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Summary 

The complete sequencing of whole genomes presents opportunities for detailed 

study of molecular evolution. This thesis combines theoretical developments 

of Bayesian approaches in bioinformatics with analysis of duplications in the 

recently completed C. elegans genome. 

Developments in the Bayesian probabilistic framework for sequence analy- 

sis using hidden Markov models (HMMs) are described. The principal HMM 

algorithms are reviewed including alignment, training and model comparison. 

Theory is developed for prediction of alignment accuracy and tested using sim- 

ulations. Software to provide accuracy measures for multiple alignments, based 

on the popular HMMER suite of profile-based alignment algorithms, is presented 

and evaluated with reference to the Pfam database of multiple alignments. 

Several of these statistical techniques are applied to an analysis of genomic 

duplications in the C.elegans genome. The completion of this - the first animal 

genome - offers an opportunity to study the random duplication that are be- 

lieved to be the first step in the evolution of a new gene. The construction of a 

database of non-coding duplications is described and measurements of molecular 

evolutionary parameters in C.elegans are calculated from the data and reported. 

A method of dating gene duplications using alignments between conserved in- 

trons is presented and compared to existing methods using Bayesian techniques 

developed earlier in the dissertation. Amongst the principal agents involved 

in creating genomic duplications are transposons; one of the simplest families 

of transposon is the Tcl-mariner family, of which two distinct active subfam- 

ilies are well-known in C.elegans. Using HMM profiles, six new subfamilies of 

mariner-like transposon have been identified in the C.elegans genome. Several 

of the new subfamilies display interesting homologies to one another, suggestive 

of common mechanisms of transpositional catalysis. 

Finally, the software tools developed during this project are described and 

made available for public retrieval from the Sanger Centre web site. 
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Chapter 1 

Introduction 



1 Preamble 

The role of bioinformatics is expanding from one of post-experimental data anal- 

ysis to include data management and organisation. As a consequence of this, 

concepts of what is possible in bioinformatics are likely to influence the future 

design and planning of the grand experiments that will succeed the present 

genome projects. Researchers who want to access the results of these grand ex- 

periments will do so through layers of software that filter, organise and interpret 

the volumes of available biological data. If the trends apparent in the rest of 

the software world apply to computational biology then users will be merciless 

in their demand for tools that are intuitive, powerful, simple and interoperable. 

To meet this demand, computational biologists will need to be aware of the solid 

mathematical frameworks that can support apparently simple algorithms; they 

will need to complement the drive to develop sophisticated techniques with a 

sensitivity to the changing needs of the scientific community; and they will need 

to  respond quickly and authoritatively to the inevitable developments in tech- 

nology that are on the way. In short, bioinformatics - and related informatics 

such as chemoinformatics and clinical informatics - are at least as important as 

they have been hyped to be! 

It may be suggested that this view of the future of bioinformatics is influ- 

enced by the role of sequence analysis with respect to the genome projects (see 

e.g. [CSC98, FAWf 95, WS981). These projects are generating megabases of 

DNA sequence, coding for hundreds of thousands of genes whose structure and 

function - thanks to the infeasibility of total simulation of the quantum me- 

chanics of peptide molecules [Shag71 - can often only be elucidated by detection 

of sequence-level homologies to previously characterised proteins. Nevertheless 

it seems unlikely that the trend of high-throughput data collection will be re- 

versed in the near future, with new technologies like microarrays generating new 

types of data and new informatics challenges [DIB97, BJVU981. If this trend 

does continue, then there are two aspects of bioinformatics research that can be 



predicted to survive: the development of self-consistent families of algorithms 

for finding patterns in data and the presentation of these algorithms to a wider 

audience of researchers in the form of succinct and intuitive database interfaces. 

These two activities are closely linked: while it is often true that the program 

with the better user interface wins, the use of a good interface on a bad algo- 

rithm, or a bad interface on a good algorithm, will always result in tension. It 

is much easier to put a positive spin on a technique that has a good, simple 

idea at  its core than it is to make a complex collection of heuristics seem intu- 

itive. Furthermore, good algorithms stimulate excitement and interest, which is 

exactly what is needed to motivate the fast-changing world of interface design. 

It  should also be stressed that the meaning of "user interface" here refers to 

all the methods that are used to access large data sets, so that the distinctions 

between data and methods, interface and algorithm, data-structure and object- 

model become increasingly blurred. An example of the new class of database is 

the set of protein family databases (such as BLOCKS [HH91], PRINTS [AB94] 

and Pfarn [SEB+98]), which at one level are simply a clustering of the protein 

databases, but actually provide considerable added value in the form of anno- 

tation, links to other databases and to literature and - crucially - algorithms to 

make use of the contained information for protein family analyses. 

This dissertation addresses some of these issues by example. It is divided 

into two sections. The first half describes some mathematical and technological 

developments in the new Bayesian approach to sequence analysis. There is some 

practical development of the ideas - in particular a software tool for analysing the 

accuracy of sequence alignments - although the section is essentially theoretical. 

The second half of the thesis describes construction of a database for the study of 

gene duplication events in the nematode Caenorhabditis elegans, whose genomic 

sequence was recently completed [CSC98]. This section is more applied than the 

first and the emphasis is more on the biology than the mathematics, though a 

number of algorithms and tools are developed that have wider applicability than 



the database construction problem described. It is hoped that the results of the 

first half inform the second half, and that this account demonstrates how sound 

mathematics can provide a solid foundation for the development of natural and 

intuitive tools and data sets. 

The first half of this introductory chapter begins by outlining the context 

and history of biological sequence analysis, with particular reference to the use 

of Bayesian statistics. It  proceeds to summarise the work described in the 

first half of the thesis. The second half gives a brief review of the study of 

the evolutionary models and mechanisms of gene duplication as a prelude to 

describing the work in the second half of the thesis. First, sequence analysis. 

1.2 Sequence analysis 

Sequence analysis of peptides can be seen as the biologist's practical response 

to the intractability of predicting a protein's higher-level structure and function 

from its sequence [Sha97]. Nature uses a limited number of structural motifs to 

construct its cellular machinery - over 40% of known protein sequence belongs 

to under 1500 families or Udomains" [Cho92, SEB+98] - and these structural 

homologies often correspond to sequence-level homologies, representing as they 

do an evolutionary connection by means of the gradual accumulation of mu- 

tations [Kim83]. The idea of protein sequence analysis is to search for these 

homologies and to exploit them in order to make inferences about the structure 

and function of novel proteins based on experimentally determined properties 

of well-characterised proteins [DEKM98]. The mutations that accumulate dur- 

ing evolution typically include residue substitutions and small insertions and 

deletions; there are thus a number of ways in which two sequences could be re- 

lated and the exact nature of a homology between a set of sequences is usually 

represented in diagrammatic form as an "alignment". Part of a multiple align- 

ment of protein sequences from the rhodopsin-like G-protein-coupled receptor 

family [AF94] is shown in Figure 1.1: sequences are laid out in rows with gap 



characters inserted so that homologous residues are aligned in columns. The 

time-intensive task of working out where to put the gap characters in order 

to get the best alignment is ripe for automation; algorithms that do this task 

are called sequence alignment algorithms. Parallel problems are encountered 

in DNA sequence analysis; the precise mechanisms by which nature recognises 

which parts of the DNA of a cell are genes, and which parts are regulatory se- 

quences controlling the expression or splicing of the genes, are either unknown 

or too difficult to model completely. However, statistical comparisons with well- 

characterised sequences can answer some of these questions and are regularly 

used to locate genes in newly sequenced DNA [Hau98]. 

In recent years, the theory of sequence analysis has benefited considerably 

from the discovery [KBM+94] that many of the alignment algorithms it had 

been using - which had been classified under the broad umbrella of "dynamic 

programming" - could be related to a mathematical framework that had been 

used very successfully in other fields, notably speech recognition [Rab89]. The 

framework is that of hidden Markov models (HMMs). The probabilistic nature 

of the HMM formulation provides strong links to the field of Bayesian statis- 

tics, a powerful revision of statistical ideas that has enthusiastic support in the 

machine learning community where HMMs were primarily in use. A brief dis- 

cussion of the context of Bayesian methods and of pre-HMM sequence analysis 

may illustrate the happy significance of their combination. 

1.2.1 Bayesian methods 

At the most fundamental level it can be difficult to pin down the difference 

between the Bayesian approach to statistics and the classical or "frequentist" 

approach against which the Bayesians set themselves in opposition. All statis- 

tics essentially involves postulating probabilistic models and seeing how well 

these models fit observed data. Perhaps the definitive mark of Bayesian anal- 

ysis is the emphasis on the application of Bayes' rule to likelihoods and priors 



CCRQIBOVIN 
CKR1-HUMAN 
GPRD-RAT 
GUSB-BOVIN 
OPRD-MOUSE 
SSR1-HUMAN 
GI OD-FIAT 
RDC 1-CANFA 
CSALCANFA 
US27-HCMVA 
US2 8-HCMVA 
GCRT-CHICK 
PAFRCAVF'Q 
BRS3-CAVPO 
CCKR-HUMAN 
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TRFRHUMAN 

KSNKEATLC 268 
RETENRAREL 222 
WKAHSHAVRM 308 

YEIQ 229 
EMQK 258 
QRR. 251 

QGQTE 248 
SSDQE 246 

162 RKATR 238 
WG.. 224 

Figure 1.1: Part of a multiple alignment of protein sequences from the 
rhodopsin-like 7-transmembrane receptor family [AF94], displayed by the 
BELVU alignment browser [SD94]. Each row represents a sequence in the fam- 
ily. Gap characters (in this case, dots ".") are inserted into the sequences so 
that homologous residues are aligned in columns. In this figure, residues are 
shaded by column conservation. 



in order to obtain a posterior probability denoting a level of belief in a hy- 

pothesis [Mac92a]. In the author's personal experience, Bayesians tend to be 

convincingly more open to discussion of the nature of the models they use and 

of the fundamental ideas in probability that underpin their methods. Counter- 

balancing this refreshing openness there is often a lack of interest in heuristic 

approaches that smack of frequentism, even though such approaches are often 

later found to have good theoretical justification. 

Many biologists find this skepticism unnecessarily pedantic. Nonetheless, it 

is from the Bayesian camp that the theory of hidden Markov models - one of 

the most exciting developments in bioinformatics in recent years - has emerged. 

To understand the significance of HMMs it is useful to put them in context, 

by delving a little deeper into the history of sequence analysis techniques. The 

following brief sketch draws on the accounts in [Wat95] and [DEKM98]. 

In 1970, Needleman and Wunsch published the first dynamic programming 

alignment algorithm for aligning pairs of sequences [NW70]. Their algorithm 

finds the highest-scoring path through a dynamic programming matrix by ex- 

ploring out from the top-left corner (see Figure 1.2). A path through the matrix 

corresponds to an alignment of the sequences, which lie on the horizontal and 

vertical axes of the matrix. The Needleman-Wunsch paper was succeeded by a 

number of further algorithms for pairwise alignment, e.g. [SW81, Got82, WE87, 

AGM+9O]. A range of publically available programs implementing these algo- 

rithms are available, two of the most widely used being SSEARCH [PL88] and 

BLAST [AG96]. A considerable amount of research has been directed towards 

the problem of assigning statistical significance to the scores obtained by these 

methods, most notably by Karlin and Altschul [KA90, KA93, AG961. 

In parallel with pairwise alignment, many algorithms for simultaneous or 

progressive alignment of multiple sequences were also developed [SK83, WP84, 

CL88, FD87, Tay87, BS87, HS891. Without going into excessive detail, these 

algorithms attempt to find shortcuts to calculating the full multi-dimensional 
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Figure 1.2: The dynamic programming matrix for Needleman-Wunsch align- 
ment of two intron sequences from C.elegans. 

analogue of the two-dimensional dynamic programming matrix in Figure 1.2 (a 

task too lengthy for practical analysis of large numbers of sequences). Typically, 

the algorithm estimates a "guide tree" and progressively aligns subgroups of 

sequences. Some programs implementing these algorithms are PILEUP [But981 

and CLUSTALW [THG94a]. The latter makes use of sequence profiles during the 

progressive alignment. Sequence profiles are structures that model the position 

dependence of the gap and substitution propensities; see e.g. [GV96, THG94bl. 

In 1993 and 1994, Anders Krogh and co-workers from the Haussler group at 

UC Santa Cruz published several papers on the use of hidden Markov models 

(HMMs) for modelling protein and DNA sequences [HKMS93, Kro94, KBM+94, 

KMH941. Hidden Markov models were previously widely used in speech recogni- 

tion [Rab89]. Krogh and co-workers realised they provided a formal probabilistic 

model with all the behaviour of sequence profiles [DEKM98]. The Santa Cruz 

group published numerous subsequent papers on the use of HMMs in sequence 



analysis (e.g. [BHK+93, SKB+96, HKMS93, KHRE96, REKH971) and HMM 

ideas were also quickly latched onto and extended by workers at  the MRC Lab- 

oratory of Molecular Biology in Cambridge, England [EMD95, MD95, Edd95, 

KM95] and other places [BC94, BH96, PBBC961. The probabilistic view of se- 

quence alignment had also been described by analogy with statistical mechanics 

[LAB+93, Miy941. 

Hidden Markov models did not directly solve the problem that was perceived 

by many to be of chief mathematical importance in sequence alignment: that 

of assigning statistical significance levels to the alignment scores. What HMMs 

did do was to form a solid connection between biological sequence alignment 

algorithms and Bayesian machine learning. The Bayesian framework yielded 

insight into how sequence profiles and other alignment "machines" should be 

"trained" on data; some of the immediate dividends (there were many) included 

the principled justification of pseudocounts for sparse data sets [SKB+96], the 

discriminative training framework [EMD95] and the use of the Baum-Welch al- 

gorithm for finding the optimal scoring scheme [Kro94, HK961. The probabilistic 

formulation has been extended to pairwise alignment [BH96, ZLL981 and it has 

also been widely used for gene prediction (see [Hau98] for a review) as well as 

more eclectic HMM architectures [BD97]. The connection to Bayesian machine 

learning research continues to generate interesting new ideas such as probability 

density networks [Mac96a, Pov98] and Fisher kernels [JH98]. 

With this context, Part I of this thesis can be summarised. 

1.2.2 Summary of Part I of the thesis 

Part I of this dissertation comprises three chapters exploring issues that have 

arisen during the development of the HMM theory of sequence analysis. Chap- 

ter 2 is in the nature of a mathematical introduction to the remainder of the 

dissertation; it reviews some elementary terms, definitions and algorithms that 

are central to HMM theory and introduces certain ideas that will be used later 



on. The algorithms described can be divided into two categories: those per- 

taining to alignments of sequences to Markov models, and those pertaining 

to parameterisation of the model. Many of these algorithms are already well- 

explored, but there is some new material. Some of the new material introduces 

the elements of alignment accuracy and Bayesian decision theory that will be 

used in the second and third chapters. The rest outlines some possible improve- 

ments to training and model comparison algorithms for HMMs. A statistical 

mechanical view of HMM score distributions is also outlined; this will also be 

useful for Chapter 3. The idea of the generalised HMM is touched upon, and 

finally some molecular evolution models are introduced. 

Chapter 3 of the dissertation describes investigations into the issue of how 

accurate a sequence alignment algorithm is. In the HMM view, a dynamic pro- 

gramming alignment is essentially trying to reconstruct an evolutionary history 

from what can be seen as noisy data. The question addressed in this chapter 

is: to what extent does this reconstruction procedure give an accurate result 

when the assumed evolutionary model is the correct one? (Of course, in reality 

the model is not actually expected to be precisely correct - it is, after all, just a 

way of finding homologies between sequences - but this analysis gives us insight 

into what kind of errors the algorithm would make even in the best of circum- 

stances.) The question is explored using computer simulations and a Bayesian 

technique for extracting very weak alignments from sequences is presented and 

evaluated. 

Chapter 4 of the dissertation - the final chapter of Part I - describes a prac- 

tical tool pos t a l  that was designed with the aim of applying some of the more 

useful results from Chapter 3 to the analysis of protein sequences using HMM 

profiles. Given a multiple protein sequence alignment, pos t a l  uses posterior 

probability techniques (described in Chapters 1 and 2) to identify which se- 

quences (and which parts of those sequences) may be poorly aligned. While 

p o s t a l  does not identify every misaligned sequence, it can pick up some ob- 



vious errors and flag low-information-content sections of alignments. It is thus 

suitable for use as a semi-automatic quality control tool for curators of large 

databases of gapped multiple alignments such as the Pfam database [SEB+98]. 

postal is constructed using parts of the HMMER package [Edd96]. 

1.3 Gene duplications 

Part I1 of the dissertation deals with the application of some of these tech- 

niques, along with other bioinformatics methods, to a specific problem of in- 

terest in molecular evolution: the study of gene duplications in the nematode 

Caenhorabditis elegans. 

Why is it interesting to study gene duplications? The study of evolution is 

of central academic interest because of the attractive - if often elusive - idea of a 

driving principle underlying biology. Evolutionary frameworks can lend meaning 

and context to descriptions of biological mechanisms and hence organise knowl- 

edge. One such framework is the hypothesis of gene evolution via duplication 

and genetic redundancy, which suggests that new genes evolve by duplication of 

existing genes. When a gene is copied, the selective constraints on each copy are 

proposed to be relaxed, so that each copy is free to evolve (slightly) modified 

function [Ohn70, Oht891. With international sequencing collaborations generat- 

ing data for organisms' entire genomes rather than isolated genes or fragments 

of chromosomes, the prospect of analysing the long-timescale dynamics of genes 

in genomes is a realistic option. The completion of the genome sequence of the 

yeast Saccharomyces cerevisiae, long known to contain a number of gene dupli- 

cations [Smi87, Ols91, Kab951, enabled the beautiful demonstration by Wolfe 

and Shields [WS97] that the chromosomal positioning and orientation of the 

duplicate genes were consistent with duplication on a large scale by the hypoth- 

esised mechanism of whole-genome (polyploid) duplication proposed by Ohno 

[0 hn701. 

As the largest eukaryotic genome to be completely sequenced (and the first 



animal genome), the nematode C.elegans is a natural candidate for further sys- 

tematic study of gene duplications [CSC98]. The progress of the nematode 

genome project has seen a rapid increase in the number of gene families to be 

characterised in this organism, with functions ranging through neuronal devel- 

opment [NKML98, BH971, chemosensation [Rob98, TCD+95], miscellaneous cell 

signalling and development [PS98, TW96, SDFC 96, SLPC96, BR93] and other 

categories [AKWC98, DGPB98, LC951. The resolution of standards and file 

formats in the annotation phases of the genome project and improvements in 

the technology of protein family databases have enabled automatic classification 

of many gene families [SEB + 98, CSC98J. 

A large number of C.elegans gene families are found to comprise genes that 

are located close together on the chromosomes. These gene clusters are of par- 

ticular interest since C.elegans was the first eukaryotic genome found to contain 

operons [BS97]. Operons in C.elegans consist of clusters of genes typically sep- 

arated by around 100bp, that are transcribed together as a single strand of 

pre-mRNA and subsequently separated by trans-splicing. Co-transcription im- 

plies shared modes of transcriptional regulation. Many operons contain groups 

of genes that are not homologous and therefore cannot be said to have arisen 

from duplication; some of these non-homologous clusters are known to code 

for genes whose functions demand co-expression and, in these cases, a clear 

argument can be made for the evolutionary importance of the transcriptional 

co-regulation experienced by these genes [Blu98]. Operons were well-known in 

bacteria and archaea before their discovery in C.elegans; they have been found 

in other orders of the nematode phylum [EZM+97] and in flatworms [DH97]. 

1.3.1 Agents of change 

There are a number of ways that duplications of sections of genomic DNA 

can occur in nature. Duplications in C.elegans can be induced in the labora- 

tory by irradiation or by the introduction either of mutagenic chemical agents 



(formaldehyde, for example) or of mutator loci that up-regulate transposable 

element activity such as mut-2 [PvL97, JB97]. All these types of duplication 

can occur in the wild, with the additional possibility of random errors in repli- 

cation and recombination. In some strains the principle cause of spontaneous 

duplications and other mutation appears to be transposable element activity 

[PvL97]. These elements are worth describing in more detail. 

Transposable elements (or transposons) are well-defined (albeit fast-evolving) 

sequences that are found to spontaneously copy themselves (or have them- 

selves copied) into genomic DNA [Jur98, PvL97, Smi961. They are distinguish- 

able from viruses - their closest relatives [GL95a, Jur98J - by not normally 

crossing cell boundaries invasively; they are not infectious. For this reason 

they are generally less destructive to their hosts and more restrained in their 

rate of proliferation. Transposons may be primarily subdivided according to 

whether the intermediate genetic component in the transposition cycle is DNA 

or RNA. DNA-mediated transposition proceeds by a "cut-and-paste" mecha- 

nism, whereby transposase proteins excise the mobile sequence and re-integrate 

it at  the target site by DNA cleavage [PvL97, HLL971. While the cut-and-paste 

mechanism is not itself replicative (it merely moves the sequence around), re- 

pair of the double-strand breakage from where the sequence was excised can 

generate a copy of the transposable element from the homologous chromosome, 

which the repair machinery uses as a template [vLCP94]. Characteristics of 

DNA transposons include flanking inverted repeat sequences and site-specific 

integration, both consequences of the transposition mechanism [HLL97]. RNA- 

mediated transposition, on the other hand, involves first transcription by RNA 

polymerase, then reverse transcription back to DNA by reverse transcriptase 

[Jur98]. Transposons may be further subdivided by whether the genes coding 

for the transposase proteins that catalyse transpositon are contained within 

the transposon sequence itself (in which case the transposon is said to be au- 

tonomous) or elsewhere (in which case the transposon is a non-autonomous 



1 Recombination 

Figure 1.3: Transposons can precipitate gene duplication during recombination 
if pairing between adjacent copies leads to unequal crossing-over. 

"hitch-hiker") [Smi96]. All of the above kinds of transposon are found in the 

sequenced Bristol N2 strain of C.elegans. The completion of the genomic se- 

quence has led to a rise in the number and variety of transposons and other 

repetitive sequences reported in C.elegans [OGB95, OGB96, RvLDP971. 

Transposons can promote gene duplication during meiotic recombination if 

homologous pairing between adjacent copies of a repetitive element leads to un- 

equal crossing-over as in Figure 1.3 [NCC+92, YWB97, FBT+91]. (A similar 

mechanism underlies gene conversion, the phenomenon of expansion or contrac- 

tion of existing clusters of homologous genes [LG9 1, Rob981 .) Double-strand 

breakage repair following transposon excision can lead to local duplications 

[MKWSl] and it is also possible that transposons may carry flanking sequence 

with them when they transpose [GL95b]. Transposon insertions into all kinds 

of host-important sequences - including introns, exons and promoter regions - 



have been observed [Wes89, OGB95, BHP891. Indeed the potential for trans- 

posons to have quite drastic effects on the evolution of their host organism is 

considerable [HLNL97] and the mechanisms by which their transpositional ac- 

tivity is regulated so as not to over-burden their hosts' replicative machinery 

have been topics of some interesting research [LC97]. One of the best-studied of 

transposon families is the relatively simple Tcl-mariner group, of which several 

variants are known in C.elegans [PvL97]. The canonical Tcl-mariner trans- 

poson in C.elegans, Tcl ,  is a DNA-based transposon consisting of an inverted 

repeat flanking a two-exon gene that codes for a single transposase protein. The 

protein catalyses the entire "cut-and-paste" transposition process [VBP96]. The 

ecology of mariner-like transposons is better understood than most; there are a 

number of ways in which these elements can interact to reduce transpositional 

activity [HLL97], including burdening of active transposase by non-autonomous 

and autonomous-but-defective transposons ("transposase titration" and "sub- 

unit poisoning" respectively) and poorly-understood interactions between active 

transposase proteins ("overproduction inhibition" ) . 
The aspects of genome duplication described above have been observed in the 

laboratory or in isolation, but an overview of their relative importances to the 

dynamics of gene duplication is lacking. With the completion of the C.elegans 

DNA sequence, the timing is ideal for a genome-wide systematic study of gene 

duplication in a model animal. 

1.3.2 Summary of Part I1 of the thesis 

Part I1 of this thesis dissertation describes the construction of a database, named 

Wormdup, to facilitate the study of genome duplications in C. elegans. 

Chapter 5 (the first chapter of Part 11) describes the construction and pre- 

liminary analysis of the main portion of the Wormdup database. The purpose 

of Wormdup is to provide a resource for answering questions about the sizes, 

frequencies, locations, causes and other aspects of genomic duplications. The 



chapter describes how the data in Wormdup are used to calculate various molec- 

ular evolutionary parameters for C.elegans such as the transition/transversion 

ratio, the rate of small indels and the rate and size distribution of fixation of 

non-coding and coding duplications. The fixation rates for non-coding and cod- 

ing duplications are compared and the results are discussed with reference to 

the reliability of molecular clocks in general and the selective pressures that may 

act on duplicated DNA. 

Chapter 6 (the second chapter of Part 11) looks at a new method of dating 

gene duplications. Many of the interesting questions in molecular evolution 

rely on dates and times of speciation and divergence events. To answer these 

questions, it is useful to have an accurate "molecular clock" that can be used, for 

example, to compare rates of duplication for coding and non-coding DNA as in 

the previous chapter. The most commonly used kind of clock counts the number 

of nucleotide substitutions that have occurred at synonymous codon positions 

in the sequences and uses this to estimate a maximum-likelihood divergence 

time. This kind of clock is called a "codon clock". In this chapter a new kind 

of Yntron clock" that counts substitutions and indels within conserved introns 

is proposed and evaluated using Bayesian techniques described in the first part 

of the thesis. The results suggest that intron evolution can be fitted to time- 

dependent models but that the clocks, as proposed, do not synchronise well 

with codon clocks. Possible reasons for this and potential improvements to the 

model are discussed. 

Chapter 7, the final chapter of Part I1 and of the dissertation, looks a t  a 

specific class of DNA-based transposon - the Tcl-mariner group - that has been 

well-studied in nematodes. Using hidden Markov model and other dynamic pro- 

gramming techniques, statistics are obtained for the representation of previously 

characterised mariner families in the sequenced strain of C.elegans, as well as 

for six previously uncharacterised families. The new families are analysed using 

protein sequence analysis and phylogenetic techniques and found to be more 



closely related to one another than the previously characterised families. These 

results are discussed in the context of transposon ecology and evolution. 

The dissertation ends with an appendix which describes the software tools 

that were developed specifically for this project (but with re-useability in mind). 

It  is hoped that these may prove useful to other projects. 

1.4 Statement of originality 

This dissertation is the result of my own work and includes nothing which is 

the outcome of work done in collaboration. 
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2.1 Introduction 

A wide variety of score-based dynamic programming algorithms are commonly 

used for sequence alignment [AG96, PL88, BS87, LAK89, THG94al. As early 

as 1992, Anders Krogh pointed out that the dynamic programming methods 

being used could be viewed as special cases of the Viterbi algorithm, widely 

used in speech recognition. The premise of this algorithm is that the sequences 

were generated by a probabilistic Markov model and that the exact state path 

is hidden from view, but can be reconstructed by inference. The recursive 

algorithm for performing this inference is an example of dynamic programming 

[Kro94]. 

Casting sequence alignment as an HMM problem does not avoid the question 

of what scores are significant. However, it does connect sequence alignment to a 

large published literature on HMM methods [DEKM98, Rab89, Mac96bl. This 

research puts the scores into context, explores how to choose the best scores 

for a particular problem, demonstrates how scores can be combined and opens 

up a wide range of new algorithms. Suddenly bioinformatics has a solid link to 

machine learning. 

