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Summary

A new approach to the computational identification of protein-coding gene struc-

tures in genomic DNA sequence is described. It overcomes rigidities inherent in

most existing gene prediction methods, for example those based on Hidden Markov

Models (HMMs), by supporting a flexible computational model of how sequence

signal signals fit together into complete gene structures.

The primary result of the work is a gene prediction tool for the assembly of

evidence for individual gene components (features) into complete gene structures.

The system is completely configurable in that both the features themselves, and the

model of gene structure against which candidate assemblies are validated and scored,

are external to the system and supplied by the user. The gene prediction process

is therefore tied neither to any specific techniques for the recognition of sequence

signals, nor any specific underlying model of gene structure.

The methodology is implemented in a piece of software called “GAZE” which

uses a dynamic programming algorithm to obtain (i) the highest scoring gene struc-

ture consistent with the user-supplied features and gene-structure model, and (ii)

posterior probabilities that each feature is part of a gene. The algorithm includes a

novel pruning strategy, ensuring that it has a run-time effectively linear in the length

of the sequence without compromising accuracy. The effectiveness of the approach

is explored by applying it to the prediction of gene structures in sequences of the

nematode worm C. elegans.

GAZE allows the integration of gene prediction data from multiple, arbitrary

sources. It is important for the accuracy of the system that the various pieces of

evidence are weighted appropriately with respect to each other. A novel strategy for

the automatic determination of optimal values for these weights is described. The

method uses numerical analysis and dynamic programming to maximise a probabilis-

tic accuracy function with respect to the weights. Its effectiveness is demonstrated

in the context of the development a gene prediction system for vertebrate sequences

using GAZE.
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Introduction

The working draft of the human genome is now nearly two years old [112], with

announcement of the finished article expected later this year. The near-completion

of this effort has seen a redirection of resources, resulting in an acceleration in

the genome-sequencing of other organisms studied in experimental biology, such as

mouse and zebrafish. According to the National Centre for Biotechnology Informa-

tion, nearly 900 genomes are either finished or currently being sequenced1. The fact

that such large scale sequencing is possible represents an incredible achievement,

both in technology/engineering, and sheer organisation. However, genomes only be-

come useful resource for science through biological interpretation, i.e. annotation of

the role of the different parts of the sequence in cellular processes. Without anno-

tation, genome sequencing is, to paraphrase Ernest Rutherford, nothing more than

stamp collecting.

The specific problem addressed by this thesis is that of the annotation of the gene

structures in a genome. Annotation of a genome in terms of its constituent genes

and their intron-exon structure allows us to infer a set of proteins for an organism.

Furthermore, the genomic context of the genes can provide insight into the regulatory

mechanisms that determine where and under what conditions the corresponding

proteins are expressed, as well as being a useful resource for experimental biology.

Gene structure annotation of genomic sequence is still most accurately performed

by trained experts, combining the results of a number of computational and exper-

imental analyses with biological knowledge and heuristics. This is naturally a slow

1http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/allorg.html, 3rd February 2003
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process, and the huge volume of sequence data being generated places an unrealis-

tic demand on the number of experts required to perform this skilled activity. In

addition, for the annotation of a large vertebrate genome to be completed in any

reasonable amount of time, it is necessary to divide the sequence amongst up to

a hundred annotators. This can have the undesirable result that different sections

of a genome can be annotated with different standards and procedures. Reliable,

completely automated methods for gene structure annotation would therefore firstly

cope with the rate at which genome sequence data is being generated and secondly

provide gene structure annotation that is consistent.

This thesis describes a new approach to the automated prediction of gene struc-

tures in genomic DNA sequences. Despite progressive improvement in the accuracy

of computational methods in the last fifteen years, they remain imperfect. The

problem therefore still attracts considerable research interest both into the biolog-

ical processes of transcription, RNA processing and translation that determine the

gene structure of a genome, and into methods for the recognition of the sequence

signals involved in these processes. The integration of new knowledge and methods

into complete gene prediction systems is however often inhibited by rigidities of de-

sign, such as a fixed assumed underlying model of the compositional and structural

properties of genes.

The primary motivation for my research has been to accelerate the integration

of new and possibly disparate knowledge and techniques into the gene prediction

process. To this end, I have developed a structured framework for the assembly of

gene prediction evidence from multiple, arbitrary sources into complete gene struc-

ture predictions. Careful design and certain assumptions allow the system to make

probabilistic statements about its predictions, and this in turn facilitates a princi-

pled approach to the problem of determining an optimal weighting strategy for the

various types of evidence employed.

The organisation of the dissertation is as follows. Chapter 1 discusses some of

the issues and techniques of computational gene-structure prediction. The aim is to
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provide an introduction and broad survey, as many of the issues that are directly

relevant to the work presented in the remainder of the thesis are expanded upon

where appropriate.

After this short review, the dissertation can be viewed as comprising of two parts.

The first part (chapters 2 and 3) describes a framework for the integration of arbi-

trary gene prediction data, and its application to the development of a gene finder for

C. elegans sequences; the second part (chapters 4 and 5) describes a new approach

to probabilistic parameter estimation and its application to the performance-tuning

of a gene prediction system for vertebrate sequences.

Chapter 2 describes the details of the framework, implemented in a program

called “GAZE”. I briefly explain the elements of the system, with focus on the

configuration file that controls the assembly of the external evidence into complete

gene predictions. I then go on to describe the dynamic programming algorithms used

by GAZE for the calculation of the optimal gene structure and posterior probabilities

for parts of gene structures, including a novel search-space pruning strategy. To end,

I contrast GAZE with other, similar approaches to computational gene prediction.

Chapter 3 describes the application of GAZE to gene prediction in C. elegans se-

quences. I outline the stepwise development of an initial configuration, and explore

the effects of extending the model in two ways, first to account for a worm-specific

peculiarity of gene structure, and second to make use of sequence similarity infor-

mation. I also examine the probabilistic aspects of the system and explore some of

their potential applications.

Chapter 4 addresses the problem of identifying an optimal weighting for the

scores attached to the different types of evidence employed in an integrated gene

prediction system. Two methods for estimating optimal weights for the elements

of a GAZE configuration are described. The first is based on a classical maximum

likelihood approach; the second is a novel method which I call Maximal Feature

Discrimination (MFD). I contrast these with other similar techniques, particularly

those used for Hidden Markov Models.

xii



Chapter 5 describes the application of Maximal Feature Discrimination to the

training of a simple GAZE model for gene finding in vertebrate sequences, and

compares the results with those obtained using the classical maximum likelihood

method. I extend the simple model with each of three types of additional evidence

and demonstrate the effectiveness with which MFD is able to determine weights for

the new model elements.

Finally chapter 6 concludes the dissertation by briefly summarising the important

aspects of the work, and suggests possible areas for further research.
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Chapter 1

Methods for the computational

identification of gene structures

This short review outlines some of the current approaches to the computational

identification of gene structures in genomic DNA. It focuses on the very specific

problem of the prediction of the complete structures of protein-coding genes in the

sequences of eukaryotic organisms. Gene prediction in prokaryotes is traditionally

viewed as less challenging due to high gene density and lack of introns (although

genes with overlapping coding regions are far more common in prokaryotes than in

plants and animals). The prediction of non-protein-coding genes is on the other hand

considered by most to be a harder problem and is currently attracting considerable

research interest in its own right (see section 1.5).

I aim here to summarise the main issues rather than attempting to be compre-

hensive; there are many existing reviews on this subject, notably by Fickett [39],

Claverie [26], Guigo [51], Burge and Karlin [22], Stormo [108], and recently by Zhang

[122] and Mathe et.al. [77]. Many of the issues summarised here are discussed in

further detail in later chapters of this thesis.
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Figure 1.1: The primary components of a typical eukaryotic protein-coding gene, showing its transcrip-

tion, the processing of the transcribed RNA, and the translation of the processed RNA.

1.1 Identifying the elements of gene structure

Figure 1.1 depicts the classic view of how a eukaryotic protein-coding gene specifies

its protein sequence [115] [1]. With this model, the cellular processes of transcription,

RNA processing and translation can be viewed abstractly as a series of segmenta-

tions: firstly of the genomic DNA sequence into gene and non-gene regions, each

gene giving rise to one or more primary transcripts; secondly of the transcript se-

quence into exonic and intronic regions, the exons forming a processed transcript;

and thirdly of the processed transcript into translated and untranslated regions, the

translated region giving rise to a protein. The problem of gene prediction in this

context can therefore be described as identifying the precise regions of the genomic
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DNA that correspond with translated regions in processed RNAs, allowing at least

in theory the inference of the proteome from the genome.

At present, our understanding of the mechanisms of transcription, RNA pro-

cessing and translation is insufficient to be able to model them precisely in silico.

Until our knowledge reaches a level where a deterministic computational model is

realistic, we must supplement what we know with a variety of statistical methods.

1.1.1 The recognition of gene structural elements

The localised sequence signals that form the basis for the cellular recognition of

the boundaries between functional regions of gene structure are most intuitively

expressed as consensus sequences. The fact that these signals are neither unique to

genes nor completely conserved across all genes makes their computational detection

non-trivial.

Of the three processes of transcription, RNA processing and translation, it is

the sequence signals of the first that are the most poorly understood. In attempting

to define the site of transcription initiation, the AT-rich TATA-box signal located

around 30 base-pairs upstream forms the basis for the many of detection techniques

[40], but only around 70% of human promoters (for example) have this characteristic

[19]. The association of promoters with CpG islands (short regions where suppression

of methylation leads to a higher-than-average proportion of the dinucleotide CG [8])

provides another useful signal, but one that can give only low resolution mapping

of the transcription start site. The site of transcription termination is even less well

characterised, and most methods instead focus on trying to identify the upstream

site of the transcript cleavage that occurs prior to polyadenylation, the poly(A)

site. In many organisms, this is characterised by the presence of the hexanucleotide

AATAAA around 30 nucleotides upstream, but in humans the signal is absent from

around half of all genes [26], and in C. elegans there are as many as 23 one or two

base variants documented [14].

Although the sites of translation initiation and termination are difficult to iden-

3



tify in isolation, they do have elements that are completely conserved: the translated

regions of all eukaryotic genes begin in the processed mRNA with the triplet corre-

sponding to the start codon, almost always ATG (with a slightly less well conserved

context upstream of the ATG known as the Kozak sequence [65]), and end with the

first in-frame occurrence of a triplet corresponding to one of the three possible stop

codons, TAA, TGA, and TAG. This information however is insufficient to be able

to to identify these sites in the genome with any accuracy at all. The degeneracy of

the translation initiation site can be explained in part by the fact that the ribosome

need “search” only a relatively small stretch of processed mRNA for a place to bind

rather than a far longer stretch of genomic DNA. We still do not understand enough

about translation however to identify the initiation site even in a processed mRNA

with certainty.

As with translation, searching the genomic DNA for the signals important in

RNA processing provides a more difficult problem than that encountered by the

spliceosome, which is faced only with an orders-of-magnitude smaller RNA molecule.

Even so, our understanding of the signals involved in the splicing process, although

far from comprehensive, provides the most useful information for the identification

of gene structures directly in the genomic DNA. The Donor and Acceptor splice sites

have the consensuses AG—GTRAGT and YYYYYYYYYYNCAG—G respectively

[122], with the GT and AG defining the beginning and end of virtually all introns.

In vertebrates, the acceptor signal is often extended upstream into the intron to

capture the completely conserved A residue that occurs at the branch-point [20].

Although these signals of transcription, translation and RNA-splicing are quite

different, the same kinds of techniques are used to identify features of all of them.

Most correspond to variations on the idea of a generalised consensus sequence for

the signal, using a probability distribution over the possible residues occurring at

each position. The widely used Weight Matrix method (WMM) [105] treats each

position in the consensus as independent. Where it is believed that there are linear

dependencies between the positions, the Weight Array method (WAM) is often used,
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where the probability of residue s appearing in position i depends not only on

the position (as with the WMM), but also on the residues appearing at positions

i − 1, i − 2, . . . , i − k (where k is chosen according to the amount of training data

available). Where the dependencies between columns are known but non-adjacent,

Maximal Dependence Decomposition (MDD) [21] can be used, and multi-layered

artificial networks can model complex dependencies between positions even when the

dependencies themselves are poorly understood [17]. Finally, profile Hidden Markov

Models are able to model insertions and deletions with respect to the generalised

consensus [36].

In practice, the degeneracy of the short sequence-motifs characteristic of these

gene features makes these so called signal sensor methods most useful when used in

combination with content sensor methods for assessing the likelihood of the longer

more extensive regions between the features, such as intron and exons (see below).

However, there are many examples of where these methods are employed directly,

for example, in the detection of transcription start sites [34], polyadenylation sites

[111], translation start sites [55] and splice sites [86].

1.1.2 The recognition of gene regions

A protein coding region in the genomic DNA consists of a string of triplets, each of

which corresponds to a codon that will be translated into an amino acid. Biases in

the usage of amino acids in proteins, in the usage of codons for a single amino acid,

and the absence of stop codons provide the basis for the majority of methods for

differentiating coding regions from non-coding regions.

Inspired by the survey of coding statistics conducted by Fickett and Tung [41],

most techniques for assessing the coding potential of a sequence are based on the

relative frequency of occurrence of frame-specific hexamers (runs of 6 nucleotides)

in coding regions compared with non-coding regions (usually introns). These differ-

ences can be expressed probabilistically as a kth order Markov model [36] which is

a stochastic model that assumes that the probability of a base at a given position
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depends only upon the previous k bases. The simple weight matrices above are

therefore related to 0th-order Markov models, with a different probability distribu-

tion for each column, whereas the weight array matrices are related to kth order

Markov models. Using hexamer frequencies therefore corresponds to a 5th order

Markov model. In practice, protein-coding regions are modelled by using a sepa-

rate 5th order Markov model for each of the three positions in a codon, as in the

genmark program [15]. More recently, Interpolated Markov models (IMMs) have

been utilised for eukaryotic gene finding [97], in which the probability of a base at a

given position is a weighted average of the probabilities according to several Markov

models of different orders (e.g. between 0 and 8).

Because these content sensing methods are poor at identifying the precise bound-

aries of the coding regions, they are most often used in combination with the signal

sensing methods described earlier. A pair of detected signals of appropriate type

defines a candidate gene region; for example, a translation start site followed by a

donor splice site defines a candidate initial protein coding region of an exon, the like-

lihood of which can be judged by using a content sensor such as the Markov models

outlined above. This approach is appropriate for detecting all types of gene region.

For example, a candidate intron can be defined by upstream donor and downstream

acceptor splice sites, and an exon by a transcription start site / acceptor splice site

upstream followed by a polyadenylation site / donor splice site downstream.

In order to be able to discriminate between true and false candidate regions

defined in this way, a score for the region is commonly computed by combining

the information from many sources, typically (i) the signal scores of the defining

boundary elements; (ii) content scores for the intervening sequence; (iii) a score

obtained from a probability distribution over the possible lengths of the region.

If the scores correspond to (log) probabilities and we assume independence, they

can be combined most naturally by (addition) multiplication. More generally, it is

necessary for the score components to be weighted and combined appropriately [109].

In the pioneering grail system for the detection of protein-coding exons, the scores
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reported by several sensors were combined with an artificial neural network [113]. An

alternative approach results from viewing each of the n region discriminators as the

axis of a high dimensional space, in which case candidate regions can be described by

a point in this space. Techniques such as linear and quadratic discriminant analysis

can be used to find the surface in this space that optimally separates true and false

examples. Of the signals discussed earlier, it is the donor and acceptor splice sites

that are perhaps the best characterised, so these techniques have both been employed

most successfully for the identification of protein-coding internal exons [103] [120].

More recently quadratic discriminant analysis has been used for the recognition of

complete initial [29] and terminal [110] exons.

1.2 Identifying complete gene structures

The prediction of complete gene structures is seemingly a more difficult problem than

that of the prediction of localised gene features and regions. However, the accuracy

of identification of such features and regions can be improved by considering not only

their local properties, but also their relationship to other more distant gene features.

At the very simplest level, the protein-coding regions of exons almost never overlap

in eukaryotes, successive protein-coding regions on the same strand in the same gene

must be frame compatible, and the length of the coding regions of the complete gene

must be a multiple of three. Such constraints are the basis for most methods for

the identification of complete gene structures. The widely used techniques can be

broadly divided into two categories: gene fragment assembly, and Hidden Markov

Models.

1.2.1 Gene fragment assembly methods

The majority of early programs for the prediction of complete gene structures con-

ceptually broke the problem into two distinct sub-problems: (a) identify a set of

candidate gene fragments (e.g. coding exons) using the methods such as those de-
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scribed in the previous section; (b) of the many possible complete gene structures

assemblies implied by these candidate gene fragments, eliminate illegal assemblies,

i.e. those that do not adhere to the constraints of gene structure. Then, of those

remaining, identify the assembly that is optimal according to some scoring function.

The constraints that determine the legality of candidate assemblies are conve-

niently expressed as rules that dictate which pairs of gene features or regions are

allowed to appear next to each other in a legal gene structure. More formally, the

rules can be expressed in the form of a grammar [33]. Early programs assumed that

the input sequence contained exactly one complete gene on the forward strand of

the sequence. Generalisation of the assumed gene structure constraints has given

the majority of the more recent programs the ability to predict multiple genes, genes

on both strands, and partial genes at the ends of the sequence. It is still the case

however that most of these assumed gene models make no allowances for specific

peculiarities of certain gene structures, such as the presence of introns that occur

completely within the non-coding region of an mRNA (so-called UTR introns), and

the presence of genes within an intron of another gene [57].

Disregarding assemblies that do not adhere to the constraints of an assumed

gene structure model reduces the number of possible assemblies, but typically many

will remain. The first programs worked by iterating though all legal gene structures

explicitly [42] [47], but as the number of possible legal assemblies typically grows

exponentially with the number of gene fragments [49] [116], this approach was only

practicable for small sequences. Subsequent research addressed this problem by us-

ing heuristics to reduce the search-space, an example being the original version of

the geneid program which used series of hierarchical rules to filter out unlikely

exons before the assembly stage [89]. However, such methods are not guaranteed

to identify the optimal assembly. The application of Dynamic Programming [6] for

the efficient identification of the optimal assembly therefore represented a significant

advance. Dynamic Programming is a generic name for a family of recursive opti-

misation techniques that work by the progressive construction of a solution from
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simpler sub-solutions. The technique allows the exploration of a search space that

grows exponentially with the number of gene fragments in time that grows only

polynomially (O(n2) or even O(n)). For this reason, dynamic programming algo-

rithms are employed in most of the popular gene fragment-assembly based programs

[101] [118] [84].

1.2.2 Hidden Markov models

Hidden Markov models (HMMs) provide a convenient framework for the represen-

tation of the signal and content displayed by gene features and regions and the

constraints of gene structure, in one unified probabilistic model. An HMM can be

thought of a probabilistic finite state automaton for generating a sequence from left

to right according to an underlying hidden state path. At each stage the model (i)

emits a single residue according to an emission probability distribution over residues

that is dependent upon the current state, and (ii) moves to a new state (possibly

the same state) according to a transition probability distribution over states that is

dependent upon the current state.

HMMs can naturally model sequences that are partitioned into regions of dif-

ferent types, for example genes. At the very simplest level, we might have a state

for ’exon’ with two transitions, one into an ’intron’ state, and another looping back

into the ’exon’ state. These two states can have different emission distributions, and

can thus represent inherent compositional differences in introns and exons. Each

path through the HMM therefore corresponds to a gene structure, and inference of

the underlying state path (given the sequence) corresponds to a prediction of gene

structure.

The transition and emission probabilities of an HMM amount to a joint proba-

bility distribution over pairs of state-paths and sequences. Given a query sequence,

established, efficient (linear-time) techniques can then be used to obtain (i) the

most likely state-path given the sequence (using the Viterbi dynamic programming

algorithm [114]); (ii) the full probability of the sequence considering all state paths
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(using the forward or backward algorithm [90]); and (iii) the posterior probability

that residue i was generated by state k (using the forward-backward algorithm [90]).

One of the key advantages of HMMs is that given a training set of sequences with

known gene structure, maximum likelihood parameters for the model (i.e. emission

and transition probabilities) can be obtained by counting.

HMMs as described generate a region of a particular function class by successively

looping to the same state, jumping to a different state at the end of the region. This

imposes a geometric distribution on the duration of the states, which is an unrealistic

model for most of the functional regions in genes, particularly protein-coding exons

[20] [112]. One of two enhancements to the standard HMM architecture is therefore

usually employed to represent the non-geometric nature of the length of protein-

coding exons.

The first is to model the sequence as a list of classes, with each residue being

labelled as belonging to a particular class, and being generated by one of a group

of states labelled as belonging to the same class. Such a formalism is known as a

Class-HMM [67]. By chaining more than one state together with the label “exon”

and then obtaining the most likely labelling by summing over all paths with the same

labelling, a length distribution resembling that displayed by protein-coding exons is

observed. This is the approach taken by hmmgene [68], which uses a novel hybrid

of the Viterbi and forward algorithms to identify the most likely labelling.

The second enhancement often employed is to allow the emission of an entire se-

quence region from each state, the length of which is chosen according to an explicit

length probability distribution for the state. Such models are known as semi -Hidden

Markov models [21] or Generalised HMMs (GHMMs) [72]. In theory, the worst-case

run-time of the Viterbi, forward and backward algorithms when applied to GHMMs

grows quadratically in the length of the sequence, making their computation pro-

hibitively expensive for true genomic sequence fragments which may be hundreds

of kilobases long. In practice, this problem is often addressed by pre-processing the

sequence for a list of candidate gene features, alleviating the need to consider every
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base of the sequence during the computationally intensive dynamic programming

algorithms [72]. This does not address the problem of the quadratic growth of the

run-time however. In practice, the run-time does not grow truly quadratically, be-

cause the length of coding regions is limited naturally by the fact that they cannot

extend past an in-frame stop codon. The genscan program [21] restricts the semi-

Markov property to these protein-coding regions only, with non-coding regions being

generated by standard self-looping transitions. Although imposing a geometric dis-

tribution on the length of such regions, the assumption allows the run-time of the

program to grow effectively linearly with sequence length.

1.3 Using similarity to other sequences

1.3.1 Expressed sequences

Despite progressive advances in the ab initio gene prediction methods discussed

above, it is still the case that the most reliable way to identify the gene structure of a

piece of genomic DNA is by aligning it to a corresponding expressed sequence, either

cDNA (complementary DNA, a DNA copy of an expressed mRNA) or homologous

protein.

A cDNA can be aligned to genomic sequence with a standard pairwise compari-

son tool like blastn [2]. However, in most cases this will not identify the intron-exon

boundaries precisely, since similarities often by chance extend partially into the in-

trons flanking an exon. A variety of “spliced” alignment programs address this

problem by incorporating knowledge of the donor and acceptor splice site consen-

suses, scoring long gaps that start with a GT and end with an AG in the genome

more favourably [79] [44] [61]. These methods can be applied equally well to full-

length cDNA and the more abundant partial cDNAs such as Expressed Sequence

Tags (ESTs), although the use of the latter will typically reveal only a portion of

the gene structure.

Correspondingly with cDNA methods, the alignment of a homologous protein
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to the genomic sequence using a tool such as blastx [2] is useful for discovering

regions that are likely to be protein-coding, but will usually not reveal the intron-

exon boundaries precisely. Spliced alignment programs also exist for the alignment

of a protein to genomic DNA. procrustes [48] for example first obtains a list of

candidate internal exons that are delimited by the AG and GT acceptor and donor

splice consensuses, and then obtains the assembly of the these exons for which the

implied translation is most consistent with the given protein. genewise [10] on the

other hand aligns a profile Hidden Markov model constructed from the given protein

sequence (or multiple sequence alignment) directly to the genomic DNA, implicitly

considering all possible gene predictions. Both of these methods are extremely ac-

curate when the protein is a close homolog to that encoded in the genomic sequence

[53].

Techniques that integrate methods of ab initio and similarity based gene pre-

diction approaches have the theoretical advantage of maximising accuracy where

a similar sequence exists, without compromising the ability to predict novel gene

structures where one does not. One common way to do this is to use the align-

ments resulting from a database search to modify the scores of the appropriate gene

structural elements used in an ab initio program, e.g. using blastx matches to

boost the scores of protein-coding exons [71] [69] [119]. As one would hope, these

approaches can outperform traditional ab initio methods, although the margin of

this improvement is limited by the quality of the sequences in the public databases

used for prediction. The high-throughput, error-prone nature of ESTs in particu-

lar makes their alignment to the genome and subsequent use by an integrated gene

prediction method non-trivial [91].

1.3.2 The sequences of other genomes

There have recently been published a number of gene prediction techniques that

make use of the genome sequences of more than one organism. These methods

are based on the hypothesis that the coding regions of the genomes of a group of
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organisms that share a common ancestor should be under greater selection, and

therefore be more conserved, than the non-coding regions. Such a comparative ap-

proach to gene prediction is appealing for many reasons, not least of which is the

ability to discover truly novel genes that share neither the sequence feature char-

acteristics of known genes, nor any observable similarity to expressed sequences in

the public databases. In addition, it provides the possibility of identifying conserved

non-coding regions that are also under selective pressure, for example those involved

in gene regulation.

The most obvious way to look for conserved coding regions between genomes is

to use a similarity search tool such as tblastx [2] which performs a heuristic-based

pair-wise alignment of each possible translation of one sequence to each possible

translation of the other. This will typically return a list of small, localised candidate

exon-pairs. Programs such as waba [62] and glass [4] on the other hand perform

the global alignment of longer syntenic genomic regions, classifying parts of the

alignment as likely coding or non-coding.

Although neither these local nor global alignment methods provide direct pre-

dictions of gene structures, they form the first stage of many programs that do. cem

[3] for example identifies the optimal assembly of candidate exon pairs reported by

tblastx into complete pairs of gene structures. rosetta [4] on the other hand uses

the longer alignments of glass and identifies the most likely parse of the alignment

into intronic, exonic and intergenic regions. Both of these programs simultaneously

predict gene structures in both sequences. twinscan [64] is a generalisation of gen-

scan that uses blastn alignments of a query sequence to an “Informant” genome

to predict gene structures in the query sequence only. The blastn alignments are

used to construct a “conservation” sequence mirroring the query that classifies each

position as “match”, “mismatch” or “unaligned”, and the predicted gene structure

is that which maximises the joint probability of the query sequence and the conser-

vation sequence.

Finally, it is worth mentioning two recent methods based on pair Hidden Markov
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models [36]. doublescan [78] models exon fusion, splitting, insertion and deletion

in one sequence with respect to the other. slam [82] on the other hand assumes

that the number of exons in the homologous gene structures is the same, but also

models conserved non-coding regions explicitly, giving it the potential to identity

homologous regulatory regions. Both simultaneously predict gene structures in both

sequences. The advantage of this approach is that it is unnecessary for a genomic

alignment (or set of alignments) to be produced in advance; gene prediction and

alignment are performed simultaneously.

The accuracy of comparative gene prediction methods, although representing an

advance over traditional single-sequence ab initio methods, has so far fallen short of

what one might expect to be achievable by such an approach. One reason for this is

that when considering only a pair of genomes (as current methods do), conservation

will occur in many non-coding regions (about 50% of the conserved regions between

human and mouse are non-coding [122]). The use of more than two genomes would

be expected to improve performance, and many of the methods discussed above gen-

eralise naturally to multiple genomes. However, the increase in computational com-

plexity that results from adding more genomes unfortunately makes this approach

impracticle at present. Future research in this area might therefore be towards the

use of heuristics to reduce the explosion of the search-space that results from adding

more genomes, perhaps using ideas from classic multiple sequence alignment.

1.4 Assessing gene prediction accuracy

In the field of gene prediction, a new method is generally not considered an ad-

vancement unless it is shown to be as least as accurate as existing methods. In this

section, I briefly discuss some of the issues involved in assessing the “accuracy” of a

gene prediction technique.

Surveys of available techniques and their accuracies appear periodically (see for

example refs. [23], [85], [94], and http://predict.sanger.ac.uk/th/brca2) although

of course progressive improvement in the techniques can mean the specific figures
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become dated. The survey of Burset and Guigo [23] however remains one of the

most cited articles in the field because it laid down a standard for the way in which

gene prediction accuracy should be assessed.

The biggest problem in providing a fair comparison between the accuracy of

different gene prediction techniques is the choice of a test-set. The set of 570 ver-

tebrate sequences constructed by Burset and Guigo has gained widespread use as a

benchmark for the assessment of vertebrate gene finders. Its usefulness is limited in

two ways however. Firstly, since each sequence contains exactly one complete gene

on the forward strand, it provides no way to judge the accuracy of programs that

can predict multiple gene on both strands of a sequence. Secondly, the utility of

the set diminishes with time, since many researchers will use some (or all) of these

sequences in the development and parameterisation of their methods.

For comparisons between gene prediction techniques to be fair, researchers must

have a clear and unified idea of how accuracy is to be measured. To this end,

Burset and Guigo proposed a series of metrics, each summarising a separate aspect

of accuracy as a single floating point number. A number of these metrics are made

use of in the remainder of this dissertation, and are outlined next.

1.4.1 Gene prediction accuracy metrics

Accuracy is classically presented at three levels: at the level of individual nucleotides

or base-pairs; at the level of whole exons; and at the level of complete gene structures.

Base-level accuracy

Accuracy at the base-pair level is described in terms of sensitivity (Sn), which is

the proportion of nucleotides annotated as coding that are predicted as coding; and

specificity (Sp), the proportion of nucleotides predicted as coding that are annotated

as coding. More formally, we can describe these quantities in terms of (i) the number

of nucleotides predicted as coding that are actually coding (true positives, TP);

(ii) the number of nucleotides predicted as coding that are actually non-coding
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(false positives, FP); (iii) the number of nucleotides predicted as non-coding that

are actually non-coding (true negatives, TN); and (iv) the number of nucleotides

predicted as non-coding that are actually coding (false negatives, FN). Sensitivity

and specificity are then calculated as:

Sn =
TP

TP + FN

Sp =
TP

TP + FP

Each of these measures in isolation gives a poor indication of global accuracy,

since a method can be highly sensitive by predicting every base as coding, or highly

specific by predicting every base as non-coding. Burset and Guigo therefore defined

the Correlation Coefficient (CC) that represents aspects of both sensitivity and

specificity and acts as a measure of global accuracy at the nucleotide level:

CC =
(TP )(TN) − (FN)(FP )

√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)

Exon and gene-level accuracy

At the exon level, sensitivity and specificity are slightly less obviously defined because

we must be clear what it means for an annotated exon to be predicted correctly (and

for a predicted exon to be correct). The standard laid down by Burset and Guigo

states that a predicted exon is correct if it matches precisely the boundaries of a

single, annotated exon. The same criterion is used to judge whether an annotated

exon has been predicted correctly. Sensitivity is therefore defined as the proportion

of annotated exons that have been predicted correctly, and specificity the proportion

of predicted exons that are correct. The Correlation Coefficient is less useful as

a summary of these two quantities in this case, so the average of sensitivity and

specificity is often quoted as a global measure of accuracy at the exon level.

Requiring that exon boundaries match precisely does not allow for the fact that

many predicted and annotated exons will overlap inexactly. The proportion of anno-

tated exons that are completely missed by the prediction (missing exons, ME) and
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the proportion of predicted exons that share no overlap with any annotated exon

(wrong exons, WE) are therefore also often reported.

Although Burset and Guigo did not define any measures for assessing the ac-

curacy of prediction of whole genes in their article, the exon-level measures are

naturally applied in the same way, defining a predicted gene to be correct if it pre-

cisely matches the intron-exon structure of an annotated gene, and an annotated

gene to be correctly predicted if its intron-exon structure is precisely matched by

that of a predicted gene. Missing genes (MG) and Wrong genes (WG) are defined

in a similar way to exons.

Reese and colleagues defined two additional gene-level measures to express the

accuracy with which a method delineates a sequence containing several genes into

its constituent genic regions [91]. In their scheme, an annotated gene is considered

Split if it is overlapped by more than one predicted gene. Likewise a predicted gene

is considered Joined if it overlaps more than one annotated gene. Split genes (SG) is

defined as the number of predicted genes having some overlap to an annotated gene

(i.e. total predicted genes minus number of wrong genes), divided by the number

of annotated genes having some overlap to at least one predicted gene (i.e. total

annotated genes minus number of missed genes). Joined genes (JG) is the number of

annotated genes having some overlap to a predicted gene (i.e. total annotated genes

minus number of missed genes) divided by the number of predicted genes having

some overlap with an annotated gene (i.e. total predicted genes minus number of

wrong genes). These measures are naturally only useful for assessing the accuracy

of programs that are capable of predicting several genes in a sequence.

1.5 Other issues

One issue that complicates gene prediction somewhat is that the structural and

compositional features of genes can vary according to the particular species. A brief

comparison of the genes of a simple animal (the nematode worm, C. elegans) and a

warm-blooded mammal (human) highlights some of these differences. The propor-
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tion of the genome that is protein coding is far higher in the worm than in human:

around 25% in the worm compared with under 5% in the human genome. The gene

density is also uniformly higher, with the worm having only half as many genes as

human, but compressed into a thirtieth of the genomic space. Worm genes also char-

acteristically have longer exons and shorter introns than human genes [112]. These

factors give a higher signal-to-noise ratio in C.elegans sequences, facilitating gene

prediction. On other hand, worm introns lack a detectable branch-site consensus

[13], reducing the sequence signal available for the detection of acceptor splice sites.

Also many C.elegans genes have atypical structural organisation, being transcribed

as part of a multi-gene transcript called an operon [12], or trans-spliced [66] (see

chapter 3 for more details).

These organism-specific properties are usually addressed by determining separate

parameter sets for each organism (although the degree to which this approach can

reflect structural as well as compositional differences is limited). The properties of

genes can also differ markedly within a single species as well as between species.

The human genome, and the genomes of other warm-blooded vertebrates tend to

exhibit long-range variations in certain base compositional properties (e.g. C+G

content) which has been explained in terms of “isochores” [7]. It has been shown

that certain structural properties of human genes, for example intron-length and

intergenic distance, vary according to C+G content of the background genomic

DNA [37] [20]. This makes it difficult to arrive at a set of parameters that work

well uniformly across the whole genome. Many programs therefore have distinct

sets of parameters for different C+G% strata, and this has been shown to improve

performance [102] [21].

One of the peculiarities of RNA processing not addressed by the majority of

current techniques is that of alternative splicing, where two (or more) transcripts

from the same gene are spliced in different ways, often giving rise to distinct proteins.

It has been estimated that over half of human genes give rise to products that are

alternatively spliced [112]. The most reliable way to identify such events is by
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manual inspection of a collection of cDNA or EST alignments and making gene

structures consistent with this set by hand. There have been recent attempts at

the automation of this process, including a promising method used in the ensembl

automatic annotation system [60], which identifies the minimal set of gene structures

that “explains” a collection of EST alignments to a region of the genome [E. Eyras,

pers. comm.]. Our understanding of the signals involved in alternative splicing is still

insufficient for their ab initio computational prediction directly [73], but it has been

shown that sub-optimal exons (i.e. those with significant probabilities that are not

part of the single most-likely gene structure) are sometimes involved in alternative

splice forms of the gene transcript [20].

To end, it is worth mentioning that many transcribed RNAs are not translated

into proteins but assume some other role in the cell. These include for example

ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snR-

NAs). There is considerable interest in computational methods for the identifica-

tion of genomic regions that give rise to these non-coding RNAs, or ncRNAs [38].

In the absence of the normal signals present in protein-coding genes, the majority

of methods work on the assumption of a consensus secondary structure for ncR-

NAs of a particular type. Mathematical representations of the consensus called

Stochastic Context Free Grammars (SCFGs) [36] provide a basis for the modelling

of base-paired stems that occur in RNA secondary structure, and can be aligned to a

genomic sequence providing simultaneous prediction of a ncRNA and its secondary

structure. This technique has been applied extremely successfully to the predic-

tion of transfer RNAs in the human genome [75]. More recently, pair -SCFGs have

been used to represent the long range compensating mutations that are observed

in the alignment of homologous ncRNAs, allowing them to be discriminated from

conserved coding regions [93].
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Chapter 2

GAZE

2.1 Introduction

Many of the gene identification techniques discussed in the previous chapter have

two things in common: (i) signal and content measures are used to detect compo-

nents and regions belonging to genes; (ii) these are assembled into a complete gene

structure prediction for the sequence that is optimal with respect to some discrimi-

nation measure, often by dynamic programming. For the first of these steps, choices

must be made as to the nature of the specific signal and content measures used, for

example whether to use simple weight matrices or weight array models for splice

site detection or whether to use pentamer or hexamer frequencies for coding-region

scoring. For the second of these steps, a choice must be made as to the model of gene

structure over which the assembly is to be performed, i.e. how the gene components

relate to each other and fit together into complete genes. It is usually the case that

choices in both of these steps are made to produce a system that has the the highest

possible accuracy.

As we find out more about the biological processes of transcription, RNA pro-

cessing and translation, we might want to adjust or extend these gene prediction

methods to reflect our increased understanding. For example, promoter identifi-

cation methods, although advancing, are still not sufficiently accurate be able to
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identify the 5’ ends of genes with any confidence [40]. But if an improved method

becomes available, then there would be much to gain from incorporating it into a

gene prediction system.

