs with similar primary-sequence and

secondary-structure motifs (Klein and Eddy 2003; Bafna and Zhang 2004; Havgaard et al. 2005).

While genome-wide searches for ncRNAs of known structural features are relatively
straightforward, ab initio genome-wide ncRNA finding is still very challenging. A probabilistic
model of a particular class of ncRNAs is unlikely to be useful for finding other classes of
ncRNAs, because different classes of ncRNAs do not seem to have many common structural

motifs that can be predicted by available secondary structure prediction algorithms.

Some alternative approaches based on assumptions of RNA structural features have been
developed (Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al.
2005; Pedersen et al. 2006). However, none of them have proved to be effective for finding
different classes of ncRNAs in real genomic sequences. For example, a recent report about
finding ncRNAs in the human genome indicates that existing algorithms may exhibit fairly high
false discovery rates of 50%~70% (Washietl et al. 2007). This situation can be partly attributed
to three factors: 1) few statistically useful features have been found that can be used for
identifying ncRNAs in genomes; 2) some algorithms have been developed based on assumptions
rather than on statistics collected from real data; 3) there are few appropriate data sets of
functional ncRNAs for testing and improving algorithms effectively. These three issues are

discussed in more details in subsections 1.4.1., 1.4.2., and 1.4.3.
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1.4.1. Few statistically useful features for classifying ncRNAs

Unlike protein-coding genes, no compositional propensities at primary sequence level have
been found to be statistically useful for ab initio ncRNA finding in genomes. Intuitively, features
associated with synthesis, maturation, or functions of ncRNAs should be useful for identifying
ncRNAs, however, mechanisms involved in synthesis and function may vary from one class of
ncRNAs to another class of ncRNAs. For example, the transcription of ncRNAs may not use the
general machinery required for mRNAs. RNA polymerase II (RNA pol II) is not the only
polymerase responsible for the transcription of ncRNAs. Though most snRNAs are transcribed
by RNA pol II, U6 snRNA is transcribed by RNA polymerase III (RNA pol III) (Reddy et al.
1987). Also, ncRNAs may not always exist as independent transcription units. Though in
vertebrates, the most abundant snoRNAs, U3, U8, and Ul3 RNAs, are synthesized from
independent transcription units by RNA pol II, most of the other known snoRNAs (U14-U22)

are encoded within introns of protein-coding genes (Kiss and Filipowicz 1995).

With respect to post-transcriptional processing of ncRNAs, there is again a diversity of
mechanisms. Many classes of ncRNAs must be specifically processed in order to perform their
unique functions. For example, the nascent transcripts of tRNAs require RNaseP for removing
their 5’ leader sequences, endonucleases for cutting the middle of their 3’ trailer sequences, and
exonucleases for removing their residual 3’ trailer sequences (for review see Nakanishi and
Nureki 2005). For structural ncRNAs that are transcribed by RNA pol II, it has been shown that
some of these ncRNAs require unique (non-polyadenylation) mechanisms for their 3’ end
maturation. For example, snoRNAs may not undergo the standard mechanism required for 3’ end
maturation of snRNAs (Fatica et al. 2000; Morlando et al. 2002). miRNA precursors must be
processed by RNase-III enzymes, including Drosha and Dicer, in order to generate mature

miRNAs (Lee et al. 2003).
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In summary, biogenesis of ncRNAs does not seem to give as many common and useful
signals for ab initio ncRNA finding in genomes as for protein-coding genes, which makes the

development of algorithms more difficult and complex.

1.4.2. Assumptions made in previous work

The ability to fold into high-order structures is undisputedly the most obvious feature shared
by most structural ncRNAs. Several structure-based assumptions have been used to develop
algorithms for genome-wide ncRNA finding. Firstly, if stable structures were preferred for
ncRNA functions, maybe evolutionary stresses would select ncRNAs with significantly lower
folding energies than random sequences with similar sequence compositions. Secondly, if
secondary structures, instead of primary sequences, were more important for ncRNA function,
covariations should be numerous. Hypothetically, if sufficient covariations could be found, it
should be possible to infer conserved secondary structures in syntenic regions between different

genomes.

The first assumption, i.e. that stable structures are preferred in evolution, is not universally
applicable to all classes of ncRNAs. It is now generally believed that the stability of RNA
secondary structures is insufficient for classifying ncRNAs in genomes (Rivas and Eddy 2000).
Conversely, the second assumption, i.e. there are numerous covariations, has been widely
applied to genome-wide ncRNA finding (Rivas and Eddy 2001; di Bernardo et al. 2003;
Coventry et al. 2004). Although two comparative algorithms, RNAz and EvoFold, do not
explicitly depend on existence of covariations (Washietl et al. 2005; Pedersen et al. 2006), the
abundance of covariations still matters. When there are very few mutations in a set of alignments,
it is difficult to distinguish conservation of high-order structures from other kinds of functional
constraints. In the worst cases where there are no mutations at all, the information content of a

multiple-sequence alignment is equivalent to only one sequence.
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Practical issues emerge when these algorithms are used to find ncRNAs in real genomes.
Genomic alignments taken by these ncRNA-finding algorithms are generally generated by using
primary-sequence alignment algorithms, but seldom by using structural alignment algorithms.
However, primary-sequence alignment algorithms may mis-align sequences containing RNA
secondary structures. There is no guarantee that these alignments (frequently generated by
ClustalW) can reveal covariations correctly. In addition, no comprehensive survey has been
performed to investigate whether covariations among orthologous ncRNAs contain sufficient
information to be useful in prediction. In particular, the abundance of covariations between
orthologous ncRNAs in vertebrate genomes is unknown. A comprehensive survey of

covariations is therefore performed in chapter 2.

1.4.3. Few appropriate data sets for training ncRNA-finding
algorithms

Creating ncRNA-finding algorithms is often hindered by the lack of decent training and test
data sets. tRNA finding is an extremely fortunate case, since there are hundreds of
experimentally verified tRNAs (Sprinzl and Vassilenko 2005); however, there are many classes
of ncRNAs where only a few verified sequences are available. For example, rho-independent
transcription terminators have been reported for two decades (Brendel et al. 1986); however, of
the data set of 148 sequences that are frequently used for training and testing new algorithms
(d'Aubenton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; de Hoon et al. 2005),
only 66 have been checked by either biochemical or genetic approaches (d'Aubenton Carafa et al.
1990). In addition, the creation of sets of mammalian ncRNAs is complicated by abundant
ncRNA-like repetitive elements in genomes. For example, there are hundreds of U6 snRNA-like
sequences in the human genome (Giles et al. 2004), but it is likely that only a few of them are

truly functional (Domitrovich and Kunkel 2003). In fact, no obviously effective rules have been
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developed to distinguish functional ncRNAs from pseudogenes in mammalian genomes.

Sometimes there are insufficient appropriate ncRNAs, even where there are numerous
experimentally verified ncRNAs. For example, some genome-wide ncRNA-finding algorithms,
such as RNAz and MSARI, take only ncRNA alignments with sequence identities greater than
50% and 60% respectively for both training and testing (Coventry et al. 2004; Washietl et al.
2005). These algorithms should work properly if they are used to scan genomic alignments with
at least 50% identity. However, there can be substantially less test data for classes of ncRNAs
that are more divergent at primary sequence level. It turns out that the trained algorithms are
evaluated on biased test data and their performance on certain classes of ncRNAs, for which only

divergent sequences are available, is not well assessed.

1.5. Objectives of this project

There are several issues that can be investigated with the aim of improving genome-wide

ncRNA finding:

® Signals that have been widely adopted by existing algorithms can be evaluated using

data sets from real genomes to better assess their value.

® Promising signals, other than structural features, for finding ncRNAs in real genomes

can be tested.

® Attempts can be made to develop new algorithms combining primary-sequence and

structural features.

In chapter 2, I conduct a comprehensive analysis on a genome-wide scale of the utility of
signals currently used for identifying ncRNAs. I assess two factors: the conservation of ncRNAs
in syntenic regions and the abundance of covariations between the synteny-conserved ncRNAs

(for the definition see the introduction of chapter 2). Besides, the conservation of the
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arrangement of tRNA-gene loci in mammalian genomes is explored. This study should provide
useful information about the evolution of tRNA genes in mammalian genomes, and thus may

guide us to choose suitable strategies for genome-wide ncRNA finding.

The synteny-conservation ratios of ncRNAs may determine the performance of the ncRNA
finding methods based on a comparative strategy. In chapter 3, I explore the criteria that could
potentially be useful for distinguishing functional ncRNAs from pseudogenes, Two different
criteria, the distribution of bit scores and the physical clustering of tRNA genes in the human
genome, are used to separate Rfam-predicted tRNAs into distinct groups, where the functionality

of the tRNAs in each group are assessed.

Modelling the cis-regulatory elements for the transcription of ncRNAs is another strategy
potentially useful for genome-wide ncRNA finding. In the first part of chapter 4, I introduce the
machine learning approaches that may be useful for modelling the transcription regulatory
regions of ncRNAs. In chapter 5, a sparse Bayesian learning system, Eponine, is applied to

modelling the transcription start sites (TSSs) of pol III type II ncRNAs.

How many ncRNAs are still undiscovered in genomes? Given the huge number of genomic
sequences, there is clearly a need for algorithms that can learn common structural motifs in a set
of related sequences, which could then be used to construct probabilistic models of ncRNAs.
Such algorithms might have potential for ab initio ncRNA finding. In the second part of chapter
4, a new module is created to extend the capability of Eponine to learn motifs consisting of both
primary-sequence and RNA structural motifs. In chapter 6, real applications of this new module

are demonstrated and its strength and weakness are discussed.
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for ncRNA finding

Among various approaches for ab initio ncRNA finding, comparative algorithms have
been claimed to have good performance in identifying structural ncRNAs in test data sets
(Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 2005;
Pedersen et al. 2006) and simple genomes, such as bacteria and yeasts (Rivas et al. 2001). One
algorithm, RNAz, was also claimed to perform well in identifying structural ncRNAs in
mammalian genomes (Washietl et al. 2005). One requirement for using these comparative

algorithms is that the input data must be sequence alignments.

Recently, some of these comparative algorithms have been applied to finding ncRNAs in
vertebrate genomes (Washietl et al. 2005; Pedersen et al. 2006), where the alignments used for
prediction were mainly derived from syntenic regions of multiple vertebrate genomes. In this
thesis, such type of alignments is referred to as synteny alignments. However, the properties of
synteny alignments that may contain ncRNAs are not necessarily comparable to the test data
sets used to assess these comparative algorithms. This makes it uncertain whether these
algorithms will have the same performance in finding ncRNAs, when synteny alignments are

used.

For convenience, some terms are defined here. “Synteny-conserved ncRNAs” is used to
indicate ncRNAs, in one organism, that are conserved in the corresponding syntenic regions of
other genomes; if an ncRNA is not synteny-conserved, it is referred to as
“synteny-non-conserved”; “synteny-conservation ratio” of ncRNAs refers to the ratio of one

organism’s ncRNAs that are “synteny-conserved ncRNAs” to the total number.

There are several considerations when using synteny alignments as the target for

32
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genome-wide ncRNA finding. Firstly, if many functional ncRNAs are synteny-non-conserved
in the genomes under investigation, finding ncRNAs using only synteny alignments would
risk missing a significant number of ncRNAs. To date, the synteny-conservation ratio of
different classes of ncRNAs in vertebrate genomes has not been comprehensively surveyed.
One obstacle in carrying out such a survey is that classic ncRNAs, which are frequently
related to repetitive elements in vertebrate genomes, have generally been removed before

building synteny data sets (Schwartz et al. 2003; Frazer et al. 2004; Siepel et al. 2005).

Secondly, if orthologous ncRNAs in the genomes under investigation are so conserved
that only a few covariations are found, it may be difficult to determine whether the sequence
conservation means the existence of RNA high-order structures or simply of primary-sequence
motifs. The number of covariations in alignments of the orthologous ncRNAs may be
expected to be greater for more distantly related organisms. This is why the sequence identity
of a primary-sequence alignment is usually required to be within certain ranges for
comparative ncRNA finding algorithms. For instance, the desired ranges of sequence identity
for running QRNA and ddbRNA are 65%-85% (Rivas and Eddy 2001) and 60%-80% (di
Bernardo et al. 2003), respectively. Likewise, RNAz implicitly requires that the sequences of
orthologous ncRNAs are divergent to a certain extent, because the false positive rate of RNAz
was reported to increase when alignments of high identities were used (Washietl et al. 2005).
However, so far, no systematic survey has been performed to estimate the abundance of

covariations in the orthologous ncRNAs in vertebrate genomes.

This chapter is therefore dedicated to investigating the conservation patterns of ncRNAs
in vertebrate genomes, especially in mammalian genomes. A detailed survey of the
conservation patterns of both classic (such as tRNAs, rRNAs, and snRNAs) and non-classic
(such as miRNAs, snoRNAs, etc) ncRNAs in mammalian genomes was performed, in order to

provide a solid basis for using the mammalian synteny alignments in genome-wide ncRNA
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finding. The conservation patterns explored in this chapter include:

® The synteny-conservation ratios of ncRNAs.

® The abundance of covariations between orthologous ncRNAs.

In the first section of this chapter (section 2.1), a protein-coding gene based strategy for
locating the respective syntenic regions of individual human ncRNAs was used. The
conservation patterns of multiple classes of human ncRNAs in these human-mouse syntenic
regions were then investigated. The synteny-conservation ratios, as well as the abundance of
covariations, of the ncRNAs in the human genome with respect to the mouse genome were
then calculated. A survey of the abundance of covariations was also performed on the
human-mouse synteny-conserved ncRNAs with respect to their best homologues in the
zebrafish genome. Based on this data, the possible effects of using real genomic alignments of

ncRNAs on the performance of several comparative ncRNA finding algorithms was explored.

One caveat with respect to the syntenic-region locating strategy used in the first section
of this chapter is the ignorance of gene-order conservation of ncRNAs. This means that, if
there are local changes of the ncRNA copy numbers and/or of the ncRNA gene order within
syntenic regions, these will be missed. Since the changes caused by evolutionary events may
help explain the observed synteny-conservation ratios of ncRNAs, gene-order conservation is

of interest.

In section 2.2, I examined the conservation/change of the physical arrangements of tRNA
gene loci in mammalian genomes. This study is intended to explore if the pattern of
gene-order conservation may give any insight into the origin of the substantial number of
synteny-non-conserved ncRNAs observed in mammalian genomes. In particular, the
gene-order conservation of clustered tRNA gene loci in mammalian genome is of interest.

This idea was motivated from the observations of many clustered ncRNAs in diverse genomes,
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from virus (Wilson et al. 1972), bacteria (Fournier et al. 1974), yeast (Beckmann et al. 1977),
to primates (Chang et al. 1986). For instance, a tRNA gene cluster consisting of ~150 tRNA
gene loci were found on human chromosome 6 (Mungall et al. 2003). The specific issues |

intend to address in section 2.2 are as follows:
® Are there synteny-conserved clusters of tRNA gene loci?
® Are there many gene-order changes in the syntenic tRNA gene clusters?

This study is useful to genome-wide ncRNA finding in several ways. First, it may
provide a high-resolution view on how tRNA genes have evolved in mammalian genomes, and
may therefore give insights on how alignments should be generated for the purpose of
genome-wide ncRNA finding. Second, this study may potentially be useful for distinguishing
the tRNA gene loci that are functional, from those that have become pseudogenes. Although
the rules derived from the case of mammalian tRNA genes may not necessarily be valid for
the cases of other classes of ncRNA genes, this study may provide an independent piece of

evidence, which is not biased toward protein genes, to the evolution of mammalian genomes.

2.1. The conservation patterns of vertebrate ncRNAs

2.1.1. Materials and Methods

2.1.1.1. Recruiting human ncRNAs

The genomic loci of human tRNAs were retrieved from Ensembl release 29. Ensembl is a
software system that aims to provide a comprehensive annotation of selective eukaryotic
genomes (Birney et al. 2006). Different releases of Ensembl may use different versions of
genome assemblies. The human genome assembly that is used in Ensembl release 29 is NCBI
35, which was released by NCBI in April 2004. (http://www.ncbi.nlm.nih.gov/genome/guide/

human/release notes.html)
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The genomic loci of human tRNAs in Ensembl are annotated using tRNAscanSE, which
is a tRNA finding pipeline that integrates several tRNA finding algorithms (Lowe and Eddy
1997). The algorithms used by tRNAscanSE include tRNAscan (Fichant and Burks 1991),
eufindtRNA (Pavesi et al. 1994), covels (Eddy and Durbin 1994), and coves (Eddy and Durbin
1994). tRNAscan is a hierarchical and rule-based system to identify intragenic promoters and
consensus secondary structures of tRNAs. eufindtRNA was designed to find intragenic
promoters of tRNAs. Covels is a search algorithm that uses a covariance model (CM) (see
subsection 1.3.3.2.) to detect both primary-sequence and secondary-structure motifs with high
specificity in genomes, although it is very slow. In the tRNAscanSE pipeline, both the outputs
of tRNAscan and eufindtRNA are combined into one set of candidate tRNA genes, which are
further assessed by covels in order to remove false positives. The criterion for deciding true
positives is the degree of conservation at both primary-sequence and secondary-structure
levels (Lowe and Eddy 1997). The final structural alignments are generated by coves. In
Ensembl release 29, there are 498 tRNA genes in the human genome, after excluding

pseudogenes and the tRNAs with undetermined codon types.

Other human ncRNAs were retrieved from Rfam 6.1 (Griffiths-Jones et al. 2005). Rfam
is a database of curated sequence alignments and CMs of different classes of ncRNAs. The
CMs created by Rfam are also used to search for novel ncRNAs in the EMBL nucleotide
sequence database (Kanz et al. 2005), which includes sequences of the human genome and the
mouse genome. The sequences and the ncRNAs so predicted are also deposited in Rfam.
Infernal (a system for “INFERence of RNA ALignment”, http://infernal.janelia.org/) is the
software package used by Rfam to build CMs and to find ncRNA-like sequences in the

sequence database (Griffiths-Jones et al. 2005).

The coordinates of Rfam ncRNAs in the human genomic contigs were retrieved from

Rfam.full, which was downloaded from the Rfam ftp site (ftp://ftp.sanger.ac.uk/pub/databases/
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Rfam/). The coordinates were converted to human chromosomal coordinates using software
libraries provided by the Ensembl Project written in the Perl programming language referred
to as Application Programming Interfaces (APIs). Although there have been newer releases of
Ensembl since the analyses in this thesis were performed, NCBI 35 has continued to be used
by a number of later releases of Ensembl (releases 30 ~ 36). This procedure of mapping
ncRNAs to the human genome is exactly the same as that used for generating the ncRNA

annotation of Ensembl releases 30 ~ 36.

2.1.1.2. Searching for human-mouse synteny-conserved ncRNAs

The alignments of human-mouse syntenic regions were retrieved from Ensembl Compara
release 29 (Clamp et al. 2003) using the Ensembl Compara Perl APIs. The Ensembl Compara
database is the component of Ensembl that contains comparative genomic information,
including predictions of orthology relationships between protein-coding genes and synteny
alignments among different genomes. The genome assemblies used by Ensembl Compara
release 29 include human NCBI 35 and mouse NCBI M33 (http://www.ncbi.nlm.nih.gov/

genome/seq/NCBIContigInfo.html).

The existence of synteny-conserved ncRNAs in candidate alignments was searched using
cmsearch and Rfam CMs. cmsearch is a program of the Infernal package that can use a Rfam
CM trained using a particular type of ncRNAs to search for new occurrences of ncRNAs of
the same type. Given a sequence, cmsearch can align it to a Rfam CM and return high scoring
matches. cmsearch reports matches with bit scores (for more details about bit scores see
subsection 1.3.3.1). The regions with bit scores higher than corresponding family-specific
thresholds pre-determined by Rfam (Griffiths-Jones et al. 2003) were considered to be ncRNA

loci.

In order to correctly include classic ncRNAs in genomic regions that are missing from

available resources of genome-wide alignments, an approach was adopted which takes
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advantage of the syntenic regions defined by human-mouse orthologous protein-coding genes.
This approach allows the identification of missing synteny-conserved ncRNAs in initially
unaligned syntenic regions. The basic idea is that, if the relation of a particular ncRNA to its
5’ and 3’ flanking protein-coding genes has been preserved in evolution, a synteny-conserved
ncRNA may also be found in the corresponding syntenic region defined by synteny-conserved

protein-coding genes in the other genome (Figure 2-1, a).

One issue when using this strategy to find the synteny-conserved ncRNAs is the
ambiguity in assigning orthology to protein-coding genes retrieved from different genomes.
For instance, ambiguity can occur whenever multiple protein-coding genes, which are
paralogous to each other in one organism, appear orthologous to a particular gene in the other
organism. Such many-to-one or even many-to-many relationships between protein-coding
genes may cause difficulties in determining unique human-mouse syntenic regions for
individual human ncRNAs. In order to control the complexity of finding the appropriate
syntenic regions, best reciprocal protein homologs (UBRHs), where there is only one uniquely
best hit in both directions between two genomes, were used in the following analyses. Each
pair of UBRHs (UBRHP) consists of two homologous members from the human and mouse
genomes, respectively. All UBRHPs between these two genomes were retrieved from
Ensembl Compara release 29. The 5’ and 3’ flanking protein-coding genes nearest to a
particular human ncRNA, which are also the members of two consecutive UBRHPs, were

used to define the boundaries of the corresponding mouse syntenic region (Figure 2-1, a).

Synteny-conserved counterparts of human ncRNAs in the mouse (UBRHPs-bound)
syntenic regions were obtained by using WU-BLAST alignment algorithm to scan the
UBRHP-bound mouse genome sequence with the human ncRNA sequence. The threshold
used for filtering alignment hits was set to be at least 40% identity. Certainly, the cost of this

heuristic is an inevitable decrease in sensitivity; however hits with low percent identities (<



2.1. The conservation patterns of vertebrate ncRNAs 39

50%) are also unsuitable for using existing algorithms for ab initio ncRNA finding. The
existence of synteny-conserved ncRNAs was further verified using Infernal and Rfam CMs.
Human ncRNAs that were found to be conserved in the syntenic regions were labelled as
“synteny-conserved ncRNAs”; otherwise they were labelled as “synteny-non-conserved
ncRNAs”. It should be noted that the set of UBRHPs, and accordingly, UBRHPs-bound
syntenic regions, can change between releases of Ensembl, even if exactly the same genome
assemblies were used. Such changes result from improvements in the annotations of
protein-coding genes in Ensembl. However, the annotation of genes in the mouse genome
(NCBI M33) was constant through Ensembl releases 29 ~ 31, so there were essentially no
major changes in the set of UBRHPs-bound syntenic regions in the Ensembl Compara

database of these Ensembl releases.

Several complicated situations could be encountered when using the UBRHPs based
approach to find synteny-conserved ncRNAs: 1) ncRNAs at either end of chromosomes may
not be flanked by members of UBRHPs (Figure 2-1, b); 2) the members of two consecutive
UBRHPs may be partitioned into two different chromosomes (Figure 2-1, c); 3) the
relationships of UBRHPs-bound blocks between two genomes may be inconsistent due to
some unknown evolutionary events (Figure 2-1, d). Each of these three situations makes the
search process more difficult, and might thus cause false negatives in determining

synteny-conserved ncRNAs.

In order to reduce the false negatives caused by the first and the second situations, either
the 5 or the 3° member of the flanking UBRHP of a particular ncRNA was used as the
anchoring point to extend the candidate sequence blocks for searching for a synteny-conserved
ncRNA in the second genome. The cases of the second situation are marked as

“inter-chromosomal translocation” (Figure 2-1, c).
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Figure 2-1. Physical relations of human and mouse synteny-conserved ncRNAs to UBRHPs-bound syntenic
regions

Red arrows: one pair of unique best reciprocal protein homologues (UBRHP) in the 5° flanking region of one
ncRNA. Magenta arrows: one UBRHP in the 3’ flanking region of one ncRNA. Yellow arrows:
synteny-conserved ncRNAs. (a) The mouse members of two consecutive UBRHPs are on the same
chromosome. (b) ncRNAs that are near the ends of chromosomes are flanked by only one UBRHPs (either in
the 5° or in the 3’ flanking region). (c) The mouse members of two consecutive UBRHPs are separated into
two chromosomes. (d) The relationship of UBRHPs-bound blocks becomes incompatible between two
genomes due to unknown evolutionary events.

For the third situation, however, it is unknown how to determine the real evolutionary
event leading to the finding of pairs of protein-coding genes that are out of order (Figure 2-1, d,
the brown arrows). It is possible that, in these regions, there might have been
inter-chromosomal rearrangements, pseudogenisations of duplicated genes, etc. Consequently,
it is difficult to define a clear rule to avoid possible false negatives in such complicated cases.
To partially address this problem, one additional measure was adopted. In recruiting two

consecutive UBRHPs to define a suitable syntenic block for one ncRNA, next adjacent
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UBRHPs was tried (Figure 2-1, d, the magenta arrows) if the initial UBRHPs was not on the
same chromosome as their 5* and 3’ flanking UBRHPs (Figure 2-1, d, compare the red and

brown arrows). These regions were marked as “complicated regions”.

In addition, I also considered cases where there might be segmental inversions in the
UBRHPs-bound syntenic regions. I took the incompatibility of the strand combinations of the
UBRHPs in different genomes as an indicator of segmental inversions. The argument is that,
when there are no segmental inversions, the strand combination of the respective members
from 5° and 3> UBRHPs in the first genome should be consistent with the strand combination

in the second genome.

2.1.1.3. Determination of covariations between orthologous ncRNAs

To determine covariations between orthologous ncRNAs, cmalign was used. cmalign is a
program of the Infernal package that can simultaneously align multiple sequences to a Rfam
CM corresponding to a particular type of ncRNAs. Given a set of ncRNAs of the same type,
cmalign returns an alignment augmented with secondary-structure annotation, as shown in
Figure 2-2. Such an output was then processed to determine types of mismatches, which can

either be covariations or just unpaired changes, between stem regions of orthologous ncRNAs.

seq GGUUICCAUGET
Sed FEUUCCAUGET

#=0GC 33 cons  ({(§(((,, << P EEEEEL e
#=GC RF GaggaugUAGCucAgUGET . AgaGCancgGaClTTuuuAluCogaagUog o
sedq UCGEUGEARCCT
Sed O AR CCT
#=GC 535 cons <<< FEEEEIINIIY)
#=GC RF QEGUICgRAaTUCCogqocancocCh

Figure 2-2. A multi-sequence secondary-structure alignment generated by cmalign
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Mismatches in double-stranded regions were further categorized into three subtypes. An
incomplete covariation is a case where only one base was changed at a base-paired position,
such that a conversion occurs between a non-canonical pairing (G-U) and a canonical pairing
(G-C or A-U) (e.g. red boxes in Figure 2-2). A complete covariation is a case where paired
bases were simultaneously mutated to other types of valid pairing, such as G-C to C-G (e.g.
magenta boxes in Figure 2-2), A-U, U-G, or U-A. A base change that results in a
non-canonical and non G-U pairing is referred to as an unpaired change (e.g. green boxes in

Figure 2-2).

The reason for separating incomplete covariations from complete covariations is that the
former type of covariation is a weaker signal for indicating the existence of secondary
structures than the latter type. For instance, when the information of covariations is calculated
using the standard mutual information (MI) measure (Chiu and Kolodziejczak 1991; Gutell et
al. 1992), covariations consisting only of GC and GU pairings do not contribute. However,
incomplete covariations still provide useful information for RNA secondary structure
prediction (Hofacker et al. 2002; Lindgreen et al. 2006), and should be included in covariation
analysis. Thus, in this thesis, the numbers of incomplete covariations and complete

covariations were counted separately.

2.1.2. Evaluating different approaches for finding human-mouse

synteny-conserved ncRNAs

2.1.2.1. Using the synteny alignments retrieved from public-domain resources

By using the human-mouse syntenic regions that were retrieved from Ensembl Compara
release 19, only 26.7% (133/498) of human tRNA genes predicted by tRNAscanSE were
found to have synteny-conserved counterparts in the mouse genome (NCBI M30). By using

the later releases of the Ensembl Compara database (19-31) where different assemblies of
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human (NCBI 35) and mouse (NCBI M32 and NCBI M33) genomes were used, even fewer
synteny-conserved tRNA genes could be found. The differences caused by using different
Ensembl Compara database releases were due to the changes of strategies for building synteny
used by Ensembl. One reason for these changes was to avoid Ensembl Compara containing
alignment artefacts caused by repetitive elements. These results show that using existing
resources for comparative genomics cannot be relied upon to give a correct estimate of the

synteny-conservation ratios of classic ncRNAs between mammalian genomes.

Fortunately, a useful insight was gained from the investigation of tRNA gene clusters in
mammalian genomes. A relevant finding is the identification of multiple human-mouse
synteny-conserved tRNA gene clusters (for details see section 2.2). As many as ~68%
(338/498) of human tRNA genes predicted by tRNAscanSE were found to be in the
human-mouse synteny-conserved tRNA gene clusters, although some of their respective

synteny-conserved counterparts in the mouse genome might have been lost in evolution.

These results suggest that the real synteny-conservation ratio of human and mouse tRNA
genes is much higher than the highest number (26.7%) derived from syntenic alignments
retrieved from the Ensembl Compara database alone. Using other public-domain resources of
comparative genomics would be unlikely to make much difference, because the algorithms
used for creating syntenic alignments in the different releases of the Ensembl Compara
database have also been used by these other resources (Schwartz et al. 2003; Frazer et al.
2004). I concluded that the synteny alignments provided by public-domain databases were
inadequate for the purpose of generating a comprehensive set of human-mouse

synteny-conserved ncRNAs.

2.1.2.2. Using the UBRHPs-bound syntenic regions

Using the UBRHPs-based approach, 74.5% (371/498) of the human tRNA genes that are

predicted by tRNAscanSE were found to be conserved in the mouse syntenic regions. These
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results suggest that, for finding the human-mouse syntenic regions of classic ncRNAs, the
UBRHPs-based approach is likely to be much more effective than using the syntenic regions
retrieved from public-domain resources (such as the Ensembl Compara release 29) of

comparative genomics.

2.1.3. Results

2.1.3.1. The synteny-conservation ratios of human ncRNAs from Rfam

Since the UBRHPs-bound syntenic regions strategy for finding human-mouse
synteny-conserved tRNA genes proved successful, it was further used to identify other
human-mouse synteny-conserved ncRNAs. 4,201 unique human ncRNA genomic loci were
recruited from Rfam 6.1 for analysing their patterns of conservation in human-mouse syntenic
regions. These ncRNAs correspond to 157 classes of ncRNAs (41% of 379 classes of ncRNAs

in Rfam 6.1).

Analysing the patterns of conservation of these ncRNAs in human-mouse syntenic
regions revealed that the synteny-conservation ratios vary greatly among the different classes.
For example, 73.6% of human miRNAs were found to be synteny-conserved; however, only
1.1% of miscellaneous ncRNAs were synteny-conserved (Table 2-1). Overall, 78.1% of the
human ncRNAs identified by Rfam6.1 were not found to be conserved in the corresponding
mouse syntenic regions. The overall initial estimated synteny-conservation ratio for human

ncRNAs is only 21.9%.

In order to evaluate whether the calculated synteny-conservation ratios of human and
mouse ncRNAs might be affected by the quality of the mouse genome assembly, the assembly
status for the UBRHPs-bound syntenic region corresponding to each human ncRNA was
determined. 63.8% of the mouse UBRHPs-bound syntenic regions, where the

synteny-non-conserved ncRNAs are supposed to reside, were found to contain genome
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sequence fragments labelled either unfinished regions (UR) or whole genome shotgun (WGS)
(Table 2-2). It was found that in these UR- or WGS-containing regions there were more
synteny-non-conserved ncRNAs than synteny-conserved ncRNAs (compare Table 2-3 with
Table 2-2). On average, 63.8% of the synteny-non-conserved ncRNAs and 59.8% of the
synteny-conserved ncRNAs are in mouse UR-WGS-containing syntenic regions. The P-value
(Chi-square test) is far less than 0.001. This result suggests that there is an association between
the inability to detect synteny-conserved ncRNAs and the quality of the mouse genome
assembly. Consequently, the synteny-conservation ratio for the human ncRNAs that were
retrieved from Rfam should be higher than ~22%, because some synteny-conserved ncRNAs

will have been missed in mouse UR-WGA regions.

class mapped to NCBI 35|synteny-conserved|synteny-non-conserved
IRES 8 3 (37.5%) 5(62.5%)
ribozyme 3 2 (66.7%) 1 (33.3%)
miRNA 87 64 (73.6%) 23 (26.4%)
snoRNA 390 199 (51.0%) 191 (49.0%)
cis-reg 194 96 (49.5%) 98 (50.5%)
tRNA 842 370 (43.9%) 472 (56.1%)
rRNA 350 13 (3.7%) 337 (96.3%)
misc ncRNA 924 10 (1.1%) 914 (98.9%)
snRNA 1403 163 (11.6%) 1240 (88.4%)
Total 4201 920 (21.9%) 3281 (78.1%)

Table 2-1. Conservation of different classes of Rfam human ncRNAs in human-mouse syntenic regions

“IRES” consists of IRES Bagl, IRES Bip, IRES c-myc, IRES FGF, IRES L-myc, and IRES n-myec.
“ribozyme” consists of RNaseP nuc and RNase MRP. “rRNA” includes 5S rRNA, 5 8S rRNA, and
SSU rRNA 5. “cis-reg” consists of Antizyme FSE, CAESAR, G-CSF_SLDE, GAIT, Histone3, [IFN_gamma,
IRE, REN-SRE, RRE, SECIS, Spi-1, TAR, and Vimentin3. snRNA consists of U1, U2, U4, U5, U6, U7, U12,
and Ul4. Other ncRNAs, including 7SK, S15, SRP_euk arch, Telomerase-vert, Vault, and Y., are grouped
into “misc ncRNA” (miscellaneous ncRNA).
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class synteny-non-conserved in mouse finished contigs |synteny-non-conserved in mouse UR or WGS
IRES 3 (60.0%) 2 (40%)
ribozyme 0 (0.0%) 1 (100%)
miRNA 6 (26.1%) 17 (73.9%)
snoRNA 61 (31.9%) 130 (68.1%)
cis-reg 37 (37.8%) 61 (62.2%)
tRNA 167 (35.4%) 305 (64.6%)
rRNA 104 (30.9%) 233 (69.1%)
misc ncRNA 346 (37.9%) 568 (62.1%)
snRNA 464 (37.4%) 776 (62.6%)
Total 1188 (36.2%) 2093 (63.8%)

Table 2-2. Distribution of the human synteny-non-conserved ncRNAs in the regions corresponding to mouse
finished contigs or UR-WGS-containing regions (regions with unfinished gaps in contig-base sequencing and
regions from whole genome shotgun sequencing)

class synteny-conserved in mouse finished contigs |synteny-conserved in mouse UR or WGS
IRES 2 (66.7%) 1 (33.3%)
ribozyme 1 (50%) 1 (50%)
miRNA 29 (45.3%) 35 (54.7%)
snoRNA 70 (35.2%) 129 (64.8%)
cis-reg 66 (68.8%) 30 (31.3%)
rRNA 6 (46.2%) 7 (53.8%)
tRNA 165 (44.6%) 205 (55.4%)
misc ncRNA 0 (0%) 10 (100%)
snRNA 31 (19%) 132 (81%)
Total 370 (40.2%) 550 (59.8%)

Table 2-3. Distribution of human synteny-conserved ncRNAs in the regions corresponding to mouse finished
contigs or UR-WGS-containing regions (regions with unfinished gaps in contig-base sequencing and regions
from whole genome shotgun sequencing)

These results show that human ncRNAs are more likely to be synteny conserved in

mouse syntenic regions containing only mouse finished contig based sequence (FCS) than in

regions that are unfinished (UR) or whole genome shotgun (WGS), but that the effect is small.

The average synteny-conservation ratio only increases from ~22% (920/4201) to ~24%

(370/1558) when only FCS is considered (see the statistics in the context of mouse finished
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contigs in Table 2-2 and Table 2-3). There is a much bigger variation of synteny-conservation
ratio between categories. When ncRNAs are considered by category, an inverse correlation
was found between the average copy numbers and the synteny-conservation ratios (Figure

2-3).