This chapter is a review of hidden Markov models in bioinformatics, of the 

main algorithms and techniques that can be used for HMMs and of certain 

properties they have. Sections 2.2 to 2.4 introduce notation and concepts that 

are used throughout the dissertation. Sections 2.5 to 2.7 are more speculative 

and less relevant to the rest of the dissertation. 

Notation 

In this section, hidden Markov models will be treated as machines that generate 

a single sequence, though it is only slightly more complicated to write down a 

definition of a "pair HMM" that generates a pair of sequences, and by extension, 

a "multiple HMM" that generates a whole set of sequences (this latter would 



be suitable for multiple alignment) [DEKMgB]. 

An HMM has S states. The transition from state a to state b, labelled 

with residue X (with X E {A, C, G, T)  for DNA, for example), has probability 

tab*. (It is conventional to talk of the transition "emitting" residue X and this 

convention will be used from now on.) The probabilities of all the transitions 

leaving a particular state must sum to 1. Two states have special names: the 

begin state B and the end state E. 

Denote the set of all the tabX values by t .  This set t is often called the 

parameterisation of the HMM, or equivalently a point in the parameter space 

of the HMM. 

Suppose that X is a sequence with L residues, whose i'th residue is Xi (the 

bold typeface X indicates the entire sequence and the light typeface Xi indicates 

an individual residue in the sequence). It is possible to trace a path of L steps 

through the HMM so that the i'th step uses a transition with residue label 

Xi. Such a path can also be called an alignment of the sequence to the HMM, 

because it aligns each residue in the sequence to a transition in the HMM. If 

a path begins in the begin state B and winds up in the end state E, it will be 

called a complete path. 

Call the alignment path a ,  and suppose that at  the i'th step the path is in 

state ai (the path starts in state ao). The i'th step in the path thus uses a 

transition from state ai-1 to state ai and, to be consistent with the sequence X, 

this transition must emit residue Xi .  The corresponding transition probability 

is ta,- , , ,xi .  The joint likelihood of the sequence and the alignment is defined 

to be the product of all the transition probabilities along the path: 

The likelihood of the sequence is the sum of the joint likelihoods of all com- 

plete paths of the same length as the sequence: 



Pr[Xlt] = C Pr[a7Xlt]  (2.2) 
a:lal=L 

The model is "hidden" because one typically knows the sequence X but not 

the alignment a. The main HMM algorithms address the problem of dealing 

with the missing information and these are reviewed below. 

2.2.1 Other formulations of HMMs 

Pair HMMs require a little more flexibility in that some transitions only emit 

residues for one of the two sequences. The most common type of pair HMM 

is the model for Needleman-Wunsch global alignment with affine gap penal- 

ties [NW70], which has three states (in addition to the start and end states). 

This model is shown in Figure 2.1. The three states include a match state and 

two indel states. Transitions into the match state emit paired residues in both 

sequences, whereas transitions into the indel states only emit residues in one 

or other of the two sequences. The indel states are often called "insert" and 

"delete" to distinguish each other. Transitions from the match to either of the 

indel states corresponds to opening a gap, so their probabilities are associated 

with the gap-opening penalty; looping transitions within the indel states corre- 

spond to  gap-extension penalties. The probability distribution for paired match 

emissions corresponds to the substitution matrix. There is a more detailed 

discussion of the Needleman-Wunsch model in Chapter 3. 

Alignments of pairs of sequences to pair HMMs specify residuejtransition 

mappings for both the sequences. They therefore also specify which pairs of 

residues in the two sequences are aligned together. This is the commonly un- 

derstood definition of sequence alignment. 

A variant of the Needleman-Wunsch HMM used for local alignment - corre- 

sponding to the Smith-Waterman algorithm [SW81] - is actually a generalised 

HMM. Generalised HMMs are discussed in more detail in Section 2.8. 

The pair HMM software described in Appendix A implements the kinds of 



HMM described above, together with a limited class of generalised HMMs (in- 

cluding the Smith-Waterman model and the Bayesian block aligner mentioned 

in Section 2.8 of this chapter). 

2.3 Aligning sequences to HMMs 

Usually the sequence X is known and the alignment a is "missing information". 

Two useful tricks are: (i) to find the most likely alignment a; (ii) to find the sum 

of the likelihoods of all alignments a (the sequence likelihood Pr [XJt] defined in 

(2.2)). (i) is a classic "maximum likelihood" approach, whereas (ii) is necessary 

if Bayes' rule is to be applied. 

These tasks are accomplished using the Viterbi and Forward algorithms, 

respectively. Both are dynamic programming algorithms. 

2.3.1 Maximising the alignment likelihood: the Viterbi 
algorithm 

The Viterbi algorithm finds the most likely alignment a consistent with an 

observed sequence X [Vit67]. It  works by building up the sequence X one 

residue at  a time, so that there is a series of subsequences starting with nothing 

at  i = 0 and ending up with the full sequence when i = L. The i'th subsequence 

corresponds to the first i residues of X. 

The optimal path a is built up step-by-step at the same time as the se- 

quence, but the "missing information" problem is addressed by keeping track of 

S different optimal paths (one for each state of the model) at  each value of i. It 

is not necessary to keep track of any more paths than this because the Markov 

nature of the model means that best path of length i for some state b contains 

the best path of length i - 1 for some state a; and so on down to i = 0. 

This can be expressed more formally. Let {ailb) be the set of all the paths 

of length i that start in the begin state B and end in state b. Let K , b  be the 

maximum likelihood of all these paths, i.e. 



K,b = max Pr[a,Xlt] 
a~(ai .6)  

(2.3) 

(The likelihood of the complete Viterbi path is then VL,&, where I is the end 

state and L is the sequence length.) 

Let the penultimate state of x,b be a. The first i - 1 steps of the I/,,b path 

must also be an optimal path for some state a ,  so: 

V;,b  = [tabxi V ; - l , a ]  (2.4) 

Equation (2.4) defines a recursion for the maximal path likelihood. Together 

with the boundary condition: 

which just means "start in the start state", this recursion is the Viterbi 

algorithm. The algorithm only calculates the likelihoods of the paths; the paths 

themselves can be reconstructed by traceback. The maximal likelihoods Vila 
form an L x S array of "cells" called the "dynamic programming matrix". 

For sequence alignment, the algorithm is usually expressed in terms of the 

logs of the likelihoods rather than the likelihoods themselves. This is both 

intuitively natural (since log-likelihoods are additive, which corresponds better 

to the idea of scores) and more computationally well-behaved (since it avoids 

underflow problems). 

2.3.2 Summing alignment likelihoods: the Forward algo- 
rithm 

The Viterbi algorithm finds the likelihood of the most likely path consistent 

with the observed sequence (and by traceback, the path itself). The Forward 

algorithm finds the sum of the likelihoods of all paths consistent with the ob- 

served sequence (as in (2.2)) and is obtained essentially by replacing the max 

in equations (2.3)-(2.5) with a sum. 



K,b  = max Pr [a, Xlt] 
a~(a i . 6 )  

(The likelihood of the complete Viterbi path is then VL,&, where C is the end 

state and L is the sequence length.) 

Let the penultimate state of x,b be a. The first i - 1 steps of the l/,,b path 

must also be an optimal path for some state a ,  so: 

K,b = max [tabxi K-l,a] (2.4) 

Equation (2.4) defines a recursion for the maximal path likelihood. Together 

with the boundary condition: 

1 i f a = l 3  
0 otherwise 

which just means "start in the start state", this recursion is the Viterbi 

algorithm. The algorithm only calculates the likelihoods of the paths; the paths 

themselves can be reconstructed by traceback. The maximal likelihoods &,a 

form an L x S array of "cells" called the "dynamic programming matrix". 

For sequence alignment, the algorithm is usually expressed in terms of the 

logs of the likelihoods rather than the likelihoods themselves. This is both 

intuitively natural (since log-likelihoods are additive, which corresponds better 

to the idea of scores) and more computationally well-behaved (since it avoids 

underflow problems). 

2.3.2 Summing alignment likelihoods: the Forward algo- 
rithm 

The Viterbi algorithm finds the likelihood of the most likely path consistent 

with the observed sequence (and by traceback, the path itself). The Forward 

algorithm finds the sum of the likelihoods of all paths consistent with the ob- 

served sequence (as in (2.2)) and is obtained essentially by replacing the max 

in equations (2.3)-(2.5) with a sum. 



Define Fi,b to be the sum of the likelihoods of all the paths of length i that 

end in state b, i.e.: 

The Fi,b form another L x S dynamic programming matrix. The Forward 

algorithm for calculating them is: 

1 i f a = B  
Fo,~ = 0 otherwise 

From the point of view of scores, the transition from equations (2.3)-(2.5) 

to equations (2.6)-(2.8) correspond to replacing the z = max(x, y) rule in the 

dynamic programming for choosing between two scores x and y with a modified 

rule z = max(x, y) + B(lx - yl), where B = log (1 + exp -]x - yl) is a "bonus" 

function that rewards similar scores. When x cx y, then B - log2 - k$, 
i.e. the similarity bonus directly penalises the difference in scores when the 

difference is small; but when max(x, y) >> min(x, y) then B - exp -1x - y 1, i.e. 

the similarity bonus decays rapidly when the difference in scores is large. 

2.3.3 Posterior probabilities of alignments: the Forward- 
Backward algorithm 

Given the joint likelihood Pr [a, Xlt] and the sequence likelihood Pr [Xlt] (the 

latter of which is calculated using the Forward algorithm), a posterior probabil- 

ity for the path can be calculated using Bayes' rule: 

Pr [alX, t] = Pr [a, Xltl 
Pr  [Xltl 

The number of paths aligning a sequence of length L to a model of size S is 

-- sL. There are only L x S entries in the dynamic programming matrix, each 



representing the alignment of an individual residue to an individual state. It is 

usually sufficient to work with these rather than the entire path distribution. 

Let the notation (i o b) mean "residue Xi is aligned to a transition that ends 

in state b". The posterior probability of (i o b) is defined as the sum of the 

posterior probabilities of all the paths a that include (i o b) (i.e. all the paths 

that align residue i to a transition that ends in b): 

a: (iob) Ea 

Pr  [a, Xltl 
= Pr[XJtJ  

a : ( i o b ) ~ a  

where a i , b  is a path of length i ending in state b as before and &,b is a 

path of length L - i that starts in state b, continuing on to the end state &. 

The Bi,b are called the Backward sums; they are defined as the sums of the 

likelihoods of all the paths ai,b and may be computed by flipping equations (2.6)- 

(2.8) in the i-direction. The algorithm for calculating the posterior probabilities 

P r  [(i o b)lX, t] is called the Forward-Backward algorithm [DEKM98] .  

2.3.4 Comparing alignments 

There are various ways to compare two alignments quantitatively. Perhaps the 

simplest metric is the overlap, which counts the number of residues that both 

alignments agree on as being aligned to the same state of the HMM [DEKMgB]. 

A related method just counts residues aligned to a particular subset {c) of 

states. This will be referred to as the partial overlap. 



Many pair HMMs allow pairs of residues in the two sequences to be aligned 

to the same state. When counting the number of residue-to-state mappings that 

pair HMM alignments agree on, it is common to require that both residues in 

the pair are aligned to the same state, in both alignments. This is consistent 

with the view that such residues are aligned to each other, rather than to a 

common state. 

The fractional overlap is just the overlap divided by the total number of 

residues in the sequence. A partial fractional overlap can also be defined, by 

only counting residues that are aligned to a subset {c) of states, as before. For 

the partial fractional overlap it is no longer unambiguous what the total number 

of {c)-labellings should be; a choice must be made as to which alignment is the 

reference alignment. The partial fractional overlap for a pair HMM, counting 

only match states, is called the fidelity [HL96]. 

More sophisticated measures of alignment similarity include edit distance 

[SK83] and shift score, which is rather like a length-normalised edit distance 

[CK98]. 

The edit distance, the overlap and the partial overlap are all additive func- 

tions. A function F(a,,ap) between two alignments a, and ap of the same 

sequence S is additive if, when the sequence is split into subsequences S1 and 

S2 (and the alignments split into a,l, a,a, apl and ap2), then the sum of the 

parts F(aal ,  apl) + F(aff2, ag2) is equal to the whole F(a,, ap). Additivity is a 

useful property for an alignment accuracy measure since it means the alignment 

that optimises the measure with respect to the posterior distribution can be 

found using a variant of the Viterbi algorithm. This kind of "optimal accuracy" 

algorithm is an application of Bayesian decision theory. An example of such 

an algorithm that uses the fidelity as an accuracy measure has been proposed 

[DEKM98] and is explored further in Chapter 2. 

Alignment accuracy issues are dealt with in more depth in Chapter 3, in 

which simulation results for the accuracy of the Viterbi algorithm for a Needleman- 



Wunsch pair HMM are given. It is shown that the accuracy of the algorithm 

can be predicted, both for the average case (using entropy methods) and for 

specific cases (using posterior probabilities). The performance of the "optimal 

accuracy" algorithm is also assessed in this chapter. A program to calculate 

posterior probability tables and implement the optimal accuracy algorithm for 

profile HMMs is presented in Chapter 4. 

2.4 Hidden Markov models in molecular evolu- 
t ion 

The most commonly asked questions in molecular evolution involve the relative 

or absolute dates of divergence of biological sequences. These questions are 

often answered by fitting time-dependent models to alignments between the 

sequences (see e.g. [DEKM98]). A natural extension is to take advantage of the 

power of HMM algorithms to sum over all alignments by allowing the transition 

probabilities tabx of a pair HMM to be functions of a time parameter T ,  and 

using optimisation algorithms to find the maximum-likelihood value of T .  This 

approach was proposed by Thorne et al JTKF91, TKF921. 

There are two main things that a pair HMM of this kind has to get right: 

the substitution probabilities and the gap probabilities. These will be covered 

in turn. 

2.4.1 Time-dependent substitution matrices 

The use of time-dependent substitution matrices predates the use of HMMs to 

sum over all alignments. The basic idea is that the four nucleotides (or twenty 

amino acids) are states in a completely interconnected Markov chain; transitions 

between the states correspond to residue substitutions and the more time that 

goes by, the more chance there is of making a substitution. In fact the PAM 

matrices are an example of this kind of matrix: the PAM, matrix is just the 

PAMl matrix raised to the r ' th  power [DS078]. 



A generalisation allowing T to take continuous values (rather than just dis- 

crete ones) proceeds as follows [KT75]: let PXY(r)  be the (time-dependent) 

probability that residue X is found to be aligned to residue Y, so that the 

Pxy matrix at time zero is the A x A identity matrix P(0) = I (where A = 4 

for nucleotides and A = 20 for amino acids). Define the rate matrix R by 

SP = RP. Suppose that the eigenvalues of R are {Ax} and that the associ- 

ated right eigenvectors are {ux}; then the solution to the ordinary differential 

equation can be written P = UA(T)U-' , where A(r)  is the diagonal matrix 

A x  Y = Bxu exp [XXT]. 

A general A x A rate matrix can have A2 - A free parameters, but usually 

a smaller parameter set is used. The simplest model would use one parameter 

(apart from the time T), corresponding to the substitution rate - essentially 

a choice of scale for the time parameter. For nucleotide substitutions, this 

is called the Jukes-Cantor model [JC69]. The next simplest is Kimura's two- 

parameter model [Kim80], which allows different rates for "transitions" (substi- 

tutions within the purine (A,G) and pyrimidine (C,T) groups) and "transver- 

sions" (substitutions between those groups). These are observed to occur at 

different rates in nature, with transitions being more common. 

Both the Kimura and Jukes-Cantor models assume a uniform background 

distribution over nucleotides. This is not the case in real organisms. For the 

work described in this dissertation, a modified model due to Hasegawa et a1 

was used [HKY85]. This model allows for a non-uniform background nucleotide 

distribution. The equations for PAX (t) under the Hasegawa model are: 

f Y  f~ 
PAA = f ~ ( 1 +  - f~ exp [-s2t]) + - f~ exp [-(fys2 + fRsl)t] 



where fx is the background frequency of nucleotide X, fy  = fA + fG and 

fR = fC + fT are (respectively) the purine and pyrimidine frequencies, sl is the 

transition rate and sz is the transversion rate. The other probabilities may be 

obtained by rotating the { A ,  C, G, T). 

None of the above models account for the correlations between neighbouring 

bases that are observed in nature. In this dissertation these effects are ignored, 

although they are certainly non-negligible in reality [Bu186]. 

2.4.2 Time-dependent gap probabilities 

Thorne et a1 [TKF91, TKF921 proposed a birth-death process of fragment in- 

sertion and deletion that supplies transition probabilities for a six-state pair 

HMM (in the collapsed state space, where each state is allowed a probability 

distribution over the residues it emits) in terms of a birth and a death rate. 

Although the birth-death model is simple, an even simpler model was used 

for the work described in this dissertation. The HMM used is depicted in Fig- 

ure 2.1. It is essentially the model for Needleman-Wunsch global alignment 

with afine gaps; there are three (collapsed) states, one for matches and two for 

indels. Gaps occur with frequency p~ per residue per strand and their length 

I is geometrically distributed with parameter p ~ :  P r  [l = 1'1 = p$(l - pE) (so 

that the mean length (I) = (1 - pE)-I). The dependence of the gap frequency 

p~ on the time parameter r is p~ = 1 - exp [-gr], where g plays the r81e of 

a gap-open rate. The gap extension parameter p~ does not depend on r. The 

substitution matrix in the match state is also time-dependent, as described in 

Section 2.4.1 of this chapter. 

Although the HMM in Figure 2.1 appears asymmetric (there is a transition 

from Insert to Delete, but not from Delete to Insert) the gap length distributions 

for the two strands are identical and independent (in fact, it is the asymmetry 



Figure 2.1: Hidden Markov model for Needleman-Wunsch global pairwise align- 
ment with affine gaps. The start and end states are not shown. The gap penalty 
is determined by the gap frequency p c  (per residue per strand) and the gap ex- 
tension probability p ~ .  The mean length of a gap is (1 - pE)-l. 



of the model that ensures independence). For a fuller explanation of how the 

evolutionary model leads to the transition probabilities shown in Figure 2.1, see 

Chapter 3. 

2.5 Likelihood derivatives and Fisher scores 

There is a considerable amount of information in the posterior distribution that 

gets thrown away when an alignment is chosen, even if an optimal accuracy 

algorithm is used. This section looks at  some of the ways that this information 

can be usefully digested. 

Potentially the most useful result is that the derivatives of the sequence 

likelihood Pr  [XI t] with respect to the parameters t = {tabx ) can be computed 

from the information in the Forward-Backward matrix. To see this, first write 

the path likelihood (2.1) as: 

where n d x  is the number of times that the alignment uses the transition 

tabx. A more formal definition of nabx is: 

nabx(a) = C 1 
2 : ai-1 = a 
and a i = b  

and Xi = X 

which just says "to find nabx, count the number of times that the i'th step 

of the path is from state a to state b and the i'th residue of the sequence is X". 

The derivatives of the sequence likelihood Pr [Xlt] are then given by: 

= C n a b X  
Pr [a, Xltl 

a  tab^ 



and ai = b 
and Xi = X 

= C  C Pr [a, Xltl 

i a : Ui-1 = U  tab^ 

and ai = b 
and Xi = X 

i.e. the derivatives can be calculated directly from the Forward-Backward 

matrix. 

The expectations E[nabxlX, t] of the counts nabx over the posterior path 

distribution may be related to the derivatives of the sequence likelihood. First, 

note that differentiating (2.10) with respect to tabx gives: 

Therefore the posterior expectations of the n,bx are given by: 

E[nabx 1x3 t] = C nabx (a) Pr  [alX, t] 
a 



The final term on the right - the derivative of the sequence log-likelihood - 

is called the "Fisher score" [JH98]. 

An interesting use of HMMs is as a pre-processing step to kernel-based meth- 

ods such as Support Vector Machines [JH98, Bur98, Mac971. Very crudely, this 

method feeds the Fisher scores into a perceptron which then attempts to dis- 

criminate between sequences from the family that the HMM was trained to 

model and other sequences. It seems that this is a more discriminative measure 

than simply looking at  the likelihood - which agrees with intuition, in that there 

should be more information in the derivatives of the likelihood than in the raw 

Forward score. Another view of this "Fisher kernel" is that the derivatives give 

the perceptron an idea of the nabx and hence of the most likely alignment. A 

theoretical justification of Fisher kernels is offered in [JH98]. 

2.6 Fitting parameters to HMMs 

Two standard tasks in Bayesian analysis using generative models are training 

and (less commonly in biological sequence analysis - though the principle is 

good) model comparison. Both involve exploration of the parameter space {t) 

of the model. Analogous to the Viterbi and Forward algorithms, training in- 

volves finding the most likely parameterisation of the model, whereas model 

comparison involves integrating (or summing) over all possible values of the 

parameters. 

The motivation for training is easy: one wants to find the best set of param- 

eters for modelling sequences and thus recognising homologies. The motivation 

for integrating across the parameter space is perhaps less obvious; the basic idea 

is to put a fair penalty on models with more parameters (the principle of "Oc- 

cam's Razor" [Mac92b]). Optimising over the parameter space would not nec- 



essarily be fair, even if a prior distribution over parameters were used, because 

models with more parameters also have more uncertainty in the maximum- 

likelihood value of those parameters. A fair way to deal with parameter spaces 

of differing dimensionality is to integrate over the lot. An example of a com- 

parison between hypotheses with different numbers of parameters may be found 

in Chapter 6, where time-dependent models are fitted to divergent intron se- 

quences. 

A prior distribution over the parameter space Pr [t] is required if different 

parameter values are to be compared. It  will be assumed in this section that 

this prior is adequately modelled by a Dirichlet distribution with pseudocounts 

a = {aabx} corresponding to the transition probabilities t = {tabx} (see e.g. 

[DEKM98]). This distribution will be written D ( t  la). 

For HMMs, both training and model comparison are trivial if the alignment 

a is known. In this case, the likelihood Pr [a, Xlt] is just the multinomial dis- 

tribution (2.10) whose coefficients nabx may be obtained from the alignment 

as in equation (2.11). The posterior distribution is a Dirichlet with parameters 

nabx + aabx. The tabx that maximise this probability are given by: 

The integral of the likelihood over parameter space is the normalising factor 

for the Dirichlet posterior: 

J na,b,x r(aabx + nabx) 
Pr [XI = Pr [a, Xlt] Pr [tldt = (2.16) na r(Cb, ,  aabx + nabx) 

where r (x)  is the gamma function. The extension of equations (2.15) and 

(2.16) to the case where the alignment a is unknown will be tackled below; 

essentially, the Dirichlet posterior becomes a mixture of .- N~ Dirichlet~ and 

the maximisation/integration is most easily handled approximately. 



2.6.1 Maximising the likelihood in parameter space: train- 
ing 

When the alignment is unknown, the counts nabx must be treated as missing 

data. A powerful algorithm for maximising the likelihood of a model with 

missing data is the expectation-maximization (EM) algorithm; the application 

of this algorithm to HMMs is called the Baum-Welch algorithm. 

The basic idea of Baum-Welch is to calculate expected values E[nabx IX, t] 

for the counts nabx given a particular value of the parameters t using equation 

(2.14) (the expectation step), then to maximize the sequence likelihood with 

respect to the parameters by plugging these expected counts back into equation 

(2.15) to give new values for the parameters (the maximization step). 

It can be shown that both steps of this procedure increase the sum of the 

sequence log-likelihood and the Kullback-Leibler divergence between successive 

posterior distributions for the nabx [NH93]. This sum is analogous to a varia- 

tional free energy in statistical mechanics. 

A problem with EM is that it can get stuck in local maxima of the likelihood. 

Modifications of Baum-Welch that attempt to address this problem include noise 

injection during the estimation of the nabx [KBMf 94, HK961 (or the related 

technique of sampling the tabx from the tempered Dirichlet posterior rather than 

taking the mean), Gibbs sampling [LAB+93] and simulated Viterbi annealing 

[Edd95]. 

If the tabx are not independent variables but can be expressed parametrically 

in terms of independent variables (such as a time parameter), then equations 

(2.14) and (2.15) will no longer apply. In this case it should still be possible 

to find the derivatives of the sequence likelihood with respect to the indepen- 

dent variables, by applying the chain rule to (2.12). Standard gradient-ascent 

algorithms can then be applied; for examples of such algorithms see [Bis95]. 



2.6.2 Integrating the likelihood over parameter space: model 
comparison 

If the t a b X  are independent variables, one way to estimate the integral Pr [XI = 

1 Pr [XI t]D(t Ja)dt is by importance sampling [Nea98]. Roughly speaking, this 

works as follows: sample points in parameter space t are generated from the 

Dirichlet prior distribution D(tla), as described in [DEKM98]; the likelihoods 

Pr [Xlt] are calculated for each point; these likelihoods are then averaged to 

estimate Pr [XI: 

1 
Pr[X] = lim --CPr[Xlti] wherePr[ti  = t] ~ D ( t l a )  

N + m N  
(2.17) 

The iteration can be stopped when, for example, the change in the estimate 

for P r  [XI becomes sufficiently small. 

Various modifications to this procedure might improve its efficiency. For 

example, it is possible to adapt the prior on-the-fly as more data points are 

seen; this is known as annealed importance sampling [Nea98]. An alternative 

approximate procedure is Markov chain Monte Carlo sampling [Nea96]. 

Another improvement to the importance sampling method would be to re- 

place the P r  [XI ti] term on the right-hand side of (2.17) with a more sophisti- 

cated estimate for P r  [XI. Speculatively speaking, it might be possible to derive 

this estimate by calculating expectation values for the counts nabx using equa- 

tion (2.14) and plugging these expectations into equation (2.16). By analogy 

with the Baum-Welch algorithm, this might be hoped to speed up convergence 

as it seems to take more account of the nature of the likelihood distribution. 

If the t a b X  are not independent, but instead are parametric functions of a 

set of independent variables, then importance sampling can proceed by Sam- 

pling from a prior over this independent variable set. If there are just a few 

independent variables (such as a time parameter) it may be more convenient 

just to take a fixed set of sample points from a regularly spaced grid, though in 



general this can be expected to perform slightly worse than random sampling 

[Neal. Notwithstanding, this is the method used in Chapter 6. 

2.6.3 Incremental Baum-Welch and sparse envelopes 

The view of the EM algorithm outlined in Section 2.6.1 of this chapter and 

presented in full in [NH93] suggests that, since the E and M steps may both 

be viewed as incremental maximizations of the same "variational free energy" 

function, even more incremental variants of the algorithm (where the variational 

free energy is improved, but not quite optimised, with respect to the probability 

distribution over the nabx at  each M-step) may speed up computation and hence 

convergence. 

There are at  least two ways this could be applied to the Baum-Welch algo- 

rithm for HMM training. One way would be if a set of K sequences {Xt)f='=l  

were being used to train the HMM, and the counts nabx were obtained by sum- 

ming the individual sequence counts, i.e. naax = ~ f = ~  nabx(k); in this case, 

the individual sequence counts nabx(k) could be updated one at  a time, and 

the tabx re-estimated after the Forward-Backward algorithm was performed on 

each sequence, so that the dynamic programming M-step was only performed 

on each sequence every K'th Es tep  of the iteration. This corresponds to the 

incremental algorithm described in [NH93]. 