Furthermore, programs that make use of similarity information (for example

alignments of cDNAs to the genomic sequence) give more accurate results than ab

initio methods (see chapter 1) where such evidence exists. If ab initio methods can

be extended to make use of similarity evidence where it exists, we might hope to

improve gene prediction accuracy without compromising the ability to predict novel

genes where it does not.

The incorporation of new information into many existing gene prediction systems

may not be straightforward due to rigidities inherent in their implementation. At

best, knowledge of the underlying software is required, and even given this, it is often

necessary to produce a custom version of the software that is designed to work only

when the new data is present. This is true for at least four of the gene prediction

systems discussed earlier [69] [92] [96] [119].

My work has focused on the development of a framework for gene prediction that

decouples the assembly of signal and content data into gene structure predictions

from the generation of this data itself. I have implemented a program called GAZE

for the assembly of features (corresponding to signal sensors) and segments (cor-

responding to content sensors) that is tied neither to any specific signal or content

detection techniques nor any assumed model of gene structure. Both of these ele-

ments are external to the system. The goal has been to provide a method for the

rapid and seamless integration of new/improved methods and data into the gene

prediction process.

The main novelty of GAZE is that it does not work directly with genomic DNA

sequence. It instead predicts gene structures from input files containing the re-

sults of various signal and content sensors with associated scores, typically log

probability ratios. These files are assumed to be in the General Feature Format

[GFF; http://www.sanger.ac.uk/Software/GFF], a format which has rapidly become
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a widely used standard for the exchange of gene prediction information. The assem-

bly of this information is directed by a configuration file (in the eXtensible Mark-up

language, XML [http://www.w3.org/XML]), which affords the user control over the

validation and scoring of candidate gene structures.

This chapter describes the details of the GAZE system. I start by outlining the

main approach taken, explaining how gene structures might be inferred from lists of

features and segments. Next, I describe the details of the GAZE configuration file,

and how it affords control over both the validation and scoring of candidate gene

structures. Two technical sections follow, detailing firstly the GAZE scoring function

and secondly how it is used to obtain a probability distribution over gene structures

and why this is useful. I then discuss some of the innovations implemented to improve

the efficiency of the algorithms, including a novel search-space pruning technique.

To end, I relate the GAZE approach to other gene prediction programs and methods.

The following chapters show examples of the use of GAZE for implementing gene

finders, and further theory and technical issues relating to estimating parameters

for GAZE.

2.2 From features and segments to gene structures

The primary input to GAZE is a file containing the results of arbitrary signal and

content sensors. Each comes with a position on the sequence (i.e. a start and end)

and a score. From this file, collections of features (from the signal sensors) and

segments (from the content sensors) are constructed.

The GAZE approach is that a gene structure can be described by an ordered sub-

set of specific features taken from the given collection. For example, for a sequence

of 1400 nucleotides, the following describes a structure with two genes, consisting

of two exons and a single exon respectively (unless otherwise stated, I will use the

term “exon” to mean the protein-coding part only; this definition is inconsistent

with the classical definition used by molecular biologists, but is both convenient and

consistent with other literature on gene finding):
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Feature Start End

BEGIN 1 1

start 201 203

donor 305 306

acceptor 900 901

stop 1040 1042

start 1101 1103

stop 1218 1220

END 1400 1400

whereas a list describing a structure for which the protein-coding part is found

on a single exon on the reverse strand might be:

Feature Start End

BEGIN 1 1

stop rev 1151 1153

start rev 1208 1210

END 1400 1400

Gene structures that consist of no genes can also be described by an effectively

empty list which includes only the features marking the beginning and end of the

sequence:

Feature Start End

BEGIN 1 1

END 1400 1400

Given a candidate set of features, GAZE predicts genes by obtaining the ordered

subset (list) of features that according to its model is most likely to correspond to the

correct gene structure. It does this by assigning a score to each list and and defining

the most likely gene structure to be the list with the highest score. As explained

in more detail in section 2.4, the score assigned to each candidate structure is a
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donor splice translation stopacceptor splice

hexamer coding protein database hit

translation start

Gene structure

Selection

Segments

Features

Figure 2.1: How GAZE predicts genes. The input is a list of ordered features and segments, drawn

here in different sizes to reflect their scores. A candidate gene structure corresponds to a selection of these

features, and is assigned a composite score based on (i) the scores of the features themselves and (ii) the

scores of specific segments that lie in the appropriate regions between adjacent pairs of the features (here,

both types of segment represent regions with a high likelihood of being protein-coding, so therefore contribute

only towards the scores for protein coding exons). The feature selection with the highest composite score is

output as the most likely gene structure.

function of the given scores of the features which make it up, and the segments lying

in the regions defined by pairs of adjacent features in the structure (see figure 2.1).

Not all lists of features correspond to sensible gene structures. For example,

any list which contains a donor splice site immediately followed by a stop codon

cannot possibly be correct, because we know that in real gene structures, a donor

splice site is necessarily followed by an acceptor splice site. Furthermore not all

segments should contribute towards the score for all regions. For example, a segment

corresponding to a match to a protein database should not contribute towards the

score for a region between a donor splice and an acceptor splice; that is, evidence for
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protein-coding regions should not be used to support candidate non-coding introns.

For many gene prediction systems, such rules and constraints upon gene structure

are encoded into the logic of the program itself. In GAZE however, the gene structure

model is external to the system and supplied by the user in a configuration file.

2.3 Elements of a GAZE configuration

Specific examples of the GAZE configuration language are shown in the next chapter,

but here I describe the elements of the most important aspect of a configuration,

namely the gene structure model. The model has two main purposes: firstly to

define which lists of features are valid gene structures, and secondly to define how

valid structures are to be scored, with reference to both the segments and a set of

length penalty functions.

2.3.1 Defining the validity of candidate gene structures

The model is initially constructed by giving a set of rules for each type of target

feature, defining which types of source feature can immediately precede them in a

valid structure. In the first gene structure above, a “stop” target feature can be

immediately preceded upstream by “start” or “acceptor” source features, and the

model would therefore need to to contain rules for start→ stop and acceptor → stop

(as well as others) to allow this gene structure to be recognised as valid.

The source → target rules themselves can be qualified with constraints that

candidate (source, target) pairs of features should satisfy. There are four types of

constraint:

Distance constraints, indicating that there should be no more than a maximum

and no fewer than a minimum number of bases between the source and target.

Phase constraints, indicating that the source and target should occur 0, 1, or 2

nucleotides (modulo 3) apart.
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Interruption constraints, indicating that a (source, target) pair is invalid if the re-

gion defined by the pair is interrupted by the occurrence of the specified feature

at the specified distance (modulo 3) from either the source or target. These

constraints are used to invalidate potential coding exons that are interrupted

by an in-frame stop codon.

DNA constraints, indicating that a (source,target) pair is invalid if the DNA lo-

cated at the source and/or target has a specified sequence. These constraints

are used to invalidate gene structures that would give rise to in-frame stop

codons across exon-exon boundaries in the spliced messenger RNA.

The space of valid gene structures can be further refined by denoting specific

features in the input set as selected or de-selected. Any candidate gene structure

that does not include all of the features flagged as selected is considered invalid.

Likewise, any candidate gene structure that includes any of the features flagged as

de-selected is also considered invalid.

Technical caveats

For practical purposes, I define the “distance” between a pair features as the length,

in nucleotides, of the region between them. For example, the region between bases

567 and 890 has length 890 − 567 + 1 = 324 nucleotides. Conceptually then, the

distance between a source feature and a target feature is the location of the target

minus the location of the source (plus one). A technical problem with this is that

firstly features often do not have single nucleotide positions, and secondly, some

features are considered part of the region they delimit, and some not. Furthermore,

this can depend on whether a feature is acting as a source or a target (marking

respectively the left or right boundary of the region). For example, a feature repre-

senting a candidate translation start site not only covers three nucleotides (ATG),

and therefore does not have a position on the sequence that be described in a single

number, but needs to be treated differently depending on whether it is a source or
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a target. When acting as a source, it marks the start of a candidate protein-coding

exon, and should itself be considered part of this region, whereas when it acts as

a target, it marks the end of a non-protein-coding region, and should not be itself

considered part of the region.

To address this problem, GAZE requires the definition, for each feature type, of

a “source offset” and a “target offset”. The source offset is an integer number that

is added to the start position of the feature when it is treated as a source, and the

target offset is an integer subtracted from the end location of the feature when it acts

as a target. The translation start feature above will commonly be defined as having

a start offset of 0 and an end offset of 3. So, for an instance of this feature-type

occurring at 567-569 (say), the region beginning with the feature when it acts as a

source starts at 567 + 0, whereas the region ending with the feature when it acts as

a target will end at 569 − 3 = 566, i.e. one nucleotide before the given start of the

feature, which has the desired effect.

The imprecise notion of feature location needs to be addressed when sorting

features by their position on the sequence. The concept of a total order over all

candidate features is important not only for the dynamic programming recursions

described in section 2.4, but also because such an ordering is assumed when defining

the space of valid gene structures; interruption constraints are violated when a

designated feature C occurs between feature A and B, i.e. when the relative order

that the features occur in the list is A, C, B.

Because features have both a start and an end point in sequence co-ordinates,

the obvious approach is to construct the total order by sorting the features first by

start point, and then by end point, and finally (in the case of 2 features having the

same start and end location) by feature type. The first part of figure 2.2 shows why

this sorting strategy can give incorrect results.

The problem is caused by features that overlap, in particular features involved in

interruption constraints (in most uses of GAZE, stop codons). If an acceptor splice

site occurs in the middle of a candidate stop codon, then the protein-coding region
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Figure 2.2: The difficulty in defining a total order over the positions of features in the sequence. (a) The

candidate exon (indicated by the light-blue residues) is valid as neither candidate stop codon (red boxes)

occurs completely within it. However, when the features are ordered naturally by their start points, the

second stop occurs before the splice donor at the 3’ end of the exon (green hook), giving it the appearance

of invalidating the region. Similar problems arise when the features are ordered by their end-point. (b)

In this case, we would like to engineer an ordering strategy whereby the stop codon occurs upstream of

the candidate donor splice site (blue hook) and downstream of the candidate splice acceptor, with the two

splices in their correct orientation. No such ordering exists. Although this specific situation is implausible

(the candidate internal exon is 1 nucleotide long) such problems need to be considered because they become

more likely as the range and diversity of the gene prediction data being used increases.

upstream of the splice acceptor is not invalidated by it. We would therefore like

to place the stop codon before the splice acceptor in the list. If the same situation

occurs with a stop codon and a splice donor at the 3’ end of en exon, we would like

to place the stop after the splice donor, for the same reason.

The aim therefore is to define a sorting strategy that takes this information into

account when deciding upon the relative order of a pair of features. Unfortunately, it

is also possible to imagine a situation where such a strategy might break down. The

second part of figure 2.2 shows that a circularity in the ordering function arises when

candidate splice acceptor, splice donor and stop codon appear in close proximity.
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Such a circularity can lead to non-determinism in feature sorting, whereby the final

ordering depends not only upon the condition dictating the relative order of a pair of

features, but also on the original order of the features. For this reason, it was decided

to abandon the idea of trying to determine definitive total order over a list of features.

Features are therefore sorted in a natural, deterministic way, first by start-point, then

by end-point, and then by type. The problem of the interruption constraints is dealt

with in the dynamic programming algorithms themselves. Specifically, an apparent

violation of an interruption constraint is checked to see if the interrupting feature

really does lie within the region of interest. The primary disadvantage of this is that

it makes the code more complicated and therefore more difficult to maintain.

2.3.2 Defining the scoring of valid gene structures

The overall score of a gene structure is the sum of of scores for the individual

features (as given in the GFF file) and for the regions between each adjacent pair of

features in the structure (this is defined more precisely in section 2.4). The region

scores can be tailored precisely for each (source,target) pair, by specifying in the

source→ target rule two elements: the name of a length penalty function, and a

list of Segment Qualifiers.

Length Penalty Function

Length penalty functions reflect the fact that it is often more likely for a given

source and target to appear at certain distances apart than others. Each source→

target rule can be qualified with the name of a length penalty function, mapping

distances to a floating point number that will be subtracted from the score for the

region between the source and target (see section 2.4). The functions themselves are

defined by simply listing (distance, penalty) pairs, with linear interpolation used to

derive penalties for distances not given. For distances greater than the largest given,

the final two given points are extrapolated. It is straightforward to define penalty

functions that are eventually uniform by making the penalties for the last two given
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distances equal.

Segment Qualifiers

Segment qualifiers control which segments contribute to the score for the region

between the source and target, and under what conditions. Since the region between

an acceptor splice site and a donor splice site (for example) defines a candidate

protein-coding region, both a likely coding segment (indicative of a region of high

protein-coding potential by some statistical measure), and a protein match segment

(corresponding to a region of strong similarity to an entry in a database of protein

sequences) lying in this region provide evidence that the region is protein-coding,

and can therefore be used to increase the score of the region.

Each source → target rule can contain several segment qualifiers. A separate

score is calculated for each qualifier, and these are added to get a total segment score

for the region (see section 2.4). The qualifiers themselves can contain constraints to

restrict which segments should be considered relevant in the calculation of the score

for that qualifier, namely:

Type constraints, indicating that only segments of the designated type should be

considered. This is a compulsory constraint.

Phase constraints, indicating that that the starts of relevant segments should occur

at 0, 1, or 2 nucleotides (modulo 3) away from the source or target. This gives

the facility to consider only segments that are in-frame with respect to the

source/target.

match constraints, indicating that the start and/or end of the segment must lie

at the same position as the source and/or target. This gives the facility to

consider only segments that fit the region precisely, allowing the use of the

output of of programs that identify potential exact intron, exons, or other

gene regions.

30



completeness constraints, indicating (when specified) that the segment must lie

completely within the region to be considered relevant.

2.4 Prediction with a GAZE gene structure model

GAZE predicts genes by choosing from a large set of candidate features, the ordered

subset (list) that (a) is consistent with the gene structure model (i.e. does not violate

any constraints), and (b) has a score at least as high as all other consistent gene

structures.

2.4.1 The GAZE scoring function

Given firstly a list φ = φ1, φ2, . . . , φn, of features ordered by sequence position

defining a valid gene structure according to a GAZE model, their types t(φi), their

locations1 on the sequence l(φi), and their given scores g(φi), then the score of φ,

E(φ) is calculated as:

E(φ) =
n
∑

i=0

Regt(φi)→t(φi+1)(l(φi), l(φi+1)) + g(φi+1) (2.1)

The features φ0 (“BEGIN”)and φn+1 (“END”) are not supplied by the user but

are present in all gene structures and act to mark the beginning and end (respec-

tively) of the sequence. Their “given” scores are always 0. Regsrc→tgt(x, y) is the

region score for the interval [x,y], where the interval is bordered on the left and right

by features of type src and tgt respectively:

Regsrc→tgt(x, y) = Segsrc→tgt(x, y) − Lensrc→tgt(y − x+ 1) (2.2)

Lensrc→tgt(x) is the distance penalty function specified for the rule src → tgt.

Each function maps a distance (in base pairs) to a penalty score. If no penalty

1location is a function of the start co-ordinate and start offset when the feature acts as a source,

and end co-ordinate and end offset when the feature acts as a target, as explained in section 2.3.1.
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function is specified for the src→ tgt rule, a default, mapping all distances to zero,

is assumed.

Segsrc→tgt(x, y), the segment score, is sum of separate scores for each segment

qualifier in the src→ tgt rule. If Qsrc→tgt is the list of segment qualifiers appearing

in the src→ tgt rule, and ψq is the relevant subset of segments for segment qualifier

q, i.e. those that satisfy the type, phase, match and completeness constraints defined

in q, then

Segsrc→tgt(x, y) =
∑

q∈Qsrc→tgt

SegQ(ψq, x, y) (2.3)

If the given scores of each of the segments in a list ψ are denoted by g(φi), then

SegQ(ψ, x, y) itself is calculated in one of two ways:

SegQ(ψ, x, y) = max
ψi∈ψ

|ψi ∩ x . . . y|

|ψi|
g(ψi) (2.4)

SegQ(ψ, x, y) =
y
∑

r=x

max
ψi∈ψ

|ψi ∩ r . . . r|

|ψi|
g(ψi) (2.5)

where |ψi| is the length of segment ψi and |ψi ∩ x . . . y| is the number of bases of

overlap between segment ψi and the region x . . . y. The first function corresponds to

a “maximum single” approach, using the single segment with the highest score (after

it has been scaled according to the proportion of segment lying in the region being

considered). The second function corresponds to a “projected per-base” approach,

summing the scores for the individual bases lying in the region, each of which is

calculated by taking the maximal per-base score of all segments covering that base.

It is up to the user to decide which of these two functions should be used to

score segments of each type. The default is the second, but some segments, by their

construction, may give better results if the first function is used to score them.
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2.4.2 Obtaining the highest scoring valid gene structure

A straightforward way for GAZE to obtain the highest scoring model-consistent

gene structure would be to enumerate all gene structures, calculate the score for

each one (a simple linear combination of terms, as shown above), and retain the

structure with the highest score. This direct approach is not practicable since the

number of possible gene structures grows exponentially with sequence length [116].

However, dynamic programming can be used to explore the search-space efficiently,

by constructing partial solutions in a left-to-right manner, at each stage in effect

discarding partial gene structures that cannot possible be prefixes of the optimal

structure.

The GAZE algorithm for obtaining the highest scoring gene structure is in many

ways similar to others described for the same problem ([89], [49], [109], [72], [116]).

It relies upon an ordering of all candidate features by their position on the sequence.

Taking now φ1, φ2, . . . , φn to be a complete set of candidate features ordered by po-

sition on the sequence (with again φ0 being “BEGIN” and φn+1 being “END”),

the maximal-scoring valid gene structure is obtained by the following dynamic-

programming recurrence:

v(0) = 0 (2.6)

v(i) = max
j<i

[v(j) +Regt(φj)→t(φi)(l(φj), l(φi)) + g(φi)] (2.7)

The score of the optimal gene structure is v(n+ 1), and the gene structure itself

can be obtained with a traceback procedure. This involves maintaining a separate

vector d, where d(i) contains the index j that was found to be the maximum. The

maximal scoring structure itself can be obtained by successively pushing features

onto a stack, starting with φn+1 (the “END” feature) and continuing with φd(n+1),

φd(d(n+1)) and so on until φ0 (the “BEGIN” feature) has been pushed. The gene

structure itself is then obtained by successive popping of features from the stack
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until it is empty.

This algorithm is almost identical to the Viterbi algorithm for finding the se-

quence of states through a Hidden Markov Model that maximises the joint prob-

ability of the state path and the sequence. It is also very similar to Dijkstra’s

algorithm [32] for obtaining the shortest path through a directed weighted graph,

generalised to account for negative edge-weights by Bellman [6].

The procedure above will find the gene structure with the highest score, regard-

less of whether it is consistent with the model or not. However, the constraints that

define model consistency are all defined at the source → target level, as explained

earlier. Since the dynamic procedure above works at this level too, it is straightfor-

ward to check that all constraints have been satisfied. When looping back over the

sources for a given target, sources that give rise to a violation of a constraint are

not considered valid sources for this target. If there are no valid sources for a given

target, the target itself is invalidated, and not itself considered as a valid source for

any subsequent target.

2.5 A probability distribution over gene structures

No matter how well the scoring function represents the characteristics of gene struc-

ture, it is often the case that the optimal (i.e. highest scoring) structure is not the

correct one. It is therefore useful to know the relationship of the optimal gene struc-

ture to other candidate gene structures. I have adopted a probabilistic approach

in assigning a posterior probability to firstly each input feature, and secondly each

potential region (formed by candidate pairs of adjacent features). One can then ask

for the features and/or regions with posterior probability greater some threshold,

regardless of whether those features/regions are part of the optimal structure or not

(“sub-optimal”).

To calculate posterior probabilities, I first define a probability distribution over

gene structures. If the given feature and segment scores are log-probabilities, then

the probability of a gene structure can be calculated simply as an exponentiation of
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the score. Some care is needed in the model to ensure that the whole DNA sequence

is accounted for in every gene structure and that the sum of the probabilities of all

gene structures sums to 1.

GAZE takes the somewhat more pragmatic stance that it is often impossible (or

at the very least, extremely difficult) to formulate the scores as log-probabilities.

Indeed, the scores presented by most signal-recognition programs are usually log

probability ratios with respect to some background or “null” model. For this reason,

GAZE imposes no restrictions upon the given feature scores except that they should

generally increase monotonically with the degree of confidence in the correctness of

the feature, i.e. that large scores are good, and small scores (or large negative scores)

are bad. This means that the score for a complete gene structure can no longer be

assumed to be a log-probability. A more general approach is therefore necessary.

2.5.1 Gene Structure probabilities

By treating gene structure scores E(φ) as “energy” values, we can use the Boltzmann

distribution, ubiquitous in statistical physics, to define a probability distribution over

all possible gene structures Φ:

Z =
∑

φ∈Φ

eE(φ) (2.8)

P(φ) =
eE(φ)

Z
(2.9)

The Z of this fraction is known in statistical physics as the “partition function”,

and acts as a normalisation factor, making all gene structure sum to 1, satisfying

the conditions for a discrete variable probability distribution.

In this formalism, the gene structure scores are interpreted as logarithms. This

assumption is implicit in the design of the scoring function in that the scores of

individual gene components are added to obtain the total score. The assumption

of natural -logs specifically is not limiting since a log score with respect to a base k
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can be transformed into a log score with respect to base e by multiplication by a

constant.

The partition function can be computed with the following dynamic program-

ming recurrence, similar to the forward algorithm for Hidden Markov Models [90],

and almost identical to the score-maximisation algorithm presented earlier (the dif-

ferences being the exponentiation step, and the replacement of maximisations with

sums):

f(0) = 1 (2.10)

f(i) =
∑

j<i

f(j)e
Regt(φj )→t(φi)

(l(φj),l(φi))+g(φi) (2.11)

Each f(i) denotes the sum of exponentiated scores of all of the “upstream”

partial gene structures ending at feature φi. The sum of exponentiated scores of

all upstream-partial gene structures ending at the “END” feature, i.e. all complete

gene structures, is contained in f(n+ 1). The probability of a gene structure φ can

therefore be computed as:

P(φ) =
eE(φ)

f(n+ 1)
(2.12)

This approach is essentially due to Stormo and Haussler [109], the difference

there being that gene structure scores were treated as the log of the joint probability

of φ and the sequence S, and posterior probabilities are presented as explicitly

conditional upon the sequence S, i.e. P(φ|S). In the GAZE framework, the sequence

itself is implicit. Considering GAZE posterior probabilities as conditional upon S

however leads to some interesting correspondences to other methods, particularly

those involving Hidden Markov models. This is discussed briefly at the end of this

chapter, and in more detail in chapter 4.
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2.5.2 Feature and Region posterior probabilities

Having defined a probability distribution over gene structures, it is now possible

to define posterior probabilities for features and regions. The posterior probability

of a feature φi, P(φi), is the sum of the probabilities of all model-consistent gene

structures that contain the feature φi. Likewise, the posterior probability of a region

φi → φj , P(φi, φj), is the sum of the probabilities of all model-consistent gene

structures that include φi and φj as adjacent pairs of features.

Informally, a feature posterior probability can be interpreted as a measure of

belief in the correctness of the feature, conditional upon the surrounding gene struc-

ture landscape. More informally still, it can be interpreted as an indicator of how

well it can be accommodated in a “good” gene structure.

It is straightforward to calculate the sum of the probabilities of all gene structures

consistent with a feature by running the forward algorithm while using the feature

selection mechanism (section 2.3) to force the inclusion of the feature. This will give

a new partition function value, corresponding to the sum over all gene structures that

include the feature. Dividing this by the unrestricted partition function gives the

desired posterior probability. However, this strategy requires a separate execution

of the forward algorithm for each feature, and the computational expense of the

algorithm makes the strategy infeasible.

To make the computation more efficient, we can compute “backward” analogues

of the forward variables, b(i), which store the sums of the exponentiated scores of

all “downstream” partial gene structures that start with feature φi:

b(n+ 1) = 1 (2.13)

b(i) =
∑

k>i

b(k)eRegt(φi)→t(φk)(l(φi),l(φk))+g(φk) (2.14)

It can be shown that multiplying f(i) by b(j) (i ≤ j) corresponds to summing

the exponentiated scores of all possible pairings of a partial upstream gene structure
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ending at feature φi with a partial downstream structure beginning at feature φj

[109]. Hence f(i)b(i) is the sum of the exponentiated scores of all gene structures

that include feature φi, and the posterior probability of φi, P(φi) is:

P(φi) =
f(i)b(i)

f(n+ 1)
(2.15)

Posterior region probabilities can be defined in a similar way:

P(φi, φj) =
f(i)e

Regt(φi)→t(φj)(l(φi),l(φj))+g(φj)b(j)

f(n+ 1)
(2.16)

A straightforward generalisation results in the posterior probability of a par-

tial gene structure φi, φj , . . . φx, i.e. covering an internal sub-region of the original

sequence:

P(φi, φj , . . . , φx) =
f(i)eE(φi,φj ,...,φx)b(x)

f(n+ 1)
(2.17)

If φi and φx, the boundary features of the sub-region, are chosen to be the start

and stop of a single, individual gene, then the above is a posterior probability for

that gene. However, one of the unfortunate consequences of the general approach

adopted by GAZE is that it has no knowledge of which feature-types define the

boundaries of individual genes. For this reason, individual gene probabilities are

not reported by GAZE.

2.5.3 Stochastic traceback

A probability distribution over gene structures offers the possibility of a stochastic

traceback procedure. In the standard traceback procedure, we choose, for a target

feature φi, the source feature φj that gives rise to the highest scoring partial gene

structure ending at φi. With stochastic traceback, we instead make use of a Boltz-

mann probability distribution over all model-consistent sources for a given target.

This follows simply from the definition of the forward variables presented earlier:
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P(k|i) =
eRegt(φk)→t(φi)

(l(φk),l(φi))+g(φi)f(k)
∑

j<i e
Regt(φj)→t(φi)

(l(φj),l(φi))+g(φi)f(j)
(2.18)

Instead of choosing source that gives rise to the maximum partial-gene-structure

score, we instead sample a source stochastically, with the relative probabilities of

each source being computed with the above equation.

Stochastic traceback is an alternative method of identifying confident parts of

a gene structure; parts of a gene structure that are conserved over many samples

can be construed as more reliable (similar to the bootstrapping technique used in

phylogenetics). Although I have provided an implementation of it in GAZE, my

work has concentrated on the use of the posterior feature and region probabilities.

2.6 Practical considerations

2.6.1 Maintaining numerical stability

Implementing dynamic programming recursions in the obvious way can often lead to

numerical underflows and overflows that even the most sophisticated modern floating

point processor are unable to deal with gracefully. In the standard HMM formalism

for example, each (state, residue) pair is assigned a probability, calculated as the

product of probabilities for the state (conditional upon the previous state) and for

the residue (conditional on the state). The joint probability assigned to a complete

sequence of the order of a 106 bases, for even a simple HMM with few states, will

therefore be of the order of 0.51000000 (assuming an average probability per state-

residue pair of 0.5, which is generously high). This gives an underflow error on my

desktop calculator, and even though floating point units in modern processors would

be expected to handle higher degrees of precision, it is not difficult to imagine a set

of transition and emission probabilities for a given HMM architecture that will lead

to underflow even on the most sophisticated processors.

The standard technique used in the field of HMMs is to work in log-space. Rather

than multiplying probabilities, we add logarithms of probabilities. For example,
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assuming that we use base 2 logarithms,
∏1000000

1 0.5 becomes
∑1000000

1 log2 0.5 =

−1000000. Classically, replacing many multiplications with additions would also lead

to a performance improvement on some older computers. Modern floating-point unit

technology makes this less true nowadays, but even on modern processors, addition

should be no slower than multiplication.

For the dynamic programming performed in GAZE, the log transformation is

not required in the maximum-based computation used to find the highest scoring

gene structure consistent with the model (the Viterbi algorithm analogue). This

is because the design of the scoring function, and its additive nature, places a

log-based interpretation on the feature and region scores anyway. However, the

log-transformation is required for the sum-based computations. For the forward al-

gorithm, we define a new vector F (i) = ln f(i), and the recursions are defined in

terms of F (i) directly:

F (0) = 0 (2.19)

F (i) = ln
∑

j<i

e
F (j)+Regt(φj)→t(φi)

(l(φj),l(φi))+g(φi) (2.20)

The posterior probability of a gene structure is now calculated as:

P(φ) = eE(φ)−F (n+1) (2.21)

and the posterior feature probabilities calculated thus:

P(φi) = eF (i)+B(i)−F (n+1) (2.22)

It is necessary to perform one last trick to avoid overflow when performing the

exponentiations in 2.20. We can use the following observation:

ln
b
∑

x=a

ex = ln

(

ek
b
∑

x=a

ex

ek

)

(2.23)
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= k + ln
b
∑

x=a

ex−k (2.24)

Any k can be used, but by storing the exponents in the summation, and choosing

k to be the maximum of these exponents, we ensure that all exponentiations are 0

or less, eliminating the possibility of overflow.

2.6.2 Working within practical limits of space and time

Complexity of naive implementation

As noted earlier, the dynamic programming recursions for identifying the highest

scoring gene structure (2.7) and for calculating the “partition function” over all gene

structures, (2.11, 2.14) are essentially the same. The run-time and memory usage of

the algorithms depends of course on the specific problem, but we can use complexity

theory to reason about the growth in the requirement of these resources with respect

to the size of the input. For GAZE, the algorithms proceed over input features, but

since the number of features for a given DNA sequence would be expected to grow

linearly with the length of the sequence, it makes no difference whether we define

the problem size in terms of sequence length or in terms of the number of features.

It is therefore convenient to talk about a problem size of n, which can be interpreted

both as the length of the sequence region being considered, or the number of features

attached to that sequence region.

Because the dynamic programming recursions are one-dimensional, the recursion

variables can be stored as a vector rather than a matrix (as is the case with classical

sequence alignment dynamic programming). The storage requirements are therefore

O(n).

Examination of 2.7, 2.11 and 2.14 shows that any algorithm must essentially

examine all feature pairs in the list φ and perform a region score calculation. Since

there are n
2 (n + 1) pairs, this implies O(n2) region score calculations. Each region

score calculation involves a length penalty component (which can be calculated in

constant time by table look-up), and a segment score component. Assuming that
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both 2.4 and 2.5 are implemented the way suggested by their definition, then in the

worst case the segment calculation is linear in the number of segments. Although

the actual number of respective features and segments for a given sequence may

be, and often are, quite different, we would expect them to both scale in the same

way with respect to the length of the sequence, i.e. linearly. This means that the

segment calculation can be described as O(n) in complexity, giving the algorithms a

run-time complexity of O(n3) overall, making it apparently prohibitively expensive

for large sequences.

In the remainder of this section, I outline two methods employed in the im-

plementation of GAZE to improve both the theoretical worst-case and practical

average-case run-time and storage complexity. In the next subsection, I describe a

novel search-space pruning strategy employed in GAZE, which is the biggest con-

tributing factor to its efficiency.

Segment pre-processing

The segment calculation for a candidate region, as defined by 2.3, 2.4 and 2.5,

consists of a separate calculation for each segment qualifier listed in the rule that

applies to the feature-pair defining the region. Each of these calculations in turn

requires an ordination of the list of segments, for each firstly checking that it meets

constraints defined in the qualifier, and secondly scaling the score according to how

much of lies in the region of interest. Partitioned storage of the segments, primarily

by type, but also by reading frame, allows the consideration of a much smaller list of

candidate segments for a given segment qualifier, but the number of segments that

need to be examined is still O(n).

Since segments falling outside the considered region do not contribute to the

score, sorting the segments by position along the sequence is the natural starting

point towards reducing the number of segments that need to be examined. By sorting

the segments by start position on the sequence, the segment with the leftmost start

lying completely to the right of the end of the considered region can be identified
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by a simple binary search. All segments to the right will lie completely outside the

region. It is tempting to assume that the segment list can now be processed from this

point to the left, stopping when a segment that has an end-position that is strictly

to the left of the start of the considered region. In general segments may overlap and

in the extreme the segment with the smallest start position may have the largest

end position. In that case it will always be necessary to traverse leftwards from the

point in the list identified by the binary search, right back to the start of the list.

However, the rarity of this situation can be exploited by indexing the segments. In

essence, we calculate and store an additional piece of information for each segment:

the maximal right-position of all segments to the left:

I(ψi) = max
j<i

ψj .end (2.25)

= max(I(φi−1), ψi−1.end) (2.26)

The second equality gives rise to a simple linear-time dynamic programming

algorithm to calculate the segment indices, and this only needs to be performed once

for each segment list, before the main score/probability dynamic programming.

It is interesting to note that although partitioned storage and indexing of the

segments improve the worst-case time spent performing the segment score calcula-

tions, they do not change the theoretical worst-case complexity. At the extreme, the

when the region being considered encompasses the whole sequence the computation

is still O(n). This is a classic example of where worst-case complexity is a misleading

indicator of the expected increase in run-time with problem size.

As a final note on this subject, it must be said that it is straightforward to

implement the segment calculation in such a way as to make it constant time. This

technique is employed in several gene prediction programs, but not GAZE. The

technique involves keeping cumulative per-residue arrays for each specific set of con-

straints referred to in the segment qualifiers of a model. If ψq is the list of segments

that match a specific set of segment qualifier constraints q then the cumulative array

for this constraint set, Cψq
can be defined as:
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Cψq(i) = Cψq(i− 1) + SegQ(ψq, i, i) (2.27)

where SegQ(ψ, x, y) is as defined in 2.5. Like the segment indexing presented

earlier, the Cψq(i) arrays can in theory be calculated in linear time in advance of

the main dynamic programming. Then, the segment calculation performed during

the Viterbi, forward and backward algorithms becomes:

SegQ(ψq, x, y) = Cψq(y) − Cψq(x− 1) (2.28)

There are a number of reasons why this technique is not implemented in GAZE.

Firstly, it requires much more memory. It is true that this will only become as

problem when very large sequences are being analysed (of the order of Megabases

long), but for small sequences, the run-time reduction afforded by the technique

becomes negligible.

Secondly, and most importantly, it is only applicable for a specific kind of segment

scoring, namely the “projected per-base” approach defined in 2.5. In addition, the

technique requires the segments to be partitioned in advance into lists matching each

segment qualifier referred to in the model. However, for some constraints (namely

“completeness” and “exactness”), it is not known until the dynamic programming

stage which segments will satisfy them. The cumulative arrays technique is therefore

only available to segment qualifiers with no completeness or exactness constraints,

scored by equation 2.4. Given its limited applicability, it was decided insufficiently

worthwhile to implement.

Split-and-merge for whole genome analysis

Although the space requirements of GAZE are linear in the length of the sequence,

the memory of a standard desktop computer is not likely to be sufficient to handle

feature-sets from the complete genomes of eukaryotic organisms. To analyse whole

genomes, it is necessary to design a method that is constant in its memory usage,

regardless of the size of the input feature-set. Such an aim is not fanciful, especially
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considering that the dynamic programming search-space pruning method (presented

below) makes the algorithm effectively local. One possible strategy might therefore

be to discard elements of the V , F and B vectors, as well as the features correspond-

ing to these elements, when they are not needed any more. This idea is similar in

essence to linear-space sequence alignment methods [80]. However, although it is

possible to obtain the score of the optimal gene structure in this way, the gene struc-

ture itself is more difficult to obtain; the standard trace-back procedure is no longer

possible.

A natural constant-memory method for obtaining both the highest scoring gene

structure and posterior feature and region probabilities involves off-lining, where

parts of the dynamic programming structures, and the features the themselves, are

written to disk, discarded from memory, and read back in when required. I have

implemented such a method, but approached the problem from a slightly different

angle. The technique is based upon a split-and-merge strategy, which conceptu-

ally involves splitting the input into several manageable chunks, running GAZE

separately on each one, and finally merging the results together. This has been

implemented in a Perl script called genome gaze.

The first stage of genome gaze is the split, but GAZE itself provides an option

to make this stage trivial. Specifically, it can be told to consider a specified sub-

sequence window of the given arbitrary sized query sequence / feature-set; the input

DNA sequence and features sets do not therefore have to be physically split at all.

The “split” phase of genome gaze therefore involves running GAZE on windows

w1 · · ·wk to produce output files o1 · · · ok, where the window size is chosen according

to the available computational resources (the bigger machines available, the bigger

the window size can be), and k is chosen to be large enough to cover the whole input

sequence region with a specified overlap between wi and wi+1. The overlap allows

the second, “merge” phase of genome gaze to be performed.

An overlap is necessary between subsequence windows wi and wi+1 because there

may be cases where a predicted gene structure straddles the boundary between
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two windows. The final output gene prediction is formed generally by pushing the

features in the output files onto a list in sequence order from o1 to ok. However,

for the first feature φx in oi that lies in a region that is also covered by the start of

wi+1, oi+1 is searched for the occurrence of that feature. If it is found, the rest of the

features in oi are ignored, and the pushing of features continues from that point in

oi+1 at which φx was located. If it is not found, φx is pushed onto the list, and oi+1

is searched for the occurrence of φx+1 in oi. This continues until the appropriate

cross-over point from oi to oi+1 is identified.