The previous comparison considers the effect of sequence quality on the apparent ncRNA
synteny-conservation ratio. Another factor is assembly completeness. Among the ncRNAs that
were investigated, surprisingly low synteny-conservation ratios were found between human
and mouse 5S rRNA genes (5S rDNAs). One concern is that the mouse genome assembly
(NCBI M33) may have missed bona fide 5SS rDNAs. Prior to the large-scale sequencing of the
human and the mouse genomes, 5S rDNAs were known to be exist as tandem repeats in both
genomes (Little and Braaten 1989; Suzuki et al. 1994). It is possible that the strategy of whole

genome shotgun sequencing may lead to the omission of tandem repeats, such as 5S rDNAs.

In order to clarify if there are tandemly arranged 5S rDNAs in the mouse genome
assembly used in this chapter, a reliable mouse 5S rDNA (GenBank accession number:
X71804) was used to search for all 5S rDNAs in NCBI M33. This mouse 5S rDNA sequence,
which was published before any large-scale genome sequencing projects were finished, is one
unit of the 5S rDNA tandem repeats in the mouse genome (Hallenberg et al. 1994). The result
indicates that no such tandem repeats can be found in NCBI M33, while the 5S rDNA tandem
repeats can be found in the human genome assembly NCBI 35. In addition, this mouse 5S
rDNA is perfectly identical (100%) to the human 5S rDNA. Consequently, the evidence does
not suggest that functional 5S rDNAs become synteny-non-conserved after the primate-rodent
split. The apparent low synteny-conservation ratio of human and mouse 5S rDNAs is most

likely an artefact caused by the missing of bona fide 5S rDNAs in NCBI M33.

During the preparation of this thesis, a new mouse genome assembly NCBI M36 is

available and the 5S rDNA tandem repeats can be found in this genome assembly. This result
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suggests that the quality of the mouse genome assembly has been improved since the release
of NCBI M33. NCBI M36 may be a suitable genome assembly for re-estimating the

synteny-conservation ratios of human and mouse ncRNAs.
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Figure 2-3. Synteny-conservation ratios and average copy numbers for different categories of human ncRNAs
(mapped by Rfam)

2.1.3.2. Effect of genome rearrangements on synteny conservation

In order to assess any relationship between genome rearrangements and the estimated
synteny-conservation ratios of ncRNAs, chromosome-compatibility and strand-compatibility
were taken as the indicators of inter-chromosomal rearrangement and intra-chromosomal
rearrangement (for the method see subsection 2.1.1.2. ). In the cases where the gene orders and
the strand-relationship of the ncRNAs and their flanking genes have been conserved, the

syntenic regions were assigned as evolutionary-intact regions.

From this analysis, the syntenic blocks between human and mouse were categorised as
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intact regions, segmental inversions, inter-chromosomal translocations, and ‘complicated’
regions, i.e. where evolutionary processes are unclear (Figure 2-1, d). The number of
synteny-conserved and synteny-non-conserved ncRNAs in each of these regions is listed in
Table 2-4. The synteny-conservation ratio of ncRNAs in the syntenic blocks with
inter-chromosomal translocations is not significantly different from that in the intact syntenic
blocks (Chi-square test, P-value >> 0.1). The synteny-conservation ratio of ncRNAs in the
syntenic blocks of the complicated type appears significantly lower than that in the intact
syntenic blocks (Chi-square test, P-value << 0.001), however this could be an artefact where
some synteny-conserved ncRNAs were missed in these regions due to difficulties with the
UBRHPs-based method in such regions. It is possible that the method used in this chapter to
find synteny-conserved ncRNAs was vulnerable to certain types of genome rearrangements.
For instance, if an event of genome rearrangement has changed the linear order of a ncRNA
with respect to its flanking synteny landmarks (i.e. the protein-coding genes that can be used
to define syntenic blocks), this ncRNA may be mistakenly classified as a
synteny-non-conserved one. It can be inferred that the calculated synteny-conservation ratios

of ncRNAs might be underestimated due to genome rearrangements in “complicated” regions.

The synteny-conservation ratio of ncRNAs in the syntenic blocks with segmental
inversions, which are a type of intra-chromosomal rearrangements, is much higher than that in
the intact syntenic blocks (Chi-square test, P-value << 0.001). No obvious explanation could
be found to explain this surprising observation, however such an affect has been reported
before. Inversions were found to reduce recombination dramatically (for review see Hoffmann

et al. 2004).
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synteny conditions synteny-conserved  [synteny-non-conserved [subtotal

evolutionary-intact 579 (24%) 1800 (76%) 2379
segmental inversion 131 (48%) 141 (52%) 272
inter-chromosomal translocation 51 (24%) 163 (76%) 214
complicated 153 (11%) 1183 (89%) 1336

Table 2-4. Numbers of the human-mouse synteny-conserved and the synteny-non-conserved ncRNAs in
regions which have undergone different evolutionary events

2.1.3.3. Few covariations in human-mouse synteny-conserved ncRNAs

The aligned sequences of the set of human-mouse synteny-conserved ncRNAs were
assessed for covariations as previously defined (see subsection 2.1.1.3. ). 64% of
human-mouse synteny-conserved tRNAs and 54% of human-mouse orthologous snRNAs
were found to not contain any covariations. In addition, no covariations could be found in 70%
of human-mouse synteny-conserved miRNAs and in 51% of human-mouse synteny-conserved
snoRNAs. Since incomplete covariations are weaker signals than complete ones (see
subsection 2.1.1.3. ), the cases with only one incomplete covariation were combined with
exactly conserved ones (i.e. these with no mutations in stem regions), as shown in columns

“0-1” base involved in covariations in the following tables (see Table 2-5 and Table 2-7).

On average, 73% of human-mouse synteny-conserved ncRNAs do not provide useful
number of covariations (Table 2-5). These results suggest that the alignments of human-mouse
synteny-conserved ncRNAs do not contain sufficient covariations for ncRNA finding. Even
though the average identity of human-mouse synteny-conserved ncRNAs is 86%, which is
only slightly greater than the upper limit of identities requested by some algorithms (i.e.
ddbRNA and QRNA), covariations are not enriched in the mismatches between the members
of each orthologous ncRNA pair. Much of the primary-sequence difference between

human-mouse synteny-conserved ncRNAs is attributed to mutations that were found in the
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single-stranded regions, and to mutations that may destabilize the stem regions.

Bases in covariations 0-1 2-10 11-23 Subtotal
cis-reg 83 (86%)| 13 (14%)| 0 (0%)| 96 (100%)
misc ncRNA 5(50%)| 4 (40%)| 1(10%)| 10 (100%)
IRES 0(0%)| 2(67%)| 1(33%)| 3 (100%)
miRNA 54 (84%)| 10 (16%)| 0 (0%)| 64 (100%)
ribozymes 0 (0%)| 2(100%)| 0(0%)| 2 (100%)
rRNA 0 (0%)| 12 (92%)| 1(8%)| 13 (100%)
snoRNA 139 (70%)| 60 (30%)| 0 (0%)|199 (100%)
snRNA 110 (67%)| 41 (25%)| 12 (7%)[163 (100%)
tRNA 282 (76%)| 74 (20%)| 14 (4%)|370 (100%)
Subtotal 673 (73%)| 218 (24%)| 29 (3%)920 (100%)

51

Table 2-5. Numbers of the human-mouse synteny-conserved ncRNAs that contain various numbers of

covariations

Table 2-6. Average numbers of bases involved in covariations per sequence of the human-mouse

Human-mouse| Human-zebrafish
cis-reg 0.6 (96) 0(D)
misc ncRNA 3.6 (10) 33.0(2)
IRES 7.7 (3) N/A
miRNA 0.7 (64) 3.2 (20)
ribozyme 5.5(2) N/A
rRNA 6.2 (13) 9.0 (4)
snoRNA 1.2 (199) 3.5(1)
snRNA 2.2 (163) 2.1(79)
tRNA 1.4 (370) 1.1 (185)

synteny-conserved ncRNAs and of the human-zebrafish orthologous ncRNAs

N/A: no synteny-conserved ncRNAs found. Each parenthesized value is the number of sequences for
respective category of ncRNAs.
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Bases in covariations |0-1 2-10 11-33 Subtotal

cis-reg 1 (100%) 0(0%)]  0(0%) 1(100%)
Misc ncRNA 0 (0%) 0(0%)| 2(100%) 2 (100%)
miRNA 7(35%) 12(60%)| 1(5%) 20 (100%)
rRNA 0 (0%) 3(75%)  1(25%)| 4 (100%)
snoRNA 1 (50%) 1 (50%) 0(0%) 2 (100%)
snRNA 51 (64.6%)| 25(31.6%)| 3(3.8%) 79 (100%)
tRNA 133 (71.9%)| 52 (28.1%) 0 (0%)| 185 (100%)
Subtotal 193 (65.9%)| 93 (31.7%)| 7(2.4%)| 293 (100%)

Table 2-7. Numbers of the human-mouse-zebrafish orthologous ncRNAs that contain various numbers of
covariations

2.1.3.4. Only a few covariations in the human-zebrafish best-fit ncRNAs

From the conclusion that there are insufficient covariations between human and mouse
synteny-conserved ncRNAs (for details see subsection 2.1.3.3. ), it is reasonable to infer that
successful detection of ncRNAs through using comparative ncRNA finding approaches may
require more distantly related species than human and mouse. Zebrafish was therefore used in
order to investigate if comparing the human genome with other vertebrate genomes can

provide significantly more covariations for the purpose of ncRNA finding.

Initially, the =zebrafish ncRNAs that are synteny-conserved to human-mouse
synteny-conserved ncRNAs were searched in the human-zebrafish UBRPHs-bound syntenic
regions; however, only 110 out of 920 human-mouse synteny-conserved ncRNAs could be
matched to 58 non-redundant zebrafish ncRNAs. This is most likely due to the lost of synteny

between these distantly related species.

In order to recruit more human-zebrafish orthologous ncRNAs, WU-BLAST (Gish
1996-2004) was used to perform a whole genome search for homologues for individual
human-mouse synteny-conserved ncRNAs. The best hit for each ncRNA was used for further
analysis. 31.8% (293/920) of 920 human-mouse synteny-conserved ncRNAs matched to 112

non-redundant zebrafish ncRNAs. Taking the number of covariations from human-mouse
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synteny-conserved ncRNAs as the reference, the number of covariations was found to increase
in the human-zebrafish orthologous miRNAs and snoRNAs. However, there were not
significantly more covariations in the human-zebrafish orthologous tRNAs and snRNAs than
in the human-mouse synteny-conserved ones (Table 2-6). In fact, there were no useful

covariations in 65.9% (193/293) of the human-zebrafish orthologous ncRNAs (Table 2-7).

2.1.3.5. Using real genomic alignments to assess the performances of ncRNA finding algorithms

The credibility of existing comparative ncRNA finding algorithms generally comes from
benchmarks against adopted test data sets created by aligning well-curated ncRNAs, and not
the alignments of ncRNA-containing genomic sequences. For example, one of the popular
data sets is the alignments of ncRNAs retrieved from Rfam. These Rfam ncRNAs are different
from real genomic sequences in that their 5’ and 3’ flanking sequences have been carefully
trimmed. It is possible that additional noise may be introduced to complicate the detection of
consensus RNA motif, if alignments of real genomic sequences, instead of Rfam seed

sequences, are used.

In the following test, pairwise and three-way genomic alignments of human tRNA genes
were generated to assess the performances of RNAz, QRNA, and ddbRNA. In particular, an
additional 20 bases from both the 5’ and 3’ flanking regions of human tRNA genes were
included when generating the alignments. The reason for including (2 x 20) bases is that,
including longer flanking sequences to generate alignments may result in a significant drop of
identities and only a few of the generated alignments may have identities within the identity
range preferred by the three algorithms under test. On the other hand, including flanking
sequences shorter than 20 bases may not introduce noise into alignments and the property of

the generated alignments is still similar to that of the alignments of curated tRNAs.

One thousand pairwise alignments and one thousand three-way alignments were

generated by using ClustalW 1.83. Three algorithms, RNAz, QRNA, and ddbRNA, were
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tested on these alignments using their default parameters. These algorithms are ncRNA
classifiers. Given a sequence alignment, they will determine whether the sequences as a whole
are ncRNAs or not. The result reveals that the performances of none of these algorithms are as
good as claimed in their respective papers (Table 2-8). For example, in the original paper of
RNAz, the sensitivity was as high as ~95% for detecting tRNA genes by using alignments of
identities within 60% ~ 100%; however, using the genomic alignments of human tRNA genes,
the sensitivity is only ~49%, when pairwise alignments of identities no less than 60% are used
(Table 2-8). In addition, changing the threshold of alignment identity does not improve the

sensitivity of any of the algorithms.

In order to rule out the possibility that the bias of using only human tRNA genes could
cause the drop in sensitivities, a positive control was performed by using the alignments of
human tRNA genes without the 5’ and 3’ flanking regions. The sensitivity of RNAz on this
positive control data set is 94% (data not shown), which is close to the published value (95%)
(Washietl et al. 2005). Consequently, the incorporation of flanking regions of human tRNA
genes in the test alignments is the only obvious explanation that contributes to the drop in
sensitivity of these ncRNA-finding algorithms. These results clearly indicate that it is much
harder to identify ncRNAs from the alignments of real genomic sequences than from the

alignments of curated ncRNAs.



2.1. The conservation patterns of vertebrate ncRNAs
RNAZz (three-way) |ddbRNA (three-way) [RNAz (pairwise) |ddbRNA (pairwise) |QRNA (pairwise)
All 64.2% (642/1000)  |36.2% (362/1000) 61.1% (611/1000) [36.2% (362/1000) 36.6% (366/1000)
Identities >=50% |75.7% (115/152) 57.9% (88/152) 53.8% (148/275) 42.2% (116/275) 46.5% (128/275)
Identities >=60% |75% (6/8) 37.5% (3/8) 48.8% (20/41) 31.7% (13/41) 36.6% (15/41)
Identities >=70% |NA NA 44.4% (8/18) 5% (1/18) 27.8% (5/18)

Table 2-8. Estimating sensitivities of ncRNA-finding algorithms by using the alignments of genomic
sequences of human tRNA genes

Additional 20 bases from both the 5’ and 3’ flanking regions of human tRNA genes are included when
generating alignments of human paralogous tRNA genes. NA means in 1000 alignments, none of them have
identities greater than certain thresholds as indicated in the first column of this table. In parentheses,
numerators are the numbers of alignments that are correctly classified as ncRNAs. Denominators are the
numbers of alignments with identities within a certain range indicated in the first column of this table.

2.1.4. Discussions

2.1.4.1. Practicality of ncRNA prediction based on comparative genomics

With the results already presented in this section (section 2.1), pairwise and three-way
alignments of vertebrate genomes do not appear to be ideal data sets for ncRNA finding
algorithms. Firstly, there are limited numbers of covariations between orthologous ncRNAs
and high primary sequence conservation (see subsections 2.1.3.3. and 2.1.3.4. ). Secondly,
algorithms that take alignments as input data may be unable to properly score RNA motifs

from genome alignments (see subsection 2.1.3.5.).

The difference between the performance of ncRNA finding algorithms on these data sets
and their published performance is due to the different data sets used. Many comparative
ncRNA finding algorithms have been trained and tested using alignments of ncRNAs, such as
seed sequences used to build the Rfam CMs. These alignments are referred to as synthetic
alignments in this thesis, because they are not generated directly by aligning genomic
sequences. ncRNA finding algorithms perform better on synthetic alignments than genomic
alignments. Also, while few, if any, covariations could be found in human-mouse syntenic

ncRNAs, there were larger numbers of covariations in these synthetic alignments. One reason
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for the difference is that they were generated from more distantly related organisms. A second
reason is that the alignments also contained paralogous ncRNAs. Comparison reveals that
paralogous ncRNAs can provide more covariations than comparison of orthologous ncRNAs.
Synthetic alignments of ncRNAs from ncRNA databases (such as Rfam) may include
paralogous ncRNAs. By contrast, synteny alignments should contain few, if any, paralogous

ncRNAs.

Under the situation of few covariations in vertebrate ncRNA alignments, the use of
multi-way alignments of more than three genomes is an alternative choice that should be
considered. In a recent report, eight-way genome alignments were used for genome-wide
ncRNA finding (Pedersen et al. 2006). However, several cases presented by Pedersen et al.
demonstrated that candidate regions of ncRNAs are very well conserved and only a few
putative compensatory mutations could be found. In other words, the evidence presented in
Pedersen et al.’s report actually indicates good conservation at the primary-sequence level.
These cases should therefore be considered only as good candidates for functional elements,

but not necessarily good candidates for RNA structural motifs.

I therefore conclude that, although comparative ncRNA finding algorithms have been
used to find ncRNA in multiple vertebrate genomes, there are still concerns with the results
presented in relevant papers. Further examining the ncRNA conservation patterns in multiple
vertebrate genomes may be required, in order to determine the potential of using multi-way

alignments of vertebrate genomes for ncRNA finding.

It is possible that multi-way ncRNA alignments from sufficient vertebrate genomes will
contain enough variations and covariations for ncRNA finding algorithms to work effectively.
However, a serious issue for practical genome-wide ncRNA finding is the quality of genome
alignments that must be scanned by these algorithms. Up to now, a significant proportion of

existing vertebrate genome assemblies are composed of sequences generated from whole
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genome shotgun sequencing (WGS). Compared to genome assembly composed of mainly
clone based sequencing, genome assemblies consisting of much WGS may contain more
sequence misassignment errors and unfinished regions (Cheung et al. 2003). It can be inferred
that WGS may result in missing synteny-conserved ncRNAs (false negatives). Even when
finished contig sequences are used, multi-way genome alignments provided by public-domain
resources may still miss synteny-conserved ncRNAs. For instance, in the 10-way vertebrate
genome alignments generated using the Pecan algorithm, a new comparative-genomics
resource provided by Ensembl, only 114 human tRNA gene loci were found to be aligned to
their synteny-conserved counterparts in other species (data not shown). This number is much
smaller than that found using the UBRHPs-based approach (371 loci, see subsection 2.1.2.2.),
even though the mouse genome assembly used to generate Pecan alignments consists mainly
of finished contig sequences. The UBRHPs-based approach is useful for evaluating ncRNA
conservation, as it has been used here, but cannot be used in de novo ncRNA prediction as it
relies on the location of ncRNAs in one species already being known. An additional source of
false negatives, when using ncRNA finding algorithms that depend on genome alignments,
will be ncRNAs which are genuinely synteny-non-conserved. In genomes that are distantly
related, numerous ncRNAs may be synteny-non-conserved. Such a situation has been
demonstrated by the low synteny-conservation ratio of human and zebrafish ncRNAs (see
subsection 2.1.3.4.). A similar situation was also encountered when comparing the human and

chicken genomes (Hillier et al. 2004).

When evaluating ncRNA finding algorithm performance on genome alignments, it is also
necessary to consider the number of false positives. Recently ncRNA finding algorithms were
applied to a high-quality set of 28-way vertebrate genome alignments consisting mainly of
finished contig sequences and corresponding to 1% of the human genome sequence (Washietl

et al. 2007). This is part of the ENCODE project (The ENCODE Project Consortium 2007).
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The ncRNA finding algorithms were found to have successfully detected the small number of
known ncRNAs. However with an evaluation using shuffled alignments that preserved the
dinucleotide frequency to that of the 28-way genome alignments, Washietl et al. estimated that
these comparative algorithms for genome-wide ncRNA finding may suffer from a high false

positive rate, 50% ~ 70%.

All in all, in the context of using existing vertebrate genome assemblies and their
alignments, I conclude that the effectiveness of ncRNA finding algorithms that are based on

comparative genomics is limited.

2.1.4.2. Proportion of human ncRNAs which are human-mouse synteny-non-conserved

In the process of collecting synteny-conserved ncRNAs to assess comparative algorithms
for genome-wide ncRNA finding, the occurrence of synteny-non-conserved ncRNAs was also
established. Synteny-conservation ratios of ncRNAs were calculated from this and were found
to vary substantially for ncRNAs in different categories (see subsection 2.1.3.1. ). At first sight
the ratios for all categories appear substantially lower than published estimates of for protein
coding genes (Mouse Genome Sequencing Consortium 2002), which were estimated as high
as 96%. However there are substantial differences in the protein and ncRNA data sets from
which the synteny-conservation ratios have been calculated which should be considered before
any conclusions are drawn. For ncRNA genes in vertebrate genomes it is very difficult to
determine which predictions are bona fide ncRNAs and which are ncRNA pseudogenes.
Estimating synteny-conservation ratios for bona fide ncRNAs of various classes in vertebrate
genomes is therefore difficult. For protein genes it is much easier to determine which ones are
pseudogenes and the figures quoted were calculated after pseudogenes have been excluded,

unlike figures for ncRNAs.

If many synteny-non-conserved ncRNAs are pseudogenes, the synteny-conservation ratio

of human and mouse ncRNAs may be significantly higher than estimated previously in this
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section (2.1). Apart from the effect of pseudogenes, there are several other factors that will
contribute to an underestimate of the synteny-conservation ratios of ncRNAs, though only to a
small extent. Firstly, some uncertain type(s) of genome rearrangements may potentially cause
artefacts in finding synteny-conserved ncRNAs (for details see subsection 2.1.3.2. ). However,
even if the real synteny-conservation ratio of ncRNAs in “complicated” regions is comparable
to that under other evolutionary conditions, the overall synteny-conservation ratio of ncRNAs
would only be ~2% higher than previously estimated. Secondly, ~40% of the mouse genome
assembly (NCBI M33) used in this section was composed of whole genome shotgun
sequencing (WGS). However here too, the effect is small, and estimated to have lowered the
synteny-conservation ratio by only ~2% (for details see subsection 2.1.3.1. ). The major
uncertainty relates to the functionality of synteny-non-conserved ncRNA. This issue is further

explored in the next chapter (chapter 3).

2.2. Gene-order conservation of mammalian tRNA genes

2.2.1. Materials and methods

2.2.1.1. Recruiting mammalian tRNA gene loci

The genomic loci of the human and mouse tRNA genes were retrieved from Ensembl
release 40. These tRNA gene loci were predicted by tRNAscanSE (Lowe and Eddy 1997). The
human and mouse genome assemblies used in the following analysis are NCBI 36 and NCBI
M36, respectively. They are the most updated assemblies that have been annotated by
Ensembl (April 2007, http://www.ensembl.org/index.html). Unlike the previous mouse
genome assemblies that consist of many sequences generated from whole genome shotgun
sequencing (WGS), NCBI M36 is a highly polished genome assembly, where most of the
sequence is composed of finished contig sequences (http://www.ncbi.nlm.nih.gov/projects/

genome/seq/NCBIContigInfo.html). Investigating the gene-order conservation of mammalian
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tRNA genes using this higher quality mouse genome assembly should therefore be far less

affected by genome assembly artefacts.

One issue when trying to understand the evolution of tRNA genes is that, by comparing
two genomes, it is difficult to determine whether a difference (i.e. an unaligned tRNA gene
symbol, referred to subsequently as a ‘gap’) in an alignment between them is caused by the
deletion and/or degradation of tRNA genes in one genome or the insertion of tRNA genes in
the other. One way to try and distinguish between these possibilities is to recruit a set of tRNA
gene loci, as an external reference, from a third genome that is an outgroup of the first two. An
organism that has split from a common ancestor of placental mammals (including human and
mouse) before the primate-rodent split can suffice for this purpose. In the following analysis,
opossum was used which is a species of marsupials. Marsupials diverged from placental
mammals about 180 millions years ago (Lawn et al. 1997). By using such an external
reference, the evolutionary event that led to a gene order difference in human and mouse may
possibly be inferred. For instance, when considering alignments of tRNA gene clusters if a
symbol insertion found in a human-mouse tRNA symbol alignment remains an insertion in a
human-opossum tRNA symbol alignment, this insertion is likely to be the result of a
duplication or transposition event that occurred in the genome of the human ancestors.
Likewise, a deletion and/or degradation of a tRNA gene locus after the primate-rodent split
may also be inferred. The tRNA gene loci of the opossum genome were retrieved from
Ensembl release 40 and the opossum genome assembly used in the following analysis is

MonDom4.

There is one concern about using the tRNA gene arrangements in the opossum genome.
The sequence assembly of the opossum genome consists mainly of the sequences from whole
genome shotgun sequencing (http://www.ensembl.org/Monodelphis_domestica/index.html).

For this reason, the opossum tRNA gene loci are used only for inferring the evolutionary
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history after the primate-rodent split, but not that before the primate-rodent split, i.e. apparent

differences in gene order unique to opossum were ignored.

2.2.1.2. Identifying the syntenic tRNA gene clusters

The steps for identifying synteny-conserved tRNA gene clusters are presented in the
flowchart in Figure 2-4. In comparing the tRNA gene order in the human and mouse genomes,
the first genome is the human genome and the second genome is the mouse genome. The
tRNA gene loci were sub-grouped into clustered and non-clustered ones (singlets),
respectively. A threshold of the maximal distance allowed between the nearest neighbouring
tRNA genes in a cluster was defined to be 1 mega bases. This threshold was set as the
minimum distance required to ensure the super cluster (e.g. 150 tRNA gene loci) that spans

several mega bases on human chromosome 6 remained a single unit.
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Figure 2-4. The procedure of identifying the syntenic tRNA gene clusters in mammalian genomes

For each human tRNA gene cluster, the syntenic region in the mouse genome was
determined using the UBRHPs-based approach (for details see subsection 2.1.2). Each human

tRNA gene cluster, together with the corresponding tRNA gene cluster in the syntenic region
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in the mouse genome, becomes a pair of synteny-conserved tRNA gene clusters. The
conservation of tRNA gene order was investigated by comparing the arrangements of tRNA

gene loci in each pair of human-mouse syntenic clusters.

2.2.1.3. Assigning symbols to mammalian tRNA gene loci

A general approach for investigating gene-order rearrangements is to represent genes as
symbols and then compare their order (for review see Sankoff and El-Mabrouk 2000). In
investigating the tRNA gene-order conservation, I followed a similar strategy. Each tRNA
gene locus was thus assigned with a symbol according to its features. These features include
the anticodon types and the genomic orientation. For example, there are two different
anticodons, GCA and ACA, used by tRNAs for carrying cysteines (tRNA-Cys). Cysl was
used to represent the tRNA-Cys gene loci that have the anticodon GCA. Cys2 was used to
represent the tRNA-Cys2 gene loci that have the anticodon ACA. If a Cysl was on the
forward strand of a chromosome, a suffix “F” was added. Conversely, Cys1R was used when a
tRNA-Cysl gene locus was on the reverse strand of a chromosome. A lookup table of the
relations between anticodon types and tRNA gene symbols can be found in Table A 1,

Appendix A.

There is one consideration in the use of a set of anticodon based tRNA gene symbols. If
there are transitions of anticodon types, finding two loci with the same anticodon types does
not necessarily mean that both loci should have evolved from a common ancestral locus.
Likewise, a mismatch of the anticodon types does not necessarily mean that the two tRNA

gene loci should have evolved from two distinct ancestral loci.

In order to compensate for this limitation of the anticodon-type tRNA gene symbols in
the gene-order comparison, another set of tRNA gene symbols based on sequence identities
was also created. The steps are as follows. Firstly, all human tRNA gene loci were classified

according to their anticodons. For example, there are two anticodons, UUU and CUU, for
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tRNAs that carry the amino acid lysine. All lysine-tRNA genes, which carry either one of the
two anticodons, were grouped together. Secondly, using the TIGR Gene Indices Clustering
Tools (TGICL) (TIGR 2002-2003), each group of tRNA genes was further divided into
subgroups according to pairwise sequence identities. The grouping was performed by Cap3
(called by TGICL) (Huang and Madan 1999) using default parameters. Subgroup assignments
were performed automatically using TIGR. For example, Thr-tRNAs were divided into
S Thr 1, S Thr 2, and S Thr 3 subgroups. Forty subgroups were so created. The pairwise
sequence identities within individual subgroups range from 94% to 100%. Sequences in each
group are fairly homogeneous at the primary-sequence level. Each subgroup was used as a
unique sequence type of tRNA genes. For the purpose of comparing the tRNA gene orders in
different genomes, each tRNA gene loci in the human, mouse, and opossum genomes was
assigned with the best-hit sequence type according to its sequence identities to all sequence
types. The sequence-type symbols of tRNA genes were used to find anticodon transitions that

may cause the generation of gaps in the anticodon-type symbol alignments.

2.2.1.4. Filtering out possible tRNA-like SINEs

In this tRNA gene-symbol based comparison one issue is filtering out the large number of
tRNA-like SINEs which are present mammalian genomes. If too many are included, many
false gaps will be generated when comparing the gene orders of two different genomes. In
practice, it is very difficult to prepare a comprehensive list of free of the many tRNA-like
SINEs. For instance, there are, in the mouse genome, thousands of species-specific SINEs that
are related to tRNA genes (Mouse Genome Sequencing Consortium 2002). This is discussed
in more depth in the introduction to chapter 3, however for the purposes here, only mouse
tRNA genes with tRNAscanSE bit scores greater than 40 were included. There are two
reasons for setting this threshold. First, in the set of 2,345 tRNA genes of low scores

(tRNAscanSE bit score < 40), 97.3% (2,282) of them overlap with SINEs. Secondly, the
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bit-score distribution of the mouse tRNA genes reveals a bi-modal distribution (data not
shown), where bit score 40 seems to be a point that can preserve as many normal mouse tRNA
genes as possible, while most of the tRNA-like SINEs can be removed. After this filtering,
504 tRNA gene loci in the mouse genome were recruited for this study, while without any
particular filtering, there are by coincidence 504 human tRNA gene loci. Only 11.1% (55 / 504)

of the high-scoring tRNA gene loci in the mouse genome overlap with SINEs.

For the opossum tRNA gene loci only the simple pseudogene filter by tRNAscanSE was
used to clean the data set of the opossum tRNA gene loci. This is due to there being relative
little knowledge about repetitive elements in the opossum genome during the preparation of

this manuscript.

2.2.1.5. Types of gene-order conservation

The tRNA gene symbols of the human and mouse tRNA gene clusters were initially
aligned using a dynamic programming implementation in Biojava (http://biojava.org). Except
in the cases of perfect-type conservation, there were gaps in the tRNA symbol alignments of
the human-mouse or human-opossum syntenic tRNA gene clusters. According to the source of
the unaligned symbols, these gaps were assigned as either insertions or deletions. The
unaligned tRNA symbols that were from the human genome were assigned as insertions.
Conversely, when the unaligned symbols were from the other genome, either the mouse or
opossum genome, the gaps were assigned as deletions. This convention was used only for
indicating the source of gaps in symbol alignments, without implying anything about the

evolutionary origin of these gaps.

The gene symbols from the two genomes are aligned on both strands to generate two
separate alignments, i.e. for human and mouse one is the human-forward-strand versus
mouse-forward-strand  alignment; the other is the human-forward-strand versus

mouse-reverse-strand alignment. The two symbol alignments automatically generated by using
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the Biojava were then examined manually. The purpose of this step was to decide which
alignment can best explain the evolutionary relationship between the human-mouse
synteny-conserved tRNA gene clusters. In some cases, this decisions was not easy to make,
especially when there had been chromosomal inversions in the tRNA gene clusters after the
primate-rodent split. In cases where there were also synteny-conserved protein-coding genes
intervening in the synteny-conserved tRNA gene clusters, these protein-coding genes were
used as landmarks. These intervening protein-coding genes could be used to sub-divide tRNA
gene clusters into smaller sub-clusters allowing conservation of tRNA gene orders within

these sub-clusters.
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Figure 2-5. Different types of tRNA gene-order conservation

Five types of conservation patterns of the mammalian tRNA genes were defined as

follows (see also Figure 2-5):

® “Perfect” conservation (Figure 2-5, A) refers to a pair of syntenic tRNA gene clusters in
which the arrangement of all functional elements, including tRNA genes and intervening
protein-coding genes, has been completely conserved and all the symbols can be

perfectly aligned.

®  “Sub-perfect” conservation refers to a pair of synteny-conserved clusters where there are
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minor differences between them. “Sub-perfect type-one” conservation (Figure 2-5, B) is
used when there is between-syntenic-clusters inconsistency in the physical arrangement
of protein-coding genes intervening in the clustered tRNA genes. “Sub-perfect type-two”
conservation (Figure 2-5, C) is used when there are non-syntenic tRNA genes at the ends

of the syntenic clusters.

“Gapped” conservation (Figure 2-5, D) refers to a pair of synteny-conserved clusters

where a few tRNA gene loci are not aligned.

“Complicated” conservation (Figure 2-5, E) refers to a pair of synteny-conserved clusters
where there may have been multiple genome rearrangements. The existence of a
complicated case is inferred when there are multiple gaps in the tRNA symbol alignment.
Besides, the linear relations of the protein-coding genes in the neighbourhood of tRNA

gene loci may have also changed.

“Single” conservation refers to the case where, in a tRNA gene cluster, only one
synteny-conserved tRNA gene locus was found in the corresponding syntenic region in

the second genome.

2.2.1.6. Checking the conservation of the internal promoters of tRNA genes

For the purpose of checking the conservation of the internal promoters in these tRNA

genes, eufindtRNA (Pavesi et al. 1994) was used. eufindtRNA is a tRNA-finding algorithm

that can recognize the features of important promoting elements, such as A and B boxes,

termination signals, and relative spacing between signals, for the transcription of eukaryotic

tRNAs. The relaxed mode of eufindtRNA was used here to evaluate only the integrity of

intragenic control regions. The stringent mode of eufindtRNA, which can also assess the

quality of termination signals, was not used in the following analysis, because evidence

suggests that some variations in termination signals are allowed (Gunnery et al. 1999).
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2.2.2. Results

2.2.2.1. 32 human-mouse synteny-conserved tRNA gene clusters

67

Among the 504 tRNA gene loci in the human genome, 92 (18%) loci are not clustered

singlets) (Table 2-9). There are more singlets (27%, 134/504), and also fewer clustered tRNA
g g

gene loci in the mouse genome than in the human genome. The significance of this finding is

unclear given that we know the data sets used are not entirely clean of loci such as tRNA-like

SINEs.
number of number of  |number of clustered number of non-clustered
tRNA genes clusters tRNA gene loci tRNA gene loci (singlets)
human 504 (100%) 38 412 (82%) 92 (18%)
mouse 504 (100%) 48 370 (73%) 134 (27%)
opossum 991 (100%) 121 597 (60%) 394 (40%)
opossum
(bit score >= 40) 546 (100%) 46 408 (75%) 138 (25%)

Table 2-9. The statistics of clustered tRNA gene loci in the human, mouse, and opossum genomes

human tRNA gene loci in

clusters

synteny-conserved clusters

human tRNA gene loci in
synteny- non-conserved

clusters

human tRNA gene loci in the

synteny-conserved clusters

human-mouse

412 (100%)

32

29 (7%)

383 (93%)

human-opossum

412 (100%)

28

181 (44%)

231 (56%)

Table 2-10. The synteny conservation of clustered human tRNA gene loci

Eighty-two percent and seventy-three percent of the tRNA gene loci (Table 2-9) in the

human and mouse genomes were grouped into 38 and 48 clusters, respectively (for the

detailed lists see Table A 2 and A 3, Appendix A). Thirty-two pairs of human and mouse

tRNA gene clusters were found to be synteny-conserved (for a detailed list see Table A 4 in
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Appendix A). 93% (383/412) of the tRNA gene loci that are clustered in the human genome
are within the human-mouse synteny-conserved tRNA gene clusters (Table 2-10). The
conservation of tRNA gene order was then investigated by aligning the symbols of the 32
human-mouse pairs of synteny-conserved tRNA gene clusters. The gene order comparison
was performed primarily by using the anticodon-type symbols of tRNA gene loci. The result
reveals some unaligned regions in the tRNA symbol alignments (Table 2-12). Among the 383
clustered human tRNA gene loci that reside in the human-mouse synteny-conserved clusters,
230 loci (60%) can be aligned without much uncertainty. A special case is the alignment of
human cluster 4.1.36 and mouse cluster 5.1.26. In the initial alignment of this pair of syntenic
clusters, only 10 out of the 36 human loci can be aligned. By manual curation, a track of 15

tRNA gene loci that can be aligned in an inverted way was found (Figure 2-6).

