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2 General Introduction to Computational Methods 

Used in this Thesis 
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2.1 The Application of Bayesian Methods in Sequence 

Analysis 

Bayesian analysis (Grate et al., 1996), a general class of stochastic modelling 

techniques based on Bayes’ theorem of conditional probability (Equation 2.1), 

represent an important approach for studying biological sequences.  The idea is to 

construct a model that describes a set of sequences.  The model can then be used to 

find a set of related sequences or examined further to determine properties of the 

sequences.  A model in this case can be described as a “black box” which does not 

necessarily represent a “real world” mechanism.   The model’s value depends solely 

on the accuracy of its predictions and not by the mechanism used to make those 

predictions. 

Equation 2.1:  Bayes’ theorem of conditional probability.  In the context of biological 
sequence analysis, M represents a Bayesian model and s a DNA or protein sequence. 
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Bayes’ theorem (Equation 2.1) is based on the idea that in many situations, an 

analysis can be commenced with an estimated prior probability for an event of 

interest. This probability can come, for example, from historical data or previous 

experience.  The idea is to receive additional information such that the prior 

probabilities in Equation 2.1 can be updated.  The updated probabilities are referred to 

as the posterior probabilities. 

In Equation 2.1, above, one of two conditional probabilities to update is 

P(M|s).  This probability value answers the question “Given the sequence s, what is 

the probability that it came from the distribution described by M?”.  The other 

conditional probability to update is P(s|M), which is the probability of the sequence s 

given M.  Two prior probabilities are required to estimate these values:  P(M), the 
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probability that s is drawn from model M and P(s), the probability of the sequence s.  

It is not possible to know the real probabilities of P(M) and P(s) but a different 

approach can be used to overcome this.  The approach is to calculate the odds that the 

sequence s came from model M rather than a null model N (Equation 2.2).  As can be 

seen from Equation 2.2, P(s) is no longer required.  The model probabilities P(M) and 

P(N) can be estimated using iterative training methods (the procedure for hidden 

markov models is described in Section 2.2.3). 

Equation 2.2:  Relative probability of model M and the null model N. 
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The null model defines what the null hypothesis is.  Choosing a good null 

model is a tricky problem and depends on the problem at hand.  A sequence s can then 

be said to fit model M if P(M|s) > P(N|s).  Usually, this result is scored in log values 

and the value log PM(s) - log PN(s) is referred to as the log-likelihood of the sequence.  

In practice, a threshold score is chosen: the higher the log likelihood score is than the 

threshold, the greater the confidence in the result.  Bayesian methods have been used 

in this thesis in Chapters 3 and 5. 
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2.2 Hidden Markov Model Theory 

2.2.1 A general introduction to hidden markov models 

Hidden Markov Model (HMM) analysis has widespread applications in 

Bioinformatics particularly in DNA and protein sequence analysis.  These include 

creating multiple alignments of sequences to model protein families (Bateman et al., 

2002) and gene prediction (Meyer & Durbin, 2002).  HMMs have also found 

importance as a pattern discovery tool; an example was seen recently where it was 

used to learn local composition patterns from chromosome 2 in the malarial genome 

P. falciparum and use that information to predict corresponding features in 

chromosome 3 (Pocock MR et al., 2000).  It has also been used as a discovery tool to 

find patterns that could be involved in nucleosome rotational positioning (Baldi et al., 

1996).  This approach used a special kind of HMM referred to as the cyclical HMM.  

In this thesis, this approach has been extended to try to gain further insights into the 

patterns which were originally reported using cyclical HMMs:  this is the focus of 

Chapter 3.  This section will briefly introduce some basic HMM terminology and then 

introduce two algorithms which were used in this thesis for HMM prediction and 

training respectively (Sections 2.2.2, 2.2.3). 

• HMM terminology 

A hidden markov model (HMM) is in essence a vector of “states” connected 

with “transition paths”; each state contains 2 kinds of probability distributions 

associated with it: an emission spectrum and a transition spectrum respectively.  