When the output files oi consist not of feature-lists representing predicted gene

structures, but the complete input feature set ordered by sequence position, with

posterior probabilities attached to each feature, a slightly simpler strategy suffices,

where the midpoint of the overlapping region between oi and oi+1 is chosen as the

cross-over point between the two regions.

Split-and-merge offers a natural parallelisation strategy, because each window wi

can be analysed independently of other windows. Only the final stage of forming the

consensus gene structure for all windows relies upon their order in the sequence, and

therefore cannot be performed until all windows have been processed first by GAZE.

This is one of the key advantages of post-processing approach via genome gaze

over a split and merge algorithm in GAZE itself.

2.6.3 A novel pruning strategy

Earlier it was described how the region-score calculation is made less computation-

ally expensive in order to reduce the overall run-time of the algorithm. An comple-

mentary approach is to reduce the number of region calculations that need to be

performed, which is essentially O(n2) in the number of features. To this end, two

pruning strategies have been implemented, one exact and one heuristic. Both rely

upon the examination of the search-space in a directed manner.

In the calculation of the F vector outlined earlier (and likewise for the V and B

vectors), the elements need to be computed in a directed way, starting with F (0)
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and ending with F (n + 1). The calculation of F (i) relies upon the values F (j),

j < i, which corresponds to examining the source features φj for a given target

feature φi. These sources need not be visited in any directed way, but doing so

provides opportunities for pruning. In particular, sources for a given target are

examined firstly in order of type, and secondly (for sources of a given type) in order

of proximity to the target, i.e. φi−1, φi−2 . . . φ0.

A pruning strategy based upon model constraints

The first method makes use of the fact that certain constraints specified in the

model can be used to prune away partial gene structures that cannot possibly be

model-consistent. In particular, when scanning back through the sources for a given

target φk, violation of an interruption or maximum distance constraint by the region

φi → φk defined by a specific source φi means that all subsequent regions φj → φk,

j < i will violate the same constraint. Therefore sources φj (j < i) need not be

considered for target φk.

Most models used in practice will not contain interruption or maximum distance

constraints in many rules. In fact, for the models explained in chapter 3, only rules

defining protein-coding regions make use of interruption constraints, to disallow in-

frame stop codons. A more general pruning strategy is therefore necessary.

A pruning strategy based upon Dominance

The main idea of the strategy is based upon this aggressive assumption: when

accumulating information for gene structures ending at a particular target feature φk,

if the contribution made by source φj is insignificant when compared with that made

by another source φi, then we can ignore φj as a potential source for all subsequent

targets of the same type as φk. I formalise a general approach based upon this

idea, and then consider cases where the main assumption might not hold, refining

the strategy at each step. The method is presented in terms of the computation of

the forward score F (i), but the method applies equally to the backward (B(i)) and
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Viterbi (V (i)) calculations.

To formalise the notion, I introduce the concept of dominance. For a given

target feature φk, and two valid source features of the same type, φj and φi, where

j < i, φi dominates φj if the contribution made to forward score for φk (F (k)) by

the component involving φj is insignificant (given the limits of machine precision)

compared to the contribution made by the component involving φi. More precisely:

Dom(φi, φj , φk) if Rdiff(φi, φj , φk) > X (2.29)

The right-hand-side can be read as the relative difference between the contri-

bution made to the forward score of φk by respectively φj and φi, and is defined

thus:2

Rdiff(φi, φj , φk) = Regt(φi)→t(φk)(l(φi), l(φk)) + F (i)

− Regt(φj)→t(φk)(l(φj), l(φk)) − F (j) (2.30)

It is important to note that because the F vectors are computed in log-space,

a difference of X between the φi and φj components means that the former is eX

times greater than the latter in probability space. A small value for X (20-30) is

therefore sufficient for φi to dominate φj .

The pruning strategy relies on the fact that, at least under certain conditions,

the dominance is time-invariant. That is, if φi dominates all sources of the same

type φj (for j < i) with respect to a target φk, then it will dominate the same sources

for subsequent downstream targets φq of the same type as φk. When considering

potential sources for a φq, we need not therefore search back further than φi. The

feature φi in this case is an omnipotent source of its type with respect to targets of

the same type as φk.

2the contribution to the forward score also contains the given score of φk, but since this is the

same for sources i and j, it cancels. In the calculation of the backward score however, the relative

difference includes terms for the given scores of targets φi and φj .
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In the implementation, a matrix Onmi(src, tgt) is maintained which stores for

each src→ tgt rule, the index of the current omnipotent source of type src for targets

of type tgt. As the dynamic programming progresses, the dominance condition is

continually checked, and the Omni matrix updated. The desired effect is that at

any time in the algorithm k, Omni(src, t(φk)) will not be much less than k for all

source feature types src. This means that only a constant number of sources need

to be examined for each target, rather than O(n) sources.

The assumption of time invariance underlying this pruning technique is impor-

tant for its soundness. In order to reason about the conditions under which time

invariance holds, it is convenient to re-define the assumption in terms of the relative

difference between the contribution made to the forward score of φk by respectively

φj and φi (equation 2.30). The assumption is therefore as follows: this quantity will

remain constant or increase when measured with respect to subsequent downstream

targets φq of the same type as φk, preserving the domination condition. However,

this assumption is not valid in the following circumstances:

1. Feature φq is in a different reading frame to φk, the relevant rule includes a

phase constraint, and the region φi → φq violates this constraint; in this case,

the omnipotent feature is not even a valid source for φq.

2. The region φj → φk violates a DNA constraint which is not violated for the

region φj → φq.

3. The region φi → φq violates a DNA constraint, even though φi → φk did not.

4. Feature φj is located at the same position as the upstream end of an “ex-

act match” segment; feature φk lies upstream from the location of the down-

stream end of this segment, which therefore does not contribute towards the

score for region φj → φk. Feature φq however lies at the same location as the

downstream end of the segment, which does contribute to the score for region

φj → φq.
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5. The src → tgt rule includes a length penalty function, and difference in the

penalties for φj → φk and φi → φk is greater than the difference between

penalties for φj → φq and φi → φq.

In all these cases, it is wrong to consider φi to be an omnipotent source of that

type with respect to features of type φk. It is therefore necessary to revise the ideas

of dominance and omnipotence, addressing each of the problems in turn.

The first problem can easily be addressed by adding an extra “absolute-reading-

frame” dimension to the Omni matrix. This allows us to represent a different set of

omnipotent sources not only for each target type, but for each target-type in each

absolute reading frame.

The second and third problems can be dealt with by revising the domination

criterion with a DNA constraint condition which states that φi does not dominate

φj with respect to φk if (a) φj → φk is violated by a DNA constraint, or (b) φi has

the potential to violate a DNA constraint for a future region φi → φq.

The fourth problem is addressed by adding a Exact Segment condition to the

domination criterion which states that φi does not dominate φj with respect to φk,

if (a) the relevant rule contains a segment qualifier with an “exact match” condition

and (b) a segment of the appropriate type begins at the same location φj but extends

beyond feature φk.

The final problem is very likely to occur, because many useful length penalty

functions used in practice will have this behaviour. My approach is to remove

the length-penalty component from the domination condition. Equation 2.30 then

becomes:

Rdiff(φi, φj , φk) = Segt(φi)→t(φk)(l(φi), l(φk)) + F (i)

− Segt(φj)→t(φk)(l(φj), l(φk)) − F (j) (2.31)

In doing this we must now consider the possibility that φi dominates φj by the

above criterion, but only when the length penalty component is ignored, i.e. if
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we have inadvertently extended the criterion in trying to restrict it. If the length

penalty for φj → φk is greater than that for φi → φk, then φi will still dominate φj

even if the penalties are included in the comparison. Although many length penalty

functions used in practice would be expected to be monotonically increasing with

distance, one of the strengths of GAZE is that it allows the definition of arbitrary

length penalty functions. However, it is likely that this facility will be most useful

in the early, small-distance portion of the functions. All functions used in practice

will be eventually monotonically increasing (or at least monotonically constant); a

length function for which this is not the case implies a kind of region that, in the

limit, become more likely the longer it is. So, assuming that each function has

a distance d at which it becomes monotonic, the relative difference including the

length penalty (2.30) is at least as big as the relative difference ignoring it (2.31) if

the distance from φi to φk is bigger than d. If this is the case, then φj . . . φk will

also be in the monotonic part of the function, and furthermore so will the regions

φj . . . φq and φi . . . φq, for all subsequent φq of the same type as φk.

It is straightforward to derive the monotonic point for length penalty function

p, Mpoint(p):

Mpoint(p) =
∞

min
x=0

s.t.∀yz [(x < y < z) → p(x) ≤ p(y) ≤ p(z)] (2.32)

Given these considerations, I formulate a revised, and final, domination condi-

tion:

Dom(φi, φj , φk) if

Rdiff(φi, φj , φk) > X and

Exact Segment Condition and

DNA Constraint Condition and

l(φk) − l(φi) ≥ Mpoint(Lent(φi)→t(φk))

(2.33)

The domination/omnipotence pruning strategy means that in practice, it is only

ideally necessary to consider a constant number of sources for each target. This

means that that effective number of pairwise feature comparisons (and therefore
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region-score calculations) necessary is now effectively O(n). When considering also

the segment indexing strategy explained earlier (which makes the region-score calcu-

lation effectively O(logn)), the run-time of complexity of GAZE can be described as

pseudo log-linear. My experience shows log-linearity to be an upper bound, at least

on my own library of GAZE models (see chapters 3 and 5); many models display

linear growth in run-time with sequence length.

Linear-time dynamic programming algorithms for gene prediction have been pub-

lished before. In particular, there is at least one example of a linear-time algorithm

over an external model of gene structure ([52], and section 2.7). However, the flexi-

bility of GAZE in allowing user-defined length-penalty functions and segments makes

it difficult to design a linear time algorithm for obtaining both the highest scoring

gene structure, and posterior feature and region probabilities.

2.7 Relationship to other similar systems

2.7.1 Other gene prediction toolkits

Although the signal and content detection techniques used by most existing inte-

grated gene prediction systems are hard-coded in the software, their specific parame-

ters are usually abstracted into an external file which is read at run-time. This allows

the development of distinct parameter sets for different organisms for example. In

this way, the majority of systems are configurable. Some systems however, like

GAZE, take this idea further in attempt to provide a “toolkit” for the development

of gene prediction methods.

Dong and Searls [33] for example represent the rules of gene structure as formal

grammars [58]. They have constructed a toolkit for the graphical definition and

computational parsing of certain kinds of grammars, based upon the Prolog pro-

gramming language. They have used their toolkit to produce the genlang gene

prediction program.

The work of Gelfand, Roytberg and co-workers is comparable to GAZE in the
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that it forms the basis of a research tool for the investigation of gene prediction

methods. Their technique, called Vector Dynamic Programming, identifies the set

of gene structures that is guaranteed to contain the “optimal” structure with respect

all scoring functions that adhere to certain mathematical properties [95]. The fact

that this set is usually orders of magnitude smaller than the complete set of all

possible gene structures allows for the rapid investigation of several different scoring

functions. They have used their tool to design the scoring function that is used in

the great program [46].

The genamic algorithm [52] lying at the heart of the geneid system ([89], [84])

has many elements in common with GAZE. In particular, it accepts as input a list

of scored candidate exons in GFF, and also a model for how the different types of

exon fit together into complete gene structures. It then identifies the highest scoring

exon assembly consistent with the model rules. Although similar in these respects,

there are notable differences between GAZE and genamic. Firstly, GAZE works

with the signal and content data before it has been pre-processed to produce a set of

candidate exons with pre-assigned frames and scores. This gives greater flexibility in

the way in which external evidence is incorporated. Secondly, the model constructs

offered by genamic are more restricted than those offered by GAZE. In particular,

genamic allows the specification of a minimal and maximal distance between exons,

but not arbitrary length penalty functions. Thirdly, genamic does not compute

posterior probabilities. These last two differences in particular however mean that

the dynamic programming recursions of genamic are less general and therefore more

amenable to optimisation; the highest scoring gene structure is identified by means

of a algorithm for which the run-time grows strictly linearly with the number of

candidate exons, making it extremely fast.

Some of the motivations for the dynamite system [9] were similar to those

for GAZE. It is based upon the observation that many differing applications in

bioinformatics have at their heart quite similar dynamic programming algorithms.

Furthermore, implementation of these algorithms can be time consuming and error-
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prone. dynamite provides a simple language for the specification of such dynamic

programming recursions, allowing large and complex models to be defined in an

intuitive way. A compiler then generates code (in C) for the specified recursions

that can be linked into a stand-alone application. dynamite differs from GAZE

primarily in the way that it is designed for sequence alignment, rather than feature

selection. It is therefore particularly suitable for development of sequence-similarity

based gene prediction applications; a large part of code in the genewise program

[10] for example was generated by the dynamite compiler.

2.7.2 HMM methods

In outlining some of the common methods for the prediction of gene complete gene

structures in chapter 1, I drew a distinction between gene fragment assembly tech-

niques and Hidden Markov models. I have presented GAZE from the angle of gene

fragment assembly, but it can also be viewed as a kind of Generalised Hidden Markov

model. To see the correspondence, it is instructive to look at other systems based

explicitly on GHMMs. genscan [21] and genie [72] are examples of such.

Both genie and genscan work in practice by first scanning the sequence for

candidate state transitions. These are used as anchor points for a dynamic pro-

gramming procedure to identify the state path with highest probability. In this

way, they can be viewed feature-based methods (like GAZE), rather than classical

single-base-at-a-time HMMs (for example hmmgene [68]).

The advantage that GHMMs have over standard Hidden Markov models is that

they allow the lengths of the regions to be modelled by arbitrary, non-geometric

probability distributions. This is particularly useful because the lengths of protein-

coding exons in particular are not geometrically distributed (see chapter 1). This

aspect of GHMMs is reflected in GAZE by the length penalty component of the

scoring function. For reasons of efficiency, genscan in particular restricts the use of

fully defined length probability distributions to alternating states (in practice those

corresponding to protein-coding regions). The search-space pruning in GAZE means
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that it is not limited in this way. It is not clear whether this is the case for genie.

In genscan, the dynamic programming is performed over an assumed, fixed

GHMM architecture. Like GAZE, genie is not subject to the same restriction.

Signal and content sensors are treated as external modules which results in a “plug-

and-play” architecture. Unlike GAZE however, it is necessary for genie to make

specific assumptions about the scores reported by the components, namely that they

are probabilities. The treatment of feature scores by GAZE as arbitrary “energies”

makes it strictly more general.

Since the emission probabilities of a GHMM can be reflected by feature and

segment scores, and the length probability distributions by length penalty func-

tions, only the transition probabilities of a GHMM do not have a direct analogue

in GAZE. They can however be represented by adjusting the appropriate length

penalty function. Since it is possible to define a distinct penalty function for every

pair of feature types, this is fully general. The disadvantage of such an approach is

that the resulting models lack the intuitive appeal of a finite state automaton.

One of the key aspects of HMMs is that they are fully probabilistic, defining

a joint probability distribution over gene structures and sequences. Careful model

construction and scoring of features and segments can allow GAZE gene structure

scores to correspond directly to (log) joint probabilities, although this will often not

be possible when using data from external sources. Taking this idea to the extreme,

the representation of a standard base-at-a-time HMM is also possible in GAZE. This

could be done by having a feature type for each state, and a specific feature of each

type for each position of the sequence, with emission probabilities represented by

the feature scores and transition probabilities by length penalties3. This of course

would take away one of the advantages of GAZE, namely the representation of a

large number of DNA bases by a relatively small number of sequence features.

3Interruption constraints would need to be used to ensure that only the previous base is consid-

ered at each stage of the dynamic programming.
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Chapter 3

Using GAZE for gene finding in

Caenorhabditis elegans

3.1 Introduction

This chapter documents my work in applying the GAZE system to the prediction

of gene structures in the genome sequence of the nematode worm Caenorhabditis

elegans. Much work in the past has focused on gene prediction in the sequences

of vertebrates (particularly human), and a later chapter shows how GAZE can be

applied effectively to vertebrate genomes. However, GAZE was originally envisioned

as a curation tool for C.elegans sequence annotators, and this work on its application

to the worm genome is rooted in the origins of the project.

Although gene prediction in C.elegans sequences is considered by most researchers

to be easier than in vertebrate sequences, certain complications make it a non-

trivial problem (see section 1.5). Indeed, the author of one of the most widely

used and accurate gene prediction programs [21] has admitted difficulty in arriving

at a set of parameters that work well on worm sequences [http://genes.mit.edu/-

Limitations.html].

Below, I outline the steps involved in the definition of a configuration from first

principles, starting with only candidate gene features generated from simple signal
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and content sensors. I then go on to successively refine this model, at each stage

explaining both specific steps taken and exploring the resulting impact on predic-

tion accuracy. In particular, I make use of the flexibility of GAZE to firstly take

account of a post-transcriptional modification process that is peculiar to C.elegans

and similar animals, namely trans-splicing; and secondly to improve accuracy by

the incorporation of similarity information, specifically alignments of Expressed Se-

quence Tags.

3.2 Gene prediction materials for C.elegans

3.2.1 WormBase and The WormSeq dataset

To evaluate the accuracy of the various gene-structure models presented in this chap-

ter, both in comparison with each other and with other gene prediction programs,

it is necessary to construct a test-set. The principle source of data for the test-

set I have constructed was WormBase1 [107], a database containing the complete,

annotated genome sequence of C. elegans.

WormBase provides as part of its annotation a complete set of gene structures

for the C. elegans genome. These gene structures represent manually-inspected

predictions of the coding regions (or CDS ) of the genes, based on genefinder

predictions (see below) and other available supporting evidence for the structure.

Such evidence most frequently comes in the form of spliced alignment of expressed

sequence (cDNAs or ESTs) back to the genomic sequence by a program such as

est genome [79] or blat [61], giving the intron-exon junctions of the structure (see

chapter 1). As more cDNAs and ESTs are sequenced and deposited in nucleotide

databases, they are aligned to the genome and the set of curated gene structures

revised and updated to be consistent with the alignments. At any one time then,

the set of curated gene structures in WormBase represents a current “best-guess”

based on the available supporting evidence.

1Specifically WS52, September 2001
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The test-set I have built represents an attempt to identify the subset of curated

gene structures that have sound and complete supporting evidence for their validity.

An initial set was constructed by taking the curated structures supported by the

alignment of at least one “external” cDNA to the genome (i.e. those deposited

in the EMBL database by a group not working directly on the C.elegans genome

sequencing project). Since these alignments (produced by EST GENOME, [79])

were only present (at the time of construction) for the half of the worm genome

that is maintained at the Sanger Institute (“WormBase Sanger”), the set contained

only Sanger Institute genes. However, the restriction to external cDNAs provides a

degree of independent verification to the structures.

The initial set of gene structures was then subjected to a set of filtering steps,

removing the following entries:

1. Those for which the set of supporting cDNAs did not contain at least one entry

annotated as having “complete CDS” in its EMBL entry. It is possible for a

structure to be confirmed by two separate partial cDNAs aligning to different

parts of the structure, but I took the conservative approach of removing such

entries.

2. Those structures that overlap with at least one other curated gene structure.

This removes those genes that are known to be alternatively spliced, and also

those situated within the introns of other genes.

To check the consistency of the gene structures with respect to the cDNAs sup-

porting them, I performed a Smith-Waterman [100] local alignment of each cDNA

to the CDS of the corresponding gene structure, using the program dnal (E. Bir-

ney, unpublished). Those entries where the gene CDS did not align precisely with

the EMBL-annotated CDS of the cDNA were presented to the Sanger Institute

C.elegans curation group for examination, which resulted in the editing of some of

these gene structures. The final set consisted of 325 gene structures (157 situated

on the forward strand of the genomic sequence and 168 on the reverse). The average
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number of exons per gene in the set is 6.9 (compared to 6.3 for all curated gene

structures in WormBase), with 16 single-exon genes.

Traditionally, assessments of gene prediction programs have been performed

against sequences that contain a single gene for which the structure has been con-

firmed [23] [94]. However, when gene prediction programs are used in a production

environment on large, unannotated fragments of genomic DNA, they cannot know

in advance how many genes, if any, the sequence contains. Modern programs are

therefore capable of predicting many genes in a query sequence. To assess the

multiple-gene-prediction capabilities of such programs, test sequences containing

several genes are necessary. Large genomic fragments for which the entire exon-

intron structure for all genes has been confirmed are extremely hard to come by

however. There is also the problem of having confidence that we know about all of

the genes on a test sequence, and that the regions annotated as intergenic really do

contain no genes.

Having identified a set of 325 cDNA-confirmed genes, it would be ideal if they

were located together in the worm genome. Unsurprisingly, this was not the case,

and the genes are spread across 9 genomic contigs. In an attempt to recreate the

conditions faced by gene-prediction programs in practical use, I constructed an ar-

tificial genomic contig containing the confirmed genes. Unlike the dataset made by

Guigo and fellow workers [53], where the intergenic regions were generated “ran-

domly”, I took the approach of embedding the gene sequences in real genomic DNA.

Specifically, the DNA underlying each confirmed gene structure was extracted, along

with half of the intergenic DNA to the nearest other curated gene (confirmed or un-

confirmed) in each upstream and downstream direction. These sequences were then

concatenated in the order in which the were situated on the original genomic con-

tigs to make a contiguous artificial genomic sequence of 2,079,582 base pairs. This

sequence is referred to as WormSeq. The proportion of WormSeq that is protein-

coding is 0.24, which is representative of estimates for the genome as a whole based

upon all curated structures in WormBase.
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The WormSeq sequence, and its annotated gene structure, forms the basis for

much of the analysis presented in this chapter. It can be obtained from http://www.-

sanger.ac.uk/Software/analysis/GAZE/wormseq.

3.2.2 A source of gene prediction data: genefinder

GAZE is not an integrated gene prediction program; it requires a set of features,

segments, and length penalty functions. For the analyses presented in this chapter,

the genefinder program (P. Green, unpublished) was the effective source for these

data. Although unpublished, genefinder is widely regarded as one of the most

accurate gene prediction programs for the worm. The GAZE scoring function ex-

plained in chapter 2 is similar to the one used in genefinder in that the score for

a complete gene structure is comprised of a sum of the scores of the features that

define the structure, along with scores for the regions between these features. Also,

genefinder includes length penalty files and frequency tables for various gene fea-

tures, the details of which are described below. Permission for use of these files was

kindly granted by the author [P. Green, pers.comm].

The ACeDB package [www.acedb.org] contains a module adapted from the orig-

inal genefinder code, gf features, that takes as input a set of genefinder

frequency tables and a query DNA sequence and produces predictions of features

corresponding to the given tables, in GFF. The gf features program was used

together with the tables from the 980506 distribution of genefinder to produce

features and segments in the manner described below for all of the analyses in this

chapter, unless stated otherwise.

Signal sensors in genefinder

The genefinder tables are used to construct weight matrices of log-likelihood ratios

of nucleotide b in position i for true sites compared to randomised DNA. Specifically,

if for a feature of interest True and Rand are respectively the tables for the true

sites and randomised DNA, then the log likelihood-ratio for nucleotide b in position
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i is calculated as

llri(b) = llTruei (b) − llRandi (b)

where the log likelihood calculated from a table T , llTi is:

llTi (b) = log(1 +
1

Ti(b)
)Ti(b)

− log(1 +
1

∑

j Ti(j)
)
∑

j

Ti(j)

+ log(
1 + Ti(b)

1 +
∑

j Ti(j)
)

If the width of the table for a particular type of site is n, then a score g(S) for

a candidate site S = s1s2 . . . sn can be calculated as:

g(S) =
n
∑

i=1

llri(si)

genefinder provides tables for the following gene features: translation start

sites representing positions -9 through +11 (where 0 is the position of the A in

the completely conserved ATG, which is enforced); both the donor and acceptor

splice sites, representing 6 and 25 nucleotides of the corresponding exon and in-

tron respectively, with enforcement of the GT-AG intron rule; and finally, trans-

lation termination sites representing 13 nucleotides of the upstream coding region

and 92 nucleotides of the downstream untranslated region, with enforcement of the

(TAG|TAA|TGA) rule. The table for each feature is accompanied by a table of corre-

sponding dimensions populated by counts from “random” DNA. The gf features

programs constructs llr matrices from the given tables, scores windows of the query

sequence using the matrices, and outputs predictions of each feature scoring above

the default threshold (usually 0.0, but -2.0 for acceptor splice sites).

Content sensors in genefinder

As well as predicting features using frequency tables, gf features can also be used

as a content sensor, in particular in the detection of protein-coding regions. It cal-
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culates log-likelihood ratios for each n-mer based on the frequency of occurrences in

protein-coding regions compared with randomised DNA. It then scans the sequence

in each of the six reading frames, at each position storing the sum of scores over all

non-overlapping n-mers up to that point. The cumulative score array thus obtained

for the whole query sequence for a reading frame is then used to obtain a set of

maximal scoring coding segments for that frame, and those segments scoring above

1.0 are output in GFF as predicted coding regions.

The n-mer tables in genefinder 980506 for the detection of coding-regions are

in-frame 3-mers, i.e. codons.

Length Penalty functions in genefinder

genefinder 980506 includes length-penalty tables for introns, and initial, internal

and terminal exons. These are defined as (length, penalty) pairs, so could be used

largely as found, except where otherwise stated. Single exon genes and intergenic

regions are subject to a constant, length-independent penalty.

3.3 Definition of a GAZE configuration in three steps

This section outlines the steps involved in the development of a simple GAZE model

for drawing together the signal, content and length penalty information provided by

genefinder into predictions of complete gene structures. The rules presented here

form the core for all of the models that I have subsequently developed; indeed the

principal way in which I envision GAZE being used in practice is for models to be

developed by taking existing models and tweaking them for specific situations. I see

this simple model as forming a base for practically all future models that one might

develop.
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      <feat id="stop"/>
   </gffline>

   <gffline feature="coding_seg" source="Genefinder" strand="+">
      <seg id="coding_seg"/>

   </gffline>

      <feat id="start"/>
   <dnafeat pattern="atg">

   </dnafeat>

      <feat id="stop"/>
   <dnafeat pattern="taa">

   </dnafeat>

   <dnafeat pattern="tag">
      <feat id="stop"/>

   </dnafeat>

   <dnafeat pattern="tga">
      <feat id="stop"/>

   </dnafeat>

</dna2gaze>

         <output feature="intergenic"/>
      <source id="BEGIN">

      </source>

   <target id="start">

   </target>

   <target id="END">

      <source id="BEGIN">
         <output feature="no genes"/>

      </source>

      <source id="stop">
         <output feature="intergenic"/>

      </source>
   </target>

   <gffline feature="stop" source="Genefinder" strand="+">

   <target id="stop">

</lengthfunctions>

      <killfeat id="stop" target_phase="0"/>

      <useseg id="coding_seg" target_phase="0"/>

      <source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>
   </target>

</model>

<model>

</gaze>

<?xml version="1.0" encoding="US−ASCII"?>

<declarations>

</declarations>

   <segment id="coding_seg" scoring="standard_max"/>
   <lengthfunction id="single_exon_pen"/>

<gaze>

   <feature id="start" st_off="0" en_off="3"/>
   <feature id="stop" st_off="3" en_off="0"/>

   <gffline feature="atg" source="Genefinder" strand="+">
      <feat id="start"/>

   </gffline>

<gff2gaze> 

</gff2gaze>

<dna2gaze>

   <lengthfunc id="sngl_ex_pen">
      <point x="0" y="4"/>
      <point x="1" y="4"/>

   </lengthfunc>

<lengthfunctions>

Figure 3.1: A complete GAZE-XML configuration file for the prediction of a single, single-exon gene on

the forward strand of a DNA sequence

3.3.1 A single, single-exon gene

Figure 3.1 shows a GAZE configuration for the prediction of a single, single-exon

gene on the forward strand. Although simple, this configuration makes use of the

majority of features of GAZE.

The XML configurations file can be viewed quite simply as comprising five sec-

tions. The declarations sections declares the features, segments and length penalty

functions that GAZE is going to work with, along with some of the core properties

that are common to all elements of each type. Of particular note here is the scor-

ing attribute given for the “coding reg” segments, which dictates in this case that

segments of this type should be scored according to the “maximal single” scheme,

given by equation 2.4.

The gff2gaze section dictates how the input GFF files are used to obtain lists

of features and segments. In particular here, the gffline tag is used, together with

the source, feature and strand attributes to specify which GFF lines are relevant,
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and which features to create when lines matching those criteria are observed. The

dna2gaze section also allows for the creation of features from simple sequence motifs

observed in the input DNA sequence.

The model section contains the source → target rules. Those involving the

“stop” target are of particular interest here because they make use of the majority

of features available in GAZE.

Firstly, a segment qualifier (denoted by the useseg tag) that is global to the

target is used to denote the fact that “coding reg” segments that are in-phase with

respect to the target (via the target phase attribute) are considered relevant for all

legal sources for this target.

Secondly, an interruption constraint (denoted by the killfeat tag) is used in a sim-

ilarly global way to invalidate the region between the target and any legal upstream

source when interrupted by a “stop” feature that is in-phase with the target.

Thirdly, the start→ stop rule specifically contains minimum-distance and phase

constraints, as well as denoting that the “sngl ex pen” length penalty function

should be used. The length function itself, taken from genefinder, is defined

at the top of the second column. Note that this particular length penalty is actually

length independent, achieved by giving consecutive distances the same penalty.

Finally, the output qualifiers define information for how the regions in the final

gene structure should be presented to the user. The output format of GAZE is GFF,

hence output GFF tags can be attached to each rule.

3.3.2 Extension to spliced structures

Although this simple model is satisfactory for explaining some of the features of

GAZE, it does not have much worth in practice because coding portions of the

majority of C. elegans genes are interrupted by introns. Figure 3.2 show how the

simple model in the configuration above can be easily extended to model spliced

gene structures.

The first point of note is the way that intron phases are dealt with. Introns can
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..

...

   <takedna id="5ss_1" st_off="0" en_off="1"/>
   <takedna id="3ss_1" st_off="1" en_off="−1"/>
   <takedna id="5ss_2" st_off="−1" en_off="1"/>
   <takedna id="3ss_2" st_off="1" en_off="0"/>

...

...
...

...

...

...

...

<gff2gaze> 
   <gffline feature="splice5" source="Genefinder" strand="+">

      <feat id="5ss_0"/>
      <feat id="5ss_1"/>
      <feat id="5ss_2"/>

   </gffline>

      <feat id="3ss_1"/>
      <feat id="3ss_0"/>

      <feat id="3ss_2"/>
   </gffline>

   <gffline feature="splice3" source="Genefinder" strand="+">

.

</gff2gaze>

</model>

<dna2gaze>

</dna2gaze>

<model>

   <target id="stop">
      <useseg id="coding_seg" target_phase="0"/>
      <killfeat id="stop" target_phase="0"/>

      <source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
         <output feature="CDS" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="2"/>

      </source>

   </target>

   <target id="5ss_1">
      <useseg id="coding_seg" target_phase="1"/>
      <killfeat id="stop" target_phase="1"/>

      <source id="start" mindis="3"  len_fun="init_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
         <output feature="CDS" strand="+" frame="0"/>

      </source>

      <source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
         <output feature="CDS" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
         <output feature="CDS" strand="+" frame="2"/>

      </source>
   </target>

      <source id="5ss_1" mindis="39" len_fun="intron_pen">
         <killdna source_dna="t" target_dna="aa"/>

         <killdna source_dna="t" target_dna="ag"/>

         <killdna source_dna="t" target_dna="ga"/>

         <output feature="intron" strand="+"/>
      </source>

   <target id="3ss_1">

   </target>

Figure 3.2: The main elements of a GAZE configuration for the prediction of single, possibly-spliced gene

structures of the forward strand of a DNA sequence

interrupt the coding region of a gene either between two codons (a phase 0 intron)

or in the middle of a codon, either between the first and second codon positions

(phase 1 intron) or between the second and third positions (phase 2 intron). The

total length of the spliced coding region must be a multiple of 3 in order for it to be

successfully translated, which means that is important for programs to keep track

of intron phases in order to produce sensible predictions.

The technique used here to account for intron phases is to consider the phases of

the donor and acceptor splice site features that define the intron region. As shown in

figure 3.2, for each given predicted splice site, three features are made, one for each of

the possible codon positions that the splice site may occur at. For example, “5ss 1”

denotes a donor splice site occurring between the 1st and 2nd codon position. The
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rules are constructed in such as way as to ensure that any partial candidate gene

structure ending with a “5ss 1” ends with the first base of an incomplete codon;

this is achieved firstly by the use of phase constraints, and secondly by dictating

that phases must be conserved across introns; notice from the figure that a phase 1

acceptor splice site (“3ss 1”) can only be legally preceded by a donor splice site of

the same phase (“5ss 1”).

In the simple model presented earlier, candidate coding exons with in-frame stop-

codons were disallowed by using an interruption constraint. Splicing also introduces

the possibility that stop-codons occur at the junction formed by the concatenation

of two exons. The figure shows how DNA constraints are used to disallow such

structures. Firstly, in the dna2gaze section, takedna directives are given for certain

features, which are instructions for GAZE to keep a record of the DNA sequence

occurring at the location of these these feature, specifically between the given start

and end position of the features, each adjusted by the offsets defined in the directive

(“st off” and “en off”). The rule for the “3ss 1” target contains the DNA constraints

themselves (killdna), an example of which states that the region between a “5ss 1”

and “3ss 1” is illegal if the DNA at the “5ss 1” is ’T’ and the DNA at the “3ss 1”

is ’AA.’

This mechanism has a limitation: it is technically possible for a stop-codon to

be formed from three successive exons, where the second exon consists of a single

base-pair. Internal exons this small, even if biologically possible, would be extremely

rare, and in fact are disallowed in the all of my models by use of a minimum distance

constraint. As shown in the figure, the minimum I use, taken from genefinder, is

20 base pairs.

3.3.3 Extending to multiple genes on both strands

Figure 3.3 gives a flavour of extensions to the model to allow for the possibility

of more than one gene on the query sequence. The “start” feature can now be

immediately preceded by a “stop” source marking the end of another gene, with
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<gff2gaze> 

   <gffline feature="atg" source="Genefinder" strand="−">

   <gffline feature="splice5" source="Genefinder" strand="−">

.

      <feat id="5ss_0_rev"/>

</gaze>

      <feat id="5ss_1_rev"/>

      <feat id="5ss_2_rev"/>

   </gffline>

</gff2gaze>

<dna2gaze>

   <dnafeat pattern="cat">

      <feat id="start_rev"/>

   </dnafeat>

      <feat id="start_rev"/>

   </gffline>

</dna2gaze>

<lengthfunctions>

   <lengthfunc id="intergene_pen">
     <point x="0" y="4"/>

     <point x="1" y="4"/>

   </lengthfunc>

</lengthfunctions>

<model>

   <target id="start">

      <source id="BEGIN">

         <output feature="intergenic"/>

      </source>

      <source id="stop" mindis="0" len_fun="intergene_pen">

         <output feature="intergenic"/> 

      </source>

      <source id="start_rev" mindis="0" len_fun="intergene_pen">

         <output feature="intergenic"/>

      </source>

   </target>

</model>

Figure 3.3: A fragment of a GAZE configuration showing the elements involved in modelling multiple

genes on both strands of a DNA sequence.

a new length-penalty function for the intergenic region implied by a pair of such

features.

Some gene prediction programs model reverse strand genes by predicting sepa-

rately on each of the given sequence and its reverse complement, and then merging

the predictions back together. This can cause problems if the gene prediction signal

is strong on both strands at the same location, where it is not obvious what the gene

prediction should be in this region. Other programs, for example GENSCAN, incor-

porate a single integrated model for the prediction of genes on both strands. They

do this by firstly choosing (arbitrarily) a strand as the reference strand, and secondly

treating opposite strand genes as comprising of the same features but occurring in

reverse order. Hence from the point of view of the reference strand, opposite-strand

genes begin with a stop-codon and end with a start-codon. This approach is easily

implemented in GAZE, demonstrated by the rules for the “start” target in figure

3.3, which include the “start rev” source, marking the start of a gene on the opposite

67



strand. The full model, which I refer to as GAZE std, is represented pictorially in

figure 3.4.

3.4 Applying the model to C.elegans sequences

The accuracy of the model presented above in comparison to other available pro-

grams is examined in detail in a subsequent section, where it is shown how various

refinements affect the performance. This section uses the application of the model

to the WormSeq test sequence to demonstrate some aspects of the functionality of

GAZE.

3.4.1 Predicting genes in WormSeq

Table 3.1 shows the accuracy of GAZE std at the whole gene level. For the purposes

of specificity, a prediction is considered correct only if the complete gene structure

matches precisely the structure of the corresponding cDNA-confirmed structure;

likewise, for the purposes of sensitivity, a confirmed gene structure is considered

to be correctly predicted only if it is matched precisely by a corresponding GAZE-

predicted gene. The stringency of this measure is shown in the table; only about

a third of WormSeq genes are predicted correctly by GAZE std and only a third

of GAZE std predictions are correct. Upon visual inspection of the predictions in

comparison to the correct gene structures in ACeDB, it is apparent that many of

them have the correct or nearly-correct intron-exon structure, but err in the location

of their start and/or end. It is widely observed that the ends of genes are more

difficult to identify correctly than their internal intron-exon structure (see chapter

1), and observation of the accuracy of GAZE std on WormSeq supports this.