The second proposed optimisation to Baum-Welch can work on just one se- 

quence. It can be applied not just to Baum-Welch but also to approximate 

numerical integration over the parameter space; it also works when the tabx are 

not independent but are parametrically dependent on a reduced independent 

variable set. The optimisation corresponds loosely to the sparse algorithm de- 

scribed in [NH93]; here, it is called the "sparse envelopes" method and may be 

explained as follows. 

The basic idea is that after the first run of the Forward-Backward algorithm, 

it should be obvious which alignments are the most probable, since these align- 



ments will lie in the regions of the dynamic programming matrix where most of 

the probability distribution Pr [(i o a)lX, t] is concentrated. Accordingly, cells 

that have extremely low probability can be "frozen" at their low-probability 

levels and not updated in subsequent runs. In practise it is often easier to freeze 

the likelihoods rather than the probabilities of these cells; alternatively, they 

can just be set to zero. 

The set of cells that is chosen for inclusion in future updates is called the 

envelope. The choice of envelope can be managed as follows. For each residue i 

in the sequence, the posterior probabilities P r  [(i o a)(X, t] (corresponding to a 

column in the dynamic programming matrix) must sum to unity. Choose some 

threshold e < 1 and find the lowest value of p such that the all the posterior 

probabilities Pr [(i o a)lX, t] that are greater than p add up to more than 1 - e, 

1.e.: 

p(i) = min{p1 : Pr[( ioa) lX, t ]  
j:Pr [ ( ioa)  IX , t ]2p1  

The cells to be masked out for this value of i are those cells whose posterior 

probability is lower than p(i). For pair HMMs, the dynamic programming ma- 

trix becomes a cube and the co-ordinates of a cell are (h o i2 o a) rather than 

(i o a): each value of il corresponds to a "slice" of the dynamic programming 

matrix since there are two parameters to sum over (i2 and a) rather than just 

one (i). It may be convenient not to mask out quite all of the cells whose proba- 

bility is lower than p', either to ensure that there is always a valid path through 

the matrix, or to avoid storing complicated masks (a convenient alternative for 

pair HMMs is just to keep track of an interval iyin - iyax for each value of i l ,  

and mask out cells that fall outside this interval). 

The approximation of the sparse envelopes method is rather similar to con- 

ditioning the integral over parameter space on the Viterbi alignment as in (2.16) 

in that, if the Viterbi alignment has probability greater than 1 - E ,  the envelope 

will contain just the Viterbi path. However, sparse envelopes seem slightly more 



principled, as they allow a variable tradeoff between summation over suboptimal 

alignments and high computation time. 

The incremental and the sparse variants of Baum-Welch are not guaranteed 

to converge on the same local minimum that the standard EM algorithm is 

guaranteed to find; indeed, the incremental algorithm can fail to converge at all, 

instead oscillating between results. However, there are plausible arguments that 

these algorithms may find the neighbourhood of the minimum more quickly. A 

sensible strategy might be to run several iterations of the approximate algorithm, 

then return to the standard EM algorithm for the last few iterations. This should 

combine the speed advantages of the approximate algorithms with the accuracy 

advantages of the exact algorithm. 

2.7 Score and length distributions of an HMM 

It may be useful to know the probability distribution of the scores of the paths 

that an HMM emits. For example, if the HMM is being used to search for 

instances of a sequence family, the score distribution can be used to estimate 

the probability that a true family member will score below the cutoff. An 

elementary result from the theory of Markov chains allows calculation of any 

number of moments of the score distribution. 

Note that the following derivation assumes there is at  most one transition 

between any pair of states. The HMMs considered so far have allowed multiple 

transitions between a pair of states, so long as they each emit a different residue. 

However, any HMM with multiple transitions can be converted to an HMM with 

single transitions by simply augmenting the state space, so no generality is lost 

in this assumption. 

Suppose that the score of the transition from state a to state b is a a b  (if the 

score is a straightforward log-likelihood, then a a b  = log tab and the expected 

score will be the entropy of the model). Let fa(s) be the probability density 

function of the score s starting from state a. Then: 



b 

Let $,(k) be the Fourier transform of s ,  i.e. $,(k) = Ea [exp [zks]] where 

z = fl. The equivalent of equation (2.18) for $,(k) is: 

$a ( k )  = tab exp [zkaab] $6 ( k )  (2.19) 
b 

which is a matrix equation (although the entries in the matrix are functions 

of k ) .  

Since $,(k) is the characteristic function of fa ( s ) ,  the n'th moment of s 

can be evaluated by taking the value of the n'th derivative of 4, ( k )  at k = 0. 

Differentiating equation (2.19) n times and setting k = 0 gives: 

This is a matrix equation which may be solved for any n by inverting the 

transition matrix tab and setting EE[sn] = 0. It is thus possible to calculate 

any number of moments of the score distribution from any state of the model. 

Calculating the first two moments is sufficient to approximate the distribution 

with a Gaussian [KT75]. 

The result can be generalised to the case where the g a b  are themselves ran- 

dom variables by replacing the n'th power of a on the right-hand side of (2.20) 

with the n'th moment ( 0 2 ~ ) .  
By setting all the aab to 1 and identifying the score distribution from a state 

with the waiting time from that state to the end state, equation (2.20) can 

be used to derive constraints for modelling (sensibly shaped) sequence length 

distributions to arbitrary precision. 



It was mentioned above that if g a b  = log tab, then the expected score of a 

path is the entropy of the HMM. More correctly, this score is the entropy of the 

joint distribution over paths and sequences Pr [a, XI. The variance of the score 

is analogous to fluctuations in the statistical mechanical entropy. To find the 

entropy of the marginal distribution over sequences Pr [XI is more difficult, but 

more relevant to the question of whether a sequence will score high enough to be 

observed, since the sequence likelihood Pr [XI is the score returned by the For- 

ward algorithm (and will be close to the Viterbi score for many cases of interest; 

see the comment at  the end of Section 2.3.2 of this chapter). A similarly difficult 

problem is to find the relative entropy D(& l~F2) between sequence probability 

distributions p, E Pr [XI M, J generated by two alternative models Ml and Mz 

(for example, a null model and a model of a protein domain). Implicitly, when 

programs such as HMMER [Edd96] fit extreme-value or other distributions to 

the observed scores from a database search, they are heuristically estimating 

the fluctuative behaviour of the relative entropy. A very simple approximation 

towards calculating the relative entropy fluctuations is described in Chapter 3. 

A more sophisticated approach has been developed by Hwa and LGsig [HL96], 

who apply renormalisation group techniques from the theory of critical phenom- 

ena in statistical physics to find the scaling behaviour of various properties of 

the Viterbi path. 

2.8 Generalised HMMs 

A useful generalisation of the HMMs described here is to relax the idea that 

each transition tabx emits a single residue X and allow each transition to have 

a probability distribution over the length and content of the sequence it emits. 

This is called a "generalised HMM" after [KHRE96]. 

The simplest example of this kind of system keeps the basic structure of the 

HMMs described above, but instead of the length of the sequence emitted by 

each state being geometrically distributed like a Markov waiting time [KT75], 



a flat distribution for the length of sequence emitted by each state is used. The 

total emitted sequence length is conditioned on as a separate constraint. A 

prior can be put on the total sequence length, although it is usually an observed 

quantity and so the prior is only relevant during model comparison. 

This kind of generalised HMM can be obtained from the HMMs described in 

Section 2.2 of this chapter as follows. Consider the simple two-state (Loop,End) 

model shown at the top of Figure 2.2. The model starts in the Loop state 

and at each step it either returns to the Loop state with probability 1 - E or 

it moves on to the End state (and stops there) with probability e. On every 

transition a residue is emitted. The probability that the model emits L residues 

is P r  [L] = (1 - E ) ~ - ' E .  Consider what happens as e becomes small. The model 

will tend to stay in the Loop state for longer and longer times and the probability 

distribution of the emitted sequence length will get flatter and flatter. Formally, 

as E -+ 0, terms of O(E') become negligible and Pr [L] + e. 

So it is possible to design a very simple HMM where the probability of 

getting a sequence of a particular length L is almost independent of L, but the 

price one pays is that the likelihood of any individual alignment is very small - 
virtually zero, in fact. This is because L could be huge, and the probabilities 

of all possible values of L have to add up to one. However, given a sequence 

of a particular length L, Bayes' rule specifies how to work out the likelihood 

of an alignment a given the length L by conditioning on L: one simply has 

to divide the joint likelihood by the marginal length likelihood, i.e. Pr  [alL] = 

Pr [a, L]/ Pr [L]. Since Pr [L] N E, this corresponds to cancelling out the final e 

from the alignment likelihood. This can be woven seamlessly into the dynamic 

programming algorithm by pretending that the Loop+Loop and Loop+End 

transitions both have a "probability" of 1. 

Now consider the three-state (Loopl, Loop2, End) model shown at the bottom 

of Figure 2.2. The same trick can be done to flatten the length distribution from 

each state by letting E + 0. However, the probability of getting a particular 



Two-state model 

Figure 2.2: Looping models that tend towards flat length distributions as E -+ 0. 

sequence length L is now P r  [L]  = ( L  - 1)  (1  - E )  L - 1 ~ 2  and as E + 0 then 

P r  [L]  + ( L  - 1 ) ~ ~ .  The extra factor of E arises because there each path now 

has to  make two low-probability transitions to reach the End state, rather than 

one. The extra factor of L - 1 arises because there are L - 1 different ways that 

a path can get to the End state in L steps, depending on when it chooses to 

move from Loopl to Loop2. 

In general, for a k-state model (Loopl . . .  LOOP^-^, End) there will be k - 
2 such choices and ( ) = & ways of getting to the End 

state in L steps. ~h~ correct-length-conditioned alignment likelihood Pr  [alL] 

can be computed by doing dynamic programming with all the &-transitions 

artificially set to 1 and dividing the result by ( ) Once the conditional 

distribution Pr [alL] has been obtained, it can be multiplied by a more realistic 

prior distribution for L if this is desired. 

The model underlying the Smith-Waterman algorithm with affine gaps is an 

example of a generalised HMM, since there is no prior length distribution on the 

flanking states which distinguish it from the Needleman-Wunsch model [SW81]. 

However, it is not a linear architecture like the HMMs in Figure 2.2 since the 

reciprocal transitions between the match and indel states form an internal cycle. 

Also, the affine gap costs put implicit priors on both the length and the number 

of gaps. A natural extension is to roll out the model, expanding the state 
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Figure 2.3: Unrolling the states of the Smith-Waterman model leads to the 
Bayes block aligner. 

space up to a size proportional the maximum number of gaps as illustrated in 

Figure 2.3. Prior distributions can then be placed on the sequence lengths and 

the number of gaps. This is called the "Bayesian block aligner" [ZLL98]. 

The probability distribution of the sequences emitted by a state of a gen- 

eralised HMM does not have to come from a length-conditioned HMM; more 

complex probabilistic models can be used, such as neural networks. A review 

of the use of generalised HMMs in gene-finding is provided in [Hau98]. 



Chapter 3 

Dynamic Programming 
Alignment Accuracy 



3.1 Introduction 

Alignments of biological sequences generated by computational algorithms are 

routinely used as a basis for inference about sequences whose structure or func- 

tion is unknown. The standard approach is to find the best-scoring alignment be- 

tween a pair of sequences, where the the score rewards aligning similar residues, 

and penalises substitutions and gaps. The best-scoring alignment can be found 

by dynamic programming [NW70]. Other approaches that are frequently used, 

such as FASTA [LAK89] and BLAST [AG96], approximate this. 

An important question for a biologist faced with the results of such a program 

is: How accurate is the proposed alignment? It is clearly desirable that an 

alignment algorithm return the most accurate alignment it can, but the notion of 

alignment accuracy implies the existence of a "correct" alignment, the definition 

of which is non-trivial. One approach is to construct a definitive structural 

alignment (based on crystallographic data and/or human judgement) which 

can then be compared with alignments returned by the algorithms in question. 

However, this is a difficult process to automate and it is not always clear what 

is really wanted biologically. 

Another approach is to take a closer look at the inherent properties of the 

alignment algorithm itself. One can view the algorithm as a system for iden- 

tifying the relationships between two sequences which have diverged due to 

random mutations (substitutions and indels) [TKF92]. By repeatedly simulat- 

ing the experiment of randomly mutating a pair of initially identical sequences, 

then feeding the two sequences into the alignment algorithm, one can obtain 

a measure of the accuracy of the algorithm. In this paper the results of such 

empirical experiments are fist given. A theoretical estimate of the accuracy is 

then developed, and shown to provide a good approximation to the observed 

behaviour. A table from which accuracy values can be predicted for commonly 

used scoring systems is also given. Finally it is described how to calculate the 

expected accuracy of a given alignment, and how this can be used to construct 



an optimal accuracy alignment algorithm which performs demonstrably better 

than standard dynamic programming. 

Other attempts to quantify and predict the accuracy of alignments have 

mainly been empirical and have focused on multiple alignments (MVF941, (Got961. 

Mevissen and Vingron [MV96] have addressed pairwise alignment reliability 

recently, and Hwa, Lassig and Drasdo have developed theoretical approaches 

complementing those presented here [HL96, DHL97bl. 

3.2 Definitions and notation 

This chapter will consider in detail the global alignment in which the entire 

length of the two input sequences must be aligned [NW70], although most of 

the results obtained will be equally applicable to the corresponding algorithms 

for local alignment [SW81]. 

3.2.1 Definition of the alignment fidelity 

In this chapter, a pairwise alignment a between two sequences (X,Y) is de- 

scribed by the set of aligned residues or couplings (i o j )  between residue i of X 

and residue j of Y. 

Given a correct alignment areal, define the fidelity F(a)  of a as the fractional 

overlap between a and areal, i.e.: 

F(a)  = la n areal I 
lareal I 

This corresponds to the partial overlap fraction metric defined in Chapter 2. 

3.2.2 Choice of scoring parameters 

Let us first treat the simplest biologically-relevant case: global alignment of two 

DNA sequences ( X , Y )  with linear gap costs and a "flat" substitution matrix 

(one that doesn't differentiate between e.g. purine-purine and purine-pyrimidine 

substitutions). The score S, for a particular alignment a is then: 



where a, b and c are (respectively) the number of match, mismatch and gap 

columns in the alignment a ,  and a, ,tl and y are match, mismatch and gap scores 

(typically but not necessarily with a > 0, P < 0, y < 0). 

Although the score S, depends on three free parameters (a ,  P and y), the 

maximum scoring alignment a,,, only depends on one effective parameter. To 

see this, note first that global alignments must account for every residue in X 

and Y, and so: 

where Lx and Ly are the lengths of X and Y. Now consider the transformed 

score SL: 

where 

Since SL differs from Sa only by an offset and a scaling factor, both of which 

are independent of the particular alignment a ,  it follows that the ordering of the 

scores Sa of all possible alignments a (and hence the choice of maximally-scoring 

alignment a,,,) is determined uniquely by A. 

The parameter X can be considered to be an effective gap penalty. When 

X > $, then /3 > 27 and the highest-scoring alignment will be minimally gapped 

as mismatches will be favoured over gaps. When 0 < X < $, then ,8 < 27 < a 

and gap regions will score higher than mismatches, with the consequence that all 

substitutions will be misidentified as pairs of indels. When X < 0, then 27 2 a 

(assuming a > p) and gap regions will score higher than matches, which is 

clearly disastrous [VW94]. 



Figure 3.1: (a) Coupled Markov model of sequence evolution. Each sequence 
is represented by a semi-independent Markov chain, coupled by a point sub- 
stitution model. (b) The corresponding finite state automaton for sequence 
alignment. 

3.2.3 Probabilistic interpretation 

Figure 3.la shows a probabilistic model of sequence evolution that will be seen 

to correspond to the alignment algorithm described in Section 3.2.2. Each se- 

quence is modelled by a hidden Markov chain with two states, labelled coupled 

and uncoupled. When both sides of the model are in the coupled state, aligned 

residues are emitted in pairs, one on each side. When either side is in the 

uncoupled state, unaligned residues are emitted singly on that side. Coupled 

emissions stem from a common ancestral residue; the joint probability distribu- 

tion for the residue pair is derived from a point substitution model. Uncoupled 

emissions are unaligned and independent. Transitions from the coupled into the 

uncoupled state occur with probability p ~ ,  as do self-looping transitions in the 

uncoupled state. (N.B. for f i n e  gaps, the coupled+uncoupled transition still 

has probability p ~ ,  but the self-looping uncoupled+uncoupled transition is as- 

signed the independent gap-extension probability pE .) The independence of the 

two Markov chains is restricted by the requirement that neither chain is allowed 

to enter the coupled state on its own (both must enter it simultaneously). 



3.2.4 A simple point substitution model 

For the experiments described below, the following simplified one-parameter 

model of nucleotide substitution was used. Start with identical residue pairs, 

one in each sequence, chosen at  random from the set {A,C,T,G). For each of 

the two residues, replace it with a randomly-chosen nucleotide with probability 

p s .  The replacement nucleotide has a one in four chance of being identical to 

the residue it is replacing. The probability qxy  of the residue pair (X, Y) being 

emitted in the coupled state is thus: 

The probability qx of the residue X being emitted in the uncoupled state 

is: 

Note that if 

where k is a point substitution rate and t is a time-like parameter, this model 

is identical to that proposed by Jukes and Cantor [JC69]. 

3.2.5 Relationship between probabilistic model and align- 
ment algorithm 

Figure 3.lb depicts a stochastic finite-state machine for traversing the com- 

bined state space of the coupled Markov chains of Figure 3.la. The match state 

of the automaton in Figure 3.lb emits coupled residue pairs in both sequences, 

whereas the insert and delete states emit uncoupled residues in X and Y respec- 

tively. Note the asymmetry of the insert+ delete transition, which is required 

to preserve the independence of the gap length distributions in each sequence. 



The automaton in Figure 3.lb is itself a hidden Markov model, albeit one 

which models two sequences rather than one. Alignment of sequences to hid- 

den Markov models is performed using the Viterbi dynamic programming algo- 

rithm. To identify the most likely alignment a for a pair of sequences related 

under the simple indel model, one uses the Viterbi algorithm to align the se- 

quences to the automaton in Figure 3.lb. This turns out to be mathematically 

equivalent to the standard (Needleman-Wunsch) alignment algorithm; that is, 

Needleman-Wunsch finds the most likely set of ancestral residue couplings under 

the probabilistic mutation model given a pair of sequences (X,Y). 

Assuming the substitution model described in Section 3.2.4, and using the 

scoring notation of Section 3.2.2, it is found that the alignment score S, is 

equal to the posterior log-likelihood of the sequence pair if the following match, 

mismatch and gap scores are chosen: 

a = log (1 - pcI2(1 + 3 0  - PS)') 
16 (3.5) 

p = log (1 - P G ) ~ ( ~  - (1 - P S ) ~ )  
16 (3.6) 

PG y = log - 
4 

If one is not interested in the exact score of the alignment obtained, but 

only in ensuring that its score is maximised, and if one restricts oneself to 

global alignments, then one need only specify a single scoring parameter such 

as the parameter X defined in (3.2). Denote by 1 the probabilistic value for A, 

which is obtained by substituting equations (3.5)-(3.7) into equation (3.2): 

Given that 1 returns the alignment with the highest log-likelihood under the 

generative model, it is natural to predict that it is the optimal value of X for 



reconstructing the correct alignment, in the sense that it maximises the fidelity 

F ( a m a x >  - 

3.3 Results 

3.3.1 Simulation 1: Optimisation of the alignment fidelity 
with respect to the scoring scheme 

In order to test the prediction that ;\ is optimal, 50 pairwise alignments were 

randomly generated, each with 1000 aligned residue pairs plus gap regions, ac- 

cording to the evolutionary model of Section 3.2.3 with p~  and p s  set to a range 

of different values. The pairs of sequences thus generated were then indepen- 

dently re-aligned by the Needleman-Wunsch algorithm using a range of different 

values of A, and the fidelities of the returned alignments were measured. With 

this procedure the value of X that is optimal for reconstructing the alignment 

can be estimated and compared with the value ;\ predicted by equation (3.8). 

3.3.2 Simulation 2: Measurement of the alignment fidelity 

The sequence generation procedure of simulation 1 was performed at various 

different values of p o  and p s  and the sequences re-aligned using X = ;\. The 

fidelity was measured and the process repeated until the mean re-alignment 

fidelity was known to within an error margin of f 0.1 (this was a 95% confidence 

limit, assuming the fidelity of an alignment to be a Gaussian distributed random 

variable). 

3.3.3 The probabilistic prediction 1 is supported experi- 
ment ally 

Figure 3.2 shows values of for different values of p~  and p s .  Note that when 

;\ drops below zero, effective reconstruction of the alignment is impossible, as 

gaps score higher than matches. This regime is indicated by the shaded region 

in Figure 3.2. 



Figure 3.2: Contours of constant A in mutation parameter space. is the 
effective gap penalty. The shaded region on the right-hand side of the plot 
represents < 0, where pairs of indel events are more likely than matches and 
accurate alignment is effectively impossible. 

Figure 3.3 shows how the fidelity F changes as a function of X when pc  = 0.1 

and ps = 0.2. For X < 0 the optimal alignment is all gaps and the fidelity is 

zero; for high X the optimal alignment is minimally gapped and the fidelity 

flattens out, eventually reaching a plateau. In between these extremes there is 

a value of X which maximises the fidelity. 

By definition, setting X = i will find the most likely alignment, but there is 

no proof that this alignment will be the most faithful one. Figure 3.4 plots the 

observed optimal values of X against the predicted values A. There is a good 

correspondence, supporting the hypothesis that the likelihood scoring approach 

is valid. 

3.3.4 The fidelity decreases as pc and ps are increased 

The graphs in Figure 3.5 show the dependence of the maximal fidelity F on the 

gap probability p c  and the substitution probability p s .  Figure 3.5a plots F as 



Figure 3.3: The fidelity F of alignments returned by dynamic programming for 
a range of values of the effective gap penalty A, with p c  and ps  set to 0.1 and 
0.2 respectively. When X - 0, the optimal alignments are all gaps and F + 0. 
As X + oo, the optimal alignment tends to become minimally gapped, causing 
F to  plateau. The data in this Figure are from simulation 1. 



Figure 3.4: Values of X which are observed from the simulation data to be 
optimal are compared with the values ;\ predicted by the likelihood scoring 
approach. There appears to be a strong correlation, with slope unity (solid 
line). The data in this Figure are from simulation 1. 

a function of p~ at various different constant values of p s  and Figure 3.5b plots 

F against p s  at different constant values of p~ . 
It can be seen that in general F decreases monotonically as the mutation 

parameters increase. The dependence of F on p~ and p s  is nearly linear up 

to around (pG , ps) - (0.2,0.2). Notable deviations from this behaviour are ob- 

servable, for example at  (pG, ps) E (0.2,0.04) and again at  (pG, ps) E (0.3,O. 1). 

At both these points the fidelity appears to be discontinuous. Referring back to 

Figure 3.2, it is seen that these points are on the locus X = 0.5, which is recalled 

from Section 3.2.2 as the point at  which mismatches become more likely than 

gaps. So the discontinuity can be identified with the scoring scheme entering a 

region of parameter space where substitution events are recognised. 



Figure 3.5: These graphs show the variation of the fidelity F (a) as a function of 
p~ at  fixed ps,  and (b) as a function of p s  at  fixed p ~ .  Note the discontinuities 
a t  (pc, ps) - (0.2,0.04) and (0.3,0.1), explained in the text. The data in this 
Figure are from simulation 2. 

3.3.5 An analytic approximation to the alignment fidelity 

Motivated by the near-linearity of the fidelity a t  low (pG,ps), an analytic ap- 

proximation to the alignment fidelity can be developed. 

To follow the analysis of the following section it is useful to be able to 

view an alignment geometrically, as a path through a dynamic programming 

matrix. The horizontal and vertical axes of the matrix represent the two aligned 

sequences X and Y. A global alignment a is represented by a path from the top 

left to the bottom right of the matrix connecting all the coupled residue pairs 

(x, y) E a. Diagonal segments of the path correspond to match and mismatch 

regions and horizontal and vertical segments correspond to gaps. The fidelity 

of an alignment path a is its fractional overlap with the correct alignment path 

areal. 

When the mutation probabilities are small, the Viterbi alignment path a,,, 

returned by the dynamic programming algorithm is tightly bound to the correct 

path areal. The main source of errors is misplacement of gaps by the algorithm, 

as illustrated in Figure 3.6. This effect is called edge wander. The fidelity in 

this regime is governed by the average displacement distance of each gap (the 

mean edge wander) and by the frequency of gaps. The next section describes 
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Figure 3.6: Edge wander - minor deviation of the Viterbi alignment path from 
the correct path - is the principal source of error in alignments between closely 
related sequences. In this toy example, the historically correct alignment (solid 
line) contains a mismatch next to an indel, but the Viterbi algorithm inevitably 
misaligns the two T residues (dotted line). The Viterbi edge wander e is defined 
to be the number of residues by which the gap is misplaced (here e = 1). 

how to calculate the mean edge wander. 

3.3.6 Calculation of the edge wander 

Let the edge wander e be the displacement, in residues, of a gap in some near- 

perfect alignment a compared with the same gap in the correct alignment. Let 

S(e) be the score of that segment of a which extends E residues to the left 

and right of the correct location of the gap, where E is some integer such that 

( l l p ~ )  >> E >> e. If v k  and wk are the individual scores of the k'th residue 

pairings along adjacent diagonals (v and w) of the dynamic programming ma- 

trix, with k = 0 at  the correct location of the gap (so that, in the notation of 

Section 3.2.1, v k  corresponds to residue pairing (i + k o j + k) and wk to residue 

pairing (i + k + 1 o j + k), where i and j are such that the correct gap location 

sits between residue pairings (i o j) and (i + 2 o j + I)) ,  then one can write: 



E where y is the gap score, Sw = Ck=-E+l wk is the score along diagonal w,  

and R(e) = C;=-E+l (vk - wk) is the difference in score between alignment a 

and diagonal w, minus the gap penalty 7. 

Note that since the vk and wk are independent random variables, R ( e )  is 

a Markov process. (Strictly, the series (uk , uk+l, . . .) is not independent of the 

series (wk, wk+l, ...), since vk and wk represent residue pairings in the same row 

of the dynamic programming matrix. However, R(e) is still Markov.) 

The vk and wk are not identically distributed for all k, since the correct path 

crosses over from v to w between k = 0 and k = 1. For convenience rewrite 

vk and wk in terms of the scores tk and s k  of residue pairings on and off the 

correct path, respectively: 

An expression for R(e) can now be written in terms of r k  G s k  - tk: 

The random behaviour of R ( e )  is illustrated in Figure 3.7. On average, R(e) 

will be zero at e = 0 and negative elsewhere; in any specific case, however, the 

maximum of R(e) may be some distance away from e = 0 and this is where the 

alignment algorithm will place the gap. 
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Figure 3.7: Variations in the alignment score when a gap is moved away from 
its correct position by sliding it along a diagonal. The solid line shows the mean 
behaviour: on average, the score will decrease as the gap is moved away from 
its correct position, so the score is maximal at  e = 0. The dotted lines show 
examples of the behaviour in specific cases. Due to random fluctuations, the 
peak of R(e)  may be somewhere away from e = 0. This means the optimal- 
scoring position for the alignment algorithm to place the gap will not be the 
correct position. 