Figure 2.1 shows a HMM which has an architecture of 2 states connected by a number 

of transitions. 
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Figure 2.1:  A 2-state hidden markov model which emits symbols from the DNA 
alphabet.  Boxes represent states and arrows represent transitions.  The emission and 
transition distributions for State A are shown in red; State B’s corresponding 
distributions are shown in blue. 

 
 

To model a specific kind of sequence with a HMM, it is first necessary to 

define the alphabet from which that sequence is composed; this alphabet is called the 

“emission alphabet”.  To model DNA sequences with a HMM, for example, it needs 

to be defined that DNA is composed of an emission alphabet of 4 symbols, “a,c,g,t”.   

The HMM shown in Figure 2.1 is a 2-state HMM, based on the DNA alphabet.  

State A has a strong probability of emitting “a” (0.45) or “t” (0.45) and a much weaker 

probability of emitting “g” (0.08) or “c” (0.02).  State A has 2 transition paths out of 

it:  one path to State B and one path back to itself.  These paths form the transition 

spectrum of State A.  In this case, it has a weak transition probability of going back to 

itself (0.01) and a strong transition probability of going to State B (0.99).  State B has 

a random emission distribution (each symbol emitted at equal probability) and a set of 

2 transitions (0.70 probability of going back to itself and 0.30 probability of going to 

State A).  The entire set of emission and transition probabilities in the HMM define 

the HMM’s parameters.  This model can be used to score a sequence; this score is 

usually the product of all the emission and transition probabilities in the “path” of the 

model in that sequence (described below). 
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Figure 2.2:  2 DNA sequences which are likely to receive a high score and a weak score 
respectively with the model of Figure 2.1.  The locations of [W] regions are underlined. 

(a) Possible High Scoring Sequence: 

GAGCCGGCCGGGGGCCCGGGCCCGGGCTCGGGGACCCGCCCCCTCGCCCCAACCGCGG 

(b) Possible Low Scoring Sequence: 

AAAACCCTTAAAAATTTCGGGCCCTTTTTCCCTGTTTAAACGGTCCCTATTTACCCGG 

 
To introduce HMM paths and HMM-based scoring, the 2 sequences in Figure 

2.2 are considered.  The first assumption is that the sequences in Figure 2.2 have been 

generated by the states of the HMM of Figure 2.1.  But it is not known which part of 

the sequence was emitted by State A or State B; this is a “hidden” path from which the 

“hidden” term of HMMs is derived.  However, it can be guessed that the sequence of 

Figure 2.2(a) was more likely to have been produced by a path through the HMM than 

the second sequence (Figure 2.2(b)).  This is firstly because State A, whose emission 

spectrum represents [W] 9 motifs, has only a weak transition probability of going back 

to itself but a strong transition probability of going to State B (whose emission 

spectrum is random).  Secondly, State B has a stronger probability of going back to 

itself compared to going back to A.  This means that the HMM is more likely to spend 

more of its “energy” in State B than in State A.  It effectively makes this HMM a 

model or predictor for sequences which display “short spurts” of [W] (State A) 

compared to a random background (State B).  A path through the HMM which could 

have produced the sequence in Figure 2.2(a) could be as shown in Figure 2.3. 

                                                 
9 Please refer to the ambiguity symbols for DNA at the beginning of the thesis 
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Figure 2.3:  (a) A possible path through the HMM which could have emitted (b) the 
corresponding DNA sequence. 

 (a) Possible path through the HMM: 

BABBBBBBBBBBBBBBBBBBBBBBBBBBBBABBBBBBABBBBBBBBBBABBBBBBBBB 

(b) DNA sequence: 

GAGCCGGCCGGGGGCCCGGGCCCGGGCTCGGGGACCCGCCCCCTCGCCCCAACCCCCA 

 
An algorithm for predicting the hidden path of states is described next. 