3.4.2 Using feature-selection to refine the predictions

If the starts and ends of genes are the most difficult features to identify, it is in-

teresting to ask how the accuracy of GAZE std changes when it is told where the
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Figure 3.4: A pictorial representation of a GAZE-XML model for multiple genes on both strands. The

features are represented by filled boxes, and source → target rules by different types of arrows, each

corresponding to a phase constraint. The labelled circles give the name of the length-penalty function used

for each rule, which are themselves defined elsewhere in the configuration file; the labelled humps indicate

the segments that contribute to the score for the region implied by the rule. The rules for reverse-strand

target features are not shown in their entirety for reasons of clarity, but are reverse complementations of

the forward-strand rules. Also omitted are the distance, interruption and DNA constraints, as well as the

BEGIN and END features, which mark the ends of the sequence being searched for genes and act as source

and target (respectively) to all other features; this accounts for the possibility of a gene structures which

extend beyond the end(s) of the sequence.
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Sn Sp Av MG WG SG JG

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

GAZE std+ 0.67 0.36 0.52 0.000 0.387 1.13 1.00

GAZE std + + 0.71 0.71 0.71 0.000 0.000 1.00 1.00

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.08

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.1: Gene-level accuracy of GAZE std plus variants on WormSeq. Sensitivity (Sn), Specificity

(Sp), Average (Av), Missing genes (MG), Wrong genes (WG), Split genes (SG) and Joined genes (JG) are

the measures described in section 1.4.1

starts and stops of the genes in WormSeq really are. It is straightforward to answer

this question in the context of GAZE. I made a GFF file of the confirmed starts and

stops of the WormSeq genes, and used the feature selection mechanism of GAZE

to force the inclusion of these features in the prediction. The results, referred to as

GAZE std+, are shown in the second row of table 3.1. Several things are notable.

Firstly there is a big jump in gene-level sensitivity; 26% more WormSeq genes are

identified precisely correctly. Secondly, the figure of 1.00 for Joined genes indicates

that no predicted gene extends over the region covered by two or more WormSeq

genes. This is expected, because the feature-selection forces the correct splitting of

such genes. Thirdly, there is a noticeable increase in ‘wrong’ genes. It is counter-

intuitive that supplying the system with gene starts and ends should lead to more

predictions that do not overlap any confirmed gene structure. However, figure 3.5

shows how additional wrong genes can arise from such an approach.

3.4.3 Adjusting the score to refine the predictions

For the purposes of demonstration only, I made a slight modification to the model,

increasing the length-independent penalty for intergenic regions from 4.0 to 100.0.

This penalty is incurred whenever a gene is introduced; in making it large, the

prediction of genes that do not contain any user-selected features is effectively dis-
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Figure 3.5: How specifying gene start/end information can lead to an increase in the number of

Wrong Genes (WG). The GAZE std prediction (in red) extends into the region 5’ of the cDNA-confirmed

structure (in blue), but is not classed as “wrong” because it overlaps with the correct structure. Although

the GAZE std+ model (orange) correctly identifies the structure of the gene, the pseudo-signal in the 5’

region is strong enough to lead to the prediction of a separate gene which does not overlap any correct gene

structure.

allowed. The results of this refinement appear as GAZE std + + in table 3.1. The

MG, WG, SG and JG lines show that the intended increase in specificity has been

achieved, and exactly one gene is predicted for each cDNA-confirmed structure.

It will never be the case in practice that the starts and ends of all the gene

structures will be known a priori for an otherwise unannotated large stretch of

genomic DNA. It may be that the starts and ends for some of the genes will be

known, but in that case, the trick of increasing the length penalty will lead to the

missing of gene structures for which they are not known. For this reason, using

GAZE in a way such as this is artificial and was largely for demonstration only.
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However, some insights can be gleaned from the results. In particular, they show

that GAZE std is 71% accurate in identifying the complete internal intron-exon

structure of the genes in this test-set. Furthermore, the feature-selection mechanism

has proved and will prove useful for the manual curation of gene structures; it gives

the ability to anchor parts of the structure and identify the most likely total structure

that is consistent with the anchored points. In this way, it provides an elegant means

for curators to make use of incomplete evidence.

3.4.4 A comparison with genefinder

Since GAZE std integrates the signal, content and length-penalty information from

the genefinder program, it is natural to ask how the accuracy of the two com-

pare. The bottom row in table 3.1 shows the gene-level accuracy of genefinder

on WormSeq. It is immediately noticeable that genefinder is significantly more

accurate than GAZE std at the precise identification of complete gene structures.

It is also more specific, with only 38 wrong genes, compared with a figure of 210

for GAZE std. The difference in Split genes, 1.07 compared to 1.14 for GAZE std,

is also striking. GAZE std and genefinder use the same gene prediction signal,

content and length-penalty information, so where is this difference coming from?

Inspection of the genefinder source-code reveals some of the answers. Firstly,

genefinder subjects candidate exons to a further penalty just before they are

assembled into gene structures, and this penalty is different for internal exons

(log(0.8)), initial exons (log(0.2)+ log(0.5)) and other non-internal exons (log(0.2)).

Since the penalties for non-internal exons are larger, this has the effect of discour-

aging the splitting of genes. Secondly, genefinder removes all genes scoring less

than 7.0, effectively reducing the number of wrong genes.

These subtleties prove a test of the flexibility of GAZE. It turns out to be straight-

forward to incorporate the additional exon penalties, by simply adding these terms

to the penalties for all distances in the appropriate length-penalty functions. The

removal of low scoring genes cannot be performed in GAZE itself, but is achieved
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with a simple Perl post-processing filter.

The resulting model, the results of which are referred to as GAZE std gf in table

3.1 represents an attempt to duplicate the output of the genefinder program using

GAZE. The table shows GAZE std gf to be outperformed by genefinder at the

whole-gene level, whereas examination of the comparative accuracy at the base-pair

and exon level (see table 3.5) reveals no notable difference. This discrepancy in

gene-level accuracy is due not to any differences in the signal and content data used

by the two systems, nor differences in the length penalty functions, nor any hidden

post-processing, but to the fact that genefinder assembles its exons over a model

of gene structure that is designed specifically for prediction in C.elegans sequences.

In the next section, I show how the GAZE framework allows worm-specific model

features to be quickly and effectively introduced into the mode of gene structure

without any change to the GAZE source-code itself.

3.5 Towards a C.elegans-specific model of gene struc-

ture

The GAZE std gf configuration is specific to C. elegans in that it reads features

and segments from the genefinder program, which have been detected using worm-

specific signal and content models2, and also length-penalty functions that have been

designed from observation of the distances between such components in real worm

genes. However, the model of gene structure itself over which gene assembly takes

place is specific only to eukaryotes in that it can predict spliced gene structures.

There is nothing in the model itself that suits it to the prediction of gene structure

in C.elegans specifically. The genefinder program on the other hand takes account

an unusual splicing mechanism that takes place only in the cells of nematode worms

and some other primitive eukaryotes, and it is this that gives it greater accuracy.

2More accurately, general models that have been parameterised by observation of confirmed gene

features in C. elegans sequences.
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Figure 3.6: Schematic representation of trans-splicing in C.elegans

3.5.1 Splicing mechanisms in C.elegans

In nematode worms such as C.elegans and C.briggsae, as well as some other primitive

eukaryotes such as trypanosomes, a splicing mechanism exists that is unlike the

conventional intron-removal mechanism (known as cis-splicing). In trans-splicing

([66]; review in [13]), the pre-mRNA transcript is cleaved at a site upstream of the

translation start site, and the resulting protein-coding fragment is appended to a 21-

23 base-pair sequence called the trans-splice leader, which itself has been transcribed

from elsewhere in the genome. The process is summarised in figure 3.6.

The biochemical process of trans-splicing is closely related to that of cis-splicing.

In fact, it has been shown that the signal for trans-splicing to occur is simply the

presence of a sequence at the 5’ end of the pre-mRNA that looks like an intron but

has no functional upstream donor splice site [27]. The trans-splice site itself forms

the 3’ end of this outron sequence, and has the same consensus as the splice acceptor

involved in intron-removal.

The splice-leader RNAs themselves are always one of two distinct sequences: SL2

leaders are appended to all but the first gene in an operon, and have slight variation
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in their sequences. The more common SL1 leaders are appended to all other trans-

spliced gene products, and are all identical in sequence. For the identification of

gene structures in worm genomic DNA, the splice-leader sequences cannot be used

as a signal for detection, because they do not appear in the genomic sequence in

proximity to the gene they are spliced to.

3.5.2 Trans-splicing confuses gene prediction programs

Because the recognition site for trans-splicing reaction has the same consensus as

an acceptor splice site, gene prediction programs that have not accounted for trans-

splicing can be confused into mistaking the initial exon of a gene for an internal

exon and erroneously extending the prediction upstream. The relatively high gene-

density in the worm genome, especially in operons where the genes are typically as

close as a thousand bases apart, compounds this problem, often causing a program

to mistake two adjacent genes for a single gene. This is apparent in the Joined

Genes figure for GAZE std gf in table 3.1, which is relatively high compared to the

trans-splicing aware genefinder. Figure 3.7 illustrates the problem.

3.5.3 A GAZE model accounting for trans-splicing

In terms of the scoring function, the problem arises because high-scoring acceptor

splice site predictions that are in fact trans-splice acceptors can only be included

in the gene structure (and thus contribute towards the score) if the 5’ end of the

prediction is compromised in some way, e.g. by the addition of a low-scoring initial

exon upstream. The idea then is to provide a way for the trans-splice acceptor to

contribute towards the overall score without having to make this compromise.

Figure 3.8 shows, in spirit, the nature of the changes that are necessary to

accommodate trans-spliced genes. The first thing to note is that it is not necessary

to generate a priori predictions of trans-splice acceptor sites; the sequence signal

is practically indistinguishable from that displayed by conventional cis-splice sites.

It is therefore sufficient to direct GAZE to make a candidate trans-splice acceptor
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(a)

(b)

Figure 3.7: (a) Two cDNA-supported gene structures in WormSeq, with WormBase identifiers F11A5.10

and W06D12.3 (blue), and structures predicted by GAZE std (red) and GAZE trans (orange). The

GAZE std model, which does not account for trans-splicing, has been confused into mistaking the trans-

splice site for an acceptor splice site, extending the gene-prediction 5’, and in this case amalgamating it with

the upstream gene; (b) an enlargement of the 5’ end of the downstream gene, showing the trans-splice site

(green hook). The trans-splice aware model, GAZE trans, splits the structures correctly (orange)

feature (“trans splice”) from each predicted cis-acceptor encountered in the GFF

file.

Secondly, minor modifications are necessary to the gene structure rules to ac-

commodate the new feature; a “start” target feature, representing a start-codon

candidate on the forward strand, can now be preceded by the stop-codon of a pre-

vious gene as before, or for a trans-spliced gene, the trans-splice acceptor itself.

The distance from the translation start site to the upstream trans-splice acceptor

in trans-spliced genes is usually small. Data in [13] compiled from a sample of 83

genes experimentally confirmed to be trans-spliced, showed that in 43% the trans-
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         <output feature="intergenic"/>

      </source>

   </target>

..

</model>

<source id="stop" mindis="0" len_fun="intergene_pen">
         <output feature="intergenic"/>

      </source>

tsplice
−start

         <output feature="intergenic"/>

trans
splice

start

      <source id="start_rev" mindis="0" len_fun="intergene_pen">

intergene

      </source>

      <source id="t_splice_rev" mindis="0" len_fun="intergene_pen">

      </source>

stop

<source id="trans_splice" mindis="0" maxdis="50" len_fun="tsplice−start"/>

   <target id="t_splice">

      <source id="BEGIN">

</gff2gaze>

..
..

<model>
            ..

..

<feature id="3ss_0"/>

<feature id="3ss_1"/>

<feature id="3ss_2"/>

<feature id="trans_splice"/>

</gffline>

<gff2gaze>

..

..

</target>

      <target id="start">

<gffline type="splice3" source="Genefinder">

<output feature="trans−splice−UTR" strand="+"/>

         <output feature="intergenic"/>

</source>

Figure 3.8: Distillation of the changes required to the forward-strand part of GAZE std to allow for the

possibility of trans-sliced genes. The inset shows pictorially how the new “trans splice” feature fits into the

model of gene structure

splice site is within 5 base-pairs of translation initiation, 65% fall within 10 base-

pairs, 82% fall within 15 base-pairs, and in only 5% is the distance greater than 30

base-pairs.

The decrease in the likelihood of a trans-splice candidate with distance can be

modelled naturally with a length penalty function. Again, I looked to genefinder,

but this time it was necessary to inspect the source-code for the details of the

function used. genefinder approaches the problem by considering all initial exons

as beginning not with the translation start candidate, but 50 base-pairs upstream.

It adjusts the score of a candidate initial exon beginning at base-pair i by adding a

log-probability for the extra 50 base-pairs calculated in the following way:

Adj(i) = max







log(1 − Ptr),

logPopPtr + maxi−1
j=i−50 3ss(j) + (i− j + 1) log(1 − Pop)







3ss(j) is the log probability-ratio of an acceptor splice site at position j, or

−∞ if the score under the splice acceptor model at j does not exceed the cutoff.

The values Ptr, Pop can be given as parameters to genefinder. Ptr represents the

prior probability that a gene is trans-spliced; Pop and 1 − Pop can be thought of as
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Sn Sp Av MG WG SG JG

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.09

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.2: Comparative Gene-level accuracy of GAZE trans on WormSeq. Accuracy measures are ex-

plained in section 1.4.1

the probability of remaining in and leaving (respectively) the trans-splice “state”

(viewing the 50 residues as being generated by a Hidden Markov model). The default

values for Ptr and Pop are 0.5 and 0.1 respectively.

It is straightforward to derive a GAZE length-penalty table for the distance

between a translation start site and an upstream candidate trans-splice site using

this function. The only caveat is that the length-penalty table for initial exons

already includes the term incurred by non-trans-spliced genes (log(1−Ptr)), so this

term is subtracted from the tsplice → start function in order to avoid incurring it

twice.

The resulting variant of GAZE std gf (with additions to allow for the possi-

bility of trans-spliced genes on both forward and reverse strands) is referred to as

GAZE trans. Table 3.2 shows gene-level accuracy for the GAZE trans model in

comparison to the standard models.

The number of genes for which the complete structure has been identified cor-

rectly is noticeably higher for GAZE trans compared with GAZE std gf, and is now

on-par with that achieved by genefinder. What is also noticeable is the sharp de-

crease in joined genes, which is exactly what was intended (see figure 3.7). However,

this increase seems to have come at a cost with respect to Split genes. In intro-

ducing a model innovation that is specifically intended to split gene predictions, we

run the risk of introducing erroneous splits, and this is what has happened here.

In this case though, the extra splits have apparently occurred in predictions that
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were also incorrectly predicted by GAZE std gf, hence the net increase in gene-level

sensitivity. A closer look reveals that 42 structures which are correctly predicted

by GAZE trans were incorrectly predicted by GAZE std gf, and only 7 structures

correctly predicted by GAZE std gf are incorrectly predicted by GAZE trans.

The GAZE trans model is, to all intents and purposes, a GAZE implementa-

tion of the 980506 version of genefinder. This begs the question of why their

accuracies, although comparable, are not identical. The reason for this is the way

that GAZE makes use of the genefinder coding seg maximal scoring segments of

high protein-coding potential. Inspection of the genefinder source-code reveals

that it does not use segments calculated in advance for the whole query sequence

(as explained in section 3.2) at all; instead, it obtains a maximal coding score for

each candidate exon, using the same cumulative-array approach. This difference in

exon scoring schemes is only observable when a GAZE “coding seg” extends beyond

either the 5’ or 3’ end of the candidate exon. In that case, as implied by equation

2.4, the score is scaled by the proportion of the segment that lies in the region. This

incorrectly assumes that the score for segment is distributed evenly along its length.

For that reason, the genefinder method for computing coding scores is more accu-

rate than the approximate method used by GAZE. However, as shown by the results

so far, it seems to have little impact on the overall accuracy; in fact, at the exon

level (as shown in table 3.5), GAZE trans, although marginally less sensitive than

genefinder, is slightly more specific.

3.6 Integrating similarity information

As explained in chapter 1, the effective use of similarity information can improve

gene prediction accuracy. In this section, I outline the changes required to the

GAZE trans configuration to make use of the similarity information in the form of

EST alignments.
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3.6.1 ESTs and gene prediction

An Expressed Sequence Tag (EST) is conceptually a sequence read of a cDNA copy

of an expressed cellular mRNA. ESTs differ from the full-length cDNAs deposited

in the nucleotide databases (such as those used to build the WormSeq dataset) in

that: (1) they are often of lower quality, and (2) they represent the sequencing of

only a subsequence of the original cDNA, typically around 300-500 base-pairs, read

from either the 5’ or 3’ end of the transcript.

In much the same way as the EMBL full-length cDNAs were used to confirm the

genes in WormSeq, the alignment of ESTs to genomic sequence can provide evidence

for gene structures. Since ESTs represent only a draft-quality read of a subsequence

of a transcript, any single EST will normally only provide evidence for part of a gene

structure.

The utility of EST data

The alignment of ESTs back to the genomic sequence can be extremely useful for

gene prediction in several ways. Firstly, they act as an aid to novel gene discovery,

highlighting regions of genomic sequence where genes were not thought to exist be-

fore. Secondly, they can provide evidence for the spliced structure of the gene, at

least in cases where the EST extends across an exon-exon boundary in the corre-

sponding spliced mRNA. Thirdly, ESTs can help elucidate the structures of genes

that give rise to several alternatively spliced transcripts. Finally, they are useful

for identifying the extremities of genes. Ideally, the alignment of a 5’ EST to the

genome identifies the 5’ end of a gene, and likewise with 3’ ESTs. Many ESTs even

exist as pairs, corresponding to 5’ and 3’ reads of the same cDNA, and a pair of such

alignments ideally identifies both the 5’ and 3’ end of a gene, if not the complete

internal intron-exon structure.
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Problems with EST data

If the data were perfectly reliable, each EST would provide perfect, unquestionable

evidence for either the 5’ or 3’ end of a gene, and in addition perhaps part of the

intron-exon structure. Unfortunately, ESTs are naturally error-prone, due to their

high-throughput, single-read nature. This can lead to errors when they are aligned.

In addition, there are other problems associated with EST data:

Sample bias The pool of available ESTs is unavoidably biased towards genes that

are highly and ubiquitously expressed. EST databases are therefore not gener-

ally a useful resource for either the discovery or the elucidation of the structures

of genes expressed at at low levels or under very specific conditions.

Pseudo poly-A sites The EST sequencing process begins by the reverse tran-

scription of the mRNA into a double-stranded complementary DNA (cDNA),

primed from the poly-A tail at the 3’ end of the transcript. If the transcript

by chance contains a string of A residues somewhere other than the 3’ end,

then reverse transcription could begin from this place, resulting in a cDNA

for which part of the 3’ end of the gene is missing. When aligned back to the

genome, the 3’ EST match ends somewhere upstream of the true 3’ end of the

gene, sometimes in the protein-coding portion.

5’ end incompleteness It is often the case that the 5’ end of the cDNA is miss-

ing, either because the mRNA it was synthesised from had been partially

digested at the 5’ end, or because the reverse-transcription reaction did not

carry through to completion. When a 5’ EST is aligned back to the genome

therefore, the match can begin somewhere downstream of the true 5’ end of

the gene, often in the protein-coding portion.

Ambiguous matching The low-fidelity of EST sequences means that mismatches

must be allowed when aligning them to genomic sequence. A common im-

plication of this is that the EST will align to multiple places in the genomic
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sequence, and it is a not always obvious to identify the “correct” alignment.

Annotation errors It is not uncommon for an EST sequence to be deposited in

a nucleotide database with the incorrect assignment of orientation, e.g. a 5’

EST being annotated as a 3’ EST. This can cause confusion when inferring

information from an EST alignment such as the strand to which it matches.

The source of C.elegans EST data

The WS52 release of WormBase contained around 100,000 C.elegans EST sequences.

As part of the Sanger Institute worm sequence curation process, each of these ESTs

is isolated to a small number of localised regions in the genome by blastn [2], and

then accurately aligned using the spliced-local-alignment program est genome [79].

It is important to note that some ESTs are aligned to several places in the genome

using this procedure, and others not at all. For those that are aligned, the result

is a set of “exons” each of which can be described by a 5-tuple: (EST-identifier,

EST-start, EST-end, genome-start, genome-end).

For WormSeq, these exons were re-mapped into (EST-identifier, EST-start, EST-

end, WormSeq-start, WormSeq-end) 5-tuples, discarding those falling outside the

regions extracted from the genome to form artificial sequence, and truncating those

with partial overlap to these regions where necessary. As a result, 261 of the 325

gene loci in WormSeq have at least one EST match.

3.6.2 A GAZE model for the use of EST alignments

The natural approach is to use the EST match exons as segments providing ev-

idence for protein-coding regions. These segments will be expected overlap with

the untranslated regions of genes however, so such a method would lead to the

over-prediction of the coding portions of the genes. I therefore extend the model

of gene structure to include the untranslated regions at the ends of genes, incorpo-

rating features for the beginning and end of transcription: “transcript start” and

“transcript stop”.
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With this modification, EST match segments can now be used as evidence for

protein-coding regions and untranslated regions. However, such a model is not

exploiting the power of EST alignments in their identification of intron-exon bound-

aries and gene extents. I therefore devised a general EST pre-processing strategy

that would make the gene structure information encoded in the alignments more

readily available to be used by GAZE. The pre-processing is performed according to

the following schedule:

• From the pool of EST ’exons’, construct a set of EST ’transcripts’, lists of the

exons from a single EST ordered by their location on the genome. Transcripts

with an average match identity to the genome of less than 95% are discarded

at this stage.

• For each transcript, generate:

– “EST match” segments for the exons;

– “EST intron” segments for the regions between transcript exons that are

adjacent in the EST but separated in the genome sequence;

– if EST is a 5’ read, a “transcript start” feature for the beginning of the

transcript;

– if EST is 3’ read, a “transcript stop” feature for the end of the transcript.

• For those cDNAs for which there is exactly one 5’ and one 3’ transcript, gener-

ate an “EST span” segment for the region between the start of the 5’ transcript

and the end of the 3’ transcript.

Although the matches produced by the est genome program score each exon

according to its percentage identity to the genome, the model was found to be

ineffective when these scores were used directly (data not shown). In addition,

derived features and segments do not have an associated score. I therefore used the

following scoring scheme for the EST-derived features and segments:
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EST match These were given the score (identity−95).length
100 . The rationale for this

is to ascribe more confidence to long, contiguous exons with high identity

than to short exons with high identity. The latter are an artifact of the EST

alignment process, where single base-pair deletions in the EST with respect to

the genome cause two shorter high-identity exons to be created. Also, since

it is expected that the number of “EST match” segments falling in a given

region will be highly variable (from 0 to hundreds), the “projected per-base”

segment scoring approach (equation 2.5) is most appropriate.

EST intron These were scored according the average identity of the flanking ex-

ons. A scaling factor of 0.05 was applied to bring the order of the scores into

line with other segments being used. Since these segments are expected to

match candidate intron regions precisely, their use is qualified with a match

constraint3.

EST span These segments correspond to regions containing exactly one complete

gene. However, due to the problems with EST data explained earlier it will

often be the case that an “EST span” segment covers only part of a gene.

The segments are therefore interpreted as regions that should contain no more

than one gene. The way that this is realised in GAZE is to use the segments as

supporting evidence for intergenic regions, but to give them very high negative

scores, in this case −10000. This penalises the prediction of intergenic regions

where EST spans lie, effectively preventing gene splitting. This is pertinent as

the Split Genes figure for GAZE trans was quite high (see table 3.2).

transcript start and transcript stop features were assigned the neutral log prob-

ability ratio of 0.

Figure 3.9 shows pictorially a GAZE configuration for incorporating these EST-

derived features and segments, over a model of gene structure that now accounts for

3Recall from chapter 2 that match constraint stipulates that the a segment should only contribute

towards the score if its extent matches the region being considered precisely.
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Sn Sp Av MG WG SG JG

GAZE EST 0.58 0.53 0.56 0.009 0.088 1.02 1.03

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

Table 3.3: Comparative gene-level accuracy of GAZE EST in comparison to GAZE trans and

genefinder. Accuracy measures are defined in section 1.4.1.

the untranslated regions at the ends of genes (as well as trans-splicing). This model

is referred to as GAZE EST.

Table 3.3 shows the gene-level accuracy of the GAZE EST model in comparison

to the GAZE trans model and genefinder. GAZE EST displays an improvement

over all models presented so far, as well as genefinder.

In describing the GAZE trans model, I noted that some incorrect splitting of

gene structures was inevitable but showed that the net gain in accuracy achieved

by this innovation was significant. In introducing EST evidence, there is no obvious

reason why the accuracy of some predictions might become worse. However the net

gain of 37 additional correct structures identified by GAZE EST over GAZE trans

consists of 39 that GAZE EST correctly identifies whilst GAZE trans did not, and

2 that GAZE trans correctly identified whilst GAZE EST does not. There are also

2 additional examples of a GAZE EST prediction having fewer correct exons than

the corresponding GAZE trans predicted structure. Closer examination of these 4

examples reveals a variety of reasons for the decrease in accuracy:

Introns in UTR. In two of the cases, the EST evidence supports the presence of

an intron in the 5’ untranslated region of the gene. Since the GAZE EST

model only allows for introns in the coding portion of the gene, the prediction

of this coding portion has been extended in the 5’ to accommodate the intron.

Overlapping transcription units. In one case, the final coding exons of a gene on

the forward strand overlapped with the 3’ UTR of a gene on the reverse strand,
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“match”, “intron” and “span” segments shown are the “EST match”, “EST intron” and “EST spans” seg-

ments referred to in the text.
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as supported by an EST alignment. GAZE, at least as I have presented it so

far, classifies each base in the sequence as belonging to exactly one function

class. The region here was classified as a 3’ UTR on the reverse strand, causing

the final coding exon of the forward strand gene to be missed.

Incorrect alignment In the final case, a cluster of EST alignments in the intron of

the gene caused GAZE EST to split the structure incorrectly. This region also

had a partial match to a nucleotide database cDNA that matched with a higher

score elsewhere in the genome, suggesting the possibility of a pseudogene.

Such problems were not confined to these four examples; in other cases though,

the prediction was unaffected. In the design of the scoring scheme I was attempting

to achieving a balance between the gains to be had by treating the EST exons as

strong evidence for genic regions, and the losses incurred by treating them as ‘the

truth.’ The fact that only a small number of prediction were affected by EST-

confusion supports the validity of the scheme.

3.7 A closer look at the accuracy of GAZE

This section, provided for completeness, examines various aspects of the accuracy

of the GAZE models presented earlier. Thus far, results have been presented at the

gene level only for purposes of illustration.

The performance of the GAZE models has so far been assessed in comparison

to the genefinder program which, indirectly at least, works with the same signal,

content and length-penalty models. As the basis for a more objective evaluation, I

therefore also include in the following results for fgenesh [96], an HMM-based gene

prediction program that works in a similar manner to the more widely used genscan

[21]. Unlike the latter, however, fgenesh comes with a parameter file for prediction

in C.elegans sequences specifically, as well as a “-nematode” command-line directive.
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Sn Sp Av MG WG SG JG

GAZE EST 0.59 0.53 0.57 0.009 0.088 1.02 1.03

GAZE trans 0.47 0.42 0.44 0.012 0.093 1.07 1.04

GAZE std gf 0.35 0.35 0.35 0.012 0.076 1.03 1.09

GAZE std 0.41 0.24 0.33 0.003 0.368 1.14 1.03

genefinder 0.50 0.44 0.47 0.012 0.104 1.07 1.04

fgenesh 0.51 0.42 0.47 0.006 0.144 1.08 1.03

fgenesh no-w 0.18 0.16 0.17 0.012 0.125 1.07 1.09

Table 3.4: Comparative gene-level accuracy of various programs on WormSeq. Accuracy measures are

explained in section 1.4.1

3.7.1 Gene-level accuracy

Table 3.4 collates the gene-level accuracy results for all GAZE models presented

earlier (with the exception of GAZE std+ and GAZE std + +, which were for illus-

trative purposes only), as well as genefinder and fgenesh.

The table shows that the accuracy of fgenesh is comparable with that obtained

by genefinder and GAZE trans, although the former is slightly more sensitive and

less specific. Reassuringly, the GAZE model making use of EST evidence performs

best of all.

The fact that the genefinder and GAZE trans take account of trans-splicing

begs the question of whether the comparable accuracy of fgenesh is obtained by it

too incorporating a worm-specific model of gene structure. Since fgenesh is known

to perform well on the sequences of a variety of organisms, it is natural to assume

that it is the parameter files that give it organism specificity. Examination of an

fgenesh parameter file reveals elements for signal, content and length distribution

models, but nothing for the model of gene structure itself. It is informative therefore

to run the program against WormSeq with the C.elegans parameter file but without

specifying the “-nematode” command-line option (referred to in table 3.4 as fge-

nesh no-w). A marked decrease in accuracy is observed, suggesting that the option
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Base accuracy Exon accuracy

Sn Sp CC Sn Sp Av ME WE

GAZE EST 0.99 0.93 0.94 0.90 0.84 0.87 0.02 0.09

GAZE trans 0.98 0.91 0.93 0.86 0.80 0.83 0.03 0.11

GAZE std gf 0.98 0.90 0.92 0.84 0.77 0.80 0.04 0.12

GAZE std 0.99 0.84 0.88 0.85 0.67 0.76 0.03 0.24

genefinder 0.98 0.90 0.92 0.87 0.78 0.83 0.03 0.13

fgenesh 0.98 0.91 0.92 0.88 0.80 0.84 0.03 0.13

Table 3.5: Comparative base-pair-level and exon-level accuracy of GAZE std on WormSeq. The accuracy

measures are explained in section 1.4.1

activates a C.elegans-specific strategy, either a model of gene structure (as here), or

something else such as a different evidence weighting scheme. Without access to the

source-code, it is impossible to tell what exactly this is.

3.7.2 Accuracy at base-pair and exon-level

Table 3.5 shows the accuracy of the all models at the base-pair and exon-level.

The results are largely consistent with those at the gene-level, but some interest-

ing elements are evident. Firstly, all programs show strikingly similar accuracy at

the base-pair level, making it in this context at least not very useful as an accuracy

measure. Secondly, although fgenesh was more sensitive and less specific than

genefinder at the gene-level, at the exon level it is both slightly more sensitive

and specific. This suggests that the incorrect genes predicted by fgenesh contain

small numbers of exons.

3.7.3 Accuracy by exon-type

Table 3.6 shows exon-level accuracy for each of initial, internal and terminal exons,

as well as single-exon genes (termed “single”).

The greater accuracy of all programs in the identification of internal exons sup-
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Sn Sp Av ME WE

GAZE EST 0.79 0.74 0.77 0.06 0.16

GAZE trans 0.72 0.67 0.70 0.11 0.19

Initial GAZE std gf 0.57 0.56 0.57 0.13 0.30

(309) GAZE std 0.64 0.43 0.54 0.10 0.46

genefinder 0.72 0.66 0.69 0.11 0.22

fgenesh 0.75 0.61 0.68 0.11 0.24

GAZE EST 0.92 0.86 0.89 0.01 0.06

GAZE trans 0.89 0.83 0.86 0.01 0.08

Internal GAZE std gf 0.90 0.80 0.85 0.01 0.09

(1620) GAZE std 0.90 0.80 0.85 0.01 0.11

genefinder 0.92 0.82 0.87 0.01 0.10

fgenesh 0.92 0.87 0.90 0.01 0.07

GAZE EST 0.85 0.80 0.83 0.04 0.16

GAZE trans 0.81 0.74 0.78 0.06 0.18

Terminal GAZE std gf 0.78 0.78 0.78 0.06 0.15

(309) GAZE std 0.82 0.55 0.69 0.04 0.37

genefinder 0.80 0.72 0.76 0.07 0.21

fgenesh 0.84 0.68 0.71 0.06 0.26

GAZE EST 0.94 0.73 0.84 0.00 0.22

GAZE trans 0.94 0.59 0.77 0.00 0.26

Single GAZE std gf 0.94 0.71 0.83 0.00 0.24

(16) GAZE std 0.88 0.13 0.51 0.00 0.85

genefinder 1.00 0.63 0.81 0.00 0.29

fgenesh 0.63 0.77 0.70 0.00 0.23

Table 3.6: Exon level accuracy on WormSeq, by exon type. The number exons of each type in WormSeq

is shown in parentheses. Accuracy measures are explained in section 1.4.1
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ports the observation that the ends of genes are more difficult to identify than the

internal exon-intron structure. This is where EST evidence helps, and the table

shows that the win in overall accuracy of GAZE EST over all other programs is due

largely to its better identification of initial and terminal exons; indeed, fgenesh has

the slight edge for internal exons. The other notable aspect of these results is the

difference between genefinder and fgenesh in their identification of single-exon

genes. genefinder identifies all of them correctly at the expense of predicting many

exons as single when in fact they belong as part of a multi-exon structure. fgenesh

is apparently more conservative in predicting single-exon genes.

3.7.4 Genome scale accuracy

The precise identification of complete gene structures can depend on the genomic

context of the genes; that is, their relationships to each other with respect to distance

and orientation. It might be argued that extracting the genes from their genomic

context, as was done in the construction of WormSeq, provides an artificial problem

for gene prediction programs.

In construction of the WormSeq dataset, I have tried to provide as far as pos-

sible a realistic context for the cDNA-confirmed genes, by not inserting them into

a randomly generated intergenic landscape as has been done by others [53], but by

extracting the surrounding intergenic DNA with the genes. The technique of tak-

ing half of the region to the next curated gene in each upstream and downstream

direction was an attempt to ensure that the distances between the genes was also

realistic. However, it remains the case that certain aspects of gene organisation,

such as operon structure, are disrupted by extracting the genes from their genomic

context.

To address such concerns, I applied all of the models (as well as genefinder

and fgenesh) to the WormBase Sanger DNA sequence, from which the WormSeq

genes were extracted. This DNA amounted to 48,722,743 nucleotides, arranged

in 9 contiguous sequences ranging in length from around 1 million to 12 million
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Base accuracy Exon accuracy Gene accuracy

Sn Pred Sn Pred ME Sn Pred MG SG

GAZE EST 0.99 12.61M 0.90 60559 0.02 0.57 9075 0.012 1.02

GAZE trans 0.98 12.76M 0.86 60860 0.03 0.80 9393 0.009 1.07

GAZE std gf 0.98 12.81M 0.85 61487 0.03 0.39 8645 0.009 1.03

GAZE std 0.99 14.05M 0.86 71545 0.02 0.44 14685 0.003 1.14

genefinder 0.98 13.00M 0.88 63560 0.03 0.51 9584 0.009 1.07

fgenesh 0.98 12.91M 0.88 62668 0.03 0.50 10707 0.004 1.07

Table 3.7: Comparative accuracy on WormBase Sanger. Accuracy measures are defined in 1.4.1. The

number of predicted residues, exons and genes (Pred) are quoted in lieu of specificity measures, which are

not defined for a genome scale analysis

nucleotides. On a standard Compaq DS10 workstation, GAZE, genefinder and

fgenesh are happy dealing with gene-prediction data from sequences of a million

base pairs or more, but for 12 million bases, all programs require memory resources

that are beyond the limits of such a machine. For GAZE, the genome gaze script

introduced in chapter 2 makes the analysis of such large sequences straightforward,

without any requirement to split the DNA into several files. No such luxury existed

for genefinder and fgenesh, so it was therefore necessary to split the DNA into 1.1

Megabase chunks, with 0.1 Megabase overlap between each chunk. The predictions

in the overlapping regions for these two programs were resolved by inspection. The

results of applying all programs to what amounts to half of the C.elegans genome

are depicted in table 3.7.

It is interesting that genefinder seems to have a slight edge over fgenesh

here, both in sensitivity and specificity. The reverse was true for WormSeq. Overall

though, these results are consistent with those presented for WormSeq, suggesting

that the test sequence is indeed a good approximation of a real genomic contig.

92



3.8 Examining the probabilistic aspects of GAZE

One of the novelties of GAZE with respect to other “exon assembly” based gene

prediction systems is the ability to interpret the predictions in a probabilistic man-

ner. As explained in chapter 2, the definition of a probability distribution over

all possible gene structures (given a gene structure model), allows the calculation

of posterior probabilities for individual gene components. In this section, I show

how this facility can be used to reason about the reliability of predictions made

by GAZE. I also discuss how posterior probabilities can act as an aid for manual

curation of gene structures, in particular beginning to address the difficult problem

of identifying alternatively spliced genes in C.elegans.

GAZE can be instructed to report posterior probabilities for (a) the features

comprising the highest-scoring gene structure; (b) all candidate features; (c) the

regions defined by adjacent features in the highest-scoring gene structure; and (d)

all candidate regions of specified types. In the analysis presented here, I make use

of the first two of these facilities, largely because predicted and candidate features

can be designated as correct (with respect to the cDNA-confirmed gene structure)

or incorrect. Predicted and candidate regions also carry the possibility of being

partially correct, which adds an unnecessary complication to the analysis.