The joint probability distribution function (p.d.f.) q(s, t) of s and t depends 

on the joint probability distribution qxy of correlated residue pairs and the 

prior probability qx of individual residues, defined in (3.3) and (3.4): 

where d(x) is the Kronecker delta function: 

For convenience the scores are here written as log odds-ratios with respect 

to a "null" model whereby all residues are uncorrelated; this does not affect the 

final result. 

The p.d.f. p(r )  of r s - t is derived from c(s, t): 

Now consider the Viterbi alignment a,,. Since this is the highest scoring 

alignment, the Viterbi edge wander emax is given by: 

emax = argrnaxS(e) = argmaxR(e) 
e e 

i.e. the edge wander is determined by the behaviour of R(e). If the peak of 

R(e) is ambiguous, so that there are two or more possible values for argmax, R(e), 

then em, is defined to be the largest of those values. 

Let E(e) be the p.d.f. of em,: 

Utilising the Markov property of R(e), factorise E(e) by splitting the process 

(3.9) into three parts, cutting at k = 0 and k = e and summing over allowable 

values of the difference y = R(e) - R(0): 



where CL, CR, XL and XR are bounding probabilities defined on sums of r k  

(C signifies a cumulative distribution and X an exact distribution, and the L 

and R suffices mean "left of the peak" and "right of the peak"): 

n 

CL(x, z) = Pr [Vn E {I, 2, ..., x) : r k  5 z] 
k = l  

Z 

XL (x, y, Z) = ~ r [ x ( - T I )  = 3 and 

2 

XR(X, y, z) = ~ r [ x ( - r k )  = y and 
k=l  

n 

V n  E {I, 2, ..., z} : x ( - r k )  < z] 
k = l  

The CL, CR, XL and XR can be found by recursive decomposition, separating 

the first step from the (x - 1) succeeding ones: 

CTsZp( r )C~(x  - 1,z  - r )  for x > 0 
for x = 0 

C,,, p(r)CR(x - 1, r - r )  for x > 0 
for x = 0 



PAM80 
PAM120 
PAM160 
PAM200 
PAM250 
BLOSUMlOO 
BLOSUM75 
BLOSUM62 

Table 3.1: Edge wander for various common amino acid substitution matrices. 

X L ( ~ , Y , ~ )  = 
C,>- ,p( r )X~(x  - l , y + r , z + r )  for x > 0 { a ( ~ i  for x = o 

'&-, p ( r ) X ~ ( x  - 1, y + r ,  z + r )  for > 0 
for x = 0 

where 6(y) is the Kronecker delta again. 

A program edge has been written to calculate the mean absolute edge 

wander (lei) for various common substitution matrices; the results are listed in 

Table 3.1. To find the expected fidelity given the mean edge wander, use the 

following formula: 

'C++ source code for the edge program is available at 
http://wvw.sanger.ac.uk/Users/ihh/edge.html 

http://wvw.sanger.ac.uk/Users/ihh/edge.html


Figure 3.8: The fidelity data of Figure 3.5a (dashed lines), plotted along with 
the predictions of the edge wander theory (solid lines). Near p ~  - 0, the edge 
wander theory always slightly overestimates the fidelity. When p s  is small, 
this trend continues for higher p c ,  but for higher p s  (notably p s  = 0.5) the 
edge wander quickly exceeds the mean path fragment length and the theory 
consequently underestimates the fidelity. 

taking p ~  to be the observed gap frequency per strand. Alternatively, p c  

can be calculated from the gap opening penalty (-g, where g > 0) using the for- 

mulae in the third column of Table 3.1. The values in the final column (labelled 

FgZlz) are the expected fidelities when g = 12. Note that the prediction for 

F is independent of the particular gap model being used (e.g. linear or affine). 

Equations (3.11)-(3.14) describe a random walk with an absorbing barrier and 

a reflection at the origin. These equations appear amenable to further manip- 

ulation to speed up calculations; for example, the distribution (3.10) might be 

successfully approximated by a more tractable distribution such as a Gaussian. 

Figure 3.8 compares the predictions of this section with some of the results 

from simulation 2. There is a good correspondence between the edge wander 

predictions and the simulation data. 



3.3.7 Estimating the fidelity of a particular alignment 

Given a probabilistic model such as the one shown in Figure 3.1, the posterior 

probability of a particular coupling (i o j )  can be calculated: 

The sum is over all paths that contain this coupling and is straightforward 

to compute using the Forward-Backward algorithm described in Chapter 2. 

Using this result one can write down an expression for the expected overlap 

A(a) between a given alignment a and paths sampled from the posterior distri- 

bution. This is equivalently the expected number of correct matches in a ,  which 

is a natural measure of the overall accuracy of a. 

where the sum is over all aligned pairs in a. 

It is also possible to write down M, the expected number of matches in a 

path sampled from the posterior distribution (and the expected total number 

of matches in the real alignment): 

all (i o j )  

The above two quantities are posterior expectations of the numerator and 

denominator of (3.1). An estimate for the fidelity ~ ( a )  of a given alignment a 

is: 

3.3.8 An optimal accuracy alignment algorithm 

Given this new type of score for an alignment, it is possible to find the alignment 

that maximises this score, and hence has the highest predicted accuracy (by this 



defintion of accuracy, of course). The algorithm to do this has been described 

elsewhere [DEKM98] and is revisited here. The method required is identical to 

standard dynamic programming, but uses score values given by the posterior 

probabilities of pair matches; gap costs are not used. The dynamic programming 

recursion equations are: 

and the standard traceback procedure will produce the best alignment [DEKM98]. 

The structure of this recursion ensures that the returned alignment will be le- 

gitimate, and the calculation of the cost function ensures that the alignment is 

optimised for the sum of the Pr[i o j] terms along its path. Interestingly the 

same algorithm works for any sort of gap score; what will change with different 

scores are the Pr[i o j ]  terms themselves, which are obtained from the standard, 

scoring scheme-specific dynamic programming algorithms referred to above. 

An implementation of the optimal accuracy algorithm is available from 

http://www.sanger.ac.uk/Users/ihh/optacc.html 

3.3.9 Simulation 3: Evaluation of the optimal accuracy 
algorithm 

In order to test the prediction that the optimal accuracy alignment algorithm 

outperforms the Viterbi algorithm when the assumed model is correct, the se- 

quence generation and re-alignment procedure of simulation 2 was repeated 

using the optimal accuracy algorithm. 

Figure 3.9a shows the results of these simulations compared with the cor- 

responding data for the Viterbi algorithm from simulation 2. It is clear the 

optimal accuracy algorithm has a significant advantage. Figure 3.9b is a plot 

of the expected fidelity (3.16) of these alignments against the measured fidelity. 

The correspondence is evident, supporting the validity of this particular statis- 

tic. 

http://www.sanger.ac.uk/Users/ihh/optacc.html
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Figure 3.9: Evaluation of the optimal accuracy alignment algorithm. (a) Fidelity 
data for the Viterbi algorithm (dashed lines) plotted with data for the optimal 
accuracy algorithm (solid lines). (b) The expected fidelity plotted against the 
measured fidelity for the data points in (a). The Viterbi data are from simulation 
2 (see Figure 3.5a) and the optimal accuracy data from simulation 3. 

3.4 Discussion 

It has been demonstrated that using a muximum likelihood scoring with the 

dynamic programming algorithm also appears to give maximally faithful align- 

ments. With the aid of alignment fidelity measurements collected using a simu- 

lated model of evolution, the dependence of the alignment fidelity on the under- 

lying mutation parameters has been discussed, and an analytic approximation 

(the edge wander approximation) describing this dependence has been presented 

along with a method for calculating the expected fidelity of a given alignment 

and an algorithm for finding the expected optimal-accuracy alignment. 

These results demonstrate that the edge wander theory is a useful first-order 

approximation up to large values of ps.  Application of the theory to common 

substitution matrices predicts the extent of the unrecoverable loss of alignment 

information. The more distant the similarity, the less accurate we can expect the 

alignment to be. When aligning sequences diverged by 250 PAMs, for example, 

one must assume an average error of around 3.9 residues in the positioning of 

every gap, whereas that expected error is only 1.2 residues at  120 PAMs. In 

particular, we must not expect alignments for matches in the twilight zone of 



detectability to be accurate. 

There is a statistical physics analogy that may help to give insight into the 

edge wander approximation. Consider the variable r whose probability density 

function p(r) is given by (3.10). The mean value of r ,  F = (r),, is a relative 

entropy or Kullback-Leibler divergence between two probability distributions, 

representing the adjacent diagonals that the Viterbi path could lie on. The vari- 

ance of r, ((r  - F)~) , ,  is related to  the fluctuations in this entropy-like quantity. 

The relative sizes of ((r - F ) ~ ) ,  and F2 indicate the extent of the score fluctua- 

tions and equations (3.11)-(3.14) relate this to the error in the gap positioning, 

i.e. the edge wander. The edge wander approximation essentially assumes that 

the entropy (score) fluctuations are small and that the Viterbi path is "bound" 

to the correct path. This approximation is similar to perturbative approaches 

in statistical physics [LL80]. When edge wander breaks down, a full treatment 

of the critical scaling phenomena of the path behaviour is required. Terence 

Hwa, Michael Lksig and Dirk Drasdo [HL96, Hwa96, DHL97b, DHL97aI have 

published analyses of this problem that apply the theory of the renormalisation 

group, successfully used in areas of physics as diverse as quantum electrody- 

namics and chaos theory. The behaviour of the optimal path turns out to be 

analogous to the pinning of magnetic flux lines by randomly scattered defects in 

superconductors and the statistical behaviour of directed polymers in a random 

potential, both of which are well-studied by physicists. The renormalisation 

group is mathematically difficult compared to the probability theory used in 

this chapter, but it apparently has a lot to offer to the theory of sequence align- 

ment algorithms. A notable result is that the renormalisation group theory 

predicts an optimal scoring scheme [HL96] that contradicts (3.8). This result 

is deserving of further investigation; a good starting-point would be to repeat 

Simulation 1 to greater precision. 

The optimal accuracy algorithm described here and in [DEKM98] provides 

a marked improvement on the Viterbi algorithm. It will be interesting to see 



if this improvement carries over to real biological alignments. The simulations 

presented here also verify that the expected fidelity of an alignment is a useful 

indicator of alignment accuracy. 

The observation that perfect alignment recovery is theoretically unattain- 

able reinforces the idea that for some applications, it may be advantageous to 

consider a set or envelope of suboptimal alignment paths rather than singling 

out the highest-scoring path. Examples of such envelopes might include only 

residue couplings whose likelihood exceeded some cutoff value, or be defined by 

a set of path constraints chosen to maximise the sum of the likelihoods of the 

paths thus contained. An example of the former type has been proposed by 

Miyazawa [Miy94]; the issue of alignment reliability has also been addressed by 

Mevissen and Vingron [MV96]. 

In conclusion, it is noted once again that many of the results presented here 

are applicable to any dynamic programming based sequence homology algo- 

rithm, not just Needleman-Wunsch with linear gap penalties. Once there is a 

gap, the score changes involved in moving it as in the edge-wander calculation 

are the same for f i n e  and linear gap penalties, and also for local and global 

alignments. It is hoped that the quantitative results for the alignment fidelities 

will be of use both to researchers in molecular evolution and to users of sequence 

alignment software. 



Chapter 4 

postal :  Software for 
Checking Multiple 
Alignment Accuracy 



4.1 Introduction 

The idea of site-to-site reliability indicators for pairwise and multiple alignments 

is not a new one. Several such indicators have been proposed, ranging from 

residue conservation at a site, through sliding-window and exclusion [MV96] 

techniques to the fully probabilistic [Miy94, ZLL971. There are many potential 

uses for a good reliability indicator; in addition to providing information that 

could help interpret alignments, such an indicator could be used to identify 

regions of a pairwise or multiple alignment that may be poorly aligned, thus 

providing further assistance to the sequence analyst. 

As projects to classify proteins attempt to keep up with the expansion of 

databases, such automated sanity checks turn from luxuries to necessities. Re- 

lease 3.1 of the Pfarn database contains 1313 multiple alignments, each repre- 

senting a protein domain [SEB+98]. Inspecting all these alignments for errors 

by eye is unfeasible and there is a clear need for automation. Recent efforts 

to  establish a probabilistic basis for sequence alignment suggest posterior prob- 

abilities as a natural way of estimating alignment reliability [Miy94, ZLL97, 

DEKM98, Kro94, BH96, HD98]. Motivated by this, new software has been 

developed to check multiple sequence alignments for suspicious regions using 

posterior probabilities as alignment accuracy indicators. 

In this chapter the mathematics of posterior probability are first reviewed. A 

new software tool - postal - based on the HMMER2.0 distribution [Edd95], that 

displays site-to-site posterior probabilities for multiple alignments and flags low- 

scoring regions for special attention, is then presented. The software is evaluated 

by running it on the October 1998 release of Pfam and assessing the pathology of 

the candidate misaligned regions that the program picks out. Further potential 

applications of Bayesian methods in sequence alignment are discussed. 



4.1.1 Mathematical overview 

In the probabilistic view, the score of an alignment a between a set of sequences 

{X) is proportional to the log of Pr  [a, {X}], the likelihood of that alignment un- 

der some model that represents our assumptions about the way sequences evolve. 

(For example, the model might be that "pairs of related protein sequences have 

local regions of homology, with randomly scattered indel events and indepen- 

dently distributed patterns of amino acid substitution"; this contains the as- 

sumptions of the Smith-Waterman algorithm.) The likelihood Pr [C, {X)] of a 

particular alignment segment C (such as, for example, an individual residue pair 

in a Smith-Waterman alignment) can be found by summing the likelihoods of all 

alignments that include that seginent (i.e. P r  [C, {X)] = Ca:cEa Pr [a, {X)]), 

and the posterior probability Pr [CI {X}] of the segment C is found by divid- 

ing the likelihood of C by the total likelihood of all possible alignments (i.e. 

P r  [CI{X}] = Pr [C, {XI]/ Ca Pr [a, {X)]). This quantity Pr [CI{X)] is the de- 

sired reliability indicator for the segment C. 

This may be illustrated with a concrete example. Suppose one has a hidden 

Markov model (HMM) profile of a multiple alignment and a sequence X that one 

wants to fit to that profile. Suppose further that one wants to assess the evidence 

for whether position i of the query sequence is aligned to a particular state j in 

the profile, representing a site of interest. Begin by laying out the HMM profile 

and the query sequence on the vertical and horizontal axes (respectively) of a 

dynamic programming matrix (Figure 4.1). The alignment (i o j )  of residue i 

to site j corresponds to the cell marked C in the matrix. To find the likelihood 

Pr  [C, XI that i is aligned to j ,  one must compute the sum of the likelihoods 

P r  [a, XI of all alignment paths a that run from the top left corner of the matrix 

through cell C and on to the bottom right corner. The algorithm for calculating 

the sum of alignment likelihoods is very similar in appearance to the Viterbi 

algorithm for calculating the highest-scoring alignment. Since alignment scores 

are additive, the top-left and the bottom-right quadrants can be treated as 
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Figure 4.1: The dynamic programming matrix representation of the Forward- 
Backward algorithm. The Forward likelihood-sum-over-alignments (correspond- 
ing to paths spanning the upper left quadrant) is multiplied by the Backward 
sum (the lower right quadrant) to find the likelihood of all alignment paths 
passing through the cell C. 

independent global alignments and the likelihood sum for each quadrant can 

be found separately. The likelihoods can then be combined to find Pr [CIX] . 
This procedure is known as the Forward-Backward algorithm and is described 

in more detail in Chapter 2. 

For any sufficiently simple (i.e. Markov) model, Pr [CI{X)] may be calcu- 

lated using the procedure described above. It has been shown to recover the true 

probability distribution of C in simulations using a simple Needleman-Wunsch 

model (see Chapter 2 and [HD98]). From a Bayesian viewpoint, it makes more 

sense to work with the full posterior distribution P r  [C({X)] than to throw out 

all the cells C that aren't in the optimal alignment; the latter tactic is analo- 

gous to making over-precise numerical measurements without taking account of 

experimental errors. 

Ideally, the dynamic programming approach described above would be car- 



ried over to simultaneous multiple alignment of many sequences. However, the 

size of the dynamic programming matrix scales geometrically with the number 

of sequences being considered and, while various heuristic methods may be em- 

ployed to home in on the most likely alignment (HBF92, Edd95, NH96, LAB+93] 

an application of these methods towards estimation of the sums of likelihoods 

of many alignments remains appealing but untried. Alignment of multiple se- 

quences to ready-made profile HMMs, on the other hand, scales much better 

computationally and requires no approximations or guesswork (other than dur- 

ing the construction of the HMM itself), which makes finding posterior prob- 

abilities for profilebased alignments that much easier. The software presented 

here uses the profile approach. 

4.2 The postal  software 

The postal  program builds a HMMER profile from a multiple alignment using C 

functions from the HMMER package (Edd95J. For each sequence in the multiple 

alignment, it calculates all the posterior probabilities along the alignment path 

of that sequence to the profile (this alignment is known, since it was used to 

construct the profile in the first place). The original multiple alignment is 

output together with single-digit annotation (indicating the first digit of the 

posterior probability for each site) in the MUL format for the BELW program 

[SD94]. This format can also be read - and attractively displayed using colour 

- by the j alview Java multiple alignment viewer [Cla98]. 

The postal program has a number of options for advanced usage. For ex- 

ample, it can attempt to improve the multiple alignment (see also Section 4.2.3) 

or it can write the posterior probability tables directly to a file to be read by 

other programs. An algorithm utilising postal probabilities is in development 

at the time of publication [Go198]. 



Consensus-acc 
GU2 7-RAT 130 
GU27-RAT-acc 
OLF3-MOUSE 149 
OLF3-MOUSE-acc 
OLFJ-HUMAN 160 
OLFJ-HUMAN_acc 
OLF1-CHICK 149 
OLF1-CHICLacc 
GUSB-BOVIN 162 
GUSB-BOVIN-acc 
US28-HCHVA 152 
US2 8-HCHVLacc 
HH2R-CANFA 143 
HH2R-CANFLacc 
EBI2_HUIUN 156 
EBI2-HUMAN-acc 
5HT1-DROKE 287 
5HT1-DROHE-acc 
5HlA-HUMAN 161 
5HlA-HUMAN-acc 
OPRD-MOUSE 173 
OPRD-MOUSE-acc 
OPSB-HUMAN 158 
OPSB_lWMAN-acc 
D2DR-BOVIN 16 0 
D2 DR-BOVIN-acc 
EDG1-HUMAN 168 
EDG1-HUMAN-acc 
V2R-HUMAN 164 
V21lHvMAN-acc 
US27-HCWA 155 
US27-HCMVA-acc 
5H7-HUMAN 207 
5H7-HW-acc 
C5-CANFA 162 
CSAR-CANFA-acc 
RTAJAT 168 
RTAJAT-acc 
OPS1-DROHE 174 
OPS1-DROME-acc 
5H2LCRIGR 200 
5H2A-CRIGLacc 
5H6 RAT 151 

. . . . . . . . . . . .  888 . . . . . .  88777888888 . . . .  8888867 
~ ~ ~ M F C ~ I H V L L M N E L N F S R G  . . . . . . .  TEIPHFFCELA . .  

. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  00000000000 
~~LGGL~IQSTF.TLQLPFCGHRK.VDNF~@~P . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . .  445555555 . . . . . . .  
C~~GLI$&~TQVTS.VFRLPFC.ARK.VPHF~DIR . . . . . . .  