Figure 2-6. The conservation pattern of the human tRNA gene clusters 4.1.36 and its syntenic cluster in the
mouse genome (see next page)

tRNA gene loci are represented in two ways: (1) the ones in rounded rectangles with symbols indicating the
codon type of tRNA genes; (2) the ones that are plotted in red dots, indicating the loci whose evolutionary
origins cannot be unambiguously assigned based on sequence identity. Dotted-rounded rectangles are used to
indicate the unitary blocks that repeat for multiple times in both the human and mouse genomes. Arrows are
used to indicate the orientation of these repetitive blocks, where the red ones are used to indicate the complete
unitary blocks, and the cyan and magenta ones are used to indicate the incomplete unitary blocks. Red lines
are used to indicate the possible region of a chromosomal inversion.
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Figure 2-6 (for figure legend see the

previous page)
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2.2.2.2. Anticodon transitions are rare after the primate-rodent split

The conservation of gene order was also evaluated by comparing the arrangements of the
sequence-type symbols. The purpose here was to find if there was any evidence of anticodon
transitions that could cause mutated tRNAs to carry different amino acids. The result reveals
that, as expected, anticodon transitions in mammalian genomes are very rare. By comparing
the human and mouse synteny-conserved tRNA sequence types, only six anticodon transitions
were found (Table 2-11). The observed anticodons in these six human tRNA gene loci are not
consistent with the expectations inferred from their respective sequence types. The transitions
from tRNA-Cys to tRNA-Ser and tRNA-Tyr in human cluster 17.7.20 are also supported by
the conserved arrangement of the tRNA gene loci in the corresponding mouse syntenic cluster,

in which there are only tRNA gene loci of anticodon type Cys1 and sequence type S Cys 1.

cluster Coordinate observed | observed | expected | bit
ID anticodon | sequence | anticodon | score
type type type

3.1.42 chromosome:NCBI36:1:147561290:147561360:-1 | Val3 S Gly 1 | Gly2/Gly3 | 60.62
3.1.42 chromosome:NCBI36:1:146185653:146185726:1 | Asn2 S Asn 1 | Asnl 52.07
14.6.150 | chromosome:NCBI36:6:27379547:27379618:-1 Thr3 S Met 1 | Metl 46.44
14.6.150 | chromosome:NCBI36:6:28811185:28811256:-1 Val4 S Ala 1 | Ala3/Ala4 | 64.08
17.7.20 | chromosome:NCBI36:7:148886066:148886138:1 | Tyrl S Cys 1 | Cysl 49.4
17.7.20 | chromosome:NCBI36:7:148936400:148936471:1 | Ser4 S Cys 1 | Cysl 62.1

Table 2-11. Transitions of the anticodons of tRNA gene loci

2.2.2.3. Numerous gaps between synteny-conserved human and mouse clusters

There were numerous gaps between synteny-conserved human and mouse clusters (Table
2-12). As many as 40% of the human loci in these gene clusters were insertions in symbol
alignments. According to the distribution pattern of gaps in the symbol alignments, the

synteny-conserved tRNA gene clusters were further grouped into the five conservation types
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(Table 2-13) (for the definitions of the five types, see subsection 2.2.1.5. , Materials and
Methods). ~65% (267/412) of the human clustered tRNA gene loci are within the
human-mouse synteny-conserved clusters where there are multiple gaps in their symbol
alignments (“gapped”, Table 2-13). Other statistics about the conservation types, aligned loci,

etc. of the human-mouse synteny-conserved clusters are listed in Table 2-13.

An attempt was made to look for possible relationships between human-mouse
non-syntenic tRNA clusters by searching for similarities in the gene order. No significant

tRNA gene-order conservation was discovered.

human tRNA gene loci in the insertions in the symbol aligned human tRNA gene loci in

synteny-conserved clusters alignments symbol alignment

human-mouse

383 (100%)

153 (40%)

230 (60%)

human-opossum

231 (100%)

104 (45%)

127 (55%)

Table 2-12. The statistics (aligned and inserted regions) of the human-mouse tRNA symbol alignments

) human tRNA |human tRNA- [aligned loci in the unaligned loci

conservation type gene clusters |gene loci human genome (insertions)*

perfect 8 17 (4%) 17 0
sub-perfect type one 5 36 (9%) 36 0
sub-perfect type two 4 11 (3%) 9 2
gapped 8 267 (65%) 157 110
complicated 1 42 (10%) 6 36
single 5 10 (2%) 5 5
synteny-non-conserved 7 29 (7%) 0 29
subtotal 38 412 (100%) 230 182

Table 2-13. The statistics of the gene-order conservation of human and mouse tRNA gene clusters

*: There are also 61 deletions in the human-mouse tRNA symbol alignments. Deletions are defined as the
additional tRNA symbols in the mouse genome that cannot be aligned to suitable syntenic counterparts in the
human genome. Fifty-eight deletions belong to gapped conservation type. Three deletions belong to “single”
conservation type.
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In addition to clustered tRNA gene loci, some non-clustered tRNA gene loci were also
found to be conserved in the corresponding mouse syntenic regions. There are 92
non-clustered tRNA gene loci in the human genome. 37 of them are human-mouse

synteny-conserved (see Table A 5, Appendix A).

Clustered Non-clustered

153 in human-

225 correspond
mouse synteny-

to mouse 55 human
conserved clusters

tEMN A-gene 37 humat note- non-clustered
29 in non. clusters clustered tRITA, tRINA genes
synteny- 5 correspond to gene loci
conserved mouse singlet
clusters loci

human-mouse synteny-conserved
|

Figure 2-7. Summary of the synteny conservation of human and mouse tRNA gene loci

When the gene order is taken into consideration, only ~53% (267/504) of the human
tRNA gene loci are synteny-conserved. This value is much lower, by 21% (74% - 53%), than
the previous estimate made under the ignorance of the gene-locus arrangement in each tRNA
gene cluster. Obviously, the main source of this big difference is that the arrangements of 153

loci within the synteny-conserved clusters are not conserved (Figure 2-7).

2.2.2.4. The association of the synteny-conservation of tRNA gene clusters with the quality of

genome assembly

One factor that may affect the determination of synteny-conservation of tRNA genes is
the quality of genome assembly. It is therefore important to explore if the

synteny-non-conservation of human tRNA gene loci is associated with unfinished regions or
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WGS in the genome assemblies. The investigation reveals that in the synteny-conserved tRNA
gene clusters, the gaps in the tRNA symbol alignments are generally not related to the quality
of genome assembly (Table 2-14). Within the human-mouse synteny-conserved tRNA gene
clusters, all the genomic sequences intervening between each neighbouring tRNA gene loci in
the mouse genome are composed of finished contig sequences, but no unfinished contigs nor
WGS. Besides, four out of the seven synteny-non-conserved human tRNA gene clusters were

found to be in the regions where the genome assembly consists of finished contig sequences.

human tRNA gene clusters FCS CSN WGS*
synteny-conserved clusters 31" 0 0
synteny-non-conserved clusters 4 1 2

Table 2-14. Relation of synteny-conservation of tRNA gene clusters and the quality of the mouse genome
assembly
FCS: finished contig sequence; CSN: unfinished contig sequence (with gaps); WGS: whole genome shotgun
sequence

*: there are also unfinished gaps in these WGSs.

+: In 3 human-mouse synteny-conserved clusters, the intervening (mouse) genomic sequences between each
pair of neighbouring tRNA gene loci are composed of finished contig sequences (FCS), while there are WGSs
between the (5° or 3’) end tRNA gene loci of a cluster, and the protein-gene boundaries that define the
corresponding human-mouse syntenic blocks.

human non-clustered tRNA gene loci FCS CSN WGS

synteny-conserved singlets 36 0 1

synteny-non-conserved singlets 51 1 3

Table 2-15. Relation of synteny-conservation of non-clustered tRNA genes (singlets) and the quality of the
mouse genome assembly

The association between the quality of genome assemblies and the synteny conservation
of non-clustered tRNA gene loci (singlets) was also evaluated. The inability to find syntenic
mouse counterparts to human tRNA gene singlets does not seem to be biased by the quality of
genome assembly (Table 2-15). Among the 55 synteny-non-conserved singlets, 51 of the

corresponding syntenic regions in the mouse genome are composed of FCS, but no WGS.
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These results suggest that the gaps in the synteny-conserved clusters, the synteny
non-conservation of at least four human tRNA gene clusters, and the synteny
non-conservation of 51 non-clustered human tRNA gene loci, are more likely to be caused by
evolutionary events, i.e. genome rearrangements, retro-transpositions, degraded genes

(pseudogenes), tRNA-related SINEs, etc.

2.2.2.5. The information from the tRNA gene loci in the opossum genome

The comparison of the human and opossum tRNA gene loci reveals that there are fewer
(28) human-opossum synteny-conserved tRNA gene clusters than human-mouse
synteny-conserved clusters (Table 2-10). An example is that no opossum tRNA gene clusters
were confirmed to be syntenic counterparts of the super tRNA gene cluster, 14.6.150, which is
on human chromosome 6. Besides, more gaps (unaligned human tRNA gene symbols) were
found in the human-opossum alignments than in the human-mouse alignments. These findings
essentially fit expectations because opossum split from the placental mammals long before the

primate-rodent split and the genome assembly quality is much lower.

The arrangement of tRNA genes in the opossum genome provides information that can
help us understand tRNA gene evolution in mammalian genomes. The insertions and deletions
in the human-mouse tRNA symbol alignments, can be re-categorized by examining the 3-way,
human-mouse-opossum, alignments of the tRNA gene symbols and applying the following

rules:

® [f an inserted tRNA gene symbol is found in opossum in the human-opossum tRNA
symbol alignment, this symbol insertion may represent a deletion or degradation of a
tRNA gene locus in the mouse genome after the primate-rodent split.

® [f an inserted tRNA gene symbol cannot be found in opossum in the human-opossum
tRNA symbol alignment, this symbol insertion may represent an insertion of a tRNA gene
locus in the human genome after the primate-rodent split.

® [f a deleted tRNA gene symbol is also missing from opossum in the human-opossum
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tRNA symbol alignment, this symbol deletion may represent an insertion of a tRNA gene

locus in the mouse genome after the primate-rodent split.
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® [f a deleted tRNA gene symbol can be found in opossum in the human-opossum tRNA

symbol alignment, this symbol deletion may represent a deletion or degradation of a

tRNA gene locus in the human genome after the primate-rodent split.

The re-categorization of gaps in the human-mouse tRNA symbol alignment was

performed using the above rules.

Post primate-rodent-split [Post primate-rodent-split
human tRNA gene insertions in the ) o ) o
lustors human-mouse alignments insertions in the human (deletions/degradations in
genome the mouse genome
6.1.3 1 1 0
13.5.17 10 9 1
16.6.2 1 1 0
17.7.20 2 NA NA
18.8.4 1 1 0
20.11.2 0 0 0
23.13.2% 2 0 1
24.14.14 9 0 7
26.15.2 1 1 0
30.16.5 2 1 1
33.17.8 2 1 1
37.19.2% 2 0 2
Subtotal 44 15 13

Table 2-16. Evolutionary origin of the insertions in the human-mouse tRNA symbol alignments

NA: not available. The placement of gaps in the alignments is not unique.

k.

synteny-conserved.

these tRNA gene clusters are not human-mouse synteny-conserved, but are human-opossum
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IPost primate-rodent-split [Post primate-rodent-split
deletions in the
human tRNA gene insertions in the mouse |deletions/degradations
human-mouse alignments
clusters genome in the human genome
13.5.17 1 1 0
17.7.20 34 NA NA
18.8.4 1 0 1
20.11.2 1 1 0
Subtotal 38 2 1

Table 2-17. Evolutionary origin of the deletions in the human-mouse tRNA symbol alignments

NA: not available. The placement of many gaps in the alignments is not unique.

Based on the information derived from comparing the human-opossum
synteny-conserved tRNA gene clusters, 28 insertions (i.e. the unaligned tRNA symbols in the
human genome) can be re-classified to 15 post primate-rodent-split insertions of tRNA gene
loci in the human genome, and 13 post primate-rodent-split deletions/degradations of tRNA
gene loci in the mouse genome (Table 2-16). Two human tRNA gene clusters that are not
human-mouse synteny-conserved were found to be human-opossum synteny-conserved
(23.13.2 and 37.19.2, Table 2-16). These two clusters may have been deleted/degraded in the
mouse genome after the primate-rodent split. Besides, among the deletions in the
human-mouse tRNA symbol alignments, there are two post primate-rodent-split insertions of
tRNA gene loci in the mouse genome, and one post primate-rodent-split deletion/ degradation

of a tRNA gene locus in the human genome (Table 2-17).

2.2.2.6. Duplicated multi-loci blocks in the mammalian tRNA gene clusters

There are several human-mouse synteny-conserved tRNA gene clusters in which gaps in
the tRNA symbol alignments cannot be unequivocally placed, due to the existence of so many
unaligned regions in the tRNA symbol alignments. Human cluster 3.1.42 is a classic example
(Figure 2-8). In the human cluster 3.1.42, not only the arrangement of the tRNA gene loci, but

also the relation of the tRNA gene loci to the neighbouring protein-coding genes has changed.
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One question that arises from these observations is about the mechanism by which tRNA gene
loci in mammalian genomes evolve. Are there any particular rules that govern the changes of
tRNA gene orders in these syntenic clusters? Or is the rearrangement of the tRNA gene loci in

these synteny-conserved clusters generally random?

Interestingly, the arrangement of the opossum tRNA gene loci provides useful
information on this issue. By comparing the arrangements of tRNA gene loci as well as
neighbouring protein-coding genes in the human, mouse, and opossum genomes, a vague
picture about the evolution of the tRNA gene loci in the human cluster 3.1.42 is revealed

(Figure 2-8). My conclusions are summarized as follows:

® The syntenic clusters contain four distinct blocks, A, B, C, and D, of protein-coding
genes. The gene order in each block is quite conserved among the human, mouse, and

opossum genomes.

® The arrangements of the first three blocks, including A, B, and C, consisting of
protein-coding genes, are quite conserved in the mouse and opossum genomes. However,
in the human genome, the arrangement of A, B, and C is as Cr-A-B. The subscript “R”
indicates that the C block is on the reverse strand. It can be inferred that there might be

one segmental inversion in the human genome after the primate-rodent split.

® Between the C and D protein-gene blocks, the arrangements of tRNA gene loci in the

human, mouse, and opossum genomes is very different.

® There are multiple species-specific multi-tRNA-loci duplications in each cluster. No
common unit blocks of these species-specific duplications were found among the human
cluster, 3.1.42, and its syntenic clusters in the mouse and opossum genomes. In the
human cluster, 3.1.42, there are two blocks of GIn2-Asnl tRNA gene loci, two blocks of
GIn2-Hisl1 loci, and two duplicated blocks of Asnl-Asnl loci. In the syntenic tRNA gene
cluster in the mouse genome, there are three duplicated blocks of Asnl-Hisl tRNA gene
loci, two duplicated blocks of Glul-Gly3 loci. In the syntenic cluster in the opossum
genome, there are at least seven types of duplicated blocks, where each distinct type

consists of unique combinations of different tRNA gene loci.

® In the human cluster 3.1.42, there are 16 tRNA-Asnl gene loci which are arranged into
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several separated sub-clusters consisting of varied numbers of tRNA-Asnl gene loci. By
contrast, there are 7 tRNA-Asnl gene loci that are interspersed in the syntenic mouse
cluster. 15 out of the human 16 tRNA-Asnl gene loci were found to have better
intra-cluster (other tRNA gene loci in the same cluster, 3.1.42) hits than inter-cluster hits
(other tRNA gene loci not in cluster 3.1.42). This means that these tRNA-Asnl gene loci
in the human cluster 3.1.42 are more likely to be generated by intra-cluster duplications
than by inter-cluster duplication. In addition to at least three duplicated blocks of two
tRNA-Asnl gene loci, there appear to have been a number of tandem duplications of

single tRNA-Asnl gene loci.

Some of the single units of duplicated multi-tRNA-loci blocks in one genome cannot be
found in the other genome(s). For instance, the Glul-Gly3 unit of a pair of duplicated
blocks in the mouse genome cannot be found in either the human or opossum syntenic

cluster.
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Figure 2-8. The conservation pattern of human tRNA gene cluster 3.1.42 and its syntenic clusters in the mouse
and opossum genomes

This figure was not prepared to the scale, because it was intended to provide an overview of the putative, both
intra-species and inter-species, tRNA gene locus duplications on human chromosome one, 142.48M-148.38M,
with respect to the corresponding syntenic regions in the mouse and opossum genomes.

tRNA gene loci are represented in two ways: (1) the ones in rounded rectangles with symbols indicating the
codon type of tRNA genes; (2) the ones that are plotted in red dots, indicating the loci whose evolutionary
origins cannot be unambiguously assigned based on sequence identity. Color-shaded boxes are used to
indicate the inter-species synteny-conserved regions, which are connected by red lines. The dotted boxes
around multiple tRNA gene loci are used to indicate the regions that may be involved in intra-species
duplications. Curved lines are used to indicate the relation between intra-species duplicated blocks, where the
blues ones are used to indicate the blocks of directed duplications, and the green ones are used to indicate the
blocks of inverted duplications.

Protein coding genes are represented using arrows. Synteny-non-conserved protein coding genes are
represented as open arrows. The symbols for the protein-coding genes used as the landmarks in this figure are
as follows:

a TXNIP f NUD17 HUMAN k FMOS p GJA8 u ZA20D1

b LIXIL g POLR3C 1 CHDIL q BOLAI v VPS45A

¢ RBMSA h ZNF364 m BCL9 r HIST2H2AB o PDE4DIP

d ANKRD35 1 CD160 n ACP6 s SV2A B NP_110423.3
e PIAS3 J PDZKI o GJAS t MTMRI1 vy HIST2H2AA3

2.2.2.7. The synteny conservation of non-clustered tRNA gene loci in mammalian genomes

In addition to the exploration about the evolution of tRNA gene loci in clusters,
non-clustered but synteny-conserved tRNA gene loci (singlets) were also investigated in this
study. Interestingly, ~78% (29/37) of the human-mouse synteny-conserved tRNA gene
singlets were also human-opossum synteny-conserved. All these synteny-conserved tRNA

gene singlets were high-scoring (tRNAscanSE bit scores > 64).

2.2.2.8. The association between local duplications and unaligned tRNA gene loci in the

human-mouse tRNA symbol alignments

Motivated by the finding of intra-cluster duplicated multi-tRNA gene blocks in the
human cluster 3.1.42, and its syntenic clusters in the mouse and opossum genomes, I

systematically surveyed the association between local duplications and synteny-non-conserved
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tRNA gene loci in mammalian genomes.

The starting point of this survey is to find candidate blocks for local multi-loci
duplications. Candidate blocks are defined as repeating multi-loci blocks of 2-6 tRNAs in
length that are not necessarily tandemly arranged, e.g. if a 2-locus block re-occurs 4 times, the
number of loci involved in the putative duplication is 8, and so forth. If a series of tRNA gene
loci of the same anticodon type are tandemly arranged, they are also defined as a type of
candidate block. When all human tRNA gene clusters were surveyed, ~20% (108/504) of all
human tRNA gene loci were labelled candidate blocks. The existence of local duplications is
supported by the observation that, among these 108 loci, ~81% (88/108) have their best
(sequence identity) match within the putative regions of human-specific duplications. The
remaining ~19% have matches that have only one or two more mismatches than their best hits
to the regions outside the putative regions of duplications. The evidence, from the
conservation of gene order and the good sequence identities between putative duplicated loci,
suggests an association between local duplications and the evolution of tRNA gene loci in

mammalian genomes.

Further investigation reveals that local duplications may be implicated in the unaligned
tRNA gene loci in synteny-conserved tRNA gene clusters. A substantial proportion of the
insertions in the human-mouse tRNA symbol alignments can be explained by species-specific
local duplications. ~46% (70) of insertions (153, Table 2-12) overlap with putative
human-specific candidate blocks involving multi-tRNA-gene loci; ~16% (25/153) of
insertions overlap with human-specific tandem duplications of single tRNA gene locus. In
addition, duplications may also associate with the species-specific tRNA gene clusters in
mammalian genomes. In the synteny-non-conserved human cluster 1.1.10, there is one pair of
candidate blocks, which are arranged in an inverted way. The synteny-non-conserved human

cluster, 38.X.3, consists of 3 tRNA-Ile gene loci. The synteny-non-conserved human cluster,
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15.6.8, is likely to be the result of a segmental duplication of the human cluster 14.6.150. In
summary, 63% of the unaligned tRNA gene loci in the human-mouse tRNA symbol

alignments can be explained by local duplications (Table 2-18).

unaligned loci that can
unaligned loci
conservation type be explained by local
(insertions)*
duplications
sub-perfect type two 2 1 (50%)
gapped 110 66 (60%)
complicated 36 29 (81%)
single 5 0 (0%)
synteny-non-conserved 29 19 (66%)
subtotal 182 115 (63%)

Table 2-18. Local-duplication associated insertions in the human-mouse tRNA symbol alignments

*: The definition of insertion is the same as that in Table 2-13.

2.2.3. Discussions

2.2.3.1. Possible evolutionary events involved in the rearrangements of tRNA gene loci in

mammalian genomes

Based on the investigation of gene-order conservation, the human-mouse
synteny-conservation ratio of tRNA gene loci is estimated to be only ~53% (see subsection
2.2.2.3. and Figure 2-7). This is lower than the UBRHPs-based estimate of ~74% which did
not take into account gene-order and indicates the substantial number of gene-loci whose order

1s not conserved within tRNA clusters.

One evolutionary event implicated by the low synteny-conservation ratio appears to be
local duplication. More than half of the changes between the human-mouse syntenic tRNA
gene clusters can be explained as the results of local duplications (see subsection 2.2.2.8. and

Table 2-18). In addition to species-specific (post primate-rodent split) duplications, there is
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evidence for local duplications before the primate-rodent split. For instance, in the human
cluster 4.1.36, three duplicated blocks of five-tRNA-gene loci can be found in both the human
and mouse syntenic clusters. Local duplication may be a ubiquitous rule for the evolution of

tRNA gene loci in mammalian genomes.

In many cases of putative duplications, the candidate blocks, which may consist of
multiple tRNA gene loci, are linked in either a direct or an inverted order. Formally, direct
local duplications are called tandem duplications. One mechanism which may generate tandem
duplications is unequal crossing-over between sister chromosomes during meiosis (for review
see Anderson and Roth 1977). On the other hand, when local duplicated blocks are arranged in
an inverted order, the duplications are called inverted duplications. There are at least two
possible mechanisms which may generate inverted duplications. First, inverted duplication
may be the result of post-tandem-duplication chromosomal inversion. Second, a model with
double crossing-overs, which is proposed by Passananti et al. (Passananti et al. 1987), can also
generate inverted duplications. However, from the investigations already made in this chapter,
it is impossible to determine by which mechanism each inverted duplication has been
generated. Future work could be to look for evidence to support one of the mechanisms. One
possible way to resolve this problem might be to look for existence for replication origins,
which is a required feature, proposed by Passananti et al., in the generation of inverted

duplication.

2.2.3.2. The co-amplification model of the formation of gene clusters

The mechanisms that may lead to gene amplifications through tandem duplications and
inverted duplications in one of the daughter strands can also cause the de-amplification of
gene loci in the other strand. It has therefore been proposed that local duplications in
prokaryotic genomes can act as a dynamic and reversible mechanism that can facilitate

adaptation to a variety of environmental conditions (for review see Reams and Neidle 2004).
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A co-amplification model has been proposed to explain the generation and maintenance of the
clustering of related genes in prokaryotes (Reams and Neidle 2004). One main argument is
that clustered genes are more likely to be co-amplified and so equally regulated by gene
dosage. Besides, if a gene cluster has been evolutionarily selected by the co-amplification

model, the order of genes in this cluster does not need to be strictly conserved.

Interestingly, the differences in tRNA gene order observed between the syntenic
counterparts in different mammalian genomes suggest that the co-amplification model may
have contributed to the formation and evolution of tRNA gene clusters in mammalian
genomes. The findings relevant to the co-amplification model include increases of copy
number of tRNA genes through mechanisms leading to local duplications, and the partial

conservation tRNA gene orders in mammalian genomes.

One question that remains unanswered is about the advantage to survival conferred by the
amplification of tRNA gene loci in mammalian genomes. In prokaryotes, over-expression of
gene products caused by gene amplification has been suggested to play a critical role in coping
with environmental stresses, such as existence of heavy metals, antibiotics, etc. (for review see
Romero and Palacios 1997). When a particular selection force disappears, the duplicated loci
may be de-amplified through the reversible mechanisms of local duplications. Perhaps, the
finding of species-specific duplications of tRNA gene loci in the human, mouse, and opossum
genomes, respectively, reflect the differential requirements in the evolution of different
mammalian species. Due to local duplications, there is significant difference between the
numbers, in the respective genomes, of the tRNA gene loci of particular isoacceptor
(anticodon) types. For instance, there are 20 tRNA-Cysl gene loci in the human cluster,
17.7.20, while there are 52 and 43 loci in the syntenic clusters in the mouse and opossum

genomes, respectively.
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2.2.3.3. Observations that cannot be explained by the co-amplification model

From the observed synteny-conservation pattern of tRNA gene loci in mammalian

genomes, several phenomena were found to be incompatible with the co-amplification model.

Firstly, there are synteny-conserved singlet tRNA gene loci in mammalian genomes. For
instance, 29 human non-clustered tRNA gene loci were found to be synteny-conserved in the
human-mouse-opossum syntenic regions (Figure 2-9). The synteny conservation of these
non-clustered tRNA gene loci strongly suggests they should be functional genes. None of
these singlet tRNA gene loci are single copies of respective isoacceptor (anticodon) types.
There is also no evidence that these singlets are the degraded remnants of tRNA gene clusters.
One question is that, if the co-amplification and clustering is so beneficial to the survival of
different mammalian species, why these singlet tRNA gene loci should be still conserved after
tens of million years of evolution? During the preparation of this manuscript, no obvious

advantages/disadvantages can be proposed to explain this observation.

37 human-mouse synteny- 31 human-opossum synteny-
conserved, but non-clustered conserved, but non-clustered
RINA-gene loci tRINA-gene loci

29 human-mouse-opossum synteny-conserved but non-clustered tRNA-gene loci

Figure 2-9. the synteny conservation of human non-clustered tRNA gene loci in the syntenic regions
of other mammalian genomes

Secondly, there are some synteny-non-conserved human tRNA gene loci, which cannot

be explained by local duplication. Possible explanations may include the retro-transpositions,
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and the post primate-rodent-split deletions/degradation of tRNA gene loci. These two issues

are investigated in the following subsections (2.2.3.4. and 2.2.3.5.).

Finally, recent evidence has implied that the co-amplification model may not be the only
plausible mechanism for the clustering of tRNA gene loci in the genomes. In the
co-amplification model, clustered genes need not to be co-regulated by a cluster-associated
enhancer. However, there is evidence that, under different conditions, the relative expression
levels of tRNAs of different isoacceptor types may change (Dittmar et al. 2006). One idea is
that the internal promoters may provide a basal-level regulation of tRNA transcription, and the
non-promoter regulatory regions may be responsible for controlling the differential expression
under different situations. Searching for transcription regulatory elements for clustered tRNA

gene loci in mammalian genomes is discussed briefly at the end of chapter 5.

2.2.3.4. Degradation or deletion?

Although the co-amplification model is an appealing hypothesis for interpreting the
observed conservation patterns of tRNA gene loci in mammalian genomes, not all unaligned
tRNA gene loci can be explained by species-specific local duplications or its reversible
process (Table 2-18). In order to find other evolutionary events that may also lead to the
unaligned regions in the human-mouse tRNA gene symbol alignments, another possibility, the
post primate-rodent-split degradation of the sequences of tRNA gene loci, was therefore

explored.

For the non-clustered (singlet) and synteny-non-conserved human tRNA gene loci, the
search for the evolutionary remnants in their corresponding syntenic regions in the mouse
genome proved to be not very informative. For the 54 synteny-non-conserved singlet tRNA
gene loci, only short hits could be found by using WU-BLAST. Most of the e-values are much
higher than 0.05, except two cases with borderline significance (0.014 and 0.053). Since the

evidence is so weak, it is unclear if there has been pseudogenisation through sequence
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degradation of singlet tRNA gene loci in the mouse genome.

Interestingly, for the unaligned tRNA gene loci in the human-mouse syntenic clusters,
two putative cases of pseudogenisation through sequence degradations were found. None of
the two pseudogenes have previously been annotated by Ensembl (using tRNAscanSE). These
cases suggest that sequence degradation is implicated in the evolution of clustered tRNA gene

loci in mammalian genomes.

The first case is the degraded remnant in the mouse syntenic region of the Glyl-tRNA
gene locus in the human cluster 37.19.2, which is a human-mouse synteny-non-conserved
cluster. The e-value of the hit is 2.9¢-06 (reported by WU-BLAST). The coordinate of the

syntenic tRNA gene locus in the mouse genome is chromosome: NCBIM36: 17: 55852840:

55852911: 1.
Human GCGUUGGUGGUAUAGUGGUUAGCAUAGCUGCCUUCCAAGCAGUUGA
Mouse(degraded) AUAUUGGUAGAAUAGUGGUUAGgAAAGCUGCCUUCCAAA-AGGUGG
SS_cons QAU o=xxx< . >>>> <<<<< S>S>>>
Human -CCCGGGUUCGAUUCCCGGCCAACGCA
Mouse(degraded) CCCCGGGUUCUAGUCCCAGAUUGCUUA
SS_cons , 5 <<<<< >>>>>))))))):

Figure 2-10. The structural alignment of a human tRNA gene locus and its syntenic (but degraded) counterpart
in the mouse genome

This previously undiscovered mouse tRNA gene locus does not seem to be a functional
one. Firstly, the sequence of the promoter, B box, appears to be degraded. Using eufindtRNA,
which is a tRNA-finding algorithm based on the promoter conservation of tRNA genes, this
sequence was determined to be a worse promoter than the one in the human orthologous tRNA
gene. Secondly, even if this mouse tRNA gene could be transcribed, the secondary structure of

the generated tRNAs is likely to be unstable. The putative tRNA product of the degraded gene
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locus contains 10 non-Watson-Crick (W-C) and non-GU base pairs in the stem regions (red
regions on the mouse strand, Figure 2-10). For comparison, there is only one non-canonical
base pair potentially de-stabilizing the secondary structure of the tRNA products transcribed

from the orthologous human tRNA gene locus (red regions on the human strand, Figure 2-10).

The second case of pseudogenisation is the degraded locus in the human syntenic region
of the Arg4-tRNA gene locus in the mouse cluster 10.3.5, which is the syntenic cluster of the
human cluster 18.8.4. The e-value of the hit is 7.8e-09 (reported by WU-BLAST). This
previously undiscovered human tRNA gene locus, chromosome: NCBI36: 8: 67187730:
67187802: -1, should be a pseudogene, although the secondary structure of the putative tRNA
product have largely been preserved (red regions on the human strand, Figure 2-11). Its
promoter, B box, has mutated from GGTTCGACT to GGTCCAGCT (corresponding to the
RNA sequences in magenta color on the human and mouse strands, resepctively, Figure 2-11).
The degradation of the promoter pattern, which cannot be identified by eufindtRNA, suggests
that this degraded tRNA gene locus should be untranscribable. This finding is interesting,
because it provides an example of pseudogenisation through promoter-specific degradation.
Pseudogenization through promoter-specific degradation is investigated and discussed more

generally in chapter 3.

Mouse GGGCCAGUGGCGCAAUGGAUAACGCGUCUGACUACGGAUCAGAAGAUUGU
Human(degraded) AGGCCAGUGGCGCAAGGGAUAACGUGUCUGACCACGCAUCAGAAGAUUGU
SS_cons UEESSS . >>>> <<<<< S>>>> <<
Mouse AGGUUCGACUCCUACCUGGCUCG
Human(degraded) AGGUCCAGCUCCUGCCUGGCUCG
SS _cons << >3>>3))))))):

Figure 2-11. The structural alignment of a mouse tRNA gene locus and its syntenic (degraded) counterpart in
the human genome
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One advantage of pseudogenisation through promoter-specific degradation is that it is
efficient and safe. If pseudogenisation of a tRNA gene locus proceeded through random
mutation, accumulated generation by generation until the functions of the tRNA products were
fully abolished, it is possible that some intermediate diseased species of tRNAs would be
produced and thus decrease the fitness of the affected organism. By contrast,
promoter-specific degradation achieves pseudogenisation by mutating only a few residues in
the promoter region of a tRNA gene locus. Although only two cases of promoter-specific
degradation were found, it is likely that there are other undiscovered degraded tRNA gene loci.
Searching for evidence of old pseudogenes can be very difficult, because without functional
constraints, pseudogenes may, after millions of years of evolution, have accumulated so many
random mutations that sequence similarity search algorithms cannot find the significant
remnants. Consequently, determination of the differential contributions made by sequence
degradation and deletions, respectively, to the evolution of tRNA gene loci in mammalian

genomes is difficult.

2.2.3.5. Finding pseudogenes through the human-mouse tRNA gene symbol alignments

One purpose of investigating the tRNA gene-order conservation is to search for the
evidence which can help us to differentiate functional tRNA gene loci from pseudogenes, a
topic more broadly discussed in chapter 3. An appealing argument is that
synteny-non-conserved tRNA gene loci will tend to be pseudogenes. In addition to this, the
human-mouse tRNA gene symbol alignments of synteny conserved tRNAs provide some

other insights relevant to the determination of tRNA pseudogenes.

Firstly, several cases of anticodon transitions were found (Table 2-11) and anticodon
transitions may potentially be an indicator of tRNA pseudogenes. In order to realize this
argument, a brief introduction to tRNA identity is necessary. The term, tRNA identity, refers

to the amino acid charging specificity of each tRNA molecule by aminoacyl-tRNA synthetases.
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For most tRNAs, the determinants of tRNA identity include the anticodon loop as well as the
amino acid accepting stem (for review see Giege et al. 1998). It is unknown if these anticodon
transitions would change the tRNA identity of the tRNAs produced from the gene loci in
Table 2-11. If the tRNA identities of tRNAs with anticodon transitions remained unchanged,
there could be incorrect incorporation of amino acids in protein synthesis. Under the
consideration related to tRNA identity, the tRNA gene loci with anticodon transitions should
be regarded as potential pseudogenes. An alternative possibility may be errors in the human
genome sequence. The significance of these tRNA gene loci with anticodon transitions needs

further investigation.

Secondly, the human-mouse tRNA gene symbol alignment also reveals at least one
synteny-conserved but low-bit-score tRNA gene locus. Such a locus may also represent a
candidate pseudogene. The example is the human tRNA-Aspl gene locus, chromosome:
NCBI36: 1: 159768539: 159768610: 1, which is a member of the human cluster 4.1.36. Its
bit-score (reported by tRNAscanSE) is 34.08, which is much lower than that (72.92) of its
syntenic counterpart, chromosome: NCBIM36: 1: 172873704: 172873775: -1, in the mouse
genome. A putative tRNA product from this gene locus may have an unstable amino-acid
accepting stem. In addition, this locus may be untranscribable, since its internal promoters
might have degraded (data not shown). This finding is consistent with the pseudogenisation
mechanism, promoter-specific degradation, which has also been suggested by previous

findings in this section (see the examples of Figure 2-10 and Figure 2-11).

2.2.3.6. Other evolutionary events that may be implicated in the evolution of tRNA gene loci in

mammalian genomes

The involvement of various evolutionary events, such as local duplications, inversions,
and gene degradation, in the evolution of tRNA gene loci in mammalian genomes have been

demonstrated in this section. A question is that, what is the involvement of other evolutionary



2.2. Gene-order conservation of mammalian tRNA genes 91

events, such as retrotranspositions, transpositions, segmental duplications, gene deletions, or
even gene transfer from other organisms? In the following discussions, I consider these
possibilities under the following conditions, including the species-specific tRNA gene clusters,
species-specific singlet tRNA gene loci, and the wunaligned tRNA gene loci in

synteny-conserved clusters.