3.8.1 The reliability of GAZE predictions

GAZE reports a posterior probability for each feature that it identifies as belonging

to the optimal gene structure. Since these are intended to be interpreted as degrees

of belief in the correctness of the features, it is worth investigating how well they

perform as indicators of reliability. For example, does a reported posterior probabil-

ity of 0.5 for a feature really mean that we can be “50 percent sure” that the feature

is correct? Figure 3.10 shows the posterior probabilities for the features comprising

GAZE-predicted genes. Plotted for a variety of probability intervals are the number

of features belonging to GAZE-predicted genes with a posterior in that interval, and

the proportion of them that are correct.

93



(a)

0

500

1000

1500

2000

2500

3000

3500

0.00-0.05

0.05-0.10

0.10-0.15

0.15-0.20

0.20-0.25

0.25-0.30

0.30-0.35

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.55

0.55-0.60

0.60-0.65

0.65-0.70

0.70-0.75

0.75-0.80

0.80-0.85

0.85-0.90

0.90-0.95

0.95-1.00

Posterior probability

# 
fe

at
ur

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
co

rre
ct

(b)

0

500

1000

1500

2000

2500

3000

3500

0.00-0.05

0.05-0.10

0.10-0.15

0.15-0.20

0.20-0.25

0.25-0.30

0.30-0.35

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.55

0.55-0.60

0.60-0.65

0.65-0.70

0.70-0.75

0.75-0.80

0.80-0.85

0.85-0.90

0.90-0.95

0.95-1.00

Posterior probability

# 
fe

at
ur

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
co

rre
ct

(c)

0

500

1000

1500

2000

2500

3000

3500

0.00-0.05

0.05-0.10

0.10-0.15

0.15-0.20

0.20-0.25

0.25-0.30

0.30-0.35

0.35-0.40

0.40-0.45

0.45-0.50

0.50-0.55

0.55-0.60

0.60-0.65

0.65-0.70

0.70-0.75

0.75-0.80

0.80-0.85

0.85-0.90

0.90-0.95

0.95-1.00

Posterior probability

# 
fe

at
ur

es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
op

or
tio

n 
co

rre
ct

Figure 3.10: Posterior feature probabilities for GAZE models. Shown for features part of the coding-

portions of predicted gene structures in each case are the number of features with a posterior probability

in each interval (bars), the number of those predicted features that were actually correct (shaded portions

of bars), and this number as a proportion of the predicted features in the interval (line). (a) GAZE std gf

(4916 features); (b) GAZE trans (4866 features); (c) the GAZE EST (4832 features).
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Two points are evident from the plots. Firstly, as the sophistication of the model

increases, so does the number of features with high posterior probability. This im-

plies that improving the model not only increases the accuracy of GAZE predictions,

but also generally improves the confidence that it assigns to predictions. This par-

ticularly makes sense with the GAZE EST model, where the EST evidence would

be expected to add weight to many features belonging to gene structures predicted

by the less sophisticated models. Secondly, the lines plotting the proportion of pre-

dicted features that are correct in each posterior probability range are close to the

ideal, 1:1 line. This shows that the posterior probabilities are accurate indicators of

reliability.

3.8.2 Feature probabilities can aid manual curation

The posterior probabilities reported by GAZE can also provide an aid for the manual

curation of gene structures, which involves selecting from large numbers of candidate

gene features, those that imply gene structures that are most consistent with the

evidence. Figure 3.11 shows posterior probabilities for all of the candidate features

presented to the GAZE models. Again, the proportion of features within each inter-

val that are correct is consistent with the posterior probability computed by GAZE,

suggesting that they are good indicators of reliability.

A striking feature of figure 3.11 is the number of features with low posterior

probability. Because features with low or zero posterior probabilities do not fit into

sensible gene structures, such features can be ignored by a human annotator, reduc-

ing the number of possible assemblies and therefore the likelihood of mistakes. Of

the 872482 candidates for features that comprise the coding part of WormSeq genes

(i.e. the starts, stops and splice sites), 587021 (67 percent) have zero probability (to

4 decimal places) according to GAZE std gf model, 576517 (66 percent) according

to GAZE trans, and 632067 (72 percent) according to GAZE EST.

It is necessary to assess the likelihood that, by discarding features with zero

probability, we discard features that are in fact correct. The only example of this
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Figure 3.11: Posterior feature probabilities for the three GAZE models, for all candidate features; (a)

GAZE std gf; (b) GAZE trans; (c) GAZE EST
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occurring in WormSeq is the F09E8.3 gene, for which the high-scoring splice acceptor

at the 5’ end of the third exon is given zero probability by all three GAZE models.

The problem here is that the donor splice at the 3’ end of the exon is not detected

by genefinder at the default cutoff (it scores marginally below). In this case,

it therefore becomes impossible to incorporate the acceptor splice feature into any

gene structure with measurable probability. When the missing donor supplied as an

external feature (a trivial task with GAZE), not only does the acceptor feature now

have a very high posterior probability under all models (0.9993), but the low-scoring

donor itself has a posterior probability of 1.0, underlining its vital importance in the

gene structure. This particular example demonstrates well the utility to be gained

from the posterior probabilities and the care that should be taken when interpreting

them.

3.8.3 Feature probabilities could be used to identify alternative

splicing events

Like most existing gene prediction programs, GAZE does not explicitly address the

problem of identifying all of the variant gene structures for genes that are alterna-

tively spliced, and this is still very much an open problem (see section 1.5). Burge

[20] gave an example of how the sub-optimal exons reported by the genscan pro-

gram can sometimes be correct in alternative splice forms of the gene. GAZE offers

the possibility of identifying not only sub-optimal exons, but also introns and other

types of region, as well as features themselves. I show here how the feature posterior

probabilities can begin to be used in the prediction of alternatively spliced genes.

Figure 3.12 depicts the gene structure of the nhr-61 locus in C.elegans, with its

two alternatively spliced isoforms. The structure of this gene is has been confirmed

by the alignment of full-length cDNAs for each isoform to the genome. As shown

by the figure, the initial exon of neither isoform is identified precisely by any of the

GAZE models presented (the one predicted by GAZE EST is shown in the figure).

Upon examination of the posterior probabilities, we find first that of the fea-
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(a)

(b)

Figure 3.12: The C.elegans nhr-61 gene locus (WormBase WS52 identifier W01D2.2), with its two

alternatively spliced isoforms (blue), and the GAZE EST predicted structure (orange). (a) GAZE EST fails

to correctly identify the initial exon of either isoform; (b) An enlargement of the 3’ end of the third exon

of the correct gene structures, showing alternative splice donors, both supported by alignments of ESTs to

the genomic sequence by EST GENOME (yellow). Although only one of the two alternative donor features

belongs to the correct gene structure, the posterior feature probabilities reported by GAZE provide evidence

for both, as explained in the text.
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tures predicted by GAZE that are not part of either correct gene structure, none of

them have strikingly high probability; 0.432, 0.431 and 0.705 for the incorrect start,

donor and acceptor. The probability reported for the correct start (not predicted

by GAZE) is 0.269, not insignificant, suggesting that it is a viable alternative. Sec-

ondly, of the GAZE-predicted features part of both correct gene structures, all of

them have probability of 0.999 or greater. Taken together, these two observations

support what the earlier graphs showed, that the posterior probabilities are good

indicators of reliability; GAZE has reported a higher degree of confidence about the

parts of its prediction that turn out to be correct. Where the two isoforms differ,

in their choice of donor splice site at the 3’ end of the third exon, GAZE is less

confident; 0.751 for the donor that is part of the GAZE prediction. Upon inspection

of the posterior probabilities for all candidate features in this region, it becomes

apparent that the “missing” probability is found in the alternative donor (0.249).

Although further work is required to bring together these ideas and observations

into an automated system, this example (another was presented in [59]) demonstrates

well how the GAZE feature posterior probabilities can point towards firstly elements

of predicted gene structures that may not be correct, and secondly elements not

part of predicted gene structures that might be correct, either in the single correct

structure for the gene, or in one of the several possible structures of alternatively

spliced genes.
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Chapter 4

A method for estimating

optimal parameters for a GAZE

model

4.1 Introduction

A key property of the GAZE system is the ability to include signal and content infor-

mation of arbitrary types from multiple sources. This was evident in the gaze est

model of the last chapter, where separate segment types corresponding respectively

to regions of high coding potential and EST database hits both contributed to the

score for candidate coding exons. For such an approach to work effectively, the evi-

dence of each type must be weighted appropriately. For the GAZE EST model, this

problem was addressed in a rather ad hoc manner, by applying a scaling factor to

the scores of the “EST match” segments to make them approximately of the same

order as the segments of high coding potential. This scheme worked well in this case,

but in general it will be difficult to to obtain optimal evidence weightings in this

way. Far more desirable would be a way to automatically derive optimal weights for

the segments used in a model.
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This chapter describes my work on an automated method for obtaining optimal

weights for the scores of the various pieces of evidence referred to in a GAZE model.

The idea is to obtain the set of weights for which the prediction accuracy of the

model is as high as possible.

I start by modifying the GAZE scoring function to accommodate weights for

each type of evidence. I then go on to describe the design and implementation of a

method for obtaining the optimal set of weights for a GAZE model with respect to a

set of training sequences with known gene structures. The technique is inspired by

the work of Stormo and Haussler [109] and Krogh [68] (amongst others) and therefore

contrast it with other kinds of parameter estimation in the field of gene prediction.

The chapter ends with an example application, namely training the evidence weights

for the GAZE EST gene prediction system for C. elegans sequences (see chapter 3).

A more detailed examination of the performance of the method is presented in the

following chapter, whereby it is applied to the implementation of a GAZE gene

prediction system for vertebrate sequences.

4.2 Evidence weighting in GAZE

4.2.1 Optimally parsing a sequence according to weighted evidence

In 1994, Stormo and Haussler published a method for parsing a sequence into regions

of “intron” and “exon” using multiple types of weighted evidence for each of introns

and exons [109]. In their method, exons and introns are scored according to the

following scheme:

TE(i, j) =
∑

µ∈M

wµCµ(i, j)

TI(i, j) =
∑

κ∈K

wκCκ(i, j)

M is a collection of types of evidence for exons; Cµ(i, j) is the raw “score” for

evidence-type µ over the region i . . . j of the sequence; wµ is a real number weight
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for evidence-type µ. K, Tκ(i, j) and wκ are similarly defined for introns. The

score of a parse of a query sequence into exons and introns is simply obtained by

addition of the appropriate values from the T matrices. For example, for a sequence

1000 base pairs long, the parse (1-50,intron):(51-75,exon):(76-600, intron):(601-950,

exon):(951-1000, intron) would be scored as:

TI(1, 50) + TE(51, 75) + TI(76, 600) + TE(601, 950) + TI(951, 1000)

The authors show how the highest scoring parse can be obtained by dynamic

programming. They then go onto define a probability distribution over all possible

parses, and present a procedure for obtaining the set of weights that maximises

the probabilities of the correct parses of a set of training sequences. The method

described in the following sections has at its core a generalisation of this procedure

to make it applicable to GAZE, where the model of gene structure is not known in

advance. I start though by describing how evidence weighting is accommodated in

the GAZE scoring function.

4.2.2 Accommodating weights in the GAZE scoring function

A weight is attached to every piece of evidence that contributes to the score; that is,

each feature, segment and length penalty function. Each weight is a floating point

number by which the score of the associated element is scaled, and features (and

segments) of the same type are scaled by the same weight. Intuitively therefore, the

weights can be viewed as a way of ascribing a relative importance firstly to each

element of the model (e.g. splice site versus translation start sites) and secondly to

different types of evidence supporting the same region type (e.g. coding segments

versus database matches for potential protein coding exons). I refer to the complete

set of weights for a given model as w.

In order to accommodate the weights, I start by reformulating the GAZE scoring

(section 2.4). Given again an ordered list φ = φ1, φ2, . . . , φn of features defining

a valid gene structure according to a GAZE model (with φ0 and φn+1 denoting
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respectively the special features “BEGIN” and “END” marking the beginning and

the end of the sequence; see chapter 2), then the weighted score of φ, E(φ,w) is

calculated as:

E(φ,w) =
n
∑

i=0

T (φi, φi+1,w) (4.1)

T (φi, φj ,w) = Segt(φi)→t(φj)(l(φi), l(φj),w)

+ Lent(φi)→t(φj)(l(φj) − l(φi) + 1,w)

+ Loc(φj ,w) (4.2)

The function T (φi, φj ,w) is calculated as a composite score for the region φi →

φj , comprising components for segment, length penalty and local feature scores as

before (see equations 2.1, 2.2). The difference is that weights for the various types

of evidence are included in T .

I construct a mapping W from the types of the features, segments and length

penalty functions to the elements of w such that each of the former is associated with

exactly one of the latter. For example, W (w, t(φi)) is the element of w that is the

weight for feature φi and all other features of the same type. Given this mapping,

the feature, segment and length-penalty components of the score are scaled in the

following way:

Feature score weighting

The weighted local score for a feature φi is calculated as the given score scaled by

the weight :

Loc(φi,w) = g(φi)W (w, t(φi)) (4.3)
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Segment score weighting

Recall from equation 2.3 that the segment score for a region is a sum of scores for

each segment qualifier given in the model rule for the region. If again ψq is the

relevant subset of segments for segment qualifier q, and t(q) is the type of those

segments1, then the weighted segment score is calculated as:

Segsrc→tgt(x, y,w) =
∑

q∈Qsrc→tgt

SegQ(ψq, x, y)W (w, t(q)) (4.4)

The additive nature of both specific segment scoring strategies (equations 2.4

and 2.5) means that this weighting can be applied in practice directly to the given

scores for each segment in advance (according to type), as was the case for the

features above.

Length penalty weighting

Finally, the weight for a length penalty function is a simple scaling factor applied

to each penalty value:

Lensrc→tgt(x,w) = Lensrc→tgt(x)W (w, t(Lensrc→tgt)) (4.5)

where t(Lensrc→tgt) is an identifier for the length penalty function used in the

rule src → tgt. This approach assumes that the shape of the function has already

been determined by some sort of inversion of a frequency-of-occurrence histogram.

An alternative would be to model each function as a series of constants, each subject

to a separate scaling factor. This would potentially provide a powerful method for

the simultaneous estimation of the shape and weight of each penalty function. Doing

this however would greatly increase the number of free variables of the system, and

I will not consider it further here.

1all relevant segments for a Segment Qualifier must have the same type due to the compulsory

type constraint
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In practice, specific values for the weights are defined in the configuration file,

via a “mul” attribute attached to the the declaration of each element of the gene

structure model. When GAZE is used in prediction mode, the given values are used

to scale the scores of the appropriate model element in the way described above

before the dynamic programming is performed. When used in parameter-estimation

mode, the given values define the starting value of the function to be optimised.

4.3 Two approaches to obtaining an optimal set of weights

The aim of the method is to obtain the set weights wopt that maximises the gene

prediction accuracy in a set of training sequences for which the gene structures

are known. The natural approach would be to design a function of the weights

that represents the gene prediction accuracy in the training sequences, and then

maximise this function with respect to the weights. A problem with this method is

that the standard measures of accuracy are not continuous functions of the weights.

This is because “accuracy”, as it has been defined so far, depends only upon the

highest scoring gene structure, and a small change in the weights can lead to a

large change in the optimal gene structure. By using the posterior probabilities of

chapter 2 however, it is possible to construct an accuracy function that is continuous

in the weights. I have implemented two accuracy functions based on these posterior

probabilities. The degree to which they give rise to an effective set of weights is

investigated in the following chapter. The remainder of this chapter focuses on the

design, implementation and optimisation of the functions themselves.

4.3.1 Maximum Likelihood

This method involves identifying the set of parameters that maximises the log-

probability of the correct (i.e. annotated/confirmed) gene structures in a set of

training sequences. Stormo and Haussler [109] showed how to do this in the context

of a gene prediction system based on weighted evidence, and their method is directly
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applicable to the GAZE framework. Recall equation 2.9 which defines a probability

distribution over all possible valid gene structures (given a model). If there are K

training sequences, and the correct gene structure in training sequence k is φk∗, then

the ML approach is to maximise the following as a function of w:

αML(w) =
K
∑

k=1

ln P(φk∗|w) (4.6)

The posterior probability of the correct gene structure is thus made to be as high

as possible.

4.3.2 Maximal Feature Discrimination

By maximising the posterior probability of the correct gene structure, we at the same

time minimise the summed probabilities of all incorrect structures. Intuitively, this

appears desirable, but the drawback is that all of the incorrect gene structures are

considered equally “incorrect”. This is clearly not a good representation of gene

prediction accuracy; some candidate structures, although not completely correct,

will be closer to the correct structure than others. By maximising the probability

of the correct structure only, we may (and often do) increase the probability of

individual incorrect structures so that they score better than the correct structure,

and the highest scoring structure is even “less correct” than before.

The other main problem of the ML approach as presented above is that it relies

heavily on the knowledge of a single complete correct gene structure. We know that

many sequences have more than one structure that can be described as correct, due

to alternative splicing. It will also generally not be the case that we have accurate

data about all the feature types present in a model. In the previous chapter, I

showed how a generic model of gene structure could be extended to incorporate

trans-splice site candidates (via acceptor splice site predictions) and transcription

initiation and termination candidates (via EST information). The predictions made

by the extended model include regions defined by the additional features, such as

untranslated regions (where evidence was present). The assessment of the accuracy
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of these predictions was not completely straightforward, because the “correct” gene

structures with which I was comparing included only the protein-coding part of each

gene. This is true of the majority of benchmark sets used to train and assess the

accuracy of gene prediction programs. I therefore took the approach of considering

only the protein-coding part of each predicted structure in the assessment, and

this worked adequately. Such a method will not work for the maximum-likelihood

training function above however; supplying a “correct” gene structure consisting of

a proper subset of the feature-types referred to in a GAZE model will cause the

weights for the other feature types to tend to negative infinity. We therefore need a

more general way of dealing with correct gene structures for which only the regions

involving specific feature types are known.

To address both of these problems, I have implemented a new objective function

of w that maximises the posterior probabilities of the features that are part of the

correct structure, while minimising the same for those that are not. In addition,

I provide a way of ignoring features of particular types in the optimisation. For

consistency with above, I work in log probabilities. If φk1 . . . φ
k
n(k) this time is the

list of candidate features for training sequence k (where the special features φk0 and

φkn(k)+1 mark the beginning and end of the sequence as usual), then the function is:

αMFD(w) =
K
∑

k=1

n(k)+1
∑

i=0

r(φki )[c(φ
k
i ) ln P(φki |w) + (1 − c(φki )) ln(1 − P(φki |w))] (4.7)

c(φki ) = 1 if φki ∈ φk∗

= 0 otherwise (4.8)

r(φki ) = 1 if t(φki ) 6∈ Ignore

= 0 otherwise (4.9)
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The ideal result of maximising this function is a set of weights for which all gene

structures use as many correct features and as few incorrect features as possible.

We might expect, by optimising this function, to perform better on feature-based

measures of gene prediction accuracy. I refer to this method as Maximal Feature

Discrimination (MFD).

The problem of knowing only portions of the correct gene structure that involve

specific feature types is also addressed by this function: in its computation, we

simply ignore the features that are not of one of these specific types. We therefore

maximise the probabilities of the features which we know to be correct and minimise

the probabilities of those that are known to be incorrect; the probabilities of the

other, ignored features are unconstrained. It is important to note that this is not a

general strategy for making use of partial correct gene structures; if a feature type

is considered relevant for the computation of the above function, then all of the

features of that type present in the given “correct” gene structure are considered

correct, and, importantly, all other candidate features of that type are considered

incorrect. Hence the method is for dealing with feature types that are absent from

the the correct gene structures, not individual features.

4.4 Optimising the objective functions by gradient de-

scent

There are many published methods for maximising a multi-dimensional function

such as those described above (see [88] for a detailed review). I have chosen to

use a gradient-based method. Each evaluation of the functions above requires dy-

namic programming (see chapter 2), and a gradient-based method should give rise

to fewer function evaluations than a method that does not employ such information,

particularly when the number of dimensions is high.

I first describe the maximisation scheme that was used in terms of an anonymous

multi-dimensional objective function of a vector of parameters, α(w). I go on to show
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in the next section how the derivatives of the two objective functions described in

the previous section can be obtained, thus making the method directly applicable

to GAZE.

4.4.1 A conjugate gradient descent method

To be consistent with other literature on function optimisation, I present this as a

minimisation algorithm. Maximisation of a function is equivalent to minimisation

of the negative of the function.

We wish to find the values for the elements of w for which the function α(w) is

at its minimum. The method of steepest descent begins with an arbitrary point w0,

and then repeatedly (a) computes a vector of partial derivatives ∇wt at the current

point wt and then (b) minimises along the line wt + η∇wt to obtain a new current

point wt+1:

wt+1 = min
η
α(wt + η∇wt)

The procedure is terminated when some stopping condition is satisfied, for ex-

ample when the change in function value is small enough.

The “line minimisation” step is the most complicated part of the procedure and

involves two basic steps: (a) identifying a range for η within which the minimum

must lie (i.e. bracketing the minimum) and (b) successively narrowing this region

until it is small enough to define the minimum to within a tolerable error based on

the precision of the machine (i.e. a section search). For both of these steps, I have

implemented multi-dimensional versions of the algorithms described in the book by

Press et. al. [88]. In particular, the section search method was originally described

by Brent [16].

As explained in [88], the problem with the simple steepest descent method is

that for many common functions, it will perform many small steps in descending

a long narrow valley-like function. This is because consecutive line minimisations

are necessarily in orthogonal directions, so the process zig-zags from side to side.
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I have therefore implemented a variation of the steepest descent method proposed

by Fletcher and Reeves [43] and later modified by Polak and Ribiere [87]. The

idea of their method is to minimise not in the direction of the gradient at the new

point, but in a direction that does not interfere with any of the previous directions

travelled. The concept of non-interfering directions is formalised by Press et. al. [88]

as conjugacy. Two vectors u and v are said to be conjugate (i.e. non-interfering) if

the following condition holds:

u.A.v = 0

where A is the matrix of second partial derivatives. The authors show that by

scaling and subtracting the last direction travelled u from the gradient at the new

point, a new direction conjugate to u, v can be obtained without explicit calculation

of this matrix. The resulting method belongs to a sub-family of similar methods

known in the literature as conjugate gradient descent.

The gradient descent method as I have described it has the desirable prop-

erty that the process is divided into “chunks” (line minimisations), between which

progress can be monitored and assessed if necessary.

4.5 Calculating the gradient by dynamic programming

To use conjugate gradient descent, or any gradient-based method, it is necessary to

be able to obtain, for any function point, the partial first-derivatives with respect

to each variable. Furthermore, it is necessary to do this efficiently, as the reason for

using gradient information in the first place is to keep the time taken to reach the

minimum as small as possible. In this section, I show how the derivatives of both of

the functions proposed in section 4.3 can be efficiently computed.

4.5.1 The derivative of the ML function

The partial derivative of the Maximum Likelihood function (equation 4.6) with

respect to single variable w in w is obtained by expressing the log probability of the
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correct gene structure in terms of its constituent components. Since the function

comprises a sum over the training sequences, I simplify the notation by assuming a

single training sequence with correct gene structure denoted by φ∗.

∂ αML(w)

∂ w
=

∂ lnP (φ∗|w)

∂ w

=
∂

∂ w
ln

eE(φ∗)

Z

=
∂ E(φ∗)

∂ w
−
Z ′

Z
(4.10)

where Z is the partition function (given by equation 2.8), and Z ′ is its derivative.

The derivative of the score of the correct gene structure can be computed simply

as the sum of the derivatives of the components. Given again a list φ0, φ1, . . . , φn+1

defining the correct gene structure, we have:

∂ E(φ,w)

∂ w
=

n
∑

i=0

∂

∂ w
T (φi, φi+1,w) (4.11)

∂

∂ w
T (φi, φj ,w) =

∂

∂ w
Segt(φi)→t(φj)(l(φi), l(φj),w)

+
∂

∂ w
Lent(φi)→t(φj)(l(φj) − l(φi) + 1,w)

+
∂

∂ w
Loc(φj ,w) (4.12)

The feature, segment and length-penalty components are each themselves linear

sums of terms involving at most one variable, so it is straightforward to obtain their

derivatives. In particular, the derivative with respect to parameter w will be zero

for all components of the score that are not relevant for that weight, and equal to

the sum of raw (unweighted) scores for the component otherwise.

If Φ is the space of all gene structures, the derivative of the partition function

can be expressed as follows:

Z ′ =
∑

φ∈Φ

∂ E(φ)

∂ w
eE(φ) (4.13)
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It can thus be thought of as an “weighted average” of the derivatives of all

gene structures. A different but related term occurs in the gradient of the Maximal

Feature Discrimination objective function. I will show how these quantities can be

calculated in section 4.5.3, after deriving the gradient of the MFD function.

4.5.2 The derivative of the MFD function

For the Maximal Feature Discrimination function (given by equation 4.7) I again

simplify notation by assuming a single training sequence with a complete list of

candidate features φ0 . . . φn+1.

∂ αMFD(w)

∂ w
=

∂

∂ w

n+1
∑

i=0

r(φi)[c(φi) lnP (φi|w) + (1 − c(φi)) ln(1 − P (φi|w))]

=
n+1
∑

i=0

r(φi)

[

c(φi)

P (φi|w)

∂ P (φi|w)

∂ w
−

1 − c(φi)

1 − P (φi|w)

∂ P (φi|w)

∂ w

]

=
n+1
∑

i=0

r(φi)

[

c(φi) − P (φi|w)

P (φi|w)(1 − P (φi|w))

∂ P (φi|w)

∂ w

]

(4.14)

In order to obtain the derivatives of the posterior feature probabilities, I first

define Zi to be the sum of exponentiated scores of all gene structures that include

feature φi:

Zi =
∑

φ∈Φ:φi∈φ

eE(φ) (4.15)

The term Zi can be thought of as an “i-restricted” partition function, and di-

viding it by the unrestricted partition function gives the posterior probability for

feature φi (see equation 2.15). The derivative of the posterior probability of φi can

now be derived:

∂ P (φi|w)

∂ w
=

∂

∂ w

Zi

Z

= Z−1∂ Zi

∂ w
− ZiZ

−2∂ Z

∂ w

= P (φi|w)

(

Z ′
i

Zi
−
Z ′

Z

)

(4.16)
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The derivative of the i-restricted partition function, Z ′
i can be expressed in terms

of a “weighted average of derivatives” in the same way as the unrestricted function:

Z ′
i =

∑

φ∈Φ:φi∈φ

∂ E(φ)

∂ w
eE(φ) (4.17)

Expressing the derivatives of the i-restricted and unrestricted partition functions

in this way is the first step towards the design of a single method for the computation

of both, shown next.

4.5.3 Computing the weighted average of the derivatives

The aforementioned Stormo and Haussler article [109] includes a sketch of a dynamic

programming procedure for the efficient computation of a quantity analogous to Z ′

above, i.e. the gradient of the partition function. A simple extension of their method

allows for the simultaneous computation of the gradients of both the i-restricted and

unrestricted partition functions.

The method relies firstly upon the fact that a gene structure φ1 . . . φn can be

decomposed into two partial gene structures φ1 . . . φi and φi . . . φn, with the score

of the complete structure being the sum of the two partial structures2. If we denote

the set of all partial gene structures ending with feature φi as Φ..φi , and likewise

the set of all partial structure beginning with feature φi as Φφi.., then Z ′
i can be

expressed in terms of all partial structures beginning and ending (respectively) with

feature φi:

Z ′
i =

∂

∂ w

∑

φx∈Φ..φi

∑

φy∈Φφi..

eE(φx)eE(φy)

=
∑

φ∈Φ..φi

eE(φ)
∑

φ∈Φφi..

∂ E(φ)

∂ w
eE(φ)

2the asymetry of the scoring function is helpful here; the local score for feature φi is included

in the partial structure for which it forms the end, but not for the structure for which it forms the

start
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+
∑

φ∈Φφi..

eE(φ)
∑

φ∈Φ..φi

∂ E(φ)

∂ w
eE(φ)

= f(i)
∑

φ∈Φφi..

∂ E(φ)

∂ w
eE(φ) + b(i)

∑

φ∈Φ..φi

∂ E(φ)

∂ w
eE(φ) (4.18)

The final step follows from chapter 2, where the exponentiated scores of partial

structures ending and beginning with feature φi were computed respectively as f(i)

and b(i) (equations 2.11, 2.14).

All that remains is to obtain the weighted average derivatives for structures

beginning and ending (respectively) at φi. Let uf (i, w) be the weighted average

derivative of all partial structures ending with feature φi, with respect to parameter

w. Each of these partial structures can be decomposed further into a partial struc-

ture ending at φj (j < i), and the final region φj → φi. The score of this region can

be calculated independently as T (φj , φi,w), which allows us to derive a dynamic

programming recurrence for uf :

uf (i, w) =
∑

φ∈Φ..φi

∂ E(φ)

∂ w
eE(φ)

=
∑

0≤j<i

∑

φ∈Φ..φj

(

∂ E(φ)

∂ w
+
∂ T (φj , φi,w)

∂ w

)

eE(φ)eT (φj ,φi,w)

=
∑

0≤j<i

eT (φj ,φi,w)







∑

φ∈Φ..φj

∂ E(φ)

∂ w
eE(φ) +

∂ T (φj , φi,w)

∂ w

∑

φ∈Φ..φj

eE(φ)







=
∑

j<i

eT (φj ,φi,w)
(

uf (j, w) +
∂ T (φj , φi,w)

∂ w
f(j)

)

(4.19)

The vectors for each parameter uf can thus be populated by dynamic program-

ming (with uf (0, w) = 0), and the weighted average derivative over all structures, Z ′,

is obtained directly as uf (n+ 1, w). It is straightforward to construct an analogous

“backwards” matrix where ub(i, w) denotes the weighted average of the derivatives

of partial structures beginning with feature i :

ub(i, w) =
∑

i<k≤n+1

eT (φi,φk,w)
(

ub(k,w) +
∂ T (φi, φk,w)

∂ w
b(k)

)

(4.20)
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The derivative of the i-restricted partition function then reduces to the following:

Z ′
i = f(i)ub(i, w) + b(i)uf (i, w) (4.21)

Drawing all of these elements together, the derivatives of both the Maximum

Likelihood and Maximal Feature Discrimination functions can now be written down

in terms of elements that are directly computable by the methods presented here

and in chapter 2:

∂ αML(w)

∂ w
=





∑

φx→φy∈φ∗

∂ T (φx, φy,w)

∂ w



−
ub(0, w)

b(0)
(4.22)

∂ αMFD(w)

∂ w
=

n+1
∑

i=0

r(φi)

(

c(φi) − P (φi|w)

1 − P (φi|w)

)

(

ub(i, w)

b(i)
+
uf (i, w)

f(i)
−
ub(0, w)

b(0)

)

(4.23)

4.6 Implementation issues

4.6.1 Numerical stability

As in chapter 2, the calculation of the derivatives of the i-restricted and unrestricted

partition functions is performed in log-space to cope with limitations in machine

precision:

U(0) = −∞

Uf (i, w) = ln
∑

0≤j<i

(

eT (φj ,φi,w)+Uf (j,w) +
∂ T (φj , φi,w)

∂ w
eF (j)

)

Unlike the log-space computation of the forward and backward variables pre-

sented in chapter 2, the sum above is not guaranteed to be positive. This is due to

the unexponentiated term in the sum, the derivative of T (φi, φk,w), which is often

negative. Additional book-keeping is therefore necessary in which I take the log of

absolute value of the sum, keeping track of those (i, w) for which eU
f (i,w) is in reality
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negative and reversing the sign of the exponentiation of the U f (j, w) in the equation

above for those cases.

The Maximal Feature Discrimination function and its derivative are problematic

to implement in practice due to the fact they are both undefined in the cases of

a correct feature having posterior probability of 0 or an incorrect feature having a

posterior probability of 1. Such situations are not impossible, and can be approached

arbitrarily closely if the feature set is incompatible with the correct gene structure.

I therefore took the natural approach of replacing log 0 and −x
0 with a large negative

numbers. Both the value and the gradient of the function are somewhat inaccurate

therefore at extreme values for the weights, but since such extremities are typically

only encountered whilst bracketing the minimum, this is unimportant.

It is often the case that functions with complex behaviour such as those be-

ing optimised here have many local minima; the local minimum obtained depends

greatly on the starting conditions of the procedure, in this case the initial values for

the weights. There are two techniques commonly used to address this problem. The

first is simulated annealing [63], whereby a gradually diminishing level of “noise”

is added to the parameter values to give the function a stochastic opportunity to

escape from a local minimum. I have implemented the other common technique

which is to perform the optimisation several times from different starting points,

and choose the set of parameters that give the overall lowest function value at ter-

mination. This undirected strategy works well in my case, because there is usually

some approximate idea of what the weights should be for a given model. By starting

the process from such weights we increase the chance of reaching a global minimum,

or at least a set of weights that work well. Re-optimising with different starting

conditions and obtaining a solution that is the same or larger is verification that the

minimum obtained is likely to be global.
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4.6.2 Parameter tying

In many cases, it makes sense that the score for two (or more) different pieces

of evidence should have the same weight. This is true for example when different

feature or segment types are used for the forward and reverse strand of a sequence. I

have therefore included a mechanism for indicating that the weights for two or more

model elements should be tied together during the optimisation process. Parameter

tying is a common technique in the application of Hidden Markov Models to speech

recognition. It also has widespread use in the field of neural networks [11], where is

known as weight sharing.

In the GAZE framework, tying is achieved simply via the function W that maps

feature, segment and length penalty types onto weights. For the description earlier,

I implied that this mapping was one-to-one. By making it many-to-one, more than

one evidence type can map to the same weight. In practice, this means that a weight

tied to many pieces of evidence is updated according to a sum of contributions from

each.

It is also worth saying here that although the framework presented assumes for

flexibility that the scores for every type of evidence referred to in a GAZE model

is associated with a weight (with some possibly associated with the same weight,

as explained above), this need not be the case. The optimisation system has a

mechanism to allow the user to specify which types of evidence are to be treated

as having variable weight. This has no effect on the equations presented above; the

derivative of all functions with respect to non-variable weights is zero.

4.6.3 Time and memory usage

Most of the issues discussed in chapter 2 concerning the time and memory usage

of GAZE are not different here and are addressed in the same way; the algorithm

for the gradient calculations is ostensibly the same as the forward and backward

algorithms, and in fact can be implemented as extensions of both. The run-time is

increased by a constant factor of up to 10 however, so it is therefore sensible to only
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calculate the gradient when necessary.

The optimisation algorithm can be summarised as a series of gradient calcula-

tions, each followed by a minimisation along the line defined by the current point

and the new direction (a function of the new gradient and previous gradients). The

first of these steps involves a single forward-backward-with-gradient run over the

training sequences. The second, line minimisation requires a succession of function

evaluations. The section search algorithm by Brent [16] has been extended by Press

[88] to make use of derivative information with the aim of reducing the number of

evaluations necessary in the line minimisation. However, I found the overhead in cal-

culating a forward-backward-with-gradient for every function evaluation as opposed

to a straightforward forward-backward run was too significant for an overall benefit

to be observed. My implementation therefore does not use gradient information at

the line minimisation stage.

The main issue with the gradient calculation itself is memory usage. It is now

necessary to store with each feature, as well as the usual properties (e.g. location

and score), the uf and ub variables, each of which consists of an array of floating

point numbers, the size of which is the number of different weights that are to be

simultaneously optimised. If we wish to optimise weights for all evidence types

for a simple, double-stranded model separately, then this requires an approximate

additional 100 bytes per feature ( 16 feature types, 4 segment types, 5 length

penalties), twice as much if we wish to use double-precision floating point arithmetic.

Since a 1 Megabase sequence typically produces of the order of half a million features,

this gives 50 Megabytes for the gradient variables alone!

The situation is never this bad in practice. Tying the forward and reverse versions

of the features and segments together effectively halves the storage required, and I

would expect this to be done for all sensible applications. In addition, it would be

normal to tie together the weights for related feature types on the same strand, such

as the six different splice sites (three donor, three acceptor).
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4.7 A comparison with other methods

In this section I contrast the optimisation scheme described above with some of the

ways in which parameters are estimated for other gene prediction systems. There

are some elements of the scheme that are similar to methods used by exon-assembly

predictors to incorporate scores from several distinct signal and content-sensors into

a single exon score. It is also true that the procedure is probabilistic in flavour and

has much in common with certain techniques used in the estimation of parameters

for Hidden Markov models.

I present the comparison therefore in two parts. In the first part, I briefly examine

some of the ways in which evidence of several different types is accommodated and

weighted in some other gene prediction systems, relating them back to the GAZE

strategy. The second part is more theoretical and discusses how the GAZE approach

relates to various techniques used in the field of HMM parameter estimation.

4.7.1 Other methods based on weighted evidence

In many gene prediction systems, a variety of signal and content sensors are employed

for the recognition of individual exons, which are then assembled into gene structures

by dynamic programming. The specific way in which weights are chosen for the

exon features varies. In fgenes for example [104], linear discriminant analysis (see

chapter 1) is used to find a linear, weighted combination of a series of exon quality

measures that provides maximum discrimination between true and false exons [103].

The exon likelihoods reported by the method are then used as the basis for a dynamic

programming algorithm which identifies the highest scoring exon assembly. grail

[113][117] on the other hand uses a neural network to combine the scores from several

signal and content sensors, trained to discriminate between true and false individual

exons. The result gives rise to a procedure for identifying a set of candidate exons,

which are assembled by a separate, dynamic programming procedure called gap

[118].

