Gene Prediction using a configurable system

for the integration of data by Dynamic Programming

Thesis by
Kevin Howe

submitted for the degree of
Doctor of Philosophy
University of Cambridge

St. John’s College
and

The Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton

Cambridge

(Submitted on February 20, 2003)

Summary

A new approach to the computational identification of protein-coding gene struc-
tures in genomic DNA sequence is described. It overcomes rigidities inherent in
most existing gene prediction methods, for example those based on Hidden Markov
Models (HMMs), by supporting a flexible computational model of how sequence
signal signals fit together into complete gene structures.

The primary result of the work is a gene prediction tool for the assembly of
evidence for individual gene components (features) into complete gene structures.
The system is completely configurable in that both the features themselves, and the
model of gene structure against which candidate assemblies are validated and scored,
are external to the system and supplied by the user. The gene prediction process
is therefore tied neither to any specific techniques for the recognition of sequence
signals, nor any specific underlying model of gene structure.

The methodology is implemented in a piece of software called “GAZE” which
uses a dynamic programming algorithm to obtain (i) the highest scoring gene struc-
ture consistent with the user-supplied features and gene-structure model, and (ii)
posterior probabilities that each feature is part of a gene. The algorithm includes a
novel pruning strategy, ensuring that it has a run-time effectively linear in the length
of the sequence without compromising accuracy. The effectiveness of the approach
is explored by applying it to the prediction of gene structures in sequences of the
nematode worm C. elegans.

GAZE allows the integration of gene prediction data from multiple, arbitrary
sources. It is important for the accuracy of the system that the various pieces of
evidence are weighted appropriately with respect to each other. A novel strategy for
the automatic determination of optimal values for these weights is described. The
method uses numerical analysis and dynamic programming to maximise a probabilis-
tic accuracy function with respect to the weights. Its effectiveness is demonstrated
in the context of the development a gene prediction system for vertebrate sequences

using GAZE.

Contents

Preface
Introduction

1 Methods for the computational identification of gene structures
1.1 Identifying the elements of gene structure
1.1.1 The recognition of gene structural elements
1.1.2 The recognition of gene regions

1.2 Identifying complete gene structures
1.2.1 Gene fragment assembly methods
1.2.2 Hidden Markov models,

1.3 Using similarity to other sequences
1.3.1 Expressed sequences
1.3.2 The sequences of other genomes

1.4 Assessing gene prediction accuracy
1.4.1 Gene prediction accuracy metrics

1.5 Otherissues s

2 GAZE
2.1 Introduction e
2.2 From features and segments to gene structures

2.3 Elements of a GAZE configuration

ii

ix

© N N ot wooNn -

11
11
12
14
15
17

2.3.1 Defining the validity of candidate gene structures 25

2.3.2 Defining the scoring of valid gene structures 29
2.4 Prediction with a GAZE gene structure model 31
2.4.1 The GAZE scoring function 31
2.4.2 Obtaining the highest scoring valid gene structure 33
2.5 A probability distribution over gene structures 34
2.5.1 Gene Structure probabilities 35
2.5.2 Feature and Region posterior probabilities 37
2.5.3 Stochastic traceback o000 38
2.6 Practical considerations L. 39
2.6.1 Maintaining numerical stabilityo 39
2.6.2 Working within practical limits of space and time 41
2.6.3 A novel pruning strategy 46
2.7 Relationship to other similar systems 52
2.7.1 Other gene prediction toolkits 52
2.72 HMM methods 54
Using GAZE for gene finding in Caenorhabditis elegans 56
3.1 Imtroduction 56
3.2 Gene prediction materials for C.elegans 57
3.2.1 WormBase and The WormSeq dataset 57
3.2.2 A source of gene prediction data: GENEFINDER 60
3.3 Definition of a GAZE configuration in three steps 62
3.3.1 A single, single-exon gene 63
3.3.2 Extension to spliced structures 64
3.3.3 Extending to multiple genes on both strands 66
3.4 Applying the model to C.elegans sequences 68
3.4.1 Predicting genes in WormSeq 68
3.4.2 Using feature-selection to refine the predictions 68

3.4.3 Adjusting the score to refine the predictions 70

iii

3.5

3.6

3.7

3.8

3.4.4 A comparison with GENEFINDER 72

Towards a C'elegans-specific model of gene structure 73
3.5.1 Splicing mechanisms in C.elegans 74
3.5.2 Trans-splicing confuses gene prediction programs 75
3.5.3 A GAZE model accounting for trans-splicing 75
Integrating similarity information 0L 79
3.6.1 ESTs and gene prediction 80
3.6.2 A GAZE model for the use of EST alignments 82
A closer look at the accuracy of GAZE 87
3.7.1 Gene-level accuracy 88
3.7.2 Accuracy at base-pair and exon-level 89
3.7.3 Accuracy by exon-type 89
3.7.4 Genome scale accuracy 91
Examining the probabilistic aspects of GAZE 93
3.8.1 The reliability of GAZE predictions 93
3.8.2 Feature probabilities can aid manual curation 95

3.8.3 Feature probabilities could be used to identify alternative splic-

ingevents Lo 97

A method for estimating optimal parameters for a GAZE model 100

4.1
4.2

4.3

4.4

4.5

Introduction Lo 100
Evidence weighting in GAZE 101

4.2.1 Optimally parsing a sequence according to weighted evidence 101

4.2.2 Accommodating weights in the GAZE scoring function 102
Two approaches to obtaining an optimal set of weights 105
4.3.1 Maximum Likelihood 0. 105
4.3.2 Maximal Feature Discrimination 106
Optimising the objective functions by gradient descent 108
4.4.1 A conjugate gradient descent method 109
Calculating the gradient by dynamic programming 110

v

4.6

4.7

4.8

4.5.1 The derivative of the ML function 110

4.5.2 The derivative of the MFD function 112
4.5.3 Computing the weighted average of the derivatives 113
Implementation issues oL 115
4.6.1 Numerical stability, 115
4.6.2 Parameter tying 0. 117
4.6.3 Time and memory usage 117
A comparison with other methods 119
4.7.1 Other methods based on weighted evidence 119
4.7.2 Hidden Markov model methods 122
Optimising evidence weights for GAZE EST 129
4.8.1 Choice of parameters and optimisation method 129
4.8.2 Accuracy of the trained model 130

Application of GAZE training to the development of a vertebrate

gene finder 133
5.1 Introduction. 133
5.2 Materials for gene prediction in vertebrate sequences 134
5.2.1 Datasets for training and testing 134
5.2.2 Properties of the genesets 136
5.2.3 A source of gene prediction features: GENEID 139
5.3 A GAZE configuration for human gene finding 141
5.3.1 A GAZE configuration based on GENEID 141
5.3.2 Accuracy of themodel 143
5.4 Optimising the parameters of the model 143
5.4.1 Defining the parameters of the model 144
5.4.2 Accuracy of the trained model 145
5.5 Investigating three ways to improve accuracy 151
5.5.1 Incorporating promoter prediction data 152
5.5.2 Using exon length distributions 158

5.5.3 Introducing C+G%-dependent model parameters
5.5.4 Combining all three types of evidence

6 Conclusions
Bibliography

A Some example GAZE configurations
Al GAZEstdo e
A2 GAZEEST . . . e
A3 GAZE GenelD

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
0.7
5.8
5.9

Gene level accuracy of standard model 70
Gene level accuracy of trans-splice model 78
Gene-level accuracy of the EST model 85
Comparative gene level accuracy of all configurations 88
Base-pair and exon-level accuracyo oL 89
Accuracy by exon type 90
Accuracy in genome-scale assessment 92
Evidence weights determined by training 131
Accuracy of GAZE_EST after training 131
Properties of training and test datasets 136
Gene level accuracy of standard model 143
Comparative accuracy of ML and MFD training 146
Promoter predictions at different thresholds 153
Accuracy of the 5 UTR model 156
Accuracy of the exon-length model 161
C+G content of test and training sets 164
Accuracy of C+G%-specific model 166
Accuracy of model combining all evidence 168

vii

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

5.1
5.2
5.3
5.4

Components of a eukaryotic protein-coding gene

Prediction of genes by GAZE L.

Problems with feature ordering

A simple GAZE configuration
Extensions to the configuration to model spliced genes
Extensions to the configuration to model multiple genes
Pictorial representation of a GAZE configuration
Increased occurrence of wrong genes
Trans-splicing in C.elegans
Confusion of standard methods by trans-splicing
A GAZE configuration modelling trans-splicing
Pictorial representation of GAZE configuration for using ESTs

Posterior feature probabilities for predicted genes
Posterior probabilities for all candidate features

Detecting alternative splicing with GAZE

A GAZE configuration for vertebrate gene finding
Accuracy in training set after each line minimisation
Accuracy in test set after each line minimisation

A GAZE configuration modelling the 5> UTR

viii

Preface

Too many people have helped me during my time at the Sanger Centre to name
individually. I feel it appropriate however to give some people a special mention.

I first came to the Sanger in October 1998 to work on the Pfam database, under
the guidance of Alex Bateman and Ewan Birney. Being the young and impression-
able newcomer to bioinformatics that I was, Alex and Ewan have to take a degree
of credit/blame for the way I now approach problems in this field. Although my in-
volvement with Pfam has diminished in recent years due to other commitments, Alex
in particular has continued to to take an active interest in my scientific development,
and for that I thank him.

This thesis represents the result of these other commitments, work which I began
in October 1999. During this time, my primary source of guidance has been my
supervisor, Richard Durbin. I thank him for ideas, direction, encouragement and

not least for tolerating my (what must be sometimes infuriating) indecisiveness.

Declaration of originality

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in the

text.

ix

Introduction

The working draft of the human genome is now nearly two years old [112], with
announcement of the finished article expected later this year. The near-completion
of this effort has seen a redirection of resources, resulting in an acceleration in
the genome-sequencing of other organisms studied in experimental biology, such as
mouse and zebrafish. According to the National Centre for Biotechnology Informa-
tion, nearly 900 genomes are either finished or currently being sequenced!. The fact
that such large scale sequencing is possible represents an incredible achievement,
both in technology /engineering, and sheer organisation. However, genomes only be-
come useful resource for science through biological interpretation, i.e. annotation of
the role of the different parts of the sequence in cellular processes. Without anno-
tation, genome sequencing is, to paraphrase Ernest Rutherford, nothing more than
stamp collecting.

The specific problem addressed by this thesis is that of the annotation of the gene
structures in a genome. Annotation of a genome in terms of its constituent genes
and their intron-exon structure allows us to infer a set of proteins for an organism.
Furthermore, the genomic context of the genes can provide insight into the regulatory
mechanisms that determine where and under what conditions the corresponding
proteins are expressed, as well as being a useful resource for experimental biology.

Gene structure annotation of genomic sequence is still most accurately performed
by trained experts, combining the results of a number of computational and exper-

imental analyses with biological knowledge and heuristics. This is naturally a slow

"http:/ /www.ncbi.nlm.nih.gov/PMGifs/Genomes/allorg.html, 3rd February 2003

process, and the huge volume of sequence data being generated places an unrealis-
tic demand on the number of experts required to perform this skilled activity. In
addition, for the annotation of a large vertebrate genome to be completed in any
reasonable amount of time, it is necessary to divide the sequence amongst up to
a hundred annotators. This can have the undesirable result that different sections
of a genome can be annotated with different standards and procedures. Reliable,
completely automated methods for gene structure annotation would therefore firstly
cope with the rate at which genome sequence data is being generated and secondly
provide gene structure annotation that is consistent.

This thesis describes a new approach to the automated prediction of gene struc-
tures in genomic DNA sequences. Despite progressive improvement in the accuracy
of computational methods in the last fifteen years, they remain imperfect. The
problem therefore still attracts considerable research interest both into the biolog-
ical processes of transcription, RNA processing and translation that determine the
gene structure of a genome, and into methods for the recognition of the sequence
signals involved in these processes. The integration of new knowledge and methods
into complete gene prediction systems is however often inhibited by rigidities of de-
sign, such as a fixed assumed underlying model of the compositional and structural
properties of genes.

The primary motivation for my research has been to accelerate the integration
of new and possibly disparate knowledge and techniques into the gene prediction
process. To this end, I have developed a structured framework for the assembly of
gene prediction evidence from multiple, arbitrary sources into complete gene struc-
ture predictions. Careful design and certain assumptions allow the system to make
probabilistic statements about its predictions, and this in turn facilitates a princi-
pled approach to the problem of determining an optimal weighting strategy for the
various types of evidence employed.

The organisation of the dissertation is as follows. Chapter 1 discusses some of

the issues and techniques of computational gene-structure prediction. The aim is to

pal

provide an introduction and broad survey, as many of the issues that are directly
relevant to the work presented in the remainder of the thesis are expanded upon
where appropriate.

After this short review, the dissertation can be viewed as comprising of two parts.
The first part (chapters 2 and 3) describes a framework for the integration of arbi-
trary gene prediction data, and its application to the development of a gene finder for
C. elegans sequences; the second part (chapters 4 and 5) describes a new approach
to probabilistic parameter estimation and its application to the performance-tuning
of a gene prediction system for vertebrate sequences.

Chapter 2 describes the details of the framework, implemented in a program
called “GAZE”. 1T briefly explain the elements of the system, with focus on the
configuration file that controls the assembly of the external evidence into complete
gene predictions. I then go on to describe the dynamic programming algorithms used
by GAZE for the calculation of the optimal gene structure and posterior probabilities
for parts of gene structures, including a novel search-space pruning strategy. To end,
I contrast GAZE with other, similar approaches to computational gene prediction.

Chapter 3 describes the application of GAZE to gene prediction in C. elegans se-
quences. I outline the stepwise development of an initial configuration, and explore
the effects of extending the model in two ways, first to account for a worm-specific
peculiarity of gene structure, and second to make use of sequence similarity infor-
mation. I also examine the probabilistic aspects of the system and explore some of
their potential applications.

Chapter 4 addresses the problem of identifying an optimal weighting for the
scores attached to the different types of evidence employed in an integrated gene
prediction system. Two methods for estimating optimal weights for the elements
of a GAZE configuration are described. The first is based on a classical maximum
likelihood approach; the second is a novel method which I call Maximal Feature
Discrimination (MFD). I contrast these with other similar techniques, particularly

those used for Hidden Markov Models.

xii

Chapter 5 describes the application of Maximal Feature Discrimination to the
training of a simple GAZE model for gene finding in vertebrate sequences, and
compares the results with those obtained using the classical maximum likelihood
method. I extend the simple model with each of three types of additional evidence
and demonstrate the effectiveness with which MFD is able to determine weights for
the new model elements.

Finally chapter 6 concludes the dissertation by briefly summarising the important

aspects of the work, and suggests possible areas for further research.

xiii

Chapter 1

Methods for the computational

identification of gene structures

This short review outlines some of the current approaches to the computational
identification of gene structures in genomic DNA. It focuses on the very specific
problem of the prediction of the complete structures of protein-coding genes in the
sequences of eukaryotic organisms. Gene prediction in prokaryotes is traditionally
viewed as less challenging due to high gene density and lack of introns (although
genes with overlapping coding regions are far more common in prokaryotes than in
plants and animals). The prediction of non-protein-coding genes is on the other hand
considered by most to be a harder problem and is currently attracting considerable
research interest in its own right (see section 1.5).

I aim here to summarise the main issues rather than attempting to be compre-
hensive; there are many existing reviews on this subject, notably by Fickett [39],
Claverie [26], Guigo [51], Burge and Karlin [22], Stormo [108], and recently by Zhang
[122] and Mathe et.al. [77]. Many of the issues summarised here are discussed in

further detail in later chapters of this thesis.

Transcription Transcription
Start Stop

- 3

Promoter
Poly(A)
Donor Acceptor cleavage
Exon # Intron ¢ Exon Intron Exon #
Pre-mRNA I 20 T 0 aaa—
Exon Exon Exon ;
. - .
5’ cap Translation Translation (|
Start stap Poly(A) tail
5" UTR ¢ ¢ 3" UTR

Processed mRNA

Protein sequence

Figure 1.1: The primary components of a typical eukaryotic protein-coding gene, showing its transcrip-
tion, the processing of the transcribed RNA, and the translation of the processed RNA.

1.1 Identifying the elements of gene structure

Figure 1.1 depicts the classic view of how a eukaryotic protein-coding gene specifies
its protein sequence [115] [1]. With this model, the cellular processes of transcription,
RNA processing and translation can be viewed abstractly as a series of segmenta-
tions: firstly of the genomic DNA sequence into gene and non-gene regions, each
gene giving rise to one or more primary transcripts; secondly of the transcript se-
quence into exonic and intronic regions, the exons forming a processed transcript;
and thirdly of the processed transcript into translated and untranslated regions, the
translated region giving rise to a protein. The problem of gene prediction in this

context can therefore be described as identifying the precise regions of the genomic

DNA that correspond with translated regions in processed RNAs, allowing at least
in theory the inference of the proteome from the genome.

At present, our understanding of the mechanisms of transcription, RNA pro-
cessing and translation is insufficient to be able to model them precisely in silico.
Until our knowledge reaches a level where a deterministic computational model is

realistic, we must supplement what we know with a variety of statistical methods.

1.1.1 The recognition of gene structural elements

The localised sequence signals that form the basis for the cellular recognition of
the boundaries between functional regions of gene structure are most intuitively
expressed as consensus sequences. The fact that these signals are neither unique to
genes nor completely conserved across all genes makes their computational detection
non-trivial.

Of the three processes of transcription, RNA processing and translation, it is
the sequence signals of the first that are the most poorly understood. In attempting
to define the site of transcription initiation, the AT-rich TATA-box signal located
around 30 base-pairs upstream forms the basis for the many of detection techniques
[40], but only around 70% of human promoters (for example) have this characteristic
[19]. The association of promoters with CpG islands (short regions where suppression
of methylation leads to a higher-than-average proportion of the dinucleotide CG [8])
provides another useful signal, but one that can give only low resolution mapping
of the transcription start site. The site of transcription termination is even less well
characterised, and most methods instead focus on trying to identify the upstream
site of the transcript cleavage that occurs prior to polyadenylation, the poly(A)
site. In many organisms, this is characterised by the presence of the hexanucleotide
AATAAA around 30 nucleotides upstream, but in humans the signal is absent from
around half of all genes [26], and in C. elegans there are as many as 23 one or two
base variants documented [14].

Although the sites of translation initiation and termination are difficult to iden-

tify in isolation, they do have elements that are completely conserved: the translated
regions of all eukaryotic genes begin in the processed mRNA with the triplet corre-
sponding to the start codon, almost always ATG (with a slightly less well conserved
context upstream of the ATG known as the Kozak sequence [65]), and end with the
first in-frame occurrence of a triplet corresponding to one of the three possible stop
codons, TAA, TGA, and TAG. This information however is insufficient to be able
to to identify these sites in the genome with any accuracy at all. The degeneracy of
the translation initiation site can be explained in part by the fact that the ribosome
need “search” only a relatively small stretch of processed mRNA for a place to bind
rather than a far longer stretch of genomic DNA. We still do not understand enough
about translation however to identify the initiation site even in a processed mRNA
with certainty.

As with translation, searching the genomic DNA for the signals important in
RNA processing provides a more difficult problem than that encountered by the
spliceosome, which is faced only with an orders-of-magnitude smaller RNA molecule.
Even so, our understanding of the signals involved in the splicing process, although
far from comprehensive, provides the most useful information for the identification
of gene structures directly in the genomic DNA. The Donor and Acceptor splice sites
have the consensuses AG—GTRAGT and YYYYYYYYYYNCAG—G respectively
[122], with the GT and AG defining the beginning and end of virtually all introns.
In vertebrates, the acceptor signal is often extended upstream into the intron to
capture the completely conserved A residue that occurs at the branch-point [20].

Although these signals of transcription, translation and RNA-splicing are quite
different, the same kinds of techniques are used to identify features of all of them.
Most correspond to variations on the idea of a generalised consensus sequence for
the signal, using a probability distribution over the possible residues occurring at
each position. The widely used Weight Matrix method (WMM) [105] treats each
position in the consensus as independent. Where it is believed that there are linear

dependencies between the positions, the Weight Array method (WAM) is often used,

where the probability of residue s appearing in position ¢ depends not only on
the position (as with the WMM), but also on the residues appearing at positions
i—1,i—2,...,i — k (where k is chosen according to the amount of training data
available). Where the dependencies between columns are known but non-adjacent,
Maximal Dependence Decomposition (MDD) [21] can be used, and multi-layered
artificial networks can model complex dependencies between positions even when the
dependencies themselves are poorly understood [17]. Finally, profile Hidden Markov
Models are able to model insertions and deletions with respect to the generalised
consensus [36].

In practice, the degeneracy of the short sequence-motifs characteristic of these
gene features makes these so called signal sensor methods most useful when used in
combination with content sensor methods for assessing the likelihood of the longer
more extensive regions between the features, such as intron and exons (see below).
However, there are many examples of where these methods are employed directly,
for example, in the detection of transcription start sites [34], polyadenylation sites

[111], translation start sites [55] and splice sites [86].

1.1.2 The recognition of gene regions

A protein coding region in the genomic DNA consists of a string of triplets, each of
which corresponds to a codon that will be translated into an amino acid. Biases in
the usage of amino acids in proteins, in the usage of codons for a single amino acid,
and the absence of stop codons provide the basis for the majority of methods for
differentiating coding regions from non-coding regions.

Inspired by the survey of coding statistics conducted by Fickett and Tung [41],
most techniques for assessing the coding potential of a sequence are based on the
relative frequency of occurrence of frame-specific hexamers (runs of 6 nucleotides)
in coding regions compared with non-coding regions (usually introns). These differ-
ences can be expressed probabilistically as a kth order Markov model [36] which is

a stochastic model that assumes that the probability of a base at a given position

depends only upon the previous k bases. The simple weight matrices above are
therefore related to Oth-order Markov models, with a different probability distribu-
tion for each column, whereas the weight array matrices are related to kth order
Markov models. Using hexamer frequencies therefore corresponds to a 5th order
Markov model. In practice, protein-coding regions are modelled by using a sepa-
rate 5th order Markov model for each of the three positions in a codon, as in the
GENMARK program [15]. More recently, Interpolated Markov models (IMMs) have
been utilised for eukaryotic gene finding [97], in which the probability of a base at a
given position is a weighted average of the probabilities according to several Markov
models of different orders (e.g. between 0 and 8).

Because these content sensing methods are poor at identifying the precise bound-
aries of the coding regions, they are most often used in combination with the signal
sensing methods described earlier. A pair of detected signals of appropriate type
defines a candidate gene region; for example, a translation start site followed by a
donor splice site defines a candidate initial protein coding region of an exon, the like-
lihood of which can be judged by using a content sensor such as the Markov models
outlined above. This approach is appropriate for detecting all types of gene region.
For example, a candidate intron can be defined by upstream donor and downstream
acceptor splice sites, and an exon by a transcription start site / acceptor splice site
upstream followed by a polyadenylation site / donor splice site downstream.

In order to be able to discriminate between true and false candidate regions
defined in this way, a score for the region is commonly computed by combining
the information from many sources, typically (i) the signal scores of the defining
boundary elements; (ii) content scores for the intervening sequence; (iii) a score
obtained from a probability distribution over the possible lengths of the region.
If the scores correspond to (log) probabilities and we assume independence, they
can be combined most naturally by (addition) multiplication. More generally, it is
necessary for the score components to be weighted and combined appropriately [109].

In the pioneering GRAIL system for the detection of protein-coding exons, the scores

reported by several sensors were combined with an artificial neural network [113]. An
alternative approach results from viewing each of the n region discriminators as the
axis of a high dimensional space, in which case candidate regions can be described by
a point in this space. Techniques such as linear and quadratic discriminant analysis
can be used to find the surface in this space that optimally separates true and false
examples. Of the signals discussed earlier, it is the donor and acceptor splice sites
that are perhaps the best characterised, so these techniques have both been employed
most successfully for the identification of protein-coding internal exons [103] [120].
More recently quadratic discriminant analysis has been used for the recognition of

complete initial [29] and terminal [110] exons.

1.2 Identifying complete gene structures

The prediction of complete gene structures is seemingly a more difficult problem than
that of the prediction of localised gene features and regions. However, the accuracy
of identification of such features and regions can be improved by considering not only
their local properties, but also their relationship to other more distant gene features.
At the very simplest level, the protein-coding regions of exons almost never overlap
in eukaryotes, successive protein-coding regions on the same strand in the same gene
must be frame compatible, and the length of the coding regions of the complete gene
must be a multiple of three. Such constraints are the basis for most methods for
the identification of complete gene structures. The widely used techniques can be
broadly divided into two categories: gene fragment assembly, and Hidden Markov

Models.

1.2.1 Gene fragment assembly methods

The majority of early programs for the prediction of complete gene structures con-
ceptually broke the problem into two distinct sub-problems: (a) identify a set of

candidate gene fragments (e.g. coding exons) using the methods such as those de-

scribed in the previous section; (b) of the many possible complete gene structures
assemblies implied by these candidate gene fragments, eliminate illegal assemblies,
i.e. those that do not adhere to the constraints of gene structure. Then, of those
remaining, identify the assembly that is optimal according to some scoring function.

The constraints that determine the legality of candidate assemblies are conve-
niently expressed as rules that dictate which pairs of gene features or regions are
allowed to appear next to each other in a legal gene structure. More formally, the
rules can be expressed in the form of a grammar [33]. Early programs assumed that
the input sequence contained exactly one complete gene on the forward strand of
the sequence. Generalisation of the assumed gene structure constraints has given
the majority of the more recent programs the ability to predict multiple genes, genes
on both strands, and partial genes at the ends of the sequence. It is still the case
however that most of these assumed gene models make no allowances for specific
peculiarities of certain gene structures, such as the presence of introns that occur
completely within the non-coding region of an mRNA (so-called UTR introns), and
the presence of genes within an intron of another gene [57].

Disregarding assemblies that do not adhere to the constraints of an assumed
gene structure model reduces the number of possible assemblies, but typically many
will remain. The first programs worked by iterating though all legal gene structures
explicitly [42] [47], but as the number of possible legal assemblies typically grows
exponentially with the number of gene fragments [49] [116], this approach was only
practicable for small sequences. Subsequent research addressed this problem by us-
ing heuristics to reduce the search-space, an example being the original version of
the GENEID program which used series of hierarchical rules to filter out unlikely
exons before the assembly stage [89]. However, such methods are not guaranteed
to identify the optimal assembly. The application of Dynamic Programming [6] for
the efficient identification of the optimal assembly therefore represented a significant
advance. Dynamic Programming is a generic name for a family of recursive opti-

misation techniques that work by the progressive construction of a solution from

simpler sub-solutions. The technique allows the exploration of a search space that
grows exponentially with the number of gene fragments in time that grows only
polynomially (O(n?) or even O(n)). For this reason, dynamic programming algo-
rithms are employed in most of the popular gene fragment-assembly based programs

[101] [118] [84].

1.2.2 Hidden Markov models

Hidden Markov models (HMMSs) provide a convenient framework for the represen-
tation of the signal and content displayed by gene features and regions and the
constraints of gene structure, in one unified probabilistic model. An HMM can be
thought of a probabilistic finite state automaton for generating a sequence from left
to right according to an underlying hidden state path. At each stage the model (i)
emits a single residue according to an emission probability distribution over residues
that is dependent upon the current state, and (ii) moves to a new state (possibly
the same state) according to a transition probability distribution over states that is
dependent upon the current state.

HMMs can naturally model sequences that are partitioned into regions of dif-
ferent types, for example genes. At the very simplest level, we might have a state
for ’exon’ with two transitions, one into an ’intron’ state, and another looping back
into the ’exon’ state. These two states can have different emission distributions, and
can thus represent inherent compositional differences in introns and exons. Each
path through the HMM therefore corresponds to a gene structure, and inference of
the underlying state path (given the sequence) corresponds to a prediction of gene
structure.

The transition and emission probabilities of an HMM amount to a joint proba-
bility distribution over pairs of state-paths and sequences. Given a query sequence,
established, efficient (linear-time) techniques can then be used to obtain (i) the
most likely state-path given the sequence (using the Viterbi dynamic programming

algorithm [114]); (ii) the full probability of the sequence considering all state paths

(using the forward or backward algorithm [90]); and (iii) the posterior probability
that residue ¢ was generated by state k (using the forward-backward algorithm [90]).
One of the key advantages of HMMs is that given a training set of sequences with
known gene structure, maximum likelihood parameters for the model (i.e. emission
and transition probabilities) can be obtained by counting.

HMDMs as described generate a region of a particular function class by successively
looping to the same state, jumping to a different state at the end of the region. This
imposes a geometric distribution on the duration of the states, which is an unrealistic
model for most of the functional regions in genes, particularly protein-coding exons
[20] [112]. One of two enhancements to the standard HMM architecture is therefore
usually employed to represent the non-geometric nature of the length of protein-
coding exons.

The first is to model the sequence as a list of classes, with each residue being
labelled as belonging to a particular class, and being generated by one of a group
of states labelled as belonging to the same class. Such a formalism is known as a
Class-HMM [67]. By chaining more than one state together with the label “exon”
and then obtaining the most likely labelling by summing over all paths with the same
labelling, a length distribution resembling that displayed by protein-coding exons is
observed. This is the approach taken by HMMGENE [68], which uses a novel hybrid
of the Viterbi and forward algorithms to identify the most likely labelling.

The second enhancement often employed is to allow the emission of an entire se-
quence region from each state, the length of which is chosen according to an explicit
length probability distribution for the state. Such models are known as semi-Hidden
Markov models [21] or Generalised HMMs (GHMMSs) [72]. In theory, the worst-case
run-time of the Viterbi, forward and backward algorithms when applied to GHMMs
grows quadratically in the length of the sequence, making their computation pro-
hibitively expensive for true genomic sequence fragments which may be hundreds
of kilobases long. In practice, this problem is often addressed by pre-processing the

sequence for a list of candidate gene features, alleviating the need to consider every

10

base of the sequence during the computationally intensive dynamic programming
algorithms [72]. This does not address the problem of the quadratic growth of the
run-time however. In practice, the run-time does not grow truly quadratically, be-
cause the length of coding regions is limited naturally by the fact that they cannot
extend past an in-frame stop codon. The GENSCAN program [21] restricts the semi-
Markov property to these protein-coding regions only, with non-coding regions being
generated by standard self-looping transitions. Although imposing a geometric dis-
tribution on the length of such regions, the assumption allows the run-time of the

program to grow effectively linearly with sequence length.

1.3 Using similarity to other sequences

1.3.1 Expressed sequences

Despite progressive advances in the ab initio gene prediction methods discussed
above, it is still the case that the most reliable way to identify the gene structure of a
piece of genomic DNA is by aligning it to a corresponding expressed sequence, either
cDNA (complementary DNA, a DNA copy of an expressed mRNA) or homologous
protein.

A cDNA can be aligned to genomic sequence with a standard pairwise compari-
son tool like BLASTN [2]. However, in most cases this will not identify the intron-exon
boundaries precisely, since similarities often by chance extend partially into the in-
trons flanking an exon. A variety of “spliced” alignment programs address this
problem by incorporating knowledge of the donor and acceptor splice site consen-
suses, scoring long gaps that start with a GT and end with an AG in the genome
more favourably [79] [44] [61]. These methods can be applied equally well to full-
length ¢cDNA and the more abundant partial cDNAs such as Expressed Sequence
Tags (ESTs), although the use of the latter will typically reveal only a portion of
the gene structure.

Correspondingly with ¢cDNA methods, the alignment of a homologous protein

11

to the genomic sequence using a tool such as BLASTX [2] is useful for discovering
regions that are likely to be protein-coding, but will usually not reveal the intron-
exon boundaries precisely. Spliced alignment programs also exist for the alignment
of a protein to genomic DNA. PROCRUSTES [48] for example first obtains a list of
candidate internal exons that are delimited by the AG and GT acceptor and donor
splice consensuses, and then obtains the assembly of the these exons for which the
implied translation is most consistent with the given protein. GENEWISE [10] on the
other hand aligns a profile Hidden Markov model constructed from the given protein
sequence (or multiple sequence alignment) directly to the genomic DNA, implicitly
considering all possible gene predictions. Both of these methods are extremely ac-
curate when the protein is a close homolog to that encoded in the genomic sequence
[53].

Techniques that integrate methods of ab initio and similarity based gene pre-
diction approaches have the theoretical advantage of maximising accuracy where
a similar sequence exists, without compromising the ability to predict novel gene
structures where one does not. One common way to do this is to use the align-
ments resulting from a database search to modify the scores of the appropriate gene
structural elements used in an ab initio program, e.g. using BLASTX matches to
boost the scores of protein-coding exons [71] [69] [119]. As one would hope, these
approaches can outperform traditional ab initio methods, although the margin of
this improvement is limited by the quality of the sequences in the public databases
used for prediction. The high-throughput, error-prone nature of ESTs in particu-
lar makes their alignment to the genome and subsequent use by an integrated gene

prediction method non-trivial [91].

1.3.2 The sequences of other genomes

There have recently been published a number of gene prediction techniques that
make use of the genome sequences of more than one organism. These methods

are based on the hypothesis that the coding regions of the genomes of a group of

12

organisms that share a common ancestor should be under greater selection, and
therefore be more conserved, than the non-coding regions. Such a comparative ap-
proach to gene prediction is appealing for many reasons, not least of which is the
ability to discover truly novel genes that share neither the sequence feature char-
acteristics of known genes, nor any observable similarity to expressed sequences in
the public databases. In addition, it provides the possibility of identifying conserved
non-coding regions that are also under selective pressure, for example those involved
in gene regulation.

The most obvious way to look for conserved coding regions between genomes is
to use a similarity search tool such as TBLASTX [2] which performs a heuristic-based
pair-wise alignment of each possible translation of one sequence to each possible
translation of the other. This will typically return a list of small, localised candidate
exon-pairs. Programs such as WABA [62] and GLASS [4] on the other hand perform
the global alignment of longer syntenic genomic regions, classifying parts of the
alignment as likely coding or non-coding.

Although neither these local nor global alignment methods provide direct pre-
dictions of gene structures, they form the first stage of many programs that do. CEM
[3] for example identifies the optimal assembly of candidate exon pairs reported by
TBLASTX into complete pairs of gene structures. ROSETTA [4] on the other hand uses
the longer alignments of GLASS and identifies the most likely parse of the alignment
into intronic, exonic and intergenic regions. Both of these programs simultaneously
predict gene structures in both sequences. TWINSCAN [64] is a generalisation of GEN-
SCAN that uses BLASTN alignments of a query sequence to an “Informant” genome
to predict gene structures in the query sequence only. The BLASTN alignments are
used to construct a “conservation” sequence mirroring the query that classifies each
position as “match”, “mismatch” or “unaligned”, and the predicted gene structure
is that which maximises the joint probability of the query sequence and the conser-
vation sequence.

Finally, it is worth mentioning two recent methods based on pair Hidden Markov

13

models [36]. DOUBLESCAN [78] models exon fusion, splitting, insertion and deletion
in one sequence with respect to the other. SLAM [82] on the other hand assumes
that the number of exons in the homologous gene structures is the same, but also
models conserved non-coding regions explicitly, giving it the potential to identity
homologous regulatory regions. Both simultaneously predict gene structures in both
sequences. The advantage of this approach is that it is unnecessary for a genomic
alignment (or set of alignments) to be produced in advance; gene prediction and
alignment are performed simultaneously.

The accuracy of comparative gene prediction methods, although representing an
advance over traditional single-sequence ab initio methods, has so far fallen short of
what one might expect to be achievable by such an approach. One reason for this is
that when considering only a pair of genomes (as current methods do), conservation
will occur in many non-coding regions (about 50% of the conserved regions between
human and mouse are non-coding [122]). The use of more than two genomes would
be expected to improve performance, and many of the methods discussed above gen-
eralise naturally to multiple genomes. However, the increase in computational com-
plexity that results from adding more genomes unfortunately makes this approach
impracticle at present. Future research in this area might therefore be towards the
use of heuristics to reduce the explosion of the search-space that results from adding

more genomes, perhaps using ideas from classic multiple sequence alignment.

1.4 Assessing gene prediction accuracy

In the field of gene prediction, a new method is generally not considered an ad-
vancement unless it is shown to be as least as accurate as existing methods. In this
section, I briefly discuss some of the issues involved in assessing the “accuracy” of a
gene prediction technique.

Surveys of available techniques and their accuracies appear periodically (see for
example refs. [23], [85], [94], and http://predict.sanger.ac.uk/th/brca2) although

of course progressive improvement in the techniques can mean the specific figures

14

become dated. The survey of Burset and Guigo [23] however remains one of the
most cited articles in the field because it laid down a standard for the way in which
gene prediction accuracy should be assessed.

The biggest problem in providing a fair comparison between the accuracy of
different gene prediction techniques is the choice of a test-set. The set of 570 ver-
tebrate sequences constructed by Burset and Guigo has gained widespread use as a
benchmark for the assessment of vertebrate gene finders. Its usefulness is limited in
two ways however. Firstly, since each sequence contains exactly one complete gene
on the forward strand, it provides no way to judge the accuracy of programs that
can predict multiple gene on both strands of a sequence. Secondly, the utility of
the set diminishes with time, since many researchers will use some (or all) of these
sequences in the development and parameterisation of their methods.

For comparisons between gene prediction techniques to be fair, researchers must
have a clear and unified idea of how accuracy is to be measured. To this end,
Burset and Guigo proposed a series of metrics, each summarising a separate aspect
of accuracy as a single floating point number. A number of these metrics are made

use of in the remainder of this dissertation, and are outlined next.

1.4.1 Gene prediction accuracy metrics

Accuracy is classically presented at three levels: at the level of individual nucleotides

or base-pairs; at the level of whole exons; and at the level of complete gene structures.

Base-level accuracy

Accuracy at the base-pair level is described in terms of sensitivity (Sn), which is
the proportion of nucleotides annotated as coding that are predicted as coding; and
specificity (Sp), the proportion of nucleotides predicted as coding that are annotated
as coding. More formally, we can describe these quantities in terms of (i) the number
of nucleotides predicted as coding that are actually coding (true positives, TP);

(ii) the number of nucleotides predicted as coding that are actually non-coding

15

(false positives, FP); (iii) the number of nucleotides predicted as non-coding that
are actually non-coding (true negatives, TN); and (iv) the number of nucleotides
predicted as non-coding that are actually coding (false negatives, FN). Sensitivity

and specificity are then calculated as:

5 TP
n= ————
TP+ FN

TP
SP=Th 1 P

Each of these measures in isolation gives a poor indication of global accuracy,
since a method can be highly sensitive by predicting every base as coding, or highly
specific by predicting every base as non-coding. Burset and Guigo therefore defined
the Correlation Coefficient (CC) that represents aspects of both sensitivity and
specificity and acts as a measure of global accuracy at the nucleotide level:

(TP)(TN) - (FN)(FP)

= J@PTFNI@N + FP)TE + FPJIN + FN)

Exon and gene-level accuracy

At the exon level, sensitivity and specificity are slightly less obviously defined because
we must be clear what it means for an annotated exon to be predicted correctly (and
for a predicted exon to be correct). The standard laid down by Burset and Guigo
states that a predicted exon is correct if it matches precisely the boundaries of a
single, annotated exon. The same criterion is used to judge whether an annotated
exon has been predicted correctly. Sensitivity is therefore defined as the proportion
of annotated exons that have been predicted correctly, and specificity the proportion
of predicted exons that are correct. The Correlation Coefficient is less useful as
a summary of these two quantities in this case, so the average of sensitivity and
specificity is often quoted as a global measure of accuracy at the exon level.
Requiring that exon boundaries match precisely does not allow for the fact that
many predicted and annotated exons will overlap inexactly. The proportion of anno-

tated exons that are completely missed by the prediction (missing exons, ME) and

16

the proportion of predicted exons that share no overlap with any annotated exon
(wrong exons, WE) are therefore also often reported.

Although Burset and Guigo did not define any measures for assessing the ac-
curacy of prediction of whole genes in their article, the exon-level measures are
naturally applied in the same way, defining a predicted gene to be correct if it pre-
cisely matches the intron-exon structure of an annotated gene, and an annotated
gene to be correctly predicted if its intron-exon structure is precisely matched by
that of a predicted gene. Missing genes (MG) and Wrong genes (WG) are defined
in a similar way to exons.

Reese and colleagues defined two additional gene-level measures to express the
accuracy with which a method delineates a sequence containing several genes into
its constituent genic regions [91]. In their scheme, an annotated gene is considered
Split if it is overlapped by more than one predicted gene. Likewise a predicted gene
is considered Joined if it overlaps more than one annotated gene. Split genes (SG) is
defined as the number of predicted genes having some overlap to an annotated gene
(i.e. total predicted genes minus number of wrong genes), divided by the number
of annotated genes having some overlap to at least one predicted gene (i.e. total
annotated genes minus number of missed genes). Joined genes (JG) is the number of
annotated genes having some overlap to a predicted gene (i.e. total annotated genes
minus number of missed genes) divided by the number of predicted genes having
some overlap with an annotated gene (i.e. total predicted genes minus number of
wrong genes). These measures are naturally only useful for assessing the accuracy

of programs that are capable of predicting several genes in a sequence.