For species-specific tRNA gene clusters evolved after the primate-rodent split, an
important feature is the pattern of gene arrangement which should have been generated by
local duplications. An example is the human cluster 1.1.10, which contains a duplicated block
of four tRNA gene loci. There can be two alternative hypotheses to the formation of this
cluster. Firstly, it is possible that this human-specific tRNA gene cluster formed before the
primate-rodent or even placental-marsupial split. Perhaps, through independent events of
genome rearrangements in the mouse and opossum genomes, respectively, the syntenic
clusters in either genome have been deleted. Secondly, the human-specific clusters could have
evolved after the primate-rodent split. Theoretically, the second hypothesis should be more
likely, since the probability of independent segmental deletions in respective genomes should
be low. Besides, in the human cluster 1.1.10, interspersed between the duplicated blocks are
the primate-specific protein-coding genes (e.g. ENSG00000179571, etc.) (based on the
annotation made by Ensembl). A similar finding was also observed in the human cluster
38.X.3, where two tRNA-Ile2 gene loci are located within the intronic regions of a pair of
duplicated genes (e.g. ENSG00000205663), which are also primate-specific. In fact, no other

tRNA-Ile2 gene loci can be found in the mouse and opossum genomes.

With the evidence collected in this subsection, it can be concluded that segmental
deletions in other mammalian genomes are less likely the reason which can explain the
existence of species-specific tRNA gene clusters. However, it is still unclear by which

mechanism, either retrotranspositions, transpositions, or segmental duplications, the
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human-specific clusters have been formed in new genomic loci. Similar situations were also
encountered in investigating the evolutionary origin of the synteny-non-conserved singlet
tRNA gene loci, and of some of the unaligned loci in the synteny-conserved tRNA gene
clusters. A preliminary result indicates that most of the synteny-non-conserved tRNA gene
loci in the human genome are not associated with simple repetitive elements, which might be

the evidence of retrotranspositions.

2.3. Summary

In the first part of this chapter, the conservation patterns of the human ncRNAs retrieved
from Rfam were investigated. The findings and conclusions relevant to comparative ncRNA

finding ncRNA finding approaches are summarized as follows:

® Few covariations are found in either human-mouse synteny-conserved ncRNAs or in

the human-zebrafish orthologous ncRNAs.

® ncRNA finding algorithms perform worse when applied to genome synteny

alignments than on the single ncRNA gene test alignments they were evaluated.

® Multi-vertebrate synteny alignments can contain more co-variations but the
performance of ncRNA finding algorithms on them is similarly affected by
alignment quality and completeness, resulting in both false positive and false

negative predictions.

® The synteny-conservation ratios of categories of Rfam ncRNAs in the human and

mouse genomes vary from ~1% to ~74%.

® ncRNAs with more copies in mammalian genomes appear to be less

synteny-conserved.

® (Genome assembly quality and artefacts resulting from genome rearrangements



2.3. Summary 93

(Figure 2-1, d), have only a small effect on calculations of synteny-conservation

ratio of Rfam ncRNAs

In the second part of this chapter, the gene-order conservation of mammalian tRNA genes

(predicted by tRNAscanSE) was investigated. My findings include that:

® When gene order is considered, only ~53% of the human tRNA gene loci are
human-mouse synteny-conserved (see subsection 2.2.2.3. and Figure 2-7). Besides,
6% (29/504) of human tRNA gene loci are in human-specific clusters (see Table

2-10).

® The low gene-order conservation ratio is not biased by the quality of the mouse

genome assembly used in this study (see subsection 2.2.2.4.).

® Tandem duplications and inverted duplications may be important reasons for the low

gene-order conservation ratio of tRNA gene loci in mammalian genomes (see

subsection 2.2.2.8.).

® Promoter-specific degradation may be involved in the pseudogenisation of

mammalian tRNA genes (see subsection 2.2.3.4.).

There are a number of hypotheses with respect to the discovery of numerous
synteny-non-conserved ncRNAs in mammalian genomes. Finally, I summarize the evidence

for or against each of them:

1. Hypothesis: low quality genome assemblies lead to synteny-conserved ncRNAs
being misclassified as synteny non-conserved.

€ Evidence for this hypothesis:

® Synteny-non-conserved ncRNAs (comparing the human genome assembly
NCBI 35 and the mouse genome assembly NCBIM 33) were significantly

enriched in regions consisting of whole genome shotgun sequencing or
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unfinished regions of clone-based sequencing in the mouse genome (see

subsection 2.1.3.1. ,Table 2-2 and Table 2-3).
€ Conclusion:

® Low quality genome assemblies do lead to some ncRNAs being

misclassified as synteny non-conserved, but does not explain the majority.

2. Hypothesis:  genome  duplication and  rearrangement can  generate
synteny-non-conserved ncRNAs.

€ Evidence for this hypothesis:

® There are duplicated multi-loci blocks in the mammalian tRNA gene
clusters (see subsection 2.2.2.6. ).
® There might be one segmental inversion in the human tRNA gene clusters

after the primate-rodent split (see subsection 2.2.2.6. and Figure 2-6).
€ Conclusion:

® Analysis of tRNA clusters is highly suggestive that genome duplication
and rearrangement 1is a mechanism for the generation of

synteny-non-conserved ncRNAs.

3. Hypothesis: deletion through degradation can generate synteny-non-conserved
ncRNAs.
€ Evidence for this hypothesis:

® Degraded remnants of tRNAs can be found that correspond to

synteny-non-conserved ncRNAs (see subsection 2.2.3.4.)

€ Conclusion:
® There is evidence that some synteny-non-conserved ncRNAs are
generated through pseudogenisation, degradation and deletion of the

corresponding ncRNA in the other species.

4. Hypothesis: retrotransposition can generate synteny-non-conserved ncRNAs.

€ Evidence for this hypothesis:
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® The generation of species-specific tRNA gene clusters (see subsection
2.2.3.6. ) could be explained by retrotransposition, but also by other

mechanisms.

€ Conclusion:
® There is no convincing evidence for or against the mechanisms of

retrotransposition.



Chapter 3. Distinguishing functional ncRNAs from

pseudogenes in mammalian genomes

The results presented in the previous chapter (chapter 2) suggest that many Rfam human
ncRNAs appear to be synteny-non-conserved in the mammalian genome after the
primate-rodent split. When considering using comparative methods for genome-wide ncRNA
finding, one important question is whether synteny-non-conserved ncRNAs tend to be
functional genes or pseudogenes. If a considerable proportion of synteny-non-conserved
ncRNAs in the genomes under investigation are functional, the strategies that predict ncRNAs
only in the alignments of syntenic regions will fail to predict those functional ncRNAs.
Conversely, if most synteny-non-conserved ncRNAs are pseudogenes, methods that depend on

alignments derived from synteny may be sufficient for genome-wide ncRNA finding.

Before exploring the likelihood of synteny-non-conserved ncRNAs to be pseudogenes, it
is necessary to briefly introduce how pseudogenes might be generated, and how they can be
computationally identified. Pseudogenes are believed to be generated by either genome
duplication or retrotransposition, followed by non-functionalization of a subset of the
duplicated copies (for review see Lynch and Conery 2000). The mechanisms that may lead to
genome duplications include unequal crossing-over (for review see Graur and Li 2000), and
duplication of a segmental (Gu et al. 2002) or entire chromosome (Van de Peer 2004; Dehal
and Boore 2005). In so-called retrotransposition, which is a RNA-mediated process, the RNA
transcript of a gene is reverse transcribed into DNA, which is then inserted back into the
genome at a new location (Maestre et al. 1995). The pseudogenes that are generated through
retrotransposition have usually lost the original gene’s intron-exon architecture and thus are
often referred to as processed pseudogenes, while the pseudogenes generated through

duplications of genomic DNA are referred to as non-processed pseudogenes.

96
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Currently, pseudogenes can be computationally identified by searching protein coding
genes for indicators of non-functionality. For instance, a duplicated protein pseudogene can be
evolutionarily unconstrained, and hence have accumulated random mutations that may destroy
its protein gene-like features; a retrotransposed protein pseudogene can completely lose
introns (Figure 3-1 A). Several surveys already performed for exploring pseudogenes in the
human genome were based on indicators of functionality derived from features of multi-exon
protein coding genes (Ohshima et al. 2003; Torrents et al. 2003; Zhang et al. 2003). In
particular, by using the ratio of silent to replacement nucleotide substitutions (Ka/Ks), Torrents
et al. discovered ~20,000 protein pseudogenes in the human genome, where as many as 70%
of them were retrotransposed (Torrents et al. 2003). These results, together with the estimate
that ~96% of the human protein genes are mouse-synteny-conserved (Mouse Genome
Sequencing Consortium 2002), suggest that a protein coding gene sequence that is

synteny-non-conserved in mammalian genomes is very likely to be a pseudogene.

However, since the surveys mentioned above were limited to investigating protein
pseudogenes, the tendency of synteny-non-conserved ncRNAs to be pseudogenes is unknown.
To date, the functionality of the synteny-non-conserved ncRNAs in mammalian genomes has
not been systematically investigated. One reason for this is that in mammalian genomes there
are abundant ncRNA-derived short interspersed repetitive elements (SINEs) (International
Human Genome Sequencing Consortium 2001; Mouse Genome Sequencing Consortium 2002)
which make the determination of ncRNA pseudogenes difficult. SINEs are repetitive elements
that are amplified in the genomes through retrotransposition (for review see Smit 1999). Most
eukaryotic SINEs have evolved from the ncRNAs that are transcribed by RNA polymerase I11.
Known evolutionary sources of eukaryotic SINEs include tRNA genes, 7SL genes, 5S rRNA
genes (for review see Kramerov and Vassetzky 2005). With respect to ncRNA pseudogene

identification some of the SINEs in mammalian genomes are so similar, at both the
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primary-sequence and structural levels, to functional ncRNAs that even well tuned ncRNA
finding algorithms may falsely predict them as real ones. For instance, about 2,700 tRNA
genes, which is more than five times of the tRNA genes annotated in the human genome, were
initially predicted in the mouse genome (Mouse Genome Sequencing Consortium 2002). In
order to generate a smaller, but more confident, set of functional mouse tRNA genes, the
Mouse Genome Consortium has used an additional criterion, non-overlapping with the SINEs
identified by RepeatMasker (Smit and Green unpublished), to filter the initial prediction.
However, there are at least two considerations with such a criterion. First, it may be too
arbitrary to hypothesize that all SINEs are pseudogenes. Second, ncRNA pseudogenes that are
unrelated to SINEs can not be filtered out. The above case about filtering out tRNA

pseudogenes illustrates the difficulty of distinguishing functional ncRNAs from pseudogenes.

It is possible that some synteny-non-conserved ncRNAs are functional genes. Firstly, a
synteny-non-conserved ncRNA might be functional and originally synteny-conserved, but has
been deleted in the other lineage. Secondly, a synteny-non-conserved ncRNA may be a
functional gene as a result of mechanisms creating a functional copy. Perhaps, due to unique
features of certain types of ncRNAs, there is a high tendency for these genes to be
synteny-non-conserved in mammalian genomes. One argument is that the mechanisms that
generate protein pseudogenes may generate synteny-non-conserved but functional ncRNAs, in
addition to ncRNA pseudogenes. While a mechanism of pseudogenisation may effectively
cause a newly amplified protein gene to lose the association with its upstream regulatory
regions, the same mechanism may not necessarily cause the nonfunctionality of a recently

amplified ncRNA locus in the genome.

Retrotransposition appears to be one possible mechanism that can lead to the generation
of protein pseudogenes, but new and functional ncRNA loci. Since the transcription regulatory

elements in the 5’ flanking regions of the protein genes are not contained in mRNA transcripts,
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a retrotransposed protein gene, even if it has retained part of the intron-exon structure, should
generally be untranscribable. Therefore, a retrotransposed protein gene may become a
pseudogene as soon as the redundant sequence is generated (Figure 3-1 A). Conversely, a
retrotransposed ncRNA that is not truncated may remain transcribable, if its intragenic

promoters are still intact during the process of generating this redundant copy (Figure 3-1 B).
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Figure 3-1. Comparison of the gene structures of a retrotransposed protein gene and a hypothetical
retrotransposed ncRNA that contain internal promoters.

Therefore, this chapter is dedicated to distinguishing functional ncRNAs from ncRNA

pseudogenes in the context of genomic sequences. There are two purposes in this chapter:
® To explore whether human synteny-non-conserved ncRNAs tend to be pseudogenes

® To evaluate novel rules that may be useful for distinguishing functional ncRNAs

from ncRNA pseudogenes
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Mammalian tRNA genes were chosen for further investigation. One reason for this
decision is that many features of functional tRNA genes have been well studied. For example,
a tRNA molecule can fold into a cloverleaf-like secondary structure; tRNA genes have
internal promoters, which consist of A and B boxes (DeFranco et al. 1980); mammalian tRNA
genes tend to cluster in the genomes (Lasser-Weiss et al. 1981). It was therefore hoped that, by
integrating the information of sequence similarity, anticodon types, clustering, etc., evidence
might possibly be found to determine if synteny-non-conserved tRNA genes in the

mammalian genomes tend to be pseudogenes.

In the first part of this chapter (section 3.1), I investigate whether the human
synteny-non-conserved tRNA genes that were retrieved from Rfam tend to be pseudogenes.
The conservation of secondary structures and conservation of promoters, as well as
conservation of primary sequences, were used to infer the functionality of the human
synteny-non-conserved tRNA genes. The idea is that, if certain tRNA genes are pseudogenes,
their sequences may have accumulated mutations which may change the features important for

the functionality of tRNAs. The specific questions I address here include:

® s there a clear-cut difference between the bit-score distributions of

synteny-non-conserved tRNA genes and synteny-conserved tRNA genes?

® Do synteny-non-conserved tRNA genes tend to have more unstable structural

features than synteny-conserved tRNA genes do?

® Do synteny-non-conserved tRNA genes tend to have degraded internal promoters?

A particular property of tRNA genes is that they frequently exist in synteny conserved
clusters, as examined in chapter 2. In the second part of this chapter, I explore whether
properties of copies of tRNA genes that are clustered and copies that are un-clustering are

different and whether there is any evidence that can relate this to the likelihood of being
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pseudogenes. Clustering seems to be an effective strategy to ensure each transcription unit can
be accessed with generally equal probability by transcription machinery. Evidence suggests
that clustering is important for regulating expression of ncRNAs. It has been demonstrated that
clustered miRNA genes tend to be co-expressed (Baskerville and Bartel 2005). Besides, a
cluster of 40 miRNA genes has been found in the human imprinted 14q32 domain and only

the maternally inherited genes are expressed (Seitz et al. 2004).

I therefore hypothesized that non-clustered tRNA genes tend to be pseudogenes. Two

tests were therefore designed to evaluate this hypothesis:

® [s there an enrichment of non-clustered tRNA genes in the low-scoring group which

are more likely to be pseudogenes?

® Are clustered tRNA genes sufficient for covering 46 types of anticodons that are
necessary for protein translation? If so, this would be evidence that non-clustered
tRNA genes are not absolutely required for protein translation, supporting

hypothesis that they could be pseudogenes.

3.1. Are Rfam synteny-non-conserved tRNA genes

functional?

3.1.1. Materials and methods

The coordinates of human and mouse tRNA genes were retrieved from RFAMSEQ of
Rfam 4.1 (Griffiths-Jones et al. 2003) and then converted to chromosomal coordinates in the
human and mouse genomes respectively. The reference genome assemblies are human NCBI
33 and mouse NCBI M30. The bit scores of the Rfam tRNA genes were calculated using

Infernal and the tRNA covariance model (CM) of Rfam 4.1 (Griffiths-Jones et al. 2003). The
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human tRNA genes predicted using tRNAscanSE were retrieved from Ensembl release 19 by

using the Ensembl Perl APIs (Birney et al. 2004).

In order to compare the bit-score distributions of the Rfam tRNA genes and the
tRNAscanSE-predicted tRNA genes with that of bona fide tRNA genes, a trusted set of
functional tRNA genes from the human genome is required. However, only a few
experimentally verified human tRNA genes are available (Sprinzl and Vassilenko 2005). One
consideration is that the bit-score distribution of a small number of tRNA genes may be biased
and thus unsuitable for use as the reference distribution. Therefore, I decided to recruit Rfam
tRNA genes that are human-mouse synteny-conserved as a trusted set of functional tRNA
genes. Since synteny conservation has been widely accepted as a strong indication for the
existence of functional elements, the human-mouse synteny-conserved tRNA genes are very
likely to be functional tRNA genes. The sequences of these tRNA genes were prepared using
the Ensembl Compara Perl APIs to search syntenic regions identified by Ensembl Compara

release 19 (Clamp et al. 2003).

The preservation of structural features of tRNA genes was evaluated by using Infernal to
align these sequences to Rfam tRNA CM. For the purpose of checking the conservation of the
internal promoters in these tRNA genes, eufindtRNA (Pavesi et al. 1994) was used (for a brief

introduction of Infernal and eufindtRNA, see materials and methods, section 2.1, chapter 2).

3.1.2. Results

3.1.2.1. Distribution of the Rfam bit scores of tRNA genes

808 human and 452 mouse tRNA genes were retrieved from Rfam (release 4.1). At first
glimpse, it seems that there are more tRNA genes in the human genome than in the mouse
genome; however, a substantial portion of the mouse genome assembly NCBI M30 is

composed of sequences from whole genome shotgun sequencing, which has not been scanned
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by Rfam 4.1. The number of the tRNA genes in the mouse genome is therefore an

underestimate.

Interestingly, both the bit-score distributions of the human and the mouse tRNA genes
sequences are bimodal (Figure 3-2, see “Rfam-human” and “Rfam-mouse” respectively). The
bimodal bit-score distribution of the human tRNA genes seems to consist of two well-shaped

distributions, which have modes at 65 and at 30 respectively.
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Figure 3-2. Distributions of Rfam bit scores of tRNA genes of different categories

The bin size of Rfam bit scores is 5. Almost no tRNA genes (except the human numt-tRNAs) have bit scores
less than 25 because Rfam has used 25 bits as the gathering threshold for tRNA genes.

One interpretation of these results is that the bimodal distribution represents two groups
of evolutionarily distinct tRNA genes. This idea is supported by the similarity between the
high-scoring part of this bimodal distribution and the bit-score distributions of other sets of
tRNA sequences. For example, the contour of the bit-score distribution of the
tRNAscanSE-predicted human tRNA genes (Figure 3-2, “tRNAscanSE-human”) is very

similar to the high-scoring part of the bimodal bit-score distribution. In addition, the bit-score
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distribution of the trusted set of bona fide tRNA genes (Figure 3-2, “Rfam human-mouse
synteny-conserved”) is also very similar. Only 9% (12/133) of the trusted bona fide tRNA
genes have bit scores lower than 50. This comparison suggests that the high-scoring mode

represents the bit-score distribution of human bona fide tRNA genes.

At this stage, this evidence is not convincing enough to conclude that the low-scoring
tRNA genes are more likely to be pseudogenes. For example, the small bump in the
distribution for “human-tRNAscanSE” within the range of 35 to 50 suggests that some bona
fide tRNA genes may have bit scores indistinguishable from what are presumed to be tRNA
pseudogenes (Figure 3-2, “tRNAscanSE-human”). In addition, the existence of a prominent
low-scoring peak in the bit-score distribution of the tRNA genes predicted by Rfam does not
really favour the hypothesis that “the low-scoring tRNA genes are pseudogenes”. If the
low-scoring tRNA genes are pseudogenes and the descendants of ancient functional tRNA
genes, the random drifts caused by neutral mutations would be expected to result in a tail at
the left side of the bit-score distribution, rather than generating an obviously bimodal

distribution.

Consequently, I evaluated additional information, such as loss of primary-sequence and
secondary-structure features, to look for additional evidence that low-scoring tRNA genes
might be pseudogenes. Such information cannot be directly inferred from the bit scores of
individual tRNA genes. An Rfam bit score for a particular ncRNA is actually a statistical
evaluation of its degree of conservation at both primary-sequence and secondary-structure
levels. It turns out that two factors can contribute to low bit scores for a tRNA gene: 1) the loss
of the capability to fold into cloverleaf-like secondary structure; 2) the loss of the internal
promoter which is required for being recognized by RNA polymerase III in order to generate
functional tRNAs. These factors are further explored in subsections 3.1.2.2. and in 3.1.2.3.

respectively.
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3.1.2.2. Moderate preservation of secondary structures in the low-scoring and

synteny-non-conserved tRNA genes

The number of non-canonical base pairs in Rfam tRNA predictions, as compared to a
reference tRNA structure, is plotted. For the synteny-non-conserved tRNA genes with bit
scores lower than 50, the mode of the number of non-canonical base pairs that may make the
secondary structures unstable is 3 and the average is ~5 (Figure 3-3). In other words, for a
low-scoring tRNA gene, there is on average slightly more than 1 non-canonical base pair per

stem region (i.e. 4 stems in a tRNA molecule in its functional form).

However, even for the synteny-conserved tRNA genes which are more likely to be bona
fide tRNA genes, the mode is 2 non-canonical base pairs in their stem regions (Figure 3-3) and
the average is 2.6. This suggests that for one stem region of a tRNA, one non-canonical base
pair can still be tolerated and its secondary structure can still be preserved. The evidence
suggests that there is moderate preservation of structural features in the low-scoring tRNA
genes and a moderate level of non-canonical base pairs may be tolerated. The degree of loss of
structural features provides only limited support for the view that these low-scoring tRNA

genes tend to be pseudogenes.
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Figure 3-3. Distributions of numbers of the non-canonical base pairs in human tRNA genes

The synteny-conserved and the synteny-non-conserved tRNA genes are aligned to the tRNA consensus
structures by using Infernal and the Rfam tRNA CM. Non-canonical base pairs that may destabilize the
secondary structures of these tRNA genes are counted, except that G-U base pairs are tolerated.

3.1.2.3. Degradation of the internal promoters in the low-scoring tRNA genes

The genomic loci containing tRNA genes need to be transcribed into tRNA molecules in
order to function in cells. If these low-scoring tRNA genes are not transcribable, they are
pseudogenes. In order to be transcribable a functional promoter is required. The internal
promoters of the tRNA predictions were evaluated using the eufindtRNA algorithm (see
methods in subsection 2.2.1.6 of the materials and methods of section 2.2). Previously in
subsection 2.2.3.4 in chapter 2, two cases of promoter-specific degradation of
synteny-non-conserved tRNAscanSE-predicted tRNA gene loci were found. Here,
pseudogenization through promoter-specific degradation is investigated more generally in

synteny-non-conserved and low-scoring Rfam tRNA genes.

The results reveal that, about three-quarters (339/441) of the low-scoring tRNA genes do
not have intact promoters in their intragenic regions. According to current knowledge, these

low-scoring tRNA genes in the human genome cannot be transcribed into tRNAs by
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eukaryotic RNA polymerase IIl. This is good evidence which indicates that the set of
low-scoring tRNA genes is enriched with pseudogenes. This result suggests that in the human
genome there is a group of tRNA-related pseudogenes, where their internal promoters are

degraded, while their secondary structures are moderately conserved.

3.1.2.4. Tracing the evolutionary origins of low-scoring tRNA genes

The finding that the majority of low-scoring tRNA genes appear to have more
significantly degraded internal promoters than secondary structures and may be pseudogenes,
suggests the hypothesis that mutations that degrade internal promoters have a selective
advantage in mammalian evolution. It seems possible that degradation of internal promoters
might be the most effective mechanism for disabling tRNA genes, since aberrant tRNA genes
with mutations that make RNA secondary structures unstable would be still transcribable and

lead to abnormal protein translation and damage the cell.

If selective degradation of synteny-non-conserved tRNA genes were an important
mechanism in the human evolution, it would be reasonable that the human genome would
contain numerous tRNA genes which have lost functional promoters, but not yet lost their
secondary structures. In order to test this hypothesis, it was proposed to demonstrate that
random mutations are unlikely to generate tRNA genes, where their internal promoters have

degraded and structural features are still moderately preserved.

Consequently, a simulation, where a random mutation model is applied to the ancestors
of these low-scoring tRNA genes, was planned. The initial step for preparing this simulation
was to find an appropriate ancestral sequence for each low-scoring tRNA gene. The
considerations for finding the ancestral sequences of these low-scoring tRNA genes are

discussed in the following two subsections (3.1.2.4.1. and 3.1.2.4.2.).
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3.1.2.4.1. Weak evolutionary relation of low-scoring tRNA genes with bona fide human tRNA
genes

A sensible conjecture is that the ancestral sequences of the low-scoring tRNA genes are
bona fide human tRNA genes. According to the discussions above (for details see subsections
3.1.2.1.,3.1.2.2. , and 3.1.2.3. ), it is conceivable that bona fide tRNA genes are enriched in
the sets of human-mouse synteny-conserved tRNA genes, the tRNAscanSE-predicted
high-scoring tRNA genes, and the tRNA genes in manually-curated tRNA repositories.
However, the search for the evolutionary origins of the low-scoring tRNA genes proved
difficult. Using WU-BLAST a possible ancestor could be found for less than one-quarter
(101/441) of the low-scoring tRNA genes. In addition, less than half of the low-scoring tRNA
genes were found to have homologous sequences in the sets of tRNAscanSE-predicted human

tRNA genes and of tRNA compilation (Sprinzl et al. 1998).

3.1.2.4.2. Strong evolutionary relation of low-scoring tRNA genes with mitochondrial tRNAs

Because of the failure to find the ancestral sequences for the majority of the low-scoring
tRNA genes from the set of bona fide human tRNA genes, it was necessary to consider other
sources of tRNA genes that might be the evolutionary ancestors of the low-scoring tRNA
genes. In eukaryotic cells, the nuclear genome is not the only sequence that contains tRNA
genes. Some intracellular organelles, such as mitochondria and chloroplasts, have their own
tRNA genes in their organelle genomes. The tRNA genes of these organelles are divergent, at
the primary-sequence level, from the vertebrate nuclear tRNA genes. They are another

possible origin of the low-scoring tRNA genes.

The sequences of the low-scoring tRNA genes were searched against the genomic
sequence of the human mitochondrion (GenBank accession number: NC 001807.4), and
better matches were found to human mitochondrial tRNA genes than to trusted tRNA genes in
many cases (human-mouse synteny-conserved tRNA genes) (Table 3-1). In addition, 239 of

the sequences that did not appear to have any homologous sequence in the set of human tRNA
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genes matched human mitochondrial tRNA genes. The average identity of the 280 tentative
nuclear mitochondrial tRNA sequences (numt-tRNAs) to human mitochondrial tRNA genes is
84.8%. The average coverage of these alignments to the full length of the mitochondrial tRNA
genes is 85.3%. The evidence strongly suggests that many low-scoring tRNA genes in the
human nuclear genome are derived from the human mitochondrial tRNA genes, and not from

the tRNA genes in the human nuclear genome.

More similar to the human nuclear tRNA genes 128 (29%)
More similar to the human mitochondrial tRNA genes [280%* (64%)
None 33 (7%)
All the human low-scoring tRNA genes 441 (100%)

Table 3-1. Numbers of the human low-scoring tRNA genes which are more similar to either the human
nuclear tRNA genes or the human mitochondrial tRNA genes.

“None” is used to indicate the low-scoring tRNA genes which are not significantly similar to either human
nuclear tRNA genes or mitochondrial tRNA genes. “*” indicates that 239 out of the 280 low-scoring tRNA
genes do not have homologous sequences in the set of human tRNA genes.

For the 128 human tRNA genes that are more similar to human nuclear tRNA genes than
to mitochondrial tRNA genes, 71.9% (92/128) of them were recognised using eufindtRNA.
This means that the majority of human-nuclear-tRNA-derived low-scoring tRNA sequences
still preserve their internal promoters to a certain extent. Consequently, the hypothesis which
asserts that there might be selection for mutations that degrade the promoters of the tRNA
genes in mammals does not appear to apply to tRNA genes derived from other human tRNA

genes.

3.1.2.5. Searching for nuclear mitochondrial tRNAs in mammalian genomes

3.1.2.5.1. Finding nuclear mitochondrial tRNA sequences in the human genome

Since the Rfam tRNA CM (covariance model) is not specifically trained for finding

nuclear mitochondrial tRNA sequences (numt-tRNAs) in the human genome, there may be



110  Chapter 3. Distinguishing functional ncRNAs from pseudogenes in mammalian genomes

other human numt-tRNAs which were not identified by Rfam. In order to discover as many
numt-tRNAs as possible, blastz and the human mitochondrial genome were used to search for
nuclear mitochondrial sequences (numt-seqs) in the whole human genome (NCBI 33). Blastz

was used since it is well tuned for aligning genomic sequences (Schwartz et al. 2003).

177 human genomic loci were found to be similar to mitochondrial sequences. Many loci
contain more than one nuclear mitochondrial genes (numt-genes). The arrangements of
mitochondrial genes in these loci are mostly consistent with those of the real mitochondrial
genes encoded in the human mitochondrial genome. It is therefore reasonable to infer that the
numt-genes of each locus have been co-transferred into the nuclear genome. There are 627
numt-tRNAs in the 177 human loci of numt-seqs. The average identity between these
numt-tRNAs and the human mitochondrial tRNA genes is 84.5%. The average coverage of
these alignments to the full-length mitochondrial tRNA genes is 85.3%. None of the 627
tRNA genes overlap with known repetitive elements except tRNAs. Only 30 out of the 627
sequences were found to have homologous sequences in the set of trusted bona fide human
tRNA genes (human-mouse synteny-conserved tRNA genes). By using eufindtRNA, only 33
out of the 627 sequences were found to have RNA Pol III promoters. The discovery of human
numt-tRNAs could explain the low-scoring mode in the bimodal score distribution of the
human tRNA genes identified by Rfam well (Figure 3-4, human numt-tRNAs). Although the
curve for numt-tRNAs does not fit exactly with the low-scoring group of the bimodal

distribution, it is almost parallel.
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Figure 3-4. Distributions of Rfam bit scores of tRNA genes of human-numt, Rfam-human, and tRNAscanSE
tRNA genes.

3.1.2.5.2. Few numt-tRNAs in the mouse genome

Following the discovery of numt-seqs related sequences in the human genome the same
analysis was repeated for the mouse genome. In contrast to the discovery of numerous
numt-tRNAs in the human genome, far fewer numt-tRNAs could be found in the mouse
genome. The bit-score distribution of the mouse low-scoring tRNA genes is obviously
different from that of the human low-scoring tRNA genes (Figure 3-2, Rfam-mouse). 86%
(217/252) of the mouse low-scoring tRNA genes from Rfam 4.1 are SINEs. Surprisingly, only
64 numt-tRNAs were found in the mouse genome assembly NCBI M30. Not only is the
number of numt-seqs smaller than that in the human nuclear genome, but also the average
length for each locus of integration is shorter. There are on average 1.7 numt-tRNAs per locus
of mouse numt-seq (64 numt-tRNAs / 38 loci), while there are on average 3.5 numt-tRNAs

per locus of human numt-seq (627 numt-tRNAs / 177 loci).

There are various hypotheses that might explain the difference between the numbers of

numt-tRNAs in the human genome and in the mouse genome. However, before designing
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strategies to test these hypotheses, the effect of the quality of the mouse genome assembly on
identifying numt-seqs needs to be addressed. Unlike the high coverage of clone-based
sequences used in the current human genome assembly, the mouse genome assembly NCBI
M30 consists of sequences from both whole genome shotgun (WGS) and high throughput
genome sequencing (HTGS). One limitation of WGS sequence assembly is its inability of
resolving duplicated regions. If there were numerous recent integrations of the mitochondrial
genomic sequence into the mouse nuclear genome, it is possible that the numt-seqs could still
be quite similar to one another and thus inappropriately collapsed by WGS sequence assembly.
In order to confirm that there is a significant difference between the numbers of the numt-seq
loci in the human and mouse genomes respectively, the latter value should be reassessed in the

future when more clone-based sequences are used in the mouse genome assembly.

3.1.2.5.3. Effects of numt-tRNAs on finding mammalian tRNAs

The presence of numt-seqs in the human genome has not been considered in the
annotation of the human genome. For example, at least five tRNAscanSE-predicted tRNA
genes were found within regions of numt-seqs in the human genome. It is unknown whether
human numt-tRNAs can be transcribed into functional tRNAs in human cells (for further
discussion see subsection 3.1.2.6. ). Numt-seqs are also frequently ignored in annotations
provided by public-domain genome databases. Unlike the annotation of repetitive elements,
consideration of numt-seqs is not part of the procedure in pipelines of genome annotation. In
addition, most of the mitochondrial genes are not included in the current release of RepBase
(released on 10/09/2004) and there are only two mitochondrial tRNA genes from G. gallus in

RepBase.

3.1.2.6. Are numt-tRNAs functional?

The existence of numt-seqs in the nuclear genome has been known for some time

(Tsuzuki et al. 1983), and their evolutionary dynamics have been discussed in a number of
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papers (Mourier et al. 2001; Tourmen et al. 2002; Woischnik and Moraes 2002; Hazkani-Covo
et al. 2003; Ricchetti et al. 2004). Most related research suggests that nuclear mitochondrial
protein-coding genes (numt protein-coding genes) are pseudogenes. One important factor is
that the genetic code of the genes encoded in mitochondrial genomes is different from that of
the genes encoded in nuclear genomes. Presumably numt protein-coding genes cannot be

translated into functional proteins.

In contrast, the functions of numt-tRNAs have never been explicitly discussed. The
arguments, which have been used to infer that numt protein-coding genes should be
pseudogenes, may not be applicable to the case of numt-tRNAs. The functions of numt-tRNAs
do not depend on being translated into proteins. Numt-tRNA genes could be functional if they
were transcribed into tRNA molecules. The following two subsections (3.1.2.6.1. and
3.1.2.6.2. ) are therefore dedicated to finding evidence to support the hypothesis that human
numt-tRNAs were initially functional while other nuclear mitochondrial sequences (non-tRNA

numt-seqs) lost functions upon integration of numt-seqs into nuclear genomes.

3.1.2.6.1. Comparing patterns of mutations of numt-tRNAs and non-tRNA numt-seqs

In order to investigate the possibility that numt-tRNAs were once functional, the patterns
of mutation in numt-tRNAs and other non-tRNA numt-seqs were compared. The hypothesis is
that, in order to protect the organism from the deleterious effects of transcripts of numt-tRNAs,
mutations that disable these genes would accumulate more rapidly than in non-tRNA
numt-genes which might be expected to be inactive upon initial insertion. In other words,
differences between the patterns of mutations in numt-tRNAs and in non-tRNA numt-seqs
might be considered as evidence that either numt-tRNAs or non-tRNA numt-seqs were once

functional.

By aligning various human numt-seqs to the human mitochondrial genome, numbers of

mutations in human numt-tRNAs and in human non-tRNA numt-seqs were counted separately.
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Unexpectedly, on average numt-tRNAs were found to be slightly more conserved than other
non-tRNA numt-seqs (Figure 3-5). This result suggests that while evolutionary pressures on
human numt-tRNAs and human non-tRNA numt-seqs may be different; overall human
numt-tRNAs are not degraded faster than human non-tRNA numt-seqs. In addition, there is no
obvious difference between the substitution patterns of the numt-tRNAs and the non-tRNA
numt-seqs (Figure 3-6).
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Figure 3-5. Distribution of identities of human numt-tRNAs and human non-tRNA numt-seqs in 80-90 percent
identity regions to the human mitochondrial genome

The red points indicate numt-tRNAs and the blue crosses indicate non-tRNA numt-seqs. The green line is the
diagonal line (x=y). Numt-tRNAs and non-tRNA numt-seqs were separated from all numt-seqs (found by
using blastz) with 80-90 percent identities to the human mitochondrial genome. There are 43 numt-tRNAs and
43 non-tRNA numt-seqs in this plot. The y-axis is the identities of numt-tRNAs or non-tRNA numt-seqs to
their corresponding human mitochondrial genes. The x-axis is the identities to the human mitochondrial
genome for respective numt-seqs, in which the numt-tRNAs or non-tRNA numt-seqs are embedded.
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Figure 3-6. Patterns of substitution in the human numt-tRNAs and in the human non-tRNAs embedded in
regions with different percent identities to the human mitochondrial genome

“tRNA ID 70-80” indicates the numt-tRNAs embedded in regions with 70-80 percent identities to the human
mitochondrial genome and so forth. In the x-axis, “AC” means the base adenosine being substituted with the
base cytosine in numt-seqs, and so forth. The y-axis is the normalized ratio of substitutions (i.e. number of
each type of substitutions normalized by total number of substitutions in each category of numt-tRNAs or
non-tRNA numt-seqs).