The weight optimisation technique presented in this chapter differs from these
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methods by the fact that it considers whole gene structures3. I focus now on two

methods that are similar to GAZE strategy in this respect.

GeneParser

The GAZE method is a fully implemented extension of the unimplemented frame-

work proposed by Stormo and Haussler [109], generalised to account for a gene

structure model that is not known in advance. The most comparable previously

implemented work is the geneparser system of Snyder and Stormo [101] [102].

The final gene prediction program is identical to the one proposed by Stormo and

Haussler (section 4.2.1), but the difference is how optimal weights for various types

of evidence are obtained.

Like grail, geneparser uses a neural network to combine the scores from

several signal and content sensors. Unlike grail however, the dynamic programming

procedure to obtain the optimal parse is included in the neural network training

regime. This allows for it to be trained not on individual exons but on complete

gene structures. An iterative procedure is used, where the input to the network

at each state is the difference (for each type of evidence) between the score of the

optimal parse and the correct parse using the weights obtained in the last stage. A

set of weights is thus obtained which maximises the number of training sequences

for which the optimal parse is the correct one.

This approach is distinct from the maximum likelihood and maximum feature

discrimination methods for GAZE, where the parameters are estimated with respect

to the correct gene structure, or individual features belonging to it; the geneparser

method focuses directly on the relationship between the correct structure and the

highest scoring structure. It could be argued that this makes more sense because

it relates directly to the way in which the program will be used for prediction after

3This is true of both the ML and MFD methods; the latter is a function of feature posterior

probabilities which, as explained in chapter 2, can be interpreted as a measure of how well the

feature can be accommodated into a high-scoring complete gene structure.
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training.

EuGene

eugene [99] is a program similar to GAZE in the way that it is tailored for in-

tegrating the output of external programs predicting gene features. It models the

sequence as a directed acyclic graph (DAG) with the nodes organised into rows,

or “tracks”. Each track corresponds to a region of functional class and comprises

a node for each base and edges joining the nodes of adjacent bases. The graph is

then decorated with edges between tracks, depending on the results of the exter-

nal feature-prediction programs. For example, if a program of choice reports donor

splice site at position (x, x+1), then an edge is added between node x of the “exon”

track and node x + 1 of the “intron” track. Once this is done, any path from the

“source” node to the “sink” through the graph corresponds to a gene structure.

Scores are added to the edges of the graph and the predicted gene structure is that

corresponding to the “shortest” path through the graph4.

What makes eugene particularly interesting from the perspective of the work

presented here is the way in which the scores reported by the external programs are

weighted. It is assumed by the authors that the scores ci reported by a program

predicting evidence type i are numbers between zero and one, and to transform

such scores into a penalty they use the function − log(acbi). The constants a and b

are obtained by maximising the percentage of correct predictions in a set of single

gene A.thaliana sequences. The optimisation is performed first by a simple genetic

algorithm [50], and then by sampling the local parameter space. The procedure is

extremely computationally intensive and is not guaranteed to find either a global

or local maximum. The authors justify it however as a method that identifies sets

of parameters that work well. A system with a similar architecture is dagger [25],

which combines evidence using a complex function with two free variables for each

type of (in their system fixed) evidence. Optimal values for the variables are found by

4The scores are therefore penalties, with a high score corresponding to an unlikely feature.
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the downhill simplex function optimisation method [81] which does not make use of

gradient information and is therefore be inefficient for multi-dimensional functions.

The authors also give very little justification for the form of the objective function

except that it works well.

It is interesting to note that although these methods have weaknesses, they go

one step beyond the GAZE method in associating two parameters with each piece

of evidence, namely a multiplication factor and an additive constant (analogous to

bias terms in neural networks). This is however achievable in GAZE under certain

circumstances by using a fixed, length-independent penalty function to act as the

bias term for the transformation of a feature score (see for example section 5.5.1

describing the introduction of transcription start site predictions). Care must be

taken to apply this technique in general as there would be indeterminacy between

some sort of additive constants, for example, those for “intron” and “exons” regions.

The general approach of associating each model element with two parameters

would double the number of free variables in the system, putting a strain on the

time an memory usage of the training procedure, as well as making it much more

vulnerable to over-fitting. For this this reason, I have not examined the possibil-

ity further. It is however a natural extension to this work to extend the gradient

calculation to account for additive constants.

4.7.2 Hidden Markov model methods

In order to place a probabilistic interpretation upon the weight-optimisation pro-

cedure presented in this chapter, it is instructive to look to the way in which the

parameters of methods based on Hidden Markov models are estimated.

The basic set of parameters for a HMM gene predictor are the state emission

and transition probabilities. The standard approach to obtaining these parameters

is maximum likelihood, whereby the probability of the observations (in this case a

set of training sequences) is maximised:
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max
w

K
∑

k=1

log P(Sk|w)

I use w to denote the complete set of model parameters, to be consistent with

the notation earlier. How this function is optimised depends on whether the training

sequences come complete with annotated gene structures or not.

Supervised estimation

If each base of the training sequence is labelled according to its role in the gene

structure (“intron”, “exon”, “UTR” etc.), and there is a one-to-one correspondence

between the states of the model and these labels then a “correct” state path can be

inferred directly from the labelled training sequence. The ML approach therefore

is to calculate values for each transition and emission probability based on their

frequency of occurrence in the correct paths of the training sequences5. This in fact

corresponds to maximising the joint probability of the sequence and the correct path

φ∗:

wML = argmax
w

K
∑

k=1

log P(Sk, φ
∗|w)

The same applies to the Generalised HMM architecture used by many of the

most successful gene prediction programs, for example genscan [21], genie [72],

fgenesh [96] and developmental versions of genemark.hmm [76]. In these models,

it is often the case each state corresponds to a particular functional class (i.e. a single

label). Sub-models can therefore be estimated for each component individually,

based on only the corresponding regions from the training sequences. The sub-

models are then combined with transition probabilities based again on counts in

the paths inferred from the training sequences. The GHMM formalism also allows

for arbitrary probability distributions over the durations of each state, although as

5With pseudo-counts being added when data available for the estimation of the parameters is

sparse.
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explained in chapter 1 for practical reasons this is usually only exploited for certain

state types. State duration probability distributions can be derived directly from

histograms compiled from observed data.

Unsupervised estimation

It is sometimes not possible to infer a correct state path from a training sequence.

This could be because the sequence does not have an annotated gene structure,

or because there is many-to-one relationship between states and annotation labels,

meaning that there is more than one state path that could have given rise to the

annotated gene structure. A general approach in this case is therefore to maximise

the unconditional probability of the training sequence(s), summing over all paths (or

if there is partial information, summing over all paths consistent with this informa-

tion; see later). There are various iterative techniques for maximising the likelihood

in this case, based on the fact that the log probability of a training sequence can be

expressed as a sum over all state paths, the partition function:

log P(S|w) = log
∑

φ

P(S, φ|w)

I showed above how the gradient of this function can be calculated in the context

of the GAZE scoring function, and for HMMs the result is similar [67]:

∂

∂ w
log P(S|w) =

nk(S)

w

where nk(s) is the “expected” number of uses of the kth parameter in generating

the training sequences, i.e. the weighted average over all possible paths. This can

be calculated by the standard forward-backward algorithm for HMMs [90] [36]. A

gradient descent method such as that presented earlier can therefore be used to

maximise the likelihood. However, the more efficient Baum-Welch procedure [5] is

often used. The algorithm works on the principle that by estimating new parameter

values from “expected” counts above, the log-likelihood of the training sequences is

necessarily increased.
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An example of the use of the Baum-Welch method can be found in one of the

first applications of HMMs to gene prediction [70]. The authors use the algorithm

to estimate a profile-based HMM for two distinct types of intergenic regions in

the genome of E. Coli. Elements of the resulting model were observed that were

biologically meaningful, validating the method.

A combined approach: HMMGene

hmmgene is a gene prediction program based on the notion of a Class Hidden

Markov model (CHMM), where each state is associated with a label (see chapter

1). This framework allows for the identification of the most probable labelling (and

hence most likely gene structure) in addition to the most probable state path.

The estimation of the parameters for hmmgene begins with a set of labelled

training sequences, but it is not possible to estimate maximum likelihood parameters

from counts directly. Although hmmgene implements a restricted version of the

CHMM framework whereby each state emits a single, constant label, it is still true

that a given label could have been generated by more than one state.

The natural approach to this problem is to use a modified version of a Baum-

Welch algorithm where, during the forward-backward calculation, only valid path

through the model are allowed. In the context of labelled sequences, a valid path

is one in which the state labels agree with the sequence labels. This maximises the

joint probability of the sequence and the labelling L:

wML = argmax
w

log P(S,L|w)

This is the function that is optimised in the training of the veil program, which

also uses the CHMM framework [56]. The problem with this technique is that it

can often give rise to parameter values that are poor for prediction; although the

probability of emitting a series of “Exon” labels for an exonic region of the training

sequence is made as high as possible, the parameters so obtained can make the

probability of emitting a series of “Intron” or “Intergenic” labels with the sequence

even higher.
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hmmgene uses a technique called Conditional Maximum Likelihood (CML), to

address this problem. The idea is to optimise the probability of the correct labelling,

given the sequence:

wCML = argmax
w

log P(S|L,w)

= argmax
w

[log P(S,L|w) − log P(S|w)] (4.24)

where P(S|w) is the sum over all state paths and labellings. This can be com-

puted with the standard forward algorithm (i.e. ignoring the labels). Since there is

a one-to-one correspondence between labellings and gene structures, maximising it

corresponds to maximising the probability of the annotated gene structure.

The effect of CML is that the relative difference between the probabilities of

consistent state paths (i.e. those where the labelling of the states agrees with the

labelling of the training sequence) and inconsistent state paths (i.e. where the state

labelling does not agree with the labelling of the training sequences) is maximised.

This ideally results in the probability of invalid paths being very low, meaning

that all paths through the model (with significant probability) will give rise to the

correct gene structure. Since the aim of CML is to arrive at a set of parameters that

provides maximum discrimination between consistent and inconsistent state paths

(with respect to the labelling of the training sequences), the technique is also known

as discriminative estimation [36].

Relationship to the GAZE approach

The estimation problem in GAZE is simplified with respect to the above in that the

parameters of signal and content recognition sub-models are fixed. The problem is

therefore to find a way to ascribe relative importance to each element so that their

resulting integration results in gene predictions that are as accurate as possible.

To see how my training method relates to HMM training, it is insightful to

consider the GAZE gene structure probabilities as implicitly conditional upon the
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underlying sequence (see section 2.5). Making the conditioning explicit, the ML

objective function (equation 4.6) can therefore be written as:

wML = argmax
w

ln P(φ∗|S,w)

= argmax
w

E(φ∗,w) − ln
∑

φ∈Φ

eE(φ,w)

= argmax
w

ln P(φ∗, S|w) − ln P(S|w) (4.25)

When using this framework it is assumed that a correct gene structure (in terms

of a list of features) can be inferred directly from an annotated sequence. Since

this means that there is no distinction between gene structures and labellings, the

above might be interpreted as a kind of conditional maximum likelihood. This

makes intuitive sense, since like CML, the above minimises the probability of all

incorrect gene structures. The principle difference between the above and CML in

the CHMM context is that the latter simultaneously estimates the transition and

emission probabilities of the sub-models. In the context of GAZE, the sub-models

are implicit in the features, hence their internal model parameters are not variable.

The MFD method goes one step beyond CML in attempting to discriminate

between individual incorrect gene structures as well as between the single correct

and all incorrect structures. The idea is that even in the case where the highest

scoring gene structures are not correct, they at least use as many elements (features)

of the correct structure as possible. This should intuitively give rise to sets of weights

that are more accurate. Whether this turns out to be the case is examined in the

following chapter.

To end, it is interesting to consider whether unsupervised learning methods are

applicable to the estimation of optimal evidence weights in GAZE. Maximising the

unconditional probability of the training sequences (i.e. the partition function)

directly by classical methods is not possible because a GAZE score is not a real

log-probability; there is no comparison to other sequences. It is likely therefore

that increasing the weights will increase the partition function in an unbounded
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way. The possibility of an indirect method however remains open. The Baum-

Welch method is a special case of Expectation Maximisation [31] for maximum-

likelihood-style estimation in the case where certain data (in this case the correct

gene structures) are not known. Specifically, expectation maximisation is based

upon the following calculation:

wt+1 = argmax
w

∑

φ

P(φ|S,wt) log P(φ, S|w)

It can be shown that under a wide range of conditions, this approach necessarily

increases the likelihood of the model, and in many situations, the maximum is

calculable directly without iteration. Such a case is that of HMMs and the Baum-

Welch algorithm. The straightforward application of the EM method to HMMs

arises due to their transparency in the way that once posterior path probabilities

corresponding to expected gene structures are calculated by the forward-backward

procedure, transition and emission probabilities that increase the objective function

are obtained by simply summing the expected usages and normalising.

To apply EM to GAZE, we would have to use the Maximum Likelihood approach,

weighting gene structure probabilities by their posterior probability in the previous

iteration:

wt+1 = argmax
w

∑

φ

P(φ|wt)P(φ|w)

= argmax
w

∑

φ eE(φ|wt)+E(φ|w)

[
∑

φ eE(φ|wt)][
∑

φ eE(φ|w)]

It is not obvious how this quantity might be maximised analytically, as is possible

with HMMs and the Baum-Welch algorithm. The standard numerical optimisation

techniques however are applicable. To use conjugate gradient descent method in

particular would the require the computation of the gradient of the above quantity

with respect to the model element weights. Such an approach would be a natural

extension to this work.
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4.8 Optimising evidence weights for GAZE EST

In the previous chapter, I described the design and refinement of a GAZE model for

the prediction of genes in C. elegans sequences. In the final stage of this refinement,

data derived from EST alignments were used to improve the accuracy of the system.

However, the weights for the scores for these data were determined in a rather ad hoc

way. The Maximal Feature Discrimination training method provides the opportunity

to attack this problem in a more principled way. To end the chapter, I illustrate

the use of MFD training by applying it to this specific problem. A more rigorous

examination of the method in comparison with maximum likelihood is detailed in

the following chapter, in the context of the development of a gene prediction system

for vertebrate sequences.

4.8.1 Choice of parameters and optimisation method

The types of additional evidence in the GAZE EST model (with respect to the

GAZE trans model) are described in section 3.6.2. They are four features (“tran-

script start” and “transcript stop”, and reverse strand versions of these) and five

segments (forward and reverse strand versions of “EST match” and “EST intron”,

as well as the “EST span” segments which were introduced to prevent gene splitting).

Tying the weights of corresponding forward and reverse strand elements together re-

sults in five parameters to optimise. However, since the transcription initiation and

termination features have zero score (see section 3.6.2), any scaling applied to them

will have no effect. In addition, the “EST span” segments are designed to eliminate

from consideration any candidate gene structures that make use of them; since the

correct gene structure will not make use of them, any weight attached to their scores

will be unbounded. It is appropriate therefore to optimse only two parameters.

For the work in chapter 3, the WormSeq dataset was used to assess the accuracy

of various GAZE models. To be able to use this dataset for training as well as testing,

it was split in half (adjusting the division point slightly to occur in the intergenic

region between two genes). I refer to these two new sequences as WormSeq-1 and
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WormSeq-2. Splitting the dataset in this this way enables a twofold cross-validation,

testing the parameters obtained by training on WormSeq-1 on WormSeq-2, and vice

versa.

Of the two objective functions described earlier, only Maximal Feature Discrim-

ination is applicable in this instance. The reason for this is that since only coding

regions of the confirmed genes in WormSeq are known, the correctness of certain

types of candidate feature (specifically trans-splice sites, and transcription and ini-

tiation sites) is not known during the training. However, MFD allows the declaration

of a subset of feature types that should be ignored in the optimisation (see section

4.3.2).

4.8.2 Accuracy of the trained model

Table 4.1 shows the weights obtained from the MFD optimisation, and table 4.2

shows the accuracy resulting from using these weights. The most noticeable dif-

ference in the values compared with those chosen by hand in chapter 3 is that the

weight for “EST match” segments has doubled. However, this gives only marginal

(if any) improvement in accuracy. It might be argued that this should not be too

surprising, since the reason for choosing the original weights is that they seemed to

give good accuracy.

One point that was not considered when choosing the weights in the previ-

ous chapter is that by introducing additional elements to the model, the weights

of the existing model elements may no longer perform well. In this application,

“EST match” and “coding seg” segments both contribute towards the score for can-

didate protein coding exons. It is therefore possible that the scores for “coding seg”

segments have to be down-weighted to compensate for the addition of “EST match”

segments. Tables 4.1 and 4.2 also show the result of simultaneously optimising

weights for the “EST match”, “EST intron” and “coding seg” segments (the entry

labelled GAZE ESTMFD−3). The optimal value for the “coding seg” weight is 0.4

(compared with 1.0 used in chapter 3, and the new set of weights gives significant
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EST match EST intron coding seg

MFD-21 0.02 0.05 -

MFD-22 0.02 0.06 -

MFD-31 0.02 0.05 0.42

MFD-32 0.02 0.06 0.41

Chapter 3 0.01 0.05 1.00

Table 4.1: Evidence scoring weights determined by Maximal Feature Discrimination. In addition to

the weights used in chapter 3 (bottom row), the final weights for the relevant elements are shown for both

two-parameter (MFD-2) and three-parameter (MFD-3) training runs described in the text, and for each

training sequence WormSeq-1 and WormSeq-2 (indicated by superscript 1 and 2 respectively).

(a)

Exon level WormSeq-1 WormSeq-2

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE ESTMFD−2 0.89 0.83 0.86 0.02 0.09 0.90 0.85 0.87 0.02 0.09

GAZE ESTMFD−3 0.88 0.88 0.88 0.06 0.06 0.88 0.89 0.89 0.06 0.05

GAZE EST 0.89 0.83 0.86 0.02 0.10 0.90 0.84 0.87 0.02 0.09

(b)

Gene level WormSeq-1 WormSeq-2

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE ESTMFD−2 0.56 0.50 0.53 0.01 0.01 0.62 0.58 0.60 0.01 0.07

GAZE ESTMFD−3 0.59 0.58 0.58 0.04 0.07 0.65 0.64 0.65 0.03 0.04

GAZE EST 0.54 0.49 0.52 0.01 0.11 0.61 0.58 0.60 0.01 0.07

Table 4.2: Accuracy of the GAZE EST configuration after training with Maximal Feature Discrimina-

tion. For the trained models, the results for WormSeq-1 were obtained by training on WormSeq-2, and vice

versa. The first rows are the result of training two parameters (weights for “EST match” and “EST intron”

segments), and the second rows a further parameter in addition (a weight for “coding seg” segments). The

bottom row represents the accuracy of the weights used in chapter 3 when the model is applied separately

to WormSeq-1 and WormSeq-2. The accuracy measures are explained in section 1.4.1.
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improvement in accuracy (for example a 5-6% increase at the gene level average).

This simple application shows Maximal Feature Discrimination to be a good

method for identifying sets of weights that give rise to accurate gene predictions.

The effectiveness of the method is examined in more detail in the next chapter, where

amongst other things it is compared to the more traditional maximum likelihood

method.
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Chapter 5

Application of GAZE training

to the development of a

vertebrate gene finder

5.1 Introduction

In this chapter, I demonstrate how the parameter estimation methods described in

chapter 4 can be used to tune the performance of a gene prediction system created

with GAZE. By way of a contrast to chapter 3, the methods are applied to the

problem of predicting gene structures in the sequences of higher vertebrates such

as human [112] and mouse [28]. Gene prediction is more difficult in vertebrate

sequences than in the sequences of primitive animals such as C.elegans due primarily

to a lower signal-to-noise ratio and also other factors discussed in section 1.5 and

briefly in chapter 3.

The chapter follows a similar format to that of chapter 3. After summarising the

materials for vertebrate gene finding that are to be used, an initial GAZE configu-

ration is outlined. I then describe how the methods of the previous chapter can be

used to optimise the parameters of the model, and the effectiveness of the Maximum
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Likelihood and Maximal Feature Discrimination methods is compared. I finally go

on to produce three variant models, each incorporating a different, new type of gene

prediction evidence, and investigate the effectiveness of Maximal Feature Discrimi-

nation in weighting the scores of the new data appropriately.

5.2 Materials for gene prediction in vertebrate sequences

5.2.1 Datasets for training and testing

Programs to predict gene structures in vertebrate genomic DNA have historically

been trained and tested on sequences that each contain a single, complete gene

structure. In chapter 3, I discussed the disadvantages of using single gene sequences

for testing. Large, contiguous genomic sequences which are completely understood in

terms of their gene structures are even harder to come by for vertebrate sequences

than for C.elegans. Even for the human chromosomes that have been declared

“finished” at time of writing [35][24][30], the gene structures are under continual

review, and it is likely that these sequences contain unannotated genes.

In the work on C.elegans gene predictions described earlier, the problem was

addressed by constructing an artificial genomic sequence of cDNA-confirmed gene

structures. This was done by extracting the genomic DNA underlying each gene

structure, along with some upstream and and downstream intergenic sequences.

Another approach was taken by Guigo and co-workers [53] in the generation of their

SAGS (semi-artificial genomic sequences) dataset. They also started with a set

of single-gene sequences and their annotated gene structures, but not having any

genomic context for the sequences, they created an artificial one. In essence, the

sequences were separated by artificial intergenic regions, the lengths of which were

normally distributed, and the content of which were based on a fifth order Markov

chain based on a C+G content of 38% [54].

The problem with both of these methods is that they do not take account of the

variation in mammalian gene structural properties with C+G content (see chapter
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1). For programs like genscan that have distinct sets of parameters for different

C+G% strata, a sequence constructed with either method would provide an unfair

test. By way of illustration, each of the 42 sequences comprising the Guigo SAGS

dataset has a C+G content of less than 40%. genscan therefore uses the same,

low-C+G% set of parameters for these sequences, which could be one of the main

reasons for its relatively poor performance [53].

For this reason, and also for consistency with other literature assessing the ac-

curacy of gene prediction programs in vertebrate sequences, the results presented in

this chapter are based upon two distinct sets of single-gene sequences. It is important

to note however that all of the GAZE gene structure models used are sufficiently

general to allow for multiple genes on both strands of the input sequence, even

allowing partial genes at the ends of the sequence.

Training: the H176 dataset

This set was constructed by Guigo and colleagues [53] for an analysis of the accuracy

of various gene prediction programs available at the time. It was made in a similar

manner to the Burset and Guigo dataset benchmark set vertebrate gene sequences

[23], the principle difference being that this set comprises human gene sequences

only, and that entries were extracted from the EMBL nucleotide database version 50

(March 1997). There are 178 sequences in the set, from which I removed 2 sequences

which had annotated gene structures that were clearly incorrect (HSADH6, with a

gene structure containing seven introns each 25 base-pairs in length; and HSPVALB,

gene structure with three 24-base introns). The resulting 176-sequence set is referred

to as H176 or the training set.

Testing: the HMR195 dataset

This set was constructed by Rogic and colleagues for another survey of the accuracy

of gene prediction methods [94], using filtering rules ostensibly the same as those used

by Guigo in the construction of H176, the primary differences being (i) mouse and
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Human Genome H176 HMR195 WormSeq

Number of genes - 176 195 325

Coding density - 0.13 0.14 0.24

Single exon genes - 40 43 16

Exons per (multi-exon) gene 8.8 6.2 6.0 7.2

Mean internal exon length 145 146 138 241

Mean CDS length 1340 970 1021 1542

Mean intron length 3365 672 854 308

Table 5.1: Some properties of the training and test sets of vertebrate sequence in comparison with the

WormSeq dataset of chapter 3, and estimates for the human genome published in [112].

rat sequences were retained, as well as human; (ii) the Genbank nucleotide database

was used (version 111.0, April 1999), and sequences deposited before August 1997

were discarded, to ensure as far as possible that none of the sequences could have

been used to train the gene prediction programs being evaluated. The resulting

195-sequence set is referred to as HMR195 or the test set. There are no entries in

the test set that are also in the training set. The degree of overlap between this set

and the training set is discussed below.

By retaining mouse and rat genes in this set, I am assuming that any properties of

the H176 (human only) dataset learned by the training process also generalise to the

sequences of these organisms. The architects of the dataset partitioned it into human

(103 sequences) and mouse/rat (92) subsets, and examined the accuracy in each of

a number of programs that were trained on human sequences only. They found

the difference to be insignificant, with the many of the programs having marginally

better accuracy in the mouse/rat sequences.

5.2.2 Properties of the gene sets

Some properties of HMR195 in comparison with H176 and the WormSeq dataset of

chapter 3 are summarised in table 5.1.
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The table shows that two vertebrate datasets have properties that are fairly

consistent with each other. They both support the observation that vertebrate

genes have longer introns and shorter exons than worm genes, although the larger

survey summarised in the first column [112] suggests that both sets are still atypical,

most noticeably having smaller introns and fewer exons.

The two vertebrate datasets provide a far easier problem for gene prediction

programs than they would usually face in practice; a protein coding density of 13-14

percent is about 5 times higher than in the human genome as a whole (for example).

Furthermore, the complexity of the genes, in terms of their numbers of exons and

introns, and total CDS length, is lower than that of the WormSeq dataset of C.

elegans sequences. Also, 23 percent of the vertebrate genes contain coding regions

that are confined to a single exon, compared to 5 percent in the C. elegans dataset).

This is not indicative of any characteristic difference in complexity of vertebrate and

worm genes, but due to simple sample bias; short genes with small numbers of exons

were easier to sequence genomically before the human genome project, hence their

disproportionate frequency as separate entries in the nucleotide databases. The C.

elegans gene structures in WormSeq were confirmed by full-length cDNAs however,

so would be affected less by such database bias.

It is technically necessary to correct for such biases in the dataset before training.

When calculating the transition probabilities of the genscan HMM for example,

Burge took the “true” proportion of single-exon genes to be one half of that observed

in the training set. He comments that although this approach is rather ad hoc, it

is better than no correction at all, although it is more difficult to correct for other

biases in databases. I have chosen to ignore all biases because the primary aim of

this chapter is to assess the effectiveness of the training methods, and there is no

reason to believe that that any biases present in the training set should not also be

present in the test set.

There are no entries that occur in both datasets (ensured by construction; see

above), but the approach taken by many would be to remove entries in the test set
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that show a significant degree of similarity to an entry in the training set. Burge for

example in the training and testing of genscan removed sequences from his training

set for which the translation of the annotated gene showed more than 25% identity

to the translation of a gene in his intended test set [20]. I take the approach of not

attempting to make the training and test sets non-redundant with respect to each

other, also taken by others [102] [94]; it is reasonable to expect a gene prediction

program to often be presented with a sequence containing a gene which shows some

degree of similarity to a member of its training set.

One final point to note is that all analysis presented in this chapter was per-

formed on data derived from the raw sequence, with no masking of repeats. There

is no mechanism in GAZE itself to account for the possibility that the input feature

list may have been derived from repeat-masked sequence, and will therefore con-

tain regions with no stop-codons that should not be considered as candidate coding

exons. Repetitive regions therefore have to be explicitly accounted for in the config-

uration file. One approach is to make segments for the repeats, giving their scores

high negative weights, and making them contribute towards the score for candidate

protein-coding regions.

Accounting for repeats in this way would be necessary for the analysis of large,

unannotated stretches of genomic DNA, but is less important here. Although the

repeat-content of the human genome (for example) has been estimated to be in excess

of 50% [112], RepeatMasker [A.F.A. Smit and P. Green, unpublished] identifies 21%

and 15% of the training and test sets (respectively) as repetitive1. Masking these

repeats had no significant impact on the accuracy of the standard gene prediction

programs (results not shown).

1The -nolow option was used which does not mask out low-complexity regions, as these can

sometimes be protein-coding, for example in proteins with coiled-coil regions.
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5.2.3 A source of gene prediction features: geneid

As in chapter 3, I draw upon the work of others for a source of gene prediction data.

In this case, I used the most recent version of the geneid program [84], primarily

because it is designed for gene finding in vertebrate sequences (specifically human)

and optionally outputs candidate gene features as well as predictions of complete

gene structures.

The signal and content sensing models used by geneid are fixed and described

below. The parameters for these models however are external to the system and

supplied by the user in a file. The program comes with two parameter files for gene

finding in human sequences. The first provides distinct parameter-sets for sequences

in three C+G% strata. The second file contains a single set of parameters obtained

without considering C+G content. Except where otherwise stated, I have chosen to

work with features generated from this latter, homogeneous set of parameters.

Signal sensing models in geneid

geneid detects signals by calculating weight matrices from frequency tables com-

piled from real and pseudo examples of the feature of interest. The signals provided

are: (i) translation start sites, representing positions -8 through +5 (where 0 is the

position of the A in the conserved ATG); (ii) translation stop sites, representing

positions -5 through +3 (where 0 is the position of the first nucleotide of one of

the three stop codons); (iii) donor splice sites, representing positions -3 through +5

(where 0 is the position of the G in the conserved GT); and (iv) acceptor splice

sites, representing positions -22 through +4 (where 0 is the position of the A in the

conserved AG). The first three of these signals are modelled using the weight matrix

method. The acceptor splice site model is more sophisticated being a first order

weight array model. Predicted features using these models were generated using

geneid in signal output mode with default cutoffs (command line option ’-bdal’).
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Content sensing models in geneid

Unlike genefinder, geneid does not explicitly provide prediction of likely protein-

coding regions, but the supplied parameter files contain details of the model used

to score candidate exons for coding potential. As described in [84], log-likelihood

ratios Cj(b1b2b3b4b5b6) for hexamer b1b2b3b4b5b6 beginning in codon position j, are

calculated according to the relative frequency of the hexamer in a set of real exons

compared with introns. A “coding” score for a candidate exon S1 . . . Sn with pre-

assigned phase j (i.e. the codon position of the first base of the exon is known) can

then be calculated by summing the scores for the hexamers along the length of the

exon:

LC(S1 . . . Sn, j) =
n−5
∑

i=1

C(j+i−1)%3(Si . . . Si+5)

where % is the modulus operator. Rather than using Cj values given in the

geneid parameter file to obtain a set of segments corresponding to likely coding

regions in each frame (as was done in chapter 3), six GFF segments were made for

each 6 base-pair region in the training and test sequences, three for each strand,

by assuming that the region starts in each of the three codon positions. A coding

score for a candidate exon can be calculated by summing the segments lying in the

region, and I show later the configuration file directives that make this possible.

Although requiring a large amount of storage for the GFF files of these segments

(largely due to the un-necessary redundancy in this case of GFF), this technique

will allow for the calculation of an exact coding likelihood for a candidate exon.

The reason that the GAZE models for C.elegans gene prediction were not able to

duplicate the performance of genefinder was due to the inexactness of the coding

score calculation; see chapter 3.

Length penalty functions in geneid

The geneid scoring function, explained in more detail shortly, does not include a

length penalty component. However, exon scores are subject to a constant, length-
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independent penalty, the value of which is supplied as a parameter. These were used

in arriving at initial configuration for human gene finding, as explained next.

5.3 A GAZE configuration for human gene finding

A natural approach towards developing a GAZE configuration for the integration of

signal and content sensors from geneid is to start by implementing a system that

integrates the data in a similar manner to that program.

5.3.1 A GAZE configuration based on geneid

The model of gene structure used by geneid for human gene finding has the same

basic components and connectivity as the GAZE std model for C.elegans (figure

3.4). The are minor differences in the maximum and minimum distance constraints

as well as the way that partial exons are disallowed (with incomplete introns at the

end of the sequence still permissible).

There are however more significant differences in the way in which gene structures

are scored. In geneid, the score of a candidate gene structure is a sum of scores for

each of the exons it comprises:

LG(e1e2 . . . en) = LE(e1) + LE(e2) + . . .+ LE(en)

The exon scores themselves are calculated as sums of the scores of (i) the up-

stream defining feature LU (translation start site or acceptor splice site), weighted

by a constant WU ; (ii) the downstream defining feature LD (translation stop site or

donor splice site), weighted by a constant WD; (iii) a coding score LC as as described

above, weighted by a constant WC and (iv) a constant WE :

LE(e) = WULU (e) +WCLC(e) +WDLD(e) +WE

Restrictions on the form of the parameters W reduces their number from 4 to

2, namely WU = WD, and WU + WD + WC = 1. Values for the two parameters
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were chosen to maximise the correlation coefficient (CC) between annotated and

predicted protein-coding nucleotides in a set of training examples [84].

It is straightforward to mimic this scoring function in a GAZE configuration.

The additive exon score constant WE can by achieved by the creation of a length-

penalty function for which the penalty is the same for all distances. The other

parameters WU , WC and WD can be accommodated as the “evidence weights” of

the modified GAZE scoring function of the last chapter. The only slight difficulty

is the calculation of the coding likelihood LE(e) for a candidate exon e. Figure 5.1

shows how segments computed from the hexamer log-likelihoods are incorporated in

the model. I refer to the complete configuration as GAZE GeneID.

..

...

...

...

...
...

...

   <declarations>

   <segment id="hex_1" scoring="standard_sum" partial="FALSE"/>

   <segment id="hex_0" scoring="standard_sum" partial="FALSE"/>

   <segment id="hex_2" scoring="standard_sum" partial="FALSE"/>

   <declarations>

<gff2gaze> 

.

   </gffline>

      <useseg id="hex_1" phase="2" />

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="2">

   </gffline>

      <seg id="hex_1"/>

<seg id="hex_2"/>

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="1">

   </gffline>

      <seg id="hex_0"/>

   <gffline feature="cod_hex" source="GENEID" strand="+" frame="0">

<gff2gaze> 

<model>

   <target id="stop">

      <useseg id="hex_0" phase="0" />

      <useseg id="hex_2" phase="1" />

      <killfeat id="stop" phase="0"/>

      <source id="3ss_1" mindis="0" len_fun="term_ex_pen" phase="2">

         <output feature="CDS_term" strand="+" frame="1"/>

      </source>

      <source id="3ss_2" mindis="0" len_fun="term_ex_pen" phase="1">

         <output feature="CDS_term" strand="+" frame="2"/>

      </source>

      <source id="start" mindis="60" len_fun="sngl_ex_pen" phase="0">

         <output feature="CDS_term" strand="+" frame="0"/>

      </source>

      <source id="3ss_0" mindis="0" len_fun="term_ex_pen" phase="0">

      </source>

         <output feature="CDS_term" strand="+" frame="0"/>

   </target>

</model>

Figure 5.1: Fragment of a GAZE-XML configuration derived from geneid showing how hexamer coding

segments contribute towards the score. Each 6-tuple in the query sequence has three segments, one for

each possible codon position that the hexamer might begin at. A segment type for each codon position

is therefore defined, and the GFF “frame” attribute is used to construct segments of the corresponding

types. The segment score for regions ending with for example the “stop” target feature, comprises a sum

of separate scores for each segment type, and the “phase” attribute is used to ensure that only the single

correct segment at each sequence position (i.e. that starting at the appropriate codon position) contributes

towards the score. All reverse-strand elements of the model are omitted for clarity.
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Base Exon Gene

CC Av ME WE Av MG WG

GAZE GeneID 0.818 0.642 0.179 0.133 0.104 0.04 0.09

geneid 0.821 0.644 0.181 0.129 0.112 0.04 0.09

Table 5.2: Accuracy of GAZE GeneID compared with geneid on a combination of the H176 and

HMR195 datasets. The accuracy measures are explained in section 1.4.1.

5.3.2 Accuracy of the model

Table 5.2 shows the accuracy of GAZE GeneID compared with geneid on both

datasets of vertebrate sequences. Reassuringly, the results are extremely similar but

it is interesting to ask why they are not identical.

There are two reasons for the discrepancy. The first reason is that geneid

does not allow for the fact that under its own model of gene structure, initial and

terminal exons can be less than 6 base-pairs in length. Its calculation of a coding

score for such small exons is therefore incorrect. The same small exons are possible

in GAZE GeneID, but since no hexamer-derived segment can fit completely within

a region smaller than 6 base pairs in length, they are given a segment score of zero.

The second reason is that when forming a pool of candidate exons, geneid

considers only the 5 highest-scoring upstream candidate acceptor splice sites for

each candidate donor. This heuristic was probably implemented for reasons of space

or time efficiency but means that geneid is not guaranteed to identify the globally

highest-scoring gene structure in the sequence. This does not seem to have any

impact on the accuracy however, as the tables above show. Although geneid missed

more exons than GAZE GeneID, fewer of its exon predictions are wrong.

5.4 Optimising the parameters of the model

As explained above, the geneid scoring function has effectively four free parame-

ters which are chosen to maximise the correlation coefficient between annotated and
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predicted coding nucleotides in a training set. To make this optimisation procedure

tractable with straightforward methods, a specific relationship between the param-

eters is imposed, reducing the effective number of free variables in the function to

2. The GAZE training method described in the last chapter however is specifically

designed for the simultaneous optimisation of a function with several free variables.

In addition, both the Maximum Likelihood and Maximal Feature Discrimination

estimation methods are quite different from a technique based on maximising the

correlation coefficient. In this section, I investigate the effectiveness of the two GAZE

training methods in obtaining values for the parameters that give rise to accurate

gene predictions.