1.5 Other issues

One issue that complicates gene prediction somewhat is that the structural and
compositional features of genes can vary according to the particular species. A brief
comparison of the genes of a simple animal (the nematode worm, C. elegans) and a

warm-blooded mammal (human) highlights some of these differences. The propor-

17

tion of the genome that is protein coding is far higher in the worm than in human:
around 25% in the worm compared with under 5% in the human genome. The gene
density is also uniformly higher, with the worm having only half as many genes as
human, but compressed into a thirtieth of the genomic space. Worm genes also char-
acteristically have longer exons and shorter introns than human genes [112]. These
factors give a higher signal-to-noise ratio in C.elegans sequences, facilitating gene
prediction. On other hand, worm introns lack a detectable branch-site consensus
[13], reducing the sequence signal available for the detection of acceptor splice sites.
Also many C.elegans genes have atypical structural organisation, being transcribed
as part of a multi-gene transcript called an operon [12], or trans-spliced [66] (see
chapter 3 for more details).

These organism-specific properties are usually addressed by determining separate
parameter sets for each organism (although the degree to which this approach can
reflect structural as well as compositional differences is limited). The properties of
genes can also differ markedly within a single species as well as between species.
The human genome, and the genomes of other warm-blooded vertebrates tend to
exhibit long-range variations in certain base compositional properties (e.g. C+G
content) which has been explained in terms of “isochores” [7]. It has been shown
that certain structural properties of human genes, for example intron-length and
intergenic distance, vary according to C+G content of the background genomic
DNA [37] [20]. This makes it difficult to arrive at a set of parameters that work
well uniformly across the whole genome. Many programs therefore have distinct
sets of parameters for different C+G% strata, and this has been shown to improve
performance [102] [21].

One of the peculiarities of RNA processing not addressed by the majority of
current techniques is that of alternative splicing, where two (or more) transcripts
from the same gene are spliced in different ways, often giving rise to distinct proteins.
It has been estimated that over half of human genes give rise to products that are

alternatively spliced [112]. The most reliable way to identify such events is by

18

manual inspection of a collection of cDNA or EST alignments and making gene
structures consistent with this set by hand. There have been recent attempts at
the automation of this process, including a promising method used in the ENSEMBL
automatic annotation system [60], which identifies the minimal set of gene structures
that “explains” a collection of EST alignments to a region of the genome [E. Eyras,
pers. comm.]. Our understanding of the signals involved in alternative splicing is still
insufficient for their ab initio computational prediction directly [73], but it has been
shown that sub-optimal exons (i.e. those with significant probabilities that are not
part of the single most-likely gene structure) are sometimes involved in alternative
splice forms of the gene transcript [20].

To end, it is worth mentioning that many transcribed RNAs are not translated
into proteins but assume some other role in the cell. These include for example
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snR-
NAs). There is considerable interest in computational methods for the identifica-
tion of genomic regions that give rise to these non-coding RNAs, or ncRNAs [38].
In the absence of the normal signals present in protein-coding genes, the majority
of methods work on the assumption of a consensus secondary structure for ncR-
NAs of a particular type. Mathematical representations of the consensus called
Stochastic Context Free Grammars (SCFGs) [36] provide a basis for the modelling
of base-paired stems that occur in RNA secondary structure, and can be aligned to a
genomic sequence providing simultaneous prediction of a ncRNA and its secondary
structure. This technique has been applied extremely successfully to the predic-
tion of transfer RNAs in the human genome [75]. More recently, pair-SCFGs have
been used to represent the long range compensating mutations that are observed
in the alignment of homologous ncRNAs, allowing them to be discriminated from

conserved coding regions [93].

19

Chapter 2

GAZE

2.1 Introduction

Many of the gene identification techniques discussed in the previous chapter have
two things in common: (i) signal and content measures are used to detect compo-
nents and regions belonging to genes; (ii) these are assembled into a complete gene
structure prediction for the sequence that is optimal with respect to some discrimi-
nation measure, often by dynamic programming. For the first of these steps, choices
must be made as to the nature of the specific signal and content measures used, for
example whether to use simple weight matrices or weight array models for splice
site detection or whether to use pentamer or hexamer frequencies for coding-region
scoring. For the second of these steps, a choice must be made as to the model of gene
structure over which the assembly is to be performed, i.e. how the gene components
relate to each other and fit together into complete genes. It is usually the case that
choices in both of these steps are made to produce a system that has the the highest
possible accuracy.

As we find out more about the biological processes of transcription, RNA pro-
cessing and translation, we might want to adjust or extend these gene prediction
methods to reflect our increased understanding. For example, promoter identifi-

cation methods, although advancing, are still not sufficiently accurate be able to

20

identify the 5’ ends of genes with any confidence [40]. But if an improved method
becomes available, then there would be much to gain from incorporating it into a
gene prediction system.

Furthermore, programs that make use of similarity information (for example
alignments of cDNAs to the genomic sequence) give more accurate results than ab
initio methods (see chapter 1) where such evidence exists. If ab initio methods can
be extended to make use of similarity evidence where it exists, we might hope to
improve gene prediction accuracy without compromising the ability to predict novel
genes where it does not.

The incorporation of new information into many existing gene prediction systems
may not be straightforward due to rigidities inherent in their implementation. At
best, knowledge of the underlying software is required, and even given this, it is often
necessary to produce a custom version of the software that is designed to work only
when the new data is present. This is true for at least four of the gene prediction
systems discussed earlier [69] [92] [96] [119].

My work has focused on the development of a framework for gene prediction that
decouples the assembly of signal and content data into gene structure predictions
from the generation of this data itself. I have implemented a program called GAZE
for the assembly of features (corresponding to signal sensors) and segments (cor-
responding to content sensors) that is tied neither to any specific signal or content
detection techniques nor any assumed model of gene structure. Both of these ele-
ments are external to the system. The goal has been to provide a method for the
rapid and seamless integration of new/improved methods and data into the gene
prediction process.

The main novelty of GAZE is that it does not work directly with genomic DNA
sequence. It instead predicts gene structures from input files containing the re-
sults of various signal and content sensors with associated scores, typically log
probability ratios. These files are assumed to be in the General Feature Format

[GFF; http://www.sanger.ac.uk/Software/ GFF], a format which has rapidly become

21

a widely used standard for the exchange of gene prediction information. The assem-
bly of this information is directed by a configuration file (in the eXtensible Mark-up
language, XML [http://www.w3.org/XML]), which affords the user control over the
validation and scoring of candidate gene structures.

This chapter describes the details of the GAZE system. I start by outlining the
main approach taken, explaining how gene structures might be inferred from lists of
features and segments. Next, I describe the details of the GAZE configuration file,
and how it affords control over both the wvalidation and scoring of candidate gene
structures. Two technical sections follow, detailing firstly the GAZE scoring function
and secondly how it is used to obtain a probability distribution over gene structures
and why this is useful. I then discuss some of the innovations implemented to improve
the efficiency of the algorithms, including a novel search-space pruning technique.
To end, I relate the GAZE approach to other gene prediction programs and methods.
The following chapters show examples of the use of GAZE for implementing gene

finders, and further theory and technical issues relating to estimating parameters

for GAZE.

2.2 From features and segments to gene structures

The primary input to GAZE is a file containing the results of arbitrary signal and
content sensors. Each comes with a position on the sequence (i.e. a start and end)
and a score. From this file, collections of features (from the signal sensors) and
segments (from the content sensors) are constructed.

The GAZE approach is that a gene structure can be described by an ordered sub-
set of specific features taken from the given collection. For example, for a sequence
of 1400 nucleotides, the following describes a structure with two genes, consisting
of two exons and a single exon respectively (unless otherwise stated, I will use the
term “exon” to mean the protein-coding part only; this definition is inconsistent
with the classical definition used by molecular biologists, but is both convenient and

consistent with other literature on gene finding):

22

Feature Start End

BEGIN 1 1
start 201 203
donor 305 306
acceptor 900 901
stop 1040 1042
start 1101 1103
stop 1218 1220
END 1400 1400

whereas a list describing a structure for which the protein-coding part is found

on a single exon on the reverse strand might be:

Feature Start End
BEGIN 1 1
stoprev 1151 1153
start_rev 1208 1210
END 1400 1400

Gene structures that consist of no genes can also be described by an effectively
empty list which includes only the features marking the beginning and end of the

sequence:

Feature Start End
BEGIN 1 1
END 1400 1400

Given a candidate set of features, GAZE predicts genes by obtaining the ordered
subset (list) of features that according to its model is most likely to correspond to the
correct gene structure. It does this by assigning a score to each list and and defining
the most likely gene structure to be the list with the highest score. As explained

in more detail in section 2.4, the score assigned to each candidate structure is a

23

donor splice : acceptor splice translation start translation stop.

Features WFEﬁE I (= ‘ﬂ HF.W m Tﬂ

- o — _
‘(— L I
Segments 0 | I
hexamer coding protein database hit

Selection E i

1]

« NI — ¢

Gene sructure -\/W

Figure 2.1: How GAZE predicts genes. The input is a list of ordered features and segments, drawn
here in different sizes to reflect their scores. A candidate gene structure corresponds to a selection of these
features, and is assigned a composite score based on (i) the scores of the features themselves and (ii) the
scores of specific segments that lie in the appropriate regions between adjacent pairs of the features (here,
both types of segment represent regions with a high likelihood of being protein-coding, so therefore contribute
only towards the scores for protein coding exons). The feature selection with the highest composite score is

output as the most likely gene structure.

function of the given scores of the features which make it up, and the segments lying
in the regions defined by pairs of adjacent features in the structure (see figure 2.1).

Not all lists of features correspond to sensible gene structures. For example,
any list which contains a donor splice site immediately followed by a stop codon
cannot possibly be correct, because we know that in real gene structures, a donor
splice site is necessarily followed by an acceptor splice site. Furthermore not all
segments should contribute towards the score for all regions. For example, a segment
corresponding to a match to a protein database should not contribute towards the

score for a region between a donor splice and an acceptor splice; that is, evidence for

24

protein-coding regions should not be used to support candidate non-coding introns.
For many gene prediction systems, such rules and constraints upon gene structure
are encoded into the logic of the program itself. In GAZE however, the gene structure

model is external to the system and supplied by the user in a configuration file.

2.3 Elements of a GAZE configuration

Specific examples of the GAZE configuration language are shown in the next chapter,
but here I describe the elements of the most important aspect of a configuration,
namely the gene structure model. The model has two main purposes: firstly to
define which lists of features are valid gene structures, and secondly to define how
valid structures are to be scored, with reference to both the segments and a set of

length penalty functions.

2.3.1 Defining the validity of candidate gene structures

The model is initially constructed by giving a set of rules for each type of target
feature, defining which types of source feature can immediately precede them in a
valid structure. In the first gene structure above, a “stop” target feature can be
immediately preceded upstream by “start” or “acceptor” source features, and the
model would therefore need to to contain rules for start — stop and acceptor — stop
(as well as others) to allow this gene structure to be recognised as valid.

The source — target rules themselves can be qualified with constraints that
candidate (source, target) pairs of features should satisfy. There are four types of

constraint:

Distance constraints, indicating that there should be no more than a maximum

and no fewer than a minimum number of bases between the source and target.

Phase constraints, indicating that the source and target should occur 0, 1, or 2

nucleotides (modulo 3) apart.

25

Interruption constraints, indicating that a (source, target) pair is invalid if the re-
gion defined by the pair is interrupted by the occurrence of the specified feature
at the specified distance (modulo 3) from either the source or target. These
constraints are used to invalidate potential coding exons that are interrupted

by an in-frame stop codon.

DNA constraints, indicating that a (source,target) pair is invalid if the DNA lo-
cated at the source and/or target has a specified sequence. These constraints
are used to invalidate gene structures that would give rise to in-frame stop

codons across exon-exon boundaries in the spliced messenger RNA.

The space of valid gene structures can be further refined by denoting specific
features in the input set as selected or de-selected. Any candidate gene structure
that does not include all of the features flagged as selected is considered invalid.
Likewise, any candidate gene structure that includes any of the features flagged as

de-selected is also considered invalid.

Technical caveats

For practical purposes, I define the “distance” between a pair features as the length,
in nucleotides, of the region between them. For example, the region between bases
567 and 890 has length 890 — 567 4+ 1 = 324 nucleotides. Conceptually then, the
distance between a source feature and a target feature is the location of the target
minus the location of the source (plus one). A technical problem with this is that
firstly features often do not have single nucleotide positions, and secondly, some
features are considered part of the region they delimit, and some not. Furthermore,
this can depend on whether a feature is acting as a source or a target (marking
respectively the left or right boundary of the region). For example, a feature repre-
senting a candidate translation start site not only covers three nucleotides (ATG),
and therefore does not have a position on the sequence that be described in a single

number, but needs to be treated differently depending on whether it is a source or

26

a target. When acting as a source, it marks the start of a candidate protein-coding
exon, and should itself be considered part of this region, whereas when it acts as
a target, it marks the end of a non-protein-coding region, and should not be itself
considered part of the region.

To address this problem, GAZE requires the definition, for each feature type, of
a “source offset” and a “target offset”. The source offset is an integer number that
is added to the start position of the feature when it is treated as a source, and the
target offset is an integer subtracted from the end location of the feature when it acts
as a target. The translation start feature above will commonly be defined as having
a start offset of 0 and an end offset of 3. So, for an instance of this feature-type
occurring at 567-569 (say), the region beginning with the feature when it acts as a
source starts at 567 + 0, whereas the region ending with the feature when it acts as
a target will end at 569 — 3 = 566, i.e. one nucleotide before the given start of the
feature, which has the desired effect.

The imprecise notion of feature location needs to be addressed when sorting
features by their position on the sequence. The concept of a total order over all
candidate features is important not only for the dynamic programming recursions
described in section 2.4, but also because such an ordering is assumed when defining
the space of valid gene structures; interruption constraints are violated when a
designated feature C occurs between feature A and B, i.e. when the relative order
that the features occur in the list is A, C, B.

Because features have both a start and an end point in sequence co-ordinates,
the obvious approach is to construct the total order by sorting the features first by
start point, and then by end point, and finally (in the case of 2 features having the
same start and end location) by feature type. The first part of figure 2.2 shows why
this sorting strategy can give incorrect results.

The problem is caused by features that overlap, in particular features involved in
interruption constraints (in most uses of GAZE, stop codons). If an acceptor splice

site occurs in the middle of a candidate stop codon, then the protein-coding region

27

(@) W

OORE® — D@D

(b)

T

COONX) e -<W< o Corer]
[CSToP |

Figure 2.2: The difficulty in defining a total order over the positions of features in the sequence. (a) The
candidate exon (indicated by the light-blue residues) is valid as neither candidate stop codon (red boxes)
occurs completely within it. However, when the features are ordered naturally by their start points, the
second stop occurs before the splice donor at the 3’ end of the exon (green hook), giving it the appearance
of invalidating the region. Similar problems arise when the features are ordered by their end-point. (b)
In this case, we would like to engineer an ordering strategy whereby the stop codon occurs upstream of
the candidate donor splice site (blue hook) and downstream of the candidate splice acceptor, with the two
splices in their correct orientation. No such ordering exists. Although this specific situation is implausible
(the candidate internal exon is 1 nucleotide long) such problems need to be considered because they become

more likely as the range and diversity of the gene prediction data being used increases.

upstream of the splice acceptor is not invalidated by it. We would therefore like
to place the stop codon before the splice acceptor in the list. If the same situation
occurs with a stop codon and a splice donor at the 3’ end of en exon, we would like
to place the stop after the splice donor, for the same reason.

The aim therefore is to define a sorting strategy that takes this information into
account when deciding upon the relative order of a pair of features. Unfortunately, it
is also possible to imagine a situation where such a strategy might break down. The
second part of figure 2.2 shows that a circularity in the ordering function arises when

candidate splice acceptor, splice donor and stop codon appear in close proximity.

28

Such a circularity can lead to non-determinism in feature sorting, whereby the final
ordering depends not only upon the condition dictating the relative order of a pair of
features, but also on the original order of the features. For this reason, it was decided
to abandon the idea of trying to determine definitive total order over a list of features.
Features are therefore sorted in a natural, deterministic way, first by start-point, then
by end-point, and then by type. The problem of the interruption constraints is dealt
with in the dynamic programming algorithms themselves. Specifically, an apparent
violation of an interruption constraint is checked to see if the interrupting feature
really does lie within the region of interest. The primary disadvantage of this is that

it makes the code more complicated and therefore more difficult to maintain.

2.3.2 Defining the scoring of valid gene structures

The overall score of a gene structure is the sum of of scores for the individual
features (as given in the GFF file) and for the regions between each adjacent pair of
features in the structure (this is defined more precisely in section 2.4). The region
scores can be tailored precisely for each (source,target) pair, by specifying in the
source — target rule two elements: the name of a length penalty function, and a

list of Segment Qualifiers.

Length Penalty Function

Length penalty functions reflect the fact that it is often more likely for a given
source and target to appear at certain distances apart than others. Each source —
target rule can be qualified with the name of a length penalty function, mapping
distances to a floating point number that will be subtracted from the score for the
region between the source and target (see section 2.4). The functions themselves are
defined by simply listing (distance, penalty) pairs, with linear interpolation used to
derive penalties for distances not given. For distances greater than the largest given,
the final two given points are extrapolated. It is straightforward to define penalty

functions that are eventually uniform by making the penalties for the last two given

29

distances equal.

Segment Qualifiers

Segment qualifiers control which segments contribute to the score for the region
between the source and target, and under what conditions. Since the region between
an acceptor splice site and a donor splice site (for example) defines a candidate
protein-coding region, both a likely_coding segment (indicative of a region of high
protein-coding potential by some statistical measure), and a protein_match segment
(corresponding to a region of strong similarity to an entry in a database of protein
sequences) lying in this region provide evidence that the region is protein-coding,
and can therefore be used to increase the score of the region.

Each source — target rule can contain several segment qualifiers. A separate
score is calculated for each qualifier, and these are added to get a total segment score
for the region (see section 2.4). The qualifiers themselves can contain constraints to
restrict which segments should be considered relevant in the calculation of the score

for that qualifier, namely:

Type constraints, indicating that only segments of the designated type should be

considered. This is a compulsory constraint.

Phase constraints, indicating that that the starts of relevant segments should occur
at 0, 1, or 2 nucleotides (modulo 3) away from the source or target. This gives
the facility to consider only segments that are in-frame with respect to the

source/target.

match constraints, indicating that the start and/or end of the segment must lie
at the same position as the source and/or target. This gives the facility to
consider only segments that fit the region precisely, allowing the use of the
output of of programs that identify potential exact intron, exons, or other

gene regions.

30

completeness constraints, indicating (when specified) that the segment must lie

completely within the region to be considered relevant.

2.4 Prediction with a GAZE gene structure model

GAZE predicts genes by choosing from a large set of candidate features, the ordered
subset (list) that (a) is consistent with the gene structure model (i.e. does not violate
any constraints), and (b) has a score at least as high as all other consistent gene

structures.

2.4.1 The GAZE scoring function

Given firstly a list ¢ = ¢1,¢9,..., 0y, of features ordered by sequence position
defining a valid gene structure according to a GAZE model, their types t(¢;), their
locations! on the sequence I(¢;), and their given scores g(¢;), then the score of ¢,

E(¢) is calculated as:

E(¢) = Regysi)—i(si,1) L), Udit1)) + g(div1) (2.1)

i=0
The features ¢p (“BEGIN”)and ¢p,41 (“END”) are not supplied by the user but
are present in all gene structures and act to mark the beginning and end (respec-
tively) of the sequence. Their “given” scores are always 0. Regsre—ige(x,y) is the
region score for the interval [x,y], where the interval is bordered on the left and right

by features of type src and tgt respectively:

Regsrc—%gt (SL‘, y) = Segsrc—»tgt (-737 y) - Lensrc—>tgt (y —x+ 1) (22)

Lengyc—tqt(x) is the distance penalty function specified for the rule sre¢ — tgt.

Each function maps a distance (in base pairs) to a penalty score. If no penalty

HNocation is a function of the start co-ordinate and start offset when the feature acts as a source,

and end co-ordinate and end offset when the feature acts as a target, as explained in section 2.3.1.

31

function is specified for the src — tgt rule, a default, mapping all distances to zero,
is assumed.

Segsrc—tgt(z,y), the segment score, is sum of separate scores for each segment
qualifier in the src — tgt rule. If Qgrc—iq¢ is the list of segment qualifiers appearing
in the src — tgt rule, and 7 is the relevant subset of segments for segment qualifier
q, i.e. those that satisfy the type, phase, match and completeness constraints defined

in ¢, then

Segsrc—nﬁgt (:E, y) = Z SegQ (¢q’ x, y) (23)

qus’r‘c—n>

If the given scores of each of the segments in a list ¢ are denoted by g(¢;), then

Seg® (1, x,y) itself is calculated in one of two ways:

Seg® (1, x,y) = max Wmﬁi) (2.4)
Y .
Seg® (), z,y) = max WQ(%) (2.5)

where [1);] is the length of segment 1; and |¢); Nz ...y| is the number of bases of
overlap between segment 1; and the region x . ..y. The first function corresponds to
a “maximum single” approach, using the single segment with the highest score (after
it has been scaled according to the proportion of segment lying in the region being
considered). The second function corresponds to a “projected per-base” approach,
summing the scores for the individual bases lying in the region, each of which is
calculated by taking the maximal per-base score of all segments covering that base.

It is up to the user to decide which of these two functions should be used to
score segments of each type. The default is the second, but some segments, by their

construction, may give better results if the first function is used to score them.

32

2.4.2 Obtaining the highest scoring valid gene structure

A straightforward way for GAZE to obtain the highest scoring model-consistent
gene structure would be to enumerate all gene structures, calculate the score for
each one (a simple linear combination of terms, as shown above), and retain the
structure with the highest score. This direct approach is not practicable since the
number of possible gene structures grows exponentially with sequence length [116].
However, dynamic programming can be used to explore the search-space efficiently,
by constructing partial solutions in a left-to-right manner, at each stage in effect
discarding partial gene structures that cannot possible be prefixes of the optimal
structure.

The GAZE algorithm for obtaining the highest scoring gene structure is in many
ways similar to others described for the same problem ([89], [49], [109], [72], [116]).
It relies upon an ordering of all candidate features by their position on the sequence.
Taking now ¢1, ¢2, ..., P, to be a complete set of candidate features ordered by po-
sition on the sequence (with again ¢¢ being “BEGIN” and ¢,1 being “END”),
the maximal-scoring valid gene structure is obtained by the following dynamic-

programming recurrence:

v(0)=0 (2.6)

v(i) = max[v(j) + Regy(p,)—t(e) (1(¢5), 1(¢0)) + g(i)] (2.7)

j<i

The score of the optimal gene structure is v(n + 1), and the gene structure itself
can be obtained with a traceback procedure. This involves maintaining a separate
vector d, where d(i) contains the index j that was found to be the maximum. The
maximal scoring structure itself can be obtained by successively pushing features
onto a stack, starting with ¢,+1 (the “END” feature) and continuing with @g(,41),
Pa(d(n+1y) and so on until ¢g (the “BEGIN” feature) has been pushed. The gene

structure itself is then obtained by successive popping of features from the stack

33

until it is empty.

This algorithm is almost identical to the Viterbi algorithm for finding the se-
quence of states through a Hidden Markov Model that maximises the joint prob-
ability of the state path and the sequence. It is also very similar to Dijkstra’s
algorithm [32] for obtaining the shortest path through a directed weighted graph,
generalised to account for negative edge-weights by Bellman [6].

The procedure above will find the gene structure with the highest score, regard-
less of whether it is consistent with the model or not. However, the constraints that
define model consistency are all defined at the source — target level, as explained
earlier. Since the dynamic procedure above works at this level too, it is straightfor-
ward to check that all constraints have been satisfied. When looping back over the
sources for a given target, sources that give rise to a violation of a constraint are
not considered valid sources for this target. If there are no valid sources for a given
target, the target itself is invalidated, and not itself considered as a valid source for

any subsequent target.

2.5 A probability distribution over gene structures

No matter how well the scoring function represents the characteristics of gene struc-
ture, it is often the case that the optimal (i.e. highest scoring) structure is not the
correct one. It is therefore useful to know the relationship of the optimal gene struc-
ture to other candidate gene structures. I have adopted a probabilistic approach
in assigning a posterior probability to firstly each input feature, and secondly each
potential region (formed by candidate pairs of adjacent features). One can then ask
for the features and/or regions with posterior probability greater some threshold,
regardless of whether those features/regions are part of the optimal structure or not
(“sub-optimal”).

To calculate posterior probabilities, I first define a probability distribution over
gene structures. If the given feature and segment scores are log-probabilities, then

the probability of a gene structure can be calculated simply as an exponentiation of

34

the score. Some care is needed in the model to ensure that the whole DNA sequence
is accounted for in every gene structure and that the sum of the probabilities of all
gene structures sums to 1.

GAZE takes the somewhat more pragmatic stance that it is often impossible (or
at the very least, extremely difficult) to formulate the scores as log-probabilities.
Indeed, the scores presented by most signal-recognition programs are usually log
probability ratios with respect to some background or “null” model. For this reason,
GAZE imposes no restrictions upon the given feature scores except that they should
generally increase monotonically with the degree of confidence in the correctness of
the feature, i.e. that large scores are good, and small scores (or large negative scores)
are bad. This means that the score for a complete gene structure can no longer be

assumed to be a log-probability. A more general approach is therefore necessary.

2.5.1 Gene Structure probabilities

By treating gene structure scores E(¢) as “energy” values, we can use the Boltzmann
distribution, ubiquitous in statistical physics, to define a probability distribution over

all possible gene structures ®:

Z=>"e"9) (2.8)
Pped

F(9)
0) =" (2.9)

The Z of this fraction is known in statistical physics as the “partition function”,
and acts as a normalisation factor, making all gene structure sum to 1, satisfying
the conditions for a discrete variable probability distribution.

In this formalism, the gene structure scores are interpreted as logarithms. This
assumption is implicit in the design of the scoring function in that the scores of
individual gene components are added to obtain the total score. The assumption

of natural-logs specifically is not limiting since a log score with respect to a base k

35

can be transformed into a log score with respect to base e by multiplication by a
constant.

The partition function can be computed with the following dynamic program-
ming recurrence, similar to the forward algorithm for Hidden Markov Models [90],
and almost identical to the score-maximisation algorithm presented earlier (the dif-
ferences being the exponentiation step, and the replacement of maximisations with

sums):

£(0)=1 (2.10)

F(i) = Z f(j)eRegt(dy-)A»t(qbi)(l(¢j)7l(¢i))+g(¢i) (2.11)
7<t

Each f(i) denotes the sum of exponentiated scores of all of the “upstream”
partial gene structures ending at feature ¢;. The sum of exponentiated scores of
all upstream-partial gene structures ending at the “END” feature, i.e. all complete
gene structures, is contained in f(n + 1). The probability of a gene structure ¢ can

therefore be computed as:

eb(9)

P(¢) = Tntl) (2.12)
This approach is essentially due to Stormo and Haussler [109], the difference
there being that gene structure scores were treated as the log of the joint probability
of ¢ and the sequence S, and posterior probabilities are presented as explicitly
conditional upon the sequence S, i.e. P(¢|S). In the GAZE framework, the sequence
itself is implicit. Considering GAZE posterior probabilities as conditional upon S
however leads to some interesting correspondences to other methods, particularly

those involving Hidden Markov models. This is discussed briefly at the end of this

chapter, and in more detail in chapter 4.

36

2.5.2 Feature and Region posterior probabilities

Having defined a probability distribution over gene structures, it is now possible
to define posterior probabilities for features and regions. The posterior probability
of a feature ¢;, P(¢;), is the sum of the probabilities of all model-consistent gene
structures that contain the feature ¢;. Likewise, the posterior probability of a region
¢i — ¢j, P(¢i,¢;5), is the sum of the probabilities of all model-consistent gene
structures that include ¢; and ¢; as adjacent pairs of features.

Informally, a feature posterior probability can be interpreted as a measure of
belief in the correctness of the feature, conditional upon the surrounding gene struc-
ture landscape. More informally still, it can be interpreted as an indicator of how
well it can be accommodated in a “good” gene structure.

It is straightforward to calculate the sum of the probabilities of all gene structures
consistent with a feature by running the forward algorithm while using the feature
selection mechanism (section 2.3) to force the inclusion of the feature. This will give
a new partition function value, corresponding to the sum over all gene structures that
include the feature. Dividing this by the unrestricted partition function gives the
desired posterior probability. However, this strategy requires a separate execution
of the forward algorithm for each feature, and the computational expense of the
algorithm makes the strategy infeasible.

To make the computation more efficient, we can compute “backward” analogues
of the forward variables, b(i), which store the sums of the exponentiated scores of

all “downstream” partial gene structures that start with feature ¢;:

b(n+1)=1 (2.13)

b(l) _ Z b(k)eRegt((;)i)ﬁt(%)(l(¢i)7l(¢k))+9(¢k) (2.14)
k>i

It can be shown that multiplying f(i) by b(j) (¢ < j) corresponds to summing

the exponentiated scores of all possible pairings of a partial upstream gene structure

37

ending at feature ¢; with a partial downstream structure beginning at feature ¢;
[109]. Hence f(i)b(7) is the sum of the exponentiated scores of all gene structures

that include feature ¢;, and the posterior probability of ¢;, P(¢;) is:

f(@)b(i)

P(¢;) = AT 2.15
6) = s (215)
Posterior region probabilities can be defined in a similar way:
- Regy(p)—t(e;)(UDi) () +9(#5) 7 (-
1)e i g b

fn+1)

A straightforward generalisation results in the posterior probability of a par-
tial gene structure ¢;, ¢;, ... ¢, i.e. covering an internal sub-region of the original

sequence:

f(i)eE(¢i7¢jv-'-a¢x)b(g;)
fn+1)

If ¢; and ¢,, the boundary features of the sub-region, are chosen to be the start

P(¢Za¢]77¢x> =

(2.17)

and stop of a single, individual gene, then the above is a posterior probability for
that gene. However, one of the unfortunate consequences of the general approach
adopted by GAZE is that it has no knowledge of which feature-types define the
boundaries of individual genes. For this reason, individual gene probabilities are

not reported by GAZE.

2.5.3 Stochastic traceback

A probability distribution over gene structures offers the possibility of a stochastic
traceback procedure. In the standard traceback procedure, we choose, for a target
feature ¢;, the source feature ¢; that gives rise to the highest scoring partial gene
structure ending at ¢;. With stochastic traceback, we instead make use of a Boltz-
mann probability distribution over all model-consistent sources for a given target.

This follows simply from the definition of the forward variables presented earlier:

38

eRegt(qfak)ﬂt(d:i)(l(¢k)vl(¢i))+g(¢i)f(k)

P(k|i) = (2.18)

Sici eRegt(¢j)~>t(¢i)(l(¢j)=l(¢i))+g(¢i)f<j>

Instead of choosing source that gives rise to the maximum partial-gene-structure
score, we instead sample a source stochastically, with the relative probabilities of
each source being computed with the above equation.

Stochastic traceback is an alternative method of identifying confident parts of
a gene structure; parts of a gene structure that are conserved over many samples
can be construed as more reliable (similar to the bootstrapping technique used in
phylogenetics). Although I have provided an implementation of it in GAZE, my

work has concentrated on the use of the posterior feature and region probabilities.

2.6 Practical considerations

2.6.1 Maintaining numerical stability

Implementing dynamic programming recursions in the obvious way can often lead to
numerical underflows and overflows that even the most sophisticated modern floating
point processor are unable to deal with gracefully. In the standard HMM formalism
for example, each (state, residue) pair is assigned a probability, calculated as the
product of probabilities for the state (conditional upon the previous state) and for
the residue (conditional on the state). The joint probability assigned to a complete
sequence of the order of a 105 bases, for even a simple HMM with few states, will
therefore be of the order of 0.5!0900%0 (assuming an average probability per state-
residue pair of 0.5, which is generously high). This gives an underflow error on my
desktop calculator, and even though floating point units in modern processors would
be expected to handle higher degrees of precision, it is not difficult to imagine a set
of transition and emission probabilities for a given HMM architecture that will lead
to underflow even on the most sophisticated processors.

The standard technique used in the field of HMMs is to work in log-space. Rather
than multiplying probabilities, we add logarithms of probabilities. For example,

39

assuming that we use base 2 logarithms, H%OOOOOO 0.5 becomes Z%OOOOOO log, 0.5 =
—1000000. Classically, replacing many multiplications with additions would also lead
to a performance improvement on some older computers. Modern floating-point unit
technology makes this less true nowadays, but even on modern processors, addition
should be no slower than multiplication.

For the dynamic programming performed in GAZE, the log transformation is
not required in the maximum-based computation used to find the highest scoring
gene structure consistent with the model (the Viterbi algorithm analogue). This
is because the design of the scoring function, and its additive nature, places a
log-based interpretation on the feature and region scores anyway. However, the
log-transformation is required for the sum-based computations. For the forward al-
gorithm, we define a new vector F(i) = In f(i), and the recursions are defined in

terms of F'(i) directly:

F(0)=0 (2.19)

F(i) =1In Z eF(j)+R€9t(¢j)~>t(¢i)(l(¢j)7l(¢i))+9(¢i) (2.20)
J<t

The posterior probability of a gene structure is now calculated as:

P(¢) = P@)-Fnt1) (2.21)

and the posterior feature probabilities calculated thus:

P(qb,) — eF(i)‘FB(i)*F(TH‘l) (222)

It is necessary to perform one last trick to avoid overflow when performing the

exponentiations in 2.20. We can use the following observation:

b bz
In Z e’ = In (ek Z ;) (2.23)

b
= k+ln) ek (2.24)

r=a
Any k can be used, but by storing the exponents in the summation, and choosing
k to be the maximum of these exponents, we ensure that all exponentiations are 0

or less, eliminating the possibility of overflow.

2.6.2 Working within practical limits of space and time
Complexity of naive implementation

As noted earlier, the dynamic programming recursions for identifying the highest
scoring gene structure (2.7) and for calculating the “partition function” over all gene
structures, (2.11, 2.14) are essentially the same. The run-time and memory usage of
the algorithms depends of course on the specific problem, but we can use complexity
theory to reason about the growth in the requirement of these resources with respect
to the size of the input. For GAZE, the algorithms proceed over input features, but
since the number of features for a given DNA sequence would be expected to grow
linearly with the length of the sequence, it makes no difference whether we define
the problem size in terms of sequence length or in terms of the number of features.
It is therefore convenient to talk about a problem size of n, which can be interpreted
both as the length of the sequence region being considered, or the number of features
attached to that sequence region.

Because the dynamic programming recursions are one-dimensional, the recursion
variables can be stored as a vector rather than a matrix (as is the case with classical
sequence alignment dynamic programming). The storage requirements are therefore
O(n).

Examination of 2.7, 2.11 and 2.14 shows that any algorithm must essentially
examine all feature pairs in the list ¢ and perform a region score calculation. Since
there are %(n + 1) pairs, this implies O(n?) region score calculations. Each region
score calculation involves a length penalty component (which can be calculated in

constant time by table look-up), and a segment score component. Assuming that

41

both 2.4 and 2.5 are implemented the way suggested by their definition, then in the
worst case the segment calculation is linear in the number of segments. Although
the actual number of respective features and segments for a given sequence may
be, and often are, quite different, we would expect them to both scale in the same
way with respect to the length of the sequence, i.e. linearly. This means that the
segment calculation can be described as O(n) in complexity, giving the algorithms a
run-time complexity of O(n?) overall, making it apparently prohibitively expensive
for large sequences.

In the remainder of this section, I outline two methods employed in the im-
plementation of GAZE to improve both the theoretical worst-case and practical
average-case run-time and storage complexity. In the next subsection, I describe a
novel search-space pruning strategy employed in GAZE, which is the biggest con-

tributing factor to its efficiency.

Segment pre-processing

The segment calculation for a candidate region, as defined by 2.3, 2.4 and 2.5,
consists of a separate calculation for each segment qualifier listed in the rule that
applies to the feature-pair defining the region. Each of these calculations in turn
requires an ordination of the list of segments, for each firstly checking that it meets
constraints defined in the qualifier, and secondly scaling the score according to how
much of lies in the region of interest. Partitioned storage of the segments, primarily
by type, but also by reading frame, allows the consideration of a much smaller list of
candidate segments for a given segment qualifier, but the number of segments that
need to be examined is still O(n).

Since segments falling outside the considered region do not contribute to the
score, sorting the segments by position along the sequence is the natural starting
point towards reducing the number of segments that need to be examined. By sorting
the segments by start position on the sequence, the segment with the leftmost start

lying completely to the right of the end of the considered region can be identified

42

by a simple binary search. All segments to the right will lie completely outside the
region. It is tempting to assume that the segment list can now be processed from this
point to the left, stopping when a segment that has an end-position that is strictly
to the left of the start of the considered region. In general segments may overlap and
in the extreme the segment with the smallest start position may have the largest
end position. In that case it will always be necessary to traverse leftwards from the
point in the list identified by the binary search, right back to the start of the list.
However, the rarity of this situation can be exploited by indexing the segments. In
essence, we calculate and store an additional piece of information for each segment:

the maximal right-position of all segments to the left:

I(y;) = %125(¢j'6nd (2.25)
= max(/(pi—1),Yi—1.end) (2.26)

The second equality gives rise to a simple linear-time dynamic programming
algorithm to calculate the segment indices, and this only needs to be performed once
for each segment list, before the main score/probability dynamic programming.

It is interesting to note that although partitioned storage and indexing of the
segments improve the worst-case time spent performing the segment score calcula-
tions, they do not change the theoretical worst-case complexity. At the extreme, the
when the region being considered encompasses the whole sequence the computation
is still O(n). This is a classic example of where worst-case complexity is a misleading
indicator of the expected increase in run-time with problem size.

As a final note on this subject, it must be said that it is straightforward to
implement the segment calculation in such a way as to make it constant time. This
technique is employed in several gene prediction programs, but not GAZE. The
technique involves keeping cumulative per-residue arrays for each specific set of con-
straints referred to in the segment qualifiers of a model. If 17 is the list of segments
that match a specific set of segment qualifier constraints g then the cumulative array

for this constraint set, Cy, can be defined as:

43

Cypa (i) = Cya(i — 1) + Seg®? (9, 4,19) (2.27)

where Seg® (1), z,y) is as defined in 2.5. Like the segment indexing presented
earlier, the Cyq(i) arrays can in theory be calculated in linear time in advance of
the main dynamic programming. Then, the segment calculation performed during

the Viterbi, forward and backward algorithms becomes:

Seg? (W7, 2,y) = Cya(y) — Cya(z — 1) (2.28)

There are a number of reasons why this technique is not implemented in GAZE.
Firstly, it requires much more memory. It is true that this will only become as
problem when very large sequences are being analysed (of the order of Megabases
long), but for small sequences, the run-time reduction afforded by the technique
becomes negligible.

Secondly, and most importantly, it is only applicable for a specific kind of segment
scoring, namely the “projected per-base” approach defined in 2.5. In addition, the
technique requires the segments to be partitioned in advance into lists matching each
segment qualifier referred to in the model. However, for some constraints (namely
“completeness” and “exactness”), it is not known until the dynamic programming
stage which segments will satisfy them. The cumulative arrays technique is therefore
only available to segment qualifiers with no completeness or exactness constraints,
scored by equation 2.4. Given its limited applicability, it was decided insufficiently

worthwhile to implement.

Split-and-merge for whole genome analysis

Although the space requirements of GAZE are linear in the length of the sequence,
the memory of a standard desktop computer is not likely to be sufficient to handle
feature-sets from the complete genomes of eukaryotic organisms. To analyse whole
genomes, it is necessary to design a method that is constant in its memory usage,

regardless of the size of the input feature-set. Such an aim is not fanciful, especially

44

considering that the dynamic programming search-space pruning method (presented
below) makes the algorithm effectively local. One possible strategy might therefore
be to discard elements of the V', I and B vectors, as well as the features correspond-
ing to these elements, when they are not needed any more. This idea is similar in
essence to linear-space sequence alignment methods [80]. However, although it is
possible to obtain the score of the optimal gene structure in this way, the gene struc-
ture itself is more difficult to obtain; the standard trace-back procedure is no longer
possible.

A natural constant-memory method for obtaining both the highest scoring gene
structure and posterior feature and region probabilities involves off-lining, where
parts of the dynamic programming structures, and the features the themselves, are
written to disk, discarded from memory, and read back in when required. I have
implemented such a method, but approached the problem from a slightly different
angle. The technique is based upon a split-and-merge strategy, which conceptu-
ally involves splitting the input into several manageable chunks, running GAZE
separately on each one, and finally merging the results together. This has been
implemented in a Perl script called GENOME_GAZE.

The first stage of GENOME_GAZE is the split, but GAZE itself provides an option
to make this stage trivial. Specifically, it can be told to consider a specified sub-
sequence window of the given arbitrary sized query sequence / feature-set; the input
DNA sequence and features sets do not therefore have to be physically split at all.
The “split” phase of GENOME_GAZE therefore involves running GAZE on windows
wy - - - wg to produce output files o1 - - - of, where the window size is chosen according
to the available computational resources (the bigger machines available, the bigger
the window size can be), and k is chosen to be large enough to cover the whole input
sequence region with a specified overlap between w; and w;y1. The overlap allows
the second, “merge” phase of GENOME_GAZE to be performed.