3.1.2.6.2. Uneven distribution of mutations along human numt-tRNAs

Although the previous results show the overall mutation rate of numt-tRNAs is lower

than for non-tRNA numt-seqs, I decided to investigate the distribution of mutations along

numt-tRNAs sequences. Given that tRNAs contain internal regulatory elements that promote

their transcription, if mutations in numt-tRNAs were found preferentially in positions that

could effectively degrade these elements, this would support the hypothesis these numt-tRNAs

had initially been active, but subsequently inactivated. Previously counted mutations from

alignments between numt-tRNAs and the human mitochondrial genome were therefore

counted in bins along the consensus numt-tRNA sequence. The 95% confidence interval for

each bin was estimated based on the beta distribution, assuming that the number of mutations

was o and that the number of bases in each bin was the sum of o and .
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Figure 3-7. Distribution of mutation numbers along human numt-tRNAs

X-axis is the bins along human numt-tRNA sequences. Y-axis is the number of total mutations in each bin.
The bin size is 4 bases in length. Forty-three numt-tRNAs are extracted from the numt-seqs with 80 to 90
percent identities to the human mitochondrial genome. The mutations for the first 4 bases for the recruited
numt-tRNAs are summed up to give the number of mutations in the first bin and so forth. The green bars are
the 95% confidence intervals for bins.

Interestingly, two regions, the 16™ to 19™ (bin 5) and 52™ to 55™ (bin 14) nucleotides,
were found to contain significantly more mutations than the 28" to 35" (bin 8 and 9)
nucleotide (Figure 3-7). The 95% confidence intervals of mutations for the former two regions
do not overlap with those for the 28" to 35™ nucleotides. The locations of these two regions
are consistent with the positioning of A and B boxes in the nuclear tRNA genes (DeFranco et

al. 1980; Galli et al. 1981).

In numt-tRNAs there are significantly more mutations in the positions that correspond to
known regulatory regions of human tRNAs and the tRNA promoter finding algorithm
eufindtRNA fails to find sequences that score well as promoters. These results might appear

consistent with the hypothesis that numt-tRNAs were initially functional when copied into the
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mammalian nuclear genomes, but have since become pseudogenes as a result of promoter
degradation through selective acceptance of mutations. Unfortunately, proof of this hypothesis
needs additional evidence. For example, the mechanism of expression of tRNAs in the
mitochondria is different to that of human tRNAs. There is also no evidence to show that
expression of mitochondrial tRNAs in the cytoplasm would interfere with the protein synthesis
of the genes encoded in nuclear genomes. There are no papers dealing specifically with the
fidelity of terminal maturation, aminoacylation, and roles in protein translations if the

mitochondrial pre-tRNA transcripts are in the cytoplasm.

3.1.3. Discussion

These results presented in this section (section 3.1) suggest that the 64% of the human
synteny-non-conserved tRNA genes retrieved from Rfam are nuclear mitochondrial tRNA
genes (numt-tRNAs), whose ancestors are tRNAs in the human mitochondria. With the
investigations performed in the previous subsections, these numt-tRNAs should be
untranscribable pseudogenes. The pattern of mutation in these numt-tRNAs is interesting and
suggestive of pseudogenisation through promoter inactivation. By contrast, the vast majority
of the remaining low scoring synteny-non-conserved tRNA genes retrieved from Rfam have
sequence similarity to synteny-conserved tRNA genes and ~72% are recognised using
eufindtRNA suggesting they have intact promoters and may not be pseudogenes (see

subsection 3.1.2.4.2.).

The bit-score distribution appears to be only weakly useful in distinguishing functional
tRNA genes from tRNA pseudogenes. The bimodal bit-score distribution observed for low
scoring synteny-non-conserved tRNA genes was mainly the result of the special case of
numt-tRNAs, however when these were removed any relationships became unclear. This is

consistent with the bit-score distributions of other classes of Rfam ncRNAs, where no
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particular pattern can be found. With a bit-score distribution that is simply single-modal and
heavy-tailed, such as in the case of human U6 snRNA genes identified by Rfam 4.1 (Figure
3-8), it is difficult to choose any clear-cut threshold that might separate functional and
non-functional genes. Although ncRNA sequences with higher bit scores are more likely to be
synteny-conserved and functional genes, whether ncRNA sequences with lower scores are
functional or not cannot be unambiguously determined. Similarly there is little evidence that
an ncRNA gene with synteny-non-conserved status is necessarily a pseudogene.
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Figure 3-8. Distribution of the Rfam bit scores of the human U6-like sequences identified by Rfam 4.1

The heavy-tailed distributions suggest that, for many classes of ncRNAs in mammalian
genomes, the generation of pseudogenes may be a continuous process. It seems that abundant
ncRNA pseudogenes in mammalian genomes do not have a strong negative effect on the
fitness of organisms. While this is good news for the survival of mammals, it also means that

bit score distributions cannot be very helpful in filtering out ncRNA pseudogenes in ncRNA
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finding. More specific signals are necessary for distinguishing bona fide ncRNAs from
ncRNA pseudogenes. One such signal might be whether an ncRNA retains a recognisable
internal promoter, however verification of the computational evidence presented here is

needed.

3.2. Clustering — a useful criterion for filtering out ncRNA

pseudogenes?

3.2.1. Materials and methods

3.2.1.1. Recruiting human and mouse tRNA genes

The human and mouse tRNA genes used in this section were retrieved from Ensembl

release 29 by using Ensembl Perl APIs. These genes were predicted by using tRNAscanSE.

3.2.1.2. Defining tRNA-gene clusters

In assessing the features of clustered tRNA genes, one issue concerns deciding a suitable
distance criterion, i.e. the maximal distance allowed between the nearest neighbouring tRNA
genes, for defining tRNA gene clusters. If the selected distance is longer than necessary, more
potentially non-clustered tRNAs may be included into clusters. On the other hand, if the
selected distance is too short, some clustered bona fide tRNA genes may be incorrectly
grouped or classified as non-clustered. Several different distances, such as 5-kilo bases and

10-kilo bases, were therefore tried to define tRNA-gene clusters.

3.2.1.3. Comparing the ratios of non-clustered tRNA genes within different bit-score ranges

All human tRNA genes are categorized into five bins according to their bit scores: 20-55,
56-65, 66-75, 76-85, and 86-95. The ratio of tRNA genes that are clustered was calculated
separately for each bin. The enrichment of clustered tRNA genes in each bin is determined by

comparing the ratios in different bins. The 95% confidence intervals for individual ratios were
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estimated based on the beta distribution, assuming that each numerator was o and that each

denominator was the sum of a and .

3.2.1.4. The anticodons required for protein translation

It is known that not all 61 types of anticodons are required for protein translation in
eukaryotic cells. Because the interactions between codons and anticodons allow wobble pairs
in the third positions (of codons), some codons can share recognition by the same tRNA.
Guthrie and Abelson estimated that 46 types of tRNAs that have 45 unique anticodons are
sufficient for translation (for review see Guthrie and Abelson 1982). Two types of tRNAs with

[13%3]
1

exactly the same anticodon are used for carrying Met,, and Met; respectively (“i” indicates

translation initiation codon “m” indicates a general non-initiation codon for methionine).

3.2.2. Results

3.2.2.1. Enrichment of mammalian non-clustered tRNA genes in the low-scoring group

A 10-kb distance threshold was initially used to subgroup all human tRNA genes into
clustered and non-clustered ones. Among the 608 human tRNA genes predicted by
tRNAscanSE, ~65% (125/192) of the tRNA sequences with scores 20-55 were found to be
non-clustered. By contrast, ~27% (16/59) with scores 55-65, ~30% (45/152) with scores 65-75,
~25% (42/171) with scores 75-85, and ~26% (9/35) with scores 85-95, are non-clustered
(Figure 3-9). These results suggest that non-clustered tRNA genes are enriched in the
low-scoring group. There is also a similar finding when the clusters were defined by using the

5-kb distance threshold (data not shown).
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Figure 3-9. The human low-scoring tRNA genes are enriched with non-clustered ones

Each red bar is the 95% confidence interval for each bin. The confidence intervals shown here were estimated
as described in subsection 3.2.1.3.

3.2.2.2. The mammalian clustered tRNA genes can cover 46 necessary anticodons

In this subsection, the functionality of non-clustered tRNA genes is explored indirectly
on the basis of the need for their roles in protein translation. If clustered tRNA genes are
shown not to include all the anticodons required for protein translation, this will be evidence
that non-clustered tRNA genes are necessarily functional. Conversely, if clustered tRNA
genes provide all the required anticodons, non-clustered tRNA genes may not be necessarily

required for protein translation.

These results indicate that clustered tRNA genes in the human genome can cover all 46
types of tRNAs and exactly satisfy the wobble rules (Table 3-2, compare “yeast” and
“clustered” ones). Although, the human non-clustered tRNA genes can also cover 46 types of

tRNAs, there are several cases that violate the wobble rules (Table 3-2, compare “yeast” and
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“non-clustered” ones). Besides, in the mouse clustered tRNA genes, additional anticodons
were found (Table 3-3). These results suggest that the clustered tRNA genes in mammalian

genomes may be sufficient to provide the necessary types of tRNAs for translating proteins.

Human
tRNA types [Yeast Clustered, |Clustered, [Non-clustered, [Non-clustered,
All dist < 10kb|dist < 6kb |(dist < 10kb dist < 6kb
Ala 3 3 3 3 3 3
Arg 5 5 5 5 5 5
an [ [ ! B
Asp 1 1 1 1 1 1
Cys 1 1 1 1 1 1
Gln 2 2 2 2 2 2
Glu 2 2 2 2 2 2
ay b B .
His 1 1 1 1 1 1
Ile 2 2 2 2 2 2
Leu 5 5 5 5 5 5
Lys 2 2 2 2 2 2
Met* 2 2 2 2 2 2
Phe 1 1 1 1 1 1
Po BB B .
Ser 4 4 4 4 4 4
Thr 3 3 3 3
Trp 1 1 1 1 1 1
Val 3 3 3 3 3 3
Total T =B 45 45 45

Table 3-2. Comparison between types of anticodons of yeast and the human tRNAs

Each number indicates the distinct types of tRNA anticodons corresponding to a particular amino acid. For
example, there are 2 distinct types of anticodons found in the yeast tRNA genes corresponding to the tRNAs
carrying isoleucine (Ile). Each red box is used to indicate that for a particular amino acid, the number of
corresponding anticodon types that can be found in a category (clustered, non-clustered, etc.) of human tRNA
genes is different from that of the anticodon types found in yeast tRNA genes.

ko

means that there are two types of tRNAs with exactly the same anticodon for Met; and Met,, respectively.
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Table 3-3. Comparison between types of anticodons of yeast and mouse tRNAs

The color-coding convention used in this table follows that of Table 3-2.
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The anticodon types of non-clustered mouse tRNA genes were not listed. The types of anticodons that can be
found in non-clustered mouse tRNA genes exceed the essential types of anticodons (the column “yeast™). It is
difficult to determine which of them may not be the anticodons of bona fide mouse tRNA genes. The purpose
of this table is thus to demonstrate that clustered mouse tRNA genes can cover the anticodons essential for
protein translation.

AT LD

means that there are two types of tRNAs with exactly one anticodons for Met; and Met,, respectively.
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3.2.3. Discussion

3.2.3.1. Clustering may be a useful criterion for filtering out tRNA pseudogenes

Three threads of evidence imply that maybe the clustered tRNA genes in the mammalian
genomes are functionally more important than the non-clustered tRNA genes are. First, the
human low-scoring tRNA genes, which are more likely to be pseudogenes, are significantly
enriched with non-clustered tRNA genes. Second, the finding that clustered tRNA genes
should be sufficient for protein translation implies that non-clustered tRNA genes may not
necessarily be required for protein translation. Third, ~56% of human clustered tRNA genes
are human-mouse synteny-conserved, while only ~40% of human non-clustered tRNA genes

are human-mouse synteny-conserved (for details see section 2.2 and Figure 2-7).

3.3. Summary

In the first part of this chapter (section 3.1), I explored the tendency of the
synteny-non-conserved tRNA genes retrieved from Rfam to be pseudogenes. Results relevant

to genome-wide ncRNA finding include that:

® ~65% of human synteny-non-conserved tRNA genes retrieved from Rfam are

nuclear mitochondrial tRNA sequences (numt-tRNAs).

® Evidence suggests that these numt-tRNAs are currently non-functional in the human
genome. The observed patterns of mutation are weakly suggestive of a mechanism

of pseudogenisation that involves promoter inactivation.

® Once numt-tRNAs were disregarded, it was apparent that many of the remaining
low-scoring synteny-non-conserved tRNA genes might not necessarily be

pseudogenes.

In the second part of this chapter (section 3.2), I explored the functionality of human
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non-clustered tRNA genes. The main results are that:

® Low-scoring tRNA genes are enriched with non-clustered tRNA genes.

® Mammalian clustered tRNA genes can provide sufficient types of tRNAs to cover
all the anticodons required for protein translation. This is consistent with
non-clusters tRNA genes not needing to be functional, but does not demonstrate that

they are non-functional.

With respect to the functionality of synteny-non-conserved ncRNAs in mammalian
genomes, there are two hypotheses. In the following, I summarize the pieces of evidence for or

against each of these:

1. Hypothesis: synteny-non-conserved ncRNA genes are pseudogenes.

€ Evidence against this hypothesis:

® The majority (71.9%) of human nuclear tRNA derived low-scoring and
synteny-non-conserved (Rfam) tRNA sequences still preserve their
internal promoters to a certain extent (see subsection 3.1.2.4.2. ). They
may not be functional tRNA genes but may be transcribable.

® Some synteny-non-conserved and non-clustered (tRNAscanSE) tRNA
gene loci are also high-scoring, suggesting that these loci may not

necessarily be pseudogenes (see the high-scoring bins in Figure 3-9).
€ Conclusion:

® Evidence is weak, but is suggestive that synteny-non-conserved ncRNAs

are a mixture of functional ncRNAs and pseudogenes.

2. Hypothesis: non-clustered tRNA genes are pseudogenes.

€ Evidence for this hypothesis:
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The set of low-scoring tRNA genes in the human genome is significantly

enriched with non-clustered tRNA genes (see subsection 3.2.2.1. and

Figure 3-9).

® (lustered tRNA genes can cover 46 types of anticodons required for
protein translation, implying that non-clustered tRNA genes may be
functionally less important for translation (see subsection 3.2.2.2. ).

® ~56% of human clustered tRNA genes are human-mouse

synteny-conserved, while only ~40% of human non-clustered tRNA genes

are human-mouse synteny-conserved (see section 2.2 and Figure 2-7).
€ Evidence against this hypothesis:

® Some non-clustered tRNA genes are high-scoring as well as
synteny-conserved in mammalian genomes (see subsection 2.2.2.7. ), not

suggesting that they are pseudogenes.
€ Conclusion:

® Evidence is weak, but suggestive that non-clustered tRNAs may be more

likely to be pseudogenes.

In conclusion, evidence weakly supports that synteny-non-conserved ncRNAs are a
mixture of functional ncRNAs and pseudogenes. Besides, non-clustered tRNA genes may be

more likely to be pseudogenes.



Chapter 4. Modelling functional elements associated

with ncCRNAS

So far in thesis, the main focus has been on discussing issues related to applying
comparative-genomics based approaches for genome-wide ncRNA finding. This is due to the
fact that till now these approaches have been believed to be one of the most promising ncRNA
finding strategies. With the evidence presented in the previous chapters, this belief has
therefore been challenged, due to the finding of insufficient covariations, the existence of
numerous synteny-non-conserved and potentially functional ncRNAs, etc. There is another
related limitation of alignment approaches to this general problem: if a set of functionally
related ncRNAs are mainly constrained at the structural level, their sequences may become
very divergent at the primary-sequence level, making alignment very difficult (Torarinsson et

al. 2006).

Accordingly, it is appropriate to consider what approaches might be viable for
genome-wide ncRNA finding which do not rely on comparative genomics. One possible
strategy is to apply machine learning techniques which can, given a set of unaligned functional
ncRNAs, generate models of functional elements implicated in either the transcription or
functioning of ncRNAs. Such models can then be used to scan the genomes in order to find

novel ncRNAs.

From this chapter, I consider the computational modelling of two types of functional

elements that may be associated with ncRNAs:
® the transcription start sites (TSSs) of ncRNAs
® the functional elements/sites that are associated with RNA motifs in RNA transcripts

In the first part of this chapter, I introduce the computational approaches that may be used

127
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to find the transcription regulatory regions, including enhancers/silencers and transcription
start sites (TSSs). I start with a brief introduction of transcription regulatory regions, as well as
the basics of available motif models and relevant machine learning techniques that have been
used to discover motifs. Then I introduce an existing system, Eponine, which was designed to

generate predictive models of functional sites, such as TSSs, in genomes.

In the second part of this chapter, I consider the direct detection of RNA motifs in
genomes. | explore the possibility of applying available computational approaches for
identifying RNA structural motifs in genomes. I also introduce a new model I have created for
the purpose of discovering the functional sites which are associated with RNA structural

motifs.

4.1. Computational detection of transcription regulatory
regions

Access to and recognition of transcription units by transcription machinery are two
critical steps in the generation of functional transcripts of all genes, including both
protein-coding and ncRNA genes. The essential components involved in transcription
initiation include RNA polymerases, transcription factors (TFs), DNA templates, and
transcription regulatory elements on genomic DNA sequences. The regulatory elements that
are on the same chromosome as the respective transcription units are also called cis-regulatory
elements. Based on the distance from the genes they regulate, cis-regulatory elements can be
further categorized into promoters, which are in close proximity to transcription start sites
(TSSs), and enhancers/silencers, which can be at great distance from TSSs. A regulatory
element may consist of multiple transcription factor binding sites (TFBSs) that can specifically
interact with different TFs. A set of TFBSs for a particular TF may share unique sequence

patterns, which are generally short and degenerate.
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For each gene, the interaction of its promoter with a specific type of RNA polymerase
and with a set of TFs determines the exact transcription start point. Different RNA
polymerases together with specific sets of TFs favour different promoter sequences. In
eukaryotes, there are three different types of RNA polymerases for transcribing genes into
RNA molecules. RNA polymerase I only transcribes tandemly repeated ribosomal RNA genes
(except 5S rRNA genes). RNA polymerase III transcribes tRNA genes, 5S rRNA genes, and
some small nuclear RNA genes. RNA polymerase II transcribes all protein-coding genes.
There is evidence indicating that RNA polymerase II is also responsible for transcribing many
structural ncRNA and mRNA-like ncRNA genes (Lee et al. 2004). Genes that are transcribed
by RNA polymerase I are referred to as pol I genes, and so forth. Modelling promoters of pol
IT or pol III genes is therefore potentially useful for ncRNA finding. In fact, the internal
promoters of tRNA genes have been used as an important signal for tRNA finding in

eukaryotic genomes (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy 1997).

Enhancers/silencers are another type of transcription regulatory element. Their function
may be independent of their orientations and distances relative to respective transcription start
sites (For review see Khoury and Gruss 1983). Interaction of enhancers/silencers with
transcription factors can alter the transcription efficiency of associated transcription units. One
important regulatory mechanism of enhancers is inducing chromatin remodelling in eukaryotic
cells (For reviews see Vignali et al. 2000; Berger 2002). The genomic DNA of eukaryotes is
packaged with histone and non-histone proteins into compact chromatin. To allow
transcription to be initiated, the structure of compact chromatin must be remodelled in order to
allow efficient access by RNA polymerases. In particular, a class of complex enhancers, locus
control regions (LCRs), may consist of multiple regions for initiating chromatin remodelling
(For review see Dean 2006). While an enhancer can regulate transcription of only one gene,

LCRs can be effective on a cluster of genes. For example, an LCR in mammalian genomes is
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suggested to regulate the temporal expression of the beta-globin locus, which consists of at

least four genes (For review see Li et al. 2002).

Many computational methods have been developed in order to address the problems
relevant to finding transcription regulatory regions in genomes. For instance, many motif
finders have been developed to detect over-represented motifs. However, the over-represented
motifs so discovered may not directly be useful for discriminating functional sites in genomes.
One reason is that the individual interaction between a TF and its TFBS is rarely sufficient to
trigger a particular regulatory mechanism. For instance, in eukaryotes, the transcription
initiation may be associated with multiple TFBSs (for review see Sandelin et al. 2007).
Consequently, for the purpose of finding particular functional sites in genomes, I consider the

systems which can model the association of multiple TFBSs with particular functional sites.

In the following two subsections, I introduce the approaches for finding motifs and
functional sites. In the first subsection (4.1.1. ), existing computational approaches for
discovering over-represented motifs are briefly introduced. Although these approaches were
not directly used in the work presented in this thesis, this introduction provides essential
knowledge for using methods that can perform selective classification of functional sites in the
genomes. In the second subsection (4.1.2. ), I introduce the computational approaches that can
be used to model particular functional sites, such as TSSs and TTSs in genomes. The

approaches described and developed here are applied in chapters 5 and 6.

4.1.1. Computational detection of over-represented motifs

Computational detection of over-represented motifs in a set of related sequences can be
helpful when studying the regulatory mechanisms of gene expression. Although determination
of the functional TFBSs for a TF in genomes can currently only be achieved by experiment,

many computational systems have been designed for the purpose of finding over-represented
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patterns in a set of sequences containing genes known to be regulated by a particular TF. If
over-represented motifs can distinguish sequences with genes with similar functions from
background genomic sequences, these features can be suspected to be candidate regulatory

elements, possibly TFBSs of the same TF(s).

Over the past decades, many computational approaches have been developed in order to
find the over-represented motifs among a set of related sequences. There are two main issues
in discovering motifs: 1) the type of model used to represent motifs; 2) the approach used to
learn the parameters of the motif model. In the following of this section, these two issues are

discussed.

4.1.1.1. Motif models
The first step towards modelling transcription regulatory regions is using a formulation to
describe a set of TFBSs for a particular TF. There are at least two types of motif models that

have been used for this purpose: consensus based models, and profile based models.

4.1.1.1.1. Consensus based models

A consensus is a string of simple symbols for describing the most probable nucleotide at
each position of TFBSs. A consensus model is suitable for describing a set of TFBSs that are
completely identical. Consensus based models have also been extended to incorporate
ambiguous symbols. One strategy is to use the IUPAC-IUB alphabet (Nomenclature
Committee of the International Union of Biochemistry 1986) to code the ambiguous symbols
(Tompa 1999). For example, if both A and G are observed at a particular position of a set of
TFBSs, “R” (purine) is thus used to represent this position; if all four types of nucleotides are

observed, then “N” is used.

The significance of a consensus can be evaluated by several different scoring schemes.

One widely used scoring scheme is the z-score, which measures how unlikely a consensus
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with certain occurrences in a given set of sequences is found given a background distribution
(Tompa 1999). In brief, the z-score is the number of standard deviations of the observed
frequency of a consensus from its expected frequency. The expected frequency of a consensus
can be calculated by counting the number of occurrence in a set of random sequences, which
can be generated using a high-order Markov chain modelling the background distribution

(Sinha and Tompa 2002).

4.1.1.1.2. Profile based models

One problem with the consensus based motif model is its insufficiency for describing the
differential preference toward different symbols at a particular position of a motif. A more
flexible, and possibly more powerful, motif model is a profile based model, which can
describe the alignment of a set of functionally related TFBSs. A widely used profile based
model for representing motifs is a position frequency matrix (PFM) (also as position specific
frequency matrix, PSFM) (for review see Wasserman and Sandelin 2004), which is a type of
product-multinomial model. A PFM consists of a series of columns. Each column of a PFM is
a multinomial distribution over all possible symbols of the alphabet used in each position of a
motif. By using a PFM, each position of a sequence motif is treated independently, although
this assumption may be biologically imprecise as shown in some analyses of protein-DNA

interactions (Barash et al. 2003).

The probability of emitting a particular sequence pattern that starts at the i™ position of a
sequence X from a PFM can be evaluated by:
[M]|

M(x,i) =P (x(i+1-1) [4-1]

IM| is the number of columns of the PFM. P, returns the probability of a particular symbol

Ith

emitted by the 1™ column of the model. x(i + | - 1) is the symbol at the (i + | - 1)™ position of x.

For modelling TFBSs, the possible symbols for each column consist of adenine (A), guanine
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(G), cytosine (C), and thymine (T). A PFM can be displayed in the form of sequence logos
(Schneider and Stephens 1990). A sequence logo for a PFM contains of a series of columns of
stacked symbols, where the height of each symbol is proportional to its information content at
each position. In the rest of this thesis, sequence logos are used to represent the

primary-sequence motifs.

One advantage of using PFMs to describe motifs is that it is very easy to connect a motif
model to statistical information theory. The statistical significance of a motif can be assessed
by calculating the information content of a PFM. The information content at the | position of

a site is:

P
1()=2R, log, = [4-2]
b b

, where b refers to each of the possible bases; P, is the probability of base b at the |

position; Py is the frequency of base b in the background sequences (e.g. non-site sequences in
the genomes). This formulation is equivalent to the relative entropy and the Kullback-Leibler
distance, between the foreground motif model and the background sequence model (for review
see Stormo 2000). Usually the base composition in the background sequence model is
assumed to be independent and identically distributed (i.i.d.). One simple approach is to

assume that each base in the background is equally probable and thus Pyis 0.25 for each base.

In order to search for a particular pattern in a given sequence, a PFM value is usually
converted into a sum of a series of log-likelihood ratios with respect to a background sequence

model B:

W (i) =

il P(x(i+1-1) 4.3]

- log, B(x(i +1-1))

This conversion gives a position specific scoring matrix (PSSM), which is also called a

position weight matrix (PWM) (for review see Wasserman and Sandelin 2004). Given a
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sequence region, a PWM can be used to evaluate the log-likelihood ratio between the
foreground motif model and the background sequence model. A higher log-likelihood ratio
can be interpreted as that the foreground model is more likely to generate a given sequence
pattern than is the background model. The PWM scores have been shown to be proportional to
the binding energy contribution of the bases (Berg and von Hippel 1987; Stormo 2000). A
PWM can be used to scan for candidate TFBSs in a long sequence. For finding TFBSs in a
sequence of length N, all N - [M| + 1 sub-sequences of length M| must be enumerated and

scored.

4.1.1.2. Algorithms for discovering motifs

In an in silico motif finding problem, the positions, patterns, and lengths of
over-represented motifs in a set of related sequences may be initially unknown. Motif finding
algorithms must be capable of optimizing these parameters given a set of sequences. In order
to simplify the motif finding problem, existing motif finding algorithms usually require a
user-defined motif length. Consequently, the parameters that need to be learned are the motif
patterns, and their respective positions in individual sequences. Based on the models used,
motif finding methods can be classified into consensus based and profile based methods,

which are briefly introduced in the following, respectively.

4.1.1.2.1. Consensus based methods

Consensus based motif finding methods discover over-represented motifs by exhaustive
enumeration of a set of motifs (Tompa 1999; Marsan and Sagot 2000; Pavesi et al. 2001).

These methods usually use the following two steps to discover over-represented motifs:

® Enumerate all possible m-mer substrings in the given set of sequences.

® Score and rank the m-mer substrings by using some statistical measures, such as the

Z-score.
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Consensus based methods can be very fast, if a suitable indexing structure, such as the
suffix tree (Marsan and Sagot 2000), is used for organizing the sequences. While some
evidence suggested that consensus based motif finding methods may suffer from high false
positive rates (Osada et al. 2004), a recent survey reveals that these methods can have a
performance comparable to that of profile-based methods (Tompa et al. 2005). However, there
are considerations in using consensus based methods. Firstly, generating one consensus
optimal for predicting new sites is not straightforward. Similar substrings must be clustered
into fewer groups in a post-processing stage (Marsan and Sagot 2000). Secondly, for
computational efficiency, some consensus based methods such as YMF (Sinha and Tompa
2000) and Weeder (Pavesi et al. 2001) restrict the number of mismatches allowed in a pattern.
When several positions in a set of TFBSs with respect to a TF are weakly constrained, as in

the cases of eukaryotes, consensus based methods may not work well (Pavesi et al. 2001).

4.1.1.2.2. Profile based methods

Profile based motif finding methods discover over-represented motifs by selecting
oligonucleotides from the set of input sequences and then aligning them to generate profiles.

These methods generally consist of two components:

® A likelihood function which can evaluate how likely a particular motif is to be

over-represented given a set of sequences.

®  An optimization procedure which can maximize the likelihood function.

A basic form of the likelihood functions used in many profile-based motif finding
systems (for review see Stormo 2000) is the information content of a motif, as the formulation
presented in [4-2]. The positions of a motif in individual sequences are referred to as the
missing data. An important task of the optimization procedure is to search for the solution of

missing data which may maximize the likelihood function. Two of the most widely used
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optimization algorithms are the Expectation Maximization (EM) (Lawrence and Reilly 1990;

Bailey and Elkan 1994) and Gibbs Sampling (Lawrence et al. 1993).

EM algorithm

The EM algorithm is a general approach for maximizing a likelihood function with
missing data. The EM algorithm iterates between two steps: in the first step, the expected
values of the missing data are estimated, conditioned on the proposed model parameters; in the
second step, given the expected values of the missing data, the new model parameters that can
maximize the log likelihood function are chosen. The first step is the expectation step (E-step)
and the second step is the maximization step (M-step). These two steps are iterated until a

convergence criterion is satisfied.

There have been many extensions to the original EM based motif finding algorithm
(Lawrence and Reilly 1990). For instance, the MEME (multiple expectation maximization for
motif elicitation) algorithm is designed to model motifs with zero-or-one occurrences per
sequence (ZOOPS) (Bailey and Elkan 1994), although the original EM motif finding
algorithms were designed to find one occurrence per sequence. Another significant
improvement to EM made in the MEME algorithm is its capability to detect multiple motifs

within a single run.

Gibbs Sampling

In mathematics and physics, Gibbs Sampling is a sampling algorithm that is used to
explore the joint probability of two or more random variables. It is a special case of the
Metropolis-Hastings algorithm, which is a type of Markov chain Monte Carlo algorithm. A
Gibbs Sampling approach for motif finding also consists of an iteration of two steps:
predictive update step and sampling step (Lawrence et al. 1993), which correspond to the

E-step and the M step of an EM algorithm respectively. However, unlike the deterministic
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process used in EM to find the missing data (i.e. the start sites of a motif in individual
sequences), a stochastic process is adopted in the Gibbs Sampling motif finding algorithm
(Lawrence et al. 1993). At the predictive update step of Gibbs Sampling, a sequence z is
chosen and the other sequences are used to derive the model parameters, given the current site
positions. At the sampling step, the probability of generating the site in each position of
sequence Z can thus be estimated conditioned on the current motif model. The new site

position in sequence Z is sampled with the probability distribution of the site positions.

Several improvements have been made to enhance the capability of the original Gibbs
Sampling based motif finders (for review see Pavesi et al. 2004). The capabilities of the
enhanced Gibbs Sampling motif finders include finding multiple motifs simultaneously
(Thompson et al. 2003), modelling two-block motifs (GuhaThakurta and Stormo 2001; Liu et

al. 2001), etc.

4.1.1.3. Considerations when using motif finding methods

Although many motif finding algorithms have been developed, computational detection
of functional motifs in real genomes remains a challenging problem. Several independent
surveys indicated that, in the context of genome-wide TFBS finding, the performance of
available motif finding algorithms is far from being satisfactory (Hu et al. 2005; Tompa et al.
2005). An important finding is that most of the existing motif finding systems are not very
effective in discriminating functional sites, particularly when complex genomes, such as the

human and mouse genomes, are investigated.

Several possible reasons to the poor performance of existing motif-finding approaches

have been proposed:

® The optimization procedure may get stuck in local optima.

® The background model used in many methods may be too simple to reflect the true
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background in complex genomes.

® The architecture of functional sites may not be properly modelled as a single motif.

For instance, TSSs may associate with two or more TFBSs.

A number of improvements have been made in order to address these issues (for review
see Pavesi et al. 2004; Maclsaac and Fraenkel 2006). In the following subsection, I introduce

methods that may be more suitable for prediction of functional sites in complex genomes.

4.1.2. Computational detection of functional sites

In transcription, TSSs are determined by the binding of multiple TFs to a set of TFBSs in
close proximity to TSSs (for review see Fickett and Hatzigeorgiou 1997). For example, the
transcription initiation of mammalian tRNA genes by RNA polymerase III is regulated by the
binding of TFs to the A and B boxes (Hsieh et al. 1999) (Figure 4-1), which are within certain

distances downstream of TSSs (Pavesi et al. 1994).

6 bases

i >
30 ~ 90 bases

Figure 4-1. The transcription initiation of mammalian tRNA genes is regulated by A and B boxes

One computational approach for TSS finding is to model the promoters of genes, since

promoters are in close proximity to TSSs. Although a number of TSS finding systems based
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on promoter modelling have been developed, most of them are specifically designed for
finding the TSSs of protein-coding genes (for review see Fickett and Hatzigeorgiou 1997). For
the purpose of finding the TSSs of ncRNAs, a system that can be used to learn new models

given a new set of training sequences is of interest.

A possible approach to model TSSs is using Hidden markov models (HMMs). Complex
HMMs, which recruit various states for modelling multiple signals associated with splicing
and translation, have been used for finding eukaryotic protein-coding genes (Burge and Karlin
1997). Presumably ad hoc designed HMMs should be able to model complex regulatory
elements by adequately connecting the states of relevant TFBSs. However, there are some
concerns for applying HMMs to TSS modelling. First, it is generally difficult to guess a
suitable HMM topology for any types of regulatory elements. Second, the parameter tuning of

complex HMMs may easily be trapped in a local optimum (Durbin et al. 1998).

Over the past few years, several new systems have been developed to model regulatory
modules which may consist of multiple TFBSs (Wasserman and Fickett 1998; GuhaThakurta
and Stormo 2001; Bailey and Noble 2003; Zhou and Wong 2004; Aerts et al. 2005). Motif
finding systems that use regulatory module models may potentially be applicable to finding
promoters. However, for the purpose of predicting TSSs, there are concerns with these
systems. First, the distance constraints between motifs in a module are generally un-modelled,
or merely modelled by using a linear gap penalty (Bailey and Noble 2003), which appears to
be unsuitable for describing the distance range between TFBSs, as observed in the tRNA gene
promoters (Figure 4-1). Second, these module finding systems may report just an approximate
area for regulatory modules, but not an actually functional site, which is not what we would

expect from a TSS prediction algorithm.

Here, for the purpose of modelling the TSSs of ncRNA genes in the mammalian genomes,

I chose to use an available system, Eponine (Down and Hubbard 2002), which was originally
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designed to model the TSSs of mammalian protein-coding genes. One feature of Eponine is
that it has been designed to perform predictions of functional sites in genomes. Eponine has
been demonstrated to be effective in discriminating TSSs (Down and Hubbard 2002) and
transcription termination sites (TTSs) (Ramadass 2004) in mammalian genomes. In the

following subsection (4.1.2.1.), I introduce the basics of the original Eponine implementation.

4.1.2.1. Modelling functional sites using Eponine

4.1.2.1.1. The Eponine Anchored Sequence Model

The Eponine Anchored Sequence Model (EAS) is a classification model that is aimed to
be applied to individual points within a large genome, i.e. exact reference positions on the
genome sequence, such as the base pair at which transcription starts (TSS). An essential

component of the EAS model is a positioned constraint (PC), which consists of:

® A position weight matrix (PWM) which models a signal that may contribute to the

classification of a particular functional site.

® A discrete probability distribution to describe the position of a PWM relative to the

reference site.