. . . . . . . . . . . . . . .  . . . . . . . . . . .  111.5555444.566.8 
~ ~ F ~ V H T S G . L L K L S F C Y S N V . V N H F ~ D I S  . . . . . . .  
........... 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LVFYTVNHKARCVPI . . .  FPYHLGTSMKAS . .  ........ 6630000 . . .  000000000000 . .  
~ I F @ l I ~ H l W W T K K D N Q  ........... TDYDYLE .. ........... 8887777533 ........... 666666663 .. 
~~~IT~~~[FLSIHLGWNSRNETSSF . . . .  NHTIPKCWQVN .. .... .. ....................... 76 366666666665 

INPMSKQEAERI ..... TCMGIPNFEETKS . ..... . .......... 83 3333333333331 
.LLILGNEHEDEEG .... Q P I ~ C Q N P A  ... 
.2225555555544 .... 8...... ....... 
.MLGWRTPEDRSDP .....- ISKDHG... 
.5547777666652 ..... E............ 

................... 8 . . . .  7 . . . . . . . . . . .  5 . 
. . .  ... YLHYSHTNNECVGEF ANETSGWFWF . 88 ... 88 . . . . .  7777 . . .  

. . .  ....... DK WISQDFG 
. . . . . . .  ........... 75 7 

. .  PF .....- DYSGVG 
. . . . . . . . . . . . . . . . . . .  . 8  

I~X~~~~SIWC~GWSRWPEGN ...... L T ~ I D Y L E R ~  ... 88877 .................. 86 
I.QDDSKVFK ..... Q C ~ L L A D  CNP ... 
888877776 ............ 7777 ... ... ~ ~ L A ~ L Q L L L " H E L G K A R T P A  ...- LASLP ........................... 4444 ... .. UI-SDE ......- DPKCCD .................. 8 ............. ... ...... LLFGWGETYSEP S E ~ ~ V S R E P S  .................. 68 ..... 5555 ... . . .  . . . . . .  . L ~ P V P P D  E R ~ X T E E A C  . . . . . .  ...... . . . .  . . .  ............ 222 88 578 5555 

Figure 4.2: Accuracy levels for the 7tm-1 rhodopsin-like domain from Pfam 
(accession number PF00001) . The sequences are sorted with the most suspicious 
a t  the top . The block of mammalian olfactory receptors with "0" accuracy on 
the top right-hand side are misaligned; to see this. note that the rest of the 
alignment has a column of conserved tyrosine residues aligned to residue 185 
of the top sequence. while the misaligned block has a corresponding column of 
tyrosines at  residue 199 of the top sequence . In other parts of the alignment. 
weak matches near gapped regions are often seen to  have low probability . 



4.2.1 Usage 

Figure 4.2 shows an example of the output of postal, plotted by the Belvu 

multiple sequence alignment viewer [SD94]. The displayed alignment is part of 

the 7tm-1 rhodopsin-like domain from Pfam (accession number PF00001) - the 

same alignment as in Chapter 1, Figure 1.1. The aligned sequences are sorted 

with the most suspiciously aligned at  the top. Beneath each sequence is an 

accuracy line, with the digits 0-9 indicating confidence levels for each site (low 

numbers signify low-accuracy regions, with a '9' indicating predicted perfect 

accuracy, a '5' indicating ambiguity and a '0' indicating that HMMER would 

rather put that residue with a different column). The top line is a "consensus 

accuracy" line obtained by averaging all the accuracy levels in a column, if the 

column comprises less than gap characters. By default, the (usually prevalent) 

digit '9' is masked out with dots to make suspicious regions easier to pick out. 

This alignment contains several suspicious regions, including one section that 

is clearly misaligned and several others where the column conservation is poor 

(see figure legend). 

4.2.2 A note on interpretation 

The posterior probabilities described here denote the confidence of the align- 

ment model in a particular alignment. A low probability indicates ambiguity 

as to how a particular residue should be aligned. This is due to the absence 

of a strong signal, maybe because the sequence has little information content 

in this region, or because there are a lot of gaps nearby or even because the 

HMM training method is flawed. A high probability means that a sequence is 

well anchored, though not necessarily prettily aligned. For example, a run of 

mismatches sandwiched in the middle of an ungapped block will often have a 

high probability if the flanking sequences match the block consensus (though 

this may also depend on the gap-insertion policy of the algorithm). To take an- 

other example, given a handful of unrelated sequences, it is usually possible to 



train a probabilistic model to recognise these sequences well, despite the lack of 

homology between them. Assuming the sequences have any information content 

whatsoever, the (trained) model will then assert that the posterior probabilities 

of the training sequences are close to 1. In other words, probability theory is 

only as good as the underlying assumptions; the use of posterior probabilities 

may reveal ambiguities in an alignment, but without making new assumptions 

one may not be able to detect all the sequences that are badly aligned. 

4.2.3 The optimal accuracy algorithm and postal  

The pos ta l  program implements the optimal accuracy algorithm described in 

Chapter 3 for HMM profile alignment. This feature remains experimental and 

has not been systematically evaluated for HMM profiles. 

4.2.4 More complex models 

At the core of the pos ta l  software is the program hmmbuildpost, which calcu- 

lates and prints a table of posterior probabilities for the alignment of a single se- 

quence to a profile HMM. In addition, it finds the Viterbi and optimal-accuracy 

alignments of the sequence to the HMM (the optimal-accuracy algorithm finds 

the alignment a that maximises the expected overlap score E(la n areal 1) = 

CcEa Pr  [CI {X)]; see Chapter 3 or [HD98] for an evaluation of this algorithm). 

The hmmbuildpost program is transparently invoked by pos ta l  and should 

rarely need to be used on its own. 

The hmmbuildpost program has the same output format as the modelpost 

program, a more general tool for working with posterior alignment probabilities 

and optimal-accuracy alignments that is independent of the HMMER package. 

Details of this program are available on the pos ta l  web site. 
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Figure 4.3: The two scatterplots show the proportion of sequences containing 
ambiguous regions, plotted against the total number of sequences in the align- 
ment (upper plot) and the alignment width (counting both residues and gaps) 
(lower plot). There is a direct correlation between alignment ambiguity and 
alignment size. The solid lines represent y-averages for binned x-values. 
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Figure 4.4: These two scatterplots show the proportion of sequences containing 
ambiguous regions, plotted against the average compositional column entropy 
(upper plot) and the mean size of ungapped blocks in the alignment (lower plot). 
Both plots show a distinct correlation. Data points corresponding to alignments 
with low consensus-accuracy regions are marked with "+" symbols. The solid 
lines represent y-averages for binned x-values. 



4.3 Evaluation: using pos ta l  as a semi-automated 
quality check for Pfam 

To test-drive the pos t a l  software, the program was run on each of the 1353 

seed alignments in the October 1998 release of Pfam. The seed alignments were 

then sorted by the number of suspiciously aligned sequences they contained. (A 

sequence was regarded as suspicious if it had a run of a t  least 4 residues with 

probability less than 0.8; these are the default pos t a l  parameters.) 

Of the 1353 seed alignments, 548 have suspiciously aligned regions - a total 

of 9459 individually suspicious sequences. The fraction of ambiguously aligned 

sequences is plotted against various properties of the alignment in Figure 4.3 and 

Figure 4.4. The ambiguity of an alignment appears to be directly correlated to 

its size (i.e. its length and width - see Figure 4.3). This is intuitively reasonable 

if poorly-fitting sequence segments are randomly distributed. The average size 

of ungapped blocks in the alignment and the average column entropy of the 

alignment, both plausible measures of alignment quality, are also good indicators 

of ambiguity (Figure 4.4). 

As well as calculating site-to-site posterior probabilities for each sequence, 

posta l  also calculates a reliability indicator for the whole alignment - the "con- 

sensus accuracy" - by averaging the probabilities in each alignment column. 

Like the individual sequence accuracies, the consensus accuracy can be scanned 

for runs of low values to locate blocks in an alignment where many sequences 

are ambiguously aligned. In fact, the majority of ambiguously aligned sequences 

that are detected are due to blocks of this kind, as can be seen from Figure 4.4 

where the low-consensus-accuracy regions are marked with "+" symbols. To 

suppress this effect, post a 1  allows masking of low-consensus-accuracy regions; 

this feature is switched on by default. With low-consensus accuracy masking 

switched on, the 9459 ambiguously-aligned sequences reduced to 3569, though 

the number of ambiguous families (510) was comparable to the previous figure 

(548). 



Figure 4.5: The mean rank of a sequence within an alignment, according to 
HMMER, plotted as a function of the rank according to postal.  Ranks are 
fractional, ranging from zero for a poor score to one for a good score. For clarity, 
only every fifth scatter point is plotted. The solid line represent y-averages for 
binned x-values. 

The worst 20 families in Pfam (without low-consensus accuracy masking) 

are listed in Table 4.1. Some turn out to be uninteresting from a practical 

viewpoint, since the low-accuracy stretches correspond to long inserts flanked 

by weak match states in the HMM and although the alignment of the sequence 

to the HMM is ambiguous, the effect on the multiple alignment is minor. Other 

poorly-scoring sequences seem to be outliers, distantly related to the other fam- 

ily members. Since outliers are expected to score poorly in an HMM search 

anyway, this raises the question: "do posterior probabilities perform any differ- 

ently a t  detecting misaligned sequences to straightforward HMMER scores?". It 

is evident from a plot of the comparative rankings (Figure 4.5) that both meth- 

ods rank sequences within a particular alignment in a similar way; however, 

postal gives "added value" in that it also reports which parts of an alignment 

are suspicious. 



Table 4.1: Top 20 suspicious seed alignments in Pfam. For each family, the 
fraction of sequences with low-probability runs is indicated, as is the source of 
the multiple alignment. The high representation of CLUSTALW [THG94a] reflects 
the fact that 87% of the alignments in Pfam were generated using this program. 

%(no.) misfits - 
94% (48) 
92% (50) 
91% (22) 
85% (17) 
84% (16) 
83% (25) 
82% (24) 
82% (19) 
82% (14) 
80% (20) 
77% (84) 
76% (23) 
75% (48) 
74% (46) 
74% (46) 
73% (53) 
73% (49) 
72% (13) 
68% (13) 
66% (6) 

Alignment source 
CLUSTALW 
HMM simulated annealing 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
HMM built from alignment 
CLUSTALW 
Structure superposition 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 
CLUSTALW 

Accession no. 
PF00065 
PF00128 
PF00516 
PF00257 
PF00500 
PF00125 
PF00513 
PF00555 
PF01298 
PF00933 
PF00073 
PF00501 
PF00067 
PF00009 
PF00089 
PFOlOlO 
PF00069 
PF00429 
PF00260 
PF00360 

Family name 
neur chan 
alpha-amylase 
GP120 
dehydrin 
late protein L1 
histone 
late protein L2 
endo toxin 
Lipoprotein 5 
glycosyl hydrl4 
rhv 
AMP-binding 
p450 
GTP EFTU 
trypsin 
oxidored q l  C 
pkinase 
ENV polyprotein 
protarnine P1 
phytochrome 



4.4 Discussion 

The pos ta l  program provides an indication of the local reliability of multi- 

ple alignments by using posterior probabilities as an accuracy measure. Tests 

on the Pfam database of protein domains lend promise to the program as a 

practical tool; often, putative low-accuracy regions correspond to areas of the 

alignment that the alignment algorithm finds ambiguous but that can quickly 

be resolved by inspection. For a large database like Pfam, manual correction of 

each alignment is unfeasible and a certain level of automation in the curation is 

mandatory; a system like pos ta l  offers a solution to the problem of maintaining 

the quality of over a thousand multiple alignments. 

In Bayesian statistics, the full posterior distribution is generally regarded 

as a more stable basis for inference than just taking the most likely parameter 

values. Using posterior probabilities to estimate alignment accuracy is just one 

example of how this principle could be fruitfully applied to problems in sequence 

analysis. In common with Lawrence et a1 [ZLL97], it is anticipated that wherever 

numerical quantities are estimated from alignments, these quantities should be 

more accurately estimated by averaging over the entire posterior distribution 

of all alignments, particularly when the sequences are highly divergent and the 

alignment probability distribution is, consequently, broadly peaked. 

4.4.1 Availability 

Installation of the post  a1 program requires the source code distribution, which 

includes the HMMER2.0 distribution [Edd95] and is available (under the terms 

of the GNU public license [GPL]) at the following URL: 

Installation and usage instructions are provided on the web site. 



Part I1 

Studies in Evolution 



Chapter 5 

Wormdup: a Database of 
DNA Duplications in 
Caenorha bditis elegans 



5.1 Chapter introduction 

The evolution of new genes by duplication is a key component of molecular 

evolution. Of fundamental interest are the mechanisms by which genes are 

duplicated and the scale on which these duplications take place. There are 

many examples of searches for large-scale block duplications involving diverse 

genes (see e.g. [SKR89, WS97, Hug98]), perhaps the most striking of which was 

Wolfe and Shields' publication of evidence for a tetraploid duplication of the 

entire yeast genome [WS97]. Numerous examples of local tandem duplications 

of single genes, giving rise to two or sometimes more daughter genes, are also 

present in the literature (see e.g. (Sid96, BTR98, FBT+91, Eis981) and indeed 

the abundance of this type of duplication is evident from a cursory inspection 

of the annotation of published genomic sequence. 

From a neutralist argument one might expect that gene duplications repre- 

sent special cases against a background of continuous turnover - involving du- 

plication and reciprocal deletion - of non-coding as well as coding DNA. There 

are three main processes by which it is recognised that DNA duplication can 

occur in eukaryotes: (i) polyploidy, whereby an organism acquires a duplicate 

copy either of a single chromosome or its entire genome [OhnTO, WS97, BB981; 

(ii) copying of host DNA during the process of transposon integration [Jur98] or 

excision repair [MKWSl]; and (iii) unequal crossing-over between chromosomes 

during meiotic recombination [LG91]. The last of these - unequal crossing-over 

- may be triggered by numerous causes; experimental evidence suggests it can 

happen quickly where there is an existing tandem gene duplication [BTR98] 

and it can also be triggered by multiple, adjacent copies of a repetitive element 

[FBT+91]. 

Our understanding of the dynamics of gene creation and the relative impor- 

tances of the different ways DNA can be copied is far from perfect, although 

population genetic models for these processes have been explored [TK98,Oht91]. 

With the increasing amount of genomic sequencing the paucity of data is likely 



to be replaced by the technical difficulties of gross analyses as the main obstacle 

to better understanding. 

With these issues in mind, a database - "Wormdup" - oriented specifi- 

cally towards researchers interested in studying aspects of genomic duplica- 

tions has been constructed. Wormdup contains co-ordinates and age estimates 

of unique, single duplications of non-coding DNA in the recently sequenced 

[CSC98] genome of the nematode Caenhorabditis elegans. The focus is on non- 

coding DNA so that general features of duplications may be studied in the ab- 

sence of gene-specific selective pressures. The score cutoffs used in the creation 

of Wormdup were chosen so that no duplications large enough to contain a gene 

should be missed. Various pre-calculated filters on the data are offered, includ- 

ing (amongst others) raw BLAST matches, gapped matches constructed using 

dynamic programming, duplications involving genes and large repeat families. 

In addition a suite of tools has been developed to facilitate the construction of 

more complex custom filters. 

Section 5.2 of this chapter describes the structure of Wormdup, including the 

tools and algorithms that were used in its construction and may be used to query 

it. In Section 5.3, the Wormdup data are used to calculate various parameters 

of molecular evolution for C.elegans. These include the duplication size and 

separation distributions, the fixation rate of duplications and the subsequent 

rates of divergence by stochastic accumulation of substitutions and deletions. 

Section 5.4 investigates the number of Wormdup entries found in conformations 

suggestive of repetitive-element-mediated duplication. In Section 5.5, the molec- 

ular evolutionary parameters for non-coding duplications are compared to the 

parameters for coding duplications. It is found that the apparent fixation rate 

of gene duplications is higher than the rate for non-coding duplications of the 

same size. The implications of this discrepancy are discussed. In Section 5.6, 

the results of the evolutionary parameter-fitting are summarised and discussed. 



5.2 Methods 

This section describes the techniques used in the construction of Wormdup. The 

section begins with an overview of the nature of the algorithms required for a 

project of this kind, and proceeds to detail the process of construction of the 

core units of Wormdup. 

The starting point for the entire analysis was the 72Mb of finished C.elegans 

DNA sequence available in May 1998. 

A schematic view of the main stages in the construction of Wormdup is shown 

in Figure 5.1. The Wormdup data files and many of the tools and protocols are 

available from the following URL: 

http : //www . sanger . ac. uk/Users/ihh/Wormdup/ 

5.2.1 Overview of methods 

Many of the common tasks involved in gross analyses of sequence features can 

be reduced to a series of manipulations on sets (or ordered sets) of sequence 

co-ordinates, where a set of co-ordinates for these purposes is defined as a 

(name,startpoint,endpoint) tuple (henceforth NSE). An example of an NSE tuple 

is the location of the gene AH6.2, which spans residues 5054 to 6308 of C.elegans 

cosmid AH6: the appropriate NSE is (AH6,5054,6308) in cosmid co-ordinates 

and (CHROMOSOMEJI, 9624 958,962621 2) in chromosome co-ordinates (since 

cosmid AH6 starts at base number 9619904 on chromosome 11, according to the 

map used for this work). 

A useful if basic format for representing lists of NSEs is GFF, the Gene 

Finding Format, developed in collaboration between the Sanger Centre, the 

University of California at  Santa Cruz and other participants [GFF]. Each 

line of a GFF flat-file describes a single NSE with some additional information 

(such as, to continue the above example, the orientation of the gene AH6.2). 

This extra information is irrelevant to many of the algorithms (though this is by 

no means a hard-and-fast rule, with scoring information being the most frequent 



C dilter.pl 
Filter out low- tandem 
complexity DNA gffmask.pl 

I Masked DNA HMMER b 
CeRep database 

Do an all vs. all 
BLAST comparison 

All vs. all 
BLAST hits 

Join up BLAST hits by 
dynamic programming 
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Figure 5.1: Schematic view of the construction of Wormdup. Names of key 
scripts and programs are shown to the right oflbeneath arrows linking inter- 
mediate stages. Not all script names are shown, but all relevant scripts are de- 
scribed in Appendix A and available from the Wormdup website. The filenames 
with ".gffn suffices beneath shaded boxes refer to data files on the website. 



exception). Single NSEs are inadequate to represent certain kinds of information 

(for example, homologies); a GFF-pair protocol exists for this purpose, though 

EXBLX (an output format of the BLAST post-processor MSPcrunch [SD94]) is 

in some ways preferable as a format for representing NSE-pairs as it is both 

more compact and more symmetrical. In any case conversion tools between 

these various formats were developed early in the analysis. 

Apart from format conversion, the most common elementary operations that 

can be performed on (ordered) sets of NSEs include: (i) set intersection, (ii) set 

exclusion, (iii) set union, (iv) filtration, (v) sorting, (vi) merging (of sorted lists), 

(vii) transformation (of co-ordinate systems) and (viii) dereferencing (access to 

the described sequence). With a suitably flexible definition of NSE similarity, 

these operations form a basis for more sophisticated algorithms like clustering 

and tiling. Pointers to a comprehensive set of tools and links for manipulating 

NSEs in GFF and EXBLX format, including the GFFTools programs that were 

developed for this project, are maintained on the GFF website [GFF]. 

GFF is a relatively new format a t  the time of writing, and in many cases the 

tools described here were the first available for this format. In more cases, they 

were the fastest, being designed with respect to  the consideration that reading 

millions of NSEs and NSEpairs into memory a t  once is not practical. 

Unless explicitly referenced, the tools described in the following sections 

were all developed principally for the Wormdup project. A full description of 

the GFFTools package may be found in Section A.4 of Appendix A. 

Both GFF and EXBLX were found to be adequate formats for the present 

project; though it is the author's opinion that the single most pertinent feature 

of both formats, at least for working at  the shell level, is the correspondence of 

a single line to a single feature. 



5.2.2 Filtering low-complexity regions 

The most commonly used low-complexity filter for use with DNA sequence is 

the dust program; however, the filtering heuristic used by dust is somewhat ad 

hoc [Tat]. A slightly more analytically supported method is the sliding-window 

entropy filter used by the seg program [Woo94], but this is designed for protein 

sequences. For the low-complexity masking of the worm DNA, a parameterisable 

sliding-window low-entropy filter cf i l t e r  . p l  was specially written in Per1 (see 

Appendix A). 

Using the cf i l t e r  . p l  program and the tandem program from the GCG 

package [But98], low-entropy regions (12-mer windows whose single-base com- 

positional entropy did not exceed 0.5 bits) and microsatellites were identified, 

recorded in GFF format and masked from all subsequent analyses. 

5.2.3 Preliminary scan for repetitive elements 

A preliminary screen for hits to the CeRep database of repetitive sequence 

profiles was performed using the HMMER1.7 program. Local inverted and 

direct repeats (those missed by the tandem program) were also searched for 

by BLASTing each cosmid against itself. The lists of repeats were reduced by 

looking at the self-intersection of the list and taking the closest sequence-pair 

of every intersecting set, using the gf f intersect .  p l  and intersectlookup . p l  

programs described in Appendix A. 

The tandem search yielded -13000 tandem repeat regions; the average length 

of the tandemly repeated regions was 38 bases and on average there were 9 

copies of this region. The number of inverted repeats was greater (-71000); 

this is probably because the tandem program attempts to join up multi-copy 

repeats whereas the inverted repeats are single copies. 

The results of the screen for the CeRep elements are summarised in Ta- 

ble 5.1. A more thorough search for mariner-like transposable elements was 

also performed and is described in detail in Chapter 7. 



Table 5.1: Copy numbers of CeRep elements in C.elegans. 

Expected 
copy number 
in lOOMb 
4088 
765 
3154 
1566 
1512 
990 
881 
829 
27?9 
700 
651 
438 
2597 
3520 
750 
756 
141 
201 
998 
151 
2788 
1575 
1086 
659 
1412 
129 
177 
43 1 
1055 
5190 

Repeat type 

CeReplO 
CeRepll 
CeRepl2 
CeRepl3 
CeRepl4 
CeRepl5 
CeRepl7 
CeRepl8 
CeRepl9 
CeRep2O 
CeRep2l 
CeRep22 
CeRep23 
CeRep24 
CeRep28 
CeRep29 
CeRep3O 
CeRep31 
CeRep32 
CeRep33 
CeRep34 
CeRep35 
CeRep36 
CeRep37 
CeRep38 
CeRep39 
CeRep40 
CeRep4l 
CeRep42 
CeRep43 

Copy number 
in 72Mb 

2944 
551 
2271 
1128 
1089 
713 
635 
597 
2001 
504 
469 
316 
1870 
2535 
540 
545 
102 
145 
719 
109 
2008 
1134 
782 
475 
1017 
93 
128 
311 
760 
3737 



5.2.4 Finding duplicated blocks 

An all versus all ungapped BLAST comparison of the finished C.elegans DNA 

formed the basis for nearly all the rest of the Wormdup database. The search was 

performed with the version of the program designed for nucleotide-nucleotide 

comparisons, b las tn ,  using the default scoring parameters (+5 for a match, -4 

for a mismatch; this ratio corresponds to a Jukes-Cantor substitution distance 

kt 2 0.16 with a score-to-likelihood ratio of S / L  E 5.2). The score threshold 

for reporting hits was 120; low-complexity and tandem regions (but not CeRep, 

inverted or direct repeats) were masked out. The BLAST results were converted 

to EXBLX format by MSPcrunch [SD94] then transformed into chromosomal 

co-ordinates by the blast transform.pl  program described in Section A.4 of 

Appendix A. The data were sorted by chromosome-pair and redundancies and 

self-hits due to overlaps between cosmids were trimmed using the exblxsort . p l  

and exblxt  idy  . p l  programs (also in Appendix A). 

The ungapped BLAST hits were joined together by dynamic programming, 

using a program called bigdp that implements a modified version of the Waterman- 

Eggert algorithm [WE871 requiring O(n) space, with a simple optimisation 

heuristic that reduces the expected compute time from 0 (n2m2) to 0 (n2 m) 

(where n and m are the query sequence lengths). The bigdp algorithm is de- 

scribed - with a worst-case scenario - and compared to other large-scale sequence 

comparison methods in Section A.5 of Appendix A. 

The dynamic programming used a gap open penalty of 6 and a gap extend 

penalty of 0.8; using the score-to-likelihood ratio stated above, this corresponds 

very roughly to a gap frequency of 0.3 gaps per residue per strand and a ge- 

ometrically distributed gap length with mean 6 residues. The cutoff score for 

reporting hits was 600, corresponding to a run of 120 perfect matches using 

BLAST. This high cutoff will exclude many small duplications (which are ex- 

pected to be more numerous than large duplications) but it should pick up 

duplications large enough to potentially encode genes or exons, which are of 



primary interest. Hits scoring higher than the cutoff are referred to below as 

"high-scoring duplications". 

5.2.5 Excluding genes and repetitive elements 

The complete set of high-scoring duplications includes a large number of se- 

quences with multiple hits. Some of these are matches between homologous 

genes in a multi-gene family and many more are matches between highly repet- 

itive elements. These matches were excluded from the data set. Gene duplica- 

tions are treated separately in Section 5.2.6 below and repetitive elements are 

addressed in Chapter 7. 

Duplications involving genes were first identified from the C.elegans anno- 

tation and excluded. Next, repetitive sequence loci were identified using the 

gf fh i tcount  program (described in Appendix A) which counts the number of 

times each base on a chromosome is covered by a high-scoring duplication. The 

distribution of base hit counts is shown in Figure 5.2. In total 48.7Mb (94.7%) 

bases of non-coding DNA were not hit by any high-scoring duplications at  all; 

625kb (1.2%) were hit once and 2.10Mb (4.1%) were hit more than once, where 

the percentages in brackets are the proportions of non-coding DNA that these 

totals represent. 

A thorough classification of all the repeat families corresponding to multi- 

hit regions was not attempted. A preliminary rapid clustering identified 51 

putative repeat families with over 10 copies in the genome (mean copy number 

20 and mean sequence length 260). Among the clusters were the Tc3, Tc7 and 

T c l l  elements described in Chapter 7. These families account for 20% of the 

multi-hit bases suggesting (by extrapolation) that there may be as many as 

200 additional families. Separating these by clustering is non-trivial: statistical 

analyses of repeat sequences show that certain families are often found together 

in the genome (Section 7.4.5 of Chapter 7) which can lead to conflation of 

clusters. 
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Figure 5.2: hequency distribution of the number of times a base is involved in 
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A list of the putative new repeat families and the co-ordinates of their 

members is available from the Wormdup website. In total, 4520 regions that 

were multiply covered by the duplications data set were identified, leaving 1211 

unique non-overlapping duplications in the data set. These were used for all 

subsequent analysis. 
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5.2,6 Gene duplications 

In order to compare the fixation rates of non-coding and coding DNA duplica- 

tions, a data set of gene duplications was independently constructed as follows. 

An initial search for homologies was performed for homologies between the 8065 

proteins in the November 1996 release of Wormpep (the C.elegans database of 

predicted genes [SD97]) using the blastp program [AGM+90] with the default 

BLOSUM62 substitution matrix [HH92]. Gene clusters were identified on the 
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basis of homologies scoring over 1000 (i.e. 500 bits) or sharing over 80% sequence 

identity (with a score cutoff determined by the BLAST expected-hit-count pa- 

rameter E= 10). Minimal spanning trees for these clusters were constructed by 

neighbour-joining. 

The above search yielded 369 multi-gene families, comprising 1035 genes. 

Construction of the minimal spanning tree resulted in a total of 666 duplicate 

pairs. This clustering is rather tight and splits up some large families; the main 

objective was to find a set of representative gene pairs for comparison with the 

non-coding pairs in Wormdup. 

5.3 Statistics of duplications in Wormdup 

Of the 1211 unique high-scoring duplications in Wormdup, 532 are on the same 

chromosome, with an approximately even split between same-orientation and 

inverted-orientation duplications. This suggests that many duplications are lo- 

cal and indeed, 52% of all same-chromosome duplicated blocks are separated 

by no more than 50kb. Wormdup duplications are more frequent near the ends 

of chromosomes, but this seems to be due to the bias induced by throwing out 

duplications involving genes (since genes are more densely clustered near the 

centre of chromosomes in C.elegans [ZR95]). The mean size of high-scoring 

duplicated blocks is 360 bases. 

The number of pseudogene-like duplications in C. elegans (homologies be- 

tween a predicted gene and a piece of non-coding DNA) was also estimated and 

found to  be comparable to the number of non-coding duplications. The mean 

size of pseudogene-like duplications was also comparable to that of non-coding 

duplications. 



5.3.1 Age distribution of duplications: the duplication fix- 
ation rate 

A sequence alignment may be "dated" by finding a maximum-likelihood param- 

eterisation of a time-dependent sequence divergence model. This is a standard 

technique in phylogenetic analysis and many such models have been developed; 

several are described in Chapter 2. The model used here was the 6-parameter 

model first described by Hasegawa et a1 [HKY85]; it assumes evolutionary neu- 

trality and substitution rate constancy - the "molecular clock hypothesis". 

Only the ungapped regions of the aligned duplicated blocks were used for 

fitting the time-dependent model. Although gap-aware models of DNA evo- 

lution exist [TKF92], their aptness is questionable. Some of these models are 

investigated in Chapter 6. 