An overlap is necessary between subsequence windows w; and w;4+1 because there

may be cases where a predicted gene structure straddles the boundary between

45

two windows. The final output gene prediction is formed generally by pushing the
features in the output files onto a list in sequence order from o1 to or. However,
for the first feature ¢, in o; that lies in a region that is also covered by the start of
wi+1, 0i+1 18 searched for the occurrence of that feature. If it is found, the rest of the
features in o; are ignored, and the pushing of features continues from that point in
0i+1 at which ¢, was located. If it is not found, ¢, is pushed onto the list, and 0;1
is searched for the occurrence of ¢,41 in 0;. This continues until the appropriate
cross-over point from o; to 0;41 is identified.

When the output files o; consist not of feature-lists representing predicted gene
structures, but the complete input feature set ordered by sequence position, with
posterior probabilities attached to each feature, a slightly simpler strategy suffices,
where the midpoint of the overlapping region between o; and 0;41 is chosen as the
cross-over point between the two regions.

Split-and-merge offers a natural parallelisation strategy, because each window w;
can be analysed independently of other windows. Only the final stage of forming the
consensus gene structure for all windows relies upon their order in the sequence, and
therefore cannot be performed until all windows have been processed first by GAZE.
This is one of the key advantages of post-processing approach via GENOME_GAZE

over a split and merge algorithm in GAZE itself.

2.6.3 A novel pruning strategy

Earlier it was described how the region-score calculation is made less computation-
ally expensive in order to reduce the overall run-time of the algorithm. An comple-
mentary approach is to reduce the number of region calculations that need to be
performed, which is essentially O(n?) in the number of features. To this end, two
pruning strategies have been implemented, one exact and one heuristic. Both rely
upon the examination of the search-space in a directed manner.

In the calculation of the F' vector outlined earlier (and likewise for the V' and B

vectors), the elements need to be computed in a directed way, starting with F'(0)

46

and ending with F(n 4+ 1). The calculation of F(i) relies upon the values F(j),
J < i, which corresponds to examining the source features ¢; for a given target
feature ¢;. These sources need not be visited in any directed way, but doing so
provides opportunities for pruning. In particular, sources for a given target are
examined firstly in order of type, and secondly (for sources of a given type) in order

of proximity to the target, i.e. ¢;—1,¢;—2...¢g.

A pruning strategy based upon model constraints

The first method makes use of the fact that certain constraints specified in the
model can be used to prune away partial gene structures that cannot possibly be
model-consistent. In particular, when scanning back through the sources for a given
target ¢, violation of an interruption or maximum distance constraint by the region
¢; — ¢, defined by a specific source ¢; means that all subsequent regions ¢; — ¢y,
J < 1 will violate the same constraint. Therefore sources ¢; (j < i) need not be
considered for target ¢y.

Most models used in practice will not contain interruption or maximum distance
constraints in many rules. In fact, for the models explained in chapter 3, only rules
defining protein-coding regions make use of interruption constraints, to disallow in-

frame stop codons. A more general pruning strategy is therefore necessary.

A pruning strategy based upon Dominance

The main idea of the strategy is based upon this aggressive assumption: when
accumulating information for gene structures ending at a particular target feature ¢y,
if the contribution made by source ¢; is insignificant when compared with that made
by another source ¢;, then we can ignore ¢; as a potential source for all subsequent
targets of the same type as ¢. I formalise a general approach based upon this
idea, and then consider cases where the main assumption might not hold, refining
the strategy at each step. The method is presented in terms of the computation of

the forward score F(i), but the method applies equally to the backward (B(i)) and

47

Viterbi (V (i)) calculations.

To formalise the notion, I introduce the concept of dominance. For a given
target feature ¢, and two valid source features of the same type, ¢; and ¢;, where
J < i, ¢; dominates ¢; if the contribution made to forward score for ¢ (F(k)) by
the component involving ¢; is insignificant (given the limits of machine precision)

compared to the contribution made by the component involving ¢;. More precisely:

Dom(¢;, ¢, ¢x) if Rdiff (¢, @5, 1) > X (2.29)

The right-hand-side can be read as the relative difference between the contri-
bution made to the forward score of ¢ by respectively ¢; and ¢;, and is defined

thus:2

RAiff (¢4, dj, o) = Regyg)—t(g) (D), Udr)) + F(7)
— Regy(g,)—t(¢) (U5), Uor)) — F(5) (2.30)

It is important to note that because the F' vectors are computed in log-space,
a difference of X between the ¢; and ¢; components means that the former is eX
times greater than the latter in probability space. A small value for X (20-30) is
therefore sufficient for ¢; to dominate ¢;.

The pruning strategy relies on the fact that, at least under certain conditions,
the dominance is time-invariant. That is, if ¢; dominates all sources of the same
type ¢; (for j < i) with respect to a target ¢y, then it will dominate the same sources
for subsequent downstream targets ¢, of the same type as ¢,. When considering
potential sources for a ¢4, we need not therefore search back further than ¢;. The

feature ¢; in this case is an omnipotent source of its type with respect to targets of

the same type as ¢y.

2the contribution to the forward score also contains the given score of ¢y, but since this is the
same for sources ¢ and j, it cancels. In the calculation of the backward score however, the relative

difference includes terms for the given scores of targets ¢; and ¢;.

48

In the implementation, a matrix Onmi(src,tgt) is maintained which stores for
each src — tgt rule, the index of the current omnipotent source of type src for targets
of type tgt. As the dynamic programming progresses, the dominance condition is
continually checked, and the Omni matrix updated. The desired effect is that at
any time in the algorithm k, Omni(sre,t(¢)) will not be much less than k for all
source feature types src. This means that only a constant number of sources need
to be examined for each target, rather than O(n) sources.

The assumption of time invariance underlying this pruning technique is impor-
tant for its soundness. In order to reason about the conditions under which time
invariance holds, it is convenient to re-define the assumption in terms of the relative
difference between the contribution made to the forward score of ¢ by respectively
¢j and ¢; (equation 2.30). The assumption is therefore as follows: this quantity will
remain constant or increase when measured with respect to subsequent downstream
targets ¢, of the same type as ¢, preserving the domination condition. However,

this assumption is not valid in the following circumstances:

1. Feature ¢4 is in a different reading frame to ¢, the relevant rule includes a
phase constraint, and the region ¢; — ¢, violates this constraint; in this case,

the omnipotent feature is not even a valid source for ¢,.

2. The region ¢; — ¢, violates a DNA constraint which is not violated for the

region ¢; — @q.
3. The region ¢; — ¢, violates a DNA constraint, even though ¢; — ¢;, did not.

4. Feature ¢; is located at the same position as the upstream end of an “ex-
act_match” segment; feature ¢y lies upstream from the location of the down-
stream end of this segment, which therefore does not contribute towards the
score for region ¢; — ¢y,. Feature ¢, however lies at the same location as the

downstream end of the segment, which does contribute to the score for region

¢j - d’q-

49

5. The src — tgt rule includes a length penalty function, and difference in the
penalties for ¢; — ¢ and ¢; — ¢ is greater than the difference between

penalties for ¢; — ¢4 and ¢; — ¢,.

In all these cases, it is wrong to consider ¢; to be an omnipotent source of that
type with respect to features of type ¢p. It is therefore necessary to revise the ideas
of dominance and omnipotence, addressing each of the problems in turn.

The first problem can easily be addressed by adding an extra “absolute-reading-
frame” dimension to the Omni matrix. This allows us to represent a different set of
omnipotent sources not only for each target type, but for each target-type in each
absolute reading frame.

The second and third problems can be dealt with by revising the domination
criterion with a DN A _constraint_condition which states that ¢; does not dominate
¢; with respect to ¢y, if (a) ¢; — ¢y, is violated by a DNA constraint, or (b) ¢; has
the potential to violate a DNA constraint for a future region ¢; — ¢,.

The fourth problem is addressed by adding a Ezact_Segment_condition to the
domination criterion which states that ¢; does not dominate ¢; with respect to ¢y,
if (a) the relevant rule contains a segment qualifier with an “exact match” condition
and (b) a segment of the appropriate type begins at the same location ¢; but extends
beyond feature ¢y.

The final problem is very likely to occur, because many useful length penalty
functions used in practice will have this behaviour. My approach is to remove
the length-penalty component from the domination condition. Equation 2.30 then

becomes:

RAiff (¢35, ¢, k) = Segp)—t(or) (1(i),1(dr)) + F(i)
— Segyp)—t(er) U@5), (Pr)) — F(5) (2.31)

In doing this we must now consider the possibility that ¢; dominates ¢; by the

above criterion, but only when the length penalty component is ignored, i.e. if

50

we have inadvertently extended the criterion in trying to restrict it. If the length
penalty for ¢; — ¢y, is greater than that for ¢; — ¢, then ¢; will still dominate ¢;
even if the penalties are included in the comparison. Although many length penalty
functions used in practice would be expected to be monotonically increasing with
distance, one of the strengths of GAZE is that it allows the definition of arbitrary
length penalty functions. However, it is likely that this facility will be most useful
in the early, small-distance portion of the functions. All functions used in practice
will be eventually monotonically increasing (or at least monotonically constant); a
length function for which this is not the case implies a kind of region that, in the
limit, become more likely the longer it is. So, assuming that each function has
a distance d at which it becomes monotonic, the relative difference including the
length penalty (2.30) is at least as big as the relative difference ignoring it (2.31) if
the distance from ¢; to ¢ is bigger than d. If this is the case, then ¢; ... ¢ will
also be in the monotonic part of the function, and furthermore so will the regions
@j...0q and ¢; ... ¢y, for all subsequent ¢, of the same type as ¢y.

It is straightforward to derive the monotonic point for length penalty function

p, Mpoint(p):

Mpoint(p) = I{gljgls.t.Vyz [(z <y <z)—px) <ply) <p)] (2.32)

Given these considerations, I formulate a revised, and final, domination condi-

tion:

Rdlﬁ(¢l7 ¢j7 ¢k’) >X and
Exact_Segment_Condition and

Dom(qﬁi, ¢j, ¢k) if (2.33)
DN A_Constraint_Condition and

Uér) — U1(¢i) = Mpoint(Lenyg,)—t(p,))
The domination/omnipotence pruning strategy means that in practice, it is only
ideally necessary to consider a constant number of sources for each target. This

means that that effective number of pairwise feature comparisons (and therefore

51

region-score calculations) necessary is now effectively O(n). When considering also
the segment indexing strategy explained earlier (which makes the region-score calcu-
lation effectively O(logn)), the run-time of complexity of GAZE can be described as
pseudo log-linear. My experience shows log-linearity to be an upper bound, at least
on my own library of GAZE models (see chapters 3 and 5); many models display
linear growth in run-time with sequence length.

Linear-time dynamic programming algorithms for gene prediction have been pub-
lished before. In particular, there is at least one example of a linear-time algorithm
over an external model of gene structure ([52], and section 2.7). However, the flexi-
bility of GAZE in allowing user-defined length-penalty functions and segments makes
it difficult to design a linear time algorithm for obtaining both the highest scoring

gene structure, and posterior feature and region probabilities.

2.7 Relationship to other similar systems

2.7.1 Other gene prediction toolkits

Although the signal and content detection techniques used by most existing inte-
grated gene prediction systems are hard-coded in the software, their specific parame-
ters are usually abstracted into an external file which is read at run-time. This allows
the development of distinct parameter sets for different organisms for example. In
this way, the majority of systems are configurable. Some systems however, like
GAZE, take this idea further in attempt to provide a “toolkit” for the development
of gene prediction methods.

Dong and Searls [33] for example represent the rules of gene structure as formal
grammars [58]. They have constructed a toolkit for the graphical definition and
computational parsing of certain kinds of grammars, based upon the Prolog pro-
gramming language. They have used their toolkit to produce the GENLANG gene
prediction program.

The work of Gelfand, Roytberg and co-workers is comparable to GAZE in the

52

that it forms the basis of a research tool for the investigation of gene prediction
methods. Their technique, called Vector Dynamic Programming, identifies the set
of gene structures that is guaranteed to contain the “optimal” structure with respect
all scoring functions that adhere to certain mathematical properties [95]. The fact
that this set is usually orders of magnitude smaller than the complete set of all
possible gene structures allows for the rapid investigation of several different scoring
functions. They have used their tool to design the scoring function that is used in
the GREAT program [46].

The GENAMIC algorithm [52] lying at the heart of the GENEID system ([89], [84])
has many elements in common with GAZE. In particular, it accepts as input a list
of scored candidate exons in GFF, and also a model for how the different types of
exon fit together into complete gene structures. It then identifies the highest scoring
exon assembly consistent with the model rules. Although similar in these respects,
there are notable differences between GAZE and GENAMIC. Firstly, GAZE works
with the signal and content data before it has been pre-processed to produce a set of
candidate exons with pre-assigned frames and scores. This gives greater flexibility in
the way in which external evidence is incorporated. Secondly, the model constructs
offered by GENAMIC are more restricted than those offered by GAZE. In particular,
GENAMIC allows the specification of a minimal and maximal distance between exons,
but not arbitrary length penalty functions. Thirdly, GENAMIC does not compute
posterior probabilities. These last two differences in particular however mean that
the dynamic programming recursions of GENAMIC are less general and therefore more
amenable to optimisation; the highest scoring gene structure is identified by means
of a algorithm for which the run-time grows strictly linearly with the number of
candidate exons, making it extremely fast.

Some of the motivations for the DYNAMITE system [9] were similar to those
for GAZE. It is based upon the observation that many differing applications in
bioinformatics have at their heart quite similar dynamic programming algorithms.

Furthermore, implementation of these algorithms can be time consuming and error-

53

prone. DYNAMITE provides a simple language for the specification of such dynamic
programming recursions, allowing large and complex models to be defined in an
intuitive way. A compiler then generates code (in C) for the specified recursions
that can be linked into a stand-alone application. DYNAMITE differs from GAZE
primarily in the way that it is designed for sequence alignment, rather than feature
selection. It is therefore particularly suitable for development of sequence-similarity
based gene prediction applications; a large part of code in the GENEWISE program

[10] for example was generated by the DYNAMITE compiler.

2.7.2 HMM methods

In outlining some of the common methods for the prediction of gene complete gene
structures in chapter 1, I drew a distinction between gene fragment assembly tech-
niques and Hidden Markov models. I have presented GAZE from the angle of gene
fragment assembly, but it can also be viewed as a kind of Generalised Hidden Markov
model. To see the correspondence, it is instructive to look at other systems based
explicitly on GHMMs. GENSCAN [21] and GENIE [72] are examples of such.

Both GENIE and GENSCAN work in practice by first scanning the sequence for
candidate state transitions. These are used as anchor points for a dynamic pro-
gramming procedure to identify the state path with highest probability. In this
way, they can be viewed feature-based methods (like GAZE), rather than classical
single-base-at-a-time HMMSs (for example HMMGENE [68]).

The advantage that GHMMs have over standard Hidden Markov models is that
they allow the lengths of the regions to be modelled by arbitrary, non-geometric
probability distributions. This is particularly useful because the lengths of protein-
coding exons in particular are not geometrically distributed (see chapter 1). This
aspect of GHMMs is reflected in GAZE by the length penalty component of the
scoring function. For reasons of efficiency, GENSCAN in particular restricts the use of
fully defined length probability distributions to alternating states (in practice those

corresponding to protein-coding regions). The search-space pruning in GAZE means

54

that it is not limited in this way. It is not clear whether this is the case for GENIE.

In GENSCAN, the dynamic programming is performed over an assumed, fixed
GHMM architecture. Like GAZE, GENIE is not subject to the same restriction.
Signal and content sensors are treated as external modules which results in a “plug-
and-play” architecture. Unlike GAZE however, it is necessary for GENIE to make
specific assumptions about the scores reported by the components, namely that they
are probabilities. The treatment of feature scores by GAZE as arbitrary “energies”
makes it strictly more general.

Since the emission probabilities of a GHMM can be reflected by feature and
segment scores, and the length probability distributions by length penalty func-
tions, only the transition probabilities of a GHMM do not have a direct analogue
in GAZE. They can however be represented by adjusting the appropriate length
penalty function. Since it is possible to define a distinct penalty function for every
pair of feature types, this is fully general. The disadvantage of such an approach is
that the resulting models lack the intuitive appeal of a finite state automaton.

One of the key aspects of HMMs is that they are fully probabilistic, defining
a joint probability distribution over gene structures and sequences. Careful model
construction and scoring of features and segments can allow GAZE gene structure
scores to correspond directly to (log) joint probabilities, although this will often not
be possible when using data from external sources. Taking this idea to the extreme,
the representation of a standard base-at-a-time HMM is also possible in GAZE. This
could be done by having a feature type for each state, and a specific feature of each
type for each position of the sequence, with emission probabilities represented by
the feature scores and transition probabilities by length penalties®. This of course
would take away one of the advantages of GAZE, namely the representation of a

large number of DNA bases by a relatively small number of sequence features.

3Interruption constraints would need to be used to ensure that only the previous base is consid-

ered at each stage of the dynamic programming.

55

Chapter 3

Using GAZE for gene finding in

Caenorhabditis elegans

3.1 Introduction

This chapter documents my work in applying the GAZE system to the prediction
of gene structures in the genome sequence of the nematode worm Caenorhabditis
elegans. Much work in the past has focused on gene prediction in the sequences
of vertebrates (particularly human), and a later chapter shows how GAZE can be
applied effectively to vertebrate genomes. However, GAZE was originally envisioned
as a curation tool for C.elegans sequence annotators, and this work on its application
to the worm genome is rooted in the origins of the project.

Although gene prediction in C.elegans sequences is considered by most researchers
to be easier than in vertebrate sequences, certain complications make it a non-
trivial problem (see section 1.5). Indeed, the author of one of the most widely
used and accurate gene prediction programs [21] has admitted difficulty in arriving
at a set of parameters that work well on worm sequences [http://genes.mit.edu/-
Limitations.html].

Below, I outline the steps involved in the definition of a configuration from first

principles, starting with only candidate gene features generated from simple signal

56

and content sensors. I then go on to successively refine this model, at each stage
explaining both specific steps taken and exploring the resulting impact on predic-
tion accuracy. In particular, I make use of the flexibility of GAZE to firstly take
account of a post-transcriptional modification process that is peculiar to C.elegans
and similar animals, namely trans-splicing; and secondly to improve accuracy by
the incorporation of similarity information, specifically alignments of Expressed Se-

quence Tags.

3.2 Gene prediction materials for C.elegans

3.2.1 WormBase and The WormSeq dataset

To evaluate the accuracy of the various gene-structure models presented in this chap-
ter, both in comparison with each other and with other gene prediction programs,
it is necessary to construct a test-set. The principle source of data for the test-
set I have constructed was WormBase! [107], a database containing the complete,
annotated genome sequence of C. elegans.

WormBase provides as part of its annotation a complete set of gene structures
for the C. elegans genome. These gene structures represent manually-inspected
predictions of the coding regions (or CDS) of the genes, based on GENEFINDER
predictions (see below) and other available supporting evidence for the structure.
Such evidence most frequently comes in the form of spliced alignment of expressed
sequence (cDNAs or ESTSs) back to the genomic sequence by a program such as
EST_GENOME [79] or BLAT [61], giving the intron-exon junctions of the structure (see
chapter 1). As more cDNAs and ESTs are sequenced and deposited in nucleotide
databases, they are aligned to the genome and the set of curated gene structures
revised and updated to be consistent with the alignments. At any one time then,
the set of curated gene structures in WormBase represents a current “best-guess”

based on the available supporting evidence.

1Specifically WS52, September 2001

o7

The test-set I have built represents an attempt to identify the subset of curated
gene structures that have sound and complete supporting evidence for their validity.
An initial set was constructed by taking the curated structures supported by the
alignment of at least one “external” cDNA to the genome (i.e. those deposited
in the EMBL database by a group not working directly on the C.elegans genome
sequencing project). Since these alignments (produced by EST_GENOME, [79])
were only present (at the time of construction) for the half of the worm genome
that is maintained at the Sanger Institute (“WormBase_Sanger”), the set contained
only Sanger Institute genes. However, the restriction to external cDNAs provides a
degree of independent verification to the structures.

The initial set of gene structures was then subjected to a set of filtering steps,

removing the following entries:

1. Those for which the set of supporting cDNAs did not contain at least one entry
annotated as having “complete CDS” in its EMBL entry. It is possible for a
structure to be confirmed by two separate partial cDNAs aligning to different
parts of the structure, but I took the conservative approach of removing such

entries.

2. Those structures that overlap with at least one other curated gene structure.
This removes those genes that are known to be alternatively spliced, and also

those situated within the introns of other genes.

To check the consistency of the gene structures with respect to the cDNAs sup-
porting them, I performed a Smith-Waterman [100] local alignment of each cDNA
to the CDS of the corresponding gene structure, using the program DNAL (E. Bir-
ney, unpublished). Those entries where the gene CDS did not align precisely with
the EMBL-annotated CDS of the cDNA were presented to the Sanger Institute
C.elegans curation group for examination, which resulted in the editing of some of
these gene structures. The final set consisted of 325 gene structures (157 situated

on the forward strand of the genomic sequence and 168 on the reverse). The average

58

number of exons per gene in the set is 6.9 (compared to 6.3 for all curated gene
structures in WormBase), with 16 single-exon genes.

Traditionally, assessments of gene prediction programs have been performed
against sequences that contain a single gene for which the structure has been con-
firmed [23] [94]. However, when gene prediction programs are used in a production
environment on large, unannotated fragments of genomic DNA, they cannot know
in advance how many genes, if any, the sequence contains. Modern programs are
therefore capable of predicting many genes in a query sequence. To assess the
multiple-gene-prediction capabilities of such programs, test sequences containing
several genes are necessary. Large genomic fragments for which the entire exon-
intron structure for all genes has been confirmed are extremely hard to come by
however. There is also the problem of having confidence that we know about all of
the genes on a test sequence, and that the regions annotated as intergenic really do
contain no genes.

Having identified a set of 325 cDNA-confirmed genes, it would be ideal if they
were located together in the worm genome. Unsurprisingly, this was not the case,
and the genes are spread across 9 genomic contigs. In an attempt to recreate the
conditions faced by gene-prediction programs in practical use, I constructed an ar-
tificial genomic contig containing the confirmed genes. Unlike the dataset made by
Guigo and fellow workers [53], where the intergenic regions were generated “ran-
domly”, T took the approach of embedding the gene sequences in real genomic DNA.
Specifically, the DNA underlying each confirmed gene structure was extracted, along
with half of the intergenic DNA to the nearest other curated gene (confirmed or un-
confirmed) in each upstream and downstream direction. These sequences were then
concatenated in the order in which the were situated on the original genomic con-
tigs to make a contiguous artificial genomic sequence of 2,079,582 base pairs. This
sequence is referred to as WormSeq. The proportion of WormSeq that is protein-
coding is 0.24, which is representative of estimates for the genome as a whole based

upon all curated structures in WormBase.

59

The WormSeq sequence, and its annotated gene structure, forms the basis for
much of the analysis presented in this chapter. It can be obtained from http://www.-

sanger.ac.uk/Software/analysis/ GAZE /wormseq.

3.2.2 A source of gene prediction data: GENEFINDER

GAZE is not an integrated gene prediction program; it requires a set of features,
segments, and length penalty functions. For the analyses presented in this chapter,
the GENEFINDER program (P. Green, unpublished) was the effective source for these
data. Although unpublished, GENEFINDER is widely regarded as one of the most
accurate gene prediction programs for the worm. The GAZE scoring function ex-
plained in chapter 2 is similar to the one used in GENEFINDER in that the score for
a complete gene structure is comprised of a sum of the scores of the features that
define the structure, along with scores for the regions between these features. Also,
GENEFINDER includes length penalty files and frequency tables for various gene fea-
tures, the details of which are described below. Permission for use of these files was
kindly granted by the author [P. Green, pers.comm].

The ACeDB package [www.acedb.org] contains a module adapted from the orig-
inal GENEFINDER code, GF_FEATURES, that takes as input a set of GENEFINDER
frequency tables and a query DNA sequence and produces predictions of features
corresponding to the given tables, in GFF. The GF_FEATURES program was used
together with the tables from the 980506 distribution of GENEFINDER to produce
features and segments in the manner described below for all of the analyses in this

chapter, unless stated otherwise.

Signal sensors in GENEFINDER

The GENEFINDER tables are used to construct weight matrices of log-likelihood ratios
of nucleotide b in position ¢ for true sites compared to randomised DNA. Specifically,
if for a feature of interest True and Rand are respectively the tables for the true

sites and randomised DNA, then the log likelihood-ratio for nucleotide b in position

60

7 is calculated as
lr;(b) = HFmee(p) — 11Remd (p)

where the log likelihood calculated from a table T, II] is:

ur () = 1og(1+Ti
— log(1 + W)%:Ti(j)

1+ T;(b))

1432 T5(9)

If the width of the table for a particular type of site is n, then a score g(S) for

+ log(

a candidate site S = s189 ..., can be calculated as:

g(S) =D lri(s:)
i=1

GENEFINDER provides tables for the following gene features: translation start
sites representing positions -9 through +11 (where 0 is the position of the A in
the completely conserved ATG, which is enforced); both the donor and acceptor
splice sites, representing 6 and 25 nucleotides of the corresponding exon and in-
tron respectively, with enforcement of the GT-AG intron rule; and finally, trans-
lation termination sites representing 13 nucleotides of the upstream coding region
and 92 nucleotides of the downstream untranslated region, with enforcement of the
(TAG|TAA|TGA) rule. The table for each feature is accompanied by a table of corre-
sponding dimensions populated by counts from “random” DNA. The GF_FEATURES
programs constructs [l matrices from the given tables, scores windows of the query
sequence using the matrices, and outputs predictions of each feature scoring above

the default threshold (usually 0.0, but -2.0 for acceptor splice sites).

Content sensors in GENEFINDER

As well as predicting features using frequency tables, GF_FEATURES can also be used

as a content sensor, in particular in the detection of protein-coding regions. It cal-

61

culates log-likelihood ratios for each n-mer based on the frequency of occurrences in
protein-coding regions compared with randomised DNA. It then scans the sequence
in each of the six reading frames, at each position storing the sum of scores over all
non-overlapping n-mers up to that point. The cumulative score array thus obtained
for the whole query sequence for a reading frame is then used to obtain a set of
maximal scoring coding segments for that frame, and those segments scoring above
1.0 are output in GFF as predicted coding regions.

The n-mer tables in GENEFINDER 980506 for the detection of coding-regions are

in-frame 3-mers, i.e. codons.

Length Penalty functions in GENEFINDER

GENEFINDER 980506 includes length-penalty tables for introns, and initial, internal
and terminal exons. These are defined as (length, penalty) pairs, so could be used
largely as found, except where otherwise stated. Single exon genes and intergenic

regions are subject to a constant, length-independent penalty.

3.3 Definition of a GAZE configuration in three steps

This section outlines the steps involved in the development of a simple GAZE model
for drawing together the signal, content and length penalty information provided by
GENEFINDER into predictions of complete gene structures. The rules presented here
form the core for all of the models that I have subsequently developed; indeed the
principal way in which I envision GAZE being used in practice is for models to be
developed by taking existing models and tweaking them for specific situations. I see
this simple model as forming a base for practically all future models that one might

develop.

62

<?xml version="1.0" encoding="US-ASCII"?> <lengthfunctions>

<gaze> <lengthfunc i ex_pen">
1>

<declarations>
<feature id="start" st_off='
<feature id="stop" st_off= ")
<segment id="coding_seg" scoring="standard_max"/>
<lengthfunction id="single_exon_pen"/>

en_off="3"/> </lengthfunc>

</lengthfunctions>

<[declarations> <model>
<target id="END">
<gff2gaze> <source id="BEGIN">
<gffline feature="atg" source="Genefinder" strand="+"> <output feature="no genes"/>
<feat id="start"/> </source>
</ffline> <source id="stop">
<gff2fn:a:elgt_unr§;"ﬁ;gp" source="Genefinder" strand="+"> <output featurzz"mtergenlc”/>
<Igffline> P </source>
" " " </target>
<gffline feature="coding_seg" source="Genefinder" strand="+">
<seg id="coding_seg"/> N "
<Igffline> <target id="start">
</gff2gaze> <source id="BEGIN">
<output feature="intergenic"/>
<dna2gaze> </source>
<dnafeat pattern="atg"> </target>
<feat id="start"/>
<fdnafeat> <target id="stop">
id=
<dnafeat pattern="taa"> o . . P
<feat id="stop"/> <killfeat id="stop" target_phase="0"/>
</dnafeat> <useseg id="coding_seg" target_phase="0"/>
<dnafeat pattern="tag"> <source id="start" mindis="6" len_fun="sng|_ex_pen" phase="0">
<feat id="stop"/> <output feature="CDS" strand="+" frame="0"/>
</dnafeat> </source>
<dnafeat pattern="tga"> </target>
<feat id="stop"/> </model>
</dnafeat>
</dna2gaze> <lgaze>

Figure 3.1: A complete GAZE-XML configuration file for the prediction of a single, single-exon gene on

the forward strand of a DNA sequence

3.3.1 A single, single-exon gene

Figure 3.1 shows a GAZE configuration for the prediction of a single, single-exon
gene on the forward strand. Although simple, this configuration makes use of the
majority of features of GAZE.

The XML configurations file can be viewed quite simply as comprising five sec-
tions. The declarations sections declares the features, segments and length penalty
functions that GAZE is going to work with, along with some of the core properties
that are common to all elements of each type. Of particular note here is the scor-
ing attribute given for the “coding reg” segments, which dictates in this case that
segments of this type should be scored according to the “maximal single” scheme,
given by equation 2.4.

The gff2gaze section dictates how the input GFF files are used to obtain lists
of features and segments. In particular here, the gffiine tag is used, together with

the source, feature and strand attributes to specify which GFF lines are relevant,

63

and which features to create when lines matching those criteria are observed. The
dna2gaze section also allows for the creation of features from simple sequence motifs
observed in the input DNA sequence.

The model section contains the source — target rules. Those involving the
“stop” target are of particular interest here because they make use of the majority
of features available in GAZE.

Firstly, a segment qualifier (denoted by the useseg tag) that is global to the
target is used to denote the fact that “coding reg” segments that are in-phase with
respect to the target (via the target_phase attribute) are considered relevant for all
legal sources for this target.

Secondly, an interruption constraint (denoted by the killfeat tag) is used in a sim-
ilarly global way to invalidate the region between the target and any legal upstream
source when interrupted by a “stop” feature that is in-phase with the target.

Thirdly, the start — stop rule specifically contains minimum-distance and phase
constraints, as well as denoting that the “snglex_pen” length penalty function
should be used. The length function itself, taken from GENEFINDER, is defined
at the top of the second column. Note that this particular length penalty is actually
length independent, achieved by giving consecutive distances the same penalty.

Finally, the output qualifiers define information for how the regions in the final
gene structure should be presented to the user. The output format of GAZE is GFF,
hence output GFF tags can be attached to each rule.

3.3.2 Extension to spliced structures

Although this simple model is satisfactory for explaining some of the features of
GAZE, it does not have much worth in practice because coding portions of the
majority of C. elegans genes are interrupted by introns. Figure 3.2 show how the
simple model in the configuration above can be easily extended to model spliced
gene structures.

The first point of note is the way that intron phases are dealt with. Introns can

64

<gff2gaze>
<gffline feature="splice5" source="Genefinder" strand="+">
<feat id="5ss_0"/>

<target id="5ss_1">
<useseg id="coding_seg" target_phase="1"/>
<killfeat id="stop" target_phase="1"/>

<feat id="5ss_1"/>
<feat id="5ss_2"/> <source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
</gffline> <output feature="CDS" strand="+" frame="0"/>
<Isource>
<gffline feature="splice3" source="Genefinder" strand="+">
<feat id="3ss_0"/> <source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
<feat id="3ss_1"/> <output feature="CDS" strand="+" frame="0"/>
<feat id="3ss_2"/> </source>
</gffline>
. <source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
. <output feature="CDS" strand="+" frame="1"/>
<lgff2gaze> </source>
<d”a_29319> <source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="2"/>
p . </source>
<takedna id="5ss_1" <harget>

<takedna id="3ss_1"
<takedna id="5ss_2"
<takedna id="3ss_2"

</dna2gaze>

<target id="3ss_1">

<source id="5ss_1" mindi:
<killdna source_dna="

<model> <killdna source_dna='
. <killdna source_dna="

39" len_fun="intron_pen">
target_dna="aa"/>
target_dna="ag"/>
't" target_dna="ga"/>

: i <output feature="intron" strand="+"/>
<target id="stop"> <oy
<useseg id="coding_seg" target_phase="0"/>

<killfeat id="stop" target_phase="0"/> <ltarget>
<source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
<Isource>
</model>
<source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0"> .

<output feature="CDS" strand="+" frame="0"/>

<Isource>

<source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>

<Isource>

<source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>

<Isource>

<ltarget>

Figure 3.2: The main elements of a GAZE configuration for the prediction of single, possibly-spliced gene

structures of the forward strand of a DNA sequence

interrupt the coding region of a gene either between two codons (a phase 0 intron)
or in the middle of a codon, either between the first and second codon positions
(phase 1 intron) or between the second and third positions (phase 2 intron). The
total length of the spliced coding region must be a multiple of 3 in order for it to be
successfully translated, which means that is important for programs to keep track
of intron phases in order to produce sensible predictions.

The technique used here to account for intron phases is to consider the phases of
the donor and acceptor splice site features that define the intron region. As shown in
figure 3.2, for each given predicted splice site, three features are made, one for each of
the possible codon positions that the splice site may occur at. For example, “5ss_1”

denotes a donor splice site occurring between the 1st and 2nd codon position. The

65

rules are constructed in such as way as to ensure that any partial candidate gene
structure ending with a “bss_1” ends with the first base of an incomplete codon;
this is achieved firstly by the use of phase constraints, and secondly by dictating
that phases must be conserved across introns; notice from the figure that a phase 1
acceptor splice site (“3ss_1”) can only be legally preceded by a donor splice site of
the same phase (“bss_17).

In the simple model presented earlier, candidate coding exons with in-frame stop-
codons were disallowed by using an interruption constraint. Splicing also introduces
the possibility that stop-codons occur at the junction formed by the concatenation
of two exons. The figure shows how DNA constraints are used to disallow such
structures. Firstly, in the dna2gaze section, takedna directives are given for certain
features, which are instructions for GAZE to keep a record of the DNA sequence
occurring at the location of these these feature, specifically between the given start
and end position of the features, each adjusted by the offsets defined in the directive
(“st_off” and “en_off”). The rule for the “3ss_1” target contains the DNA constraints
themselves (killdna), an example of which states that the region between a “5ss_1”
and “3ss_1” is illegal if the DNA at the “bss_1” is "T’ and the DNA at the “3ss_1”
is 'TAAY

This mechanism has a limitation: it is technically possible for a stop-codon to
be formed from three successive exons, where the second exon consists of a single
base-pair. Internal exons this small, even if biologically possible, would be extremely
rare, and in fact are disallowed in the all of my models by use of a minimum distance
constraint. As shown in the figure, the minimum I use, taken from GENEFINDER, is

20 base pairs.

3.3.3 Extending to multiple genes on both strands

Figure 3.3 gives a flavour of extensions to the model to allow for the possibility
of more than one gene on the query sequence. The “start” feature can now be

immediately preceded by a “stop” source marking the end of another gene, with

66

<lengthfunctions>

<é;ff29aze>

<lengthfunc

tergene_pen">
<point x= ">
<.gﬁline feature="atg" source="Genefinder" strand="-"> <point x="1
<feat id="start_rev"/> </lengthfunc>
</gffline> H
</Ier.19thfunctions>
<gffline feature="splice5" source="Genefinder" strand="-">
<feat id="5ss_0_rev"/> <model>
<feat id="5ss_1_rev"/> :
<feat id="5ss_2_rev"/> <target id="start">
</gffline> <source id="BEGIN">
: <output feature="intergenic"/>
<Igff2gaze> </source>
<source id="stop" mindis="0" len_fun="intergene_pen">

<dna2gaze> <output feature="intergenic"/>

: </source>
<dnafeat pattern="cat"> <source id="start_rev" mindis="0" len_fun="intergene_pen">
<feat id="start_rev’/> <output feature="intergenic"/>

</dnafeat> </source>
: </target>
</dna2gaze> H
</model>
</gaze>

F igure 3.3: A fragment of a GAZE configuration showing the elements involved in modelling multiple

genes on both strands of a DNA sequence.

a new length-penalty function for the intergenic region implied by a pair of such
features.

Some gene prediction programs model reverse strand genes by predicting sepa-
rately on each of the given sequence and its reverse complement, and then merging
the predictions back together. This can cause problems if the gene prediction signal
is strong on both strands at the same location, where it is not obvious what the gene
prediction should be in this region. Other programs, for example GENSCAN;, incor-
porate a single integrated model for the prediction of genes on both strands. They
do this by firstly choosing (arbitrarily) a strand as the reference strand, and secondly
treating opposite strand genes as comprising of the same features but occurring in
reverse order. Hence from the point of view of the reference strand, opposite-strand
genes begin with a stop-codon and end with a start-codon. This approach is easily
implemented in GAZE, demonstrated by the rules for the “start” target in figure

3.3, which include the “start_rev” source, marking the start of a gene on the opposite

67

strand. The full model, which I refer to as GAZE std, is represented pictorially in
figure 3.4.

3.4 Applying the model to C.elegans sequences

The accuracy of the model presented above in comparison to other available pro-
grams is examined in detail in a subsequent section, where it is shown how various
refinements affect the performance. This section uses the application of the model
to the WormSeq test sequence to demonstrate some aspects of the functionality of

GAZE.

3.4.1 Predicting genes in WormSeq

Table 3.1 shows the accuracy of GAZE std at the whole gene level. For the purposes
of specificity, a prediction is considered correct only if the complete gene structure
matches precisely the structure of the corresponding cDNA-confirmed structure;
likewise, for the purposes of sensitivity, a confirmed gene structure is considered
to be correctly predicted only if it is matched precisely by a corresponding GAZE-
predicted gene. The stringency of this measure is shown in the table; only about
a third of WormSeq genes are predicted correctly by GAZE std and only a third
of GAZE _std predictions are correct. Upon visual inspection of the predictions in
comparison to the correct gene structures in ACeDB, it is apparent that many of
them have the correct or nearly-correct intron-exon structure, but err in the location
of their start and/or end. It is widely observed that the ends of genes are more
difficult to identify correctly than their internal intron-exon structure (see chapter

1), and observation of the accuracy of GAZE_std on WormSeq supports this.

3.4.2 Using feature-selection to refine the predictions

If the starts and ends of genes are the most difficult features to identify, it is in-

teresting to ask how the accuracy of GAZE std changes when it is told where the

68

\

reverse
strand
rules

si
exon

=
Q
o

Buipoa

intron intron intron

internal
exon

internal
exon

internal
exon

. —p phase 0 constraint i T
. —& phase 1 constraint : . /N segment :
: —»» phase 2 constraint Q length penalty

i —> nophaseconstraint : @ WW =

intergene

Figure 3.4: A pictorial representation of a GAZE-XML model for multiple genes on both strands. The
features are represented by filled boxes, and source — target rules by different types of arrows, each
corresponding to a phase constraint. The labelled circles give the name of the length-penalty function used
for each rule, which are themselves defined elsewhere in the configuration file; the labelled humps indicate
the segments that contribute to the score for the region implied by the rule. The rules for reverse-strand
target features are not shown in their entirety for reasons of clarity, but are reverse complementations of
the forward-strand rules. Also omitted are the distance, interruption and DNA constraints, as well as the
BEGIN and END features, which mark the ends of the sequence being searched for genes and act as source
and target (respectively) to all other features; this accounts for the possibility of a gene structures which

extend beyond the end(s) of the sequence.

69

Sn Sp Av MG WG SG JG

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03
GAZE std+ 0.67 0.36 0.52 0.000 0.387 1.13 1.00
GAZEstd++ || 0.71 0.71 0.71 0.000 0.000 1.00 1.00
GAZEFE std_gf 0.35 0.35 0.35 0.012 0.076 1.03 1.08
GENEFINDER 0.50 0.44 047 0.012 0.104 1.07 1.04

Table 3.1: Gene-level accuracy of GAZE std plus variants on WormSeq. Sensitivity (Sn), Specificity
(Sp), Average (Av), Missing genes (MG), Wrong genes (WG), Split genes (SG) and Joined genes (JG) are

the measures described in section 1.4.1

starts and stops of the genes in WormSeq really are. It is straightforward to answer
this question in the context of GAZE. I made a GFF file of the confirmed starts and
stops of the WormSeq genes, and used the feature selection mechanism of GAZE
to force the inclusion of these features in the prediction. The results, referred to as
GAZE std+, are shown in the second row of table 3.1. Several things are notable.
Firstly there is a big jump in gene-level sensitivity; 26% more WormSeq genes are
identified precisely correctly. Secondly, the figure of 1.00 for Joined genes indicates
that no predicted gene extends over the region covered by two or more WormSeq
genes. This is expected, because the feature-selection forces the correct splitting of
such genes. Thirdly, there is a noticeable increase in ‘wrong’ genes. It is counter-
intuitive that supplying the system with gene starts and ends should lead to more
predictions that do not overlap any confirmed gene structure. However, figure 3.5

shows how additional wrong genes can arise from such an approach.