2.2.2 Predicting the most likely path of a HMM through a 

sequence using the Viterbi algorithm 

The Viterbi algorithm can be used to predict the most probable path, Π(a), through a 

HMM’s states that could have emitted a given sequence.  It uses a “dynamic 

programming” matrix where the columns are indexed by the states of the HMM, S, 

and the rows are indexed by the position xi of the sequence X.  The algorithm is 

outlined below using the following notations (Karchin, 1999; Shamir, 2001): 

A general hidden markov model (HMM) is defined as M=(A,S,Y) where: 

• A = finite set of symbols (also called the emission alphabet). 

• S = finite set of emission states. 

• Y = finite set of probabilities comprised of: 

o State transition probabilities, denoted by tkl for each k,l ∈ S. 

o Emission transition probabilities, denoted by ek(b) for each k ∈ S and b 

∈ A. 

A sequence X, of length L, is defined whose positions are indexed as (x1,…,xi).  

vk(i) is denoted as the probability of the most probable path for the sequence that ends 

with state k (k ∈ S and 1 ≤ i ≤ L).  Π(a) is found using the following steps: 
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• Initialization: 

vbegin(0) = 1 

For all k≠begin, vk(0) = 0 

• Recursion: 

For each i = 0, ... ,L-1 and for each l ∈ S the following is calculated recursively: 
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During each recursive step, a backpointer is assigned from l back to the k.   
 

• Termination: 
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• Path Reconstruction: 

Π(a)  is found by re-tracing the backpointers. 

2.2.3 Training a HMM using the Baum Welch algorithm 

The HMM, shown in Figure 2.1, can be used to score any DNA sequence, for 

example by obtaining the Viterbi score, P(X|Π(a)), as explained above.  But the 

parameters of the HMM itself, Y, may not be realistic.  To obtain realistic 

probabilities, it is necessary firstly to obtain a set of related sequences which contain a 

known motif or a set of known motifs.  These sequences form the training set, 

X(1),…,X(n), from which Y must be “learnt” or “trained”.  Training is an iterative 

process which keeps refining the parameters of the HMM to obtain an optimal score 

for X(1),…,X(n) denoted as Score(X(1),…,X(n)|Y).  The Baum Welch algorithm is one 

such training algorithm, which was used in this thesis. 

Before the Baum Welch algorithm can be introduced, it is important to point 

out that the individual statepaths of the HMM, Π(1),..,Π(n), which produced X(1),…,X(n) 
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are unknown.  The Baum Welch procedure has a step to overcome this.  The step 

involves computing the probability of every statepath Π(i,,j) = (π1(i,j),..,πL(i,j)) for every 

X(j) in X(1),…,X(n).  These probabilities, P(π(ι,j) = k|X(,j)), can be calculated using the 

forward and backward algorithms which are outlined first: 

Forward algorithm (outlined for a single sequence X): 

The parameter fk(i) denotes the probability of emitting X using the statepath πi = k. 

• Initialization: 

fbegin(0) = 1 

For all k≠begin, fk(0) = 0 

• Recursion: 

∑
∈
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• Termination: 

endk
Sk

k tLfXP ,)()( ⋅= ∑
∈

 

 
Backward algorithm: 

The Backward algorithm works in exactly the same way as the forward algorithm 

except it is computed backwards from the end of X.  The parameter bk(i) denotes the 

backward probability of emitting X using the statepath πi = k. 

 
Finally, it can be shown that P(X, πi = k) = fk(i) ⋅ bk(i) (Shamir, 2001). 

 
Baum Welch algorithm: 

• Initialization 

Y is initialized with reasonably-guessed parameters.  For work done in this thesis, all 

ek(b) were initialized randomly and a reasonable guess was made for tkl. 
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• Expectation 

The probabilities P(X(i,j)) for every statepath Π(i,,j) for all X(1),…,X(n) is calculated as 

above. 

The following 2 parameters can now be estimated: 

o Tkl – the number of transitions from state k to state l. 

o Ek(b) – the number of times that an emission of the symbol b occurred 

in state k. 