In the EAS model, the score of a PC can be calculated as:

_1og(i; P(i)-W(x,i+a) ) "
¢(X9 a) - |W |

where X is a DNA sequence; a is a pre-defined reference site for each sequence x; P(i) is a
discrete probability distribution for modelling the distance of a motif from the reference site
(i.e. TSS, TTS, etc.); W(x,i+a) isthe PWM score for offset i relative to the reference site a.
P(i) is usually in the form of a discrete Gaussian distribution. It should be noted is that, the
PWM used in the Eponine models is actually a probability frequency matrix (PFM, see [4-1])

normalized with background base compositions. The difference between the PWM used in
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Eponine and the general form of PWM (see [4-3]) is that, the latter is equivalent to the
logarithm of the former. For simplicity, the term PWM is still used in describing the Eponine
models, in order to be consistent with the terminology used in the papers relevant to Eponine

(Down and Hubbard 2002; Down et al. 2006).

A particular point about the this scoring function is that, this function may allow, not only
a strong motif with a very sharp position distribution relative to a particular reference site, but
also short motifs with very broad distributions. This is caused by the summation of the
position-constrained PWM scores across a region on a sequence. This design may be
advantageous to the situation where there are general compositional biases toward some
particular oligonucleotides, as what we have observed in the case of CpG overrepresentation
in eukaryotic promoters. However, it should be noted that, by using such a scoring function,
the EAS model is not designed to find optimal motifs that are over-represented in a set of
sequences. Therefore, the EAS model is specifically designed to discriminate functional sites

in the genomic context, i.e. the individual points within a large genome.

It should be noted that the final score of each PC for each sequence must be normalized
by |W |, the number of columns in each PWM. At first glance this normalization seems to be
unnecessary; however, it is critical for learning the EAS models. The reason is that, in
optimizing the parameters of the EAS models, the widths of PWMs are not a pre-defined and
fixed value. The learning system of Eponine learns a set of optimal PWMs from a pool of
candidate PWMs of varied widths. If a PWM score is not normalized, a PWM with more
columns may be preferred. Similar normalization strategies has been used by some of the
motif finding systems where the lengths of motifs are not pre-defined, such as the Gibbs Motif

Sampler (Lawrence et al. 1993).
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Learning the EAS models

The EAS model is so built by taking the weighted sum of a number of PC scores. This
complex model is equivalent to the generalized linear model (GLM) (McCullagh and Nelder

1983), where each PC in this complex model is equivalent to a basis function in GLMs.

The general formulation of a GLM can be expressed as:
n(x) = Zﬂm¢m x)+C [4-5]

The term, X, represents a sequence. ¢ is a set of basis functions. £ is a set of weights
associated with individual basis functions. “C” is the constant. For binary classifications (e.g.

classifying sequences into positive and negative ones), one logistic function,

1
a(n) = Tre~ [4-6]

can be used to transform the raw output of GLMs to fit a sigmoid curve. Thus, the output

of this transformation can be used to decide whether an input X belongs to a particular class.

For training an EAS model, the parameters that need to be learned include PCs, and the
weights that associate with PCs. Each PC consists of a PWM and an associated probability
position distribution, which also need to be learned. At the initial stage of training, the
parameters of PWMs and associated position distributions should be largely unknown. A
trainer should be able to recruit informative PWMs and discard non-informative ones. The
Eponine trainer uses a combined strategy consisting of the relevance vector machine (RVM)

algorithm (Tipping 1999) and a Monte Carlo sampling process:

® A number of random PWMs of certain widths, and random Gaussian position

distributions, are initialized.

® Use the RVM algorithm to estimate the weights of PCs and thus prune
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non-informative PCs.

® Recruit new PCs by using a Monte Carlo sampling process to adjust the widths and
weights of PWMs, as well as the parameters (i.e. mean and width) that decide the

shape of Gaussian position distributions.

The RVM algorithm is the core algorithm for learning informative PCs. Since the RVM

is so important for training the EAS model for classification, it is discussed in the following.

The Relevance Vector Machine

The RVM is a Bayesian approach to learn parameters of GLMs (Tipping 1999). It can
take a set of basis functions, corresponding to PCs in the EAS model, and then use a “pruning
prior” to discard the basis functions that do not contribute significantly to a particular

classification problem.

In general, the Bayesian way for estimating parameters for classification can be written

as:

p(p1x.1)= PT LR

[4-7]

P(p| X,T) is the posterior probability of a model with parameter set £, given paired
input and target data, X and T, where X = (X1, X2, ..., Xn), represents the N input points (i.e.
sequences in this thesis), and T = (y, 1y, ..., ty), represents respective targets (or responses).
P(T | X, p) is the likelihood of the model given the data. P(f) is the prior probability of

f and P(T | X) is the normalization constant. For binary classifications where t, = [0, 1],

the likelihood can be calculated by:

PTIX.8) =]]e@)" A-c(m,)™ [4-8]

, where 7, is the predicted output (of a GLM) for an input Xp.
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When there is no prior knowledge of the model parameters (e.9. S n’s in [9]), a
non-informative prior can be used. A non-informative prior can be a uniform distribution or a
very broad exponential-family distribution. However, choosing an informative prior may
enable the learning of a sparse model, which contains only a few basis functions. An
advantage of training a sparse model is reducing the chance of overfitting to data. To achieve
sparsity, the RVM framework uses an automatic relevance determination (ARD) Gaussian

prior over each weight (Tipping 1999):

P(B, | ay)=G(B,10,a,™) [4-9]

, where the hyperparameter, «,, is the inverse variance of each mean-zero Gaussian

m>
distribution. This choice of prior implies that there is a strong preference that many S, s are
close to zero. After optimizing parameter £ and hyperparameter « , basis functions that are
not informative for classification can be decided. If «,, is extremely large, the variance of the
respective Gaussian distribution will be very small and the distribution, P(f, | «,,), will peak

at 0. A zero weight means that the associated basis function is non-informative and could be

dropped.

For optimizing GLMs, the RVM algorithm has been shown to achieve a better sparsity
than do other relevant algorithms (Tipping 1999). Thus, by using the RVM algorithm, the
Eponine trainer is capable of exploring a large parameter space in order to select a set of PCs

which can optimize the EAS model for classification. (Down and Hubbard 2002).

4.1.2.1.2. The Eponine Windowed Sequence model (EWS)

Using the EAS model for functional sites requires a set of positive training sequences,
where reference points must be labelled in these sequences. TSSs and TTSs are extremely
fortunate cases because lots of experimental evidence is available to indicate relatively

definable regions for these sites. However, for other cases where the existence of common
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regulatory elements in a set of functionally related sequences is only suspected, it is difficult to
adequately label training sequences with reference sites and thus the EAS strategy is not
expected to work properly. An alternative is the Eponine windowed sequence (EWS) model,
which is more suitable for modelling common motifs whose locations in individual sequences

are varied or unknown.

The basic formulation of basis functions used in the EWS model is:

#(X) = Z % optivmal(ﬁ(i P(i)-W, (x5 +i)"™)K [4-10]

k=1 i=—o0
and

_ 1 [4-11]
luf=[v|+]

where the interval [u, V] is the u™ position to the V™ position that are accessible by the
basis function ¢, on sequence X; Py is the discrete probability distribution of the distance

between the k™ PWM (W,) and the first PWM (W;). This complex basis function is called the

convolved sensors basis function (CSBF) in the EWS models.

A CSBF may contain more than one position constrained PWM. The reason for

normalizing CSBFs with 1/K is similar to the use of ﬁ for normalizing the PWMs in the

EAS models (see subsection 4.1.2.1.1. ), because currently the number of PWMs in a CSBF is
not fixed. Otherwise, without a normalization factor, a CSBF with more PWMs may be

preferred by the Eponine trainer. The normalization factors, 1/k and ﬁ, are modifications to

the original Eponine implementation (Down 2002; Down and Hubbard 2004).

In order to explain how the score calculation in [4-10] is performed, I use a CSBF

consisting three position-constrained PWMs as an example (Figure 4-2). Given a sequence X,
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the score on the first position is calculated by multiplying the three scores given by
position-constrained PWMs 1 ~ 3. Although in the plot there is just a single fixed point for
each position-constrained PWM (Figure 4-2, upper-left), it should be noted that the score for
each position-constrained PWM is a summation over a position distribution P. The final score

of'a CSBF given sequence X is the optimal one in all the scores on the interval [u, V].

i Seq 2 ¥
| : - .,.
= Score | Bi)-W,(x,s+1)™
B @ E Zq ()W,
@ =
= & Score 2 = 2RO Wy(x.s+)™
m Emp = ‘
o e =, 3 Score 3 ZP-U}-H (x,5+1)™
|
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The score of the 17 position 15 (score 1 X score 2 X score 3)(1/3), s = u
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L
Choose the optunal score as the final score for the interval [u,v]

Figure 4-2. How to calculate the score of a CSBF consisting of three PWMs and associated position
distributions

Learning the EWS models

For training the EWS model, two types of parameters must be learned: 1) the probability
distribution of positions and 2) PWMs. For distributions of positions, the training process is
very similar to that for training the EAS models (see subsection 4.1.2.1.1. ), except that the
reference site is replaced with one of the position constrained PWMs in each CSBF. The
Monte Carlo sampling process is used to optimize the choice of CSBFs. A new member PWM
is randomly sampled from the pool of CSBFs, and then the so generated new CSBFs, will be
re-weighted and pruned by using a RVM strategy. Through iterating the Monte Carlo

sampling process and the pruning process using the RVM, an EWS model consisting of a set
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of CSBFs could be learned.

4.2. Modelling local RNA motifs

In the previous parts of this thesis, ncRNA classifiers and the modelling of transcription
regulatory elements of ncRNAs have been discussed. Due to the particular types of signals
that are used in these methods, there are certain limitations on the scopes of their applications.
Firstly, existing comparative algorithms may overlook the RNA structural motifs spanning
only a region in a transcript. Secondly, when modelling transcription regulatory elements, any

RNA motifs implicated in the regulation of ncRNA expression are essentially ignored.

The transcripts of ncRNA genes are not the only RNAs that may contain RNA structural
motifs. Evidence suggests that local RNA structures may be implicated in the regulation of
protein translation (for review see Kozak 2005). Besides, single-stranded regions in transcripts
can also be part of functional motifs (for review see Mattaj 1993). The local RNA motifs
discussed here are considered as a composite of primary-sequence patterns and local RNA
structures, where different parts of a composite motif may be separated by unstructured and/or

functionally unimportant regions of variable length.

One type of computational approach for identifying local RNA motifs is to search for the
consensus RNA motifs in a group of functionally related transcripts. Existing algorithms for
finding consensus RNA motifs in transcripts can be generalized into three major categories:
variants of the Sankoff’s algorithm, variants of stochastic context-free grammars (SCFGs),
and variants of genetic algorithms. In the following subsection (4.2.1. ), I briefly introduce
existing algorithms for finding local RNA motifs, and the considerations in using these

algorithms.

As previously discussed (see subsection 4.1.2. ), computational modelling of functional

sites requires algorithms that can combine the contribution from multiple TFs. A similar
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approach is required to combine the contributions of local RNA motifs to generate a predictive
model. In an attempt to address this, I developed a new RNA motif extension to the Eponine
modelling system. The addition of this new extension allows the modelling of functional sites
as a composite of primary-sequence and secondary-structure motifs from a set of unaligned

functionally related sequences. This is described in subsection 4.2.2.

4.2.1. Available methods for finding consensus RNA motifs in

sequences

4.2.1.1. The Sankoff’s algorithm and variants

Given a set of sequences, Sankoff’s algorithm can generate optimal primary-sequence
alignment and secondary-structure minimum free energy (MFE, see subsection 1.3.1)
simultaneously (Sankoff 1985). However, the time complexity is O(N*) and the space
complexity is O(N?), where N is the sequence length and K is the number of sequences. It is
therefore not practical to apply Sankoff’s algorithm to finding consensus RNA motifs in a set
of sequences. Variants of Sankoff’s algorithm have thus been created in order to find
consensus RNA motifs in an acceptable time. Two modifications have been adopted by
different implementations in order to accelerate the search process. Firstly, only local hairpins
are considered by inhibiting branching configuration. A branching configuration is the
partition of one sequence into two structural regions in the base-pair dependent energy rule
(Nussinov and Jacobson 1980). Inhibiting branching configuration is equivalent to taking out
W(i,k —=1) from [1.2] of subsection 1.3.1.1. , reducing the time complexity from O(NB) to

O(N*) for pairwise alignments.

The second modification for accelerating Sankoff’s algorithm is to use progressive
alignment methods. The strategy of progressive alignment methods is to find the best pairwise

alignments first, and then other alignments or single sequences can be consecutively added to
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existing alignments. In the primary form of progressive alignment methods, once a group of
sequences have been aligned, their relations cannot be altered at later steps. The procedure of
combining alignments terminates when all sequences have been aligned. The time complexity
can be O(L*N*), where L is the average sequence length; N is the number of sequences

(Gorodkin et al. 2001).

Progressive alignment methods can efficiently generate acceptable multiple sequence
alignments; however, these methods are greedy and alignments can be trapped in a local
optimum. The reason for this is that the best pairwise alignments do not necessarily contain
optimal motifs shared by all sequences, and globally optimal motifs may be only sub-optimal
when comparing two sequences. When finding primary-sequence motifs, additional
approaches can be used to improve multiple sequence alignments. Related techniques include
iterative refinement methods, simulated annealing, Gibbs sampling, etc (For reviews see
Durbin et al. 1998). Nonetheless, no variants of Sankoff’s algorithm use these approaches and
the primary form of progressive alignment methods is still the most common strategy used by

variants of Sankoff’s algorithms.

4.2.1.2. The stochastic context-free grammars (SCFGs)

Just as in the prediction of RNA secondary structures, statistical models, such as SCFGs
(see subsection 1.3.3) and McCaskill’s sampling algorithm (McCaskill 1990), can replace
MFE for finding the consensus RNA motifs among sequences. PMcomp/PMmulti (Hofacker
et al. 2004) uses McCaskill’s sampling algorithm to do pairwise/multiple structural alignments.
Its time complexity and space complexity is as high as O(N®) and O(N*) respectively for
pairwise alignments. The computational complexity of PMcomp/PMmulti is not less than that
of Sankoff’s algorithm. For multiple structural alignments, it also uses progressive alignment
methods in order to restrict computational complexity. For pure SCFGs-based algorithms that

can do ab initio structural alignments, the computational complexity is at least as high as for
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the original Sankoff’s algorithm. In order to reduce complexity, variants of SCFGs (Knudsen
and Hein 1999; Knudsen and Hein 2003) take alignments that are generated by popular
multiple-sequence-alignment programs, such as ClustalW, and then refine alignments using
SCFGs. One problem with this approach is that the quality of initial multiple sequence
alignments nearly determines the performance of variants of SCFGs. If the initial alignments
were trapped in a local optimum in terms of RNA motifs, it seems unlikely that further
refinement at the structural level could give optimal answers (Knudsen and Hein 1999). In
addition, perfectly identical RNA secondary structures, which may not be always practical for

modelling RNA motifs in genomes, are sometimes assumed (Knudsen and Hein 2003).

4.2.1.3. Genetic-algorithm based approaches

Unlike the current implementations of variants of Sankoff’s algorithm or variants of
SCFGs, GA-based approaches are less easily trapped in a local optimum. Although GA-based
approaches are not guaranteed to find the optimal solution, they can be very good in predicting
RNA structures (Chen et al. 2000; Taneda 2005). One problem with the current GA-based
approaches is that primary-sequence motifs are not generally considered as part of RNA
motifs; few GA-based approaches have been designed to find both types of motifs

simultaneously.

4.2.1.4. Uncategorized RNA-motif finding approaches

There are other types of consensus RNA-motif finding algorithms that cannot easily be
classified into the above categories. One type of algorithms is to take folded sequences and
then align the predicted RNA structures. These programs do not predict RNA structures by
themselves. Instead, the structure of each sequence may be taken from the prediction made by
MFE-based RNA secondary-structure prediction algorithms, such as Mfold (Zuker 1989) and
RNAfold of the Vienna package (Hofacker 2003). MARNA (Siebert and Backofen 2005),

RNAForester (Hochsmann et al. 2004), and RNADistance (Hofacker 2003) are three examples.
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For instance, from the predicted RNA structures for sequences, MARNA identifies seeds of
both primary-sequence and RNA structural motifs and then feeds these motifs to T-Coffee
(Notredame et al. 2000). One concern with such algorithms is that their performance can be
influenced by the accuracy of the optimal global structures predicted. Besides, these
algorithms may be vulnerable to the cases where the consensus RNA motifs between a set of

sequences is quite different from the optimal structures for individual sequences.

Another type of algorithms, such as RNAalifold (Hofacker et al. 2002) and MSARI
(Coventry et al. 2004), are designed to find consensus RNA motifs in primary-sequence
alignments that are generated by using popular multiple sequence alignment programs, such as
ClustalW. These algorithms take compensatory mutations as the evidence for supporting the
existence of a global RNA motif (Coventry et al. 2004; Washietl et al. 2005). One concern
with these algorithms is that, they depend on the primary-sequence alignments, which may,
under certain circumstances, be incapable of revealing the consensus RNA structures between
sequences. Their performance should be sensitive to the sequence identities between given

sequences, although the required identities were not clearly defined in their original papers.

Consequently, currently available algorithms are not practical enough for modelling
regulatory RNA motifs in genomes, since there are so many considerations and restrictions in
using them. Given a set of functionally related regions in transcripts, there should be an
algorithm that can model both common primary-sequence and structural motifs efficiently.
The resulting model should be potentially applicable to genome-wide regulatory RNA motif
finding. Therefore, I extended Eponine to include local RNA structural motifs in order to
create an ncRNA modelling tool, which can be applied to finding RNA-motif associated

functional sites in genomes.
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4.2.2. Extending Eponine to include RNA structural motifs

Both the EAS and EWS models of the Eponine package (see subsection 4.1.2.1. ) are
useful for modelling primary-sequence motifs and the relations of motifs to other reference
sites. Similarly the Eponine RNA-motif extension should model both RNA structural motifs
and the relations of structural motifs to other sites. RNA motifs should be considered as yet
another type of motifs that are in sequences, except that RNA motifs possess structural
features, including stems and loops. In brief, the Eponine RNA-motif extension aims at
modelling the regulatory RNA motifs that are constituted by specific arrangement of both

primary-sequence motifs and structural motifs, with appropriate scoring scheme.

Primary-sequence motifs are modelled by PWMs in the EAS and EWS models. Similarly,
a formal description of structural features must be chosen in order to extend both the Eponine
models to include structural motifs. One possibility for modelling individual hairpins is to use
Covariance Models (CMs), which are SCFG-based RNA profiles. However, for several
reasons, | decided that CMs may not be adequate for extending Eponine models. Firstly,
training an Eponine RNA-motif model that consists of CMs can be very time-consuming,
because numerous CMs can be temporarily generated in the training process and each must be
assessed and updated. The time complexity of evaluating each CM is at least O(L%), where L is
the length of each candidate region for a particular hairpin (Durbin et al. 1998). Secondly, it is
difficult to adapt the scores of CMs on sequences for EAS and EWS models. Distributions of
the CM scores may vary greatly across different types of RNA motifs. There is no obvious
solution for combining the CM scores and the PWM scores in order to model

primary-sequence and structural motifs simultaneously.

Another question for modelling RNA motifs is how to properly address variations of

structural features. Although variations in hairpins are commonly believed to be disastrous for
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some structural RNA genes, evidence indicates that a certain degree of variation exists in
RNA structural motifs of similar functions. An example is the transcription termination signals
of bacterial genes, where the sizes of stems can vary from 5 to 30 base pairs and the lengths of

loops vary from 3 to 9 bases (de Hoon et al. 2005).

Using existing probabilistic models cannot properly address dimensional variations of
RNA structural motifs. For instance, standard CMs using general topologies can tolerate small
size variations of hairpins, but they cannot model these variations explicitly. To explicitly
model such variations, CMs need additional techniques, such as duration modelling. Duration
modelling is a technique used for addressing the length distribution explicitly (Durbin et al.
1998). However, if such techniques are used, the computational complexity will be much
higher. In addition, other structural features, such as folding energies of hairpins, may still

need to be modelled by other yet unmentioned techniques.

Therefore, in developing the RNA motif extension of Eponine, I decided to use a local
RNA structural model which is not based the classic probabilistic model of RNA structures,
such as CMs. The new model should be able to model a variety of features of local RNA
hairpins. There are two steps in training the models: firstly, candidate hairpins for each
sequence should be first located; and secondly, the Eponine trainer learns a model describing
the structural features of the consensus RNA motifs of these sequences. In the following two
subsections, I introduce the implementation of the Eponine RNA-motif extension, including
the approaches to locate local hairpins (subsection 4.2.2.1. ) and the way structural features are

modelled (subsection 4.2.2.2.).

4.2.2.1. Locating local hairpins

The RNA motifs, which the Eponine RNA-motif extension is designed to model, are
specific arrangements of a set of single-stranded and double-stranded regions in sequences.

Consequently, predicting and evaluating RNA secondary structures of given sequences is
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necessary. It is reasonable to assume that any position in each sequence can be the start point
of a hairpin structure. Proposed RNA motif models should evaluate all hairpins that may start

at each position of each sequence.

Predicting hairpins that may be functionally important is not straightforward. Firstly,
optimal structures can be predicted only for regions of restricted length, but not for the
full-length region of long sequences. The time complexity for predicting optimal structures by
using either MFE or SCFGs is proportional to the cubic sequence length. Given any fragment
of genomic sequence, one practical strategy for finding candidate functional motifs is to chop
the original sequence into consecutively windowed regions and then predict hairpins for
individual regions. Although this approach may sacrifice some hairpins that span a region
larger than the window size, stable hairpins within windowed regions can still be predicted. It
is also reasonable to infer that long-range interactions in large hairpins should depend on
stable hairpins within windowed regions. By evaluating hairpins in windowed regions, trained
models can be applied to genome-wide RNA motifs finding; all regions in each sequence can
be consecutively evaluated by sliding the windows through all positions. Similar strategies
have been used by other algorithms for genome-wide ncRNA finding (Rivas and Eddy 2001;
di Bernardo et al. 2003). The time complexity of folding windowed RNA secondary structures
for multiple sequences is thus O(LNM?), where L is number of sequences; N is the average

number of windows per sequence; M is the length of windowed regions.

Secondly, predicting the sub-optimal hairpins for each sequence seems necessary.
Evidence suggests that optimal structures do not necessarily represent the functional forms of
various regulatory RNA motifs. In addition, RNA folding may alter in response to certain
conditions, such as the binding of ligands, increases in di-ionic strength in solution, interaction
with RNA binding proteins, post-transcription modifications, etc. For finding consensus RNA

motifs among sequences, only optimal folding for each sequence may not be sufficient.
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Exhaustively enumerating all possible hairpins that may fold in each sequence is
computationally expensive and impractical. There are at least two simpler approaches for
predicting sub-optimal hairpins for each sequence. The first approach is to collect the optimal
hairpin for each position of each windowed region (Figure 4-3, algorithm A). For each
position i within a windowed region, the optimal hairpin, which is conditioned on that position
| must pair with another position J, is saved, where i < j < window size. By scanning sliding
windows for each sequence, optimal hairpins that start at individual positions in each sequence
are collected. These site-specific optimal hairpins are not necessarily the components of
globally optimal structures. This approach is similar to Zuker’s suboptimal folding algorithm,
and to the inside and outside directions of the CYK algorithm (Durbin et al. 1998). The
consideration of this approach is time complexity. In addition to the time complexity O(N®) for
calculating the energy matrix in using Zuker’s MFE algorithm, additional time complexity,
O(window size®), is required in order to trace respective optimal hairpins for all possible

paired positions in each windowed region.

By contrast, the second approach for collecting sub-optimal hairpins for each sequence is
much simpler. Only the optimal structure for each windowed region is predicted (Figure 4-3,
algorithm B). From the optimal structure, individual hairpins are extracted, and then saved
with their respective start positions. By scanning sliding windows for each sequence, a series
of optimal hairpins that start at distinct positions in each sequence are collected. Just like the
situation of the first approach, these site-specific optimal hairpins are not necessarily the
components of optimal global folding. The second approach can be much faster than the first

one, because much less folding space is explored (Figure 4-3).
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Figure 4-3. Two modes (algorithm A: the stringent mode and algorithm B: the fast mode) for finding local
hairpins for windowed regions

In order to compare the performance of different approaches for predicting RNA
structural motifs, human tRNAs of exactly the same length, 72 bases, were used as the test
data set. Windows of different sizes were also tried to investigate possible effects. The targets
for this evaluation included D arm, anticodon arm, and T arm (Figure 1-3), of 168 human
tRNAs. The implementation for predicting RNA structures follows Zuker’s MFOLD
algorithm and uses the same parameters (Zuker 1989). The result reveals that the first
approach (Algorithm A, Table 4-1) is better than the second one (Algorithm B, Table 4-1);
however, it also suggests that the second approach is still useful, if the results of the second
approach are compared to the predictions made by RNAfold (default, RNAfold, Table 4-1)

(Hofacker et al. 1994-2006) with default parameters.
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Algorithm A

D arm Anticodon arm(T arm
Window size: 50 112 150 132
Window size: 100 112 150 131
Algorithm B

D arm Anticodon arm(T arm
Window size: 50 80 146 131
Window size: 100 64 142 131
RNAfold

D arm Anticodon arm(T arm
default 35 28 58

Table 4-1. Performance of different algorithms for three hairpins of 168 human tRNAs
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Algorithm A: The stringent mode. Individual hairpins are extracted from all optimal structures conditioned on

that the i" base should pair with the " base in each windowed regions, where i < j < window size.

Algorithm B: The fast mode. Individual hairpins are extracted from the optimal structure for each windowed

region.

Values in cells are the numbers of correct predictions (made by different algorithms) for respective arms. For
D arm, the criteria of correct prediction is existence of a hairpin at 9™ or 10™ position, with stem size 3 ~ 4
base pairs and loop sizes 7 ~ 10 bases. For anticodon arm, the correct prediction should be at 26™ or 27"
position, with stem size 4 ~ 5 base pairs and loop size 7 ~ 9 bases. For T arm, the correct prediction should be
at 48" or 49™ position with stem size 4 ~ 5 base pairs and loop size 7 ~ 9 bases. The performance of RNAfold

is assessed by using its default parameters.

In addition to the successful identification of three distinct hairpins of tRNAs, both

Algorithms A and B predict extra hairpins. The biological significance of these extra hairpins

is not clear. It is possible that these secondary structures could never fold in real tRNAs

because they are relatively unstable compared to the optimal structures of individual tRNAs.

By using the Eponine learning scheme, this redundancy should not be a serious problem,

because only stable hairpins that can be consistently found in individual sequences are useful

for distinguishing positive training sequences from negative training sequences. In the

following text, algorithms A and B are referred to as the stringent model and the fast mode,

respectively, of the Eponine RNA-motif extension.
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4.2.2.2. Modelling structural features with probability distributions

Having evaluated the capability of the module responsible for locating local hairpins in
sequences, consideration is now given to applying the Eponine training framework to model
RNA motifs. One important issue is about designing a scoring scheme of the secondary

structures in sequences.

Before moving further to discuss the scoring of complex RNA motifs composed of many
hairpins, the scoring of a simple hairpin is first considered. In an oversimplified hairpin
(Figure 1-2, A), there is only one single-stranded region (hairpin loop), and one
non-interrupted double-stranded region (stem). Numerical parameters, which can potentially
be applied to distinguishing one simple hairpin from the other, include dimensions of hairpins,
free energy of the local region, free energy of the stem region, etc. Dimensions of each hairpin
include loop size and stem size. If functions of RNA structural motifs depend on adequate
combinations of individual features, then it seems reasonable to draw an analogy between
primary-sequence motifs and features of RNA hairpins. Each feature of a hairpin seems

analogous to each column of a PWM.

Each column of PWMs is a discrete distribution over all possible symbols in the used
alphabet; similarly, each feature of hairpins can be modelled with a probability distribution.
The mean of each distribution is the most frequently found value for one particular feature.
For example, because the most frequently found stem size for rho-independent transcription
termination signals is 9 (de Hoon et al. 2005), the mode of the corresponding discrete
probability distribution should be 9. The deviation of each distribution can represent the
degree of variations, such as different stem sizes that are observed in rho-independent

transcription termination signals.



4.2. Modelling local RNA motifs 159

The probability of emitting a sequence X that harbours an RNA structural motif (RM) is:

RM (x,i) = (ﬁ P.(F, (x,)R [4-12]

, where R is the number of features that are used to model each hairpin; Py is the proposed
probability distribution of the r" feature of a particular RNA structural motif; the model of this

structural motif is P = (P4, P2, Ps..., Pr); Fr is the function that returns the numerical value of

the ' feature of a hairpin, which folds at the i position of sequence X. % is used to

normalize the score of each hairpin. It seems this normalization is unnecessary; however, it is
very important for modelling primary-sequence and structural motifs simultaneously. For each
primary-sequence motif, the PWM score is the normalized joint probability of individual
positions. For generating a scoring scheme that can sensibly combine scores from both PWM
scores and RM scores, a similar normalization that is applied to PWM scores should also be

applied to hairpin scores.

Compatibility between RM scores and PWM scores is one of most critical issues in
developing the Eponine RNA-motif extension. If the extension uses an inappropriate scoring
scheme that may make the order of magnitude of RM scores significantly different from that
of PWM scores, the trained models may be biased to contain only RMs or only PWMs. Before
the use of normalized RM scores, empirical rules have been used in order to make
non-normalized RM scores compatible with PWM scores. For example, by comparing
distributions of the scores of PWMs and non-normalized RMs, some multiplication factors
were derived for transforming RM scores. However, the optimal value of the multiplication
factor may change greatly under different conditions, especially when more than two different

structural features are used to model RNA structural motifs.

By using joint probability of structural features to score each hairpin, many structural

features can be modelled explicitly. By contrast, some features, such as stability of a particular
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hairpin, cannot be modelled explicitly by using CMs. In addition, with normalized RM scores,
distinct features can be treated as individual columns of a PWM. Theoretically, it is possible
for the Eponine trainer to randomly choose distinct features to learn an optimal sensor for an
RNA structural motif, just as the addition and subtraction of columns in learning the optimal

PWM for modelling a primary-sequence motif (for details see subsection 4.1.2.1.1. ).

Currently, the probability distribution for modelling each structural feature is a discrete
Gaussian distribution; however, it should be noted that a discrete Gaussian distribution may
not be the best one for describing all the distributions of stem size, loop size, local energy, etc.
If there is a strong peak in the distribution of structural features, the width (deviation) of a
Gaussian distribution should be assigned a small value, such that the there are light tails in this
distribution. However, in cases where the distribution of features is flat within a certain range,
the width of the Gaussian distribution must be a large value in order to simulate the flatness in

local regions.

4.2.2.3. Applying RM scores to the EAS and EWS models

With the RM scoring scheme created in the previous section, the Eponine RNA-motif
extension is able to model RNA motifs that are composed of primary-sequence patterns and
secondary-structure motifs. In the following, the way the RM scoring scheme is adapted into

the existing Eponine sequence models is introduced.

4.2.2.3.1. Using RM scores in the EAS model — the Eponine Anchored RNA-motif model
The formulation of basis functions for the EAS model is:
log(> P(i)-W'(x,i+a) )

& [4-13]
$(x) W
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For modelling structural motifs:
W (X,i+a) =exp(RM(X,i+a)) [4-14]
and
W =1 [4-15]

The operation “exp” is used for avoiding the exceptional situations where the returned
value from a RM is 0. This situation may occur when there are no significant RNA motifs
starting at a particular position in a sequence. |W | is assigned with 1, because the
normalization has been performed in the calculating the value of each RM (see [4-12]). Apart
from that, for modelling primary-sequence motifs, W' is simply replaced with W. Such an
extension to the Eponine EAS model is referred to as the Eponine Anchored RNA-motif

model (the EAR model)

The new Eponine trainer uses a Monte Carlo sampling process for learning an optimal set
of positioned RMs: 1) the mean and width of distributions are assigned randomly; 2) new RMs
are generated by sampling features from all hairpins predicted in all training sequences; 3)
new RMs can also be generated by adjusting the mean or the width of randomly chosen
distributions of structural features in existing RMs. After positioned RMs are updated, the
Eponine trainer uses the RVM to re-estimate their respective weights, which correspond to

weights of basis functions in GLMs.

4.2.2.3.2. Using RM scores in the EWS model — the Eponine Windowed RNA-motif model

The formulation of basis functions for the EWS model is:

(X)) =Z x optivmal(ﬁ(i P (i) -W 'k (x,5+1)WH)K [4-16]

s=u k=1 i=—o0

For modelling structural motifs, W' is substituted with RM. For modelling
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primary-sequence motifs, W' is substituted with W. Such an extension to the Eponine EWS

model is referred to as the Eponine Windowed RNA-motif model (the EWR model).

The Eponine trainer uses a Monte Carlo sampling process, which is similar to the
optimization of RMs for the EAS models, to optimize the parameters of RMs for the EWS

models.

Consequently, by using the scoring scheme designed to simultaneously model RNA
structural and primary-sequence motifs, Eponine is now capable of modelling the consensus

RNA motifs in a set of anchored or unanchored sequences.

4.3. Summary

In this chapter, I introduced methods for motif finding and functional site finding in
preparation for modelling regulatory regions that may be implicated in the transcription of
ncRNAs. For the purpose of finding functional sites, such as TSSs and TTSs, in complex

genomes, there are three main requirements:
® Modelling an association of multiple motifs to describe functional sites.

® Modelling the distribution of individual motifs with respect to a particular functional

site location.
® High selectivity in classification of functional sites in a large genome.

At the time of preparation of this thesis, Eponine appears to be one system that takes all
these issues into consideration. Therefore, in the next chapter, the Eponine sequence models

are applied to the modelling of the TSSs of mammalian RNA polymerase III genes.

In addition, I developed a new RNA-motif extension to the Eponine sequence models.
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This new extension is particularly designed for finding the consensus RNA motifs in a set of

sequences. The unique features of this new tool include that:

® [t is an alignment-independent method.

® The models so trained may consist of primary-sequence patterns and
secondary-structure motifs, which may give insights to the functional regions in a

set of sequences.

® [t is a local RNA-motif modelling tool, which means that a global conservation of
RNA secondary structures in the set of sequences under investigation is not

required.

® [t may still work if not all the sequences under investigation fold into the same RNA

motifs.

® The models so trained may potentially be useful for discriminating in genomes the

functional sites associated with RNA motifs.

Chapter 6 is dedicated to the evaluation of the capability of the new RNA-motif
modelling tool. The potential applications of the Eponine RNA-motif extension in

genome-wide ncRNA finding will also be explored.
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elements of mammalian RNA polymerase 111 genes

Most existing ncRNA finding algorithms are designed to find structural ncRNAs. These
algorithms can be regarded as being structure-dependent, because they use the potential of a
particular genomic region to fold into high-order RNA structures as a signal of the existence
of ncRNAs. However, structure-dependent ncRNA finding algorithms will fail to predict
non-structured ncRNAs, whose functions do not depend on folding into high-order structures.
In addition, a non-transcribable genomic region may be misclassified as an ncRNA locus
simply because a region of structure-formation potential is predicted by structure-dependent
algorithms. Therefore, to address the problem of genome-wide ncRNA finding, it is useful to
consider complementary structure-independent approaches, in addition to structure-dependent
algorithms. In this chapter, the possibility of using a type of structure-independent
genome-wide ncRNA finding approach is explored, based on the modelling of the

transcription regulatory elements.

Transcription regulatory elements have been used as a signal for finding particular classes
of ncRNAs, such as tRNAs (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy
1997). However, the identification of transcription regulatory elements is currently used as a
screening step, not as a determination step, in genome-wide ncRNA finding. If transcription
regulatory element methods are used alone for genome-wide ncRNA finding, the
false-positive rate can be very high. For instance, eufindtRNA, which is an internal-promoter
finding program, predicts over 1,300 candidate loci for tRNAs on human chromosome 1 (in
the NCBI 35 assembly), but only less than ~10% (120) of them may be functional tRNAs

based on evaluation using structure-folding potentials.