3.4.3 Adjusting the score to refine the predictions

For the purposes of demonstration only, I made a slight modification to the model,
increasing the length-independent penalty for intergenic regions from 4.0 to 100.0.
This penalty is incurred whenever a gene is introduced; in making it large, the

prediction of genes that do not contain any user-selected features is effectively dis-

70

Selected DHA 1 1 2079582
F13B10.2 983455 983819 (365} curated
[Columns] [Zeam In,.] [Zoom Out,.] [Clear| [Rev-Comp, .| [DNA,.] [Analysis, .

t'l o E §E
ko
M 4 --DH_EE r Tﬁ-l
1 fn-:nn E‘D |i|_w-_|
] ==tz &
4 — = = F = .
P =BV B
: | g"'guli- nﬁ??:l
E E- E f- _u:q_l
1 BF Cacm, %,—‘
4983k 1 =8_=- -, r
] 4 — B 0_[¢o
'8 1 ——i] g B %_‘
WormSeqg 3] H §u: H =
- I — B -]
Joggk [= D—aes= F"_‘
] = s} L
SR
] =8 “|] [
3 e o
] M et s =
Jagm = I]_I:.D D
] -7 = = -
E =rigiz %
! o 9 =2t 2=l L T |
Figure 3.5: How specifying gene start/end information can lead to an increase in the number of

Wrong Genes (WG). The GAZE std prediction (in red) extends into the region 5’ of the cDNA-confirmed
structure (in blue), but is not classed as “wrong” because it overlaps with the correct structure. Although
the GAZE_std+ model (orange) correctly identifies the structure of the gene, the pseudo-signal in the 5’
region is strong enough to lead to the prediction of a separate gene which does not overlap any correct gene

structure.

allowed. The results of this refinement appear as GAZE_std + + in table 3.1. The
MG, WG, SG and JG lines show that the intended increase in specificity has been
achieved, and exactly one gene is predicted for each cDNA-confirmed structure.

It will never be the case in practice that the starts and ends of all the gene
structures will be known a priori for an otherwise unannotated large stretch of
genomic DNA. It may be that the starts and ends for some of the genes will be
known, but in that case, the trick of increasing the length penalty will lead to the
missing of gene structures for which they are not known. For this reason, using

GAZE in a way such as this is artificial and was largely for demonstration only.

71

However, some insights can be gleaned from the results. In particular, they show
that GAZE std is 71% accurate in identifying the complete internal intron-exon
structure of the genes in this test-set. Furthermore, the feature-selection mechanism
has proved and will prove useful for the manual curation of gene structures; it gives
the ability to anchor parts of the structure and identify the most likely total structure
that is consistent with the anchored points. In this way, it provides an elegant means

for curators to make use of incomplete evidence.

3.4.4 A comparison with GENEFINDER

Since GAZE std integrates the signal, content and length-penalty information from
the GENEFINDER program, it is natural to ask how the accuracy of the two com-
pare. The bottom row in table 3.1 shows the gene-level accuracy of GENEFINDER
on WormSeq. It is immediately noticeable that GENEFINDER is significantly more
accurate than GAZE_std at the precise identification of complete gene structures.
It is also more specific, with only 38 wrong genes, compared with a figure of 210
for GAZE std. The difference in Split genes, 1.07 compared to 1.14 for GAZE _std,
is also striking. GAZE_std and GENEFINDER use the same gene prediction signal,
content and length-penalty information, so where is this difference coming from?

Inspection of the GENEFINDER source-code reveals some of the answers. Firstly,
GENEFINDER subjects candidate exons to a further penalty just before they are
assembled into gene structures, and this penalty is different for internal exons
(log(0.8)), initial exons (log(0.2) +1og(0.5)) and other non-internal exons (log(0.2)).
Since the penalties for non-internal exons are larger, this has the effect of discour-
aging the splitting of genes. Secondly, GENEFINDER removes all genes scoring less
than 7.0, effectively reducing the number of wrong genes.

These subtleties prove a test of the flexibility of GAZE. It turns out to be straight-
forward to incorporate the additional exon penalties, by simply adding these terms
to the penalties for all distances in the appropriate length-penalty functions. The

removal of low scoring genes cannot be performed in GAZE itself, but is achieved

72

with a simple Perl post-processing filter.

The resulting model, the results of which are referred to as GAZE std _gf in table
3.1 represents an attempt to duplicate the output of the GENEFINDER program using
GAZE. The table shows GAZE std_gf to be outperformed by GENEFINDER at the
whole-gene level, whereas examination of the comparative accuracy at the base-pair
and exon level (see table 3.5) reveals no notable difference. This discrepancy in
gene-level accuracy is due not to any differences in the signal and content data used
by the two systems, nor differences in the length penalty functions, nor any hidden
post-processing, but to the fact that GENEFINDER assembles its exons over a model
of gene structure that is designed specifically for prediction in C'.elegans sequences.
In the next section, I show how the GAZE framework allows worm-specific model
features to be quickly and effectively introduced into the mode of gene structure

without any change to the GAZE source-code itself.

3.5 Towards a C.elegans-specific model of gene struc-

ture

The GAZE std_gf configuration is specific to C. elegans in that it reads features
and segments from the GENEFINDER program, which have been detected using worm-
specific signal and content models?, and also length-penalty functions that have been
designed from observation of the distances between such components in real worm
genes. However, the model of gene structure itself over which gene assembly takes
place is specific only to eukaryotes in that it can predict spliced gene structures.
There is nothing in the model itself that suits it to the prediction of gene structure
in C.elegans specifically. The GENEFINDER program on the other hand takes account
an unusual splicing mechanism that takes place only in the cells of nematode worms

and some other primitive eukaryotes, and it is this that gives it greater accuracy.

2More accurately, general models that have been parameterised by observation of confirmed gene

features in C. elegans sequences.

73

Trans-splice site Poly-A cleavage site

Original ¢ Intron Intron ¢
mRNA I 0
transcript Start codon Stop codon

|
) e mm mm—

]]
Trans—splice leader Poly(A) tail

Final
mRNA | = R S — R S—
product

Figure 3.6: Schematic representation of trans-splicing in C.elegans

3.5.1 Splicing mechanisms in C.elegans

In nematode worms such as C'.elegans and C.briggsae, as well as some other primitive
eukaryotes such as trypanosomes, a splicing mechanism exists that is unlike the
conventional intron-removal mechanism (known as cis-splicing). In trans-splicing
([66]; review in [13]), the pre-mRNA transcript is cleaved at a site upstream of the
translation start site, and the resulting protein-coding fragment is appended to a 21-
23 base-pair sequence called the trans-splice leader, which itself has been transcribed
from elsewhere in the genome. The process is summarised in figure 3.6.

The biochemical process of trans-splicing is closely related to that of cis-splicing.
In fact, it has been shown that the signal for trans-splicing to occur is simply the
presence of a sequence at the 5’ end of the pre-mRNA that looks like an intron but
has no functional upstream donor splice site [27]. The trans-splice site itself forms
the 3’ end of this outron sequence, and has the same consensus as the splice acceptor
involved in intron-removal.

The splice-leader RNAs themselves are always one of two distinct sequences: SL2

leaders are appended to all but the first gene in an operon, and have slight variation

74

in their sequences. The more common SL1 leaders are appended to all other trans-
spliced gene products, and are all identical in sequence. For the identification of
gene structures in worm genomic DNA, the splice-leader sequences cannot be used
as a signal for detection, because they do not appear in the genomic sequence in

proximity to the gene they are spliced to.

3.5.2 Trans-splicing confuses gene prediction programs

Because the recognition site for trans-splicing reaction has the same consensus as
an acceptor splice site, gene prediction programs that have not accounted for trans-
splicing can be confused into mistaking the initial exon of a gene for an internal
exon and erroneously extending the prediction upstream. The relatively high gene-
density in the worm genome, especially in operons where the genes are typically as
close as a thousand bases apart, compounds this problem, often causing a program
to mistake two adjacent genes for a single gene. This is apparent in the Joined
Genes figure for GAZE std_gf in table 3.1, which is relatively high compared to the

trans-splicing aware GENEFINDER. Figure 3.7 illustrates the problem.

3.5.3 A GAZE model accounting for trans-splicing

In terms of the scoring function, the problem arises because high-scoring acceptor
splice site predictions that are in fact trans-splice acceptors can only be included
in the gene structure (and thus contribute towards the score) if the 5’ end of the
prediction is compromised in some way, e.g. by the addition of a low-scoring initial
exon upstream. The idea then is to provide a way for the trans-splice acceptor to
contribute towards the overall score without having to make this compromise.
Figure 3.8 shows, in spirit, the nature of the changes that are necessary to
accommodate trans-spliced genes. The first thing to note is that it is not necessary
to generate a priori predictions of trans-splice acceptor sites; the sequence signal
is practically indistinguishable from that displayed by conventional cis-splice sites.

It is therefore sufficient to direct GAZE to make a candidate trans-splice acceptor

75

(a)

B o= =

= =n =
4574k S'-z -8
=1 Eﬂaj:“f
- = :E_
] = v _| =--
= =n_m=0=

1 =8 UEDEu
—g==g- [an

{576k _E:-g-E“

- = =a
1 =0I=%_=g"
J =Po= Sy
WormSeq B " - -
=" = =_;

{578k B m, =
[—ea=g._ =
1 i“_ﬂg?:ai
1 ::u -

EI]., —g. =
1 =
— i B
{580k Rl

(b)
578000 S
WormSeq | |-1578100 =

578200 H _ |l

Figure 3.7: (a) Two cDNA-supported gene structures in WormSeq, with WormBase identifiers F11A5.10
and W06D12.3 (blue), and structures predicted by GAZE._std (red) and GAZE_trans (orange). The
GAZE_std model, which does not account for trans-splicing, has been confused into mistaking the trans-
splice site for an acceptor splice site, extending the gene-prediction 5’, and in this case amalgamating it with
the upstream gene; (b) an enlargement of the 5’ end of the downstream gene, showing the t¢rans-splice site

(green hook). The trans-splice aware model, GAZE_trans, splits the structures correctly (orange)

feature (“trans_splice”) from each predicted cis-acceptor encountered in the GFF
file.

Secondly, minor modifications are necessary to the gene structure rules to ac-
commodate the new feature; a “start” target feature, representing a start-codon
candidate on the forward strand, can now be preceded by the stop-codon of a pre-
vious gene as before, or for a trans-spliced gene, the trans-splice acceptor itself.

The distance from the translation start site to the upstream trans-splice acceptor
in trans-spliced genes is usually small. Data in [13] compiled from a sample of 83

genes experimentally confirmed to be trans-spliced, showed that in 43% the trans-

76

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<feature id="trans_splice"/> <output feature="intergenic"/>
</source>
<ltarget>

trans

<source id="trans_splice" mindis="0" maxdis="50" len_fun="tsplice-start"/> splice

<output feature="trans—splice-UTR" strand="+"/>

<target id="t_splice"> A i !

<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen"> : : :
<output feature="intergenic"/> vV e V
</source>

Figure 3.8: Distillation of the changes required to the forward-strand part of GAZE std to allow for the
possibility of trans-sliced genes. The inset shows pictorially how the new “trans_splice” feature fits into the

model of gene structure

splice site is within 5 base-pairs of translation initiation, 65% fall within 10 base-
pairs, 82% fall within 15 base-pairs, and in only 5% is the distance greater than 30
base-pairs.

The decrease in the likelihood of a trans-splice candidate with distance can be
modelled naturally with a length penalty function. Again, I looked to GENEFINDER,
but this time it was necessary to inspect the source-code for the details of the
function used. GENEFINDER approaches the problem by considering all initial exons
as beginning not with the translation start candidate, but 50 base-pairs upstream.
It adjusts the score of a candidate initial exon beginning at base-pair ¢ by adding a

log-probability for the extra 50 base-pairs calculated in the following way:

log(1 — Py,),
Adj(i) = max . B)
log Pop P + max;;i_

503s8(j) + (i —j + 1) log(1 — Pop)

3ss(j) is the log probability-ratio of an acceptor splice site at position j, or
—oo if the score under the splice acceptor model at j does not exceed the cutoff.
The values P, P,, can be given as parameters to GENEFINDER. P}, represents the

prior probability that a gene is trans-spliced; P,, and 1 — F,, can be thought of as

[

Sn Sp Av MG WG SG JG

GAZE trans | 0.47 042 0.44 0.012 0.093 1.07 1.04
GAZEstd_gf | 0.35 0.35 0.35 0.012 0.076 1.03 1.09
GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

GENEFINDER || 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.2: Comparative Gene-level accuracy of GAZE_trans on WormSeq. Accuracy measures are ex-

plained in section 1.4.1

the probability of remaining in and leaving (respectively) the trans-splice “state”
(viewing the 50 residues as being generated by a Hidden Markov model). The default
values for P, and P,, are 0.5 and 0.1 respectively.

It is straightforward to derive a GAZE length-penalty table for the distance
between a translation start site and an upstream candidate trans-splice site using
this function. The only caveat is that the length-penalty table for initial exons
already includes the term incurred by non-trans-spliced genes (log(1 — P,)), so this
term is subtracted from the tsplice — start function in order to avoid incurring it
twice.

The resulting variant of GAZE std_gf (with additions to allow for the possi-
bility of trans-spliced genes on both forward and reverse strands) is referred to as
GAZE _trans. Table 3.2 shows gene-level accuracy for the GAZE _trans model in
comparison to the standard models.

The number of genes for which the complete structure has been identified cor-
rectly is noticeably higher for GAZE trans compared with GAZE std _gf, and is now
on-par with that achieved by GENEFINDER. What is also noticeable is the sharp de-
crease in joined genes, which is exactly what was intended (see figure 3.7). However,
this increase seems to have come at a cost with respect to Split genes. In intro-
ducing a model innovation that is specifically intended to split gene predictions, we
run the risk of introducing erroneous splits, and this is what has happened here.

In this case though, the extra splits have apparently occurred in predictions that

78

were also incorrectly predicted by GAZE std_gf, hence the net increase in gene-level
sensitivity. A closer look reveals that 42 structures which are correctly predicted
by GAZE trans were incorrectly predicted by GAZE std_gf, and only 7 structures
correctly predicted by GAZE _std_gf are incorrectly predicted by GAZE _trans.

The GAZE_trans model is, to all intents and purposes, a GAZE implementa-
tion of the 980506 version of GENEFINDER. This begs the question of why their
accuracies, although comparable, are not identical. The reason for this is the way
that GAZE makes use of the GENEFINDER coding_seg maximal scoring segments of
high protein-coding potential. Inspection of the GENEFINDER source-code reveals
that it does not use segments calculated in advance for the whole query sequence
(as explained in section 3.2) at all; instead, it obtains a maximal coding score for
each candidate eron, using the same cumulative-array approach. This difference in
exon scoring schemes is only observable when a GAZE “coding seg” extends beyond
either the 5’ or 3’ end of the candidate exon. In that case, as implied by equation
2.4, the score is scaled by the proportion of the segment that lies in the region. This
incorrectly assumes that the score for segment is distributed evenly along its length.
For that reason, the GENEFINDER method for computing coding scores is more accu-
rate than the approximate method used by GAZE. However, as shown by the results
so far, it seems to have little impact on the overall accuracy; in fact, at the exon
level (as shown in table 3.5), GAZE trans, although marginally less sensitive than

GENEFINDER, is slightly more specific.

3.6 Integrating similarity information

As explained in chapter 1, the effective use of similarity information can improve
gene prediction accuracy. In this section, I outline the changes required to the
GAZE trans configuration to make use of the similarity information in the form of

EST alignments.

79

3.6.1 ESTs and gene prediction

An Expressed Sequence Tag (EST) is conceptually a sequence read of a cDNA copy
of an expressed cellular mRNA. ESTs differ from the full-length cDNAs deposited
in the nucleotide databases (such as those used to build the WormSeq dataset) in
that: (1) they are often of lower quality, and (2) they represent the sequencing of
only a subsequence of the original cDNA, typically around 300-500 base-pairs, read
from either the 5’ or 3’ end of the transcript.

In much the same way as the EMBL full-length cDNAs were used to confirm the
genes in WormSeq, the alignment of ESTs to genomic sequence can provide evidence
for gene structures. Since ESTs represent only a draft-quality read of a subsequence
of a transcript, any single EST will normally only provide evidence for part of a gene

structure.

The utility of EST data

The alignment of ESTs back to the genomic sequence can be extremely useful for
gene prediction in several ways. Firstly, they act as an aid to novel gene discovery,
highlighting regions of genomic sequence where genes were not thought to exist be-
fore. Secondly, they can provide evidence for the spliced structure of the gene, at
least in cases where the EST extends across an exon-exon boundary in the corre-
sponding spliced mRNA. Thirdly, ESTs can help elucidate the structures of genes
that give rise to several alternatively spliced transcripts. Finally, they are useful
for identifying the extremities of genes. Ideally, the alignment of a 5> EST to the
genome identifies the 5’ end of a gene, and likewise with 3’ ESTs. Many ESTs even
exist as pairs, corresponding to 5’ and 3’ reads of the same cDNA, and a pair of such
alignments ideally identifies both the 5’ and 3’ end of a gene, if not the complete

internal intron-exon structure.

80

Problems with EST data

If the data were perfectly reliable, each EST would provide perfect, unquestionable
evidence for either the 5" or 3’ end of a gene, and in addition perhaps part of the
intron-exon structure. Unfortunately, ESTs are naturally error-prone, due to their
high-throughput, single-read nature. This can lead to errors when they are aligned.

In addition, there are other problems associated with EST data:

Sample bias The pool of available ESTs is unavoidably biased towards genes that
are highly and ubiquitously expressed. EST databases are therefore not gener-
ally a useful resource for either the discovery or the elucidation of the structures

of genes expressed at at low levels or under very specific conditions.

Pseudo poly-A sites The EST sequencing process begins by the reverse tran-
scription of the mRNA into a double-stranded complementary DNA (cDNA),
primed from the poly-A tail at the 3’ end of the transcript. If the transcript
by chance contains a string of A residues somewhere other than the 3’ end,
then reverse transcription could begin from this place, resulting in a ¢cDNA
for which part of the 3’ end of the gene is missing. When aligned back to the
genome, the 3° EST match ends somewhere upstream of the true 3’ end of the

gene, sometimes in the protein-coding portion.

5’ end incompleteness It is often the case that the 5" end of the cDNA is miss-
ing, either because the mRNA it was synthesised from had been partially
digested at the 5" end, or because the reverse-transcription reaction did not
carry through to completion. When a 5 EST is aligned back to the genome
therefore, the match can begin somewhere downstream of the true 5’ end of

the gene, often in the protein-coding portion.

Ambiguous matching The low-fidelity of EST sequences means that mismatches
must be allowed when aligning them to genomic sequence. A common im-

plication of this is that the EST will align to multiple places in the genomic

81

sequence, and it is a not always obvious to identify the “correct” alignment.

Annotation errors It is not uncommon for an EST sequence to be deposited in
a nucleotide database with the incorrect assignment of orientation, e.g. a 5’
EST being annotated as a 3’ EST. This can cause confusion when inferring

information from an EST alignment such as the strand to which it matches.

The source of C.elegans EST data

The WS52 release of WormBase contained around 100,000 C.elegans EST sequences.
As part of the Sanger Institute worm sequence curation process, each of these ESTs
is isolated to a small number of localised regions in the genome by BLASTN [2], and
then accurately aligned using the spliced-local-alignment program EST_GENOME [79].
It is important to note that some ESTs are aligned to several places in the genome
using this procedure, and others not at all. For those that are aligned, the result
is a set of “exons” each of which can be described by a 5-tuple: (EST-identifier,
EST-start, EST-end, genome-start, genome-end).

For WormSeq, these exons were re-mapped into (EST-identifier, EST-start, EST-
end, WormSeq-start, WormSeq-end) 5-tuples, discarding those falling outside the
regions extracted from the genome to form artificial sequence, and truncating those
with partial overlap to these regions where necessary. As a result, 261 of the 325

gene loci in WormSeq have at least one EST match.

3.6.2 A GAZE model for the use of EST alignments

The natural approach is to use the EST match exons as segments providing ev-
idence for protein-coding regions. These segments will be expected overlap with
the untranslated regions of genes however, so such a method would lead to the
over-prediction of the coding portions of the genes. I therefore extend the model
of gene structure to include the untranslated regions at the ends of genes, incorpo-
rating features for the beginning and end of transcription: “transcript_start” and

“transcript_stop”.

82

With this modification, EST match segments can now be used as evidence for
protein-coding regions and untranslated regions. However, such a model is not
exploiting the power of EST alignments in their identification of intron-exon bound-
aries and gene extents. I therefore devised a general EST pre-processing strategy
that would make the gene structure information encoded in the alignments more
readily available to be used by GAZE. The pre-processing is performed according to

the following schedule:

e From the pool of EST ’exons’, construct a set of EST ’transcripts’, lists of the
exons from a single EST ordered by their location on the genome. Transcripts
with an average match identity to the genome of less than 95% are discarded

at this stage.
e For each transcript, generate:

— “EST _match” segments for the exons;

— “EST_intron” segments for the regions between transcript exons that are

adjacent in the EST but separated in the genome sequence;

— if EST is a 5’ read, a “transcript_start” feature for the beginning of the

transcript;

— if EST is 3’ read, a “transcript_stop” feature for the end of the transcript.

e For those cDNAs for which there is exactly one 5" and one 3’ transcript, gener-
ate an “EST _span” segment for the region between the start of the 5’ transcript

and the end of the 3’ transcript.

Although the matches produced by the EST_GENOME program score each exon
according to its percentage identity to the genome, the model was found to be
ineffective when these scores were used directly (data not shown). In addition,
derived features and segments do not have an associated score. I therefore used the

following scoring scheme for the EST-derived features and segments:

83

EST _match These were given the score (identityl_ogoS)’length. The rationale for this

is to ascribe more confidence to long, contiguous exons with high identity
than to short exons with high identity. The latter are an artifact of the EST
alignment process, where single base-pair deletions in the EST with respect to
the genome cause two shorter high-identity exons to be created. Also, since
it is expected that the number of “EST _match” segments falling in a given
region will be highly variable (from 0 to hundreds), the “projected per-base”

segment scoring approach (equation 2.5) is most appropriate.

EST_intron These were scored according the average identity of the flanking ex-
ons. A scaling factor of 0.05 was applied to bring the order of the scores into
line with other segments being used. Since these segments are expected to
match candidate intron regions precisely, their use is qualified with a match

constraint?.

EST _span These segments correspond to regions containing exactly one complete
gene. However, due to the problems with EST data explained earlier it will
often be the case that an “EST _span” segment covers only part of a gene.
The segments are therefore interpreted as regions that should contain no more
than one gene. The way that this is realised in GAZE is to use the segments as
supporting evidence for intergenic regions, but to give them very high negative
scores, in this case —10000. This penalises the prediction of intergenic regions
where EST _spans lie, effectively preventing gene splitting. This is pertinent as

the Split Genes figure for GAZE _trans was quite high (see table 3.2).

transcript_start and transcript_stop features were assigned the neutral log prob-

ability ratio of 0.

Figure 3.9 shows pictorially a GAZE configuration for incorporating these EST-

derived features and segments, over a model of gene structure that now accounts for

3Recall from chapter 2 that match constraint stipulates that the a segment should only contribute

towards the score if its extent matches the region being considered precisely.

84

Sn Sp Av MG WG SG JG

GAZE EST 0.58 0.53 0.56 0.009 0.088 1.02 1.03
GAZE trans || 0.47 0.42 044 0.012 0.093 1.07 1.04
GENEFINDER || 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.3: Comparative gene-level accuracy of GAZE_EST in comparison to GAZE_trans and

GENEFINDER. Accuracy measures are defined in section 1.4.1.

the untranslated regions at the ends of genes (as well as trans-splicing). This model
is referred to as GAZE _EST.

Table 3.3 shows the gene-level accuracy of the GAZE_EST model in comparison
to the GAZE trans model and GENEFINDER. GAZE_EST displays an improvement
over all models presented so far, as well as GENEFINDER.

In describing the GAZE trans model, I noted that some incorrect splitting of
gene structures was inevitable but showed that the net gain in accuracy achieved
by this innovation was significant. In introducing EST evidence, there is no obvious
reason why the accuracy of some predictions might become worse. However the net
gain of 37 additional correct structures identified by GAZE EST over GAZE trans
consists of 39 that GAZE _EST correctly identifies whilst GAZE trans did not, and
2 that GAZE_trans correctly identified whilst GAZE_EST does not. There are also
2 additional examples of a GAZE _EST prediction having fewer correct exons than
the corresponding GAZE _trans predicted structure. Closer examination of these 4

examples reveals a variety of reasons for the decrease in accuracy:

Introns in UTR. In two of the cases, the EST evidence supports the presence of
an intron in the 5’ untranslated region of the gene. Since the GAZE_EST
model only allows for introns in the coding portion of the gene, the prediction

of this coding portion has been extended in the 5’ to accommodate the intron.

Overlapping transcription units. In one case, the final coding exons of a gene on

the forward strand overlapped with the 3’ UTR of a gene on the reverse strand,

85

transcript
start

5 s
T ©
g £
3
§ s S S/ 5 S S S S e S El
E g S
8
=
g 3
E
/—\ exact segment
m transcript
stop
Figure 3.9:

The GAZE_EST model, allowing for trans-spliced genes and untranslated regions. It is
a simple extension of the GAZE_std model (figure 3.4), which is shown in pale-shade for reference. The

“match”, “intron” and “span” segments shown are the “EST _match”, “EST_intron” and “EST _spans” seg-

ments referred to in the text.

86

as supported by an EST alignment. GAZE, at least as I have presented it so
far, classifies each base in the sequence as belonging to exactly one function
class. The region here was classified as a 3’ UTR on the reverse strand, causing

the final coding exon of the forward strand gene to be missed.

Incorrect alignment In the final case, a cluster of EST alignments in the intron of
the gene caused GAZE_EST to split the structure incorrectly. This region also
had a partial match to a nucleotide database cDNA that matched with a higher

score elsewhere in the genome, suggesting the possibility of a pseudogene.

Such problems were not confined to these four examples; in other cases though,
the prediction was unaffected. In the design of the scoring scheme I was attempting
to achieving a balance between the gains to be had by treating the EST exons as
strong evidence for genic regions, and the losses incurred by treating them as ‘the
truth.” The fact that only a small number of prediction were affected by EST-

confusion supports the validity of the scheme.

3.7 A closer look at the accuracy of GAZE

This section, provided for completeness, examines various aspects of the accuracy
of the GAZE models presented earlier. Thus far, results have been presented at the
gene level only for purposes of illustration.

The performance of the GAZE models has so far been assessed in comparison
to the GENEFINDER program which, indirectly at least, works with the same signal,
content and length-penalty models. As the basis for a more objective evaluation, I
therefore also include in the following results for FGENESH [96], an HMM-based gene
prediction program that works in a similar manner to the more widely used GENSCAN
[21]. Unlike the latter, however, FGENESH comes with a parameter file for prediction

in C.elegans sequences specifically, as well as a “-nematode” command-line directive.

87

Sn Sp Av MG WG SG JG

GAZE EST 0.59 0.53 0.57 0.009 0.088 1.02 1.03
GAZE trans 0.47 042 0.44 0.012 0.093 1.07 1.04
GAZE std_gf 0.35 0.35 0.35 0.012 0.076 1.03 1.09

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03
GENEFINDER 0.50 0.44 047 0.012 0.104 1.07 1.04
FGENESH 0.51 0.42 047 0.006 0.144 1.08 1.03

FGENESH_NO-w | 0.18 0.16 0.17 0.012 0.125 1.07 1.09

Table 3.4: Comparative gene-level accuracy of various programs on WormSeq. Accuracy measures are

explained in section 1.4.1

3.7.1 Gene-level accuracy

Table 3.4 collates the gene-level accuracy results for all GAZE models presented
earlier (with the exception of GAZE std+ and GAZE std + +, which were for illus-
trative purposes only), as well as GENEFINDER and FGENESH.

The table shows that the accuracy of FGENESH is comparable with that obtained
by GENEFINDER and GAZE _trans, although the former is slightly more sensitive and
less specific. Reassuringly, the GAZE model making use of EST evidence performs
best of all.

The fact that the GENEFINDER and GAZE trans take account of trans-splicing
begs the question of whether the comparable accuracy of FGENESH is obtained by it
too incorporating a worm-specific model of gene structure. Since FCENESH is known
to perform well on the sequences of a variety of organisms, it is natural to assume
that it is the parameter files that give it organism specificity. Examination of an
FGENESH parameter file reveals elements for signal, content and length distribution
models, but nothing for the model of gene structure itself. It is informative therefore
to run the program against WormSeq with the C.elegans parameter file but without

3

specifying the “-nematode” command-line option (referred to in table 3.4 as FGE-

NESH_NO-W). A marked decrease in accuracy is observed, suggesting that the option

88

Base accuracy Exon accuracy
Sn Sp CC [Sm Sp Av ME WE
GAZE_EST 099 093 094|090 084 0.87 0.02 0.09
GAZE _trans | 0.98 091 0.93 |0.86 0.80 0.83 0.03 0.11
GAZEstd_gf || 0.98 090 0.92|0.84 0.77 0.80 0.04 0.12
GAZE_std 099 084 0.88]0.85 067 0.76 0.03 0.24
GENEFINDER || 0.98 0.90 0.92 | 087 0.78 0.83 0.03 0.13
FGENESH 098 091 092|088 080 0.84 0.03 0.13

Table 3.5: Comparative base-pair-level and exon-level accuracy of GAZE std on WormSeq. The accuracy

measures are explained in section 1.4.1

activates a C.elegans-specific strategy, either a model of gene structure (as here), or
something else such as a different evidence weighting scheme. Without access to the

source-code, it is impossible to tell what exactly this is.

3.7.2 Accuracy at base-pair and exon-level

Table 3.5 shows the accuracy of the all models at the base-pair and exon-level.
The results are largely consistent with those at the gene-level, but some interest-
ing elements are evident. Firstly, all programs show strikingly similar accuracy at
the base-pair level, making it in this context at least not very useful as an accuracy
measure. Secondly, although FGENESH was more sensitive and less specific than
GENEFINDER at the gene-level, at the exon level it is both slightly more sensitive
and specific. This suggests that the incorrect genes predicted by FGENESH contain

small numbers of exons.

3.7.3 Accuracy by exon-type

Table 3.6 shows exon-level accuracy for each of initial, internal and terminal exons,
as well as single-exon genes (termed “single”).

The greater accuracy of all programs in the identification of internal exons sup-

89

Sn Sp Av ME WE
GAZEEST |0.79 0.74 0.77 0.06 0.16
GAZE_trans | 0.72 0.67 0.70 0.11 0.19
Initial GAZE std gf | 0.57 0.56 0.57 0.13 0.30
(309) GAZE std 0.64 0.43 0.54 0.10 0.46
GENEFINDER | 0.72 0.66 0.69 0.11 0.22

FGENESH 0.75 0.61 0.68 0.11 0.24
GAZEEST |0.92 086 0.89 0.01 0.06
GAZE_trans | 0.89 0.83 0.86 0.01 0.08
Internal || GAZEstd_gf | 0.90 0.80 0.85 0.01 0.09
(1620) GAZE std 0.90 0.80 0.85 0.01 0.11
GENEFINDER | 0.92 0.82 0.87 0.01 0.10

FGENESH 092 087 090 0.01 0.07

GAZE_EST |0.85 0.80 0.83 0.04 0.16
GAZE_trans | 0.81 0.74 0.78 0.06 0.18
Terminal || GAZE std gf | 0.78 0.78 0.78 0.06 0.15
(309) GAZE std 0.82 0.55 0.69 0.04 0.37
GENEFINDER | 0.80 0.72 0.76 0.07 0.21
FGENESH 0.84 0.68 0.71 0.06 0.26

GAZE_EST |094 0.73 0.84 0.00 0.22
GAZE_trans | 0.94 0.59 0.77 0.00 0.26
Single GAZE stdgf | 094 0.71 0.83 0.00 0.24

(16) GAZE std 0.8 0.13 0.51 0.00 0.85
GENEFINDER | 1.00 0.63 0.81 0.00 0.29
FGENESH 0.63 0.77 0.70 0.00 0.23

Table 3.6: Exon level accuracy on WormSeq, by exon type. The number exons of each type in WormSeq

is shown in parentheses. Accuracy measures are explained in section 1.4.1

90

ports the observation that the ends of genes are more difficult to identify than the
internal exon-intron structure. This is where EST evidence helps, and the table
shows that the win in overall accuracy of GAZE EST over all other programs is due
largely to its better identification of initial and terminal exons; indeed, FGENESH has
the slight edge for internal exons. The other notable aspect of these results is the
difference between GENEFINDER and FGENESH in their identification of single-exon
genes. GENEFINDER identifies all of them correctly at the expense of predicting many
exons as single when in fact they belong as part of a multi-exon structure. FGENESH

is apparently more conservative in predicting single-exon genes.

3.7.4 Genome scale accuracy

The precise identification of complete gene structures can depend on the genomic
context of the genes; that is, their relationships to each other with respect to distance
and orientation. It might be argued that extracting the genes from their genomic
context, as was done in the construction of WormSeq, provides an artificial problem
for gene prediction programs.

In construction of the WormSeq dataset, I have tried to provide as far as pos-
sible a realistic context for the cDNA-confirmed genes, by not inserting them into
a randomly generated intergenic landscape as has been done by others [53], but by
extracting the surrounding intergenic DNA with the genes. The technique of tak-
ing half of the region to the next curated gene in each upstream and downstream
direction was an attempt to ensure that the distances between the genes was also
realistic. However, it remains the case that certain aspects of gene organisation,
such as operon structure, are disrupted by extracting the genes from their genomic
context.

To address such concerns, I applied all of the models (as well as GENEFINDER
and FGENESH) to the WormBase_Sanger DNA sequence, from which the WormSeq
genes were extracted. This DNA amounted to 48,722,743 nucleotides, arranged

in 9 contiguous sequences ranging in length from around 1 million to 12 million

91

Base accuracy Exon accuracy Gene accuracy

Sn Pred Sn Pred ME | Sn Pred MG SG

GAZE_EST 0.99 12.61M | 0.90 60559 0.02 | 0.57 9075 0.012 1.02
GAZE_trans | 0.98 12.76M | 0.86 60860 0.03 | 0.80 9393 0.009 1.07
GAZE std_gf || 0.98 12.81M | 0.85 61487 0.03 | 0.39 8645 0.009 1.03
GAZE_std 0.99 14.06M | 0.86 71545 0.02 | 0.44 14685 0.003 1.14
GENEFINDER || 0.98 13.00M | 0.88 63560 0.03 | 0.51 9584 0.009 1.07
FGENESH 0.98 1291M | 0.88 62668 0.03 | 0.50 10707 0.004 1.07

Table 3.7: Comparative accuracy on WormBase_Sanger. Accuracy measures are defined in 1.4.1. The
number of predicted residues, exons and genes (Pred) are quoted in lieu of specificity measures, which are

not defined for a genome scale analysis

nucleotides. On a standard Compaq DS10 workstation, GAZE, GENEFINDER and
FGENESH are happy dealing with gene-prediction data from sequences of a million
base pairs or more, but for 12 million bases, all programs require memory resources
that are beyond the limits of such a machine. For GAZE, the GENOME_GAZE script
introduced in chapter 2 makes the analysis of such large sequences straightforward,
without any requirement to split the DNA into several files. No such luxury existed
for GENEFINDER and FGENESH, so it was therefore necessary to split the DNA into 1.1
Megabase chunks, with 0.1 Megabase overlap between each chunk. The predictions
in the overlapping regions for these two programs were resolved by inspection. The
results of applying all programs to what amounts to half of the C.elegans genome
are depicted in table 3.7.

It is interesting that GENEFINDER seems to have a slight edge over FGENESH
here, both in sensitivity and specificity. The reverse was true for WormSeq. Overall
though, these results are consistent with those presented for WormSeq, suggesting

that the test sequence is indeed a good approximation of a real genomic contig.

92

3.8 Examining the probabilistic aspects of GAZE

One of the novelties of GAZE with respect to other “exon assembly” based gene
prediction systems is the ability to interpret the predictions in a probabilistic man-
ner. As explained in chapter 2, the definition of a probability distribution over
all possible gene structures (given a gene structure model), allows the calculation
of posterior probabilities for individual gene components. In this section, I show
how this facility can be used to reason about the reliability of predictions made
by GAZE. I also discuss how posterior probabilities can act as an aid for manual
curation of gene structures, in particular beginning to address the difficult problem
of identifying alternatively spliced genes in C.elegans.

GAZE can be instructed to report posterior probabilities for (a) the features
comprising the highest-scoring gene structure; (b) all candidate features; (c) the
regions defined by adjacent features in the highest-scoring gene structure; and (d)
all candidate regions of specified types. In the analysis presented here, I make use
of the first two of these facilities, largely because predicted and candidate features
can be designated as correct (with respect to the cDNA-confirmed gene structure)
or incorrect. Predicted and candidate regions also carry the possibility of being

partially correct, which adds an unnecessary complication to the analysis.

3.8.1 The reliability of GAZE predictions

GAZE reports a posterior probability for each feature that it identifies as belonging
to the optimal gene structure. Since these are intended to be interpreted as degrees
of belief in the correctness of the features, it is worth investigating how well they
perform as indicators of reliability. For example, does a reported posterior probabil-
ity of 0.5 for a feature really mean that we can be “50 percent sure” that the feature
is correct? Figure 3.10 shows the posterior probabilities for the features comprising
GAZE-predicted genes. Plotted for a variety of probability intervals are the number
of features belonging to GAZE-predicted genes with a posterior in that interval, and

the proportion of them that are correct.

93

(a) 3500 1

+ 0.9
3000 +
+ 0.8
2500 + + 0.7
©
+o06 &
g 2000 - g
H 05 &
< £
#* 1500 + 04 =3
+ 04 9
&
1000 + + 0.3
+ 0.2
500 +
+ 0.1
o

Posterior probability

(b) 3500 1

+ 0.9
3000 +
+ 0.8
2500 + + 0.7
— k=1
+ o6 2
g 2000 + 5
s +05 §
<@ £
= 1500 + S
1 o4 &
o
1000 + b °-3
+ 0.2
500 +
+ 0.1
o
Posterior probability
(C) 3500 1
+ 0.9
3000 + —
+ 0.8
2500 + + 0.7
B
+ 0.6 &
g 2000 5
H 05 &
2 =4
+# 1500 -+ 2
104 &
(=%
1000 + + 0.3
+ 0.2
500 +
+ 0.1
o

Posterior probability

Figure 3.10: Posterior feature probabilities for GAZE models. Shown for features part of the coding-
portions of predicted gene structures in each case are the number of features with a posterior probability
in each interval (bars), the number of those predicted features that were actually correct (shaded portions
of bars), and this number as a proportion of the predicted features in the interval (line). (a) GAZE _std_gf
(4916 features); (b) GAZE_trans (4866 features); (c) the GAZE_EST (4832 features).

94

Two points are evident from the plots. Firstly, as the sophistication of the model
increases, so does the number of features with high posterior probability. This im-
plies that improving the model not only increases the accuracy of GAZE predictions,
but also generally improves the confidence that it assigns to predictions. This par-
ticularly makes sense with the GAZE _EST model, where the EST evidence would
be expected to add weight to many features belonging to gene structures predicted
by the less sophisticated models. Secondly, the lines plotting the proportion of pre-
dicted features that are correct in each posterior probability range are close to the
ideal, 1:1 line. This shows that the posterior probabilities are accurate indicators of

reliability.

3.8.2 Feature probabilities can aid manual curation

The posterior probabilities reported by GAZE can also provide an aid for the manual
curation of gene structures, which involves selecting from large numbers of candidate
gene features, those that imply gene structures that are most consistent with the
evidence. Figure 3.11 shows posterior probabilities for all of the candidate features
presented to the GAZE models. Again, the proportion of features within each inter-
val that are correct is consistent with the posterior probability computed by GAZE,
suggesting that they are good indicators of reliability.

A striking feature of figure 3.11 is the number of features with low posterior
probability. Because features with low or zero posterior probabilities do not fit into
sensible gene structures, such features can be ignored by a human annotator, reduc-
ing the number of possible assemblies and therefore the likelihood of mistakes. Of
the 872482 candidates for features that comprise the coding part of WormSeq genes
(i.e. the starts, stops and splice sites), 587021 (67 percent) have zero probability (to
4 decimal places) according to GAZE std_gf model, 576517 (66 percent) according
to GAZE_trans, and 632067 (72 percent) according to GAZE _EST.