These are estimated as follows: 
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• Maximization 

The new values of Y are estimated from Tkl and Ek(b).  These are estimated using 

maximum likelihood estimators for the transition and emission probabilities 

respectively.  The maximum likelihood estimators are: 
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• Terminaton 

Steps 2 and 3 are repeated until the improvement in Score(X(1),…,X(n)|Y) is less than a 

given parameter ε. 
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2.3 The Use of Flexibility Sequences 

2.3.1 An Introduction to flexibility sequences 

One of the fundamental concepts of nucleosome positioning is that it is an effect of 

the physical properties of the underlying DNA sequence.  This made it necessary to 

model DNA sequences as sequences of physical DNA parameters.  This section will 

introduce these kinds of sequences, herein referred to as “flexibility sequences”.  The 

flexibility sequences described in this section was used for wavelet analysis 

(discussed in Section 2.4.1).  Section 2.3.2 will introduce a simpler kind of flexibility 

sequence for using as emission symbols for HMMs. 

For the work carried out in this thesis, a table which provides flexibility values 

for all 256 possible tetranucleotide steps (44 combinations) (Packer et al., 2000b) was 

used to translate a given DNA sequence into its corresponding flexibility sequence.  

According to these studies, certain dinucleotide steps, represented within the larger 

tetranucleotide steps, were ‘sequence-independent’.  Their conformation appears to be 

constant regardless of neighbouring sequences; an example of this is [AA/TT] whose 

physical basis was discussed earlier (Section 1.4.1).  At the other extreme, sequences 

such as [CA/TG] are ‘sequence-dependent’ as their conformation is strongly 

influenced by the immediate DNA sequence context.  This is why a tetranucleotide-

based flexibility table was used rather than a lower di- or tri- nucleotide based 

flexibility table since it would be able to model the contexts of the sequence-

dependent dinucleotides slightly better. 

The parameters in this table were estimated using force field measurements, 

which are mathematical formulas for expressing energy as a function of physical 

conformation (Sprous, 1996). Such functions are usually sums of terms which 
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correspond to bond angle, torsion, Van der Waals forces and electrostatic interaction 

energies.  These parameters correlated reasonably well with the limited 

tetranucleotide parameters available from X-ray crystallography (Hunter & Lu, 1997; 

Packer et al., 2000b).  The values in the flexibility table range from 1.9 (most flexible) 

to 27.2 (most rigid) and there are a total of 102 unique flexibility values.  As can be 

seen from Figure 2.4, the distribution of the flexibility values is negatively skewed in 

both the flexibility table and in background human genomic DNA.  Those 

tetranucleotide sequences which exhibit the highest rigidity generally contain 

[AA/TT] dinucleotides. 

Figure 2.4:  Histogram of DNA flexibility values (Packer et al., 2000b) 
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A DNA sequence was converted to this kind of flexibility sequence using the 

following steps: 

• A 4 bp window was taken at position 1 of the DNA sequence. 

• Its corresponding flexibility value was looked up and stored as the first symbol 

of the flexibility sequence. 
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• The window was shifted by 1 bp and the next value looked up; this was stored 

as the second symbol of the flexibility sequence. 

• Steps 2-3 were repeated until reaching 3 bp from the end of the DNA 

sequence. 

2.3.2 Flexibility emission alphabet for using with HMMs 

A simple flexibility emission alphabet was derived from the tetranucleotide-

based flexibility table described above for using with HMMs.  In the original form of 

this table, 102 unique symbols would have been an exhaustive emission alphabet for 

HMM training (compare with 4 symbols for the DNA alphabet for example).  

Therefore, the number of symbols had to be sized down to form a reasonable emission 

alphabet.  This was done by firstly splitting the 256 unique tetranucleotide sequences 

into 6 equally binned categories ranked by ascending values of flexibility.  Each of the 

6 bin categories represented a symbol of the new compressed alphabet:  these new 

symbol values were assigned from 1 for most flexible to 6 for most rigid.  So for 

example, the ‘most flexible’ category would contain the 42 (256/6) most flexible 

tetranucleotide sequences of the original table.  In this way, a compressed 6-symbol 

flexibility lookup table for tetranucleotide DNA sequences was derived.  This table 

was used to convert a DNA sequence into its corresponding 6-symbol flexibility 

sequence using the same steps outlined in Section 2.3.1. 
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2.4 A Basic Introduction to Wavelets 