It is essentially unknown why the methods designed to predict the transcription

164
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regulatory elements of ncRNAs appear to suffer from high false positive rates. Some possible
explanations are as follows. Firstly, it is possible that existing promoter models were not built
specifically for finding mammalian tRNA genes. The specificity of these tools may have been
sacrificed, to a certain extent, in order to make them sensitive enough for finding tRNA genes
in multiple organisms. Secondly, internal promoters may be just part of the signal required for
determining the transcription specificity of tRNA genes in mammalian genomes. It is possible
that other non-promoter transcription regulatory elements, such as enhancers/silencers and
LCRs, may play a role in the specific initiation of tRNA transcription. Thirdly, some of the
non-tRNA loci which appear to contain the internal-promoter-like patterns might correspond

to novel non-tRNA ncRNA genes.

Consequently, the specific aims of this chapter include:

® [earning a new model for selectively predicting tRNAs, as well as novel ncRNA
genes transcribed by RNA polymerase III (pol III genes), in the mammalian

genomes.

® Finding evidence to support the functionality of the predicted non-tRNA pol III

genes.

The Eponine system, described in chapter 4, appears to be suitable for these purposes.
Eponine models have previously been used to predict functional sites, such as transcription
start sites (TSSs) and transcription termination sites (TTSs), in complex genomes. Given a set
of training sequences, the Eponine trainer can simultaneously learn the important signals, in
the form of PWMs, and the “architectural” relationship (i.e. the distance distribution) of
PWNMs to a particular type of functional sites (for a detailed discussion see section 4.1, chapter
4). Eponine is one of the few systems that have been applied to learning a model capable of

selectively predicting the TSSs of protein coding genes in mammalian genomes (Down and



166 Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymerase 111 genes

Hubbard 2002). Given Eponine’s success in modelling RNA polymerase II (pol II) TSSs, one
interesting question is whether Eponine models are useful for predicting the ncRNAs
transcribed by pol III in mammalian genomes. Therefore, in this chapter, the Eponine system
was taken as a quick approach for modelling the transcription regulatory regions of

mammalian pol III genes.

In this chapter, the Eponine Anchored Sequence (EAS) model (see section 4.1, chapter 4)
was tried for creating a new model for discriminating pol III genes in the mammalian

genomes.

5.1. Modelling the transcription start sites of mammalian
pol 111 type Il genes

In this section, the Eponine Anchor Sequence (EAS) model was used to model the
transcription start sites (TSSs) of pol III genes. A suitable training set should consist of the
genes that contain promoters with similar architectures, because the EAS model is not
designed for managing a heterogeneous set of functional sites that are each associated with
distinct combinations of transcription factor binding sites (TFBSs). For that reason, a brief
introduction to the types of promoter architectures of eukaryotic pol III genes is given in the

following.

There are three distinct types of promoter architecture that have been found in eukaryotic
pol III genes, where each type of promoter is associated with a unique combination of distinct
TFBSs (see Table 5-1) (for review see Paule and White 2000). The promoters of type I and
type II genes are intragenic. Type I (e.g. 5S rRNAs) and type II (e.g. tRNAs) genes share an
“A box” (sometimes also known as the “A block”), which is the binding site of TFIIIC. A “C
box” (sometimes also as the “C block™), which is the binding site of TFIIIA, is unique to type

I genes. A “B box” (sometimes also as the “B block™), which is the binding site of TFIIIB, is
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unique to type I genes. Although “A boxes” for tRNAs and 5S rRNAs can be exchanged, the
distances to their respective TSSs vary: it seems that the distance for tRNA genes is 10 bases,
while the distance for 5S rRNAs is 50 bases. Although there are no TATA boxes for
mammalian type I and II genes, the transcription factors (TFs) that interact with intragenic
TFBSs seem to guide TATA-Box Binding Protein (TBP) to the upstream regions of type I and
II genes and TBP can recruit pol III to the correct transcription start sites. On the other hand,
promoters of type III genes are 5’ to the TSS in the upstream region. Unique TFBSs of type 111
genes are the TATA box, the proximal sequence element (PSE), and the distal sequence

element (DSE).

Type Genes Core TFs TFBFs

TypelI |5SrRNAs, etc. TFIIIA, TFIIIC, TFIIIB, TBP, pollll  |A box and C box

(Intragenic regions)

Type I [tRNAs, VARNAs, |TFIIC, TFIIIB, TBP, pol III A box and B box
7SL, etc. (Intragenic regions)

Type III  |U6 snRNAs, 7SK, |TFIICI, TFIIIB, TBP, SNAPc, pol III |PSE, TATA box, DSE
etc. (Upstream regions)

Table 5-1. The TFs and the TFBSs associated with three distinct types of eukaryotic pol III genes

Given these distinct architectures, when creating a model that may discriminate tRNA
genes as well as other pol III genes, the sources of training sequences needs to be limited to
those of pol III type II genes. In the set of pol III type II genes, VARNA1 genes can be another
source of training sequences, in addition to tRNAs. To date, more than 40 VARNAI genes
have been found. Although there are other pol III type II genes such as 7SL, these genes are
not as numerous as VARNA1 genes. VARNATs are encoded in adenoviruses (Weinmann et al.
1974) and they are transcribed by the mammalian RNA pol III machinery. Hence, VARNA1
genes can be considered as mammalian pol III type II genes, because there is evidence that the
promoters of VARNAI genes are similar to these of mammalian tRNA genes (Cannon et al.

1986; Wu et al. 1987).
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Thus, in this section (5.1), VARNAT1s and tRNAs were used as training sequences to

generate an Eponine EAS model for pol III type II TSSs.

5.1.1. Materials and methods

5.1.1.1. Training and test data sets

For the purpose of creating an EAS model, one set of positive sequences and one set of

negative sequences are required.

The human tRNA genes and adenovirus VARNA1 genes were used as the positive
sequences. The set of mouse tRNA genes predicted by tRNAscanSE were not included
because the set might contain a large number of pseudogenes (Mouse Genome Sequencing
Consortium 2002). A set of negative sequences were recruited by taking random samples from
the human genome. The preparation of these sequences for training and testing is described in

the following subsections (subsections 5.1.1.1.1.,5.1.1.1.2. , and 5.1.1.1.3.).

5.1.1.1.1. Preparation of human tRNA sequences

In order to avoid over fitting of a learned model to training data, validation is necessary.
One type of validation is to evaluate the performance of trained models on test data that is
independent of the training set. If the performance of a trained model is significantly worse
than on the training data, this may indicate that this model has been over fitted to the training

data.

Therefore, the recruited tRNA genes were partitioned into two groups, one for training
and the other for testing. Due to the high redundancy in the set of human tRNA genes, proper
partitioning became an issue. For instance, there can be as many as 20 nearly identical copies
for a particular anti-codon type of tRNA genes. When using a random sampling process, it is
unlikely that all the highly similar tRNA genes would be grouped into a single set. Here, I

took advantage of the forty tRNA-gene subgroups already prepared in section 2.2, chapter 2,
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where these subgroups were generated according to the anti-codon types and pairwise
sequence identities of tRNA genes (for details see materials and methods of section 2.2,
chapter 2). These forty subgroups were re-merged into two groups, group 1 and 2, based on
the pairwise identities between the consensus sequences of the subgroups. The grouping
process was carried out in a progressive manner, where the two groups with the highest
consensus identity were merged first, and then the groups with the next highest identity were

successively merged.

Group 1 and group 2 consisted of 200 and 167 human tRNA genes, respectively. The
inter-dependence between the training set and the test set was further assessed by comparing
the inter-group and intra-group sequence identities. Each sequence was used to search for its
most similar sequences in the same group and in the other group, respectively. The results
reveal that there is a clear sequence-identity difference between these two groups, since all the
intra-group best pairwise identities were greater than 83% and all the inter-group best pairwise
identities were smaller than 78% (Figure 5-1). The results suggest that the tRNA genes in
group 1 are distinct from the tRNA genes in group 2. The tRNA genes in group 1 (group-1
tRNA genes) were used for training and the tRNA genes in group 2 (group-2 tRNA genes)

were used for testing.
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Figure 5-1. Separation of the sequence identity distributions between intra-group and inter-group sequences of
tRNA genes.

When preparing the tRNA sequences for training and test, the first base of the
cloverleaf-like structure of each recruited tRNA gene was used as the anchoring point. 100
bases upstream and 150 bases downstream with respect to the anchoring point in each human
tRNA gene were retrieved. The purpose of including the upstream and downstream flanking
regions of the recruited tRNA genes in training sequences is to explore if there are motifs

other than the A box and B box that can be used to model the TSSs of pol III type II genes.

5.1.1.1.2. Preparation of VARNA1 sequences

VARNALI genes were used as another source of sequences for building a pol III type II
TSS model. Forty-three regions containing VARNA1 genes were retrieved from GenBank by
using the keyword “VARNA1”. VARNAI sequences were extracted from these regions by
using the locations indicated in the GenBank annotation. By using TGICL (TIGR 2002-2003),
VARNATI genes were clustered into 5 subgroups (for the detailed procedure for the sequence
clustering, see section 2.2, chapter 2). The 5 subgroups were further merged into two

independent groups. Group 1 and group 2 consisted of 9 and 32 VARNAI1 genes, respectively.
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An assessment on the sequence independence, as mentioned in preparing the human tRNA
genes for training, was also performed here. The results show that all the intra-group best
pairwise identities were greater than 95%; all the inter-group best pairwise identities were
smaller than 86%. The results suggest that the VARNA1 genes in group 1 are distinct from the

VARNATI genes in group 2.

Group-1 VARNAI1 genes together with group-1 tRNA genes were used for training
(Table 5-2, Training). Group-2 VARNAI genes and group-2 tRNA genes were used for
testing (Table 5-2, Testing). The 32 genes used for testing actually correspond to 9 distinct
ones, because many of them have exactly the same sequences. Likewise, the 9 genes used for

training correspond to 7 distinct ones.

Training Testing
Human tRNA genes 200 (group 1) 167 (group 2)
Adenovirus VARNAT1 genes | 9 (group 1) 32 (group 2)
Subtotal 209 199

Table 5-2. The training and test data sets for creating an EAS model for pol III type II TSSs

When preparing the VARNA sequences for training and test, the first base of each gene
was used as the anchoring point; 100 bases upstream and 150 bases downstream with respect
to the anchoring point in each VARNAI gene were retrieved. The purpose of including
flanking sequences for training is the same as described to prepare tRNA sequences for

training in the previous subsection (see subsection 5.1.1.1.1.).

5.1.1.1.3. Preparation of negative sequences

Two sets of ten thousand random sequences were sampled from the human genome as
negative training and test sequences, respectively. These random sequences were 250 bases in

length.
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5.1.1.2. Evaluation of the performance of EAS models against the test data set

When evaluating the accuracy of trained EAS models against the test data set prepared as
described in 5.1.1.1. , the 100™ base of each test sequence was taken as the anchoring point. A
true positive was determined, if any region within 5 bases away from the anchoring point of a
positive test sequence was predicted as a hit. A false positive was determined, if any region
within 5 bases away from the anchoring point of a negative test sequence was predicted as a

hit.

5.1.1.3. Presentation of the performances of different models

The performances of all trained models will be presented in the form of
coverage-accuracy (C-A) plots. Coverage (sensitivity) is the proportion of true positive
sequences that can be correctly predicted; accuracy (positive predictive value) is the
proportion of true positive sequences in the set of predicted sequences. For example, with a
specific threshold, if 150 out of 199 positive test sequences are successfully predicted and 5
out of 10000 negative test sequences are incorrectly classified as the pol III type II genes, the

accuracy is 96.8% (150/(150+5)) and the coverage is 75.4% (150/199).

The C-A plot can be considered as an alternative presentation of Receiver Operating
Characteristic (ROC) curves, except that the size of negative test sequences is not considered
in the former plot. Plotting these characteristics is especially useful when comparing the
performances of two competing models when using an extremely large negative data set, such
as random sequences from the human genome. Suppose that there are two models, where
model X predicts 150 false positives from 10,000 negative test sequences, while model Y
predicts 100 false positives. Both models can predict 150 true positives from 200 positive test
sequences. The false positive rates are 1.5% and 1% respectively. In contrast, the accuracies
for these models are 50% (150/(150+150)) and 60% (150/(150+100)), respectively, and thus

the difference between their performances can be easily seen in a C-A plot. Consequently, for
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evaluating the performances of methods that are designed for finding functional sites in large

and complex genomes, C-A plots are more suitable than the classic ROC curves.

5.1.1.4. Evaluation of the performance of EAS models against real genomic sequences

The performance of EAS pol III type II TSS models was also evaluated against human
chromosomes 11 and 13. The human genome assembly used in this evaluation was NCBI 35.

These sequences were retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/puby/).

When using EAS pol III type II TSS models to scan a chromosome, each position can be
the start of a putative pol III type II gene. Consecutive hits would be clustered together if all of
their scores were higher than a particular threshold. Such hits were regarded as a single record

of prediction.

5.1.1.5. Determining overlapped genomic hits predicted by using different methods

An EAS pol III type II TTS model predicts the transcription start sites in genomes. By
contrast, existing tRNA gene finding algorithms, such as eufindtRNA and tRNAscanSE,
predict a range, namely the start and end positions for each putative tRNA gene. To determine
the overlapped hits predicted using different methods, the following approach was used. If a
tRNAscanSE (or eufindtRNA) predicted hit was within 100 bases downstream of an EAS pol
II type II TTS model predicted site, the two hits predicted by different methods were

considered to represent the same gene.

5.1.2. Results

5.1.2.1. Naive training by using default parameters

Using the training sequences prepared as described in 5.1.1. , an Eponine Anchored
Sequence (EAS) model for the mammalian pol III type II promoters was trained. Figure 5-2 is

a schematic presentation of the constraint distributions relative to the anchoring point as
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indicated by the blue triangle. The anchoring point in this figure corresponds to the
transcription start site of pol III type II genes. The relative width of the position distributions
for each hairpin is shown by the width drawn. The sequence under each constraint is motif
consensus sequence. The sequence logos of the motifs in this model were presented in Figure
5-3. In the remaining part of this thesis, other Eponine models will be presented using this

convention.

There were several problems with this model. Firstly, the model was unable to
distinguish bona fide tRNA genes from random sequences (data not shown). Secondly, both
the patterns of A box and B box were much shorter than what have been suggested by
experimental approaches (DeFranco et al. 1980; Galli et al. 1981). Further investigation
revealed that between VARNAI1s and the human tRNAs, the 8™ to 22 positions, which are

supposedly the “A box”, are very different.

v
A

gcggta

adatccc

ggttcg

Figure 5-2. An EAS model for pol III type II promoters (naive training)
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Weight: 6.52, position: 6, width: 7.36 Weight: 11.28, position: 53, width: 3.18

)

C

Weight: 6.91, position: 68, width: 5.99

Figure 5-3. The sequence logos of position-constrained motif matrices of the naive EAS model (Figure 5-2)
for pol III type II promoters

The value of “weight” for each motif corresponds to the weight associated with each basis function in the
GLM of an EAS model. The value of “position” for each motif corresponds to the mean of the discrete
Gaussian distribution used to model the position of a motif relative to the reference site. The value of “width”
corresponds to the width of the discrete Gaussian distribution (for other details about these parameters see
subsection 4.1.2.1.1)

Figure 5-4. Comparison between the sequence logos of the 8"-22" positions of VARNA s (left) and tRNAs
(right)
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5.1.2.2. Optimizing the anchoring points

From the results presented above, VARNAIls, which are viral genes rather than real
mammalian genes, seem to be unsuitable for training pol III type II promoter models.
However, on investigation it was found that the poor training was probably due to the
incorrect assignment of the anchoring points for the recruited sequences. The first base of the
cloverleaf-like structure of tRNAs, is in fact not the transcription start site. The real
transcription start sites of mammalian tRNAs are at the 5’ regions upstream of the first base of
cloverleaf-like structures. After transcription, the 5’ dangling sequences of the raw tRNA
transcripts must be cut off by RNase P (for review see Gopalan et al. 2002). On the other hand,
transcription start sites of VARNA s are generally used as the first bases for VARNA1 genes

in the GenBank annotation.

After adjusting the anchoring points of the recruited sequences, manual alignments reveal
that respective “A boxes” of VARNATs and the human tRNAs are quite similar (Figure 5-5).
These results show that when inconsistent anchoring points are provided, the Eponine trainer

for the EAS models can be incapable of optimizing the PWMs.

Figure 5-5. Comparison between sequence logos of the presumable internal promoter regions of VARNAI1s
(left) and tRNAs (right) (after adjusting anchoring points of VARNA15s)
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5.1.2.3. The EAS pol III type II promoter model

Using the sequences with correct anchoring points, a new EAS pol III type II promoter
model was trained. This model is called “model 1” in the remainder of section 5.1. This model
appears to be quite complex (Figure 5-6). There are five distinct motifs at the 6™, 19", 43",
52™ and 53" positions. Respective weights for these motifs in the generalized linear models

are 4.76, 8.34,4.37,9.01, and 12.58.

v

i

gggttccdcgg

ragcgcgttcgtatecc

gggttcgaat

i

ccatagctcaaccgtttag

Figure 5-6. An EAS pol III type II promoter model (after adjusting the anchoring points of VARNA1s) (model
1y
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Weight: 12.57, position: 6, width: 1.45

Weight: 4.37, position: 19, width: 1.87  Weight: 4.76, position: 43, width: 0.87

Weight: 8.34, position: 53, width: 1.30

Figure 5-7. The sequence logos of position-constrained motif matrices of model 1 (Figure 5-6)

The annotation used in this figure follows the convention of Figure 5-3
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The motifs in the new model fit the current knowledge about transcription regulation of
mammalian pol III type II genes. The motifs that start at 6™ and 19" positions correspond to
the 5° and 3’ parts of the “A box” respectively. The motifs that start at 43, 52", and 53"
positions, which are similar to one another, correspond to the “B box”. The three positions
represent discrete preferred sites of the “B box” in mammalian tRNA genes. The variation in
the location of the “B box™ is consistent with the previous reports which indicated the
flexibility in distance between the “A box” and the “B box™ in eukaryotic tRNA genes

(Camier et al. 1990; Pavesi et al. 1994).

5.1.2.3.1. The performance of model 1 — using the recruited test sequences

The performance of model 1 was initially assessed against 199 positive test sequences
recruited as described in 5.1.1.1.1. and 5.1.1.1.2. , and a set of 10,000 negative test sequences
prepared as described in 5.1.1.1.3. The results reveal that model 1 can achieve 100% accuracy
at 70% coverage on this data set (Figure 5-8, model 1). The high accuracy suggests that model
1 may have a low false positive rate. Besides, at this accuracy and coverage, ~50% distinct
VARNALI sequences in the test data set were successfully predicted. These results suggest that
model 1 can potentially be applicable to genome-wide pol III type II gene finding. The
performance of model 1 is further evaluated using real genomic sequences in the following

subsection (5.1.2.3.2.).
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Figure 5-8. C-A plots of model 1 and model 2 on the test data set

5.1.2.3.2. The performance of model 1 — using human chromosomes 11 and 13

In order to assess the performance of model 1 in the context of real genomic sequences,
this model was used to scan human chromosomes 11 and 13. In this subsection, a threshold
corresponding to 100% accuracy and 66% coverage assessed against the test data set was
chosen (Figure 5-8, model 1). It was found that the sizes of clustered hits were generally
within the range of 1 to 3 bases, and none of them were longer than 5 bases (for definition of
clustered hits see subsection 5.1.1.4. ). This suggests that model 1 can detect pol III type II

TSSs with good positional accuracy.

To compare the predictions made by using different methods, overlapped hits were
determined as described in subsection 5.1.1.5. The methods discussed here include
tRNAscanSE, eufindtRNA, and model 1. The predictions made by eufindtRNA were also
compared here because eufindtRNA is a pure pol III type II promoter finding algorithm, not
considering the structure-formation potential in a candidate region. In brief, eufindtRNA can
be considered as an algorithm based on pure motif models. By contrast, tRNAscanSE is a

hierarchical system which filters initial predictions made by other algorithms (e.g.
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eufindtRNA, etc.), using structure-formation potential (for more details about how

tRNAscanSE works see subsection 2.1.1.1., chapter 2).

The results reveal that, for discriminating tRNA genes in the human genome, the
performance of this model is comparable to existing algorithms (Figure 5-9 and Figure 5-10).
Notably, the TSSs predicted by using model 1 and eufindtRNA frequently overlapped with
MIRs. MIRs are mammalian interspersed repeats (Smit and Riggs 1995), which are
tRNA-derived short interspersed repetitive elements (SINEs). The expected lengths of MIRs
are ~260 bases. If the 300 bases upstream and downstream of the first base of each prediction
were checked, as many as ~66% and ~51% of the TSSs predicted by model 1 on human
chromosomes 11 and 13 respectively overlapped with MIRs (Table 5-3, model 1). Besides,
~57% and ~46% of the TSSs predicted by eufindtRNA on human chromosomes 11 and 13
respectively overlapped with MIRs (Table 5-3, eufindtRNA). In addition, 90.1% (20/22) and
100% (10/10) of the predictions made concurrently by both methods overlapped with MIRs

(Figure 5-9 and Figure 5-10).

RN AscanSE: 19 eufindtRNA: 166
NAS ' T — 106 MIRs

[ 2 128
| | . |
, 12

/o C22 )

" 143

" Model 1: 178
o 116 MIRs

Figure 5-9. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA,
the EAS pol III type II promoter model: model 1) for human chromosome 11
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Figure 5-10. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA,
the EAS pol III type II promoter model: model 1) for human chromosome 13

Human chromosome 11

Human chromosome 13

EufindtRNA

63.9% (106/166)

45.2% (33/73)

Model 1

65.2% (116/178)

50.7% (36/71)

Table 5-3. Ratios of MIRs in different predictions for pol III type II genes on human chromosomes 11 and 13

MIRs — functional transcripts or pseudogenes?

It was surprising that more than half the pol III type II TSSs predicted by both model 1
and eufindtRNA are MIRs. Since less than 6% and 3% of the sequences on human
chromosomes 11 and 13 respectively are MIRs, there is obviously an enrichment of MIRs in

the sets of predicted TSSs.

In order to explore whether these predicted TSSs correspond to functional transcription
units, two approaches were taken. Firstly, the MIRs predicted by both model 1 and

eufindtRNA were used as negative sequences for training a revised EAS pol III type II TSS
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model (see subsection 5.1.2.4. ). If MIRs are pseudogenes, their promoters should have been at
least partially degraded and thus including MIRs in negative training sequences may improve
the specificity of the Eponine pol III type II TSS model. Secondly, the conservation of these
MIRs in human-mouse syntenic regions was examined (see subsection 5.1.2.5. ). If some

MIRs are synteny-conserved, they are more likely to be functional elements.

5.1.2.4. Model 2 — using MIRs as the negative training sequences

The MIRs that were detected by both model 1 and eufindtRNA on human chromosomes
11 and 13 were added into the set of negative training sequences. The trained model (Figure
5-11) appears to be more complex than the model trained using random human genomic
sequences as the only source of negative training sequences (Figure 5-6) however maintains
the motifs of model 1. This new model is referred to as model 2. There are six distinct motifs
at position 5, 15, 18, 18, 21, and 53. While the final motif in model 2 corresponds to the “B
box”, the “A box” is now represented by five motifs and there are overlaps between motifs.
The performance of model 2 is slightly better than model 1 (Figure 5-8), since its accuracy is

higher than model 1 when coverage is 90% ~ 100%.

5.1.2.4.1. The performance of model 2 — using human chromosomes 11 and 13

In order to compare the performance of model 2 with that of model 1 in the context of
real genomic sequences, model 2 was also used to scan human chromosomes 11 and 13. In
this subsection, a threshold corresponding to 100% accuracy and 55% coverage evaluated
against the test data set was chosen when using model 2. Given this threshold, the number of
predictions made by model 2 on human chromosomes 11 and 13 was comparable to that
previously made by using model 1 (see the denominators in Table 5-4). Besides, model 2 had
good positional accuracy, similar to that of model 1 (for the positional accuracy of model 1 see

subsection 5.1.2.3.2.).

Using model 2 to scan human chromosomes 11 and 13, far fewer of the TSSs predicted
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overlapped with MIRs than when using the previous model (model 1) (Table 5-4). Only ~16%
and 10% of predictions on human chromosomes 11 (Figure 5-13) and 13 (Figure 5-14)
respectively overlapped with MIRs. Besides, no MIRs on human chromosomes 11 and 13
were predicted concurrently by eufindtRNA and model 2. However, one problem with model
2 is that, the prediction coverage of tRNA genes on human chromosome 13 is decreased from
100% to 60% (Figure 5-14) and on human chromosome 11 is decreased from 68% to 63%.
The result suggests that it is difficult to train a pol III type II TSS model that can completely

avoid predicting TSSs which appear to be only associated with MIR elements.

A

ccgt||| ggttcgagtcccg

tagcgcgtttggctg
tgttagagqgtttggct

atagctcgtttgacg

Figure 5-11. An EAS pol III type II model (using MIRs as negative training sequences) (model 2)
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Weight: 4.18, position: 5, width: 2.66 Weight: 5.33, position: 15, width: 2.89

Weight: 8.11, position: 18, width: 3.44

Weight: 4.45, position: 18, width: 4.64

Weight: 18.85, position: 21, width: 2.66
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Weight: 11.80, position: 53, width: 4.50

Figure 5-12. The sequence logos of position-constrained motif matrices of model 2 (Figure 5-11)

The annotation used in this figure follows the convention of Figure 5-3.

Human chromosome 11

Human chromosome 13

Model 1

65.2% (116/178)

50.7% (36/71)

Model 2

16.0% (25/156)

10% (9/90)

Table 5-4. Ratios of MIRs in the predictions made models 1 and 2 for pol III type II genes on human
chromosomes 11 and 13

enfindtRNA: 166

tRNAscanSE: 19 -
. 106 MIRs

144
" Model 2: 156
25 MIRs

Figure 5-13. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA,
the EAS pol III type II promoter model: model 2) for human chromosome 11
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Figure 5-14. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA,
the EAS pol III type II promoter model: model 2) for human chromosome 13

One interpretation of these results is that modelling TSSs alone, i.e. without considering
the structure-formation potentials, is insufficient to distinguish functional pol III type II genes
from inactive MIRs. However another interpretation is that the predictions are correct and that
this finding implies that some MIRs are still being actively transcribed. There is evidence to
suggest that transcripts of repetitive elements may not be completely non-functional. For
example, mouse B2 RNAs, which are the transcripts of a class of tRNA-derived SINEs, can
specifically bind RNA polymerase II holozymes to repress transcript synthesis in response to
heat shock (Allen et al. 2004; Espinoza et al. 2004). The EAS pol III type II models also
predict TSSs which are not associated with tRNAs or MIRs. While some of these predictions

may be false positives, it is also possible that some correspond to novel functional genes.

Consequently, in the following subsection (5.1.2.5. ), I explore the functionality of the
predicted TSSs that do not correspond to tRNA genes. These sites may include MIRs as well
as non-MIR elements. The synteny-conservation of these regions was taken as an indicator of
their functionality. If regions near the predicted TSSs are conserved in the human-mouse

syntenic regions, this supports the idea of them being functional transcripts.
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5.1.2.5. Investigating the human-mouse synteny-conservation of the predicted pol III type II
TSSs

The human-mouse synteny-conservation of the pol III type II TSSs predicted by model 1
and eufindtRNA were examined. The method used here followed the same procedures as
described in section 2.1, chapter 2. The results reveal that only a few of the predicted TSSs on
human chromosomes 11 and 13 are synteny-conserved (Table 5-5). Most of those that were
synteny-conserved were found in the intronic regions of protein-coding genes (Table 5-6). In
general, the identities between the human and mouse synteny-conserved signals are lower than
80%, except that on human chromosome 13 one pair of human-mouse synteny-conserved
signals predicted by model 1 has 95% identity. Does this case represent a novel pol III type II
gene? It is difficult to make this conclusion because the high identity may be evolutionarily
constrained by the function of the protein-coding genes, but not necessarily by the function of
any pol III type II genes. In addition, most of the alignments of the other synteny-conserved

predictions in Table 5-6 contain many indels.

Therefore, the conclusion is that synteny-conservation provides no clear evidence to

support the functionality of the predicted pol III type II TSSs not associate with tRNA genes.

Methods Non-tRNA predictions [Non-tRNA predictions in
syntenic regions in the
mouse genome

Human chromosome 11 |Model 1 165 5°

EufindtRNA 150 5°

Model 1 and eufindtRNA 22 0

Human chromosome 13 |Model 1 66 2
EufindtRNA 68 0
Model 1 and eufindtRNA 10 0

Table 5-5. The synteny conservation of the non-tRNA pol III type II signals on human chromosomes 11 and
13

': there are 3 MIRs in these 5 synteny-conserved signals. *: all the 5 synteny-conserved signals are MIRs.
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Synteny-conserved| Overlapping with known genes
Methods . - - -
signals Protein-coding regions |Unknown
Human chromosome 11 [Model 1 5 5 (introns) 0
EufindtRNA |5 3 (introns) 2
Human chromosome 13 [Model 1 2 1 (exon) 1
EufindtRNA |0 0 0

Table 5-6. Distributions of the synteny-conserved pol III type II promoter signals in intronic and exonic
regions

“Unknown” means that there are no genes annotated in the regions predicted to be pol III type II genes

5.1.3. Discussion

I attempted to model pol III TSSs using the Eponine system because of its success when
applied to the similar problem of modelling RNA polymerase II (pol II) TSSs (Down and
Hubbard 2002). However, the results from modelling of the TSSs of mammalian pol III type 11
genes have been less clear. Firstly, creating a general pol III TSS model proved impractical
due to the substantially different promoter subgroups, so it was decided to concentrate efforts
on modelling the largest pol III type II subgroup. It was possible to train models that could be
used to scan entire human chromosomes predicting the TSSs of majority of known pol III type
IT genes (tRNAs) while making relatively few other predictions. However the proportion of
other predictions was much higher than when Eponine was used to predict TSSs for pol II
genes (Down and Hubbard 2002). Numerous TSSs predicted by using the EAS pol III type 11
model overlapped with MIR repetitive elements. A similar phenomenon was also observed
when the tRNA-gene finder, eufindtRNA, which primarily identifies the internal promoters,
was used. The biological significance of these MIRs that may have good pol III type II
promoters is unknown. No evidence can be found to support the suggestion that these MIRs

might generate functional transcripts.

There are a number of possible ways of explaining these results including the following:
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® If we assume the majority of predictions that do not match known pol III type II
genes are false positives, maybe this indicates that the Eponine system is not
sufficient to model pol III type II TSSs completely. One possibility might be that the
Monte Carlo method used in the Eponine trainer was unable to learn optimal PWMs
representing the internal promoters of mammalian pol III type II genes with the

datasets used here, which were smaller than used for pol II training.

® Alternatively, it might be that the internal promoters are insufficient for regulating
the transcription of mammalian pol III type II genes, making apparently valid pol III
type Il predictions non functional. Other non-promoter regulatory regions, such as
locus control regions (LCRs) and enhancers/silencers, might be necessary for the
transcription regulation of mammalian pol III type II genes. The observation that
tRNA genes tend to exist in clusters might fit with some additional regulatory

process.

With respect to the first possibility, further exploration of promoter modelling using
other motif-finding approaches to predict pol III type II TSSs could be considered as future
work. Since the original goal of the first part of this chapter was to test Eponine as a quick
approach for modelling the TSSs of mammalian pol III type II genes, a comprehensive
assessment of the performances of other approaches for modelling and discovering the TSSs is

beyond the scope of this chapter.

With respect to the second possibility I explored if it is possible to detect any evidence
for non-promoter transcription regulatory regions associated with mammalian tRNA gene
clusters. However, the initial attempt to look for signals in regions around these tRNA gene
clusters (as described in section 2.2, chapter 2) was inconclusive (data not shown) and thus

future work is needed.
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5.2. Summary

In this chapter, an attempt was made to model the transcription regulatory regions of
mammalian tRNA genes. In the first part of this chapter, the transcription start site of
mammalian pol III type II genes, including tRNA genes and VARNAI1 genes, was modelled

by using the Eponine Anchor Sequence (EAS) model. Important findings are as follows:

® The performance of the EAS pol III type II TSS models is comparable to that of

existing methods, such as eufindtRNA, for identifying the TSSs of tRNA genes.

® Both the EAS pol III type II TSS models and the internal-promoter based tRNA

gene finder may predict many repetitive elements, MIRs.

® By using MIRs as the negative training sequences, the performance of the new EAS

pol III type II model cannot be further improved.

One future work is to try other motif-finding approaches to predict pol III type II TSSs.
Another future work is to search for non-promoter regions regulating transcription of pol III

type II genes that are clustered in mammalian genomes.



Chapter 6. Finding RNA motifs in genomes

In chapter 4 of this thesis, a new RNA-motif modelling tool based on the functional-site
modelling tool -- Eponine was created. This new tool is particularly designed for modelling
functional sites that may be associated with local RNA motifs. In addition, the models so
trained should be capable of discriminating ncRNAs in genomes. Unlike other comparative
algorithms that can be used for genome-wide ncRNA finding, this tool is not dependent on
sequence alignments. Thus this tool may potentially provide an alternative approach for

genome-wide ncRNA finding.

In this chapter, I assessed the capability of the Eponine RNA-motif extension. Two types

of capabilities are of interest:

® The capability of the Eponine RNA-motif extension to find the consensus RNA
motifs, consisting of both primary-sequence and secondary-structure motifs, in a set

of transcripts

® The capability of the models so learned to discriminate a particular type of ncRNAs

in genomes

Three types of different ncRNAs with distinct structural features were used to perform
the capability assessment. The modelling of the mammalian tRNAs is discussed in subsection
6.1.1. The modelling of the rho-independent transcription terminators of bacteria is discussed
in subsection 6.1.2. The modelling of the pseudoknots in the 3’ untranslated regions (UTR) of

viral genes is discussed in subsection 6.1.3.

192
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6.1. Using the Eponine RNA-motif extension

6.1.1. Modelling RNA-motifs of mammalian tRNAs

The set of mammalian tRNAs was chosen as the starting case for assessing the capability
of the Eponine RNA-motif extension, since the consensus clover-leaf secondary structure
features of tRNAs have been studied for decades. tRNAs are also widely used as a data set for
evaluating the performances of RNA secondary-structure prediction programs and ncRNA

classifiers.

In this subsection, further assessment is made of the performances of the stringent and the
fast modes of the Eponine RNA-motif extension (for definitions of the stringent mode and the
fast mode, see Figure 4-3 and subsection 4.2.2.1.). It was shown that when identifying the
canonical secondary structures of tRNAs, the stringent mode was better than the fast mode
(see Table 4-1). An issue which was not investigated is the effect of using different
structure-scanning modes on performance in the context of discriminating ncRNAs in
genomes. If the models trained using the fast mode do not perform significantly worse than the
models trained using the stringent mode, maybe the fast mode could be sufficient for the

purpose of discriminating ncRNAs in genomes.

Consequently, there are two purposes of this subsection. Firstly, the performances of pure
structural-motif models trained using the stringent mode and the fast mode, respectively, are
compared. Secondly, I demonstrate that the Eponine RNA-motif extension can be used to train
a discrimination model consisting of both primary-sequence patterns and RNA

secondary-structure motifs.
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6.1.1.1. Materials and methods

6.1.1.1.1. Recruiting the genomic sequences for training and testing

The sets of human tRNA genes created in section 5.1, chapter 5, were used for assessing
the capabilities of the Eponine RNA-motif extension. The human tRNAs of group 1 were used
for training models, and the tRNAs of group 2 were used for testing the performances of these
trained models (Table 6-1, positive sequences). In order to realize the effect of using genomic
sequences on modelling consensus RNA motifs, the flanking regions of human tRNA genes
were included. The first base of the cloverleaf-like structure of each tRNA was used as the
anchoring point; 100 bases upstream and 150 bases downstream with respect to the anchoring
point in each human tRNA gene were retrieved. Two thousand random sequences and ten
thousand random sequences were sampled from the human genome as negative training
sequences and negative test sequences, respectively (Table 6-1, negative sequences). The
human genome assembly used for random sampling was NCBI 35. These sequences were

retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/). These random sequences were

250 bases in length.
Positive sequences Negative sequences
Training data 200 genomic sequences of 2000 random sequences from
human tRNAs (group 1) the human genome
Test data 167 genomic sequences of 10,000 random sequences from
human tRNAs (group 2) the human genome

Table 6-1. The training and test data sets for modelling the human tRNAs

6.1.1.1.2. Determination of the performance of EAR models against the test data set

The training sequences described in the previous subsection were used to train the
Eponine Anchored RNA-motif models (the EAR models, see subsection 4.2.2.3.1, chapter 4).
When evaluating the performance of trained models, the 100™ base of each test sequence was

taken as the anchoring point. A true positive was determined if any region within 5 bases away
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from the anchoring point of a positive sequence was predicted as a hit. A false positive was
determined if any region within 5 bases away from the anchoring point of a negative sequence

was predicted as a hit.