It is necessary to assess the likelihood that, by discarding features with zero

probability, we discard features that are in fact correct. The only example of this

95

(a) 7000 1

6500

off scale (855849)
6000

5500
5000
4500
4000
3500

#features

3000

Proportion correct

2500
2000
1500
1000

500

Posterior probability

(b) 7000 1

-
[————— off scale (854802)

6500
6000
5500 +

5000 -

4500
4000

3500

#features

3000

Proportion correct

2500 +
2000
1500 +

1000

N

Posterior probability

(©) 000

6500 [off scale (857299)

6000 -

5500 +
5000 +
4500
4000 —+

3500

features

3000 +

Proportion correct

2500

2000 +

1500 -

1000 +

Posterior probability

Figure 3.11: Posterior feature probabilities for the three GAZE models, for all candidate features; (a)
GAZE_std_gf; (b) GAZE_trans; (¢) GAZE_EST

96

occurring in WormSeq is the FO9ES8.3 gene, for which the high-scoring splice acceptor
at the 5’ end of the third exon is given zero probability by all three GAZE models.
The problem here is that the donor splice at the 3’ end of the exon is not detected
by GENEFINDER at the default cutoff (it scores marginally below). In this case,
it therefore becomes impossible to incorporate the acceptor splice feature into any
gene structure with measurable probability. When the missing donor supplied as an
external feature (a trivial task with GAZE), not only does the acceptor feature now
have a very high posterior probability under all models (0.9993), but the low-scoring
donor itself has a posterior probability of 1.0, underlining its vital importance in the
gene structure. This particular example demonstrates well the utility to be gained
from the posterior probabilities and the care that should be taken when interpreting

them.

3.8.3 Feature probabilities could be used to identify alternative

splicing events

Like most existing gene prediction programs, GAZE does not explicitly address the
problem of identifying all of the variant gene structures for genes that are alterna-
tively spliced, and this is still very much an open problem (see section 1.5). Burge
[20] gave an example of how the sub-optimal exons reported by the GENSCAN pro-
gram can sometimes be correct in alternative splice forms of the gene. GAZE offers
the possibility of identifying not only sub-optimal exons, but also introns and other
types of region, as well as features themselves. I show here how the feature posterior
probabilities can begin to be used in the prediction of alternatively spliced genes.
Figure 3.12 depicts the gene structure of the nhr-61 locus in C.elegans, with its
two alternatively spliced isoforms. The structure of this gene is has been confirmed
by the alignment of full-length cDNAs for each isoform to the genome. As shown
by the figure, the initial exon of neither isoform is identified precisely by any of the
GAZE models presented (the one predicted by GAZE _EST is shown in the figure).

Upon examination of the posterior probabilities, we find first that of the fea-

97

o — o — =
o = " Haget
] ~ol &SR
] e U g
4-3k o e
] :'-: =
rbir—&1 E = D:l' E-"
i =g ?: n%
5 =gh§=-§l
5 B —. Sel ="
-;—1k ; :EEE =1 rﬂl |
B — g - o i
] ,:%H;u"_ L .
] ICRoSL Sle TH g1
]] _ER_I _1 -
Jox Pkl IR
(b)
~550 11 1=
!
rhr=61 |] i !
'_ ™1
-500 - =

Figure 3.12: The C.elegans nhr-61 gene locus (WormBase WS52 identifier W01D2.2), with its two
alternatively spliced isoforms (blue), and the GAZE_EST predicted structure (orange). (a) GAZE_EST fails
to correctly identify the initial exon of either isoform; (b) An enlargement of the 3’ end of the third exon
of the correct gene structures, showing alternative splice donors, both supported by alignments of ESTs to
the genomic sequence by EST_.GENOME (yellow). Although only one of the two alternative donor features
belongs to the correct gene structure, the posterior feature probabilities reported by GAZE provide evidence

for both, as explained in the text.

98

tures predicted by GAZE that are not part of either correct gene structure, none of
them have strikingly high probability; 0.432, 0.431 and 0.705 for the incorrect start,
donor and acceptor. The probability reported for the correct start (not predicted
by GAZE) is 0.269, not insignificant, suggesting that it is a viable alternative. Sec-
ondly, of the GAZE-predicted features part of both correct gene structures, all of
them have probability of 0.999 or greater. Taken together, these two observations
support what the earlier graphs showed, that the posterior probabilities are good
indicators of reliability; GAZE has reported a higher degree of confidence about the
parts of its prediction that turn out to be correct. Where the two isoforms differ,
in their choice of donor splice site at the 3’ end of the third exon, GAZE is less
confident; 0.751 for the donor that is part of the GAZE prediction. Upon inspection
of the posterior probabilities for all candidate features in this region, it becomes
apparent that the “missing” probability is found in the alternative donor (0.249).
Although further work is required to bring together these ideas and observations
into an automated system, this example (another was presented in [59]) demonstrates
well how the GAZE feature posterior probabilities can point towards firstly elements
of predicted gene structures that may not be correct, and secondly elements not
part of predicted gene structures that might be correct, either in the single correct
structure for the gene, or in one of the several possible structures of alternatively

spliced genes.

99

Chapter 4

A method for estimating
optimal parameters for a GAZE

model

4.1 Introduction

A key property of the GAZE system is the ability to include signal and content infor-
mation of arbitrary types from multiple sources. This was evident in the GAZE_EST
model of the last chapter, where separate segment types corresponding respectively
to regions of high coding potential and EST database hits both contributed to the
score for candidate coding exons. For such an approach to work effectively, the evi-
dence of each type must be weighted appropriately. For the GAZE _EST model, this
problem was addressed in a rather ad hoc manner, by applying a scaling factor to
the scores of the “EST _match” segments to make them approximately of the same
order as the segments of high coding potential. This scheme worked well in this case,
but in general it will be difficult to to obtain optimal evidence weightings in this
way. Far more desirable would be a way to automatically derive optimal weights for

the segments used in a model.

100

This chapter describes my work on an automated method for obtaining optimal
weights for the scores of the various pieces of evidence referred to in a GAZE model.
The idea is to obtain the set of weights for which the prediction accuracy of the
model is as high as possible.

I start by modifying the GAZE scoring function to accommodate weights for
each type of evidence. I then go on to describe the design and implementation of a
method for obtaining the optimal set of weights for a GAZE model with respect to a
set of training sequences with known gene structures. The technique is inspired by
the work of Stormo and Haussler [109] and Krogh [68] (amongst others) and therefore
contrast it with other kinds of parameter estimation in the field of gene prediction.
The chapter ends with an example application, namely training the evidence weights
for the GAZE_EST gene prediction system for C. elegans sequences (see chapter 3).
A more detailed examination of the performance of the method is presented in the
following chapter, whereby it is applied to the implementation of a GAZE gene

prediction system for vertebrate sequences.

4.2 Evidence weighting in GAZE

4.2.1 Optimally parsing a sequence according to weighted evidence

In 1994, Stormo and Haussler published a method for parsing a sequence into regions
of “intron” and “exon” using multiple types of weighted evidence for each of introns
and exons [109]. In their method, exons and introns are scored according to the
following scheme:

Tg(i,j) = Z wuCp(i,)

neM

T[(’L,j) - Z wncﬁ(ihj)

KEK
M is a collection of types of evidence for exons; C),(4,7) is the raw “score” for

evidence-type p over the region i...j of the sequence; w, is a real number weight

101

for evidence-type u. K, Tx(i,j) and wy are similarly defined for introns. The
score of a parse of a query sequence into exons and introns is simply obtained by
addition of the appropriate values from the 7" matrices. For example, for a sequence
1000 base pairs long, the parse (1-50,intron):(51-75,exon):(76-600, intron):(601-950,

exon):(951-1000, intron) would be scored as:

Ty(1,50) + T(51,75) + T1(76,600) + T(601, 950) + Tr(951, 1000)

The authors show how the highest scoring parse can be obtained by dynamic
programming. They then go onto define a probability distribution over all possible
parses, and present a procedure for obtaining the set of weights that maximises
the probabilities of the correct parses of a set of training sequences. The method
described in the following sections has at its core a generalisation of this procedure
to make it applicable to GAZE, where the model of gene structure is not known in
advance. I start though by describing how evidence weighting is accommodated in

the GAZE scoring function.

4.2.2 Accommodating weights in the GAZE scoring function

A weight is attached to every piece of evidence that contributes to the score; that is,
each feature, segment and length penalty function. Each weight is a floating point
number by which the score of the associated element is scaled, and features (and
segments) of the same type are scaled by the same weight. Intuitively therefore, the
weights can be viewed as a way of ascribing a relative importance firstly to each
element of the model (e.g. splice site versus translation start sites) and secondly to
different types of evidence supporting the same region type (e.g. coding segments
versus database matches for potential protein coding exons). I refer to the complete
set of weights for a given model as w.

In order to accommodate the weights, I start by reformulating the GAZE scoring
(section 2.4). Given again an ordered list ¢ = ¢1,da, ..., ¢, of features defining

a valid gene structure according to a GAZE model (with ¢¢ and ¢,41 denoting

102

respectively the special features “BEGIN” and “END” marking the beginning and
the end of the sequence; see chapter 2), then the weighted score of ¢, E(¢,w) is

calculated as:

E(¢,w) = zn:T(Cbi,cbiH,W) (4.1)
i=0

T(¢i, 05, W) = Segyg)—t(p,)(0:), (), W)
+ Lent(qbl —t(¢;) ((¢J) (QSZ) =+ 17W>

+ Loc(¢j,w) (4.2)

The function T'(¢;, ¢;, w) is calculated as a composite score for the region ¢; —
¢, comprising components for segment, length penalty and local feature scores as
before (see equations 2.1, 2.2). The difference is that weights for the various types
of evidence are included in T

I construct a mapping W from the types of the features, segments and length
penalty functions to the elements of w such that each of the former is associated with
exactly one of the latter. For example, W (w,t(¢;)) is the element of w that is the
weight for feature ¢; and all other features of the same type. Given this mapping,
the feature, segment and length-penalty components of the score are scaled in the

following way:

Feature score weighting

The weighted local score for a feature ¢; is calculated as the given score scaled by

the weight :

Loc(¢i, w) = g(¢i)W (W, £(i)) (4.3)

103

Segment score weighting

Recall from equation 2.3 that the segment score for a region is a sum of scores for
each segment qualifier given in the model rule for the region. If again 7 is the
relevant subset of segments for segment qualifier ¢, and t(q) is the type of those

segments', then the weighted segment score is calculated as:

Segsre—tgt(T,y, W) = Z SegQ(W], x,y)W(w,t(q)) (4.4)

qusrc—n>

The additive nature of both specific segment scoring strategies (equations 2.4
and 2.5) means that this weighting can be applied in practice directly to the given
scores for each segment in advance (according to type), as was the case for the

features above.

Length penalty weighting

Finally, the weight for a length penalty function is a simple scaling factor applied

to each penalty value:

Lensrcatgt (l‘, W) = Lensrcﬂtgt ($)W(W7 t(LenSTCHtgt)) (45)

where t(Lengyc—igt) is an identifier for the length penalty function used in the
rule src¢ — tgt. This approach assumes that the shape of the function has already
been determined by some sort of inversion of a frequency-of-occurrence histogram.
An alternative would be to model each function as a series of constants, each subject
to a separate scaling factor. This would potentially provide a powerful method for
the simultaneous estimation of the shape and weight of each penalty function. Doing
this however would greatly increase the number of free variables of the system, and

I will not consider it further here.

'all relevant segments for a Segment Qualifier must have the same type due to the compulsory

type constraint

104

In practice, specific values for the weights are defined in the configuration file,
via a “mul” attribute attached to the the declaration of each element of the gene
structure model. When GAZE is used in prediction mode, the given values are used
to scale the scores of the appropriate model element in the way described above
before the dynamic programming is performed. When used in parameter-estimation

mode, the given values define the starting value of the function to be optimised.

4.3 Two approaches to obtaining an optimal set of weights

The aim of the method is to obtain the set weights w° that maximises the gene
prediction accuracy in a set of training sequences for which the gene structures
are known. The natural approach would be to design a function of the weights
that represents the gene prediction accuracy in the training sequences, and then
maximise this function with respect to the weights. A problem with this method is
that the standard measures of accuracy are not continuous functions of the weights.
This is because “accuracy”, as it has been defined so far, depends only upon the
highest scoring gene structure, and a small change in the weights can lead to a
large change in the optimal gene structure. By using the posterior probabilities of
chapter 2 however, it is possible to construct an accuracy function that is continuous
in the weights. I have implemented two accuracy functions based on these posterior
probabilities. The degree to which they give rise to an effective set of weights is
investigated in the following chapter. The remainder of this chapter focuses on the

design, implementation and optimisation of the functions themselves.

4.3.1 Maximum Likelihood

This method involves identifying the set of parameters that maximises the log-
probability of the correct (i.e. annotated/confirmed) gene structures in a set of
training sequences. Stormo and Haussler [109] showed how to do this in the context

of a gene prediction system based on weighted evidence, and their method is directly

105

applicable to the GAZE framework. Recall equation 2.9 which defines a probability
distribution over all possible valid gene structures (given a model). If there are K
training sequences, and the correct gene structure in training sequence k is ¢**, then

the ML approach is to maximise the following as a function of w:

K
oMb(w) = Z In P(¢"*|w) (4.6)
k=1

The posterior probability of the correct gene structure is thus made to be as high

as possible.

4.3.2 Maximal Feature Discrimination

By maximising the posterior probability of the correct gene structure, we at the same
time minimise the summed probabilities of all incorrect structures. Intuitively, this
appears desirable, but the drawback is that all of the incorrect gene structures are
considered equally “incorrect”. This is clearly not a good representation of gene
prediction accuracy; some candidate structures, although not completely correct,
will be closer to the correct structure than others. By maximising the probability
of the correct structure only, we may (and often do) increase the probability of
individual incorrect structures so that they score better than the correct structure,
and the highest scoring structure is even “less correct” than before.

The other main problem of the ML approach as presented above is that it relies
heavily on the knowledge of a single complete correct gene structure. We know that
many sequences have more than one structure that can be described as correct, due
to alternative splicing. It will also generally not be the case that we have accurate
data about all the feature types present in a model. In the previous chapter, I
showed how a generic model of gene structure could be extended to incorporate
trans-splice site candidates (via acceptor splice site predictions) and transcription
initiation and termination candidates (via EST information). The predictions made
by the extended model include regions defined by the additional features, such as

untranslated regions (where evidence was present). The assessment of the accuracy

106

of these predictions was not completely straightforward, because the “correct” gene
structures with which I was comparing included only the protein-coding part of each
gene. This is true of the majority of benchmark sets used to train and assess the
accuracy of gene prediction programs. I therefore took the approach of considering
only the protein-coding part of each predicted structure in the assessment, and
this worked adequately. Such a method will not work for the maximum-likelihood
training function above however; supplying a “correct” gene structure consisting of
a proper subset of the feature-types referred to in a GAZE model will cause the
weights for the other feature types to tend to negative infinity. We therefore need a
more general way of dealing with correct gene structures for which only the regions
involving specific feature types are known.

To address both of these problems, I have implemented a new objective function
of w that maximises the posterior probabilities of the features that are part of the
correct structure, while minimising the same for those that are not. In addition,
I provide a way of ignoring features of particular types in the optimisation. For
consistency with above, I work in log probabilities. If ¢%... d)fl(k,) this time is the
list of candidate features for training sequence k (where the special features (blg and

qﬁfl(k) 41 mark the beginning and end of the sequence as usual), then the function is:

n(k)+1

K
aMP(w) =3 3 r(@n)e(d)) nP(gf|w) + (1= e(¢f) In(1 = P(¢f|w))] (4.7)

k=1 =0

cl¢i) = 1 if g7 €t
= 0 otherwise (4.8)

r(¢7) = 1 if t(¢;) ¢ Ignore

= 0 otherwise (4.9)

107

The ideal result of maximising this function is a set of weights for which all gene
structures use as many correct features and as few incorrect features as possible.
We might expect, by optimising this function, to perform better on feature-based
measures of gene prediction accuracy. I refer to this method as Maximal Feature
Discrimination (MFD).

The problem of knowing only portions of the correct gene structure that involve
specific feature types is also addressed by this function: in its computation, we
simply ignore the features that are not of one of these specific types. We therefore
maximise the probabilities of the features which we know to be correct and minimise
the probabilities of those that are known to be incorrect; the probabilities of the
other, ignored features are unconstrained. It is important to note that this is not a
general strategy for making use of partial correct gene structures; if a feature type
is considered relevant for the computation of the above function, then all of the
features of that type present in the given “correct” gene structure are considered
correct, and, importantly, all other candidate features of that type are considered
incorrect. Hence the method is for dealing with feature types that are absent from

the the correct gene structures, not individual features.

4.4 Optimising the objective functions by gradient de-

scent

There are many published methods for maximising a multi-dimensional function
such as those described above (see [88] for a detailed review). I have chosen to
use a gradient-based method. Each evaluation of the functions above requires dy-
namic programming (see chapter 2), and a gradient-based method should give rise
to fewer function evaluations than a method that does not employ such information,
particularly when the number of dimensions is high.

I first describe the maximisation scheme that was used in terms of an anonymous

multi-dimensional objective function of a vector of parameters, a(w). I go on to show

108

in the next section how the derivatives of the two objective functions described in
the previous section can be obtained, thus making the method directly applicable

to GAZE.

4.4.1 A conjugate gradient descent method

To be consistent with other literature on function optimisation, I present this as a
minimisation algorithm. Maximisation of a function is equivalent to minimisation
of the negative of the function.

We wish to find the values for the elements of w for which the function a(w) is
at its minimum. The method of steepest descent begins with an arbitrary point w?,
and then repeatedly (a) computes a vector of partial derivatives Vw! at the current
point w! and then (b) minimises along the line w! + nVw! to obtain a new current

point witl:

t+1

w!'™ = min a(w! + nVw?)
n

The procedure is terminated when some stopping condition is satisfied, for ex-
ample when the change in function value is small enough.

The “line minimisation” step is the most complicated part of the procedure and
involves two basic steps: (a) identifying a range for n within which the minimum
must lie (i.e. bracketing the minimum) and (b) successively narrowing this region
until it is small enough to define the minimum to within a tolerable error based on
the precision of the machine (i.e. a section search). For both of these steps, I have
implemented multi-dimensional versions of the algorithms described in the book by
Press et. al. [88]. In particular, the section search method was originally described
by Brent [16].

As explained in [88], the problem with the simple steepest descent method is
that for many common functions, it will perform many small steps in descending
a long narrow valley-like function. This is because consecutive line minimisations

are necessarily in orthogonal directions, so the process zig-zags from side to side.

109

I have therefore implemented a variation of the steepest descent method proposed
by Fletcher and Reeves [43] and later modified by Polak and Ribiere [87]. The
idea of their method is to minimise not in the direction of the gradient at the new
point, but in a direction that does not interfere with any of the previous directions
travelled. The concept of non-interfering directions is formalised by Press et. al. [88]
as conjugacy. Two vectors u and v are said to be conjugate (i.e. non-interfering) if

the following condition holds:

wAv=0

where A is the matrix of second partial derivatives. The authors show that by
scaling and subtracting the last direction travelled u from the gradient at the new
point, a new direction conjugate to u, v can be obtained without explicit calculation
of this matrix. The resulting method belongs to a sub-family of similar methods
known in the literature as conjugate gradient descent.

The gradient descent method as I have described it has the desirable prop-
erty that the process is divided into “chunks” (line minimisations), between which

progress can be monitored and assessed if necessary.

4.5 Calculating the gradient by dynamic programming

To use conjugate gradient descent, or any gradient-based method, it is necessary to
be able to obtain, for any function point, the partial first-derivatives with respect
to each variable. Furthermore, it is necessary to do this efficiently, as the reason for
using gradient information in the first place is to keep the time taken to reach the
minimum as small as possible. In this section, I show how the derivatives of both of

the functions proposed in section 4.3 can be efficiently computed.

4.5.1 The derivative of the ML function

The partial derivative of the Maximum Likelihood function (equation 4.6) with

respect to single variable w in w is obtained by expressing the log probability of the

110

correct gene structure in terms of its constituent components. Since the function
comprises a sum over the training sequences, I simplify the notation by assuming a

single training sequence with correct gene structure denoted by ¢*.

9 oMb (w) 0 In P(¢*|w)
ow B ow
o | eE(e")
T ow o Z
0 E(o* 4
= aif)_z (4.10)

where Z is the partition function (given by equation 2.8), and Z’ is its derivative.
The derivative of the score of the correct gene structure can be computed simply
as the sum of the derivatives of the components. Given again a list ¢q, @1, ..., dpt1

defining the correct gene structure, we have:

EON) 3~ 2 (601, w) (a.1)

0
T(¢i,¢5, W) = 5 -5egug)—i(s;) (L($1), U(d5), W)
" aa Leny(,)—t(s,) (U(¢5) — Uéi) + 1, w)

0
+ %Loc(qﬁj, w) (4.12)

The feature, segment and length-penalty components are each themselves linear
sums of terms involving at most one variable, so it is straightforward to obtain their
derivatives. In particular, the derivative with respect to parameter w will be zero
for all components of the score that are not relevant for that weight, and equal to
the sum of raw (unweighted) scores for the component otherwise.

If ® is the space of all gene structures, the derivative of the partition function

can be expressed as follows:

7z = ZaE(¢)eE<¢> (4.13)

It can thus be thought of as an “weighted average” of the derivatives of all
gene structures. A different but related term occurs in the gradient of the Maximal
Feature Discrimination objective function. I will show how these quantities can be

calculated in section 4.5.3, after deriving the gradient of the MFD function.

4.5.2 The derivative of the MFD function

For the Maximal Feature Discrimination function (given by equation 4.7) I again
simplify notation by assuming a single training sequence with a complete list of

candidate features ¢g ... on41-

8aMFD(w) o n+1

3w~ 9w Z:O r(¢i)[c(¢i) In P(¢i|w) + (1 — c(¢:)) In(1 — P(¢|w))]
T eld) OP(dilw) 1 —c(dn) 9 P(¢ilw)
B ;r(@) [P(¢1|W) dw 1—P(gilw) ow }

n+1 N w |w

P(¢i|lw)(1 — P(¢i|lw)) Ow (4.14)

i=0
In order to obtain the derivatives of the posterior feature probabilities, I first

define Z; to be the sum of exponentiated scores of all gene structures that include

feature ¢;:

Zi= Y F@ (115)
PED:p; €0
The term Z; can be thought of as an “i-restricted” partition function, and di-

viding it by the unrestricted partition function gives the posterior probability for
feature ¢; (see equation 2.15). The derivative of the posterior probability of ¢; can

now be derived:

OP(ilw) 0 7
ow - dwZ
0Z; 07z
- -1 v g2 7
=7 ow ZiZ ow
A
— P (7 - 7) (116)

112

The derivative of the i-restricted partition function, Z/ can be expressed in terms

of a “weighted average of derivatives” in the same way as the unrestricted function:

Z— ¥ 8§(¢)6E(¢) (4.17)
sedipics OV

Expressing the derivatives of the i-restricted and unrestricted partition functions

in this way is the first step towards the design of a single method for the computation

of both, shown next.

4.5.3 Computing the weighted average of the derivatives

The aforementioned Stormo and Haussler article [109] includes a sketch of a dynamic
programming procedure for the efficient computation of a quantity analogous to Z’
above, i.e. the gradient of the partition function. A simple extension of their method
allows for the simultaneous computation of the gradients of both the i-restricted and
unrestricted partition functions.

The method relies firstly upon the fact that a gene structure ¢; ... ¢, can be
decomposed into two partial gene structures ¢;...¢; and ¢;...¢,, with the score
of the complete structure being the sum of the two partial structures?. If we denote
the set of all partial gene structures ending with feature ¢; as ® %, and likewise
the set of all partial structure beginning with feature ¢; as ®%-, then Z! can be
expressed in terms of all partial structures beginning and ending (respectively) with

feature ¢;:

7= Y efle)eEGy)

qsweb bi puedPi-

YOy OE(9) b

ow
PED % PeDi -

2the asymetry of the scoring function is helpful here; the local score for feature ¢; is included
in the partial structure for which it forms the end, but not for the structure for which it forms the

start

113

NGRS OE(9) b

_ - Ow
ped®i-- ped--i
= f(Q) Z aE_@eE(¢)+b(i) Z aE(‘b)eE(qﬁ) (4.18)
- Ow - OJw
pEDPi- ped-i

The final step follows from chapter 2, where the exponentiated scores of partial
structures ending and beginning with feature ¢; were computed respectively as f(7)
and b(7) (equations 2.11, 2.14).

All that remains is to obtain the weighted average derivatives for structures
beginning and ending (respectively) at ¢;. Let u/(i,w) be the weighted average
derivative of all partial structures ending with feature ¢;, with respect to parameter
w. Each of these partial structures can be decomposed further into a partial struc-
ture ending at ¢; (j < i), and the final region ¢; — ¢;. The score of this region can
be calculated independently as T'(¢;, ¢;, w), which allows us to derive a dynamic

programming recurrence for u/:

. 0 E(¢)
W (iw) = Y | WeE@’)
¢€q>..¢1

OE(¢9) 0T(¢j, ¢ bW
-y ¥ (a;)Jr ((;w W))GE(%T(@,%)

=Y TG [y agfu¢)eE(¢)+aT(¢j7¢i7W) T oFO

0<j<1 bed? ow pcd %3

= 3 TWieiw) (uf(j, w) + wﬂjg (4.19)
— w
1<t

The vectors for each parameter v/ can thus be populated by dynamic program-
ming (with v/ (0,w) = 0), and the weighted average derivative over all structures, Z’,
is obtained directly as u/(n + 1,w). It is straightforward to construct an analogous
“backwards” matrix where u®(i,w) denotes the weighted average of the derivatives

of partial structures beginning with feature i :

ub(i,w) - Z ol (¢isPr,w) <ub(k,w) + wb(k)> (4.20)

i<k<n+1 dw

114

The derivative of the i-restricted partition function then reduces to the following:

Z! = f(i)u®(i,w) + b(i)uf (i, w) (4.21)

Drawing all of these elements together, the derivatives of both the Maximum
Likelihood and Maximal Feature Discrimination functions can now be written down
in terms of elements that are directly computable by the methods presented here

and in chapter 2:

9 oM (w) OT (bg, oy, W) ub(O,w)
ow (Z 8wy) B (4.22)
Pr—PyEP*

MFD () it c(¢;) — i|w w(i,w) wl(i,w) wb0,w
837@0():2“@)((@ P(gi] >)< (i,w) | wl(iw) (0))

1 — P(¢i|w) b(i) f@ - b(0)

1=0

4.6 Implementation issues

4.6.1 Numerical stability

As in chapter 2, the calculation of the derivatives of the i-restricted and unrestricted
partition functions is performed in log-space to cope with limitations in machine

precision:

U(0) = —oc0

U iw) =ln 3 (eT<¢>j,¢i,w>+Uf<j,w>+ 3T(¢af'fi’w)em>>

0<j<i
Unlike the log-space computation of the forward and backward variables pre-
sented in chapter 2, the sum above is not guaranteed to be positive. This is due to
the unexponentiated term in the sum, the derivative of T'(¢;, ¢, w), which is often
negative. Additional book-keeping is therefore necessary in which I take the log of

absolute value of the sum, keeping track of those (i, w) for which U7 (iw) g in reality

115

negative and reversing the sign of the exponentiation of the U/ (j, w) in the equation
above for those cases.

The Maximal Feature Discrimination function and its derivative are problematic
to implement in practice due to the fact they are both undefined in the cases of
a correct feature having posterior probability of 0 or an incorrect feature having a
posterior probability of 1. Such situations are not impossible, and can be approached
arbitrarily closely if the feature set is incompatible with the correct gene structure.
I therefore took the natural approach of replacing log 0 and —* with a large negative
numbers. Both the value and the gradient of the function are somewhat inaccurate
therefore at extreme values for the weights, but since such extremities are typically
only encountered whilst bracketing the minimum, this is unimportant.

It is often the case that functions with complex behaviour such as those be-
ing optimised here have many local minima; the local minimum obtained depends
greatly on the starting conditions of the procedure, in this case the initial values for
the weights. There are two techniques commonly used to address this problem. The
first is simulated annealing [63], whereby a gradually diminishing level of “noise”
is added to the parameter values to give the function a stochastic opportunity to
escape from a local minimum. I have implemented the other common technique
which is to perform the optimisation several times from different starting points,
and choose the set of parameters that give the overall lowest function value at ter-
mination. This undirected strategy works well in my case, because there is usually
some approximate idea of what the weights should be for a given model. By starting
the process from such weights we increase the chance of reaching a global minimum,
or at least a set of weights that work well. Re-optimising with different starting
conditions and obtaining a solution that is the same or larger is verification that the

minimum obtained is likely to be global.

116

4.6.2 Parameter tying

In many cases, it makes sense that the score for two (or more) different pieces
of evidence should have the same weight. This is true for example when different
feature or segment types are used for the forward and reverse strand of a sequence. 1
have therefore included a mechanism for indicating that the weights for two or more
model elements should be tied together during the optimisation process. Parameter
tying is a common technique in the application of Hidden Markov Models to speech
recognition. It also has widespread use in the field of neural networks [11], where is
known as weight sharing.

In the GAZE framework, tying is achieved simply via the function W that maps
feature, segment and length penalty types onto weights. For the description earlier,
I implied that this mapping was one-to-one. By making it many-to-one, more than
one evidence type can map to the same weight. In practice, this means that a weight
tied to many pieces of evidence is updated according to a sum of contributions from
each.

It is also worth saying here that although the framework presented assumes for
flexibility that the scores for every type of evidence referred to in a GAZE model
is associated with a weight (with some possibly associated with the same weight,
as explained above), this need not be the case. The optimisation system has a
mechanism to allow the user to specify which types of evidence are to be treated
as having variable weight. This has no effect on the equations presented above; the

derivative of all functions with respect to non-variable weights is zero.

4.6.3 Time and memory usage

Most of the issues discussed in chapter 2 concerning the time and memory usage
of GAZE are not different here and are addressed in the same way; the algorithm
for the gradient calculations is ostensibly the same as the forward and backward
algorithms, and in fact can be implemented as extensions of both. The run-time is

increased by a constant factor of up to 10 however, so it is therefore sensible to only

117

calculate the gradient when necessary.

The optimisation algorithm can be summarised as a series of gradient calcula-
tions, each followed by a minimisation along the line defined by the current point
and the new direction (a function of the new gradient and previous gradients). The
first of these steps involves a single forward-backward-with-gradient run over the
training sequences. The second, line minimisation requires a succession of function
evaluations. The section search algorithm by Brent [16] has been extended by Press
[88] to make use of derivative information with the aim of reducing the number of
evaluations necessary in the line minimisation. However, I found the overhead in cal-
culating a forward-backward-with-gradient for every function evaluation as opposed
to a straightforward forward-backward run was too significant for an overall benefit
to be observed. My implementation therefore does not use gradient information at
the line minimisation stage.

The main issue with the gradient calculation itself is memory usage. It is now
necessary to store with each feature, as well as the usual properties (e.g. location
and score), the u/ and u® variables, each of which consists of an array of floating
point numbers, the size of which is the number of different weights that are to be
simultaneously optimised. If we wish to optimise weights for all evidence types
for a simple, double-stranded model separately, then this requires an approximate
additional 100 bytes per feature (16 feature types, 4 segment types, 5 length
penalties), twice as much if we wish to use double-precision floating point arithmetic.
Since a 1 Megabase sequence typically produces of the order of half a million features,
this gives 50 Megabytes for the gradient variables alone!

The situation is never this bad in practice. Tying the forward and reverse versions
of the features and segments together effectively halves the storage required, and I
would expect this to be done for all sensible applications. In addition, it would be
normal to tie together the weights for related feature types on the same strand, such

as the six different splice sites (three donor, three acceptor).

118

4.7 A comparison with other methods

In this section I contrast the optimisation scheme described above with some of the
ways in which parameters are estimated for other gene prediction systems. There
are some elements of the scheme that are similar to methods used by exon-assembly
predictors to incorporate scores from several distinct signal and content-sensors into
a single exon score. It is also true that the procedure is probabilistic in flavour and
has much in common with certain techniques used in the estimation of parameters
for Hidden Markov models.

I present the comparison therefore in two parts. In the first part, I briefly examine
some of the ways in which evidence of several different types is accommodated and
weighted in some other gene prediction systems, relating them back to the GAZE
strategy. The second part is more theoretical and discusses how the GAZE approach

relates to various techniques used in the field of HMM parameter estimation.

4.7.1 Other methods based on weighted evidence

In many gene prediction systems, a variety of signal and content sensors are employed
for the recognition of individual exons, which are then assembled into gene structures
by dynamic programming. The specific way in which weights are chosen for the
exon features varies. In FGENES for example [104], linear discriminant analysis (see
chapter 1) is used to find a linear, weighted combination of a series of exon quality
measures that provides maximum discrimination between true and false exons [103].
The exon likelihoods reported by the method are then used as the basis for a dynamic
programming algorithm which identifies the highest scoring exon assembly. GRAIL
[113][117] on the other hand uses a neural network to combine the scores from several
signal and content sensors, trained to discriminate between true and false individual
exons. The result gives rise to a procedure for identifying a set of candidate exons,
which are assembled by a separate, dynamic programming procedure called GAP
[118].

The weight optimisation technique presented in this chapter differs from these

119

methods by the fact that it considers whole gene structures®. I focus now on two

methods that are similar to GAZE strategy in this respect.

GeneParser

The GAZE method is a fully implemented extension of the unimplemented frame-
work proposed by Stormo and Haussler [109], generalised to account for a gene
structure model that is not known in advance. The most comparable previously
implemented work is the GENEPARSER system of Snyder and Stormo [101] [102].
The final gene prediction program is identical to the one proposed by Stormo and
Haussler (section 4.2.1), but the difference is how optimal weights for various types
of evidence are obtained.

Like GRAIL, GENEPARSER uses a neural network to combine the scores from
several signal and content sensors. Unlike GRAIL however, the dynamic programming
procedure to obtain the optimal parse is included in the neural network training
regime. This allows for it to be trained not on individual exons but on complete
gene structures. An iterative procedure is used, where the input to the network
at each state is the difference (for each type of evidence) between the score of the
optimal parse and the correct parse using the weights obtained in the last stage. A
set of weights is thus obtained which maximises the number of training sequences
for which the optimal parse is the correct one.

This approach is distinct from the maximum likelihood and maximum feature
discrimination methods for GAZE, where the parameters are estimated with respect
to the correct gene structure, or individual features belonging to it; the GENEPARSER
method focuses directly on the relationship between the correct structure and the
highest scoring structure. It could be argued that this makes more sense because

it relates directly to the way in which the program will be used for prediction after

3This is true of both the ML and MFD methods; the latter is a function of feature posterior
probabilities which, as explained in chapter 2, can be interpreted as a measure of how well the

feature can be accommodated into a high-scoring complete gene structure.

120

training.

EuGene

EUGENE [99] is a program similar to GAZE in the way that it is tailored for in-
tegrating the output of external programs predicting gene features. It models the
sequence as a directed acyclic graph (DAG) with the nodes organised into rows,
or “tracks”. Each track corresponds to a region of functional class and comprises
a node for each base and edges joining the nodes of adjacent bases. The graph is
then decorated with edges between tracks, depending on the results of the exter-
nal feature-prediction programs. For example, if a program of choice reports donor
splice site at position (z,x+1), then an edge is added between node z of the “exon”
track and node x + 1 of the “intron” track. Once this is done, any path from the
“source” node to the “sink” through the graph corresponds to a gene structure.
Scores are added to the edges of the graph and the predicted gene structure is that
corresponding to the “shortest” path through the graph?.

What makes EUGENE particularly interesting from the perspective of the work
presented here is the way in which the scores reported by the external programs are
weighted. It is assumed by the authors that the scores c¢; reported by a program
predicting evidence type ¢ are numbers between zero and one, and to transform
such scores into a penalty they use the function — log(aci-’). The constants a and b
are obtained by maximising the percentage of correct predictions in a set of single
gene A.thaliana sequences. The optimisation is performed first by a simple genetic
algorithm [50], and then by sampling the local parameter space. The procedure is
extremely computationally intensive and is not guaranteed to find either a global
or local maximum. The authors justify it however as a method that identifies sets
of parameters that work well. A system with a similar architecture is DAGGER [25],
which combines evidence using a complex function with two free variables for each

type of (in their system fixed) evidence. Optimal values for the variables are found by

4The scores are therefore penalties, with a high score corresponding to an unlikely feature.

121

the downhill simplex function optimisation method [81] which does not make use of
gradient information and is therefore be inefficient for multi-dimensional functions.
The authors also give very little justification for the form of the objective function
except that it works well.

It is interesting to note that although these methods have weaknesses, they go
one step beyond the GAZE method in associating two parameters with each piece
of evidence, namely a multiplication factor and an additive constant (analogous to
bias terms in neural networks). This is however achievable in GAZE under certain
circumstances by using a fixed, length-independent penalty function to act as the
bias term for the transformation of a feature score (see for example section 5.5.1
describing the introduction of transcription start site predictions). Care must be
taken to apply this technique in general as there would be indeterminacy between
some sort of additive constants, for example, those for “intron” and “exons” regions.

The general approach of associating each model element with two parameters
would double the number of free variables in the system, putting a strain on the
time an memory usage of the training procedure, as well as making it much more
vulnerable to over-fitting. For this this reason, I have not examined the possibil-
ity further. It is however a natural extension to this work to extend the gradient

calculation to account for additive constants.

4.7.2 Hidden Markov model methods

In order to place a probabilistic interpretation upon the weight-optimisation pro-
cedure presented in this chapter, it is instructive to look to the way in which the
parameters of methods based on Hidden Markov models are estimated.

The basic set of parameters for a HMM gene predictor are the state emission
and transition probabilities. The standard approach to obtaining these parameters
is maximum likelihood, whereby the probability of the observations (in this case a

set of training sequences) is maximised:

122

K
max Z log P(Sk|w)
k=1

I use w to denote the complete set of model parameters, to be consistent with
the notation earlier. How this function is optimised depends on whether the training

sequences come complete with annotated gene structures or not.

Supervised estimation

If each base of the training sequence is labelled according to its role in the gene
structure (“intron”, “exon”, “UTR” etc.), and there is a one-to-one correspondence
between the states of the model and these labels then a “correct” state path can be
inferred directly from the labelled training sequence. The ML approach therefore
is to calculate values for each transition and emission probability based on their
frequency of occurrence in the correct paths of the training sequences®. This in fact

corresponds to maximising the joint probability of the sequence and the correct path
¢*:
K
wMl — argmax Z log P(Sk, ¢*|w)

W k=1
The same applies to the Generalised HMM architecture used by many of the
most successful gene prediction programs, for example GENSCAN [21], GENIE [72],
FGENESH [96] and developmental versions of GENEMARK.HMM [76]. In these models,
it is often the case each state corresponds to a particular functional class (i.e. a single
label). Sub-models can therefore be estimated for each component individually,
based on only the corresponding regions from the training sequences. The sub-
models are then combined with transition probabilities based again on counts in
the paths inferred from the training sequences. The GHMM formalism also allows

for arbitrary probability distributions over the durations of each state, although as

SWith pseudo-counts being added when data available for the estimation of the parameters is

sparse.

123

explained in chapter 1 for practical reasons this is usually only exploited for certain
state types. State duration probability distributions can be derived directly from

histograms compiled from observed data.

Unsupervised estimation

It is sometimes not possible to infer a correct state path from a training sequence.
This could be because the sequence does not have an annotated gene structure,
or because there is many-to-one relationship between states and annotation labels,
meaning that there is more than one state path that could have given rise to the
annotated gene structure. A general approach in this case is therefore to maximise
the unconditional probability of the training sequence(s), summing over all paths (or
if there is partial information, summing over all paths consistent with this informa-
tion; see later). There are various iterative techniques for maximising the likelihood
in this case, based on the fact that the log probability of a training sequence can be

expressed as a sum over all state paths, the partition function:
log P(S|w) = log 3 P(S. 6|w)
¢

I showed above how the gradient of this function can be calculated in the context

of the GAZE scoring function, and for HMMs the result is similar [67]:

ng(S)

0
%logP(S\w) =

where ng(s) is the “expected” number of uses of the kth parameter in generating
the training sequences, i.e. the weighted average over all possible paths. This can
be calculated by the standard forward-backward algorithm for HMMs [90] [36]. A
gradient descent method such as that presented earlier can therefore be used to
maximise the likelihood. However, the more efficient Baum-Welch procedure [5] is
often used. The algorithm works on the principle that by estimating new parameter
values from “expected” counts above, the log-likelihood of the training sequences is

necessarily increased.

124

An example of the use of the Baum-Welch method can be found in one of the
first applications of HMMs to gene prediction [70]. The authors use the algorithm
to estimate a profile-based HMM for two distinct types of intergenic regions in
the genome of E. Coli. Elements of the resulting model were observed that were

biologically meaningful, validating the method.

A combined approach: HMMGene

HMMGENE is a gene prediction program based on the notion of a Class Hidden
Markov model (CHMM), where each state is associated with a label (see chapter
1). This framework allows for the identification of the most probable labelling (and
hence most likely gene structure) in addition to the most probable state path.

The estimation of the parameters for HMMGENE begins with a set of labelled
training sequences, but it is not possible to estimate maximum likelihood parameters
from counts directly. Although HMMGENE implements a restricted version of the
CHMM framework whereby each state emits a single, constant label, it is still true
that a given label could have been generated by more than one state.

The natural approach to this problem is to use a modified version of a Baum-
Welch algorithm where, during the forward-backward calculation, only valid path
through the model are allowed. In the context of labelled sequences, a valid path
is one in which the state labels agree with the sequence labels. This maximises the

joint probability of the sequence and the labelling L:

wMl = argmax log P(S, L|w)

This is the function that is optimised in the training of the VEIL program, which
also uses the CHMM framework [56]. The problem with this technique is that it
can often give rise to parameter values that are poor for prediction; although the
probability of emitting a series of “Exon” labels for an exonic region of the training
sequence is made as high as possible, the parameters so obtained can make the
probability of emitting a series of “Intron” or “Intergenic” labels with the sequence

even higher.