2.4.1 An introduction to wavelets 

Wavelets are a family of mathematical transformations which reveal information 

about the strength and localisation of periodic patterns in a signal; this information is 

not apparent in the raw format of the signal.  A DNA sequence can be considered as a 

specific kind of signal.  The flexibility sequence is another representation of the same 

signal but from which it is easier to derive information about the sequence of 

structural features in the DNA sequence.  There are 2 parameters which define a 

wavelet (Figure 2.5): 

• Translation (τ) which defines a specific position along a signal and 

• Scale (s) which defines a specific frequency. 
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Figure 2.5:  The concept of translation and scale in wavelet terminology.  This figure is 
a slightly modified version of a figure from Robi Polikar’s ‘Introduction to Wavelets’ 
online tutorial (Polikar, 2000). 

 
 

In Figure 2.5a(0), the wavelet function is seen as a red sine curve; it is located 

at its initial position 2 (the value of τ) along the DNA sequence and with a scale 

parameter of 1 (the value of s).  This is the wavelet function at its original position 

and is called the mother wavelet.  The following shifts in size and location are then 

applied to the mother wavelet: 



2-56 

• Firstly, the function is moved or ‘translated’ along a sequence to scan for any 

localised frequencies which correspond to the present value of s = 1 (Figure 

2.5a(1)).  In Figure 2.5a(1), the function has been shifted to a τ value of 40.  τ 

= 80 will receive a high score at this present s value as it is very similar in size 

and shape to the current value of s.  In this way, a score is obtained for each 

point along the DNA sequence which represents how strongly correlated the 

part of the sequence is to the present shape and size of the wavelet function. 

• The scale parameter, ‘s’, is now ‘dilated’ to 5 (Figure 2.5b(0)) increasing the 

width of the function.  It is also translated across the sequence to obtain a score 

for each point along the DNA sequence.  One important feature is that since 

the scale has increased, the resolution along the ‘x’ axis has also diminished.  

This is a property of multiresolution which is explained in the next section.  

Note that the initial τ value is now at 20 which is due to the increase in width 

of the wavelet function. 

• In Figure 2.5c(0), ‘s’ is further dilated to 20.  In this way, a number of co-

efficient scores are obtained for different values of ‘s’ and τ.  The results can 

be plotted as a 2D contour map as in Figure 4.2 (page 4-122), where the 

intensity of the colours represent the strength of different frequencies in 

different regions of the DNA sequence (dark blue is strongest). 

Equation 2.3  is the formula for the continuous wavelet transform.  For 

different values of τ and s, the wavelet function is obtained as the product of the 

original sequence, x(t), and the wavelet function.  This product is referred to as the 

convolution of the signal and the wavelet function; it is analogous to a correlation co-

efficient between the wavelet function and a specific region of the signal.  The 
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convolved product is further multiplied by a normalisation factor 1/√|s|, which ensures 

that the energy of the co-efficients is distributed evenly along different scales. 

 Equation 2.3:  Continuous wavelet transform 

 

2.4.2 The multiresolution property of wavelets 

The output from a wavelet transform provides a 2 dimensional representation 

where the strengths of different frequencies against a DNA sequence can be viewed.  

However, an important feature with this kind of transformation is the multiresolution 

property.  This states that high frequency components are resolved well in time and 

low frequency components are resolved well in frequency.  As can be seen in Figure 

2.6, as the frequencies get higher, the width of the boxes get narrower; thus this value 

can be resolved well along the DNA sequence.  The reverse is true for low 

frequencies which will be resolved poorly along the DNA sequence but better along 

the frequency axis; this is seen as the wide box at the bottom of the frequency axis. 

Figure 2.6:  The multiresolution property of wavelets.  The x and y axes represent 
increasing values along the DNA sequence co-ordinates and frequency values 
respectively. 

 
 