5.4.1 Defining the parameters of the model

As a starting point, I expand the effective two free parameters of the geneid scoring

function to eight in GAZE GeneID in the following way. Firstly, the scaling factor

for the scores of the defining features of a candidate exon (WU = WD) is replaced by

three untied weights in GAZE GeneID for each of translation start sites, translation

stop sites, and splice sites. There are in fact 16 distinct exon-defining features in

GAZE GeneID but sensible tying reduces the number of weights first to six (for

example, the scores of donor and acceptor splice sites in each of three phases are all

subject to the same weight) and then to three (the model is made strand neutral by

tying together the weights for the corresponding forward and reverse strand version

of a feature).

Secondly, the scaling factor for the coding score for a candidate exon in geneid

(WC) is represented by a single weight for the same quantity in GAZE GeneID.

Thirdly and finally, the additive constant for candidate exons in geneid (WE)

is replaced by four separate but identical length-independent penalty functions for

initial, internal, terminal and single exons (i.e. single exon genes). Each function

has its own weight, effectively allowing different additive constants for each exon

type.
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5.4.2 Accuracy of the trained model

Optimal values for these 8 parameters on the H176 training set of sequences were

obtained by both the Maximum Likelihood and Maximal Feature Discrimination

methods described in the last chapter. The resulting accuracy in the prediction of

gene structures in both the H176 training set and the HMR195 test set are is shown

in table 5.3. The table shows that the MFD method seems to perform better than

the ML method, at all levels of accuracy. Indeed, at the base-pair and exon levels

ML training leads to an increase in specificity and decrease in sensitivity, with little

difference in average performance. Both ML and MFD training give significantly

improved accuracy at the gene level however, with again MFD having the edge.

It is apparent from the results that both the ML-trained and the MFD-trained

models perform slightly worse on the test set than on the training set. This could

be because the test set is by chance a more challenging data set for gene prediction,

either because it has more “difficult” genes (for example 5.1 shows the test set to

have an observably larger mean intron length than the training set), or because the

signal and content sensors used by geneid were derived from examples that share

more in common with the training set than the test set. Inspection of the gene level

results however reveals GAZE GeneID to perform better on the test set than on the

training set, whilst the reverse is true for the trained versions of the model.

A natural explanation for this is a problem often encountered in machine-learning,

namely that the GAZE GeneIDML and GAZE GeneIDMFD have been “over-fitted”

and the derived parameters represent specific aspects of the training set that do not

generalise to the test set. A related problem is that observed by Henderson et. al. in

the training of the veil gene prediction program [56]. They used the Baum-Welch

algorithm [5] to obtain the set of parameters for their Class hidden Markov model

that maximised the likelihood of a set of training sequences. Aware of a possible

non-correspondence between the likelihood of the model and its accuracy of gene

prediction (in terms of the classical measures), they they took a series of snap-

shots of the parameter values after each iteration of their optimisation procedure,
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneID 0.86 0.83 0.82 0.81 0.87 0.82

GAZE GeneIDML 0.83 0.86 0.82 0.76 0.89 0.79

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

genscan 0.97 0.86 0.90 0.95 0.86 0.89

fgenesh 0.81 0.79 0.76 0.83 0.82 0.80

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneID 0.64 0.67 0.66 0.17 0.14 0.61 0.65 0.63 0.19 0.13

GAZE GeneIDML 0.63 0.70 0.66 0.21 0.13 0.56 0.68 0.62 0.28 0.14

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

genscan 0.82 0.75 0.79 0.06 0.15 0.77 0.73 0.75 0.08 0.14

fgenesh 0.64 0.60 0.62 0.14 0.19 0.64 0.63 0.63 0.19 0.19

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneID 0.09 0.08 0.08 0.03 0.08 0.13 0.12 0.12 0.04 0.10

GAZE GeneIDML 0.26 0.22 0.24 0.03 0.18 0.23 0.19 0.21 0.05 0.16

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

genscan 0.40 0.35 0.37 0.01 0.13 0.37 0.33 0.35 0.02 0.12

fgenesh 0.30 0.25 0.28 0.04 0.15 0.32 0.29 0.31 0.04 0.13

Table 5.3: Accuracy at (a) base-pair level, (b) exon level and (c) gene level on the H176 and HMR195

datasets of GAZE GeneID after training with the Maximum Likelihood (ML) and Maximal Feature Dis-

crimination (MFD) methods on H176. Results for genscan and fgenesh are shown for comparison. The

accuracy measures are explained in section 1.4.1.
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and evaluated the accuracy of prediction in the training sequences obtained with

each (as measured by the average of exon sensitivity and specificity). The result of

this analysis was that even though the likelihood of the model was increased with

each iteration, after a certain number of iterations the accuracy of prediction in the

training sequences started to decrease. The authors refer to this phenomenon as

“over-training” [56].

The situation is similar here in that neither optimisation function is the same as

gene prediction accuracy when measured in the standard ways, although of course

we would hope for a good correlation. It is therefore insightful to plot how the

accuracy of the model on the test set (for over-fitting) and training set (for over-

training) evolves during both optimisation procedures. This is made simple by the

conjugate gradient descent method described in the last chapter, whereby the end

of each line minimisation provides a natural point at which to “freeze” the process

and assess the accuracy.

Figures 5.2 and 5.3 show how the accuracy of prediction in the training sequences,

and respectively the test sequences, varies during the conjugate gradient descent

algorithm, for both the ML and MFD objective functions. The main conclusion to

draw from these plots is that gene level accuracy in both the training and test sets

increases steadily during the optimisation. Although at the exon level the increase

in accuracy is less smooth, it is certainly not the case that there is a point during

the optimisation after which further line minimisations reduce the accuracy. With

these datasets and this configuration at least, neither over-fitting nor over-training

seems to be a problem.

The pattern of increase of gene level accuracy during the optimisation is not

dissimilar to that shown by the objective functions themselves, suggesting that it is

this accuracy measure that these functions most closely reflect. At the exon level,

noticeable improvement is only observed in the MFD-trained model; ML-training

results in only marginal increase in exon accuracy, in both training and test sets.

Figures 5.2 and 5.3 reveal much about the way in which overall performance is
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improved by the two methods. Both at the gene-level and exon level, the untrained

model with parameters taken from geneid has similar sensitivity and specificity. As

the training progresses, the sensitivity and specificity diverge, producing models that

are more sensitive than specific at the gene level, and more specific than sensitive

at the exon level. This is true of both ML and MFD training, but the divergence is

most dramatic in the exon-level accuracy of the ML-trained model. Another reason

to favour the MFD-training therefore is that it seems to produce parameters which

achieve a better balance of sensitivity and specificity.
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Figure 5.2: Prediction accuracy in the training set (H176) after each line minimisation iteration of the conjugate gradient descent algorithm. Plotted

are (a) the value of the maximum likelihood function and resulting (b) gene-level and (c) exon-level accuracies. (d,e,f) Similar plots for the maximum feature

discrimination training procedure.
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Figure 5.3: Prediction accuracy in the test set (HMR195) after each line minimisation iteration of the conjugate gradient descent algorithm applied to the

training examples (H176). See legend for figure 5.2.
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5.5 Investigating three ways to improve accuracy

One of the most striking aspects of the results of the previous section is the degree to

which genscan out-performs all geneid-derived GAZE configurations, untrained,

ML-trained and MFD-trained. Given the sophistication of the genscan model of

gene structure and the signal and content sensing models that it employs, this is

perhaps unsurprising. In particular, the program contains at least three specific in-

novations that might contribute to its impressive accuracy. Firstly, its model of gene

structure includes sub-models for non-protein-coding elements of the transcript, in

particular the sites of transcription initiation. This effectively provides an additional

source of evidence for genes. Secondly, rather than using standard statistical distri-

butions for the lengths of initial, internal, terminal and single exons (or not having

any length distribution at all) the probability of observing each exon length (given

the type) was estimated directly from the training set, using a smoothing procedure

to avoid over-fitting. Thirdly, to take account of variations in human gene structural

properties with C+G content, the model has distinct parameters for each of four

C+G% strata. When presented with a query sequence, its C+G% is computed and

the appropriate set of parameters used for prediction.

In this section, I examine the effectiveness of the GAZE framework, supplemented

by Maximal Feature Discrimination training, in accommodating each of these par-

ticular kinds of innovation in turn. I start by showing how promoter prediction data

produced by the eponine scan program [34] can be put to effective use by a simple

refinement to the gene structure model. I then go on to examine the effectiveness

with which external region-length distribution data can be incorporated, by supple-

menting the standard configuration with the smoothed exon-length data derived by

Burge [20]. Thirdly, I show how GAZE can be used with datasets stratified by C+G

content. In all three cases, the focus of the presentation is the role of the Maximal

Feature Discrimination training method and its effectiveness in weighting the scores

of the relevant model elements.
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5.5.1 Incorporating promoter prediction data

The most well-known and widely used model for eukaryotic promoter recognition

(used by genscan and fgenesh for example) was defined by Bucher [19]. It consists

of a pair weight matrices for the TATA-box (15 base pairs) and the downstream tran-

scription initiation site (8 base pairs), separated by a distance of 14-20 nucleotides.

Each of the distances in this range is assumed to be equally probable, and the DNA

itself in the interval is generated according to a “background” intergenic model.

A source or promoter prediction data: eponine scan

Rather than re-implementing this model for eukaryotic promoters, I have chosen to

make use of a more recent development in the field of promoter detection. The epo-

nine scan program for transcription start site detection [34] consists of four weight

matrices, representing (1) a CpG island downstream of the start site; (2) a TATAAA

motif upstream of the start site (corresponding to the TATA-box mentioned above);

(3) a short region of high C+G content just upstream of (2); (4) likewise a short

region of high C+G content just downstream of (2). Representing the promoter

signal as a series of weight matrices is not new idea, but unlike the simple Bucher

model described above, each weight matrix is associated with a probability distri-

bution describing its position relative to the transcription start site. This allows for

a more accurate representation of the way in which the distances between differ-

ent components of the promoter signal vary in real examples. In comparisons with

other published promoter detection methods, eponine scan performs favourably,

being as sensitive as the next best method (promoterinspector; [98]), but more

specific.

Using eponine scan with GAZE

eponine scan is freely available on the world-wide web (http://www.sanger.ac.uk/-

Software/analysis/eponine), and outputs transcription start site predictions with

associated scores in GFF, making it ideal to be used with GAZE.
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Threshold 0.999 0.99 0.5 0.1

Total predictions 2491 24887 377087 923369

Predictions per sequence 21 117 1030 2489

Seqs with no prediction 252 159 5 0

Table 5.4: Number of predictions reported by eponine scan on the H176 and HMR195 datasets at four

different score thresholds. In each case, sequences with no prediction were excluded from the calculation of

the mean number of predictions per sequence.

The scores reported by the program are intended to be interpreted as the prob-

ability of the correctness of the prediction, so range between 0 and 1. Since the

scores of the other features used in the system are log probability-ratios, it is likely

that the best results would be obtained if the eponine scan scores were also in this

form. The reported scores x were therefore transformed into log probability-ratio

form x′ in the following way, inverting the logistic link function used as the output

stage of eponine scan (T. Down, pers. comm.):

x′ = log
x

1 − x

The scoring threshold recommended by the authors to give the highest average

of sensitivity and specificity is 0.999. However, the sensitivity reported for this

cutoff for a dataset based on the confirmed transcripts in human chromosome 22

is 0.54 [34]. For GAZE to be effective in using these predictions, it is therefore

necessary to lower the threshold to increase the sensitivity. Table 5.4 shows the

number of predictions made by eponine scan on the H176 and HMR195 datasets

for a variety of thresholds. Although a threshold of 0.1 leads to a very high false

positive rate (only at most one prediction on each sequence can be correct), this

should not be a problem for GAZE; both the scores of the predictions of themselves

and the surrounding genomic context (particularly in the protein-coding part of the

gene) should provide enough information to disregard most (ideally all) of the false

positives.
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It is interesting to note that even at the recommended threshold of 0.999, the

mean number of predictions per sequence when those sequences for which there is

no predictions are excluded is 21. This gives an upper bound on the specificity

for these sequences (assuming one prediction on each sequence is correct) of 0.05,

far lower that the figure of 0.74 previously reported [34]. The authors state that it

was necessary to group predictions into clusters to achieve the results reported, with

prediction within 1000 nucleotides of each other being considered a single prediction.

Again, it is not be necessary to perform this step with GAZE, because the gene

structure rules will ensure that only the highest scoring site in a cluster will be

included in the prediction of a downstream gene.

Only a slight modification to the standard gene structure model is required to

make use of the transcription start site predictions reported by eponine scan. The

resulting model architecture is a simpler version of that shown pictorially in figure 3.9

for modelling the untranslated regions at the end of C. elegans genes, omitting the

trans-splice and transcription termination features. Figure 5.4 shows how the new

eponine scan-produced “transcript start” feature slots into the standard model of

gene structure. The resulting model is referred to as GAZE GeneIDtss.

Obtaining optimal weights for eponine scan scores

After modifying the model to incorporate the new feature, the next step is to obtain

an optimal weight for the converted scores reported by eponine scan. In addition

to a parameter for the feature itself (with weights for the forward and reverse ver-

sions of the feature tied to be the same), I have defined a constant length penalty

function for untranslated regions (with associated weight); the reason for this is to

maintain consistency with the rest of the elements of the GAZE GeneID configu-

ration, the coding exons of which are also subject to a weighted, constant penalty

(see earlier). There are therefore two free parameters associated with the scores

reported by eponine scan: a multiplication factor (corresponding to the weight of

the “transcript start” feature score) and an additive constant (corresponding to the
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Figure 5.4: Changes to the standard GAZE GeneID model of gene structure to allow for the possibility

of a transcription start site upstream of the start of the protein-coding region. The forward-strand half

of the model only is shown for clarity. A length-penalty function for the untranslated region between the

transcription start and translation start (“utr len”) is defined to be an arbitrary constant (inset), which will

be optimised by training.

weight of the “utr len” length penalty function).

Considering also the parameters of the basic GAZE GeneID configuration, the

GAZE GeneIDtss model has 10 parameters to optimise. It is natural to think that

only 2 of these 10 parameters need to be optimised because optimal values for the

other 8 have already been obtained (GAZE GeneIDMFD in table 5.3). However it is

not necessarily true that these values are optimal with respect to GAZE GeneIDtss

model. The overall score of a gene (which effectively determines whether it appears

in the output) will now have two additional components if it includes a putative

transcription start. It may be therefore that the other elements of the score (for

the features, segments and length penalty functions defining the coding part of the

gene) have to be down-weighted to compensate.

Table 5.5 shows the result of optimising the parameters of GAZE GeneIDtss on

the H176 training set, for both the training set itself and the HMR176 test set. In this

case, it is interesting to note that only the MFD method is applicable, because it was

not known in advance which (if any) of the eponine scan-predicted transcription

start sites were correct; the ML method requires every candidate feature to be
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD−2
tss 0.87 0.89 0.86 0.81 0.90 0.83

GAZE GeneIDMFD−10
tss 0.88 0.89 0.86 0.82 0.91 0.84

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD−2
tss 0.71 0.73 0.72 0.15 0.13 0.64 0.71 0.67 0.21 0.12

GAZE GeneIDMFD−10
tss 0.72 0.73 0.73 0.15 0.13 0.65 0.71 0.68 0.20 0.12

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD−2
tss 0.34 0.27 0.30 0.02 0.19 0.28 0.23 0.25 0.05 0.15

GAZE GeneIDMFD−10
tss 0.32 0.27 0.30 0.02 0.18 0.27 0.23 0.25 0.06 0.15

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.5: The resulting accuracy of the GAZE model incorporating eponine scan predictions

(GAZE GeneIDtss) trained using the Maximal Feature Discrimination method in two different ways as

explained in the text. The results of using the same method to train the standard model (GAZE GeneID),

described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.
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declared “correct” or “incorrect” whilst the MFD method requires this only for a

subset of feature types (see previous chapter).

The model was trained in two ways: firstly with the optimal values obtained

for GAZE GeneIDMFD fixed and only the two parameters associated with the new

feature subject to optimisation (GAZE GeneIDMFD−2
tss ) and secondly with all 10

parameters optimised simultaneously (GAZE GeneIDMFD−10
tss ). The table shows that

there is little (if any) significant difference between the accuracies of the models

resulting from the two optimisations. This can be explained by the fact that the

difference between the two optimisations in terms of the final value of the objective

function and resulting weights for the model elements was marginal.

Given this result, it is tempting therefore to assume that when introducing a

new feature type into a gene structure model, only the weights for the scores of the

new features (and related length penalty functions) need to be re-estimated. This

would be of practical value to the system as a whole, due to the fact that models

with smaller numbers of free parameters can be optimised far more quickly with the

conjugate gradient descent algorithm. However, there is no obvious reason why the

assumption should hold in general.

We would expect promoter information to provide more accurate identification of

the 5’ end of the gene, particularly the translation start site. Looking at the results

more carefully, this seems only marginally to be the case; the GAZE GeneIDMFD−2
tss

model identified 109 of the translation starts in the HMR195 data set, compared

with 105 for the GAZE GeneIDMFD model. When looking at the results for the

H176 (training) set however, it is evident that a degree of over-fitting has occurred,

the increase being from 90 to 111 in the training set.

With only a marginal increase in accuracy in the test-set, it is natural to ask

whether the transcription start site predictions are being used at all in prediction.

The optimal values for the weights of the feature scores and the associated 5’ UTR

length-independent penalty function (with constant value 1.0) obtained by the MFD

method were 5.1 and 24.7 respectively. This means that only eponine scan predic-
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tions with a converted score before weighting of above 4.8 will contribute positively

towards the prediction. For future applications, predictions with score less than this

can be filtered out before running GAZE without affecting the highest scoring gene

structure.

As well as improving prediction accuracy, the inclusion of promoter prediction

information in the model also gives it the ability to predict 5’ untranslated regions in

the genome (although real UTRs are defined in the processed mRNA). It is difficult

to measure the accuracy of these UTR predictions without knowledge of the correct

site of transcription initiation for the test sequences. However, some insight can be

gained by isolating those predicted genes for which the translation start site has

been identified correctly. The assumption is that the UTRs implied by the subset of

these gene structures that include an eponine scan-predicted site of transcription

initiation carry a higher than otherwise likelihood of being correct. For the HMR195

(test) dataset: of the 235 genes predicted by the GAZE GeneIDMFD−2
tss model, 109

include a correctly-identified translation start site, 75 include an eponine scan-

predicted site of transcription initiation (and therefore UTR), and 43 contain both.

5.5.2 Using exon length distributions

The length penalty component of the GAZE scoring function has been used in a

very simplistic way for the models presented so far in this chapter. Although penalty

functions for each of initial, internal, terminal and single exons have been defined

and weighted independently, the functions themselves are defined to be constant,

i.e. the same penalty is applied to exons of a particular type, whatever their length.

It is certainly not the case however that exon lengths are uniformly distributed in

the genomes of eukaryotes. A plot of the lengths of internal exons (for example)

in the human genome [112] revealed a mean length of 145 bp (median 122), with

the majority falling between 50 bp and 300 bp and a sharp peak at just over 100

bp. Another analysis has shown this distribution to be close to log-normal [121].

It would seem therefore that there is value in more accurately reflecting the likely
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lengths of exons in the penalty functions employed in GAZE GeneID for exonic

regions (i.e. by associating unlikely lengths with high penalties).

A source of exon-length data: genscan

Many gene prediction methods (particularly those based around standard hidden

Markov models) by their nature assume that the likelihood of a region of a par-

ticular type (e.g. exon) decays exponentially with length. Burge showed that this

geometric model was an inaccurate representation for the lengths of each of the

four different types of coding exon [21]. The Generalised Hidden Markov model

framework employed by genscan naturally accommodates length probability dis-

tributions based upon direct observation rather than an assumed (e.g. geometric)

model (see chapter 1), but it was still non-trivial to obtain these distributions in the

first place.

The main problem in obtaining realistic probabilities for the lengths of each of

the four types of exons was small size of the training set (238, 1016, 238, 142 for each

of initial, internal, terminal and single exons). This gave rise to spikey distributions

for which the probability of many lengths was zero simply because they were not

observed in the training set. A smoothing procedure was therefore employed, based

on a simple underlying model of exon evolution [20].

Using the genscan exon length distributions with GAZE

The genscan parameter file for gene-finding in human sequences includes a proba-

bility for each length (up to a maximum) for each of initial, internal, terminal and

single exons. The first task is to convert the given exon length probabilities into a

form that can be presented to GAZE as a length penalty function. Taking the nega-

tive logarithm of each probability has the desired effect, converting low probabilities

to high penalties2.

2The base of the logarithm is unimportant, as this will effectively be determined by training a

weight for the function.
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In addition, a small change to the configuration of GAZE GeneID is required,

swapping out the constant length penalty functions for exonic regions and swapping

in the new ones. No other changes to the model are required, and I refer to the

revised configuration as GAZE GeneIDexo.

Obtaining optimal weights for the exon length penalties

In optimising the parameters for GAZE GeneID earlier, separate weighting factors

were attached to the constant length-penalty functions for each of the four exon

types. The same is done here, with the added qualification that what is meant

by weighting a non-constant length penalty function is that the penalties for all

lengths are subject to this same scaling factor. The assumption here therefore is

that the penalty functions derived from the given probability distributions are of

the correct shape, but need to be weighted appropriately in relation to the other

elements involved in the scoring function (see previous chapter).

Table 5.6 shows the result of optimising the parameters of the GAZE GeneIDexo

model on the training set. The model has the same 8 parameters as the standard con-

figuration, but as with the GAZE GeneIDtss model, a choice must be made whether

to re-estimate all 8 parameters from scratch, or to optimise only the 4 parameters

for the exon length penalties, anchoring the others to their values obtained by the

earlier optimisation (GAZE GeneIDMFD). As before then, the model is trained us-

ing the MFD method in both ways, and the table shows the results gained to be

almost indistinguishable. Again though, there is no justifiable reason for why this

might be true in general.

Examining the relative difference in exon-level prediction accuracy between trained

versions of the standard and explicit-exon-length configurations, it is evident that

the degree by which the latter out-performs the former is more marginal in the test

set than in the training set. This implies a degree of over-fitting has taken occurred,

supported by the base-level results. Nevertheless, improvements on the test set at

all levels are however still apparent.
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD−4
exo 0.86 0.88 0.85 0.81 0.90 0.83

GAZE GeneIDMFD−10
exo 0.86 0.88 0.85 0.80 0.90 0.82

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD−4
exo 0.73 0.74 0.73 0.15 0.14 0.67 0.72 0.69 0.19 0.13

GAZE GeneIDMFD−8
exo 0.73 0.74 0.73 0.15 0.14 0.66 0.71 0.69 0.20 0.13

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD−4
exo 0.34 0.28 0.31 0.03 0.20 0.29 0.24 0.27 0.05 0.16

GAZE GeneIDMFD−8
exo 0.34 0.28 0.31 0.03 0.19 0.28 0.23 0.26 0.05 0.16

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.6: The resulting accuracy of the GAZE model incorporating genscan-derived exon length penal-

ties (GAZE GeneIDexo) trained using the Maximal Feature Discrimination method in two different ways as

explained in the text. The results of using the same method to train the standard model (GAZE GeneID),

described earlier, are repeated here for comparison. (a) base-level accuracy; (b) exon-level accuracy; (c)

gene-level accuracy. The accuracy measures are explained in section 1.4.1.
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The ability to define arbitrary length penalty functions for any region type is

perhaps the main advantages that GAZE has over other similar systems. It is there-

fore unfortunate that the treatment of penalty functions by the training procedure

might be considered to be its weakest aspect, being reliant upon a pre-defined func-

tion with the correct shape. Ideally, the method would estimate an optimal shape

for each penalty function directly from the training sequence. A possible way to ad-

dress this would involve associating several weights to a single function, each being

applied to a range of lengths (e.g. 1-50, 51-100 etc.), or at the extreme having a

separate weight for each specific length.

An alternative approach would be to retain the binding of a single length function

to a single weight, but to allow several functions to be associated to a particular

src → tgt rule. This would require a simple extension to the scoring function,

whereby the length-penalty component would be calculated as a sum of penalties

taken from each penalty function specified in the rule. This approach is strictly more

general than that above; a distinct weight for each distance can be represented by

having a separate function for each distance which takes a positive number for the

distance of interest and zero for all others3. Furthermore, it would allow the defi-

nition of composite functions, although it is not clear how such an approach would

impact the search-space pruning strategy described in chapter 2, which assumes that

it is possible to identify a point at which the penalty function for a rule becomes

monotonically increasing (see section 2.6.3).

The main problem with both of these methods however is the large increase in the

number of free variables in the optimisation. This will impact both the time taken

to reach the function maximum, but also more importantly the number of training

sequences that are required to obtain sensible estimates for this large number of

parameters.

3although the definition of thousands or more penalty functions in a single src → tgt rule in the

XML configuration file would be tedious at the very least!
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5.5.3 Introducing C+G%-dependent model parameters

The natural way to address this problem is to divide the training sequences into

pools (or strata) according to their C+G content, and then perform a separate

training run for each, arriving at a distinct set of parameter values for each C+G%

stratum. An early example of this approach is geneparser [102] whereby separate

neural networks were trained on each of three training sets containing respectively

sequences with “low”, “medium” and “high” C+G content. The boundaries for the

categories were determined by calculating the mean C+G content of all full-length

genes in Genbank, and classifying entries in the training set with C+G% more than

one standard deviation away from this mean as “low” or “high” as appropriate.

By way of contrast, the training set of genscan was initially divided into three

according to the L1, L2, H1, H2 and H3 categories defined by Bernardi [7] and

others: L1+L2 (less than 43% C+G), H1+H2 (43-51% C+G) and H3 (more than

51% C+G). Since the H3 group turned out to be excessively populated compared

with the others, it was itself split into H3-1 (51-57% C+G) and H3-2 (more than 57%

C+G). The parameters for the GHMM (e.g. the mean and variance of the geometric

distributions for introns and intergenic regions, and certain transition and emission

probabilities) were then derived separately from the sequences in each of the four

datasets. The emission distribution for coding regions on the other hand was defined

to have two parameterisations only, for low C+G% (L1+L2), and high (H1+H2 +

H3-1 + H3-2).

The geneid model for scoring coding regions differently according to

C+G%

For all of the models so far, geneid has been used as a source for the majority

of the features and segments. It is fortunate therefore that geneid is supplied

with an additional parameter file for human gene finding that contains separate

parameters for each of three C+G% strata: 0-45%, 45-55%, and 55-100% C+G. On

inspection it was evident that the majority of parameters are the same between the
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I (0-45%) II (45-55%) III (55-100%)

H176 37 78 61

HMR195 38 107 50

Table 5.7: Breakdown of the training and test sequence sets by C+G content

three strata; only the parameters for the hexamer-based model for scoring coding

regions display differences between strata. Just as the coding model defined in

the original parameter file was used to make GAZE coding segments (see section

5.2.3), this time the C+G content of each sequence in the training and test sets was

computed and coding segments were made by using the parameters corresponding

to the appropriate C+G% stratum.

Table 5.7 shows the result of partitioning the training and test datasets according

to the C+G% groupings of the three coding model used by geneid. Interestingly,

it shows the “medium” C+G% band to the most highly populated. Although ap-

parently contrary to the genscan findings outlined above, the difference can be

explained by the higher boundary here between “medium” and “high” and strata.

Using GAZE with C+G%-stratified datasets

Unlike many other programs, there is no functionality in GAZE itself to account for

varying parameters in sequences with different C+G content. However, one of the

design aims of GAZE was to be sufficiently flexibility to allow different signal and

content models, and even different models of gene structure, to be used in different

situations. As a result of this design, it turns out to be straightforward to use GAZE

with C+G%-specific parameters, and there are variety of ways in which this can be

done.

The most natural approach is to compute the C+G content of the sequences in

advance, and then construct GFF files of features and segments accordingly. This

was done as explained above in obtaining C+G%-dependent coding segments for the
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sequences. Then GAZE can be used exactly as before, with the same configuration

file used for all the sequences. This method highlights one of the advantages of GAZE

over many other existing systems in that it allows for variation across C+G% strata

of not only the parameters of a set assumed underlying sequence-generating models

for signal and content, but of the models themselves.

Another approach would be to pre-compute features and segments for all C+G%

strata in advance and assess the C+G content at run-time. A simple Perl wrapper

is then run in place of GAZE, which (i) computes the C+G content of the input

sequence, and (ii) invokes GAZE with the appropriate GFF files. The method

is more general in that it allows for the use of different GAZE configurations for

the C+G% strata, allowing (among other things) model-element weightings, length

penalty functions, and even gene structure models themselves that vary with C+G

content.

I have used GAZE with the C+G%-stratified data in two ways. The first method

was to use the default GAZE GeneID configuration (my GAZE re-implementation

of geneid) on the H176 and H195 datasets, using for each sequence the set of coding

segments that are appropriate for its C+G content. The results for this experiment

are referred to as GAZE GeneIDGC in table 5.8. An improvement in performance

over the default model (i.e. that using the coding segments obtained using a global,

C+G%-independent parameterisation of the geneid coding model), at all levels of

accuracy, is evident, most strikingly the correlation co-efficient.

Obtaining optimal weights for the C+G%-dependent models

The second way I have used GAZE with the C+G% stratified data is to use MFD

training to optimise three specific sets of values for the model-element weights, one

for each of the subsets of the sequences in the H176 (training) set having C+G

content falling respectively into the ranges 0-45%, 45-55% and 55-100%. The result

is three GAZE configurations, and the Perl wrapper mentioned above was used to

obtain the results referred to in table 5.8 as GAZE GeneIDMFD
GC .
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(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDGC 0.92 0.86 0.88 0.92 0.87 0.87

GAZE GeneIDMFD
GC 0.91 0.86 0.87 0.91 0.88 0.88

GAZE GeneID 0.86 0.83 0.82 0.81 0.87 0.82

GAZE GeneIDMFD 0.86 0.85 0.83 0.81 0.88 0.82

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDGC 0.68 0.69 0.69 0.13 0.13 0.69 0.70 0.69 0.14 0.13

GAZE GeneIDMFD
GC 0.72 0.73 0.73 0.14 0.13 0.70 0.74 0.72 0.17 0.13

GAZE GeneID 0.64 0.67 0.66 0.17 0.14 0.61 0.65 0.63 0.19 0.13

GAZE GeneIDMFD 0.69 0.70 0.69 0.17 0.16 0.64 0.69 0.66 0.20 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDGC 0.11 0.11 0.11 0.01 0.09 0.16 0.14 0.15 0.01 0.09

GAZE GeneIDMFD
GC 0.32 0.26 0.29 0.01 0.19 0.27 0.22 0.24 0.01 0.16

GAZE GeneID 0.09 0.08 0.08 0.03 0.08 0.13 0.12 0.12 0.04 0.10

GAZE GeneIDMFD 0.29 0.23 0.26 0.02 0.22 0.27 0.22 0.24 0.04 0.17

Table 5.8: Accuracy of GAZE GeneID using three C+G content dependent models for scoring coding

regions; (a) base-level accuracy; (b) exon-level accuracy; (c) gene-level accuracy.
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The same high correlation co-efficient is observed for the trained system as was

seen in the untrained C+G%-stratified system. Marked improvements over the un-

trained system however are observed at the exon-level and the gene level, although

these improvements are less striking when compared against the MFD-trained de-

fault, C+G%-independent model. These results suggest that the relatively high

accuracy of the GAZE GeneIDMFD system at all three levels is achieved at the base-

pair level by the use of C+G%-stratified coding segments, and at the exon and gene

levels by the MFD training of the model element weights.

The higher accuracy of gene prediction programs that take the C+G content

of the underlying sequence into account has previously been explained by the ob-

servation that gene structural properties, such as average intron length and codon

usage, vary according to this property (see chapter 1). However, the different sets

of values for the weights obtained by training on sequences from each of the three

C+G% strata are not representative of these structural differences, because the

model itself is the same in each case (with the exception of the coding segments,

explained above). Instead, different weight values for different C+G% strata implies

that the relative importance of the model components varies according to C+G con-

tent. Although there is no biological reason to explain this result, it is consistent

with previous observations that the difficulty with which localised signals for gene

features can be detected also varies with C+G content. Burge has shown that the

accuracy of discrimination between localised coding regions and non-coding regions

is positively correlated with C+G content, and proposes this as a possible reason

for the poor performance of gene prediction programs on A+T-rich sequences [20].

Levine on the other hand constructed a model for splice site detection and showed

that the accuracy of discrimination between true and pseudo splice sites is poorest in

sequences with high C+G content [74]. Based on these two observations, we might

expect firstly the value for the splice site score weight obtained in the low C+G%

optimisation to be higher than that obtained in the high C+G% optimisation, and

vice-versa for the weights for the coding segments. This is indeed the case, with the

167



(a)

Base level H176 (training) HMR195 (test)

Sn Sp CC Sn Sp CC

GAZE GeneIDMFD
all 0.91 0.89 0.88 0.88 0.90 0.87

genscan 0.97 0.86 0.90 0.95 0.86 0.89

(b)

Exon level H176 (training) HMR195 (test)

Sn Sp Av ME WE Sn Sp Av ME WE

GAZE GeneIDMFD
all 0.76 0.76 0.76 0.13 0.13 0.70 0.74 0.72 0.17 0.12

genscan 0.82 0.75 0.79 0.06 0.15 0.77 0.73 0.75 0.08 0.14

(c)

Gene level H176 (training) HMR195 (test)

Sn Sp Av MG WG Sn Sp Av MG WG

GAZE GeneIDMFD
all 0.37 0.31 0.34 0.02 0.18 0.33 0.27 0.30 0.02 0.17

genscan 0.40 0.35 0.37 0.01 0.13 0.37 0.33 0.35 0.02 0.12

Table 5.9: Accuracy of GAZE GeneIDall (which includes transcription start sites, exon length penal-

ties and C+G% dependency) when trained with MFD. The results for genscan are repeated for ease of

comparison. The accuracy measures are explained in section 1.4.1.

splice site weights for the low and high C+G% strata being 0.96 and 0.92, and the

coding segment weights for these strata being 0.54 and 0.61.

5.5.4 Combining all three types of evidence

By way of postscript, it is interesting to consider the effect of including the innova-

tions of the past three sections in one system, training the weights using Maximal

Feature Discrimination. The trained system is referred to as GAZE GeneIDMFD
all in

table 5.9.

Although the accuracy of the model as a whole is the best achieved by any

GAZE model so far, it is still marginally out-performed by genscan. One reason
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for this could be the relative sophistication of the signal models used for donor and

acceptor splice sites compared with those employed by geneid. The splice accep-

tor model used by genscan includes the branch-point region between 21 and 38

nucleotides upstream of the conserved AG. This specific region is modelled with a

“windowed” weight array, allowing the capture of second-order dependencies. The

geneid splice acceptor model on the other hand does not extend upstream as far

as the branch-point (see section 5.2.3). In addition, genscan uses Maximal De-

pendence Decomposition for the modelling of the donor splice signal, allowing the

capture of long-range dependencies, whereas geneid uses a simple weight matrix

(see section 5.2.3 and [20]).

It has been shown that these sophisticated models can be more accurate than

simpler models (such as those used by geneid) when judged by an “isolated” test

of the discrimination between true and pseudo splice sites [20]. A natural extension

to the work described here would involve implementing these models in a program

that outputs scored splice site predictions in GFF. GAZE could then be used to

investigate their accuracy when judged in an “integrated” test of their influence on

the prediction of complete gene structures.
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Chapter 6

Conclusions

In the previous chapters, I have proposed a semi-formal framework for the integration

of gene component evidence from arbitrary sources into complete predictions of gene

structure. I have shown that this concept is valid by implementing it in a program

called GAZE, and applying it to the prediction of gene structures in worm and

vertebrate genomic sequences. I envision GAZE to be useful both as a research

tool for investigating signal and content recognition methods, and as the final stage

in a genome annotation pipeline, drawing together the results of previous localised

analyses.

One of the key aspects of the system is that it does not rely upon a fixed underly-

ing model of gene structure. This allowed for example the modelling of trans-spliced

genes in C.elegans with little effort (see chapter 3). GAZE therefore provides a plat-

form for the modelling of structural properties that are not currently accounted for

in existing programs. One example would be nested genes, i.e. genes situated in the

introns of other genes. The constructs currently offered by GAZE do allow the defi-

nition of a model that allows a gene to occur in the intron of another gene. However,

it is necessary to define an identical gene model for each of the six different introns

that can occur (for each phase, on each strand). Extension of the system to allow

sub-models to be defined once and referred to elsewhere in the configuration would

therefore be a natural avenue for future work.
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As well as providing an integrated tool for genome annotation and research,

there are ideas in this thesis that might be applicable to to other integrated gene

prediction approaches. One of these is the idea of dominance in the context of gene

prediction, introduced in chapter 2. This was used as the basis for a search-space

pruning strategy that allows GAZE to run in time that grows effectively linearly

with the input sequence length. The primary advantage of the technique is that

it is applicable under a wider range of conditions than is typically the case with

other pruning methods. The linear run-time growth of geneid for example is off-

set by the fact that it neither allows arbitrary length penalty functions nor reports

posterior probabilities. genscan on the other hand does compute posterior prob-

abilities, but pseudo-linear run-time is achieved by restricting the use of arbitrary

length probability distributions to alternating (in practice protein-coding) states.