125

HMMGENE uses a technique called Conditional Maximum Likelihood (CML), to
address this problem. The idea is to optimise the probability of the correct labelling,

given the sequence:

wME = argmaxlog P(S|L, w)
w

= argmax [log P(S, L|w) — log P(S|w)] (4.24)

where P(S|w) is the sum over all state paths and labellings. This can be com-
puted with the standard forward algorithm (i.e. ignoring the labels). Since there is
a one-to-one correspondence between labellings and gene structures, maximising it
corresponds to maximising the probability of the annotated gene structure.

The effect of CML is that the relative difference between the probabilities of
consistent state paths (i.e. those where the labelling of the states agrees with the
labelling of the training sequence) and inconsistent state paths (i.e. where the state
labelling does not agree with the labelling of the training sequences) is maximised.
This ideally results in the probability of invalid paths being very low, meaning
that all paths through the model (with significant probability) will give rise to the
correct gene structure. Since the aim of CML is to arrive at a set of parameters that
provides maximum discrimination between consistent and inconsistent state paths
(with respect to the labelling of the training sequences), the technique is also known

as discriminative estimation [36].

Relationship to the GAZE approach

The estimation problem in GAZE is simplified with respect to the above in that the
parameters of signal and content recognition sub-models are fixed. The problem is
therefore to find a way to ascribe relative importance to each element so that their
resulting integration results in gene predictions that are as accurate as possible.

To see how my training method relates to HMM training, it is insightful to

consider the GAZE gene structure probabilities as implicitly conditional upon the

126

underlying sequence (see section 2.5). Making the conditioning explicit, the ML

objective function (equation 4.6) can therefore be written as:

wMl = argmaxInP(¢*|S, w)
W

= argmax E(¢",w) —In Z eEow)
W ped®
= argmaxInP(¢*, S|lw) — InP(S|w) (4.25)

When using this framework it is assumed that a correct gene structure (in terms
of a list of features) can be inferred directly from an annotated sequence. Since
this means that there is no distinction between gene structures and labellings, the
above might be interpreted as a kind of conditional maximum likelihood. This
makes intuitive sense, since like CML, the above minimises the probability of all
incorrect gene structures. The principle difference between the above and CML in
the CHMM context is that the latter simultaneously estimates the transition and
emission probabilities of the sub-models. In the context of GAZE, the sub-models
are implicit in the features, hence their internal model parameters are not variable.

The MFD method goes one step beyond CML in attempting to discriminate
between individual incorrect gene structures as well as between the single correct
and all incorrect structures. The idea is that even in the case where the highest
scoring gene structures are not correct, they at least use as many elements (features)
of the correct structure as possible. This should intuitively give rise to sets of weights
that are more accurate. Whether this turns out to be the case is examined in the
following chapter.

To end, it is interesting to consider whether unsupervised learning methods are
applicable to the estimation of optimal evidence weights in GAZE. Maximising the
unconditional probability of the training sequences (i.e. the partition function)
directly by classical methods is not possible because a GAZE score is not a real
log-probability; there is no comparison to other sequences. It is likely therefore

that increasing the weights will increase the partition function in an unbounded

127

way. The possibility of an indirect method however remains open. The Baum-
Welch method is a special case of Ezpectation Mazimisation [31] for maximum-
likelihood-style estimation in the case where certain data (in this case the correct
gene structures) are not known. Specifically, expectation maximisation is based

upon the following calculation:

wit! = argmax Z P(¢|S,w")log P(¢, S|w)
w)

It can be shown that under a wide range of conditions, this approach necessarily
increases the likelihood of the model, and in many situations, the maximum is
calculable directly without iteration. Such a case is that of HMMs and the Baum-
Welch algorithm. The straightforward application of the EM method to HMMs
arises due to their transparency in the way that once posterior path probabilities
corresponding to expected gene structures are calculated by the forward-backward
procedure, transition and emission probabilities that increase the objective function
are obtained by simply summing the expected usages and normalising.

To apply EM to GAZE, we would have to use the Maximum Likelihood approach,
weighting gene structure probabilities by their posterior probability in the previous

iteration:

witl = argmaXZP(¢\wt)P(¢|w)
Vooe
cE(@IW)+E(¢|w)

T RS, FUWIY B IwW]

It is not obvious how this quantity might be maximised analytically, as is possible
with HMMs and the Baum-Welch algorithm. The standard numerical optimisation
techniques however are applicable. To use conjugate gradient descent method in
particular would the require the computation of the gradient of the above quantity
with respect to the model element weights. Such an approach would be a natural

extension to this work.

128

4.8 Optimising evidence weights for GAZE_EST

In the previous chapter, I described the design and refinement of a GAZE model for
the prediction of genes in C. elegans sequences. In the final stage of this refinement,
data derived from EST alignments were used to improve the accuracy of the system.
However, the weights for the scores for these data were determined in a rather ad hoc
way. The Maximal Feature Discrimination training method provides the opportunity
to attack this problem in a more principled way. To end the chapter, I illustrate
the use of MFD training by applying it to this specific problem. A more rigorous
examination of the method in comparison with maximum likelihood is detailed in
the following chapter, in the context of the development of a gene prediction system

for vertebrate sequences.

4.8.1 Choice of parameters and optimisation method

The types of additional evidence in the GAZE_EST model (with respect to the
GAZE _trans model) are described in section 3.6.2. They are four features (“tran-
script_start” and “transcript_stop”, and reverse strand versions of these) and five
segments (forward and reverse strand versions of “EST match” and “EST _intron”,
as well as the “EST _span” segments which were introduced to prevent gene splitting).
Tying the weights of corresponding forward and reverse strand elements together re-
sults in five parameters to optimise. However, since the transcription initiation and
termination features have zero score (see section 3.6.2), any scaling applied to them
will have no effect. In addition, the “EST _span” segments are designed to eliminate
from consideration any candidate gene structures that make use of them; since the
correct gene structure will not make use of them, any weight attached to their scores
will be unbounded. It is appropriate therefore to optimse only two parameters.
For the work in chapter 3, the WormSeq dataset was used to assess the accuracy
of various GAZE models. To be able to use this dataset for training as well as testing,
it was split in half (adjusting the division point slightly to occur in the intergenic

region between two genes). I refer to these two new sequences as WormSeg-1 and

129

WormSeq-2. Splitting the dataset in this this way enables a twofold cross-validation,
testing the parameters obtained by training on WormSeq-1 on WormSeq-2, and vice
versa.

Of the two objective functions described earlier, only Maximal Feature Discrim-
ination is applicable in this instance. The reason for this is that since only coding
regions of the confirmed genes in WormSeq are known, the correctness of certain
types of candidate feature (specifically trans-splice sites, and transcription and ini-
tiation sites) is not known during the training. However, MFD allows the declaration
of a subset of feature types that should be ignored in the optimisation (see section

4.3.2).

4.8.2 Accuracy of the trained model

Table 4.1 shows the weights obtained from the MFD optimisation, and table 4.2
shows the accuracy resulting from using these weights. The most noticeable dif-
ference in the values compared with those chosen by hand in chapter 3 is that the
weight for “EST _match” segments has doubled. However, this gives only marginal
(if any) improvement in accuracy. It might be argued that this should not be too
surprising, since the reason for choosing the original weights is that they seemed to
give good accuracy.

One point that was not considered when choosing the weights in the previ-
ous chapter is that by introducing additional elements to the model, the weights
of the existing model elements may no longer perform well. In this application,
“EST_match” and “coding_seg” segments both contribute towards the score for can-
didate protein coding exons. It is therefore possible that the scores for “coding_seg”
segments have to be down-weighted to compensate for the addition of “EST match”
segments. Tables 4.1 and 4.2 also show the result of simultaneously optimising
weights for the “EST match”, “EST_intron” and “coding_seg” segments (the entry
labelled GAZE_ESTMFP=3) The optimal value for the “coding_seg” weight is 0.4

(compared with 1.0 used in chapter 3, and the new set of weights gives significant

130

EST_match EST.intron coding seg
MFD-2! 0.02 0.05 -
MFD-22 0.02 0.06 -
MFD-3! 0.02 0.05 0.42
MFD-32 0.02 0.06 0.41
Chapter 3 || 0.01 0.05 1.00

Table 4.1: Evidence scoring weights determined by Maximal Feature Discrimination. In addition to
the weights used in chapter 3 (bottom row), the final weights for the relevant elements are shown for both
two-parameter (MFD-2) and three-parameter (MFD-3) training runs described in the text, and for each
training sequence WormSeqg-1 and WormSeq-2 (indicated by superscript 1 and 2 respectively).

(a)

Exon level WormSeq-1 WormSeq-2

Sn Sp Av ME WE |Smn Sp Av ME WE

GAZE_ESTMFD-2 1 989 (.83 0.86 0.02 0.09 | 0.90 0.85 0.87 0.02 0.09
GAZE_ESTMFD=3 1 088 (0.88 0.88 0.06 0.06 | 0.88 0.89 0.89 0.06 0.05

GAZE_EST 0.89 083 086 0.02 0.10 | 090 0.84 0.87 0.02 0.09

(b)

Gene level WormSeq-1 WormSeq-2

Sn Sp Av MG WG |Sn Sp Av MG WG

GAZE_ESTMFD-2 | 056 0.50 0.53 0.01 0.01 | 0.62 0.58 0.60 0.01 0.07
GAZE_ESTMFD=3 1 059 (.58 0.58 0.04 0.07 | 0.65 0.64 0.65 0.03 0.04

GAZE_EST 0.54 049 052 0.01 0.11 061 0.58 0.60 0.01 0.07

Table 4.2: Accuracy of the GAZE_EST configuration after training with Maximal Feature Discrimina-
tion. For the trained models, the results for WormSeq-1 were obtained by training on WormSeq-2, and vice
versa. The first rows are the result of training two parameters (weights for “EST _match” and “EST _intron”
segments), and the second rows a further parameter in addition (a weight for “coding seg” segments). The
bottom row represents the accuracy of the weights used in chapter 3 when the model is applied separately

to WormSeq-1 and WormSeq-2. The accuracy measures are explained in section 1.4.1.

131

improvement in accuracy (for example a 5-6% increase at the gene level average).
This simple application shows Maximal Feature Discrimination to be a good
method for identifying sets of weights that give rise to accurate gene predictions.
The effectiveness of the method is examined in more detail in the next chapter, where
amongst other things it is compared to the more traditional maximum likelihood

method.

132

Chapter 5

Application of GAZE training
to the development of a

vertebrate gene finder

5.1 Introduction

In this chapter, I demonstrate how the parameter estimation methods described in
chapter 4 can be used to tune the performance of a gene prediction system created
with GAZE. By way of a contrast to chapter 3, the methods are applied to the
problem of predicting gene structures in the sequences of higher vertebrates such
as human [112] and mouse [28]. Gene prediction is more difficult in vertebrate
sequences than in the sequences of primitive animals such as C.elegans due primarily
to a lower signal-to-noise ratio and also other factors discussed in section 1.5 and
briefly in chapter 3.

The chapter follows a similar format to that of chapter 3. After summarising the
materials for vertebrate gene finding that are to be used, an initial GAZE configu-
ration is outlined. I then describe how the methods of the previous chapter can be

used to optimise the parameters of the model, and the effectiveness of the Maximum

133

Likelihood and Maximal Feature Discrimination methods is compared. I finally go
on to produce three variant models, each incorporating a different, new type of gene
prediction evidence, and investigate the effectiveness of Maximal Feature Discrimi-

nation in weighting the scores of the new data appropriately.

5.2 Materials for gene prediction in vertebrate sequences

5.2.1 Datasets for training and testing

Programs to predict gene structures in vertebrate genomic DNA have historically
been trained and tested on sequences that each contain a single, complete gene
structure. In chapter 3, I discussed the disadvantages of using single gene sequences
for testing. Large, contiguous genomic sequences which are completely understood in
terms of their gene structures are even harder to come by for vertebrate sequences
than for C.elegans. Even for the human chromosomes that have been declared
“finished” at time of writing [35][24][30], the gene structures are under continual
review, and it is likely that these sequences contain unannotated genes.

In the work on C.elegans gene predictions described earlier, the problem was
addressed by constructing an artificial genomic sequence of cDNA-confirmed gene
structures. This was done by extracting the genomic DNA underlying each gene
structure, along with some upstream and and downstream intergenic sequences.
Another approach was taken by Guigo and co-workers [53] in the generation of their
SAGS (semi-artificial genomic sequences) dataset. They also started with a set
of single-gene sequences and their annotated gene structures, but not having any
genomic context for the sequences, they created an artificial one. In essence, the
sequences were separated by artificial intergenic regions, the lengths of which were
normally distributed, and the content of which were based on a fifth order Markov
chain based on a C+G content of 38% [54].

The problem with both of these methods is that they do not take account of the

variation in mammalian gene structural properties with C+G content (see chapter

134

1). For programs like GENSCAN that have distinct sets of parameters for different
C+G% strata, a sequence constructed with either method would provide an unfair
test. By way of illustration, each of the 42 sequences comprising the Guigo SAGS
dataset has a C+G content of less than 40%. GENSCAN therefore uses the same,
low-C+G% set of parameters for these sequences, which could be one of the main
reasons for its relatively poor performance [53].

For this reason, and also for consistency with other literature assessing the ac-
curacy of gene prediction programs in vertebrate sequences, the results presented in
this chapter are based upon two distinct sets of single-gene sequences. It is important
to note however that all of the GAZE gene structure models used are sufficiently
general to allow for multiple genes on both strands of the input sequence, even

allowing partial genes at the ends of the sequence.

Training: the H176 dataset

This set was constructed by Guigo and colleagues [53] for an analysis of the accuracy
of various gene prediction programs available at the time. It was made in a similar
manner to the Burset and Guigo dataset benchmark set vertebrate gene sequences
[23], the principle difference being that this set comprises human gene sequences
only, and that entries were extracted from the EMBL nucleotide database version 50
(March 1997). There are 178 sequences in the set, from which I removed 2 sequences
which had annotated gene structures that were clearly incorrect (HSADHG6, with a
gene structure containing seven introns each 25 base-pairs in length; and HSPVALB,
gene structure with three 24-base introns). The resulting 176-sequence set is referred

to as H176 or the training set.

Testing: the HMR195 dataset

This set was constructed by Rogic and colleagues for another survey of the accuracy
of gene prediction methods [94], using filtering rules ostensibly the same as those used

by Guigo in the construction of H176, the primary differences being (i) mouse and

135

Human Genome HI176 HMR195 WormSeq

Number of genes - 176 195 325
Coding density - 0.13 0.14 0.24
Single exon genes - 40 43 16

Exons per (multi-exon) gene || 8.8 6.2 6.0 7.2

Mean internal exon length 145 146 138 241
Mean CDS length 1340 970 1021 1542
Mean intron length 3365 672 854 308

Table 5.1: Some properties of the training and test sets of vertebrate sequence in comparison with the

WormSeq dataset of chapter 3, and estimates for the human genome published in [112].

rat sequences were retained, as well as human; (ii) the Genbank nucleotide database
was used (version 111.0, April 1999), and sequences deposited before August 1997
were discarded, to ensure as far as possible that none of the sequences could have
been used to train the gene prediction programs being evaluated. The resulting
195-sequence set is referred to as HMR195 or the test set. There are no entries in
the test set that are also in the training set. The degree of overlap between this set
and the training set is discussed below.

By retaining mouse and rat genes in this set, I am assuming that any properties of
the H176 (human only) dataset learned by the training process also generalise to the
sequences of these organisms. The architects of the dataset partitioned it into human
(103 sequences) and mouse/rat (92) subsets, and examined the accuracy in each of
a number of programs that were trained on human sequences only. They found
the difference to be insignificant, with the many of the programs having marginally

better accuracy in the mouse/rat sequences.

5.2.2 Properties of the gene sets

Some properties of HMR195 in comparison with H176 and the WormSeq dataset of

chapter 3 are summarised in table 5.1.

136

The table shows that two vertebrate datasets have properties that are fairly
consistent with each other. They both support the observation that vertebrate
genes have longer introns and shorter exons than worm genes, although the larger
survey summarised in the first column [112] suggests that both sets are still atypical,
most noticeably having smaller introns and fewer exons.

The two vertebrate datasets provide a far easier problem for gene prediction
programs than they would usually face in practice; a protein coding density of 13-14
percent is about 5 times higher than in the human genome as a whole (for example).
Furthermore, the complexity of the genes, in terms of their numbers of exons and
introns, and total CDS length, is lower than that of the WormSeq dataset of C.
elegans sequences. Also, 23 percent of the vertebrate genes contain coding regions
that are confined to a single exon, compared to 5 percent in the C. elegans dataset).
This is not indicative of any characteristic difference in complexity of vertebrate and
worm genes, but due to simple sample bias; short genes with small numbers of exons
were easier to sequence genomically before the human genome project, hence their
disproportionate frequency as separate entries in the nucleotide databases. The C.
elegans gene structures in WormSeq were confirmed by full-length ¢cDNAs however,
so would be affected less by such database bias.

It is technically necessary to correct for such biases in the dataset before training.
When calculating the transition probabilities of the GENSCAN HMM for example,
Burge took the “true” proportion of single-exon genes to be one half of that observed
in the training set. He comments that although this approach is rather ad hoc, it
is better than no correction at all, although it is more difficult to correct for other
biases in databases. I have chosen to ignore all biases because the primary aim of
this chapter is to assess the effectiveness of the training methods, and there is no
reason to believe that that any biases present in the training set should not also be
present in the test set.

There are no entries that occur in both datasets (ensured by construction; see

above), but the approach taken by many would be to remove entries in the test set

137

that show a significant degree of similarity to an entry in the training set. Burge for
example in the training and testing of GENSCAN removed sequences from his training
set for which the translation of the annotated gene showed more than 25% identity
to the translation of a gene in his intended test set [20]. I take the approach of not
attempting to make the training and test sets non-redundant with respect to each
other, also taken by others [102] [94]; it is reasonable to expect a gene prediction
program to often be presented with a sequence containing a gene which shows some
degree of similarity to a member of its training set.

One final point to note is that all analysis presented in this chapter was per-
formed on data derived from the raw sequence, with no masking of repeats. There
is no mechanism in GAZE itself to account for the possibility that the input feature
list may have been derived from repeat-masked sequence, and will therefore con-
tain regions with no stop-codons that should not be considered as candidate coding
exons. Repetitive regions therefore have to be explicitly accounted for in the config-
uration file. One approach is to make segments for the repeats, giving their scores
high negative weights, and making them contribute towards the score for candidate
protein-coding regions.

Accounting for repeats in this way would be necessary for the analysis of large,
unannotated stretches of genomic DNA, but is less important here. Although the
repeat-content of the human genome (for example) has been estimated to be in excess
of 50% [112], RepeatMasker [A.F.A. Smit and P. Green, unpublished] identifies 21%

and 15% of the training and test sets (respectively) as repetitive!

. Masking these
repeats had no significant impact on the accuracy of the standard gene prediction

programs (results not shown).

'The -nolow option was used which does not mask out low-complexity regions, as these can

sometimes be protein-coding, for example in proteins with coiled-coil regions.

138

5.2.3 A source of gene prediction features: GENEID

As in chapter 3, I draw upon the work of others for a source of gene prediction data.
In this case, I used the most recent version of the GENEID program [84], primarily
because it is designed for gene finding in vertebrate sequences (specifically human)
and optionally outputs candidate gene features as well as predictions of complete
gene structures.

The signal and content sensing models used by GENEID are fixed and described
below. The parameters for these models however are external to the system and
supplied by the user in a file. The program comes with two parameter files for gene
finding in human sequences. The first provides distinct parameter-sets for sequences
in three C+G% strata. The second file contains a single set of parameters obtained
without considering C+G content. Except where otherwise stated, I have chosen to

work with features generated from this latter, homogeneous set of parameters.

Signal sensing models in GENEID

GENEID detects signals by calculating weight matrices from frequency tables com-
piled from real and pseudo examples of the feature of interest. The signals provided
are: (i) translation start sites, representing positions -8 through +5 (where 0 is the
position of the A in the conserved ATG); (ii) translation stop sites, representing
positions -5 through +3 (where 0 is the position of the first nucleotide of one of
the three stop codons); (iii) donor splice sites, representing positions -3 through +5
(where 0 is the position of the G in the conserved GT); and (iv) acceptor splice
sites, representing positions -22 through +4 (where 0 is the position of the A in the
conserved AG). The first three of these signals are modelled using the weight matrix
method. The acceptor splice site model is more sophisticated being a first order
weight array model. Predicted features using these models were generated using

GENEID in signal output mode with default cutoffs (command line option ~-bdal’).

139

Content sensing models in GENEID

Unlike GENEFINDER, GENEID does not explicitly provide prediction of likely protein-
coding regions, but the supplied parameter files contain details of the model used
to score candidate exons for coding potential. As described in [84], log-likelihood
ratios CY (b1b2b3babsbg) for hexamer bybabsbsbsbs beginning in codon position j, are
calculated according to the relative frequency of the hexamer in a set of real exons
compared with introns. A “coding” score for a candidate exon SS, with pre-
assigned phase j (i.e. the codon position of the first base of the exon is known) can
then be calculated by summing the scores for the hexamers along the length of the

exon:

n—>5
Lo(St...80.7) = Z CUt=D7(S, . Sits)
i=1

where % is the modulus operator. Rather than using C? values given in the
GENEID parameter file to obtain a set of segments corresponding to likely coding
regions in each frame (as was done in chapter 3), six GFF segments were made for
each 6 base-pair region in the training and test sequences, three for each strand,
by assuming that the region starts in each of the three codon positions. A coding
score for a candidate exon can be calculated by summing the segments lying in the
region, and I show later the configuration file directives that make this possible.
Although requiring a large amount of storage for the GFF files of these segments
(largely due to the un-necessary redundancy in this case of GFF), this technique
will allow for the calculation of an exact coding likelihood for a candidate exon.
The reason that the GAZE models for C.elegans gene prediction were not able to
duplicate the performance of GENEFINDER was due to the inexactness of the coding

score calculation; see chapter 3.

Length penalty functions in GENEID

The GENEID scoring function, explained in more detail shortly, does not include a

length penalty component. However, exon scores are subject to a constant, length-

140

independent penalty, the value of which is supplied as a parameter. These were used

in arriving at initial configuration for human gene finding, as explained next.

5.3 A GAZE configuration for human gene finding

A natural approach towards developing a GAZE configuration for the integration of
signal and content sensors from GENEID is to start by implementing a system that

integrates the data in a similar manner to that program.

5.3.1 A GAZE configuration based on GENEID

The model of gene structure used by GENEID for human gene finding has the same
basic components and connectivity as the GAZE std model for C.elegans (figure
3.4). The are minor differences in the maximum and minimum distance constraints
as well as the way that partial exons are disallowed (with incomplete introns at the
end of the sequence still permissible).

There are however more significant differences in the way in which gene structures
are scored. In GENEID, the score of a candidate gene structure is a sum of scores for

each of the exons it comprises:

L(;(61€2 e en) = LE(el) + LE(GQ) + ...+ LE(en)

The exon scores themselves are calculated as sums of the scores of (i) the up-
stream defining feature Ly (translation start site or acceptor splice site), weighted
by a constant Wy; (ii) the downstream defining feature Lp (translation stop site or
donor splice site), weighted by a constant Wp; (iii) a coding score L¢ as as described

above, weighted by a constant W¢ and (iv) a constant Wg:

LE(C) = WULU(e) + Wch(e) + WDLD(C) + Wg

Restrictions on the form of the parameters W reduces their number from 4 to

2, namely Wy = Wp, and Wy + Wp + W = 1. Values for the two parameters

141

were chosen to maximise the correlation coefficient (CC) between annotated and
predicted protein-coding nucleotides in a set of training examples [84].

It is straightforward to mimic this scoring function in a GAZE configuration.
The additive exon score constant Wx can by achieved by the creation of a length-
penalty function for which the penalty is the same for all distances. The other
parameters Wy, We and Wp can be accommodated as the “evidence weights” of
the modified GAZE scoring function of the last chapter. The only slight difficulty
is the calculation of the coding likelihood Lg(e) for a candidate exon e. Figure 5.1
shows how segments computed from the hexamer log-likelihoods are incorporated in

the model. I refer to the complete configuration as GAZE_GenelD.

<declarations>

: . . . <model>
<segment id="hex_0" scoring="standard_sum" partial="FALSE"/>

<segment id="hex_1" scoring="standard_sum" partial="FALSE"/> .
<target id="stop">

<useseg id="hex_0" phase="0" />
. <useseg id="hex_2" phase="1" />
<declarations> <useseg id="hex_1" phase="2" />

<segment id="hex_2" scoring="standard_sum" partial="FALSE"/>

<killfeat id="stop" phase="0"/>

<gff2gaze> . .
<source id="start" mindis="60" len_fun="sngl_ex_pen" phase="0">

<output feature="CDS_term" strand="+" frame="0"/>

) . </source>
<gffline feature="cod_hex" source="GENEID" strand="+" frame="0">

<seg id="hex_0"/>
</gffline>

<source id="3ss_0" mindis="0" len_fun="term_ex_pen" phase="0">
<output feature="CDS_term" strand="+" frame="0"/>

</source>
<gffline feature="cod_hex" source="GENEID" strand="+" frame="1">

<seg id="hex_1"/>
</gffline>

<source id="3ss_1" mindis="0" len_fun="term_ex_pen" phase="2">
<output feature="CDS_term" strand="+" frame="1"/>

<gffline feature="cod_hex" source="GENEID" strand="+" frame="2"> </source>

<seg id="hex_2"/> . -
<source id="3ss_2" mindis="0" len_fun="term_ex_pen" phase="1">

</gffline>
. <output feature="CDS_term" strand="+" frame="2"/>
: </source>
<gff2gaze> <ltarget>
</model>

Figure 5.1: Fragment of a GAZE-XML configuration derived from GENEID showing how hexamer coding
segments contribute towards the score. Each 6-tuple in the query sequence has three segments, one for
each possible codon position that the hexamer might begin at. A segment type for each codon position
is therefore defined, and the GFF “frame” attribute is used to construct segments of the corresponding
types. The segment score for regions ending with for example the “stop” target feature, comprises a sum
of separate scores for each segment type, and the “phase” attribute is used to ensure that only the single
correct segment at each sequence position (i.e. that starting at the appropriate codon position) contributes

towards the score. All reverse-strand elements of the model are omitted for clarity.

142

Base Exon Gene

CC Av ME WE | Av MG WG
GAZE_GenelD | 0.818 | 0.642 0.179 0.133 | 0.104 0.04 0.09
GENEID 0.821 | 0.644 0.181 0.129 | 0.112 0.04 0.09

Table 5.2: Accuracy of GAZE_GenelD compared with GENEID on a combination of the H176 and

HMR195 datasets. The accuracy measures are explained in section 1.4.1.

5.3.2 Accuracy of the model

Table 5.2 shows the accuracy of GAZE_GenelD compared with GENEID on both
datasets of vertebrate sequences. Reassuringly, the results are extremely similar but
it is interesting to ask why they are not identical.

There are two reasons for the discrepancy. The first reason is that GENEID
does not allow for the fact that under its own model of gene structure, initial and
terminal exons can be less than 6 base-pairs in length. Its calculation of a coding
score for such small exons is therefore incorrect. The same small exons are possible
in GAZE_GenelD, but since no hexamer-derived segment can fit completely within
a region smaller than 6 base pairs in length, they are given a segment score of zero.

The second reason is that when forming a pool of candidate exons, GENEID
considers only the 5 highest-scoring upstream candidate acceptor splice sites for
each candidate donor. This heuristic was probably implemented for reasons of space
or time efficiency but means that GENEID is not guaranteed to identify the globally
highest-scoring gene structure in the sequence. This does not seem to have any
impact on the accuracy however, as the tables above show. Although GENEID missed

more exons than GAZE_GenelD, fewer of its exon predictions are wrong.

5.4 Optimising the parameters of the model

As explained above, the GENEID scoring function has effectively four free parame-

ters which are chosen to maximise the correlation coefficient between annotated and

143

predicted coding nucleotides in a training set. To make this optimisation procedure
tractable with straightforward methods, a specific relationship between the param-
eters is imposed, reducing the effective number of free variables in the function to
2. The GAZE training method described in the last chapter however is specifically
designed for the simultaneous optimisation of a function with several free variables.
In addition, both the Maximum Likelihood and Maximal Feature Discrimination
estimation methods are quite different from a technique based on maximising the
correlation coefficient. In this section, I investigate the effectiveness of the two GAZE
training methods in obtaining values for the parameters that give rise to accurate

gene predictions.

5.4.1 Defining the parameters of the model

As a starting point, I expand the effective two free parameters of the GENEID scoring
function to eight in GAZE_GenelD in the following way. Firstly, the scaling factor
for the scores of the defining features of a candidate exon (Wy = Wp) is replaced by
three untied weights in GAZE_GenelD for each of translation start sites, translation
stop sites, and splice sites. There are in fact 16 distinct exon-defining features in
GAZE _GenelD but sensible tying reduces the number of weights first to six (for
example, the scores of donor and acceptor splice sites in each of three phases are all
subject to the same weight) and then to three (the model is made strand neutral by
tying together the weights for the corresponding forward and reverse strand version
of a feature).

Secondly, the scaling factor for the coding score for a candidate exon in GENEID
(W) is represented by a single weight for the same quantity in GAZE_GenelD.

Thirdly and finally, the additive constant for candidate exons in GENEID (Wg)
is replaced by four separate but identical length-independent penalty functions for
initial, internal, terminal and single exons (i.e. single exon genes). Each function

has its own weight, effectively allowing different additive constants for each exon

type.

144

5.4.2 Accuracy of the trained model

Optimal values for these 8 parameters on the H176 training set of sequences were
obtained by both the Maximum Likelihood and Maximal Feature Discrimination
methods described in the last chapter. The resulting accuracy in the prediction of
gene structures in both the H176 training set and the HMR195 test set are is shown
in table 5.3. The table shows that the MFD method seems to perform better than
the ML method, at all levels of accuracy. Indeed, at the base-pair and exon levels
ML training leads to an increase in specificity and decrease in sensitivity, with little
difference in average performance. Both ML and MFD training give significantly
improved accuracy at the gene level however, with again MFD having the edge.

It is apparent from the results that both the ML-trained and the MFD-trained
models perform slightly worse on the test set than on the training set. This could
be because the test set is by chance a more challenging data set for gene prediction,
either because it has more “difficult” genes (for example 5.1 shows the test set to
have an observably larger mean intron length than the training set), or because the
signal and content sensors used by GENEID were derived from examples that share
more in common with the training set than the test set. Inspection of the gene level
results however reveals GAZE_GenelD to perform better on the test set than on the
training set, whilst the reverse is true for the trained versions of the model.

A natural explanation for this is a problem often encountered in machine-learning,
namely that the GAZE_GeneIDM! and GAZE_GeneIDMFP have been “over-fitted”
and the derived parameters represent specific aspects of the training set that do not
generalise to the test set. A related problem is that observed by Henderson et. al. in
the training of the VEIL gene prediction program [56]. They used the Baum-Welch
algorithm [5] to obtain the set of parameters for their Class hidden Markov model
that maximised the likelihood of a set of training sequences. Aware of a possible
non-correspondence between the likelihood of the model and its accuracy of gene
prediction (in terms of the classical measures), they they took a series of snap-

shots of the parameter values after each iteration of their optimisation procedure,

145

(a)

Base level

H176 (training)

HMR195 (test)

Sn Sp CC | Sn Sp CcC
GAZE_GenelD 0.86 0.83 0.82|0.81 0.87 0.82
GAZE _GeneIDM | 0.83 0.86 0.82 | 0.76 0.89 0.79
GAZE GeneIDMFP | 0.86 0.85 0.83 | 0.81 0.88 0.82
GENSCAN 097 0.86 0.90 | 0.95 0.86 0.89
FGENESH 0.81 0.79 0.76 | 0.83 0.82 0.80
(b)
Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE |Sn Sp Av ME WE
GAZE_GenelD 0.64 0.67 0.66 0.17 0.14 | 0.61 0.65 0.63 0.19 0.13
GAZE _GeneIDM™ |1 0.63 0.70 0.66 0.21 0.13 | 0.56 0.68 0.62 0.28 0.14
GAZE _GeneIDMFP | 0.69 0.70 0.69 0.17 0.16 | 0.64 0.69 0.66 0.20 0.14
GENSCAN 0.82 0.75 0.79 0.06 0.15|0.77 0.73 0.75 0.08 0.14
FGENESH 0.64 0.60 0.62 0.14 0.19 | 0.64 0.63 0.63 0.19 0.19
(c)
Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG |Sn Sp Av MG WG
GAZE _GenelD 0.09 0.08 0.08 0.03 0.08|0.13 0.12 0.12 0.04 0.10
GAZE_GeneIDM | 0.26 022 0.24 0.03 0.18|0.23 0.19 0.21 0.05 0.16
GAZE_GeneIDMFP |1 029 0.23 0.26 0.02 022|027 022 024 0.04 0.17
GENSCAN 0.40 0.35 0.37 0.01 0.13]0.37 033 0.35 0.02 0.12
FGENESH 0.30 0.25 0.28 0.04 0.15|0.32 029 031 0.04 0.13

Table 5.3: Accuracy at (a) base-pair level, (b) exon level and (c) gene level on the H176 and HMR195
datasets of GAZE_GenelD after training with the Maximum Likelihood (ML) and Maximal Feature Dis-

crimination (MFD) methods on H176. Results for GENSCAN and FGENESH are shown for comparison. The

accuracy measures are explained in section 1.4.1.

146

and evaluated the accuracy of prediction in the training sequences obtained with
each (as measured by the average of exon sensitivity and specificity). The result of
this analysis was that even though the likelihood of the model was increased with
each iteration, after a certain number of iterations the accuracy of prediction in the
training sequences started to decrease. The authors refer to this phenomenon as
“over-training” [56].

The situation is similar here in that neither optimisation function is the same as
gene prediction accuracy when measured in the standard ways, although of course
we would hope for a good correlation. It is therefore insightful to plot how the
accuracy of the model on the test set (for over-fitting) and training set (for over-
training) evolves during both optimisation procedures. This is made simple by the
conjugate gradient descent method described in the last chapter, whereby the end
of each line minimisation provides a natural point at which to “freeze” the process
and assess the accuracy.

Figures 5.2 and 5.3 show how the accuracy of prediction in the training sequences,
and respectively the test sequences, varies during the conjugate gradient descent
algorithm, for both the ML and MFD objective functions. The main conclusion to
draw from these plots is that gene level accuracy in both the training and test sets
increases steadily during the optimisation. Although at the exon level the increase
in accuracy is less smooth, it is certainly not the case that there is a point during
the optimisation after which further line minimisations reduce the accuracy. With
these datasets and this configuration at least, neither over-fitting nor over-training
seems to be a problem.

The pattern of increase of gene level accuracy during the optimisation is not
dissimilar to that shown by the objective functions themselves, suggesting that it is
this accuracy measure that these functions most closely reflect. At the exon level,
noticeable improvement is only observed in the MFD-trained model; ML-training
results in only marginal increase in exon accuracy, in both training and test sets.

Figures 5.2 and 5.3 reveal much about the way in which overall performance is

147

improved by the two methods. Both at the gene-level and exon level, the untrained
model with parameters taken from GENEID has similar sensitivity and specificity. As
the training progresses, the sensitivity and specificity diverge, producing models that
are more sensitive than specific at the gene level, and more specific than sensitive
at the exon level. This is true of both ML and MFD training, but the divergence is
most dramatic in the exon-level accuracy of the ML-trained model. Another reason
to favour the MFD-training therefore is that it seems to produce parameters which

achieve a better balance of sensitivity and specificity.

148

671

-1000 0.4 0.75

(a) ML function value (b) Gene level accuracy (c) Exon level accuracy
41100 | 0.35 1
0.3
-1200 4
0.25
-1300 4
0.2 A
-1400 4
0.15 4
-1500 4
0.1 4
-1600 4 004 o Sensitivity) o~ Sensitivity
’ —4— Specificity —4— Specificity
—&- Average —#- Average
a0 o+ 055 —/—"r—————
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26
-2200 04 0.75
(d) MFD function value (e) Gene level accuracy () Exon level accuracy
2300 | 0.35 1
//\—\
d _/ —
2400 | 03 ‘ i o O
- o o0 %0 0000009
0.25 4
-2500 1
0.2 4
-2600 1
0.15 4
-2700 1-
0.1
2800 | 0054 o Sensilhvty -~ Sensihy
—— Specificity —4— Specificity
& Average —#—Average
204 O e e e e L e e e e e e e s Vo L e e e e e N N AL
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 5.2: Prediction accuracy in the training set (H176) after each line minimisation iteration of the conjugate gradient descent algorithm. Plotted

are (a) the value of the maximum likelihood function and resulting (b) gene-level and (c) exon-level accuracies. (d,e,f) Similar plots for the maximum feature

discrimination training procedure.

08T

Figure 5.3:

-1300 0.4 0.75
(a) ML function value (b) Gene level accuracy (c) Exon level accuracy
1400 4 0,35
0.7 N
-~ oo / . o -
——o- 031 / ANy ‘\"17{/‘ & R T I S o
-1500 A / /
0.65 1
0.25 4
-1600 4
0.2 4
-1700
0.15 4
-1800
0.1
p 0.5 4 -
-1900 4 0054 ~e— Sensitivity | —o— Sensitivity
—4— Specificity —A— Specificity
—— Average ——Average
-2000 ——————F—F—"—"—"—"T—T"TT T T T T T T T o+ 77+ 77 T+ 7 7+ 777045 T
0 2 4 8 10 12 14 16 18 20 2 24 2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 4 6 8 10 12 14 16 18 20 22 24 26
-2900 0.4
(d) MFD function value (e) Gene level accuracy
23000 1 0.35 4
—o . 0.3 1
-3100
0.25 4
-3200 4
0.2 4
-3300 4
0.15 -
4 0.55 -
-3400 4
0.1+
0.5
-3500 1 0054 —o— Sensitivity o Sensitivity
~4— Specificity —4— Specificity
—&- Average —&-Average
-3600 T L e e e LA S e e e e e e AL O e e L S e e e B e L A s e e e e B e L e B V23 T
0 2 4 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 4 6 8 10 12 14 16 18 20 22 24 26

Prediction accuracy in the test set (HMR195) after each line minimisation iteration of the conjugate gradient descent algorithm applied to the

training examples (H176). See legend for figure 5.2.

5.5 Investigating three ways to improve accuracy

One of the most striking aspects of the results of the previous section is the degree to
which GENSCAN out-performs all GENEID-derived GAZE configurations, untrained,
ML-trained and MFD-trained. Given the sophistication of the GENSCAN model of
gene structure and the signal and content sensing models that it employs, this is
perhaps unsurprising. In particular, the program contains at least three specific in-
novations that might contribute to its impressive accuracy. Firstly, its model of gene
structure includes sub-models for non-protein-coding elements of the transcript, in
particular the sites of transcription initiation. This effectively provides an additional
source of evidence for genes. Secondly, rather than using standard statistical distri-
butions for the lengths of initial, internal, terminal and single exons (or not having
any length distribution at all) the probability of observing each exon length (given
the type) was estimated directly from the training set, using a smoothing procedure
to avoid over-fitting. Thirdly, to take account of variations in human gene structural
properties with C4+G content, the model has distinct parameters for each of four
C+G% strata. When presented with a query sequence, its C+G% is computed and
the appropriate set of parameters used for prediction.

In this section, I examine the effectiveness of the GAZE framework, supplemented
by Maximal Feature Discrimination training, in accommodating each of these par-
ticular kinds of innovation in turn. I start by showing how promoter prediction data
produced by the EPONINE_SCAN program [34] can be put to effective use by a simple
refinement to the gene structure model. I then go on to examine the effectiveness
with which external region-length distribution data can be incorporated, by supple-
menting the standard configuration with the smoothed exon-length data derived by
Burge [20]. Thirdly, I show how GAZE can be used with datasets stratified by C+G
content. In all three cases, the focus of the presentation is the role of the Maximal
Feature Discrimination training method and its effectiveness in weighting the scores

of the relevant model elements.

151

5.5.1 Incorporating promoter prediction data

The most well-known and widely used model for eukaryotic promoter recognition
(used by GENSCAN and FGENESH for example) was defined by Bucher [19]. It consists
of a pair weight matrices for the TATA-box (15 base pairs) and the downstream tran-
scription initiation site (8 base pairs), separated by a distance of 14-20 nucleotides.
FEach of the distances in this range is assumed to be equally probable, and the DNA

itself in the interval is generated according to a “background” intergenic model.

A source or promoter prediction data: EPONINE_SCAN

Rather than re-implementing this model for eukaryotic promoters, I have chosen to
make use of a more recent development in the field of promoter detection. The EPO-
NINE_SCAN program for transcription start site detection [34] consists of four weight
matrices, representing (1) a CpG island downstream of the start site; (2) a TATAAA
motif upstream of the start site (corresponding to the TATA-box mentioned above);
(3) a short region of high C+G content just upstream of (2); (4) likewise a short
region of high C4+G content just downstream of (2). Representing the promoter
signal as a series of weight matrices is not new idea, but unlike the simple Bucher
model described above, each weight matrix is associated with a probability distri-
bution describing its position relative to the transcription start site. This allows for
a more accurate representation of the way in which the distances between differ-
ent components of the promoter signal vary in real examples. In comparisons with
other published promoter detection methods, EPONINE_SCAN performs favourably,
being as sensitive as the next best method (PROMOTERINSPECTOR; [98]), but more

specific.