The Hasegawa model takes as parameters the background nucleotide com- 

position (36% GC-content, in the case of the worm), the transition rate, the 

transversion rate, and the divergence time. This leaves a choice of scale for the 

divergence time; to fix this scale, the transition rate was set arbitrarily to 1, 

yielding the transversion/transition ratio k as a new parameter. This choice of 

scale fixes a unit of time at  approximately 200 million years, though this is a 

general rate obtained by averaging synonymous substitution rates for a variety 

of phyla [LG91]. It  is hard to obtain a nematode-specific figure because of the 

paucity of the nematode fossil record. However it is believed that the effective 

mutation rate has been abnormally high along the C.elegans lineage [Bla98]. 

The maximum-likelihood value of the transversion/transition ratio k and 

the divergence times (ti} of the Wormdup duplications were estimated by first 

choosing an empirical seed value of k(O) = 0.46, then performing the following 

iteration, starting with n = 0: (i) fixing k = k("), find the maximum likelihood 

times {t!"")}; (ii) fixing {ti) = {tin+')}, find the maximum likelihood k("+'). 

The optimisations at steps (i) and (ii) of this algorithm could be performed 

quickly by binary chop, since the posterior distributions of k and ti are unimodal 



Figure 5.3: Age distribution of high-scoring duplications. The dotted line shows 
the hypothetical distribution that might be observed if duplication lengths were 
exponentially distributed, no duplications were deleted, and the only factor 
modulating the observed age distribution was the probability that, due to the 
random accumulation of substitutions and indels at  the measured rates, the 
duplication would not score high enough to be picked up by the dynamic pro- 
gramming. 
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an initial geometric distribution of duplication lengths, which appears to be a 

reasonable approximation to the size distribution of recent duplications (see 

Figure 5.6). The observed data do not deviate plausibly from this distribution, 



Figure 5.4: Mean separation of same-chromosome duplications plotted by age. 
The vertical bars indicate the standard deviation of the mean separation for 
each age bin. 

suggesting that the rate of new duplications has remained roughly constant for 

the last - 300Myr. An approximate fixation rate for high-scoring duplications 

can be estimated: 224 high-scoring duplications are detectable from the past 

20 million years (t 5 0.1), a rate of approximately 11 duplications per million 

years. 

Figure 5.4 shows the separation of same-chromosome duplicated blocks plot- 

ted against the age of the duplications. The plot shows a slight upward trend. 

There is some statistical support for this; the log-odds ratio log ,w{ was cal- 

culated, where D is the observed data, M o  is a uniform Gaussian noise model 

for the separation data with an exponentially distributed mean (decay width 

2Mb) that was integrated out and uniformly distributed standard deviation (up 

to 5Mb) that was optimised, and M I  is a linear regression model with the same 



Gaussian noise and an additional exponentially-distributed gradient parameter 

(decay width 2Mb/t, where t is time in 200Myr units) that was integrated 

out. The log-odds score was 5.3 bits (though the hyperparameters were chosen 

after inspection of Figure 5.4). 

This means that there is weak evidence that older duplicate blocks tend to 

be further apart than younger ones. Two possible explanations for this trend are 

offered here. The first possibility is that local duplications are being removed. 

One mechanism for this might be unequal crossing-over during recombination. 

Another might be if insertions tended to be smaller and more frequent than 

deletions. Although on average, the product of size and rate has to be equal 

for insertions and deletions if genome size is to be maintained, it is possible 

that relatively small, frequent insertions are balanced by relatively large, infre- 

quent deletions (or vice versa). Large deletions in the region between a pair of 

duplicated blocks will be likely to delete one of the two blocks unless they are 

distantly separated, so the observed effect will be an excess of insertions. The 

second proposed explanation for the trend of older blocks to be further apart 

is the effect of large-scale conservative re-arrangements of the genome, such as 

reciprocal chromosomal translocations. Both explanations are consistent with 

the upward trend of Figure 5.4. 

5.3.2 Length distribution of duplications: indel rates 

Figure 5.5 shows the variation of average duplication size with age. The shape of 

this curve is mainly determined by the score cutoff. The initial downward slope 

is due to the accumulation of indel events with time, which modulate the length 

distribution (older duplications are likely to be split into smaller fragments). 

If the underlying distribution of gap lengths was exponential with a mean of 6 

residues (corresponding to the affine gap scoring scheme used by the dynamic 

programming), then this effect would not be seen. This observation therefore 

implies that the probability of getting very large gaps is bigger than allowed for 



Figure 5.5: Variation of observed duplication size with age. The datapoints 
on the upper curve are the mean lengths of the entries in Wormdup for each 
age bracket. The points on the lower curve are the lengths of the constituent 
ungapped BLAST hits. 
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Figure 5.6: Size distribution of recent (< 10Myr) duplications. The frequency 
is plotted on logarithmic axes. A geometric approximation seems like a reason- 
able fit, although there is a hint of a broader tail suggesting that a power law 
distribution might be more appropriate. 
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by the exponential distribution. The real gap length distribution has a longer 

tail. Measurements of indel sizes in pseudogenes [GL95b] suggest that the gap 

lengths may be better modelled by e.g. a power-law distribution. 

The upward turn of the graph at t > .5 happens because when the sequences 

are highly diverged, only the larger duplicated blocks stand any chance of scoring 

higher than the threshold for detecting hits. 

A correction for the cutoff-induced bias to the observed length distribution 

may be derived from Bayes' theorem, and is included here for completeness al- 

though the method is not actually used. Write Pr [s 10, t] = w1 where 

0 is the event that a duplication is observed, s is the size of the duplication and 

t is the age of the duplication, which is conditioned upon throughout. An ex- 

ponential approximation for the size distribution is Pr  [sltla exp [-s(gt + l/p)] 

where g is an indel rate and p is the mean initial duplication size. (The actual 

distribution of sizes of recent duplications (younger than -1OMyr) is shown in 

Figure 5.6. There is a hint of a broad tail, suggesting that a power-law dis- 

tribution might be slightly more appropriate than an exponential distribution, 

but an exponential seems like a reasonable approximation to the distribution 

in Figure 5.6. The distribution will tend towards an exponential with time 

anyway, due to fragmentation by randomly scattered indels.) The probability 

P r  [Ols, t ]  that a match of length s scores high enough to be seen may be found 

by approximating the match score distribution with a Gaussian (see Chapter 2), 

whereupon Pr [Olt] may be found numerically. 

A simpler approach is to first pick a maximum age (in this case t = 0.25) 

and throw away anything older than this, then find a mean size it for each age 

t ,  then fit a straight line to a plot of l / g t  vs t .  The gradient of this line is 

the rate g of fragmentary indels (i-e. indels so big they wreck the chances of 

putting the pieces back together again) and the y-intersect is lip. Applying this 

to the Wormdup duplications gives values of g - .005 (one big indel per 40kb 

per million years) and p - 400 (the average original size of the high-scoring 
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Figure 5.7: Distribution of indel sizes. 

duplications was 400 bases). 

A rate for small indels can also be calculated by looking at  the age-length 

distribution of the BLAST hits from which the Wormdup duplications were 

derived. This gives a rate of g - .03 (one small indel per 7kb per million years) 

and p - 224. 

Exactly what is meant by "big" and "small" indels? The size of indels in 

Wormdup appears to be exponentially distributed, with mean - 150 bases (see 

Figure 5.7). This suggests that "small" indels are around 150 bases. The relative 

rates for small and big indels (.03 and .005) suggest that approximately 14% of 

indels are "big". The total rate for both big and small indels is gtOt - .035, or 

one indel per 6kb per million years. 



5.4 Repetitive element-mediated duplications 

Repetitive elements are known to cause duplications in a number of ways, 

including imperfect double-strand break repair following transposon excision 

[MKW91], accidental transpositon of non-transposon sequence [GL95b] and un- 

equal crossing-over during meiotic recombination as a consequence of misalign- 

ment of adjacent copies of an element (as in Figure 1.3 of Chapter 1) [FBT+91]. 

In order to assess the relative importance of the latter two of these processes, 

a search of the C.elegans DNA was performed for patterns of repeat-flanked 

duplications whose proximity and relative orientation was indicative of repeat- 

mediated duplication. 

The particular tool used was the gf f dp. p l  program, which implements dy- 

namic programming using a generalised hidden Markov model of programmable 

structure with a pushdown stack. The gf f dp . p l  program is described (along 

with one of the models used for this search) in Appendix A. 

In total 36 potential repeat-mediated duplications were found in the search, 

22 spanning coding regions (though none of the duplicated blocks themselves 

intersected with coding regions). The maximum permitted separation between 

match segments for this search was 10kb; there are 226 matches in Wormdup 

that are this close together, so the hit rate to these matches was 16% (1 in 

6). Nine of the 36 hits were of the form repeat -+ match + repeat + match, 

the pattern expected for unequal crossing-over events of the type shown in 

Figure 1.3. All 36 matches are available from the Wormdup website. 

5.5 Comparison of non-coding duplications and 
coding duplications 

Table 5.2 lists the 30 largest of the 369 clusters in the gene duplications data 

set whose construction is described in Section 5.2.6. Of the 666 gene pairs in 

the minimal spanning tree, 346 were on the same chromosome; of these, 198 



were separated by under 20kb. Of the 346 same-chromosome gene duplications, 

201 (58%) were oriented the same way; this proportion is even higher (64%) 

for those separated by under 20kb of sequence. No correlation between age and 

separation was found for these duplications. 

The bigdp program (see Section A.5 of Appendix A) was used to search 

for blocks of genes duplicated en  masse. Only one long-range (over 100kb) 

duplication involving over two pairs of genes was found, on chromosome I1 

(pairing the three genes T05C12.3, F35C11.2 and F35C11.3 with W01C9.4, 

M05D6.3 and M05D6.1) and this was not very convincing, since the first gene- 

pair in the group is separated from the others by over 70kb. Seven long-range 

two-pair blocks were found. 

The ages of gene duplications were estimated by fitting a time-dependent 

model to the observed frequencies of synonymous substitutions between the 

coding sequence pairs; this method is described in greater detail in Chapter 6. 

Most gene families are seen to have members with a wide range of ages, with 

notable exceptions being certain families of transposase and RNA-directed DNA 

polymerase proteins which probably dispersed rapidly. 

If the molecular clock hypothesis holds, then the data would indicate a fix- 

ation rate of approximately 5 gene duplications per million years. 60% of these 

duplications involve multi-gene clusters; the rate of fixation of duplications not 

involving clusters is 2 per million years. Gene duplications tend to be bigger 

than non-coding duplications; the average C.elegans coding sequence is 2500 

bases long, whereas the mean size of non-coding duplications in Wormdup is 400 

bases. The fixation rate of gene-sized duplications in Wormdup, including pseu- 

dogenes, is estimated at  0.3 per million years. If the speed of the synonymous- 

substitution clock for coding DNA (the "codon clock") is the same as the speed 

of the substitution clock for non-coding DNA (the "background clock"), then 

this would indicate that gene duplications are fixed 7 times more frequently than 

non-coding duplications. The fraction of coding DNA in C.elegans is roughly 



Table 5.2: The 30 largest duplicated gene families in C.elegans, with most recent 
and most ancient duplication ages also shown (dates older than 1200 million 
years are truncated). The clustering was tight, so that several large families 
were split up (e.g. cytochrome P450). 

Brief identification 

Major sperm protein (msp-142) 
transposon reverse transcriptase 
transposable element 
DNAJ protein like 
cuticular collagen 
Histone H3 
unknown 
RNA-directed DNA polymerase 
his- 10, histone-H4 
histone H2B 
guanylate cyclase 
cuticular collagen 
histone H2A 
reverse transcriptase 
unknown 
transposable element Tcl  transposase 
small histidine-alanine-rich protein 
precursor (SHARP) 
chitinase domains 
C-lectin binding domain 
cytochrome P450 
unknown 
unknown 
unknown 
cytochrome P450 
transposition protein 
collagen 
C4type zinc finger domain 
tubulin alpha-2 chain 
unknown 
repetitive proline-rich cell wall protein 

Family 
size 
32 
24 
20 
14 
12 
11 
10 
9 
9 
8 
8 
8 
8 
8 
8 
7 
7 

6 
6 
5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 

Example 
member 
C25A8.1 
F38El.l 
B0280.6 
ZK666.2 
C50F7.5 
F45E1.6 
C03G5.5 
T06C10.5 
K03A1.6 
F45F2.2 
ZC412.2 
F55C10.3 
F55G1.10 
TOlC1.1 
K07F5.9 
F08G12.6 
M03A1.5 

C08H9.7 
F10F2.6 
T10B9.1 
F38A5.9 
F15B9.4 
ZK1248.9 
R04D3.1 
F52D2.3 
T10E10.2 
C33G8.10 
F44F4.11 
ZK402.2 
C24A3.1 

Youngest I Oldest 
duplication/- 
0.04 
0 
0 
0 
0 
0.11 
0 
0 
0.05 
0 
1.96 
0 
0 
0 
0.11 
0 
0.08 

0.39 
0.89 
0.45 
0 
0.23 
0 
1.27 
0 
1.58 
2.8 
0 
0.97 
0 

200Myr 
6+ 
6+ 
6+ 
6+ 
6+ 
6+ 
1.65 
0.46 
2.17 
1.65 
6+ 
2.79 
1.6 
6+ 
2.36 
6+ 
2.17 

6+ 
6+ 
2.16 
0.06 
6+ 
6+ 
6+ 
0.36 
6+ 
6+ 
5.11 
1.92 
6+ 



25%, so that the duplication fixation rate per base of coding DNA appears to 

be 20 times higher than per base of non-coding DNA. 

Could the rate discrepancy between coding and non-coding duplications be 

due to the clocks being out of sync? That is, could the synonymous-substitution 

clock (or "codon clock") for coding sequences be running slower than the substi- 

tution clock ("background clock") for non-coding sequence? It is certainly easy 

to imagine how a wider range of mutations could affect non-coding sequence 

compared to coding sequence; any kind of mutation involving more than a sin- 

gle base will be strongly selected against in coding DNA. This would tend to 

make the background clock appear to run faster. On the other hand, the codon 

clock actually appears to run faster than the intron clock (the intron clock is 

based on counting the number of substitutions and indels that have accumulated 

inside introns; this clock is evaluated in Chapter 6). Although it is possible that 

the codon and intron clocks both run slower than the background clock due to 

selection pressures on both codons and introns, the rate for small insertions for 

the intron clock is similar to the background clock, suggesting an approximate 

correspondence. Furthermore, the observed divergence of introns is consistent 

with selection pressures on some introns, but not all. Variation in molecular 

clock rates have been reported elsewhere [GWD98] although the variations here 

are slightly larger. 

If the fixation rate discrepancy is real, then it could be explained by positive 

selection pressure acting on gene duplications, greatly elevating their chances of 

fixation. Duplications of non-coding DNA are expected to be essentially neutral 

or even mildly deleterious, due to the increased DNA load. This effect would 

tend to elevate the relative rate of fixation of gene duplications, particularly if 

(as a hypothetical example) there were a selective sweep for increased dosage 

levels of a particular gene. 



Discussion 

A database of genome duplications called Wormdup has been developed from 

72Mb out of the 97Mb of C.elegans, including a variety of tools for accessing 

the data set. Statistics for the database have been described, including the 

copy numbers of CeRep repeats and size, length and age distributions of unique 

duplications. 

Unique non-coding duplications of the size range considered in Wormdup 

(mean 400 bases) become fixed at  a rate of approximately 20 duplications per 

million years, including pseudogenes. This is a conservative estimate as multi- 

copy duplications were excluded. Although it is not yet clear what are the most 

important causes of duplication, some general trends are apparent: around half 

of all duplications are local in nature and no preference is shown for parallel 

versus inverted orientation. Around 1 in 6 of highly local duplications (separa- 

tion < 10kb) are near repetitive elements in conformations suggestive of repeat- 

mediated duplication, with around a quarter of these consistent with the kind 

of unequal crossing-over event illustrated in Figure 1.3 of Chapter 1. 

Duplications do not appear to be systematically deleted on the million-year 

time scale, either by counterselection or by processes such as unequal crossing- 

over. The main process by which duplications deteriorate is stochastic accu- 

mulation of substitution and indel events. The data in Wormdup can be used 

to estimate the fixation rates of these kinds of small, local mutation. Fixing 

the rate of transitions at  one substitution per 200 bases per million years, the 

transversion/transition ratio is estimated to be 0.49 - i.e. transitions are twice 

as common as transversions. Indels occur 1 every 6kb per million years; an ex- 

ponential distribution with mean 150 bases models 86% of these indels. There 

is weak evidence that the mean separation between duplicated blocks increases 

with time. Two explanations have been proposed for this trend: (i) local removal 

of duplications, due perhaps to insertions being smaller and more frequent than 

deletions; and (ii) large-scale conservative re-arrangements such as reciprocal 



chromosomal translocations. 

The ratio between the apparent duplication fixation rates of coding and non- 

coding DNA is rather large at 20:l. This may mean that that the estimated non- 

coding rate is too conservative or that the molecular clocks are mis-calibrated. 

If the difference is real, it would suggest that most non-coding duplications are 

lost from the population. This would imply that most gene duplications that 

become fixed have a selective advantage. 

Selection favours gene duplications that preserve orientation, even though 

the underlying mechanisms of duplication appear not to discriminate between 

preserved- or inverted-orientation duplications. A possible explanation for the 

preference for same-orienation duplication is that operons are used to maintain 

similar regulatory control over both copies of a duplicate gene pair [BS97]. 

The analysis shows that there are many unclassified repeat families in C. 

elegans. 48 new families were identified by a very basic clustering and it is 

estimated that there are around 200 more. Around 60% of these repeats are 

located in the outer 50% of chromosomes. A full classification and derivation 

of consensus sequences for repeat families would be a non-trivial project, but 

worthwhile if only because of the potential role of repetitive sequences in trig- 

gering duplications and the consequences for their role in evolution. 

5.6.1 Availability 

The Wormdup data sets are available in full online, at  the following URL: 

http : //www . sanger . ac. uk/Users/ihh/Wormdup/ 



Chapter 6 

Intron Clocks: 
Time-Dependent Models of 
Int ron Evolution 



6.1 Introduction 

The most widely accepted method of finding divergence times between coding 

sequences is to exclude all but the silent sites - bases which, due to the re- 

dundancy of the genetic code, may be varied without changing the translated 

protein sequence [LG91]. These are presumed to be free of selective pressures. 

Under the further assumptions that the average rate of substitutions at a given 

site is constant (the "molecular clock hypothesis") and that neighbouring-base 

effects can be safely ignored (see [Bu186] for an evaluation of the error due to 

this approximation), substitution at silent sites can be modelled with indepen- 

dent continuous-time finite Markov chains and Bayes' theorem applied to yield 

maximum a posterior (MAP) estimates of the divergence time. 

There are several ways the "codon clock" method (as it is referred to from 

now on) can go wrong. Firstly, neighbouring base effects are non-negligible. 

Unfortunately, modelling these effects in full takes resources that scale expo- 

nentially with the sequence length. Secondly, the molecular clock hypothesis 

has been shown experimentally to be flawed [GWD98]. Thirdly, the assumption 

that silent sites are unselected ignores the effects of codon bias [SAL+95] as well 

as the possibility that there are other signals in coding sequences. Finally, the 

MAP divergence time estimate only represents the maximum of the posterior 

distribution, which might be very broad. 

In an attempt to address the problems of limited data and silent site se- 

lection, an alternative method of obtaining molecular clock information from 

introns has been developed and evaluated in comparison to the silent site ap- 

proach. The "intron clock" method is straightforward in conception: ancestrally 

conserved introns are identified from an alignment of coding sequences by look- 

ing for aligned pairs of residues that are both on exon boundaries (it is assumed 

that the probability of deletion and re-insertion of an intron at the same locus 

is negligible). Time-dependent models of substitution and small indel events, of 

the sort described in Section 2.4 of Chapter 2, are then used to generate likeli- 



hood distributions over the divergence time. These likelihoods can be compared 

or combined with the likelihoods from codon clocks in a principled Bayesian way. 

Section 6.2 of this chapter investigates general patterns of intron evolution, 

in order to assess the extent to which the patterns of mutations in introns are 

compatible with the models of Section 2.4; i.e. whether it is legitimate to fit 

small-indel and single-base substitution models at  all. It  is found that while 

many pairwise intron alignments are indicative of infrequent small indels, there 

is a significant fraction of intron pairs whose lengths are very different. A number 

of these contain high copy-number repetitive sequences and it is proposed that 

repeat element insertion is the most plausible cause of large mutations. This 

conclusion is discussed in the light of recent suggestions that new Drosophila 

melanogaster introns originate by duplication [TRTA98]. Following on from this, 

Section 6.3 suggests a Bayesian methodology for dealing with the problems of 

large insertions and uses the GFFTools and BayesPerl packages described in sec- 

tions A.4 and A.3 of Appendix A to estimate molecular evolutionary parameters 

for intron evolution and to assess the performance of intron clocks relative to 

codon clocks. Finally, in Section 6.4 the results are summarised and discussed. 

6.2 General patterns of intron evolution 

The data set of introns was derived from the set of gene duplications described 

in Section 5.2.6. Conserved intron loci were identified from Smith-Waterman 

alignments of these coding sequences using the ACeDB annotation. Of the 

1035 genes in closely-related families found by the search procedure described 

above, 46% were found to have at least one ancestrally conserved intron (and 

on average, two to three), yielding a total of 1142 conserved intron pairs. Visual 

inspection of the protein alignments suggested that 52 of these pairs contained 

an intron with a mispredicted splice site, since changing the splice site would 

radically improve the protein alignment. These 52 introns, and a further 9 that 

looked as if they might be mispredicted, were removed from the data set, leaving 



1081 pairs. 

Before investigating this data set further, some ideas are reviewed about the 

signals that are known to exist in introns and the selection pressures that are 

expected to apply. 

6.2.1 Conserved signals in introns 

Splicing - excision of introns from messenger RNA - takes place during the pas- 

sage of the mRNA to the ribosome. The first stage of splicing is the binding of 

the U1 and U2 small nuclear ribonucleoproteins (snRNPs) to the splice site con- 

sensus sequences which span the 5' and 3' exon-intron boundaries respectively, 

to form a committment complex. This is followed by the ATP-driven binding 

of the U4, U5 and U6 snRNPs and subsequently by catalysed intron excision. 

During the first stage of intron excision, the 5' splice site is cleaved and re- 

joined in a "lariat" structure to an adenine residue located at  the branch point, 

which is separated from the 3' splice site by a short pyrimidine tract and is also 

bound by U2 during committment. In the final stage of intron excision the 5' 

and 3' splice sites are joined and the lariat intron excised [HK94, Bir]. Splicing 

signals known to be present in introns thus include the 5' consensus (bound by 

U1) and the 3' consensus, the branch point and the intervening polypyrimidine 

tract (all bound by U2). The canonical C.elegans 5' splice site consensus is 

thought to extend at  least 3 bases upstream and 7 bases downstream of the 5' 

splice site; the 3' splice site is shorter, but often merges into the polypyrimidine 

tract [Bir, CLB93, ZB961. There may well be additional signals subtle enough 

to  have escaped detection. The picture is further clouded by the presence of an 

alternative splicing system involving U12 snRNPs with a stronger branch-point 

consensus and a weaker 3' signal, although no U12-type introns have been found 

in C. elegans [BPS98]. 

Most (62%) C.elegans introns are between 40 and 60bp in length, so that 

selection pressures due to the need for the above splicing signals may be expected 



to act on around 15% to 25% of bases, most of which will be close to the splice 

sites. Although this will retard the effective substitution rate near the splice 

sites, one can also expect to see a higher substitution rate in the less selected 

regions relative to coding sequences, since DNA damage is often not confined to 

a single base and there are correlations in the local probability of substitution 

[LKW97, S095, KB951. 

6.2.2 Sizes of indels in introns 

Apart from substitutions, the effects of insertions and deletions must be con- 

sidered. Standard dynamic programming algorithms typically assume an ex- 

ponential prior distribution over gap lengths [DEKM98], though a study of 

processed pseudogenes suggests a power-law distribution to be more accurate 

[GL95b] and algorithms implementing alternative gap penalties have been de- 

scribed [MM88, ZLL971. One can get an overview of the sizes of indel events 

by plotting the log-frequency distribution of percentage differences in length 

between paired introns Figure 6.1. (The number of indels is expected to be 

proportional to the length of the sequence, so percentage differences may be 

more informative than absolute differences.) 

Figure 6.1 shows that while the frequency distribution is reasonably well- 

approximated by an exponential fit up to around a 15% difference in length, 

there is a long tail that is not well described by an exponential or, indeed, by a 

power-law distribution. 23% of the intron pairs in the data set lie in this long 

tail region. 

In an attempt to explain the observed elevated frequency of large indels 

in introns, the gff intersect . p l  program described in Appendix A was used 

together with the HMMER [Edd95] and GCG suites, the published C.elegans 

annotation and the CeRep database of C.elegans repeat families to look for 

repetitive elements present in one but not both members of an intron pair. Of 

the 1081 pairs of introns in the data set, 7% contain repetitive elements in at 



Figure 6.1: Distribution of fractional differences in conserved intron lengths. 
The dotted line is obtained by averaging nearby points. A large number of 
introns have length differences not easily explained by small indel models. 
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least one of the introns. The frequency of length mismatches between repeat- 

containing intron pairs is over 60% - considerably higher than the frequency for 

the whole data set. In all cases of length mismatch involving repeats, a repeat is 

found in one of the introns but not the other. Repeat insertion often appears to 

be associated with the formation of inverted and tandem repeats. These results 

are strongly suggestive that repetitive element insertion is a major cause of large 

indels in introns. 

6.2.3 Intron mobility 

It has been claimed that some Drosophila melanogaster introns at  unaligned 

positions show significant homology, and that this is evidence for autonomous 

intron replication [TRTA98]. As part of the present study of C.elegans in- 

trons, a search for homologous introns was conducted using a BLAST search as 

a prefilter to the the Probabilistic Smith-Waterman (PS W) algorithm [BH96] . 
Gaussian distributions were fitted to PS W score frequency-distributions for ran- 

dom length-separated samples of the intron database to estimate "significant" 

(to 4 standard deviations) score thresholds. This is not a Bayesian approach, 

although a plausibility argument on Bayesian grounds is given in Section 2.7 of 

Chapter 2. The reason this approach was used was the woeful inadequacy of the 

"null" Bayesian generative model for introns: Figure 6.2 shows score-frequency 

curves for a pseudo-data set of introns generated from 4-mer frequencies (as 

might be sampled from a naive null model) and a real data set taken from the 

C.elegans intron database; there is a difference of 11 nats ( = 16 bits) in the 

mean scores, though the variances are similar. To assess the significance of com- 

parisons between introns of different lengths A and B (with A < B), a Gaussian 

score distribution with mean p and variance (r2 is used, where p = pa is the 

mean of a Gaussian fit to the score distribution of a random sample of sequences 

of length A, and o2 = oi is the variance of a Gaussian fit to the score distri- 

bution of a random sample of sequences of length B. Roughly speaking, the 



Scores of c o m ~ a r i s o n s  between introns 

0 10 
Log odds-ratio score 

Figure 6.2: Log odds-ratio scores (relative to a null model of single-base compo- 
sition) obtained by summing over alignments between randomly selected pairs 
of introns from C. elegans (solid line) and between pseudo-introns generated us- 
ing 4-mer frequencies from real introns (dotted line). The sharp peak at zero is 
a fixed-precision rounding error. 

average score can be expected to decrease with sequence length, but the vari- 

ance to increase with length; so using pa and oi gives the most conservative 

significance estimate. 

The above search procedure yielded 110 intron pairs with "significant" ho- 

mology. 61 of these were at  aligned coding sites and 49 were unaligned. However, 

further analysis revealed that 34 of the 49 potential "mobile introns" in fact con- 

tained repeat sequences, accounting for their surprising homology by enclosed 

mobile elements, rather than intrinsic mobility. Three more of the homologies 