The GAZE pruning strategy is robust under arbitrary (although eventually mono-

tonically increasing) length penalties for all types of gene region. It would therefore

be interesting to see whether the improvements in accuracy resulting from explicit

modelling of exon lengths (see [20] and chapter 5) are matched by explicit length

modelling of introns and intergenic regions.

The other substantial new idea described in this thesis is the Maximal Feature

Discrimination method for determining optimal weights for the scores of the dif-

ferent types of evidence employed in an integrated gene prediction system. This

was shown to have better correspondence with the standard gene prediction accu-

racy assessment metrics than the classical maximum likelihood method. Another

advantage that it offers is the ability to parameterise sophisticated models of gene

structure when the location of certain features, for example the site of transcrip-

tion initiation, are not known for the training sequences. Although presented in

the context of GAZE, MFD can be applied to other probabilistic gene prediction

systems. For Hidden Markov Models for example, the approach can be viewed as

the maximisation of the posterior probabilities of the correct state transitions at

specific positions, although this is only possible if such transitions can be unambigu-
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ously defined. Because the posterior probabilities can be computed by the standard

forward-backward algorithm, the method is likely to be directly applicable in many

situations.

Given the current trend of systems that make use of genomic sequences from more

than one organism, it is natural consider the applicability of GAZE to comparative

gene prediction. One simple application would be to use tblastx matches of a

genome of interest to a variety of other genomes to support coding regions. This

is the approach essentially taken by an extension of geneid called sgp-2 [83]. It

has the apparent advantage that it is not limited to hits from a single genome.

However, by treating matches to different genomes equally, we ignore the fact that

they will share different levels of background genomic conservation to the target

genome. This means that a relatively poorly scoring match to a distantly related

organism can be more meaningful than a high scoring match to a closely related

one. By supplementing genomic similarity with a phylogenetic tree, we can start

to discriminate between those conserved regions that are functional, and those that

can be explained by evolutionary distance alone. In this example, we could therefore

adjust the scores of the conserved regions according to phylogeny, up-weighting

matches to distantly related genomes and down-weighting matches to closely related

ones. This suggests a less principled strategy that is immediately applicable, which

involves attaching a separate weight to the matches to each genome and using MFD

to optimise their values.

The true power of GAZE in the use of comparative information in gene prediction

comes from its clean separation of feature detection and gene prediction. Multiple

alignments of corresponding regions of several genomes can be used as the basis for

models of the evolution of splice sites and coding regions (for example). Supple-

menting standard signal recognition methods (such as those described in chapter 1)

with such models will improve their accuracy. In this sense, GAZE can therefore be

viewed as an efficient and convenient way for sophisticated evolutionary models to

be employed in the prediction of complete gene structures.
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To end, it is interesting to consider the future of research into computational gene

prediction. The recent appearance of comparative and similarity-based methods,

and the accompanying lack of new ab initio single-sequence methods, is suggestive

of a feeling that there is a ceiling to what is achievable with the latter, and that we

are pretty close to it with current methods. However, the fact that a living cell is

able to determine the precise gene structure of its genome with high fidelity, without

the use of external sequences, suggests that continued research into single-sequence

techniques is not in vain.
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Appendix A

Some example GAZE

configurations

A.1 GAZE std

<?xml version="1.0" encoding="US-ASCII"?>
<gaze>

<declarations>
<feature id="5ss_0" st_off="1" en_off="1"/>
<feature id="5ss_1" st_off="1" en_off="1"/>
<feature id="5ss_2" st_off="1" en_off="1"/>
<feature id="stop" st_off="3" en_off="0"/>
<feature id="3ss_0" st_off="1" en_off="1"/>
<feature id="3ss_1" st_off="1" en_off="1"/>
<feature id="3ss_2" st_off="1" en_off="1"/>
<feature id="start" st_off="0" en_off="3"/>
<feature id="start_rev" st_off="3" en_off="0"/>
<feature id="3ss_0_rev" st_off="1" en_off="1"/>
<feature id="3ss_1_rev" st_off="1" en_off="1"/>
<feature id="3ss_2_rev" st_off="1" en_off="1"/>
<feature id="stop_rev" st_off="0" en_off="3"/>
<feature id="5ss_0_rev" st_off="1" en_off="1"/>
<feature id="5ss_1_rev" st_off="1" en_off="1"/>
<feature id="5ss_2_rev" st_off="1" en_off="1"/>

<segment id="coding_seg" scoring="standard_max"/>
<segment id="coding_seg_rev" scoring="standard_max"/>

<lengthfunction id="intron_pen"/>
<lengthfunction id="intergene_pen"/>
<lengthfunction id="init_ex_pen"/>
<lengthfunction id="term_ex_pen"/>
<lengthfunction id="int_ex_pen"/>
<lengthfunction id="sngl_ex_pen"/>

</declarations>

<gff2gaze>
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<!-- Features -->

<gffline feature="atg" source="Genefinder" strand="+">
<feat id="start"/>

</gffline>

<gffline feature="atg" source="Genefinder" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="+">
<feat id="stop"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="+">
<feat id="5ss_0"/>
<feat id="5ss_1"/>
<feat id="5ss_2"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="-">
<feat id="5ss_0_rev"/>
<feat id="5ss_1_rev"/>
<feat id="5ss_2_rev"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="+">
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="-">
<feat id="3ss_0_rev"/>
<feat id="3ss_1_rev"/>
<feat id="3ss_2_rev"/>

</gffline>

<!-- Segments -->

<gffline feature="coding_seg" source="Genefinder" strand="+">
<seg id="coding_seg"/>

</gffline>

<gffline feature="coding_seg" source="Genefinder" strand="-">
<seg id="coding_seg_rev"/>

</gffline>
</gff2gaze>

<dna2gaze>
<dnafeat pattern="atg">

<feat id="start" score="0.0"/>
</dnafeat>

<dnafeat pattern="cat">
<feat id="start_rev" score="0.0"/>

</dnafeat>

<dnafeat pattern="taa">
<feat id="stop" score="-100.0"/>
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</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100.0"/>
</dnafeat>

<dnafeat pattern="tta">
<feat id="stop_rev" score="-100.0"/>

</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>

</dna2gaze>

<model>
<target id="END">

<source id="BEGIN">
<output feature="no genes"/>

</source>

<source id="start">
<useseg id="coding_seg" source_phase="0"/>
<killfeat id="stop" source_phase="0"/>
<output feature="CDS_end_not_found" strand="+" frame="0"/>

</source>

<source id="stop">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0">
<output feature="intergenic"/>

</source>

<source id="stop_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="3ss_0">
<useseg id="coding_seg" source_phase="0"/>
<killfeat id="stop" source_phase="0"/>
<output feature="CDS_end_not_found" strand="+" frame="0"/>

</source>

<source id="3ss_1">
<useseg id="coding_seg" source_phase="2"/>
<killfeat id="stop" source_phase="2"/>
<output feature="CDS_end_not_found" strand="+" frame="1"/>

</source>
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<source id="3ss_2">
<useseg id="coding_seg" source_phase="1"/>
<killfeat id="stop" source_phase="1"/>
<output feature="CDS_end_not_found" strand="+" frame="2"/>

</source>

<source id="5ss_0" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="5ss_1" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="5ss_2" len_fun="intron_pen">
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="3ss_0_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="3ss_1_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="3ss_2_rev" len_fun="intron_pen">
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="5ss_0_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="5ss_1_rev">
<useseg id="coding_seg_rev" source_phase="1"/>
<killfeat id="stop_rev" source_phase="1"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="5ss_2_rev">
<useseg id="coding_seg_rev" source_phase="2"/>
<killfeat id="stop_rev" source_phase="2"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>
</target>

<target id="start">
<source id="BEGIN">

<output feature="intergenic"/>
</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="start_rev">

190



<useseg id="coding_seg_rev" target_phase="0"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>

</source>

<source id="stop_rev" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_0_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="stop">
<useseg id="coding_seg" target_phase="0"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="stop_rev">
<source id="BEGIN">

<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="5ss_0">
<useseg id="coding_seg" target_phase="0"/>
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<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_0_rev">
<source id ="BEGIN" len_fun="intron_pen">

<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_0_rev" mindis="39" len_fun="intron_pen">
<output feature="intron" strand="-"/>

</source>
</target>

<target id="5ss_1">
<useseg id="coding_seg" target_phase="1"/>
<killfeat id="stop" target_phase="1"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_1_rev">
<source id ="BEGIN" len_fun="intron_pen">

<output feature="intron_end_not_found" strand="-"/>
</source>

<source id="3ss_1_rev" mindis="39" len_fun="intron_pen">
<killdna source_dna="ct" target_dna="a"/>
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<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="5ss_2">
<useseg id="coding_seg" target_phase="2"/>
<killfeat id="stop" target_phase="2"/>

<source id ="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_2_rev">
<source id ="BEGIN" len_fun="intron_pen">

<output feature="intron_end_not_found" strand="-"/>
</source>
<source id="3ss_2_rev" mindis="39" len_fun="intron_pen">

<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="3ss_0">
<source id="BEGIN" len_fun="intron_pen">

<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="5ss_0" mindis="39" len_fun="intron_pen">

<output feature="intron" strand="+"/>
</source>

</target>

<target id="3ss_0_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="0">
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<output feature="CDS" strand="-" frame="0"/>
</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="3ss_1">
<source id="BEGIN" len_fun="intron_pen">

<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="5ss_1" mindis="39" len_fun="intron_pen">

<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_1_rev">
<useseg id="coding_seg_rev" target_phase="2"/>
<killfeat id="stop_rev" target_phase="2"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="1"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>

</source>
</target>

<target id="3ss_2">
<source id="BEGIN" len_fun="intron_pen">

<output feature="intron_start_not_found" strand="+"/>
</source>
<source id="5ss_2" mindis="39" len_fun="intron_pen">

<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_2_rev">
<useseg id="coding_seg_rev" target_phase="1"/>
<killfeat id="stop_rev" target_phase="1"/>
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<source id ="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="2"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>

</source>
</target>

</model>

<lengthfunctions>
<lengthfunc id="intron_pen" file="/tables/intron_penalty.klh"/>
<lengthfunc id="init_ex_pen" file="/tables/exon_penalty.initial.klh"/>
<lengthfunc id="term_ex_pen" file="/tables/exon_penalty.terminal.klh"/>
<lengthfunc id="int_ex_pen" file="/tables/exon_penalty.internal.klh"/>

<lengthfunc id="sngl_ex_pen">
<point x="0" y="4"/>
<point x="1" y="4"/>

</lengthfunc>

<lengthfunc id="intergene_pen">
<point x="0" y="4"/>
<point x="1" y="4"/>

</lengthfunc>
</lengthfunctions>

</gaze>

A.2 GAZE EST

<?xml version="1.0" encoding="US-ASCII"?>
<gaze>

<declarations>
<feature id="trans_start" st_off="0" en_off="1"/>
<feature id="5ss_0" st_off="1" en_off="1"/>
<feature id="5ss_1" st_off="1" en_off="1"/>
<feature id="5ss_2" st_off="1" en_off="1"/>
<feature id="stop" st_off="3" en_off="0"/>
<feature id="t_splice" st_off="1" en_off="1"/>
<feature id="3ss_0" st_off="1" en_off="1"/>
<feature id="3ss_1" st_off="1" en_off="1"/>
<feature id="3ss_2" st_off="1" en_off="1"/>
<feature id="start" st_off="0" en_off="3"/>
<feature id="trans_stop" st_off="1" en_off="0"/>
<feature id="trans_stop_rev" st_off="0" en_off="1"/>
<feature id="start_rev" st_off="3" en_off="0"/>
<feature id="3ss_0_rev" st_off="1" en_off="1"/>
<feature id="3ss_1_rev" st_off="1" en_off="1"/>
<feature id="3ss_2_rev" st_off="1" en_off="1"/>
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<feature id="t_splice_rev" st_off="1" en_off="1"/>
<feature id="stop_rev" st_off="0" en_off="3"/>
<feature id="5ss_0_rev" st_off="1" en_off="1"/>
<feature id="5ss_1_rev" st_off="1" en_off="1"/>
<feature id="5ss_2_rev" st_off="1" en_off="1"/>
<feature id="trans_start_rev" st_off="1" en_off="0"/>

<segment id="coding_seg" scoring="standard_max"/>
<segment id="est_seg" mul="0.01"/>
<segment id="est_intron" mul="0.05"/>
<segment id="coding_seg_rev" scoring="standard_max"/>
<segment id="est_seg_rev" mul="0.01"/>
<segment id="est_intron_rev" mul="0.05"/>
<segment id="est_span" mul="-1000.0"/>

<lengthfunction id="intron_pen"/>
<lengthfunction id="intergene_pen"/>
<lengthfunction id="tsplice_pen"/>
<lengthfunction id="init_ex_pen"/>
<lengthfunction id="term_ex_pen"/>
<lengthfunction id="int_ex_pen"/>
<lengthfunction id="sngl_ex_pen"/>

</declarations>

<gff2gaze>
<!-- Features -->

<gffline feature="atg" source="Genefinder" strand="+">
<feat id="start"/>

</gffline>

<gffline feature="atg" source="Genefinder" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="+">
<feat id="stop"/>

</gffline>

<gffline feature="stop" source="Genefinder" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="+">
<feat id="5ss_0"/>
<feat id="5ss_1"/>
<feat id="5ss_2"/>

</gffline>

<gffline feature="splice5" source="Genefinder" strand="-">
<feat id="5ss_0_rev"/>
<feat id="5ss_1_rev"/>
<feat id="5ss_2_rev"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="+">
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>
<feat id="t_splice"/>

</gffline>

<gffline feature="splice3" source="Genefinder" strand="-">
<feat id="3ss_0_rev"/>
<feat id="3ss_1_rev"/>
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<feat id="3ss_2_rev"/>
<feat id="t_splice_rev"/>

</gffline>

<!-- The following features will be added by the pre-processor to the GFF
file, using the est_span objects. But perhaps there should be more
expressiveness in the GFF2GAZE section to allow for the creation of
features corresponding to the ends of the region given by the GFF line -->

<gffline feature="transcript_start" source="EST_derived" strand="+">
<feat id="trans_start"/>

</gffline>

<gffline feature="transcript_start" source="BLAT_mRNA_BEST_derived" strand="+">
<feat id="trans_start"/>

</gffline>

<gffline feature="transcript_start" source="EST_derived" strand="-">
<feat id="trans_start_rev"/>

</gffline>

<gffline feature="transcript_start" source="BLAT_mRNA_BEST_derived" strand="-">
<feat id="trans_start_rev"/>

</gffline>

<gffline feature="transcript_stop" source="EST_derived" strand="+">
<feat id="trans_stop"/>

</gffline>

<gffline feature="transcript_stop" source="BLAT_mRNA_BEST_derived" strand="+">
<feat id="trans_stop"/>

</gffline>

<gffline feature="transcript_stop" source="EST_derived" strand="-">
<feat id="trans_stop_rev"/>

</gffline>

<gffline feature="transcript_stop" source="BLAT_mRNA_BEST_derived" strand="-">
<feat id="trans_stop_rev"/>

</gffline>

<!-- Segments -->

<gffline feature="coding_seg" source="Genefinder" strand="+">
<seg id="coding_seg"/>

</gffline>

<gffline feature="coding_seg" source="Genefinder" strand="-">
<seg id="coding_seg_rev"/>

</gffline>

<!-- The following segments are derived by the pre-processor -->

<gffline feature="similarity" source="EST_GENOME_strand" strand="+">
<seg id="est_seg"/>

</gffline>

<gffline feature="similarity" source="EST_GENOME_strand" strand="-">
<seg id="est_seg_rev"/>

</gffline>

<gffline feature="intron" source="EST_derived" strand="+">
<seg id="est_intron"/>

</gffline>
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<gffline feature="intron" source="EST_derived" strand="-">
<seg id="est_intron_rev"/>

</gffline>

<gffline feature="EST_span">
<seg id="est_span"/>

</gffline>
</gff2gaze>

<dna2gaze>
<dnafeat pattern="atg">

<feat id="start" score="0.0"/>
</dnafeat>

<dnafeat pattern="cat">
<feat id="start_rev" score="0.0"/>

</dnafeat>

<dnafeat pattern="taa">
<feat id="stop" score="-100.0"/>

</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100.0"/>
</dnafeat>

<dnafeat pattern="tta">
<feat id="stop_rev" score="-100.0"/>

</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100.0"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>

</dna2gaze>

<model>
<target id="END">

<source id="BEGIN">
<output feature="no genes"/>

</source>

<source id="start">
<useseg id="coding_seg" source_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" source_phase="0"/>
<output feature="CDS_end_not_found" strand="+" frame="0"/>

</source>

<source id="stop">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>
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<source id="start_rev" mindis="0">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop_rev">
<useseg id="coding_seg_rev" source_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="3ss_0">
<useseg id="coding_seg" source_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" source_phase="0"/>
<output feature="CDS_end_not_found" strand="+" frame="0"/>

</source>

<source id="3ss_1">
<useseg id="coding_seg" source_phase="2"/>
<useseg id="est_seg"/>
<killfeat id="stop" source_phase="2"/>
<output feature="CDS_end_not_found" strand="+" frame="1"/>

</source>

<source id="3ss_2">
<useseg id="coding_seg" source_phase="1"/>
<useseg id="est_seg"/>
<killfeat id="stop" source_phase="1"/>
<output feature="CDS_end_not_found" strand="+" frame="2"/>

</source>

<source id="5ss_0" len_fun="intron_pen">
<useseg id="est_intron" exact="source"/>
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="5ss_1" len_fun="intron_pen">
<useseg id="est_intron" exact="source"/>
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="5ss_2" len_fun="intron_pen">
<useseg id="est_intron" exact="source"/>
<output feature="intron_end_not_found" strand="+"/>

</source>

<source id="3ss_0_rev" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="source"/>
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="3ss_1_rev" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="source"/>
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="3ss_2_rev" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="source"/>
<output feature="intron_start_not_found" strand="-"/>

</source>

<source id="5ss_0_rev">
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<useseg id="coding_seg_rev" source_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="0"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="5ss_1_rev">
<useseg id="coding_seg_rev" source_phase="1"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="1"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="5ss_2_rev">
<useseg id="coding_seg_rev" source_phase="2"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" source_phase="2"/>
<output feature="CDS_start_not_found" strand="-"/>

</source>

<source id="trans_start">
<useseg id="est_seg"/>
<output feature="UTR5_end_not_found" strand="+"/>

</source>

<source id="trans_stop">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_stop_rev">
<useseg id="est_seg_rev"/>
<output feature="UTR3_start_not_found" strand="-"/>

</source>

<source id="trans_start_rev">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice" mindis="0" maxdis="50" len_fun="tsplice_pen">
<useseg id="est_seg"/>
<output feature="trans_splice_UTR5_end_not_found" strand="+"/>

</source>

<source id="t_splice_rev">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>
</target>

<target id="start">
<source id="BEGIN">

<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice" mindis="0" maxdis="50" len_fun="tsplice_pen">
<useseg id="est_seg"/>
<output feature="trans_splice_UTR5" strand="+"/>

</source>

<source id="trans_start" mindis="0">
<useseg id="est_seg"/>
<output feature="UTR5" strand="+"/>
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</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>
</target>

<target id="start_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>

</source>

<source id="stop_rev" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_0_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="stop">
<useseg id="coding_seg" target_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="6" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>
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</source>

<source id="3ss_0" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="stop_rev">
<source id="BEGIN">

<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_stop_rev" mindis="0">
<useseg id="est_seg_rev"/>
<output feature="UTR3" strand="-"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>
</target>

<target id="5ss_0">
<useseg id="coding_seg" target_phase="0"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>
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<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_0_rev">
<source id ="BEGIN" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>

</source>

<source id="3ss_0_rev" mindis="39" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="both"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="5ss_1">
<useseg id="coding_seg" target_phase="1"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="1"/>

<source id="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_1_rev">
<source id ="BEGIN" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>

</source>

<source id="3ss_1_rev" mindis="39" len_fun="intron_pen">
<useseg id="est_intron_rev" exact="both"/>
<killdna source_dna="ct" target_dna="a"/>
<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>

</source>
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</target>

<target id="5ss_2">
<useseg id="coding_seg" target_phase="2"/>
<useseg id="est_seg"/>
<killfeat id="stop" target_phase="2"/>

<source id ="BEGIN">
<output feature="CDS_start_not_found" strand="+"/>

</source>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_2_rev">
<source id ="BEGIN" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="target"/>
<output feature="intron_end_not_found" strand="-"/>

</source>
<source id="3ss_2_rev" mindis="39" len_fun="intron_pen">

<useseg id="est_intron_rev" exact="both"/>
<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="3ss_0">
<source id="BEGIN" len_fun="intron_pen">

<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>

</source>
<source id="5ss_0" mindis="39" len_fun="intron_pen">

<useseg id="est_intron" exact="both"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_0_rev">
<useseg id="coding_seg_rev" target_phase="0"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="0"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="0"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>
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<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="3ss_1">
<source id="BEGIN" len_fun="intron_pen">

<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>

</source>
<source id="5ss_1" mindis="39" len_fun="intron_pen">

<useseg id="est_intron" exact="both"/>
<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_1_rev">
<useseg id="coding_seg_rev" target_phase="2"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="2"/>

<source id="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="1"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>

</source>
</target>

<target id="3ss_2">
<source id="BEGIN" len_fun="intron_pen">

<useseg id="est_intron" exact="target"/>
<output feature="intron_start_not_found" strand="+"/>

</source>
<source id="5ss_2" mindis="39" len_fun="intron_pen">

<useseg id="est_intron" exact="both"/>
<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>
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</source>
</target>

<target id="3ss_2_rev">
<useseg id="coding_seg_rev" target_phase="1"/>
<useseg id="est_seg_rev"/>
<killfeat id="stop_rev" target_phase="1"/>

<source id ="BEGIN">
<output feature="CDS_end_not_found" strand="-" frame="2"/>

</source>

<source id="stop_rev" mindis="3" len_fun="term_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_0_rev" mindis="20" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_1_rev" mindis="20" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_2_rev" mindis="20" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>

</source>
</target>

<target id="trans_start">
<useseg id="est_span"/>

<source id="BEGIN">
<output feature="intergenic"/>

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="trans_stop">
<useseg id="est_seg"/>

<source id="BEGIN">
<output feature="UTR3_start_not_found" strand="+"/>

</source>

<source id="stop" mindis="0" >
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<output feature="UTR3" strand="+"/>
</source>

</target>

<target id="trans_start_rev">
<useseg id="est_seg_rev"/>

<source id="BEGIN">
<output feature="UTR5_end_not_found" strand="-"/>

</source>

<source id="t_splice_rev" mindis="0">
<output feature="TSL_UTR5" strand="-"/>

</source>

<source id="start_rev" mindis="0">
<output feature="UTR5" strand="-"/>

</source>
</target>

<target id="trans_stop_rev">
<useseg id="est_span"/>

<source id="BEGIN">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="t_splice">
<source id="BEGIN">

<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_start" mindis="0">
<useseg id="est_seg"/>
<output feature="TSL_UTR5" strand="+"/>

</source>

<source id="trans_stop" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="stop" mindis="0" len_fun="intergene_pen">
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<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="trans_start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="t_splice_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0" len_fun="intergene_pen">
<useseg id="est_span"/>
<output feature="intergenic"/>

</source>
</target>

<target id="t_splice_rev">
<useseg id="est_seg_rev"/>

<source id="BEGIN" mindis="0" maxdis="50" len_fun="tsplice_pen">
<output feature="trans_splice_UTR5_end_not_found" strand="-"/>

</source>

<source id="start_rev" mindis="0" maxdis="50" len_fun="tsplice_pen">
<output feature="trans_splice_UTR5" strand="-"/>

</source>
</target>

</model>

<lengthfunctions>
<lengthfunc id="intron_pen" file="/tables/intron_penalty.klh"/>
<lengthfunc id="init_ex_pen" file="/tables/exon_penalty.initial.klh"/>
<lengthfunc id="term_ex_pen" file="/tables/exon_penalty.terminal.klh"/>
<lengthfunc id="int_ex_pen" file="/tables/exon_penalty.internal.klh"/>
<lengthfunc id="tsplice_pen" file="/tables/trans_splice_penalty.klh"/>

<lengthfunc id="sngl_ex_pen">
<point x="0" y="4"/>
<point x="1" y="4"/>

</lengthfunc>

<lengthfunc id="intergene_pen">
<point x="0" y="4"/>
<point x="1" y="4"/>

</lengthfunc>
</lengthfunctions>

</gaze>

A.3 GAZE GeneID

<?xml version="1.0" encoding="US-ASCII"?>
<gaze>

<declarations>
<feature id="5ss_0" st_off="1" en_off="1" mul="0.6"/>
<feature id="5ss_1" st_off="1" en_off="1" mul="0.6"/>
<feature id="5ss_2" st_off="1" en_off="1" mul="0.6"/>
<feature id="stop" st_off="3" en_off="3" mul="0.6"/>
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<feature id="3ss_0" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_1" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_2" st_off="1" en_off="1" mul="0.6"/>
<feature id="start" st_off="0" en_off="3" mul="0.6"/>
<feature id="start_rev" st_off="3" en_off="0" mul="0.6"/>
<feature id="3ss_0_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_1_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="3ss_2_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="stop_rev" st_off="3" en_off="3" mul="0.6"/>
<feature id="5ss_0_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="5ss_1_rev" st_off="1" en_off="1" mul="0.6"/>
<feature id="5ss_2_rev" st_off="1" en_off="1" mul="0.6"/>

<segment id="cod_ini_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_ini_rev_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_0" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_1" scoring="standard_sum" partial="FALSE" mul="0.4"/>
<segment id="cod_tr_rev_2" scoring="standard_sum" partial="FALSE" mul="0.4"/>

<lengthfunction id="intron_pen" mul="0.0"/>
<lengthfunction id="intergene_pen" mul="0.0"/>
<lengthfunction id="init_ex_pen" mul="1.0"/>
<lengthfunction id="term_ex_pen" mul="1.0"/>
<lengthfunction id="int_ex_pen" mul="1.0"/>
<lengthfunction id="sngl_ex_pen" mul="1.0"/>

</declarations>

<gff2gaze>
<!-- Features -->

<gffline feature="Start" source="geneid_v1.0" strand="+">
<feat id="start"/>

</gffline>

<gffline feature="Start" source="geneid_v1.0" strand="-">
<feat id="start_rev"/>

</gffline>

<gffline feature="Stop" source="geneid_v1.0" strand="+">
<feat id="stop"/>

</gffline>

<gffline feature="Stop" source="geneid_v1.0" strand="-">
<feat id="stop_rev"/>

</gffline>

<gffline feature="Donor" source="geneid_v1.0" strand="+">
<feat id="5ss_0"/>
<feat id="5ss_1"/>
<feat id="5ss_2"/>

</gffline>

<gffline feature="Donor" source="geneid_v1.0" strand="-">
<feat id="5ss_0_rev"/>
<feat id="5ss_1_rev"/>
<feat id="5ss_2_rev"/>

</gffline>
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<gffline feature="Acceptor" source="geneid_v1.0" strand="+">
<feat id="3ss_0"/>
<feat id="3ss_1"/>
<feat id="3ss_2"/>

</gffline>

<gffline feature="Acceptor" source="geneid_v1.0" strand="-">
<feat id="3ss_0_rev"/>
<feat id="3ss_1_rev"/>
<feat id="3ss_2_rev"/>

</gffline>

<!-- Segments -->

<gffline feature="cod_ini" source="GENEID" strand="+" frame="0">
<seg id="cod_ini_0"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="+" frame="1">
<seg id="cod_ini_1"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="+" frame="2">
<seg id="cod_ini_2"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="0">
<seg id="cod_ini_rev_0"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="1">
<seg id="cod_ini_rev_1"/>

</gffline>

<gffline feature="cod_ini" source="GENEID" strand="-" frame="2">
<seg id="cod_ini_rev_2"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="0">
<seg id="cod_tr_0"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="1">
<seg id="cod_tr_1"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="+" frame="2">
<seg id="cod_tr_2"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="-" frame="0">
<seg id="cod_tr_rev_0"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="-" frame="1">
<seg id="cod_tr_rev_1"/>

</gffline>

<gffline feature="cod_tr" source="GENEID" strand="-" frame="2">
<seg id="cod_tr_rev_2"/>

</gffline>
</gff2gaze>

<dna2gaze>
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<dnafeat pattern="taa">
<feat id="stop" score="-100"/>

</dnafeat>
<dnafeat pattern="tag">

<feat id="stop" score="-100"/>
</dnafeat>
<dnafeat pattern="tga">

<feat id="stop" score="-100"/>
</dnafeat>

<dnafeat pattern="tta">
<feat id="stop_rev" score="-100"/>

</dnafeat>
<dnafeat pattern="cta">

<feat id="stop_rev" score="-100"/>
</dnafeat>
<dnafeat pattern="tca">

<feat id="stop_rev" score="-100"/>
</dnafeat>

<takedna id="5ss_1" st_off="0" en_off="1"/>
<takedna id="3ss_1" st_off="1" en_off="-1"/>
<takedna id="5ss_2" st_off="-1" en_off="1"/>
<takedna id="3ss_2" st_off="1" en_off="0"/>
<takedna id="5ss_1_rev" st_off="1" en_off="0"/>
<takedna id="3ss_1_rev" st_off="-1" en_off="1"/>
<takedna id="5ss_2_rev" st_off="1" en_off="-1"/>
<takedna id="3ss_2_rev" st_off="0" en_off="1"/>

</dna2gaze>

<model>
<target id="END">

<source id="BEGIN">
<output feature="no genes"/>

</source>

<source id="stop">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="0">
<output feature="intergenic"/>

</source>

<source id="3ss_0_rev">
<output feature="intron" strand="-"/>

</source>

<source id="3ss_1_rev">
<output feature="intron" strand="-"/>

</source>

<source id="3ss_2_rev">
<output feature="intron" strand="-"/>

</source>

<source id="5ss_0">
<output feature="intron" strand="+"/>

</source>

<source id="5ss_1">
<output feature="intron" strand="+"/>

</source>

<source id="5ss_2">
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<output feature="intron" strand="+"/>
</source>

</target>

<target id="start">
<source id="BEGIN">

<output feature="intergenic"/>
</source>

<source id="stop" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="start_rev" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="start_rev">
<useseg id="cod_ini_rev_0" exact="target" />
<useseg id="cod_tr_rev_0" target_phase="0" />
<useseg id="cod_tr_rev_1" target_phase="1" />
<useseg id="cod_tr_rev_2" target_phase="2" />

<killfeat id="stop_rev" target_phase="0"/>

<source id="stop_rev" mindis="60" len_fun="sngl_ex_pen" phase="0">
<output feature="CDS_term" strand="-" frame="0"/>

</source>

<source id="5ss_0_rev" mindis="3" len_fun="init_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_1_rev" mindis="3" len_fun="init_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="3" len_fun="init_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="stop">
<useseg id="cod_tr_0" target_phase="0" />
<useseg id="cod_tr_2" target_phase="1" />
<useseg id="cod_tr_1" target_phase="2" />

<killfeat id="stop" target_phase="0"/>

<source id="start" mindis="60" len_fun="sngl_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS_term" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="0" len_fun="term_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS_term" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="0" len_fun="term_ex_pen" phase="2">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS_term" strand="+" frame="1"/>

</source>
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<source id="3ss_2" mindis="0" len_fun="term_ex_pen" phase="1">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS_term" strand="+" frame="2"/>

</source>
</target>

<target id="stop_rev">
<source id="BEGIN">

<output feature="intergenic"/>
</source>

<source id="start_rev" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>

<source id="stop" mindis="2000" len_fun="intergene_pen">
<output feature="intergenic"/>

</source>
</target>

<target id="5ss_0">
<useseg id="cod_tr_0" target_phase="0" />
<useseg id="cod_tr_2" target_phase="1" />
<useseg id="cod_tr_1" target_phase="2" />

<killfeat id="stop" target_phase="0"/>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_0_rev">
<source id="BEGIN">

<output feature="intron" strand="-"/>
</source>

<source id="3ss_0_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<output feature="intron" strand="-"/>

</source>
</target>

<target id="5ss_1">
<useseg id="cod_tr_1" target_phase="0" />
<useseg id="cod_tr_0" target_phase="1" />
<useseg id="cod_tr_2" target_phase="2" />

<killfeat id="stop" target_phase="1"/>
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<source id="start" mindis="3" len_fun="init_ex_pen" phase="1">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_1_rev">
<source id="BEGIN">

<output feature="intron" strand="-"/>
</source>

<source id="3ss_1_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="ct" target_dna="a"/>
<killdna source_dna="tc" target_dna="a"/>
<killdna source_dna="tt" target_dna="a"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="5ss_2">
<useseg id="cod_tr_2" target_phase="0" />
<useseg id="cod_tr_1" target_phase="1" />
<useseg id="cod_tr_0" target_phase="2" />

<killfeat id="stop" target_phase="2"/>

<source id="start" mindis="3" len_fun="init_ex_pen" phase="2">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_0" mindis="18" len_fun="int_ex_pen" phase="2">
<useseg id="cod_ini_0" exact="source" />
<output feature="CDS" strand="+" frame="0"/>

</source>

<source id="3ss_1" mindis="18" len_fun="int_ex_pen" phase="1">
<useseg id="cod_ini_1" exact="source" />
<output feature="CDS" strand="+" frame="1"/>

</source>

<source id="3ss_2" mindis="18" len_fun="int_ex_pen" phase="0">
<useseg id="cod_ini_2" exact="source" />
<output feature="CDS" strand="+" frame="2"/>

</source>
</target>

<target id="5ss_2_rev">
<source id="BEGIN">

<output feature="intron" strand="-"/>
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</source>

<source id="3ss_2_rev" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="c" target_dna="ta"/>
<killdna source_dna="t" target_dna="ca"/>
<killdna source_dna="t" target_dna="ta"/>
<output feature="intron" strand="-"/>

</source>
</target>

<target id="3ss_0">
<source id="BEGIN">

<output feature="intron" strand="+"/>
</source>

<source id="5ss_0" mindis="20" maxdis="25000" len_fun="intron_pen">
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_0_rev">
<useseg id="cod_ini_rev_0" exact="target" />
<useseg id="cod_tr_rev_0" target_phase="0" />
<useseg id="cod_tr_rev_1" target_phase="1" />
<useseg id="cod_tr_rev_2" target_phase="2" />

<killfeat id="stop_rev" target_phase="0"/>

<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="0">
<output feature="CDS_term" strand="-" frame="0"/>

</source>

<source id="5ss_0_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_1_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="0"/>

</source>

<source id="5ss_2_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="0"/>

</source>
</target>

<target id="3ss_1">
<source id="BEGIN">

<output feature="intron" strand="+"/>
</source>

<source id="5ss_1" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="t" target_dna="aa"/>
<killdna source_dna="t" target_dna="ag"/>
<killdna source_dna="t" target_dna="ga"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_1_rev">
<useseg id="cod_ini_rev_1" exact="target" />
<useseg id="cod_tr_rev_1" target_phase="0" />
<useseg id="cod_tr_rev_2" target_phase="1" />
<useseg id="cod_tr_rev_0" target_phase="2" />

<killfeat id="stop_rev" target_phase="2"/>
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<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="2">
<output feature="CDS_term" strand="-" frame="1"/>

</source>

<source id="5ss_0_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_1_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="1"/>

</source>

<source id="5ss_2_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="1"/>

</source>
</target>

<target id="3ss_2">
<source id="BEGIN">

<output feature="intron" strand="+"/>
</source>

<source id="5ss_2" mindis="20" maxdis="25000" len_fun="intron_pen">
<killdna source_dna="ta" target_dna="a"/>
<killdna source_dna="ta" target_dna="g"/>
<killdna source_dna="tg" target_dna="a"/>
<output feature="intron" strand="+"/>

</source>
</target>

<target id="3ss_2_rev">
<useseg id="cod_ini_rev_2" exact="target" />
<useseg id="cod_tr_rev_2" target_phase="0" />
<useseg id="cod_tr_rev_0" target_phase="1" />
<useseg id="cod_tr_rev_1" target_phase="2" />

<killfeat id="stop_rev" target_phase="1"/>

<source id="stop_rev" mindis="0" len_fun="term_ex_pen" phase="1">
<output feature="CDS_term" strand="-" frame="2"/>

</source>

<source id="5ss_0_rev" mindis="18" len_fun="int_ex_pen" phase="1">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_1_rev" mindis="18" len_fun="int_ex_pen" phase="2">
<output feature="CDS" strand="-" frame="2"/>

</source>

<source id="5ss_2_rev" mindis="18" len_fun="int_ex_pen" phase="0">
<output feature="CDS" strand="-" frame="2"/>

</source>
</target>

</model>

<lengthfunctions>
<lengthfunc id="intron_pen">

<point x="0" y="1.0"/>
<point x="1" y="1.0"/>

</lengthfunc>

<lengthfunc id="intergene_pen">
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<point x="0" y="1.0"/>
<point x="1" y="1.0"/>

</lengthfunc>

<lengthfunc id="init_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>

</lengthfunc>

<lengthfunc id="int_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>

</lengthfunc>

<lengthfunc id="term_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>

</lengthfunc>

<lengthfunc id="sngl_ex_pen">
<point x="0" y="4.5"/>
<point x="1" y="4.5"/>

</lengthfunc>
</lengthfunctions>

</gaze>
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