Using EPONINE_SCAN with GAZE

EPONINE_SCAN is freely available on the world-wide web (http://www.sanger.ac.uk/-
Software/analysis/eponine), and outputs transcription start site predictions with

associated scores in GFF, making it ideal to be used with GAZE.

152

Threshold 0.999 0.99 0.5 0.1
Total predictions 2491 24887 377087 923369
Predictions per sequence || 21 117 1030 2489

Seqs with no prediction 252 159 5 0

Table 5.4: Number of predictions reported by EPONINE_SCAN on the H176 and HMR195 datasets at four
different score thresholds. In each case, sequences with no prediction were excluded from the calculation of

the mean number of predictions per sequence.

The scores reported by the program are intended to be interpreted as the prob-
ability of the correctness of the prediction, so range between 0 and 1. Since the
scores of the other features used in the system are log probability-ratios, it is likely
that the best results would be obtained if the EPONINE_SCAN scores were also in this
form. The reported scores x were therefore transformed into log probability-ratio
form 2’ in the following way, inverting the logistic link function used as the output
stage of EPONINE_SCAN (T. Down, pers. comm.):

T
l1—=z

z = log

The scoring threshold recommended by the authors to give the highest average
of sensitivity and specificity is 0.999. However, the sensitivity reported for this
cutoff for a dataset based on the confirmed transcripts in human chromosome 22
is 0.54 [34]. For GAZE to be effective in using these predictions, it is therefore
necessary to lower the threshold to increase the sensitivity. Table 5.4 shows the
number of predictions made by EPONINE_SCAN on the H176 and HMR195 datasets
for a variety of thresholds. Although a threshold of 0.1 leads to a very high false
positive rate (only at most one prediction on each sequence can be correct), this
should not be a problem for GAZE; both the scores of the predictions of themselves
and the surrounding genomic context (particularly in the protein-coding part of the
gene) should provide enough information to disregard most (ideally all) of the false

positives.

153

It is interesting to note that even at the recommended threshold of 0.999, the
mean number of predictions per sequence when those sequences for which there is
no predictions are excluded is 21. This gives an upper bound on the specificity
for these sequences (assuming one prediction on each sequence is correct) of 0.05,
far lower that the figure of 0.74 previously reported [34]. The authors state that it
was necessary to group predictions into clusters to achieve the results reported, with
prediction within 1000 nucleotides of each other being considered a single prediction.
Again, it is not be necessary to perform this step with GAZE, because the gene
structure rules will ensure that only the highest scoring site in a cluster will be
included in the prediction of a downstream gene.

Only a slight modification to the standard gene structure model is required to
make use of the transcription start site predictions reported by EPONINE_SCAN. The
resulting model architecture is a simpler version of that shown pictorially in figure 3.9
for modelling the untranslated regions at the end of C. elegans genes, omitting the
trans-splice and transcription termination features. Figure 5.4 shows how the new
EPONINE_SCAN-produced “transcript_start” feature slots into the standard model of

gene structure. The resulting model is referred to as GAZE _GenelD .

Obtaining optimal weights for EPONINE_SCAN scores

After modifying the model to incorporate the new feature, the next step is to obtain
an optimal weight for the converted scores reported by EPONINE_SCAN. In addition
to a parameter for the feature itself (with weights for the forward and reverse ver-
sions of the feature tied to be the same), I have defined a constant length penalty
function for untranslated regions (with associated weight); the reason for this is to
maintain consistency with the rest of the elements of the GAZE_GenelD configu-
ration, the coding exons of which are also subject to a weighted, constant penalty
(see earlier). There are therefore two free parameters associated with the scores
reported by EPONINE_SCAN: a multiplication factor (corresponding to the weight of

the “transcript_start” feature score) and an additive constant (corresponding to the

154

transcript
start

<lengthfunction id="utr_len"> R
<point x="0" y="1.0"/> vey
<point x="1" y="1.0"/>

K</|engthfunction>

Figure 5.4: Changes to the standard GAZE_GenelD model of gene structure to allow for the possibility
of a transcription start site upstream of the start of the protein-coding region. The forward-strand half
of the model only is shown for clarity. A length-penalty function for the untranslated region between the
transcription start and translation start (“utr_len”) is defined to be an arbitrary constant (inset), which will

be optimised by training.

weight of the “utr_len” length penalty function).

Considering also the parameters of the basic GAZE _GenelD configuration, the
GAZE_GenelDys model has 10 parameters to optimise. It is natural to think that
only 2 of these 10 parameters need to be optimised because optimal values for the
other 8 have already been obtained (GAZE_GeneIDMFP in table 5.3). However it is
not necessarily true that these values are optimal with respect to GAZE_GenelD
model. The overall score of a gene (which effectively determines whether it appears
in the output) will now have two additional components if it includes a putative
transcription start. It may be therefore that the other elements of the score (for
the features, segments and length penalty functions defining the coding part of the
gene) have to be down-weighted to compensate.

Table 5.5 shows the result of optimising the parameters of GAZE_GenelDyg on
the H176 training set, for both the training set itself and the HMR176 test set. In this
case, it is interesting to note that only the MFD method is applicable, because it was
not known in advance which (if any) of the EPONINE_SCAN-predicted transcription

start sites were correct; the ML method requires every candidate feature to be

155

(a)
Base level H176 (training) | HMRI195 (test)

Sn Sp CC | Sn Sp CC
GAZE_GeneIDMFP=2 | 087 0.89 0.86 | 0.81 0.90 0.83

tss

GAZE_GeneIDMFP-10 [988 0.89 0.86 | 0.82 0.91 0.84

tss

GAZE_GenelDMFD 0.86 0.85 0.83]0.81 0.88 0.82

(b)
Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE | Sn Sp Av ME WE
GAZE_GeneIDMP—=2 | 071 0.73 0.72 0.15 0.13 [0.64 0.71 0.67 021 0.12
GAZE _GeneIDMFD=10 1l .72 0,73 0.73 0.15 0.13 | 0.65 0.71 0.68 0.20 0.12
GAZE_GeneIDMFD 0.69 0.70 0.69 0.17 0.16 | 0.64 0.69 0.66 0.20 0.14
(c)
Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG |Smn Sp Av MG WG
GAZE_GeneIDMP=2 | 034 027 0.30 0.02 0.19 | 0.28 0.23 0.25 0.05 0.15
CGAZE GeneIDFP=10 11 0,32 0.27 0.30 0.02 0.18 | 0.27 0.23 0.25 0.06 0.15
GAZE_GeneIDMFD 0.29 023 0.26 0.02 0.22]0.27 0.22 024 0.04 0.17
Table 5.5: The resulting accuracy of the GAZE model incorporating EPONINE_SCAN predictions

(GAZE_GenelDyss) trained using the Maximal Feature Discrimination method in two different ways as
explained in the text. The results of using the same method to train the standard model (GAZE_GenelD),
described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.

156

declared “correct” or “incorrect” whilst the MFD method requires this only for a
subset of feature types (see previous chapter).

The model was trained in two ways: firstly with the optimal values obtained
for GAZE_GeneIDMFP fixed and only the two parameters associated with the new
feature subject to optimisation (GAZE_GeneIDMP=2) and secondly with all 10

parameters optimised simultaneously (GAZE_GeneID};\g{SF D=10) " The table shows that
there is little (if any) significant difference between the accuracies of the models
resulting from the two optimisations. This can be explained by the fact that the
difference between the two optimisations in terms of the final value of the objective
function and resulting weights for the model elements was marginal.

Given this result, it is tempting therefore to assume that when introducing a
new feature type into a gene structure model, only the weights for the scores of the
new features (and related length penalty functions) need to be re-estimated. This
would be of practical value to the system as a whole, due to the fact that models
with smaller numbers of free parameters can be optimised far more quickly with the
conjugate gradient descent algorithm. However, there is no obvious reason why the
assumption should hold in general.

We would expect promoter information to provide more accurate identification of
the 5’ end of the gene, particularly the translation start site. Looking at the results

DMFD—2

more carefully, this seems only marginally to be the case; the GAZE_GenelDy

model identified 109 of the translation starts in the HMR195 data set, compared
with 105 for the GAZE_GeneIDMFP model. When looking at the results for the
H176 (training) set however, it is evident that a degree of over-fitting has occurred,
the increase being from 90 to 111 in the training set.

With only a marginal increase in accuracy in the test-set, it is natural to ask
whether the transcription start site predictions are being used at all in prediction.
The optimal values for the weights of the feature scores and the associated 5> UTR
length-independent penalty function (with constant value 1.0) obtained by the MFD

method were 5.1 and 24.7 respectively. This means that only EPONINE_SCAN predic-

157

tions with a converted score before weighting of above 4.8 will contribute positively
towards the prediction. For future applications, predictions with score less than this
can be filtered out before running GAZE without affecting the highest scoring gene
structure.

As well as improving prediction accuracy, the inclusion of promoter prediction
information in the model also gives it the ability to predict 5’ untranslated regions in
the genome (although real UTRs are defined in the processed mRNA). It is difficult
to measure the accuracy of these UTR predictions without knowledge of the correct
site of transcription initiation for the test sequences. However, some insight can be
gained by isolating those predicted genes for which the translation start site has
been identified correctly. The assumption is that the UTRs implied by the subset of
these gene structures that include an EPONINE_SCAN-predicted site of transcription
initiation carry a higher than otherwise likelihood of being correct. For the HMR195
(test) dataset: of the 235 genes predicted by the GAZE_GeneIDMP=2 model, 109

include a correctly-identified translation start site, 75 include an EPONINE_SCAN-

predicted site of transcription initiation (and therefore UTR), and 43 contain both.

5.5.2 Using exon length distributions

The length penalty component of the GAZE scoring function has been used in a
very simplistic way for the models presented so far in this chapter. Although penalty
functions for each of initial, internal, terminal and single exons have been defined
and weighted independently, the functions themselves are defined to be constant,
i.e. the same penalty is applied to exons of a particular type, whatever their length.
It is certainly not the case however that exon lengths are uniformly distributed in
the genomes of eukaryotes. A plot of the lengths of internal exons (for example)
in the human genome [112] revealed a mean length of 145 bp (median 122), with
the majority falling between 50 bp and 300 bp and a sharp peak at just over 100
bp. Another analysis has shown this distribution to be close to log-normal [121].

It would seem therefore that there is value in more accurately reflecting the likely

158

lengths of exons in the penalty functions employed in GAZE_GenelD for exonic

regions (i.e. by associating unlikely lengths with high penalties).

A source of exon-length data: GENSCAN

Many gene prediction methods (particularly those based around standard hidden
Markov models) by their nature assume that the likelihood of a region of a par-
ticular type (e.g. exon) decays exponentially with length. Burge showed that this
geometric model was an inaccurate representation for the lengths of each of the
four different types of coding exon [21]. The Generalised Hidden Markov model
framework employed by GENSCAN naturally accommodates length probability dis-
tributions based upon direct observation rather than an assumed (e.g. geometric)
model (see chapter 1), but it was still non-trivial to obtain these distributions in the
first place.

The main problem in obtaining realistic probabilities for the lengths of each of
the four types of exons was small size of the training set (238, 1016, 238, 142 for each
of initial, internal, terminal and single exons). This gave rise to spikey distributions
for which the probability of many lengths was zero simply because they were not
observed in the training set. A smoothing procedure was therefore employed, based

on a simple underlying model of exon evolution [20].

Using the GENSCAN exon length distributions with GAZE

The GENSCAN parameter file for gene-finding in human sequences includes a proba-
bility for each length (up to a maximum) for each of initial, internal, terminal and
single exons. The first task is to convert the given exon length probabilities into a
form that can be presented to GAZE as a length penalty function. Taking the nega-
tive logarithm of each probability has the desired effect, converting low probabilities

to high penalties?.

2The base of the logarithm is unimportant, as this will effectively be determined by training a

weight for the function.

159

In addition, a small change to the configuration of GAZE_GenelD is required,
swapping out the constant length penalty functions for exonic regions and swapping
in the new ones. No other changes to the model are required, and I refer to the

revised configuration as GAZE_GenelDy,.

Obtaining optimal weights for the exon length penalties

In optimising the parameters for GAZE_GenelD earlier, separate weighting factors
were attached to the constant length-penalty functions for each of the four exon
types. The same is done here, with the added qualification that what is meant
by weighting a non-constant length penalty function is that the penalties for all
lengths are subject to this same scaling factor. The assumption here therefore is
that the penalty functions derived from the given probability distributions are of
the correct shape, but need to be weighted appropriately in relation to the other
elements involved in the scoring function (see previous chapter).

Table 5.6 shows the result of optimising the parameters of the GAZE_GenelD ¢y,
model on the training set. The model has the same 8 parameters as the standard con-
figuration, but as with the GAZE_GenelD;ss model, a choice must be made whether
to re-estimate all 8 parameters from scratch, or to optimise only the 4 parameters
for the exon length penalties, anchoring the others to their values obtained by the

DMFD) As before then, the model is trained us-

earlier optimisation (GAZE_Genel
ing the MFD method in both ways, and the table shows the results gained to be
almost indistinguishable. Again though, there is no justifiable reason for why this
might be true in general.

Examining the relative difference in exon-level prediction accuracy between trained
versions of the standard and explicit-exon-length configurations, it is evident that
the degree by which the latter out-performs the former is more marginal in the test
set than in the training set. This implies a degree of over-fitting has taken occurred,

supported by the base-level results. Nevertheless, improvements on the test set at

all levels are however still apparent.

160

(a)

Base level

H176 (training)

HMR195 (test)

Sn Sp CC | Sn Sp CC
GAZE GeneID)FP—4 |/ 0.86 0.88 0.85 | 0.81 0.90 0.83
GAZE _GeneIDMFP-10 11 086 0.88 0.85 | 0.80 0.90 0.82
GAZE _GeneIDMFD 0.86 0.85 0.83|0.81 0.88 0.82
(b)
Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE | Sn Sp Av ME WE
GAZE GeneIDMFP=4 | 0.73 0.74 0.73 0.15 0.14 | 0.67 0.72 0.69 0.19 0.13
GAZE _GeneIDMFP=8 |/ 0.73 0.74 0.73 0.15 0.14 | 0.66 0.71 0.69 0.20 0.13
GAZE_GeneIDMFP 0.69 0.70 0.69 0.17 0.16 | 0.64 0.69 0.66 0.20 0.14
(c)
Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG |Sn Sp Av MG WG
GAZE _GeneIDMFP=4 11 0.34 0.28 0.31 0.03 0.20|0.29 0.24 0.27 0.05 0.16
GAZE_GeneIDMFP=8 |1 0.34 028 0.31 0.03 0.19|0.28 0.23 0.26 0.05 0.16
GAZE_GenelDMFD 0.29 0.23 0.26 0.02 0.22 | 0.27 0.22 0.24 0.04 0.17

Table 5.6: The resulting accuracy of the GAZE model incorporating GENSCAN-derived exon length penal-
ties (GAZE_GenelDexo) trained using the Maximal Feature Discrimination method in two different ways as
explained in the text. The results of using the same method to train the standard model (GAZE_GenelD),

described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.

161

The ability to define arbitrary length penalty functions for any region type is
perhaps the main advantages that GAZE has over other similar systems. It is there-
fore unfortunate that the treatment of penalty functions by the training procedure
might be considered to be its weakest aspect, being reliant upon a pre-defined func-
tion with the correct shape. Ideally, the method would estimate an optimal shape
for each penalty function directly from the training sequence. A possible way to ad-
dress this would involve associating several weights to a single function, each being
applied to a range of lengths (e.g. 1-50, 51-100 etc.), or at the extreme having a
separate weight for each specific length.

An alternative approach would be to retain the binding of a single length function
to a single weight, but to allow several functions to be associated to a particular
src — tgt rule. This would require a simple extension to the scoring function,
whereby the length-penalty component would be calculated as a sum of penalties
taken from each penalty function specified in the rule. This approach is strictly more
general than that above; a distinct weight for each distance can be represented by
having a separate function for each distance which takes a positive number for the
distance of interest and zero for all others®. Furthermore, it would allow the defi-
nition of composite functions, although it is not clear how such an approach would
impact the search-space pruning strategy described in chapter 2, which assumes that
it is possible to identify a point at which the penalty function for a rule becomes
monotonically increasing (see section 2.6.3).

The main problem with both of these methods however is the large increase in the
number of free variables in the optimisation. This will impact both the time taken
to reach the function maximum, but also more importantly the number of training
sequences that are required to obtain sensible estimates for this large number of

parameters.

3although the definition of thousands or more penalty functions in a single src — tgt rule in the

XML configuration file would be tedious at the very least!

162

5.5.3 Introducing C+G%-dependent model parameters

The natural way to address this problem is to divide the training sequences into
pools (or strata) according to their C+G content, and then perform a separate
training run for each, arriving at a distinct set of parameter values for each C+G%
stratum. An early example of this approach is GENEPARSER [102] whereby separate
neural networks were trained on each of three training sets containing respectively
sequences with “low”, “medium” and “high” C+G content. The boundaries for the
categories were determined by calculating the mean C+G content of all full-length
genes in Genbank, and classifying entries in the training set with C+G% more than
one standard deviation away from this mean as “low” or “high” as appropriate.

By way of contrast, the training set of GENSCAN was initially divided into three
according to the L1, L2, H1, H2 and H3 categories defined by Bernardi [7] and
others: L1+L2 (less than 43% C+G), H1+H2 (43-51% C+G) and H3 (more than
51% C+G). Since the H3 group turned out to be excessively populated compared
with the others, it was itself split into H3-1 (51-57% C+G) and H3-2 (more than 57%
C+G). The parameters for the GHMM (e.g. the mean and variance of the geometric
distributions for introns and intergenic regions, and certain transition and emission
probabilities) were then derived separately from the sequences in each of the four
datasets. The emission distribution for coding regions on the other hand was defined
to have two parameterisations only, for low C+G% (L1+L2), and high (H14+H2 +
H3-1 + H3-2).

The GENEID model for scoring coding regions differently according to

C+G%

For all of the models so far, GENEID has been used as a source for the majority
of the features and segments. It is fortunate therefore that GENEID is supplied
with an additional parameter file for human gene finding that contains separate
parameters for each of three C+G% strata: 0-45%, 45-55%, and 55-100% C+G. On

inspection it was evident that the majority of parameters are the same between the

163

I (0-45%) | 11 (45-55%) | I1I (55-100%)
H176 37 78 61
HMR195 | 38 107 50

Table 5.7: Breakdown of the training and test sequence sets by C+G content

three strata; only the parameters for the hexamer-based model for scoring coding
regions display differences between strata. Just as the coding model defined in
the original parameter file was used to make GAZE coding segments (see section
5.2.3), this time the C+G content of each sequence in the training and test sets was
computed and coding segments were made by using the parameters corresponding
to the appropriate C+G% stratum.

Table 5.7 shows the result of partitioning the training and test datasets according
to the C+G% groupings of the three coding model used by GENEID. Interestingly,
it shows the “medium” C+G% band to the most highly populated. Although ap-
parently contrary to the GENSCAN findings outlined above, the difference can be

explained by the higher boundary here between “medium” and “high” and strata.

Using GAZE with C+G%-stratified datasets

Unlike many other programs, there is no functionality in GAZE itself to account for
varying parameters in sequences with different C+G content. However, one of the
design aims of GAZE was to be sufficiently flexibility to allow different signal and
content models, and even different models of gene structure, to be used in different
situations. As a result of this design, it turns out to be straightforward to use GAZE
with C+G%-specific parameters, and there are variety of ways in which this can be
done.

The most natural approach is to compute the C+G content of the sequences in
advance, and then construct GFF files of features and segments accordingly. This

was done as explained above in obtaining C+G%-dependent coding segments for the

164

sequences. Then GAZE can be used exactly as before, with the same configuration
file used for all the sequences. This method highlights one of the advantages of GAZE
over many other existing systems in that it allows for variation across C+G% strata
of not only the parameters of a set assumed underlying sequence-generating models
for signal and content, but of the models themselves.

Another approach would be to pre-compute features and segments for all C+G%
strata in advance and assess the C+G content at run-time. A simple Perl wrapper
is then run in place of GAZE, which (i) computes the C+G content of the input
sequence, and (ii) invokes GAZE with the appropriate GFF files. The method
is more general in that it allows for the use of different GAZE configurations for
the C+G% strata, allowing (among other things) model-element weightings, length
penalty functions, and even gene structure models themselves that vary with C+G
content.

I have used GAZE with the C+G%-stratified data in two ways. The first method
was to use the default GAZE_GenelD configuration (my GAZE re-implementation
of GENEID) on the H176 and H195 datasets, using for each sequence the set of coding
segments that are appropriate for its C4+G content. The results for this experiment
are referred to as GAZE _GenelDgc in table 5.8. An improvement in performance
over the default model (i.e. that using the coding segments obtained using a global,
C+G%-independent parameterisation of the GENEID coding model), at all levels of

accuracy, is evident, most strikingly the correlation co-efficient.

Obtaining optimal weights for the C4+G%-dependent models

The second way I have used GAZE with the C+G% stratified data is to use MFD
training to optimise three specific sets of values for the model-element weights, one
for each of the subsets of the sequences in the H176 (training) set having C+G
content falling respectively into the ranges 0-45%, 45-55% and 55-100%. The result
is three GAZE configurations, and the Perl wrapper mentioned above was used to

obtain the results referred to in table 5.8 as GAZE_GeneIDIé/[gD.

165

(a)
Base level H176 (training) HMR195 (test)

Sn Sp CC | Sn Sp CcC
GAZE_GenelDgc || 0.92 0.86 0.88 | 0.92 0.87 0.87
GAZE_GeneIDYEP | 091 0.86 0.87 [0.91 0.88 0.88

GAZE _GenelD 0.86 0.83 0.82|0.81 0.87 0.82
GAZE _GeneIDMFD || 086 0.85 0.83 | 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)
Sn Sp Av ME WE |Smn Sp Av ME WE

GAZE_GenelDgc || 0.68 0.69 0.69 0.13 0.13|0.69 0.70 0.69 0.14 0.13
GAZE_GeneIDYEP | 0.72 073 0.73 0.14 0.13 | 0.70 0.74 0.72 0.17 0.13

GAZE_GenelD 0.64 0.67 0.66 0.17 0.14 | 061 0.65 0.63 0.19 0.13
GAZE GeneIDMFD 1 069 0.70 0.69 0.17 0.16 | 0.64 0.69 0.66 0.20 0.14

(©)

Gene level H176 (training) HMR195 (test)
Sn Sp Av MG WG |Sn Sp Av MG WG

GAZE_GenelDge || 0.11 0.11 0.11 0.0l 0.09 | 0.16 0.14 0.15 0.01 0.09
GAZE_GeneIDYEP | 0.32 026 0.29 0.01 0.19 | 027 0.22 024 0.01 0.16

GAZE_GenelD 0.09 0.08 0.08 0.03 0.08]0.13 0.12 0.12 0.04 0.10
GAZE GeneIDMFD 1 029 023 0.26 0.02 0.22 | 0.27 022 0.24 004 0.17

Table 5.8: Accuracy of GAZE_GenelD using three C+G content dependent models for scoring coding

regions; (a) base-level accuracy; (b) exon-level accuracy; (c) gene-level accuracy.

166

The same high correlation co-efficient is observed for the trained system as was
seen in the untrained C+G%-stratified system. Marked improvements over the un-
trained system however are observed at the exon-level and the gene level, although
these improvements are less striking when compared against the MFD-trained de-
fault, C+G%-independent model. These results suggest that the relatively high
accuracy of the GAZE_GeneIDMFP system at all three levels is achieved at the base-
pair level by the use of C+G%-stratified coding segments, and at the exon and gene
levels by the MFD training of the model element weights.

The higher accuracy of gene prediction programs that take the C+G content
of the underlying sequence into account has previously been explained by the ob-
servation that gene structural properties, such as average intron length and codon
usage, vary according to this property (see chapter 1). However, the different sets
of values for the weights obtained by training on sequences from each of the three
C+G% strata are not representative of these structural differences, because the
model itself is the same in each case (with the exception of the coding segments,
explained above). Instead, different weight values for different C+G% strata implies
that the relative importance of the model components varies according to C+G con-
tent. Although there is no biological reason to explain this result, it is consistent
with previous observations that the difficulty with which localised signals for gene
features can be detected also varies with C4+G content. Burge has shown that the
accuracy of discrimination between localised coding regions and non-coding regions
is positively correlated with C+G content, and proposes this as a possible reason
for the poor performance of gene prediction programs on A+T-rich sequences [20].
Levine on the other hand constructed a model for splice site detection and showed
that the accuracy of discrimination between true and pseudo splice sites is poorest in
sequences with high C+G content [74]. Based on these two observations, we might
expect firstly the value for the splice site score weight obtained in the low C+G%
optimisation to be higher than that obtained in the high C+G% optimisation, and

vice-versa for the weights for the coding segments. This is indeed the case, with the

167

(a)
Base level H176 (training) HMR195 (test)

Sn Sp CC | Sn Sp CcC
GAZE_GeneIDMP | 0.91 0.89 0.88 | 0.88 0.90 0.87

GENSCAN 0.97 0.86 090|095 0.86 0.89
(b)
Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE |Sn Sp Av ME WE

GAZE GeneIDMFP (1 0.76 0.76 0.76 0.13 0.13 | 0.70 0.74 0.72 0.17 0.12

GENSCAN 0.82 0.75 0.79 0.06 0.15]0.77 0.73 0.75 0.08 0.14
(¢)
Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG |Sn Sp Av MG WG

GAZE GeneIDMFP (1 0.37 031 0.34 0.02 0.18 | 0.33 0.27 0.30 0.02 0.17
GENSCAN 0.40 0.35 0.37 0.01 0.13]0.37 0.33 0.35 0.02 0.12

Table 5.9: Accuracy of GAZE_GenelD, (which includes transcription start sites, exon length penal-
ties and C+G% dependency) when trained with MEFD. The results for GENSCAN are repeated for ease of

comparison. The accuracy measures are explained in section 1.4.1.

splice site weights for the low and high C+G% strata being 0.96 and 0.92, and the

coding segment weights for these strata being 0.54 and 0.61.

5.5.4 Combining all three types of evidence

By way of postscript, it is interesting to consider the effect of including the innova-
tions of the past three sections in one system, training the weights using Maximal
Feature Discrimination. The trained system is referred to as GAZE_GeneIDg/ﬁFD in
table 5.9.

Although the accuracy of the model as a whole is the best achieved by any

GAZE model so far, it is still marginally out-performed by GENSCAN. One reason

168

for this could be the relative sophistication of the signal models used for donor and
acceptor splice sites compared with those employed by GENEID. The splice accep-
tor model used by GENSCAN includes the branch-point region between 21 and 38
nucleotides upstream of the conserved AG. This specific region is modelled with a
“windowed” weight array, allowing the capture of second-order dependencies. The
GENEID splice acceptor model on the other hand does not extend upstream as far
as the branch-point (see section 5.2.3). In addition, GENSCAN uses Maximal De-
pendence Decomposition for the modelling of the donor splice signal, allowing the
capture of long-range dependencies, whereas GENEID uses a simple weight matrix
(see section 5.2.3 and [20]).

It has been shown that these sophisticated models can be more accurate than
simpler models (such as those used by GENEID) when judged by an “isolated” test
of the discrimination between true and pseudo splice sites [20]. A natural extension
to the work described here would involve implementing these models in a program
that outputs scored splice site predictions in GFF. GAZE could then be used to
investigate their accuracy when judged in an “integrated” test of their influence on

the prediction of complete gene structures.

169

Chapter 6

Conclusions

In the previous chapters, I have proposed a semi-formal framework for the integration
of gene component evidence from arbitrary sources into complete predictions of gene
structure. I have shown that this concept is valid by implementing it in a program
called GAZE, and applying it to the prediction of gene structures in worm and
vertebrate genomic sequences. I envision GAZE to be useful both as a research
tool for investigating signal and content recognition methods, and as the final stage
in a genome annotation pipeline, drawing together the results of previous localised
analyses.

One of the key aspects of the system is that it does not rely upon a fixed underly-
ing model of gene structure. This allowed for example the modelling of trans-spliced
genes in C.elegans with little effort (see chapter 3). GAZE therefore provides a plat-
form for the modelling of structural properties that are not currently accounted for
in existing programs. One example would be nested genes, i.e. genes situated in the
introns of other genes. The constructs currently offered by GAZE do allow the defi-
nition of a model that allows a gene to occur in the intron of another gene. However,
it is necessary to define an identical gene model for each of the six different introns
that can occur (for each phase, on each strand). Extension of the system to allow
sub-models to be defined once and referred to elsewhere in the configuration would

therefore be a natural avenue for future work.

170

As well as providing an integrated tool for genome annotation and research,
there are ideas in this thesis that might be applicable to to other integrated gene
prediction approaches. One of these is the idea of dominance in the context of gene
prediction, introduced in chapter 2. This was used as the basis for a search-space
pruning strategy that allows GAZE to run in time that grows effectively linearly
with the input sequence length. The primary advantage of the technique is that
it is applicable under a wider range of conditions than is typically the case with
other pruning methods. The linear run-time growth of GENEID for example is off-
set by the fact that it neither allows arbitrary length penalty functions nor reports
posterior probabilities. GENSCAN on the other hand does compute posterior prob-
abilities, but pseudo-linear run-time is achieved by restricting the use of arbitrary
length probability distributions to alternating (in practice protein-coding) states.
The GAZE pruning strategy is robust under arbitrary (although eventually mono-
tonically increasing) length penalties for all types of gene region. It would therefore
be interesting to see whether the improvements in accuracy resulting from explicit
modelling of exon lengths (see [20] and chapter 5) are matched by explicit length
modelling of introns and intergenic regions.

The other substantial new idea described in this thesis is the Maximal Feature
Discrimination method for determining optimal weights for the scores of the dif-
ferent types of evidence employed in an integrated gene prediction system. This
was shown to have better correspondence with the standard gene prediction accu-
racy assessment metrics than the classical maximum likelihood method. Another
advantage that it offers is the ability to parameterise sophisticated models of gene
structure when the location of certain features, for example the site of transcrip-
tion initiation, are not known for the training sequences. Although presented in
the context of GAZE, MFD can be applied to other probabilistic gene prediction
systems. For Hidden Markov Models for example, the approach can be viewed as
the maximisation of the posterior probabilities of the correct state transitions at

specific positions, although this is only possible if such transitions can be unambigu-

171

ously defined. Because the posterior probabilities can be computed by the standard
forward-backward algorithm, the method is likely to be directly applicable in many
situations.

Given the current trend of systems that make use of genomic sequences from more
than one organism, it is natural consider the applicability of GAZE to comparative
gene prediction. One simple application would be to use TBLASTX matches of a
genome of interest to a variety of other genomes to support coding regions. This
is the approach essentially taken by an extension of GENEID called sap-2 [83]. It
has the apparent advantage that it is not limited to hits from a single genome.
However, by treating matches to different genomes equally, we ignore the fact that
they will share different levels of background genomic conservation to the target
genome. This means that a relatively poorly scoring match to a distantly related
organism can be more meaningful than a high scoring match to a closely related
one. By supplementing genomic similarity with a phylogenetic tree, we can start
to discriminate between those conserved regions that are functional, and those that
can be explained by evolutionary distance alone. In this example, we could therefore
adjust the scores of the conserved regions according to phylogeny, up-weighting
matches to distantly related genomes and down-weighting matches to closely related
ones. This suggests a less principled strategy that is immediately applicable, which
involves attaching a separate weight to the matches to each genome and using MFD
to optimise their values.

The true power of GAZE in the use of comparative information in gene prediction
comes from its clean separation of feature detection and gene prediction. Multiple
alignments of corresponding regions of several genomes can be used as the basis for
models of the evolution of splice sites and coding regions (for example). Supple-
menting standard signal recognition methods (such as those described in chapter 1)
with such models will improve their accuracy. In this sense, GAZE can therefore be
viewed as an efficient and convenient way for sophisticated evolutionary models to

be employed in the prediction of complete gene structures.

172

To end, it is interesting to consider the future of research into computational gene
prediction. The recent appearance of comparative and similarity-based methods,
and the accompanying lack of new ab initio single-sequence methods, is suggestive
of a feeling that there is a ceiling to what is achievable with the latter, and that we
are pretty close to it with current methods. However, the fact that a living cell is
able to determine the precise gene structure of its genome with high fidelity, without
the use of external sequences, suggests that continued research into single-sequence

techniques is not in vain.

173

Bibliography

[1]

B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. The
Molecular Biology of the Cell. Garland Publishing, New York, NY, 1989.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res., 25:3389-3402, 1997.

V. Bafna and D. Huson. The conserved exon method for gene finding. In

Brunak et al. [18], pages 3-12.

S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger, and E. S. Lander. Hu-
man and mouse gene structure: comparative analysis and application to exon

prediction. Genome Res., 10:950-958, 2000.

L. E. Baum. An equality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. Inequalities, 3:1-8,

1972.

R. Bellman. Dynnamic Programming. Princeton University Press, Princeton,

New Jersey, 1957.

G. Bernardi. The isochore structure of the human genome. Annual Review of

Genetics, 23:637-661, 1989.

A. Bird. CpG islands as gene markers in the vertebrate nucleus. Trends in

Genetics, 3:342-347, 1987.

174

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Birney and R. Durbin. Dynamite: a flexible code generating language for
dynamic programming methods used in sequence comparison. In Gaasterland

et al. [45], pages 56-64.

E. Birney and R. Durbin. Using Genewise in the Drosophila annotation ex-

periment. Genome Res., 10:547-548, 2000.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
Oxford, UK, 1995.

T. Blumenthal, D. Evans, C. D. Link, A. Guffanti, D. Lawson, J. Thierry-
Mieg, D. Thierry-Mieg, W. L. Chui, K. Duke, M. Kirali, and S. K. Kim. A
global analysis of Caenohabditis elegans operons. Nature, 417:851-853, 2002.

T. Blumenthal and K. Steward. RNA processing and gene structure. In D. L.
Riddle, T. Blumenthal, B. J. Meyer, and J. R. Priess, editors, C.ELEGANS
II, chapter 6. Cold Spring Harbor Laboratory Press, New York, NY, 1997.

T. Blumenthal, O. White, and C. Fields. The C. elegans cleavage and
polyadenylation signal. The Worm Breeder’s Gazette, 13:62-63, 1993.

M. Borodovsky and J. McIninch. GENMARK: parallel gene recognition for
both DNA strands. Computers and Chemistry, 17(2):123-133, 1993.

R. P. Brent. An algorithm with guranteed convergence for finding the minimum
of a function of one variable. In Algorithms for function minimization without

derivatives, chapter 5, pages 61-80. Prentice Hall, Englewood Cliffs, NJ, 1973.

S. Brunak, J. Engelbrecht, and S. Knudsen. Prediction of human mRNA donor
and acceptor sites from the DNA sequence. J. Mol. Biol., 220(1):49-65, 1991.

S. Brunak, F. Galison, M. Gribskov, A. Krogh, A. G. Pederson, P. Rouze,
G. Stormo, and A. Tramontano, editors. Proceedings of the Ninth International
Conference on Intelligent Systems for Molecular Biology, Oxford, UK, 2001.

Oxford University Press.

175

[19]

[24]

[25]

P. Bucher. Weight matrix descriptions of four eukaryotic RNA polymerase ele-
ments derived from 502 unrelated promoter seqeunces. J. Mol. Biol., 212:563—

978, 1990.

C. Burge. The identification of genes in human genomic DNA. PhD thesis,
Stanford University, 1997.

C. Burge and S. Karlin. Prediction of complete gene structures in human

genomic DNA. J. Mol. Biol., 268:78-94, 1997.

C. Burge and S. Karlin. Finding the genes in genomic DNA. Current Opinion
in Structural Biology, 8:346-354, 1998.

M. Burset and R. Guigo. Evaluation of gene structure prediction programs.

Genomics, 34:353-367, 1996.

The chromosome 21 mapping and sequencing consortium. The DNA sequence

of human chromosome 21. Nature, 405:311-319, 2000.

J. S. Chuang and D. Roth. Gene recognition based on DAG shortest paths.
In Brunak et al. [18], pages 56-64.

J.-M. Claverie. Computational methods for the identification of genes in ver-

tebrate genomic sequences. Hum. Mol. Gen., 6:1735-1744, 1997.

R. Conrad, J. Thomas, J. Speith, and T. Blumenthal. Insertion of part of
an intron into the 5’ untranslated region of a Caenorhabditis elegans gene
converts it into a trans-spliced gene. Molecular Cell Biology, 11:1921-1926,
1991.

Mouse Genome Sequencing Consortium. Initial sequencing and comparative

analysis of the mouse genome. Nature, 420:520-562, 2002.

R. Davuluri, I. Grosse, and M. Zhang. Computational identification of pro-
moters and first exons in the human genome. Nature Genet., 29:412-417,

2001.

176

[30]

[35]

[36]

P. Deloukas, L.H. Matthews, J. Ashurst, J. Burton, J.G. Gilbert, M. Jones,
G. Stavrides, J.P. Almeida, A.K. Babbage, C.L. Bagguley, J. Bailey, K.F.
Barlow, K.N. Bates, L.M. Beard, D.M. Beare, O.P. Beasley, C.P. Bird, S.E.
Blakey, A.M. Bridgeman, A.J. Brown, et al. The DNA sequence and compar-
ative analysis of human chromosome 20. Nature, 414:865-871, 2001.

A. P Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
B 39:1-38, 1977.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerische

Mathematics, 1:269-271, 1959.

S. Dong and D. B. Searls. Gene structure prediction by linguistic methods.
Genomics, 23:540-551, 1994.

T. Down and T. Hubbard. Computational detection and location of tran-
scription start sites in mammalian genomic DNA. Genome Res., 12:458-461,

2002.

I. Dunham, N. Shimizu, B.A. Roe, S. Chissoe, A.R. Hunt, J.E. Collins,
R. Bruskiewich, D.M. Beare, M. Clamp, L.J. Smink, R. Ainscough, J.P.
Almeida, A. Babbage, C. Bagguley, J. Bailey, K. Barlow, K.N. Bates,
O. Beasley, C.P. Bird, S. Blakey, et al. The DNA sequence of human chromo-
some 22. Nature, 402:489-495, 1999.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge, UK, 1998.

L. Duret, D. Mourchiroud, and C. Gautier. Statistical analysis of vertebrate
sequences reveals that long genes are scare in GC-rich isochores. Journal of

Molecular Evolution, 40:308-317, 1995.

177

[38]

[41]

[42]

S. R. Eddy. Non-coding RNA genes and the modern RNA world. Nat. Rewv.
Genet., 2:919-929, 2001.

J. W. Fickett. The gene identification problem - an overview for developers.

Computers and Chemistry, 20:103-118, 1996.

J. W. Fickett and A. G. Hatzigeorgiou. FEukaryotic promoter recognition.
Genome Res., 7:861-878, 1997.

J. W. Fickett and C. S. Tung. Assessment of protein coding measures. Nucleic

Acids Res., 20:6441-6450, 1992.

C. A. Fields and C. A. Soderlund. gm: a practical tool for automating DNA

sequence analysis. Comput. Applic. Biosci., 6:263-270, 1990.

R. Fletcher and C. Reeves. Function minimisation by conjugate gradients.

Computing Journal, pages 149-154, 1964.

L. Florea, G. Hartzell, Z Zhang, G. M. Rubin, and W. Miller. A computer
program for aligning a cDNA sequence with a genomic DNA sequence. Genome

Res., 8:967-974, 1998.

T. Gaasterland, P. Karp, K. Karplus, C. Ouzounis, C. Sander, and A. Valen-
cia, editors. Proceedings of the Fifth International Conference on Intelligent

Systems for Molecular Biology, Menlo Park, CA, 1997. AAAI Press.

M. Gelfand, L. Podolski, T. Astakhova, and A. Roytberg. Recognition of genes

in human DNA sequences. Journal of Computational Biology, 3:223-234, 1996.

M. S. Gelfand. Computer prediciton of the exon-intron structure of mam-

malian pre-mRNAs. Nucleic Acids Res., 18:5865-5869, 1990.

M. S. Gelfand, A. A. Mironov, and P. A. Pevzner. Gene recognition via spliced
sequence alignment. Proc. Natl. Acad. Sci. USA, 93:9061-9066, 1996.

178

[49]

M. S. Gelfand and M. A. Roytberg. Prediction of the exon-intron structure

by a dynamic programming approach. Biosystems, 3:173-182, 1993.

D. E. Goldberg. Genetic algorithms in search, optimisation and machine learn-

ing. Addison Wesley, Boston, MA, 1989.

R. Guigo. Computational gene prediction - an open problem. Computers and

Chemistry, 21:215-222, 1997.

R. Guigo. Assembling genes from predicted exons in linear time with dynamic

programming. Journal of Computational Biology, 5:681-702, 1998.

R. Guigo, P. Agarwal, J. F. Abril, M. Burset, and J. W. Fickett. An assessment
of gene prediction accuracy in large DNA sequences. Genome Res., 10:1631—

1642, 2000.