are between introns on the same protein, suggesting a tandem duplication. The 

remaining 12 significant intron homologies are listed in Table 6.1. Given the 

observed diversity of transposon species in the worm genome, and the low copy 



Table 6.1 : Unexplained intron homologies in C. elegans. 

Intron #1 
AC3.6i2 
AC3.6i2 
B0024.6i16 
C05C10.2i6 
C05C10.2i6 
C09B9.li2 
C03B8.4i2 
C05G5.6i4 
C05C10.2i6 
C05D9.6i3 
CllH1.4ill 
C18H2.2i5 

number of some of these species, it seems entirely possible that many or all of 

the homologies in Table 6.1 correspond to uncharacterised mobile elements that 

happen to have landed in these introns. 

A more sensitive search was carried out for examples of the proposed phe- 

nomenon of "intron drift" (slight dislocations in the positions of conserved in- 

trons relative to the coding sequences). No trace of this phenomenon was found. 

Intron #2 
C33D9.4il 
K03H1.5i7 
C35A5.2il 
E02H4.4i5 
F55E10.5i4 
K04C2.4i7 
W04D2.4i3 
T27Bl.lill  
PAR2.2i3 
F40E10.5i2 
F17A2.3i4 
K06B9.4i2 

6.3 Fitting time-dependent models to pairs of 
introns 

Using the data set of conserved intron pairs, the hypothesis that introns are 

informative molecular clocks can be tested. Throughout this section the time- 

dependent coupled HMM with time-independent exponentially distributed gap 

lengths and Hasegawa substitution matrix described in Chapter 2 will be used. 

To work with the time-dependent model, two pieces of software designed for 

this project were used. The first was a set of C++ classes designed to evaluate 

log-likelihoods of the form log Pr [Dl M, O] where M is a (pairwise or single- 

sequence) hidden Markov model and O is a point in the parameter space of M. 



To work with the likelihood data generated by the first program, a second piece 

of software that was designed to perform common manipulations on tables of 

log-likelihood values in multi-dimensional subspaces (including addition, mul- 

tiplication, integration, marginalisation et cetera) was used; this software was 

written in Per1 5.0. Both these pieces of software are described in Appendix A. 

6.3.1 Down-weighting uninformative pairs 

Given the high number of introns disrupted by mobile elements or other kinds 

of mutation blitz, it would be useful to have a way of weighting intron pairs 

according to whether they look useful or not. A general, Bayesian way of doing 

this is as follows: Suppose that d is an element of data (in this case, a pair 

of introns) and that D = {di) is an entire data set, and that it is desired to 

estimate a parameter O (or even a set of parameters, such as the divergence 

time of each pair). Suppose further that each data point di has an associated 

missing boolean variable si E { O , 1 )  indicating whether it is of relevance or 

not. More specifically, say that the data point di was generated by one of two 

models, Mo or MI, where Mo is a null model that is independent of O (i.e. 

P r  [dl@, Mo] = Pr  [dl Mo]), and that the choice of model is determined by s i ;  

so that if si = 0, then the data point was generated by the null model and 

is uninformative for the estimation of O. To make this work, the posterior 

probability of O is marginalised over S as follows: 

Pr  [D, S, O] 
Pr[OlD] = 

all S Pr [Dl 

Pr [O] 
= 11 C Pr [dilsi, O] Pr [silO]- 

2 s i ~ { O , l )  Pr [Dl 

This approach weights contributions to the MAP estimate of O according 

to the posterior probability that the paired sequences are alignable (i.e. that 



they have not been disrupted by a transposon insertion). The prior probabilities 

Pr  [silO] determine the weighting bias towards "alignable" or "unalignable". In 

theory, a time-dependent prior could be used, but there are too many different 

types of transposon-induced disruption to estimate a meaningful transposon 

insertion rate from the present data. For the present work, the dependence of 

the s-prior on O was dropped and a score cutoff of 10 bits (6.9 nats) was used, 

corresponding approximately to a 1000 : 1 weighting against informative pairs 

(Pr [sl] 2: 0.001). 

6.3.2 Testing intron clocks 

To test the intron clock hypothesis, the likelihoods of four different models were 

evaluated: 

Model M o :  All introns mutate at different rates. 

Model MI: All introns mutate at  the same rate, but this rate is not 

correlated to the rate of synonymous substitutions in coding sequences. 

Model M z :  All introns mutate at  the same rate, which is exactly identical 

to the rate of synonymous substitutions in coding sequences. 

Model M S :  All introns mutate a t  the same rate, which is advanced or 

retarded by a constant factor, relative to the rate of synonymous codon 

substitutions. 

Implicit in each model are the assumptions that (i) the molecular clock 

hypothesis is valid for synonymous substitutions in coding sequences and (ii) 

the previously described time-dependent gap HMM is a valid model for neutral 

intron evolution. 

Since each of these models has a different number of parameters, it is neces- 

sary to integrate the likelihood across the entire parameter space of each (see e.g. 

[Mac92a] for a readable explanation of why integrating across the whole param- 

eter space penalises models with more parameters). An approximation to this 



Table 6.2: Log-odds-ratios of synchronisation hypotheses for intron and codon 
clocks, relative to the null hypothesis that introns do not show clock-like be- 
haviour at all (Mo) .  

integral was found using the trapezium rule with a finite range for divergence 

times of 0 5 t 5 10 with a time-step At = 0.05. Model M 3  has an extra pa- 

rameter r = t i / tc  determining the relative rates of the intron and codon clocks; 

this was integrated over 0 5 r 5 2 with Ar = 0.1. Uninformative (flat) priors 

were used for r and t .  Strictly speaking, parameters such as the gap-open rate 

g, the mean gap length I and the transversion/transition ratio k should be inte- 

grated over as well, but these were also approximated by g = 0.039,l = 1.2 and 

k = 0.53, values which were obtained by a crude approximate Viterbi-likelihood 

method. Uninformative intron pairs were down-weighted, as described in the 

previous section. The likelihood calculations and the numerical integration were 

performed with the aid of the LogSpace and BayesPerl packages described in 

sections A.2 and A.3 of Appendix A. 

The log odds ratios (in bits) of models M I ,  M 2  and M 3  to the null model 

M o  are shown in Table 6.2. The clear winner is model M I :  intron clocks are 

log, [Pr [datalmodel]] 
- log, [Pr [data[ Mo]] 
655 
9 1 
485 

Model 

MI 
M 
M 

synchronised between introns, but do not bear any relation to the synonymous 

codon substitution clock. A clue as to why this might be is offered by the supe- 

Brief description 
of model 
Unsynchronised w/codons 
Perfectly synchronised w/codons 
Imperfectly synchronised w/codons 

rior performance of model M 3  over model M a ;  recall that model M3 allowed 

intron and codon clocks to be out of sync by a constant ratio, whereas M2 

required that they stay in exact step. In fact the maximum-likelihood value of 

the relative clock-rate parameter r was ? = 0.1, suggesting that to make in- 

tron clocks work under the present model, they would have to run significantly 



slower than the codon clocks. When the analysis was repeated without align- 

ment weighting (which will tend to introduce a negative bias to the intron clock 

rate) the ML value for r rose to r^ = 0.5 but the ranking of the four models 

remained unchanged. 

It  is possible that a time-dependent prior for whether sequences were alignable 

would improve the performance of the clock-like models. %The limited range over 

which the time parameter was integrated may also be a source of error. 

These results suggest that while there is hope of fitting time-dependent mod- 

els to non-coding DNA (and, in particular, to introns), the current models are 

far from perfect and are not yet suitable sources of clock information. The 

use of codon clocks is itself known to be a flawed technique (see, for exam- 

ple, [GWD98]). With the increasing availability of non-coding DNA sequence, 

it might be a good idea for studies of non-coding DNA evolution to consider 

unpredictable, traumatic mutations as well as the tractable single-base substi- 

tutions and small indel events that are more typical of coding DNA. 

6.4 Discussion 

Introns within the same gene evolve at the same rate in C.elegans, but this rate 

does not correspond well to the rate of syonymous substitution in the coding 

sequence. If the correspondence is made, however, it is better to allow the 

introns to evolve at  a slower rate than the synonymous sites. This suggests that 

the selection pressure on introns is greater than on synonymous codons. One 

reason for this could be that C.elegans introns are rather short and around 20% 

of the average intron sequence length is taken up by splicing signals. Another 

reason could be small genes (for e.g. snRNAs) in C.elegans introns; these will 

be subject to selection. 

The distribution of length differences between introns in homologous po- 

sitions suggest that while 77% of intron pairs have diverged according to the 

kind of time-dependent stochastic model of small-indel accumulation proposed 



by Thorne et a1 [TKF92], the remaining fraction of pairs have been subject to 

large insertions or deletions. Introns containing repetitive elements are strongly 

associated with this effect, suggesting that repetitive element insertion is a pri- 

mary cause of large mutations in intron sequences. It is proposed that repetitive 

elements also account for some of the surprising homologies that are found to 

exist between intron sequences. 

The inadequacy of the default null model for introns has implications for 

the design of genefinding algorithms. A more sophisticated model should not 

only take account of the known splicing signals within introns, but also reflect 

the empirically observed propensity of unselected sequence for low-complexity 

regions such as poly-AT tracts. Modelling these kinds of features with HMMs 

demands large state spaces since the lengths of the features are not geometrically 

distributed. To avoid the training problem, the effective number of parameters 

can be reduced. An outline of the derivation of constraints on HMM parameters 

for modelling complex length distributions is given in Section 2.7 of Chapter 2. 

6.4.1 Availability 

The gene duplication data described here are available with the rest of Wormdup 

a t  the following URL: 

http: //www . sanger . ac .uk/Users/ihh/Wormdup/ 
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Classification of DNA 
Transposons in 
Caenorhabditis elegans 



7.1 Abstract 

7.2 Introduction 

Transposable elements - parasitic elements, integrated into the host genome 

but exhibiting mobility in their genetic locus - constitute a significant fraction 

of eukaryotic genomes [Jur98, Smi961. From a practical viewpoint, repetitive 

DNA has a detrimental effect on database searching as it spoils the assump- 

tion of sequence "randomness" on which statistical methods rely. Transposons 

are also emerging as players in genomic evolution, with occurences of repetitive 

elements reported in introns [Wes89], promoter regions [OGB95] and coding 

regions [BHP89]; they have also been hypothesised to trigger meiotic recom- 

bination [NCCC 92, YWB97, FBT+91]. Transposons provide useful vectors for 

germline transformation [PvL97]. As model selfish genetic elements, their pop- 

ulation dynamics is an interesting topic [YWB97, LC97, HLL97, HLNL971. 

Transposons are distinguished from other types of repetitive DNA - such as 

microsatellite repeats and unique tandem duplications - by their spontaneous 

re-insertion at  new positions in the genome. In doing this they pass through an 

intermediate phase either as RNA which is then reverse-transcribed back into 

the genome, or as double-stranded DNA which is excised and re-integrated else- 

where. The two kinds of transposon are described as "class I" or "class 11". Both 

classes can be further categorised according to whether they are autonomous or 

non-autonomous: transposons in the former category contain genes coding for all 

the transposase proteins necessary for mobilising transposition, whereas those 

in the latter, non-autonomous category depend on enzymes provided by the 

former category and are often nicknamed "hitch-hikers" [Smi96]. Hitch-hikers 

may be closely related to autonomous elements by mis-sense mutations or may 

display similarity restricted to the tranposase binding sites [RvLDP97, OGB961. 

The presence of parasitic hitch-hikers is posited to be detrimental to the 

reproductive success of transposons, especially so for DNA tranposons, whose 



tranposase proteins may have a more difficult job finding the particular se- 

quences from which they were transcribed, leaving them vulnerable to parasitic 

mimics [HLL97, LC97, HLNL971. Two mechanisms by which a transposon may 

avoid becoming overburdened with hitch-hikers include: (1) evolution of new 

specificity in its transposase-nucleic acid interactions; (2) invasion of fresh host 

genomes that are free of hitch-hikers. It may be envisaged that these work in 

tandem, i.e. new genomes provide the spatial heterogeneity necessary for new 

specificity to evolve. The presence of hitch-hikers is just one factor proposed to 

restrict the mobility of transposons; others include DNA methylation [YWB97] 

(though this is absent in C.elegans), self-inhibition [LC971 and titration by de- 

fective transposase proteins [HLL97]. 

One of the most widely studied families of DNA-mediated transposable ele- 

ments is the Tcllmariner family [PvL97, HLL971. Members of this ubiquitous 

family typically contain a two-exon gene of around 300-400 codons flanked by 

short (11-80bp) terminal inverted repeats (invreps). The Tcl  transposase, which 

has been demonstrated to be sufficient to mediate transposition in C.elegans 

[VBP96], catalyses the staggered double-strand endonuclease cleavage of the 

DNA substrate and re-integration of the transposon into the sequence TA [HLL97, 

Cra95, LCR96, vLCP94, VBP961. Tcl  excision is followed by double-stranded 

DNA breakage repair, which can entail a variety of mutations including dele- 

tions, insertions and duplications [MKW91] . The putative domain structure of 

the Tc l  transposase is shown in Figure 7.1. Three domains have been proposed 

[VvLP93]: (i) a specific DNA-binding domain that binds between bases 5 and 

26 of the Tcl  invrep and shows weak transitive homology to the DNA-binding 

domain of the Drosop hila paired gene, a transcription factor involved in embry- 

onic development [FLD+94, GW92); (ii) a non-specific DNA-binding domain 

that might be responsible for DNA-protein interactions determining the struc- 

ture of the transpososome [VvLP93]; and (iii) a catalytic domain that belongs 

to the D35E superfamily of transposases and retroviral integrases, the struc- 



S~ecific Catalytic 
D~A-bindin~ Non-specific DNA-binding domain ~ 3 5 ~  

domain domain 

Figure 7.1: The putative domain structure of the 343-amino acid Tcl  trans- 
posase protein. The 63 N-terminal residues bind specifically between bases 5 
and 26 of the Tcl  terminal invreps. The corresponding domain in the Mi- 
nos elements from Drosophila hydei show weak homology to the paired gene 
in Drosophila [FLD+94]. Amino acids 71 to 203 contain a non-specific DNA- 
binding domain [VvLP93] and amino acids 247 to 296 are the D35E catalytic 
motif that is highly conserved in a number of transposase and viral integrase 
proteins [DD JH941. 

tures of several members of which have been solved [DDJH94, GL95al. There 

may be additional, cryptic DNA-protein interactions affecting transposase ac- 

tivity [VvLP93]. It  is thought that the terminal 6 bases of the Tcl  invrep are 

important for catalysis [VP94]. The Tc3 transposase has a similar catalytic 

mechanism but binds to two regions in the (longer) Tc3 invrep, rather than one 

[CvLP94]. 

Computational analyses based on the clustering of inverted repeats have un- 

covered several putative families of transposable elements in various organisms 

[OGB95, OGB96, Smi961 including the partially sequenced genome of the Bris- 

to1 N2 strain of C.elegans [SDT+92]. At least one of these families has since 

been demonstrated to be mobile [RvLDP97]. In this chapter, a comprehen- 

sive list of all previously characterised transposons (including those described 

above) in the C.elegans genome is first presented. A computational approach 

to identifying new members of a DNA transposon family is next described; this 

approach is used to identify several previously uncharacterised subfamilies of the 

Tcllmariner group. Phylogenetic evidence suggests that at  least one of these 



families may have been active in the recent past. Profile hidden Markov mod- 

els [DEKM98] of the inverted repeat sequences characterising the new families 

are published as part of the C. elegans annotation [CSC98] and in the Wormdup 

release along with annotation files describing the locations of identified elements. 

7.3 Methods 

The basis for the present analysis was the 90Mb of C.elegans DNA sequence 

available as of October 1998, together with the published annotation in ACeDB 

[ED951 and the CeRep database of common worm repeats [CSC98]. 

7.3.1 Construction of the transposon family data set 

Three principal techniques were used in constructing the data set of novel trans- 

posable elements: 

the identification of inverted repeats (following [OGB95]), 

sequence homology and clustering at  the protein coding level (following 

[Smi96]) and 

sequence homology and clustering at the DNA level. 

Inverted repeats 

A list of all invreps was constructed by screening each cosmid against itself using 

blastn version 1.4.7 [AGM+90]. The cosmid-by-cosmid approach introduces a 

coarse-graining over the ideal approach of comparing chromosomes whole; how- 

ever, the separation of most C.elegans transposon invreps is considerably less 

(around 3kb) than the typical length of a cosmid (around 40kb) and the artificial 

length cutoff introduced should be negligible; this differs from the approach in 

[OGB95]. Before performing the BLAST search, low-complexity regions (using 

the cf i l t e r  . p l  program described in Appendix A) and tandem repeats (using 

the tandem program from the GCG package) were identifed and masked out. 



The invrep data were reduced by a factor of approximately two by taking the 

closest invrep-pair wherever a conflict arose, using the gff intersect .pl and 

intersect lookup. pl programs described in Appendix A. This left approxi- 

mately 72000 invreps. 

Protein sequence homology 

To reduce the size of the invrep list, homology information was used to restrict 

the search to elements encoding a transposase protein of the D35E superfarnily. 

This family is widely diverged [DDJH94] and it is anticipated that there will also 

be pseudogene-containing variants with internal deletions or insertions [OGB96]. 

For these reasons the blastx program, which searches the six-frame conceptual 

translation of the genomic sequence, may not be sensitive enough. A more 

sensitive program is GeneWise [BD97], which finds the optimal alignment of 

conceptually translated genomic sequence to a hidden Markov model (HMM) 

and is robust to gaps and frameshifts. HMMs were trained individually on 

three separate seed alignments: the first produced using CLUSTALW [THG94a] 

from all the mariner transposases in SP-TREMBL and the latter two derived 

from previous analyses of D35E subfamilies [DDJH94, SR961 and homologous 

sequences in SP-TREMBL. The shortest seed alignment is shown in Figure 7.2. 

The available worm DNA was searched with these HMMs using GeneWise, 

and the matches combined with the list of invreps by dynamic programming us- 

ing the gf f dp . pl program described in Appendix A, to yield a set of predicted 

transposons. This set was partitioned into single-linkage clusters by flanking 

invrep sequence similarity using the seqcluster .pl program described in Ap- 

pendix A. 

DNA sequence homology 

From the transposon family data set, a set of canonical invrep sequences for 

each family was extracted. Each set was used to train an HMM, which was then 

searched against the available worm DNA in order to obtain comprehensive data 
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Figure 7.2: Alignment of D35E motifs from [DDJH94] and similar proteins from 
SP-TREMBL. 



Fih~se 7.2: Alignment of D35E xnotifs horn [DDJH84] and similar prsteins from 
SP-TREhfBSL. 



on the representation of each family in the worm genome, including instances 

where one half of the invrep had been deleted. HMMs trained on sequences from 

previously described transposon families (including Tcl-Tc7 [PvL97, RvLDP971 

and Celel-Cele7 [OGB95]) were also searched against the worm genome. In- 

vreps were paired together and associated with Genewise-predicted transposase 

genes using the GFF dynamic programming software gf f dp . p l  described in Ap- 

pendix A. 

7.3.2 Analysis of the transposon family data set 

For each autonomous transposon family, a multiple alignment of the predicted 

transposase genes was made using CLUSTALW. These alignments were phylo- 

genetically analysed by the UPGMA method using BELVU [SD94]. 

7.4 Results 

7.4.1 Previously characterised transposon families 

Table 7.1 lists the results of searching the C.elegans DNA with HMMs con- 

structed from inverted repeat sequences typical to known transposon families 

Tcl-Tc7 [PvL97, RvLDP971, Celel-Cele? [OGB95] and Celell-Celel4 [OGB96]. 

It  is interesting to compare the results of this computational analysis with 

the element counts predicted from experimental data [PvL97]. The only element 

whose count is lower than experimentally predicted is Tcl. If a direct blastn 

search is performed using the Tcl  sequence as a query, the higher, predicted 

count is obtained. A possible explanation for this is that the "missing" Tcl  

sequences do not fit the pattern of transposase homology flanked by invreps. 

Closer inspection reveals this to be so: in most cases, one of the invrep sequences 

is missing and in one case (C.elegans cosmid T10B5, invreps start a t  37632) both 

invreps are present but do not flank the (usually) internal sequence (adjacent 

at  position 39465). 



Table 7.1: Previously characterised transposon families in the worm genome. 
Notes: (t) more copies than predicted [PvL97, OGB961; ($) 22 of the pairs en- 
close a transposase with 2 exons, lengths 155/875bp; (4) includes 3 Celell and 
32 Celel2 elements described in [OGB96], blastn searches reveal an additional 9 
Celell and 7 Celel2 elements (approx.); (4) 14 pairs enclose a transposase with 
2 exons, lengths 416/572bp, 3 pairs form a putative nonautonomous subfamily, 
the rest appear internally heterogenous; (5) includes 4 copies of the putatively 
autonomous element Tc4v (3kb long); (Q) includes 20 copies of 1400bp and 25 
copies of 600bp variants described in [OGB96], only 4 copies are "genuine" Tc5. 

Name 

Tcl  ($) 
Tc2 (t4) 
Tc3 (ta) 
Tc4 (ts) 
Tc5 (f) 
Tc6 
Tc7 
Celel 
Cele2 
Cele4 
Cele5 
Cele6 
Cele7 
Celel4 (t) 

Example invrep sequence 

TACAGTGCTGGCCAAAAAGA. . . 
CCGTATATTCTCTATTAGTG. . . 
TACAGTGTGGGAAAGTTCTA. . . 
CTAGGGAATGACCAGAATAA. . . 
CAAGGGAAGTCAAAAAACTG. . . 
CAGTGCTCCACATAATGATA ... 
TACAGTGCTGGCCAAAAAGA ... 
CAAAATATCTCGTAGCGAAA.. . 
TACCHGGTCTCGACACGACA ... 
TGGGTCTCGTTAGGTATTHG. .. 
GGTCTCGAAACGAYYGAAAY ... 
TATTAMGRRAHCAHNARWTC. .. 
TAGTGHNAAANTATAGAAAA ... 
CACGTGGAGTCAAAAAGTCC. . . 

Copies 
Pairs 

25 
49 
28 
20 
50 
22 
54 
73 

141 
43 
5 

19 
33 

669 

Typical length 
Single 

invreps 

10 
108 
21 
6 

29 
886 
67 

280 
464 
163 
37 
42 
83 

1095 

Invrep 

only 

81 
24 

469 
139 
137 
656 
346 
36 
85 
37 
37 
32 
66 
36 

Whole 
element 

1620 
120 

2350 
1610 
640 

1610 
930 
230 
260 
150 
200 
150 
150 
180 



In all other cases, the database searches find about as many copies as exper- 

imentally predicted, with the exceptions of Tc2, Tc3, Tc5 and Celel4, whose 

copy numbers are elevated. In the former three cases this is due to the pres- 

ence of putatively nonautonomous families sharing homology with the named 

families in the terminal regions of the flanking inverted repeats. The families 

associated with Tc2 and Tc5 have been previously described [OGB96], but the 

Tc3-associated family is new. Tc3 has been predicted to occur approximately 15 

times in the Bristol N2 strain of C.elegans [CFA89] and 14 transposase-carrying 

copies are indeed found in this search; however, this only accounts for half the 

paired hits to the invrep HMM. Three of the remaining 14 pairs were found 

to share strong (over 90%) internal sequence identity, forming a new family 

of 1400bp proposed Tc3-hitchhikers with 574bp invreps, the terminal 247bp of 

which are similar to the Tc3 invrep. No strong internal similarity between the 

other Tc3-like elements was found. 

The number of copies of the Celel4 invrep is an order of magnitude greater 

than predicted in [OGB96], probably because of the increased sensitivity of an 

HMM-based search over a BLAST search. 

7.4.2 Previously uncharacterised transposon families 

The search procedure described in 7.3.1 revealed six new Tcllmam'ner-like fam- 

ilies of transposon, named Tcll-Tcl6 (this continues the Tc naming convention 

but leaves Tc8-TclO unused, allowing for independent transposon discoveries). 

Tcll-Tcl6 contain coding sequences homologous to the mariner transposase 

flanked by characteristic inverted repeats. The definition of a family that was 

used - a group of transposons with near-identical invrep sequences - was sup- 

ported by the phylogeny of the genes bracketed by these invreps, which clustered 

in the same way as the invrep sequences. Representation data for these trans- 

posons are listed in Table 7.2. 

The exon structure of the predicted Tcl  1-Tcl6 transposase genes in C. elegans 



Table 7.2: Previously uncharacterised Tcllmariner-like transposon families in 
the worm genome. The numbers of coding-sequence containing pairs shown in 
brackets in the third column are based on the conservative C. elegans annotation 
rather than the Genewise predictions. Notes: (t) invrep similar to Tc13 and 
very similar to Tc12; (I) invrep similar to Tc13 and very similar to Tcl l ;  (4) 
invrep similar to T c l l  and Tc12, tree suggests recent dispersion. 

varies. The tranposase is most often predicted as a single exon over lOOObp long. 

None of these families has been characterised in the literature, although Oosumi 

et a1 found several copies of Tc13 after a blastn search with Celel4 as a probe 

[OGB96]. 

The chromosomal loci of the members of the transposon families listed in 

Tables 7.1 and 7.2 are published on the Wormdup website at  the following URL: 

http: //www . sanger. ac .uk/~ser's/ihh/~ormdup/ 

7.4.3 Variation between transposon families 

Name 

T c l l  (t) 
Tc12 ($) 
Tc13 (4) 
Tc14 
Tc15 
Tc16 

Typical length 

Transposon families Tcll-Tcl3 display considerable similarity in their invrep 

sequences. This contrasts with previously described transposon families in 

C. elegans, which form distinct groups whether clustered by invrep or by internal 

sequence similarity. In particular the terminal 6 bases of the Tc l l ,  Tc12, Tc13 

and Tc16 invreps are almost completely conserved. These bases are thought to 

be important for catalysis in Tcl  [VP94]. 

Figure 7.3 shows an alignment of representative transposase proteins from 

the Tcl ,  Tc3 and Tcl  l-Tcl5 families (the Tc16 coding sequence did not align 

Example invrep sequence 

TATTAGGTTGAACCGGAAGT. . . 
TATTAGGTTGGTCGAAAAGT. . . 
TATCAGGTCGTCCCATAAGT . . . 
TACAGGGTGAGTCAAAATTA ... 
CTCGGCAATTCGTATCGTAC. . . 
TATTAGGTTGTGAAAAAAGT. . . 

Copies 
Invrep 

only 

34 
34 
34 
30 
40 
33 

Pairs 

(coding) 

24 (1 1) 
36 (19) 
59 (33) 

12 (6) 
4 (1) 
4 (2) 

Whole 

element 

1230 
1250 
1240 
1290 
1110 
1260 

Single 

invreps 

14 
17 
16 
4 7 

7 
2 
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Figure 7.4: UPGMA tree constructed from the alignment in Figure 7.3. The 
horizontal scale marks out percentage sequence identity. The label TcN.X/Y-Z 
denotes the subsequence consisting of amino acids Y to Z of the X'th copy of 
the TcN transposase protein. 

the catalytic D35E domain. This is consistent with the transposon families 

sharing a catalytic mechanism. It is also consistent with the families having 

evolved different invrep sequences for specific transposase recognition, although 

specificity cannot be demonstrated from sequence analysis alone. 

A phylogenetic tree built from the alignment in Figure 7.3 is shown in Fig- 

ure 7.4. The tree groups Tc15 with Tcll-Tcl3 and (more tenuously) Tc14 with 

Tcl/Tc3. 

7.4.4 Variation within transposon families 

The Tcl ,  Tc3, Tc l l ,  Tc12 and Tc13 families are sufficiently numerous that 

the intra-family variation - that is, the variation between coding sequences for 

members of the same family - can also be analysed (Figures 7.5 and 7.6). Several 

interesting points emerge from a study of these trees. All of the trees tend to be 

skewed, favouring the view that most new duplicates of an element are inactive, 

doomed to accumulate mutations while transposition is dominated by a few 

active copies [YWB97, HLL97, LC97, HLNL971. The short branch lengths of 

the Tcl ,  Tc3 and Tc13 trees are evidence that these elements have been active 

in recent history (indeed, Tcl  and Tc3 are known to be currently active in 

the Bristol N2 strain [PvL97]), whereas the longer branch lengths of T c l l  and 

Tc12 suggest that they ceased activity earlier. It can also be seen that Tcl2B 

subgroup of Tc12 transposases form a distinct group, as mentioned above. 



Figure 7.5: UPGMA trees constructed from alignments of the Tcl  (top) and 
Tc3 (bottom) transposases. The horizontal scale marks out percentage sequence 
identity. The label TcN.X/Y-Z denotes the subsequence consisting of amino 
acids Y to  Z of the X'th copy of the TcN transposase protein. 

7.4.5 Location of transposons within the C. elegans genome 

The distribution of transposons within the genome is of interest, not only be- 

cause the insertion of a transposon into a gene or regulatory sequence can dis- 

rupt its function [Wes89, OGB95, BHP891, but also because the presence of 

transposons has been suggested to precipitate meiotic recombination [NCC+92, 

YWB971. The present study finds no evidence that the chromosomal location of 

a transposon is correlated with that of its nearest intra-familial relative. How- 

ever, significant numbers of transposons were found within coding sequences 

and 5' upstream regions (Table 7.3). The high number of Tcl  and Tc13 ele- 

ments overlapping with exons may be due to mispredicted genes in the C. elegans 

database. 

The total fraction of transposons in or near coding sequences (68%) is higher 

than the proportion expected by chance (55%). DNA transposons thus display 

a clear preference for coding sequence in their choice of integration site. 

Different types of repeats are often found to be associated together [Jur, 

PvL971. As part of the preliminary screen for repetitive elements, the 

gf f f ilt er . pl and gf f intersect. pl programs (Appendix A) were used to find 



Figure 7.6: UPGMA trees constructed from alignments of the T c l l  (top), Tc12 
(middle) and Tc13 (bottom) transposases. The horizontal scale marks out per- 
centage sequence identity. The label TcN.X/Y-Z denotes the subsequence con- 
sisting of amino acids Y to Z of the X'th copy of the TcN transposase protein. 



Table 7.3: Proximity of transposon families to coding sequence. The percentages 
in brackets indicate the fraction of the total copy number in each category. 

a 

Copies in 
lkb 5' regions 
19 (59%) 
8 (20%) 

12 (60%) 
3 (21%) 

14 (35%) 
1 (6%) 
7 (16%) 

10 (23%) 
37 (32%) 
6 (20%) 
2 (40%) 
3 (18%) 
7 (29%) 

16 (32%) 
10 (25%) 

133 (26%) 
14 (66%) 
19 (63%) 
24 (55%) 
6 (66%) 
2 (50%) 
2 (66%) 

Copies in 
introns 

2 (6%) 
15 (37%) 
2 (10%) 
4 (28%) 

12 (30%) 
2 (12%) 

11 (26%) 
16 (38%) 
48 (42%) 
16 (53%) 
3 (60%) 
5 (31%) 

13 (54%) 