6.1.1.1.3. Setting the parameters of the Eponine RNA-motif extension

The size of windowed regions for predicting the local RNA structural motifs was set to
50 bases when running the Eponine RNA-motif extension. As a result, only the base pairs
within each windowed region of 50 bases would be considered in the trained models. The
windows were limited to 50 bases in this subsection for several reasons. Firstly, finding a
consensus global RNA structure in a set of sequences is not the objective of designing the
Eponine RNA-motif extension. It is instead designed to use consensus local RNA motifs for
discriminating a particular type of ncRNAs in genomes. Secondly, one purpose of this
subsection is to compare the performances of different RNA-motif scanning modes, i.e. the
stringent mode and the fast mode (for the details of these two modes, see section 4.2, chapter
4). If evidence strongly suggests that long-range canonical base pairs are essential for
discriminating a particular type of ncRNAs, the size of windowed regions can certainly be

increased at the cost of computational time.

6.1.1.2. Results
6.1.1.2.1. Pure secondary-structure models of human tRNAs

By using the stringent mode, an EAR model consisting of eight hairpins was trained
(Table 6-2 and Figure 6-1 A). While it might seem that too many hairpins were found, the
eight hairpins can be grouped into five distinctly positioned hairpins, namely, hairpins that
start at 10", 15", 27", 49™ and 59™ positions respectively in tRNA molecules. Among these
predicted consensus hairpins, hairpins that start at 10", 27", and 49™ positions clearly
correspond to three well-known hairpins, D arm, anticodon arm, and T arm, respectively in

tRNAs. The hairpin that starts at 59™ position can be viewed as a shifted T arm, because some
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tRNA genes contain intronic sequences and the distance between the first base of

cloverleaf-like structure and T arm is therefore longer than that in the tRNAs without introns.

Width of position Width of loop size Width of stem
Weight |Position |distribution Loop size |distribution Stem size |size distribution
2.05 10 0.48 10 1.2 3 0.7
2.13 10 0.41 8 0.5 4 0.2
1.83 15 0.33 6 2.6 3 0.3
2.51 26 1.07 9 0.0 4 0.2
2.32 27 1.96 7 0.1 5 0.5
2.08 49 1.00 7 1.0 3 0.6
1.54 50 10.14 7 0.3 5 0.1
1.68 59 0.00 5 1.0 4 0.2

Table 6-2. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the
stringent mode for locating local hairpins

The titles, “Weight”, “Position”, and “Width”, are used as described in Figure 5-3. “Loop size” is the mean of
the discrete Gaussian distribution used to model a loop region. “Stem size” is the mean of the discrete
Gaussian distribution used to model a stem region.

A fast-mode EAR model consisting of ten hairpins was also trained (Table 6-3). Just as
the hairpin groups in the stringent-mode EAR model, these ten hairpins can be categorized
into four distinctly positioned hairpin groups, namely, hairpins that start at 3, 10", 27" and
47™ positions respectively in tRNA molecules. The latter three correspond to three

well-known hairpins, D arm, anticodon arm, and T arm respectively in tRNA molecules.

It seems that the model trained using the stringent mode for locating local hairpins is
slightly simpler than the model trained by using the fast mode, although most likely this is
caused by chance. In the current implementation of the Eponine RNA-motif extension, similar
sub-models of individual hairpins are not merged and in different training runs the numbers of

hairpins found may differ. In brief, the difference between the numbers of hairpins found by
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two models does not suggest that one of the models may be better than the other one.

Width of position Width of loop size Width of stem
Weight |Position |distribution Loop size |distribution Stem size |size distribution
1.97 3 2.27 23 0.7 3 0.1
2.69 9 1.05 4 0.2 5 0.3
2.78 10 0.08 8 0.7 4 0.1
2.34 10 0.23 10 0.8 3 0.5
1.51 26 1.83 7 0.1 6 1.1
1.35 26 2.06 9 0.0 4 0.1
1.82 27 1.00 7 0.7 5 0.1
2.89 47 1.52 7 0.0 5 0.2
1.73 50 0.59 7 29 3 0.0
1.38 58 1.00 7 1.2 5 0.0
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Table 6-3. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the
fast mode for locating local hairpins

The titles used in this table follow the convention of Figure 5-3 and Table 6-2.

Evaluating the performances of the fast mode and the stringent mode

By using the test data set recruited as described in 6.1.1.1.1. the performances of the

models trained respectively using the fast mode and the stringent mode of the Eponine

RNA-motif extension were evaluated. The results suggest that the performance of the fast

mode can be as good as that of the stringent mode (Figure 6-4, fast mode and stringent mode).

Although using the fast mode risks missing important hairpins, it can still be used for finding

consensus RNA structural motifs in sequences when sufficient positive sequences are used for

training. Since by using the fast mode the CPU time is about 40%-60% of the time taken by

using the stringent mode, all models in the following were trained by using the fast mode,

unless otherwise indicated.
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419 5:7

8 5:7 3:7

3:10

(A) The stringent mode (B)The fast mode

Figure 6-1. Two Eponine anchored RNA structural models for mammalian tRNAs

The diagrams were prepared following the convention used in Figure 5-2, except that the motifs shown here
are RNA structural motifs. The constraints drawn with two numbers under them correspond to RNA hairpins.
These numbers are used to describe the dimension of a consensus hairpin. Each dimension consists of the
stem size and the loop size that are separated by a colon. For example, in the right most hairpin in (A), 4:5
means that the size of this stem is 4 base pairs and the length of the loop is 5 bases.

6.1.1.2.2. A mixed primary-sequence and RNA secondary-structure model

Here, the capability of the Eponine RNA-motif extension to model both
primary-sequence and RNA secondary-structure motifs was evaluated by using the human
tRNAs recruited as described in 6.1.1.1.1. The results reveal that the EAR model is capable of
finding both primary-sequence and RNA secondary-structure motifs of tRNAs (Figure 6-2).
Such models that contain both primary-sequence and RNA structural motifs are referred to as

mixed models in this thesis.
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Figure 6-2. An Eponine anchored and mixed (primary-sequence and RNA structural) model

This figure is drawn following the convention used in Figure 6-1.

Width of position Width of stem size
Weight|Position |distribution Loop size Width of loop size distribution|Stem size|distribution
5.06 |8 0.45 Not available (a PWM of 7 columns)
1.97 |11 1.00 8 0.15 4 0.01
1.76 |15 0.45 Not available (a PWM of 2 columns)
4.15 |16 0.45 Not available (a PWM of 5 columns)
1.48 |28 1.00 7 0.46 6 2.39
2.19 |50 1.00 7 0.39 5 0.52
2.40 |61 16.11 7 0.04 5 0.05
31.88 |71 36.50 Not available (a PWM of 15 columns)

Table 6-4. The trained parameters of the EAS mixed model presented in Figure 6-2

The titles used in this table follow the convention of Figure 5-3 and Table 6-2
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Figure 6-3. The sequence logos of position-constrained motif matrices in the Eponine EAS mixed model
presented in Figure 6-2 and Table 6-4.

“Position” corresponds to the “Position” column in Table 6-4.

Evaluating the performances of the mixed model of human tRNAs

The capability of the trained mixed model to differentiate human tRNAs from random
genomic sequences was also evaluated using the test data set recruited as described in
6.1.1.1.1. The results reveal that a mixed model (“mixed model, fast mode”, Figure 6-4) can

perform better than models consisting of only RNA structural motifs (“structure-only” models,
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Figure 6-4). For discriminating tRNAs in the human genome, the false positive rate of the
mixed model should be much lower than that of the models consisting of only RNA
secondary-structure motifs (comparing the “structural-only” models with the mixed model,

Figure 6-4).

For comparison, a pure primary-sequence model, which did not consist of RNA motifs,
was trained taking the training data set as described in 6.1.1.1.1. The performance of this pure
primary-sequence model was also evaluated using the test data set recruited as described in
6.1.1.1.1. However, in this evaluation, the accuracy of the mixed model for human tRNAs
(“mixed model, fast mode”, Figure 6-4) was not as good as this pure primary-sequence model
(“pure primary-sequence model”, Figure 6-4) when the coverage (sensitivity) was set to be
higher than 90%. There were 10 false positives predicted by the mixed model, while only 2

false positives were found by using the pure primary-sequence model.

accuracy
1 = T
pure primary-sequence motel
0,9k mixed model, fast modé
| v ¢-model, stringent mode *+e—
og b structweg-only model, fast mode —pe— |
R
0B
R
o4k
R
0,2k
I
0 1 1 1 1 1 L
0 01 0,2 0,3 0,4 0,5 0.8 0,7 0.8 0.4 1

coverage

Figure 6-4. Comparison of performances among models trained by different modes for classifying human
tRNA genes from random genomic sequences
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6.1.1.3. The false positives predicted by using the mixed model

To explore why a mixed model discovered more false positives, the features of the 10
high-scoring false positives were examined in detail. The conservation of the internal
promoter in each sequence, and the conservation of local RNA motifs corresponding to the D
arm, anticodon arm, and T arm in the canonical tRNA clover-leaf like structures were

evaluated.

The results reveal that most of the false positives predicted by the mixed model of human
tRNAs contain only a subset of the motifs in the canonical tRNA structures (Table 6-5). In

summary these false positives can be characterised as:

® A sequence with a strong internal promoter (as determined by eufindtRNA) can be

identified as a tRNA.

® A sequence with a partial set of weak motifs, either in a combination of a weak
internal promoter and a local RNA structural motif, or in a combination of two or

more local RNA structural motifs, can be identified as a tRNA.

® Most of the false positives overlap with repetitive elements.
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Serial ID Internal promoters' |D arm |anticodon arm  |T arm Repeat
1 + - - - SINE/MIR
2 - - - +2 LINE/L1
3 + - + - LINE/L1
4 - - + (ss) (offset) |+ SINE/MIR
5 + - - - LTR/MaLR SINE/Alu
6 + - + (ss) + (offset) [SINE/Alu
7 - - + (ss) (offset) |+ (offset) |LINE/L1
8 - - + (ss) +(Is) LTR/MaLR SINE/Alu
9 + - - + (offset) |LINE/L1
10 + - - + (not available)

Table 6-5. The high-scoring false positives predicted by using the mixed model of human tRNAs

': the internal promoters were determined by using eufindtRNA with a relaxed parameter set
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%: there is an additional hairpin at the 3 side of the T arm. This additional hairpin also contributes to the final

score.

(ss): a stem which is smaller than the corresponding canonical local RNA motif.

(Is): a stem which is longer than the corresponding canonical local RNA motif.

(offset): a hairpin is a few bases away from the best positions in the canonical tRNA structure.

(not available): not overlapping with repetitive elements

Due to the scoring scheme used in Eponine, these findings are not really surprising.

Given a GLM-based RNA-motif model such as the mixed model of human tRNAs, the final

score of a genomic locus is actually a transformed weighted sum of PWM scores and RM

scores. Thus, a mixed model consisting of many local motifs may be apt to identify truncated

ncRNAs and other ncRNA-derived sequences. In fact, such behaviour is not unique to the

Eponine RNA-motif extension. A similar observation has been made in the development of

tRNAscanSE (Lowe and Eddy 1997), where the tRNA covariance model was shown to

discover some truncated tRNAs and tRNA-derived SINEs which could not be identified by

using promoter-based methods (such as eufindtRNA), and hierarchical and rule-based systems

(e.g. tRNAscanSE) for genome-wide tRNA finding.
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6.1.2. Modelling rho-independent transcription termination

The modelling of human tRNA genes partially demonstrates the capability of the Eponine
RNA-motif extension. Since many existing ncRNA-finding algorithms have also been shown
to be capable of detecting the cloverleaf-like structures, the result of the modelling of human
tRNAs only reveals that the Eponine RNA-motif extension has a function similar to other
tools. Consequently, in this subsection, a more difficult case (for reasons see the discussion in
the next two paragraphs), the rho-independent transcription terminators, was used to evaluate

the capability of the Eponine RNA-motif extension.

The rho-independent transcription terminator, which consists of both primary-sequence
and RNA structural motifs, is an important functional element for regulating the transcription
termination of bacterial genes (Uptain and Chamberlin 1997). Unlike modelling tRNA genes,
finding rho-independent transcription terminators is a topic that has received less investigation.
Apparently, only ad hoc algorithms can find rho-independent transcription terminators in the
bacterial genomes (d'Aubenton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001;
de Hoon et al. 2005). Up to this point, no general-purpose RNA-motif finding algorithms have

been used to find the consensus RNA motifs in these regions of transcription termination.

One reason that makes rho-independent termination signals an unpopular data set is that
the boundaries of rho-independent termination signals are not so well defined as known
ncRNA genes (such as tRNA genes). It is difficult to adequately align these regions. The
identities of pairwise alignments of the regions around transcription termination sites are
generally low. Fewer than 0.5% of pairwise alignments have identities greater than 60% (data
not shown), if the alignments are generated by randomly choosing raw sequences that have
been used by de Hoon et al. (de Hoon et al. 2005). Whether these low-identity alignments can

reveal the structural relations among sequences cannot be confidently determined. However,
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as has been discussed previously (see section 2.1, chapter 2, and section 4.2, chapter 4), most
existing algorithms would not be expected to have good performance in finding structural

signals in such data set.

Some ad hoc algorithms were claimed to have high specificity and high sensitivity in
detecting rho-independent transcription terminators. However, there must be some doubt
about the generality of such results given the training and optimisation processes used. Firstly,
some models were actually tested with exactly the same sequences that have been used for
training respective models (d'Aubenton Carafa et al. 1990; Lesnik et al. 2001; de Hoon et al.
2005). These models may be over fitted and unable to generalise to new data, something that
has not been tested for because of the use of a non-independent test data set. Secondly, some
algorithms discard all predictions in intragenic regions (Ermolaeva et al. 2000), even though
the scores of these predictions exceed the computationally defined threshold. The eradication
of this major source of false positives makes it impossible to properly estimate the accuracy

and specificity of the predictions made by these algorithms.

6.1.2.1. Materials and methods

6.1.2.1.1. The data sets for training and testing the Eponine anchored RNA-motif model

In order to train and test the EAR models for rho-independent transcription terminators,
423 transcription terminators that have been used by de Hoon et al. (de Hoon et al. 2005) were
divided into two data sets for training and testing respectively. Each sequence consists of 20
bases upstream and 50 bases downstream of the respective transcription termination site

annotated by Hoon et al. (de Hoon et al. 2005).

Two sets of 2,000 negative sequences for training and testing models, respectively, were
randomly taken from the B. subtilis genome (GenBank accession number: AL009126). These

negative sequences were 70 bases in length.
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6.1.2.1.2. Determination of the performance of EAR models against the test data set

When evaluating the performance of EAR models for rho-independent transcription
terminators against the test data set, the 20" base of each sequence was taken as the anchoring
point. A true positive was determined if any region within 5 bases away from the anchoring
point of a positive sequence was predicted as a hit. A false positive was determined if any

region within 5 bases away from the anchoring point of a negative sequence was predicted as a

hit.

6.1.2.1.3. Scanning for rho-independent transcription terminators in genomes

When an EAR model for rho-independent transcription terminators was used to scan
genomes, both strands of genomes were scanned. Each position in a genome can be the first
base of a rho-independent transcription terminator. Consecutive hits would be clustered
together if all of their scores were higher than a particular threshold and considered as a single

prediction.

Determination of putative terminators of genes

For each gene, if a predicted rho-independent TTS on the same strand is within the range
starting from 50 bases upstream of the stop codon, continuing till the 500 bases downstream of
the stop codon, this TTS is considered as a putative terminator, unless if this TTS is within the
coding region of the next gene. If there were more than one candidate hit for a particular gene,

the one that was closer to the stop codon was used.

Determination of intragenic terminators

If an intragenic predicted hit is more than 50 bases from the stop codon of a gene, it is

regarded as a true intragenic hit.

6.1.2.1.4. The data set for training and testing the Eponine Windowed RNA-motif model
To assess the capability of the Eponine Windowed RNA-motif model (the EWR model,
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see subsection 4.2.2.3.2, chapter 4) to find consensus RNA motifs in a set of sequences where
no reference points are known, a set of 423 B. subtilis genomic sequences that contain
rho-independent transcription terminators was prepared. In order to make the assessment more
challenging, the positions of rho-independent transcription terminators in respective sequences
were randomly distributed between 1 and 100 (Figure 6-5). These sequences were randomly
divided into a training set (212 sequences) and a test set (211 sequences). The negative
sequences recruited for training and testing models were the same as described in subsection

6.1.2.1.1.

When evaluating the performance of EWR models for rho-independent transcription
terminators, a true positive was determined if any position in a positive sequence was
predicted as a hit. A false positive was determined if any position in a negative test sequence

was predicted as a hit.

> 423 sequences from B. subfilis genome

Signals of rfig-independent

| transcription terrmination
1~ 100 hases |

170 bases

Figure 6-5. Preparation of a set of unanchored sequences that contain rho-independent transcription
terminators at random positions



208 Chapter 6. Finding RNA motifs in genomes

6.1.2.2. Results
6.1.2.2.1. The Eponine anchored RNA-motif model (EAR model)

The EAR mixed model for the rho-independent transcription terminators of B. subtilis
consisted of five motifs (see Table 6-6 and Figure 6-6). This model is basically consistent with
the current knowledge of the composition of the rho-independent terminators (For details see
Lesnik et al. 2001), where the first two motifs (weights 0.85 and 5.30, Table 6-6) correspond
to an A-region (adenosine-rich region); and a stable hairpin (weight 6.03, Table 6-6) is
followed by a T-region (weight 13.62, Table 6-6) (thymidine-rich region in genome,
corresponding to uridine-rich region in transcripts). An additional motif is at positive 5
(weight 4.17, Table 6-6). However, its importance is not clearly understood. Since it overlaps
with the hairpin motif it may be capturing sequences preference within the hairpin of
rho-independent transcription terminators. The Eponine sub-model for the hairpin of
rho-independent transcription terminators is at position 5 (weight 6.03, Table 6-6); the stem
size is 9 base pairs in length and the loop size is 12 bases in length. The standard deviation for
the distribution of loop size is 16.5 bases, which is obviously larger than the mean loop size
(12, Table 6-6). The heavy tail in the distribution of the loop size is consistent with the
previous models of the rho-independent terminators of either E. coli or B. subtilis (d'Aubenton

Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; de Hoon et al. 2005).
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Width of position Loop |Width of loop size Stem  |Width of stem size
Weight|Position|distribution size distribution size distribution
0.85 |3 0.60 Not available (a PWM of 3 columns)
5.30 |1 0.63 Not available (a PWM of 5 columns)
6.03 |5 4.46 12 16.5 9 2.13
4.17 |5 1.38 Not available (a PWM of 4 columns)
13.62 |29 17.96 Not available (a PWM of 7 columns)

Table 6-6. The trained parameters of an EAR model for bacillus rho-independent transcription terminators

The titles used in this table follow the convention of Table 6-4.

aag
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Figure 6-6. An EAR model for rho-independent transcription terminators

This figure is drawn following the convention used in Figure 6-1.
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Position: -3 Position: 1

Position: 5 Position: 29

Figure 6-7. The sequence logos of the position-constrained motif matrices presented in Figure 6-6 and Table
6-6

“Position” corresponds to “Position” column in Table 6-6.

For comparison, a pure primary-sequence model, which did not consist of RNA motifs,
was trained taking the training data set as described in 6.1.2.1.1. A structure-only model,
which did not consist of primary-sequence motifs, was also trained using the same data set.
C-A plots of different models for the rho-independent transcription terminators were
calculated using the test data set of 211 positive sequences and 2000 negative sequences. The
result reveals that the performance of the mixed model (see Table 6-6 and Figure 6-6) is better

than that of the pure primary-sequence and structure-only models (Figure 6-8).

Discriminating the rho-independent transcription terminators in real bacterial genomes

In order to further assess the performances of the EAR mixed model and other algorithms,

the sensitivities and specificities were estimated by using the result of scanning the full-length
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genomic sequences of B. subtilis and E. coli K-12 (GenBank accession number: U00096)
(Table 6-7). The predictions that overlap with experimentally verified rho-independent
transcription terminators were counted as true positives. In order to avoid bias in the
evaluation, only known terminators that were not used for training the respective
algorithms/models were used to estimate sensitivities. Predictions in intragenic regions were
taken as false positives for estimating false positive rates. Although some of the
rho-independent transcription terminators may possibly reside in intragenic regions, the
location distribution of true terminators should be greatly biased towards intergenic regions.
While it is likely that some of the predictions that fall in intergenic regions are false positives,
the ratio of intragenic predictions over all predictions provide at least an estimate of the false

positive rate.

accuracy

1 per—eerey

0.9 F

0.8 F

A

0.6 F

0.5 F

0.4 F

0.3 F

02 F

0.1F

0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

coverage

Figure 6-8. Comparison between the C-A plots of the mixed, the structure-only, and the
primary-sequence-only models of rho-independent transcription terminators
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(A) Performance for finding rho-independent transcription terminators in B. subtilis

Reference The name of the software  [Independent test data  |Sensitivity False positive rate  |Intragenic hits

(Ermolaeva et al. 2000) |TransTerm Yes'| 86.2% (399/463) NA? NA?
(Lesnik et al. 2001) RNAMotif No NA NA NA
(de Hoon et al. 2005) NA No NA’® NA’® NA
This thesis, 2006 EAR mixed model Yes|  85.3% (180/211) 14% (766/5477) 766

(B) Performance for finding rho-independent transcription terminators in E. coli

Reference Sensitivity False positive rate  |Intragenic hits

(Ermolaeva et al. 2000) 89%-98% NA? NA?
(Lesnik et al. 2001) 80%-100%| 39% (2586/6635) 2586
(de Hoon et al. 2005) 67% NA NA
This thesis, 2006 81% (119/147)|  16.6% (431/2604) 431

Table 6-7. Comparison of the performance of different algorithms in finding rho-independent transcription
terminators in B. subtilis

(A) The performances of different algorithms for finding rho-independent transcription terminators in B.
subtilis. (B) The performances of different algorithms for finding rho-independent transcription terminators in
E. coli. Numbers in parentheses are the values that are used to estimate the sensitivities and the false positive
rates for different algorithms. The sensitivities are the ratios of experimentally verified terminators that can be
successfully predicted by different algorithms. The numbers of predictions that are in intragenic regions are
taken as the numbers of false positives. The false positive rates are estimated by dividing the numbers of false
positives with the numbers of all predictions. The statistics for TransTerm is estimated by using the results
retrieved from http://www.cbcb.umd.edu/software/TransTerm/. The statistics for RNAMotif is retrieved
directly from its original paper (Lesnik et al. 2001). The statistics for de Hoon et al.’s algorithm is taken
directly from its original paper (de Hoon et al. 2005).

': no negative sequences are used for estimating accuracy and specificity; only sensitivity is estimated by
using positive sequences that are not used for training.

% not available because intragenic hits are considered as background and invalidated in final output. For
realizing the meaning of this table, see text for details.

’: not available because de Hoon et al.’s algorithm was trained by using rho-independent transcription
terminators of B. subtilis as the positive training sequences.

NA: not available from respective papers and cannot be estimated by using results retrieved from related
websites.

The results reveal that the EAR mixed model is competitive for predicting
rho-independent transcription terminators in the bacterial genomes. Although the parameters
of the EAR mixed model were trained using sequences from B. subtilis, this model can find
rho-independent transcription terminators in E. coli with a reasonable sensitivity (81%, this

thesis, Table 6-7 B) and a similar estimated false positive rate (16.6%).
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In order to compare the EAR mixed model with other algorithms, each case is discussed
separately because there are specific considerations associated with each algorithm. Firstly,
the sensitivity, 81% (this thesis, Table 6-7 B), is obviously higher than the sensitivity (67%, de
Hoon et al., Table 6-7 B) for finding rho-independent transcription terminators of E. coli by
using de Hoon et al.’s algorithm. The latter was also trained by using sequences from B.
subtilis. Although de Hoon et al.’s algorithm was claimed to have a specificity of 94% for
finding rho-independent transcription terminators of B. subtilis, the high specificity was
actually estimated by using only 567 non-terminating sequences (de Hoon et al. 2005), but not
random intragenic regions in B. subtilis. In addition, the 567 negative sequences, which have
been used for training the algorithm, are re-used for testing (de Hoon et al. 2005). The real
specificity and false positive rates of de Hoon et al.’s algorithm should therefore be regarded

as unknown.

Secondly, although the sensitivity (81%, this thesis, Table 6-7 B) of the EAR mixed
model for predicting rho-independent transcription terminators of E. coli seems to be not as
good as the sensitivity (80% ~ 100%, Table 6-7 B) of RNAMotif, the false positive rate of the
EAR mixed model is estimated as only 14.7%, which is much lower than that (39%) of
RNAMotif, calculated in a similar way. It should also be noted that the sensitivity of
RNAMotif was estimated with exactly the same positive sequences that had been used for
training. No predictions made for other bacterial genomes using RNAMotif can be found in

original papers or on related websites.

Thirdly, the sensitivity (85.3%, this thesis, Table 6-7, A) of the EAR mixed model for
finding terminators of B. subtilis was comparable to that (86.2%, Table 6-7, A) of TransTerm,
even though it is impossible to estimate the false positive rates of TransTerm due to its
peculiar way of estimating the confidence of predictions (Ermolaeva et al. 2000) (For details

see discussions in the 5™ paragraph in the introduction of this subsection, 6.1.2. ).



214 Chapter 6. Finding RNA motifs in genomes

Consequently, among the algorithms mentioned above, the EAR mixed model is the only
rho-independent transcription terminator finding approach for which reasonably robust

indicators of both sensitivity and specificity are available.

6.1.2.2.2. The Eponine windowed RNA-motif model (EWR model)

rho-independent transcription terminators should still be considered an easy case when
evaluating ncRNA-finding algorithms, since there is a clearly definable reference point,
namely the transcription termination site, in each sequence. When no obvious reference points
are known, finding consensus RNA motifs is difficult for most available computational
approaches. The Eponine windowed RNA motif model (EWR model) is specifically designed

for such situations.

The results presented here (Figure 6-9) reveal that the EWR models are capable of
finding key signals, corresponding to A-region (the motifs at offset 0 in sensors 1 and 2, Table
6-8), the stable hairpin (the motif at offset 26 in sensor 1, and the motif at offset 16 in sensor 2,
Table 6-8), and T-region (the motif at offset 58 in sensor 1, and the motifs at offsets 42 and 79
in sensor 2, Table 6-8), for rho-independent transcription terminators in unanchored sequences
(see subsection 6.1.2.1.4. ). Although the performance of this EWR model (Figure 6-11) is not
really comparable to the EAR mixed model, nearly 70% accuracy could be achieved when the

coverage is 70%.
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Figure 6-9. An EWR model for rho-independent transcriptional terminators
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There are two convolved sensor basis functions (CSBFs, see subsection 4.1.2.1.2.) in the GLM of the EWR
model for rho-independent transcription terminators. The upper one is referred to as sensor 1 and the lower

one is referred to as sensor 2 in the following text.
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Sensor 1:
Width of position Width of loop size Width of stem size
Offset distribution Loop size distribution Stem size |distribution
0 16.25 Not available (a PWM of 3 columns)
26 0.58 6 7.02 11 0.08
58 11.99 Not available (PWM, 5 columns)
Sensor 2:
Width of position Width of loop size Width of stem size
Offset distribution Loop size distribution Stem size |distribution
0 17.92 Not available (a PWM of 2 columns)
16 1.39 7 8.69 9 0.13
42 8.62 Not available (a PWM of 5 columns)
79 9.36 Not available (a PWM of 2 columns)

Table 6-8. The trained parameters of an EWR model for bacillus rho-independent transcription terminators

Sensor 1 is the convolved sensor basis function (CSBF) presented in the upper half of Figure 6-9 and sensor 2
is the CSBF presented in the lower half of Figure 6-9

“Offset” refers to the mean of the discrete Gaussian distribution used to model the distance between each
motif and the first motif. Other titles follow the convention of Table 6-4.
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Sensor 1:
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Sensor 2:
Offset: 0 Offset: 42
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Figure 6-10. The sequence logos of position-constrained motif matrices presented in Table 6-8 and Figure 6-9

“Offset” corresponds to “Offset” column in Table 6-8. Sensors 1 and 2 correspond to the sensors in Table 6-8

and Figure 6-9
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Figure 6-11. Comparison of the C-A plots of an EAR mixed model and an EWR model for rho-independent
transcription terminators

6.1.2.3. Discussion

One obvious question about using the Eponine RNA extension to model rho-independent
transcription terminators is the wide distribution of motif positions. For example, in the EAR
mixed model (see subsection 6.1.2.2.1. ), the width of the position distribution of the T-region
is 17.96 (weight 13.62, Table 6-6). In the EWR model (see subsection 6.1.2.2.2. ), there are
also heavy tails for position distributions of both the A-region and the T-region (Figure 6-9). It
seems that both of the EAR and the EWR models for rho-independent transcription
terminators are inconsistent with the current view that the stable hairpin is immediately

followed by the T-region. However, it should be noted that in the Eponine RNA-motif
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extension, the first base of the respective hairpin is used as the position of each RNA structural
motif. Consequently, in the EAR mixed model, the distances between the reference point
(presumably the first base of the transcription termination signal) and the T-region in different
sequences varies in response to the variations in the dimensions (loop size and stem size) of
the stable hairpin in rho-independent transcription terminators. For similar reasons, it is not
surprising that the wide position distributions of the T-region were also found in the EWR
model of rho-independent transcription terminators. Consequently, the current implementation
of the Eponine RNA-motif extension may not model ideally the proximity of motifs to their 5°

adjacent structural motifs.

The inadequacy in modelling the exact relations between motifs and reference points
separated by variable length structural motifs is a current weakness of the Eponine RNA-motif
extension. For the purpose of modelling the relation between the hairpin and the T-region in
the rho-independent transcription terminators, using the last base of the stem region as the
location (reference point) for each structural motif might be helpful. However, switching the
reference point for structural motifs is not expected to be a solution in all the situations,
especially when the ncRNAs of unknown types are modelled as the most suitable reference
points for a hairpin may vary from case to case. For example, in modelling the RNA motifs
where the loop regions are responsible for the specific interaction with proteins, the most

suitable anchoring point for hairpins could be the centre of the loop regions.

6.1.3. Modelling pseudoknots

Pseudoknots are seldom used for testing algorithms for finding consensus RNA motifs.
Algorithms that were claimed to be capable of finding consensus pseudoknots in a set of
sequences include GPRM (Hu 2002), ILM (Ruan et al. 2004), and comRNA (Ji et al. 2004).

There are certain restrictions in using these algorithms. For example, GPRM and comRNA
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cannot find primary-sequence motifs; users of GPRM must assign the expected number of

hairpins in sequences; ILM requires pre-aligned sequences.

Although the Eponine RNA-motif extension is not specifically designed for finding
consensus pseudoknots in sequences, it is not prohibited from finding consensus hairpins that
overlap with each other, such as non-juxtaposed and non-nested stem regions in pseudoknots.
In other words, the Eponine RNA-motif extension has the potential to find consensus
pseudoknots in a set of sequences. The additional advantage of using a classification machine,
such as the Eponine RNA-motif extension, is that the trained model may be applicable to

finding new functionally related pseudoknots in genomes.

6.1.3.1. Materials and methods

To assess the capability of the Eponine RNA-motif extension for finding consensus
pseudoknots, 18 sequences of 3 UTRs of genes of soil-borne rye mosaic viruses and
soil-borne wheat mosaic viruses, which were also used by Hu (Hu 2002) for assessing GPRM,
were recruited from the PseudoBase database (van Batenburg et al. 2001) as positive training
sequences. Five hundred sequences of 40 bases in length were randomly sampled from the
human genome and used as negative training sequences. The human genome assembly used
for random sampling was NCBI 35. These sequences were retrieved from the Ensembl ftp site

(ftp://ftp.ensembl.org/pub/).

These training sequences were used to train an EAR model as well as an EWR model.
When the EAR model was used to model these pseudoknots, the first base of each sequence

was used as the anchoring point.

6.1.3.2. Results
The resulting EWR model for the 3° UTRs of viral genes consisted of two consensus

hairpins (Figure 6-12). The stem regions of these two hairpins were neither juxtaposed nor
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nested. The distribution of the first base of the second hairpin peaks (offset: 5, hairpin ID 2,

Table 6-9) at the end of the 5° stem of the first hairpin (stem size: 7, hairpin ID 1, Table 6-9).

The most probable positions of the two hairpins were consistent with the configuration of the

pseudoknots in these 3° UTRs of viral genes that were used for training. The result shows that

the EWR models are capable of finding consensus pseudoknots in a set of sequences.

An EAR model for the pseudoknots in 3° UTR of viral genes was also trained. This EAR

model also consisted of two hairpins (data not shown), which is consistent with the non-nested

configuration of pseudoknots as shown in the EWR model.

Hairpin ID Offset Width of position |Loop size Width of loop size |Stem size Width of stem size
distribution distribution distribution

1 2.7 8.8 0.8

2 2.7 4.1 0.2

Table 6-9. The trained parameters of an EWR model for pseudoknots in 3’ UTRs of viral genes

The titles used in this table follow the convention of Table 6-8.

The notation used to describe RNA hairpins follows the convention of Figure 6-1.

Figure 6-12. An EWR model for the 3° UTRs of viral genes




222 Chapter 6. Finding RNA motifs in genomes

6.2. Discussions

6.2.1. Considerations of using the Eponine RNA-motif extension

In order to train an Eponine RNA-motif model, a number of positive training sequences
are required. For example, a set of ten sequences is insufficient for finding the pseudoknots in
the 3° UTRs of viral genes with the current implementation and parameter settings of the
Eponine RNA-motif extension. Training an Eponine RNA-motif model may require tens of
positive sequences. In terms of finding functional RNA motifs, this requirement seems to be a
weakness of the Eponine RNA-motif extension, compared to algorithms that can predict
optimal RNA structures using only few sequences. Nonetheless, by using only a few
sequences or even one sequence, available RNA-motif finding algorithms may also have
difficulty in finding consensus structures in a set of unaligned sequences (Gardner and
Giegerich 2004). Even though the algorithms that take pre-aligned sequences seem to have a
good performance, none of them have been tested on alignments of real genomic sequences.
Existing tests have generally been performed on alignments of well-trimmed sequences
(Hofacker et al. 2002; Knudsen and Hein 2003; Coventry et al. 2004; Gardner and Giegerich
2004; Ruan et al. 2004). A similar situation is also true for the ncRNA classifying algorithms

that utilise pre-aligned sequences (see also subsection 2.1.3.5. , chapter 2).

Another issue around using the Eponine RNA-motif extension is the computer time
required for training a model. For example, it may take ~7 hours (24,108 seconds) and ~22
hours (79,661 seconds) to train an EAR mixed model and an EWR mixed model respectively
for human tRNAs (Table 6-10). Within the trainer, predicting all local hairpins in each training
sequence is not the most time-consuming step when using the Eponine RNA-motif extension.
With the current implementation of the fast model of the Eponine RNA-motif extension, it

takes less than 3 seconds by using an x86-64bit machine (3.2 Ghz Pentium IV EMT64, 64-bit
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Linux) to predict local hairpins for a sequence of 250 bases in length. A significant proportion
of time