R. Guigo and J.W. Fickett. Distinctive sequence features in protein coding,

genic non-coding and intergenic human DNA. J. Mol. Biol., 253:51-60, 1995.

A. Hatzigeorgiou. Translation initiation start prediction in human cDNAs

with high accuracy. Bioinformatics, 18:343-50, 2002.

J. Henderson, S. Salzberg, and K. H. Fasman. Finding genes in DNA with a
hidden Markov model. Journal of Computational Biology, 4(2):127-141, 1997.

S. Henikoff, M. A. Keene, K. Fechtel, and J. W. Fristrom. Gene within a gene:
nested Drosophila genes encode unrelated proteins on oppostie DNA strands.

Cell, 44:33-42, 1986.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

K. L. Howe, T. Chothia, and R. Durbin. GAZE: a generic framework for the
integration of gene-prediction data by dynamic programming. Genome Res.,

12:1418-1427, 2002.

179

[60]

T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox,
J. Cuff, V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond,
L. Huminiecki, A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mon-
gin, R. Pettett, M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater,
J. Smith, W. Spooner, A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal,
I. Vastrik, and Clamp M. The Ensembl genome database project. Nucleic
Acids Res., 30:38-41, 2002.

W. J. Kent. BLAT - the BLAST-like alignment tool. Genome Res., 12:656—
664, 2002.

W. J. Kent and A. M. Zahler. Conservation, regulation, synteny, and introns in
a large-scale C.briggsae-C.elegans genomic alignment. Genome Res., 10:1115—

1125, 2000.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

I. Korf, P. Flicek, D. Duan, and M. R. Brent. Integrating genomic homol-
ogy into gene structure prediction. In T. Gaasterland, P. Karp, K. Karplus,
C. Ouzounis, C. Sander, and A. Valencia, editors, Proceedings of the FEigth
International Conference on Intelligent Systems for Molecular Biology, pages

140-148, Menlo Park, CA, 2002. AAAT Press.

M. Kozak. Initiation of translation in prokaryotes and eukaryotes. Gene,

234:187-208, 1999.

M. Krause and D. Hirsh. A trans-spliced leader sequence on actin mRNA in

C.elegans. Cell, 49:753-761, 1987.

A. Krogh. Hidden Markov models for labeled sequences. In Proceedings of the
12th IAPR International Conference on Pattern Recognition, pages 140-144,
Los Alamitos, CA, 1994. IEEE Computer Society Press.

180

[68]

A. Krogh. Two methods for improving performance of a HMM and their
application for gene finding. In Gaasterland et al. [45], pages 179-186.

A. Krogh. Using database matches with HMMGene for automated gene de-
tection on Drosophila. Genome Res., 10:523-528, 2000.

A. Krogh, I. S. Mian, and D. Haussler. A hidden Markov model that finds
genes in E. coli DNA. Nucleic Acids Res., 22:4768-4778, 1994.

D. Kulp, D. Haussler, M. Reese, and F. H. Eeckman. Integrating database
homology in a probabilistic gene structure model. In R. Altman, A. Dunker,
and T. Klein L. Hunter, editors, Proceedings of Pacific Symposium on Bio-

computing, pages 232-244, 1997.

D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman. A generalized hidden
Markov model for the recognition of human genes in DNA. In States et al.

[106], pages 134-142.

A.N. Ladd and T. A. Cooper. Finding signals that regulate alternative splicing

in the post-genomic era. Genome Biol., 3:reviews0008, 2002.

A. Levine. Bioinformatics approaches to RNA splicing. Master’s thesis, The
Sanger Centre, 2001.

T. M. Lowe and S. R. Eddy. tRNAscan-SE: a program for improved detection
of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25:955-964,
1997.

A. V. Lukashin and M. Borodovsky. GeneMark.hmm: new solutions for gene
finding. Nucleic Acids Res., 26:1107-1115, 1998.

C. Mathe, M. Sagot, T. Schiex, and P. Rouze. Current methods of gene
prediction, their strengths and weaknesses. Nucleic Acids Res., 30:4103-4117,
2002.

181

[78]

I. Meyer and R. Durbin. Comparative ab initio gene prediction of gene struc-

tures using pair HMMs. Bioinformatics, 18:1309-1318, 2002.

R. Mott. EST_GENOME: a program to align spliced DNA sequences to un-
spliced genomic DNA. Comput. Applic. Biosci., pages 477-478, 1997.

E. W. Myers and W. Miller. Optimal alignments in linear space. Comput.
Applic. Biosci., 4(1):11-17, 1988.

J. A. Nelder and R. Mead. A simplex method for function minimization.

Computing Journal, 7:308-313, 1965.

L. Pachter, M. Alexandersson, and S. Cawley. Applications of generalized pair
hidden markov models to alignment and gene finding problems. Journal of

Computational Biology, 9:389-400, 2002.

G. Parra, P. Agarwal, J.F. Abril, T. Wiehe, J.W. Fickett, and R. Guigo.
Comparative gene prediction in human and mouse. Genome Res., 13:108-117,

2003.

G. Parra, E. Blanco, and R. Guigo. GenelD in Drosophila. Genome Res.,
10:511-515, 2000.

N. Pavy, S. Rombauts, P. Dehais, C. Mathe, D. V. V.Ramana, P. Leroy, and
P. Rouze. Evaluation of gene prediction software using a genomic data set:
application to Arabidopsis thaliana sequences. Bioinformatics, 15:887-899,

1999.

M. Pertea, X. Lin, and S. Salzberg. GeneSplicer: a new computational model

for splice site prediction. Nucleic Acids Res., pages 1185-1190, 2001.

E. Polak and G. Ribiere. Note sur la convergence de methodes de direc-

tions conjuguees. Revue Francaise d’informatique et de recherche operationelle,

16:35-43, 1969. In French.

182

[88]

W. H. Press, S. A. Teukolsky, W. Vetterling T., and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, 1992.

N. Drake R. Guigo, S. Knudsen and T. Smith. Prediction of gene structure.
J. Mol. Biol., 226:141-157, 1992.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77:257-286, 1989.

M. G. Reese, G. Hartzell, N. L. Harris, U. Ohler, J. F. Abril, and S. E. Lewis.
Genome annotation assessment in Drosophila melanogaster. Genome Res.,

10:483-501, 2000.

M. G. Reese, D. Kulp, H. Tammana, and D. Haussler. Genie : gene-finding
in Drosophila melanogaster. Genome Res., 10:529-538, 2000.

E. Rivas and S. R. Eddy. Noncoding RNA gene detection using comparative
sequence analysis. BMC' Bioinformatics, 2:8, 2001.

S. Rogic, A. Mackworth, and F. Oullette. Evaluation of gene-finding programs

on mammalian sequences. Genome Res., 11:817-832, 2001.

A. Roytberg, T. Astakhova, and M. Gelfand. Combinatorial approaches to

gene recognition. Computers and Chemistry, 21:229-235, 1997.

A. A. Salamov and V. V. Solovyev. Ab initio gene finding in Drosophila
genomic DNA. Genome Res., 10:516-522, 2000.

S. L. Salzberg, M. Pertea, A. L. Delcher, M. J. Gardner, and H. Tettelin.
Interpolated markov models for eukaryotic gene finding. Genomics, 59(1):24—

31., Jul 1 1999.

M. Scherf, A. Klingenhoff, and T. Werner. Highly specific localization of
promoter regions in large genomic sequences by PromoterInspector. J. Mol.

Biol., 297:599-606, 2000.

183

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

T. Schiex, A. Moisan, and P. Rouze. EuGene: a eukaryotic gene finder that
combines several sources of evidence. In O. Gascuel and M. F. Sagot, editors,
Lecture Notes in Computer Science, volume 2006, pages 111-125. Springer-
Verlag, New York, Berlin, Heidelberg, Tokyo, 2001.

T. F. Smith and M. S. Waterman. Identification of common molecular subse-

quences. J. Mol. Biol., 147:195-197, 1981.

E. E. Snyder and G. D. Stormo. Identification of coding regions in genomic
DNA sequences: an application of dynamic programming and neural networks.

Nucleic Acids Res., 21:607-613, 1993.

E. E. Snyder and G. D. Stormo. Identification of protein coding regions in
genomic DNA. J. Mol. Biol., 248:1-18, 1995.

V. V. Solovyev, A. A. Salamov, and C. B. Lawrence. Predicting internal
exons by oligonucleotide composition and discriminant analysis of spliceable

open reading frames. Nucleic Acids Res., 22:5156-5163, 1994.

V. V. Solovyev, A. A. Salamov, and C. B. Lawrence. Identification of human
gene structure using linear discriminant functions and dynamic programming.
In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and S. Wodak,
editors, Proceedings of the Third International Conference on Intelligent Sys-
tems for Molecular Biology, pages 367-375, Menlo Park, CA, 1995. AAAI

Press.

R. Staden. Methods to define and locate patterns of motifs in sequences.

Comput. Applic. Biosci., 4(1):53-60, 1988.

D. J. States, P. Agarwal, T. Gaasterland, L. Hunter, and R. F. Smith, editors.
Proceedings of the Fourth International Conference on Intelligent Systems for

Molecular Biology, Menlo Park, CA, 1996. AAAT Press.

184

[107]

[108]

[109)]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

L. Stein, P. Sternberg, R. Durbin, J. Thierry-Mieg, and J. Spieth. WormBase:
network access to the genome and biology of Caenorhabditis elegans. Nucleic

Acids Res., 29:82-86, 2001.

G. D. Stormo. Gene-finding approaches for eukaryotes. Genome Res., 10:394—
397, 2000.

G. D. Stormo and D. Haussler. Optimally parsing a sequence into different
classes based on multiple types of evidence. In States et al. [106], pages 369
375.

J. Tabaska, R. Davuluri, and M. Zhang. Identifying the 3’-terminal exon in
human DNA. Bioinformatics, 17:602—607, 2001.

J. Tabaska and M. Zhang. Detection of polyadenylation signals in human DNA
sequences. Gene, 231:77-86, 1999.

The International Human Genome Sequencing Consortium. Initial sequencing

and analysis of the human genome. Nature, 409:860-921, 2001.

E. C. Uberbacher and R. J. Mural. Locating protein-coding regions in human
DNA sequences by a multiple sensor-neural network approach. Proc. Natl.

Acad. Sci. USA, 88:11261-11265, 1991.

A. Viterbi. Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEFE Transactions on Information Theory, pages

260-269, 1967.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner.
Molecular Biology of the Gene. Benjamin/Cummings, Menlo Park, CA, 1987.

T. Wu. A segment-based dynamic programming algorithm for predicting gene

structure. Journal of Computational Biology, 3:375-394, 1996.

185

[117] Y. Xu, J. R. Einstein, M. Shah, and E. C. Uberbacher. An improved system for
exon recognition and gene modelling in human DNA sequences. In R. Altman,
D. Brutlag, P. Karp, R. Lathrop, and D. Searls, editors, Proceedings of the
Second International Conference on Intelligent Systems for Molecular Biology,

pages 376-383, Menlo Park, CA, 1994. AAAI Press.

[118] Y. Xu, R. J. Mural, and E. C. Uberbacher. Constructing gene models from
accurately predicted exons: an application of dynamic programming. Comput.

Applic. Biosci., 10:613-623, 1994.

[119] R. Yeh, L. Lim, and C. Burge. Computational inference of homologous gene

structures in the human genome. Genome Res., 11:803-816, 2001.

[120] M. Zhang. Identification of protein coding regions in the human genome by
quadratic discriminant analysis. Proc. Natl. Acad. Sci. USA, 94:565-568, 1997.

[121] M. Zhang. Statistical analysis of human exons and their flanking regions.

Hum. Mol. Gen., 7:919-932, 1998.

[122] M. Zhang. Computational prediction of eukaryotic protein-coding genes. Nat.
Rev. Genet., 3:698-709, 2002.

186

Appendix A

Some example GAZE

configurations

A.1 GAZE std

<?xml version="1.0" encoding="US-ASCII"?>
<gaze>

<declarations>
<feature id="5ss_0" st_off="1" en_off="1"/>
<feature id="5ss_1" st_off="1" en_off="1"/>
<feature id="bss_2" st_off="1" en_off="1"/>
<feature id="stop" st_off="3" en_off="0"/>
<feature id="3ss_0" st_off="1" en_off="1"/>
<feature id="3ss_1" st_off="1" en_off="1"/>
<feature id="3ss_2" st_off="1" en_off="1"/>
<feature id="start" st_off="0" en_off="3"/>
<feature id="start_rev" st_off="3" en_off="0"/>
<feature id="3ss_O_rev" st_off="1" en_off="1"/>
<feature id="3ss_1_rev" st_off="1" en_off="1"/>
<feature id="3ss_2_rev" st_off="1" en_off="1"/>
<feature id="stop_rev" st_off="0" en_off="3"/>
<feature id="bss_O_rev" st_off="1" en_off="1"/>
<feature id="bss_1_rev" st_off="1" en_off="1"/>
<feature id="5ss_2_rev" st_off="1" en_off="1"/>

<segment id="coding_seg" scoring="standard_max"/>
<segment id="coding_seg_rev" scoring="standard_max"/>

<lengthfunction id="intron_pen"/>

<lengthfunction id="intergene_pen"/>

<lengthfunction id="init_ex_pen"/>

<lengthfunction id="term_ex_pen"/>

<lengthfunction id="int_ex_pen"/>

<lengthfunction id="sngl_ex_pen"/>
</declarations>

<gff2gaze>

187

<!-- Features -->

<gffline feature="atg" source="Genefinder" strand="+">
<feat id="start"/>

</gffline>

<gffline feature="atg" source="Genefinder" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="+">
<feat id="stop"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="spliceb" source="Genefinder" strand="+">
<feat id="5ss_0"/>
<feat id="bss_1"/>
<feat id="bss_2"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="-">
<feat id="5ss_O_rev"/>
<feat id="bss_1_rev"/>
<feat id="bss_2_rev"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="+">
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="-">
<feat id="3ss_O_rev"/>
<feat id="3ss_1_rev"/>
<feat id="3ss_2_rev"/>

</gffline>

<!-- Segments -->

<gffline feature="coding_seg" source="Genefinder" strand="+">
<seg id="coding_seg"/>
</gffline>

<gffline feature="coding_seg" source="Genefinder" strand="-">
<seg id="coding_seg_rev"/>
</gffline>
</gff2gaze>

<dna2gaze>
<dnafeat pattern="atg">
<feat id="start" score="0.0"/>
</dnafeat>

<dnafeat pattern="cat">
<feat id="start_rev" score="0.0"/>

</dnafeat>

<dnafeat pattern="taa">
<feat id="stop" score="-100.0"/>

188

</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100.0"/>
</dnafeat>

<dnafeat pattern="tta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="b5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="bss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>
</dna2gaze>

<model>
<target id="END">
<source id="BEGIN">
<output feature="no genes"/>
</source>

<source id="start">

<useseg id="coding_seg" source_phase="0"/>

<killfeat id="stop" source_phase="0"/>

<output feature="CDS_end_not_found" strand="+" frame="0"/>
</source>

<source id="stop">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0">
<output feature="intergenic"/>
</source>

<source id="stop_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="3ss_0">

<useseg id="coding_seg" source_phase="0"/>

<killfeat id="stop" source_phase="0"/>

<output feature="CDS_end_not_found" strand="+" frame="0"/>
</source>

<source id="3ss_1">

<useseg id="coding_seg" source_phase="2"/>

<killfeat id="stop" source_phase="2"/>

<output feature="CDS_end_not_found" strand="+" frame="1"/>
</source>

189

<source id="3ss_2">

<useseg id="coding_seg" source_phase="1"/>

<killfeat id="stop" source_phase="1"/>

<output feature="CDS_end_not_found" strand="+" frame="2"/>
</source>

<source id="bss_0" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="bss_1" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="bss_2" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="3ss_O_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="3ss_1_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="3ss_2_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="bss_O_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="bss_1_rev">
<useseg id="coding_seg_rev" source_phase="1"/>
<killfeat id="stop_rev" source_phase="1"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="bss_2_rev">
<useseg id="coding_seg_rev" source_phase="2"/>
<killfeat id="stop_rev" source_phase="2"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>
</target>

<target id="start">
<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="start_rev">

190

<useseg id="coding_seg_rev" target_phase="0"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>
</source>

<source id="stop_rev" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_O_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="stop">
<useseg id="coding_seg" target_phase="0"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="stop_rev">
<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="bss_0">
<useseg id="coding_seg" target_phase="0"/>

191

<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_O_rev">
<source id ="BEGIN" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_O_rev" mindis="39" len_fun="intron_pen">
<output feature="intron" strand="-"/>
</source>
</target>

<target id="bss_1">
<useseg id="coding_seg" target_phase="1"/>
<killfeat id="stop" target_phase="1"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_1_rev">
<source id ="BEGIN" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_1_rev" mindis="39" len_fun="intron_pen">
<killdna source_dna="ct" target_dna="a"/>

192

<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="bss_2">
<useseg id="coding_seg" target_phase="2"/>
<killfeat id="stop" target_phase="2"/>

<source id ="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_2_rev">
<source id ="BEGIN" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="-"/>
</source>
<source id="3ss_2_rev" mindis="39" len_fun="intron_pen">
<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="3ss_0">
<source id="BEGIN" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="bss_0" mindis="39" len_fun="intron_pen">
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_O_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>
</source>
<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="bss_O_rev" mindis="20" len_fun="int_ex_pen" phase="0">

193

<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_1_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="3ss_1">
<source id="BEGIN" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="bss_1" mindis="39" len_fun="intron_pen">
<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_1_rev">
<useseg id="coding_seg_rev" target_phase="2"/>
<killfeat id="stop_rev" target_phase="2"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="1"/>
</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_O_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_1_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_2_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>
</source>
</target>

<target id="3ss_2">
<source id="BEGIN" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="bss_2" mindis="39" len_fun="intron_pen">
<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_2_rev">

<useseg id="coding_seg_rev" target_phase="1"/>
<killfeat id="stop_rev" target_phase="1"/>

194

<source id ="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="2"/>
</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_O_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_1_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>
</source>
</target>
</model>

<lengthfunctions>
<lengthfunc id="intron_pen" file="/tables/intron_penalty.klh"/>
<lengthfunc id="init_ex_pen" file="/tables/exon_penalty.initial.klh"/>
<lengthfunc id="term_ex_pen" file="/tables/exon_penalty.terminal.klh"/>
<lengthfunc id="int_ex_pen" file="/tables/exon_penalty.internal.klh"/>

<lengthfunc id="sngl_ex_pen">
<point x="0O" y="4"/>
<point x="1" y="4"/>
</lengthfunc>

<lengthfunc id="intergene_pen">
<point x="0" y="4"/>
<point x="1" y="4"/>
</lengthfunc>
</lengthfunctions>

</gaze>

A.2 GAZE EST

<?xml version="1.0" encoding="US-ASCII"?>
<gaze>

<declarations>
<feature id="trans_start" st_off="0" en_off="1"/>
<feature id="5ss_0" st_off="1" en_off="1"/>
<feature id="bss_1" st_off="1" en_off="1"/>
<feature id="5ss_2" st_off="1" en_off="1"/>
<feature id="stop" st_off="3" en_off="0"/>
<feature id="t_splice" st_off="1" en_off="1"/>
<feature id="3ss_0" st_off="1" en_off="1"/>
<feature id="3ss_1" st_off="1" en_off="1"/>
<feature id="3ss_2" st_off="1" en_off="1"/>
<feature id="start" st_off="0" en_off="3"/>
<feature id="trans_stop" st_off="1" en_off="0"/>
<feature id="trans_stop_rev" st_off="0" en_off="1"/>
<feature id="start_rev" st_off="3" en_off="0"/>
<feature id="3ss_O_rev" st_off="1" en_off="1"/>
<feature id="3ss_1_rev" st_off="1" en_off="1"/>
<feature id="3ss_2_rev" st_off="1" en_off="1"/>

195

<feature
<feature
<feature
<feature
<feature
<feature

<segment
<segment
<segment
<segment
<segment
<segment
<segment

<lengthfunction id=

id="t_splice_rev" st_off="1" en_off="1"/>
id="stop_rev" st_off="0" en_off="3"/>

id="b6ss_O_rev" st_off="1" en_off="1"/>
id="bss_1_rev" st_off="1" en_off="1"/>
id="56ss_2_rev" st_off="1" en_off="1"/>

id="trans_start_rev" st_off="1" en_off="0"/>

id="coding_seg" scoring="standard_max"/>
id="est_seg" mul="0.01"/>
id="est_intron" mul="0.05"/>

id="coding_seg_rev" scoring="standard_max"/>
id="est_seg_rev" mul="0.01"/>
id="est_intron_rev" mul="0.05"/>
id="est_span" mul="-1000.0"/>

"intron_pen"/>

<lengthfunction id="intergene_pen"/>
<lengthfunction id="tsplice_pen"/>
<lengthfunction id="init_ex_pen"/>
<lengthfunction id="term_ex_pen"/>
<lengthfunction id="int_ex_pen"/>

<lengthfunction

</declarations>

<gff2gaze>

<!-- Features -->

id="sngl_ex_pen"/>

<gffline feature="atg" source="Genefinder" strand="+">

<feat id="start"/>

</gffline>

<gffline feature="atg" source="Genefinder" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="+">

>

<feat id="stop"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="spliceb" source="Genefinder" strand="+">
<feat id="bss_0"/>
<feat id="bss_1"/>
<feat id="bss_2"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="-"

<feat id="5ss_O_rev"/>
<feat id="b6ss_1_rev"/>
<feat id="b5ss_2_rev"/>

</gffline>

<gffline feature="splice3"
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>
<feat id="t_splice"/>

</gffline>

<gffline feature="splice3"
<feat id="3ss_O_rev"/>
<feat id="3ss_1_rev"/>

source="Genefinder"

source="Genefinder"

196

strand="+">

strand="-"

>

<feat id="3ss_2_rev"/>
<feat id="t_splice_rev"/>
</gffline>

<!-- The following features will be added by the pre-processor to the GFF
file, using the est_span objects. But perhaps there should be more
expressiveness in the GFF2GAZE section to allow for the creation of
features corresponding to the ends of the region given by the GFF line -->

<gffline feature="transcript_start" source="EST_derived" strand="+">
<feat id="trans_start"/>
</gffline>

<gffline feature="transcript_start" source="BLAT_mRNA_BEST_derived" strand="+">
<feat id="trans_start"/>

</gffline>

<gffline feature="transcript_start" source="EST_derived" strand="-">
<feat id="trans_start_rev"/>

</gffline>

<gffline feature="transcript_start" source="BLAT_mRNA_BEST_ derived" strand="-">
<feat id="trans_start_rev"/>

</gffline>

<gffline feature="transcript_stop" source="EST_derived" strand="+">
<feat id="trans_stop"/>
</gffline>

<gffline feature="transcript_stop" source="BLAT_mRNA_BEST_derived" strand="+">
<feat id="trans_stop"/>

</gffline>

<gffline feature="transcript_stop" source="EST_derived" strand="-">
<feat id="trans_stop_rev"/>

</gffline>

<gffline feature="transcript_stop" source="BLAT_mRNA_BEST_derived" strand="-">
<feat id="trans_stop_rev"/>
</gffline>

<!-- Segments -->

<gffline feature="coding_seg" source="Genefinder" strand="+">
<seg id="coding_seg"/>

</gffline>

<gffline feature="coding_seg" source="Genefinder" strand="-">
<seg id="coding_seg_rev"/>

</gffline>

<!-- The following segments are derived by the pre-processor -->

<gffline feature="similarity" source="EST_GENOME_strand" strand="+">
<seg id="est_seg"/>

</gffline>

<gffline feature="similarity" source="EST_GENOME_strand" strand="-">
<seg id="est_seg_rev"/>

</gffline>

<gffline feature="intron" source="EST_derived" strand="+">
<seg id="est_intron"/>
</gffline>

197

<gffline feature="intron" source="EST_derived" strand="-">
<seg id="est_intron_rev"/>
</gffline>

<gffline feature="EST_span">
<seg id="est_span"/>
</gffline>
</gff2gaze>

<dna2gaze>
<dnafeat pattern="atg">
<feat id="start" score="0.0"/>
</dnafeat>

<dnafeat pattern="cat">
<feat id="start_rev" score="0.0"/>
</dnafeat>

<dnafeat pattern="taa">

<feat id="stop" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100.0"/>
</dnafeat>

<dnafeat pattern="tta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="bss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>
</dna2gaze>

<model>
<target id="END">
<source id="BEGIN">
<output feature="no genes"/>
</source>

<source id="start">

<useseg id="coding_seg" source_phase="0"/>

<useseg id="est_seg"/>

<killfeat id="stop" source_phase="0"/>

<output feature="CDS_end_not_found" strand="+" frame="0"/>
</source>

<source id="stop">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

198

<source id="start_rev" mindis="0">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="stop_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="3ss_0">

<useseg id="coding_seg" source_phase="0"/>

<useseg id="est_seg"/>

<killfeat id="stop" source_phase="0"/>

<output feature="CDS_end_not_found" strand="+" frame="0"/>
</source>

<source id="3ss_1">

<useseg id="coding_seg" source_phase="2"/>

<useseg id="est_seg"/>

<killfeat id="stop" source_phase="2"/>

<output feature="CDS_end_not_found" strand="+" frame="1"/>
</source>

<source id="3ss_2">

<useseg id="coding_seg" source_phase="1"/>

<useseg id="est_seg"/>

<killfeat id="stop" source_phase="1"/>

<output feature="CDS_end_not_found" strand="+" frame="2"/>
</source>

<source id="bss_0" len_fun="intron_pen">

<useseg id="est_intron" exact="source"/>

<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="bss_1" len_fun="intron_pen">

<useseg id="est_intron" exact="source"/>

<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="bss_2" len_fun="intron_pen">

<useseg id="est_intron" exact="source"/>

<output feature="intron_end_not_found" strand="+"/>
</source>

<source id="3ss_O_rev" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="source"/>

<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="3ss_1_rev" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="source"/>

<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="3ss_2_rev" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="source"/>

<output feature="intron_start_not_found" strand="-"/>
</source>

<source id="bss_O_rev">

199

<useseg id="coding_seg_rev" source_phase="0"/>

<useseg id="est_seg_rev"/>

<killfeat id="stop_rev" source_phase="0"/>

<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="bss_1_rev">
<useseg id="coding_seg_rev" source_phase="1"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="1"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="bss_2_rev">
<useseg id="coding_seg_rev" source_phase="2"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="2"/>
<output feature="CDS_start_not_found" strand="-"/>
</source>

<source id="trans_start">

<useseg id="est_seg"/>

<output feature="UTR5_end_not_found" strand="+"/>
</source>

<source id="trans_stop">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="trans_stop_rev">

<useseg id="est_seg_rev"/>

<output feature="UTR3_start_not_found" strand="-"/>
</source>

<source id="trans_start_rev">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="t_splice" mindis="0" maxdis="50" len_fun="tsplice_pen">
<useseg id="est_seg"/>
<output feature="trans_splice_UTR5_end_not_found" strand="+"/>
</source>

<source id="t_splice_rev">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>
</target>

<target id="start">
<source id="BEGIN">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="t_splice" mindis="0" maxdis="50" len_fun="tsplice_pen">
<useseg id="est_seg"/>
<output feature="trans_splice_UTR5" strand="+"/>

</source>

<source id="trans_start" mindis="0">

<useseg id="est_seg"/>
<output feature="UTR5" strand="+"/>

200

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>
</target>

<target id="start_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>
</source>

<source id="stop_rev" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_O_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="stop">
<useseg id="coding_seg" target_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

201

</source>

<source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="stop_rev">
<source id="BEGIN">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="trans_stop_rev" mindis="0">
<useseg id="est_seg_rev"/>
<output feature="UTR3" strand="-"/>
</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>
</target>

<target id="bss_0">
<useseg id="coding_seg" target_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">

<output feature="CDS" strand="+" frame="0"/>
</source>

202

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_O_rev">
<source id ="BEGIN" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_O_rev" mindis="39" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="both"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="bss_1">
<useseg id="coding_seg" target_phase="1"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="1"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_1_rev">
<source id ="BEGIN" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_1_rev" mindis="39" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="both"/>
<killdna source_dna="ct" target_dna="a"/>
<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>
</source>

203

</target>

<target id="bss_2">
<useseg id="coding_seg" target_phase="2"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="2"/>

<source id ="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>
</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>
</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="1"/>
</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_2_rev">
<source id ="BEGIN" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>
</source>
<source id="3ss_2_rev" mindis="39" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="both"/>
<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="3ss_0">
<source id="BEGIN" len_fun="intron_pen">
<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="bss_0" mindis="39" len_fun="intron_pen">
<useseg id="est_intron" exact="both"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_O_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>
</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="0">

<output feature="CDS" strand="-" frame="0"/>
</source>

204

<source id="bss_O_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="3ss_1">
<source id="BEGIN" len_fun="intron_pen">
<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="bss_1" mindis="39" len_fun="intron_pen">
<useseg id="est_intron" exact="both"/>
<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_1_rev">
<useseg id="coding_seg_rev" target_phase="2"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="2"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="1"/>
</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_1_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_2_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>
</source>
</target>

<target id="3ss_2">

<source id="BEGIN" len_fun="intron_pen">
<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>

</source>

<source id="bss_2" mindis="39" len_fun="intron_pen">
<useseg id="est_intron" exact="both"/>
<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>

205

</source>
</target>

<target id="3ss_2_rev">
<useseg id="coding_seg_rev" target_phase="1"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="1"/>

<source id ="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="2"/>
</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_1_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_2_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>
</source>
</target>

<target id="trans_start">
<useseg id="est_span"/>

<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="trans_stop">
<useseg id="est_seg"/>

<source id="BEGIN">
<output feature="UTR3_start_not_found" strand="+"/>

</source>

<source id="stop" mindis="0" >

206

<output feature="UTR3" strand="+"/>
</source>
</target>

<target id="trans_start_rev">
<useseg id="est_seg_rev"/>

<source id="BEGIN">
<output feature="UTR5_end_not_found" strand="-"/>
</source>

<source id="t_splice_rev" mindis="0">
<output feature="TSL_UTR5" strand="-"/>
</source>

<source id="start_rev" mindis="0">
<output feature="UTR5" strand="-"/>
</source>
</target>

<target id="trans_stop_rev">
<useseg id="est_span"/>

<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="t_splice">
<source id="BEGIN">
<useseg id="est_span"/>
<output feature="intergenic"/>
</source>

<source id="trans_start" mindis="0">
<useseg id="est_seg"/>
<output feature="TSL_UTR5" strand="+"/>
</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">

207

<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

</target>

<target id="t_splice_rev">
<useseg id="est_seg_rev"/>

<source id="BEGIN" mindis="0" maxdis="50" len_fun="tsplice_pen">
<output feature="trans_splice_UTR5_end_not_found" strand="-"/>

</source>

<source id="start_rev" mindis="0" maxdis="50" len_fun="tsplice_pen">

<output feature="trans_splice_UTRE" strand="-"/>
</source>

</target>

</model>

<lengthfunctions>
<lengthfunc id="intron_pen" file="/tables/intron_penalty.klh"/>
<lengthfunc id="init_ex_pen" file="/tables/exon_penalty.initial.klh"/>
<lengthfunc id="term_ex_pen" file="/tables/exon_penalty.terminal.klh"/>
<lengthfunc id="int_ex_pen" file="/tables/exon_penalty.internal.klh"/>
<lengthfunc id="tsplice_pen" file="/tables/trans_splice_penalty.klh"/>
<lengthfunc id="sngl_ex_pen">

<point x="Q" y="4"/>
<point x="1" y="4"/>
</lengthfunc>

<lengthfunc

id="intergene_pen">

<point x="0" y="4"/>
<point x="1" y="4"/>
</lengthfunc>
</lengthfunctions>

</gaze>

A.3 GAZE _GenelD

<?xml version="1.0" encoding="US-ASCII"?7>

<gaze>

<declarations>

<feature id="5ss_0" st_off="1" en_off="1" mul="0.6"/>

<feature id=
<feature id=

"Bss_1" st_off="1" en_off="1" mul="0.6"/>
"6ss_2" st_off="1" en_off="1" mul="0.6"/>

<feature id="stop" st_off="3" en_off="3" mul="0.6"/>

208

<feature id="3ss_0" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_1" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_2" st_off="1" en_off="1" mul="0.6"/>
<feature id="start" st_off="0" en_off="3" mul="0.6"/>
<feature id="start_rev" st_off="3" en_off="0" mul="0.6"/>
<feature id="3ss_O_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_1_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_2_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="stop_rev" st_off="3" en_off="3" mul="0.6"/>
<feature id="5ss_0O_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="5ss_1_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="bss_2_rev" st_off="1" en_off="1" mul="0.6"/>

<segment id="cod_ini_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>

<lengthfunction id="intron_pen" mul="0.0"/>

<lengthfunction id="intergene_pen" mul="0.0"/>

<lengthfunction id="init_ex_pen" mul="1.0"/>

<lengthfunction id="term_ex_pen" mul="1.0"/>

<lengthfunction id="int_ex_pen" mul="1.0"/>

<lengthfunction id="sngl_ex_pen" mul="1.0"/>
</declarations>

<gff2gaze>
<!-- Features —-->

<gffline feature="Start" source="geneid_v1.0" strand="+">
<feat id="start"/>

</gffline>

<gffline feature="Start" source="geneid_v1.0" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="Stop" source="geneid_v1.0" strand="+">
<feat id="stop"/>

</gffline>

<gffline feature="Stop" source="geneid_v1.0" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="Donor" source="geneid_v1.0" strand="+">
<feat id="bss_0"/>
<feat id="bss_1"/>
<feat id="bss_2"/>

</gffline>

<gffline feature="Donor" source="geneid_v1.0" strand="-">
<feat id="5ss_O_rev"/>
<feat id="bss_1_rev"/>
<feat id="bss_2_rev"/>

</gffline>

209

<gffline feature="Acceptor" source="geneid_v1.0" strand="+">
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>

</gffline>

<gffline feature="Acceptor" source="geneid_v1.0" strand="-">
<feat id="3ss_0O_rev"/>
<feat id="3ss_1_rev"/>
<feat id="3ss_2_rev"/>

</gffline>

<!-- Segments -->

<gffline feature="cod_ini" source="GENEID" strand="+" frame="0">
<seg id="cod_ini_0"/>
</gffline>

<gffline feature="cod_ini" source="GENEID" strand="+" frame="1">
<seg id="cod_ini_1"/>
</gffline>

<gffline feature="cod_ini" source="GENEID" strand="+" frame="2">
<seg id="cod_ini_2"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="0">
<seg id="cod_ini_rev_0"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="1">
<seg id="cod_ini_rev_1"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="2">
<seg id="cod_ini_rev_2"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="0">
<seg id="cod_tr_0"/>
</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="1">
<seg id="cod_tr_1"/>
</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="2">
<seg id="cod_tr_2"/>

</gffline>
<gffline feature="cod_tr" source="GENEID" strand="-" frame="0">
<seg id="cod_tr_rev_0"/>
</gffline>
<gffline feature="cod_tr" source="GENEID" strand="-" frame="1">
<seg id="cod_tr_rev_1"/>
</gffline>
<gffline feature="cod_tr" source="GENEID" strand="-" frame="2">
<seg id="cod_tr_rev_2"/>
</gffline>
</gff2gaze>
<dna2gaze>

210

<dnafeat pattern="taa">

<feat id="stop" score="-100"/>
</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100"/>
</dnafeat>

<dnafeat pattern="tta">

<feat id="stop_rev" score="-100"/>
</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="bss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="b5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>
</dna2gaze>

<model>
<target id="END">
<source id="BEGIN">
<output feature="no genes"/>
</source>

<source id="stop">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0">
<output feature="intergenic"/>
</source>

<source id="3ss_O_rev">
<output feature="intron" strand="-"/>
</source>

<source id="3ss_1_rev">
<output feature="intron" strand="-"/>
</source>

<source id="3ss_2_rev">
<output feature="intron" strand="-"/>
</source>

<source id="bss_0">

<output feature="intron" strand="+"/>
</source>
<source id="bss_1">

<output feature="intron" strand="+"/>

</source>

<source id="bss_2">

211

<output feature="intron" strand="+"/>
</source>
</target>

<target id="start">
<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="start_rev">
<useseg id="cod_ini_rev_0" exact="target" />
<useseg id="cod_tr_rev_0O" target_phase="0" />
<useseg id="cod_tr_rev_1" target_phase="1" />
<useseg id="cod_tr_rev_2" target_phase="2" />

<killfeat id="stop_rev" target_phase="0"/>

<source id="stop_rev" mindis="60" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS_term" strand="-" frame="0"/>
</source>

<source id="bss_O_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="stop">
<useseg id="cod_tr_0" target_phase="0" />
<useseg id="cod_tr_2" target_phase="1" />
<useseg id="cod_tr_1" target_phase="2" />

<killfeat id="stop" target_phase="0"/>

<source id="start" mindis="60" len_fun="sngl_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS_term" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="0" len_fun="term_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS_term" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="0" len_fun="term_ex_pen" phase="2">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS_term" strand="+" frame="1"/>

</source>

212

<source id="3ss_2" mindis="0" len_fun="term_ex_pen" phase="1">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS_term" strand="+" frame="2"/>
</source>
</target>

<target id="stop_rev">
<source id="BEGIN">
<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>

<source id="stop" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>
</source>
</target>

<target id="bss_0">
<useseg id="cod_tr_0" target_phase="0" />
<useseg id="cod_tr_2" target_phase="1" />
<useseg id="cod_tr_1" target_phase="2" />

<killfeat id="stop" target_phase="0"/>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_O_rev">
<source id="BEGIN">
<output feature="intron" strand="-"/>
</source>

<source id="3ss_O_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<output feature="intron" strand="-"/>
</source>
</target>

<target id="bss_1">
<useseg id="cod_tr_1" target_phase="0" />
<useseg id="cod_tr_0" target_phase="1" />
<useseg id="cod_tr_2" target_phase="2" />

<killfeat id="stop" target_phase="1"/>

213

<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_1_rev">
<source id="BEGIN">
<output feature="intron" strand="-"/>
</source>

<source id="3ss_1_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="ct" target_dna="a"/>
<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="bss_2">
<useseg id="cod_tr_2" target_phase="0" />
<useseg id="cod_tr_1" target_phase="1" />
<useseg id="cod_tr_0" target_phase="2" />

<killfeat id="stop" target_phase="2"/>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>
</source>
</target>

<target id="bss_2_rev">

<source id="BEGIN">
<output feature="intron" strand="-"/>

214

</source>

<source id="3ss_2_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>
</source>
</target>

<target id="3ss_0">
<source id="BEGIN">
<output feature="intron" strand="+"/>
</source>

<source id="bss_0" mindis="20" maxdis="25000" len_fun="intron_pen">
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_O_rev">
<useseg id="cod_ini_rev_0" exact="target" />
<useseg id="cod_tr_rev_0" target_phase="0" />
<useseg id="cod_tr_rev_1" target_phase="1" />
<useseg id="cod_tr_rev_2" target_phase="2" />

<killfeat id="stop_rev" target_phase="0"/>

<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="0">
<output feature="CDS_term" strand="-" frame="0"/>
</source>

<source id="bss_O_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_1_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="bss_2_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>
</source>
</target>

<target id="3ss_1">
<source id="BEGIN">
<output feature="intron" strand="+"/>
</source>

<source id="bss_1" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_1_rev">
<useseg id="cod_ini_rev_1" exact="target" />
<useseg id="cod_tr_rev_1" target_phase="0" />
<useseg id="cod_tr_rev_2" target_phase="1" />
<useseg id="cod_tr_rev_0O" target_phase="2" />

<killfeat id="stop_rev" target_phase="2"/>

215

<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="2">
<output feature="CDS_term" strand="-" frame="1"/>
</source>

<source id="5ss_0O_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_1_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>
</source>

<source id="bss_2_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>
</source>
</target>

<target id="3ss_2">
<source id="BEGIN">
<output feature="intron" strand="+"/>
</source>

<source id="bss_2" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>
</source>
</target>

<target id="3ss_2_rev">
<useseg id="cod_ini_rev_2" exact="target" />
<useseg id="cod_tr_rev_2" target_phase="0" />
<useseg id="cod_tr_rev_0O" target_phase="1" />
<useseg id="cod_tr_rev_1" target_phase="2" />

<killfeat id="stop_rev" target_phase="1"/>

<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="1">
<output feature="CDS_term" strand="-" frame="2"/>
</source>

<source id="bss_O_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_1_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>
</source>

<source id="bss_2_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>
</source>
</target>
</model>

<lengthfunctions>
<lengthfunc id="intron_pen">
<point x="0" y="1.0"/>
<point x="1" y="1.0"/>
</lengthfunc>

<lengthfunc id="intergene_pen">

216

<point x="0" y="1.0"/>
<point x="1" y="1.0"/>
</lengthfunc>

<lengthfunc id="init_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>
</lengthfunc>

<lengthfunc id="int_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>
</lengthfunc>

<lengthfunc id="term_ex_pen">
<point x="O" y="4.5"/>
<point x="1" y="4.5"/>
</lengthfunc>

<lengthfunc id="sngl_ex_pen">
<point x="Q" y="4.5"/>
<point x="1" y="4.5"/>
</lengthfunc>
</lengthfunctions>

</gaze>

217