4 (8%) 
3 (7%) 

190 (37%) 
2 (9%) 
1 (3%) 
0 (0%) 
0 (0%) 
1 (25%) 
0 (0%) 

Transposon 
family 
Tcl  
Tc2 
Tc3 
Tc4 
Tc5 
Tc6 
Tc7 
Celel 
Cele2 
Cele4 
CeleEi 
Cele6 
Cele7 
CeIel 1 
Celel2 
Celel4 
T c l l  
Tc12 
Tc13 
Tc14 
Tc15 
Tc16 

Copies in 
exons 
5 (15%) 
0 (0%) 
1 (5%) 
0 (0%) 
0 (0%) 
1 (6%) 
1 (2%) 
1 (2%) 
1 (0%) 
0 (0%) 
0 (0%) 
1 (6%) 
2 (8%) 
O (0%) 
1 (2%) 

16 (3%) 
3 (14%) 
4 (13%) 

13 (30%) 
2 (22%) 
1 (25%) 
1 (33%) 



the propensities of different repeats to associate with one another. An associa- 

tion score log [ f f ]  (where f,, is the frequency with which repeat z is associated 

with repeat y, f, is the frequency with which x is associated with any other 

repeat and f is the total number of associations) was calculated for every pair 

of repeats x and y; some pairs of repeats with scores over 10 bits are listed in 

Table 7.4. There are clear clusters of repeats that are often found together, for 

example CeRep43, CeRep34 and CeRep23. These association propensities may 

indicate co-dependencies or similiarities in the mechanisms or preferred sites of 

integration. 

7.5 Discussion 

An exhaustive list of the chromosomal loci of all known DNA transposons in 

the Bristol N2 strain of Caenhorabditis elegans has been published on the Inter- 

net. In general DNA transposons display a clear preference for gene-proximal 

sequence in their choice of integration site. Statistical patterns of association 

between different classes of repetitive element have also been demonstrated. 

For example, 30% of Celell repeats are found to be near a copy of Tc5; and 

CeRep34, CeRep23 and CeRep43 are often found together. These association 

patterns may be indicative of similarities in the mechanisms of transposition. 

A search using hidden Markov models has revealed putative new families 

of autonomous DNA transposon and one new subgroup of Tc3 elements in the 

C.elegans genome. Phylogenetic evidence suggests recent activity on behalf of 

one of the new families. The existence of several distinct species of transposon in 

the same genome with such striking homology between their flanking sequences 

has implications for the study of transposon ecology and evolution. There are 

several known mechanisms by which transposons could competitively interact. 

Transposase proteins of other members of the Tcl/mam'ner family bind specif- 

ically to the invrep sequences of transposons of that family in vitro [PvL97]. 

Furthermore, excessive expression of Tcl  transposase protein induces the phe- 



Table 7.4: Propensities for C. elegans repeat types to be found within lkb of each 
other. The association scores in brackets are logs of the odds-ratios # where 
fq is the frequency of association of x and y , f, is the number of associations 
for x and f is the total number of associations for everything. Only association 
scores over 10 bits are reported. 

Repeat 
type 
CeReplO 

CeRepll 
CeRepl2 
CeRepl3 

CeRepl4 
CeRepl5 
CeRepl7 
CeRepl8 
CeRepl9 
CeRep22 
CeRep23 
CeRep24 
CeRep29 
CeRep3O 
CeRep32 
CeRep33 
CeRep34 
CeRep35 
CeRep36 
CeRep37 
CeRep38 
CeRep40 
CeRep41 
CeRep43 
Celel 
Cele2 
Cele4 
Cele7 
Celell 
Celel4 
Tc3 
Tc5 

Associated repeats 
(association score/bits) 
Cele2 (11.6), CeRepl4 (10.6), CeRepll (10.4), 
CeRep37 (10.2) 
Cele4 (1 1. I) ,  CeReplO (10.4) 
CeRepl3 (11.4) 
CeRepl8 (12.2), CeRepl2 (11.4), CeRep3O (10.6), 
CeRep33 (10.4) 
CeReplO (10.6), Celel (10.4) 
Cele7 (11.1) 
CeRepl9 (12. I) ,  CeRep32 (1 1.9) 
CeRepl3 (12.2), CeRep33 (11.1), CeRep3O (11) 
CeRep32 (12.2), CeRepl7 (12.1) 
CeRep37 (1 1) 
CeRep34 (1 1.8), CeRep43 (1 1.8) 
CeRep38 (12.5), Celel4 (12) 
CeRep36 (12.7), CeRep35 (1 1) 
CeRepl8 ( l l ) ,  CeRepl3 (10.6) 
CeRepl9 (12.2), CeRepl7 (1 1.9) 
CeRepl8 (1 1. I) ,  CeRepl3 (10.4) 
CeRep43 (12.4), CeRep23 (1 1.8) 
CeRep36 (1 1. I),  CeRep29 (1 I) ,  CeRep40 (1 1) 
CeRep29 (12.7), CeRep35 (1 1.1) 
CeRep22 (11), CeRep10 (10.2) 
CeRep24 (12.5), Cele14 (1 1.4) 
CeRep35 (1 1) 
Tc3 (11.8) 
CeRep34 (12.4), CeRep23 (1 1.8) 
CeRepl4 (10.4) 
CeReplO (1 1.6) 
CeRepl 1 (1 1.1) 
CeRepl5(11.1) 
Tc5 (10.5) 
CeRep24 (12), CeRep38 (1 1.4) 
CeRep41 (1 1.8) 
Celell (10.5) 



nomenon of "overproduction inhibition", reducing transpositional activity in 

what arguably functions as a regulatory negative-feedback mechanism [HLL97]. 

It has also been observed that missense mutations in the mariner-like MOSl 

transposase gene have a dominant-negative effect; the "poisoning" of trans- 

posase oligomeric complexes by inactive subunits has been proposed as a mech- 

anism to explain this [HLNL97]. All these mechanisms may work together with 

host-specific mechanisms to regulate transpositional activity [LC97, HLNL971. 

The discovery of dormant mariner subfamilies with slight variations in their 

putative DN A-binding domains and transposase-binding nucleot ide sequences 

may offer new opportunities to study the evolution of DNA-protein specificity 

in transposon ecology. 



Chapter 8 

Conclusion 



The evolution of genetic material is fundamental to the whole of biology; the 

sequencing and analysis of whole genomes has begun a revolution in scientific 

understanding. As we gather more and more data about how cellular processes 

work, we will need more powerful software agents to cluster, filter, organise 

and digest the information so that we can get on with the creative process of 

interpreting, describing and acting upon it. Designing these tools - and being 

the first to use them - is what bioinformatics is all about. 

This thesis has presented work on the theory of biological sequence align- 

ment and the evolution of the first sequenced animal genome, Caenorhabditis 

elegans. The sequence alignment theory has looked at  a number of issues, ad- 

dressing the question of accuracy - how accurate can an alignment be? - and 

discussing how to side-step this issue by summing over all alignments (and over a 

range of scoring schemes). The evolutionary investigations have looked at ques- 

tions associated with genomic duplication in the nematode worm C.elegans, 

including causes and characteristics of duplications and the random divergence 

of sequences following duplication. The two approaches have informed each 

other closely: e.g. the measurement of substitution and indel rates motivated 

the development of parameter-estimation algorithms and the development of 

a Bayesian framework for model comparison enabled the evaluation of a new 

molecular clock based on introns. 

The fusion of ideas from computer science and molecular biology is one 

of the things that make bioinformatics an exciting field. The development of 

the Bayesian view of sequence alignment is a shining example of this fusion. 

Sequence alignment is the king pin of homology analysis which, at  a structural, 

functional and evolutionary level, shapes our understanding of protein families 

and the patterns of process that nature has used. With the data that fund 

this analysis multiplying rapidly and the study of protein families blossoming, 

now is the right time to build solid foundations for sequence analysis so that 

issues like uncertainty and accuracy are not awkward embarassments but robust 



parameters of the theory. Bayesian statistics, with its concept of a probability 

as a level of belief in a hypothesis, is an ideal framework in which this process 

can work. It is hoped that this dissertation has pointed out some of the fronts 

on which progress can be made. It has been said that Biologists stole Statistics 

from Physicists [Jay86]; they now have a chance to steal it again. 

Flourishing technologies such as expression analysis by microarrays and 

ESTs provide yet more opportunities. Computational biology has an impor- 

tant role as interpreter for data - such as these - that are so voluminous they 

can only be visualised at  a statistical remove. The basic kinds of operation that 

one tends to want to do on these data include clustering, pattern identification, 

construction of models for these patterns, classification of the data according 

to these models, construction of new models and collection of new data - the 

iterative loop of refining models and, behind the models, biological ideas. The 

particular algorithms for analysing each class of data will be different; finding 

the right approach demands mathematical skill and intuition together with a 

broad biological awareness so that the practical issues may be separated from 

the mathematical curiosities. However, bioinformatics has matured and is ready 

for the challenge. A network of computational biologists exists, with the back- 

ground and the abilities to respond to these kinds of technological advances. 

One of the things that can drive new algorithm development is a convincing 

format or specification. As an example, the GFF processing tools developed for 

this project would probably have remained a collection of throwaway scripts were 

it not for the stabilisation of a good, simple format that not only represented 

annotative data well, but was seen to gain enough support in the bioinformatics 

community that it seemed inevitable that it would catch on. This has a lot in 

common with the history of HMMs and Bayesian methods in sequence analysis. 

With the increasing heterogeneity of data and the diversity of sequenced animal 

genomes, standardisation will tend to become the path of least resistance as 

organisations start to seek common ways of handling and sharing their data 



without wasting time on different protocols for each organism or experiment. 

This brings us to another exciting aspect of bioinformatics which is, of course, 

its proximity to the genome projects. As more complete animal genomes be- 

come available we may hope to move beyond individual, anecdotal accounts of 

positive selection or selective sweep and towards an understanding of evolution- 

ary dynamics that may be increasingly quantitative. The ecology of transposons 

and viral elements and their role in stimulating animal evolution is a fascinating 

topic that has led to much speculation. This speculation is now confronting hard 

data produced by the sequencing effort. Soon we can hope to start to develop a 

rounded account of evolutionary history that speaks directly of molecular mech- 

anisms. This will be a major humanistic triumph and a direct consequence of 

the genome projects. 
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A.1 Introduction 

This appendix describes the software that was developed for the work described 

in this dissertation and is available for public use under the conditions of the 

Gnu Public License [GPL]. 

The tools fall into four groups, namely: 

LogSpace A library of C++ classes for finding log-likelihoods, posterior prob- 

abilities and alignments using HMMs. 

BayesPerl Perl modules and associated scripts for performing common ma- 

nipulations (such as integration, transformation and marginalisation) on 

tables of log-likelihood data. 

GFFTools A collection of perl scripts and C code for working with GFF for- 

mat. 

bigdp A program for joining together BLAST hits by dynamic programming. 

Each of these groups will be described in turn. 

A.2 Logspace: C++ classes for working with 
HMMs 

LogSpace is a set of classes for finding logs of likelihoods associated with single 

and pairwise hidden Markov models of any architecture, and for performing 

algorithms associated with these models. 

In the following brief introduction to LogSpace, class names are shown in 

typewriter font. 

The atoms of the LogSpace object model are: 

the Parameter class (P), representing a parameter of a probabilistic model; 

the ParamVals class : P a mapping of Parameter objects to 

doubles), representing a point in parameter space); and 

150 



the abstract Function class (log F : : %), representing 

the log-value of a mathematical function and the first derivatives of the 

log-value. 

The most powerful and general of these classes is Function. This class can 

be overridden to describe any function on a parameter space that is everywhere 

non-negative and differentiable. Calling the methods of this object, supplying 

a ParamVals object, causes the value of the function (or its derivatives) to 

be evaluated at that point in parameter space. The emphasis in the API on 

logarithms of the function value (rather than the values themselves) encourages 

all calculations to be performed in log-space, where they are robust to scaling. A 

number of function calls facilitating common calculations in log-space (such as 

the log-sum-exp function y) = log [exp x + exp y]) are also provided; these 

functions are zero-safe and often accelerated by means of lookup tables. 

A range of useful Function subclasses are provided, some implementing 

basic mathematical functions such as the exponential and polynomial families, 

others allowing a Function to be defined in terms of other Functions (e.g. 

= FunctionProduct = 

ChainFunct ion = G( where = (O)}), implementing basic results 

from calculus such as the chain rule and the product rule. 

A pairwise hidden Markov Model M is represented in LogSpace as a set of 

links between the states of the model. Links can be added dynamically. Each 

link has associated with it a probabilistic substitution matrix, each entry of 

which is a Function on the parameter space. So this allows for quite general 

functional forms for the transition probabilities, corresponding to (for example) 

a time-dependent evolutionary model, or a model where several transitions are 

constrained to have the same (or related) probabilities. Links that correspond 

to insertions or deletions and hence emit only on one side of the model are also 

possible, and single-sequence models (like profile HMMs) are obtained as special 

cases of pairwise models. 
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The abstract Envelope class describes an iteration over a dynamic pro- 

gramming matrix, says which transitions are allowed and also describes how 

the matrix is to be laid out in memory. An Envelope requires a Model and 

a Sequencepair (the latter is fairly self-descriptive); the default Envelope, 

FullEnvelope, just iterates over all the cells of the matrix. A SparseEnvelope 
class implementing the sparse envelopes described in Chapter 2 is also provided. 

The abstract DPMBase is the base class for all dynamic programming algo- 

rithms including Viterbi, sum-over-paths and optimal-accuracy, using integer 

precision or double precision. DPMBase takes an Envelope in its constructor. 

The FBM (forward-backward matrix) provides posterior probabilities for every 

point in the matrix. 

The details of the dynamic programming are invisible if the Likelihood 

class = Pr  [S|M, is used. Likelihood is a subclass of Function that 

takes an Envelope in its constructor. Recall that an Envelope describes a pair 

of sequences S and a model M; so, a Likelihood object calculates the value 

and derivatives of the log-likelihood score of a pair of sequences given a model 

for any particular parameterisation of that model. 

The derivatives of the likelihood can be fed straight into a discriminative 

classifier [JH98] or used to train the model [DEKM98]. A number of classes 

such as JointLikelihood 

There are many other classes and methods in the LogSpace libraries, includ- 

ing alignments, time-dependent models and optimisation algorithms, that are 

not described here. It is hoped that the above short introduction is sufficient to 

give an idea of the range of these libraries. 

A.2.1 Posterior probabilities for profile HMMs 

The LogSpace classes were used to develop a posterior probability framework 

for HMMER2.0 profiles, in parallel with the code described in Chapter 4. This 

parallel implementation (and a perl program hmm2mf . pl for converting between 
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HMMER2.0 and LogSpace model file formats) is included in the LogSpace dis- 

tribution. 

A.2.2 Availability 

The LogSpace source code can be found at the following URL: 

http://www.sanger.ac.uk/Users/ihh/LogSpace/ 

A.3 BayesPerl: Perl modules and scripts for work- 
ing with tables of log-likelihood data 

The LogSpace code described above can be used to sample the log-likelihood of 

sequences over the parameter space of a hidden Markov model. These operations 

are typically compute-intensive and it is convenient to save the log-likelihood 

tables in intermediate data files before performing further numerical manipu- 

lations. BayesPerl is a set of perl modules and scripts for manipulating these 

data files and the tables they contain. 

The format of the data files operated on by these programs is as follows. 

Each line of the file represents a single entry in the table, and thus a single data 

point. Each line has N + 1 numeric fields separated by whitespace, where N is 

the dimensionality of the parameter space. The first N fields are the parameter 

values (the co-ordinates in the parameter space) and the ( N  + 1)’th field is the 

value of the log-likelihood at that point. 

The main component of the BayesPerl modules is the LogLikeTable . pm 
package, which contains the following main methods: 

new Creates a new table of log-likelihood values. 

clone Clones an existing table. 

newFromHandle Reads a table from a file handle. 

newFromFile Reads a table from a file. 
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newFromArray Creates a table from an array of values. 

newFromFunction Creates a table from a perl function reference, which is eval- 

uated at every point. 

combine Combines two tables to give a new table with higher dimensionality. 

combineEntriesRule Sets the rule for combining two log-likelihoods at the 

same point (by default, the log-likelihoods are summed). 

parmange Returns the range of values taken by a particular parameter in a 

table. 

f indMode Finds the mode of a table (the maximum-likelihood parameters). 

absorb Multiplies (or adds, depending on the CombineEntriesRule) a table by 

another table; useful for e.g. priors. 

marginalise Marginalises parameters of a table by integrating them out; the 

result is a table of lower dimensionality. 

integrate Finds the log-integral of the likelihood across the entire space; equiv- 

alent to marginalising all parameters. 

normalise Subtracts the log-integral from all the log-likelihoods; turns a like- 

lihood distribution into a posterior distribution. 

interpolate Uses straight-line nearest-neighbour interpolation to find the log- 

likelihood anywhere in the parameter space. 

transform Projects the table onto a new co-ordinate system. 

print Displays a table (or dumps it to a file). 

Much of the functionality of the LogLikeTable . pm package is duplicated by 

the (slightly more efficient) LogLikeGrid . pm package, which assumes that its 

data points lie on an irregular grid. 
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There is also a package Logspace. pm that supplies some basic constants and 

functions compatible with the LogSpace C++ classes described above. 

Some of the methods are quite slow on large tables. Much of this slowness is 

due to the Perl object-orientation layer, so a set of procedural scripts that mirror 

some of the LogLikeTable . pm methods (but faster) has also been developed. 

A.3.1 Availability 

The BayesPerl release can be found at the following URL: 

http://www.sanger.ac.uk/Users/ihh/Bayes/ 

A.4 GFFTools: Perl scripts for processing GFF 
files 

GFF (Gene-Finding Format) is a one-line-per-record format for marking up 

genomic sequence. It was originally designed as a common format for sharing 

information between gene-finding sensors such as splice site and coding sequence 

predictors, but its uses go beyond gene-finding: a GFF file is a convenient way 

of representing a set of many kinds of feature. The chief drawback of GFF - its 

simplicity - could also be said to be its chief strength, since a wide range of perl 

scripts and modules for operating on GFF sets has been developed in a short 

space of time (~ 1 year). The latest version of ACeDB has the facility to export 

all C.elegans genome annotation in GFF format. 

A single record in a GFF data set is a line with 9 tab-separated fields. These 

fields are: 

Sequence name 

0 Source (the program that generated the data) 

0 Feature name 

0 Sequence startpoint 
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Sequence endpoint 

Score of feature 

0 Strand (can be “+”, “-” or “.”) 

Frame (for frame-sensitive features such as introns) 

0 Group (a catch-all miscellaneous field) 

Fields can contain spaces (but not tabs or newlines). A proposed extension 

to GFF is the “GFF pair”, wherein first three whitespace-delimited words in 

the “group” field represent the sequence name, startpoint and endpoint of a 

homologous sequence. Other than this, there is no consensus on syntax for 

fields, though a “tag=value” approach to including extra information in the 

“group” field may be favoured. 

Soon after the GFF format was agreed, Tim Hubbard at the Sanger Centre 

developed a set of useful GFF-related Perl modules [GFF]. Many of the scripts 

described here duplicate functionality included in these modules, yet they were 

developed later. Why is this? The reasons, simply, were speed and space. Perl’s 

ob j ect-orient at ion slows computation time considerably and greater interact ivi t y 

was required than the GFF Perl modules allowed; as for space, reading entire 

chromosome-sized GFF files into memory is often impractical. 

A GFF record is a special case of a class of objects that may be described as 

annotated NSE’s. A basic NSE consists of a (name,start,end) tuple. Many of 

the algorithms described here would work without modification on other NSE- 

like formats. 

The following list contains brief descriptions all the GFF programs devel- 

oped, together with several programs for working with EXBLX, an alterna- 

tive format for representing NSE pairs that is used by the MSPcrunch program 

[SD94]. 

GFF sorting/filtering programs: 
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gf f sort. pl Sorts a stream of GFF records by sequence name and start- 

point. 

gf f f ilter . pl Filters a GFF stream according to a user-specifiable test 

condition. 

gf fmerge . pl Merges two or more pre-sorted GFF streams. 

Programs to convert between GFF co-ordinate systems and manipulate 

G FF-descri b ed sequences: 

gf f transf orm. pl Converts from one GFF co-ordinate system to another 

(e.g. from clones to chromosomes). Works with GFF pairs. 

gf f 2seq. pl Given chromosome co-ordinates, a clone database and a phys- 

ical map co-ordinate file, returns the specified section of chromosomal 

sequence. 

gf f mask. p l  Masks GFF-specified sections of a FASTA sequence database 

with N’s. 

GFFTransf orm. pm Perl module to convert between GFF co-ordinate sys- 

tems. Used by thegfftransform.pland exblxtransform.plscripts. 

SequenceMap . pm Perl module to access a clone database given a map file. 

Used by the gff2seq.pl script. 

FileIndex.pm Perl module to build a quick lookup index for flatfiles. 

Used by the SequenceMap . pm module, and others. 

Programs to find intersections and connections between GFF data sets: 

gf f intersect. pl Efficiently finds the intersection (or exclusion) between 

two (sorted) GFF streams. Definition of “intersection” allows for 

near-neighbours and minimum-overlap. 

intersectlookup.pl Used with gff intersect .pl to do inverse lookups 

and other manipulations on the result of an intersection test. Can 
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be useful for self-comparisons, e.g. to find the highest-scoring non- 

overlapping subset of a GFF file. 

gffhitcount C++ program that counts the number of times each base 

in a GFF file is hit, and outputs the results as a GFF tiling. Uses a 

lot of memory. Works with GFF pairs. 

exblxgff intersect .pl Similar to gff intersect .pl, but finds the in- 

tersection between a GFF set and an EXBLX file (similar to a list of 

GFF pairs). Useful for e.g. filtering out all hits between genes from 

an all-vs-all comparison of genomic DNA. 

gffdp.pl Parses GFF data using a finite-state automaton with a push- 

down stack. The FSA is entirely user-specifiable and may include 

Perl expressions that are evaluated dynamically for each GFF record. 

This program is described in greater detail below. 

Miscelleneous GFF-related programs: 

blasttransf orm.pl BLASTS a clone database against itself, then trans- 

forms, sorts and merges the results into chromosome co-ordinates 

according to a physical (sequence) map. 

cf ilter . pl Uses a sliding-window oligomer-counting method to find GFF 

co-ordinates for low-entropy regions in a sequence database. 

Miscellaneous EXBLX-related programs: 

exblxsym.pl Symmetrises an EXBLX file (ensures that for every pair 

A B there is a single corresponding pair B A ) .  

exblxasym. pl Asymmetrises an EXBLX stream (filters through only those 

pairs A B for which B > A) .  

exblxcluster . pl Builds single-linkage clusters from an EXBLX stream, 

optimising for cluster size. 
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exblxf astcluster .pl Builds clusters from an EXBLX stream using a 

fast incremental heuristic. 

seqcluster . pl Builds single-linkage clusters from an EXBLX stream, 

optimising for cluster size and ignoring sequence start and endpoint. 

exblxindex. pl Builds a quick lookup index for an EXBLX file. 

exblxsingles . pl Filters through only non-overlapping entries from an 

EXBLX stream. 

exblxsort . pl Sorts an EXBLX stream. 

exblxt idy . pl Tidies up an EXBLX stream (joins overlapping matches, 

prunes out BLAST errors, etc.). 

exblxtransf orm. pl Converts from one EXBLX co-ordinate system to 

another (e.g. from clones to chromosomes). 

Format conversion programs: 

exblx2gf f .pl From EXBLX to GFF pairs. 

gf f 2exblx. pl From GFF pairs to EXBLX. 

scan2gff .pl From scan (GCG) to GFF. 

tandem2gff .pl From tandem (GCG) to GFF. 

spcwiseagf f . pl From spcwise (Genewise) to GFF. 

cluster2gf f . pl From single-line lists of NSE clusters to GFF. 

hmm2gff .pl From HMMER1.7 to GFF. 

hmmsearch2gf f . pl From HMMER2.0 to GFF. 

The most flexible of the GFF programs is gffdp.pl. This assembles GFF 

segments using dynamic programming. The model architecture for the dynamic 

programming is specified in a text file using a syntax that allows perl expressions 

to be evaluated on-the-fly. The finite state automaton has a LIFO stack that 
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allows nested structures (such as inverted repeats) to be handled in a sensible 

way. All alternative states of the stack are maintained in the dynamic program- 

ming matrix. All the arcs in the finite state machine can emit variable-length 

sequences, so the program can emulate a generalised HMM [Hau98]. The dy- 

namic evaluation of perl expressions during the dynamic programming allows 

for calculation of complex scoring schemes, such as logarithmic gap penalties. 

Transitions along an arc may be required to overlap or align with a GFF segment 

exactly, loosely or not at all. GFF pairs are also provided for; the co-ordinates of 

the paired segment can accessed and it can even be inserted into the upcoming 

GFF buffer. 

Figure A. l  shows a simplified version of one of the gffdp.pl model files 

used for the repeat-mediated duplications search described in Section 5.4 of 

Chapter 5. The gf f dp .pl program was also used in Chapter 7 to find invrep 

sequences flanking predicted transposase genes. There are many other uses 

for the gffdp.pl program; one obvious use is genefinding - assembling exon 

predictions from a variety of sensors. This is the task that GFF was originally 

designed for. A gf f dp . pl model file for genefinding is available from the GFF 

websit e. 

A.4.1 Availability 

Further information and resources relating to the gf f dp . pl program and the 

GFF format may be obtained from the GFF website, whose URL is: 

http://www.sanger.ac.uk/Softwa,re/GFF/ 

A.5 bigdp: A program for assembling BLAST 
hits by dynamic programming 

bigdp is a program that joins together BLAST hits with an affine gap penalty by 

doing linear space divide-and-conquer dynamic programming [DEKM98]. The 

program does not itself examine the sequence to which the BLAST HSPs refer 

160 

http://www.sanger.ac.uk/Softwa,re/GFF


name { rep1rep2 } flushlen { 30000 } 

link { from { start > to { repeatl } maxlen { 3000 > 
endf ilter { $gf f source eq "repeat" 

&& $linkend == $gffend + 1 } 
startfilter { $linkstart == $gffstart } 
push { $gfffeature } push { $gffstrand } 

link { from { repeatl } to { matchl } maxlen { 5000 } 
endf ilter { $gff source eq “match” 

&& $gffstrand eq '+' 
&& $linkend == $gffend + 1 
&& $gffend-$gffstart > 20 } 

startfilter { $linkstart <= $gffstart } 
insertgff { 3 
popfilter { $temp-repstrand = $_; 1 } 
popfilter { $temp-repname = $_; 1 } 
push { $insertgffid } push { $temp-repname } push { $temp-repstrand } 

link { from { matchl } to { repeat2 } maxlen { 4000 } 
endf ilter { $gf f source eq "repeat" 

startfilter { $linkstart <= $gffstart } 
popfilter { $_ eq $gffstrand } 
popfilter { $_ eq $gfffeature } 

&& $linkend == $gffend + 1 } 

link { from { repeat2 } to { end } maxlen { 5000 } 
endf ilter { $gff source eq ''match" 

&& $gffstrand eq '+' 
&& $linkend == $gffend + 1  }  

startfilter { $linkstart <= $gffstart } 
popfilter { } 
display { print "Found a hit ending at $gffend\n" } 

3 

link { from { end } to { start } } 

Figure A. l :  Model file for the repeat m a t c h  repeat m a t c h  pattern. 
Whether a GFF line represents a match  or a repeat is indicated in the endf ilter 
field. Matches are parsed as GFF pairs. 
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but merely finds optimal-scoring connections between the HSPs given their co- 

ordinates. bigdp was designed to cope with large amounts of data, such as 

might be generated by BLASTing whole chromosomes against one another. It 

is essentially similar to the Smith-Waterman algorithm [SW81], except that all 

match match transitions must correspond to BLAST hits and consequently 

many cells in the dynamic programming matrix can effectively be dispensed 

with. 

The bigdp program returns all (non-overlapping) alignments above a cer- 

tain score threshold by a method of excluding previously-used segments; the 

closest relative of this method is the procedure described by Waterman and 

Eggert [WE87]. Rather than covering the whole dynamic programming matrix, 

the algorithm stops if an alignment above the score threshold has been found 

and there have been no better alignments after a distance has been covered. 

Additionally, rather than start from the beginning of the dynamic program- 

ming matrix after an optimal alignment has been found, the algorithm starts a 

distance E left of the startpoint of the highest-scoring alignment found on the 

previous run. The startpoint information is propagated using a “shadow ma- 

trix” technique [BD97]. Choosing to be much greater than the maximum gap 

length and E to be much greater than the maximum low-scoring subalignment 

length reduces the expected running time to where M and N are the 

sequence lengths (since there are ~ M N  expected alignments and each takes 

time ~ N to find), rather than (the expected running time if the 

entire matrix were to be scanned for each alignment) without missing any hits. 

Alignments may be missed if they overlap high-scoring alignments and con- 

tain subsegments longer than E that score lower than the alignment detection 

threshold. 

Other programs to extend BLAST to give gapped alignments include gapped 

BLAST [AG96, and MSPcrunch [SD94]. There are other ways of 

searching large sequences quickly for multiple matches, e.g. All 
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these programs use heuristic methods and not full dynamic programming; in 

some cases the heuristics may be more sensitive. The statistical bias induced 

by the heuristic methods on the observed data is likely to be different than the 

dynamic programming. 

A. 5.1 Availability 

The bigdp program is available from the following URL: 

http://www.sanger.ac.uk/Users/ihh/bigdp/ 
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